
HYDROGEOLOGY, GROUND-WATER QUALITY, AND POTENTIAL FOR WATER-SUPPLY CONTAMINATION NEAR THE SHELBY COUNTY LANDFILL IN MEMPHIS, TENNESSEE

Prepared by the U.S. GEOLOGICAL SURVEY **Science for a changing world**

in cooperation with the SHELBY COUNTY DEPARTMENT OF PUBLIC WORKS

HYDROGEOLOGY, GROUND-WATER QUALITY, AND POTENTIAL FOR WATER-SUPPLY CONTAMINATION NEAR THE SHELBY COUNTY LANDFILL IN MEMPHIS, TENNESSEE

By William S. Parks and June E. Mirecki

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 91-4173

Prepared in cooperation with the

SHELBY COUNTY DEPARTMENT OF PUBLIC WORKS

Memphis, Tennessee

1992

U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary

U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey 810 Broadway, Suite 500 Nashville, Tennessee 37203 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Federal Center Box 25425 Denver, Colorado 80225

CONTENTS

Abstract 1 Introduction 2 Purpose and scope 3 Acknowledgments 3 Site description 3 Hydrogeology 4 Alluvium 4 Confining unit 5 Memphis Sand 10 Ground-water quality 12 Major inorganic constituents and nutrients 12 Trace inorganic constituents 27 Synthetic organic compounds 29 Potential for water-supply contamination 52 Summary and conclusions 53 References cited 54 Appendix A: Field work and procedures 55 Well installation 57 Water-level measurements 58 Well sampling for water quality 59 Appendix B: Lithologic information from auger borings and well-construction diagrams for wells installed in the alluvial aquifer 61 Appendix C: Lithologic information from hydraulic-rotary test holes and well-construction diagrams for wells installed in the Memphis aquifer 71

ILLUSTRATIONS

Figures 1-5. Maps showing location of:

- The Shelby County landfill and Memphis Light, Gas and Water Division well fields 2
- Twelve wells installed in the alluvial aquifer or upper part of the confining unit at the Shelby County landfill during this investigation 6
- Eight wells installed in the Memphis aquifer at the Shelby County landfill during this investigation 7
- 4. Wells in the alluvial aquifer or upper part of the confining unit in which water levels were measured during October 1989
 8
- Altitude of the water table in the alluvial aquifer or upper part of the confining unit in the area of the Shelby County landfill, October 1989 10
- 6. Hydrogeologic sections through the area of the Shelby County landfill 11
- 7-10. Maps showing:
 - Wells screened in the Memphis aquifer in which water levels were measured during October 1989 13
 - Altitude of the potentiometric surface of the Memphis aquifer in the area of the Shelby County landfill, October 1989 14

- 9. Wells screened in the alluvial aquifer or upper part of the confining unit sampled for water quality during this investigation 15
- 10. Wells screened in the Memphis aquifer sampled for water quality during this investigation 17
- 11-14. Bar graphs showing:
 - Mean values of concentrations of selected major and trace inorganic constituents and nutrients in samples from background, upgradient, and downgradient wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill 23
 - Mean values of concentrations of selected major and trace inorganic constituents and nutrients in samples from background, downgradient, and leachate plume wells screened in the Memphis aquifer near the Shelby County landfill 26
 - 13. Sums of mean values of concentrations of three classes of volatile organic compounds in samples from wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill 49
 - 14. Sums of mean values of concentrations of three classes of volatile organic compounds in samples from wells screened in the Memphis aquifer near the Shelby County landfill 50

TABLES

- Table 1. Post-Wilcox geologic units underlying the Memphis area and theirhydrologic significance4
 - Construction data for 18 wells installed at the Shelby County landfill during this investigation 5
 - Water-level data from wells screened in the alluvial aquifer or upper part of the confining unit and in the Memphis aquifer near the Shelby County landfill
 - 4. Wells sampled for water-quality analysis near the Shelby County landfill 16
 - Water-quality properties and concentrations of nutrients, major inorganic constituents, and trace inorganic constituents in samples from wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill 18
 - 6. Water-quality properties and concentrations of nutrients, major inorganic constituents, and trace inorganic constituents in samples from wells screened in the Memphis aquifer near the Shelby County landfill 24
 - Concentrations of synthetic organic compounds in samples from wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill 30
 - Concentrations of synthetic organic compounds in samples from wells screened in the Memphis aquifer near the Shelby County landfill 39
 - Synthetic organic compounds detected in samples from 14 wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill
 44
 - Synthetic organic compounds detected in samples from eight wells screened in the Memphis aquifer near the Shelby County landfill
 47

CONVERSION FACTORS, VERTICAL DATUM, AND WELL NUMBERING SYSTEMS

Multiply	Ву	To obtain
inch (in.)	2.54	centimeter
foot (ft)	0.3048	meter
mile (mi)	1.609	kilometer
acre	0.4047	square hectometer
foot per day (ft/d)	30.48	centimeter per day
gallons per minute (gal/min)	0.06309	liters per second

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

Well-Numbering Systems: For this investigation, the new wells were assigned project numbers (beginning with 32 for wells screened in the alluvial aquifer and MS-5 for wells screened in the Memphis aquifer) to follow a system begun by Bradley (1988) for the first group of wells installed near the Shelby County landfill. For brevity, these numbers were used as the principal numbers for labeling figures, referencing tables, and identifying wells in the appendices. For location of the schedules, geophysical logs, and water levels in the files, the wells also are identified according to the local numbering system used throughout Tennessee.

Tennessee District well-numbering system: Wells in Tennessee are identified according to this numbering system that is used by the U.S. Geological Survey, Water Resources Division. The well number consists of three parts: an abbreviation of the name of the county in which the well is located; a letter designating the 7 1/2-minute topographic quadrangle on which the well is plotted; quadrangles are lettered from left to right across the county beginning in the southwest corner of the county; and a number generally indicating the numerical order in which the well was inventoried. For example, Sh:Q-132 indicates that the well is located in Shelby County on the "Q" quadrangle and is identified as well 132 in the numerical sequence.

In table 4 of this report, the U.S. Geological Survey site identification numbers used for computer processing of water-quality data are given so that the data for a particular well can be retrieved. This number consists of the latitude and longitude of the well and a sequence number (01, 02, and so forth) to distinguish among several wells located within the same second of latitude and longitude.

Use of trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

Hydrogeology, Ground-Water Quality, and Potential for Water-Supply Contamination near the Shelby County Landfill in Memphis, Tennessee

By William S. Parks and June E. Mirecki

ABSTRACT

An investigation was conducted from 1989 to 1991 to collect and interpret hydrogeologic and ground-waterquality data specific to the Shelby County landfill in east Memphis, Tennessee. Eighteen wells were installed in the alluvial and Memphis aquifers at the landfill. Hydrogeologic data collected showed that the confining unit separating the alluvial aquifer from the Memphis aquifer was thin or absent just north of the landfill and elsewhere consists predominantly of fine sand and silt with lenses of clay.

A water-table map of the landfill vicinity confirms the existence of a depression in the water table north and northeast of the landfill and indicates that ground water flows northeast from the Wolf River passing beneath the landfill toward the depression in the water table. A map of the potentiometric surface of the Memphis aquifer shows that water levels were anomalously high just north of the landfill, indicating downward leakage of water from the alluvial aquifer to the Memphis aquifer.

An analysis of water-quality data for major and trace inorganic constituents and nutrients confirms that leachate from the landfill has migrated northeastward in the alluvial aquifer toward the depression in the water table and that contaminants in the alluvial aquifer have migrated downward into the Memphis aquifer. The leachate plume can be characterized by concentrations of certain major and trace inorganic constituents that are 2 to 20 times higher than samples from upgradient and background alluvial aquifer wells. The major and trace constituents that best characterize the leachate plume are total organic carbon, chloride, dissolved solids, iron, ammonia nitrogen, calcium, sodium, iodide, barium, strontium, boron, and cadmium.

Several of these constituents (specifically dissolved solids, calcium, sodium, and possibly ammonia nitrogen, chloride, barium, and strontium) were detected in elevated concentrations in samples from certain Memphis aquifer wells. Elevated concentrations were detected in samples from the Memphis aquifer beneath the leachate plume where the confining unit is thin or absent.

The distribution of halogenated alkanes (specifically dichlorodifluoromethane and trichlorofluoromethane) and halogenated alkenes (specifically 1,2-trans-dichloroethene and vinyl chloride) in samples from wells screened in both the alluvial and Memphis aquifers is similar to the distribution of major and trace inorganic constituents that characterize the leachate plume.

The ground-water supply most susceptible to contamination from the Shelby County landfill is the Sheahan well field of the Memphis Light, Gas and Water Division. This well field is about 5 miles downgradient from the landfill in the direction of ground-water flow. Based on an estimated velocity of 0.5 to 1.5 feet per day, ground water would require about 50 to 150 years to travel from the Shelby County landfill to the Sheahan well field. Given the time and distance of transport, any contaminants in the ground water would not likely persist to reach this well field because of the effects of various physical, chemical, and biological processes, including dilution and adsorption.

INTRODUCTION

The Shelby County landfill in east Memphis, Tennessee (fig. 1) was operated as an open dump for 4 years (1968 to 1972) and then as a regulated landfill for 16 years (1972 to 1988). It was closed on October 1, 1988. During its operation as a regulated landfill, waste disposal was limited to domestic and municipal wastes; disposal of hazardous waste was prohibited (D.C. Newsom, Shelby County Department of Public Works, oral commun., 1989).

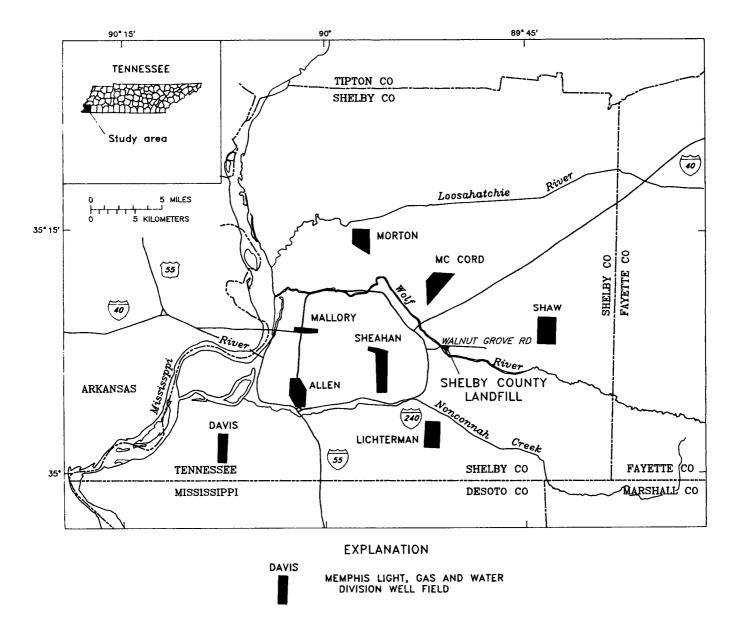


Figure 1. - The Shelby County landfill and Memphis Light, Gas and Water Division well fields.

Proposed expansions of the landfill led to investigations of an area east of the landfill in 1978 (P.M. Garman, Tennessee Department of Health and Environment, written commun., 1978) and north of Walnut Grove Road in early 1986 (J.L. Ashner, Tennessee Department of Health and Environment, written commun., 1986). During the investigation of the area north of Walnut Grove Road, water levels in auger holes and observation wells indicated that the water table was depressed to levels below the low-flow stages of the nearby Wolf River--an anomalous condition (J.L. Ashner, Tennessee Department of Health and Environment, oral commun., 1986).

The USGS subsequently (1986-87) made a study of the ground-water hydrology of the area north and east of the Shelby County landfill with emphasis on determining indications of leakage (M.W. Bradley, U.S. Geological Survey, written commun., 1989). Ground-water data indicated that the depression in the water table was centered north and northeast of the landfill and was as much as 14 feet below the low-flow stages of the Wolf River. Discharge measurements made at low flows indicated that the Wolf River loses water along a stretch that flows past the landfill on the south and west. This local reduction in surface-water flow was interpreted as a loss of water from the Wolf River into the alluvial aquifer (M.W. Bradley, U.S. Geological Survey, written commun., 1989). Thus, the Wolf River may contribute to the north-trending flow of ground water beneath the landfill in the alluvial aquifer.

Water-quality data indicated that contaminants from the landfill had entered the alluvial aquifer and were moving northward in the ground water toward the depression in the water table. The quality of water in the Memphis aquifer beneath the depression indicated that uncontaminated ground water from the alluvial aquifer had moved downward as a result of leakage and had entered the Memphis aquifer (M.W. Bradley, U.S. Geological Survey, written commun., 1989).

In view of these findings, the Tennessee Department of Health and Environment [Tennessee Department of Environment and Conservation (TDEC) as of 1991] ordered Shelby County to submit plans (1) for the application of a suitable final cover for the landfill and (2) to conduct a ground-water quality assessment (Tennessee Department of Health and Environment, written commun., 1988). The need to install a monitoring well system around the Shelby County landfill and to determine the types and concentrations of contaminants moving in ground water from the landfill resulted in the investigation reported here. The investigation was conducted by the USGS from 1989 to 1991 in cooperation with the Shelby County Department of Public Works.

Purpose and Scope

This report summarizes information concerning ground-water flow and transport of contaminants in the alluvial aquifer or upper part of the confining unit from the Shelby County landfill toward the depression in the water table north and northeast of the landfill. It also summarizes information concerning downward leakage and transport of contaminants from the alluvial aquifer to the Memphis aquifer. The report documents the construction details of additional wells installed around the Shelby County landfill and presents the geologic, water-level, and water-quality data collected. It also summarizes the field work done and describes the data collection procedures used for this investigation (Appendix A).

Acknowledgments

The authors thank Mr. David C. Newsom, Administrator of Shelby County Landfills, whose cooperation and advice significantly aided the efficiency of the field work for the investigation. The authors also thank Mr. Ralph Baker, who operated a county-owned bulldozer and made temporary roads to provide access to difficult-to-reach drilling and sampling sites, as well as, on several occasions, assisted in recovering vehicles or equipment that were stuck.

SITE DESCRIPTION

The Shelby County landfill is located on the Wolf River alluvial plain just south of Walnut Grove Road in east Memphis, Tennessee (fig. 1). The landfill is roughly triangular in shape and covers about 90 acres. It is bounded on the north by Walnut Grove Road and on the southwest by a levee adjacent to the Wolf River. On the southeast, the landfill is surrounded by agricultural land, which belongs to the Shelby County Penal Farm. The Wolf River alluvial plain is relatively flat with some levees, drainage ditches, and intermittent streams.

The surface of the landfill is at an altitude of about 285 to 290 feet above sea level, which is about 40 to 45 feet higher than the surface of the surrounding Wolf River alluvial plain. The landfill comprises two "lifts" (elevations of landfill material and cover) of about 20 to 25 feet each. The southeastern part of the landfill is the oldest part, although it was the last to be covered by the second "lift." In the northern part, the first "lift" adjacent to Walnut Grove Road is being utilized for soccer fields. Near the southeast part of the landfill is a lake, which resulted from the excavation of clay, silt, and sand for cover material during the early operation of the landfill (D.C. Newsom, Shelby County Department of Public Works, oral commun., 1989).

HYDROGEOLOGY

Post-Wilcox geologic units underlying the Shelby County landfill are the alluvium of Quaternary age and the Memphis Sand of Tertiary age (table 1). These units comprise the alluvial and Memphis aquifers. The upper part of the Memphis Sand comprises a confining unit separating the alluvial aquifer from the main body of the Memphis aquifer. This confining unit locally may include clay beds in the Cook Mountain Formation of Tertiary age.

From August to October 1989, 18 wells were installed around the perimeter of the Shelby County landfill and in adjacent areas (table 2). These wells are in addition to 37 wells installed in 1986 for an earlier investigation of a larger area surrounding the landfill (Bradley, 1988). Twelve of the wells are screened in the alluvial aquifer or the upper part of the confining unit separating the alluvium from the main body of the Memphis aquifer (fig. 2). These wells range from 38.5 to 67.3 feet in depth and were installed by auger methods. Six of the wells are screened in the Memphis aquifer (fig. 3). These wells range from 87.5 to 147.5 feet in depth and were installed using the hydraulic-rotary method. Two additional test holes drilled in the Memphis aquifer were abandoned and plugged.

Lithologic descriptions of the alluvium, confining unit, and Memphis Sand encountered in the auger holes and hydraulic rotary test holes drilled in the area of the landfill are given in Bradley (1988) and Appendices B and C of this report. A summary description of lithology and geohydrology of the alluvium (alluvial aquifer), confining unit, and Memphis Sand (Memphis aquifer) follows.

Alluvium

The alluvium of the Wolf River at the Shelby County landfill ranges from about 40 to 70 feet in thickness. The upper 5 to 25 feet generally consist of silty clay or clayey silt, but locally consist of silty fine sand. The lower 25 to 35 feet consist primarily of sand with some gravel. This lower sand

Table 1.- Post-Wilcox geologic units underlying the Memphis area and their hydrologic significance

System	Series	Group	Stratigraphic unit	Thickness	Lithology and hydrologic significance
	Holocene and Pleistocene		Alluvium	0-175	Sand, gravel, silt, and clay. Underlies the Mississippi Alluvial Plain and alluvial plains of streams in the Gulf Coastal Plain. Thickest beneath the Alluvial Plain, where commonly between 100 and 150 feet thick; generally less than 50 feet thick else- where. Provides water to domestic, farm, industrial, and irriga- tion wells in the Mississippi Alluvial Plain.
Quaternary	Pleistocene		Loess	0-65	Silt, silty clay, and minor sand. Principal unit at the surface in upland areas of the Gulf Coastal Plain. Thickest on the bluffs that border the Mississippi Alluvial Plain; thinner eastward from the bluffs. Tends to retard downward movement of water providing recharge to the fluvial deposits.
Quaternary and Tertiary(?)	Pleistocene and Pliocene(?)		Fluvial deposits (terrace deposits)	0-100	Sand, gravel, minor clay and ferruginous sandstone. Generally underlie the loess in upland areas, but are locally absent. Thickness varies greatly because of erosional surfaces at top and base. Provides water to many domestic and farm wells in rural areas.
		?	Jackson Formation and upper part of Claiborne Group, includes Cockfield and Cook Mountain Formations ("capping clay")	0-360	Clay, silt, sand, and lignite. Because of similarities in lithology, the Jackson Formation and upper part of the Claiborne Group cannot be reliably subdivided based on available infor- mation. Most of the preserved sequence is the Cockfield and Cook Mountain Formations, undivided, but locally the Cock- field may be overlain by the Jackson Formation. Serves as the upper confining unit for the Memphis Sand.
Tertiary	Eocene	Claiborne	Memphis Sand ("500-foot" sand)	500-890	Sand, clay, and minor lignite. Thick body of sand with lenses of clay at various stratigraphic horizons and minor lignite. Thick- est in the southeastern part of the Memphis area; thinnest in the northeastern part. Principal aquifer providing water for municipal and industrial supplies east of the Mississippi River, sole source of water for the city of Memphis. Underlain by the Flour Island Formation of the Wilcox Group, which serves as the lower confining unit for the Memphis Sand.

[Modified from Graham and Parks, 1986]

<u>Well</u> Project and	Local USGS	in degree	Longitude s, minutes, econds	Altitude of land surface datum, in feet above	Hydrogeologic unit screened	Screened interval, in feet below	Screen diameter, in inches	Date well installed	Installation method A - auger H - Hydrau-
map	Tennessee	und e		sea level		land surface		<u></u>	lic rotary
32	Sh:Q-132	350743	0895048	259	Alluvial aquifer	43.5 - 48.5	2	08-08-89	Α
33	Sh:Q-133	350749	0895053	264	Alluvial aquifer	42.0 - 47.0	2	08-09-89	Α
34	Sh:Q-134	350758	0895101	252	Alluvium aquifer	33.5 - 38.5	2	08-09-89	Α
35	Sh:Q-135	350742	0895029	249	Confining unit	35.9 - 40.9	2	08-10-89	Α
36	Sh:Q-136	350805	0895106	257	Alluvial aquifer	43.4 - 48.4	2	08-10-89	Α
37	Sh:Q-137	350806	0895056	259	Confining unit	58.8 - 63.8	2	08-10-89	A
38	Sh:Q-138	350805	0895049	260	Confining unit	58.8 - 63.8	2	08-11-89	Α
39	Sh:Q-139	350804	0895021	260	Confining unit	62.3 - 67.3	2	08-11-89	Α
40	Sh:Q-140	350804	0895030	259	Confining unit	60.1 - 65.1	2	08-12-89	Α
41	Sh:Q-141	350755	0895029	260	Confining unit	61.9 - 66.9	2	08-12-89	Α
42	Sh:Q-142	350738	0895040	261	Alluvial aquifer	36.7 - 41.7	2	08-14-89	А
43	Sh:Q-143	350746	0895035	262	Alluvial aquifer	51.5 - 56.5	2	08-14-89	А
MS-5	Sh:Q-144	350742	0895029	249	Memphis aquifer	110 - 130	4	09-13-89	н
MS-6	Sh:Q-145	350804	0895037	261	Memphis aquifer	casing pulled a	and hole filled	09-18-89	н
MS-7	Sh:Q-146	350806	0895056	260	Memphis aquifer	88.5 - 108.5	4	09-19-89	н
MS-8	Sh:Q-147	350811	0895047	248	Memphis aquifer	casing pulled a	and hole filled	09-20-89	н
MS-9	Sh:Q-148	350758	0895101	252	Memphis aquifer	97.5 - 117.5	4	09-28-89	н
MS-10	Sh:Q-149	350749	0895053	264	Memphis aquifer	127.5 - 147.5	4	09-28-89	н
MS-11	Sh:Q-150	350804	0895037	261	Memphis aquifer	107.5 - 127.5		10-03-89	н
MS-12	Sh:Q-151	350811	0895047	248	Memphis aquifer	67.5 - 87.5	4	10-11-89	н

Table 2.- - Construction data for 18 wells installed at the Shelby County landfill during this investigation

and gravel grades from fine or medium sand in the upper part to coarse or very coarse sand with scattered or thin lenses of gravel in the lower part.

Water-level measurements were made in 33 wells (fig. 4) screened in the alluvial aquifer or upper part of the "confining unit" in the area of the Shelby County landfill during October 1989 (table 3). From these measurements, a map was prepared that shows the altitude of the water table in these units (fig. 5).

This map (fig. 5) indicates that the altitude of the water table in the alluvial aquifer at wells 2, 32, 33, and 34 (fig. 4) approximates river stage at the nearby streamflow-gaging station on the Wolf River at Walnut Grove Road (fig. 5). Just north and northeast of the landfill the map indicates a depression in the water table (fig. 5) centered between wells 12 and 38 (fig. 4). The horizontal component of ground-water flow is along lines perpendicular to the contours shown on the water-table map (fig. 5) from higher altitudes to lower altitudes. Thus, ground-water flow

beneath the landfill is generally northeast from the Wolf River towards the depression in the water table. Ground water also flows into this depression from all other directions. In the area of the depression, the alluvial aquifer locally is in direct hydraulic connection with the Memphis aquifer, and water is leaking downward to the Memphis aquifer (M.W. Bradley, U.S. Geological Survey, written commun., 1989).

Confining Unit

The confining unit separating the water-table aquifers (alluvium and fluvial deposits) from the Memphis aquifer in the Memphis area was described previously in several reports. Graham and Parks (1986) considered that part of the stratigraphic section between the base of the water-table aquifers and the top of the first prominent sand in the Memphis Sand to be the "Jackson-upper Claiborne confining bed". This confining unit, the thickness of which was mapped only in the Memphis urban area, was defined by Graham and Parks (1986) to include parts of the Jackson, Cockfield, and Cook Mountain Formations.

Parks (1990), in a study of the larger Memphis area, recognized that the lower part of the "Jackson-upper Claiborne confining bed," as defined by Graham and Parks (1986), locally includes thick intervals of clay, silt, and fine sand that are stratigraphically in the upper part of the Memphis Sand. These fine-grained sediments interfinger with fine to medium or medium to coarse sands in the main body of the Memphis Sand over short lateral distances. Therefore, Parks (1990) re-defined the "Jackson Formation-upper Claiborne Group confining unit" to include only strata in the Jackson, Cockfield, and Cook Mountain Formations, and excluded those strata in the upper part of the Memphis Sand. The Cook Mountain Formation, which is the lower (and older) of the units comprising the Jackson Formationupper Claiborne Group confining unit, directly overlies the Memphis Sand (table 1). The Cook Mountain Formation consists primarily of clay, but locally contains varying amounts of fine sand (Parks, 1990). Nevertheless, it comprises the most extensive and persistent clay layer in the Jackson Formation-upper Claiborne Group confining unit in the Memphis area and, therefore, is the principal confining unit for the Memphis aquifer.

Based on the test holes drilled during this investigation, the Cook Mountain Formation probably is thin or absent in the immediate area of the Shelby County landfill. The sequence of fine sand, silt, and clay separating the

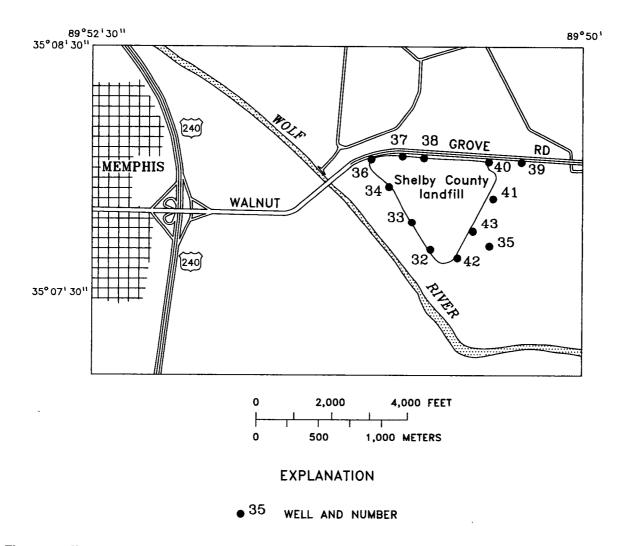


Figure 2. – Twelve wells installed in the alluvial aquifer or upper part of the confining unit at the Shelby County landfill during this investigation.

alluvium from the main body of the Memphis Sand is mostly a discontinuous facies in the upper part of the Memphis Sand. Therefore, this sequence of strata is referred to herein informally as the "confining unit" for the purposes of description and discussion.

At the Shelby County landfill, the confining unit consists of lenses of very fine to fine sand, sandy silt, and silty clay ranging from 0 to at least 75 feet in thickness (fig. 6; Appendix C; Bradley, 1988). These lenses interfinger with each other over relatively short distances. In the test hole for well MS-8 (abandoned) north of Walnut Grove Road about 600 feet north of the landfill, the confining unit was absent and the alluvium directly overlies the main body of the Memphis Sand (fig. 6). In the test hole for well MS-11 on the south side of Walnut Grove Road near the northeast corner of the landfill, the confining unit consisted of only 8 feet of silty clay (fig. 6; *Appendix C*). These two test holes indicate that the confining unit is thin or absent in the area just north and northeast of the landfill.

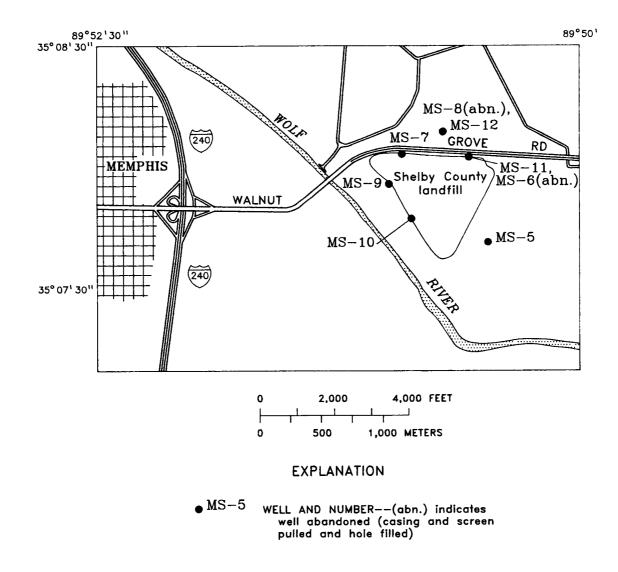


Figure 3. – Eight wells installed in the Memphis aquifer at the Shelby County landfill during this investigation.

On the south side of Walnut Grove Road near the northwest corner of the landfill, the test hole for well MS-7 penetrated the confining unit, consisting of 35 feet of silty clay directly underlying the alluvium at a depth of 47 to 82 feet (fig. 6; *Appendix C*). This depth is 36 to 71 feet below the original land surface when adjusted by subtracting 11 feet of fill for Walnut Grove Road penetrated at the top of the test hole.

On the west side of the landfill near the Wolf River, the confining unit ranged from 50 to 75 feet in thickness in the test holes for wells MS-1 (Bradley, 1988), MS-9, and MS-10 (fig. 6; Appendix C). However, the confining unit in these test holes consisted mostly of very fine to fine sand and sandy silt. The only prominent clay bed penetrated was 24-feet thick in the test hole for well MS-9, at a depth of 67 to 91 feet below land surface. Only about 4 feet of silty clay were penetrated in the test hole for well MS-1 at a depth of 54 to 58 feet.

On the east side of the landfill, the test hole for well MS-5 penetrated a 64-foot thick confining unit consisting mostly of sandy silt and silty clay (fig. 6; Appendix C). This confining unit included a 40-foot thick silty clay at a depth of 60 to 100 feet below land surface.

The most persistent clay bed in the area of the Shelby County landfill, based on available test hole information, is at a nearest distance of about 1,200 feet north of the landfill at well MS-3 in which about 30 feet of silty clay was penetrated (fig. 6). As much as 48 feet of silty clay were penetrated in the auger hole for well 11 and about 35 feet in

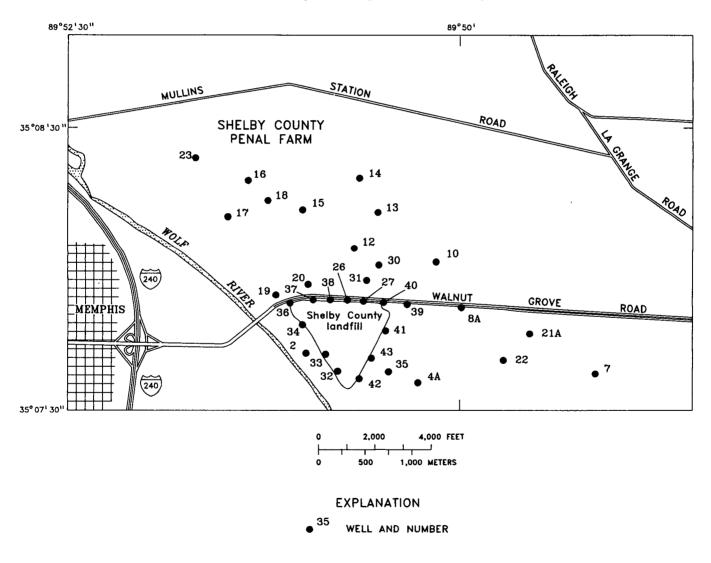


Figure 4. – Wells in the alluvial aquifer or upper part of the confining unit in which water levels were measured during October 1989.

Table 3.- — Water-level data from wells screened in the alluvial aquifer or upper part of the confining unit and in the Memphis aquifer near the Shelby County landfill

[Less than (<) indicates that in wells that were dry the altitude of the water level was below the bottom of the well]

	Il numbers		Longitude.	Altitude of land-surface	Hydrogeologic	Screened	be	ater-level low land-	Water-level altitude, in feet
Project	USGS local		s, minutes,	datum, in	unit	interval, in	Depth,	Date of	above sea
and map	for Tennessee	and s	econds	feet above sea level	screened	feet below land surface	in feet	measurement	level
						40.0 40.0	14.47	10-10-89	233
2	Sh:Q-96	350749	0895058	247	Alluvial aquifer	43.3 - 48.3	31.10	10-09-89	233
4A	Sh:Q-98	350739	0895017	254	Alluvial aquifer	47.5 - 52.5	33.28	10-12-89	225
7	Sh:Q-101	350741	0894909	258	Alluvial aquifer	32.7 - 37.7			225
8A	Sh:Q-102	350803	0894959	262	Alluvial aquifer	48.7 - 53.7	42.78	10-12-89	
10	Sh:Q-104	350816	0895009	267	Alluvial aquifer	39 - 44	dry	10-12-89	< 223
12	Sh:Q-105	350822	0895040	252	Alluvial aquifer	38.7 - 43.7	36.60	10-11-89	215
13	Sh:Q-106	350833	0895030	264	Alluvial aquifer	38.8 - 43.8	dry	10-11-89	< 220
14	Sh:Q-107	350844	0895032	264	Alluvial aquifer	39.5 - 44.5	22.64	10-12-89	241
15	Sh:Q-108	350836	0895032	260	Alluvial aquifer	38.3 - 43.8	38.38	10-11-89	222
16	Sh:Q-109	350845	0895121	257	Alluvial aquifer	39.7 - 44.7	29.72	10-11-89	227
17	Sh:Q-110	350833	0895121	255	Alluvial aquifer	39.2 - 44.2	29.21	10-11-89	226
18	Sh:Q-111	350833	0895121	255	Alluvial aquifer	38.3 - 43.3	34.36	10-11-89	224
				238	Alluvial aquifer	39.4 - 44.4	20.08	10-11-89	227
19	Sh:Q-112	350807	0895111 0895059	247 248	Alluvial aquifer	38.2 - 43.2	30.89	10-11-89	217
20	Sh:Q-113	350812				40 - 45	42.38	10-12-89	218
21A	Sh:Q-114	350753	0894933	260	Alluvial aquifer	40 - 45	42.30	10-12-09	210
22	Sh:Q-115	350745	0894945	255	Alluvial aquifer	49.2 - 54.2	35.31	10-12-89	220
23	Sh:Q-116	350853	0895140	246	Alluvial aquifer	23.3 - 28.3	15.30	10-11-89	231
26	Sh:Q-119	350804	0895041	260	Confining unit	60.1 - 65.1	45.03	10-09-89	215
27	Sh:Q-120	350804	0895035	262	Confining unit	60.2 - 65.2	47.07	10-09-89	215
30	Sh:Q-128	350817	0895035	250	Alluvial aquifer	33.7 - 38.7	33.58	10-12-89	216
31	Sh:Q-129	350810	0895035	249	Alluvial aquifer	34 - 39	32.12	10-12-89	217
32	Sh:Q-132	350743	0895048	259	Alluvial aquifer	43.5 - 48.5	28.09	10-09-89	231
33	Sh:Q-133	350749	0895053	264	Alluvial aquifer	42.0 - 47.0	32.99	10-09-89	231
34	Sh:Q-134	350758	0895101	252	Alluvial aquifer	33.5 - 38.5	22.48	10-09-89	230
35	Sh:Q-135	350742	0895029	249	Confining unit	35.9 - 40.9	24.80	10-09-89	224
	Sh:Q-136	050005	0005100	257	Alluvial aquifer	43.4 - 48.4	29.88	10-09-89	227
36		350805 350806	0895106	259	Confining unit	58.8 - 63.8	39.64	10-09-89	219
37	Sh:Q-137		0895056		Confining unit	58.8 - 63.8	44.87	10-09-89	215
38	Sh:Q-138	350805	0895049	260		62.3 - 67.3	43.85	10-09-89	215
39 40	Sh:Q-139 Sh:Q-140	350804 350804	0895021 0895030	260 259	Confining unit Confining unit	60.1 - 65.1	43.85	10-09-89	215
40	311.Q-140	330004	0090000	209	Comming and	00.1 00.1			
41	Sh:Q-141	350755	0895029	260	Confining unit	61.9 - 6.9	38.13	10-09-89	222
42	Sh:Q-142	350738	0895040	261	Alluvial aquifer	36.7 - 41.7	32.57	10-09-89	228
43	Sh:Q-143	350746	0895035	262	Alluvial aquifer	51.5 - 56.5	38.40	10-09-89	224
None	Sh:Q-1	350900	0894823	330	Memphis aquifer	375 - 384	106.88	10-10-89	223
MS-2	Sh:Q-92	350749	0895058	247	Memphis aquifer	150 - 180	34.66	10-10-89	212
MS-4	Sh:Q-126	350817	0895035	250	Memphis aquifer	68.7 - 97.7	39.64	10-10-89	210
MS-4 MS-5	Sh:Q-144	350742	0895029	249	Memphis aquifer	110 - 130	33.64	10-09-89	215
MS-5 MS-7	Sh:Q-144	350806	0895029	260	Memphis aquifer	88.5 - 108.5	45.80	10-12-89	214
MS-7 MS-9	Sh:Q-148	350808		250	Memphis aquifer	97.5 - 117.5	40.30	10-09-89	212
			0895101	252	Memphis aquifer	127.5 - 147.5	40.50 50.57	10-09-89	213
MS-10	Sh:Q-149	350749	0895053	204	mempris aquiter	127.3 • 147.3	50.57	10-03-03	213
MS-11	Sh:Q-150	350804	0895037	261	Memphis aquifer	107.5 - 127.5	49.75	10-09-89	211
MS-12	Sh:Q-151	350811	0895047	248	Memphis aquifer	67.5 - 87.5	32.52	10-12-89	215

the stratigraphic test hole Sh:Q-124 (fig. 6; Bradley, 1988, p. 31). These clay beds occur directly below the base of the alluvium or fluvial deposits and overlie the Memphis Sand.

complicated by faults. Insufficient test-hole and other information is available to conclusively determine the location of any faults.

