
Front cover: Estimated distribution of atrazine use on United States cropland during 1997. 
Darker shades indicate the greatest use intensity. Blue circles are streams used for model 
development.
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FOREWORD

The U.S. Geological Survey (USGS) is committed to 
serve the Nation with accurate and timely scientific infor-
mation that helps enhance and protect the overall quality 
of life, and facilitates effective management of water, bio-
logical, energy, and mineral resources. 
(http://www.usgs.gov/). Information on the quality of the 
Nation's water resources is of critical interest to the USGS 
because it is so integrally linked to the long-term avail-
ability of water that is clean and safe for drinking and rec-
reation and that is suitable for industry, irrigation, and 
habitat for fish and wildlife. Escalating population growth 
and increasing demands for the multiple water uses make 
water availability, now measured in terms of quantity and 
quality, even more critical to the long-term sustainability 
of our communities and ecosystems.

The USGS implemented the National Water-Quality 
Assessment (NAWQA) Program to support national, 
regional, and local information needs and decisions 
related to water-quality management and policy. (http:// 
water.usgs.gov/nawqa).Shaped by and coordinated with 
ongoing efforts of other Federal, State, and local agen-
cies, the NAWQA Program is designed to answer: What 
is the condition of our Nation's streams and ground water? 
How are the conditions changing over time? How do nat-
ural features and human activities affect the quality of 
streams and ground water, and where are those effects 
most pronounced? By combining information on water 
chemistry, physical characteristics, stream habitat, and 
aquatic life, the NAWQA Program aims to provide sci-
ence-based insights for current and emerging water issues 
and priorities. NAWQA results can contribute to 
informed decisions that result in practical and effective 
water-resource management and strategies that protect 
and restore water quality.

Since 1991, the NAWQA Program has implemented 
interdisciplinary assessments in more than 50 of the 
Nation's most important river basins and aquifers, 
referred to as Study Units. (http://water.usgs.gov/nawqa/ 
nawqamap.html). Collectively, these Study Units account 
for more than 60 percent of the overall water use and pop-
ulation served by public water supply, and are representa-
tive of the Nation's major hydrologic landscapes, priority 
ecological resources, and agricultural, urban, and natural 
sources of contamination. 

Each assessment is guided by a nationally consistent 
study design and methods of sampling and analysis. The 

assessments thereby build local knowledge about 
water-quality issues and trends in a particular stream or 
aquifer while providing an understanding of how and 
why water quality varies regionally and nationally. The 
consistent, multi-scale approach helps to determine if 
certain types of water-quality issues are isolated or 
pervasive, and allows direct comparisons of how 
human activities and natural processes affect water 
quality and ecological health in the Nation's diverse 
geographic and environmental settings. 
Comprehensive assessments on pesticides, nutrients, 
vola-tile organic compounds, trace metals, and aquatic 
ecology are developed at the national scale through 
comparative analysis of the Study-Unit findings. 
(http://water.usgs.gov/ 
nawqa/natsyn.html).

The USGS places high value on the communication 
and dissemination of credible, timely, and relevant sci-
ence so that the most recent and available knowledge 
about water resources can be applied in management and 
policy decisions.  We hope this NAWQA publication will 
provide you the needed insights and information to meet 
your needs, and thereby foster increased awareness and 
involvement in the protection and restoration of our 
Nation's waters. 

The NAWQA Program recognizes that a national 
assessment by a single program cannot address all water-
resource issues of interest. External coordination at all 
levels is critical for a fully integrated understanding of 
watersheds and for cost-effective management, regula-
tion, and conservation of our Nation's water resources. 
The Program, therefore, depends extensively on the 
advice, cooperation, and information from other Federal, 
State, interstate, Tribal, and local agencies, non-govern-
ment organizations, industry, academia, and other stake-
holder groups. The assistance and suggestions of all are 
greatly appreciated.

Robert M. Hirsch
Associate Director for Water
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Development and Application of Watershed Regressions 
for Pesticides (WARP) for Estimating Atrazine 
Concentration Distributions in Streams

By Steven J. Larson, Charles G. Crawford, and Robert J. Gilliom
ABSTRACT

Regression models were developed for predicting atrazine concentration distributions in rivers and 
streams, using the Watershed Regressions for Pesticides (WARP) methodology. Separate regression 
equations were derived for each of nine percentiles of the annual distribution of atrazine concentrations 
and for the annual time-weighted mean atrazine concentration. In addition, seasonal models were 
developed for two specific periods of the year—the high season, when the highest atrazine concentrations 
are expected in streams, and the low season, when concentrations are expected to be low or undetectable. 
Various nationally available watershed parameters were used as explanatory variables, including atrazine 
use intensity, soil characteristics, hydrologic parameters, climate and weather variables, land use, and 
agricultural management practices. Concentration data from 112 river and stream stations sampled as part 
of the U.S. Geological Survey’s National Water-Quality Assessment and National Stream Quality 
Accounting Network Programs were used for computing the concentration percentiles and mean 
concentrations used as the response variables in regression models. Tobit regression methods, using 
maximum likelihood estimation, were used for developing the models because some of the concentration 
values used for the response variables were censored (reported as less than a detection threshold). Data 
from 26 stations not used for model development were used for model validation.

The annual models accounted for 62 to 77 percent of the variability in concentrations among the 
112 model development stations. Atrazine use intensity (the amount of atrazine used in the watershed 
divided by watershed area) was the most important explanatory variable in all models, but additional 
watershed parameters significantly increased the amount of variability explained by the models. Predicted 
concentrations from all 10 models were within a factor of 10 of the observed concentrations at most 
model development and model validation stations. Results for the two sets of seasonal models were 
similar. Concentration distributions derived from the seasonal-model predictions provided additional 
information compared to distributions derived from the annual models.
Abstract 1



INTRODUCTION

The U.S. Environmental Protection Agency (USEPA) regulates pesticides under two major federal statutes, 
the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Federal Food, Drug, and Cosmetic Act 
(FFDCA). FIFRA prescribes labeling and other regulatory requirements to prevent adverse effects on health or the 
environment, and FFDCA establishes maximum legally permissible levels for pesticide residues in food. The Food 
Quality Protection Act of 1996 (FQPA) requires the USEPA to substantially alter how it has regulated human 
exposure to pesticides through food under FIFRA and FFDCA. Among other changes, the FQPA establishes a 
single health-based standard for pesticide residues in all types of food, replacing sometimes conflicting standards in 
the old law, and requires that pesticide tolerances in food take into account exposure through drinking water and all 
nonoccupational exposures. The requirement to incorporate drinking water into the setting of pesticide tolerances 
has resulted in the need for estimates of the concentrations of pesticides in drinking water. Unlike food, for which 
representative samples are obtained from a small number of regional distribution centers through the U.S. 
Department of Agriculture’s Pesticide Data Program (U.S. Department of Agriculture, 1999a), drinking water 
comes from a variety of local sources. Pesticide concentrations in surface waters in different parts of the country 
can vary significantly because of differences in pesticide use, application practices and timing, and watershed 
characteristics. Monitoring pesticide concentrations with a sampling frequency sufficient to obtain the desired 
frequency distribution of pesticide concentrations at the large number of surface-water supplies in the United States 
would be prohibitively expensive.

Larson and Gilliom (2001) described a method of estimating pesticide concentrations in streams from 
watershed characteristics. The method, known as Watershed Regressions for Pesticides (WARP), is based on 
empirical relations between pesticide concentrations observed at monitoring stations and selected nationally 
available watershed characteristics such as pesticide use and soil and hydrologic characteristics. The objective of 
this approach is to be able to estimate the annual frequency distribution of pesticide concentrations at unmonitored 
streams (fig. 1).
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Figure 1. Example annual frequency distribution of atrazine 
concentrations, Sangamon River at Monticello, Illinois, for the 12-month 
period beginning October 1, 1996.



Purpose and Scope

This report describes new WARP models for atrazine. Improvements over previous work (Larson and 
Gilliom, 2001) include an increase in the number of concentration percentiles modeled; expansion of the model 
development data set, both in the number of stations used and the time period covered; expansion of the data set 
used for model validation; use of standardized criteria for inclusion of stations; and the use of more rigorous time-
weighting procedures for computing concentration percentiles and annual mean concentrations. In addition, 
seasonal models were developed for the high season (the application period and the period of potential runoff to 
streams) and the low season (the remainder of the year) using the WARP method. The seasonal models provide 
estimates of concentration percentiles and the mean concentration for each of these two periods of the year. 
Separate seasonal estimates of atrazine concentration distributions may be useful for risk-assessment applications.

One purpose of this study is to provide support to the USEPA for risk assessments associated with the FQPA. 
Owing to the large uncertainties associated with these risk assessments, and the use of safety factors in the risk 
calculations, a relatively large uncertainty (for example, plus or minus 1 order of magnitude) can be tolerated in the 
concentrations predicted from models used for the drinking water part of the risk assessments. For this reason, 
comparisons between predicted and observed concentrations in this report often are in terms of the percentage of 
predictions within an order of magnitude of the observed values, although the actual prediction errors for the 
atrazine models described in this report often were substantially less than an order of magnitude.

The U.S. Geological Survey’s (USGS) National Water-Quality Assessment (NAWQA) and National Stream 
Quality Accounting Network (NASQAN) Programs are the primary sources of atrazine concentration data that 
were used for this study. These data are from 112 sampling stations that represent a wide variety of environmental 
settings across the United States; drainage areas ranged from 17 to 2,965,000 km2. Additional atrazine 
concentration data from the Water Quality Laboratory (WQL) of Heidelberg College in Tiffin, Ohio, and from the 
monitoring program of the Acetochlor Registration Partnership (ARP), were obtained for use in model validation.

The regression models described in this report were derived for predicting atrazine concentrations in rivers 
and streams of the conterminous United States. Some watershed characteristics known to significantly affect 
atrazine runoff and, thus, atrazine concentrations in streams, were not considered as explanatory variables in the 
regression models because they are not available for all watersheds across the country. For example, an indicator of 
the temporal correspondence of pesticide use and precipitation would be useful. However, restricting explanatory 
variables to those available nationally allows application of WARP-based regression models to any watershed in the 
nation that is reasonably represented in the range of data available for model development.

Acknowledgments

Dr. R. Peter Richards and Mr. Jack Kramer of the WQL of Heidelberg College provided pesticide data 
collected by the laboratory. Dr. David Gustafson of Monsanto Company provided data collected by the ARP. 
Naomi Nakagaki and Gail P. Thelin of the USGS provided the agricultural pesticide use estimates and watershed 
characteristics. The survreg procedure for the S language written by Terry M. Therneau of the Mayo Clinic was 
used to fit the regression models developed as part of this study. This work has benefited from discussions with 
members of the Intergovernmental FQPA Steering Committee Technical Working Group. Finally, funding for this 
study was partially provided by the USEPA’s Office of Pesticide Programs.
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METHODS

Methods used for this study included obtaining appropriate atrazine concentration data, estimating 
agricultural atrazine use and other watershed characteristics, selecting suitable statistical methods for computing 
annual time-weighted percentile and mean concentrations, and developing regression models to estimate atrazine 
concentrations. 

Atrazine Data Used for Model Development

Atrazine concentration data collected as part of the NAWQA and NASQAN Programs were used for model 
development. The NAWQA Program collects samples from streams and rivers in about 50 study units across the 
United States. The study units are major hydrologic basins, which collectively encompass about two-thirds of the 
population and water use in the United States (Hirsch and others, 1988; U.S. Geological Survey, 1999). The 
NASQAN Program collects samples from major rivers of the United States (Colorado, Columbia, Mississippi, Rio 
Grande, and Yukon rivers) and their tributaries (Hooper and others, 1997; U.S. Geological Survey, 2002). 

Sample Collection and Analysis Methods

Depth- and width-integrated samples were collected as part of the NAWQA Program typically every 1 to 3 
weeks during the growing season, depending on the site, and about monthly during the rest of the year. The 
NASQAN Program collects samples about monthly with several additional samples collected during periods of 
high streamflow. Samples for the NAWQA Program were collected following procedures described by Shelton 
(1994); samples for the NASQAN Program were collected following protocols of the U.S. Geological Survey 
(1997 to present). Samples were typically collected using a USGS DH-81 sampler when streams were wadable or a 
USGS D-77 TM or modified frame sampler suspended from a small hand-operated crane when streams were not. A 
3-L Teflon bottle and nozzle assembly was used with the DH-81 and D-77 TM samplers. A Teflon bag was used 
with the modified frame sampler.

Shortly after collection, samples were filtered through a baked 0.7 µm glass-fiber filter. Water was forced 
through the filter by a Teflon diaphragm pump through Teflon tubing. Equipment was cleaned with phosphate-free 
detergent and rinsed using deionized water and methanol, followed by native water before sample collection and 
processing. After field processing, samples were chilled until analyzed by gas chromatography/mass spectrometry 
(Zaugg and others, 1995; Lindley and others, 1996) for atrazine at the USGS National Water Quality Laboratory 
(NWQL) in Denver, Colo. This method requires solid-phase extraction of samples, which was either done in the 
field or by the NWQL within 96 hours of sample collection. Samples were kept chilled until extracted. The quality-
control protocol used for NAWQA sampling is described by Mueller and others (1997). Results from analysis of 
NAWQA quality assurance samples are reported by Martin (1999) and Martin and others (1999). Analytical 
recovery of atrazine is monitored for the NWQL method through the use of spiked laboratory samples. For the 
period 1992 through 1996, mean recovery of atrazine in 1,002 spiked samples was 93.4 percent, with a relative 
standard deviation of 20.0 percent (Martin, 1999).
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Sampling Station Selection

Atrazine data from selected NAWQA and NASQAN sampling stations were used for this study. Stations that 
had few samples or significant gaps between samples were excluded. More samples were required at small streams 
than at large streams. The maximum gap allowed between samples was longer for large streams than for small 
streams, and for periods when atrazine concentrations were expected to be lower and less variable (for example, 
during the winter in northern states when atrazine use and runoff is low). The criteria used for selecting sampling 
stations were subjectively chosen with the goal of increasing the accuracy of annual percentile and mean atrazine 
concentrations while retaining a large number of sampling locations. The procedure used to select sampling 
stations is shown in figure 2. Not all NASQAN stations that met the sampling frequency requirements were used 
because this program collects data from multiple stations on large rivers. To minimize correlation between stations, 
only one station each on the upper and lower parts of the Ohio and Mississippi Rivers and one station on the 
Missouri River were used.
4,999

Figure 2. Procedure used to select sampling stations for use in Watershed Regressions for Pesticides (WARP) model 
Methods 5

development.
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The pesticide runoff periods (table 1) used to screen stations were determined in consultation with USGS 
personnel familiar with different regions of the country. Each sampling station was assigned to one of seven 
pesticide runoff groups (A–G in table 1). The same group was used for all stations in a NAWQA study unit. Low, 
medium, and high runoff periods were chosen to qualitatively reflect the likelihood of pesticides being applied and 
transported by streams during the period in a given area of the country. The purpose was to identify periods of the 
year when fewer samples were needed to characterize pesticide concentrations. For example, in a midwestern state 
such as Indiana (group F), the low period extended from October through March; the medium period included 
April, August, and September; and the high period extended from May through July. In southern states, such as 
Georgia and Florida (group A), where the growing season is longer and autumn and winter temperatures are 
warmer than in the Midwest, the low period included November and December, the medium period included 
January and October, and the high period extended from February through September. No attempt was made to 
correlate periods across regions. Thus, pesticide concentrations in a medium or low period from a high pesticide 
use region of the country may be greater than concentrations during a high period in a low use region of the 
country.

