Click here to return USGS publications

No. 10

TECHNIQUE FOR ESTIMATING MAGNITUDE AND

FREQUENCY OF FLOODS IN KENTUCKY

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 76-62

Prepared in cooperation with

THE UNIVERSITY OF KENTUCKY KENTUCKY GEOLOGICAL SURVEY Wallace W. Hagan Director and State Geologist

BIBLIOGRAPHIC DATA SHEET	1. Report No.	2.	3. Recipient's Accession No.			
4. Title and Subtitle 5. Report Date						
TECHNIQUE FOR ES FLOODS IN KENTUG	STIMATING MAGNITUDE AND : CKY	FREQUENCY OF	Issued November 1976 6.			
7. Author(s) Curtis H. Hannur	n		8. Performing Organization Rept. No. USGS/WRT-76-62			
9. Performing Organization M U.S. Geological	Name and Address		10. Project/Task/Work Unit No.			
Water Resources 600 Federal Plac Louisville, Ken	ce tucky 40202		11. Contract/Grant No.			
12. Sponsoring Organization U.S. Geological Water Resources	Survey Division		13. Type of Report & Period Covered			
600 Federal Plac Louisville, Ken			14.			
15. Supplementary Notes Report prepared	in cooperation with the	Kentucky Geologia	cal Survey			
regulated streams in stations in Kentuck significantly affect frequency to contril magnitude of future ungaged streams hav kilometres). Estim of the user. Addit	n Kentucky. The relation y and 14 in adjacent stat ted by man-made changes. Duting drainage area in floods with recurrence ing drainage areas of 10 ating equations are also	ns are based on f tes having 10 or f Equations that 16 geographic are intervals of as m to 4,300 square presented in grap ed to estimate flo	more years of record not relate flood magnitude and as may be used to estimate uch as 100 years on gaged and miles (25.9 to 11,100 square phical form for the convenience ood magnitude for selected			
	Analysis. 170. Descriptors	frequency, Equat:	ions, Kentucky, Natural flow,			
176. Identifiers/Open-Ended Flood magnitude						
17c. COSATI Field Group 18. Availability Statement No restriction of	on distribution	Rej 20. Sec	urity Class (This 21. No. of Pages port) UNCLASSIFIED 70 urity Class (This 22. Price			
FORM NTIS-35 (REV. 10-73)	ENDORSED BY ANSI AND UNESCO.		BE REPRODUCED USCOMM-DC 0205-F74			

1.10

TECHNIQUE FOR ESTIMATING MAGNITUDE AND

FREQUENCY OF FLOODS IN KENTUCKY

By Curtis H. Hannum

U. S. GEOLOGICAL SURVEY

Water-Resources Investigations 76-62

Prepared in cooperation with

THE UNIVERSITY OF KENTUCKY KENTUCKY GEOLOGICAL SURVEY Wallace W. Hagan Director and State Geologist

November 1976

UNITED STATES DEPARTMENT OF THE INTERIOR

Thomas S. Kleppe, Secretary

GEOLOGICAL SURVEY

Vincent E. McKelvey, Director

For additional information write to:

U.S. Geological Survey Room 572 Federal Building Louisville, Kentucky 40202

n

CONTENTS

	Page
Abstract	1
Introduction	1
Estimating technique	4
Limitations	8
Illustrative examples	10
Method of analysis	64
Frequency analysis at gaging stations	65
Regional analysis	67
References	70

ILLUSTRATIONS

Plate	1.	Map of Kentucky showing gaging stations, geographical areas and geographical factors(Inside back cov	er)
Figure	1.	Map of Kentucky showing approximate areas of karst geology	17
	2.	Graph showing contributing drainage area vs total drainage area	18
	3.	Graphical solution of discharge equations, geographical area 1	19
	4.	Graphical solution of discharge equations, geographical area 2	20
	5.	Graphical solution of discharge equations, geographical area 3	21
	6.	Graphical solution of discharge equations, geographical area 4	22
	7.	Graphical solution of discharge equations, geographical area 5	23
	8.	Graphical solution of discharge equations, geographical area 6	24
	9.	Graphical solution of discharge equations, geographical area 7	25
	10.	Graphical solution of discharge equations, geographical area 8	26
	11.	Graphical solution of discharge equations, geographical area 9	27
	12.	Graphical solution of discharge equations, geographical area 10	28
	13.	Graphical solution of discharge equations, geographical area 11	29
	14.	Graphical solution of discharge equations, geographical area 12	30

Page

Figure	15.	Graphical solution of discharge equations, geographical area 13	31
	16.	Graphical solution of discharge equations, geographical area 14	32
	17.	Graphical solution of discharge equations, geographical area 15	33
	18.	Graphical solution of discharge equations, geographical area 16	34
	19.	Graph showing Cumberland River, variation of flood magnitude for selected recurrence intervals with distance upstream from mouth	35
	20.	Graph showing Kentucky River, variation of flood magnitude for selected recurrence intervals with distance upstream from mouth	36
	21.	Graph showing Ohio River, variation of flood magnitude for selected recurrence intervals with distance downstream from Pittsburgh	37

1

TABLES

Table	1.	List of regulated streams and responsible agency	9
	2.	Summary of regression equations	15
	3.	Values of R ^b for use in discharge equations	16
	4.	Comparison of discharges computed using station skew, assigned skew, and regression equations	38

FACTORS FOR CONVERTING ENGLISH UNITS TO METRIC UNITS

Multiply English units	Ву	To obtain Metric units	
	LENGTH		
Feet (ft)	0.3048	Metres (m)	
Miles (mi)	1.609	Kilometres (km)	
	AREA		
Square miles (mi ²)	2.590	Square kilometres (km ²)	
	FLOW		
Cubic feet per second (ft^3/s)	.02832	Cubic metres per second (m^3/s)	

Metric units can not be used in the regression equations. To determine discharge in metric units for a given frequency, compute the discharge using English units and convert to metric units by multiplying by 0.02832.

Due to space limitations, metric equivalents are not shown in tables.

VI

Technique for Estimating Magnitude and Frequency of Floods in Kentucky

By Curtis H. Hannum

ABSTRACT

This report presents flood magnitude and frequency relations applicable to unregulated streams in Kentucky. The relations are based on flood data at 117 gaging stations in Kentucky and 14 in adjacent states having 10 or more years of record not significantly affected by man-made changes. Equations that relate flood magnitude and frequency to contributing drainage area in 16 geographic areas may be used to estimate magnitude of future floods with recurrence intervals of as much as 100 years on gaged and ungaged streams having drainage areas of 10 to 4,300 square miles (25.9 to 11,100 square kilometres). Estimating equations are also presented in graphical form for the convenience of the user. Additional graphs are presented to estimate flood magnitude for selected recurrence intervals along the Cumberland, Kentucky, and Ohio Rivers.

INTRODUCTION

Flood magnitude and frequency are primary factors in the design of structures in the flood plains of streams. This report presents equations determined by flood-frequency analysis which can be used to estimate magnitude and frequency of floods for sites on most streams where flood discharges are not significantly affected by regulation or urbanization.

The evaluation of flood potential is necessary in the design of structures such as bridges, culverts, highways, sewage disposal plants, water-works, levees, and dams within the flood plain. The cost of flood proofing a structure should be balanced against the probable damage caused by flooding during the life of the structure. The selection of the magnitude of the flood to be considered in designing a structure is usually determined on the basis of some definite frequency of recurrence. For example, drainage structures on the Federal Interstate Highway System are usually designed to pass a flood of 50-year recurrence interval or the maximum known flood, whichever is greater, and checked for the 100-year flood.

A recurrence interval criterion in no way implies that once a flood of the magnitude of the 50-year flood, or greater, has occurred that it will not occur for another 50 years. During any given year there is a 2 percent chance (probability of 0.02) that the magnitude of a 50-year flood will be exceeded. The frequency or recurrence interval of floods is the average time in years between floods of a given magnitude over a long period of time based on past flood experience.

It is not possible to anticipate all sites where flood information might be needed, and it is not economically feasible to collect flood data at all potential sites. The purpose of this report is to provide methods for determining flood magnitude and frequency at ungaged sites as well as at existing gaging stations.

Log Pearson Type III flood-frequency curves were computed using annual peaks for each gaging station with 10 or more years of record not significantly affected by regulation or urbanization. Accuracy of individual station frequency curves is affected by time sampling errors, and by the assumption that the Log Pearson Type III fitting process is correct. Variation of coefficient of skew between adjacent gaging stations is an indication of the time-sampling errors. Map skews suggested by Hardison, 1974, were used in this report to partially overcome the variability of coefficient of skew. For further information see the section on Frequency Analysis at Gaging Stations and the reference to Hardison, 1974.

Individual gaging station flood-frequency data for 131 gaging stations including 14 in adjacent states were used in a regression analysis to relate flood frequency to basin parameters. These relations allow the user to estimate flood frequency at ungaged sites. The flood relationships are presented both mathematically and graphically and apply to all natural streams within designated areas in Kentucky. This study does not evaluate the effects of urbanization, flood-control reservoirs, or other activities in a drainage basin which might affect flood-peak discharges.

All information contained in this report is subject to revision upon the acquisition of additional data.

ESTIMATING TECHNIQUE

Flood magnitude for a given recurrence interval can usually be estimated more reliably at a stream-gaging station, and for a short distance upstream or downstream from a gage on the same stream, than from regression equations. Therefore, the first step in determining flood magnitude at a site should be to search Plate 1 and Table 4 for available gage information. Estimates for "assigned skew" in Table 4 can be used directly at gage sites.

When the site is located between two gages on the same stream determine the flood magnitude for the desired recurrence interval at the upstream and downstream gages using "assigned skew" values from Table 4 and estimate discharge at the site by interpolation on basis of contributing drainage area. If the drainage area at the downstream gage is more than three times that at the upstream gage, use one of the procedures described below.

Flood magnitudes having recurrence intervals of 2, 5, 10, 25, 50, and 100 years may be computed for ungaged, natural flow sites by using the appropriate values of contributing drainage area and geographical factor in equations shown in Table 2. Drainage area (A) in square miles, is the area contributing surface flow to the site. It is determined by planimetering along the drainage divide outlined on 7-1/2 minute topographic maps. Within areas of karst geology (see figure 1), some basins may contain closed areas which do not contribute to surface runoff because of sink holes. The total drainage area of such basins

should be adjusted to contributing drainage area by subtracting noncontributing drainage areas determined from 7-1/2 minute topographic maps. As a simplified but less reliable estimate, Figure 2 may be used to approximate contributing drainage area in karst geology. Areal factor (R), is a dimensionless geographical factor which provides an index of the variations in flood peaks with geology and topography. The geographical areas and factors are shown on Plate 1. To simplify the users computations, Table 3 gives the results of (R) raised to the appropriate power for the frequency desired.

Graphical solution of the regression equations are presented for each area in Figures 3-18. Figures 19-21 present graphs to estimate flood magnitude for selected recurrence intervals on the Cumberland River upstream from Lake Cumberland, Kentucky River downstream from Heidelberg and Ohio River downstream from Huntington.

If the site is near a gaging station on the same stream, a weighted value of the ratio of the "assigned skew" magnitude to the regression value at the gage should be used to adjust regression estimate at the ungaged site. This method is not recommended for drainage areas more than twice or less than half the drainage area at the gage site. The weighted estimate of discharge is determined as follows:

$$Q' = K_S Q_R$$

Q' Weighted discharge.

 Q_R Discharge estimated by regression equation. The weighted ratio for the ungaged site is computed as follows:

$$K_{S} = \left(K_{G} - 1\right) \left(\frac{2A_{G} - A_{S}}{A_{G}}\right) + 1$$
For site downstream
from gage
$$K_{S} = \left(K_{G} - 1\right) \left(\frac{2A_{S} - A_{G}}{A_{G}}\right) + 1$$
For site upstream
from gage

 $K_{S}^{\rm Weighted\ ratio\ of\ assigned\ flood\ magnitude}$ to regression value at site.

 $K_{G}^{\rm Weighted\ ratio\ of\ assigned\ flood\ magnitude}$ to regression value at gage.

Ac Drainage area at gage.

A. Drainage area at site.

When a stream crosses a regional boundary compute the discharge for the total drainage area for each geographical area and use the weighted discharge based on percent of drainage areas in each geographical area as the final discharge.

Table 4 lists all natural flow stream-gaging stations and highflow partial-record stations with 10 or more years of record in Kentucky and some stations in surrounding states that were used in preparation of this report. Data presented for each station runs across two pages. Map number identifies the stream-gaging station on both pages of Table 4

and Plate 1. The first line for each station (Computed) shows skew and discharge for indicated frequencies from Log-Pearson Type III flood frequency computations using station data only. The second line (Assigned) shows the assigned skew (Hardison, 1974) used in the Log-Pearson computations and the corresponding discharges. The third line shows the estimate from the regression equations.

The results from the regression equations were used to plot graphical partial solutions of discharge equations shown in graphs, Figures 3-18. Data for Assigned skew was used to plot Figures 19, 20. Computed data was used to plot Figure 21.

In summary, the recommended procedure for estimating flood discharge for a desired frequency is outlined below.

- Search for availability of stream-gaging information at the site using Plate 1 and Table 4. If gage data is available at the site use assigned skew values of discharge from Table 4 for the desired frequency.
- 2. When the site is on the same stream with one or more gaging stations transfer available gage information for Assigned skew, Table 4, upstream or downstream to the site using the appropriate procedure described above and observing the drainage area limitations.
- 3. Use regression estimates where no stream-gaging information is available, provided the site is within the limitations specified in the following paragraphs.

LIMITATIONS

Regression equations shown in Table 2 were defined from data at gaging stations on natural flow streams having drainage area between 10 mi^2 (25.9 km²) and 4,300 mi² (11,100 km²). The applicability of regression equations to sites with drainage area outside this range is unknown. The equations should not be used to make estimates of flood-flows at sites on main-stem streams or streams affected by man-made changes that significantly alter floodflows upstream from the site.