Clay beds underlying the alluvium or fluvial deposits in wells MS-3, MS-7, MS-11, 11 and Sh:Q-124 (fig. 6) may be the Cook Mountain Formation. If so, because of their position as related to sands in wells MS-8 and MS-11 and the sea-level datum, the structural geology of the area may be

Memphis Sand

The upper part of the Memphis Sand locally consists of interbedded and interlensed fine sand, silt, and clay, as

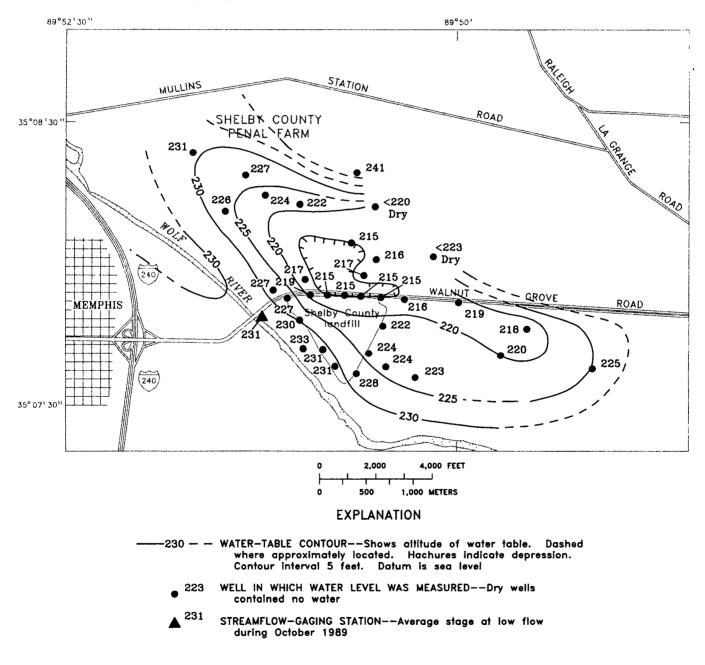


Figure 5. – Altitude of the water table in the alluvial aquifer or upper part of the confining unit in the area of the Shelby County landfill, October 1989.

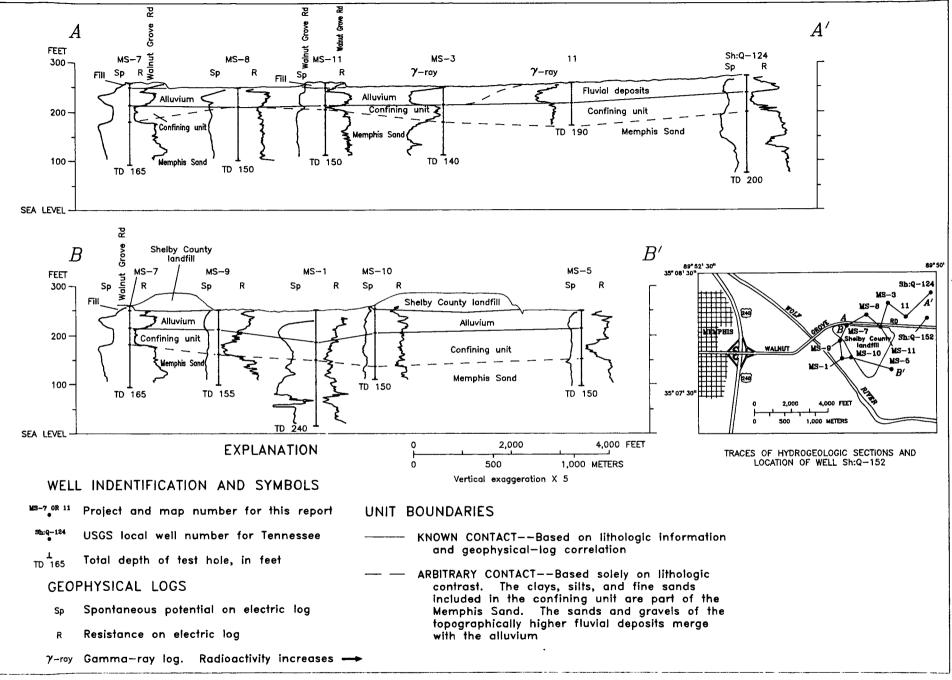


Figure 6. - Hydrogeologic sections through the area of the Shelby County landfill.

discussed previously. The main body of the Memphis Sand consists chiefly of a thick section of sand that includes subordinate lenses or beds of clay and silt at various horizons. Sands in the main body range from very fine to very coarse and also are interbedded and interlensed. Locally, the coarser sands in the main body of the Memphis Sand interfinger with finer sediments in the upper part and locally extend upward to the top of the Memphis Sand. The Memphis Sand at the Shelby County landfill is estimated to be about 725 feet thick, based on a map of the generalized thickness of the Memphis Sand in western Tennessee (Parks and Carmichael, 1990).

The geophysical log made in the test hole for well Sh:Q-152, located about 2,000 feet east-northeast of the landfill (fig. 6), indicated that the top of the main body of the Memphis Sand is at a depth of 80 feet below land surface or about 180 feet above sea level. This test hole was drilled to a depth of about 375 feet below land surface. Well Sh:Q-152, screened from 290 to 350 feet below land surface, was installed to supply water for a recreational lake formed as a result of the excavation of material to cap the landfill.

Based on the map for western Tennessee (Parks and Carmichael, 1990), the base of the Memphis Sand would be at an altitude of about 550 feet below sea level near the landfill. If so, the Memphis Sand would be about 730 feet thick at well Sh:Q-152, which is in agreement with the 725-foot thickness estimated from the map of Parks and Carmichael (1990). Thus, this information about thickness of the Memphis Sand, although generalized and open to verification, supports the idea that the clay beds underlying the alluvium north of the landfill may be the Cook Mountain Formation. In well Sh:Q-152, the Cook Mountain would be about 34 feet thick (46 to 80 feet in depth below land surface).

Water-level measurements were made in nine wells (fig. 7) in the Memphis aquifer in the area of the Shelby County landfill during October 1989 (table 3). From these measurements and estimates utilizing an earlier potentiometric map (Parks, 1990), a map was prepared that shows the altitude of the potentiometric surface of the Memphis aquifer in October 1989 (fig. 8).

The direction of ground-water flow in the area of the landfill is generally westward, based on an interpretation of this map (fig. 8). A comparison of the map showing the altitude of the alluvial aquifer water table (fig. 5) with the altitude of the potentiometric surface in the Memphis aquifer (fig. 8) indicates a head difference favoring downward leakage from the alluvial aquifer or upper part of the confining unit to the Memphis aquifer. The altitude of the potentiometric surface of the Memphis aquifer (fig. 8) in the area of the Shelby County landfill also suggests that downward leakage from the alluvial aquifer to the Memphis aquifer has caused a "mounding" effect at the landfill, particularly at wells MS-7 and MS-12 (fig. 7). Water-levels in these wells seem to be anomalously high.

GROUND-WATER QUALITY

Water-quality samples were collected from 31 wells near the Shelby County landfill during October 1989 (Appendix A). Twenty-two of these wells (fig. 9; table 4) are screened in the alluvial aquifer or upper part of the confining unit, and 9 wells (fig. 10; table 4) are screened in the Memphis aquifer. These water samples were analyzed for major and trace inorganic constituents, nutrients, and synthetic organic compounds (volatiles and extractables). Analyses of the water from 14 wells in the alluvial aquifer or upper part of the confining unit, and 8 wells in the Memphis aquifer indicated that the ground water contained synthetic organic compounds or relatively high concentrations of trace inorganic constituents. These 22 wells were resampled during June and July 1990 (table 4) to verify the results of the first round of sampling and to obtain additional water-quality data for major inorganic constituents and nutrients.

In the discussion that follows (and in tables 9 and 10), reference is made to maximum contaminant level (MCL) in drinking water. The TDEC is the regulatory agency that determines these levels for the State of Tennessee (Tennessee Department of Health and Environment, 1988). The TDEC follows many of the MCL's established by the USEPA (U.S. Environmental Protection Agency, 1986). Therefore, for the discussion of trace inorganic constituents and synthetic organic compounds, reference is made to MCL's of both the Tennessee Department of Health and Environment (TDHE) and the USEPA.

Major Inorganic Constituents and Nutrients

Water-quality properties and concentrations of major inorganic constituents and nutrients were determined for samples from wells screened in the alluvial aquifer and upper part of the confining unit (table 5). A comparison of these water-quality data between the two sampling periods (October 1989, and June and July 1990) shows some variability. Concentrations of major inorganic constituents and nutrients typically vary by 5 to 20 percent between sampling periods.

Spatial differences in ground-water quality in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill can be attributed to different sources of ground-water flowing through the landfill. Contributions to ground-water flow in this aquifer include recharge from precipitation and (to a lesser degree) inflow to the alluvial aquifer from the Wolf River.

For analysis of the ground-water quality in the alluvial aquifer or upper part of the confining unit, wells 4A and 7 (fig. 9) serve as background stations that are located in areas where ground-water flow (fig. 5) is toward the Shelby County landfill. The water-quality data for these wells do not indicate contamination from the landfill. Wells 2, 32, 33, and 34 (fig. 9) serve as upgradient stations prior to passage of ground water beneath the landfill. Wells 26, 27, 31, 38, 39, and 40 (fig. 9) serve as downgradient sampling stations for determination of ground-water quality after passage of ground water beneath the landfill. Other alluvial aquifer wells sampled during this investigation serve as wells to detect contamination emanating from the landfill. Bar graphs provide comparisons of major inorganic constituents and nutrients among background, upgradient, and downgradient wells (fig. 11).

The most significant effect on ground-water quality in the alluvial aquifer or upper part of the confining unit is shown by the water-quality data from wells 26 and 27 and (to a lesser degree) from wells 31, 38, 39, and 40 (fig. 9; table 5). Water from downgradient wells 26, 27, 31, 38, 39, and 40 has concentrations of total organic carbon, chloride, dissolved solids, iron, ammonia nitrogen, calcium, sodium, potassium, and iodide commonly 2 to 10 times higher than concentrations detected in water from background and upgradient wells (fig. 11). Samples having maximum concentrations of

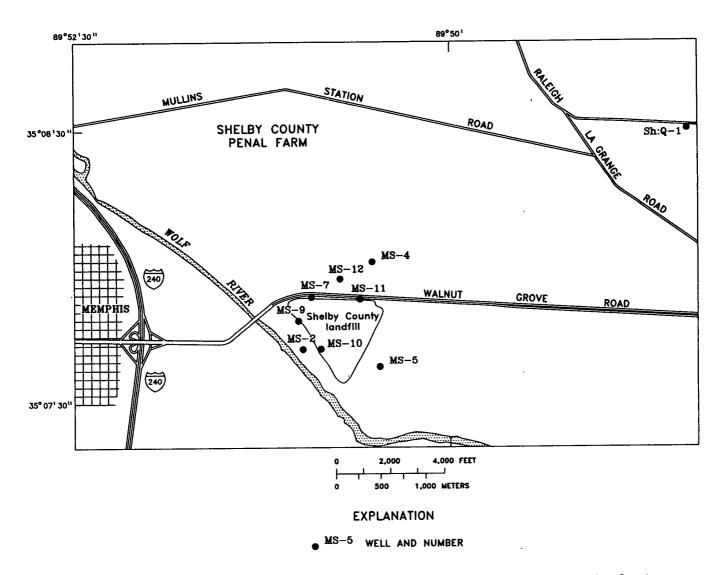
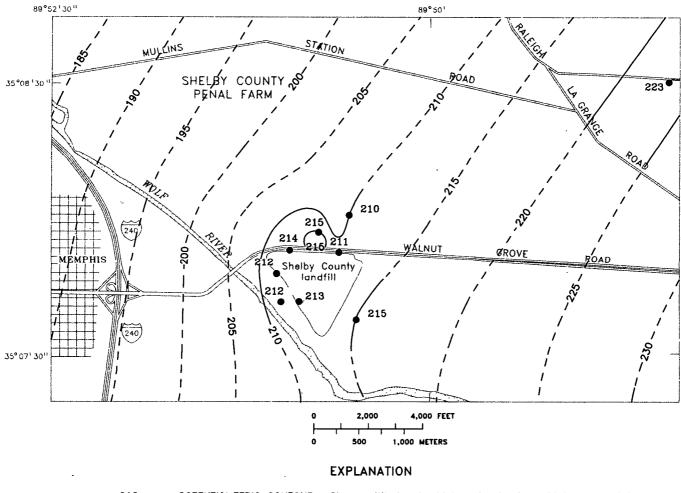
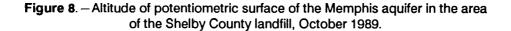



Figure 7. - Wells screened in the Memphis aquifer in which water levels were measured during October 1989.

these constituents at the Shelby County landfill (table 5) were all obtained from downgradient wells. These downgradient maxima exceed previously published maximum concentrations for chloride [12 milligrams per liter (mg/L)], total dissolved solids (652 mg/L), and iron [24,000 micrograms per liter (μ g/L)] in samples from 11 wells screened in the alluvial aquifer in the Memphis area (Brahana and others, 1987, table 2).


The geochemical composition of leachate plumes from sanitary landfills have been characterized elsewhere. Borden and Yanoschak (1990) observed elevated total organic carbon and dissolved solids concentrations (among other constituents) in leachate from sanitary landfills in North Carolina. Increased iron, potassium, magnesium, sodium, chloride, and ammonia nitrogen concentrations were observed in sanitary landfill leachate flowing through sandy sediments (Nicholson and others, 1983; Domenico and Schwartz, 1990). Elevated concentrations of total organic carbon, total dissolved solids, and ammonia nitrogen can result from subsurface microbial oxidation of organic matter. High dissolved iron concentrations can result from reduction of ferric iron and subsequent dissolution of ferrous iron.

Total organic carbon, chloride, dissolved solids, iron, ammonia nitrogen, calcium, sodium, and iodide are the most likely tracers for the leachate plume emanating from the

-210-- -- POTENTIOMETRIC CONTOUR--Shows altitude at which water level would have stood in tightly cased wells. Dashed where approximately located. Contour interval 5 feet. Datum is sea level. Dashed contours are modified from the map of the potentiometric surface of the Memphis aquifer, late summer-fall 1988, by Parks (1990)

210 WELL AND NUMBER IN WHICH WATER LEVEL WAS MEASURED

Shelby County landfill. Other major inorganic constituents such as manganese, silica, fluoride, and bromide were examined to determine their suitability as geochemical tracers, but these constituents in samples from the alluvial aquifer or upper part of the confining unit showed no systematic variation between the wells within the plume and unaffected areas (fig. 11). In addition, maximum concentrations of silica (37 mg/L) and fluoride (0.7 mg/L) reported for samples from 11 wells screened in the alluvial aquifer in the Memphis area (Brahana and others, 1987, table 2) are greater than those values detected in samples from downgradient plume wells (table 5). Nutrient (nitrite plus nitrate, phosphorous, phosphate, and sulfate) concentrations typically show variability of 20 percent between sampling periods (October 1989, and June and July 1990). No systematic variation was observed in concentrations of any nutrient among samples from background, upgradient, and downgradient plume wells screened in the alluvial aquifer or upper part of the confining unit (fig. 11). The highest concentration of nitrite plus nitrate observed in the alluvial aquifer or upper part of the confining unit (1.6 mg/L) is well below the nitrite plus nitrate concentration (44 mg/L) cited as a health risk (Hem, 1985). In addition, nitrite plus nitrate concentrations are well below

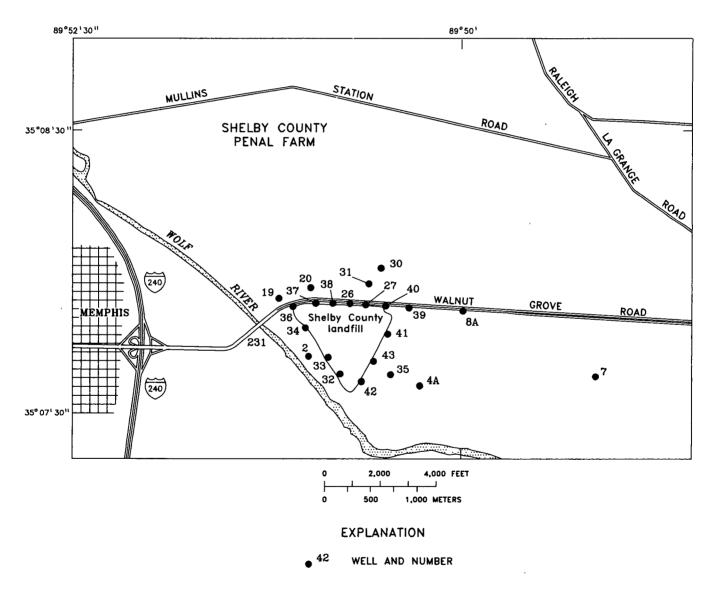


Figure 9. – Wells screened in the alluvial aquifer or upper part of the confining unit sampled for water quality during this investigation.

Table 4. - Wells sampled for water-quality analysis near the Shelby County landfill

[-- indicates that the well was not sampled in the summer 1990]

	numbers	USGS		Screened		
Project	USGS local	site	Hydrogeologic	interval, in		
and	for	identification	unit	feet below	Date	s sampled
map	Tennessee	number	screened	land surface	Fall 1989	Summer 1990
~	6h-0.00	050740000505000		40.0 40.0	40.14.00	
2	Sh:Q-96	350749089505806	Alluvial aquifer	43.3 - 48.3	10-14-89	
4A	Sh:Q-98	350739089501701	Alluvial aquifer	47.5 - 52.5	10-16-89	
7	Sh:Q-101	350741089490901	Alluvial aquifer	32.7 - 37.7	10-26-89	7-10-90
8A	Sh:Q-102	350803089495901	Alluvial aquifer	48.7 - 53.7	10-15-89	-
19	Sh:Q-112	350807089511101	Alluvial aquifer	39.4 - 44.4	10-17-89	
20	Sh:Q-113	350812089505901	Alluvial aquifer	38.2 - 43.2	10-20-89	7-06-90
26	Sh:Q-119	350804089504101	Alluvial aquifer	60.1 - 65.1	10-20-89	7-13-90
27	Sh:Q-120	350804089503801	Alluvial aquifer	60.2 - 65.2	10-11-89	7-02-90
30	Sh:Q-128	350817089503504	Alluvial aquifer	33.7 - 38.7	10-27-89	6-26-90
31	Sh:Q-129	350810089503501	Alluvial aquifer	34 - 39	10-30-89	6-25-90
32	Sh:Q-132	350743089504801	Alluvial aquifer	43.5 - 48.5	10-12-89	
33	Sh:Q-133	350749089505301	Alluvial aquifer	42.0 - 47.0	10-13-89	6-27-90
55	011.02100	330749089303301	Aliuviai aquilei	42.0 - 47.0	10-13-03	0-27-90
34	Sh:Q-134	350758089510101	Alluvial aquifer	33.5 - 38.5	10-13-89	6-28-90
35	Sh:Q-135	350742089502901	Confining unit	35.9 - 40.9	10-15-89	-
36	Sh:Q-136	350805089510601	Alluvial aquifer	43.4 - 48.4	10-19-89	
		•••••••				
37	Sh:Q-137	350806089505601	Confining unit	58.8 - 63.8	10-30-89	7-13-90
38	Sh:Q-138	350805089504901	Confining unit	58.8 - 63.8	10-19-89	7-03-90
39	Sh:Q-139	350804089502101	Confining unit	62.3 - 67.3	10-11-89	7-11-90
00	011.02-100	000004000002101	Comming and	02.0 - 07.0	10-11-03	7-11-50
40	Sh:Q-140	350804089503001	Confining unit	60.1 - 65.1	10-19-89	7-11-90
41	Sh:Q-141	350755089502901	Confining unit	61.9 - 66.9	10-10-89	
42	Sh:Q-142	350738089504001	Alluvial aquifer	36.7 - 41.7	10-14-89	6-29-90
	on a ric		, mariar adamen			0 20 00
43	Sh:Q-143	350746089503501	Alluvial aquifer	51.5 - 56.5	10-12-89	7-05-90
None	Sh:Q-88	350733089482501	Memphis aquifer	215 - 295	10-26-89	7-10-90
MS-2	Sh:Q-92	350749089505802	Memphis aquifer	150 - 180	10-14-89	7-09-90
MS-4	Sh:Q-126	350817089503502	Memphis aquifer	68.7 - 97.7	10-16-89	-
MS-5	Sh:Q-144	350742089502902	Memphis aquifer	110 - 130	10-15-89	6-29-90
MS-7	Sh:Q-146	350806089505602	Memphis aquifer	88.5 - 99.5	10-18-89	7-06-90
MS-9	Sh:Q-148	350758089510102	Memphis aquifer	97.5 - 117.5	10-13-89	6-28-90
MS-10	Sh:Q-149	350749089505302	Memphis aquifer	127.5 • 147.5	10-13-89	6-27-90
MS-11	Sh:Q-150	350804089503701	Memphis aquifer	107.5 - 127.5	10-11-89	7-02-90
			· · · · · · · · · · · · · · · · · · ·			
MS-12	Sh:Q-151	350810489504702	Memphis aquifer	67.5 - 87.5	10-27-89	6-26-90

the drinking water MCL for nitrate of 10.0 mg/L (Tennessee Department of Health and Environment, 1988; U.S. Environmental Protection Agency, 1986).

Sulfate concentrations in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill commonly exceed the maximum concentration of 33 mg/L reported previously for samples from 11 wells screened in the alluvial aquifer in the Memphis area (Brahana and others, 1987, table 2). However, maximum sulfate concentrations (ranging from 60 to 170 mg/L) in wells 7, 8A, 20, 30, and 35 near the landfill are not associated with the leachate plume; instead, these wells with high sulfate concentrations are located in open fields in agricultural areas away from the landfill. Elevated sulfate concentrations are typically associated with surface and ground water in regions receiving acidic precipitation, or water affected by biological activity (Hem, 1985; Drever, 1988). High sulfate concentrations near Shelby County landfill cannot be attributed solely to leachate contamination.

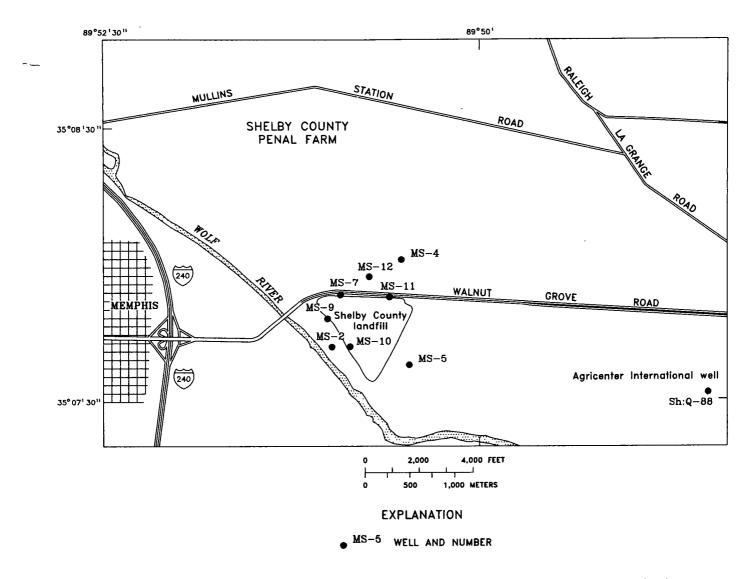


Figure 10. – Wells screened in the Memphis aquifer sampled for water quality during this investigation.

Water-quality properties and concentrations of major inorganic constituents and nutrients were determined for samples from wells screened in the Memphis aquifer (table 6). A comparison of these water-quality data between the two sampling periods (October 1989, and June and July 1990) shows that the variability was commonly less than 10 percent for all constituents except for concentrations of total organic carbon, ammonia nitrogen, iron, and manganese, which vary 25 percent or more (table 6). Variations in water quality for samples from wells screened in the Memphis aquifer can result from downward leakage of ground water from the overlying alluvial aquifer to the Memphis aquifer where the confining unit is thin or absent.

For analysis of the ground-water quality data for the Memphis aquifer, wells Sh:Q-88, MS-4, and MS-5 (fig. 10) serve as background stations that are located in areas where ground water in the Memphis aquifer flows toward or past the Shelby County landfill (fig. 8). Wells MS-2, MS-9, and MS-10 serve as downgradient stations that are on the west side of the landfill in the direction of ground-water flow in the Memphis aquifer (fig. 5). Wells MS-7, MS-11, and MS-12 serve as leachate plume stations that are located in the general area where contaminants have been detected in the alluvial aquifer or upper part of the confining unit. Bar graphs provide comparisons of major inorganic constituents and nutrients in background, downgradient, and leachate plume wells (fig. 12).

Dissolved solids, calcium, sodium, and possibly ammonia nitrogen and chloride concentrations are elevated significantly in samples from Memphis aquifer plume wells MS-7, MS-11, MS-12 when compared to background and downgradient wells (fig. 12). Maximum concentrations of Table 5.--Water-quality properties and concentrations of nutrients, major inorganic constituents, and trace inorganic constituents in samples from wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill

[MG/L, milligrams per liter; UG/L, micrograms per liter; DEG C, degrees Celsius; US/CM, microsiemens per centimeter. Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

	NUMBERS		TEMPER- ATURE	COLOR (PLATINUM	PH	SPECIFIC	SOLIDS FIESIDUE	CARBON, TOTAL	NITROGEN, ORGANIC	NITROGEN, AMMONIA	NITROGEN, NITRITE	NITRO NO2+	HNO3
PROJECT AND MAP	USGS LOCAL FOR TENNESSTE	DATE	WATER (DEG C)	COBALT UNITS)	(STANDARD UNITS)	CONDUCTANCE (US/CM)	AT 180 DEG C DISSOLVED (MG/L)	ORGANIC (MG/L AS C)	TOTAL (MG/L AS N)	TOTAL (MG/L AS N)	TOTAL (MG/L AS N)	tot (MG/L	
02	Sh:Q-096	10-14-89	17.0		6.5	90	43	1.5	0.08	0.32	< 0.010	< 0	.100
4 A	Sh:Q-098	10-16-89	16.0	8	5.9	245	132	2.2	0.07	0.23	0.010	< 0	0.100
07	Sh:Q-101	10-26-89	18.0	< 1	5.3	446	308	1.0		0.06	< 0.010	1	.00
		07-10-90	17.5	< 1	5.2	339	224	1.2	0.15	0.15	< 0.010	0	.300
8 A	Sh:Q-102	10-15-89	19.0	2	6.1	564	362	0.5		< 0.01	< 0.010	1	.60
19	Sh:Q-112	10-17-89	15.5	2	6.3	120	65	1.1		0.07	0.020	< 0	.100
20	Sh:Q-113	10-20-89	17.0	5	5.4	222	147	1.2	0.31	0.09	0.010	< 0	.100
		07-06-90	17.5	< 1	5.4	235	149	1.1	0.11	0.09	< 0.010	< 0	0.100
26	Sh:Q-119	10-20-89	19.0	28	6.3	957	485	13	5.0	25	0.040	< 0	0.100
		07-13-90	20.0	7	6.3	1,020	488	11	18.7	2.3	< 0.010	< 0	0.100
27	Sh:Q-120	10-11-89	19.5	17	6.5	1,030	663	15	7.0	32	0.030	< 0	.100
		07-02-90	20.0	25	6.4	1,380	652	15	27.0	3.0	< 0.010	< 0	.100
30	Sh:Q-128	10-27-89	19.0	10	6.7	435	274	3.8	0.64	0.36	0.020	1.	.20
		06-26-90	26.0	3	6.1	610	376	0.5	0.28	0.12	< 0.010	1	.30
31	Sh:Q-129	10-30-89	19.5	7	6.8	740	485	2.3	0.47	0.23	< 0.010	< 0	.100
		08-25-90	27.0	3	6.0	685	400	1.2	0.42	0.18	< 0.010	< 0	.100
32	Sh:Q-132	10-12-89	17.0	30	6.3	91	41	1.3	0.19	0.41	< 0.010	< 0	,100
33	Sh:Q-133	10-13-89	16.0	20	5.8	117	83	3.0	0.08	0.52	< 0.010	< 0	.100
		06-27-90	16.5	75	5.8	93	230	2.7	0.06	0.44	0.030	< 0	0.100
34	Sh:Q-134	10-13-89	16.5	50	5.8	188	112	2.3	0.06	0.64	< 0.010	< 0	0.100
		06-28-90	16.0	130	5.8	102	73	2.9	0.00	0.51	0.010	< 0	0.100
35	Sh:Q-135	10-15-89	17.0	3	5.7	226	145	1.1	0.11	0.09	< 0.010	< 0	0.100
36	Sh:Q-136	10-19-89	15.5	20	6.1	145	52	1.4	0.00	0.21	0.030	< 0	.100
37	Sh:Q-137	10-30-89	20.5	250	8.2	176	110	20	1.0	0.76	0.480	< 0	.100
		07-13-90	22.0	110	6.8	132	84	4.7	0.32	0.08	0.060	< 0	.100
38	Sh:Q-138	10-19-89	18.0	15	6.1	530	295	4.4	1.2	7.3	0.020	< 0	.100
		07-03-90	20.5	. 7	6.1	574	247	5.0	5.9	0.09	< 0.010	< 0	.100
39	Sh:Q-139	10-11-89	18.5	50	6.2	480	222	2.2	0.00	1.4	0.010	< 0	.100
		07-11-90	19.0	5	6.4	880	400	3.6	0.10	1.2	< 0.010	< 0	.100
40	Sh:Q-140	10-19-89	16.0	15	6.4	783	507	7.0	6.1	7.9	0.040	< 0	.100
		07-11-90	23.5	5	6.4	925	473	6.4	1.0	11	< 0.010	0	,100
41	Sh:Q-141	10-10-89	19.0	2	6.5	192	105	0.7		0.03	0.010	< 0	.100
42	Sh:Q-142	10-14-89	16.0	35	5.7	169	89	3.7	0.25	0.75	0.030		.100
		06-29-90	16.0	13	5.8	175	103	5.3	0.30	0.90	0.030	< 0.	.100
43	Sh:Q-143	10-12-89	17.5	18	5.8	336	157	2.7	0.18	0.52	0.020	< 0.	.100
		07-05-90	17.5	2	5.8	346	161	2.0	0.15	0.45	< 0.010		.100

18

Table 5.--Water-quality properties and concentrations of nutrients, major inorganic constituents, and trace inorganic constituents in samples from wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill--Continued

[MG/L, milligrams per liter; UG/L, micrograms per liter; DEG C, degrees Celsius; US/CM, microsiemens per centimeter. Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