Data from 103 NAWQA and 9 NASQAN river and stream stations met the screening criteria and were used 
for development of the regression models (fig. 3 and table 2). The selected NAWQA sampling stations are not 
distributed evenly across the country: more stations are in the eastern United States and on the west coast than in 
the Great Plains. The watershed areas of the 112 stations ranged from 17 to 2,965,000 km2; the median drainage 
area was 1,244 km2. Twenty-five percent of the watersheds were smaller than 144 km2, and 25 percent were larger 
than 9,500 km2. Sampling stations for the NAWQA Program were not randomly chosen. Watersheds of NAWQA 
stations are either relatively homogeneous, representing a particular combination of land use, geomorphic, and 
geologic features in a NAWQA study unit, or include a mixture of the land uses and natural features in a study unit. 
The latter type of stations are larger than the former and are usually near the mouths of rivers. Watersheds of the 
NASQAN stations used are much larger than those of NAWQA stations. The median watershed area of the 9 
selected NASQAN stations was nearly 300 times the median watershed area of the 103 selected NAWQA stations. 

The number of samples collected per year at the 103 NAWQA stations ranged from 11 to 55; median number 
was 24. The number of samples collected at the 9 NASQAN stations ranged from 13 to 21; median number was 18. 
More samples generally were collected at stations that have smaller watersheds. The median number of samples 
collected, by drainage area, was as follows: less than 500 km2, 30; 500 to 5,000 km2, 24; and greater than 5,000 
km2, 19. The median time between samples during spring and summer was 10 days at NAWQA sampling stations 
and 17 days at NASQAN stations. During autumn and winter, the median time between samples was 26 days at 
NAWQA stations and 27 days at NASQAN stations.
Table 1. Pesticide runoff periods used to screen sampling stations.

Pesticide
runoff group

Months in low period Months in medium period Months in high period

A November–December January; October February–September

B October–December January; September February–August

C January; December February; November March–October

D January–February; 
October–December

September March–August

E January–March; 
October–December

August–September April–July

F January–March; 
October–December

April; August–September May–July

G January–April; 
September–December

none May–August
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Figure 3. Location of sampling stations used for WARP model development. 

WARP, Watershed Regressions for Pesticides; NAWQA, National Water-Quality Assessment; NASQAN, National Stream Quality Accounting 
Network.
Atrazine Data Used for Model Validation

A relatively small set of stations was available for model validation (fig. 4). The validation data set consists 
of 9 stream stations sampled by the Heidelberg College WQL, 10 stream stations from the ARP sampling program, 
and 7 USGS (mainly NASQAN) stations on rivers and streams not used as part of the model development data set. 
The WQL at Heidelberg College has been collecting pesticide data at several streams that drain to Lake Erie since 
the early 1980s. This pesticide monitoring program is among the longest running and most intensive pesticide data 
collection programs in the United States. Information about the WQL monitoring program and some findings based 
on its data are given in Richards and Baker (1993) and Richards and others (1996).

The ARP was formed by manufacturers of the herbicide acetochlor as part of the registration of this herbicide 
with the USEPA in 1994 (Acetochlor Registration Partnership, 2002; U.S. Environmental Protection Agency, 
2002a). As part of the agreement, a monitoring program was established to collect water samples from streams, 
lakes, and reservoirs in the acetochlor use area and analyze them for acetochlor and several other herbicides, 
including atrazine. Sampling in the ARP program was targeted at water bodies used as sources of drinking water, 
and many of the analyses were done on water after treatment at a water utility. In some cases, untreated source 
water also was sampled. The ARP data included in the validation data set are from analyses of untreated water only. 
Stations from the ARP program are not identified by name in this report because locations of drinking water 
sources are confidential.
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Table 2.     Sampling stations used for Watershed Regressions for Pesticides (WARP) model development. 

Sampling 
station 
number
(fig. 3)

USGS Station ID Station name
Beginning date

of 12-month
data period

Drainage
area (km2)

Pesticide 
runoff

group (from
table 1)

NAWQA stations

1 08012150 Mermentau River at Mermentau, Louisiana 11/01/1998 3,580 D

2 02335870 Sope Creek near Marietta, Georgia 03/01/1993 79 A

3 02350080 Lime Creek at County Road near Cobb, Georgia 03/01/1993 161 A

4 02083500 Tar River at Tarboro, North Carolina 03/01/1993 5,750 D

5 02083833 Pete Mitchell Swamp near Penny Hill, North Carolina 03/01/1993 44 D

6 02084558 Albemarle Canal near Swindell, North Carolina 03/01/1993 191 D

7 09514000 Buckeye Canal near Avondale, Arizona 12/01/1996 117,000 C

8 09517000 Hassayampa River near Arlington, Arizona 02/01/1997 3,970 C

9 12464770 Crab Creek near Ritzville, Washington 04/01/1993 1,190 E

10 12472380 Crab Creek Lateral near Othello, Washington 04/01/1993 145 E

11 12473740 El 68 D Wasteway near Othello, Washington 04/01/1993 377 E

12 13351000 Palouse River at Hooper, Washington 04/01/1993 6,380 E

13 06800000 Maple Creek near Nickerson, Nebraska 05/01/1998 955 F

14 06805500 Platte River at Louisville, Nebraska 05/01/1997 221,000 F

15 01209710 Norwalk River at Winnipauk, Connecticut 03/01/1993 85 F

16 01464907 Little Neshaminy Creek near Neshaminy, Pennsylvania 01/01/1999 72 F

17 01470779 Tulpehocken Creek near Bernville, Pennsylvania 12/01/1998 184 F

18 01474500 Schuylkill River at Philadelphia, Pennsylvania 01/01/1999 4,900 F

19 01493112 Chesterville Branch near Crumpton, Maryland 02/01/1999 17 F

20 05449500 Iowa River near Rowan, Iowa 03/01/1997 1,080 F

21 05464220 Wolf Creek near Dysart, Iowa 03/01/1997 775 F

22 05465500 Iowa River at Wapello, Iowa 03/01/1997 32,400 F

23 02215100 Tucsawhatchee Creek near Hawkinsville, Georgia 03/01/1993 420 A

24 02318500 Withlacoochee River near Quitman, Georgia 03/01/1993 3,860 A

25 10171000 Jordan River at Salt Lake City, Utah 01/01/1999 9,100 F

26 01349150 Canajoharie Creek near Canajoharie, New York 03/01/1998 154 F

27 01357500 Mohawk River at Cohoes, New York 03/01/1998 9,110 F

28 03167000 Reed Creek at Grahams Forge, Virginia 01/01/1997 669 F

29 03176500 New River at Glen Lyn, Virginia 01/01/1997 9,780 F

30 04178000 St. Joseph River near Newville, Indiana 03/01/1997 1,600 F

31 04186500 Auglaize River near Fort Jennings, Ohio 03/01/1997 858 F

32 04193500 Maumee River at Waterville, Ohio 03/01/1997 16,400 F

33 04208504 Cuyahoga River at Cleveland, Ohio 04/01/1997 2,040 F

34 04211820 Grand River at Harpersfield, Ohio 04/01/1997 1,430 F

35 01403900 Bound Brook at Middlesex, New Jersey 05/01/1996 125 F

36 01410784 Great Egg Harbor River near Sicklerville, New Jersey 05/01/1996 39 F

37 05572000 Sangamon River at Monticello, Illinois 10/01/1996 1,430 F

Table 2.  Sampling stations used for Watershed Regressions for Pesticides (WARP) model development.

[km2, square kilometer; ID, identification; NAWQA, National Water-Quality Assessment; NASQAN, National Stream Quality Accounting Network]
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38 05584500 La Moine River at Colmar, Illinois 04/01/1997 1,700 F

39 05586100 Illinois River at Valley City, Illinois 05/01/1997 69,200 F

40 01555400 East Mahantango Creek at Klingerstown, Pennsylvania 04/01/1993 115 F

41 01571490 Cedar Run at Eberlys Mill, Pennsylvania 04/01/1993 32 F

42 01576540 Mill Creek near Lyndon, Pennsylvania 03/01/1993 140 F

43 0357479650 Hester Creek near Plevena, Alabama 02/01/1999 76 F

44 03274000 Great Miami River at Hamilton, Ohio 03/01/1999 9,400 F

45 393944084120700 Holes Creek at Kettering, Ohio 04/01/1999 51 F

46 07043500 Little River Ditch no. 1 near Morehouse, Missouri 02/01/1996 1,140 A

47 07288650 Bogue Phalia near Leland, Mississippi 02/01/1997 1,300 A

48 07288955 Yazoo River near Long Lake, Mississippi 02/01/1997 34,800 A

49 0242354750 Cahaba Valley Creek at Pelham, Alabama 02/01/1999 65 C

50 02424000 Cahaba River at Centreville, Alabama 02/01/1999 2,660 C

51 01102500 Aberjona River at Winchester, Massachusetts 04/01/1999 59 F

52 01104615 Charles River at Watertown, Massachusetts 05/01/1999 694 F

53 094196783 Las Vegas Wash near Las Vegas, Nevada 06/01/1993 2,640 C

54 07053250 Yocum Creek near Oak Grove, Arkansas 02/01/1994 134 G

55 01621050 Muddy Creek at Mount Clinton, Virginia 04/01/1993 37 F

56 01639000 Monocacy River at Bridgeport, Maryland 06/01/1994 456 F

57 01646580 Potomac River at Washington, D.C. 06/01/1999 30,000 F

58 01654000 Accotink Creek near Annandale, Virginia 03/01/1994 60 F

59 12128000 Thornton Creek near Seattle, Washington 03/01/1996 29 E

60 12213140 Nooksack River at Brennan, Washington 03/01/1996 2,020 E

61 05062500 Wild Rice River at Twin Valley, Minnesota 04/01/1993 2,410 G

62 05082625 Turtle River near Arvilla, North Dakota 03/01/1993 658 G

63 05085900 Snake River above Alvarado, Minnesota 05/01/1993 565 G

64 11447360 Arcade Creek near Del Paso Heights, California 12/01/1996 81 B

65 11273500 Merced River near Newman, California 02/01/1993 3,620 B

66 11303500 San Joaquin River near Vernalis, California 11/01/1992 19,000 B

67 02169570 Gills Creek at Columbia, South Carolina 02/01/1996 154 D

68 08178800 Salado Creek at San Antonio, Texas 02/01/1997 505 F

69 08180640 Medina River at La Coste, Texas 02/01/1997 2,100 F

70 08181800 San Antonio River near Elmendorf, Texas 02/01/1997 4,530 F

71 252414080333200 C-111 Canal near Homestead, Florida 10/01/1996 132 A

72 06713500 Cherry Creek at Denver, Colorado 03/01/1993 61 F

73 06714000 South Platte River at Denver, Colorado 12/01/1993 10,000 F

74 06753990 Lonetree Creek near Greeley, Colorado 04/01/1993 1,470 F

75 294349094345999 East Fork Double Bayou near Anahuac, Texas 03/01/1994 111 F

76 295001094384699 Whites Bayou near Anahuac, Texas 03/01/1994 27 F

Table 2.     Sampling stations used for Watershed Regressions for Pesticides (WARP) model development. (Continued)

Sampling 
station 
number
(fig. 3)

USGS Station ID Station name
Beginning date

of 12-month
data period

Drainage
area (km2)

Pesticide 
runoff

group (from
table 1)
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77 295740094542399 West Prong Old River near Dayton, Texas 03/01/1994 75 F

78 09153290 Reed Wash near Mack, Colorado 11/01/1996 35 F

79 05525500 Sugar Creek at Milford, Illinois 05/01/1999 1,160 F

80 05531500 Salt Creek at Western Springs, Illinois 03/01/1999 290 F

81 05532500 Des Plaines River at Riverside, Illinois 03/01/1999 1,630 F

82 05553500 Illinois River at Ottawa, Illinois 10/01/1997 28,300 F

83 05288705 Shingle Creek Minneapolis, Minnesota 05/01/1997 73 F

84 05320270 Little Cobb River near Beauford, Minnesota 05/01/1997 336 F

85 05330000 Minnesota River near Jordan, Minnesota 05/01/1997 42,000 F

86 05330902 Nine Mile Creek at Bloomington, Minnesota 01/01/1997 115 F

87 05331580 Mississippi River at Hastings, Minnesota 04/01/1997 96,000 F

88 13055000 Teton River near St. Anthony, Idaho 05/01/1993 2,290 F

89 13092747 Rock Creek at Twin Falls, Idaho 04/01/1993 623 F

90 03466208 Big Limestone Creek near Limestone, Tennessee 05/01/1996 205 F

91 03467609 Nolichucky River near Lowland, Tennessee 03/01/1996 4,370 F

92 03526000 Copper Creek near Gate City, Virginia 05/01/1996 276 F

93 03353637 Little Buck Creek near Indianapolis, Indiana 05/01/1992 44 F

94 03354000 White River near Centerton, Indiana 04/01/1994 6,320 F

95 03360895 Kessinger Ditch near Monroe City, Indiana 04/01/1993 145 F

96 03373500 East Fork White River at Shoals, Indiana 04/01/1994 12,800 F

97 03374100 White River at Hazleton, Indiana 05/01/1996 29,300 F

98 385234087071801 White River near Elnora, Indiana 04/01/1994 12,400 F

99 394340085524601 Sugar Creek near New Palestine, Indiana 05/01/1992 246 F

100 04087000 Milwaukee River at Milwaukee, Wisconsin 04/01/1993 1,800 F

101 06279500 Bighorn River at Kane, Wyoming 01/01/1999 40,800 G

102 06295000 Yellowstone River at Forsyth, Montana 02/01/1999 102,000 G

103 06329500 Yellowstone River near Sidney, Montana 02/01/1999 177,000 G

NASQAN stations

104 03216600 Ohio River at Greenup Dam, Kentucky 12/01/1996 159,000 F

105 03612500 Ohio River near Grand Chain, Illinois 02/01/1997 527,000 F

106 05420500 Mississippi River at Clinton, Iowa 03/01/1996 239,000 F

107 06934500 Missouri River at Hermann, Missouri 11/01/1995 1,350,000 F

108 07263620 Arkansas River at David Terry Dam, Arkansas 10/01/1995 409,000 F

109 07373420 Mississippi River at St. Francisville, Louisiana 10/01/1995 2,965,000 F

110 07381495 Atchafalaya River at Melville, Louisiana 10/01/1998 241,0001 F

111 09315000 Green River at Green River, Utah 06/01/1998 106,000 F

112 13353200 Snake River at Burbank, Washington 11/01/1995 279,000 F

1Atchafalaya River receives approximately 30 percent of the Mississippi River discharge; watershed area shown represents only the part of the 
watershed distinct from that of the Mississippi River.

Table 2.     Sampling stations used for Watershed Regressions for Pesticides (WARP) model development. (Continued)

Sampling 
station 
number
(fig. 3)

USGS Station ID Station name
Beginning date

of 12-month
data period

Drainage
area (km2)

Pesticide 
runoff

group (from
table 1)
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Figure 4. Location of sampling stations used for WARP model validation. 