The user is cautioned to look for man-made changes in the drainage basin upstream from the site that may alter floodflows, such as reservoirs, urban development, possibly strip mines; and interchange of flow between basins for storage, water supply, irrigtaion and hydro-plants. The regression equations and graphs are not applicable to sites where man-made changes significantly affect flood flow.

The main-stem streams for which equations in Table \tilde{X} can not be used are:

Cumberland River downstream from Harlan, Ky.

Kentucky River downstream from Heidelberg, Ky.

Ohio River downstream from Huntington, W. Va.

Table $\cancel{4}$ lists Kentucky streams where peak discharge is affected more than 10 percent (Benson, 1962) by upstream reservoirs as of November 1, 1975. Table $\cancel{4}$ also lists the agency to contact for information on flood magnitude and frequency.

TABLE 1.--LIST OF REGULATED STREAMS AND RESPONSIBLE AGENCIES

Stream name	Agency to contact for flood magnitude and frequency
Levisa Fork below Fishtrap Lake near Millard, Ky.	U.S. Army Corps of Engineers Huntington, W. Va.
Russell Fork downstream VaKy. state line	do
Johns Creek below Dewey Lake near Van Lear, Ky.	do
Big Sandy River downstream from Louisa, Ky.	do
Little Sandy River below Grayson Lake near Leon, Ky.	do
Licking River below Cave Run Lake near Farmers, Ky.	U.S. Army Corps of Engineers, Louisville, Ky.
Middle Fork Kentucky River below Buckhorn Lake at Buckhorn, Ky.	do
North Fork Kentucky River below Middle Fork Kentucky River	do
Dix River below Herrington Lake near Burgin, Ky.	
Green River below Green River Lake near Campbellsville, Ky.	U.S. Army Corps of Engineers, Louisville, Ky.
Nolin River below Nolin River Lake near Kyrock, Ky.	do
Barren River below Barren River Lake near Finney, Ky.	, do
Rough River below Rough River Lake near Falls of Rough, Ky.	do
Cumberland River below Cumberland Lake near Jamestown, Ky.	U.S. Army Corps of Engineers, Nashville, Tenn.

TABLE 1.--LIST OF REGULATED STREAMS AND RESPONSIBLE AGENCIES--CONTINUED

Stream name

Cumberland River below Barkley Lake near Grand Rivers, Ky.

Tennessee River below Kentucky Lake at Gilbertsville, Ky.

Ohio River below mouth of Cumberland River Agency to contact for flood magnitude and frequency

U.S. Army Corps of Engineers, Nashville, Tenn.

Tennessee Valley Authority, Knoxville, Tenn.

U.S. Army Corps of Engineers, Louisville, Ky.

ILLUSTRATIVE EXAMPLES

Example 1:

Assume the discharge is desired for a flood with a recurrence interval of 50 years for a site on an ungaged stream in the upper Kentucky River basin (Geographical Area 4) having a drainage area of 200 square miles.

The equation to use is:

 $Q_{50} = 638A^{0.663}R^{1.040}$

A=200 mi² By slide rule or calculator $(200)^{0.663}$ =33.54

From Plate 1, R=1.271 for Area 4.

From Table 3, 1.271^b for the 50-year flood is 1.283.

Final equation is:

 $Q_{50} = 638 \times 33.54 \times 1.283 - 27,500 \text{ ft}^3/\text{s}$

or from Figure 6 for drainage area 200 mi²

 $Q_{50}=27,500 \text{ ft}^3/\text{s}$

ILLUSTRATIVE EXAMPLES -- CONTINUED

Example 2:

Assume the discharge is desired for a flood with a recurrence interval of 50 years for a site on an ungaged stream in the Barren River basin having a drainage area of 50 square miles. The site is in the karst region, the drainage area must be corrected for noncontributing drainage area by using Figure 1. For a total drainage area of 50 square miles, the graph, Figure 2, gives a net drainage area of 41 square miles which is the "A" used in the equation for the 50-year flood.

The equation to use is:

Q₅₀=638A^{0.663}R^{1.040}

A=41 mi², By slide rule or calculator $(41)^{0.663}$ =11.73

From Plate 1, R=1.351 for Geographical Area 11, and from Table 3, 1.351^b for the 50-year flood is 1.367.

Final equation is:

or from Figure 13 for contributing drainage area 41 mi²

$$Q_{50} = 10,200 \text{ ft}^3/\text{s}$$

ILLUSTRATIVE EXAMPLES -- CONTINUED

Example 3:

The discharge for a flood with a recurrence interval of 50 years is desired for a site on Craborchard Creek at State Highway 85. The site has a drainage area of 87 square miles. Craborchard Creek crosses from Geographical Area 11 to Geographical Area 13 at the mouth of Lynn Fork. The drainage area of Craborchard Creek, including Lynn Fork, is 25 square miles or 29 percent of the total drainage area at the site. Determine discharge for 50-year flood for Areas 11 and 13 for 87 square miles, by equation or from graphs Figures 13 and 15. The final discharge is a weighted average of discharge based on percent of drainage area in each area.

The equation to use is:

 $Q_{50} = 638 A^{0.663} R^{1.040}$

 $A=87^2$ mi, By slide rule or calculator (87)^{0.663}=19.32

From Plate 1, R=1.351 for Geographical Area 11

and R=0.449 for Geographical Area 13

From Table 3 for 50-year recurrence interval for Area 11 R^b=1.367

Area 13 R^b=0.435

Final equations adjusted for area in each region are: For Area 11 Q'₅₀=(638x19.32x1.367)x0.29 = 4,900 ft³/s For Area 13 Q'₅₀=(638x19.32x0.435)x0.71 = 3,800 ft³/s Final Q''₅₀ = $\overline{8,700}$ ft³/s

ILLUSTRATIVE EXAMPLES -- CONTINUED

Example 3--Continued:

By Figures 13 and 15 for drainage area 87 mi² the solution is: From Figure 13 Q_{50} =16,800 ft³/s for Geographical Area 11 From Figure 15 Q_{50} = 5,400 ft³/s for Geographical Area 13 Q'₅₀=16,800x0.29 = 4,900 ft³/s Q'₅₀= 5,400x0.71 = 3,800 ft³/s

Final $Q''_{50} = 8,700 \text{ ft}^3/\text{s}$

Example 4:

The discharge for a flood with a recurrence interval of 50 years is desired for a site on Triplett Creek downstream from the gaging station at Morehead. The site is in Geographical Area 2 and has a drainage area of 60 square miles.

The equation to use is:

 $Q_{50} = 638A^{0.663}R^{1.040}$

A=60 mi². By slide rule or calculator $(60)^{0.663}$ =15.10 From Plate 1, R=1.773 for Geographical Area 2 From Table 3, 1.773^b for the 50-year flood is 1.814 Final equation is:

Q₅₀=638x15.10x1.814=17,500 ft³/s

ILLUSTRATIVE EXAMPLES--CONTINUED

Example 4--Continued:

Since the site is near the Triplett Creek at Morehead gaging station the discharge computed above should be adjusted by the ratio of the assigned discharge to the regression discharge from Table z'' (see Map No. 22).

-

$$K_g = \frac{\text{Assigned Q}}{\text{Regression Q}} = \frac{22,500}{15,000} = 1.50 \text{ at gage, DA 47.9 mi}^2.$$

The ratio ${\rm K}_{\rm S}$ at the site is given by equation:

$$K_{s} = (K - 1) \left(\frac{2Ag - A_{s}}{A_{g}}\right) + 1 \text{ for site downstream from gage}$$
$$K_{s} = (1.50 - 1) \left(\frac{2x47.9 - 60}{47.9}\right) + 1 = 1.37 \text{ at site}$$

Final discharge is:

 $Q'_{50} = 17,500 \times 1.37 = 24,000 \text{ ft}^3/\text{s}$

Frequency of floods (years)	Magnitude of floods (ft ³ /s)	Standard error of estimate (percent)
2	$Q_2 = 187A^{0.703}R^{0.965}$	31.8
5	$Q_5 = 318A^{0.685}R^{0.991}$	29.5
10	$Q_{10} = 412A^{0.677}R^{1.006}$	29.5
25	$Q_{25} = 540A^{0.668}R^{1.025}$	30.6
50	$Q_{50} = 638A^{0.663}R^{1.040}$	31.8
100	$Q_{100} = 740A^{0.659}R^{1.051}$	33.3

TABLE 2.--SUMMARY OF REGRESSION EQUATIONS

 $Q_2 - 2$ -year flood

- A Contributing drainage area
- R Geographical factor (from Plate 1)

		Fr	equency, in	n years		
	2	5	10	2 5	50	100
R	0.965	0.991	1.006	1.025	1.040	1.051
0.449	. 462	.452	. 447	. 440	.435	.431
. 547	.559	.550	.545	. 539	.534	.530
.619	.629	.622	.617	.612	.607	.604
.725	.733	.727	.724	.719	.716	.713
.782	.789	.784	.781	.777	.774	.772
.787.	.794	.789	.786	.782	.779	.777
.805	.811	.807	.804	.801	.798	.796
.821	.827	.822	.820	.817	.815	.813
.858	.863	.859	.857	.855	.853	.851
.871	.875	.872	.870	.868	.866	.865
1.271	1.260	1.268	1.273	1.279	1.283	1.287
1.351	1.337	1.347	1.353	1.361	1.367	1.372
1.417	1.400	1.413	1.420	1.429	1.437	1.442
1.507	1.486	1.501	1.511	1.523	1.532	1.539
1.562	1.538	1.556	1.566	1.580	1.590	1.598
1.773	1.738	1.764	1.779	1.799	1.814	1.826

TABLE 3.--R^b FOR GEOGRAPHICAL AREAS FOR INDICATED FREQUENCIES

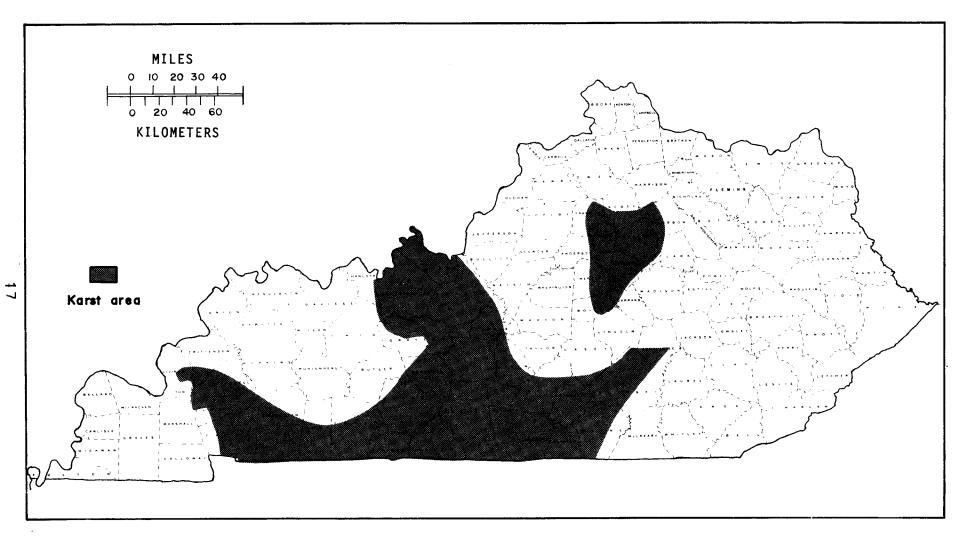
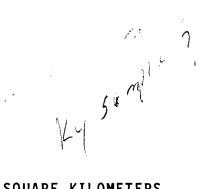
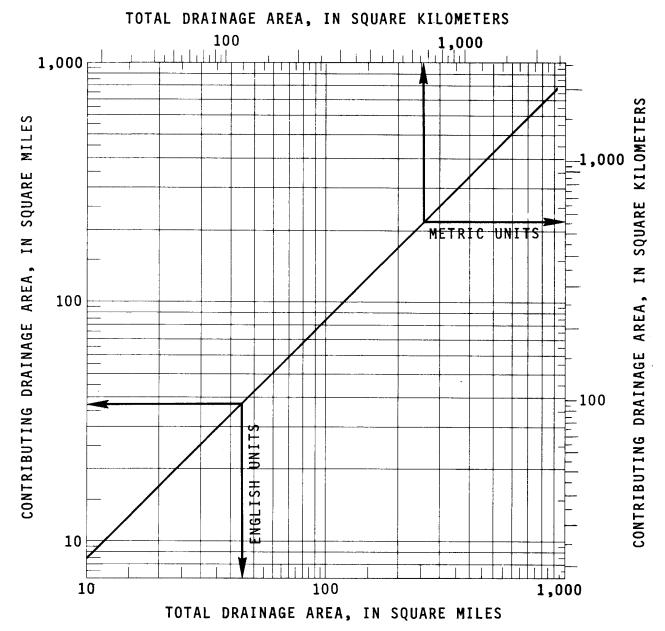
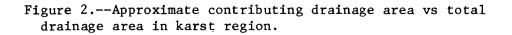





Figure 1.--Map of Kentucky showing approximate areas of karst geology.