WELL	NUMBERS		Phos- Phorous	PHOS- PHATE	SULFATE, DISSOLVED	ALUMINUM.	LITHIUM.	SELENIUM	FLUORIDE.	IODIDE.	BROMIDE.
	USGS LOCAL	•	TOTAL	TOTAL	(MG/L	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED
AND MAP	FOR TENNESSEE	DATE	(MG/LAS P	(MG/L AS PO4)	AS SO4)	(UG/L AS AL)	(UG/L AS LI)	(UG/L AS SE)	(MG/L AS F)	(MG/LASI)	(MG/L AS BR
02		10-14-89	0.020		3.0	< 10	< 4	< 1	0.10	0.013	0.010
4 A		10-16-89	0.080	0.21	72	40	9	< 1	< 0.10	0.005	0.030
07	Sh:Q-101	10-26-89	0.010	••	170	< 10	7	< 1	< 0.10	0.014	0.090
		07-10-90	0.010	••	110	< 10	9	< 1	0.40	0.014	0.080
8 A	Sh:Q-102	10-15-89	0.020	0.03	63	< 10	5	6	. 0.10	0.004	0.830
19	Sh:Q-112	10-17-89	0.070	0.25	3.0	< 10	< 4	< 1	0.10	0.008	< 0.010
20	Sh:Q-113	10-20-89	0.020	0.06	51	10	< 4	< 1	< 0.10	0.016	< 0.010
		07-06-90	< 0.010	••	60	20	< 4	< 1	< 0.10	0.017	0.020
26	Sh:Q-119	10-20-89	0.050	0.15	< 1	10	< 4	< 1	0.20	0.220	0.250
		07-13-90	0.040	••	< 1	< 10	4	< 1	< 0.10	0.200	0,250
27	Sh:Q-120	10-11-89	< 0.010	0.09	4.0	< 10	9	< 1	0.20	0.240	0,260
		07-02-90	< 0.010	••	2.0	< 10	< 4	< 1	< 0.10	0.077	0.600
30	Sh:Q-128	10-27-89	0.110	0.18	88	< 10	< 4	17	0.20	0.012	0.060
		06-26-90	0.050		170	< 10	< 4	20	0.20	0.006	0.040
31	Sh:Q-129	10-30-89	0.040	0.03	54	< 10	5	< 1	0.10	0.100	0,060
		06-25-90	< 0.010	••	40	< 10	5	< 1	0.20	0.120	0,050
32	Sh:Q-132	10-12-89	0.030	0.15	2.0	< 10	< 4	< 1	0.20	0.011	0.010
33	Sh:Q-133	10-13-89	0.210	0.43	9.0	< 10	< 4	< 1	0.10	0.013	0.020
		06-27-90	0.200	0.61	4.2	50	5	< 1	< 0.10	< 0.001	0,100
34	Sh:Q-134	10-13-89	0.160	0.12	2.0	< 10	< 4	< 1	0.10	0.030	< 0,010
		06-28-90	0.160	0.25	3.8	40	5	< 1	< 0.10	0.004	0.030
35	Sh:Q-135	10-15-89	0.020	0.06	60	10	4	< 1	0.10	0.004	0.030
36	Sh:Q-136	10-19-89	0.110	0.43	< 1	20	< 4	< 1	0.10	0.023	0.020
37	Sh:Q-137	10-30-89	0.370	3.37	6.0	470	< 4	< 1	0.70	0.005	0.160
		07-13-90	0.050	••	3.4	20	5	< 1	0.20	0.012	0.040
38	Sh:Q-138	10-19-89	0.040	0.06	< 1	20	< 4	< 1	0.10	0.064	0.160
		07-03-90	0.030	••	1.1	140	< 4	< 1	0.30	0.029	0.170
39	Sh:Q-139	10-11-89	< 0.010	••	22	< 10	< 4	< 1	0.20	0.070	< 0.010
		07-11-90	< 0.010	••	35	< 10	< 4	< 3	0.20	0.075	0.080
40	Sh:Q-140	10-19-89	0.050	0.18	19	10	< 4	< 1	0.20	0.320	0.300
		07-11-90	0.040		19	< 10	< 4	< 1	< 0.10	0.270	0.210
41	Sh:Q-141	10-10-89	< 0.010	0.12	36	< 10	< 4	< 1	0.10	0.007	0.210
42		10-14-89	0.290	0.98	16	30	< 4	< 1	0.10	0.012	0.020
		06-29-90	0.290		9.7	30	< 4	< 1 -	0.20	0.012	0.020
43	Sh:Q-143	10-12-89	0.010	0.09	31	< 10	< 4	< 1	0.20	0.063	0.050
		07-05-90	0.010		47	< 10		< 1	< 0.10	0.021	0.020

Table 5.--Water-quality properties and concentrations of nutrients, major inorganic constituents, and trace inorganic constituents in samples from wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill--Continued

[MG/L, milligrams per liter; UG/L, micrograms per liter; DEG C, degrees Celsius; US/CM, microsiemens per centimeter. Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

WELL	NUMBERS		ARSENIC.	BERYLLIUM.	SILICA, DISSOLVED	HARDNESS, TOTAL	ALKALINITY,	CALCIUM.	MAGNESIUM,	SODIUM.	POTASSIUM
ROFCT	USGS LOCAL		DISSOLVED	DISSOLVED	(MG/L	(MG/L AS	MG/L AS	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED
AND	FOR	DATE	(UG/L AS AS)	(UG/L AS BE)	AS SIO2)	CACO3)	CACO3)			(MG/L AS NA)	
МАР	TENNESSEE	DATE	(0012110110)		,	0.1000,	-,,	((((
2		10-14-89	15	< 0.5	9.8	22	28	6.3	1.4	3.5	2.6
4 A	Sh:Q-098	10-16-89	< 1	< 0.5	20	74	19	19	6.4	4.6	1.9
07	Sh:Q-101	10-26-89	< 1	< 0.5	22	170	23	41	16	23	2.0
		07-10-90	< 1	< 0.5	21	110	20	27	10	18	1.8
8 A	Sh:Q-102	10-15-89	< 1	< 0.5	20	140	82	33	15	67	2.0
19	Sh:Q-112	10-17-89	< 1	< 0.5	12	40	46	9.2	4.2	5.3	1.4
20	Sh:Q-113	10-20-89	< 1	< 0.5	18	76	42	19	6.8	11	1.3
		07-06-90	< 1	< 0.5	19	67	38	15	7.2	12	1.4
26	Sh:Q-119	10-20-89	< 1	< 0.5	14	280	436	75	23	54	27
		07-13-90	< 1	< 0.5	14	250	271	67	20	45	23
27	Sh:Q-120	10-11-89	< 1	< 2.0	16	380	563	110	25	72	39
		07-02-90	< 1	0.5	14	320	341	88	23	67	36
30	Sh:Q-128	10-27-89	7	< 0.5	22	130	136	31	13	48	1.5
		06-26-90	3	< 0.5	21	180	92	43	18	41	1.4
31	Sh:Q-129	10-30-89	1	< 0.5	22	210	385	56	16	110	3.6
		08-25-90	1	< 0.5	21	190	301	49	16	74	2.8
32	Sh:Q-132	10-12-89	< 1	< 0.5	12	28	32	6.4	2.3	3.6	1.5
33	Sh:Q-133	10-13-89	< 1	< 0.5	18	31	31	7.6	2.8	4.6	1.4
		08-27-90	< 1	< 0.5	17	22	24	5.4	2.1	4.5	1.0
34	Sh:Q-134	10-13-89	< 1	< 0.5	15	57	70	14	5.4	7.4	1.9
		08-28-90	< 1	< 0.5	15	28	31	6.8	2.6	3.9	1.1
35	Sh:Q-135	10-15-89	< 1	< 0.5	19	86	43	21	8.1	7.2	5.0
36	Sh:Q-136	10-19-89	1	< 0.5	14	42	48	9.8	4.2	5.1	1.6
37	Sh:Q-137	10-30-89	< 1	< 0.5	14	57	87	17	3.4	18	2.5
		07-13-90	< 1	< 0.5	14	33	54	9.1	2.5	10	5.1
38	Sh:Q-138	10-19-89	< 1	< 0.5	15	130	188	34	12	30	6.8
		07-03-90	< 1	< 0.5	14	130	172	34	12	26	6.5
39	Sh:Q-139	10-11-89	< 1	< 0.5	18	140	163	35	13	21	5.1
		07-11-90	1	< 0.5	16	160	177	42	13	24	4.3
40	Sh:Q-140	10-19-89	6	< 0.5	14	280	259	66	27	54	10
		07-11-90	10	< 0.5	14	270	350	65	26	51	10
41		10-10-89	< 1	< 0.5	10	83	51	21	7.4	4.3	0.6
42		10-14-89	1	< 0.5	19	36	32	9.2	3.1	4.4	2.6
		08-29-90	1	< 0.5	18	37	44	9.3	3.3	5.2	2.3
43		10-12-89	< 1	< 0.5	17	120	100	30	11	7.0	2.1
		07-05-90	< 1	< 0.5	18	110	72	29	8.8	6.8	1.9

.

20

Table 5-Water-quality properties and concentrations of nutrients, major inorganic constituents, and trace inorganic constituents in samples from wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill--Continued

[MG/L, milligrams per liter; UG/L, micrograms per liter; DEG C, degrees Celsius; US/CM, microsiemens per centimeter. Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

WELL	NUMBERS		CHLORIDE,	BARIUM,	STRONTIUM,	BORON	VANADIUM,	ZINC.	CADMIUM,	CHROMIUM,	COPPER,
ROJECT AND MAP	USGS LOCAL FOR TENNESSEE	DATE	DISSOLVED	DISSOLVED (UG/L AS BA)	DISSOLVED	DISSOLVED (UG/L AS B)	DISSOLVED (UG/L AS V)	DISSOLVED (UG/L AS ZN)	DISSOLVED	DISSOLVED	DISSOLVED (UG/L AS CU
02	Sh:Q-096	10-14-89	3.4	130	46	20	< 6	< 3	< 1.0	< 1	5
4 A	Sh:Q-098	10-16-89	2,1	60	89	< 10	< 6	16	3.0	1	3
07	Sh:Q-101	10-26-89	11	40	110	< 10	< 6	5	< 1.0	< 1	2
	011.02101	07-10-90	8.5	150	69	< 10	< 6	9	< 1.0	< 1	< 1
8A	Sh:Q-102	10-15-89	100	140	110	< 10	< 6	7	< 1.0	2	1
19	Sh:Q-112	10-17-89	3.5	77	87	< 10	< 6	7	< 1.0	< 1	1
20	Sh:Q-112 Sh:Q-113	10-20-89	4.4	87	53	< 10	< 6	14	< 1.0	< 1	1
20	SII.Q*113	07-06-90	6.2	330	59	< 10	< 6	26	2.0	2	1
26	Sh:Q-119	10-20-89	59	290	380	530	6		3.0	< 1	< 1
20	00.QF119	07-13-90	52	1.400	330	430	13	< 3	11	< 1	< 1
27	Sh:Q-120	10-11-89	80	1,300	800	920	< 12	15	4.0	< 1	< 1
21	Sil. 4-120	07-02-90	74	340	740	880	< 6	< 3	4.0	< 1	1
30	Sh:Q-128	10-27-89	7.7	210	250	10	< 6	7	< 1.0	< 1	< 1
30	011.02120	06-26-90	9.8	170	220	10	< 6	22	< 1.0	< 1	< 1
31	Sh:Q-129	10-30-89	11	150	490	30	< 6	15	< 1.0	< 1	< 1
31	011.0-128	06-25-90		30	430	20	< 6	28	< 1.0	< 1	< 1
~~	ChiO 400		< 0.10 2.6	59	26	10	< 6	< 3	< 1.0	< 1	< 1
32	Sh:Q-132	10-12-89	2.6 3.4	47	46	< 10	< 6	9	< 1.0	< 1	< 1
33	Sh:Q-133	10-13-89		140	32	20	< 6	3	2.0	1	1
• •	01-0-404	06-27-90	110	66	96	20	< 6	< 3	< 1.0	1	2
34	Sn:Q-134	10-13-89	4.5 0.50	83	43	20	< 6	4	2.0	1	1
	01-0 405		3.2	180	43 75	< 10	< 6	13	< 1.0	2	Ŕ
35	Sh:Q-135	10-15-89	3.2 4.1	310	97	< 10	< 6	11	< 1.0	< 1	1
36	Sh:Q-136 Sh:Q-137	10-19-89 10-30-89	3.8	48	100	60	< 6	11	< 1.0	2	2
37	Sn:u-137	07-13-90	3.8 8.6	210	54	20	< 6		< 1.0	< 1	1
••	05-0 400	10-19-89	29	200	120	440	9	< 3	4.0	< 1	< 1
38	Sh:Q-138	07-03-90	29	200	120	440	< 6		4.0	< 1	< 1
	Sh:Q-139	10-11-89	12	230	180	20	< 8	Â	4.0	< 1	1
39	8n:u-139	07-11-89	14	280	250	30	45	< 3	32	< 1	< 1
	05-0440	10-19-89	60	240	260	310	< 6	6	1.0	< 1	< 1
40	Sh:Q-140			240	250	320	10	11	9.0	< 1	< 1
	01-01-11	07-11-90	54	23 100	250	10	< 6	14	1.0	< 1	< 1
41	Sh:Q-141	10-10-89	2.1	100	44 58	20		9	1.0	1	2
42	Sh:Q-142	10-14-89	3.7		57	20		7	4.0	< 1	< 1
	01-04-00	06-29-90	6.2	94				< 3	< 1.0	< 1	< 1
43	Sh:Q-143	10-12-89	6.2	87	100	20	< 6	< 3	< 1.0 8.0	< 1 1	
		07-05-90	7.9		95	20	'	'	0.0	1	

Table 5-Water-quality properties and concentrations of nutrients, major inorganic constituents, and trace inorganic constituents in samples from wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill-Continued

[MG/L, milligrams per liter; UG/L, micrograms per liter; DEG C, degrees Celsius; US/CM, microsiemens per centimeter. Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

•

WELL	NUMBERS								
PROJECT	USGS LOCAL		IRON, DISSOLVED	MANGANESE, DISSOLVED	LEAD, DISSOLVED	MERCURY, DISSOLVED	MOLYBDENUM, DISSOLVED	NICKEL, DISSOLVED	SILVER, DISSOLVED
AND	FOR	DATE	(UG/L AS FE)		(UG/L AS PB)		(UG/L AS MO)		(UG/L AS AG
MAP	TENNESSEE			•••••	, ,	(,	(((
02	Sh:Q-096	10-14-89	5,100	520	< 1	< 0.1	< 10	6	< 1.0
4 A	Sh:Q-098	10-16-89	20,000	2,800	1	0.4	< 10	23	< 1.0
07	Sh:Q-101	10-26-89	33	59	< 1	< 0.1	< 10	5	< 1.0
		07-10-90	22	310	1	0.1	< 10	2	< 1.0
8 A	Sh:Q-102	10-15-89	10	1	< 1	< 0.1	< 10	2	< 1.0
19	Sh:Q-112	10-17-89	5,400	220	< 1	< 0.1	10	1	< 1.0
20	Sh:Q-113	10-20-89	2,100	130	< 1	< 0.1	< 10	13	< 1.0
		07-06-90	2,400	190	< 1	< 0.1	< 10	16	< 1.0
26	Sh:Q-119	10-20-89	52,000	1,000	< 1	< 0.1	< 10	6	< 1.0
		07-13-90	50,000	1,300	< 1	< 0.1	< 10	8	< 1.0
27	Sh:Q-120	10-11-89	61,000	1,900	< 1	< 0.1	< 20	17	< 1.0
		07-02-90	56,000	1,600	< 1	0.4	< 10	15	< 1.0
30	Sh:Q-128	10-27-89	5,600	7,900	< 1	< 0.1	< 10	15	< 1.0
		06-26-90	3,600	5,800	< 1	< 0.1	< 10	12	< 1.0
31	Sh:Q-129	10-30-89	1,000	1,600	< 1	< 0.1	< 10	16	< 1.0
		06-25-90	780	1,500	< 1	< 0.1	< 10	5	< 1.0
32	Sh:Q-132	10-12-89	3,800	730	< 1	< 0.1	< 10	Ĩ	< 1.0
33	Sh:Q-133	10-13-89	8,200	1,100	< 1	< 0.1	< 10	<1	< 1.0
		08-27-90	5,400	750	< 1	< 0.1	< 10	<1	< 1.0
34	Sh:Q-134	10-13-89	16,000	2.200	< 1	< 0.1	< 10	13	< 1.0
			5,900	1,000	< 1	< 0.1	< 10	1	< 1.0
35	Sh:Q-135	10-15-89	1,400	590	1	< 0.1	10	3	< 1.0
36	Sh:Q-136	10-19-89	7.800	260	< 1	< 0.1	< 10	1	< 1.0
37	Sh:Q-137	10-30-89	360	65	1	< 0.1	< 10	4	< 1.0
		07-13-90	34	40	< 1	< 0.1	< 10	2	< 1.0
38	Sh:Q-138	10-19-89	48,000	1,300	< 1	< 0.1	< 10	5	< 1.0
		07-03-90	46,000	1,300	< 1	< 0.1	< 10	3	< 1.0
39	Sh:Q-139	10-11-89	50,000	3,900	< 1	< 0.1	< 10	9	< 1.0
		07-11-90	160,000	9,000	< 1	< 0.1	< 10	15	< 1.0
40	Sh:Q-140	10-19-89	41,000	940	< 1	< 0.1	< 10	19	< 1.0
		07-11-90	37,000	830	< 1	< 0.1	< 10	7	< 1.0
41	Sh:Q-141	10-10-89	370	620	< 1	< 0.1	20	1	< 1.0
42	Sh:Q-142	10-14-89	16,000	1,500	1	< 0.1	< 10	5	< 1.0
•-		06-29-90	20,000	1,900	< 1	< 0.1 < 0.1	< 10	3	< 1.0
43	Sh:Q-143	10-12-89	26,000	2,200	< 1	< 0.1	< 10	11	< 1.0
• •		07-05-90	31,000	2,100	< 1	< 0.1	< 10	11	< 1.0

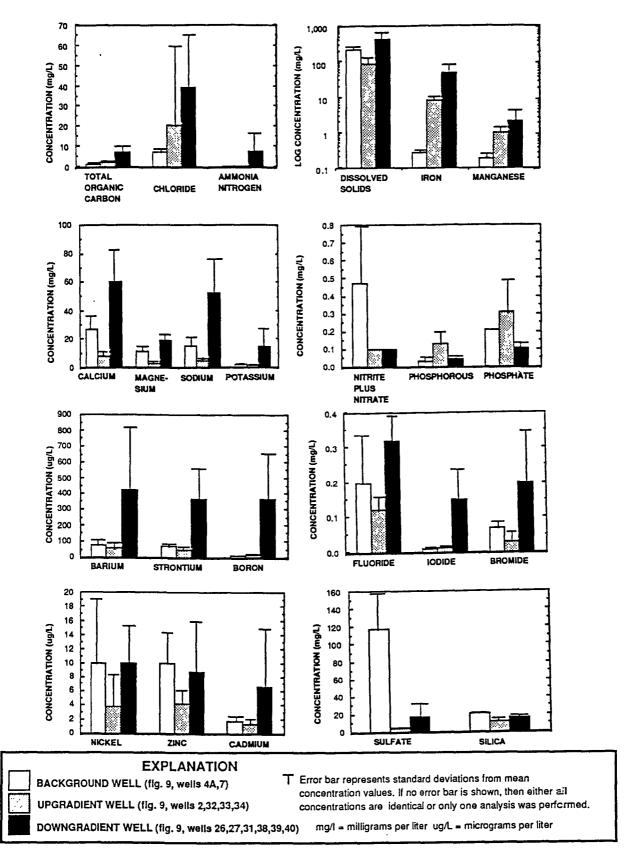


Figure 11. – Mean values of concentrations of selected major and trace inorganic constituents and nutrients in samples from background, upgradient, and downgradient wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill.

Table 6.--Water-quality properties and concentrations of nutrients, major inorganic constituents, and trace inorganic constituents in samples from wells screened in the Memphis aquifer near the Shelby County landfill

[MG/L, milligrams per liter; UG/L, micrograms per liter; DEG C, degrees Celsius; US/CM, microsiemens per centimeter. Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

WELL	NUMBERS		TEMPER- ATURE	COLOR (PLATINUM		SPECIFIC	SOLIDS RESIDUE	CARBON, ORGANIC	NITROGEN, ORGANIC	NITROGEN, AMMONIA	NITROGEN, NITRITE	NITROGEN, NO2+NO3	PHOS- PHOROUS
			WATER	COBALT		CONDUCTANCE		TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
AND	FOR	DATE	(DEG C)	UNITS)	UNITS)	(US/CM)		(MG/L AS C)	(MG/L AS N)	(MG/L AS N)	(MG/LASN)	(MG/LASN)	(MG/L AS P
MAP	TENNESSEE						(MG/L)						
NONE	Sh:Q-088	10-26-89	17.5	3	6.0	1 88	107	< 0.1	• -	0.020	< 0.010	< 0.100	< 0.010
		07-10-90	17.0	2	6.0	161	90	0.3	0.18	0.120	< 0.010	< 0.100	< 0.010
MS-2	Sh:Q-092	10-14-89	16.5	2	6.7	1 20	73	70.0		0.080	< 0.010	< 0.100	0.040
		07-09-90	17.0	7	6.5	111	75	1.5	0.21	0.090	< 0.010	< 0.100	0.030
MS-4	Sh:Q-126	10-16-89	18.0	3	6.9	253	116	2.4	0.28	0.020	< 0.010	< 0.100	0.060
MS-5	Sh:Q-144	10-15-89	17.0	4	6.1	212	131	21.0	• - ·	0.020	< 0.010	< 0.100	0.020
		06-29-90	16.5	2	6.2	200	115	0.9	0.29	0.010	< 0.010	< 0.100	0.020
MS-7	Sh:Q-146	10-18-89	18.5	3	6.2	220	150	1.0		0.040	< 0.010	< 0.100	0.010
		07-06-90	19.0	2	6.3	291	163	1.6	0.07	0.130	< 0.010	< 0.100	0.030
MS-9	Sh:Q-148	10-13-89	17.0	12	6.3	1 30	73	90.0	0.26	0.040	< 0.010	< 0.100	< 0.010
		06-28-90	16.5	5	6.5	119	70	1.5	0.25	0.050	< 0.010	< 0.100	0.040
MS-10	Sh:Q-149	10-13-89	17.5	30	6.6	1 37	90	33.0		0.050	< 0.010	< 0.100	0.010
		06-27-90	17.0	7	6.8	144	111	2.6	0.26	0.040	< 0.010	< 0.100	0.010
MS-11	Sh:Q-150	10-11-89	19.0	18	6.1	541	337	4.8	0.30	2.40	< 0.010	< 0.100	< 0.010
		07-02-90	18.5	17	8.1	714	362	7.8	0.70	3.00	< 0.010	< 0.100	0.020
M8-12	Sh:Q-151	10-27-89	18.0	2	6.3	492	325	1.3		0.070	0.040	1.20	0.050
		06-26-90	18.0	3	5.9	371	239	2.4	0.47	0.030	0.020	0.600	0.020
WELL	NUMBERS		PHOS- PHATE	SULFATE, DISSOLVED	ALUMINUM.	LITHIUM.	SELENIUM,	FLUORIDE,	IODIDE,	BROMIDE.	ARSENIC,	BERYLLIUM.	SILICA, DISSOLVED
PROJECT	USGS LOCAL		(MG/L AS	(MG/L	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	(MG/L
AND	FOR	DATE	PO4)	•	(UG/L AS AL)			(MG/L AS F)	(MG/L AS I)	(MG/L AS BR)	(UG/L AS AS)	(UG/L AS BE)	AS SIO2)
MAP	TENNESSEE		•	•		• • • •	······································	• • • • •	• •	, ,		. ,	•
NONE	Sh:Q-088	10-26-89	•••	6.0	< 10	< 4	< 1	< 0.10	0.003	0.310	< 1	< 0.5	15
		07-10-90		5.1	< 10	< 4	< 1	< 0.10	0.005	0.220	< 1	< 0.5	15
MS-2	Sh:Q-092	10-14-89	0.06	4.0	< 10	< 4	< 1	0.10	0.017	0.020	1	< 0.5	9.7
													9.7
		07-09-90	• •	3.1	130	5	< 1	0.20	0.016	0.020	1	< 0.5	
MS-4	Sh:Q-126	07-09-90 10-16-89	0.09	3.1 3.0	130 < 10	5 < 4	< 1 < 1	0.20 0.20	0.016 0.020	0.020	1	< 0.5 < 0.5	
MS-4 M8-5				3.1 3.0 37		5 < 4 < 4	< 1 < 1 < 1	0.20	0.020	0.040	< 1	< 0.5	12
	Sh:Q-126	10-16-89	0.09	3.0	< 10 < 10	< 4	< 1	0.20 0.10	0.020 0.016	0.040 0.020	< 1 < 1	< 0.5 < 0.5	12 16
	Sh:Q-126	10-16-89 10-15-89	0.09 0.03	3.0 37	< 10 < 10	< 4 < 4	<pre>< 1 < 1 < 1 < 1</pre>	0.20 0.10 0.20	0.020 0.016 0.005	0.040 0.020 0.030	< 1	< 0.5 < 0.5 < 0.5	12 16 17
M8-5	Sh:Q-126 Sh:Q-144	10-16-89 10-15-89 06-29-90	0.09 0.03	3.0 37 14	< 10 < 10 < 10	< 4 < 4 < 4	< 1 < 1 < 1 < 1	0.20 0.10	0.020 0.016	0.040 0.020	< 1 < 1 < 1	< 0.5 < 0.5	12 16
M8-5	Sh:Q-126 Sh:Q-144	10-16-89 10-15-89 06-29-90 10-18-89	0.09 0.03 	3.0 37 14 22	< 10 < 10 < 10 10	< 4 < 4 < 4 < 4	<pre>< 1 < 1 < 1 < 1</pre>	0.20 0.10 0.20 0.10	0.020 0.016 0.005 0.024	0.040 0.020 0.030 0.060	< 1 < 1 < 1 2 2	< 0.5 < 0.5 < 0.5 < 0.5	12 16 17 12
MS-5 MS-7	Sh:Q-126 Sh:Q-144 Sh:Q-146	10-16-89 10-15-89 06-29-90 10-18-89 07-06-90	0.09 0.03 0.09	3.0 37 14 22 22	< 10 < 10 < 10 10 10	< 4 < 4 < 4 < 4 < 4	<pre>< 1 < 1 </pre>	0.20 0.10 0.20 0.10 0.30	0.020 0.016 0.005 0.024 0.022	0.040 0.020 0.030 0.060 0.080	< 1 < 1 < 1 2	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 16 17 12 13
MS-5 MS-7	Sh:Q-126 Sh:Q-144 Sh:Q-146	10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89	0.09 0.03 0.09	3.0 37 14 22 22 3.0	< 10 < 10 < 10 10 10 < 10	< 4 < 4 < 4 < 4 < 4 < 4 < 4	<pre>< 1 < 1</pre>	0.20 0.10 0.20 0.10 0.30 0.10	0.020 0.016 0.005 0.024 0.022 0.060	0.040 0.020 0.030 0.060 0.080 0.040 0.020	< 1 < 1 2 2 < 1	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 16 17 12 13 10
M8-5 MS-7 MS-9	Sh:Q-128 Sh:Q-144 Sh:Q-146 Sh:Q-148	10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90	0.09 0.03 0.09 	3.0 37 14 22 22 3.0 1.9	< 10 < 10 < 10 10 < 10 < 10 < 10	< 4 < 4 < 4 < 4 < 4 < 4 < 7	<pre>< 1 < 1</pre>	0.20 0.10 0.20 0.10 0.30 0.10 0.10 0.10	0.020 0.016 0.005 0.024 0.022 0.060 0.008 0.031	0.040 0.020 0.030 0.060 0.080 0.040 0.020 < 0.010	< 1 < 1 2 2 < 1 < 1 < 1	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 16 17 12 13 10 11
M8-5 MS-7 MS-9	Sh:Q-128 Sh:Q-144 Sh:Q-146 Sh:Q-148	10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89	0.09 0.03 0.09 	3.0 37 14 22 22 3.0 1.9 4.0	< 10 < 10 < 10 10 10 < 10 < 10 < 10 < 10	 < 4 < 4 < 4 < 4 < 4 < 7 < 4 	<pre>< 1 < 1</pre>	0.20 0.10 0.20 0.10 0.30 0.10 0.10 0.10 0.10 < 0.10	0.020 0.016 0.005 0.024 0.060 0.060 0.008 0.031 < 0.001	0.040 0.020 0.030 0.060 0.080 0.040 0.020 < 0.010 0.070	< 1 < 1 2 2 < 1 < 1 < 1 < 1 1	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 16 17 12 13 10 11 9.9
M8-5 MS-7 MS-9 M8-10	Sh:Q-128 Sh:Q-144 Sh:Q-146 Sh:Q-148 Sh:Q-149	10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89 06-28-90	0.09 0.03 0.09 0.03	3.0 37 14 22 3.0 1.9 4.0 1.5 26	<pre>< 10 < 10 < 10 10 < 10 < 10 < 10 < 10 <</pre>	<pre>< 4 < 4 < 4 < 4 < 4 < 4 < 7 < 5 5</pre>	<pre>< 1 < 1</pre>	0.20 0.10 0.20 0.10 0.30 0.10 0.10 0.10 < 0.10 < 0.10	0.020 0.016 0.005 0.024 0.060 0.008 0.031 < 0.001 0.190	0.040 0.020 0.030 0.060 0.080 0.040 0.020 < 0.010 0.070 0.300	< 1 < 1 2 2 < 1 < 1 < 1 < 1 < 1 < 1	< 0.5 < 0.5	12 16 17 12 13 10 11 9.9 9.8 10
M8-5 MS-7 MS-9 M8-10	Sh:Q-128 Sh:Q-144 Sh:Q-146 Sh:Q-148 Sh:Q-149	10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89 08-27-90 10-11-89	0.09 0.03 0.09 	3.0 37 14 22 22 3.0 1.9 4.0 1.5	<pre>< 10 < 10 < 10 10 0 < 10 < 10 < 10 < 10</pre>	<pre>< 4 < 4 < 4 < 4 < 4 < 4 < 7 < 4 < 5</pre>	<pre>< 1 < 1</pre>	0.20 0.10 0.20 0.10 0.30 0.10 0.10 0.10 0.10 < 0.10	0.020 0.016 0.005 0.024 0.060 0.060 0.008 0.031 < 0.001	0.040 0.020 0.030 0.060 0.080 0.040 0.020 < 0.010 0.070	< 1 < 1 2 2 < 1 < 1 < 1 < 1 1	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 16 17 12 13 10 11 9.9 9.8

Table 6.--Water-quality properties and concentrations of nutrients, major inorganic constituents, and trace inorganic constituents in samples from wells screened in the Memphis aquifer near the Shelby County landfill --Continued

[MG/L, milligrams per liter; UG/L, micrograms per liter; DEG C, degrees Celsius; US/CM, microsiemens per centimeter. Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