WARP, Watershed Regressions for Pesticides; USGS, U.S. Geological Survey; WQL, Water Quality Laboratory of Heidelberg College.
The sampling frequency at the validation stations sampled by Heidelberg College and the USGS satisfied the 
criteria shown in figure 2. For ARP stations, somewhat less stringent criteria were used. At the 10 ARP stations 
used for validation, 14 to 15 samples were collected during the 1-year period. Samples were collected at ARP 
stations about once every 2 weeks during the growing season and once every 2 months during the rest of the year. 
Work by Charles Crawford (U.S. Geological Survey, unpub. data, 2002) has shown that sampling programs 
targeted at the growing season provide nearly as much information about the annual distribution of concentrations 
as sampling throughout the year. This is especially true for compounds like atrazine, which have a strong seasonal 
concentration pattern.

Data also were available from 16 ARP stations on lakes and reservoirs. These stations were not included in 
the validation data set because concentrations at these stations would not be directly comparable to estimates from 
models developed using concentration data from streams. The models were applied to the 16 lake and reservoir 
stations to illustrate the systematic differences compared to streams.

Watershed Characteristics Used as Explanatory Variables

WARP models are empirical regression models. A large number of variables that could reasonably affect or 
indicate an influence on pesticide transport and runoff are considered as potential explanatory variables for 
estimating atrazine concentrations. Statistical procedures are used to select from among the potential variables on 
the basis of their ability to reproduce observed pesticide concentrations. 
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Estimation of Atrazine Use

Annual agricultural atrazine use in a watershed was estimated by combining county-level estimates of 
applications of atrazine to agricultural crops with information on the spatial distribution of agricultural land within 
the watershed. Total atrazine use in a watershed is determined by (1) computing areal weights of specific types of 
agricultural land for each county intersected by the watershed; (2) multiplying the weights by county atrazine use 
on each of the agricultural land types; and (3) summing the apportioned county estimates. 

The amount of atrazine applied at the county level was estimated using methods developed by Thelin and 
Gianessi (2000), which integrate state-level information on pesticide applications to individual crops with county-
level crop acreage information. State-level atrazine use rates were obtained from the National Center for Food and 
Agricultural Policy (NCFAP) and county-level crop data were obtained from the Census of Agriculture. The source 
for the spatial distribution of agricultural land was the circa 1992, 30-meter resolution, National Land Cover Data 
set (NLCD; Vogelmann and others, 2001). “Agricultural land” in the calculation of watershed use consists of the 
NLCD classifications pasture/hay and orchards/vineyards/other, and a combined category consisting of three 
individual NLCD classifications: row crops, small grains, and fallow.

Water samples used for this study were collected between 1992 and 2000. For stations with samples collected 
before 1995, estimates of atrazine use are based on the 1992 Census of Agriculture (U.S. Department of 
Commerce, 1995) and NCFAP state use estimates representing the 1991–1994 period (Gianessi and Anderson, 
1995). For stations with pesticide samples collected after 1994, estimates of atrazine use are based on the 1997 
Census of Agriculture (U.S. Department of Agriculture, 1999b) and NCFAP data for the period 1994–1998 
(Gianessi and Marcelli, 2000).

The estimates of atrazine use obtained by these methods described here are for agricultural use only. There 
currently are no nationally available estimates for nonagricultural use of atrazine or other pesticides. The primary 
use of atrazine is application to agricultural crops, and the lack of data on nonagricultural use probably has a 
minimal effect on the regression analysis. Because of the wide range in drainage areas among stations used for 
model development and validation, the variable used to represent atrazine use in the regression models was 
watershed use intensity (amount of atrazine used in the watershed divided by watershed area) rather than simply the 
amount of atrazine used in the watershed.

Other Watershed Characteristics

Many watershed characteristics were evaluated as potential explanatory variables (table 3). In addition to 
atrazine use intensity, variables representing land use and population, agricultural management practices, soil 
properties, physical watershed characteristics, weather and climate characteristics, and hydrologic properties were 
considered. All variables considered are available for the entire conterminous United States. Land-use data were 
obtained from the National Land Cover Data set (Vogelmann and others, 2001). Georeferenced population data 
based on the U.S. Census were obtained from the Center for International Earth Science Information Network 
(1996). Agricultural practices data were obtained from the National Resources Inventory (NRI; Natural Resources 
Conservation Service, 2000). Soil properties data were obtained from the U.S. Department of Agriculture’s State 
Soil Geographic database (Natural Resources Conservation Service, 1994). Mean basin elevation and slope were 
computed from USGS digital elevation model data (U.S. Geological Survey, 2000). Mean annual precipitation and 
temperature are from Owensby and Ezell (1992). The mean annual number of consecutive wet and dry days and 
precipitation intensity are from Hughes and others (1992). Mean annual runoff is from Gebert and others (1987). 
Estimates of overland flow and average subsurface contact time were obtained using a national scale application of 
the TOPMODEL rainfall-runoff model (Wolock, 1993). 

Average R-factor values for the basins were estimated from a 2.5-minute resolution grid of mean-annual 
(1971–2000) R-factor values. The grid was derived from R-factor values estimated by the Illinois State Water 
Survey at 1,842 meteorological stations. These station data were interpolated to a grid by the Spatial Climate 
Analysis Service at Oregon State University using the Parameter-elevation Regressions on Independent Slopes 
Model (PRISM) methodology (Greg Johnson, U.S. Department of Agriculture, written commun., 5/12/2003).
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Table 3. Watershed characteristics considered as explanatory variables for WARP models. 

Abbre-
viation

Description

Pesticide use

useint Atrazine agricultural use intensity [(sum of NCFAP data for applications to row crops, orchards and vineyards, and pasture 
and hay crops extrapolated to the basin scale) / basin area], kg/km2

Land use and population

ag Percent of basin with agricultural land use [(sum of NLCD categories row crops, small grains, pasture/hay, and 
orchards/vineyards/other at 30-m cell resolution) x100 / basin area]

forest Percent of basin with forest land use [(sum of NLCD categories deciduous forest, evergreen forest, and mixed forest at 30-m 
cell resolution) � 100 / basin area]

urban Percent of basin with urban land use [(sum of NLCD categories low intensity residential, high intensity residential, 
commercial/industrial/ transportation, and urban/recreational grasses at 30-m cell resolution) � 100 / basin area]

popden Mean 1990 population density in basin (people/km2) (CIESIN 1-km grid)

Agricultural management practices

artdrn Percent of basin that is artificially drained [(aggregated representation of conservation practice categories 606, 607, and 608 
from the 1997 NRI polygons converted to 1-km cells) x100 / basin area]

contill Percent of basin under conservation tillage [(1997 NRI conservation practice 329 polygons converted 
to 1-km cells) � 100 / basin area]

irri Percent of basin that is irrigated [(aggregated representation of irrigation type categories 01, 02, and 03 from the 1997 NRI 
polygons converted to 1-km cells) � 100 / basin area]

tile Percent of the basin that is drained by tiles [(conservation practice category 606 from the 1997 NRI polygons converted to 1-
km cells) � 100 / basin area]

Soil properties

awc Mean available water capacity (fraction) (STATSGO polygons converted to 1-km cells) in basin

clay Mean percent clay in basin soils (STATSGO polygons converted to 1-km cells)

hgab Mean percent of basin soils classified as hydrologic groups A and B (sum of soil hydrologic groups A and B from STATSGO 
polygons converted to 1-km cells)

hgcd Mean percent of basin soils classified as hydrologic groups C, D, and C/D (sum of soil hydrologic groups C, D, and C/D 
from STATSGO polygons converted to 1-km cells)

kfact Mean soil erodibility (K-factor for USLE) (STATSGO polygons converted to 1-km cells) in basin

orgm Mean percent organic matter in basin soils (STATSGO polygons converted to 1-km cells)

perm Mean soil permeability in cm/hr (STATSGO polygons converted to 1-km cells)

sand Mean percent sand in basin soils (STATSGO polygons converted to 1-km cells)

silt Mean percent silt in basin soils (STATSGO polygons converted to 1-km cells)

Physical watershed characteristics

darea Basin drainage area in km2

elev Mean basin elevation in m (DEM at 1-km cell resolution)

latc Latitude of basin centroid in decimal degrees

lonc Longitude of basin centroid in decimal degrees

slope Mean percent slope in basin (DEM at 1-km cell resolution)

Table 3. Watershed characteristics considered as explanatory variables for WARP models. 

[WARP, Watershed Regressions for Pesticides; CIESIN, Center for International Earth Science Information Network; DEM, Digital Elevation Model; 
NCFAP, National Center for Food and Agriculture Policy; NLCD, National Land Cover data set; NOAA, National Oceanic and Atmospheric Administration
NRI, National Resources Inventory; STATSGO, State Soil Geographic data base; USLE, Universal Soil Loss Equation. cm, centimeter; d, day; kg, kilogram
km, kilometer; km2, square kilometer; m, meter; mm, millimeter; yr, year]



Table 3. Watershed characteristics considered as explanatory variables for WARP models. (Continued)  .
Abbre-
viation

Description

Weather/climate characteristics

adry Mean annual number of consecutive dry days (NOAA data interpolated & converted to 1-km cells)

appt Mean annual 1961–90 precipitation in cm/yr (NOAA data interpolated & converted to 1-km cells)

appti Mean annual precipitation intensity in mm/d (NOAA data interpolated & converted to 1-km cells)

atemp Mean annual 1961–90 temperature in ° C (NOAA data interpolated & converted to 1-km cells)

awet Mean annual number of consecutive wet days (NOAA data interpolated & converted to 1-km cells)

rfact Mean annual 1971–2000 rainfall erosivity (R-factor for USLE) (NOAA station data analyzed & interpolated to 1-km cells)

Hydrologic properties

contact Mean subsurface contact time in days (estimated by means of TOPMODEL [Wolock, 1993] hydrologic model)

perdun Percent of basin streamflow contributed by Dunne overland flow (estimated by means of TOPMODEL hydrologic model)

perhor Percent of basin streamflow contributed by Horton overland flow (estimated by means of TOPMODEL hydrologic model)

pet Mean potential evapotranspiration in cm (estimated using temperature data derived from the Parameter-Elevation 
Regressions on Independent Slopes Model (PRISM; Daly and others, 1997) and the Hamon PET equation)

roff Mean annual 1951–80 runoff in cm/yr (USGS data interpolated & converted to 1-km cells)
Values for characteristics of very large watersheds included in the model development data set (for example, 
the Mississippi, the Ohio, and the Missouri Rivers) represent a broad average of conditions in the watershed. In the 
most extreme case, values of parameters for the watershed represented by the station about 200 miles from the 
mouth of the Mississippi River (St. Francisville, La.) are averages of conditions in diverse regions stretching from 
the Rocky Mountains to the Appalachian Mountains. Thus, differences in the watershed characteristics for the very 
large watersheds are more generalized than for smaller watersheds, for which the watershed characteristics are 
more representative of the watershed as a whole. Despite the averaging effect for the very large watersheds, 
however, variability in the values of specific characteristics among these watersheds was still substantial, indicating 
that the variables were contributing useful information about these watersheds in the regression analysis. The 
potential for added uncertainty caused by inclusion of the very large watersheds was regarded as less important 
than the benefit of inclusion of a wide range of watershed sizes in the regression analysis.

The representativeness of the values used for watershed characteristics of large watersheds also is affected by 
differences in discharge from major tributaries in the watershed. For example, water flowing in the lower 
Mississippi River comes from three main sources: the Missouri River, the Ohio River, and the upper Mississippi 
River (the main stem river upstream of confluences with the Ohio and the Missouri Rivers). Average annual 
discharge from the Ohio River accounted for 57 percent of the discharge in the lower Mississippi River from 1980 
to 1996, with the upper Mississippi contributing about 25 percent and the Missouri River about 18 percent (Coupe 
and Goolsby, 1999). This implies that land use and watershed characteristics in the Ohio River watershed may 
influence water quality in the lower Mississippi River more than those of the upper Mississippi River or Missouri 
River watershed. However, this is not reflected in the values of watershed parameters used for the St. Francisville, 
La., sampling station. All parts of the watershed are weighted equally in the calculation of the values of watershed 
parameters used for a sampling station. This problem exists to some extent for all of the watersheds used in the 
regression analysis, but may be more important for the larger watersheds where watershed characteristics can vary 
considerably among different areas of the watershed. The Mississippi River watershed is the extreme example of 
this problem, as many of the watershed parameters listed in table 3 exhibit an east-to-west gradient, and the eastern 
and western parts of the watershed are separately drained by large tributaries with substantially different 
discharges. No attempt was made in this study to address this problem, in part because detailed data on discharges 
of tributaries are not available for all watersheds and because discharge data may not be available at all for 
unmonitored streams and tributaries to which the models may be applied.
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Statistical Analysis

Statistical methods include those for estimating annual percentile and mean pesticide concentrations from 
the sample data, estimating the coefficients of the regression equations, and selecting and transforming variables as 
needed to be included in the regression models. 

Calculation of Annual Percentile and Mean Concentrations

Annual percentiles and mean concentrations of atrazine were computed from the time series of data collected 
at individual sampling stations. An example time series is shown in figure 5. The number of years of sampling data 
available from individual stations varied, but most stations had only 1 year of intensively collected data. To avoid 
giving undue weight to the small number of stations with more than 1 year of intensive data, a single year of data 
from each station was used for model development (table 2). This was generally the year with the most atrazine 
data. In most cases, the 1-year period did not correspond to a calendar year, but rather the 12-month period 
following the onset of sampling at the station.

In the WARP method, specific percentiles (5th, 10th, 15th, 25th, 50th, 75th, 85th, 90th, and 95th) of the 
annual frequency distribution, and the annual mean concentration, are determined for each stream. These 
concentrations were calculated by weighting each concentration according to the amount of time it was used to 
represent the atrazine concentration in the stream. Specifically, the weights were computed as the amount of time 
extending from one-half the time interval between a value and the preceding value and one-half the time interval 
extending from the value to the subsequent value, divided by the total time in 1 year. An example is shown in 
figure 6. The annual mean concentration is simply the sum of the sample weights times the sample concentrations. 
Conceptually, percentiles of the concentration distribution at a given station can be obtained by first ranking the 
concentrations measured during the 1-year period from low to high. The weights assigned to each concentration 
then are cumulatively summed. The pth percentile corresponds to the concentration for which the summed weight 
is equal to p. For example, the 95th percentile concentration corresponds to the concentration for which the 
summed weights equal 95 (fig. 7). Percentiles computed in this manner can be thought of as representing the 
percentage of time during the year in which the concentration in the stream is less than the corresponding 
concentration. For example, a 95th percentile concentration of 0.4 µg/L implies that concentrations in the stream 
were less than 0.4 µg/L for 95 percent of the year, or 347 days. 
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Figure 5. Atrazine concentrations in the White River at Hazleton, Indiana, from January 1996 through December 1998.



The Statistical Analysis System (SAS) Proc Univariate procedure was used to compute the means and 
percentiles from the weighted values (SAS Institute, 1999). The presence of censored observations (concentrations 
reported as less than a specified value by the laboratory) complicated the computation of the mean and percentile 
concentrations. Most of the censoring thresholds were near the long-term reporting limit for the analytical method. 
However, owing to matrix interferences, sample volume differences, refinement of the analytical methods used 
over time, or other factors, some censoring thresholds were higher than the long-term reporting level, sometimes 
substantially so.