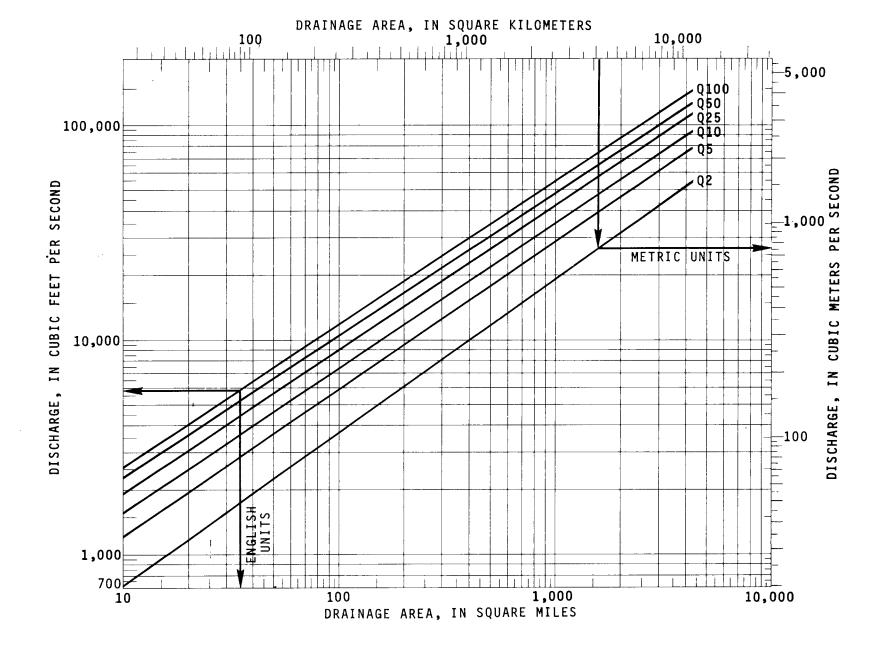
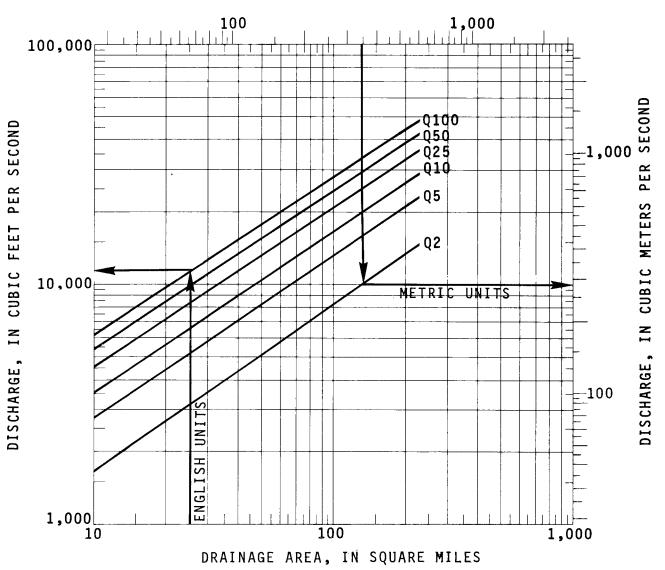
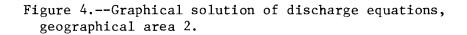




Figure 3.--Graphical solution of discharge equations, geographical area 1.

DRAINAGE AREA, IN SQUARE KILOMETERS

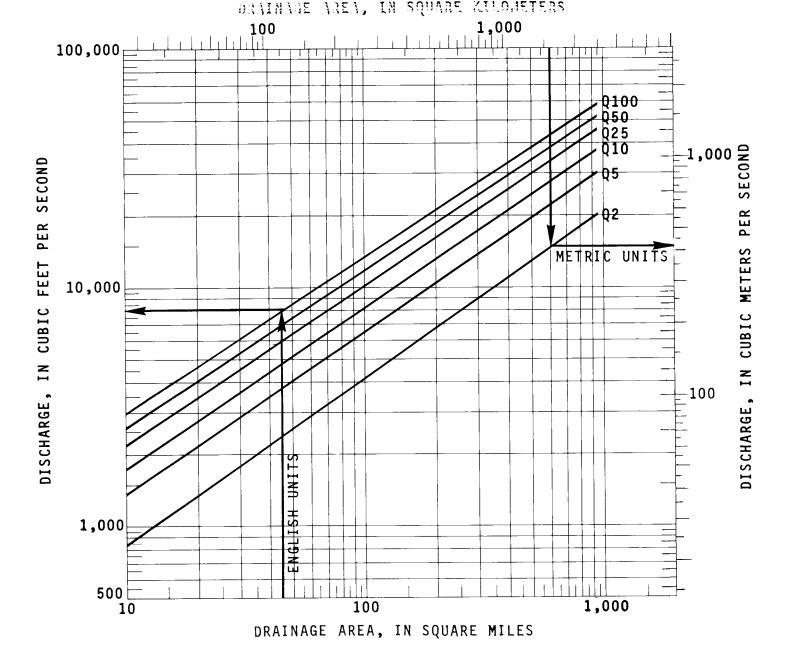


Figure 5.--Graphical solution of discharge equations, geographical area 3.

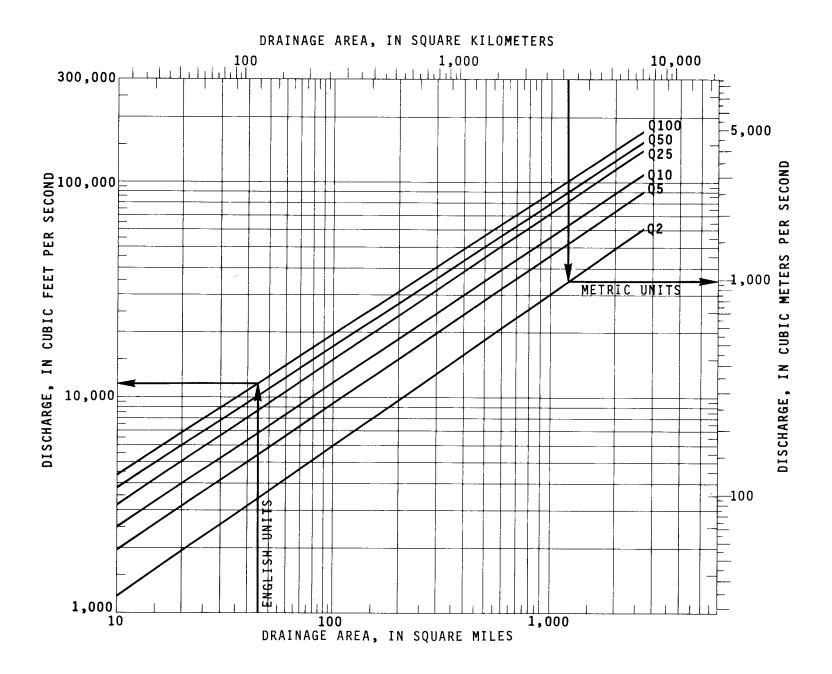
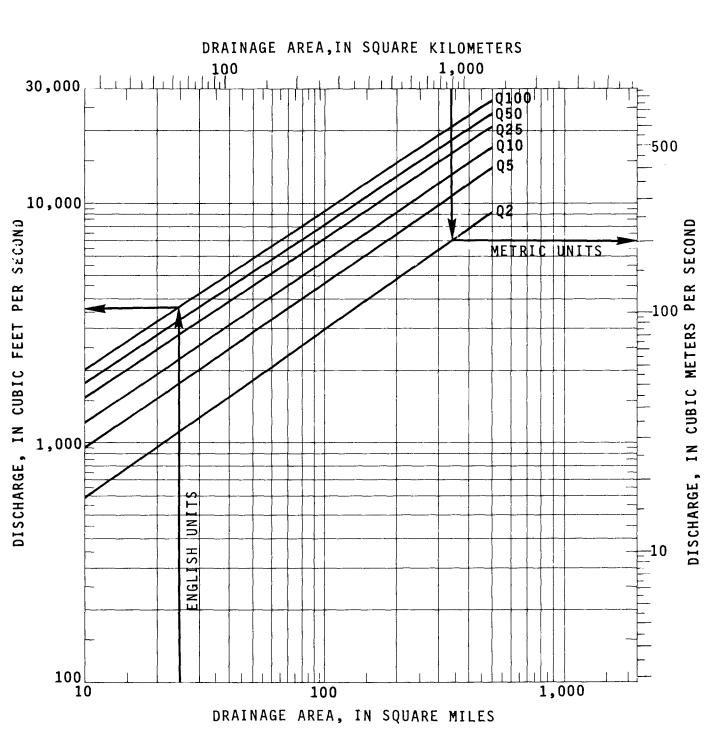
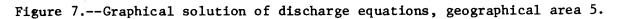




Figure 6.--Graphical solution of discharge equations, geographical area 4.

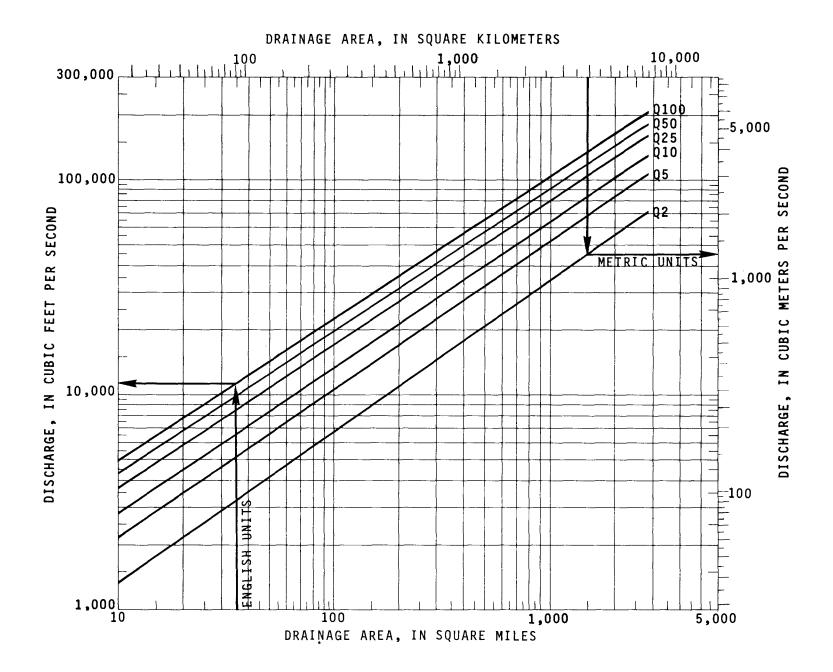
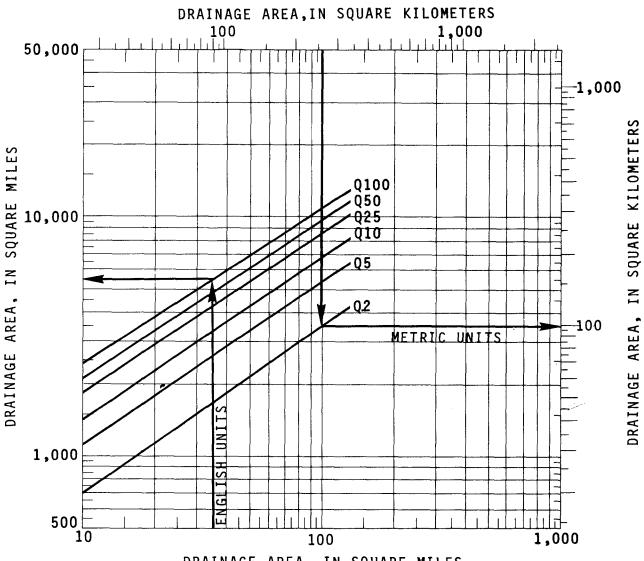
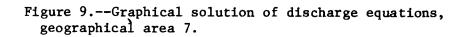




Figure 8.--Graphical solution of discharge equation, geographical area 6.

DRAINAGE AREA, IN SQUARE MILES

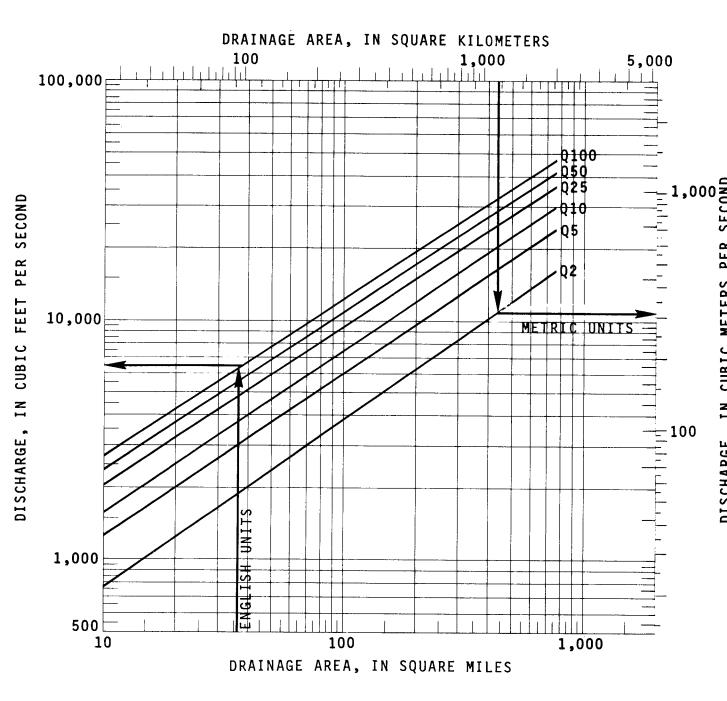


Figure 10.--Graphical solution of discharge equations, geographical area 8.

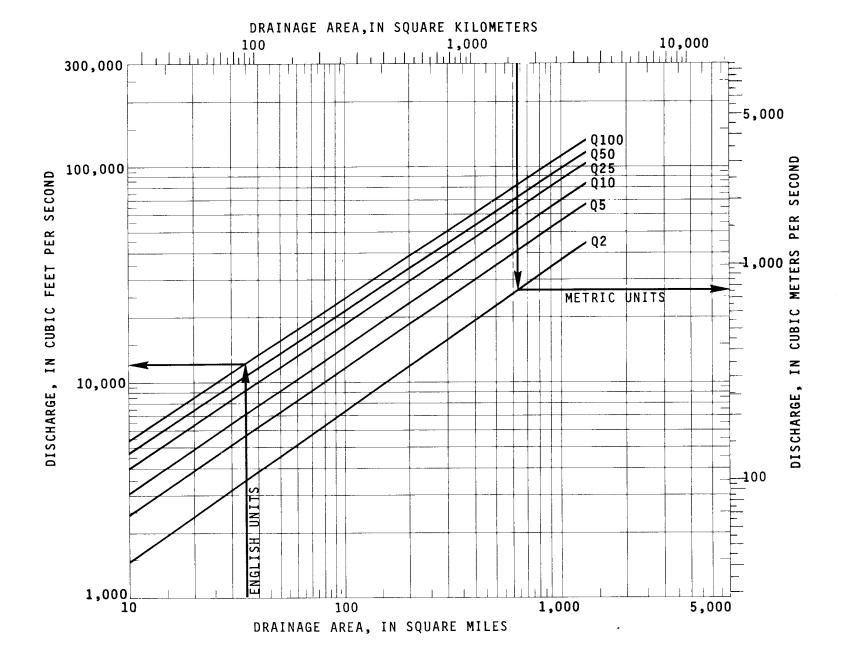


Figure 11.--Graphical solution of discharge equations, geographical area 9.

