Cover photo: Charles River, looking east from the Massachusetts Avenue Bridge, Boston, Massachusetts.

Courtesy of: John Daley http://www.guardroom.com/jjdaley/photography/places/page/image10.html

Streamflow, Water Quality, and Contaminant Loads in the Lower Charles River Watershed, Massachusetts, 1999–2000

By ROBERT F. BREAULT, JASON R. SORENSON, and PETER K. WEISKEL

Water-Resources Investigations Report 02-4137

In cooperation with the U.S. ENVIRONMENTAL PROTECTION AGENCY, the MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION, and the MASSACHUSETTS WATER RESOURCES AUTHORITY

Northborough, Massachusetts 2002

U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY Charles G. Groat, Director

The use of trade or product names in this report is for identification purposes only and does not constitute endorsement by the U.S. Government.

For additional information write to:

Chief, Massachusetts-Rhode Island District U.S. Geological Survey 10 Bearfoot Road Northborough, MA 01532

or visit our Web site at http://ma.water.usgs.gov Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286

CONTENTS

Abstract	1
Introduction	2
Purpose and Scope	4
Acknowledgments	4
Field Methods	5
Collection of Streamflow Data	5
Water-Quality Sampling	6
Cleaning of Sampling Equipment	6
Dry-weather Sampling	7
Stormwater Sampling	8
Sample Collection, Instrumentation, and Programming	8
Sample Retrieval and Processing	11
Continuously Monitored Water-Quality Properties	12
Data-Analysis Methods	12
Dry-Weather Mean Concentrations and Stormwater Event Mean Concentrations	12
Annual Loads for Water Year 2000	16
Dry Weather	19
Stormwater	19
Design-Storm Loads	19
Rainfall-Data Analysis	26
Ouality Assurance	30
Streamflow	33
Charles River at Watertown (01104615)	33
Single-Family Land-Use Station (01104630)	34
Laundry Brook Station (01104640)	36
Faneuil Brook Subbasin	37
Multifamily Land-Use Station (01104673).	38
Commercial Land-Use Station (01104677)	39
Muddy River Subbasin	39
Stony Brook Subbasin	42
Water Quality	43
Indicator Bacteria	43
Nutrients	47
Trace Metals	48
Water-Ouality Properties	50
Comparison between Stormwater Concentrations from This Study and Those from Other Studies	50
Contaminant Loads and Yields	54
Annual Loads	56
Fecal Coliform Bacteria	57
Enterococcus Bacteria	57
Nitrogen	57
Phosphorus	57
Trace Metals	57
Biochemical Oxygen Demand	63
Total Dissolved Solids	63
Total Suspended Solids	63
Annual Yields	63
Charles River at Watertown	63

Laundry Brook Subbasin	63
Faneuil Brook Subbasin	65
Muddy River Subbasin	65
Stony Brook Subbasin	65
Ungaged Areas	65
Uniform Land-Use Subbasins	65
Design Storm Loads	65
Estimated Stony Brook Subbasin Loads after Sewer Separation	70
Environmental Implications of Loads	72
Summary	74
References Cited	75

FIGURES

1.	Map showing the location of tributary subbasins, major streams, and sampling stations in the lower Charles River Watershed, Massachusetts	3
2	Photograph of the inside of typical gaging station used in this study of the lower Charles River	5
2.	Watershed showing (A) a Dual valve Safe Purge II nitrogen gas system and (B) an ISCO automated	
	sampler datalogger and 26-ampere-hour sealed rechargeable battery	6
3	Typical hydrograph with distribution of flow-proportional stormwater samples, lower Charles River	Ū
5.	Watershed	10
4.	Hydrographs showing modeled discharge and dates of dry-weather and stormwater sampling, lower	10
	Charles River Watershed, Water Year 2000	20
5.	Map showing Thiessen polygons used to assign rain gages to subbasins in the lower Charles River	
	Watershed	27
6.	Graph showing summary statistics of rainfall characteristics and antecedent conditions for individual	
	storms in the lower Charles River Watershed during Water Year 2000 and at Logan International Airport,	
	Boston, from 1970 to 1995	28
7.	Photograph showing upstream view of footbridge located at U.S. Geological Survey gaging station	
	Charles River at Watertown (01104615)	33
8.	Graph showing flow-duration curves of simulated 15-minute flow values for tributary and uniform	
	land-use subbasins, and the flow-duration curve of observed 15-minute flow values at Charles River	
	at Watertown (01104615), lower Charles River Watershed, Water Year 2000	34
9–14.	Photographs showing U.S. Geological Survey gaging station:	
	9. Single-family land use (01104630), Newton Center, (A) upstream and (B) downstream views	35
	10. Laundry Brook (01104640), Watertown, (A) upstream and (B) downstream views	36
	11. Faneuil Brook (01104660), Brighton, (<i>A</i>) upstream view and (<i>B</i>) above manhole	37
	12. Multifamily land use (01104673), Cambridge	38
	13. Commercial land use (01104677), Cambridge	39
	14. Muddy River (01104683), Brookline, upstream views	40
15.	Map showing location of the U.S. Geological Survey (USGS) gaging station at Stony Brook (01104687),	4.1
16 17	along the Stony Brook, lower Charles River Watershed	41
16, 17.	Photographs showing U.S. Geological Survey:	40
	16. Gaging station Stony Brook (01104687), Boston	42
	17. water-quality sampling station Charles River at Boston Science Museum (01104/10), (A) upstream	15
10 20	and (<i>B</i>) downstream views	43
16-20.	18 Comparison between stormwater event mean concentrations measured in semples from the lower	
	Charles River Watershed, Water Vear 2000, and stormwater concentrations from other studies	51
	10 Characteristic stormwater hydrograph and pattern of fecal coliform bacterial density before, during	51
	and after a storm at U.S. Geological Survey gaging station Charles River at Watertown	
	(01104615) lower Charles River Watershed July 26–30 2000	55
	20 Goodness of fit between measured and predicted event mean concentrations of fecal coliform	55
	bacteria at two U.S. Geological Survey gaging stations in the lower Charles River Watershed	56
	cationa at the close Storogroup buryey gaging stations in the forcer charles fifter matchind	20

21.	Maps showing spatial distribution of annual loads by tributary subbasin, lower Charles River Watershed,	(0)
22.	Water Year 2000 Hyetograph showing the 3-month design storm (hourly) and 1-year design storm (21 minutes), lower	. 60
	Charles River Watershed	. 68
23.	Diagram showing a typical combined sewer	. 71
24, 25.	Graphs showing:	
	24. Changes in constituent loads after sewer separation relative to pre-separation loads in the Stony	
	Brook Subbasin, lower Charles River Watershed	. 72
	25. Average daily loading intensity of fecal coliform bacteria from upstream and selected tributary	
	subbasins, lower Charles River Watershed, Water Year 2000	. 74

TABLES

1.	Locations and USGS station numbers used in the study, lower Charles River Watershed, Massachusetts	5
2.	Analytes, laboratories, and analytical techniques used in this study	9
5.	Charles River Watershed, Water Year 2000	13
4.	Annual dry-weather and stormwater-discharge volumes and yields upstream and from tributary	
	subbasins to the lower Charles River Watershed, Water Year 2000	16
5.	Characteristics of storms sampled during this study of the lower Charles River Watershed, storms recorded	
	at Logan Airport National Weather Service station between 1970 and 1995, and Massachusetts Water	
	Resources Authority design storms	17
6.	Constituent loads for sampled storms, lower Charles River Watershed	22
7.	Stormwater volume for 3-month and 1-year design storms, lower Charles River Watershed	26
8.	Contamination bias expected in 10 percent of the environmental samples collected during the study of the	<u> </u>
	lower Charles River Watershed	31
9.	Standard deviations of replicate samples collected in this study of the lower Charles River Watershed	32
10.	Sources and environmental importance of selected constituents and water-quality properties	44
11.	Results of Sign Test between paired stormwater event mean concentrations (EMCs) for sampled storms	
	at uniform land-use stations, lower Charles River Watershed	46
12.	Characteristics of selected major and trace elements of potential interest to studies of urban and highway	
	runoff	49
13.	Summary statistics for selected stormwater constituents from other studies	53
14.	Percentages of dry-weather, stormwater, and total loads of each constituent contributed to the lower	
	Charles River at each station in the lower Charles River Watershed, Water Year 2000	58
15.	Percentages of dry-weather and stormwater loads of each constituent at each station in the lower Charles	-
	River Watershed, Water Year 2000	59
16.	Land use in the lower Charles River Watershed	64
17.	Constituent yields for 3-month and 1-year design storms, and Water Year 2000, lower Charles River	
	Watershed	66
18.	Estimated volume of combined sewage overflow to Stony Brook, lower Charles River Watershed	69
19.	Mean concentrations of selected constituents and water-quality properties in combined sewage	69
20.	Projected constituent event mean concentrations for Stony Brook, lower Charles River Watershed, under	- 0
	conditions of complete sewer separation	70
21.	Estimated stormwater loads to Stony Brook after sewer separation for design storms and Water Year	
	2000, lower Charles River Watershed	73
22.	Dry-weather constituent concentrations and physical properties measured between July 1999 and July	
	2000, lower Charles River Watershed	82
23.	Event mean concentrations of stormwater constituents and water-quality properties measured between	
	January 2000 and September 2000, lower Charles River Watershed	90
24.	Bacterial densities in discrete stormwater samples collected between January 2000 and September 2000,	
<u> </u>	lower Charles River Watershed	96
25.	Statistical summary for constituents and water-quality properties of dry-weather and stormwater	105
	flow-composite samples measured between July 1999 and September 2000, lower Charles River Watershed	100

26.	Regression coefficients of models used to estimate event mean concentrations from storm-rainfall	
	characteristics and antecedent conditions, lower Charles River Watershed	114
27.	Constituent loads for Water Year 2000 stormwater, Water Year 2000 dry-weather conditions, and	
	3-month and 1-year design storms, lower Charles River Watershed	120

CONVERSION FACTORS, WATER-QUALITY UNITS, ABBREVIATIONS, AND ACRONYMS

CONVERSION FACTORS

Multiply	Ву	To obtain
acre	0.00405	square kilometer
cubic foot (ft^3)	0.02832	cubic meter
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second
foot (ft)	0.3048	meter
inch (in.)	25.4	millimeter
mile (mi)	1.609344	kilometer
square mile (mi ²)	2.58999	square kilometer
gallon (gal)	0.003785	cubic meter

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: $^{\circ}F = 1.8^{\circ}C + 32$

WATER-QUALITY UNITS

Concentrations of water-quality constituents are given in milligrams per liter (mg/L) and micrograms per liter (μ g/L). Milligrams per liter (mg/L) are equivalent to parts per million (ppm). Micrograms per liter (μ g/L) are equivalent to parts per billion (ppb). Turbidity is given in nephelometric turbidity units (NTUs), specific conductance in microseimens per centimeter at 25°C, (μ S/cm), and bacteria concentrations in colony forming units (CFU) per 100 mL. Water volume is given in units of liters (L), cubic feet (ft³), and gallons (gal). Rainfall intensity is in inches per hour (in/hr). Loads are in mass or trillion colony forming units (TCFUs) per unit time, per storm, or per year. Yields are given in mass or TCFUs per unit time, storm, or year per unit area.

ABBREVIATIONS AND ACRONYMS

American Chemical Society	MDL	Method Detection Limit
Bias Correction Factor	MRL	Minimum Reporting Limit
Biochemical Oxygen Demand	MWRA	Massachusetts Water Resources Authority
Best Management Practices	NAQWA	National Water-Quality Assessment
Boston Water and Sewer Commission	nm	nanometer
Cambridge Department of Public Works	NOAA	National Oceanic and Atmospheric Administration
Combined Sewer Overflow	NURP	National Urban Runoff Program
Calendar Year	NWS	National Weather Service
Deionized Water	PSI	Pound per square inch
ethylenediaminetetraacetic acid	RPD	Relative Percent Difference
Event Mean Concentration	SOD	Sediment Oxygen Demand
Equal Width Increment	TDS	Total Dissolved Solids
Geographic Information System	TKN	Total Kjeldahl Nitrogen
hydrochloric acid	TSS	Total Suspended Sediment
hour	USEPA	U.S. Environmental Protection Agency
Locally Weighted Scatterplot Smoother	USGS	U.S. Geological Survey
Massachusetts Department of Environmental Protection	WWTP	WasteWater Treatment Plant
Massachusetts Bay Transit Authority	WY	Water Year
	American Chemical SocietyBias Correction FactorBiochemical Oxygen DemandBest Management PracticesBoston Water and Sewer CommissionCambridge Department of Public WorksCombined Sewer OverflowCalendar YearDeionized Waterethylenediaminetetraacetic acidEvent Mean ConcentrationEqual Width IncrementGeographic Information Systemhydrochloric acidhourLocally Weighted Scatterplot SmootherMassachusetts Department of Environmental ProtectionMassachusetts Bay Transit Authority	American Chemical SocietyMDLBias Correction FactorMRLBiochemical Oxygen DemandMWRABest Management PracticesNAQWABoston Water and Sewer CommissionnmCambridge Department of Public WorksNOAACombined Sewer OverflowNURPCalendar YearNWSDeionized WaterPSIethylenediaminetetraacetic acidRPDEvent Mean ConcentrationSODEqual Width IncrementTDSGeographic Information SystemTKNhourUSEPALocally Weighted Scatterplot SmootherUSGSMassachusetts Bay Transit AuthorityWY

Streamflow, Water Quality, and Contaminant Loads in the Lower Charles River Watershed, Massachusetts, 1999–2000

By Robert F. Breault, Jason R. Sorenson, and Peter K. Weiskel

Abstract

Streamflow data and dry-weather and stormwater water-quality samples were collected from the main stem of the Charles River upstream of the lower Charles River (or the Basin) and from four partially culverted urban streams that drain tributary subbasins in the lower Charles River Watershed. Samples were collected between June 1999 and September 2000 and analyzed for a number of potential contaminants including nitrate (plus nitrite), ammonia, total Kjeldahl nitrogen, phosphorus, cadmium, chromium, copper, lead, and zinc; and water-quality properties including specific conductance, turbidity, biochemical oxygen demand, fecal coliform bacteria, Enterococcus bacteria, total dissolved solids, and total suspended sediment. These data were used to identify the major pathways and to determine the magnitudes of contaminants loads that contribute to the poor water quality of the lower Charles River. Water-quality and streamflow data, for one small urban stream and two storm drains that drain subbasins with uniform (greater than 73 percent) land use (including single-family residential, multifamily residential, and commercial), also were collected. These data were used to elucidate relations among streamflow, water quality, and subbasin characteristics.

Streamflow in the lower Charles River Watershed can be characterized as being unsettled and flashy. These characteristics result from the impervious character of the land and the complex infrastructure of pipes, pumps, diversionary canals, and detention ponds throughout the watershed. The water quality of the lower Charles River can be considered good—meeting water-quality standards and guidelines—during dry weather. After rainstorms, however, the water quality of the river becomes impaired, as in other urban areas. The poor quality of stormwater and its large quantity, delivered over short periods (hours and days), together with illicit sanitary cross connections, and combined sewer overflows, results in large contaminant loads that appear to exceed the river's assimilative capacity.

Annual contaminant loads from stormwater discharges directly to the lower Charles River are large, but most dry-weather and stormwater contaminant loads measured in this study originate from upstream of the Watertown Dam and are delivered to the lower Charles River in mainstem flows. An exception is fecal coliform bacteria. Stony Brook, a large tributary influenced by combined sewer overflow, contributed almost half of the annual fecal coliform load to the lower Charles River for Water Year 2000. Much of this fecal coliform bacteria load is discharged from Stony Brook to the lower Charles River during rainstorms. Estimated stormwater loads for future conditions suggest that sewer separation in the Stony Brook Subbasin might reduce loads of constituents associated with sewage but increase loads of constituents associated with street runoff.