For computing annual mean concentrations, if less than 10 percent of the weighted data for a station and 
sampling year were censored, censored values were replaced by one-half the censoring threshold reported by the 
laboratory (U.S. Environmental Protection Agency, 2000). If more than 10 percent of the weighted data were 
censored, and there were 20 or more observations, at least 10 of which were uncensored, and at least 33 percent of 
the sample weights were represented by uncensored observations, then the log regression (LR) method (Gilliom 
and Helsel, 1986; Helsel and Gilliom, 1986), implemented as a SAS macro, was used to approximate the mean 
concentration. Otherwise, the mean returned by the Univariate procedure was considered censored. (For example, 
the mean of 3, 4, 5, and <4 would be considered to be <4.)
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Figure 6. The period of time represented by each sample used in computing time-weighted percentiles of atrazine, White River at Hazleton, Indiana, for the 
12-month period beginning May 1, 1996. 

Period of time is shown by horizontal lines. Sample weights are equal to this period divided by 365.
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Figure 7. Example computation of annual time-weighted percentile concentrations of atrazine, White River at Hazleton, Indiana, for 
the 12-month period beginning May 1, 1996. 

Each solid vertical line corresponds to a sample concentration. The length of the vertical lines corresponds to the sample weight.
For computing percentiles, if more than p percent of the weighted sample data were censored, and at least 20 
observations in the sample with at least 10 uncensored observations and at least 33 percent of the sample weights 
were represented by uncensored observations, then the LR procedure was used to approximate the pth percentile. 
Otherwise, the percentile computed by the Univariate procedure was used and considered censored at that value.

Samples associated with the highest 0.5 percent of the censoring thresholds were deleted from the analysis so 
that an unusually high censoring threshold for one sample did not obscure detected concentrations in other samples. 
Any annual time-weighted percentile or mean concentration estimated as less than 0.001 µg/L was considered 
censored at the 0.001 µg/L level.

At some sampling stations, atrazine concentrations only approximately conform to the assumptions of the 
LR method. However, the criteria set for use of the LR method limited its use to approximating only the mean and 
lower percentile concentrations. The method was not used to estimate extremely high (greater than the 95th) or low 
(less than the 5th) percentiles where departures from the assumptions would be most critical. The advantage of 
having fewer censored observations in the data set available for model development was deemed to offset potential 
errors in approximated concentrations due to deviations from the distributional assumptions required by the LR 
method.

The time-weighting procedure was used to estimate annual percentile and mean pesticide concentrations 
because it minimized the need for assumptions about the shape of the probability distribution of the data. No 
assumptions were required for computing the upper percentile concentrations. Alternative approaches, such as 
fitting a parametric probability distribution to the sample data (Myers and others, 2000), require distributional 
assumptions that may not be reasonable at a given sampling station. However, the approach used in this study 
constrained the number of percentiles that could be estimated at the extremes of the distribution. The limited 
sample sizes available at most stations did not support estimation of percentiles lower than the 5th or higher than 
the 95th.
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The accuracy of the annual percentile and mean concentrations computed using these methods is a function 
of the number of samples collected and the time of sample collection. Uncertainty in estimated percentiles 
generally is higher for stations where relatively few samples were collected, although the uncertainty also is a 
function of stream size and hydrologic parameters of the watershed. For example, uncertainty generally is higher 
for small streams where discharge and pesticide concentrations can change rapidly in response to rainfall in the 
watershed, and the samples may not reflect the true variation in concentrations in the stream. Samples collected 
during the period when atrazine runoff is highest contribute more to accuracy of the percentiles than samples 
collected at other times. Simulation studies suggest that upper percentiles of the annual distribution of 
concentrations, in particular the 95th percentile concentration, obtained from the smaller stations used for this 
study may be underestimated (Charles Crawford, U.S. Geological Survey, unpub. data, 2002).

Regression Methods

Many of the annual percentile and mean concentrations computed for this study were less than a censoring 
threshold. In the context of an explanatory model, a censored observation is one in which the value of the response 
variable was not observable. Conventional least-squares methods for estimating parameters of this model, using 
either the entire sample or the subsample of complete observations, yield biased and inconsistent estimates (Judge 
and others, 1985, p. 780). One way of expressing the regression model in the presence of censored observations is 

(1)

where

This model is often called the tobit model (Judge and others, 1985, p. 780) after James Tobin who first explored the 
problem (Tobin, 1958).

A number of alternative methods for obtaining parameter estimates of models when the available data 
contain censored data have been proposed (Tobin, 1958; Miller, 1976; Buckley and James, 1979; Miller and 
Halpern, 1982; Amemiya, 1984; Powell, 1984; Chatterjee and McLeish, 1986; Duncan, 1986; Horowitz, 1986; 
Schneider and Weissfeld, 1986). When the regression residual errors are independent, identically and normally 
distributed, with mean zero and variance , the maximum likelihood method can be used to obtain parameter 
estimates of a censored linear model (Maddala, 1983). Maximum likelihood estimates are obtained by minimizing 
ln Lk, the log-likelihood function (Amemiya, 1984; Haas and Jacangelo, 1993):

(2)

where

Yi is the response variable,
f(Xi) is a function of one or more explanatory variables,
CTi is the censoring threshold for the ith observation, and

is the residual error.

Ci is the ith observed concentration,
 is the concentration estimated from the regression model for the ith observation,

ln is the natural logarithm,
 is the standard deviation of the residual error,

n is sample data based on observable (uncensored) concentrations,
m is sample data based on concentrations less than a censoring threshold (censored), and

 is the cumulative normal integral function.
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σε
--------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

2

ln

i n 1+=

n m+

∑+

i 1=

n

∑–=

Ĉi
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z

(3)

 
Equation 2 cannot be solved analytically, and numerical methods must be used to obtain a solution. Maximum 
likelihood methods implemented in the survreg procedure (Therneau, 1999) in the statistical analysis program  
S-PLUS (Insightful Corporation, 1999) were used to estimate the parameters of the regression models.

Measures of goodness of fit, such as the standard deviation of the residual error (commonly referred to as the 
root mean square error in conventional regression analysis) or the coefficient of multiple determination (R2), used 
for conventional least squares regression analysis, cannot be computed for the tobit regression model. The standard 
deviation of the residual error is alternatively referred to as the scale parameter in maximum likelihood 
estimation. Estimates of the scale parameter from the maximum likelihood procedure provide only asymptotically 
unbiased estimates of the standard deviation of the residual error when estimated from sample data (Aitkin, 1981). 
These estimates, on average, underestimate the true standard deviation. The bias is a function of the sample size 
and the degree of censoring. In this report, biased estimates of the standard deviation of the residual error are 
referred to as scale in figures and tables. Several pseudo R2 (pR2) measures suitable for use with the tobit regression 
model have been proposed in the literature as alternatives to R2. For this study, pR2 was calculated using the method 
of Laitila (1993). As with conventional R2, the pR2 computed by the method of Laitila (1993) ranges from 0 to 1 
and is an estimate of the proportion of the variation in the response variable explained by the regression model 
(0 indicates no variation is explained; 1 indicates all variation is explained). 

Transformation of Response and Explanatory Variables

The maximum likelihood methods used for estimating the parameters of the regression models require 
several assumptions. The relation between the variables must be linear in the parameters, and the residual error 
must be identically and normally distributed. Departures from these assumptions can result in estimates of model 
coefficients that are considerably in error. Nonidentically distributed residual error (inhomogeneity of residual 
variance across observations) can seriously bias the estimates of model coefficients obtained from maximum 
likelihood methods (Greene, 2000, p. 912). Residual error not normally distributed can result in inconsistent 
estimates of the model coefficients (that is, as the sample size tends to infinity, the estimated coefficients do not 
converge to the true coefficients). One means of addressing departures from model assumptions is through 
transformations of the response or explanatory variables, or both (Neter and others, 1985, p. 132).

Various transformations were considered to minimize departures from the assumptions of the maximum 
likelihood methods used. For example, the relation between agricultural use intensity and atrazine concentration 
was observed to be nonlinear (fig. 8). Further, the variance of atrazine concentrations tended to increase with 
increasing use, violating the assumption of identically distributed residual error. To address these problems, several 
transformations of both the explanatory and response variables were tried. Examples of transformations tried for 
atrazine concentration and use intensity are shown in figures 9 through 11. The relation between the logarithm of 
atrazine concentration and the fourth root of use intensity was approximately linear and has approximately 
identically distributed residual errors (fig. 11). These transformations of concentration and agricultural use 
intensity produced similar results (a linear relation between the transformed variables and approximately 
identically distributed residual errors) throughout the range of concentration percentiles modeled (fig. 12). The 
logarithm of concentration was used as the response variable in all subsequent work. In the development of the 
regression models, the logarithmic, square-root, and fourth-root transformations of agricultural use intensity were 
considered as explanatory variables as well as the untransformed value. For all other explanatory variables, the 
logarithmic, square or quadratic, and square-root transformations of each variable were considered as well as the 
untransformed variable.

Φ z( ) 1
2π

---------- x2( )
2

---------–⎝ ⎠
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∞–

∫=

σε( )
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Estimates of concentration obtained by retransformation of values predicted by the logarithmic model are of 
the median concentration expected for a given set of explanatory variables and not the mean concentration. For this 
study, predicted concentrations were not adjusted for transformation bias (Bradu and Mundlak, 1970; Duan, 1983) 
because estimates of median concentrations were considered more appropriate for the purposes of this study.

Selection of Explanatory Variables

Initial model development work was done using the 95th percentile atrazine concentrations because only two 
stations in the model development data set had censored 95th percentile values (values below the method detection 
limit). Because of this low level of censoring, variable selection and the fitting of initial regression models for the 
95th percentile could be done using ordinary least squares (OLS) methods, with the two censored values assigned 
the value of the detection limit (0.001 µg/L). Final models for all percentiles and for the annual mean were fit using 
tobit regression because of the presence of censored concentration data.
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Figure 8. Relation of the 95th percentile atrazine concentration and atrazine agricultural use intensity at selected 
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sampling stations in the United States. 

A solid symbol indicates a concentration that is less than a censoring threshold and, therefore, is less than the indicated 
value.



The regression models were built using a stepwise procedure. The initial model included just the use-
intensity variable, as this variable was expected to be the most important in terms of explaining the variance in 
concentrations among the stations. Thus, the form of the initial model was

(4)

where

Results for the use-intensity model are shown in figure 13, in which observed 95th percentile concentrations at the 
model development stations are compared to values predicted by the regression model. This model explains about 
59 percent of the variability in the log10 (95th percentile) concentrations at the model development stations  
(R2 = 0.59).

β0 and β1 are regression coefficients and
 ε� is the residual error.
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Figure 9. Relation of log10 of the 95th percentile atrazine concentration and log10 of atrazine agricultural use intensity at 
selected sampling stations in the United States. 

A solid symbol indicates a concentration that is less than a censoring threshold and, therefore, is less than the indicated value.



The next step in the stepwise procedure identified the candidate predictor variables (or their transformations) 
most highly correlated with the residuals from the use-intensity model. The residuals were calculated as

Residuals for censored observed values were calculated by subtracting the log of the predicted value from the log of 
the censoring threshold. A significant correlation between residuals from the use-intensity model and values of 
another explanatory variable implies that adding the variable to the regression model would explain additional 
variability. Variables were eliminated from further consideration when there was no evidence of a significant 
correlation with the residuals from the use-intensity model (correlation coefficient (r) less than 0.03). Additional 
variables were eliminated from consideration when the relation of the variable (or the transformed variable) with the 
residuals was not approximately linear or did not have relatively constant variance across the range of values of the 
variable. This was done subjectively by examining plots of the relations between candidate variables and residuals 
from the use-intensity model. Examples of the relations between the residuals and several candidate variables are 
shown in figure 14.
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Figure 10. Relation of log10 of the 95th percentile atrazine concentration and the square root of atrazine agricultural use intensity at 
selected sampling stations in the United States. 

A solid symbol indicates a concentration less than a censoring threshold and, therefore, less than the indicated value.



The remaining variables were candidates for addition to the model. A subsampling procedure was used to 
select which candidate variable to next add to the model. The model development data set of 112 stations was 
randomly split into two equal parts. Models were fit for the 95th, 75th, and 50th percentiles, and for the annual 
mean concentration, using the fourth root of use intensity and all of the candidate variables. OLS was used to fit 
these models, as censoring was relatively low (2 to 14 percent) for all four of these concentration levels. Mallow’s 
Cp, a statistic commonly used in variable selection for regression models, was used to select which of the candidate 
variables to retain in a two-variable model (along with use intensity) for each of the four concentration levels. 
Mallow’s Cp measures how well the model fits the data, but also incorporates the concept of model parsimony 
(there is a penalty for added variables). These models, derived from half of the stations, then were used to predict 
concentrations for the remaining stations (the half not used to derive the models). The process was repeated 
numerous times, with models being derived from different sets of randomly selected stations. The two-variable 
model that had the lowest average prediction error for the four concentration levels in the repeated trials was 
selected for the next stage of model development.

The variable selection procedure was repeated, adding one variable at a time to the model, until no 
appreciable improvement was seen when a variable was added. This somewhat subjective process balances the 
desire to have the model explain the maximum amount of the variance while avoiding an overly complex model. 
Results for three of the models (50th, 75th, and 95th percentile models) derived using this process and the 
improvement at each step, as shown by decreasing scale and increasing pR2 values, are given in table 4. Virtually 
no improvement was seen in going beyond a model with five explanatory variables.
Figure 11. Relation of log10 of the 95th percentile atrazine concentration and the fourth root of atrazine agricultural use intensity at 
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selected sampling stations in the United States. 

A solid symbol indicates a concentration less than a censoring threshold and, therefore, less than the indicated value.



At each stage of model development, the explanatory variables were subjectively evaluated for 
reasonableness (for example, the models predict increasing concentrations with increasing atrazine use) and their 
overall contribution to explaining the variation in the nine percentiles and mean concentration. Slightly more 
consideration was given to variables selected for the higher percentiles than for the lower percentiles because the 
percentage of censored data was lower. The validity of the assumptions of the maximum likelihood methods used 
to fit the model parameters also was assessed.

The same explanatory variables were used in all of the final atrazine models. Because coefficients were 
estimated independently for each of the 10 models, no constraint prevents the estimate of a low percentile from 
exceeding the estimate for a higher percentile. Retaining the same variables in all models reduced how often this 
occurred. Statistical methods one might use for estimating correlated models, such as seemingly unrelated 
regressions or simultaneous equations estimation, are not available for regressions involving censored data. In 
addition, using the same explanatory variables in all models simplifies the data requirements for application of the 
models. 
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Figure 12. Relation of the log10 of atrazine concentration and the fourth root of atrazine agricultural use intensity at selected sampling 
stations in the United States. 

A solid symbol indicates a concentration less than a censoring threshold and, therefore, less than the indicated value.



Because of the already large number of potential explanatory variables, interactions between variables were 
not considered as potential explanatory variables. Doing so would have resulted in thousands of additional potential 
explanatory variables. However, the significance of interactions between variables retained in a final model was 
evaluated and interaction terms were included when significant.