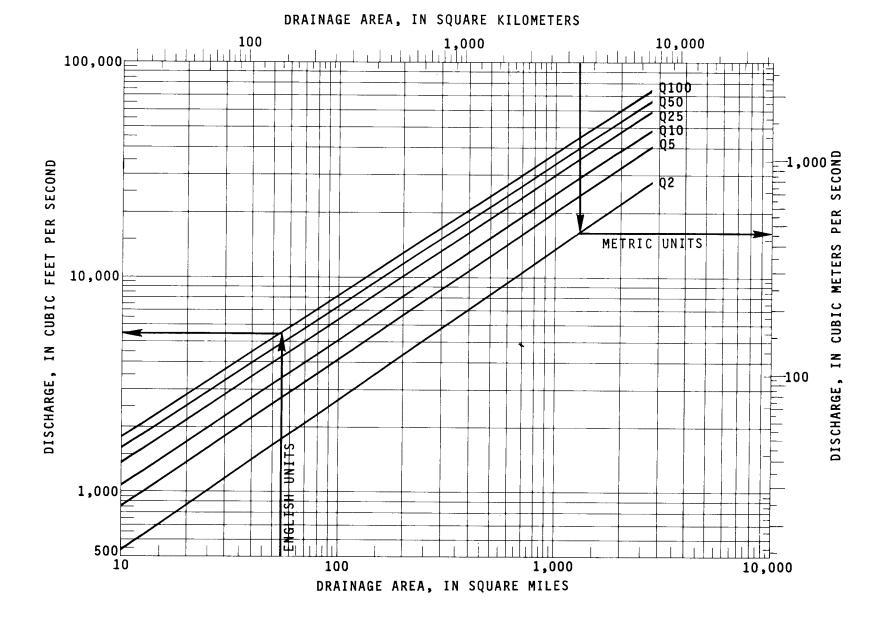


Figure 12.--Graphical solution of discharge equations, geographical area 10.

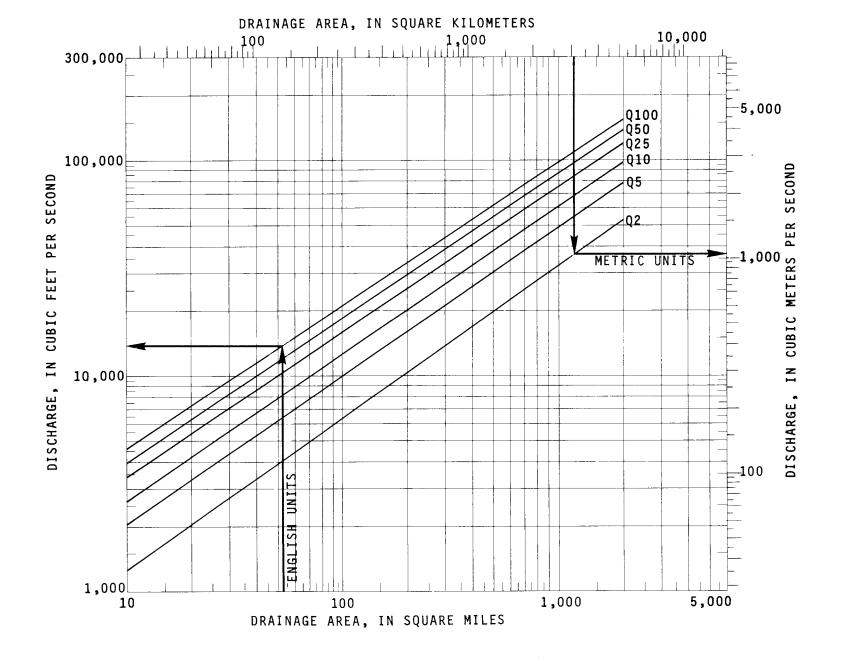


Figure 13.--Graphical solution of discharge equations, geographical area 11.

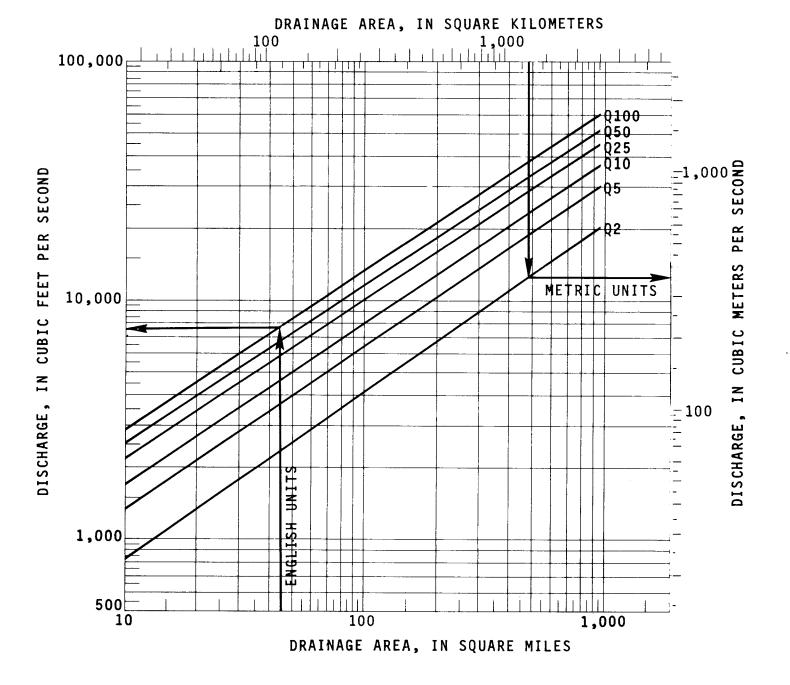
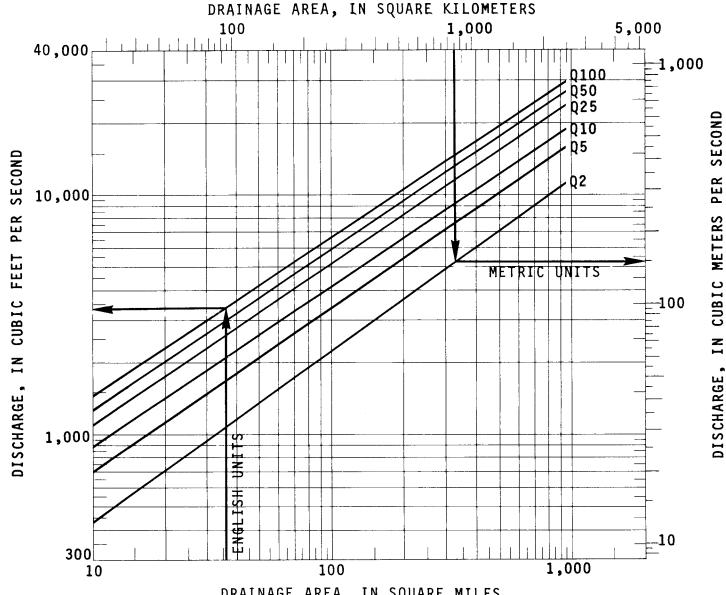
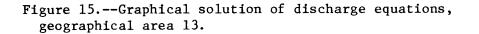




Figure 14.--Graphical solution of discharge equations, geographical area 12.

DRAINAGE AREA, IN SQUARE MILES

ω

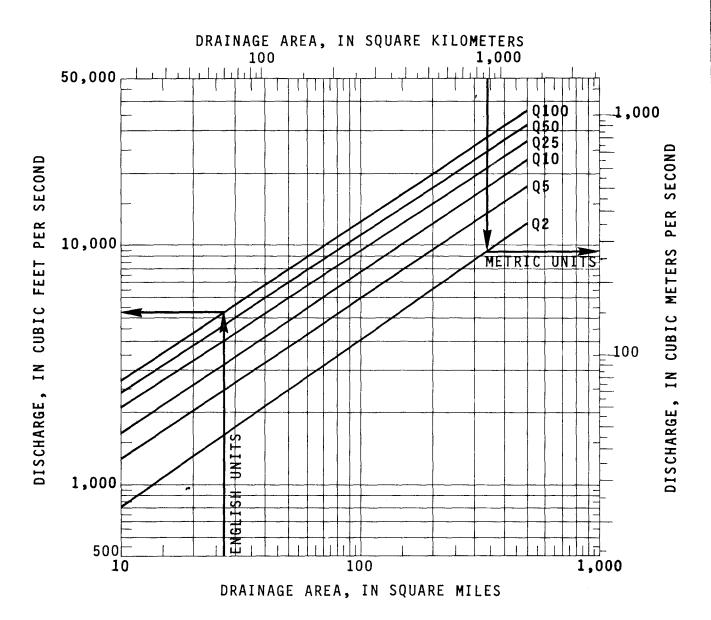


Figure 16.--Graphical solution of discharge equations, geographical area 14.

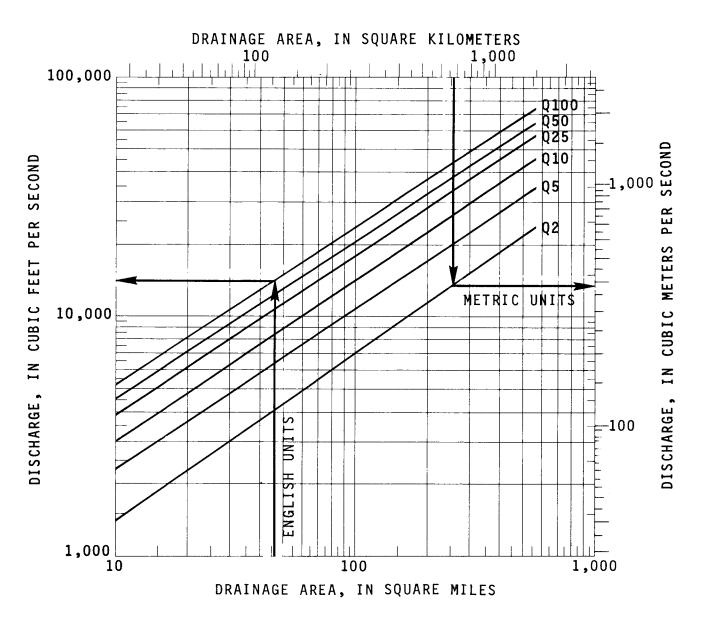


Figure 17.--Graphical solution of discharge equations, geographical area 15.

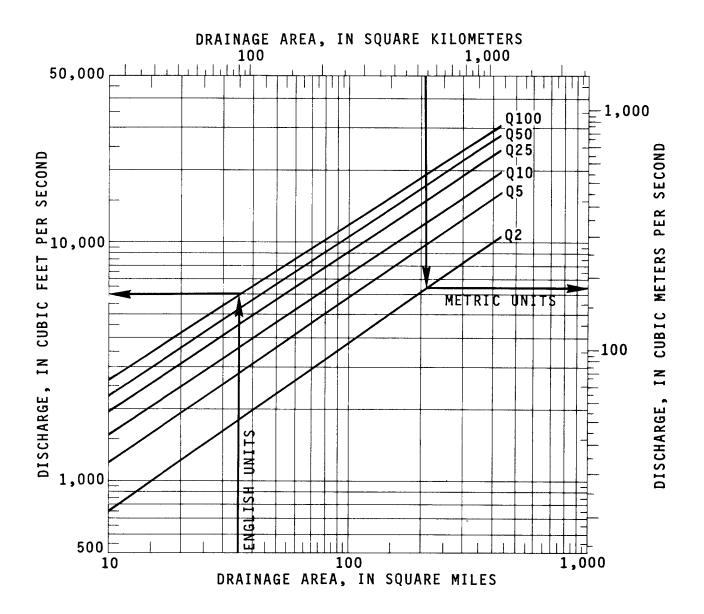


Figure 18.--Graphical solution of discharge equations, geographical area 16.

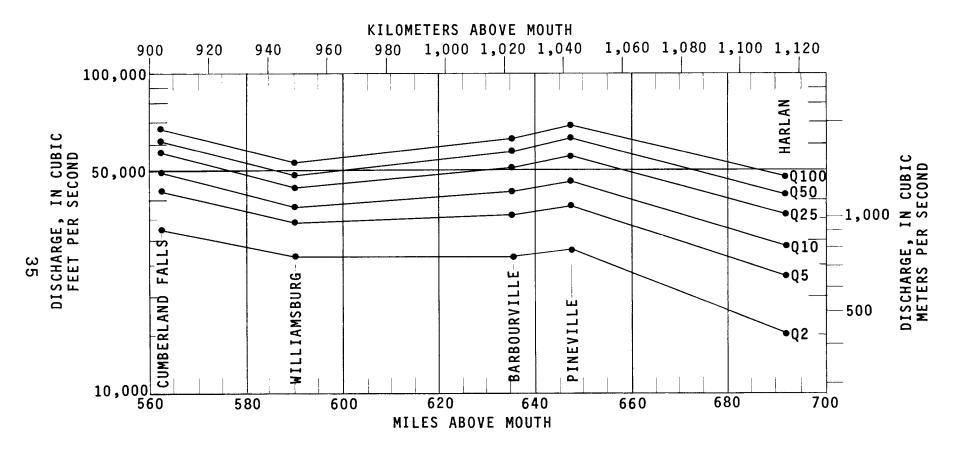


Figure 19.--Cumberland River, variation of magnitude for selected recurrence intervals with distance upstream from mouth.