The unique environment offered by the lower Charles River must be considered when the environmental implications of large contaminant loads are interpreted. In particular, the lower Charles River has low hydraulic gradients, a lack of tidal flushing, a lack of natural uncontaminated sediment from erosion of upstream uncontaminated soils, and an anoxic, sulfide-rich bottom layer that forms a non-tidal salt wedge in the downstream part of the lower Charles River. Individually and in combination, these characteristics may increase the likelihood of adverse effects of some contaminants on the water, biota, and sediment of the lower Charles River.

INTRODUCTION

The Charles River (fig. 1), historically a tidal estuary, has been a major part of the economic, social, and recreational lives of the people of eastern Massachusetts over the past 6,000 years (Metropolitan District Commission, written commun., 2000). More recently, over the past 100 years, the river has served as a transportation corridor and industrial center, as the physical setting for some of the world's most prestigious colleges and universities, and as a focal point for many recreational activities including Boston's annual Fourth of July celebration. Unfortunately, the river has also served as a sanitary sewer carrying industrial and domestic wastes, including raw sewage. Adverse effects of the latter were initially dealt with by building an earthen dam between the river and Boston Harbor at the river's mouth. Damming of the river in the early 1900s flooded the "foul-smelling," "unsightly," and "distinctly unsanitary" tidal mud flats (Pritchett and others, 1903) and created a freshwater lake known locally as the lower Charles River, or the lower Charles River Basin, or simply the "Basin" (herein referred to as the lower Charles River to prevent confusion).

Today (2002) the lower Charles River is the focal point of the Charles River Reservation, a 19,500-acre urban park that serves as a major open-space resource for the population of the Boston metropolitan area. This park receives over 20,000 visitors daily and supports a variety of recreational activities, including boating, walking, jogging, and cycling (Metropolitan District Commission, 2000). Unfortunately, waterquality conditions of the lower Charles River still preclude swimming and a healthy aquatic environment able to support large and diverse populations of fish surprisingly, for many of the same reasons present over 100 years ago. Consequently, the U.S. Environmental Protection Agency (USEPA) Region I has designated the lower Charles River as a priority water body and has set the goal of achieving "swimmable and fishable" water-quality conditions in the River by the year 2005.

Although the water quality of the lower Charles River has improved considerably in recent years because of the combined efforts of government agencies and citizens' groups—achieving fishable and swimmable conditions will require further reductions in contaminant loads from different sources. These include: sources upstream of the Watertown Dam under both dry and stormwater conditions; illicit discharges to tributary streams during all weather conditions; stormwater from tributary streams and storm drains that enters the river during rainstorms and snowmelt events; Boston- and Cambridge-area combined sewer overflows (CSOs) that affect the river during large rainstorms; and internal loading from bottom sediments.

Contaminant loads to the lower Charles River from stormwater and other sources have been previously investigated, but more targeted information is needed to characterize and quantify loads from various sources to determine the best remediation actions. Previous studies suggested that the drainage basin upstream of Watertown Dam and stormwater discharges downstream of this dam are the primary sources of bacteria and other contaminants to the upper portion of the lower Charles River from Watertown to the Cottage Farm CSO Treatment Facility during moderate to large rainstorms (Massachusetts Water Resources Authority, 1994; 1997). Upstream and stormwater loads may also be quantitatively appreciable, relative to CSO loads, in the lower portion of the lower Charles River downstream of the Cottage Farm facility (Massachusetts Water Resources Authority, 1994; 1997). Accurate estimation of the dry-weather and stormwater loads from upstream flows and from tributary andstorm-drain discharges (non-CSO loads), however, has been hampered by the lack of simultaneous flow and chemical-concentration data. In addition, previous stormwater-sampling programs were not specifically designed to measure loads to the lower Charles River and, thus, do not allow for the characterization of spatial or temporal contaminant-loading patterns (Massachusetts Water Resources Authority, 1997).

Figure 1. Location of tributary subbasins, major streams, and sampling stations in the lower Charles River Watershed, Massachusetts.

This type of information is needed for the implementation of targeted, cost-effective best management practices (BMPs). Finally, although recent programs to identify and eliminate illicit discharges and implement BMPs for stormwater control likely have resulted in improvements in stormwater quality, there is a lack of recent data to verify these changes. Selection of optimal remediation strategies for the lower Charles River, including appropriate levels of treatment for CSOs entering from Boston and Cambridge and appropriate stormwatermanagement options, depends critically upon accurate characterization of loads from all sources.

Purpose and Scope

The purpose of this investigation is to provide detailed information concerning water quality in the lower Charles River Watershed and patterns of contaminant loading to the lower Charles River from upstream and tributary subbasins. Contaminant loading from CSOs, however, is not discussed extensively in this report. The Massachusetts Water Resources Authority reports CSO loading patterns to the USEPA.

Water-quality samples were collected by the U.S. Geological Survey (USGS) between June 1999 and September 2000 and analyzed for several constituents, including nitrate (plus nitrite), ammonia, total Kjeldahl nitrogen (TKN), phosphorus (P), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn), and water-quality properties and indicators including specific conductance, turbidity, biochemical oxygen demand (BOD-5), fecal coliform bacteria, Enterococcus bacteria, total dissolved solids (TDS), and total suspended sediment (TSS). Loads were determined for most of these potential contaminants, including nitrate (plus nitrite), ammonia, TKN, phosphorus, cadmium, chromium, copper, lead, and zinc, biochemical oxygen demand, fecal coliform bacteria, Enterococcus bacteria, total dissolved solids, and total suspended sediment. Loading patterns were developed from analysis of water-quality samples collected during dry weather and relations among stormwater quality, rainfall characteristics, and antecedent conditions for Water Year 2000¹. In addition, contaminant loads from two design storms with 3-month and 1-year return periods were calculated for existing conditions and for conditions expected after combined sanitaryand storm sewers (or combined sewers) in the Stony Brook Subbasin are physically separated, thus eliminating CSO loading to Stony Brook. Finally, water quality and streamflow in three relatively uniform landuse subbasins (located within the lower Charles River Watershed) also are described to elucidate relations among streamflow, water quality, and subbasin characteristics.

Acknowledgments

The authors express their gratitude to the following people and agencies for their cooperation and assistance with stormwater sampling and analysis during this study; Stacey Archfield (USGS), Mary Ashman (USGS), Claire Barker (Massachusetts Department of Environmental Protection, MADEP), Roger Frymire (USGS Volunteer for Science), Ronald Maribett (MADEP), Gail Moede (USGS), Nicole Napoleon (USGS), Owen O'Reardon (Cambridge Department of Public Works), Gene Parker (USGS), Isabella Ramirez (MADEP). Steven Rhode (Massachusetts Water Resources Authority, MWRA), Cheryl Stephenson-Marchioni (USGS), Nicole Parilla (MWRA), John Sullivan (Boston Water and Sewer Commission. BWSC), David Valley (National Weather Service, NWS), Mark Voorhees (USEPA), and Lisa Wong (MWRA); for technical and editorial assistance, Kevin Brander (MADEP), Lora Barlow (USGS), Mark Bonito (USGS), Timothy Cohn (USGS), John Colman (USGS), Leslie DeSimone (USGS), John Fulton (USGS), Gregory Granato (USGS), David Gray (USEPA), Richard Hooper (USGS), Lise Marx (MWRA), Christine Mendelsohn (USGS), Vicki-Rose Siegel (USGS), Kirk Smith (USGS), Marcus Waldron (USGS), Anne Weaver (USGS), William Walsh-Rogalski (USEPA), and Philip Zarriello (USGS).

¹The term "Water Year" denotes the 12-month period from October 1 through September 30 and is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2000, is called "Water Year 2000."

FIELD METHODS

The gaging stations were designed to monitor streamflow, water-quality constituents, and certain water-quality properties. The instrumentation inside each station was customized for the physical and hydrological environment for that site and was programmed to collect stormwater samples.

Collection of Streamflow Data

Gaging stations (table 1 and fig. 1) were established on the main stem of the Charles River at the footbridge just upstream of the Watertown Dam [Charles River at Watertown (USGS station number 01104615)]; at or near the mouths of four major tributaries [Laundry Brook (01104640); Faneuil Brook (01104660); Muddy River (01104683); and Stony Brook (01104687)]; and on one small urban stream and two storm drains that drain subbasins with uniform land use, including single-family residential, multifamily residential, and commercial [single-family land use (01104630); multifamily land use (01104673); and commercial land use (01104677), respectively].

Table 1. Locations and USGS station numbers used in the study, lower Charles River Watershed, Massachusetts

[Latitude and longitude: In °	, degrees; ', minutes; and "	, seconds. USGS,
U.S. Geological Survey]		

Station name	USGS identifier	Latitude ° ' "	Longitude ° ' "
Charles River at Watertown	01104615	42 21 53	71 11 25
Single-family land use	01104630	42 20 08	71 11 47
Laundry Brook Faneuil Brook	01104640 01104660	42 21 53 42 21 22	71 11 20 71 09 20
Multifamily land use Commercial land use	01104673 01104677	42 22 25 42 22 13	71 06 44 71 06 52
Muddy River	01104683	42 20 14	71 06 42
Stony Brook Charles River at Boston Science Museum	01104687 01104710	42 19 05 42 21 57	71 06 10 74 04 14

Various factors were considered in the selection of the locations for the gaging stations, including accessibility, security, and the absence of variable backwater (Rantz and others, 1982). The latter explains why the Faneuil Brook gaging station (01104660), Muddy River gaging station (01104683), and the Stony Brook gaging station (01104687) were installed upstream from their confluence with the lower Charles River (fig. 1).

At each gaging station, stage-discharge relations, or ratings, were established for a range of flows by direct measurements with fixed current meters in accordance with USGS protocols (Rantz and others, 1982) or theoretical ratings developed from steadystate hydraulic models (Zarriello and Barlow, 2002). These ratings were used to determine discharge from measurements of stage, which was continuously measured throughout the period of study (Rantz and others, 1982).

Stage-measurement instrumentation was chosen to suit the characteristics of each site: dual valve Safe Purge II nitrogen gas systems [Charles River at Watertown (01104615) and Muddy River (01104683)]; submersible KPSI pressure transducers [Stony Brook (01104687), single-family land use (01104630), and commercial land-use (01104677), and multifamily land-use (01104673) storm drains]; a Marsh-McBirney open-channel sensor [Faneuil Brook (01104660)]; and an ultrasonic transducer [Laundry Brook (01104640)]. Stage, however, often was below the minimum level needed for accurate measurement at the single-family land-use drain and Laundry Brook. Consequently, weirs were installed at these gaging stations, just downstream of the stage sensors, to create small impoundments. Weirs were constructed of a marinegrade polymer because of its flexibility, strength, and non-contaminating properties, and because it does not tend to become colonized by organisms (K.P. Smith, U.S. Geological Survey, oral commun., 2000.).

Stage instrumentation was housed in either a wooden shelter or a steel box (fig. 2). Each gaging-station shelter also housed a digital datalogger with a data-storage module (Campbell Scientific CR10X), which was used to record and store all generated data; equipment for the measurement of specific conductance and water temperature; and an ISCO 6700 sampler for the automatic collection of water samples.

Figure 2. Inside of typical gaging station used in this study of the lower Charles River Watershed, Massachusetts, showing (*A*) a Dual valve Save Purge II nitrogen gas system and (*B*) an ISCO automated sampler, datalogger, and 26-ampere-hour sealed rechargeable battery.

Some gaging stations [Charles River at Watertown (01104615), Laundry Brook (01104640), Muddy River (01104683), Faneuil Brook (01104660), and Stony Brook (01104687)] also housed a telephone-modem system to allow near-real-time reporting of provisional stage, discharge, specific conductance, water temperature, and times of sample collection to the USGS Massachusetts–Rhode Island District Office at 15-minute intervals. This information was made available to the public on the local USGS Web site.

Instrumentation was powered by 26-ampere-hour sealed rechargeable batteries, with the exception of the ISCO samplers. At five of the eight gaging stations [Charles River at Watertown (01104615), Laundry Brook (01104640), Muddy River (01104683), Faneuil Brook (01104660), and Stony Brook (01104687)], battery charge was maintained by direct connection with a municipal power supply. At the remaining gaging stations [single-family land use (01104630), commercial land use (01104677), and multifamily land use (01104673)], batteries were routinely replaced with fully charged batteries. Each ISCO sampler was powered by 12-volt deep-cycle batteries that were recharged between storms.

Water-Quality Sampling

Water-quality monitoring stations were established at all of the gaging stations and at one ungaged site on the Charles River near the Museum of Science [(Charles River at Boston Science Museum (01104710)] (table 1). Dry-weather samples were collected monthly between June 1999 and July 2000 at these waterquality monitoring sites in accordance with USGS clean-sampling procedures (Wilde and Radtke, 1998). Dry-weather samples were collected on days for which there was less than about 0.1 in. of precipitation during the preceding 72 hr as measured by the USGS rain gage located at the Charles River at Watertown (01104615) station. Stormwater samples were collected over the course of nine individual storms between January and July 2000 by automated samplers at eight of the water-quality monitoring stations. Stormwater samples were collected during two of these storms at Charles River at Boston over this period.

Cleaning of Sampling Equipment

Polyethylene- and glasssample bottles (including caps), weighted-bottle samplers, peristaltic-pumphead tubing, churns and all components of the automatic samplers that contacted the sample directly were decontaminated in the laboratory prior to each sampling by thoroughly rinsing, autoclaving, or baking. The metal springs standard in USGS-issued churn spigots were removed and replaced with small pieces of polyethylene tubing to eliminate the risk of metal contamination.

All sampling equipment was rinsed with nonphosphate laboratory-grade detergent and hot tap water. Prior to rinsing, a cotton ball was forced through the pumphead- and intake-tubing by water pressure from a laboratory sink to remove any of the large particles that, otherwise, would not have easily been removed. After the hot tap-water rinse, the polyethylene sample bottles, weighted-bottle samplers, and churns were rinsed with dilute (5 percent) American Chemical Society (ACS) trace-metal-grade hydrochloric acid (HCl), and sterile deionized water (DIW), in that order. The deionized-water system is equipped with an ultraviolet light to achieve sterility. (Horowitz and Sandstrom, 1998; Myers and Sylvester, 1998). The stainless-steel nipples, pumphead tubing, and glass sample bottles, spiked with a 15-percent solution of ethylenediaminetetraacetic acid (EDTA), were autoclaved in an instant sealing sterilization pouch at 132°C for 15 minutes at 15 pounds per square inch (PSI), to check if adequate temperature and pressure was attained during autoclaving (Myers and Sylvester, 1998). Each cap for the glass-sample bottles was placed under a 254-nm-wavelength ultraviolet lamp for up to an hour. The intake tubing, which did not fit in the autoclave, was baked in a laboratory oven at 170°C for about 2 hr (Myers and Sylvester, 1998) and rinsed with 5-percent ACS trace-metal-grade HCl and sterile DIW, in that order. The specific conductance of the final DIW rinsate was monitored; rinsing was considered complete when the specific conductance of the rinsate was equal to the original specific conductance of the DIW. Finally, the polyethylene-sample bottles, including caps, weighted-bottle samplers,

churns, and intake tubing, were air-dried in a contaminant-free room, wrapped inside double plastic bags, and stored in plastic bins.

Intake tubes at two of the water-quality monitoring stations [Muddy River (01104683) and Stony Brook (01104687)] were so long that they could not easily be withdrawn and brought to the laboratory for cleaning between storms. Therefore, cleaning of intake tubes at these stations was done in the field. The tubes were rinsed by pumping 5-percent ACS tracemetal-grade HCl followed by a sterile DIW rinse (about 5 gal) from dedicated polyethylene carboys, by running the ISCO automatic sampler's peristaltic pump in reverse. Equipment-blank samples were collected to test the adequacy of this cleaning method.