Because of the already large number of potential explanatory variables, interactions between variables were 
not considered as potential explanatory variables. Doing so would have resulted in thousands of additional potential 
explanatory variables. However, the significance of interactions between variables retained in a final model was 
evaluated and interaction terms were included when significant.
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Figure 13. Comparison of 95th percentile atrazine concentrations with predicted 95th percentile atrazine concentrations for the 112 model 
development stations from a model using only use-intensity as an explanatory variable. 

Results are from the ordinary least squares regression. Filled symbols indicate censored values. RMSE, root mean square error.
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Analysis of Model Fit

Diagnostics for censored regression (Escobar and Meeker, 1992) available in the survreg procedure in the  
S-PLUS program (Insightful Corporation, 1999) were used to assess influential observations and to aid in variable 
selection. In particular, the deviance residuals described by Escobar and Meeker (1992) were used to assess the 
appropriateness of transformations used for explanatory variables. Variance inflation factors were used for 
detecting the presence of multicollinearity among explanatory variables (Neter and others, 1985, p. 391). Box and 
whisker plots (Tukey, 1977, p. 39) were used to help assess model uncertainty. These plots, also known as boxplots, 
summarize a group of data by showing a measure of central tendency (the median), the variation (interquartile 
range), the range (shown by the whiskers), and extreme values (shown by individual points). Boxplots were used 
for displaying the distribution of model residuals (the logarithm of the observed concentration minus the logarithm 
of the predicted concentration) and comparing residuals among groups of data (for example, different regions of the 
country). For the purposes of creating boxplots, the residual for a prediction that had a censored observed 
concentration was considered zero when the predicted concentration was less than the censoring threshold (because 
the predicted value was consistent with the observed value). The residual for a censored observation was computed 
as the difference between the logarithm of one-half the censoring threshold and the logarithm of the predicted 
concentration when the predicted value was greater than the censoring threshold.
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Figure 14. Examples of relations between residuals from the use-intensity-only model and values of candidate explanatory variables for the 112 
model development stations. 

The thin line is an ordinary least squares regression line. The thick line is a lowess smooth. USLE, Universal Soil Loss Equation.



Estimation of Confidence and Prediction Intervals

Confidence and prediction intervals were approximated using normal theory and the t-distribution. That is, 
methods for ordinary least square regression were used, which are only approximate when applied to censored data. 
The standard errors were estimated from the maximum likelihood scale parameter, using the adjustment suggested 
by Aitkin (1981).

ATRAZINE MODELS

The models selected for all nine percentiles and for the annual mean concentration have the form:

      (5)

where 
use intensity is annual agricultural atrazine use in the watershed (kg) / watershed area (km2),
R-factor is rainfall erosivity factor from Universal Soil Loss Equation (USLE),
K-factor is soil erodibility factor from USLE,
watershed area is area of drainage basin (km2), and
Dunne overland flow is percentage of total stream flow derived from surface runoff caused by precipitation 

on saturated soil.

concentration( )10log f use intensity( ) , 
1
4
---

log R-factor( )10 , K-factor, watershed area( ) , Dunne overland flow
1
2
---

=

Table 4. Example results from stepwise model development for the 50th, 75th, and 95th percentile models for atrazine. 

[Scale and pseudo-R2 values are shown for each of the trial models shown on the left. pR2, pseudo R-squared; fuseint, fourth root of atrazine use intensity in 
the watershed (see table 5); lrfact, log10(R-factor); kfact, K-factor; sdarea, square root of watershed area; perdun, percent of streamflow due to Dunne 
overland flow; adry, mean number of consecutive dry days; hgab, sum of percentages of soil hydrologic groups A and B; hgcd2, squared sum of percentages 
of soil hydrologic groups C and D; appt, mean annual precipitation; latemp, log10(mean annual temperature); stile, square root of percentage of watershed 
with subsurface tile drainage; awet, mean number of consecutive wet days; orgm, mean percentage of soil organic matter]

Model
50th Percentile 75th Percentile 95th Percentile

scale pR2 scale pR2 scale pR2

fuseint 0.485 0.56 0.544 0.56 0.646 0.59

fuseint+lrfact 0.474 0.58 0.519 0.60 0.613 0.63

fuseint+lrfact+kfact 0.457 0.61 0.493 0.64 0.561 0.69

fuseint+lrfact+kfact+sdarea 0.433 0.65 0.459 0.68 0.536 0.72

fuseint+lrfact+kfact+sdarea+perdun 0.413 0.68 0.444 0.70 0.522 0.73

fuseint+lrfact+kfact+sdarea+perdun+adry 0.407 0.69 0.433 0.72 0.516 0.74

fuseint+lrfact+kfact+sdarea+perdun+hgab 0.413 0.68 0.443 0.70 0.515 0.74

fuseint+lrfact+kfact+sdarea+perdun+hgcd2 0.413 0.68 0.442 0.71 0.515 0.74

fuseint+lrfact+kfact+sdarea+perdun+appt 0.412 0.68 0.442 0.71 0.521 0.73

fuseint+lrfact+kfact+sdarea+perdun+latemp 0.411 0.68 0.441 0.71 0.522 0.73

fuseint+lrfact+kfact+sdarea+perdun+stile 0.412 0.68 0.440 0.71 0.509 0.74

fuseint+lrfact+kfact+sdarea+perdun+awet 0.412 0.68 0.443 0.70 0.522 0.73

fuseint+lrfact+kfact+sdarea+perdun+orgm 0.413 0.68 0.443 0.71 0.515 0.74
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Statistics for all 10 models are given in table 5. Regression coefficients and statistics are all based on models 
fit using tobit regression. All five variables were significant (p < 0.05) in all models, except for watershed area in 
the models for the 5th and the 10th percentiles. Values of pR2 ranged from 0.62 for the 5th percentile to 0.77 for the 
annual mean concentration, meaning that the models accounted for 62 to 77 percent of the variability in 
concentrations among the 112 stations used for model development.

Analysis of Significant Explanatory Variables

The primary purpose of the WARP models for atrazine is prediction of concentrations in unmonitored 
streams. The models were not developed to investigate processes that affect transport of atrazine from agricultural 
fields to streams. However, the explanatory (predictor) variables in the models should have a reasonable and 
understandable relation to atrazine concentrations in streams. 

Atrazine use intensity in the watershed (as the fourth-root transform) was the most important explanatory 
variable in all of the regression models. Models using just (use-intensity)1/4 as a predictor variable account for 53 to 
64 percent of the variability in concentrations among the 112 stations. The coefficient of the transformed use-
intensity variable was positive in all models, consistent with the relation shown in figure 11.
Table 5. Statistics and coefficients for 10 atrazine models.

[Pseudo R-square, R-squared value for tobit regression; Scale, tobit regression analogue of the root mean squared error obtained from ordinary least squares 
regression; fuseint, fourth root of atrazine use intensity in the watershed; lrfact, log10(R-factor); kfact, K-factor; sdarea, square root of watershed area; perdun, 
percent of streamflow due to Dunne overland flow. <, less than]

Model
Regression coefficients (p-value)

Pseudo
R-square

Scale
Percent

censored
observationsIntercept fuseint lrfact kfact sdarea perdun

5th – 4.04 
(<0.001)

0.70 
(<0.001)

0.44 
(0.010)

1.55 
(0.030)

0.00033 
(0.125)

− 0.15
(<0.001)

0.62 0.50 22

10th – 4.20 
(<0.001)

0.66 
(<0.001)

0.53 
(0.001)

1.96 
(0.004)

0.00037 
(0.080)

– 0.15 
(<0.001)

0.63 0.49 20

15th – 4.17 
(<0.001)

0.62 
(<0.001)

0.59 
(<0.001)

1.95 
(0.002)

0.00040 
(0.036)

– 0.16 
(<0.001)

0.65 0.45 14

25th – 3.92 
(<0.001)

0.60 
(<0.001)

0.56 
(<0.001)

1.54 
(0.011)

0.00041 
(0.027)

 – 0.13 
(<0.001)

0.64 0.44 12

50th – 4.01 
(<0.001)

0.57 
(<0.001)

0.66 
(<0.001)

1.88 
(<0.001)

0.00046 
(0.009)

– 0.11 
(0.001)

0.68 0.41 9

75th – 4.15 
(<0.001)

0.60 
(<0.001)

0.78 
(<0.001)

2.38 
(<0.001)

0.00064 
(<0.001)

 – 0.10 
(0.008)

0.70 0.44 6

85th – 4.44 
(<0.001)

0.67 
(<0.001)

0.87 
(<0.001)

3.28 
(<0.001)

0.00068 
(0.002)

– 0.10 
(0.021)

0.71 0.50 5

90th – 4.47 
(<0.001)

0.67 
(<0.001)

0.95 
(<0.001)

3.46 
(<0.001)

0.00072 
(<0.001)

– 0.10 
(0.011)

0.73 0.50 3

95th – 4.40 
(<0.001)

0.73 
(<0.001)

0.96 
(<0.001)

3.69 
(<0.001)

0.00058 
(0.009)

– 0.10 
(0.017)

0.73 0.52 2

mean – 4.67 
(<0.001)

0.75 
(<0.001)

0.87 
(<0.001)

3.28 
(<0.001)

0.00047 
(0.019)

 – 0.11 
(0.005)

0.77 0.46 14
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The logarithm of the rainfall erosivity factor (R-factor) was a significant predictor in all models and had a 
positive coefficient. The R-factor is an index that characterizes the energy of storms in a specific area, averaged 
over a number of years (Brooks and others, 1991, p. 141–143). The R-factor is included in the USLE, which is used 
to predict soil losses due to erosion. Values of the R-factor for the 112 model development stations are highly 
correlated with values of precipitation intensity for these stations (r = 0.94). The positive coefficient in the 
regression models implies that more runoff of atrazine occurs in areas of high-energy rain storms.

The soil erodibility factor (K-factor) was also a significant predictor in all models, and was highly significant 
(p < 0.001) in models for the higher percentiles and annual mean. The coefficient was positive in all models 
(table 5). The K-factor is an index that indicates the susceptibility of soil to erosion (Brooks and others, 1991, 
p. 143–144). The K-factor for a specific area is dependent on a number of soil characteristics, including sand, silt, 
and organic matter content, permeability, and soil structure. The K-factor is included in the USLE. Values of the   
K-factor for the 112 model development stations are positively correlated with values for percentage silt (r = 0.77) 
and negatively correlated with values for percentage sand (r = – 0.70) and permeability (r = – 0.62). The positive 
coefficient for K-factor in the regression models implies that more runoff of atrazine occurs in areas where the soil 
is susceptible to erosion. This does not necessarily mean that atrazine is being transported on eroded soil particles, 
as atrazine generally is regarded as being transported in the dissolved phase in runoff water because of its relatively 
high water solubility (33 mg/L) and low soil sorption coefficient (Koc = 147) (U.S. Department of Agriculture, 
2001). High K-factor soils have properties that favor runoff of water—low permeability, low sand content, and high 
silt content. The positive relation between K-factor and atrazine concentrations in the streams may indicate that 
areas with high K-factor soils have a relatively high potential for the formation of runoff during precipitation, 
resulting in an increased potential for transport of atrazine.

Watershed area (as the square-root transform) was a significant predictor in all models except the 5th and 
10th percentile models, and the coefficient was positive in all models (table 5). Watershed area is already 
incorporated into the use-intensity variable (use divided by watershed area), so the explanation of its significance in 
the regression models is not as straightforward as for the other variables. Larson and Gilliom (2001) also 
determined that watershed area was significant in preliminary WARP models for atrazine and other herbicides, and 
listed three factors that may contribute to the positive correlation between watershed area and atrazine 
concentrations. First, in large watersheds, pesticides are contributed from multiple tributaries. The timing of 
pesticide application and subsequent runoff can vary among the tributaries. The mixing of water from these 
tributaries can result in elevated concentrations that are sustained for a longer period of time than in the individual 
tributaries. Second, for some streams with large watersheds, pesticide use is concentrated in a relatively small 
farmed area of the watershed, with the remainder of the watershed largely untreated. The use-intensity value for 
these watersheds may be relatively low, despite high use in the farmed areas. It is likely that more water is 
contributed to the stream through runoff from the farmed areas than from the nonagricultural areas, especially in 
arid regions where crops are irrigated. For these cases, the watershed area variable may act as a correction factor, 
accounting for the high concentrations in these streams despite relatively low use-intensity values for the 
watersheds as a whole. Third, in some of the small streams, where concentrations of pesticides remain elevated for 
relatively short periods, the highest concentrations may not have been sampled. For these cases, the values 
computed for the higher concentration percentiles may be biased low, and do not truly reflect the concentrations 
that would be expected for a given use intensity. These unexpectedly low concentrations would correspond to small 
watershed areas, further strengthening the positive relation between watershed area and concentration reflected in 
the coefficients for the watershed area variable in the regression models.
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Dunne overland flow was a significant predictor in all models and highly significant (p < 0.001) in all models 
except for the lower percentiles (table 5). The Dunne overland flow values are estimates of the proportion of the 
total stream flow contributed by overland flow resulting from precipitation falling on saturated soil (that is, 
precipitation falling on areas where the water table has risen to the land surface). The Dunne value was estimated 
for each watershed using TOPMODEL, a physically based watershed model (Wolock, 1993). In TOPMODEL, the 
total contribution of overland flow to streamflow is considered the sum of Dunne overland flow and Hortonian 
overland flow. Hortonian flow results from precipitation falling at a rate exceeding the infiltration rate of the soil. 
Hortonian overland flow was included as a potential predictor variable in the regression analysis along with the 
Dunne value, but Dunne overland flow was a significant predictor much more consistently. The coefficient of the 
Dunne variable was negative in all models, meaning that concentrations generally were lower in areas where Dunne 
overland flow was relatively high. Larson and Gilliom (2001) found the same relation in preliminary WARP 
models. The significance of the Dunne overland flow variable is somewhat unexpected because runoff resulting 
from Dunne overland flow constitutes a relatively minor proportion of total streamflow in all of the streams 
included in the model development data set. The maximum and mean values of the estimates of Dunne overland 
flow for the 112 streams are 7.7 and 2.4 percent of total streamflow, respectively. Larson and Gilliom (2001) 
hypothesized that Dunne overland flow acts as a source of dilution by relatively atrazine-free water. Areas of a 
watershed that contribute water to a stream through Dunne overland flow are likely to be lowland and wetland areas 
relatively close to the stream channel that become saturated at the land surface during wet periods. These areas are 
less likely to be used for growing crops and, thus, are less likely to have been treated with atrazine. It is also 
probable that such areas contribute a disproportionately high amount of water to the stream during rainfall, 
compared to other areas of the watershed, because rainfall on high Dunne areas is readily transformed into surface 
runoff.