Figure 20.--Kentucky River, variation of magnitude for selected recurrence intervals with distance upstream from mouth.

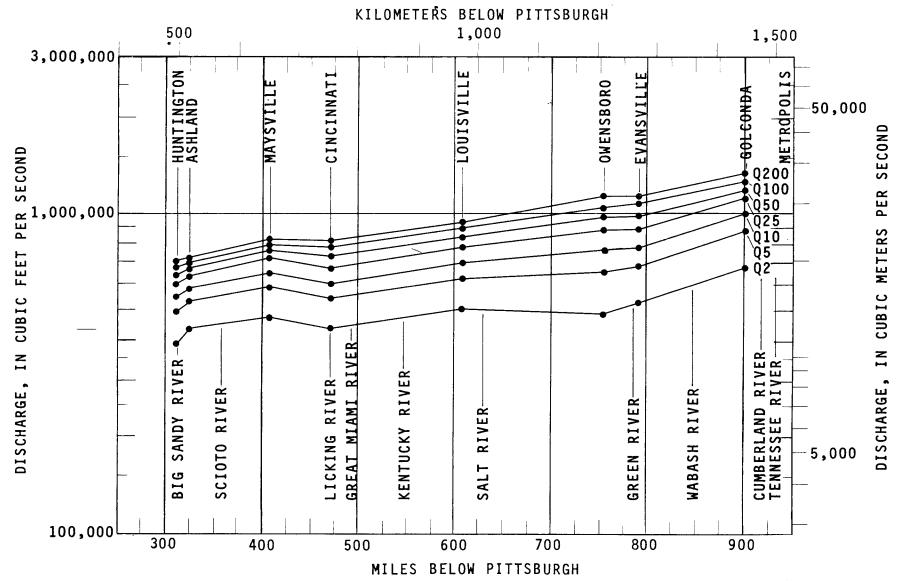


Figure 21.--Ohio River, variation of magnitude for selected recurrence intervals with miles downstream from Pittsburgh.

Map No.	Station No.	Station Name	(squa	age Area re mile) Contributing	Period of record
1	03026000	Ohio River at Huntington, W. Va.	55,900	55,900	1935-70
2	03207000	Twelvepole Creek at Wayne, W. Va.	291	291	1916-66
3	03207500	Levisa Fork near Grundy, Va.	235	235	1942-70
4	03208000	Levisa Fork below Fishtrap Dam near Millard, Ky.	386	386	1933-67
5	03208500	Russell Fork at Haysi, Va.	286	286	1927-70
6	03209000	Pound River near Haysi, Va.	221	221	1927-70
7	03209500	Levisa Fork at Pikeville, Ky.	1,237	1,237	1903-65
8	03210000	Johns Creek near Meta, Ky.	55.8	55.8	1942-70
9	03211500	Johns Creek near Van Lear, Ky.	206	206	1939-50
10	03212000	Paint Creek at Staffordsville, Ky.	103	103	1950-70
11	03212500	Levisa Fork at Paintsville, Ky.	2,143	2,143	1929-65
12	03214000	Tug Fork near Kermit, W. Va.	1,185	1,185	1935-67

Map No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
1	Computed	a-0.39	393,000	486,000	538,000	595,000	633,000	668,000
	Assigned	-	-	-	-	-	-	-
	Regression	-	-	-	-	-	-	-
2	Computed Assigned Regression	.07 .07	6,540 6,540 7,960	10,400 10,400 12,100	13,300 13,300 15,000	17,400 17,400 18,600	20,600 20,600 21,200	24,100 24,100 24,000
3	Computed	.50	10,200	16,600	20,800	25,900	29,500	33,000
	Assigned	.1	9,620	16,400	21,800	29,700	36,300	43,600
	Regression	-	6,850	10,500	13,000	16,100	18,400	20,900
4	Computed	13	12,400	18,400	22,500	27,800	31,800	35,800
	Assigned	.1	12,200	18,300	28,200	28,900	33,800	38,900
	Regression	-	9,710	14,700	18,100	22,400	25,600	28,900
5	Computed Assigned Regression	74 0	14,300 13,200 7,860	23,200 23,000 12,000	28,700 30,700 14,800	34,800 41,900 18,400	38,900 51,100 21,000	42,500 61,100 23,800
6	Computed	22	9,720	15,000	18,600	23,200	26,600	30,100
	Assigned	.1	9,450	14,900	18,900	24,600	29,200	34,100
	Regression	-	6,560	10,100	12,400	15,500	17,700	20,000
7	Computed	51	24,900	44,300	53,500	64,400	72,000	79,000
	Assigned	.1	27,800	43,800	55,800	72,500	86,000	101,000
	Regression	-	22,000	32,700	39,900	48,800	55,400	62,300
8	Computed	44	2,610	4,040	4,960	6,080	6,870	7,630
	Assigned	.1	2,480	3,990	5,150	6,780	8,110	9,550
	Regression	-	2,490	3,920	4,900	6,160	7,110	8,090
9	Computed	-1.02	4,360	6,880	8,260	9,650	10,500	11,200
	Assigned	0	3,900	6,840	9,170	12,500	15,300	18,400
	Regression	-	6,250	9,590	11,900	14,700	16,900	19,100
10	Computed Assigned Regression	65 1 -	5,670 5,270 8,450	10,300 10,200 13,400	13,500 14,400 16,900	17,400 20,500 21,500	20,100 25,700 25,000	31,500 28,700
11	Computed Assigned Regression	32 0	33,400 32,600 32,400	47,900 47,700 47,700	57,200 58,200 57,900	68,300 71,900 70,500	76,200 82,500 79,800	83,900 93,300 89,500
12	Computed	03	23,200	37,200	47,600	61,900	73,200	85,200
	Assigned	0	23,100	37,200	47,700	62,200	73,800	86,200
	Regression	-	21,400	31,800	38,800	47,400	53,900	60,600

	and regression equationcontinued								
Map No.	Station No.	Station Name		nage Area are mile) Contributing	Period of record				
13	03215000	Big Sandy River at Louisa, Ky.	3,892	3,892	1939-70				
14	03215500	Blaine Creek at Yatesville, Ky.	217	217	1916-70				
15	03216000	Ohio River at Ashland, Ky.	60,750	60,750	1937-70				
10			,		1001 10				
16	03216500	Little Sandy River at Grayson, Ky.	402	402	1937-67				
17	03216800	Tygarts Creek at Olive Hill, Ky.	59.6	59.6	1958-70				
18	03217000	Tygarts Creek near Greenup, Ky.	242	242	1941-70				
10	03217000	Tygart's creek hear creekip, ky.	676	676	1941 70				
19	03238000	Ohio River at Maysville, Ky.	70,130	70,130	1937-70				
20	03248500	Licking River near Salyersville, Ky.	140	140	1939-70				
20	00110000								
21	03249500	Licking Divor at Formore, Ky	827	827	1938-70				
21	03249500	Licking River at Farmers, Ky.	827	827	1930-70				
22	03250000	Triplett Creek at Morehead, Ky.	47.9	47.9	1939-70				
23	03250500	Licking River at Blue Lick Springs, Ky.	1,785	1,785	1938-70				
24	03251000	North Fork Licking River near	119	119	1938-70				
		Lewisburg, Ky.							

Map No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year, discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
13	Computed	-0.50	48,800	70,400	83,500	98,600	109,000	118,000
	Assigned	0	47,000	69,900	86,100	107,000	124,000	141,000
	Regression	-	49,300	71,800	86,700	105,000	119,000	133,000
14	Computed Assigned Regression	24 1	6,390 6,310 6,480	9,710 9,690 9,940	11,900 12,100 12,300	14,800 15,200 15,300	16,900 17,600 17,500	18,900 20,000 19,800
15	Computed	a60	434,000	530,000	580,000	632,000	664,000	693,000
	Assigned	_	-	-	-	-	-	-
	Regression	_	-	-	-	-	-	-
16	Computed	48	10,100	14,500	17,100	20,200	22,400	24,300
	Assigned	1	9,770	14,400	17,600	21,600	24,700	27,800
	Regression	-	9,990	15,200	18,600	23,000	26,300	29,700
17	Computed Assigned Regression	32 1 -	5,320 5,240 5,750	7,220 7,200 9,230	8,370 8,460 11,700	10,000 14,900	11,200 17,400	12,300 20,000
18	Computed	-1.14	7,240	9,990	11,300	12,500	13,200	13,700
	Assigned	1	6,670	9,990	12,300	15,300	17,500	19,800
	Regression	-	6,990	10,700	13,200	16,400	18,800	21,300
19	Computed	a64	464,000	582,000	644,000	710,000	751,000	786,000
	Assigned	-	-	-	-	-	-	-
	Regression	-	-	-	-	-	-	-
20	Computed	46	4,100	6,850	8,720	11,100	12,800	14,400
	Assigned	0	3,900	6,790	9,070	12,400	15,100	18,100
	Regression	-	4,760	7,360	9,130	11,400	13,100	14,800
21	Computed Assigned Regression	65 1 -	12,100 11,600 -	16,400 16,300	18,700 19,300	21,300 23,200	22,900 26,000 -	24,400 28,800 -
22	Computed Assigned Regression	.72	5,900 6,430 4,930	10,500 10,900 7,940	14,800 14,200 10,100	22,100 18,800 12,900	29,200 22,500 15,000	38,100 26,400 17,300
23	Computed Assigned Regression	-1.32 2 -	21,100 19,900 -	25,800 25,900	27,800 29,600 -	29,400 33,900	30,200 36,900 -	30,800 39,800 -
24	Computed	50	6,030	8,330	9,690	11,200	12,300	13,200
	Assigned	2	5,910	8,310	9,860	11,800	13,100	14,500
	Regression	-	4,710	7,320	9,110	11,400	13,100	14,900

Мар	Station			nage Area are mile)	Period of
No.	No.	Station Name	Total	Contributing	record
25	03251500	Licking River at McKinneysburg, Ky.	2,326	2,326	1925-70
26	03252000	Stoner Creek at Paris, Ky.	239	239	1954-70
27	03252500	South Fork Licking River at Cynthiana, Ky.	621	621	1918-70
28	03253500	Licking River at Catawba, Ky.	3,300	3,300	1854-1970
29	03255000	Ohio River at Cincinnati, Ohio	76,580	76,580	1873-1970
30	03277300	North Fork Kentucky River at Whitesburg, Ky.	66.4	66.4	1957-70
31	03277500	North Fork Kentucky River at Hazard, Ky.	466	466	1940-70
32	03278000	Bear Branch near Noble, Ky.	2.21	2.21	1955-70
33	03278500	Troublesome Creek at Noble, Ky.	177	177	1950-70
34	03280000	North Fork Kentucky River at Jackson, Ky.	1,101	1,101	1905-70
35	03280600	Middle Fork Kentucky River near Hyden, Ky.	202	202	1957-70
36	03280700	Cutshin Creek at Wooton, Ky.	61.3	61.3	1958-70

Map No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
25	Computed Assigned Regression	-1.36 3 -	32,200 30,100	41,000 41,300	44,700 48,300	47,700 56,500 -	49,100 62,200 -	50,200 67,700 -
26	Computed Assigned Regression	-1.71 2 -	8,080 7,070 7,690	11,000 11,200 11,800	12,000 14,200 14,600	12,700 18,000 18,200	20,900 20,900	23,900 23,600
27	Computed Assigned Regression	-1.34 3 -	18,500 17,100 15,000	24,500 24,700 22,700	27,000 29,500 27,900	29,200 35,300 34,400	30,300 39,500 39,300	31,000 43,600 44,400
28	Computed Assigned Regression	78 3 -	46,800 45,400 -	62,600 62,500 -	70,900 73,100	79,600 85,700 -	84,900 94,600 -	89,400 103,000 -
29	Computed Assigned Regression	a20 - -	431,000	537,000 - -	599,000 - -	671,000 - -	721,000	767,000 - -
30	Computed Assigned Regression	.54 .1 -	2,140 2,240 2,820	3,750 3,830 4,410	5,220 5,110 5,510	7,600 6,970 6,920	8,540 7,970	10,300 9,070
31	Computed Assigned Regression	70 0 -	18,400 17,200 17,700	27,900 27,600 27,100	33,400 35,300 33,600	39,700 46,000 41,900	43,700 54,500 48,100	47,400 63,500 54,600
32	Computed Assigned Regression	92 0 -	230 210 411	349 346 694	414 450 897	482 594 1,170	711 1,380	835 1,610
33	Computed Assigned Regression	43 0 -	8,050 7,690 8,960	13,200 13,100 14,000	16,700 17,300 17,400	21,000 23,200 21,900	24,200 28,100 25,300	33,400 28,900
34	Computed Assigned Regression	36 0 -	24,600 23,800 32,400	36,800 36,600 48,900	44,700 45,700 60,100	54,300 58,100 74,300	61,200 67,800 85,100	67,900 77,900 96,200
35	Computed Assigned Regression	.04 0 -	13,200 13,200 9,840	25,900 25,900 15,300	36,900 36,800 19,100	54,000 53,500 23,900	68,100 27,600	84,700 31,500
36	Computed Assigned Regression	01 0 -	3,930 3,920 4,250	7,160 7,160 6,760	9,800 9,810 8,510	13,700 10,800	17,000 12,500	20,700 14,300