Dry-Weather Sampling

Wadeable streams [Laundry Brook (01104640), single-family land use (01104630) and Muddy River (01104683)] were sampled by dipping sterile 250-mL polyethylene sample bottles into the centroid of flow in accordance with USGS guidelines for non-isokinetic sampling methods (Webb and others, 1998; Myers and Sylvester, 1998). It is important to note that some error can be introduced by this method of sampling if the constituents of interest are not uniformly distributed along the cross section (Horowitz, 1991); fortunately, however, the small cross-sectional area and high velocities of most these streams make the probability of a non-uniform distribution negligible. Storm drains [commercial land use (01104677) and the multifamily land use (01104673)] were sampled with a peristaltic pump and clean piece of tubing for each sample to collect point samples at the centroid of flow in accordance with USGS guidelines for pump-sampling methods (Webb and others, 1998). Pumping was necessary at these water-quality monitoring stations because water depths in the storm drains are insufficient for dip sampling during dry weather (in other words, the water

is not deep enough to submerge the sample bottles wholly). Concerted efforts were made to ensure that no bottom sediment was entrained and subsequently collected during sampling. Deeper-river sites [Charles River at Watertown (01104615) and Charles River at Boston Science Museum (01104710)] were sampled by means of a weighted-bottle sampler in accordance with USGS equal-width increment (EWI) procedures for still-water sites (Webb and others, 1998).

Stony Brook (01104687) was also sampled by means of a weighted-bottle sampler because of difficult access; the base of the Stony Brook is located over 30 ft below land surface. Because of the special requirements for the collection of bacterial samples, bacteria at these water-quality monitoring stations were collected by dipping a sterilized bottle, secured in a weighted bottle sampler, into the centroid of flow in accordance with standard USGS procedures (Myers and Sylvester, 1998). Again, this method of collection may be the source of some error if bacterial densities are not uniformly distributed along the cross section.

Bacterial samples were put on ice within 5 minutes of collection and delivered by hand within 6 hr by USGS field personnel to the (MWRA) Laboratory, Deer Island, Massachusetts. Dry-weather samples collected by means of EWI procedures were composited in a pre-cleaned polyethylene churn splitter, and decanted into pre-cleaned polyethylene bottles in accordance with standard USGS churn-splitter procedures (Radtke and others, 1998). Immediately after collection or after compositing, dip or pump samples for trace-metal and nutrient analyses were preserved to a pH less than 2.0 by adding ACS tracemetal-grade concentrated nitric (HNO₃) and sulfuric acid (H₂SO₄), respectively. One milliliter of acid was added to each 250 mL of sample from dedicated Teflon dropping bottles. After preservation, all samples were put on ice and delivered to either the U.S. Environmental Protection Agency (USEPA) Region I Office of Environmental Measurement and Evaluation, Chelmsford, Massachusetts, or the Alpha Analytical Laboratory, Westborough, Massachusetts (table 2).

Stormwater Sampling

Stormwater samples were collected at eight water-quality sampling stations. Automatic samplers were used to collect stormwater samples in a flow preportional manner. Stormwater samples were collected and processed using standard USGS protocols.

Sample Collection, Instrumentation, and Programming

Stormwater samples were collected at each gaging station in a flow-proportional manner with an ISCO automated sampler controlled by a datalogger; the datalogger emits electrical pulses that trigger the ISCO to begin sample collection (fig. 3). When triggered by the datalogger, the ISCO's internal peristaltic pump draws samples into pre-cleaned sample containers.

The use of a peristaltic pump for sample collection is beneficial because it minimizes contact between sampling equipment and the sample. However, the maximum height a water sample can be lifted (the vertical head) through a tube by a peristaltic pump, which relies on suction, is limited to about 30 ft or less for longer tubes. Consequently, ISCOs at Muddy River (01104683) and Stony Brook (01104687), which required a long tube (150 ft) and had a vertical head greater than 30 ft, respectively, were each outfitted with a non-contaminating supplemental pump. The supplemental pump was placed at the submerged end of the intake tubing, in effect reducing the vertical head, so that suction from the peristaltic pump could lift the sample the rest of the distance.

The exact timing between activation of the supplemental pump and triggering of the ISCO was critical to prevent the collection of too much or too little sample; therefore, each supplemental pump was also controlled by the datalogger. The datalogger was programmed to turn the supplemental pump on and to allow enough elapsed time before triggering the ISCO, so that the vertical head was sufficiently reduced. The time interval between activation of the two pumps was determined by trial and error. The time interval was found to be a function of the length and inside diameter of the intake tube, the vertical head to be overcome, the specifications of the ISCO's peristaltic pump, and the volume of sample to be collected.

Two to 6 hr before each storm, alternating glass and plastic sample bottles were placed in each ISCO, and laboratory-cleaned tubing was re-strung, or tubes were cleaned *in situ* in the case of Muddy River (01104683) and Stony Brook (01104687). The dataloggers were programmed either manually or remotely from the USGS Massachusetts–Rhode Island Office in Northborough, Massachusetts. The dataloggers were programmed to:

Table 2. Analytes, laboratories, and analytical techniques used in this study, lower Charles River Watershed, Massachusetts

[Analytical technique: ICP-MS, Inductively Coupled Plasma-Mass Spectrometry; UV-VIS, Ultraviolet-visible. USEPA Method: Used by analyzing agency or USEPA method to which analyzing agency method was similar. MRL, minimum reporting level; MWRA, Massachusetts Water Resources Authority; USEPA, U.S. Environmental Protection Agency; USGS, U.S. Geological Survey; CFU/100mL, colony-forming units per 100 milliliters; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L milligrams per liter; μ g/L, micrograms per liter; NTU, nephelometric turbidity units; °, degree; --, Not applicable or unknown]

Analyte and Laborat		oratory Analytical technique		USEPA Method	Reference		
Specific conductance, lab- oratory (µS/cm)	USGS	Wheatstone type-bridge or equivalent at 25°C	1	120.1	Radtke and others, 1998		
Turbidity, laboratory (NTU)	USGS	Nephelometer	0.05	180.1	Wilde and Gibs,1998		
Biochemical oxygen demand, 5-day (mg/L)	Alpha Analytical	Modified Winkler with full bottle technique or probe method	2	405.1	U.S. Environmental Protection Agency, 1983		
Coliform, fecal, membrane filter (CFU/100mL)	MWRA	Membrane filtration/ incubation	10		Massachusetts Water Resources Authority, 1996		
Enterococcus, membrane filter (CFU/100mL)	MWRA	Membrane filtration/ incubation	10		Massachusetts Water Resources Authority, 1999		
Dissolved solids (mg/L)	USEPA	Glass fiber filter/ Gravimetry	5-10	160.1	U.S. Environmental Protection Agency, 1983		
Suspended solids (mg/L)	USEPA	Glass fiber filter/ Gravimetry	5–10	160.2	U.S. Environmental Protection Agency, 1983		
Nitrate plus nitrite (mg/L as N)	USEPA	Ion Chromatography	0.023	300.0A	U.S. Environmental Protection Agency, 1993a		
Nitrogen, ammonia, total (mg/L as N)	Alpha Ana- lytical	Technicon Auto Ana- lyzer/Colormetric, automated phenate	0.075	350.1	U.S. Environmental Protection Agency, 1993a		
Nitrogen, total Kjeldahl (mg/L as N)	Alpha Ana- lytical	Spectrophotometer, col- ormetric, titrimetric, or potentiometric	0.15	351.3/.1	U.S. Environmental Protection Agency, 1983		
Phosphorus, total (mg/L)	USEPA	Technicon Auto Ana- lyzer/Colormetric, automated, ascorbic acid	0.01–0.1	365.2	Hach Company, 1998		
Cadmium, total (µg/L)	USEPA	ICP-MS	0.05-0.5	200.8	U.S. Environmental Protection Agency, 1994		
Chromium, total (µg/L)	USEPA	ICP-MS	0.2-5	200.8	U.S. Environmental Protection Agency, 1994		
Copper, total (µg/L)	USEPA	ICP-MS	0.2	200.8	U.S. Environmental Protection Agency, 1994		
Lead, total (µg/L)	USEPA	ICP-MS	0.05	200.8	U.S. Environmental Protection Agency, 1994		
Zinc, total (µg/L)	USEPA	ICP-MS	2-10	200.8	U.S. Environmental Protection Agency, 1994		

- initiate sample collection once a pre-established stage threshold was realized, usually 0.1 to 0.2 ft above the pre-storm stage;
- use stage-discharge relations to compute and record the volume of water that passed the gaging station once sample collection had begun;
- trigger successive "sampling episodes" during the storm whenever a predetermined volume of water or trigger threshold volume flowed past the gage;
- ensure enough suction to collect an adequate sample volume;
- collect the correct number of samples within each sampling episode; and
- record the time of each sampling episode. Because of the different sample container requirements for bacterial samples (sterility and the EDTA spike) and trace-metal samples (acid-rinsing), two samples were collected per sampling episode;

Figure 3. Typical hydrograph with distribution of flow-proportional stormwater samples, lower Charles River Watershed, Massachusetts.

the bacterial sample was pumped into a sterile 1-L glass sample bottle, and the trace-metal and nutrient sample was pumped into the adjacent 1-L acid-rinsed polyethylene sample bottle. Samples collected during the same episode, usually within 5 minutes of one another, were considered to represent similar conditions.

The ISCO sampler holds 12 1-L sample bottles, sufficient for a maximum of 6 sampling episodes based on sample volume requirements. The dataloggers were programmed to stop triggering the ISCOs after six sampling episodes. The dataloggers, however, continued to record the total volume of water passing the gaging station after sample collection had stopped. Consequently, in cases when more than six sampling episodes were required to characterize a storm on the basis of the trigger thresholds, field personnel gathered samples and replaced bottles frequently enough to ensure that trigger thresholds were not exceeded between sampling episodes; thus, the flow-proportional character of the samples was maintained.

The ISCOs also were programmed to purge the intake tube between sampling episodes to minimize the amount of cross contamination. Water in the pumphead, stainless-steel nipple, and intake tube was evacuated automatically by running the ISCO in reverse. This evacuation procedure may not have entirely eliminated cross-contamination bias, especially when high-concentration samples were followed by low-concentration samples. The compositing of adjacent samples, however, minimized cross-contamination bias.

Trigger-threshold volumes were uniquely determined for each storm; they were based on site-specific hydrologic conditions and responses, predictions of total rainfall amounts, storm duration and intensity, and the number of available sample bottles (about 36 per station). Predicting storm characteristics, however, was extremely difficult, even though near-real-time weather Web sites and frequent weather updates from National Oceanic and Atmospheric Administration (NOAA) meteorologists were available. Consequently, trigger thresholds were determined by trial and error, on the basis of detailed knowledge of each site and weather patterns of the study area.

The trigger-threshold volumes determined the temporal distribution, number, and streamflow represented by individual samples collected during each storm. Ideally, appropriate trigger-threshold volumes should facilitate (1) collection of samples throughout the storm, (2) adequate sample volume collection, (3) good characterization of intense rainfall-runoff periods through collection of multiple samples, and (4) sufficient time for field personnel to retrieve and replace sample bottles. Inappropriate triggerthreshold volumes can undermine the quality of a storm-sampling episode. For example, triggerthreshold volumes based on underpredicted rainfall amounts may cause samples to be collected too quickly, prematurely filling all of the available sample bottles before they can be gathered and replaced by field personnel. The sampling episode would be truncated and the flow-proportional character of the sampling compromised. Conversely, if trigger thresholds are based on overpredicted rainfall amounts, it is likely that too few samples, and thus, an insufficient volume for analysis, will be collected. Similarly, storm duration and intensity governs the relative proportion of stormwater and base flow that passes a gaging station during and after a storm. A long, subdued storm results in a larger proportion of base flow, whereas a short, intense storm creates a smaller proportion of base flow. As with total rainfall, accurate prediction of storm duration and intensity is especially important for estimating trigger threshold volumes.

Estimation of stage thresholds, which were used to initiate sample collection for a storm, were also based on site-specific hydrologic conditions, responses, and predictions of total rainfall amounts, storm duration, and storm intensity. Although it might seem that determination of stage thresholds would be straightforward, compared to volume thresholds, it proved difficult to make accurate estimates of stage thresholds for individual storms because of the complex hydrologic conditions at each monitoring station. For example, the stage at Charles River at Watertown (01104615) often decreased just before or during many of the storms. This decrease was the result of diverting flow through Mother Brook to the Neponset River, in order to reduce the risk of flooding in Boston and Cambridge. A similar decrease occurs at Muddy River (01104683), as water from the lower Charles River is pumped out at the New Charles River Dam in advance of a storm. This pumping can cause the stage of the Muddy River to fall during the initial portion of larger storms.

Sample Retrieval and Processing

Sample bottles for each sampling episode were removed from the ISCO, immediately capped, placed in pre-labeled 2-gal sealable plastic bags, stored on ice, and replaced with clean sample bottles if it was still raining or the stage was still higher than the pre-storm stage. The time of each sampling episode was downloaded from the datalogger, recorded in a bound field notebook, and cross-referenced with the sampling-episode number on each bag.

In addition to gathering samples and replacing sample bottles, field personnel collected bacterial samples and delivered them to the MWRA analytical laboratory within the 6-hr holding-time limit for bacterial analysis (Massachusetts Water Resources Authority, 1996; 1999); meanwhile, sampling of the stormflow continued at the stations. The average duration of a rain storm in Boston is about 11 hr (Zarriello and Barlow, 2002). Approximately 3 of the 12 1-L bottles were reserved for bacterial analysis for each storm. Sampling episodes were selected by interpreting nearreal-time flow data on the USGS Web site or commercially available weather web sites to predict time intervals for the rising limb, peak, and falling limb of the hydrograph. Bacterial samples were vigorously shaken and then poured out of the 1-L glass bottle into a separate 250-mL sterile polyethylene bottles, put on ice, and delivered to the MWRA laboratory on Deer Island by either USGS field personnel or volunteers. Some bacterial samples were composited in the field.

After the storm, non-bacterial samples collected from each water-quality monitoring station, brought to the USGS laboratory were composited, to produce a single sample for each station that represented flow from the entire storm. Stormwater samples were composited by pouring one of the 1-L samples from each selected sampling episode into a pre-cleaned polyethylene churn splitter. In some cases, flow-proportional composites were prepared manually on the basis of datalogger records. Samples were mixed in the churn splitter according to standard USGS procedures (Wilde and others, 1998), decanted into pre-cleaned polyethylene bottles, preserved, and delivered to either the USEPA or Alpha Analytical Laboratory (table 2). The analysis of composited, flow-proportional samples yields contaminant concentrations that represent an mean concentration over the course of the entire storm, defined as an event mean concentration (EMC).

Continuously Monitored Water-Quality Properties

Water temperature and specific-conductance measurements were monitored continuously (every 2 to 15 minutes) by a Campbell Scientific 247 conductivity/ temperature probe at each of the gaged waterquality monitoring stations. These probes were calibrated to standards that ranged from 50 to $50,000 \mu$ S/cm at 25° C in the office prior to deployment, and calibrated and cleaned in the field each month throughout the study. Near-real-time (every 15 minutes) water-temperature and conductance data were reported from stations outfitted with a telephonemodem system to the Northborough office of the USGS and posted on the local USGS Web site.

DATA-ANALYSIS METHODS

A variety of statistical methods was used to summarize water-quality data and estimate constituent loads. Particular attention was given to censored data, that is, concentrations less than the detection limit. Summary statistics for constituents with censored data were calculated by means of the USGS's Method Detection Limit (MDL) computer program, unless otherwise noted. The MDL program uses a log-probability method for determining summary statistics. The details of these statistical methods are described by Helsel and Cohn (1998).