Relation Between Predicted Concentrations and Atrazine Use Intensity

Both the response variable (atrazine concentration) and the use-intensity explanatory variable were 
transformed for use in the regression models. These transformations resulted in a relatively linear relation between 
the two variables and improved the behavior of residuals. Despite the use of the transformations, the relation 
between predicted atrazine concentrations (untransformed) and use-intensity values (untransformed) for a given 
station is virtually linear. This can be shown by obtaining model-predicted concentrations for a station using a 
simulated range of use-intensity values while holding the values of the remaining explanatory variables in the 
models constant (figs. 15–17). Results from application of four of the models to one of the model development 
stations (Sugar Creek at Milford, Ill.) are shown in figure 15. For each of these plots, 200 separate predictions of 
atrazine concentration were obtained using randomly generated values for use intensity that ranged from 0 to 
80 kg/km2. Values of the remaining explanatory variables in the models were held constant for all 200 model runs. 
Predicted concentrations are shown by the solid line in the plots. The diagonal dashed line is a linear reference line 
obtained from a linear regression of model predictions and use intensity. The two lines nearly coincide in all four 
plots. The very slight curvature at the low and high ends of the use-intensity range increases at use-intensity values 
well beyond the range shown, but the relation is essentially linear over the range of atrazine use intensity likely to 
occur in watersheds where atrazine is used in agricultural applications. The vertical dashed line shows the 
maximum use intensity among the 112 model development stations. Values of use intensity up to 80 kg/km2 were 
used for these plots to demonstrate that the linear relation extends beyond the range of use intensity in the model 
development data. The observed atrazine concentration for the Sugar Creek station also is shown on each of the 
plots, plotted at the actual use intensity (use intensity at this station was the highest among the 112 model 
development stations). Results for the other six models were similar for this station. Similar results also were 
obtained for other model development stations. Results for the 95th percentile and 50th percentile models for four 
example stations in different regions of the United States are shown in figures 16 and 17, respectively.
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Model Performance

Comparisons between predicted and observed concentrations are made frequently in the following 
discussion of model performance. Terms used for these comparisons are defined here for clarity. Predicted 
concentrations within a factor of 10, or “order of magnitude,” of the observed values are between one-tenth and 10 
times the observed value. More generally, concentrations within a factor of x are between (1/x)*(observed value) 
and (x)*(observed value). For example, for an observed concentration of 3 µg/L, predicted values between 0.3 and 
30 µg/L would be within a factor of 10 of the observed value; predicted values between 0.6 and 15 µg/L would be 
within a factor of 5. 
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Figure 15. Relation of predicted atrazine concentrations and atrazine use intensity for Sugar Creek at Milford, Ill., for simulated atrazine use-
intensity values ranging from 0 to 80 kilograms per square kilometer.



Model Development Stations

The models substantially improve predictive performance over a national average estimate or a model using 
only use-intensity as a predictor variable (fig. 18). Simply using the mean of the 95th percentile concentrations at 
the model development stations as an estimate results in errors of up to several orders of magnitude (fig.18A). The 
use-intensity-only model (fig. 18B) explains much more of the variance, and most predicted values are within an 
order of magnitude of the observed value. The full model for the 95th percentile (fig. 18C) explains an additional 
14 percent of the variability, and 92 percent of predicted values are within a factor of 5 of the observed values at the 
model development stations. Examples of the fit of the regression models for additional percentiles are shown in 
figure 19. For all 10 of the atrazine models, 97 percent or more of the predicted values are within a factor of 10, and 
91 percent or more within a factor of 5, of the observed values at the model development stations (table 6). Nearly 
all of the predictions that differ from the observed concentration by more than a factor of 5 are predictions for 
stations with censored observed concentrations. 
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Figure 16. Relation of predicted 95th percentile atrazine concentrations and atrazine use intensity for four stations for simulated atrazine use-intensity 
32  Development and Application of Watershed Regressions for Pesticides (WARP) for Estimating Atrazine Concentration Distributions in Streams

values ranging from 0 to 80 kilograms per square kilometer.
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Figure 17. Relation of predicted 50th percentile atrazine concentrations and atrazine use intensity for four stations for simulated atrazine use-
intensity values ranging from 0 to 80 kilograms per square kilometer.
Boxplots of the residuals from the models show the performance of the models with respect to geographic 
region and watershed area for the model development stations. Figures 20 and 21 show residuals grouped by 
watershed area and geographic region, respectively, for five of the models. Because the residuals are calculated 
using the base 10 logarithms of observed and predicted values, residuals less than zero indicate overprediction of 
the concentration and residuals greater than zero indicate underprediction. A residual of zero indicates exact 
agreement; residuals of –1 and +1 indicate that the prediction for a given station is 10 times and one-tenth of the 
observed concentration, respectively.

Figure 20 indicates that model predictions are not biased with respect to watershed area. For this plot, 
watershed areas of the 112 model development stations were divided into quintiles (that is, the first quintile 
contains the smallest 20 percent of watershed areas, the second quintile contains the second smallest 20 percent, 
and so on). Residual error was similar for all five groups, which cover over 5 orders of magnitude in watershed 
area.
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Figure 18. Comparison of observed 95th percentile atrazine concentrations for the 112 model development stations with atrazine concentrations 
predicted using three different models. 

A. Mean. B. Use-intensity-only model. C. Full model. The solid line is a 1:1 line, indicating exact agreement of the observed and predicted values. 
Filled symbols indicate censored observed values.
Figure 21 indicates that model predictions of atrazine concentrations have no substantial regional bias. The 
regional groupings used for this plot are based on the U.S. Department of Agriculture’s Farm Resource Regions 
(U.S. Department of Agriculture, 2000), which categorize agricultural regions of the conterminous United States 
on the basis of climate, topography, soil types, and dominant agricultural activities. The nine Farm Resource 
Regions were consolidated into five regions (fig. 22) so that each region would have sufficient data to compute 
boxplots. The lack of any regional bias partially may be due to similar uses of atrazine in the various regions. 
Atrazine is primarily used as a pre-emergent herbicide on corn or sorghum throughout the United States.

Model Validation Stations

The 10 models were applied to the 26 stations in the validation data set (fig. 4). Examples of the fit of the 
models for these validation stations are shown in figures 23 and 24. A summary of the fit of all of the models for the 
validation stations is shown in table 6. Prediction errors for the validation stations were very similar to errors for the 
model development sites. Predicted concentrations from the 10 models were within a factor of 10 of the observed 
concentrations in 96 to 100 percent of cases, and within a factor of 5 of the observed value in 88 to 100 percent of 
cases. Observed concentrations for these comparisons are from a 1-year period for each of the validation stations. 
Similar results were obtained when predicted concentrations were compared to all available years of observed 
concentrations from the validation stations. 
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Figure 19. Examples showing the fit of six of the tobit regression models for atrazine. 

The solid line is a 1:1 line, indicating exact agreement of the observed and predicted values. Filled symbols indicate censored observed values. 
pR-square, pseudo R-squared (R-squared value used for tobit regression).
Table 6.  Summary of fit of regression models for model development and model validation stations.

[Percentage of predicted values within a factor of 10, 5, and 2 of the observed values are shown for each of the 10 models. Predictions “within a factor of x” of 
the observed value are between (1/x)*(observed value) and (x)*(observed value). N, number of stations]

Model

Model development stations (N=112) Validation stations (N=26)

Percent of predictions within a factor of Percent of predictions within a factor of

10 5 2 10 5 2

5th 99 95 72 100 100 73

10th 99 96 74 100 100 73

15th 99 95 76 100 100 69

25th 100 96 74 100 100 73

50th 100 96 78 100 92 58

75th 99 96 72 100 92 46

85th 99 91 75 100 96 54

90th 99 93 72 96 88 65

95th 97 92 69 96 88 58

annual mean 99 94 76 100 92 62
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Figure 20.  Residual error for five atrazine models for 112 stations grouped into quintiles of watershed area. 

First boxplot in each group shows error for all 112 stations. Remaining boxplots show error for stations grouped into five classes based on 
watershed area quintiles. Residual error is [log10 (observed value) – log10 (predicted value)]. N, number of stations.
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Figure 21.  Residual error for five atrazine models for 112 stations grouped by region. 
Atrazine Models 37

First boxplot in each group shows error for all 112 stations. Remaining boxplots show error for stations grouped by region. Regions from 
figure 22. Residual error is [log10 (observed value) –log10 (predicted value)]. N, number of stations.



Despite the relatively good agreement shown in table 6, predictions are biased low for most of the validation 
stations (figs. 23 and 24). The bias primarily is due to underprediction of low percentiles at ARP stations and of 
high percentiles at WQL stations. The cause of the bias is not known, but is probably not due to differences in 
analytical methods used by the different laboratories, as analytical recovery of atrazine was similar for the three 
methods (J. Fuhrman, Monsanto Company, personal commun., July 7, 2003; R.P. Richards, Heidelberg College 
Water Quality Laboratory, personal commun., July 7, 2003). The WQL analyzes unfiltered water, whereas the 
USGS samples are filtered before analysis, but this should have a minimal effect on the measurement of atrazine 
concentrations, as atrazine is primarily in the dissolved phase in surface waters. Geographic location of the stations 
could be a factor, as most of the ARP and WQL stations are in the eastern part of the Corn Belt region (fig. 4), 
whereas the model development stations cover a wide geographic area (fig. 3). Capel and Larson (2001) reported 
that runoff of atrazine from fields in the eastern Corn Belt is somewhat higher than in other regions of the United 
States. This could result in a low bias in predictions based on models derived from more widely distributed 
sampling stations. Predictions for model development stations in Ohio also generally show a low bias, but to a 
smaller extent than the WQL stations. The low bias in the high percentiles at the WQL stations also may be due to 
the higher sampling frequency used in their program. At the nine stations sampled by the WQL, the average 
number of samples collected during the year was 65, compared to an average of 25 samples per year for the model 
development stations. In addition, the WQL collects extra samples during summer storm events. Thus, the high end 
of the atrazine concentration distribution is likely more accurately characterized for the WQL-sampled stations 
than for the model development stations. At the model development stations, especially those on smaller streams, 
the highest concentrations may not have been sampled and the computed upper percentiles may be biased 
somewhat low. Application of models derived from these stations to the WQL stations could result in predictions 
that are biased low. The bias observed for the WQL stations may be due to a combination of the geographic 
location and the higher sampling frequency. 
Northern Crescent
Eastern Uplands
Heartland
Southern Seaboard
Mississippi Portal
Northern Great Plains
Prairie Gateway
Basin and Range
Fruitful Rim
Region for WARP analysis
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Figure 22. U.S. Department of Agriculture Farm Resource Regions and regions used for WARP model evaluation. 

WARP, Watershed Regressions for Pesticides.
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Figure 23. Comparison of observed and predicted atrazine 95th percentile, annual mean, and 50th percentile concentrations for the 26 model 
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validation stations. 

Results for the model development stations are shown for comparison. The solid line is a 1:1 line, indicating exact agreement of the observed and 
predicted values. Dashed lines correspond to predictions of one-tenth (upper line) and 10 times (lower line) the observed value. Filled symbols 
indicate censored observed values.
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Figure 24. Comparison of observed and predicted atrazine 25th, 10th, and 5th percentile concentrations for the 26 model validation stations. 

Results for the model development stations are shown for comparison. The solid line is a 1:1 line, indicating exact agreement of the observed 
and predicted values. Dashed lines correspond to predictions of one-tenth (upper line) and 10 times (lower line) the observed value. Filled 
symbols indicate censored observed values.



Predictions for Lakes and Reservoirs

The models also were applied to 16 stations on lakes and reservoirs where untreated water was sampled as 
part of the ARP program. All of these stations are located in the midwestern Corn Belt region, and the sampling 
frequency was similar to the sampling frequency of the ARP stream stations in the validation data set (14 to 15 
samples per year). These lake and reservoir stations are not regarded as model validation stations, as the models 
were developed using data from flowing water systems. The models were applied to these stations to illustrate how 
the models perform when applied to lakes and reservoirs. A bias is to be expected in the predictions for lakes and 
reservoirs, as the temporal pattern of atrazine concentrations in lakes and reservoirs is somewhat different than the 
pattern in flowing water systems. In general, peak concentrations are lower in lakes and reservoirs, but the period of 
elevated concentration lasts longer (Larson and others, 1997; Battaglin and Goolsby, 1998). This results in higher 
values at the low end of the concentration distribution and lower values at the high end of the concentration 
distribution for lakes and reservoirs compared to streams with similar atrazine use-intensity in the watershed. 
Because the models were developed using concentration data from streams, model predictions for the low end of 
the concentration distribution for lakes and reservoirs are expected to be biased low. Concentrations at the high end 
of the distribution for lakes and reservoirs, on the other hand, should be overpredicted using models developed from 
stream data. Results are shown in figure 25, in which residuals from all 10 models are plotted as boxplots. 
Residuals for the 26 validation stations are shown for comparison.
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Figure 25.  Prediction error for validation stations on lakes and reservoirs and for validation stations on streams and rivers. 

Positive residuals imply underprediction (predicted concentrations lower than observed values); negative residuals imply overprediction.



As expected, predicted concentrations for the lower percentiles at many of the lake and reservoir stations 
were biased low, with predicted concentrations 1/5 to 1/20 of the observed concentrations at most stations. The 
high bias (overprediction) expected for the upper percentiles generally did not occur for these 16 stations; the upper 
percentiles also were underpredicted. This could be related to the sampling frequency used for the model 
development stations, which is somewhat low for capturing peak concentrations of atrazine in streams, especially 
small streams. If peak concentrations were not sampled in some model development streams, the upper percentiles 
computed for these streams would be biased low. For lakes and reservoirs, which generally have a longer period of 
elevated atrazine concentrations, peak concentrations are more likely to be sampled and values computed for the 
upper percentiles are probably more accurate. This would result in a low bias for upper percentile predictions in 
lakes and reservoirs. Regression models developed using monitoring data from lakes and reservoirs may be needed 
to more accurately predict concentrations of atrazine in lakes and reservoirs. 

Uncertainty in Model Predictions

Uncertainty in a predicted concentration can be expressed in terms of a confidence interval (CI) and a 
prediction interval (PI). Each predicted value corresponds to a particular combination of values for the explanatory 
variables, corresponding to a particular sampling station in this study. If data were collected at a number of stations 
that have identical watershed characteristics or over a number of years at the same station, so that many values of 
the modeled concentration measures were available, the mean of these values would be expected to fall within the 
CI computed for the model prediction, with a specified level of confidence. The confidence level used for the CI in 
this study is 95 percent, implying a 95 percent probability that the “true” mean value of repeated measurements at 
the same station falls within the CI. The prediction interval, on the other hand, represents the likelihood of a 
particular value for an individual site and year (rather than a mean value) falling within a specified interval of the 
predicted value. The confidence level used for the PI in this study is also 95 percent. 

Examples of CIs and PIs are shown in figure 26. In these plots, the model development stations are arranged 
in order of increasing predicted 95th percentiles (26A) and predicted 50th percentiles (26B). The upper and lower 
bounds of the CI and PI for each predicted value are shown as lines above and below the line for the predicted 
values. Concentrations are expressed as logarithms in these plots, resulting in symmetric intervals for both the CI 
and PI (the high and low bounds of the intervals are the same distance from the predicted value). The CI is smaller 
than the PI for a given predicted value, reflecting the greater certainty in a mean value compared to an individual 
value. The width of the CIs is more variable than the width of the PIs among the different stations. The width of the 
PIs is nearly uniform throughout the range of predicted values for the 112 stations. Variations in the width of 
intervals for predictions from a given model reflect differences in the values of the explanatory variables for 
individual stations. Stations with extreme values in one or more of the explanatory variables have wider intervals, 
and greater uncertainty in their predicted concentrations, than stations with explanatory variables that fall closer to 
the center of the explanatory data. Intervals for the 50th percentile predictions are somewhat smaller than intervals 
for the 95th percentile predictions, reflecting the better fit (lower scale) of the 50th percentile model compared with 
the 95th percentile model.