,

Мар	Station			nage Area are mile)	Period of
No.	No.	Station Name	Total	Contributing	record
37	03281000	Middle Fork Kentucky River at Tallega, Ky.	537	537	1929-60
38	03281200	South Fork Kentucky River at Oneida, Ky.	486	486	1957-70
39	03281500	South Fork Kentucky River at Booneville, Ky.	722	722	1926-70
40	03282000	Kentucky River at lock 14, at Heidelberg, Ky.	2,657	2,657	1921-60
41	03282500	Red River near Hazel Green, Ky.	65.8	65.8	1955-70
42	03283000	Stillwater Creek at Stillwater, Ky.	24.0	24.0	1955-70
43	03283500	Red River at Clay City, Ky.	362	362	1931-70
44	03284000	Kentucky River at lock 10, near Winchester, Ky.	3,955	3,955	1908-70
45	03284500	Kentucky River at lock 8, near Camp Nelson, Ky.	4,414	4,414	1911-70
46	03285000	Dix River near Danville, Ky.	318	318	1943-70
47	03287000	Kentucky River at lock 6, near Salvisa, Ky.	5,102	5,002	1895-1970
48	03287500	Kentucky River at lock 4, at Frankfort, Ky.	5,412	5,292	1895-1970

Map No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
37	Computed Assigned Regression	0.43	13,800 14,500 19,600	22,600 23,000 29,900	29,900 29,100 37,000	41,000 37,300 46,000	50,900 43,600 52,800	62,100 50,200 60,000
38	Computed Assigned Regression	20 0 -	21,400 21,000 18,200	34,500 34,300 27,900	43,700 44,400 34,600	55,900 58,300 43,000	69,600 49,500	81,600 56,100
39	Computed Assigned Regression	04 1 -	23,200 23,400 24,100	37,200 37,200 36,600	47,500 47,300 45,200	61,500 60,700 56,100	72,700 71,300 64,300	84,400 82,100 72,900
40	Computed Assigned Regression	29 1 -	56,700 55,800 60,200	82,600 82,300 89,400	99,300 100,000 109,000	120,000 124,000 134,000	134,000 141,000 153,000	149,000 159,000 172,000
41	Computed Assigned Regression	.04 1 -	2,240 2,270 4,470	3,800 3,820 7,100	5,030 4,980 8,930	6,780 6,570 11,300	7,850 13,100	9,190 15,000
42	Computed Assigned Regression	74 1 -	2,590 2,400 2,200	4,380 4,340 3,560	5,500 5,880 4,510	6,790 8,080 5,770	9,900 6,730	11,900 7,730
43	Computed Assigned Regression	52 1 -	8,790 8,410 10,300	14,300 14,200 15,700	17,800 18,500 19,300	22,200 24,500 24,000	25,300 29,300 27,500	28,200 34,300 31,100
44	Computed Assigned Regression	89 2 -	59,200 57,000	74,700 74,600	82,300 85,300 -	89,700 98,000 -	94,000 107,000 -	97,600 115,000 -
45	Computed Assigned Regression	-1.04 2 -	65,400 62,300 -	82,800 82,800	91,000 95,500 -	98,600 111,000 -	103,000 121,000 -	106,000 132,000 -
46	Computed Assigned Regression	49 2 -	12,700 12,400 15,000	18,100 18,000 23,300	21,300 21,700 28,900	25,000 26,300 36,200	27,600 29,700 41,800	29,900 33,000 47,600
47	Computed Assigned Regression	81 2 -	66,800 64,500 -	85,600 85,400	95,100 98,200	105,000 114,000	110,000 124,000 -	115,000 135,000
48	Computed Assigned Regression	-1.02	64,100 61,600	80,900 81,000 -	88,800 92,500 -	96,200 106,000 -	100,000 115,000 -	104,000 124,000 -

		and regression equation cont	111404		
Map No.	Station No.	Station Name	(squa:	age Area re mile) Contributing	Period of record
49	03288000	North Elkhorn Creek near Georgetown, Ky.	119	111	1957-70
50	03288500	Cave Creek near Fort Spring, Ky.	2.53	1.93	1953-70
51	03289000	South Elkhorn Creek at Fort Spring, Ky.	24.0	21.0	1951-70
01					1001 /0
52	03289500	Elkhorn Creek near Frankfort, Ky.	473	403	1916-70
		,			
53	03290000	Flat Creek near Frankfort, Ky.	5.63	5.63	1952-70
54	03290500	Kentucky River at lock 2, at	6,180	5,980	1894-1970
		Lockport, Ky.			
55	03291000	Eagle Creek at Sadieville, Ky.	42.9	42.9	1941-70
56	03291500	Eagle Creek at Glencoe, Ky.	437	437	1915-70
57	03292500	South Fork Beargrass Creek at	17.2	17.2	1940-70
		Louisville, Ky.			
58	03293000	Middle Fork Beargrass Creek at	18.9	18.4	1945-70
		Louisville, Ky.			
59	03294,500	Ohio River at Louisville, Ky.	91,170	91,170	1832-1970
60	03295000	Salt River near Harrodsburg, Ky.	41.4	39.4	1953-70

Map No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
49	Computed Assigned Regression	-1.58 3 -	4,240 3,880 2,930	5,460 5,540 4,540	5,910 6,590 5,630	6,250 7,870 7,020	8,780 8,040	9,650 9,110
50	Computed Assigned Regression	.56 3 -	85 93 198	150 155 329	209 198 420	305 255 542	297 634	341 729
51	Computed Assigned Regression	.18 3 -	803 836 950	1,250 1,260 1,510	1,590 1,540 1,900	2,060 1,890 2,400	2,450 2,150 2,780	2,400 3,160
52	Computed Assigned Regression	83 3 -	12,800 12,300 7,750	18,600 18,600 11,700	21,800 22,700 14,300	25,100 27,900 17,600	27,200 31,700 20,100	28,900 35,400 22,600
53	Computed Assigned Regression	28 3 -	2,140 2,140 882	3,310 3,310 1,470	4,110 4,100 1,880	5,110 5,090 2,450	5,850 5,820 2,880	6,540 3,330
54	Computed Assigned Regression	-1.37 3 -	70,500 66,700 -	85,900 86,400 -	92,100 98,100 -	97,100 112,000	99,400 121,000	101,000 130,000 -
55	Computed Assigned Regression	.70 3 -	4,260 4,520 3,680	5,880 6,010 5,900	7,140 6,920 7,450	8,950 7,970 9,510	10,500 8,710 11,100	12,100 9,400 12,700
56	Computed Assigned Regression	46 3	22,600 22,300 18,800	31,500 31,500 28,900	36,900 37,200 35,900	43,000 44,200 44,800	47,200 49,100 51,600	51,100 53,800 58,700
57	Computed Assigned Regression	46 4 -	973 965 1,010	1,850 1,840 1,620	2,490 2,510 2,050	3,350 3,420 2,600	4,010 4,120 3,010	4,660 4,840 3,440
58	Computed Assigned Regression	1.06 4 -	1,220 1,380 937	1,990 2,100 1,500	2,720 2,560 1,900	3,970 3,130 2,410	5,200 3,530 2,800	6,760 3,920 3,200
59	Computed Assigned Regression	a22 - -	495,000 - -	617,000 - -	689,000 - -	771,000	828,000	881,000 - -
60	Computed Assigned Regression	76 2 -	3,550 3,380 3,100	5,300 5,280 5,000	6,300 6,600 6,330	7,380 8,310 8,090	8,070 9,610 9,440	8,680 10,900 10,800

•

Мар	Station			nage Area are mile)	Period of
No.	No.	Station Name	Total	Contributing	record
61	03295500	Salt River near Van Buren, Ky.	196	192	1928-70
62	03298000	Floyds Fork at Fisherville, Ky.	138	138	1945-70
63	03298500	Salt River at Shepherdsville, Ky.	1,197	1,197	1939-70
64	03299000	Rolling Fork near Lebanon, Ky.	239	239	1939-70
65	03300000	Beech Fork near Springfield, Ky.	85.9	85.9	1953-70
66	03301000	Beech Fork at Bardstown, Ky.	669	669	1940-70
67	03301500	Rolling Fork near Boston, Ky.	1,299	1,299	1939-70
68	03302000	Pond Creek near Louisville, Ky.	64.0	64.0	1945-70
69	03303500	Ohio River at Owensboro, Ky.	97,200	97,200	1941-70
70	03304500	McGills Creek near McKinney, Ky.	2.14	2.14	1952-70
71	03305000	Green River near McKinney, Ky.	22.4	22.4	1952-70
72	03305500	Green River near Mt. Salem, Ky.	36.3	36.3	1954-70

Map No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
61	Computed Assigned Regression	-0.91 3 -	9,040 8,670 9,280	12,100 12,100 14,500	13,700 14,300 18,200	15,300 16,900 22,900	16,200 18,700 26,500	16,900 20,400 30,200
62	Computed Assigned Regression	1.13 b -	9,210 9,210 8,360	13,500 15,000 13,100	17,400 18,000 16,400	23,600 23,500 20,700	29,300 27,500 24,000	36,200 30,500 27,400
63	Computed Assigned Regression	.25 0 -	27,800 28,200 38,200	38,900 39,100 57,700	46,800 46,400 71,000	57,500 55,700 87,800	66,000 62,600 101,000	74,800 69,600 114,000
64	Computed Assigned Regression	.31 0	12,900 13,300 12,300	20,200 20,400 19,100	26,000 25,600 23,800	34,300 32,600 29,900	41,300 38,000 34,600	49,100 43,700 39,400
65	Computed Assigned Regression	18 c18 -	5,690 5,690 5,990	7,810 7,810 9,490	9,160 9,160 11,900	10,800 10,800 15,100	12,000 17,600	13,100 20,100
66	Computed Assigned Regression	86 3 -	19,700 19,000 25,400	26,400 26,400 38,700	29,800 30,900 47,900	33,300 36,400 59,600	35,300 40,200 68,500	37,100 43,900 77,700
67	Computed Assigned Regression	92 3	27,300 26,100 40,400	36,800 36,800 61,000	41,700 43,600 75,000	49,500 51,700 92,800	49,300 57,400 106,000	51,600 62,900 120,000
68	Computed Assigned Regression	.04 c.04 -	2,350 2,350 2,550	3,740 3,740 3,990	4,770 4,770 4,980	6,210 6,210 6,250	7,360 7,360 7,200	8,580 8,580 8,180
69	Computed Assigned Regression	a3 - -	476,000 - -	646,000 - -	750,000 - -	871,000	955,000 - -	1,030,000
70	Computed Assigned Regression	66 2 -	387 361 447	759 754 756	1,020 1,090 979	1,360 1,590 1,280	1,600 2,020 1,520	2,500 1,760
71	Computed Assigned Regression	15 2 -	3,220 3,250 2,330	6,680 6,690 3,780	9,650 9,600 4,800	14,100 13,900 6,160	18,000 17,600 7,200	21,700 8,280
72	Computed Assigned Regression	32 2 -	4,360 4,300 3,270	7,660 7,640 5,260	10,100 10,200 6,660	13,300 13,700 8,500	16,500 9,920	19,400 11,400

Мар	Station		(squa	age Area re_mile)	Period of
No.	No.	Station Name	Total	Contributing	record
73	03306500	Green River at Greensburg, Ky.	736	736	1940-68
74	03307000	Russell Creek near Columbia, Ky.	188	173	1940-70
75	03307500	South Fork Little Barren River at Edmonton, Ky.	18.3	18.3	1942-70
76	03308500	Green River at Munfordville, Ky.	1,673	1,493	1913-68
77	03309000	Green River at Mammoth Cave, Ky.	1,983	1,539	1935-50
78	03309500	McDougal Creek near Hodgenville, Ky.	5.34	5.34	1954-70
79	03310000	North Fork Nolin River at Hodgenville, Ky.	36.4	35.6	1942-70
80	03310300	Nolin River at White Mills, Ky.	357	237	1960-70
81	03310400	Bacon Creek near Priceville, Ky.	85.4	54.4	1960-70
82	03310500	Nolin River at Wax, Ky.	600	380	1937-62
83	03311000	Nolin River at Kyrock, Ky.	707	484	1931-62
84	03311500	Green River at lock 6, at Brownsville, Ky.	2,762	2,072	1907-62

Map No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
73	Computed Assigned Regression	0.69 2 -	18,000 18,200	27,400 27,400	35,200 33,700	47,100 41,600 -	57,600 47,600 -	69,800 53,500 -
74	Computed Assigned Regression	34 2 -	7,220 7,140 5,210	10,300 10,300 8,050	12,300 12,400 9,980	14,600 14,900 12,500	16,200 16,800 14,300	17,800 18,700 16,200
75	Computed Assigned Regression	02 2 -	1,680 1,700 1,170	2,130 2,140 1,880	2,420 2,400 2,370	2,750 2,710 3,020	3,000 2,920 3,500	3,230 3,120 4,000
76	Computed Assigned Regression	.11 d1 -	28,000 28,300 -	39,500 39,600 -	47,300 47,000	57,500 56,200 -	65,300 63,100 -	105,000 84,400
77	Computed Assigned Regression	.29 3 -	29,100 30,600	44,900 45,500 -	57,000 55,200	74,400 67,200 -	88,800 75,900 -	1 ,050,000 84,400
78	Computed Assigned Regression	.28 3 -	844 877 850	1,540 1,550 1,420	2,110 2,060 1,820	2,970 2,730 2,360	3,260 2,780	3,790 3,220
79	Computed Assigned Regression	88 3 -	4,190 3,940 2,830	6,720 6,710 4,580	8,180 8,700 5,800	9,750 11,300 7,420	10,700 13,300 8,660	11,600 15,400 9,950
80	Computed Assigned Regression	.83 3 -	6,340 7,040 5,640	10,600 11,100 8,520	14,500 13,800 10,500	17,300 12,900	19,800 14,700	22,400 16,500
81	Computed Assigned Regression	60 3 -	1,250 1,210 2,060	2,080 2,080 3,200	2,630 2,710 3,970	3,540 4,950	4,180 5,680	4,830 6,420
82	Computed Assigned Regression	44 3 -	9,270 9,170 8,140	13,100 13,000 12,200	15,400 15,500 14,900	18,000 18,400 18,200	19,900 20,500 20,700	21,600 22,600 23,200
83	Computed Assigned Regression	60 3 -	10,000 9,780 9,130	14,300 14,300 13,600	16,800 17,200 16,600	19,600 20,700 20,300	21,500 23,200 23,100	23,200 25,700 25,900
84	Computed Assigned Regression	.27 e0	36,200 36,900 -	52,400 52,700 -	64,200 63,500 -	80,500 77,500 -	93,600 88,200 -	107,000 99,000 -

.