Dry-Weather Mean Concentrations and Stormwater Event Mean Concentrations

The overall dry-weather mean concentration of each constituent was calculated as the arithmetic mean of the concentrations for that constituent measured in dry-weather samples collected at each site (table 22 at back of report). In addition, an overall dry-weather "flow-weighted" mean concentration for each constituent was also calculated as the arithmetic mean of the monthly dry-weather concentrations multiplied by the discharge (ft^3/s) at the time of sampling divided by the sum of the discharges (table 3). The overall dry-weather mean concentration assigned to the ungaged portion of the study area, not including the ungaged drainage area in the gaged subbasins, was set equal to the mean of the overall arithmetic and flow-weighted dry-weather concentrations at Muddy River (01104683) and Laundry Brook (01104040).

The mean was favored over the use of other measures of central tendency (median, mode, or geometric mean) because the arithmetic mean is more suitable for estimating total loads (T.A. Cohn, U.S. Geological Survey, oral commun., 2001). The arithmetic mean is sensitive to outliers. Outliers, which may represent unusually high-flow events, can contribute a large proportion of the total contaminant load, albeit infrequently. An alternative method that involved the use of relations between water quality and drainage-basin characteristics was considered, but was rejected because of the complexity of these relations at the uniform land-use sites.

Stormwater EMCs for the non-bacterial samples were obtained from flow-proportional, composited samples (table 23 at back of report). Bacterial EMCs, for each storm, were estimated by linear interpolation between discrete bacterial (table 24 at back of report) sample concentrations using a 15-minute time step. These linearly interpolated concentrations were multiplied by the corresponding 15-minute water volumes, summed, and divided by the total volume for the storm (table 3). The overall stormwater EMC was calculated as the arithmetic mean of the stormwater EMCs. estimated for each site. The overall stormwater "flowweighted" EMC was calculated for each site as the arithmetic mean of the stormwater EMCs multiplied by the total discharge volume for each storm divided by the total volume of all the storms sampled (table 4). Summary statistics of dry-weather and stormwaterconstituent concentrations and water-quality properties are shown in table 25 (at back of report).

Table 3. Discharge at the time of sampling (dry weather) or total stormwater volume (stormwater), lower Charles River

 Watershed, Massachusetts, Water Year 2000

[Date: Is in month, day, and year. Time: All times are eastern standard time and are in hours and minutes. ft³, cubic feet; ft³/s, cubic feet per second; --, not measured]

Dry weather			Stormwater						
Date	Time	ft ³ /s	Start d and tir	ate ne	End da and tir	ate ne	ft ³		
Charles River at Watertown (01104615)									
6-29-99	0930		1-10-00	1430	1-11-00	1845	63,500,000		
7-19-99	1300		4-09-00	0015	4-10-00	0000	60,900,000		
7-30-99	1225		5-18-00	1600	5-20-00	0000	71,800,000		
8-26-99	1100		6-02-00	1630	6-03-00	0730	22,100,000		
9-27-99	1245		6-06-00	0800	6-07-00	1900	108,000,000		
10-26-99	1245	511	7-09-00	1915	7-10-00	2330	25,700,000		
11-19-99	0950	348	7-16-00	0000	7-16-00	1800	12,000,000		
12-29-99	1245	380	7-27-00	0545	7-28-00	0000	34,900,000		
1-24-00	1350	360	9-15-00	0730	9-16-00	0000	23,200,000		
2-24-00	0900	593							
3-23-00	1050	820							
5-01-00	0930	1.065							
6-27-00	1350	351							
7-25-00	0530	190							
			Single-family land	use (0110463	0)				
6-29-99			1-10-00	1515	1-10-00	2200	145,000		
7-19-99	1130		4-09-00	0015	4-09-00	0930	105,000		
7-30-99	1045		5-18-00	1845	5-18-00	1645	61,400		
8-26-99	0930		6-02-00	1745	6-02-00	2100	65,300		
9-27-99	1041		6-06-00	0800	6-07-00	1030	702,000		
10-26-99	0950	0.11	7-09-00	1915	7-09-00	2345	73,300		
11-19-99	1145	.10	7-16-00	0000	7-16-00	0615	37,200		
12-29-99	1200	.10	7-27-00	0400	7-27-00	1515	229,000		
1-24-00	1245	.10	9-15-00	0630	9-15-00	1445	306,000		
2-24-00	1030	.10							
3-24-00	1100	.13							
5-01-00	1145	.19							
6-27-00	1030	.15							
7-25-00	0645	.10							
			Laundry Brook	x (01104640)					
6-29-99			1-10-00	1445	1-11-00	1215	1,100,000		
7-19-99	1207		4-09-00	0015	4-09-00	2115	949,000		
7-30-99	1025		5-18-00	1600	5-19-00	2330	671,000		
8-26-99	1000		6-02-00	1730	6-03-00	1145	542,000		
9-27-99	1126		6-06-00	0815	6-08-00	0000	5,920,000		
10-26-09	1042	1.01	7-09-00	1915	7-10-00	2000	444,000		
11-19-99	1215	.92	7-16-00	0000	7-16-00	2045	230,000		
12-29-99	1045	.93	7-27-00	0445	7-27-00	2115	1,280,000		
1-24-00	1320	.97	9-15-00	0615	9-15-00	1700	1,190,000		
2-24-00	1000	1.04							

	Dry weather		Stormwater					
Date	Time	ft ³ /s	Start d and ti	ate me	End da and tir	ate ne	ft ³	
		La	undry Brook (0110)4640)—Conti	nued			
3-24-00	1000	1.27						
5-01-00	0645	1.95						
6-27-00	1126	1.45						
7-25-00	1042	.95						
			Faneuil Brook	(01104660)				
6-29-99			1-10-00	1500	1-10-00	0245	324,000	
7-19-99	1340		4-09-00	0015	4-09-00	0915	129,000	
7-30-99	0745		5-18-00	1900	5-19-00	0818	125,000	
8-26-99	1115		6-02-00	1730	6-02-00	2115	88,200	
9-27-99	1120		6-06-00	0815	6-07-00	1115	1,340,000	
10-26-99	1100	0.66	7-09-00	1930	7-10-00	0230	89,000	
11-19-99	1300	.58	7-16-00	0000	7-16-00	0445	87.000	
12-29-99	1230	.58	7-27-00	0345	7-27-00	1500	492.000	
1-24-00	1415	.59	9-15-00	0615	9-15-00	1500	493.000	
2-24-00		.60						
3-24-00	0930	75						
5-01-00	1045	1 44						
6-27-00	1230	86						
7-25-00	0800	.00						
7 25 00	0000		Multifamily land	use (01104673	5)			
6 20 00			1 10 00	1445	1 10 00	2200	56 100	
0-29-99			1-10-00	0145	1-10-00	2200	50,100	
7-19-99			4-09-00 5 18 00	1945	4-09-00	2020	22,200	
7-30-99 8 26 00	0900		5-18-00	1843	5-18-00	2030	22,200	
8-20-99	1040		6.06.00	1730	6.07.00	1420	33,900	
9-27-99	1040		0-00-00	0800	6-07-00	1450	388,000	
10-26-99	1100	0.01	7-09-00	1845	7-10-00	0200	29,800	
11-19-99	1225	.01	7-16-00	0000	7-16-00	0745	45,300	
12-29-99	1135	.01	7-27-00	0215	7-27-00	1830	112,000	
1-24-00	1200	.01	9-15-00	0615	9-15-00	1800	110,000	
2-24-00	1220	.01						
3-24-00	1030	.01						
5-01-00	1145	.016						
6-27-00	1045	.015						
7-26-00	0742	.014						
			Commercial land	use (01104677	7)			
6-29-99			1-10-00	1445	1-10-00	2200	38,200	
7-19-99			4-09-00	0145	4-09-00	0815	44,400	
7-30-99	1045		5-18-00	1845	5-19-00	2145	68,200	
8-26-99	1015		6-02-00	1730	6-03-00	0245	473,000	
9-27-99	1015		6-06-00	0730	6-07-00	1430	193,000	

Table 3. Discharge at the time of sampling (dry weather) or total stormwater volume (stormwater), lower Charles River

 Watershed, Massachusetts, Water Year 2000—*Continued*

	Dry weather		Stormwater				
Date	Time	ft ³ /s	Start date and time		End da and tir	ate ne	ft ³
		Com	mercial land use (0)	1104677)— <i>Co</i>	ntinued		
10-26-09	0945	0.20	7-09-00	1915	7-10-00	0100	44,700
11-19-99	1145	.20	7-16-00	0000	7-16-00	0945	40,700
12-29-99	1055	.20	7-27-00	0215	7-27-00	1800	113,000
1-24-00	1100	.20	9-15-00	0630	9-15-00	1430	884,200
2-24-00	1055	.20					
3-24-00	1120	.20					
5-01-00	1215	.20					
6-27-00	1000	.20					
7-25-00	0825	.20					
			Muddy River	(01104683)			
6-29-99			1-10-00	1445	1-11-00	1500	3,110,000
7-19-99	1450		4-09-00	0015	4-09-00	2330	2,840,000
7-30-99			5-18-00	1745	5-19-00	2330	1,760,000
8-26-99	0840		6-02-00	1530	6-03-00	0830	2,080,000
9-27-99	0957		6-06-00	0945	6-07-00	1445	23,100,000
10-26-09	0930	1.49	7-09-00	1915	7-10-00	0900	1,690,000
11-19-99	1025	1.2	7-16-00	0000	7-16-00	1645	1,120,000
12-29-99	1230	1.14	7-27-00	0245	7-28-00	0000	7,190,000
1-24-00	1210	1.14	9-15-00	0815	9-15-00	2115	6,910,000
2-24-00	1100	1.23					
3-24-00	1325	1.32					
5-01-00	1230	1.95					
6-27-00	1100	1.21					
7-25-00	1000	1.32					
			Stony Brook	(01104687)			
6-29-99			1-10-00	1445	1-10-00	1145	3,950,000
7-19-99			4-09-00	0015	4-09-00	2045	3,690,000
7-30-99	0900		5-18-00	1600	5-19-00	2330	1,810,000
8-26-99	0815		6-02-00	1530	6-03-00	0730	2,410,000
9-27-99	0855		6-06-00	0800	6-07-00	1715	41,600,000
10-26-99	0835	10.7	7-09-00	2000	7-10-00	0930	1,770,000
11-19-99	1000	10.7	7-16-00	0000	7-16-00	1200	1,610,000
12-29-99	0945	10.7	7-27-00	0345	7-27-00	2330	4,730,000
1-24-00	1310	10.7	9-15-00	0815	9-16-00	0000	5,230,000
2-24-00	0930	10.7					
3-24-00	1330	10.7					
5-01-00	1325	10.7					
6-27-00	1145	10.8					
7-25-00	0910	10.7					

Table 3. Discharge at the time of sampling (dry weather) or total stormwater volume (stormwater), lower Charles River

 Watershed, Massachusetts, Water Year 2000—*Continued*

Table 4. Annual dry-weather and stormwater-discharge volumes and yields from tributary subbasins to the lower Charles River

 Watershed, Massachusetts, Water Year 2000

[ft³, cubic feet; ft³/mi², cubic feet per square mile]

		Dry we	ather	Stormwater		
Station name	Total (million ft ³)	Volume (million ft ³)	Yield (million ft ³ /mi ²)	Volume (million ft ³)	Yield (million ft ³ /mi ²)	
Charles River at Watertown (01104615)	15,300	10,600	39.7	4,640	17.3	
Single-family land use (01104630)	9.51	3.18	8.88	6.31	17.5	
Laundry Brook (01104640)	82.3	26.0	5.46	56.3	11.8	
Faneuil Brook (01104660)	38.0	16.5	11.6	21.5	15.1	
Faneuil Brook Subbasin ¹	49.1	16.6	9.34	32.5	18.3	
Multifamily land use (01104673)	3.04	.20	4.99	2.84	71.0	
Commercial land use (01104677)	8.11	5.98	299	2.13	106	
Muddy River (01104683)	209	35.0	6.44	174	31.9	
Muddy River conduit	197	60.6		137		
Muddy River Subbasin ^{1, 2, 3}	340	92.6	14.8	248	39.6	
Stony Brook (01104687)	479	292	24.8	187	15.8	
Stony Brook overflow	11.3	0		11.3		
Stony Brook Subbasin ^{1, 4}	489	255	19.5	234	18.7	
Ungaged areas ⁵	284	72.6	7.50	211	21.8	

¹Includes ungaged portions of gaged subbasin, respectively. ²Includes Muddy River conduit.

³Excludes Stony Brook overflow.

⁴Includes Stony Brook overflow.

⁵Does not include ungaged portions of gaged subbasins.

Regression equations (table 26, at back of the report) that relate measured stormwater EMCs to antecedent conditions and rainfall characteristics (table 5) were also developed. Regression analyses were done with Statview 5.0 (SAS Institute Inc.) software and included an evaluation of the regression diagnostics in accordance with Helsel and Hirsch (1992).

In general, these equations were developed without the need for logarithmic transformation. However, because the fecal coliform and *Enterococcus* bacteria data were lognormally distributed, it was necessary to transform fecal coliform and *Enterococcus* bacteria EMCs into logarithmic units in order to achieve acceptable model fits. Because retransformation back into the original linear units (CFUs/100 mL) can cause an underestimation of predicted bacterial EMCs, a biascorrection factor was multiplied by the predicted bacterial EMCs (U.S. Geological Survey, 1992). The bias-correction factor follows Duan's smearing method (Duan, 1983) and given as

$$BCF = \frac{\left(\sum Residuals\right)}{n},$$

BCF is the bias-correction factor, and

n is the number of samples.

where

Residuals refers to the sum of the residuals of the regression equation (observed values minus predicted values), which have been transformed back into original arithmetic units.

Annual Loads for Water Year 2000

Dry-weather loads for WY 2000 were estimated as the product of the overall dry-weather mean concentrations or the overall dry-weather flowweighted mean concentrations and dry-weather flows. Stormwater loads for WY 2000 were estimated on the basis of a combination of mean stormwater EMCs (arithmetic and flow-weighted) and regressionbased estimates of EMCs multiplied by stormwater flows. Finally, annual WY 2000 loads to the lower Charles River were determined by adding dry-weather loads and stormwater loads. All flows used in load calculations were obtained from calibrated rainfallrunoff models (Zarriello and Barlow, 2002), with the exception of upstream loads.