WELL	NUMBERS		HARDNESS TOTAL	ALKALINITY LAB	CALCIUM,	MAGNESIUM,	SODIUM,	POTASSIUM,	CHLORIDE,	BARIUM,	STRONTIUM,	BORON,	VANADIUM.
FIELD NO.	WELL NQ	DATE	(MG/L AS CAC03)	(MG/L AS CACO3)	DISSOLVED	DISSOLVED (MG/L AS MG)	DISSOVLED (MG/L AS NA)·	DISSOLVED (MG/L AS K)	DISSOLVED (MG/L AS CL)	Dissolved (UG/L AS BA)	Dissolved (UG/L AS SR)	DISSOLVED (UG/L AS B)	DISSOLVED (UG/L AS V)
NONE	Sh:Q-088	10-28-89	49	36	12	4.6	18	0.8	31	38	34	< 10	< 6
NUNE	511.0-066	07-10-90	38	33	9.1	3.7	15	0.7	30	27	27	< 10	< 6
MS-2	Sh:Q-092	10-14-89	54	61	16	3.3	3.7	1.0	2.7	77	91	10	< 6
M 3-2	31.0-092	07-09-90	42	52	11	3.5	3.6	1.0	3.4	86	65	< 10	< 6
MS-4	Sh:Q-126	10-16-89	99	110	31	5.1	8.7	1.1	3.0	82	57	< 10	< 6
M S-4 M S-5	Sh:Q-126	10-15-89	87	62	22	7.7	7.2	0.9	3.7	64	80	< 10	< 6
M 2.2	51:0-144	06-29-90	71	56	16	7.5	6.9	0.9	4.3	51	49	20	< 6
MS-7	Sh:Q-146	10-18-89	93	79	26	6.8	11	1.0	9.6	69	65	< 10	< 6
M 2-7	Sn:Q-140	07-06-90	120	112	34	7.3	16	1.4	11	93	100	40	< 6
MS-9	Sh:Q-148	10-13-89	54	59	14	4.7	4.5	1.0	3.0	61	60	30	< 6
M 2-8	50.0-148	06-28-90	47	62	11	4.8	4.0	1.5	0.5	150	110	20	< 6
MS-10	Sh:Q-149	10-13-89	60	65	15	5.4	4.9	0.9	2.1	43	47	20	< 6
M 3- 10	511:0-149	06-27-90	59	72	15	5.1	5.6	0.9	1.5	38	51	30	< 6
MS-11	Sh:Q-150	10-11-89	210	207	54	18	43	3.1	58	87	120	50	< 6
M 3* 11	011.0-100	07-02-90	220	237	57	20	48	5.2	64	86	140	80	< 6
MS-12	Sh:Q-151	10-27-89	190	197	61	10	41	2.9	6.8	86	250	20	< 6
M-0-16	011.02.101	06-26-90	120	127	31	11	39	1.6	9.9	68	91	30	< 6
WELL	NUMBERS		ZINC,	CADMIUM,	CHROMIUM,	COPPER,	IRON,	MANGANESE,	LEAD,	MERCURY,	MOLYBOENUM,	NICKEL, DISSOLVED	SILVER, DISSOLVED
FIELD	WELL		DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED (UG/L AS MD)	(UG/L AS NI)	(UG/L AS AG
NO.	NO.	DATE	(UG/L AS ZN)	(UG/L AS CD)	(UG/L AS CR)	(UG/L AS CU)	(UG/L AS FE)	(UG/L AS MN)	(UG/L AS PB)	(UG/L AS HG)	(UG/L AS MD)	loar va ni	(DUIL NO NO
NONE													< 1.0
INC. INC.		10.26.89	13	< 1.0	e 1	1	330	15	< 1	< 0.1	< 10	2	
	Sh:Q-088	10-26-89	13	< 1.0	< 1	1	330 300	15 8.0	< 1 < 1	< 0.1 < 0.1	< 10 < 10	2 1	< 1.0
		07-10-90	7	< 1.0	< 1	< 1	330 300 330					2 1 2	< 1.0 < 1.0
MS-2	Sh:Q-088 Sh:Q-092	07-10-90 10-14-89	7 < 3	< 1.0 < 1.0	< 1 < 1		300	8.0	< 1	< 0.1	< 10	1	< 1.0
MS-2	Sh:Q-092	07-10-90 10-14-89 07-09-90	7 < 3 26	< 1.0 < 1.0 < 1.0	< 1 < 1 < 1	< 1 2	300 330	8.0 120	< 1 < 1	< 0.1 < 0.1	< 10 < 10	1	< 1.0 < 1.0 < 1.0 < 1.0
MS-2 MS-4	Sh:Q-092 Sh:Q-126	07-10-90 10-14-89 07-09-90 10-16-89	7 < 3 26 27	< 1.0 < 1.0 < 1.0 < 1.0	< 1 < 1 < 1 < 1	< 1 2	300 330 660	8.0 120 200	< 1 < 1 1	< 0.1 < 0.1 0.2	< 10 < 10 < 10	1	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0
MS-2	Sh:Q-092	07-10-90 10-14-89 07-09-90 10-16-89 10-15-89	7 < 3 26 27 44	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1 < 1 < 1 < 1 < 1	< 1 2	300 330 660 160	8.0 120 200 69	< 1 < 1 1 < 1	< 0.1 < 0.1 0.2 < 0.1	< 10 < 10 < 10 < 10	1 2 4 1	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0
MS-2 MS-4 MS-5	Sh:Q-092 Sh:Q-126 Sh:Q-144	07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90	7 < 3 26 27	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1 < 1 < 1 < 1 < 1 < 1	< 1 2	300 330 660 160 24	8.0 120 200 69 190	< 1 < 1 < 1 < 1	< 0.1 < 0.1 0.2 < 0.1 < 0.1	< 10 < 10 < 10 < 10 < 10	1 2 4 1 3 2 3	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0
MS-2 MS-4	Sh:Q-092 Sh:Q-126	07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89	7 < 3 26 27 44 31 9	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1 < 1 < 1 < 1 < 1	< 1 2	300 330 660 160 24 69	8.0 120 200 69 190 84	< 1 < 1 < 1 < 1 < 1	< 0.1 < 0.1 0.2 < 0.1 < 0.1 0.2	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	1 2 4 1 3 2	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0
MS-2 MS-4 MS-5 MS-7	Sh:Q-092 Sh:Q-126 Sh:Q-144 Sh:Q-146	07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90	7 < 3 26 27 44 31	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1 < 1 < 1 < 1 < 1 < 1 < 1	< 1 2	300 330 660 160 24 69 720	8.0 120 200 69 190 84 52	< 1 < 1 < 1 < 1 < 1 < 1	< 0.1 < 0.1 0.2 < 0.1 < 0.1 0.2 < 0.1	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	1 2 4 1 3 2 3 2 1	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0
MS-2 MS-4 MS-5	Sh:Q-092 Sh:Q-126 Sh:Q-144	07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89	7 < 3 26 27 44 31 9 32 17	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 1 2	300 330 660 160 24 69 720 2,200	8.0 120 200 69 190 84 52 310	< 1 < 1 < 1 < 1 < 1 < 1 < 1	< 0.1 < 0.1 0.2 < 0.1 < 0.1 0.2 < 0.1 < 0.1	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	1 2 4 1 3 2 3	< 1.0 < 1.0
MS-2 MS-4 MS-5 MS-7 MS-9	Sh:Q-092 Sh:Q-126 Sh:Q-144 Sh:Q-146 Sh:Q-148	07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90	7 < 3 26 27 44 31 9 32 17 22	< 1.0 < 1.0	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 1 2 1 1 1 1 1 1	300 330 660 160 24 69 720 2,200 2,200 290	8.0 120 200 69 190 84 52 310 160	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 0.1 < 0.1 0.2 < 0.1 < 0.1 0.2 < 0.1 < 0.1 < 0.1 < 0.1	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	1 2 4 1 3 2 3 2 1	< 1.0 < 1.0
MS-2 MS-4 MS-5 MS-7	Sh:Q-092 Sh:Q-126 Sh:Q-144 Sh:Q-146	07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89	7 < 3 26 27 44 31 9 32 17 22 27	< 1.0 < 1.0	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 1 2 1 1 1 1 1 1 5	300 330 660 160 24 69 720 2,200 290 9.0	8.0 120 69 190 84 52 310 160 310	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 0.1 < 0.1 0.2 < 0.1 0.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	1 2 4 1 3 2 3 2 1 5	< 1.0 < 1.0
MS-2 MS-4 MS-5 MS-7 MS-9 MS-10	Sh:Q-092 Sh:Q-126 Sh:Q-144 Sh:Q-148 Sh:Q-148 Sh:Q-149	07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-80 10-13-89 06-28-90 10-13-89 06-27-90	7 < 3 26 27 44 31 9 32 17 22 27 79	< 1.0 < 1.0	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 1 2 1 1 1 1 1 5 < 1	300 330 660 24 69 720 2,200 290 9,0 220	8.0 120 200 69 190 84 52 310 160 310 130	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 0.1 < 0.1 0.2 < 0.1 < 0.1 0.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	1 2 4 1 3 2 3 2 1 5 < 1 5 4 1 8	< 1.0 < 1.0
MS-2 MS-4 MS-5 MS-7 MS-9	Sh:Q-092 Sh:Q-126 Sh:Q-144 Sh:Q-146 Sh:Q-148	07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-80 10-13-89 06-28-90 10-13-89 06-27-90 10-11-89	7 < 3 26 27 44 31 9 32 17 22 27 79 56	< 1.0 < 1.0	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 1 2 1 1 1 1 1 5 < 1 1	300 330 660 160 24 69 720 2,200 2,200 9,0 220 590	8.0 120 200 69 190 84 52 310 160 310 130 250	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 0.1 < 0.1 0.2 < 0.1 < 0.1	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	1 2 4 3 2 3 2 1 5 < 1 5 4 1	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0
MS-2 MS-4 MS-5 MS-7 MS-9 MS-10	Sh:Q-092 Sh:Q-126 Sh:Q-144 Sh:Q-148 Sh:Q-148 Sh:Q-149 Sh:Q-150	07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-80 10-13-89 06-28-90 10-13-89 06-27-90	7 < 3 26 27 44 31 9 32 17 22 27 79	< 1.0 < 1.0	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 1 2 1 1 1 1 1 5 < 1 3	300 330 660 160 24 69 720 2,200 2,00 290 9,0 220 590 2,000	8.0 120 69 190 84 52 310 160 310 130 250 190	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 0.1 < 0.1 0.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	1 2 4 1 3 2 3 2 1 5 < 1 5 4 1 8	< 1.0 < 1.0

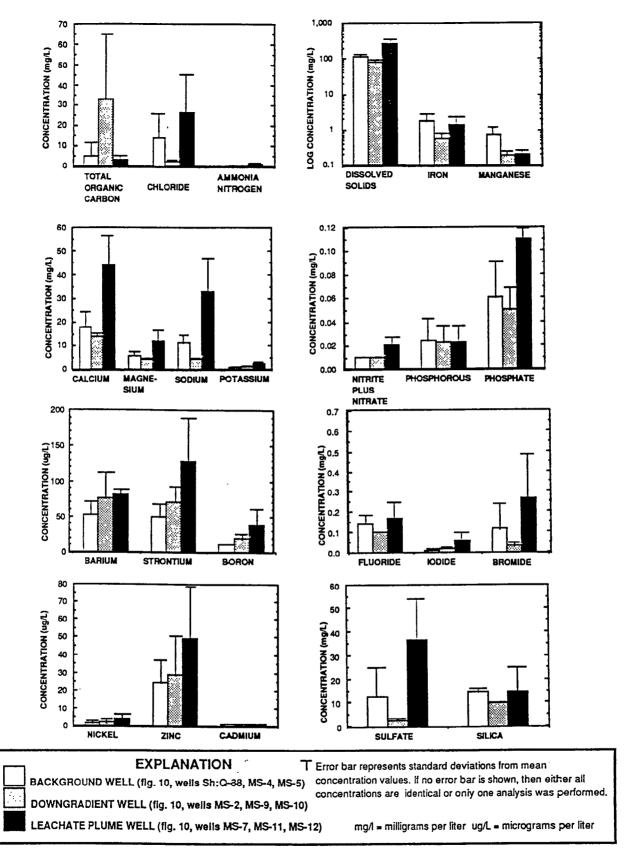


Figure 12. – Mean values of concentrations of selected major and trace inorganic constitutents and nutrients in samples from background, downgradient, and leachate plume wells screened in the Memphis aquifer near the Shelby County landfill.

dissolved solids (362 mg/L), ammonia nitrogen (3.00 mg/L), chloride (64 mg/L), sodium (48 mg/L), and iron (3.4 mg/L) were detected in samples from Memphis aquifer well MS-11 (table 6). These values exceed maximum concentrations for dissolved solids (333 mg/L, mean value from 99 wells), sodium (22 mg/L from 101 wells), and chloride (10 mg/L from 98 wells) previously published for the Memphis aquifer in western Tennessee (Parks and Carmichael, 1990, table 2) and in the Memphis area (Brahana and others, 1987, table 2). In addition, dissolved solids concentrations in samples from Memphis aquifer wells MS-7, MS-11, and MS-12 are significantly higher than dissolved solids concentrations detected in samples from other nearby Memphis aquifer wells, which range from 35 to 61 mg/L (Brahana and others, 1987, fig. 6).

Total organic carbon concentrations were relatively high in samples from wells within the plume in the alluvial aquifer, but maximum total organic carbon values were not detected in samples from Memphis aquifer leachate plume wells MS-7, MS-11, and MS-12. Maximum total organic carbon concentrations (ranging from 70 to 90 mg/L) were detected in samples from Memphis aquifer wells MS-2 and MS-9, respectively (table 6). The lithologic log for MS-1, which is near MS-2, indicated some lignite associated with a clay bed just above the screened interval (Bradley, 1988, p. 28), and well MS-9 includes a thin lignite bed at the bottom of the screened interval (Appendix C). These lignite beds could be a source of organic carbon that contributed to the high total organic carbon concentrations in samples from these wells.

Water-quality data from wells MS-7, MS-11, and MS-12 are particularly significant for indicating transport of chemical constituents between the alluvial and Memphis aquifers. Eight major inorganic constituents characterize the leachate plume in samples from wells 26, 27, 31, 38, 39, and 40 screened in the alluvial aquifer or upper part of the confining unit. Of these eight, three constituents (dissolved solids, chloride, and sodium) show concentrations in samples from Memphis aquifer wells MS-7, MS-11, and MS-12 that exceed maxima previously published (Parks and Carmichael, 1990, table 2; Brahana and others, 1987, table 2) and are higher than background concentrations reported for samples from wells Sh:Q-88 and MS-4. Memphis aquifer wells MS-7, MS-11, and MS-12 are separated from the overlying alluvium by a confining unit that ranges from 0 foot (MS-12, Appendix C) to 35 feet (MS-7, Appendix C) in thickness. Apparently, certain constituents (specifically dissolved solids, sodium, chloride, and possibly ammonia nitrogen) from the alluvial aquifer have migrated into the Memphis aquifer by downward leakage where the confining unit is thin or absent.

Nutrient (nitrite plus nitrate, phosphorous, phosphate, sulfate) concentrations in samples from the Memphis aquifer do not clearly indicate downward migration from the alluvial aquifer. Nitrite plus nitrate concentrations in samples from the Memphis aquifer near the Shelby County landfill are low (maximum value of 1.2 mg/L) and well below the drinking water MCL for nitrate of 10.0 mg/L (Tennessee Department of Health and Environment, 1988; U. S. Environmental Protection Agency, 1986). Phosphorous and phosphate concentrations in samples from the Memphis aquifer do not exceed 0.12 mg/L. These concentrations generally are 50 percent lower than phosphorous and phosphate concentrations in samples from the alluvial aquifer and upper part of the confining unit.

Sulfate concentrations (1.5 to 37 mg/L) in most samples from Memphis aquifer wells near the Shelby County landfill (table 6) are consistent with the range in concentrations (0.2 to 30 mg/L) in samples from 105 wells in the Memphis aquifer in the Memphis area (Brahana and others, 1987, table 2) and the range in concentrations (0.2 to 27 mg/L) in samples from 192 wells in western Tennessee (Parks and Carmichael, 1990, table 2). Elevated sulfate concentrations (62 and 64 mg/L) are observed only in samples from Memphis aquifer well MS-12, but this anomaly cannot be interpreted as a leachate effect because sulfate concentrations are significantly lower in the overlying alluvial aquifer.

Trace Inorganic Constituents

Concentrations of trace inorganic constituents were determined for samples from wells screened in the alluvial aquifer or upper part of the confining unit (table 5) and in the Memphis aquifer (table 6). Trace inorganic constituent data were interpreted in the same manner as the major inorganic constituents and nutrients data. Therefore, the same wells were used as background, upgradient, and downgradient wells for the alluvial aquifer or upper part of the confining unit (fig. 11) and as background, downgradient, and leachate plume wells for the Memphis aquifer (fig. 12).

Barium, strontium, boron, and cadmium concentrations are significantly higher in samples from wells associated with the leachate plume in the alluvial aquifer or upper part of the confining unit. On average, barium and strontium concentrations (fig. 11) are 5 times higher in samples from downgradient wells 26, 27, 31, 38, 39, and 40 than in samples from background wells (4A, 7) and upgradient wells (2, 32, 33, 34). Barium concentrations in samples from these downgradient alluvial aquifer wells range from 23 to 1,400 μ g/L, with the maximum concentrations reported in samples from wells 26 and 27 (table 5). These maxima exceed the MCL of 1,000 μ g/L in drinking water (Tennessee Department of Health and Environment, 1988; U.S. Environmental Protection Agency, 1986). Strontium concentrations in samples from alluvial aquifer wells 26, 27, 31, 38, 39, and 40 range from 120 to $800 \ \mu g/L$; maximum concentrations of strontium were measured in samples from well 27 (table 5).

Barium and strontium concentrations measured in samples from wells screened in the alluvial aquifer or upper part of the confining unit near Shelby County landfill are within the ranges reported previously for eight wells screened in the alluvial aquifer in the Memphis area (McMaster and Parks, 1988, table 2). However, the ranges of barium concentrations (41 to 1,400 μ g/L) and strontium concentrations (28 to 1,100 μ g/L) reported by McMaster and Parks (1988, p. 13) may include data from a contaminated well. A map showing the distribution of natural barium concentrations in the alluvial aquifer in the Memphis area suggests that natural barium concentrations should be less than 50 µg/L near the Shelby County landfill (McMaster and Parks, 1988, fig. 4). Barium concentrations near the Shelby County landfill exceed 50 μ g/L in samples from 17 of 22 wells screened in alluvial aquifer or upper part of the confining unit (table 5).

Elevated boron concentrations in downgradient plume wells 26, 27, 31, 38, 39, and 40 in the alluvial aquifer or upper part of the confining unit also are apparently characteristic of leachate. On average, boron concentrations are 20 times higher in samples from downgradient wells 26, 27, 31, 38, 39, and 40 than in background or upgradient wells (fig. 11). Boron concentrations in samples from these wells range from 20 to $920 \mu g/L$, with the maximum concentrations reported from well 27 (table 5). High boron concentrations are characteristic of hydrothermal systems and evaporite deposits (Hem, 1985), neither of which affect ground water composition near the Shelby County landfill.

Cadmium concentrations are approximately 4 times higher in samples from downgradient wells 26, 27, 31, 38, 39, and 40 when compared to data from upgradient and background wells (fig. 11). Cadmium concentrations in samples from these wells range from less than 1.0 to $32 \mu g/L$, with maximum concentrations of 11 and $32 \mu g/L$ detected in samples from wells 26 and 39, respectively (table 5). These maxima exceed the MCL of $10 \mu g/L$ for drinking water (Tennessee Department of Health and Environment, 1988; U.S. Environmental Protection Agency, 1986). Cadmium is used in the manufacture of pigments and plastics, and is often found associated with buried waste (Hem, 1985).

Elevated selenium concentrations (17 and 20 μ g/L) were detected in samples from well 30 (table 5). These concentrations exceed the MCL of 10 μ g/L for selenium in drinking water (Tennessee Department of Health and En-

vironment, 1988; U.S. Environmental Protection Agency, 1986). Selenium is a relatively rare element. Of many analyses of surface and ground water from widely distributed sources in the United States, selenium concentrations rarely exceeded $1 \mu g/L$ (Hem, 1985).

Concentrations of trace inorganic constituents were determined for water samples from wells screened in the Memphis aquifer (table 6). Concentrations of barium, strontium, boron, and cadmium are lower in samples from the Memphis aquifer than in the overlying alluvial aquifer. On average, concentrations of boron and cadmium in the Memphis aquifer are equal to background concentrations in the alluvial aquifer.

Barium concentrations in all samples from Memphis aquifer wells ranged between 27 and 150 μ g/L (table 6), which is within the range of concentrations (0 to 644 μ g/L) for samples from 46 wells screened in the Memphis aquifer in Shelby County (Parks and Carmichael, 1990, table 3). Average barium concentrations are higher in samples from downgradient and leachate plume wells than from background wells in the Memphis aquifer (fig. 12) although the difference among data from background, downgradient, and leachate plume wells is not statistically significant.

Strontium concentrations in samples from all Memphis aquifer wells range between 27 and $250 \mu g/L$ (table 6), which is within the range of concentrations (13 to $270 \mu g/L$) for samples from seven wells screened in the Memphis aquifer in Shelby County (Parks and Carmichael, 1990, table 3). As with barium, average strontium concentrations are higher in samples from downgradient and leachate plume wells than background wells in the Memphis aquifer (fig. 12), although the difference among data from background, downgradient, and leachate plume wells is not statistically significant.

The maximum barium concentration $(150 \ \mu g/L)$ was detected in a sample from well MS-9. The greatest strontium concentrations (ranging from 100 to 250 $\ \mu g/L$) are associated with Memphis aquifer wells MS-7, MS-9, MS-11, and MS-12. However, these strontium concentrations in Memphis aquifer samples are not uncommonly high when compared to the median value of 110 $\ \mu g/L$ reported for larger U.S. public water supplies (Hem, 1985).

Concentrations of barium and strontium are at least 50 percent lower in samples from the Memphis aquifer than in the overlying alluvial aquifer. However, it is unclear if these trace inorganic constituents serve as a tracer for the leachate plume emanating from the landfill. Alluvial aquifer samples showing maximum barium and strontium concentrations are not always adjacent to Memphis aquifer samples showing maximum barium and strontium concentrations, even in the absence of the confining unit.

Boron concentrations in all samples from Memphis aquifer wells range from less than 10 to 80 μ g/L (table 6), which is approximately an order of magnitude lower than concentrations found in the overlying alluvial aquifer. Cadmium concentrations are all 1.0 μ g/L or lower in samples from the Memphis aquifer (table 6), indicating that cadmium contamination in the overlying alluvial aquifer has not reached the Memphis aquifer.

Synthetic Organic Compounds

Concentrations of synthetic organic compounds were detected in samples from wells screened in the alluvial aquifer or upper part of the confining unit (table 7) and in samples from wells screened in the Memphis aquifer (table 8). Twenty-two synthetic organic compounds were measured in samples from 14 wells screened in the alluvial aquifer or upper part of the confining unit (table 9), and 18 synthetic organic compounds were measured or detected in samples from 8 wells screened in the Memphis aquifer (table 10). Sixteen of the same compounds detected in the alluvial aquifer or upper part of the confining unit were detected in the Memphis aguifer. All of these compounds are volatile organic compounds except for bis(2-ethylhexyl)phthalate, which is a base-neutral extractable compound detected in two samples from wells in the Memphis aquifer. Samples from some wells indicate that a compound was measured in the first or second sample, but not in both samples (tables 9 and 10). The measurement limit for the gas-chromatography/mass spectrometry method used for analysis of the volatile organic compounds was 0.20 or $0.2 \mu g/L$; that for the base-neutral and acid extractable organic compounds varied among compounds from less than 5 to $30 \,\mu g/L$.

Interpretation of the data for synthetic organic compounds was conducted in a different manner than interpretation of the data for the major and trace inorganic constituents and nutrients. Synthetic organic compounds are not distributed widely in either the alluvial aquifer or upper part of the confining unit, or the Memphis aquifer. Consequently, it is not possible to clearly characterize upgradient, downgradient, or leachate plume wells using synthetic organic compounds, because samples from the majority of wells show concentrations below the detection level. Instead, the degree of contamination by synthetic organic compounds near the Shelby County landfill is interpreted by using sums of synthetic organic compounds at specific wells. The distribution of these synthetic organic compounds is considered in the context of trends observed in major and trace inorganic constituents and nutrients data.

Data for volatile organic compounds are tabulated (tables 9 and 10), and their distributions are plotted (fig. 13 and 14). For these illustrations, the volatile organic compound data have been grouped into three sets based on similar chemical structure: (1) substituted ring compounds, consisting of benzene molecules with chlorine, methyl or ethyl groups; (2) halogenated alkanes, consisting of simple chain hydrocarbon molecules substituted with chlorine or fluorine; and (3) halogenated alkenes, consisting of more complex, double-bonded hydrocarbon chains substituted with chlorine or ether groups.

Relatively high concentrations of volatile organic compounds were detected in samples from the alluvial aquifer or upper part of the confining unit collected from wells 20, 26, 27, 31, 37, 38, 39, and 40 on the north margin or north of the landfill (fig. 13). These wells are downgradient in the direction of ground-water flow from the landfill northward toward the center of the depression in the water table (fig. 5).

Substituted ring compounds [specifically benzene, chlorobenzene, and dichlorobenzenes (1,2-dichlorobenzene plus 1,4-dichlorobenzene)] were detected in high concentrations in samples from downgradient wells 26, 27, 31, 38, 39, and 40 screened in the alluvial aquifer or upper part of the confining unit (fig. 13). One analysis from well 38 showed a benzene concentration $(5.8 \,\mu g/L)$, table 9) that exceeds the Federal and State MCL of $5.0 \,\mu g/L$ (Tennessee Department of Health and Environment, 1988; U.S. Environmental Protection Agency, 1986). Analyses of samples from wells 26 and 27 showed the highest sums of substituted ring compound concentrations, both exceeding $8.0 \,\mu g/L$ (fig. 13). Substituted ring compounds are used commonly as industrial solvents (Smith and others, 1988).

Halogenated alkanes were detected in highest concentrations in samples from alluvial aquifer or upper part of the confining unit wells 20, 27, 31, 38, 39, and 40 (fig. 13). Fluorine-substituted alkane (trichlorofluoromethane and dichlorodifluoromethane) concentrations were particularly high in samples from wells 20 and 27 (table 9). These two compounds are used as refrigerants, or propellants in aerosol sprays (Smith and others, 1988). Considering other halogenated alkane compounds, maximum concentrations of 1,2-dichloropropane ($14 \mu g/L$ and $6.4 \mu g/L$, table 9) were detected in samples from well 31. Analyses of samples from wells 31 and 39 also showed maximum concentrations of dichloroethanes (1,1-dichloroethane plus 1,2-dichloroethane, table 9, fig. 13). However, no concentration of any halogenated alkane exceeded Federal or State MCLs (table 9). Dichloromethane is used commonly as an industrial solvent (Smith and others, 1988).

Table 7.--Concentrations of synthetic organic compounds in samples from wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill

[Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

	NUMBERS USGS LOCAL FOR TENNESSEE		DICHLORO- BROMO-		CARBON		1,2-DICHLORO		CHLORO- DIBROMO-			-						ACENAPHTH	ACENAPHTH	
		DATE		ethane, Al (UG/L)	Tetrachloride, Total (UG/L)				BROMOFORM, TOTAL (UG/L)		METHANE, TOTAL (UG/L)			CHLOROFORM, TOTAL (UG/L)		TOLUENE, TOTAL (UG/L)		VZENE, L (UG/L)	YLENE, TOTAL (UG/L)	ENE, Total (UG/L)
02	Sh:Q-096	10-14-89	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	~ ~	0.20	<	0.20		
4A	Sh:Q-098	10-16-89	<		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20		
07	Sh:Q-101	10-26-89	<		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	••	
		07-10-90	<		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20		0.60	<	0.20		* •
8 A	Sh:Q-102		<		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	••	
19	Sh:Q-112		<		<	0.20	č	0.20	<	0.20	<	0.20	<	0.20	<	0.20	< C	0.20	••	
20	Sh:Q-113		<		č	0.20	-	0.20	<	0.20	<	0.20	<	0.20	č	0.20	-	0.20		
		07-06-90	k		k	0.20	Ż	0.20	č	0.20	< k	0.20	k	0.20	č	0.20		0.40	• •	• •
26	Sh:Q-119		~		č	0.20	Ì	0.20	č	0.20	Č.	0.20	č	0.20		0.20		4.0	< 5.0	< 5.0
	Child Hie	07-13-90	~		, k	0.20	Ì	0.40	Ì	0.20	Ì	0.20	Ì	0.20		0.80		4.6	< 5.0	< 5.0
27	Sh:Q-120	10-11-89	~		è	0.20	Ì	0.20	Ì	0.20	Ì	0.20	Ì	0.20		0.20		1.5	< 5.0	< 5.0
	onid ite	07-02-90	è		è	0.20		. 0.20	Ì	0.20	,	0.20	, k	0.20		0.20		1.5	< 5.0	< 5.0
30	Sh:Q-128		k		Ì	0.20	Ì	0.20	~	0.20	~	0.20	Ì	0.20		0.20	<	0.20	< 5.0	< 5.0
	On de l'Eo	06-26-90			à	0.20	Ì	0.20	Ì	0.20	Ì	0.20	•	0.20		0.30	Ì	0.20	< 5.0	< 5.0
31	Sh:Q-129	10-30-89	Ż		, e	0.20		0.90	è	0.20	~	0.20		0.20		0.30		0.70	< 5.0	< 5.0
	0	08-25-90	~		k	0.20		0.70	č	0.20	~	0.20	<	0.20		0.80		0.40	< 5.0	< 5.0
32	8h:Q-132		k		k	0.20	<	0.20	Ì	0.20	Ì	0.20	Ì	0.20	<	0.20	<	0.20		
33		10-13-89	Ì		Ì	0.20	È	0.20	Ì	0.20	Ì	0.20	Ì	0.20	è	0.20	Ì	0.20		••
	011.02-100	06-27-90	Ì		Ì	0.20		0.20	Ì	0.20	Ì	0.20	è	0.20	Ì	0.20	Ì	0.20	••	
34	Sh:Q-134		Š		× د	0.20	č.	0.20	<	0.20	Š	0.20	č	0.20	È	0.20	è	0.20	••	
	011.01-1.04	06-28-90	Ì		-	0.20	è	0.20		0.20		0.20		0.20	È	0.20	Ì	0.20		
35	Sh:Q-135	10-15-89	<		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	-	0.20	č	0.20		
36	Sh:Q-135	10-19-89			< <	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	Ž	0.20	• •	
37	Sh:Q-136 Sh:Q-137		-		-	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	-	0.20	< 5.0	< 5.0
57	GII.9-137	07-13-90	<		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	< 5.0	< 5.0
38	Sh:Q-138		< <		<	0.20	<	0.20	<	0.20	<		<		<	0.20		5.8	< 5.0	< 5.0 < 5.0
30	GII.Q*136	07-03-90	-		<	0.20			<		<	0.20	<	0.20	<	0.20			< 5.0 < 5.0	< 5.0 < 5.0
39	Sh:Q-139	10-11-89	<		<	0.20		0.80 0.20	<	0.20	<	0.20	<	0.20	<			2.4	< 5.0	< 5.0
38	011.01-108		<		<		<		<	0.20	<	0.20	<	0.20	<	0.20		1.1		
40	Sh:Q-140	07-11-90 10-19-89	<		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20		0.40		1.8		
	an:Q-140		<		<	0.20		0.80	<	0.20	<	0.20	<	0.20	<	0.20		1.9	< 5.0	< 5.0
	01-0144	07-11-90	<		<	0.20		0.70	<	0.20	<	0.20	<	0.20		1.6		2.3	< 5.0	< 5.0
41		10-10-89	<		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20		
42	Sh:Q-142		<		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20		0.20		0.60		••
	AL-A 44-	06-29-90	<		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20		0.70	••	••
43	Sh:Q-143		<		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20		1.5	• •	
		07-05-90	<	0.20	<	0.20	<	0.20	<	0,20	<	0.20	<	0.20	<	0.20		0.90		••

WELL	NUMBERS			BENZO-B-	BENZO-K-	BENZO-A-	BIS-2-CHLORO-	BIS-(2-CHLORO- ETHOXY)	BIS-(2-CHLORO-	N-BUTYL BENZYL	СН	.ORO-
PROJECT	USGS LOCAL	-	ANTHRACENE.	FLUORANTHENET			ETHYL ETHER	METHANE.	ETHER,	PHTHALATE,	BEN	ZENE.
AND	FOR	DATE	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)			TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTA	L (UG/L)
MAP	TENNESSEE		,,	,	· - · · · · · · · · · · · · · · · · · ·		, . . . , . 					
02	Sh:Q-096	10-14-89	• •	••	• •	••	• •	•-		• •	<	0.20
4A	Sh:Q-098	10-16-89			••				••		<	0.20
07	Sh:Q-101	10-26-89					••		••		<	0.20
		07-10-90	••		••						<	0.20
8 A	Sh:Q-102	10-15-89	••		••			••		••	<	0.20
19	Sh:Q-112	10-17-89	••		••						<	0.20
20	Sh:Q-113	10-20-89	••				• •		••		<	0.20
		07-06-90					••			• -	<	0.20
26	Sh:Q-119	10-20-89	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0		1.2
		07-13-90	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0		1.5
27	Sh:Q-120	10-11-89	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0		5.5
		07-02-90	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0		4.7
30	Sh:Q-128	10-27-89	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0	<	0.20
		06-26-90	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0	<	0.20
31	Sh:Q-129	10-30-89	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0		0.50
		06-25-90	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0		0.40
32	8h:Q-132	10-12-89	••	••			••	••	••	••	<	0.20
33	Sh:Q-133	10-13-89	• •						••		<	0.20
		06-27-90	••				••			••	<	0.20
34	Sh:Q-134	10-13-89		- •				••	••		<	0.20
		06-28-90		••	• -				••		<	0.20
35	Sh:Q-135	10-15-89		• •					••	• •	<	0.20
36	Sh:Q-136	10-19-89	••	••	••		• •	••	• •	• •	<	0.20
37	Sh:Q-137	10-30-89	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0	<	0.20
		07-13-90	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0	<	0.20
38	Sh:Q-138	10-19-89	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0		0.30
		07-03-90	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0	<	
39	Sh:Q-139	10-11-89		••	••	• •	••			••	-	0.80
		07-11-90	••			••				••		1.1
40	Sh:Q-140	10-19-89	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0		1.6
		07-11-90	< 5.0	< 10.0	< 10.0	< 10.0	< 5.0	< 5.0	< 5.0	< 5.0		1.0
41	Sh:Q-141	10-10-89			••	••	••		••		<	0.20
42	Sh:Q-142	10-14-89	••			• •	••		••		-	0.90
	· · · -	06-29-90			• -				••			1.5
43	Sh:Q-143	10-12-89		••				••	- - ·	••		0.30
-		07-05-90	••			••						0.20

[Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

WELL	NUMBERS		CH	LORO-	•	DIETHYL.	DIMETHYL		-ML				HEXACHLORO-	
PROJECT AND MAP	USGS LOCAL FOR TENNESSEE	DATE		HANE, OTAL	CHRYSENE, TOTAL (UG/L)	PHTHALATE, TOTAL (UG/L)	PHTHALATE, TOTAL (UG/L)	BENZ TOTAL	TENE, (UG/L	FLUORANTHENE ,' TOTAL (UG/L)	Fluoriene, Total (UG/L)	Diene, Total (Ug/L)	ethane, Total (UG/L)	CD) PYRENE, TOTAL (UG/L
02	Sh:Q-096	10-14-89	<	0.20	• •	••			0.20			••		••
4 A	Sh:Q-098	10-16-89	<	0.20		••	••	<	0.20		••	••	• •	
07	Sh:Q-101	10-26-89	<	0.20			••	<	0.20		••			
		07-10-90	<	0.20	• •	••		<	0.20		••	••		
8 A	Sh:Q-102	10-15-89	<	0.20	••	••	••	<	0.20		••	••	••	
19	Sh:Q-112	10-17-89	<	0.20	. -	••	••	<	0.20		••		••	
20	Sh:Q-113	10-20-89	<	0.30	••	• •		<	0.20		••	••	••	• •
		07-06-90		0.60			• •	<	0.20					< 10.0
28	Sh:Q-119	10-20-89	<		< 10.0	< 5.0	< 5.0	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0
	0	07-13-90	č	0.20	< 10.0	< 5.0	< 5.0	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0
27	Sh:Q-120	10-11-89	~	0.20	< 10.0	< 5.0	< 5.0	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0
21	On a reo	07-02-90	~	0.20	< 10.0	< 5.0	< 5.0	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0
30	Sh:Q-128	10-27-89	è	0.20	< 10.0	< 5.0	< 5.0	< C	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0
00	0	06-26-90	<		< 10.0	< 5.0	< 5.0	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0
31	Sh:Q-129	10-30-89	-	0.60	< 10.0	< 5.0	< 5.0	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0
•.	0	06-25-90		0.20	< 10.0	< 5.0	< 5.0	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	••
32	Sh:Q-132	10-12-89	<		••	••		<	0.20	••			••	••
33	Sh:Q-133	10-13-89	k	0.20	••			<	0.20	••		••	••	
		06-27-90	 	0.20				<	0.20			••	••	
34	Sh:Q-134	10-13-89	č				- •		0.20		••	••	••	
• •	onia ioi	06-28-90	Ř	0.20				<	0.20					••
35	Sh:Q-135	10-15-89	~	0.20	••			<	0.20				••	
36	Sh:Q-136	10-19-89	č					<	0.20	••		••	••	< 10.0
37	Sh:Q-137	10-30-89	-	0.30	< 10.0	< 5.0	< 5.0		0.40	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0
•.	•	07-13-90	<		< 10.0	< 5.0	< 5.0	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0
38	Sh:Q-138	10-19-89	-	0.50	< 10.0	< 5.0	< 5.0	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0
••	•	07-03-90	<		< 10.0	< 5.0	< 5.0	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	••
39	Sh:Q-139	10-11-89	-	1.6	••	+ -	••	<	0.20	••	••	••	••	
••		07-11-90		2.8				<	0.20			••	••	< 10.0
40	Sh:Q-140	10-19-89		0.80	< 10.0	< 5.0	< 5.0		0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0
		07-11-90	<		< 10.0	< 5.0	< 5.0		0.20	< 5.0	< 5.0	< 5.0	< 5.0	••
41	Sh:Q-141	10-10-89	È			• •	••	<	0.20	••	••		••	
42	Sh:Q-142	10-14-89	è				••		1.0			••		
		06-29-90	Ì	0.20	••		. -		0.20		••			
43	Sh:Q-143	10-12-89	è	0.20		••		-	0.20		••		••	
		07-05-90	Ì	0.20	••	• •			0.20					

.