Мар	Station		(squa	age Area re mile)	Period of
No.	No.	Station Name	Total	Contributing	record
85	03312000	Bear Creek near Leitchfield, Ky.	30.8	30.8	1950-70
86	03312500	Barren River near Pageville, Ky.	531	512	1940-63
87	03313000	Barren River near Finney, Ky.	940	863	1942-50
88	03313500	West Bays Fork at Scottsville, Ky.	7.47	7.47	1951-70
89	03313800	Lick Creek near Franklin, Ky.	21.1	7.8	1959-70
90	03314000	Drakes Creek near Alvaton, Ky.	478	358	1937-70
91	03314500	Barren River at Bowling Green, Ky.	1,848	1,358	1938-63
92	03315500	Green River at lock 4, at Woodbury, Ky.	5,403	4,043	1937-63
93	03316000	Mud River near Lewisburg, Ky.	90.5	81.5	1940-70
94	03316500	Green River at Paradise, Ky.	6,182	4,802	1940-63
95	03317000	Rough River near Madrid, Ky.	225	158	1937-59
96	03317500	North Fork Rough River near Westview, Ky.	42.0	23.0	1955-70

`∕ap No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
85	Computed Assigned Regression	0.07 3 -	4,420 4,500 2,780	5,750 5,780 4,480	6,610 6,520 5,670	7,680 7,380 7,250	8,470 7,960 8,460	8,510 9,720
86	Computed Assigned Regression	.35 3 -	18,700 20,000 17,800	32,900 33,600 27,400	45,200 43,300 34,000	64,500 55,900 42,400	82,000 65,600 48,800	75,300 55,500
87	Computed Assigned Regression	26 3 -	28,900 29,100 26,700	49,200 49,300 40,600	63,900 63,700 50,100	82,800 62,200	97,400 71,400	112,000 80,900
88	Computed Assigned Regression	1.94 3 -	1,350 1,570 1,030	2,010 2,230 1,700	2,720 2,640 2,170	4,030 3,140 2,820	5,430 3,500 3,310	3,850 3,820
89	Computed Assigned Regression	1.31 3 -	1,770 2,020 1,850	2,810 3,010 3,010	3,830 3,650 3,830	4,450 4,920	5,030 5,750	5,590 6,620
90	Computed Assigned Regression	.68 3 -	16,100 17,700 16,600	27,400 28,400 25,500	37,700 35,800 31,600	54,500 45,200 39,500	70,500 52,300 45,500	89,900 59,300 51,800
91	Computed Assigned Regression	.46 3 -	29,300 31,200 42,900	46,200 47,200 64,500	60,000 57,700 79,200	80,800 70,800 97,700	98,900 80,400 112,000	119,000 89,700 126,000
92	Computed Assigned Regression	.58 d0 -	58,600 61,300 -	88,800 90,400 -	113,000 111,000	150,000 138,000 -	182,000 158,000 -	218,000 180,000 -
93	Computed Assigned Regression	89 4 -	5,330 5,110 5,140	7,780 7,780 8,150	9,100 9,510 10,200	10,500 11,600 13,000	11,300 13,100 15,100	12,000 14,600 17,300
94	Computed Assigned Regression	38 4 -	53,700 53,700	73,700 73,700 -	85,800 85,700 -	100,000 99,600 -	110,000 109,000 -	119,000 118,000
95	Computed Assigned Regression	-1.82 4 -	9,620 8,640 6,310	12,400 12,800 9,730	13,300 15,400 12,100	13,900 18,500 15,000	14,100 20,700 17,300	22,800 19,600
96	Computed Assigned Regression	04 4 -	1,940 1,990 1,930	2,770 2,780 3,070	3,320 3,260 3,860	4,030 3,810 4,890	4,200 5,660	4,560 6,460

.

		and regression equation co	Itmutu		
Map No.	Station No.	Station Name	(squa	nage Area are mile) Contributing	Period of record
97	03318000	Rough River near Falls of Rough, Ky.	454	345	1940-56
98	03318200	Rock Lick Creek near Glen Dean, Ky.	20.1	20.1	1957-70
99	03318500	Rough River at Falls of Rough, Ky.	504	394	1949-70
100	03318800	Caney Creek near Horse Branch, Ky.	124	124	1957-70
101	03319000	Rough River near Dundee, Ky.	757	637	1940-70
102	03320000	Green River at lock 2, at Calhoun, Ky.	7,564	6,024	1931-61
103	03320500	East Fork Pond River near Apex, Ky.	194	194	1940-70
104	03322000	Ohio River at Evansville, Ind.	107,000	107,000	1832-1970
105	03383000	Tradewater River at Olney, Ky.	255	246	1940-70
106	03384000	Rose Creek at Nebo, Ky.	2.10	2.10	1952-70
107	03384500	Ohio River at Golconda, Ill.	143,900	143,900	1937-70
108	03400500	Poor Fork at Cumberland, Ky.	82.3	82.3	1940-70

Map No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
97	Computed Assigned Regression	-1.67 4 -	9,050 8,120 10,300	12,200 12,500 15,700	13,400 15,400 19,300	14,300 19,000 24,000	21,500 27,400	24,000 32,000
98	Computed Assigned Regression	.70 4 -	2,820 3,110 1,330	4,590 4,750 2,130	6,140 5,810 2,690	8,640 7,110 3,430	8,040 3,980	8,930 4,550
99	Computed Assigned Regression	-1.47 4 -	9,140 8,470 11,100	11,900 12,100 16,900	13,100 14,300 20,800	14,000 17,000 25,700	14,400 18,800 29,400	20,600 33,200
100	Computed Assigned Regression	.47 4 -	5,170 5,450 4,780	7,160 7,270 7,420	8,630 8,350 9,230	10,700 9,580 11,600	10,400 13,300	11,200 15,100
101	Computed Assigned Regression	83 4 -	10,400 10,100 14,800	14,600 14,600 22,300	16,800 17,400 27,400	19,100 20,700 33,800	20,500 23,000 38,600	21,800 25,200 43,500
102	Computed Assigned Regression	.84 d.1 -	53,000 55,600 -	75,300 77,000	93,300 91,700 -	120,000 111,000 -	144,000 125,000 -	171,000 140,000 -
103	Computed Assigned Regression	27 4 -	7,210 7,310 10,100	11,800 11,900 15,800	15,100 15,000 19,700	19,400 18,800 24,800	22,700 21,700 28,700	25,900 24,400 32,700
104	Computed Assigned Regression	.07 - -	521,000 - -	669,000 - -	763,000 - -	879,000 - -	964,000 - -	1,050,000 - -
105	Computed Assigned Regression	.23 4 -	3,800 4,000 3,680	5,780 5,860 5,570	7,270 7,020 6,830	9,360 8,410 8,400	11,100 9,390 9,550	12,900 10,300 10,700
106	Computed Assigned Regression	15 5 -	629 643 421	874 877 712	1,030 1,010 921	1,230 1,170 1,210	1,370 1,270 1,430	1,360 1,660
107	Computed Assigned Regression	a59 - -	672,000 - -	870,000 - -	978,000 - -	1,100,000 - -	1,170,000	1,240,000
108	Computed Assigned Regression	46 0 -	4,000 3,820 5,230	6,250 6,200 8,270	7,720 8,000 10,400	9,500 10,500 13,100	10,800 12,500 15,200	12,000 14,600 17,400

Map No.	Station No.	Station Name	(squa	age Area ure mile) Contributing	Period of record
109	03400700	Clover Fork at Evarts, Ky.	82.4	82.4	1960-70
110	03401000	Cumberland River near Harlan, Ky.	374	374	1941-70
111	03401500	Yellow Creek Bypass at Middlesboro, Ky.	35.3	35.3	1941-70
112	03402000	Yellow Creek near Middlesboro, Ky.	58.2	58.2	1941-70
113	03403000	Cumberland River near Pineville, Ky.	809	809	1929-70
114	03403500	Cumberland River at Barbourville, Ky.	960	960	1923-70
115	03404000	Cumberland River at Williamsburg, Ky.	1,607	1,607	1951-70
116	03404500	Cumberland River at Cumberland Falls, Ky.	1,977	1,977	1916-70
117	03404900	Lynn Camp Creek at Corbin, Ky.	53.8	53.8	1957-70
118	03405000	Laurel River at Corbin, Ky.	201	201	1923-70
110	07404000		7 00	7 00	1054 80
119	03406000	Wood Creek near London, Ky.	3.89	3.89	1954-70
120	03406500	Rockcastle River at Billows, Ky.	604	604	1937-70
120	03406500	NULACASITE RIVET AL DITTOWS, NY.	004	004	T22/-/0

Map No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
109	Computed Assigned Regression	-0.53 0	6,310 5,960 5,240	10,500 10,400 8,280	13,300 13,900 10,400	18,900 13,200	23,100 15,300	27,700 17,400
110	Computed Assigned Regression	22 0	17,800 17,500 15,200	27,000 26,900 23,300	33,200 33,600 28,900	41,000 42,700 36,100	46,800 49,800 41,600	52,600 57,200 47,200
111	Computed Assigned Regression	.34 0 -	3,010 3,110 2,890	4,880 4,930 4,630	6,380 6,280 5,860	8,630 8,120 7,470	10,600 9,590 8,690	12,700 11,100 9,970
112	Computed Assigned Regression	.75 0	3,460 3,660 4,100	5,190 5,320 6,520	6,620 6,470 8,210	8,830 7,970 10,400	10,800 9,120 12,100	13,100 10,300 13,900
113	Computed Assigned Regression	11 0 -	28,200 28,000	39,000 38,900	46,000 46,200	54,700 55,500	61,100 62,600	67,400 69,600 -
114	Computed Assigned Regression	06 0	26,600 26,500 -	36,300 36,300 -	42,700 42,800	50,500 50,900	56,300 57,000 -	62,100 63,100 -
115	Computed Assigned Regression	.20	26,400 26,700	34,000 34,100	39,000 38,700	45,300 44,400	50,000 48,400	52 , 400
116	Computed Assigned Regression	.01 -0.1 -	33,000 33,200	43,200 43,300 -	49,700 49,500	57,700 57,000	63,600 62,400	69,400 67,700
117	Computed Assigned Regression	.18	2,380 2,460 2,500	4,230 4,280 3,930	5,790 5,680 4,920	8,140 7,640 6,200	9,240 7,150	10,900 8,140
118	Computed Assigned Regression	05 1 -	6,580 6,610 6,310	10,500 10,500 9,700	13,400 13,300 12,000	17,200 17,100 14,900	20,300 20,000 17,100	23,500 23,000 19,400
119	Computed Assigned Regression	72 1 -	276 258 394	441 438 651	541 573 831	654 761 1,070	912 1,250	1,070 1,440
120	Computed Assigned Regression	46 1 -	20,800 20,200 23,600	30,200 30,100 36,100	36,100 36,900 44,700	42,900 45,800 55,600	47,700 52,500 64,000	52,100 59,300 72,600

		6 1			
Map No.	Station No.	Station Name	(square	ge Area e mile) ontributing	Period of record
121	03407100	Cane Branch near Parkers Lake, Ky.	0.67	0.67	1957-70
122	03407200	West Fork Cane Branch near Parkers Lake, Ky.	.26	.26	1957-70
123	03407300	Helton Branch at Greenwood, Ky.	.85	.85	1956-70
124	03407500	Buck Creek near Shopville, Ky.	165	165	1953-70
125	03408000	New River near New River, Tenn.	314	314	1923-34
126	03408500	New River at New River, Tenn.	382	382	1935-67
127	03409500	Clear Fork near Robbins, Tenn.	272	272	1931-67
128	03410500	South Fork Cumberland River near Stearns, Ky.	954	954	1943-70
129	03411000	South Fork Cumberland River at Nevelsville, Ky.	1,271	1,271	1916-50
130	03411500	Cumberland River at Burnside, Ky.	4,865	4,865	1885-1950
131	03412500	Pitman Creek at Somerset, Ky.	31.3	31.3	1954-70
132	03414000	Cumberland River near Rowena, Ky.	5,790	5,790	1940-50

Map No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
121	Computed Assigned Regression	-0.07 1 -	73 73 114	149 149 195	215 215 253	318 315 331	402 390	499 452
122	Computed Assigned Regression	.66 1 -	32 35 59	56 58 102	77 75 133	113 98 176	116 208	136 242
123	Computed Assigned Regression	29 1 -	54 53 135	107 107 230	150 153 297	211 224 388	285 457	354 529
124	Computed Assigned Regression	33 1 -	8,100 7,930 9,480	12,700 12,600 14,800	15,800 16,000 18,600	19,600 20,600 23,400	24,100 27,100	27,800 30,900
125	Computed Assigned Regression	1.80 0 -	17,300 19,900 16,400	27,300 30,100 25,400	38,100 37,500 31,600	47,200 39,700	54,900 45,900	62,800 52,300
126	Computed Assigned Regression	28 0 -	24,600 24,300 18,800	31,700 31,600 29,100	35,900 36,300 36,100	40,700 42,000 45,300	44,000 46,200 52,300	47,100 50,300 59,500
127	Computed Assigned Regression	18 0 -	13,800 13,600 14,800	20,200 20,100 23,000	24,400 24,700 28,700	29,800 30,700 36,100	33,800 35,300 41,700	37,800 40,100 47,600
128	Computed Assigned Regression	17 1 -	44,500 44,400 35,800	59,100 59,100 54,400	68,200 68,400 67,100	79,100 79,700 83,400	86,800 87,900 95,900	94,300 96,000 109,000
129	Computed Assigned Regression	11 1 -	50,300 50,200 43,800	72,300 72,300 66,200	87,000 87,100 81,500	106,000 106,000 101,000	120,000 120,000 116,000	133,000 134,000 131,000
130	Computed Assigned Regression	54 1 -	107,000 104,000 -	142,000 141,000 -	162,000 165,000	183,000 195,000	197,000 216,000	210,000 237,000
131	Computed Assigned Regression	75 1 -	1,940 1,860 1,710	2,640 2,620 2,710	3,010 3,130 3,410	3,400 3,770 4,320	4,250 4,990	4,720 5,700
132	Computed Assigned Regression	07 c07	97,100 97,100 -	136,000 136,000 -	161,000 161,000 -	193 , 000 _	217,000	240,000