(1)

Table 5. Characteristics of storms sampled during this study of the lower Charles River Watershed, Massachusetts, storms recorded at Logan Airport National Weather Service station between 1970 and 1995, and Massachusetts Water Resources Authority design storms

/olume Total (ii) 0.80.59 .46 67. .43 2.842.663.88 5.45 2.90 4.07 .47 .84 l.43 .22 4.12 2.31 2.68.79 .53 .53 6.05 4.43 l.78 2.98 3.51 2.67 2.94 Average storm volume (ii) 32 .53 .69 .31 .38 30 34 .63 69 18 55 45 .05 23 0.59 ł 1 1 ÷ 1 1 ÷ ÷ ÷ Ł ł ł ł 160.33 589.50 916.17 695.50 844.50 910.83 1188.67 707.63 589.50 830.17 910.83 593.11 511.49 460.45 291.22 221.74 465.93 724.04 458.49 188.75 393.00 233.00 830.17 415.86 534.39 431.24 724.31 343.51 <u>, </u> Antecedent dry period for different ranges of 7 >0.5— 0.99 in. 115 162 319 208 596 634 702 160 177 596 315 174 200 255 465 118 319 66 196 99 LTJ 118 l 84 361 371 241 87 80 total rainfall (hours) >0.2— 0.49 in. 104 208 390 145 109 118 208 272 144 142 219 115 91 80 381 181 104 83 182 150 86 138 133 157 128 148 4 >0.1 — 0.19 in. 104 208 145 246 136 118 80 251 95 47 126 90 104 145 147 131 73 86 99 115 115 54 95 6 83 131 41 121 0.09 in. 0.0^ [258084846471 104 201 60 145 104 145 101 58 32 153 95 47 108 60 114 78 81 34 66 118 68 51 Maximum Sampled Storms intensity Water Year 2000 (in/hr) .35 100.25 .16 .12 .41 4 25 .24 60 .31 .24 .25 .41 0.19 .11 60 07 .12 .11 .12 26 .09 .24 14 60 Duration (hours) 35.33 6.00 9.83 8.67 15.33 31.17 5.67 26.33 4.336.009.83 15.85 26.33 13.11 11.67 7.98 13.41 8.87 18.02 10.04 7.43 10.63 5.029.98 6.00 10.14 10.27 2.21 Average intensity (in/hr) .10 0.13 .05 8 .16 90 .15 .10 .13 9 03 9 03 05 .03 03 8 8 9 11 11 0.06 hours .317 283 000 595 022 470 550 125 382 .125 .317 550 193 475 439 .862 l.086 982 669. 773 495 697 .110 483 1.002 471 511 168 1.077 Antecedent rainfall (in.) hours .008 .008 .125 019 .008 .159 .210 .190 .013 0.296 .030 088 019 337 .314 .173 052 .341 .121 20. 22 C 0 hours .008 .008 .057 .008 0.045 .043 108.011 016 014 152 286 050 137 011 .092 .027 071 081 48 C 0 C 0 0 0 0 0 hours 000 .034 .056 .038 .008 010 072 173 027 021 00 24 5 0 0 0 0 0 0 0 0 0 С 0 0 0 0 C 25th percentile..... Annual 25th percentile Median Annual median 75th percentile Annual average..... 9-15-00 to 9-16-00 6-06-00 to 6-07-00 4-09-00 to 4-10-00 5-18-00 to 5-20-00 6-02-00 to 6-03-00 7-09-00 to 7-10-00 7-27-00 to 7-28-00 -10-00 to 1-11-00 Date Average..... September November December Febuary January 7-16-00 October March August April June May July

(Date: Is in month, day, and year: in, inches, in/hr, inches per hour; >, greater than value shown; --, unknown or not applicable]

40 C	Ant	tecedent	: rainfall (i	in.)	Average	Duration	Maximum	Antece	dent dry p total	eriod for c rainfall (h	different ra ours)	nges of	Average storm	Total
	24 hours	48 hours	72 hours	168 hours	(in/hr)	(hours)	(in/hr)	>0.0 0.09 in.	>0.1 — 0.19 in.	>0.2— 0.49 in.	>0.5— 0.99 in.	∠ in.	volume (in.)	(in.)
Annual 75th percentile	0	.036	.216	.963	90.	13.67	.21	104	167	216	321	644.00	.67	4.20
					Logan A	irport 197	0 to 1995 (for	all storm	s)					
October	0.027	0.105	0.206	0.594	0.05	11.87	0.16	106	144	167	286	654.57	0.55	3.57
November	.024	.123	.248	.791	.04	13.29	.13	89	123	146	255	492.69	.57	4.14
December	.008	660.	.185	.740	.03	12.35	60.	74	110	144	258	556.04	.46	3.98
January	.034	.118	.210	.704	.03	11.40	60.	78	118	145	340	625.55	.45	3.63
Febuary	.016	.107	.213	.710	.03	13.25	60.	84	116	150	328	604.41	.50	3.34
March	.041	.123	.228	.729	.03	13.34	.10	82	115	138	236	615.25	.48	3.99
April	.042	.135	.258	.695	40	10.16	.10	73	120	167	263	678.14	.43	3.57
May	.026	.105	.192	.553	40	11.00	.11	76	122	165	318	738.31	.39	3.35
June	.037	.117	.226	.676	.05	8.54	.14	80	133	166	337	945.01	.36	2.93
July	.032	.127	.220	.530	90.	7.57	.18	85	130	178	432	1274.87	.39	3.06
August	.044	.148	.218	.646	.07	9.42	.19	95	130	160	306	792.04	.48	3.45
September	.049	.118	.203	.680	.05	9.51	.16	93	145	188	316	680.81	.47	3.21
Annual average	.031	.118	.217	.671	.0	10.96	.13	84	125	159	306	723.61	.46	3.52
Annual 25th percentile	0	0	0	.100	.01	2.00	.03	35	51	62	66	212.00	.05	3.31
Annual median	0	0	.010	.390	.03	7.00	.07	99	96	121	210	502.00	.21	3.51
Annual 75th percentile	0	.060	.230	.978	90.	15.00	.17	111	168	217	417	995.00	.62	3.72
					Logan Airl	port 1970 t	o 1995 (for st	orms >0.5	in.)					
Annual average	0.013	0.082	0.174	0.675	0.08	21.06	0.28	88	128	161	298	694.22	1.19	1
Annual 25th percentile	0	0	0	.100	<u>.</u>	11.00	.15	41	58	70	105	208.00	.68	ł
Annual median	0	0	0	.400	.06	17.00	.23	72	101	122	198	462.00	.94	1
Annual 75th percentile	0	.020	.170	1.000	60.	27.00	.35	113	169	211	420	962.00	1.43	ł
						Desi	gn Storms							
7-20-82 (3 month)	ł	ł	1	I	0.09	21.00	0.40	ł	1	1	ł	1	1.84	1
9-20-61 (1 year)	ł	ł	ł	ł	.13	22.00	.65	ł	ł	ł	ł	ł	2.79	1

Table 5. Characteristics of storms sampled during this study of the lower Charles River Watershed, Massachusetts, storms recorded at Logan Airport National Mosther Service station between 1970 and 1995, and Massachusetts Mather Posteriose Authority design storms. Continued

Dry Weather

Dry-weather annual loads (table 27 at back of report) were calculated for upstream and tributary subbasins draining to the lower Charles River. Dry-weather loads were estimated by multiplying annual dry-weather flow volumes (table 4) by each overall dry-weather mean concentration (arithmetic and flow weighted; table 25). Dry-weather flow was distinguished from stormwater flow for each station by identification of the flow threshold, the point on the hydrograph where streamflow increases as a result of storm runoff. A single flow threshold was used for many of the smaller storm drains and urban streams; however, because of seasonal changes in base flow, larger tributaries required the use of different flow thresholds to separate dry-weather flows from stormwater flows. In particular, Charles River at Watertown (01104615) required a different flow threshold for every storm because of continuously changing base-flow conditions (fig. 4) as a result of (1) alteration of flow by wetlands in the headwaters of the Charles River, (2) regulation of flow at the Mother Brook diversion, and (3) water withdrawals from upstream communities.

Stormwater

Stormwater loads for sampled storms (table 6) were estimated by multiplying stormwater-flow volumes (table 3) by the corresponding stormwater EMCs for each station (table 23). Annual stormwater loads were estimated by multiplying annual stormwater-flow volumes (table 4) by the corresponding overall stormwater EMCs (arithmetic and flowweighted) for each station (table 25). Station-specific regression equations were also used to estimate EMCs for individual WY 2000 storms on the basis of the antecedent conditions and rainfall characteristics of each storm. The load for a given storm was calculated by multiplying individual storm EMCs by the discharge volume for the corresponding storm. The annual (WY 2000) stormwater load was then calculated as the sum of the individual storm loads. For some storms, the regression equations resulted in negative EMCs, and in these cases zero was used. For some constituents, the

regression-equations approach did not produce a statistically significant equation; in these cases the overall mean stormwater EMC was used.

Design-Storm Loads

To compare stormwater-contaminant loading patterns among upstream, tributary-subbasin, and CSO sources and between present and future planned conditions, it is necessary for loads to be estimated under identical conditions (for example, rainfall characteristics and antecedent conditions). Two historic storms on September 21, 1961, and July 19-20, 1982, were selected by the MWRA for estimation of loads (table 7). The recurrence interval of the 1982 storm was estimated to be 3 months (known as the "3-month storm") and the recurrence interval of the 1961 storm was estimated to be 1 year (the "1-year storm;" Leo and others, 1994). In other words, storms of similar magnitude can be expected to occur once every 3 months and once every year, respectively. The rationale behind selection of these two storms is presented in Metcalf & Eddy, Inc. (1994).

Design-storm loads (table 27) were determined by means of the regression equations and the actual rainfall characteristics of the two historic storms, in combination with median antecedent conditions (table 5). Actual antecedent conditions were unavailable for these storms: therefore, median antecedent conditions measured between 1970 and 1995 at Logan International Airport, 10 mi east of the study area, were used to calculate the design storm EMCs by means of the regression equations. These median antecedent conditions were similar to those for storms with a total rainfall of at least 0.5 in. As with estimated stormwater loads, the overall arithmetic mean stormwater EMC was used in instances where regression equations were not adequate. It is important to note that although the design storms are actual storms, estimated loads presented herein do not reflect historical loads but rather loads that could be expected under present environmental conditions for the given rainfall characteristics and long-term median antecedent conditions.

Figure 4. Modeled and observed (upstream) discharge and dates of dry-weather and stormwater sampling at selected gaging stations and subbasins, lower Charles River Watershed, Massachusetts, Water Year 2000.

Figure 4. Modeled and observed (upstream) discharge and dates of dry-weather and stormwater sampling at selected gaging stations and subbasins, lower Charles River Watershed, Massachusetts, Water Year 2000—*Continued*.

Table 6. Constituent loads for sampled storms, lower Charles River Watershed, Massachusetts

Start date and time	End date and time	Biochemical oxygen demand, 5-day (kg)	Coliform, fecal, membrane filter (TCFU)	Enterococcus, membrane filter (TCFU)	Dissolved solids (kg)	Suspended solids (kg)	Nitrate, total (kg as N)	Nitrogen, ammonia, total (kg as N)
		Ch	arles River at Wa	atertown (011040	515)			
1-10-00 1430	1-11-00 1845	3,800	12	31	385,000	12,600	1,200	260
4-09-00 0015	4-10-00 0000		3.7	3.1	269,000	16,700	790	130
5-18-00 1600	5-20-00 0000	4,100	10	16	356,000	20,900	1,100	230
6-02-00 1630	6-03-00 0730	2,100	24	16	113,000	7,200	380	110
6-06-00 0800	6-07-00 1900		59	49	419,000	43,800	1,400	280
7-09-00 1915	7-10-00 2330		32	20	160,000	7,280	390	120
7-16-00 0000	7-16-00 1800	680	18	13	64,300	2,030	130	58
7-27-00 0545	7-28-00 0000	2,000	46	82	158,000	15,800	170	250
9-15-00 0730	9-16-00 0000		110		85,300	13,100	220	110
Single-family land use (01104630)								
1-10-00 1515	1-10-00 2200	16	0.70	0.20	486	375	2.4	1.4
4-09-00 0015	4-09-00 0930		.10	.30	127	307	.90	.20
5-18-00 1845	5-18-00 1645	23	.50	1.5	113	95.5	1.0	.40
6-02-00 1745	6-02-00 2100	44	.30	.70	240	497	2.4	2.3
6-06-00 0800	6-07-00 1030		6.8	6.0	397	1,210	4.8	2.4
7-09-00 1915	7-09-00 2345	41	1.9	.80	249	170	4.1	2.7
7-16-00 0000	7-16-00 0615	16	.20	.10	33.7	28.4	1.3	.80
7-27-00 0400	7-27-00 1515	20	2.1	3.5	246	311	1.8	1.0
9-15-00 0630	9-15-00 1445							
			Laundry Broo	ok (01104640)				
1-10-00 1445	1-11-00 1215	160	1.1	0.50	5,340	496	29	3.1
4-09-00 0015	4-09-00 2115		.30	1.0	3,330	1,380	17	2.0
5-18-00 1600	5-19-00 2330	140	1.7	2.5	2,920	384	14	2.0
6-02-00 1730	6-03-00 1145	310	5.5	1.6	2,610	2,180	17	12
6-06-00 0815	6-08-00 0000		34	39	12,000	3,170	46	15
7-09-00 1915	7-10-00 2000	150	1.2	.60	2,510	779	13	6.9
7-16-00 0000	7-16-00 2045	84	4.0	2.6	997	299	5.3	4.9
7-27-00 0445	7-27-00 2115	120	12	17	3,010	653	9.4	4.9
9-15-00 0615	9-15-00 1700		11		4,030	1,210	14	7.9
			Faneuil Broo	k (01104660)				
1-10-00 1500	1-10-00 0245	77	2.5	1.2	1,400	448	10	1.3
4-09-00 0015	4-09-00 0915		.90	.20	564	124	2.5	.30
5-18-00 1900	5-19-00 0818	30	1.5	2.2	750	158	3.9	.30
6-02-00 1730	6-02-00 2115	50	1.0	.90		794	2.0	1.9
6-06-00 0815	6-07-00 1115		8.0	7.3	3,880	1,620	13	2.9
7-09-00 1930	7-10-00 0230	40	.70	.80	857	237	5.5	1.6
7-16-00 0000	7-16-00 0445	32	2.1	1.2	394	246	4.4	1.0
7-27-00 0345	7-27-00 1500	39	5.7	7.9	2,930	404	10	2.5
9-15-00 0615	9-15-00 1500		42		2,380	2,240	14	3.7

[Date: Is in month, day, and year. Time: All times are eastern standard time and are in hours and minutes. g, gram; kg, kilogram; TCFU, trillion colony-

forming units; --, not determined]

Start date and time	End date and time	Nitrogen, total Kjeldahl (kg as N)	Phos- phorus, total (kg)	Cadmium, total (g)	Chromium, total (g)	Copper, total (g)	Lead, total (g)	Zinc, total (g)
		Cl	harles River a	t Watertown (011046215)			
1-10-00 1430	1-11-00 1845	1,400	110	360	3,600	7,400	8,600	28,000
4-09-00 0015	4-10-00 0000	1,400	86	860	3,400	8,600	9,000	29,000
5-18-00 1600	5-20-00 0000	1,600	350	410	4,100	10,000	11,000	31,000
6-02-00 1630	6-03-00 0730	630	88	140	1,300	5,600	5,300	19,000
6-06-00 0800	6-07-00 1900	2,200	280	610	6,700	17,000	25,000	76,000
7-09-00 1915	7-10-00 2330	800	80	150	1,500	7,300	4,700	15,000
7-16-00 0000	7-16-00 1800	320	24	68	680	1,600	1,500	4,800
7-27-00 0545	7-28-00 0000	770	66	200	2,500	7,800	9,900	18,000
9-15-00 0730	9-16-00 0000	1,100	110	130	2,000	5,300	8,500	60,000
Single-family land use (01104630)								
1-10-00 1515	1-10-00 2200	5.8	0.8	0.9	37	130	240	330
4-09-00 0015	4-09-00 0930	3.9	.50	1.5	29	93	160	250
5-18-00 1845	5-18-00 1645	4.5	.80	.30	12	62	56	160
6-02-00 1745	6-02-00 2100	9.6	1.7	1.0	32	130	250	430
6-06-00 0800	6-07-00 1030	17	6.0	4.0	85	270	450	890
7-09-00 1915	7-09-00 2345	7.9	1.1	.70	17	130	110	330
7-16-00 0000	7-16-00 0615	2.5	.40	.50	5.3	37	24	97
7-27-00 0400	7-27-00 1515	6.0	.80	1.4	35	130	230	410
9-15-00 0630	9-15-00 1445							
			Laundry	Brook (01104	640)			
1-10-00 1445	1-11-00 1215	26	1.9	6.2	93	500	490	1.200
4-09-00 0015	4-09-00 2115	32	4.0	13	130	540	1,000	3,100
5-18-00 1600	5-19-00 2330	27	4.2	3.8	57	490	340	1,200
6-02-00 1730	6-03-00 1145	52	8.9	14	230	1,300	1,600	4,100
6-06-00 0815	6-08-00 0000	110	15	27	390	1,700	2,400	5,100
7-09-00 1915	7-10-00 2000	33	3.9	3.6	63	450	490	1,500
7-16-00 0000	7-16-00 2045	16	2.1	4.5	27	180	220	920
7-27-00 0445	7-27-00 2115	51	1.9	7.3	110	380	430	880
9-15-00 0615	9-15-00 1700	110	9.1	6.7	100	510	610	1,500
			Faneuil	Brook (011046	560)			
1-10-00 1500	1-10-00 0245	10	1.0	1.8	37	140	310	780
4-09-00 0015	4-09-00 0915	3.1	.50	1.8	15	54	84	250
5-18-00 1900	5-19-00 0818	6.0	1.1	.70	14	98	74	250
6-02-00 1730	6-02-00 2115	8.5	.40	2.0	39	180	360	580
6-06-00 0815	6-07-00 1115	29	3.8	7.6	140	480	760	1,900
7-09-00 1930	7-10-00 0230	6.6	.90	.60	15	99	92	260
7-16-00 0000	7-16-00 0445	4.9	1.0	1.2	12	70	86	200
7-27-00 0345	7-27-00 1500	13	1.5	2.8	46	170	220	410
9-15-00 0615	9-15-00 1500	28	6.6	4.2	110	390	980	1,400