WELL	NUMBERS													PARA-CHLORO-	
PROJECT AND MAP	USGS LOCAL FOR TENNESSEE	DATE	ISOPHORONE, TOTAL (UG/L)	Meth Brom Total (IDE,	METH CHLOF TOTAL	RIDE,	CH	Hylene .oride, .l. (UG/L)	N-NITRO-SODI- N-PROPYLAMINE, TOTAL (UG/L)	PHENYLAMINE,	METHYLAMINE,		META-CRESOL, TOTAL (UG/L)	Phenanthren Total (UG/L
02	Sh:Q-096	10-14-89	• •	< 0	.20	< 0		~~~ ····	0.20	• •		• •	• •	••	• •
4 A	Sh:Q-098	10-16-89	••	< 0).20	< 0).20	<	0.20	••				• -	
07	Sh:Q-101	10-26-89		< 0).20	< 0).20	<	0.20		• •			• •	
		07-10-90	••	< 0	.20	< 0).20	<	0.20	••	• •			••	••
8 A	Sh:Q-102	10-15-89	••	< 0).20	< 0).20	<	0.20		••		••		
19	Sh:Q-112	10-17-89	••	< 0	.20	< 0	0.20	<	0.20		••			••	
20	Sh:Q-113	10-20-89	••	< 0	.20	< 0),20	<	0.20	••	••			. .	••
		07-06-90	••	< 0).20	< 0	0.20	<	0.20		••	• -	••		
26	Sh:Q-119	10-20-89	< 5.0	< 0	.20	< 0	0.20	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
		07-13-90	< 5.0	< 0	0.20	< 0).20	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
27	Sh:Q-120	10-11-89	< 5.0	< 0).20	< 0).20	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
		07-02-90	< 5.0	< 0	0.20	< 0).20	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
30	Sh:Q-128	10-27-89	< 5.0	< 0	0.20	< 0	0.20	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
		06-26-90	< 5.0	< 0).20	< 0).20	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
31	Sh:Q-129	10-30-89	< 5.0	< 0).20	< 0).20		0.60	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
		08-25-90	< 5.0	< 0	0.20	< 0).20		0.60	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
32	8h:Q-132	10-12-89	••	< 0).20	< 0	0.20	<	0.20	••	••	••	••	••	••
33	8h:Q-133	10-13-89		< 0).20	< 0).20	<	0.20	••	••		••	••	••
		06-27-90			0.20	< (0.20	<	0.20	••	••		••	••	
34	Sh:Q-134	10-13-89	••).20	< 0	0.20	<	0.20	••				••	••
• ·		06-28-90	••		0.20		0.20	<	0.20	• •	••		••	••	••
35	Sh:Q-135				0.20		0.20	, K	0.20	••			••	••	••
36	Sh:Q-136		••		0.20		0.20	<	0.20	••			••	• •	
37	Sh:Q-137		< 5.0		0.20		0.20	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
••		07-13-90	< 5.0		0.20		0.20	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
38	Sh:Q-138		< 5.0		.20		0.20	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
		07-03-90	< 5.0		0.20		0.20	<	0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
39	Sh:Q-139		•••		0.20		0.20	~	0.20	••				••	••
		07-11-90			0.20		0.20	•	0.30			••	••		• -
40	Sh:Q-140		< 5.0		0.20		0.20	<		< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
		07-11-90	< 5.0		0.20		0.20	•	0.30	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0
41	Sh:Q-141				0.20		0.20	<		••	• -	••	•••	•••	
42	Sh:Q-142				0.20		0.20	è	0.20			••	••	••	
		06-29-90).20		0.20	è	0.20			<			
43	Sh:Q-143				0.20		0.20	Ì	0.20	••		• •	••	••	• • ⁻
40		07-05-90	••		0.20		0.20	Ì	0.20	••	••	••	••		••

WELL	NUMBERS				CHLORO-	FU	HLORO- JORO-		CHLORO-			CH	1-TRI-	CH	2-TRI-	TETRA		BENZO-G,H,I- PERYLENE1,12- BENZOPERYLENE,	BENZ-A- RACEN	E 1,2-
AND MAP	USGS LOCAL FOR TENNESSEE	DATE	PYRENE, TOTAL (UG/L)		1.ene, . (UG/L)		THANE Ł (UG/L)		HANE, L (UG/L)	ETH TOTA	YLENE, L (UG/L)		HANE, L (UG/L)		HANE, L (UG/L)		hane, L (UG/L)	TOTAL (UG/L)	TOTAL (
02	Sh:Q-096	10-14-89		·	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20			
4 A	Sh:Q-098	10-16-89			0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20			•
07	Sh:Q-101	10-26-89			0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	••		•
0.	011.4 101	07-10-90		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20			•
8 A	Sh:Q-102	10-15-89		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20			•
19	Sh:Q-112	10-17-89			0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20			•
20	Sh:Q-113	10-20-89			1.0		2.7	<	0.20		1.0	<	0.20	<	0.20	<	0.20	••		•
20	On de l'IO	07-06-90	••		0.90		0.80		0.90		0.20		0.60	<	0.20	<	0.20			•
26	Sh:Q-119	10-20-89	< 5.0	<	0.20	<	0.20		0.80	<	0.20	<	0.20	<	0.20	<	0.20	< 10.0	<	
20	31.0-118	07-13-90	< 5.0		0.20	<	0.20		0.90	<	0.20	<	0.20	<	0.20	<	0.20	< 10.0	< 10	
27	Sh:Q-120	10-11-89	< 5.0	, ,	0.20	<	0.20		0.40	<	0.20	<	0.20	<	0.20	<	0.20	< 10.0		5.0
21	311.0-120	07-02-90	< 5.0	č	0.20	<	0.20		0.30	<	0.20	<	0.20	<	0.20	<	0.20	< 10.0	< 10	
30	Sh:Q-128	10-27-89	< 5.0	•	0.20	-	0.60	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	< 10.0	< 1	
30	GII.Q-120	06-26-90	< 5.0	۲	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	< 10.0	< 10	
31	Sh:Q-129	10-30-89	< 5.0	•	1.1	<	0.20		5.9	<	0.20	<	0.20	<	0.20	<	0.20	< 10.0		5.0
31	011.0-120	06-25-90	< 5.0		0.30	<	0.20		2.6	<	0.20	<	0.20	<	0.20	<	0.20	< 10.0	< 10	0.0
32	Sh:Q-132	10-12-89		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	••		•
33	Sh:Q-132	10-13-89		č	0.20	k	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	••		-
33	SII.Q-155	06-27-90		Ì	0.20	, K	0.20	ć	0.20	<	0.20	<	0.20	<	0.20	<	0.20			•
	Sh:Q-134	10-13-89		Ì	0.20	Ì	0.20	 	0.20	k	0.20	<	0.20	<	0.20	<	0.20	••		-
34	31.4-134	06-28-90		à	0.20	Ì	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	••	• •	-
	Sh:Q-135	10-15-89		Ì	0.20	Ì	0.20	Ì	0.20	<	0.20	<	0.20	<	0.20	<	0.20	••		-
35	Sh:Q-135	10-19-89		, k	0.20	Ì	0.20	,	0.20	č	0.20	<	0.20	<	0.20	<	0.20	••	• •	•
36		10-30-89	< 5.0		0.20	Ì	0.20		1.4	~	0.20	<	0.20	<	0.20	<	0.20	< 10.0	<	5.0
37	Sh:Q-137	07-13-90	< 5.0 < 5.0	× د	0.20	Ì	0.20		0.90	, k	0.20	<	0.20	<	0.20	<	0.20	< 10.0	< 1	0.0
	01.0 400	10-19-89	< 5.0	-	0.20	-	0.20		4.0	~	0.20	<	0.20	<	0.20	<	0.20	< 10.0	<	5.0
38	Sh:Q-138			<	0.20	<	0.20		4.5	Ì	0.20	~	0.20	< <	0.20	<	0.20	< 10.0	< 1	0.0
		07-03-90	< 5.0	<		<	0.20		5.9	•	0.20	Ì	0.20	, K	0.20	ć	0.20	••	-	-
39	Sh:Q-139	10-11-89	••		1.0	<	0.20		5.9 11.0		0.20	Ì	0.20	Ì	0.20	~	0.20	(-	-
		07-11-90		-	1.2 0.20	<	0.20		3.7	<	0.30	, k	0.20	à	0.20	č	0.20	< 10.0	<	5.0
40	Sh:Q-140	10-19-89	< 5.0	<		<	0.20		4.3	~ ~	0.20	Ż	0.20	Ì	0.20	<	0.20	< 10.0	< 1	0.0
		07-11-90	< 5.0	<	0.20	<	0.20	-	4.3 0.20	-	0.20	-	0.20	Ì	0.20		0.20	••	-	-
41	Sh:Q-141	10-10-89		<	0.20	<		<		<	0.20	< <	0.20	Ż	0.20	č	0.20	••	-	-
42	Sh:Q-142	10-14-89	••	<	0.20	<	0.20	<	0.20	<		-	0.20	, k	0.20	Ì	0.20	••	-	•
		06-29-90	••	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	-	0.20	Ì	0.20	••	-	•
43	Sh:Q-143	10-12-89	••		0.30	<	0.20		0.20	<	0.20	<		<	0.20	Ì	0.20		-	-
		07-05-90		<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	V.2.V			

WELL PROJECT AND MAP	NUMBERS USGS LOCAL FOR TENNESSEE	DATE	1,2,-Dichloro- Benzene, Total (Ug/L)	PR	OPANE,	DIC E1	trans- Hloro Hene, Il (Ug/L)	1,2,4-TRI- CHLORO- BENZENE, TOTAL (UG/L)	1,2,5,6- DIBENZ- ANTHRACENE, TOTAL (UG/L)	PRO	PENE,		3-DICHLORO- BENZENE, DTAL (UG/L)	BE	NZENE,	ETH	iloro- /lvinyl her, l (Ug/l)	2-CHLORO- NAPHTHALENE, TOTAL (UG/L)
02	Sh:Q-096	10-14-89	< 0.20		0.20		0.20				0.20		0.20	<	0.20		0.20	
4 A		10-16-89	< 0.20	Ì	0.20	Ì	0.20			Ì	0.20	~	0.20	Ì	0.20	Ì	0.20	
07	Sh:Q-101		< 0.20	×	0.20	è	0.20			2	0.20	<	0.20		0.30	č	0.20	
		07-10-90	< 0.20	~	0.20	è	0.20		••	2	0.20	2	0.20	<	0.20	Ì	0.20	
8 A	Sh:Q-102		< 0.20	Ì	0.20	è	0.20		••		0.20	Ì	0.20	Ì	0.20	Ì	0.20	
19	Sh:Q-112		< 0.20	Ì	0.20	Ì	0.20	••			0.20	~	0.20	Ì	0.20	 	0.20	
20	Sh:Q-113		< 0.20	Ì	0.20	•	0.20				0.20	è	0.20	Ż	0.20	, k	0.20	• •
	On genio	07-06-90	< 0.20	Ì	0.20		1.3				0.20	~	0.20	ž	0.20	× ×	0.20	
26	Sh:Q-119		< 0.20		0.20	<	0.20	< 5.0	< 10.0	< <	0.20	2	5.0	•	0.20	 	0.20	< 5.0
20	011.02-110	07-13-90	< 0.20		0.40	è		< 5.0	< 10.0	-	0.20	~	5.0		1.5		0.20	< 5.0
27	Sh:Q-120		0.20	<	0.40	<	0.20	< 5.0	< 10.0 < 10.0	<	0.20	<	5.0		1.5	۲ ۲	0.20	< 5.0
21	311.0-120	07-02-90	< 0.20	-	0.20		0.50	< 5.0	< 10.0 < 10.0	<			5.0 5.0			-	0.20	< 5.0
30	Sh:Q-128		< 0.20	< <	0.20	<		< 5.0	< 10.0 < 10.0	<	0.20 0.20	<	5.0 5.0		1.8 2.0	<	2.3	< 5.0
30	011.0-120	06-26-90	< 0.20	<	0.20	<	0.20	< 5.0	< 10.0 < 10.0	<	0.20	<	5.0	<	0.40		0.20	< 5.0
31	Sh:Q-129		< 0.20		14		30	< 5.0	< 10.0	•	0.20	< <	5.0		1.3	<	0.20	< 5.0
51	011.0-120	06-25-90	< 0.20		6.4		13	< 5.0	< 10.0	<	0.20	-	5.0		0.90	<	0.20	< 5.0
32	Sh:Q-132							< 5.0	< 10.0	<		<				<		
33			< 0.20	<	0.20	<	0.20			<	0.20	<	0.20	<	0.20	. <	0.20	
33	Sh:Q-133		< 0.20	<	0.20	<	0.20	••	••	<	0.20	<	0.20	<	0.20	<	0.20	••
	01.0.444	06-27-90	< 0.20	<	0.20	<	0.20	••	• •	<	0.20	<	0.20	<	0.20	<	0.20	
34	Sh:Q-134		< 0.20	<	0.20		1.3		••	<	0.20	<	0.20	<	0.20	<	0.20	
	0 1.0.100	06-28-90	< 0.20	<	0.20	<	0.20	••	••	<	0.20	<	0.20	<	0.20	<	0.20	
35		10-15-89	< 0.20	<	0.20	<	0.20	• -	••	<	0.20	<	0.20	<	0.20	<	0.20	
36		10-19-89	< 0.20	<	0.20	<	0.20	••		<	0.20	<	0.20	<	0.20	<	0.20	••
37	Sh:Q-137		< 0.20		0.30		1.5	< 5.0	< 10.0	<	0.20	<	5.0	<	0.20	<	0.20	< 5.0
		07-13-90	< 0.20	<			0.30	< 5.0	< 10.0	<	0.20	<	5.0	<	0.20	<	0.20	< 5.0
38	Sh:Q-138		< 0.20	<	0.20		0.30	< 5.0	< 10.0	<	0.20	<	5.0		0.80	<	0.20	< 5.0
		07-03-90	< 0.20		1.0		3.2	< 5.0	< 10.0	<	0.20	<	5.0		0.90 \	<	0.20	< 5.0
39	Sh:Q-139		1.2	<	0.20		8.0	••		<	0.20	<	0.20		0.20	<	0.20	••
		07-11-90	< 0.20		0.70		18		• -	<	0.20	<	0.20		0.40	<	0.20	• •
40	Sh:Q-140		< 0.20		0.30		6.9	< 5.0	< 10.0	<	0.20	<	5.0		0.80	<	0.20	< 5.0
		07-11-90	< 0.20		0.50		6.3	< 5.0	< 10.0	<	0.20	<	0.20		0.80	<	0.20	< 5.0
41		10-10-89	< 0.20	<	0.20	<	0.20			<	0.20	<	0.20	<	0.20	<	0.20	• •
42	Sh:Q-142		< 0.20	<	0.20	<	0.20			<	0.20	<	0.20		0.60	<	0.20	• •
		06-29-90	< 0.20	<	0.20	<	0.20			<	0.20	<	0.20		0.90	<	0.20	••
43	Sh:Q-143	10-12-89	< 0.20	<	0.20		2.4	••		<	0.20	<	0.20	<	0.20	<	0.20	
		07-05-90	< 0.20	<	0.20		1.3	••	• •	<	0.20	<	0.20	<	0.20	<	0.20	• •

[Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

	NUMBERS		2-CHLORO-	2-NITRO-			2,4-DIMETHYL-	2,4-DINITRO-	2,4-DINITRO-	2,4,6-TRI-	2,6-DINITRO-	4-BROMO- PHENYL
AND	USGS LOCAL FOR TENNESSEE	DATE	PHENOL, TOTAL (UG/L)	Phenol, Total (UG/L)	PHTHALATE, TOTAL (UG/L)	Phenol, Total (UG/L)	PHENOL, TOTAL (UG/L)	Toluene, Total (UG/L)	PHENOL, TOTAL (UG/L)	CHLOROPHENOL, TOTAL (UG/L)	TOLUENE, TOTAL (UG/L)	Phenylether Total (UG/L)
02	Sh:Q-096	10-14-89	••	••	• •		• -					
4A	Sh:Q-098	10-16-89		••		••						
07	Sh:Q-101	10-26-89			••		••			••		
•••		07-10-90	••	••					••			
8 A	Sh:Q-102	10-15-89	••	••		••	••		• •	••		••
19	Sh:Q-112	10-17-89			• •	• •	••			• •		
20	Sh:Q-113	10-20-89		••			••	••	••			
	•	07-08-90			• •	• -	••	••		••	••	••
26	Sh:Q-119	10-20-89	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
		07-13-90	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
27	Sh:Q-120	10-11-89	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
		07-02-90	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
30	Sh:Q-128	10-27-89	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	√< 20.0	< 20.0	< 5.0	< 5.0
•••		08-28-90	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
31	Sh:Q-129	10-30-89	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
•••		08-25-90	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
32	Sh:Q-132	10-12-89								••	••	• •
33	Sh:Q-133	10-13-89	••					• •	••	••	••	• •
	0	06-27-90	••					••	••		••	• •
34	Sh:Q-134	10-13-89	••	••			••		••	• •		• •
• ·		06-28-90	••		••			• •	••	••	••	• •
35	Sh:Q-135	10-15-89	••				• •	• •		••		
36	Sh:Q-136	10-19-89			••		••	• •	••			••
37	Sh:Q-137	10-30-89	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
•••		07-13-90	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
38	Sh:Q-138	10-19-89	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
••		07-03-90	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
39	Sh:Q-139	10-11-89	••		• •			••		••	••	
		07-11-90		••	• •				••	• •		••
40	Sh:Q-140	10-19-89	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
••		07-11-90	< 5.0	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0
41	Sh:Q-141	10-10-89			••		••			••	••	
42	Sh:Q-142	10-14-89	••		••					• •		••
76	W1114-176	06-29-90	••	••	••					• •	••	••
43	Sh:Q-143	10-12-89	••	••	••	••		• •	••		••	••
	0	07-05-90		••	••		• •	••		••	••	••

.

36

[Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

-

.

	NUMBERS		4-CHLORO- PHENYL,	4-NITRO-	4,6-DINITRO-		LORO- JORO-	PHENOL			NS-1,3- HLORO-		S-1,3- HLORO-	PENTA	CHLORC
AND	USGS LOCAL FOR	DATE	PHENYLETHER, TOTAL (UG/L)	PHENOL, TOTAL (UG/L)	ORTHO-CRESOL, TOTAL (UG/L)		HANE, (UG/L)	(C6 H5 OH) TOTAL (UG/L)	NAPHTHALENE, TOTAL (UG/L)		opene, NL (UG/L)		opene, L (UG/L)		enol, L (UG/L
MAP	TENNESSEE														
02	Sh:Q-096	10-14-89		• •	••	<	0.20	• •		<	0.20	<	0.20		
4 A	Sh:Q-098	10-16-89	••		••	<	0.20		• •	<	0.20	<	0.20		
07	Sh:Q-101	10-26-89	••			<	0.20		••	<	0.20	<	0.20		
		07-10-90	• •		• -	<	0.20	• -	••	<	0.20	<	0.20		
88	Sh:Q-102	10-15-89				<	0.20			<	0.20	<	0.20		• •
19	Sh:Q-112	10-17-89	••			<	0.20	••		<	0.20	<	0.20		
20	Sh:Q-113	10-20-89			••		1			<	0.20	< C	0.20		
		07-06-90	••		••		8.3		. .	, k	0.20	k	0.20		
26	Sh:Q-119	10-20-89	< 5.0	< 30.0	< 30.0		0.60	< 5.0	< 5.0	k	0.20	Ì	0.20		30.0
		07-13-90	< 5.0	< 30.0	< 30.0		0.60	< 5.0	< 5.0 /		0.20	Ì	0.20		30.0
27	Sh:Q-120	10-11-89	< 5.0	< 30.0	< 30.0	-	8.1	< 5.0	< 5.0	è	0.20	~	0.20		30.0
		07-02-90	< 5.0	< 30.0	< 30.0		4.6	< 5.0	< 5.0	č	0.20	è	0.20		30.0
30	Sh:Q-128	10-27-89	< 5.0	< 30.0	< 30.0		0.20	< 5.0	< 5.0	<	0.20	<	0.20		30.0
		06-26-90	< 5.0	< 30.0	< 30.0		0.20	< 5.0	< 5.0	, k	0.20	č	0.20		30.0
31	Sh:Q-129	10-30-89	< 5.0	< 30.0	< 30.0		1.6	< 5.0	< 5.0	<	0.20	č	0.20		30.0
		08-25-90	< 5.0	< 30.0	< 30.0		0.20	< 5.0	< 5.0	<	0.20	< l	0.20		30.0
32	Sh:Q-132	10-12-89		••	••		0.20	• •		k	0.20	Ż	0.20		
33	Sh:Q-133	10-13-89					3.4		••	Ì	0.20	Ì	0.20		
		06-27-90	• •				1.2			Ì	0.20	Ì	0.20		
34	Sh:Q-134	10-13-89					0.20			Ì	0.20	Ì	0.20		
		06-28-90		• •	••		0.20	••		~	0.20	Ì	0.20		• •
35	Sh:Q-135	10-15-89			••		0.20		••	Ì	0.20	Ì	0.20		
36	Sh:Q-136	10-19-89		••			0.20	, 	• •	Ì	0.20	Ì	0.20		• •
37	Sh:Q-137	10-30-89	< 5.0	< 30.0	< 30.0		0.20	< 5.0	< 5.0		0.20		0.20		
		07-13-90	< 5.0	< 30.0	< 30.0		0.20	< 5.0 < 5.0	< 5.0 < 5.0	<	0.20	<	0.20		30.0
38	Sh:Q-138	10-19-89	< 5.0	< 30.0	< 30.0		0.20	< 5.0 < 5.0	< 5.0	<	0.20	<			30.0
		07-03-90	< 5.0	< 30.0	< 30.0		1.7	< 5.0 < 5.0	< 5.0 < 5.0	<		<	0.20		30.0
39	Sh:Q-139	10-11-89	< 5.0 	< 30.0	< 30.0		0.20	< 5.0	< 5.0	<	0.20 0.20	<	0.20		30.0
		07-11-90	••				0.20	••		<		<	0.20		••
40	Sh:Q-140	10-19-89	< 5.0	< 30.0	< 30.0		0.20	< 5.0	< 5.0	<	0.20 0.20	<	0.20		
••		07-11-90	< 5.0	< 30.0	< 30.0		0.20	< 5.0 < 5.0	< 5.0 < 5.0	<		<	0.20		30.0
41	Sh:Q-141	10-10-89		< 30.0 	< 30.0		0.20			<	0.20	<	0.20		30.0
42	Sh:Q-142	10-14-89							••	<	0.20	<	0.20		
76	01.0-142	06-29-90	••		••		1.2			<	0.20	<	0.20		
43	Sh:Q-143	10-12-89		••			1.3	•• •		<	0.20	<	0.20		• •
73	011.4-143			••	••		2.3	••	••	<	0.20	<	0.20		
		07-05-90	••	••	• •		1.7	••	••	<	0.20	<	0.20		

WELL	NUMBERS		BIS (2-ETHYL- HEXYL)	DI-N-BUTYL-	v	/INYL		ILORO-		HEXACHLORO-			ET	BROMO- HANE		
PROJECT AND MAP	USGS LOCAL FOR TENNESSEE	DATE	PHTHALATE, TOTAL (UG/L)	PHTHALATE, TOTAL (UG/L)	CH TOTA	loride .L (UG/L)	ETHN TOTAL	(LEŃE, . (UG/L)	BENZENE, TOTAL (UG/L)	BUTADIENE, TOTAL (UG/L)		(rene, Il (UG/L)		rwhole L (UG/L)		lene, L (UG/L)
02	Sh:Q-096	10-14-89		••	<	0.20	<	0.2	• •	••	<		<	0.20	<	0.20
4 A	Sh:Q-098	10-16-89		••	<	0.20	<	0.2	••		<	0.20	<	0.20	<	0.20
07	Sh:Q-101	10-26-89	••	••	<	0.20	<	0.2			<	0.20	<	0.20	<	0.20
		07-10-90	••	••	<	0.20		0.5	••	••	<	0.20	<	0.20		0.40
8 A	Sh:Q-102	10-15-89	••	••	<	0.20	<	0.2		••	<	0.20	<	0.20	<	0.20
19	Sh:Q-112	10-17-89	••	• •	<	0.20	<	0.2	••	••	<	0.20	<	0.20	<	0.20
20	Sh:Q-113	10-20-89		• •		4.0		0.2		••	<	0.20	<	0.20	<	0.20
		07-06-90		••		4.8		0.4			<	0.20	<	0.20	<	0.20
26	Sh:Q-119	10-20-89	< 5.0	< 5.0		0.90	<	0.2	< 5.0	< 5.0	<	0.20	<	0.20		0.50
	0	07-13-90	< 5.0	< 5.0		1.4		0.2	< 5.0	< 5.0	<	0.20	<	0.20		1.0
27	Sh:Q-120		< 5.0	< 5.0	<	0.20	<	0.2	< 5.0	< 5.0	<	0.20	<	0.20	<	0.20
	0	07-02-90	< 5.0	< 5.0		0.40		0.2	< 5.0	< 5.0	<	0.20	<	0.20		0.20
30	Sh:Q-128		< 5.0	< 5.0	<	0.20	<	0.2	< 5.0	< 5.0	<	0.20	<	0.20		0.20
	01114 120	06-26-90	< 5.0	< 5.0	<	0.20	<	0.2	< 5.0	< 5.0	<	0.20	<	0.20		0.30
31	Sh:Q-129	10-30-89	< 5.0	< 5.0		2.1		1.3	< 5.0	< 5.0	<	0.20	<	0.20		0.30
31	011.01-120	06-25-90	< 5.0	< 5.0		0.70		0.7	< 5.0	< 5.0	<	0.20	<	0.20		0.20
32	Sh:Q-132	10-12-89			<		<	0.2			<	0.20	<	0.20	<	0.20
33		10-12-00			è	0.20	<	0.2			<	0.20	<	0.20	<	0.20
33	011.0-133	08-27-90			Ì	0.20	č	0.2	••		<	0.20	<	0.20	<	0.20
34	Sh:Q-134				•	0.90	, ,	0.2	••		<	0.20	<	0.20	<	0.20
34	611.Q-134	06-28-90			<	0.20	č	0.2	••		<	0.20	<	0.20	<	0.20
	Sh:Q-135	10-15-89			Ì	0.20	 	0.2			<	0.20	<	0.20	<	0.20
35	Sh:Q-136	10-19-89	• •	••	Ì	0.20	č	0.2		••	<	0.20	<	0.20	<	0.20
36 37	Sh:Q-130		< 5.0	< 5.0	•	0.30	Ì	0.2	< 5.0	< 5.0	<	0.20	<	0.20		0.90
37	8n.Q-137	07-13-90	< 5.0	< 5.0	<		Ì	0.2	< 5.0	< 5.0	<	0.20	<	0.20	<	0.20
~ ~	Sh:Q-138		< 5.0	< 5.0	``	2.4	Ì	0.2	< 5.0	< 5.0	<	0.20	<	0.20	<	0.20
38	Sn:Q-138		< 5.0	< 5.0		7.3	``	0.6	< 5.0	< 5.0	<	0.20	<	0.20		0.20
	01-0 400	07-03-90	< 5.0	< 5.0		2.6		1.0			č	0.20	<	0.20	<	0.20
39	Sh:Q-139					3.0		1.5		••	č	0.20	<	0.20		0.30
40	Shi0 445	07-11-90		< 5.0		3.0 1.8		0.9	< 5.0	< 5.0	č	0.20	<	0.20	<	0.20
40	3n:Q-140	10-19-89		< 5.0	-	0.20		0.8	< 5.0	< 5.0	è	0.20	<	0.20	-	0.90
	01.0	07-11-90			<	0.20	~	0.8	< 5.0		Ì	0.20	~	0.20	<	
41	Sh:Q-141	10-10-89		••	<		<				2	0.20	~	0.20	-	1.9
42	Sh:Q-142	10-14-89		••	<	0.20	<	0.2			È	0.20	Ì	0.20	<	0.20
		06-29-90			<	0.20	<	0.2			×	0.20	Ì	0.20	Ì	0.20
43	8h:Q-143	10-12-89				1.9		0.5	••	••	<	0.20		0.20	Ì	0.20
		07-05-90	••			1.3		0.4	• •	••	<	0.20	<	V.2V	<	0.20

WELL	NUMBERS		DICHLOF		RIBON	1,2-DICHLORO	1	CHLORO- DIBROMO-				ACENAPHTH-	ACENAPHTH
PROJECT	USGS LOCAL FOR	DATE	METHAN TOTAL (U	e, tetrac	XHLORIDE, L (UG/L)	ETHANE, TOTAL (UG/L)	BROMOFORM, TOTAL (UG/L)	METHANE,	CHLOROFORM, TOTAL (UG/L)	Toluene, Total (UG/L)	BENZENE, TOTAL (UG/L)	YLENE, TOTAL (UG/L)	ENE, TOTAL (UG/L
MAP	TENNESSEE		101712 (0		2 (00/2/	101/12 (00/2)			101112 (002)				10112 (00.0
NONE	Sh:Q-088	10-29-89	< 0.2		0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.20	0.20	••	••
		07-10-90	< 0.2		0.20	< 0.20	< 0.20	< 0.20	< 0.20	2.4	1.8	••	••
MS-2	Sh:Q-092	10-14-89	< 0.2		0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.70	[」] < 0.20	••	
		07-09-90	< 0.2		0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.30	< 0.20	••	
MS-4	Sh:Q-126		< 0.2		0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	••	
MS-5	Sh:Q-144		< 0.2		0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.90	< 0.20	••	
		06-29-90	< 0.2) <	0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.60	< 0.20	••	
MS-7	Sh:Q-146	10-18-89	< 0.2) <	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	••	••
		07-06-90	< 0.2) <	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		
MS-9	Sh:Q-148	10-13-89	< 0.2) <	0.20	< 0.20	< 0.20	< 0.20	< 0.20	2.9	< 0.20	< 5.0	< 5.0
		06-28-90	< 0.2) <	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 5.0
MS-10	Sh:Q-149	10-13-89	< 0.2) <	0.20	< 0.20	< 0.20	< 0.20	< 0.20	7.3	< 0.20	< 5.0	< 5.0
		06-27-90	< 0.2) <	0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.30	< 0.20	< 5.0	< 5.0
MS-11	Sh:Q-150		< 0.2		0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 5.0
		07-02-90	< 0.2) <	0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.20	0.20	< 5.0	< 5.0
MS-12	Sh:Q-151	10-27-89	< 0.2) <	0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.30	0.80		
		08-26-90	< 0.2) <	0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.30	1.3	••	••
WELL	NUMBERS			BEN	IZO-8-	BENZO-K-	BENZO-A-	BIS-2-CHLORO	BIS-(2-CHLORO- ETHOXY)	BIS-(2-CHLORO- ISOPROPYL)	N-BUTYL BENZYL	CHLORO-	CHLORO-
PROJECT	USGS LOCAL	DATE	ANTHRACI			FLUORANTHENE		ETHYL ETHER,	METHANE.	ETHER.	PHTHALATE.	BENZENE.	ETHANE,
AND	FOR		TOTAL (U		L (UG/L)	TOTAL (UG/L)		TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	•	TOTAL (UG/L)	TOTAL
MAP	TENNESSEE				- (,		(,						
NONE	Sh:Q-088	10-29-89	<u> </u>	<u> </u>								< 0.20	< 0.20
••••		07-10-90				••				••		< 0.20	< 0.20
MS-2	Sh:Q-092												
			••							••		~ 0.20	
		07-09-90			• •		••			••	••	< 0.20	< 0.20
MS-4	Sh:Q-126				 							< 0.20	< 0.20
MS-4 M8-5	Sh:Q-126 Sh:Q-144	07-09-90 10-16-89			 		••			••	••	< 0.20 < 0.20	< 0.20 < 0.20
MS-4 M8-5		07-09-90 10-16-89	•••				•••			••		< 0.20 < 0.20 < 0.20	< 0.20 < 0.20 < 0.20
M8-5	Sh:Q-144	07-09-90 10-16-89 10-15-89 06-29-90	 				 		 	••	 	< 0.20 < 0.20 < 0.20 < 0.20 < 0.20	< 0.20 < 0.20 < 0.20 < 0.20
		07-09-90 10-16-89 10-15-89 06-29-90	 		 	 	 	••	 	 	 	< 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20	< 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20
M8-5 MS-7	Sh:Q-144	07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90	 		 	 	 	 	 	 	 	< 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20	< 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20
M8-5	Sh:Q-144 Sh:Q-146	07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90	 	ĸ	 10.0	 < 10.0	 < 10.0	 < 5.0	 < 5.0	 < 5.0	 < 5.0	< 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20	< 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20
M8-5 M8-7 MS-9	Sh:Q-144 Sh:Q-146	07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90	 < 5.0 < 5.0	< <	 10.0 10.0	 < 10.0 < 10.0	 < 10.0 < 10.0	 < 5.0 < 5.0	 < 5.0 < 5.0	 < 5.0 < 5.0	 < 5.0 < 5.0	< 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20	< 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20
M8-5 MS-7	Sh:Q-144 Sh:Q-148 Sh:Q-148	07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89	 	< < <	 10.0 10.0 10.0	 < 10.0 < 10.0 < 10.0	 < 10.0 < 10.0 < 10.0	 < 5.0 < 5.0 < 5.0	 < 5.0 < 5.0 < 5.0	 < 5.0 < 5.0 < 5.0	 < 5.0 < 5.0 < 5.0	< 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20	< 0.20 < 0.20
M8-5 MS-7 MS-9 MS-10	Sh:Q-144 Sh:Q-146 Sh:Q-148 Sh:Q-149	07-09-90 10-18-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89 06-27-90	 	< < < <	 10.0 10.0 10.0 10.0	 < 10.0 < 10.0 < 10.0 < 10.0	 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0	 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0		 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0	 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0	< 0.20 < 0.20	< 0.20 < 0.20
M8-5 M8-7 MS-9	Sh:Q-144 Sh:Q-148 Sh:Q-148	07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89 06-27-90 10-11-89	 	< < < <	10.0 10.0 10.0 10.0 10.0 10.0 10.0	 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0	 	 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0	 	 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0	 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0	< 0.20 < 0.20	< 0.20 < 0.20
M8-5 MS-7 MS-9 MS-10	Sh:Q-144 Sh:Q-146 Sh:Q-148 Sh:Q-149	07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89 06-27-90 10-11-89 07-02-90	 	< < < < < < < < <	 10.0 10.0 10.0 10.0	 < 10.0 < 10.0 < 10.0 < 10.0	 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0	 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0		 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0	 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0	< 0.20 < 0.20	< 0.20 < 0.20

[UG/L, micrograms per liter; Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