The logarithmic plots in figure 26 clearly show the relative widths of the CIs and PIs over the entire range of 
predicted values for a given model. However, expressing the concentrations as logarithms obscures the fact that the 
intervals are actually skewed—the upper part of both intervals covers a wider range of concentrations than the 
lower part. This is illustrated in figure 27, in which the same data are plotted without the logarithmic transformation 
of concentrations. In these plots, the upper part of the intervals is considerably wider than the lower part, especially 
for the higher predicted concentrations. In the case of the highest predicted value for the 95th percentile (6.7 µg/L 
for the Mississippi River at St. Francisville, La.), the CI extends from 1.26 to 35.1 µg/L, and the PI extends from 
0.34 to 129.6 µg/L.
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Figure 26. Examples of confidence intervals and prediction intervals for predicted atrazine concentrations (log-transformed) for the 112 

model development stations. 

A. 95th percentile. B. 50th percentile. Stations are arranged in order of increasing predicted concentrations.
The levels of uncertainty among the 10 models are compared in figure 28. The size of the CIs and PIs are 
represented as the ratio of the upper bound of the interval to the predicted value (this is the same as the ratio of the 
predicted value to the lower bound of the interval). For example, for the Mississippi River case mentioned in the 
previous paragraph, the ratio for the CI is 5.24 (35.1/6.7) and the ratio for the PI is 19.3 (129.6/6.7). Expressing the 
size of the intervals in this way allows comparisons with predicted values similar to comparisons made for 
predicted and observed values (table 6). The 95 percent CIs for most predictions extend to less than a factor of 2 
above and below the predicted value for all 10 models (fig. 28A). The extreme values (shown as asterisks) are for 
the same four stations for all 10 models. In each case, one or more of the explanatory variables for the station has a 
relatively extreme value compared with the rest of the stations. The highest ratios, shown by the asterisks well 
above the others, are for the Mississippi River at St. Francisville, La, which has a watershed area far greater than 
the rest of the stations. The width of 95 percent PIs varies among the 10 models (28B). PIs for the 15th, 25th, 50th, 
and 75th percentile predictions, and for predictions of the annual mean, extend to a factor of 7 to 10 above and 
below the predicted value for most stations. PIs for the remaining models extend to a factor of 10 to 13 above and 
below the predicted values for most stations. Thus, the width of prediction intervals generally is similar to or 
somewhat larger than the largest differences seen between predicted and observed atrazine concentrations, which 
are mostly less than a factor of 10. Examples of the CI and PI for specific stations, and their relation to predicted 
concentrations and multiple years of observed concentrations, are shown in the section on year-to-year variability. 
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Figure 27. Examples of confidence intervals and prediction intervals for predicted atrazine concentrations (not log-transformed) for the 112 
model development stations. 

A. 95th percentile. B. 50th percentile. Stations are arranged in order of increasing predicted concentrations.
Prediction of Annual Concentration Distributions 

Model Development Stations

The nine predicted percentiles for a given stream can be combined to provide an estimate of the frequency 
distribution of concentrations in the stream for a 1-year period. This estimate then can be compared to the 
distribution obtained by using the percentiles computed from the measured concentrations. Examples of estimated 
and observed concentration distributions are shown in figures 29, 30, and 31 for rivers and streams that have very 
large, medium to large, and small watersheds, respectively. All of these rivers and streams were used for model 
development. The estimated distributions reasonably reproduce the observed distributions in nearly all of these 
examples. For all of the examples, all estimated percentiles are within a factor of 10 of the observed percentiles.
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Figure 28.  Ratios of the upper bound of 95 percent confidence and prediction intervals to predicted atrazine concentrations from 10 models. 

A. Confidence intervals. B. Prediction intervals. Each boxplot shows the distribution of ratios among the 112 model development stations.
Model Validation Stations

Predicted and observed distributions for four stream stations from the validation data set (fig. 32) show that 
the predicted concentrations generally are biased low, consistent with results shown in figure 25. The general shape 
of the distributions is reasonably reproduced by the model predictions, however, and most predicted concentrations 
are well within a factor of 10 of the observed concentrations. In figure 33, predicted and observed distributions are 
shown for four lakes and reservoirs. Underprediction of the lower percentiles is much more evident for these 
stations, and the estimated distributions do not match the observed distributions nearly as well as for the stream 
stations. This is consistent with the earlier discussion of biased predictions for lakes and reservoirs, and reflects the 
fact that the models were developed using data from flowing-water systems. Estimates of the higher percentiles for 
the lakes and reservoirs were more accurate, with most estimates for the 95th, 90th, and 85th percentiles within a 
factor of 10 of the observed values.
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Figure 29. Examples of predicted and observed annual atrazine concentration distributions for model development rivers with very large 
watersheds.
Year-to-Year Variability

Predicted concentrations (and the predicted annual concentration distributions) obtained from the regression 
models for a given station do not correspond to specific years. The only explanatory variable in the atrazine models 
that has a temporal component is atrazine use intensity, with different estimates used for stations where samples 
were collected before 1995 and for stations where samples were collected during 1995 and later years. The other 
explanatory variables in the regression models are either long-term average values (R-factor and Dunne overland 
flow) or essentially constant with respect to time (watershed area and K-factor) for a given watershed. Thus, 
predictions for a particular station are the same for all years before1995, and for 1995 and later years. This implies 
that the accuracy of the predictions for a station depends, in part, on how the distribution of concentrations at that 
station varies from year to year.
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Figure 30. Examples of predicted and observed annual atrazine concentration distributions for model development rivers with medium to large 
watersheds.

2

Computed percentiles and annual mean concentrations are available for multiple years at some of the model 
development and model validation stations, and these data can be used to evaluate year-to-year variability. A total 
of 54 stations on streams (31 model development stations and 23 validation stations) had multiple years of data: 
19 stations had 2 years, 11 stations had 3 years, 10 stations had 4 years, 4 stations had 5 years, 6 stations had 6 
years, 3 stations had 7 years, and 1 station had 8 years. The ratio of the maximum value to the minimum value of a 
concentration statistic for a station can be used as an indication of the year-to-year variability at the station. The 
boxplots in figure 34 show the distribution of ratios among the 54 stations for each of the concentration statistics. 
The ratios are expressed as base 10 logarithms in this plot, so that a value of 1.0 indicates that the maximum value 
for a station was 10 times the minimum value for the station. Ratios greater than 10 occurred in only 7 of the 540 
total cases. In most cases, the ratios were well below 10, with a mean ratio of less than 5 for all of the concentration 
statistics. Ratios greater than 10 for the 5th, 10th, and 25th percentiles (four stations) all involved a censored value 
for the minimum value, and the maximum value also was very low. The one ratio greater than 10 for the 95th 
percentile was for the Missouri River at Omaha, one of the NASQAN stations used for model validation. Four years 
of data were available for this station, with 95th percentile values of 4.0, 0.18, 2.2, and 1.08 µg/L, resulting in a 
ratio of 22.2 (4.0/0.18).

km , square kilometer.
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Figure 31. Examples of predicted and observed annual atrazine concentration distributions for model development streams with small watersheds.

km 2, square kilometer.
Comparisons of predicted atrazine concentration distributions and multiyear observed concentration 
distributions are shown in figures 35 and 36. Figure 35 shows the model-estimated distribution and the observed 
distributions for 1992 through 1999 for the White River in Indiana. This river was included in the model 
development data set. The range of observed values for each percentile all fall within an order of magnitude. The 
estimated percentiles are within an order of magnitude of the observed values, so that the predicted distribution 
reasonably matches the observed distribution for each of the 8 years. Prediction intervals computed for each of the 
estimated percentiles also are shown. The prediction intervals would be expected to contain 95 percent of observed 
values obtained from repeated years of sampling at the station. The observed values for the White River fall within 
the prediction intervals for all 8 years. Figure 36 shows similar results for one of the validation stations, the 
Sandusky River in Ohio, sampled by the Heidelberg College WQL. Observed concentration distributions are shown 
for 1990 through1991 and 1994 through 1998. The model-estimated distribution is shown along with the prediction 
interval for each predicted value. Although there is a negative bias (underprediction) for some of the estimated 
percentiles, nearly all of the observed percentiles fall within the prediction intervals of the estimated values.
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Figure 32. Examples of predicted and observed annual atrazine concentration distributions for four rivers included in the model validation data set.
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Overall, results shown in figures 34 through 36 indicate that values of the selected percentiles and the annual 
mean concentration generally varied by less than a factor of 10 from year to year at most of these stream stations 
during the period of sampling. This variability does not exceed the uncertainty in the model-estimated 
concentrations, implying that the models adequately predict concentrations for these stations during most years of 
the study period. The patterns of year-to-year variability described here are based on only a few years of data at 
most stations. In addition, most of the stations with more than 2 years of data were sampled primarily during the 
1995 to 1999 period. The variability in concentration statistics derived from these data may not reflect the true 
long-term variability in atrazine concentrations at these stations, especially the variability in concentrations at the 
higher and lower ends of the frequency distribution. Longer-term monitoring at a larger number of stations would 
be needed to substantiate the results obtained for the stations in this study.
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Figure 33. Examples of predicted and observed annual atrazine concentration distributions for four stations located on lakes or reservoirs.

km 2, square kilometer. ARP, Acetochlor Registration Partnership.



0

0.5

1.0

5th 10th 15th 25th 50th 75th 85th 90th 95th

mean

1.5

2.0

Atrazine concentration statistic

Lo
g 1

0
of

ra
tio

of
m

ax
im

um
to

m
in

im
um

at
ra

zin
e

co
nc

en
tra

tio
n

percentile
Atrazine Models 51

Figure 34. The ratio of the maximum and minimum observed values for nine atrazine concentration percentiles 
and the annual mean atrazine concentration for 54 stations with 2 or more years of computed statistics.
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EXPLANATION
Figure 35. Observed annual atrazine concentration distributions for 8 years (1992–99) and predicted atrazine concentration 
distribution for the White River in Indiana. 

Prediction intervals (95 percent) for each predicted concentration are shown as horizontal bars.
The WARP method does not directly provide estimates of daily concentrations. However, the WARP 
method may be applied to periods of less than a full year. Many pesticides, including atrazine, exhibit distinct 
seasonal patterns in rivers and streams. For atrazine, the seasonal pattern during a 1-year period can be divided 
into high and low seasons (fig. 37). The high season corresponds to the period following application to cropland 
and subsequent runoff to streams. The low season covers the rest of the year when concentrations decline to low or 
undetectable levels in most streams. Separate sets of regression models can be developed for each of these two 
seasons using the WARP method. Estimated concentration percentiles from the two sets of models then can be 
used to obtain estimates of the distribution of concentrations in a given stream during the two periods. Separate 
concentration distributions for high and low seasons provide a more realistic picture of the seasonal nature of 
atrazine occurrence in streams than annual distributions. The assignment of high and low seasons, while relatively 
straightforward for atrazine, may be more difficult for some other pesticides. Atrazine is applied to cropland once 
per year in most agricultural applications, and has little nonagricultural use in most parts of the United States. 
Many other pesticides have a number of different applications, and may be applied at various times during the year 
in some areas. Some insecticides, for example, may be applied in response to specific outbreaks of insects and at 
different times in different years. 
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Figure 36. Observed annual atrazine concentration distributions for 7 years (1990–91, 1994–98) and predicted atrazine concentration 
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distribution for the Sandusky River in Ohio. 

Prediction intervals (95 percent) for each predicted concentration are shown as horizontal bars.
SEASONAL ATRAZINE MODELS

One limitation of regression models derived using the WARP method is the lack of a temporal component. 
The concentrations predicted for a water body are not directly related to a specific date. Model predictions of 
concentration percentiles provide only an estimate of the time during the year that the concentration of a pesticide 
in a stream remains below the predicted value. Assessment of the risk associated with pesticide occurrence in 
surface waters usually requires knowledge of both the magnitude and the timing of the occurrence. Currently, the 
USEPA is addressing requirements of the Food Quality Protection Act (FQPA) passed by the U.S. Congress in 
1996 (U.S. Environmental Protection Agency, 2002b). The FQPA requires that concentrations of pesticides in 
drinking water be included in risk assessments used in setting tolerances (maximum legal limits) for pesticide 
residues in food. Ideally, daily values of pesticide concentrations would be available for use in these risk 
assessments for all water bodies used as sources of drinking water.
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To evaluate the utility of seasonal regression models for atrazine, models for the high and low seasons were 
developed using the same data set used to develop the annual models. The high and low seasons were defined for 
individual stations based on the likelihood of atrazine being applied and runoff occurring during the period in a 
given region. The high season used for the seasonal models is the same as the high runoff period defined for each 
station (tables 1 and 2). The low season used for the seasonal models corresponds to the combined low and medium 
runoff period defined for each station. For example, for stations in Indiana (pesticide runoff group F in table 1), the 
high period extended from May through July and the low period from August through April. These classifications 
were subjectively determined for each region after consultation with NAWQA personnel familiar with the area. 

Concentration percentiles and mean concentrations were computed for each period using the same methods 
used for the annual percentiles and mean concentrations. It should be noted, however, that the concentration 
percentiles computed for the high and low seasons represent different amounts of time than the percentiles 
computed for the entire year. The time represented by the seasonal concentration percentiles is determined by the 
length of time included in the high and low seasons for a given station. For example, for stations in Indiana 
(pesticide runoff group F in table 1) the high season includes the months of May, June, and July, or 92 days. Thus, 
the 95th percentile concentration computed for a station in Indiana represents the concentration equaled or 
exceeded on approximately 5 days during the high season [92 days � (0.95 � 92 days) = 4.6 days]. For stations in 
areas with more extended planting seasons, the same percentile represents a longer period. For example, for a 
station in Arizona (runoff group C in table 1), the high season covers the period March through October, or 245 
days. The 95th percentile concentration computed for a station in this group represents the concentration equaled or 
exceeded on approximately 12 days during the high season. Thus, the high-season 95th percentile for a station in 
runoff group F represents an estimate of the 99th percentile concentration for the entire year [(365�4.6)/365 = 
0.987]. For stations in group C, the high-season 95th percentile represents an estimate of the 97th percentile 
concentration for the entire year [(365�12)/365 = 0.967].

Seasonal regression models were developed using the same stepwise procedure used for the annual models. 
Although a number of different combinations of the explanatory variables were evaluated using this procedure, the 
variables used for the annual models were as good or better than any other group of variables considered, in terms 
of explaining the variance in the observed concentrations during both the high and low seasons. Thus, the high- and 
low-season models include the same variables as the annual models: (use intensity)1/4, log (R-factor), K-factor, 
Dunne overland flow, and (watershed area)1/2. The coefficients for the variables differ from the coefficients in the 
annual models, as the high-season regression equations were derived using concentration data for the high season 
only and the low-season equations were derived using concentration data from the low season only.
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Figure 37. Example of the assignment of samples to seasons for use in seasonal atrazine models.



Statistics for the seasonal models are given in table 7. The high-season models explained 67 to 76 percent of 
the variability among the 112 stations (pR2 values of 0.67–0.76). The variability explained by the high-season 
models for the mean and the higher percentiles was similar to that of the corresponding annual models (table 5). 
The high-season models for the lower percentiles explained slightly more of the variability than the corresponding 
annual models. The low-season models explained from 58 to 69 percent of the variability among the stations 
(table 7). The variability explained by the low-season models for the lower percentiles and the mean was similar to 
that of the corresponding annual models; the low-season models explained somewhat less of the variability for the 
higher percentiles.