Table 6. Constituent loads for sampled storms, lower Charles River Watershed, Massachusetts-Continued

Start date and time	End date and time	e e de	Biochemical oxygen emand, 5-day (kg)	Coliform, fecal, membrane filter (TCFU)	Enterococcus, membrane filter (TCFU)	Dissolved solids (kg)	Suspended solids (kg)	Nitrate, total (kg as N)	Nitrogen, ammonia, total (kg as N)
				Multifamily land	l use (01104673)				
1-10-00 1445	1-10-00 22	200	4.6	0.10	0.40	157	40.8	0.60	0.30
4-09-00 0145	4-09-00 08	815		.004	.10	56.1	26.6	.004	.10
5-18-00 1845	5-18-00 20	030	8.8	.10	.20	75.9	22.6	.50	.005
6-02-00 1730	6-03-00 02	245	8.4	.30	.10	122	20.9	.80	.70
6-06-00 0800	6-07-00 14	430		.50	1.5	2,330	506	13	2.2
7-09-00 1845	7-10-00 02	200	8.1	.10	.10	152	34.6	1.4	.50
7-16-00 0000	7-16-00 07	745	19	.40	.40	615	92.3	.60	.80
7-27-00 0215	7-27-00 18	830	16	.80	1.6	251	54	1.1	.70
9-15-00 0615	9-15-00 18	800							
				Commercial land	l use (01104677)				
1-10-00 1445	1-10-00 22	200	3.2	0.02	0.10	41.1	25.1	0.50	0.30
4-09-00 0145	4-09-00 08	815		.01	.03	42.8	42.3	.50	.20
5-18-00 1845	5-19-00 2	145	35	.20	.30	224	104	1.6	.30
6-02-00 1730	6-03-00 02	245	9.5	.20	.10	80.4	29.5	1.2	.90
6-06-00 0730	6-07-00 14	430		.40	.50	230	98.5	1.3	.50
7-09-00 1915	7-10-00 03	100	19	.04	.10	164	78.4	1.8	.60
7-16-00 0000	7-16-00 09	945	17	.30	.30	49.5	89.8	1.0	.40
7-27-00 0215	7-27-00 18	800	6.4	.50	1.1	83.4	353	.40	.30
9-15-00 0630	9-15-00 14	430							
				Muddy Rive	r (01104683)				
1-10-00 1445	1-11-00 1	500	390	2.7	3.5	13,200	2,350	76	32
4-09-00 0015	4-09-00 23	330		2.5	2.8	9,090	3,440	42	11
5-18-00 1745	5-19-00 23	330	310	9.6	3.8	10,600	1,260	45	13
6-02-00 1530	6-03-00 08	830	770	17	6.3	13,500	2,910	65	35
6-06-00 0945	6-07-00 14	445		170	140	56,100	32,400	290	65
7-09-00 1915	7-10-00 09	900	430	3.7	.60	7,680	1,150	48	25
7-16-00 0000	7-16-00 10	645	280	12	6.1	317	1,140	14	12
7-27-00 0245	7-28-00 00	000	410	50	40	14,200	6,510	61	38
9-15-00 0815	9-15-00 2	115		14		14,700	12,700	120	74
				Stony Brook	a (01104687)				
1-10-00 1445	1-10-00 1	145	640	27	12	16,800	4,330	170	34
4-09-00 0015	4-09-00 20	045		16	6.9	15,000	10,900	63	13
5-18-00 1600	5-19-00 23	330	290	7.6	2.9	13,400	1,190	67	13
6-02-00 1530	6-03-00 07	730	1,700	41	16	8,870	17,700	75	49
6-06-00 0800	6-07-00 17	715		290	280	107,000	42,000	570	130
7-09-00 2000	7-10-00 09	930	1,400	100	15	14,000	9,010	80	38
7-16-00 0000	7-16-00 12	200	730	81	13	4,470	5,480	40	24
7-27-00 0345	7-27-00 23	330	1,300	39	32	18,700	14,700	100	24
9-15-00 0815	9-16-00 00	000		45		14,800	13,200	130	39

Start date and time	End date and time	Nitrogen, total Kjeldahl (kg as N)	Phos- phorus, total (kg)	Cadmium, total (g)	Chromium, total (g)	Copper, total (g)	Lead, total (g)	Zinc, total (g)
			Multifamily	y land use (011	.04673)			
1-10-00 1445	1-10-00 2200	1.3	0.20	0.60	6.4	65	73	170
4-09-00 0145	4-09-00 0815	1.3	.20	.90	7.0	60	49	190
5-18-00 1845	5-18-00 2030	1.4	.20	.20	4.4	53	47	130
6-02-00 1730	6-03-00 0245	1.7	.40	.40	7.1	87	74	190
6-06-00 0800	6-07-00 1430	14	2.5	4.9	77	500	670	1,600
7-09-00 1845	7-10-00 0200	2.0	.30	.30	5.1	100	110	200
7-16-00 0000	7-16-00 0745	1.7	.50	.60	7.7	74	120	180
7-27-00 0215	7-27-00 1830	4.1	.40	.60	13	120	100	230
9-15-00 0615	9-15-00 1800							
	Commercial land use (01104677)							
1-10-00 1445	1-10-00 2200	1.0	0.20	0.40	3.2	54	130	160
4-09-00 0145	4-09-00 0815	1.2	.20	.60	6.3	94	140	190
5-18-00 1845	5-19-00 2145	5.0	.60	.80	14	240	210	400
6-02-00 1730	6-03-00 0245	2.7	.30	.40	5.4	200	170	260
6-06-00 0730	6-07-00 1430	2.7	.40	1.1	15	170	310	400
7-09-00 1915	7-10-00 0100	3.5	.30	1.3	9.5	310	260	390
7-16-00 0000	7-16-00 0945	2.9	.30	.60	8.2	93	130	220
7-27-00 0215	7-27-00 1800	2.4	.30	1.2	17	160	830	490
9-15-00 0630	9-15-00 1430							
			Muddy	River (011046	83)			
1-10-00 1445	1-11-00 1500	100	14	19	290	1,900	2,200	6,800
4-09-00 0015	4-09-00 2330	130	14	40	320	2,200	2,700	7,400
5-18-00 1745	5-19-00 2330	90	10	10	580	1,600	910	5,100
6-02-00 1530	6-03-00 0830	140	24	15	350	3,000	2,500	6,900
6-06-00 0945	6-07-00 1445	580	92	140	2,700	14,000	18,000	43,000
7-09-00 1915	7-10-00 0900	91	8.6	9.6	140	2,500	1,200	3,800
7-16-00 0000	7-16-00 1645	51	7.3	16	95	1,000	790	1,900
7-27-00 0245	7-28-00 0000	190	26	110	900	4,500	4,800	11,000
9-15-00 0815	9-15-00 2115	310	63	39	980	6,700	8,700	16,000
			Stony H	Brook (011046	87)			
1-10-00 1445	1-10-00 1145	130	28	27	390	1,700	3,800	7,500
4-09-00 0015	4-09-00 2045	130	45	52	730	2,900	9,000	15,000
5-18-00 1600	5-19-00 2330	77	10	10	100	820	990	2,900
6-02-00 1530	6-03-00 0730	300	57	82	1,300	5,100	17,000	20,000
6-06-00 0800	6-07-00 1715	990	180	250	4,100	13,000	33,000	57,000
7-09-00 2000	7-10-00 0930	230	37	46	510	3,600	7,800	11,000
7-16-00 0000	7-16-00 1200	130	21	23	270	1,700	3,800	5,300
7-27-00 0345	7-27-00 2330	230	58	59	960	4,900	16,000	16,000
9-15-00 0815	9-16-00 0000	310	59	49	890	5,000	12,000	27,000

 Table 7. Stormwater volume for 3-month and 1-year design storms, lower Charles River Watershed, Massachusetts

[ft³, cubic foot]

Station name	Volun	ne (ft ³)
Station name -	3-month	1-year
Charles River at Watertown	80,000,000	200,000,000
Single-family land use	280,000	440,000
Laundry Brook	2,100,000	3,500,000
Faneuil Brook	580,000	1,000,000
Faneuil Brook Subbasin ¹	970,000	1,600,000
Multifamily land use	120,000	210,000
Commercial land use	100,000	160,000
Muddy River	6,900,000	13,000,000
Muddy River Subbasin ^{1, 2}	10,000,000	18,000,000
Stony Brook	7,000,000	13,000,000
Stony Brook Subbasin ^{1, 3}	7,900,000	15,000,000

¹Includes ungaged portions of gaged subbasin, respectively.

²Includes Muddy River conduit.

³Includes Stony Brook overflow and volume of combined sewage.

Rainfall-Data Analysis

In New England, rainfall across a drainage basin can be highly variable, especially during the summer. Summer thunderstorms can produce an inch of rain in one part of a watershed and no rain in other parts, adding to the difficulties of storm sampling. This problem is compounded in that the present study area encompasses more than 38 mi². Fortunately, several rain gages are operated by city, State, and Federal governmental agencies in the lower Charles River Watershed. Rain gages were assigned to each waterquality sampling station on the basis of Thiessen polygons determined with ARC/INFO geographic information system (GIS) software (fig. 5; Environmental Research Institute, Inc., Version 7.11). Rain gages within the same polygon as one of the stations were assigned to that station. Data from these gages were used to determine antecedent conditions of the approximately 90 storms during WY 2000 (table 5). Statistics for antecedent conditions and rainfall characteristics were calculated by means of the SYNOP computer program, developed by the USEPA for use in the National Urban Runoff Program (NURP) (fig. 6).

The above observations and reported rainfall and antecedent characteristics were based on a particular set of conditions that were used to define a "storm." In this study, a storm was defined as any measurable rain (greater than 0.1 in.) with at least a 12-hr antecedent dry period. In other words, there must be no measurable precipitation 12 hr prior to the start of any new storm. For example, if a break in precipitation during a storm lasted less than 12 hr, the entire period of precipitation was considered one storm, but if the break in precipitation lasted longer than 12 hr, the two rainfall periods were considered as two storms. This definition is important, because different definitions of a storm will produce different rainfall statistics. These different statistics may explain discrepancies between rainfall statistics calculated here and those determined by others.

Characteristics of sampled storms were biased compared to the total population of storms. This bias is an artifact of storm-sampling criteria: sampled storms had to produce rainfall amounts greater than about 0.5 in. and had to be preceded by at least 72 hr of little to no rainfall (a maximum allowed amount of 0.15 in.). However, WY 2000 was about average in terms of storm size, characteristics, and variation of characteristics when compared with 26 years (1970 to 1995) of rainfall data recorded at Logan International Airport (fig. 6). An unpaired t-test showed no statistical difference between means of these characteristics measured for WY 2000 and means measured at Logan International Airport from 1970 to 1995 at the 95percent significance level. Two exceptions were the mean greater than 0.5 and greater than 1.0 in. antecedent dry periods that showed slight differences at the 95-percent significance level. Water Year 2000 was also about average in terms of total annual rainfall compared to long-term averages recorded at Logan International Airport (42.8 and 42.2 in., respectively), mean number of storms with total rainfall between 1 and 2 in. (2.1 and 3.3 in., respectively), and the mean number of storms with total rainfall greater than 2 in. (9 and 8.33 in., respectively).

Figure 5. Thiessen polygons used to assign rain gages to subbasins in the lower Charles River Watershed, Massachusetts.

Figure 6. Summary statistics of rainfall characteristics and antecedent conditions for individual storms in the lower Charles River Watershed during Water Year 2000 and at Logan International Airport, Boston, Massachusetts from 1970 to 1995.

Figure 6. Summary statistics of rainfall characteristics and antecedent conditions for individual storms in the lower Charles River Watershed during Water Year 2000 and at Logan International Airport, Boston, Massachusetts from 1970 to 1995—*Continued*.

Figure 6. Summary statistics of rainfall characteristics and antecedent conditions for individual storms in the lower Charles River Watershed during Water Year 2000 and at Logan International Airport, Boston, Massachusetts from 1970 to 1995—*Continued.*

QUALITY ASSURANCE

Water-quality data are subject to bias (or systematic error) and variability (or random error) during sample collection, processing, and analysis. The magnitude of bias and variability can be determined by analysis of quality-assurance samples, which include field blanks, laboratory blanks, and split replicates. Inspection of field-blank data showed that sample collection and processing were not a source of contamination bias. Analytical bias was assessed through laboratory sample-blank data. The statistical techniques are described in detail by Mueller (1998). Briefly, expected contamination bias was determined by ranking blank data and determining the concentration that can be expected in a specified percentage (90 percent was chosen for this study) of environmental samples with an acceptable degree of confidence. Sampling variability was assessed by analysis of split field replicates, that is, water-quality samples split into subsamples in the field. Variability was estimated by visual inspection of scatter plots with LOWESS (locally weighted

scatterplot smoother; SAS Institute Inc., 1998). The plots show replicate-sample standard deviation plotted as a function of the arithmetic mean concentration of each replicate set (Mueller, 1998). LOWESS smoothing of scatter plots enhances patterns that might otherwise be obscured (SAS Institute Inc., 1998). A change in slope of the LOWESS plot was considered to mark the boundaries among low, middle, and high concentration ranges (table 8).

The maximum potential contamination bias in at least 90 percent of all samples is estimated (at various levels of confidence; table 8) to be less than the minimum reporting level (MRL) for all constituents with the exception of TDS, TKN, Cr, Cu, and Zn (table 2). Contamination bias of these constituents averaged less than about 25 percent of the overall dry-weather means and stormwater EMCs, with a few exceptions. Contamination bias of Cr and Cu on average was 73 and 35 percent of the overall dry-weather means, respectively. Consequently, dry-weather Cr and Cu loads may be elevated as a result of analytical error. **Table 8.** Contamination bias expected in 10 percent of the environmental samples collected during the study of the lower

 Charles River Watershed, Massachusetts

[**MRL**: Minimum reporting level. CFU/100mL, colony-forming units per 100 milliliters; µg/L, micrograms per liter; mg/L, milligrams per liter; <, less than value shown; --, not determined]

Constituent	Number of blank samples	MRL	Number of blank samples greater than MRL	Concentration expected in 10 percent of environmental samples	Confidence level
Biochemical oxygen demand, 5-day (mg/L)	19	2	0	<2	86
Coliform, fecal, membrane filter (CFU/100mL)	0	10			
Enterococcus, membrane filter (CFU/100mL)	0	10			
Dissolved solids (mg/L)	11	10	2	19	69
Suspended solids (mg/L)	11	10	0	<5	69
Nitrate plus nitrite (mg/L as N)	0	0.023			
Nitrogen, ammonia (mg/L as N)	23	0.075	0	<.075	91
Nitrogen, total Kjeldehl (mg/L as N)	30	0.15	17	.28	96
Phosphorus (mg/L)	11	0.01-0.1	0	<.05	69
Cadmium (µg/L)	13	0.05–0.5	0	<.5	75
Chromium (µg/L)	13	0.2–5	9	1	75
Copper (µg/L)	13	0.2	7	2.4	75
Lead (µg/L)	13	0.05	0	<.2	75
Zinc (µg/L)	13	2–10	1	1.7	75

Concentration variability is shown in table 9. These data can be used to determine the maximum potential error for individual measurements of each constituent and water-quality property. The variability of the sample sets is assumed to represent the variability of the entire population. The error of an individual measurement can be estimated by means of either equation (2) for the low and high concentration ranges or equation (3) for concentrations in the middle concentration range. The equations are as follows:

$$C_i = C \pm 1.645 \times \sigma, \qquad (2)$$

where

- C_i is the concentration interval, in the appropriate units;
- *C* is the concentration of the sample, in the appropriate units;
- σ equals the standard deviation of the replicate pairs, in the appropriate units; and
- 1.645 represents the percentage points of the t-distribution for infinite degrees of freedom and a 90-percent confidence interval;

or

$$C_i = C \pm 1.645 \times \left(\frac{\sigma}{100}\right),\tag{3}$$

where

- C_i is the concentration interval, in the appropriate units;
- *C* is the concentration of the sample, in the appropriate units;
- σ is the relative standard deviation of the replicate pairs, in percent; and
- 1.645 represents the percentage points of the t-distribution for infinite degrees of freedom and a 90-percent confidence interval.