,

WELL	NUMBERS	-		DIETHYL	DIMETHYL.	ETHYL	FLUOR-		HEXACHLORO- CYCLOPENTA-	HEXACHLORO-	INDENO (1,2.3-	
PROJECT	USGS LOCAL	DATE	CHRYSENE,	PHTHALATE,	PHTHALATE,	BENZENĖ,	ANTHENE,	FLUORENE,	DIENE,	ETHANE,	CD) PYRENE,	ISOPHORIONE
AND	FOR		TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/
MAP	TENNESSEE									1		
NONE	Sh:Q-088	10-29-89			••	< 0.20	•••		••	••		• •
		07-10-90		· -	••	0.40	••			••		••
MS-2	Sh:Q-092	10-14-89	••		• •	0.20	• •			••		
		07-09-90		• •		< 0.20						• -
MS-4	Sh:Q-126	10-16-89	••	••		< 0.20				• •		• •
MS-5	Sh:Q-144	10-15-89	••	••		0.20		••	••		••	
		06-29-90		• -	••	< 0.20	••	••			••	
MS-7	Sh:Q-146	10-18-89		• -	·	< 0.20	••		• •	••	••	
		07-06-90	••	••		< 0.20			÷ -	••	••	
MS-9	Sh:Q-148	10-13-89	< 10.0	< 5.0	< 5.0	0.80	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0	< 5.0
		06-28-90	< 10.0	< 5.0	< 5.0	< 0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0	< 5.0
MS-10	Sh:Q-149	10-13-89	< 10.0	< 5.0	< 5.0	1.7	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0	< 5.0
		06-27-90	< 10.0	< 5.0	< 5.0	< 0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0	< 5.0
M8-11	Sh:Q-150	10-11-89	< 10.0	< 5.0	< 5.0	< 0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0	< 5.0
		07-02-90	< 10.0	< 5.0	< 5.0	< 0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 10.0	< 5.0
M8-12	8h:Q-151	10-27-89	••	••	••	0.20	••	• •	••	••	••	••
		06-26-90	••			< 0.20	••				• •	••
WELL	NUMBERS			<u></u>		· · · · · · · · · · · · · · · · · · ·						
			METHYL	METHYL.	METHYLENE	N-NITRO-SODI-				PARA-CHLORO	PHEN	
PROJECT	USGS LOCAL		BROMIDE,	CHLORIDE,	CHLORIDE,	N-PROPYLAMINE				META-CRESOL,		PYRENE,
AND	FOR	DATE	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	IOTAL (UG/L)	TOTAL (UGA
MAP	TENNESSEE											
NONE	Sh:Q-088	10-29-89	< 0.20	< 0.20	< 0.20	••	••			••	- +	••
		07-10-90	< 0.20	< 0.20	< 0.20	••		••	••	••		••
MS-2	Sh:Q-092	10-14-89	< 0.20	< 0.20	< 0.20				••	••		••
		07-09-90	< 0.20	< 0.20	< 0.20	••	••	••		••		
M8-4	Sh:Q-126	10-18-89	< 0.20	< 0.20	< 0.20			••	••			••
M8-5	Sh:Q-144	10-15-89	< 0.20	< 0.20	< 0.20							
		06-29-90	< 0.20	< 0.20	< 0.20					••		••
MS-7	Sh:Q-148	10-18-89	< 0.20	< 0.20	< 0.20			••		••		••
	_	07-06-90	< 0.20	< 0.20	< 0.30	••	••	• -		••	••	
M8-9	Sh:Q-148	10-13-89	< 0.20	< 0.20	< 0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0	< 5.0
		06-28-90	< 0.20	< 0.20	< 0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0	< 5.0
M8-10	Sh:Q-149	10-13-89	< 0.20	< 0.20	< 0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0	< 5.0
		06-27-90	< 0.20	< 0.20	< 0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0	< 5.0
MS-11	Sh:Q-150	10-11-89	< 0.20	< 0.20	< 0.20	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0	< 5.0
		07-02-90	< 0.20	< 0.20	< 0.40	< 5.0	< 5.0	< 5.0	< 5.0	< 30.0	< 5.0	< 5.0
												••
MS-12	Sh:Q-151	10-27-89	< 0.20	< 0.20	< 0.20	••	••	••	••	••	••	••

WELL	NUMBERS		TETRA	CHILORO-	FLU		1,1-DICHLORO		HLORO-	CHL	1-TRI- _0R0-	CH		TETRA		PERYL		BENZO-A-ANTH- RACENE 1,2-BENZ	CH	2,-DI- LORO- NZENE,
PROJECT	USGS LOCAL	DATE	ETH	YLENE,	ME	THANE	ETHANE,	ETH	YLENE, '	ET	HANE,		HANE,		IANE,		ERYLENE,			
AND	FOR		TOTA	l. (UG/L)	TOTA	L (UG/L)	TOTAL (UG/L) ΤΟΤΑ	l (UG/L)	TOTAI	l (UG/L)	TOTA	l (UG/L)	TOTAL	L (UG/L)	TOTAL	. (UG/L)	TOTAL (UG/L)	1014	l (UG/L
MAP	TENNESSEE																			
NONE	Sh:Q-088	10-29-89	<	0.20	<	0.20	< 0.20	<	0.20	<	0.20	<	0.20	<	0.20			• •	<	
		07-10-90	<		<	0.20	< 0.20	<	0.20	<	0.20	<	0.20	<	0.20		• •	••	<	0.20
MS-2	Sh:Q-092	10-14-89	<	0.20	<	0.20	< 0.20	<	0.20	<	0.20	<	0.20	<	0.20			••	<	0.20
		07-09-90	<	0.20	<	0.20	< 0.20	<	0.20	<	0.20	<	0.20	<	0.20		• •	••	<	0.20
MS-4	Sh:Q-126	10-16-89	<	0.20	<	0.20	< 0.20	<	0.20	<	0.20	<	0.20	<	0.20				<	0.20
MS-5	Sh:Q-144	10-15-89	<		<	0.20	< 0.20	<	0.20	<	0.20	<	0.20	<	0.20			••	<	0.20
		06-29-90	<	0.20	<	0.20	< 0.20	<	0.20	<	0.20	<	0.20	<	0.20		• •	• •	<	0.20
MS-7	Sh:Q-146	10-18-89	k	0.20	<	0.20	< 0.20	<	0.20	<	0.20	<	0.20	<	0.20		• •		<	0.20
m0-7	011.021140	07-06-90	<	0.20	<	0.20	0.80	<	0.20	<	0.20	<	0.20	<	0.20			••	<	0.20
MS-9	Sh:Q-148	10-13-89	è	0.20	<	0.20	< 0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	10. 0	< 5.0	<	0.20
MIG-0	011.0-140	06-28-90	,	0.20	č	0.20	< 0.20	<	0.20	<	0.20	<	0.20	<	0.20		10.0	< 10.0	<	0.20
M8-10	Sh:Q-149	10-13-89	, k	0.20	, k	0.20	< 0.20	<	0.20	<	0.20	<	0.20	<	0.20		10.0	< 5.0	<	0.20
mo ro	011.4	06-27-90	č	0.20	<	0.20	< 0.20	<	0.20	<	0.20	<	0.20	<	0.20		10.0	< 10.0	<	0.20
MS-11	Sh:Q-150	10-11-89	<	0.20	<		< 0.20	<	0.20	<	0.20	<	0.20	<	0.20		10.0	< 5.0	<	0.20
MOTT	ond ree	07-02-90	č	0.20	<		< 0.20	<	0.20	<	0.20	<	0.20	<	0.20	<	10.0	< 10.0	<	0.20
M8-12	8h:Q-151	10-27-89		1.5		12	1.5	<	0.20		0.90	<	0.20	<	0.20		• •	••	<	0.20
MO-12	00.0-101	06-26-90		1.1		4.0	2.3	•	0.20		0.40	<	0.20	<	0.20		• •		<	0.20
WELL	NUMBERS															2-CH	LORO-		· · · · -	
							1 2 A.TRANS	2. 1 !	758.											
			CH	2-D1- LORO-	DIC	TRANS- HLORO	1,2,4-TRANS DICHLORO	Di			CHLORO					- ETH	/LVINYL	2-CHLORO-		
PROJECT	USGS LOCAL	DATE	CH	LORO- DPANE,	DIC	HLORO HENE.	DICHLORO	Di ANTH	BENZ- RACENE,	PRC	OPENE,	88	VZENE,	BB	VZENE,	- ETH) ET	1LVINYL. HER,	NAPHTHALENE,	Ph	HENOL,
	USGS LOCAL FOR	DATE	CH	LORO-	DIC	HLORO HENE.	DICHLORO	Di ANTH	BENZ- RACENE,	PRC	OPENE,	88	VZENE,	BB	VZENE,	- ETH) ET	/LVINYL		Ph	HENOL,
PROJECT	USGS LOCAL	DATE	CH	LORO- DPANE,	DIC	HLORO HENE.	DICHLORO	Di ANTH	BENZ- RACENE,	PRC	OPENE,	88	VZENE,	BB	VZENE,	- ETH) ET	1LVINYL. HER,	NAPHTHALENE,	Ph	HENOL,
PROJECT	USGS LOCAL FOR	DATE 10-29-89	CH PRC TOTA	LORO- DPANE,	DIC E1 TOTA	HLORO HENE.	DICHLORO	Di ANTH	BENZ- RACENE,	PRC	OPENE,	88	NZENE, I. (UG/L) 0.20	BE TOTA	12ENE, L (UG/L) 0.20	- ETH ET TOTA	7LVINYL HER, L (UG7L) 0.20	NAPHTHALENE, TOTAL (UG/L)	Ph	HENOL, AL (UG/I
PROJECT AND MAP	USGS LOCAL FOR TENNESSEE		CH PRC TOTA	LORO- DPANE, L (UG/L) 0.20	DIC ET TOTA	Hlofio Thene, Al (UG/L)	DICHLORO BENZENE, TOTAL (UGA	Di ANTH	BENZ- RACENE, L (UG/L)	PRC TOTA	opene, I. (UG/L)	BEI TOTA	NZENE, il (UG/L) 0.20 0.20	BE Tota	12ENE, L (UG/L) 0.20 0.20	- ETH ET TOTA	1.VINYL. HER, L (UG/L) 0.20 0.20	NAPHTHALENE, TOTAL (UG/L) 	Ph	HENOL, AL (UG/
PROJECT AND MAP NONE	USGS LOCAL FOR TENNESSEE Sh:Q-088	10-29-89	CH PRC TOTA	LORO- DPANE, L (UG/L) 0.20 0.20	DIC ET TOTA	HLORO (HENE, AL (UG/L) 0.20 0.20	DICHLORO BENZENE, TOTAL (UGA	Di ANTH	BENZ- RACENE, L (UG/L)	PRK TOTA	0 PENE, I. (UG/L) 0.20	BEP TOTA	NZENE, I. (UG/L) 0.20	BE TOTA	12ENE, L (UG/L) 0.20 0.20 0.20	- ETH ET TOTA	/LVINYL HER, L (UG/L) 0.20 0.20 0.20	NAPHTHALENE, TOTAL (UG/L)	Ph	HENOL, AL (UG/
PROJECT AND MAP	USGS LOCAL FOR TENNESSEE	10-29-89 07-10-90	CH PRC TOTA	LORO- DPANE, L (UG/L) 0.20 0.20 0.20		HLORO HENE, AL (UG/L) 0.20 0.20 0.20	DICHLORO BENZENE, TOTAL (UGA	Di ANTH	BENZ- RACENE, L (UG/L)	PFR TOTA < <	0 PENE, IL (UG/L) 0.20 0.20	889 Tota < <	NZENE, il (UG/L) 0.20 0.20	BE TOTA	VZENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20	- ETH ET TOTA	L VINYL HER, L (UG/L) 0.20 0.20 0.20 0.20 0.20	NAPHTHALENE, TOTAL (UG/L) 	Ph	HENOL, AL (UGA
PROJECT AND MAP NONE MS-2	USGS LOCAL ROR TENNESSEE Sh:Q-088 Sh:Q-092	10-29-89 07-10-90 10-14-89	CH PRC TOTA C	LORO- DPANE, L (UG/L) 0.20 0.20 0.20		HLORO HENE, AL (UG/L) 0.20 0.20 0.20 0.20 0.20	DICHLORO BENZENE, TOTAL (UGA 	Di ANTH	BENZ- RACENE, L (UG/L)	PRC TOTA < < <	0.20 0.20 0.20 0.20	BE TOTA < < <	NZENE, il (UG/L) 0.20 0.20 0.20	889 TOTA < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	- ETH ET TOTA 	L VINYL HER, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20	NAPHTHALENE, TOTAL (UG/L) 	Ph	HENOL, AL (UG/
PROJECT AND MAP NONE MS-2 MS-4	USGS LOCAL FOR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-126	10-29-89 07-10-90 10-14-89 07-09-90	CH PRC TOTA < < < <	LORO- DPANE, L (UG/L) 0.20 0.20 0.20 0.20 0.20		HLORO HENE, AL (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20	DICHLORO BENZENE,) TOTAL (UGA 	Di ANTH	BENZ- RACENE, L (UG/L)	PRC TOTA < < < <	0.20 0.20 0.20 0.20 0.20 0.20	889 TOTA < < < <	VZENE, il (UG/L) 0.20 0.20 0.20 0.20 0.20	889 TOTA < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	- ETH ET TOTA < < < <	LVINYL HER, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20	NAPHTHALENE, TOTAL (UG/L) 	Ph	HENOL, AL (UG/
PROJECT AND MAP NONE MS-2	USGS LOCAL ROR TENNESSEE Sh:Q-088 Sh:Q-092	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89	CH PR(TOTA < < < < <	LORO- DPANE, L (UG/L) 0.20 0.20 0.20 0.20 0.20		HLORO THENE, AL (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20	DICHLORO BENZENE,) TOTAL (UGA 	Di ANTH	3ENZ- RACENE, L (UG/L) 	PRC TOTA < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	889 TOTA < < < <	VZENE, iL (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20	889 TOTA < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	- ETH ET TOTA < < < < <	LVINYL HER, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	NAPHTHALENE, TOTAL (UG/L) 	Ph	HENOL, AL (UG/
PROJECT AND MAP NONE MS-2 MS-4 MS-5	USGS LOCAL FOR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-126 Sh:Q-144	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89	CH PR(TOTA < < < < < <	LORO- DPANE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	DIC ET TOT/ < < < < < <	HLORO THENE, AL (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	Dichlorio Benzene,) Total (UGA 	Di ANTH	3ENZ- RACENE, L (UG/L) 	PRK TOTA < < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	889 TOTA < < < < <	VZENE, il (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20	889 TOTA < < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	- ETH ET TOTA < < < < < <	LVINYL HER, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	NAPHTHALENE, TOTAL (UG/L) 	Ph	HENOL, AL (UG/
PROJECT AND MAP NONE MS-2 MS-4	USGS LOCAL FOR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-126	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90	CH PRC TOTA < < < < < < <	LORO- DPANE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	DIC ET TOT/ < < < < < < < < < < < < < < < < < <	HLORO THENE, AL (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	DICHLORIO BENZENE,) TOTAL (UGA 	Di ANTH	BENZ- RACENE, L (UG/L) 	PRC TOTA < < < < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	889 TOTA < < < < < <	VZENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	889 TOTA < < < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	- ETH ET TOTA < < < < < < < < < < < <	L VINYL HER, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	NAPHTHALENE, TOTAL (UG/L)	P 1 TOT <i>1</i>	HENOL, AL (UGA
PROJECT AND MAP NONE MS-2 MS-4 MS-5 MS-7	USGS LOCAL ROR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-128 Sh:Q-144 Sh:Q-148	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90	CH PRC TOTA < < < < < < < < < < < < < < < < < <	LORO- DPANE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	DIC ET TOT/ < < < < < < < < < < < < < < < < < <	HLORO HENE, (UG/L) 0.20 0.	DICHLORIO BENZENE,) TOTAL (UGA 	Di ANTH .) TOTA	BENZ- RACENE, L (UG/L)	PRC TOTA < < < < < < < < < < < < < < < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	889 TOTA < < < < < < < < < < < < < < < < < < <	VZENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	BB TOTA < < < < < < < < < < < < < < < < < < <	VZENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	- ETH ET TOTA < < < < < < < < < <	LVINYL HER L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	NAPHTHALENE, TOTAL (UG/L)	P 1 TOT <i>1</i>	HENOL, AL (UGA
PROJECT AND MAP NONE MS-2 MS-4 MS-5	USGS LOCAL FOR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-126 Sh:Q-144	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89	CH PRC TOTA < < < < < < < < < < < < < < < < < < <	LORO- DPANE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2		HLORO HENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	DICHLORIO BENZENE,) TOTAL (UGA 	Di ANTH .) TOTA	3enz- Racene, L (UG/L)	PRC TOTA < < < < < < < < < < < < < < < < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	889 TOTA < < < < < < < < < < < < < < < < < < <	VZENE, .L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	BE TOTA < < < < < < < < < < < < < < < < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	- ETH ET TOTA < < < < < < < < < <	LVINYL HER, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	NAPHTHALENE, TOTAL (UG/L) 		HENOL, AL (UGA
PROJECT AND MAP NONE MS-2 MS-4 MS-5 MS-7 MS-9	USGS LOCAL FOR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-128 Sh:Q-144 Sh:Q-148 Sh:Q-148	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90	CH PRC TOTA < < < < < < < < < < < < < < < <	LORO- PANE, L (UG/L) 0.20		HLORO HENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	Dichlofio Benzene, Total (UGA 	Di ANTH) TOTA 	3enz- Racene, L (UG/L) 	PRC TOTA < < < < < < < < < < < < < < < < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	BE TOTA < < < < < < < < < < < < < < < < < < <	NZENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	BE 101A < < < < < < < < < < < < < < < < < < <	VZENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	- ETH ET TOTA < < < < < < < < < < < < < <	LVINYL HER, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	NAPHTHALENE, TOTAL (UG/L) 		HENOL, AL (UGA
PROJECT AND MAP NONE MS-2 MS-4 MS-5 MS-7	USGS LOCAL ROR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-128 Sh:Q-144 Sh:Q-148	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89	CH PRC TOTA < < < < < < < < < < < < < < < < < < <	LORO- DPANE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2		HLORO HENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	DichLorio Benzene,) Total (UGA 	Di ANTH) TOTA 	3enz- Racene, L (UG/L) 	PRC TOTA < < < < < < < < < < < < < < < < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	BE TOTA < < < < < < < < < < < < < < < < < < <	VZENE, L (UGAL) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	BB TOTA < < < < < < < < < < < < < < < < < < <	ZENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	- ETH ET TOTA < < < < < < < < < < < < < < < < < < <	LVINYL HER, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	NAPHTHALENE, TOTAL (UG/L) 	P+ TOT/	HENOL, AL (UGA
PROJECT AND MAP NONE MS-2 MS-4 MS-5 MS-7 MS-9 MS-10	USGS LOCAL FOR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-128 Sh:Q-148 Sh:Q-148 Sh:Q-148 Sh:Q-149	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89 06-27-90	CH PRX TOTA < < < < < < < < < < < < < < < < < < <	LORO- DPANE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2		HLORO HENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	DichLorio Benzene, Total (UGA 	Di ANTH) TOTA 	3ENZ- RACENE, L (UG/L) 	PRK TOTA < < < < < < < < < < < < < < < < < < <	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	BE9 TOTA < < < < < < < < < < < < < < < < < < <	VZENE, L (UGAL) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	BB TOTA < < < < < < < < < < < < < < < < < < <	ZENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	- ETM ET TOTA < < < < < < < < < < < < < < < < < < <	LVINYL HER, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	NAPHTHALENE, TOTAL (UG/L) 		HENOL, AL (UGA
PROJECT AND MAP NONE MS-2 MS-4 MS-5 MS-7 MS-9	USGS LOCAL FOR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-128 Sh:Q-144 Sh:Q-148 Sh:Q-148	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89 06-27-90 10-11-89	CH PRX TOTA < < < < < < < < < < < < < < < < < < <	LORO- DPANE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2		HLORO HENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	DICHLORIO BENZENE,) TOTAL (UGA 	Di ANTH) TOTA 	SENZ- RACENE, L (UG/L) 	PRK TOTA < < < < < < < < < < < < < < < < < < <	0-20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	BE TOTA < < < < < < < < < < < < < < < < < < <	VZENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	BB TOTA < < < < < < < < < < < < < < < < < < <	ZENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	- ETM ET TOTA < < < < < < < < < < < < < < < < < < <	LVINYL HER L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	NAPHTHALENE, TOTAL (UG/L) 		HENOL, AL (UGA
PROJECT AND MAP NONE MS-2 MS-4 MS-5 MS-7 MS-9 MS-10	USGS LOCAL FOR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-128 Sh:Q-148 Sh:Q-148 Sh:Q-148 Sh:Q-149	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89 06-27-90	CH PRX TOTA < < < < < < < < < < < < < < < < < < <	LORO- DPANE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2		HLORO HENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	DichLorio Benzene, Total (UGA 	Di ANTH) TOTA 	3ENZ- RACENE, L (UG/L) 	PRK TOTA < < < < < < < < < < < < < < < < < < <	0-200 0.20 0.20 0.20 0.20 0.20 0.20 0.20	BE TOTA < < < < < < < < < < < < < < < < < < <	VZENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	BE TOTA < < < < < < < < < < < < < < < < < < <	ZENE, L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	- ETM ET TOTA < < < < < < < < < < < < < < < < < < <	L VINYL HER L (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	NAPHTHALENE, TOTAL (UG/L) 		AL (UGA

[UG/L, micrograms per liter; Values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a constituent; --, indicate no data]

WELL	NUMBERS		2-NITRO-	DI-N-OCTYL-	2.4-DICHLORO-	2.4-DIMETHYL	2,4-DINITRO-	2.4-DINITRO-	2.4.6-181-	2,6-DINITRO-	4-BROMO- PHENYL	4-CHLORO- PHENYL
PROJECT	USGS LOCAL FOR	DATE	PHENOL, TOTAL (UG/L)	PHTHALATE,	PHENOL,	PHENOL,	TOLUENE,	PHENOL,	CHLOROPHENOL TOTAL (UG/L)	TOLUENE,	PHENYLETHER,	PHENYLETHER
MAP	TENNESSEE		101AL (00/L)	IOTAL (UG/L)	IOIAL (OOL)	101AL (00/L)				IUIAL (UG/L)	IOTAL (UG/L)	IUIAL (UG/L
NONE	Sh:Q-088	10-29-89	• •	• •	••	••	••					•••
		07-10-90		••	• •	••	••	••	••	••		
MS-2	Sh:Q-092	10-14-89		••	• •		••	••		••	••	••
		07-09-90		• •	••	••	••	• •		• •	••	••
MS-4	Sh:Q-126	10-16-89	••	••		• •	••		• •	• •		••
MS-5	Sh:Q-144	10-15-89			••	• •	••		••			••
		06-29-90		••	••	• •			••	• •		••
MS-7	Sh:Q-146	10-18-89		••	••	••	••	••	••	••		• •
		07-06-90				••	••		••	••	••	
MS-9	Sh:Q-148	10-13-89	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0	< 5.0
		06-28-90	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0	< 5.0
MS-10	Sh:Q-149	10-13-89	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0	< 5.0
		06-27-90	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0	< 5.0
MS-11	Sh:Q-150	10-11-89	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0	< 5.0
		07-02-90	< 5.0	< 10.0	< 5.0	< 5.0	< 5.0	< 20.0	< 20.0	< 5.0	< 5.0	< 5.0
MS-12	Sh:Q-151	10-27-89	••	••		••	••	• • •				
		06-26-90	••	••	••	••		••	••	••	••	••
WELL	NUMBERS		4-NITRO-	4,6-DINITRO-	DICHLORO- DIFLUORO-	PHENOL	• • • • • • • • • • • • • • • • • • • •	TRANS-1,3- DICHLORO-	CIS-1,3- DICHLORO-	PENTACHLORO	BIS (2-ETHYL- HEXYL)	DI-N-BUTYL-
PROJECT				ORTHO-CRESOL	METHANE.		NAPHTHALENE.		PROPENE.	PHENOL.	PHTHALATE.	PHTHALATE.
PHUEUI	USGS LOCAL	DAIE	PHENOL.	UNINCOLECCE								
	USGS LOCAL FOR	DATE	PHENOL, TOTAL (UG/L)							TOTAL (UGAL)		
AND MAP	USGS LOCAL FOR TENNESSEE	DAIE	phenol, Total (UG/L)						TOTAL (UG/L)	TOTAL (UG/L)		
AND	FOR	DATE 10-29-89			TOTAL (UG/L)				TOTAL (UG/L)	TOTAL (UGAL)		
AND MAP NONE	FOR TENNESSEE		TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.20 		TOTAL (UG/L)	TOTAL (UGA
AND MAP	FOR TENNESSEE	10-29-89	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TÒTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)		TOTAL (UG/L)	TOTAL (UGA
AND MAP NONE	FOR TENNESSEE Sh:Q-088	10-29-89 07-10-90	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.20 	TÒTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.20	TOTAL (UG/L) < 0.20 < 0.20 		TOTAL (UG/L)	TOTAL (UGA
AND MAP NONE MS-2 MS-4	FOR TENNESSEE Sh:Q-088	10-29-89 07-10-90 10-14-89	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.20 < 0.20 	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.20 < 0.20 < 0.20	TOTAL (UG/L) 0.20 0.20 0.20 0.20 	 	TOTAL (UG/L)	TOTAL (UGA
AND MAP NONE MS-2	FOR TENNESSEE Sh:Q-088 Sh:Q-092	10-29-89 07-10-90 10-14-89 07-09-90	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 	TÒTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.20 < 0.20 < 0.20 < 0.20	TOTAL (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 	 	TOTAL (UGAL)	TOTAL (UGA
AND MAP NONE MS-2 MS-4	POR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-126	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89	TOTAL (UQ/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 	TOTAL (UG/L)	TOTAL (UG/L)	 TOTAL (UG/L) < 0.20 	TOTAL (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 	 	TOTAL (UGAL)	TOTAL (UGA
AND MAP NONE MS-2 MS-4	POR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-126	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 	TÒTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) 0.20 	TOTAL (UG/L) 0.20 	 	TOTAL (UGA)	TOTAL (UGA
AND MAP NONE MS-2 MS-4 MS-5	POR TEINNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-128 Sh:Q-144	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) 0.20 	TÒTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) 0.20 	TOTAL (UG/L) 0.20 		TOTAL (UGA)	TOTAL (UGA
AND MAP NONE MS-2 MS-4 MS-5	POR TEINNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-128 Sh:Q-144	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89	TOTAL (UĞ/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 1.8	TÒTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) 0.20 	TOTAL (UG/L) 0.20 		TOTAL (UG/L)	TOTAL (UGA
AND MAP NONE MS-2 MS-4 MS-5 MS-7	POR TEINNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-126 Sh:Q-144 Sh:Q-146	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 1.8 3.3	TÒTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) 0.20 	TOTAL (UG/L) 0.20 		TOTAL (UGA)	TOTAL (UGA
AND MAP NONE MS-2 MS-4 MS-5 MS-7	POR TEINNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-126 Sh:Q-144 Sh:Q-146	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 1.8 3.3 < 0.20	TÒTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) 0.20 	TOTAL (UG/L) 0.20 		TOTAL (UGA)	TOTAL (UGA
AND MAP NONE MS-2 MS-4 MS-5 MS-7 MS-9	FOR TEINNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-128 Sh:Q-144 Sh:Q-146 Sh:Q-148	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 1.8 3.3 0.20 0.20 2.20 	TÒTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) 0.20 	TOTAL (UG/L) 0.20 	 	TOTAL (UG/L)	TOTAL (UGA
AND MAP NONE MS-2 MS-4 MS-5 MS-7 MS-7 MS-9 MS-10	FOR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-128 Sh:Q-148 Sh:Q-148 Sh:Q-148 Sh:Q-149	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89 06-27-90	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 <	TÒTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) 0.20 	TOTAL (UG/L) < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 <		TOTAL (UG/L)	TOTAL (UGA
AND MAP NONE MS-2 MS-4 MS-5 MS-7 MS-9	FOR TEINNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-128 Sh:Q-144 Sh:Q-146 Sh:Q-148	10-29-89 07-10-90 10-14-89 10-15-89 06-29-90 10-18-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89 06-27-90 10-11-89	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.90	TÒTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.20	TOTAL (UG/L) 0.20 	 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 	TOTAL (UG/L)	TOTAL (UGA
AND MAP NONE MS-2 MS-4 MS-5 MS-7 MS-7 MS-9 MS-10	FOR TENNESSEE Sh:Q-088 Sh:Q-092 Sh:Q-128 Sh:Q-148 Sh:Q-148 Sh:Q-148 Sh:Q-149	10-29-89 07-10-90 10-14-89 07-09-90 10-16-89 10-15-89 06-29-90 10-18-89 07-06-90 10-13-89 06-28-90 10-13-89 06-27-90	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 <	TÒTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L) 0.20 	TOTAL (UG/L) < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 <		TOTAL (UG/L)	TOTAL (UGA

42

WELL	NUMBERS						•				~	LENE.
PROJECT AND MAP	USGS LOCAL FOR TENNESSEE	DATE	CHL	inyl .oride L (UG/L)	ETHY	Loro- Lene, (UG/L)	BEN	XHLORIO- IZENIE, L (UG/L)	BUTA	XHLORO- IDIENE, L (UG/L)	total Whol	LENE, WATER E, TOTAL (UG/L)
NONE	Sh:Q-088	10-29-89	~	0.20	<	0.2		••		•••		0.2
		07-10-90	<	0.20	<	0.2						2.4
MS-2	Sh:Q-092	10-14-89	<	0.20	<	0.2				• •		1.4
		07-09-90	<	0.20	<	0.2					<	0.2
MS-4	Sh:Q-126	10-16-89	<	0.20	<	0.2		••			<	0.2
MS-5	Sh:Q-144	10-15-89	<	0.20	<	0.2				• •		1.4
		06-29-90	<	0.20	<	0.2					<	0.2
MS-7	Sh:Q-146	10-18-89	<	0.20	<	0.2		••			<	0.2
		07-06-90		0.70	<	0.2		• •			<	0.2
M S-9	Sh:Q-148	10-13-89	<	0.20	<	0.2	-	5.0		5.0		6.7
		08-28-90	<	0.20	<	0.2		5.0		5.0	<	0.2
MS-10	Sh:Q-149	10-13-89	<	0.20	<	0.2		5.0		5.0		13
		06-27-90	<	0.20	<	0.2	-	5.0		5.0	<	0.2
MS-11	Sh:Q-150	10-11-89	<	0.20	<	0.2		5.0		5.0	<	0.2
		07-02-90	<	0.20	<	0.2	<	5.0	<	5.0	<	0.2
MS-12	Sh:Q-151	10-27-89		2.4		0.4		••		••	<	0.2
		06-26-90		3.2		0.4		• •		• •	<	0.2

Table 9. — Synthetic organic compounds detected in samples from 14 wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill

[Concentrations are total in micrograms per liter (μ g/L); (TDHE) Tennessee Department of Health and Environment, 1988, and (USEPA) U.S. Environmental Protection Agency, 1986, (MCL) maximum contaminant levels for drinking water; values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a compound; -- indicates no established maximum contaminant level for the compound]

Synthetic organic compound	Analytical method lower detection limit	Wells in which detected		Concentration detected First sample - Second sample		TDEC and USEPA MCL	
Volatile organic compounds							
Benzene	0.20	20	(Sh:Q-113)	0.20	0.40	MCL 5	
		26	(Sh:Q-119)	4.0	4.6		
		27	(Sh:Q-120)	1.5	1.5		
		31	(Sh:Q-129)	.70	.40		
		37	(Sh:Q-137)	<.20	.30		
		38	(Sh:Q-138)	5.8	2.4		
		39	(Sh:Q-139)	1.1	1.8		
		40	(Sh:Q-140)	1.9	2.3		
		42	(Sh:Q-142)	.60	.70		
		43	(Sh:Q-143)	1.5	.90		
Chlorobenzene	.20	26	(Sh:Q-119)	1.2	1.5	-	
		27	(Sh:Q-120)	5.5	4.7		
		31	(Sh:Q-129)	.50	.40		
		38	(Sh:Q-138)	.30	<.20		
		39	(Sh:Q-139)	.80	1.1		
		40	(Sh:Q-140)	1.6	1.0		
		42	(Sh:Q-142)	.90	1.5		
		43	(Sh:Q-143)	.30	.20		
Chloroethane	.20	20	(Sh:Q-113)	<.30	.60	-	
		31	(Sh:Q-129)	.60	.20		
		37	(Sh:Q-137)	.30	< .20		
		38	(Sh:Q-138)	.50	<.20		
		39 40	(Sh:Q-139) (Sh:Q-140)	1.6 .8	2.8 < .20		
P-Chloroethylvinylether	.20	30	(Sh:Q-128)	2.3	< .20	-	
Chloroform	.20	30	(Sh:Q-128)	<.20	.20	-	
		31	(Sh:Q-129)	.20	<.20		
Dichlorodifluoromethane	.20	20	(Sh:Q-113)	11	8.3	_	
		27	(Sh:Q-120)	8.1	4.6		
		31	(Sh:Q-129)	1.6	<.20		
		33	(Sh:Q-133)	3.4	1.2		
		38	(Sh:Q-138)	.90	1.7		
		42	(Sh:Q-142)	1.2	1.3		
		43	(Sh:Q-143)	2.3	1.7		
,2-Dichlorobenzene	.20	27 39	(Sh:Q-120)	.20	<.20		
			(Sh:Q-139)	1.2	<.20		
,4-Dichlorobenzene	.20	7	(Sh:Q-101)	.30	<.20	MCL 75	
		26	(Sh:Q-119)	.90	1.5		
		27	(Sh:Q-120)	1.7	1.8		
		30	(Sh:Q-128)	<.20	.40		
		31	(Sh:Q-129)	1.3	.90		
		38	(Sh:Q-138)	.80	.90		
		39	(Sh:Q-139)	.20	.40		
		40	(Sh:Q-140) (Sh:Q-142)	.80 .60	.80 .90		
		42					

Table 9.-Synthetic organic compounds detected in samples from 14 wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill-Continued

[Concentrations are total in micrograms per liter (μ g/L); (TDHE) Tennessee Department of Health and Environment, 1988, and (USEPA) U.S. Environmental Protection Agency, 1986, (MCL) maximum contaminant levels for drinking water; values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a compound; -- indicates no established maximum contaminant level for the compound]