As with the annual models, boxplots of the residual errors from the seasonal models can be used to examine 
the magnitude of the residual error of the models and the performance of the models with respect to watershed area 
and geographic region for the model development stations (figs. 38–41). These plots are analogous to figures 20 
and 21, and show residual errors grouped by watershed area (figs. 38 and 39) and geographic region (figs. 40 and 
41) for five of the high-season and five of the low-season models, respectively. A residual of zero indicates exact 
agreement; residuals of –1 and +1 indicate that the prediction for a given station is 10 times and one-tenth of the 
observed concentration, respectively. The regional groupings for figures 40 and 41 are the same ones used for 
figure 21, and are based on the U.S. Department of Agriculture Farm Resource Regions (U.S. Department of 
Agriculture, 2000). The nine Farm Resource Regions were consolidated into five groups (fig. 22) so that each 
group would have sufficient data to compute boxplots. Figures 38 through 41 indicate no substantial bias with 
respect to watershed area or region for the seasonal-model predictions. Prediction errors for the seasonal models 
are similar to errors for the annual models, with nearly all predicted concentrations within a factor of 10 of the 
observed concentration for the model development stations.

Uncertainty in the predictions from the seasonal models is evaluated in figures 42 and 43, using the same 
method that was used to evaluate uncertainty in the annual model predictions (fig. 28). Confidence intervals (CIs) 
for predictions from both the high- and low-season models extend less than a factor of two above and below the 
predicted concentration for most stations. The largest CIs extend to concentrations four to seven times the predicted 
concentrations. Prediction intervals (PIs) for predictions from both seasonal models extend to 10 to 18 times the 
predicted concentrations for most stations, with the largest PIs extending to more than 30 times the predicted 
concentrations.

Examples of concentration distributions estimated from the seasonal and annual models are shown in 
figure 44. The example plots show results for a very large river (Ohio River), two large rivers (Minnesota and New 
Rivers), and one small stream (Sugar Creek), all of which were included in the model development data set. Similar 
results were obtained for the other model development stations. Taken together, the two distributions derived from 
the seasonal models provide more information than the single distribution derived from the annual models, and 
better reflect the seasonal nature of atrazine occurrence in streams. For example, the estimated annual distribution 
for Sugar Creek implies that concentrations range from about 0.1 to 4 µg/L during about 90 percent of the year, and 
that the median (50th percentile) concentration for the year is approximately 0.15 µg/L. The combined estimates 
from the seasonal models imply that concentrations during the low season (August through April) cover 
approximately 0.08 to 0.3 µg/L, a very small range, and during the high season (May through July) approximately 
0.2 to 10 µg/L, a much wider range. The median concentration during the low season is approximately 0.1 µg/L, 
very close to the annual median concentration, whereas the median concentration during the high season is much 
higher, approximately 1 µg/L.
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Table 7.  Statistics and coefficients for seasonal models for atrazine.

[Pseudo R-square, R-squared value for tobit regression; Scale, tobit regression analogue of the root mean squared error obtained from ordinary least squares 
regression; fuseint, fourth root of atrazine use intensity in the watershed; lrfact, log10(R-factor); kfact, K-factor; sdarea, square root of watershed area; perdun, 
percent of streamflow due to Dunne overland flow. <, less than]

Model
Regression coefficients (p-value)

Pseudo
R-square

Scale
Percent

censored
observationsIntercept fuseint lrfact kfact sdarea perdun

HIGH-SEASON MODELS

5th –4.80 
(<0.001)

0.82 
(<0.001)

0.75 
(<0.001)

2.61 
(0.002)

0.00085 
(<0.001)

–0.15 
(0.002)

0.67 0.60 17

10th –4.63 
(<0.001)

0.79 
(<0.001)

0.70 
(<0.001)

2.76 
(<0.001)

0.00080 
(<0.001)

–0.14 
(0.003)

0.69 0.55 14

15th –462 
(<0.001)

0.76 
(<0.001)

0.74 
(<0.001)

2.96 
(<0.001)

0.00085 
(<0.001)

–0.14 
(0.001)

0.71 0.52 12

25th –4.59 
(<0.001)

0.73 
(<0.001)

0.75 
(<0.001)

3.33 
(<0.001)

0.00084 
(<0.001)

–0.13 
(0.004)

0.68 0.55 10

50th –4.60 
(<0.001)

0.80 
(<0.001)

0.86 
(<0.001)

3.19 
(<0.001)

0.00081 
(<0.001)

–0.14 
(0.002)

0.71 0.55 9

75th –4.62 
(<0.001)

0.90 
(<0.001)

0.94 
(<0.001)

3.27 
(<0.001)

0.00072 
(0.004)

–0.14 
(0.004)

0.73 0.58 7

85th –4.43 
(<0.001)

094 
(<0.001)

0.88 
(<0.001)

3.28 
(<0.001)

0.00055 
(0.034)

–0.12 
(0.016)

0.71 0.61 5

90th –4.25 
(<0.001)

0.94 
(<0.001)

0.86 
(<0.001)

3.22 
(<0.001)

0.00045 
(0.077)

–0.12 
(0.015)

0.72 0.60 4

95th –4.14 
(<0.001)

1.00 
(<0.001)

0.88 
(<0.001)

2.99 
(<0.001)

0.00025 
(0.031)

–0.13 
(0.009)

0.75 0.58 2

mean –4.98 
(<0.001)

0.96 
(<0.001)

0.96 
(<0.001)

3.68 
(<0.001)

0.00058 
(0.017)

–0.13 
(0.009)

0.76 0.57 14

LOW-SEASON MODELS

5th –5.13 
(<0.001)

077 
(<0.001)

0.78 
(<0.001)

2.45 
(0.005)

0.00049 
(0.046)

–0.20 
(<0.001)

0.66 0.56 34

10th –4.78 
(<0.001)

0.74 
(<0.001)

0.57 
(0.005)

2.76 
(0.001)

0.00049 
(0.046)

–0.16 
(0.002)

0.62 0.57 31

15th –4.62 
(<0.001)

0.7 
(<0.001)

0.62 
(<0.001)

2.62 
(<0.001)

0.0005 1 
(0.014)

–0.18 
(<0.001)

0.69 0.48 26

25th –4.6 
(<0.001)

0.63 
(<0.001)

0.66 
(<0.001)

2.85 
(<0.001)

0.00053 
(0.018)

–0.17 
(<0.001)

0.63 0.52 23

50th –4.66 
(<0.001)

0.54 
(<0.001)

0.76 
(<0.001)

3.07 
(<0.001)

0.00058 
(0.005)

–0.12 
(0.004)

0.64 0.49 16

75th –4.33 
(<0.001)

0.49 
(<0.001)

0.76 
(<0.001)

3.05 
(<0.001)

0.00051 
(0.011)

–0.14 
(<0.001)

0.63 0.47 9

85th –4.59 
(<0.001)

0.42 
(<0.001)

0.94 
(<0.001)

3.63 
(<0.001)

0.00063 
(0.003)

–0.15 
(<0.001)

0.61 0.50 7

90th –4.43 
(<0.001)

0.42 
(<0.001)

0.92 
(<0.001)

3.67 
(<0.001)

0.00051 
(0.017)

–0.16 
(<0.001)

0.6 0.50 5

95th –4.25 
(<0.001)

0.4 
(<0.001)

0.96 
(<0.001)

3.64 
(<0.001)

0.00047 
(0.036)

–0.19 
(<0.001)

0.58 0.52 3

mean –5.37 
(<0.001)

0.54 
(<0.001)

1.00 
(<0.001)

4.42 
(<0.001)

0.00050 
(0.019

–0.19 
(<0.001)

0.66 0.49 31
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Figure 38.  Residual error for five high-season atrazine models for 112 stations grouped into quintiles of watershed areas. 

First boxplot in each group shows error for all 112 stations. Remaining boxplots show error for stations grouped into five classes based on 
watershed area quintiles. Residual error is [log10 (observed value) � log10 (predicted value)]. N, number of stations.
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Figure 39.  Residual error for five low-season atrazine models for 112 stations grouped into quintiles of watershed areas. 

First boxplot in each group shows error for all 112 stations. Remaining boxplots show error for stations grouped into five classes based on 
watershed area quintiles. Residual error is [log10 (observed value) � log10 (predicted value)]. N, number of stations.
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Figure 40.  Residual error for five high-season atrazine models for 112 stations grouped by region. 

First boxplot in each group shows error for all 112 stations. Remaining boxplots show error for stations grouped by region. Regions from figure 22. 
Residual error is [log10 (observed value) � log10 (predicted value)]. N, number of stations.
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Figure 41.  Residual error for five low-season atrazine models for 112 stations grouped by region. 

First boxplot in each group shows error for all 112 stations. Remaining boxplots show error for stations grouped by region. Regions from figure 22. 
Residual error is [log10 (observed value) � log10 (predicted value)]. N, number of stations.
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Figure 42.  Ratios of the upper bound of 95 percent confidence and prediction intervals to predicted atrazine concentrations from 10 high-season 
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models. 

Each boxplot shows the distribution of ratios among the 112 model development stations. 
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Figure 43.  Ratios of the upper bound of 95 percent confidence and prediction intervals to predicted atrazine concentrations from 10 low-season 
models. 

Each boxplot shows the distribution of ratios among the 112 model development stations.
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Figure 44. Examples of atrazine concentration distributions estimated from seasonal and annual models for a very large river (Ohio River), two large 
rivers (Minnesota and New Rivers), and a small stream (Sugar Creek).
MODEL LIMITATIONS

Use of the regression models for atrazine, and the WARP methodology in general, are subject to several 
limitations:

(1) The regression models were derived for estimation of atrazine concentrations in rivers and streams of the 
conterminous United States. While the 112 stations used for model development represent a wide variety of 
environmental settings and a large range of watershed area, it is likely that some watersheds in the conterminous 
United States or elsewhere have one or more characteristics outside the ranges of the watershed parameters used to 
develop the models. Application of the models to streams draining these watersheds would result in increased 
uncertainty in predicted concentrations and potentially biased results.

(2) The models were developed using data from flowing water systems. Application of the models to lakes or 
reservoirs may result in biased predictions, as shown by the results of application of the models to a small number of 
stations on lakes and reservoirs (fig. 25). 
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(3) The atrazine use data used for the models are estimates for agricultural applications to cropland only. 
Nonagricultural use of atrazine in a watershed, if significant, could result in inaccurate (low) predictions of atrazine 
concentrations in a stream. In addition, the use estimates are based on periodic summaries of data on land use, 
agricultural crops, and pesticide use, with a gap of 3 to 5 years between updates. Significant changes in farming 
practices or pesticide use in a watershed between updates of the data used for the use estimates could result in 
decreased accuracy of model predictions of atrazine concentrations. This would be more likely for streams draining 
small agricultural watersheds and watersheds undergoing changes in land use (for example, urban areas) than for 
large rivers.

(4) More generally, development of regression models for additional pesticides using the WARP 
methodology may not be straightforward in some cases. In several ways, atrazine may be the pesticide for which 
the WARP method is most likely to yield the best results. The widespread, primarily agricultural use and similar 
application methods used for atrazine across the United States result in a fairly predictable relation between 
atrazine use and concentrations in surface waters compared to many other pesticides. In addition, atrazine has been 
detected often in surface waters across the United States, and a large amount of atrazine concentration data is 
available for model development. The WARP methodology has been used to develop models for several other 
herbicides, all of which also have widespread, primarily agricultural use and frequent detections in surface waters 
(Larson and Gilliom, 2001). Extension of the WARP method to additional pesticides will require reliable use data 
and sufficient monitoring data for computing reliable concentration percentiles and annual mean concentrations. 
For pesticides with substantial nonagricultural use, a surrogate measure of use (for example, population density for 
pesticides used in urban areas) may be needed because data on nonagricultural use of pesticides are not currently 
available on a national scale. 

SUMMARY AND CONCLUSIONS

Regression models were developed for estimation of annual distributions of atrazine concentrations in rivers 
and streams, using nationally available data on watershed characteristics and atrazine use. Separate models were 
derived for nine specific percentiles of the annual distribution of atrazine concentrations and for the annual mean 
concentration. Estimated concentrations from the models can be combined to provide an estimate of the annual 
distribution of atrazine concentrations in unmonitored streams. The models account for 62 to 77 percent of the 
variability in concentration percentiles among 112 streams used for model development. Atrazine use intensity in 
the watershed was the most important explanatory variable, accounting for 53 to 64 percent of the variability 
among the 112 streams. Four additional watershed characteristics were included in the models, accounting for an 
additional 8 to 16 percent of the variability. Uncertainty in predicted concentrations was expressed in terms of 
prediction intervals. For the annual models, 95 percent prediction intervals extend to a factor of 7 to 13 above and 
below the predicted concentration in most cases.

Results for 26 model validation stations on rivers and streams show that concentrations were predicted within 
a factor of 10 of the observed concentrations in nearly all cases. Concentration distributions for the validation 
stations were reasonably reproduced by the models. A relatively small number of stations were available for model 
validation, and many of the validation stations were located in the Corn Belt region of the midwestern United 
States. A larger number of validation stations, representing a wider range of environmental and agricultural 
settings, is needed for a more complete evaluation of the WARP atrazine models. 

Predicted concentrations for 16 stations on lakes and reservoirs were biased low (underpredicted), especially 
for the lower percentiles. This bias was expected, and reflects known differences in the temporal patterns of 
atrazine concentrations in lakes and reservoirs and temporal patterns in flowing water systems. Regression models 
derived using concentration data from lakes and reservoirs may be needed to adequately model atrazine 
concentration distributions in these water bodies. 
64  Development and Application of Watershed Regressions for Pesticides (WARP) for Estimating Atrazine Concentration Distributions in Streams



Year-to-year variability in annual atrazine concentration distributions and annual mean concentrations among 
the stations used for model development and validation was relatively small. At stream stations with multiyear data 
(54 stations), the variability in concentration percentiles and annual means for different years was usually less than 
an order of magnitude. Prediction intervals computed for model-estimated concentrations included observed 
concentrations in the additional years in most cases, implying that model predictions, along with the associated 
estimates of uncertainty, can reasonably be expected to represent concentrations in a stream for several years. 
Longer-term monitoring data from a larger number of stations would be needed to substantiate these results. 

Seasonal models for atrazine concentration distributions in streams were developed to add a temporal 
component to the WARP models. Separate sets of models were developed for the high season (the application 
period and the period of potential runoff to streams) and the low season (the remainder of the year). The same 
explanatory variables included in the annual models were significant predictors in both sets of seasonal models. 
The high-season models accounted for 67 to 76 percent of the variability in high-season concentrations among the 
112 model development stations. The low-season models accounted for 58 to 69 percent of the low-season 
variability. For most seasonal-model predictions, 95 percent prediction intervals extend to a factor of 10 to 18 above 
and below the predicted concentration. Comparison of estimated annual atrazine concentration distributions with 
estimated seasonal distributions shows that additional information can be obtained by developing seasonal models 
covering less than a full year, and that concentration distributions derived from the seasonal models better reflect 
the seasonal nature of atrazine occurrence in streams.
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