For example, the dry-weather fecal coliform concentration sampled at Charles River at Watertown (01104615) on July 19, 1999, was 270 CFUs/100 mL. This concentration is within the low range; by means of equation 2, we can state with 90-percent confidence that the actual value is between 210 and 330 CFUs/100 mL.

Table 9. Standard deviations of replicate samples collected in this study of the lower Charles River Watershed, Massachusetts

[CFU/100mL, colony-forming units per 100 milliliters; μ g/L, micrograms per liter; mg/L, milligrams per liter; ð, less than or equal to value shown; >, greater than value shown; --, not determined]

	Low con ra	centration nge	Middle con ran	centration ge	High con ra	centration nge
Constituent	Concen- tration	Standard deviation (units)	Concen- tration	Relative standard deviation (percent)	Concen- tration	Standard deviation (units)
Biochemical oxygen demand, 5-day (mg/L)	ð5	0.2	>5	13.1		
Coliform, fecal, membrane filter (CFU/100mL)	ð500	37	501-5,000	9.5	>5,000	2,800
Enterococcus, membrane filter (CFU/100mL)	ð250	13	251-2,500	10.7	>2,500	5,100
Dissolved solids (mg/L)	ð300	9.4	>300	2.6		
Suspended solids (mg/L)	ð25	.2	>25	14.4		
Nitrate plus nitrite (mg/L as N)	ð1	.01	>1	4.0		
Nitrogen, ammonia (mg/L as N)	ð1.2	.02				
Nitrogen, total Kjeldehl (mg/L as N)	ð1.5	.08	>1.5	3.9		
Phosphorus (mg/L)	ð0.3	.01	>0.3	1.9		
Cadmium (µg/L)						
Chromium (µg/L)	ð3	.05	>3	2.9		
Copper (µg/L)	ð10	.87	>10	2.4		
Lead (µg/L)	ð10	.08	>10	2.6		
Zinc (µg/L)	ð25	4.00	>25	1.8		

Additionally, variability in mean concentrations can be used to determine the potential error associated with dry-weather and stormwater load estimates for loads determined by use of mean concentrations. Equation (4) is used for concentrations in the low- and highconcentration ranges and equation (5) is used for concentrations in the middle-concentration range; the equations are given as

$$C_i = \overline{C} \pm 1.645 \times \left(\frac{\sigma}{\sqrt{n}}\right),\tag{4}$$

where

- C_i is the concentration interval, in the appropriate units;
- \overline{C} is the mean concentration, in the appropriate units;
- σ is the standard deviation of the replicate pairs, in the appropriate units;
- *n* is the number of samples; and,
- 1.645 represents the percentage points of the t-distribution for infinite degrees of freedom and a 90-percent confidence interval;

and

$$C_i = \overline{C} \pm 1.645 \times \left(\frac{\frac{6}{100}}{\sqrt{n}}\right), \tag{5}$$

where

- C_i is the concentration interval, in the appropriate units;
- \overline{C} is the mean concentration, in the appropriate units;
- σ is the standard deviation of the replicate pairs, in percent;
- *n* equals the number of samples; and,
- 1.645 represents the percentage points of the t-distribution for infinite degrees of freedom and a 90-percent confidence interval.

For example, the mean stormwater fecal coliform EMC measured from Stony Brook (01104687) was 66,000 CFUs/100 mL (n=9). This concentration is within the high-concentration range; therefore, by means of equation 4, we can say with 90-percent confidence that the actual value is somewhere between 64,500 and 67,500 CFUs/100 mL.

STREAMFLOW

As in most highly urbanized areas, streamflow in the lower Charles River Watershed is extremely variable or "flashy." Streamflow in the lower Charles River Watershed is affected by the impervious character of the land surface throughout the watershed, flood-control structures, and CSOs. In contrast, streamflow upstream of the Charles River at Watertown station (01104615) is strikingly different from that measured at the other gaging stations in the study area. Generally, discharge increases within 1/2 hr after the onset of rainfall, peaks, and slowly decreases. Discharge may not return to pre-storm values for days or even weeks after large storms. The reasons for these differences likely include urbanized land use and impervious area; more than 11.5 mi² of wetlands, which moderate streamflow by dampening higher stormflows and maintaining base flow during dry weather; and Mother Brook, an upstream diversion used for flood control. Although originally intended to bring water power to mills, the Mother Brook diversion—built in 1640—presently diverts as much as one-third of the flow from the Charles River upstream of the Watertown gaging station to prevent flooding of the lower Charles River Watershed. Water from Mother Brook is discharged into the Neponset River. The annual hydrographs for each gaging station, river or brook in the study area are shown in figure 4.

Charles River at Watertown (01104615)

Streamflow at station 01104615 ranged from 24 to 1,350 ft³/s with a mean discharge of 483 ft³/s during WY 2000 (fig. 7). Streamflow during this time equaled or exceeded 165 ft³/s 90 percent of the time (fig. 8). The mean dry-weather discharge was 456 ft³/s and the mean stormwater

Figure 7. Upstream view of footbridge located at U.S. Geological Survey gaging station Charles River at Watertown, Massachusetts (01104620).

Figure 8. Flow-duration curves of simulated 15-minute flow values for tributary and uniform land-use subbasins, and the flow-duration curve of observed 15-minute flow values at Charles River at Watertown (01104615), lower Charles River Watershed, Massachusetts, Water Year 2000.

discharge was about 559 ft³/s. The total volume of water discharged to the lower Charles River from areas upstream of Watertown in WY 2000 was about 10,600 million ft³ for dry-weather flow and 4,640 million ft³ for stormwater flow (table 4).

Upstream flow at the Watertown gaging station categorized as "stormwater" is likely local stormwater runoff from highly urban areas just upstream of the gaging station rather than stormwater runoff from the entire upstream drainage basin, whereas upstream flows categorized as "dry-weather" likely include some stormwater runoff from the upper parts of the drainage basin. Stormwater from upstream is difficult to distinguish from dry-weather flows because of the unique characteristics of the upstream drainage basin.

Single-Family Land-Use Station (01104630)

Streamflow at the single-family land-use gaging station (01104630) ranged from 0.001 ft³/s to 79 ft³/s with a mean discharge of 0.3 ft³/s during WY 2000 (fig. 9). Streamflow during this time equaled or

Figure 9. U.S. Geological Survey gaging station single-family land-use (01104630), Newton Center, Massachusetts, (*A*) upstream and (*B*) downstream views.

exceeded 0.07 ft³/s 90 percent of the time (fig. 8). The mean dry-weather discharge was 0.11 ft³/s and the mean stormwater discharge was about 1.95 ft³/s. Streamflow at the single-family land-use station (01104630) can change from a trickle to a torrent almost immediately after it begins raining.

Figure 10. U.S. Geological Survey gaging station Laundry Brook (01104640), Watertown, Massachusetts, (*A*) upstream and (*B*) downstream views.

Laundry Brook Station (01104640)

Streamflow at the Laundry Brook station (01104640) ranged from 0.36 to 194 ft³/s with a mean discharge of 2.6 ft³/s during WY 2000 (fig. 10). Streamflow during this time equaled or exceeded 0.62 ft³/s 90 percent of the time (fig. 8). The mean dry-weather discharge was 1.07 ft³/s

and the mean stormwater discharge was about 7.81 ft³/s. Streamflow at Laundry Brook sometimes was observed to increase just prior to the storm, probably because of the regulation of Bulloughs Pond in Newton. As a means of flood control, the city of Newton lowers the water level in the pond just prior to large storms by discharging pond water directly into Laundry Brook. The total volume of water from Laundry Brook discharged to the lower Charles River was about 26 million ft³ for dry-weather flow in WY 2000 and 56.3 million ft³ for stormwater flow (this includes some of the water released from Bulloughs Pond).

Faneuil Brook Subbasin

Streamflow for Faneuil Brook Subbasin, including its ungaged portion, ranged from 0.001 to 171 ft³/s with a mean discharge of 1.6 ft³/s during WY 2000 (fig. 11). Streamflow during this time equaled or exceeded 0.54 ft³/s 90 percent of the time (fig. 8). The mean dry-weather discharge was 0.7 ft³/s and the mean stormwater discharge was about 4.2 ft³/s. The total volume of water from the Faneuil Brook Subbasin, including its ungaged portion, that discharged to the lower Charles River in WY 2000 was estimated as 16.6 million ft³ for dry-weather flow and 32.5 million ft³ for stormwater flow (table 4).

Figure 11. U.S. Geological Survey gaging station Faneuil Brook (01104660), Brighton, Massachusetts, (*A*) upstream view and (*B*) above manhole

Multifamily Land-Use Station (01104673)

Streamflow at the multifamily land-use gaging station (01104673) ranged from less than 0.001 to 25.5 ft³/s with a mean discharge of 0.096 ft³/s during WY 2000 (fig. 12). Streamflow during this time equaled or exceeded 0.001 ft³/s 90 percent of the time (fig. 8). The mean dry-weather discharge was 0.007 ft³/s and the mean stormwater discharge was about 1.18 ft³/s. The total volume of water from the multifamily land-use subbasin that discharged to the lower Charles River during WY 2000 was estimated as 0.2 million ft³ for dry-weather flow and 2.84 million ft³ for stormwater flow.

Figure 12. U.S. Geological Survey gaging station multifamily land use (01104673), Cambridge, Massachusetts.

Commercial Land-Use Station (01104677)

Streamflow at the commercial land-use gaging station (01104677) ranged from less than 0.001 to 19 ft³/s with a mean discharge of 0.26 ft³/s during WY 2000 (fig. 13). Streamflow during this time equaled or exceeded 0.2 ft³/s 90 percent of the time (fig. 8). The mean dry-weather discharge was $0.2 \text{ ft}^3/\text{s}$ and the mean stormwater discharge was about 1.17 ft^3 /s. The total volume of water from the commercial land-use subbasin that discharged to the lower Charles River in WY 2000 was estimated as 5.98 million ft³ for dry-weather flow and 2.13 million ft³ of stormwater flow. The finding that the dry-weather flow is larger than the stormwater flow suggests that there is a source of water, and possibly contaminants, to this drain other than normal dryweather base flow. After the completion of the field effort for this study, the city of Cambridge's chief engineer notified the USEPA that the increased base flow likely results from dewatering activities by the Massachusetts Bay Transit Authority (MBTA).

Muddy River Subbasin

Streamflow for Muddy River Subbasin, including its ungaged portion, ranged from less than 0.5 to 639 ft^3/s , with a mean discharge of 4.51 ft^3/s during WY 2000 (fig. 14).

Figure 13. U.S. Geological Survey gaging station commercial land use (01104677), Cambridge, Massachusetts.

Figure 14. U.S. Geological Survey gaging station Muddy River (01104683), Brookline, Massachusetts, upstream view.

Streamflow during this time equaled or exceeded 1.04 ft³/s 90 percent of the time (fig. 8). The mean dry-weather discharge was 1.17 ft³/s and the mean stormwater discharge was about 25.8 ft³/s. Dry-weather streamflow at Muddy River (01104683) displays a semi-diurnal pattern that mimics the tidal cycle, although the river has not been hydraulically connected to the harbor since 1908 when the Old Charles River Dam was constructed (fig. 1). However, it is hydraulically connected to the lower Charles River Basin which is managed to create a near-constant water elevation. The Basin is allowed to drain during low tide and refill with upstream flow between low tides. This draining and refilling affects water levels in the Muddy River. Prior to or during rainstorms, the Muddy River's stage often drops sharply as the Basin's stage is artificially lowered by large pumps at the New Charles River Dam.

The total volume of water from the Muddy River Subbasin discharged to the lower Charles River in WY 2000 was estimated as about 92.6 million ft³ for dry-weather flow and 248 million ft³ for stormwater flow (table 4). A portion of the upstream flow is diverted through the Muddy River conduit; this diversion bypasses the Back Bay Fens and minimizes flooding there (fig. 1). The total volume of water from the Muddy River conduit discharged to the lower Charles River in WY 2000 was estimated as about 60.6 million ft³ for dry-weather flow and 137 million ft³ for stormwater flow (table 4).

Occasionally during large storms, Stony Brook and the Old Stony Brook discharge overflow into the Back Bay Fens at the Boston Gatehouses 1 and 2, respectively. The overflow volume was about 11.3 million ft³ for WY 2000 (fig. 15).

Figure 15. Location of the U.S. Geological Survey gaging station Stony Brook (01104687), lower Charles River Watershed, Massachusetts (modified from Metcalf and Eddy, 1994).

Stony Brook Subbasin

Streamflow for the Stony Brook Subbasin, including its ungaged portions, ranged from 10.3 to 688 ft³/s with a mean discharge of 15.5 ft³/s during WY 2000 (fig. 16). Streamflow during this time equaled or exceeded 10.3 ft³/s 90 percent of the time (fig. 8). The mean dryweather discharge was 10.8 ft³/s and the mean stormwater discharge was about 29.5 ft³/s. Streamflow at Stony Brook (01104687) also has a cyclic pattern during dry weather. In contrast to the Muddy River, however, this pattern is based on a 24-hr cycle and appears unrelated to operations at the Charles River Dam. The reason for the cyclic pattern observed at Stony Brook is unknown but could result from the

Figure 16. U.S. Geological Survey gaging station Stony Brook (01104687), Boston, Massachusetts.

controlled release of cooling water into Stony Brook. Increases in streamflow are accompanied by increased temperature and decreased specific conductance. During storms that produce more than 0.5 in. of rain, discharge in Stony Brook is frequently augmented by CSOs. Six of the nine sampled storms produced CSO discharge (Massachusetts Water Resources Authority, written commun., 2001). As much as 15 million ft^3 of CSO was discharged into Stony Brook during calendar year (CY) 2000 (Massachusetts Water Resources Authority, written commun., 2001). The CSO discharges to Stony Brook affect both the volume and quality of the flow through Stony Brook. The total volume of water discharged from the Stony Brook Subbasin to the lower Charles River in WY 2000, including the CSO discharges, was estimated to be 255 million ft³ for dry-weather flow and 234 million ft³ for stormwater flow (table 4).

WATER QUALITY

The quality of dry-weather and stormwater flows in the tributary streams of the lower Charles River Watershed is typical of highly urbanized areas. Constituent levels are elevated above background levels because of a variety of sources (table 10), including contaminated urban runoff, illicit sanitary-sewer connections, and in the case of one major tributary, CSOs. Constituent concentrations also vary over time at individual sampling sites and among sites for any given storm or dry-weather period.