Synthetic organic compound	Analytical method lower detection limit	Wells in which detected		Conce dete First sample -	TDHE and USEPA MCL	
1,1 -Dichloroethane	0.20	20 26	(Sh:Q-113) (Sh:Q-119)	< 0.20 .80	0.90	
		27	(Sh:Q-120)	.40	.30	
		31	(Sh:Q-129)	5.9	2.6	
		37	(Sh:Q-137)	1.4	.90	
		38	(Sh:Q-138)	4.0	4.5	
		39	(Sh:Q-139)	5.9	11.0	
		40	(Sh:Q-140)	3.7	4.3	
		43	(Sh:Q-143)	.20	<.20	
1,2-Dichloroethane	.20	31	(Sh:Q-129)	.90	.70	MCL 5
,		38	(Sh:Q-138)	.90	.80	
		40	(Sh:Q-140)	.80	.70	
1,1-Dichloroethylene	.20	20	(Sh:Q-113)	1.0	.20	MCL 7
•		39	(Sh:Q-139)	.20	.30	
1,2-Dichloropropane	.20	26	(Sh:Q-119)	.30	.40	
		30	(Sh:Q-128)	< .20	.20	
		31	(Sh:Q-129)	14	6.4	
		37	(Sh:Q-137)	.30	<.20	
		38	(Sh:Q-138)	<.20	1.0	
		39	(Sh:Q-139)	< .20	.70	
		40	(Sh:Q-140)	.30	.50	
Ethylbenzene	.20	34	(Sh:Q-134)	.20	<.20	
		37	(Sh:Q-137)	.40	<.20	
		42	(Sh:Q-142)	1.0	<.20	
Methylene chloride	.20	31	(Sh:Q-129)	.60	.60	
		39	(Sh:Q-139)	< .20	.30	
		40	(Sh:Q-140)	< .20	.30	
Tetrachloroethylene	.20	20	(Sh:Q-113)	1.0	.90	
		30	(Sh:Q-128)	.20	< .20	
		31	(Sh:Q-129)	1.1	.30	
		39	(Sh:Q-139)	1.0	1.2	
		43	(Sh:Q-143)	.30	< .20	
Toluene	.20	7	(Sh:Q-101)	< .20	.60	
		26	(Sh:Q-119)	.20	.80	
		27	(Sh:Q-120)	.20	.20	
		30	(Sh:Q-128)	.20	.30 .80	
		31 39	(Sh:Q-129)	.30 <.20	.80 .40	
		39 40	(Sh:Q-139) (Sh:Q-140)	< .20 < .20	.40 1.6	
		40 42	(Sh:Q-140) (Sh:Q-142)	.20	<.20	
		42	(50:0-142)	.20	<.20	

Table 9.—Synthetic organic compounds detected in samples from 14 wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill-Continued

[Concentrations are total in micrograms per liter (μ g/L); (TDHE) Tennessee Department of Health and Environment, 1988, and (USEPA) U.S. Environmental Protection Agency, 1986, (MCL) maximum contaminant levels for drinking water; values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a compound; – indicates no established maximum contaminant level for the compound]

Synthetic organic compound	Analytical method lower detection limit	Wells in which detected		Conce det First sample -	TDHE and USEPA MCL	
				That sample -	occond sample	MOL
1,2-trans-Dichloroethene	0.20	20	(Sh:Q-113)	0.70	1.3	-
		27	(Sh:Q-120)	.50	.50	
		30	(Sh:Q-128)	< .20	.30	
		31	(Sh:Q-129)	30	13	
		34	(Sh:Q-134)	1.3	<.20	
		37	(Sh:Q-137)	1.5	.30	
		38	(Sh:Q-138)	.30	3.2	
		39	(Sh:Q-139)	8.0	18	
		40	(Sh:Q-140)	6.9	6.3	
		43	(Sh:Q-143)	2.4	1.3	
1,1,1-Trichloroethane	.20	20	(Sh:Q-113)	<.20	.60	MCL 200
Trichloroethylene	.20	7	(Sh:Q-101)	<.20	.50	MCL 5
		20	(Sh:Q-113)	.20	.40	
		26	(Sh:Q-119)	<.20	.20	
		27	(Sh:Q-120	< .20	.20	
		31	(Sh:Q-129)	1.3	.70	
		38	(Sh:Q-138)	<.20	.60	
		39	(Sh:Q-139)	1.0	1.5	
		40	(Sh:Q-140)	.90	.80	
		43	(Sh:Q-143)	.50	.40	
Trichlorofluoromethane	.20	20	(Sh:Q-113)	2.7	.80	
		30	(Sh:Q-128)	.60	<.20	
Vinyl chloride	.20	20	(Sh:Q-113)	4.0	4.8	MCL 2
		26	(Sh:Q-119)	.9	1.4	
		27	(Sh:Q-120)	< .20	.40	
		31	(Sh:Q-129)	2.1	.70	
		34	(Sh:Q-134)	.90	<.20	
		37	(Sh:Q-137)	.30	<.20	
		38	(Sh:Q-138)	2.4	7.3	
		39	(Sh:Q-139)	2.6	3.0	
		40	(Sh:Q-140)	1.8	<.20	
		43	(Sh:Q-143)	1.9	1.3	
Kylene	.20	7	(Sh:Q-101)	<.20	.40	
-		26	(Sh:Q-119)	.50	1.0	
		27	(Sh:Q-120)	<.20	.20	
		30	(Sh:Q-128)	.20	.20 .30	
		31	(Sh:Q-129)	.20 .30	.30 .20	
		37	(Sh:Q-129)	.30 .90	.20 <.20	
		38	(Sh:Q-137)	.90 <.20		
		39	(Sh:Q-139)	< .20 < .20	.20	
		40			.30	
		40	(Sh:Q-140)	<.20	.90	
		42	(Sh:Q-142)	1.9	< .20	

None detected above the detection limits of the individual compounds; see table 7

Table 10.—Synthetic organic compounds detected in samples from eight wells screened in the Memphis aquifer near the Shelby County landfill

[Concentrations are total in micrograms per liter (μ g/L); (TDHE) Tennessee Department of Health and Environment, 1988, and (USEPA) U.S. Environmental Protection Agency, 1986, (MCL) maximum contaminant levels for drinking water; values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a compound; -- indicates no established maximum contaminant level for the compound]

Synthetic organic compound	Analytical method Wells in which lower detected detection limit		Conce dete First sample -	TDHE and USEPA MCL		
	Vo	platile organi	c compounds			
Benzene	0.20	 MS-11	(Sh:Q-88) (Sh:Q-150)	0.20 < .20	1.8 .20	MCL 5
		MS-12	(Sh:Q-151)	.80	1.3	
Chloroethane	.20	MS-12	(Sh:Q-151)	.80	1.3	
Dichlorodifluoromethane	.20	MS- 7 MS-11 MS-12	(Sh:Q-146) (Sh:Q-150) (Sh:Q-151)	1.8 .90 7.6	3.3 .90 4.2	-
1,4-Dichlorobenzene	.20	MS-12	(Sh:Q-151)	< .20	.30	MCL 75
1,1-Dichloroethane	.20	MS- 7 MS-12	(Sh:Q-146) (Sh:Q-151)	<.20 1.5	.80 2.3	-
1,2-Dichloropropane	.20	MS-12	(Sh:Q-151)	< .20	.40	
Ethylbenzene	.20	 MS- 2 MS- 5 MS- 9 MS-10 MS-12	(Sh:Q-88) (Sh:Q-92) (Sh:Q-144) (Sh:Q-148) (Sh:Q-149) (Sh:Q-151)	< .20 .20 .80 1.7 .20	.40 <.20 <.20 <.20 <.20 <.20 <.20	-
Methylene chloride	.20	MS-11 MS-12	(Sh:Q-150) (Sh:Q-151)	.20 <.20	<.40 .30	-
Styrene	.20	-	(Sh:Q-88)	< .20	.50	-
Tetrachioroethylene	.20	MS-12	(Sh:Q-151)	1.5	1.1	-
Toluene	.20	 MS- 2 MS- 5 MS- 9 MS-10 MS-11 MS-12	(Sh:Q-88) (Sh:Q-92) (Sh:Q-144) (Sh:Q-148) (Sh:Q-149) (Sh:Q-150) (Sh:Q-151)	.20 .70 .90 2.9 7.3 < .20 .30	2.4 .30 .60 <.20 .30 .20 .30	
1,2-trans-Dichloroethene	.20	MS-7 MS-11 MS-12	(Sh:Q-146) (Sh:Q-150) (Sh:Q-151)	< .20 < .20 .90	1.4 .50 2.7	-
1,1,1-Trichloroethane	.20	MS-12	(Sh:Q-151)	.90	.40	MCL 200
Trichloroethylene	.20	MS-12	(Sh:Q-151)	.40	.40	MCL 5

Table 10. – Synthetic organic compounds detected in samples from eight wells screened in the Memphis aquifer near the Shelby County landfill-Continued

[Concentrations are total in micrograms per liter (μ g/L); (TDHE) Tennessee Department of Health and Environment, 1988, and (USEPA) U.S. Environmental Protection Agency, 1986, (MCL) maximum contaminant levels for drinking water; values given as < (less than) indicate that the concentration was below the level of detection for the analytical method used and do not indicate the presence or absence of a compound; – indicates no established maximum contaminant level for the compound]

Synthetic organic compound	Analytical method lower	Wells in which detected		Conce det	TDHE and USEPA	
	detection limit			First sample -	MCL	
Trichlorofluoromethane	0.20	MS-12	(Sh:Q-151)	12	4.0	-
Vinyl chloride	.20	MS-7	(Sh:Q-146)	< .20	.70	MCL 2
		MS-12	(Sh:Q-151)	2.4	3.2	
Xylene	.20		(Sh:Q-88)	.20	2.4	_
		MS- 2	(Sh:Q-92)	1.4	<.20	
		MS- 5	(Sh:Q-144)	1.4	<.20	
		MS- 9	(Sh:Q-148)	6.7	<.20	
		MS-10	(Sh:Q-149)	13.0	<.20	
	Ext	ractable orga	anic compounds			
Bis (2-ethylhexyl)	5.0	MS- 9	(Sh:Q-148)	120	< 5.0	
phthalate		MS-10	(Sh:Q-149)	59.0	< 5.0	

Halogenated alkenes were detected in highest concentrations in alluvial aquifer or upper part of the confining unit wells 31, 39, and 40 (fig. 13). Concentrations of 1,2trans-dichloroethene were particularly high in samples from these wells (table 9). Vinyl chloride was detected in high concentrations in wells 20, 31, 38, 39, and 43 (table 9). Concentrations in samples from these alluvial aquifer wells exceed the Federal and State MCL of 2 $\mu g/L$ (Tennessee Department of Health and Environment, 1988; U.S. Environmental Protection Agency, 1986). All wells sampled during this investigation were constructed with polyvinyl chloride (PVC) casings and screens (Appendix A). Therefore, well construction materials may be a source of the high vinyl chloride concentrations.

The lowest sums of volatile organic compounds were detected in samples from alluvial aquifer wells 30, 33, and 34 (fig. 13). Several compounds were detected in samples from these wells, although in most instances each compound was detected in only one of the two samples collected. The only compound detected in low concentrations in replicate samples was dichlorodifluoromethane in well 33 (3.4 and $1.2 \mu g/L$, table 9).

A "moderate" degree of contamination (that is, sums of concentrations approximately $3 \mu g/l$) by volatile organic compounds was detected in samples from wells 31, 42 and 43 screened in the alluvial aquifer or upper part of the confining unit (fig. 13). Benzene, chlorobenzene, dichlorobenzenes, ethylbenzene, xylene, dichlorodifluoromethane, and vinyl chloride compounds were detected in moderate concentrations in samples from wells 31, 42 and 43, and these compounds were detected in both samples (table 9).

Well 7 was selected for the collection of background samples from the alluvial aquifer. This well, which is 38 feet deep, is located about 7,000 feet east of the landfill (fig. 9). It is on the east side of the depression in the water table and in the upgradient direction of ground-water flow westward toward the center of the depression (fig. 5). The analysis of water from the first sampling of well 7 showed 1,4dichlorobenzene in a concentration (0.30 μ g/L) just above the detection limit $(0.2 \mu g/L)$. The analysis of water from the second sampling indicated that 1,4-dichlorobenzene was below the detection limit, but that small concentrations of toluene (0.60 μ g/L) and xylene (0.40 μ g/L) were measured. The measurement of these synthetic organic compounds in the background samples from well 7 suggests that sources other than the leachate plume may contribute to synthetic organic compound concentrations in the alluvial aquifer or upper part of the confining unit.

Synthetic organic compounds were detected in samples from all wells screened in the Memphis aquifer

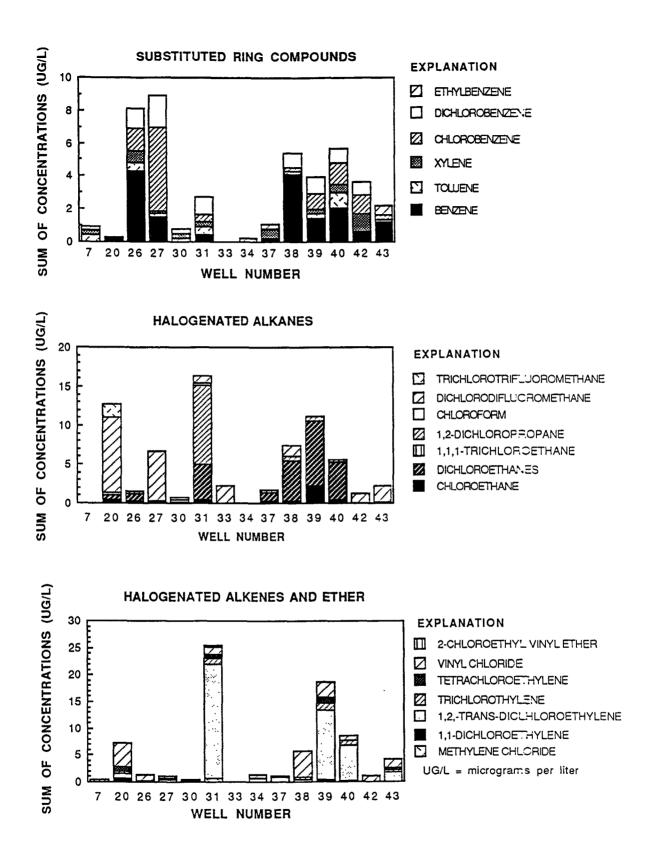


Figure 13. – Sums of mean values of concentrations of three classes of volatile organic compounds in samples from wells screened in the alluvial aquifer or upper part of the confining unit near the Shelby County landfill.

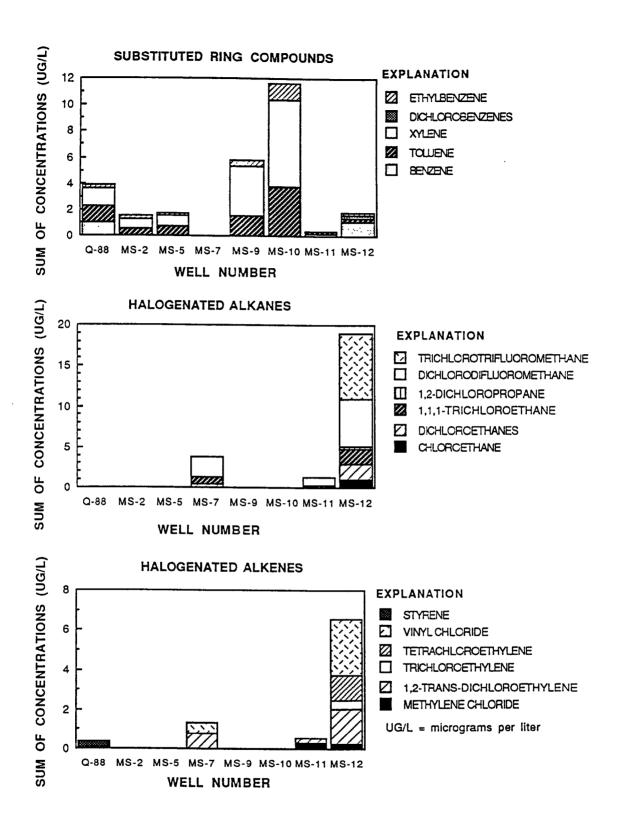


Figure 14. – Sums of mean values of concentrations of three classes of volatile organic compounds in samples from wells screened in the Memphis aquifer near the Shelby County landfill.

except MS-4. However, the classes of compounds detected in these samples differ among wells (fig. 14). High concentrations of substituted ring compounds were detected primarily in samples from wells MS-9, MS-10, and Sh:Q-88 (a background well). Halogenated alkane and alkene concentrations were highest in samples from wells MS-7, MS-11, and MS-12.

Substituted ring compounds (particularly benzene, toluene, and xylenc) were detected in highest concentrations in samples from Memphis aquifer wells MS-9, MS-10, and Sh:Q-88 (a background well) (fig. 14). However, high concentrations of substituted ring compounds were not detected consistently in these wells. Concentrations of toluene and xylene were measured in the first samples from wells MS-9 and MS-10 and ranged from 2.9 to $13 \mu g/L$. The second samples from these same wells had low $(0.30 \mu g/L)$ or non-detectable (<0.20 $\mu g/L$) toluene and xylene concentrations (table 10). Benzene, toluene, and xylene contamination may have been introduced to the first round of samples from wells MS-2, MS-5, MS-9, MS-10, and MS-11 by the isopropanol rinse used during the well-sampling procedures (*Appendix A*).

Both halogenated alkanes and halogenated alkenes occur with the highest concentrations in samples from Memphis aquifer wells MS-7, MS-11, and MS-12 (fig. 14). The halogenated alkanes showing the highest concentrations in wells MS-7, MS-11, and MS-12 were dichlorodifluoromethane and trichlorofluoromethane, with concentrations ranging from 0.9 to 12.0 μ g/L (table 10). Halogenated alkene compounds showing the highest concentrations in wells MS-7, MS-11, and MS-12 are 1,2-trans-dichloroethene, tetrachloroethylene, and vinyl chloride with concentrations of these compounds ranging from 0.5 to 3.2 μ g/L (table 10).

Well Sh:Q-88 (no field number assigned), an irrigation well at Agricenter International, was selected for the collection of background samples from the Memphis aquifer. This well, which is 295 feet deep, is about 10,500 feet east of the landfill (fig. 10). Well Sh:Q-88 is upgradient in the general direction of ground-water flow westward toward the landfill (fig. 8). The analysis of water from the first sample indicated that benzene, toluene, and xylene were detected at the detection limits (0.20 μ g/L). The second samples indicated that benzene, toluene, and xylene were detected with concentrations of ranging from 1.8 to $2.4 \mu g/L$. In addition, the analysis for the second sample measured ethylbenzene and styrene with concentrations that ranged from 0.4 to $0.5 \mu g/L$. The pump on this well is powered by a diesel generator, and fumes from this generator may have contaminated the samples.

Substituted ring compounds were detected in nearly every well near the Shelby County landfill. In samples from

wells screened in the alluvial aquifer and upper part of the "confining unit," the highest sums of concentrations of substituted ring compounds range from approximately 3 to 9 mg/L in wells 26, 27, 31, 38, 39, 40, and 42 (fig. 13). Benzene, chlorobenzene, and dichlorobenzenes are the principal substituted ring compounds detected in these wells.

In the Memphis aquifer, the highest sums of substituted ring compounds range from approximately 4 to $12 \mu g/L$ in samples from wells Sh:Q-88 (a background well), MS-9, and MS-10 (fig. 14). Benzene, toluene, and xylene are the principal substituted ring compounds detected in these wells.

An interpretation of the distribution of substituted ring compounds near the Shelby County landfill cannot be based solely on the appearance and transport of these compounds in the leachate plume. Although the highest concentrations of substituted ring compounds were detected in samples from downgradient plume wells 26, 27, 31, 38, 39 and 40 screened in the alluvial aquifer or upper part of the confining unit, these compounds also were detected in "moderate" concentrations in samples from upgradient wells 42 and 43. Substituted ring compounds also were detected in samples from all wells screened in the Memphis aquifer, except MS-7. However, the highest concentrations of substituted ring compounds were detected in samples from downgradient wells MS-2, MS-9, and MS-10, but not in samples from Memphis aquifer wells that show highest concentrations of the major and trace inorganic constituents used to geochemically define the leachate plume (for example, wells MS-7, MS-11, and MS-12). Lithologic logs from Memphis aquifer wells MS-2 (Bradley, 1988), MS-9, and MS-10 (Appendix C) show a sand and silt confining unit that ranges in thickness from 50 to 75 feet (Appendix C). Substituted ring compounds that were detected in samples from these wells probably did not originate from the alluvial aquifer directly overlying wells MS-2, MS-9, and MS-10.

Although the concentrations of substituted ring compounds in both the alluvial aquifer or upper part of the confining unit and the Memphis aquifer should be noted, the source and transport of these compounds may not be associated exclusively with leachate from the Shelby County landfill.

Halogenated alkane and halogenated alkene compounds show similar distributions in wells screened in both the alluvial aquifer or upper part of the confining unit and the Memphis aquifer. In samples screened in the alluvial aquifer, the highest sums of halogenated alkanes range from approximately 6 to $16 \mu g/L$ in wells 20, 27, 31, 38, 39, and 40 (fig. 13). Dichlorodifluoromethane, 1,2-dichloropropane, and dichloroethanes were the principal halogenated alkanes detected in these wells. The highest sums of halogenated alkenes range from approximately 6 to $25 \mu g/L$ in wells 20, 31, 38, 39, and 40. Vinyl chloride and 1,2-transdichloroethene were the principal halogenated alkenes detected in these wells.

Halogenated alkanes and halogenated alkenes in the Memphis aquifer were detected almost exclusively in samples from wells MS-7, MS-11, and MS-12 (fig. 14). Sums of halogenated alkane concentrations range from approximately 1 to 19 μ g/L, with trichlorofluoromethane, dichlorodifluoromethane, 1,1,1-trichloroethane, and dichloroethanes as principal constituents. Sums of halogenated alkene concentrations range from approximately 0.4 to 6.5 μ g/L, with vinyl chloride, tetrachloroethylene and 1,2-trans-dichloroethene as principal constituents. The distribution of halogenated alkane and halogenated alkene compounds seems to show the same trend with ground-water flow as interpreted previously from major and trace inorganic constituent data. Maximum concentrations of halogenated alkanes and alkenes were detected in samples from leachate plume wells 20, 27, 31, 38, 39, and 40 screened in the alluvial aquifer or upper part of the confining unit. Maximum concentrations of halogenated alkanes and alkenes were detected in Memphis aquifer leachate plume wells MS-7, MS-11, and MS-12, which are adjacent to the alluvial aquifer wells. The confining unit separating the two aquifers at these wells is thin or absent (fig. 6).

Similar halogenated alkane and halogenated alkene compounds were detected in samples from alluvial aquifer wells 27, 31, 38, 39, and 40 when compared to samples from Memphis aquifer wells MS-7, MS-11, and MS-12. The halogenated alkanes trichlorofluoromethane and dichloroethanes (particularly 1,1-dichloroethane) were detected in both alluvial and Memphis aquifer wells, as were the halogenated alkenes vinyl chloride and 1,2-trans-dichloroethene. Trichloroethylene, which is easily biodegraded under anaerobic conditions (Barker and others, 1986) also appears in similar concentrations in wells 31, 38, 39, and 40 screened in the alluvial aquifer or upper part of the confining unit, and well MS-12 screened in the Memphis aquifer.

The base-neutral extractable compound bis(2-ethylhexyl)phthalate was detected at high concentrations (120 and 59 μ g/L; table 8) in the first samples from Memphis aquifer wells MS-9 and MS-10. Because bis(2-ethylhexyl)phthalate was not detected in any samples from alluvial aquifer wells, or in the second samples from Memphis aquifer wells MS-9 and MS-10, this compound may have been introduced as a field or laboratory contaminant. Bis(2ethylhexyl)phthalate is used extensively as a plasticizer (Smith and others, 1988).

POTENTIAL FOR WATER-SUPPLY CONTAMINATION

The source of water supply most susceptible to contamination from the Shelby County landfill is the Sheahan well field of the Memphis Light, Gas and Water Division (MLGW). Ground water from the vicinity of the landfill generally flows westward toward this well field (fig. 1), based on a map of the altitude of the potentiometric surface of the Memphis aquifer for the late summer and fall of 1988 (Parks, 1990). The Sheahan well field is about 5 miles downgradient from the Shelby County landfill.

To estimate the rate of ground-water flow from the vicinity of the Shelby County landfill to the Sheahan well field, an equation derived from a combination of Darcy's law and the velocity equation of hydraulics (Heath, 1983), can be used:

$$v = \frac{Kdh}{ndl}$$

where

v is	the Darcian velocity, which is the
	average velocity of the entire cross-
	sectional area, in feet per day;
K is	sectional area, in feet per day; the hydraulic conductivity, in feet per
	day;
<i>dh/dl</i> is	the hydraulic gradient, in foot per
	foot; and
n is	the porosity, in percent by volume

Average hydraulic conductivities are estimated to range from 40 feet per day for predominantly fine sand to 114 feet per day for predominantly coarse sand in the Memphis aquifer (Nyman, 1965, p. B20). The average hydraulic gradient is estimated to be 70 feet in 5 miles (0.0027 foot per foot) from the map of the altitude of the potentiometric surface in the Memphis aquifer in the late summer and fall 1988 (Parks, 1990). The average porosity for the sands is taken to be 20 percent (Bell and Nyman, 1968, p. 13). Using these values in the preceding equation, the average velocities of ground water moving through the Memphis aquifer from the Shelby County landfill to Sheahan well field are calculated to range from about 0.5 to 1.5 feet per day (182 to 548 feet per year).

These average velocities indicate that water now (1991) entering the Memphis aquifer at the Shelby County landfill would take about 50 to 150 years to reach the Sheahan well field. Given the time and distance of transport, any contaminants in the ground water would not likely persist long enough to reach this well field because of the effects of various physical, chemical, and biological processes, including dilution and adsorption.

SUMMARY AND CONCLUSIONS

This investigation (1989-91) was conducted to collect and interpret hydrogeologic and ground-water-quality data more specific to the Shelby County landfill in east Memphis, Tennessee, than that collected during a previous investigation (1986-87) by the U.S. Geological Survey. The previous investigation focused on an area north of the landfill, which was under consideration for landfill use. Eighteen additional wells were installed in the alluvial aquifer or upper part of the confining unit and Memphis aquifer near the landfill. Hydrogeologic data collected from the auger borings and hydraulic-rotary test holes showed that the confining unit separating the alluvial aquifer from the Memphis aquifer was thin or absent just north of the landfill and that elsewhere it consists predominantly of fine sand and silt with lenses of clay.

A water-table map prepared from water-level measurements in 33 wells confirms the existence of a depression in the water table north and northeast of the landfill and indicates that the ground water passing beneath the landfill flows generally northeast from the Wolf River toward the depression in the water table. A map of the potentiometric surface in the Memphis aquifer prepared from water-level measurements in nine wells showed that water levels were anomalously high just north of the landfill, indicating downward leakage from the alluvial aquifer to the Memphis aquifer. A comparison of these two maps shows that head differences between the alluvial and Memphis aquifers favor downward leakage.

Water-quality data were collected from 31 wells during a first round of sampling in October 1989, and 22 of these wells were re-sampled in June and July 1990. An analysis of water-quality data for major and trace inorganic constituents and nutrients confirms that leachate from the landfill has migrated northeastward in the alluvial aquifer toward the depression in the water table. Selected major and trace inorganic constituents showed elevated concentrations in samples from leachate plume wells screened in the alluvial aquifer or upper part of the confining unit. Those constituents (specifically total organic carbon, chloride, dissolved solids, iron, ammonia nitrogen, calcium, sodium, iodide, barium, strontium, boron, and cadmium) were detected in concentrations 2 to 20 times higher in samples from downgradient wells than in samples from background or upgradient wells. Elevated concentrations of dissolved solids, calcium, sodium and possibly ammonia nitrogen, chloride, barium, and strontium were detected in samples from adjacent Memphis aquifer plume wells. Apparently, these constituents have migrated from the alluvial aquifer into the Memphis aquifer by downward leakage where the confining unit is thin or absent.

Volatile organic compounds were detected in samples from 14 wells in the alluvial aquifer and 8 wells in the Memphis aquifer. Of the 22 volatile organic compounds detected in samples from the alluvial aquifer, 18 of these same compounds were detected in the Memphis aquifer. Three classes of volatile organic compounds were detected in samples from wells screened in both the alluvial aquifer or upper part of the confining unit and the Memphis aquifer: (1) substituted ring compounds, (2) halogenated alkanes, and (3) halogenated alkenes. Substituted ring compounds (specifically benzene, chloro- and di-chlorobenzenes, toluene, and xylene) were detected in samples from nearly every well near the Shelby County landfill, but commonly at low concentrations (less than 4.0 μ g/L). Because of their widespread occurrence (even in samples from background wells), substituted ring compounds cannot be used as geochemical tracers for the leachate plume.

The highest concentrations of halogenated alkane and halogenated alkene compounds were detected in leachate plume wells screened in the alluvial aquifer or upper part of the confining unit. Selected halogenated alkanes (dichlorodifluoromethane, 1,2-dichloropropane, and dichloroethanes) and halogenated alkenes (vinyl chloride and 1,2-trans-dichloroethene) seem to best characterize samples from the leachate plume in wells screened in the alluvial aquifer or upper part of the confining unit.

Many of these same halogenated alkane and halogenated alkene compounds were detected in samples from wells screened in the Memphis aquifer, adjacent to downgradient leachate plume wells screened in the alluvial aquifer. Of halogenated alkane compounds, dichlorodifluoromethane and dichloroethanes were detected in samples from both the Memphis aquifer and the overlying alluvial aquifer. Of halogenated alkene compounds, vinyl chloride and 1,2-trans-dichloroethene were detected in samples from both the Memphis aquifer and the overlying alluvial aquifer. However, the source of high vinyl chloride concentrations may be from well construction materials.

The base-neutral extractable compound bis(2-ethylhexyl)phthalate was detected at high concentrations, but only in two samples, both from wells screened in the Memphis aquifer. It is possible that bis(2-ethylhexyl)phthalate was introduced in these samples as a laboratory contaminant.

The ground-water supply most susceptible to contamination from the Shelby County landfill is the Sheahan well field of the Memphis Light, Gas and Water Division. This well field is about 5 miles downgradient from the landfill in the direction of ground-water flow. Based on an estimated ground-water velocity, about 50 to 150 years would be required for ground water to travel from the Shelby County landfill to the Sheahan well field. Given the time and distance of transport, it is unlikely that any contaminants in the ground water would persist long enough to reach this well field because of the effects of various physical, chemical, and biological processes, including dilution and adsorption.

REFERENCES CITED

- Barker, J.F., Tessman, J.S., Plotz, P.E., and Reinhard, M., 1986, The organic geochemistry of a sanitary landfill leachate plume: Journal of Contaminant Hydrogeology, v. 1, p. 171-189.
- Bell, E.A., and Nyman, D.J., 1968, Flow pattern and related chemical quality of ground water in the "500-foot" sand in the Memphis area, Tennessee: U.S. Geological Survey Water-Supply Paper 1853, 27 p.
- Borden, R.C., and Yanoschak, T.M., 1990, Ground and surface water quality impacts of North Carolina sanitary landfills: Water Resources Bulletin, v. 26, no. 2, p. 269-277.
- Bradley, M.W., 1988, Construction, geologic, and groundwater data for observation wells near the Shelby County landfill, Memphis, Tennessee: U.S. Geological Survey Open-File Report 88-486, 32 p.
- Brahana, J.V., Parks, W.S., and Gaydos, M.W., 1987, Quality of water from freshwater aquifers and principal well fields in the Memphis area, Tennessee: U.S. Geological Survey Water-Resources Investigations Report 87-4052, 22 p.
- Domenico, P.A. and Schwartz, F.W., 1990, Physical and chemical hydrogeology: New York, John Wiley and Sons, p. 592-593.
- Drever, J.I., 1988, The geochemistry of natural waters (2d ed.): Englewood Cliffs, New Jersey, Prentice Hall, 437 p.
- Graham, D.D., and Parks, W.S., 1986, Potential for leakage among principal aquifers in the Memphis area, Tennessee: U.S. Geological Survey Water-Resources Investigations Report 85-4295, 46 p.

- Heath, R.C., 1983, Basic ground-water hydrology: U.S. Geological Survey Water-Supply Paper 2220, 84 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water (3rd ed.): U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- McMaster, B.W., and Parks, W.S., 1988, Concentrations of selected trace inorganic constituents and synthetic organic compounds in the water-table aquifers in the Memphis area, Tennessee: U.S. Geological Survey Open-File Report 88-485, 23 p.
- Nicholson, R.V., Cherry, J.A., and Reardon, E.J., 1983, Migration of contaminants in groundwater at a landfill: A case study: 6. Hydrogeochemistry: Journal of Hydrology, v. 63, p. 131-176.
- Nyman, D.J., 1965, Predicted hydrologic effects of pumping from the Lichterman well field in the Memphis area, Tennessee: U.S. Geological Survey Water-Supply Paper 1819-B, 26 p.
- Parks, W.S., 1990, Hydrogeology and preliminary assessment of the potential for contamination of the Memphis aquifer in the Memphis area, Tennessee: U.S. Geological Survey Water-Resources Investigations Report 90-4092, 39 p.
- Parks, W.S., and Carmichael, J.K., 1990, Geology and ground-water resources of the Memphis Sand in western Tennessee: U.S. Geological Survey Water-Resources Investigations Report 88-4182, 30 p.
- Smith, J.A., Witkowski, T.J., and Fusillo, T.V., 1988, Manmade organic compounds in the surface waters of the United States - A review of current understanding: U.S. Geological Survey Circular 1007, 92 p.
- Tennessee Department of Health and Environment, 1988, Public water systems, *in* Rules of Tennessee Department of Health and Environment-Bureau of Environment, Division of Water Supply: Tennessee Department of Health and Environment, Bureau of Environment, chapt. 1200-5-1, 68 p.
- U.S. Environmental Protection Agency, 1986, Maximum contaminant levels (subpart B of part 141, National interim primary drinking-water regulations): U.S. Code of Federal Regulations, Title 40, Parts 100 to 149, revised July 1, 1986, p. 524-528.

APPENDIX A

Field Work and procedures

APPENDIX A: FIELD WORK AND PROCEDURES

The field work for this investigation consisted principally of: (1) the installation of 18 wells in the alluvial aquifer, upper part of the confining unit, or Memphis aquifer near the Shelby County landfill, (2) the measurement of water-levels in 41 wells, (3) an initial sampling of 31 wells for water-quality analysis, and (4) the re-sampling of 22 of these wells to verify the analytical results from the first sampling. The procedures followed in performing these tasks are summarized below.