Мар	Station		(squ	nage area are mile)	Period of
No.	No.	Station Name	Total	Contributing	record
133	03414500	East Fork Obey River near Jamestown, Tenn	a. 202	196	1944-67
134	03415000	West Fork Obey River near Alpine, Tenn.	115	81	1943-67
135	03416000	Wolf River near Byrdstown, Tenn.	106	106	1944-67
136	03417500	Cumberland River at Celina, Tenn.	7,320	7,320	1923-50
137	03435500	Red River near Adams, Tenn.	709	309	1921-67
138	03436000	Sulphur Fork Red River near Adams, Tenn.	186	165	1940-67
139	03437500	South Fork Little River at Hopkinsville, Ky.	46.5	35.5	1950-70
140	03438000	Little River near Cadiz, Ky.	244	150	1940-70
141	03610000	Clarks River at Murray, Ky.	89.7	89.7	1952-70
142	03610500	Clarks River near Benton, Ky.	227	227	1939-70
143	03611500	Ohio River at Metropolis, Ill.	203,000	203,000	1930-70
144	07022500	Perry Creek near Mayfield, Ky.	1.72	1.72	1953-70

Map No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
133	Computed Assigned Regression	-0.21 1 -	15,800 15,700 10,500	22,200 22,100 16,500	26,200 26,400 20,700	31,200 31,700 26,200	34,800 35,700 30,300	38,300 39,600 34,600
134	Computed Assigned Regression	18 1 -	6,920 6,880 7,070	10,000 9,990 11,200	12,000 12,100 14,100	14,600 14,800 17,900	16,500 16,800 20,800	18,300 18,800 23,800
135	Computed Assigned Regression	46 1 -	7,550 7,270 7,630	12,200 12,100 12,100	15,300 15,800 15,200	19,100 20,700 19,200	21,800 24,700 22,300	24,400 28,900 25,600
136	Computed Assigned Regression	a12 - -	88,000 - -	113,000 -	128,000 - -	146,000 -	158,000 - -	171,000 _ _
137	Computed Assigned Regression	42 3 -	14,000 13,800 13,500	20,300 20,300 20,300	24,300 24,500 24,900	29,000 29,600 30,800	32,200 33,300 35,100	35,300 36,900 39,600
138	Computed Assigned Regression	.08 3 -	6,320 6,510 5,340	9,300 9,370 8,240	11,400 11,200 10,200	14,300 13,400 12,800	16,500 15,000 14,700	18,800 16,500 16,600
139	Computed Assigned Regression	.61 4 -	2,390 2,600 1,990	3,790 3,900 3,150	4,970 4,730 3,960	6,800 5,730 5,000	8,430 6,430 5,790	7,110 6,600
140	Computed Assigned Regression	.22 4 -	6,240 6,520 6,390	9,110 9,210 9,820	11,200 10,900 12,200	14,100 12,800 15,100	16,400 14,100 17,400	18,800 15,400 19,700
141	Computed Assigned Regression	.77 b	6,290 7,000 6,560	12,000 12,600 10,400	17,700 16,800 13,100	28,100 22,600 16,600	38,700 27,300 19,300	32,200 22,000
142	Computed Assigned Regression	85 5 -	9,840 9,430 12,600	16,700 16,700 19,600	20,900 21,800 24,500	25,600 28,300 30,800	28,600 33,100 35,700	31,200 37,800 40,700
143	Computed Assigned Regression	a69 - -	899,000 - -	1,120,000	1,230,000	1,350,000	1,420,000	1,480,000
144	Computed Assigned Regression	.11 5 -	584 614 217	895 905 364	1,130 1,080 467	1,440 1,290 607	1,440 712	1,570 822

.

and regression equationContinued						
Map No.	Station No.	Station Name		inage area uare mile) Contributing	Period of record	
145	07023000	Mayfield Creek near Lovelaceville, Ky.	212	212	1939-70	
146	07023500	Obion Creek at Pryorsburg, Ky.	36.8	36.8	1952-70	
147	07024000	Bayou de Chien near Clinton, Ky.	68.7	68.7	1940-70	
148	07025500	North Fork Obion River near Union City, Tenn.	480	480	1930-67	

a Main-stem station, station skew used. b From graphical plot. c Station skew used.

d Weighted skew. e Mean skew.

•

Map No.		Skew	2-year discharge (ft ³ /s)	5-year discharge (ft ³ /s)	10-year discharge (ft ³ /s)	25-year discharge (ft ³ /s)	50-year discharge (ft ³ /s)	100-year discharge (ft ³ /s)
145	Computed	-0.15	6,490	8,960	10,500	12,500	13,900	15,300
	Assigned	5	6,640	8,990	10,300	11,900	12,900	13,800
	Regression	-	6,410	9,840	12,200	15,100	17,300	19,600
146	Computed Assigned Regression	08 5 -	3,330 3,400 1,870	4,340 · 4,360 2,970	4,970 4,880 3,720	5,730 5,460 4,690	6,280 5,840 5,430	6,180 6,190
147	Computed	13	3,110	4,760	5,910	7,400	8,530	9,690
	Assigned	5	3,210	4,780	5,750	6,890	7,680	8,410
	Regression	-	2,900	4,550	5,670	7,120	8,210	9,340
148	Computed	0	9,450	17,300	23,700	33,300	41,400	50,300
	Assigned	5	10,000	17,500	22,600	29,100	33,900	38,500
	Regression	-	11,400	17,200	21,200	26,100	29,800	33,600

.

METHODS OF ANALYSIS

Methods of flood-frequency analysis used in this report are explained in detail in reports by Benson, 1962; Hardison, 1974; Thomas and Benson, 1970; and U.S. Water Resources Council, 1967; and are explained only briefly here.

The analysis had two steps:

- 1. Determine magnitude and frequency of floods based on annual flood peaks at individual stream-gaging stations throughout the State and a few in surrounding states.
- 2. Develop a method for estimating floodfrequency data at ungaged sites from flood characteristics at gaging stations.

Flood peaks and drainage area for 131 gaging stations having 10 or more years of record listed in Table 4 were used in this floodfrequency analysis. Three of these stations are in West Virginia, three in Virginia and eight in Tennessee.

Except for gaging stations on the Ohio River, the drainage area for most gages varies between 10 square miles (25.9 square kilometres), and 4,300 square miles (11,100 square kilometres).

Frequency Analysis at Gaging Stations

The magnitude and frequency relation for a gaging station can be determined mathematically, or graphically by fitting a curve to plotted points. The mathematical solution using log-Pearson Type III method recommended by the U.S. Water Resources Council (1967) was used in preparing this report. Computations were made with a digital computer and the results printed in both tabular and graphical form. In this method the peak discharge for selected recurrence intervals is computed by equation

$\log Q = M + KS$

where Q is the peak discharge for a selected recurrence interval, M is the mean of the logarithms of the annual peaks, K is Pearson Type III coordinates expressed in number of standard deviations from the mean for the selected recurrence interval, and S is the standard deviation of the logarithms of the annual peaks. Values of K may be selected from tables for desired recurrence interval using the computed coefficient of skew of the logarithms of skew of annual peaks, or assigned coefficients of skew.

Frequency curves computed by log-Pearson Type III method were compared to a graphical plot of the annual peaks. Plotting positions of the annual peaks were computed from the equation

$$T = (n+1)/m$$

where T is recurrence interval in years, n the number of years of record, and m the peak's numerical rank with the largest peak being 1. The log-Pearson Type III frequency curves using assigned skew

(Hardison, 1974) were in general agreement with graphical plots in most cases. Where they were not in agreement, extreme high and low annual peaks were examined. Low annual peaks which were considered to be "outliers", nonrepresentative annual peaks for the period of record, were eliminated (U.S. Water Resources Council, 1967). In all but two cases the log-Pearson plot agreed closely with the graphical plot. The graphical plot was used for these two stations; see Table 4, Map Nos. 62 and 141.

Historical peaks were plotted individually with appropriate plotting positions in years. For example, the flood of January 1937 along the Ohio River is the highest known flood in at least 200 years. The plotting position for the 1937 flood is at 200 years on the frequency curves for the Ohio River. This plotting of historical floods agreed with the computed curves in all cases which were used in this report.

When the computed coefficient of skew was within 0.05 of the assigned coefficient of skew, the computed value was used in the computations. Small differences in coefficient of skew makes little difference in computed discharge. Computed coefficient of skew was used for frequency analysis for stations on the Ohio River. Computed skews were weighted with Hardison's generalized skews to determine the assigned skew to use for three main-stem stations on the Green River. The two skews were averaged for another station on the Green River.

"Assigned skew" frequency values in Table 4 should be used to find the peak discharge for a desired frequency at a gaging station except along the Ohio River when the computed skew is used.

Regional Analysis

Relationships developed herein were determined by the step-backward multiple regression technique. Streamflow characteristics for 2-, 5-, 10-, 25-, 50-, and 100-year flood were related to basin characteristics. The regression model used to define these relationships has the general form

$$Q_{p}=aA^{b_{1}}B_{1}^{b_{2}}B_{2}^{b_{3}}---$$

where Q_p is the flood peak, a is the regression constant, A and B are basin characteristics, and b_1 and b_2 are regression coefficients. The analysis determines the regression constant and coefficients, evaluates the statistical significance of each basin characteristic, and provides a standard error of estimate.

Seven basin parameters related to the 10-year flood were used in a report by Beaber, 1970. Four of these parameters, main channel slope, main channel length, mean basin elevation and percent forest cover are time-consuming and difficult for the user to determine. Non-contributing drainage area is removed from total drainage to give contributing drainage area for use in the regression equations in this report. Mean annual precipitation can be taken from graphs in National Weather Service

67

,

reports. Several simple methods were tried to estimate main channel length and slope to use in the regression analysis. The results were very poor. It was decided to try another approach using only contributing drainage area.

A preliminary regression equation for 10-year peaks was computed using only contributing drainage area and flood peaks for 131 gaging stations in Kentucky and three surrounding states. Residuals, ratios of observed values of 10-year peaks to those computed with the preliminary equation, were plotted on a map "Streams of Kentucky" to investigate areal variations. Regional boundaries were drawn giving consideration to residual patterns, drainage basin boundaries, and physiographic divisions determined from over 500 geologic quadrangle maps and "Soil Conservation Service's General Soils Map-Draft" (for Kentucky). The State was divided into 16 regions or areas in this The weighted average of the residuals, based on length of way. record, was computed for each of the 16 areas and is shown as geographical area factor R under the geographical area number on Plate 1.

A multiple regression was run using contributing drainage area and geographical factor R as parameters. The results are the equations and standard errors shown in Table 2. Use of the equations are explained in the section Estimating Technique.

The following reaches of stream were treated as main-stem stations and the gaging stations on these streams were not used in

the regression analysis:

	Licking River below Cave Run Lake
~>	Kentucky River below Heidelberg, Ky.
	Green River below Campbellsville Lake
	Cumberland River below Harlan, Ky.
	Ohio River below Huntington, W. Va.

Figures 19-21 show the relation of peak discharge for selected recurrence intervals to river miles for Cumberland River upstream from Lake Cumberland, Kentucky River downstream from Lock 14 at Heidelberg, and Ohio River downstream from Huntington, W. Va., respectively.

The main stems of the Licking River and Green River are regulated by reservoirs, therefore no curves are shown.

The records for the Ohio River upstream from Golconda, Illinois, and the Kentucky River downstream from Heidelberg are homogeneous for the period of record. Total usable storage upstream from each station on these two streams are well below the criteria set by Benson, 1962, pertaining to regulation. High flow volumetric plots were made for the Cumberland, Kentucky and Ohio Rivers to confirm the shape of the curves shown in Figures 19-21.

SELECTED REFERENCES

- Beaber, Howard C., 1970, A proposed streamflow data program for Kentucky: U.S. Geol. Survey open-file rept., 70 p.
- Benson, M. A., 1962, Factors influencing the occurrence of floods in a humid region of diverse terrain: U.S. Geol. Survey Water-Supply Paper 1580-B, 64 p.
- Hardison, C. A., 1974, Generalized skew coefficients of annual floods in the United States and their application: Water Resources Research Vol. 10, No. 4 August 1974 p. 745-752.
- McCabe, John A., 1962, Floods in Kentucky magnitude and frequency: Kentucky Geol. Survey Information Circular 9, Series X.
- Speer, P. R., and Gamble, C. R., 1964, Magnitude and frequency of floods in the United States, Part 3-B, Cumberland and Tennessee River basin: U.S. Geol. Survey Water-Supply Paper 1676, 340 p.
- _____1965, Magnitude and frequency of floods in the United States, Part 3-A, except Cumberland and Tennessee River basins: U.S. Geol. Survey Water-Supply Paper 1675, 630 p.
- Thomas, D. M., and Benson, M. A., 1970, Generalization of streamflow characteristics from drainage-basin characteristics: U.S. Geol. Survey Water-Supply Paper 1975, 55 p.
- U.S. Water Resources Council, 1967, A uniform technique for determining flood-flow frequencies: U.S. Water Resources Council Bull. 15, 15 p.

70

☆USGPO: 1976 — 758-112/04 Region 5-II