Well Installation

General procedures followed during the installation of the wells in the alluvial aquifer or upper part of the confining unit were as follows:

- the auger stems and bit were decontaminated before augering each well using a steam cleaner and water from Memphis Light, Gas and Water Division that is piped from Agricenter International to the landfill for drinking and clean-up uses;
- (2) 8-inch-diameter auger holes were drilled to depths (based on the estimated top of the water table from auger returns) that would assure the wells contained adequate water for well development and sampling;
- (3) 2-inch-diameter polyvinyl chloride (PVC) casings with 5-foot lengths of horizontally slotted (0.020-inch slot) screen were installed through the augers;
- (4) the augers were extracted from the bore holes leaving the casings and screens in place;
- (5) measurements were made to determine the depths to which formation sand had collapsed around the casings and screens (generally at or above the top of the water table);
- (6) about 1 foot of bentonite pellets were put at the top of the collapsed sand in each well and a bucket of water was added to swell the bentonite;
- (7) the annular spaces around the casings above the bentonite seals were filled with a cement and bentonite grout nearly to land surface;
- (8) cement pads or plugs were poured to seal the annular space around the wells at land surface, and 6-inch-diameter steel well protectors were installed and secured with locks;
- (9) the wells were developed with a submersible pump designed for use in 2-inch-diameter wells (pumping capacity about 1 gallon per minute);
- (10) well development was conducted until the water was clear or any sediment was considerably reduced and until measurements of specific conductance were constant.

North and northeast of the landfill water levels in the alluvial aquifer generally are deeper than normal because of the depression in the water table, and the alluvium locally is dry. In order to assure that the wells installed along the north and east perimeters and in adjacent areas of the landfill were deep enough to provide adequate water for well development and sampling, some of these wells probably were screened in the confining unit below the alluvium.

Wells 37, 38, 39, 40, and 41 were installed to depths that probably placed the screens adjacent to fine sand in the upper part of the confining unit. During augering of these wells, the returns from the lower part of the holes primarily consisted of wet, coarse to very coarse sand with scattered gravel. Any fine sand would be obscured in the wet slurry of the auger returns. Gamma-ray logs were made through the auger stems before the installation of these wells to confirm that the screens would be adjacent to sand and not clay. The gamma-ray logs indicated continuous sand in the lower part of the auger holes, including the interval to be screened.

The hole for well 35 was augered to 48 feet, but the lower stem was found to be full of fine sand. Therefore, the augers were pulled back to 43 feet before the well was installed to avoid setting the screen in fine sand. Later, geophysical logs made in the test hole for well MS-5, which was installed in the Memphis aquifer near well 35, indicated that the screen of well 35 probably was set in fine sand in the confining unit.

Geophysical logs for the test hole for well MS-7 near well 37 indicated that the screen of well 37 actually may be set adjacent to clay in the confining unit. During well development, some fine sand and silt entered the screens of wells 37 and 39. During well development and sampling, the water level in 37 and 40 pumped down in a relatively short time and was slow to recover.

The general procedures for installation of the wells in the Memphis aquifer were as follows:

- (1) before drilling each well, the drill stems and bits were decontaminated using a steam cleaner and water piped to the landfill for drinking and clean-up uses;
- (2) test holes were drilled to a depth of 150 feet using water from a Memphis Light, Gas and Water Division fire hydrant at Agricenter International and powdered bentonite to produce a drilling mud;
- (3) electric and gamma-ray logs were made in the bore holes and the depths at which to set screens were determined;
- (4) the lower parts of the bore holes up to the bottom of the screens were filled with gravel pack added to the residual drilling mud (a bentonite seal was added above this gravel pack in some wells);
- (5) 4-inch-diameter polyvinyl chloride casings with 20-foot lengths of horizontally slotted (0.010-inch slot) screens were installed in the bore holes;
- (6) the wells were backflushed with water from the same source as used for drilling to remove most of the drilling mud from the annulus around the screens;
- (7) the annular space around the screens was gravel packed to at least 10 feet above the tops of the screens;
- (8) about 1 foot of bentonite pellets were put at the tops of the gravel packs and, if present, adjacent to a clay beds near the top of the sands screened;
- (9) the annular space around the casings above the bentonite plugs was pressure grouted to land surface with a commercial bentonite sealer using a tremie pipe;
- (10) after time for the bentonite sealer to swell and setup, the upper foot of the annular space around the casings was excavated and cement plugs were poured to seal the wells at land surface;
- (11) at the time the cement plugs were poured, 6-inch-diameter steel well protectors were installed over the wells, and the wells were capped and secured with locks;
- (12) the wells were developed using compressed air for a minimum of 1 hour each or until the wells produced clear, sediment-free water.

During well development, formation sand was pumped from wells MS-6, MS-7, and MS-8. Fragments of lignite and gravel pack also were pumped from well MS-6, leading to the conclusion that the casing was split or separated in this well. The casing for well MS-6 was pulled from the bore hole intact and undamaged, but the disc seal in the end cap at the bottom of the screen was found to have come out during well installation. The casing of well MS-8 also was pulled. The holes left by wells MS-6 and MS-8 were filled with a commercial bentonite sealer and cement plugs were put at land surface. These wells were replaced by wells MS-11 and MS-12 at nearby sites.

During the drilling of MS-7, loss-of-circulation problems near land surface became so severe that the site was almost abandoned. However, circulation was re-established by the addition of a bentonite sealer and drilling-mud additive, and the test hole was drilled to a depth of 165 feet. Rather than replace this well or abandon this site, a cement plug was put at the bottom of the screen. Cement was pressure grouted into the bore hole just below the screen and into the screen. Bentonite pellets were put in the screen above the cement plug, and some gravel pack was put above the bentonite. After the bentonite swelled, the effective screen interval in well MS-7 was reduced from 88.5-108.5 to 88.5-99.5 feet below land surface (Appendix C). After the plug was installed, this well was developed for an additional hour.

Water-Level Measurements

Water-level measurements were made with a steel tape with a weight on the end so that entering the water surface could be heard. A few feet of the tape were coated with a thin layer of carpenter's chalk so that the water-level mark could be readily distinguished. Water levels were measured twice in cach well to assure an accuracy of 0.01 foot. A length of tape from above the water-level mark to the end of the tape was let dry thoroughly after each measurement, wiped clean with disposable napkins, and then re-chalked.

The water-level measurements were made in advance of sampling for water quality to provide data from which the volumes of water to be evacuated from the wells to be sampled could be calculated and the depths of the pump settings could be determined. In addition, the measurements were made before the wells were sampled so that any water that might be contaminated from the tape or chalk would be evacuated prior to sampling.

Well Sampling for Water Quality

General procedures followed during the first sampling of the 2-inch-diameter wells screened in the alluvial aquifer or the upper part of the confining unit were as follows:

- (1) a submersible pump designed for use in 2-inch-diameter wells was decontaminated internally at the landfill headquarters before each well was sampled by pumping copious amounts of tap water through the pump and Teflon discharge line followed by de-ionized water;
- (2) the churns and other equipment that would come in contact with the water samples also were decontaminated at the landfill headquarters using a Liquinox soap and tap-water solution, followed by rinsing with tap water and then de-ionized water before each well was sampled;
- (3) the pump and about 15 to 20 feet of Teflon discharge line were decontaminated externally at the well sites by spraying with soapy water, then tap water, and finally de-ionized water, and then the pump was lowered into each well to a depth below the water level but not into the screen;
- (4) the well was pumped for several minutes at a rate of about 1 gallon per minute to discharge any residual de-ionized water in the pump and discharge line before the measurements of field water-quality properties (pH, specific conductance, and temperature) were begun;
- (5) pumping continued at about 1 gallon per minute for a minimum time to evacuate at least five volumes of water from each well and until measurements of field water-quality properties stabilized;
- (6) after the well was evacuated, the churn was rinsed with water pumped from the well and then filled to provide water for the filtered samples and raw samples to be analyzed for nutrients, while the other raw samples were collected directly from the pump discharge line;
- (7) at the landfill headquarters the filtered and nutrient samples were prepared, the samples were tagged and labeled, and those that required chilling were placed on ice;
- (8) the samples were collected by USGS personnel and shipped at the end of each day through the U.S. Postal Service, as Priority Mail, to the USGS National Water Quality Laboratory at Arvada, Colorado;
- (9) three quality assurance/quality control samples of the de-ionized water pumped through the smaller submersible pump were collected at selected intervals during the first sampling and two of these samples were taken during the second sampling.

Changes in the general procedures made during the second sampling of the wells screened in the alluvial aquifer or upper part of the confining unit were as follows:

- (1) high purity organic-free water was used to wash and clean equipment instead of the de-ionized water;
- (2) glass containers were used to store the organic-free water instead of the plastic bottles used to store the de-ionized water;
- (3) the small submersible pump was decontaminated by pumping a Liquinox soap and tap water solution through the pump followed by copious amounts of tap water and then organic-free water.

Well 37 required pumping many times with much time in between to allow for water-level recovery before the required four volumes could be evacuated. The water from this well was cloudy with suspended sediment, some of which passed through the filter (0.45 micron pores). The water from well 30 contained live ants, other insect remains, and a black substance, all of which was retained on the filter. These foreign substances could not be completely evacuated after prolonged pumping of this well, and some were included in the raw samples. Wells 3 and 20, which were installed in 1986 for the earlier investigation (Bradley, 1988) and were scheduled to be sampled for this investigation, were found to be so badly damaged that the integrity of any samples collected from them would be in doubt. Therefore, the casings of these wells were cut off below land surface, capped, and sealed with a cement plug about 1-foot thick.

General procedures followed during the first sampling of the 4-inch-diameter wells screened in the Memphis aquifer were the same as for the 2-inch-diameter wells in the alluvial aquifer, except as follows:

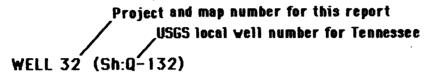
- (1) a submersible pump designed for use in 4-inch-diameter wells was lowered to a depth below the water level but not into the screen;
- (2) the wells were pumped at a rate of about 10 gallons per minute until a minimum of five volumes of water were evacuated and measurements of pH, specific conductance, and temperature had stabilized;
- (3) after evacuation of the wells, a stainless steel bailer was used to collect samples after it had been decontaminated by the same procedure as the pumps, except that isopropanol was used as a final rinse in sampling wells MS-2, MS-5, MS-9, MS-10, and MS-11.

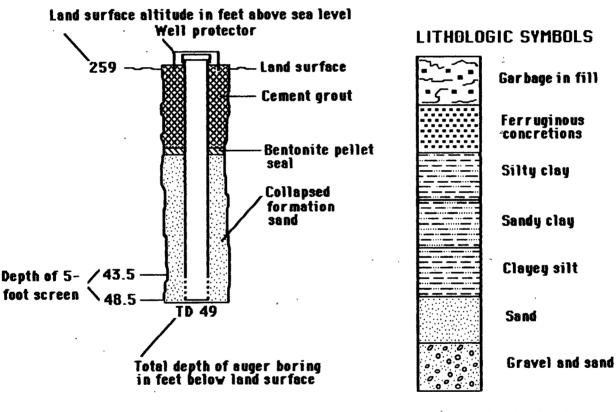
Changes in procedures for sampling the wells screened in the Memphis aquifer during the second sampling in addition to those changes in procedures for sampling the wells screened in the alluvial aquifer were as follows:

- (1) analytical-grade methanol was used as the final rinse to decontaminate the bailer and the equipment was allowed to dry thoroughly before samples were collected;
- (2) a Teflon bailer with a mono-filament leader attached to cotton strand rope was used to sample the wells after they were evacuated using the submersible pump.

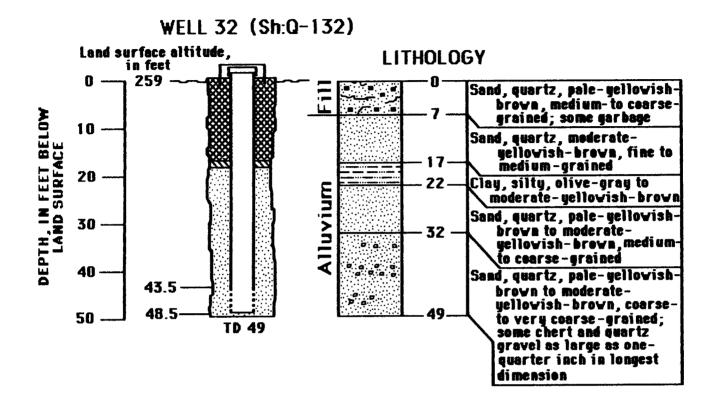
During the measurement of water levels before the first sampling, well MS-7 was found to contain some residual drilling mud additive adhering to the inside of the casing at about 50 feet below land surface. Therefore, after prolonged evacuation of this well with the larger submersible pump, this well was sampled with the smaller submersible pump lowered to a depth of about 70 feet. All of the samples collected from well MS-7 were taken from the discharge line of the smaller pump.

APPENDIX B

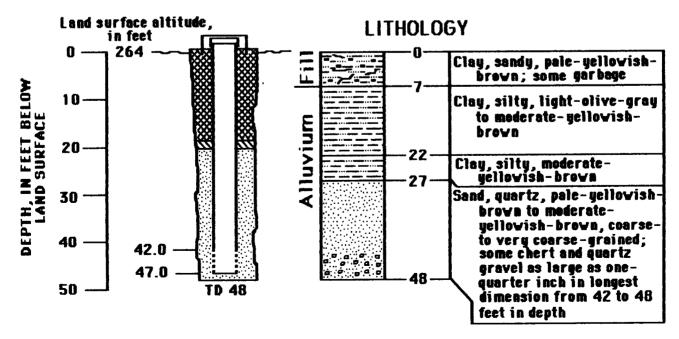

Lithologic information from auger borings and well-construction diagrams for wells installed in the alluvial aquifer

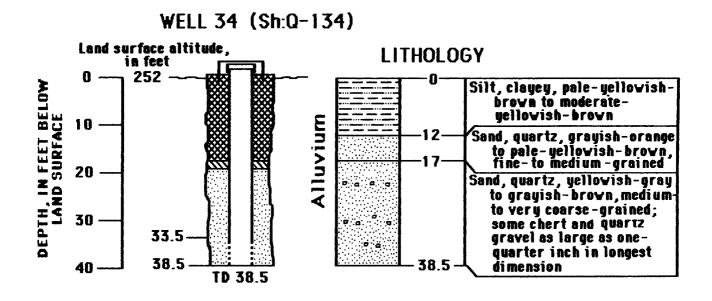

.

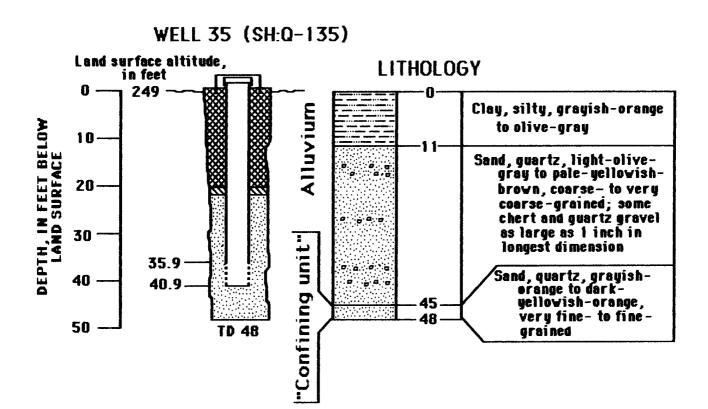
APPENDIX B:

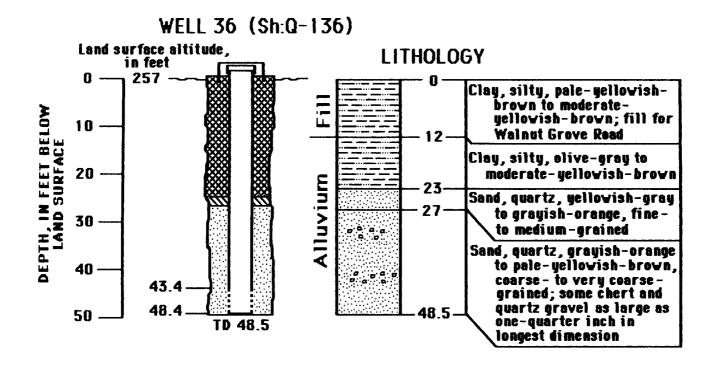

Lithologic information from auger borings and well-construction diagrams for wells installed in the alluvial aquifer

EXPLANATION

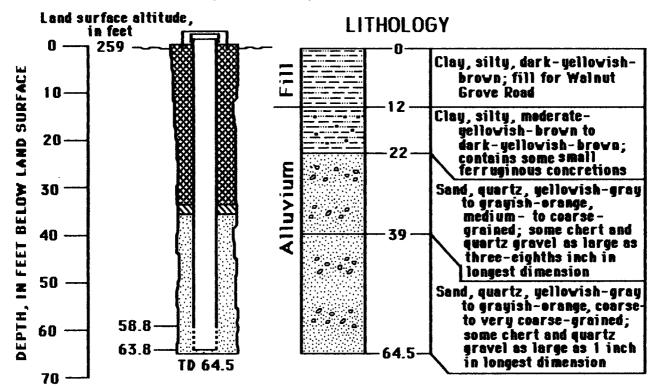


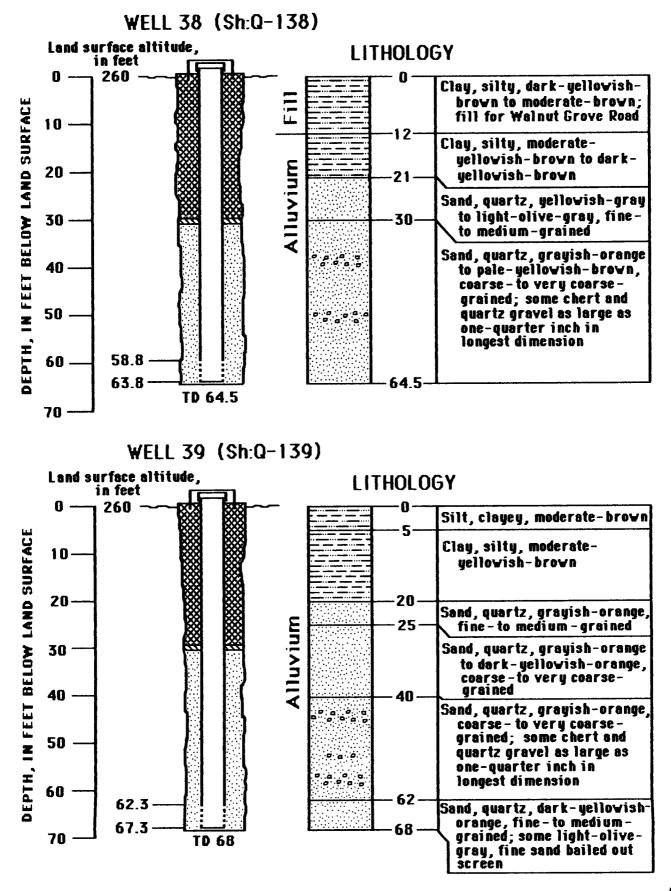


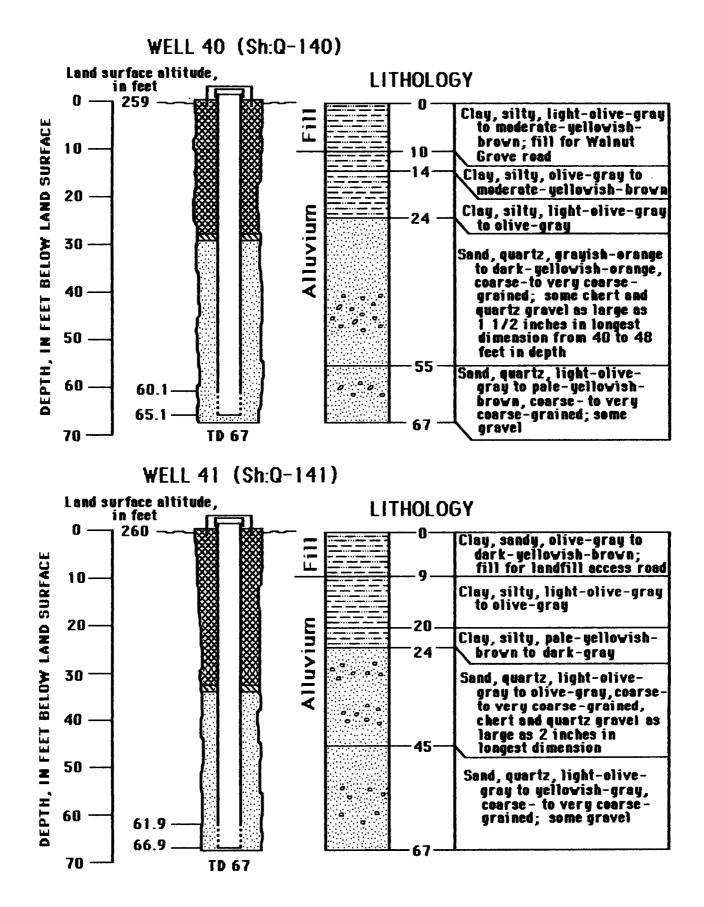

Observation wells in the alluvial aquifer are constructed with 2-inch-diameter, polyvinyl chloride (PYC) casings and screens. Most wells were developed by evacuating at least five volumes of water with a low-capacity (about 1 gallon per minute) submersible pump. Lithology is from field notes by D.D. Zettwoch, USGS; samples representative of lithology; and gamma-ray logs made through the auger stem in borings for wells 37, 38, 39, and 40. Colors are from the "Rock Color Chart" of the Geological Society of America. Sand sizes are from a visual comparison card based on the Wentworth grade scale of particle size.

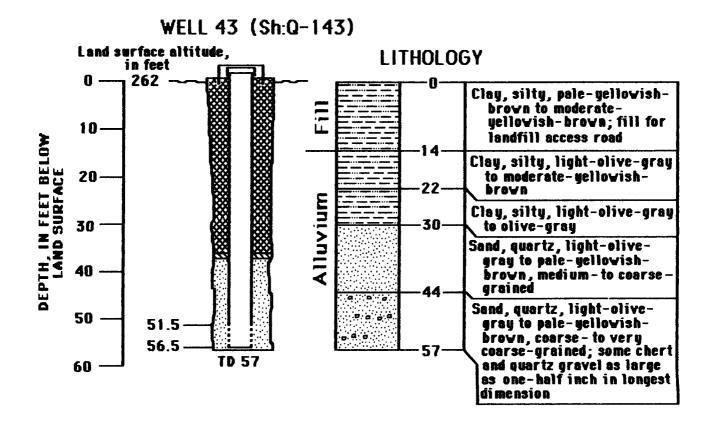


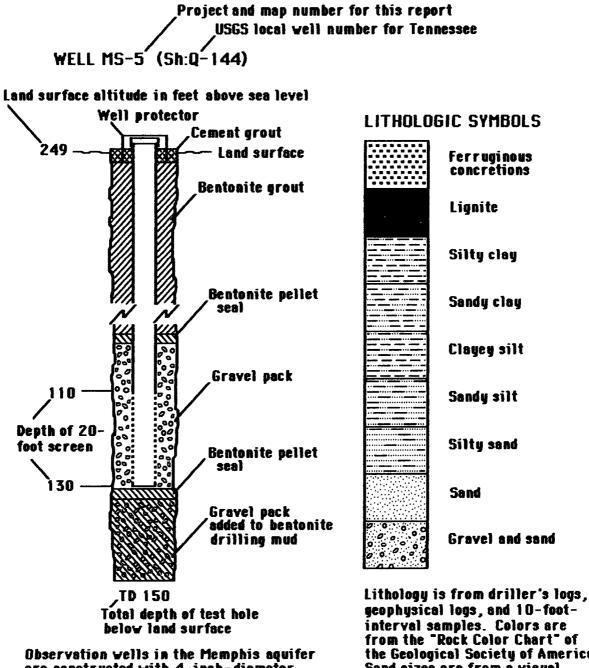
WELL 33 (Sh:Q-133)



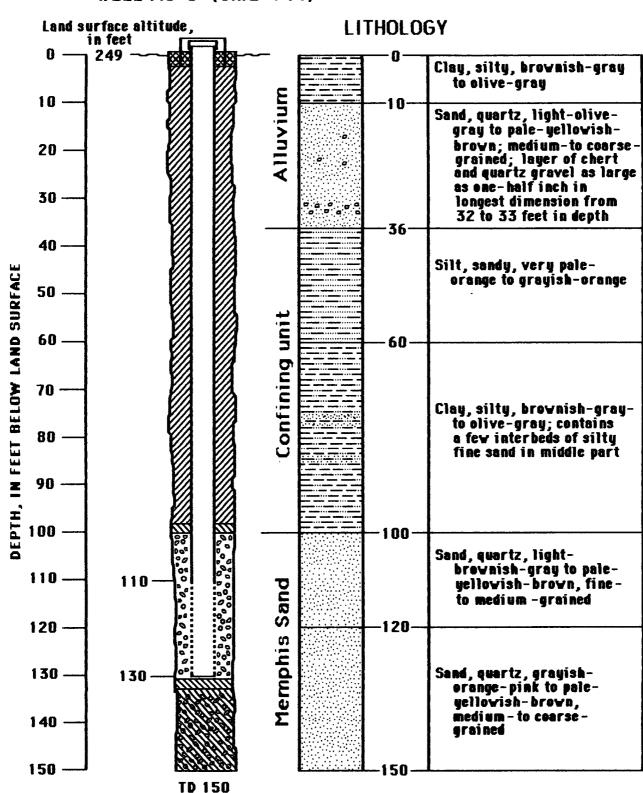




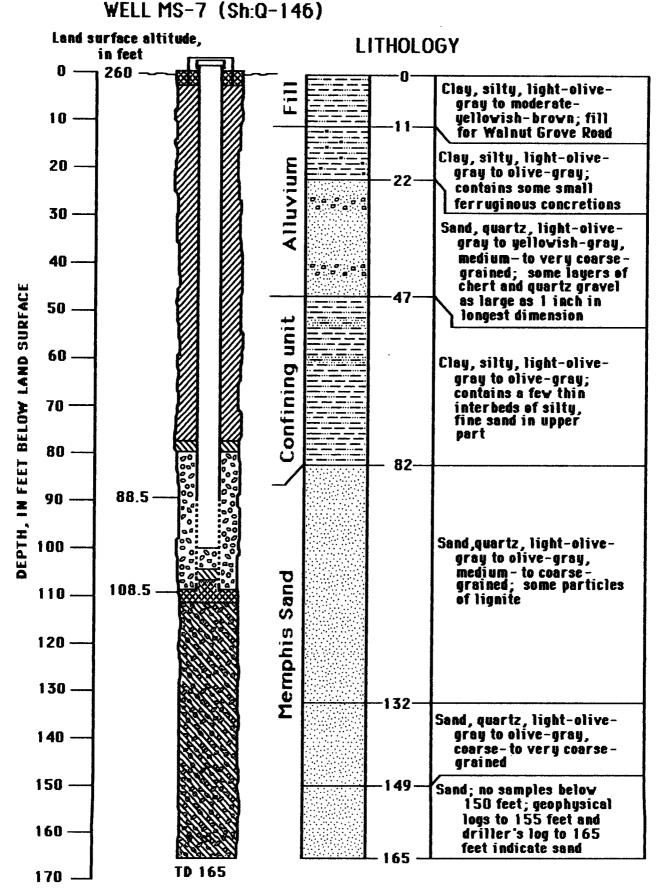

WELL 37 (Sh:Q-137)

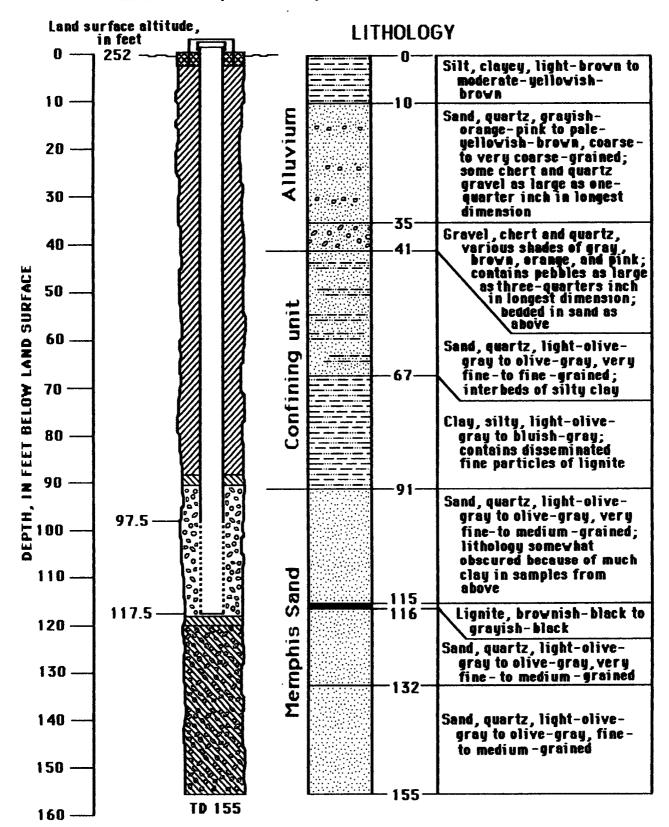

APPENDIX C

Lithologic information from hydraulic-rotary test holes and well-construction diagrams for wells installed in the Memphis aquifer


APPENDIX C

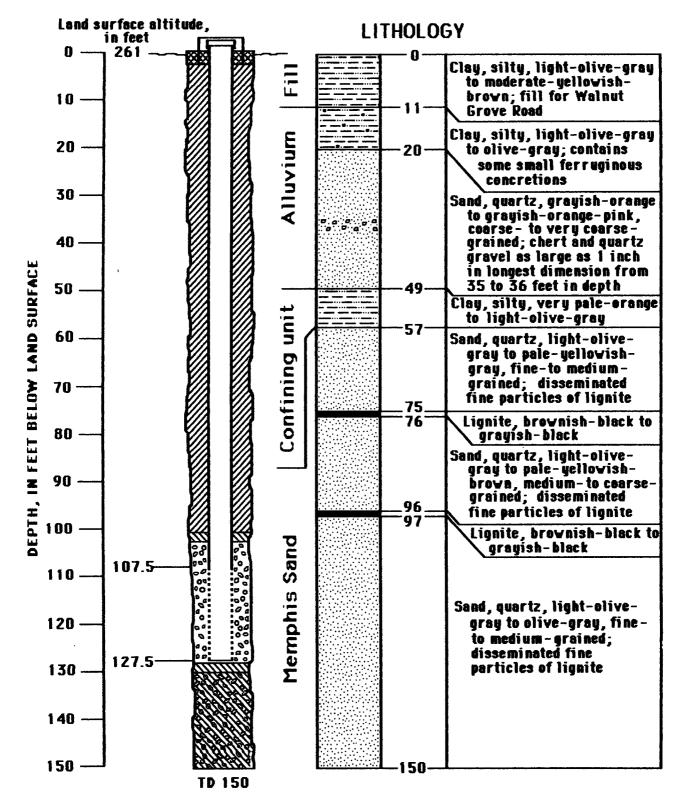
Lithologic information from hydraulic-rotary test holes and well-construction diagrams for wells installed in the Memphis aquifer

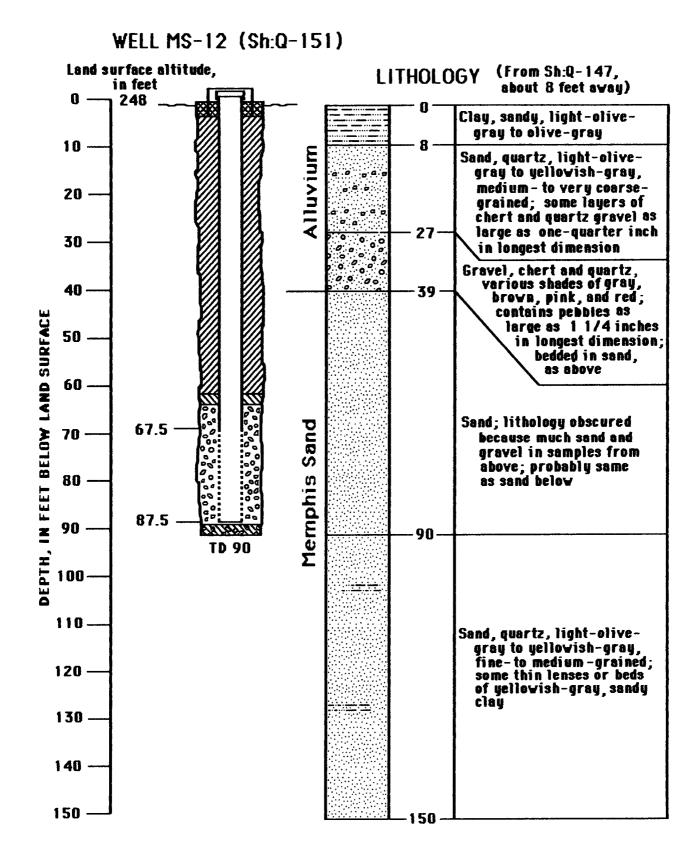

EXPLANATION


are constructed with 4-inch-diameter. polyvinyl chloride (PYC) casings and screens. Wells were developed at least 1 hour by pumping with air compressor. geophysical logs, and 10-footinterval samples. Colors are from the "Rock Color Chart" of the Geological Society of America. Sand sizes are from a visual comparison card based on the Wentworth grade scale of particle size.

WELL MS-5 (Sh:Q-144)

WELL MS-9 (Sh:Q-148)




Land surface altitude. LITHOLOGY in feet 8 -264 0 F I I Sand, quartz, yellowish-gray to light-olive-gray, fine-R grained; some clay mixed; 10 derived from landfill Clay, silty, light-olive-gray 20 -Alluvium to olive-gray 24 Sand, quartz, pale- to moderate-yellowish-30 brown, medium- to coarse-34 grained; abundant fine ferruginous concretions 36 40 -Clay, sandy, light-olive-DEPTH, IN FEET BELOW LAND SURFACE gray to olive-gray 50 Sand, quartz, light-olive-gray to yellowish-gray, , a a coarse- to very coarse-grained; some chert and quartz gravel as large as one- quarter inch in longest dimension 58 60 70 · **Confining unit** 80 Sand, quartz, very paleorange to moderateorange-pink, very fine-grained, silty; contains 90 interbeds of clayey silt and sandy clay 100 -110 -114 Silt, sandy, clayey, very 120 light-gray to moderatepink 000 126-127.5 Memphis 130 -Sand, quartz, pale-yellowish Sand brown to grayish-orangea pink, fine - to medium -140 grained; contains some silty layers 147.5 150 150 TD 150

WELL MS-10 (Sh:Q-149)

77

WELL MS-11 (Sh:Q-150)