Indicator Bacteria

Water draining from urban areas commonly contains a wide variety of disease-causing microorganisms, bacteria, viruses and other potential pathogens. Some microorganisms are introduced by fecal contamination from warm-blooded animals. Ingestion or contact with these pathogens can cause a variety of sicknesses including gastroenteritis, respiratory infections, eye and ear infections, skin rashes, hepatitis, and other diseases. Because isolation and measurement of disease-causing viruses and pathogens is impractical, bacterial indicators such as fecal coliform are often used as proxies. In other words, the presence of these bacteria in a stream or river suggests a higher potential for adverse human health effects because the bacteria indicate the presence of disease-causing microorganisms. For example, studies have shown that about 4 percent of people who had swum in areas with high fecal coliform densities within the previous 9 to 14 days developed one or more of the following: fever, chills, earache, skin rash, nausea, stomach pain, coughing, and sore throat (U.S. Environmental Protection Agency, 2001).

Fecal coliform bacterial densities measured from samples collected at Charles River at Watertown, Laundry Brook, Faneuil Brook, Muddy River, and Stony Brook varied widely and between dry-weather and storm conditions (tables 22 and 23). The highest mean dry-weather fecal coliform density (66,000 CFUs/100 mL) was found in samples collected at Faneuil Brook (01104660); large dry-weather mean fecal coliform concentrations measured at Faneuil Brook probably indicate the presence of illicit sanitary cross-connections in the Faneuil Brook Subbasin. The lowest mean densities were found in samples collected at Stony Brook (01104687) and Charles River at Boston Science Museum (01104710) (fig. 17; table 25) (47 and 33 CFUs/100 mL, respectively).

The lowest mean stormwater fecal coliform density was found in samples collected at Charles River at Watertown (01104615) with a mean of 4,300 CFU/100 mL. Stony Brook (01104687) and Faneuil Brook (01104660) had the highest mean stormwater concentrations (68,000 and 65,000 CFU/100 mL, respectively). Although the sources of the elevated concentrations at Faneuil Brook Subbasin are unknown, the high concentrations from Stony Brook Subbasin can be partially attributed to known CSO discharges upstream of the sampling station.

Among samples collected from the uniform land-use stations [single-family land use (01104630), commercial land use (01104677), and multifamily land use (01104673)], samples collected from the singlefamily land-use station had the highest mean stormwater fecal coliform densities (30,000 CFU/100 mL), compared to16,000 CFU/100 mL from the multifamily land-use station and 9,900 CFU/100 mL from the commercial land-use station.The difference in fecal coliform densities in samples collected from the singlefamily land-use station and those collected from the multifamily land-use station were not statistically significant (at the p = 0.1 level; table 11) based on a nonparametric paired-comparison test (the Sign Test; Helsel and Hirsch, 1992). Table 10. Sources and environmental importance of selected constituents and water-quality properties

[Source: Modified from Paulson and others, 1993]

Constituent or property	Common sources	Environmental importance
Specific conductance	A measure of the electrical conductivity of water; varies with the quantity of dissolved solids and is used to approximate the dissolved-solids content.	Dissolved solids can cause water to be unsuitable for public supply, agriculture, and industry; can harm aquatic organisms.
Turbidity	Caused by natural or human-induced suspended matter; components include clay, silt, fine organic and inorganic matter, soluble colored organic compounds, and microscopic aquatic organisms.	Can be detrimental to aquatic organisms; can cause water to be unsuitable for recreation, industry, and public supply.
Biochemical oxygen demand, 5-day	A measure of the amount of oxygen that is removed from aquatic environments by the life process of microorganisms; can be affected by effluent from sewage-treatment plants and aquatic biota (dead fish, algae, fecal pellets, and algal exudates) and oxygen-demanding materials from bottom sediment (Bowie and others, 1985)	Oxygen is necessary for aquatic life; deficiency can result from assimilation of organic wastes and decay of algae.
Coliform, fecal, membrane filter	Sources include effluent from sewage-treatment plants and runoff from pastures, feedlots, and urban areas.	Presence indicates contamination of water by wastes from humans or other warm- blooded animals.
Enterococcus, membrane filter	Do.	Do.
Dissolved solids	A result of rock weathering; also in agricultural runoff and industrial discharge.	In excess, can cause water to be unsuitable for public supply, agriculture, and industry; can harm aquatic organisms.
Suspended sediment	A result of rock erosion; also induced by disturbances of land cover because of fires, floods, and human activities such as mining, logging, construction, and agriculture.	Can be detrimental to aquatic organisms; can fill reservoirs and impair recreational use of water.
Nitrate plus nitrite	Nonpoint sources are agricultural and urban runoff; a major point source is wastewater discharge.	Plant nutrient that, in excess, can cause algal blooms and excessive growth of higher aquatic plants in bodies of water; can cause water to be unsuitable for public supply.
Nitrogen, ammonia	Do.	Do.
Nitrogen, total Kjeldahl	Do.	Do.
Phosphorus	Occurs in some rocks and sediments; also in runoff and seepage from phosphate-rock mines, agricultural and urban runoff, and industrial and municipal runoff, and industrial and muncipal wastewater discharge.	Plant nutrient that, in excess quantity, can cause algal blooms and excessive growth of higher aquatic plants in bodies of water.
Trace elements	See table 16.	Trace elements can be toxic to aquatic organisms at low concentrations.

Figure 17. U.S. Geological Survey water-quality sampling station Charles River at Boston Science Museum, Massachusetts (01104710), (*A*) upstream and (*B*) downstream views.

Enterococcus densities in samples collected from upstream and the tributary subbasins showed a similar pattern to that of fecal coliform bacteria, although *Enterococcus* densities were somewhat lower than concurrent fecal-coliform densities. The highest mean dry-weather and stormwater *Enterococcus* densities (16,000 and 34,000 CFU/100 mL, respectively) were found in samples collected from Faneuil Brook (01104660); the lowest dry-weather densities (10 to 17 CFU/100 mL) were found in samples collected from Stony Brook (01104687) and Charles River at Boston Science Museum (01104710) (table 22). The lowest mean stormwater *Enterococcus* density (2,700 CFU/100 mL) was found in samples collected from Charles River at Watertown (01104615).

Among samples collected from the uniform land-use stations, the samples collected from the single-family land-use station (01104630) had the highest mean stormwater Enterococcus density (34,000 CFU/100 mL), compared to 22,000 CFU/100 mL for the multifamily land-use station (01104673) and 14,000 CFU/100 mL for the commercial land-use station (01104677). Generally, Enterococcus densities were highest in samples collected from the single-family land-use station and lowest in samples collected from the commercial land-use station. The differences given by the Sign Test are not statistically significant (at p = 0.1) between results from the single-family land-use station and from the multifamily land-use station and between results from single-family land-use station and from the commercial land-use station (table 11). Stormwater Enterococcus densities were generally greater than concurrent fecal coliform bacteria densities at the uniform land-use stations, in contrast to the pattern observed in samples collected from the tributary subbasins and upstream. These data suggest that sources of fecal contamination to the land-use stations are possibly different than sources to the tributary subbasins, or that fecal coliform survival is limited at the uniform land-use stations.

The Commonwealth of Massachusetts has established statewide maximum fecal coliform standards for

Table 11. Results of Sign Test between paired stormwater event mean concentrations for sampled storms at uniform land-use stations, lower Charles River Watershed, Massachusetts

[**Results: CM**, commercial land use; **MF**, multifamily land use; **SF**, single-family land use. (+), More than half of the storm event mean concentrations (EMCs) from SF were greater than those from MF (column 1), more than half of the storm EMCs from SF were greater than those from CM (column 2), or more than half of the storm EMCs from MF were greater than those from CM (column 3); (-), Less than half of the storm EMCs from SF were greater than those from MF (column 1), less than half of the storm EMCs from SF were greater than those from CM (column 2), or less than half of the storm EMCs from MF were greater than those from CM (column 3); (-), Less than half of the storm EMCs from SF were greater than those from CM (column 2), or less than half of the storm EMCs from MF were greater than those from CM (column 3); CFU/100mL, colony-forming units per 100 milliliters; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L milligrams per liter; >, greater than; =, equal; Bold, statistically significant (p<0.1); --, Tie]

		Results		
Constituent	SF compared to MF (1)	SF compared to CM (2)	MF compared to CM (3)	Rank
Specific conductance (µS/cm)		0.008 (-)	0.008 (-)	CM > SF = MF
Turbidity (NTU)	0.004 (+)	.063 (+)	.227 (-)	SF > CM > MF
Biochemical oxygen demand, 5-day (mg/L)	.500 (+)	.188 (+)	.656 (-)	SF > CM > MF
Coliform, fecal, membrane filter (CFU/100 mL)	.144 (+)	.035 (+)	.035 (+)	SF > MF > CM
Enterococcus, membrane filter (CFU/100 mL)	.144 (+)	.144 (+)	.004 (+)	SF > MF > CM
Dissolved solids (mg/L)	.363 (-)		.035 (+)	MF > SF = CM
Suspended solids (mg/L)	.035 (+)	.144 (+)	.144 (-)	SF > CM > MF
Nitrate (mg/L)	.363 (+)	.227 (+)	.363 (-)	SF > CM > MF
Nitrogen, ammonia (mg/L as N)	.227 (+)	.035 (+)		SF > CM = MF
Nitrogen, total Kjeldahl (mg/L as N)	.144 (+)	.063 (+)	.144 (-)	SF > CM > MF
Phosphorus (mg/L)	.016 (+)	.035 (+)	.109 (+)	SF > MF > CM
Cadmium (µg/L)	.344 (-)	.109 (-)		MF = CM > SF
Chromium (µg/L)	.227 (+)	.063 (+)	.500 (-)	SF > CM > MF
Copper (µg/L)	.004 (-)	.004 (-)	.035 (-)	CM > MF > SF
Lead (µg/L)		.035 (-)	.035 (-)	CM > MF = SF
Zinc (µg/L)	.035 (-)	.035 (-)	.035 (-)	CM > MF > SF

swimming and boating. The swimming standards state that the geometric mean (or the geomean) from a particular water-quality station shall not exceed 200 CFUs/100 mL; no more than 10 percent of the samples collected should exceed 400 CFUs/100 mL. The boating standards state that the geomean from a particular water-quality station shall not exceed 1,000 CFUs/100 mL; no more than 10 percent of the samples collected should exceed 2,000 CFUs/100 mL. Geomeans were defined as the geomean of the discrete bacterial samples collected at each site for each sampled storm; censored data were set to one-half the detection limit.

Dry-weather samples for four of the nine stations had geomeans for fecal coliform greater than the swimming standard. The geomean for samples from Faneuil Brook (01104660) (35,000 CFUs/100mL) was nearly 200 times the swimming standard (200 CFUs/100 mL). The fecal coliform geomean (180 CFUs/100 mL) for the samples from Charles River at Watertown (01104615) was just below the swimming standard. In contrast, fecal coliform geomeans for samples from only two stations [Faneuil Brook and the multifamily land-use station (01104673)] were greater than the boating standard (1,000 CFUs/100 mL) during dry weather. Although samples from only four stations had fecal coliform geomeans above the swimming standard, more than 10 percent of the samples collected from seven of the nine stations had fecal coliform densities in excess of 400 CFUs/100 mL, including Charles River at Watertown (01104615) (15.4 percent). Charles River at Boston Science Museum (01104710) and Stony Brook (01104687) had no dry-weather samples with fecal coliform densities greater than the swimming and boating standards. More than 10 percent of the fecal coliform densities measured in samples from four stations [single-family land use (01104630), Laundry Brook (01104640), Faneuil

Brook (01104660), and the multifamily land use (01104673)] were greater than the boating standard of 2,000 CFUs/100 mL. Fewer than 10 percent of the samples collected at Charles River at Watertown, however, had fecal coliform densities greater than 2,000 CFUs/100 mL.

In contrast to dry weather, stormwater samples exceeded the swimming and boating fecal colifom standards at every station. The exception was Charles River at Boston Science Museum (01104710), from which a few stormwater bacterial samples were collected. More than 10 percent of the samples collected at all of the stations, with the exception of Charles River at Boston Science Museum, had fecal coliform densities in excess of 400 CFUs/100 mL and 2.000 CFUs/100 mL, including Charles River at Watertown (01104615; 78 and 37 percent, respectively). The failure of samples from most of the water-quality stations in this study to meet the minimum water-quality standards necessary to support swimming and boating after rainstorms strongly indicate sources such as urban runoff, illicit sewage discharges, and CSOs.

It is useful to discuss *Enterococcus* bacterial densities in dry-weather samples and stormwater samples because the USEPA is recommending the use of *Enterococcus* as an indicator of fecal contamination (Gray, 2000). *Enterococcus* bacterial densities can be correlated with gastrointestinal illness, whereas fecal coliform concentrations do not always correlate well with the levels of pathogenic bacteria and viruses in waters (Joyce, 2000; Gray, 2000). The pattern of fecal coliform density exceedences of the swimming standard, however, are almost identical to the pattern of *Enterococcus* guideline of 61 CFUs/100 mL.

Nutrients

In urban areas like the lower Charles River Watershed, human activities, including the use of fertilizer, the combustion of fossil fuels, and the discharge of untreated and treated sewage, can increase nutrient concentrations above background concentrations in streams and rivers. For example, mean concentrations of phosphorus in 75 percent of the streams in urban and agricultural areas sampled by the USGS National Water-Quality Assessment Program (NAQWA) were greater than the USEPA guideline (0.1 mg/L) for phosphorus (Fuhrer and others, 1999). The highest nitrogen concentrations sampled by NAQWA were also found in urban areas (Fuhrer and others, 1999).

Nutrient enrichment tends to stimulate phytoplankton blooms and the growth of higher aquatic plants or macrophytes (Smith, 1990). When caused by human activities, excessive plant growth is termed cultural eutrophication. Cultural eutrophication interferes with recreational uses of a river including boating, swimming, and fishing. Problems often associated with increased nutrient loading include:

- boating hazards from decreased navigability as waterways become choked by macrophytes;
- swimming hazards because phytoplankton concentrated in the upper layers of the water reduces water clarity. The Commonwealth of Massachusetts requires there to be no "lack of clarity" for safe swimming; and,
- degraded water quality for fish and other aerobic aquatic organisms; dead and dying biomass fuels bacterial decay that depletes oxygen in bottom waters and sediment.

The highest mean dry-weather nutrient concentration measured in upstream samples and in samples collected from the tributary subbasins were found at Faneuil Brook (01104660), with the exception of TKN, which was highest at Muddy River (01104683) (1.8 mg/L; table 25). Under storm conditions, the highest mean concentrations of ammonia (0.4 mg/L), phosphorus (0.4 mg/L), and TKN (2.3 mg/L) were found at Stony Brook (01104687) and nitrate plus nitrite (1.1 mg/L) at Faneuil Brook. The discharge of untreated sewage is the likely source of these high nutrient concentrations, although the high dry-weather TKN values at Muddy River are not accompanied by high fecal coliform densities, as might be expected.

Among the samples collected from the uniform land-use stations, samples collected from the single-family land-use station (01104630) had the highest mean stormwater concentration of ammonia (0.5 mg/L), nitrate plus nitrite (0.8 mg/L), TKN (2.3 mg/L), and phosphorus (0.4 mg/L), compared to samples collected from the multifamily land-use station (01104673) and the commercial land-use station (01104677). Stormwater nutrient concentrations were generally highest at the single-family landuse station and lowest at the multifamily land-use station, except for phosphorus, which was lowest at commercial land-use station. Although many of these differences were not statistically significant at the p = 0.1 level, phosphorus concentrations were significantly different at two of the three uniform land-use stations (p < 0.05; table 11).

Phosphorus concentrations in dry-weather samples were greater than USEPA phosphorus guidelines about 50 percent of the time, on average. In contrast, most stormwater phosphorus concentrations exceeded the phosphorus guideline. Most notable is that the concentrations of phosphorus measured at Charles River at Watertown (01104615) exceed the phosphorus guideline more than 44 percent of the time. Moreover, stormwater concentrations of phosphorus at the two largest tributaries, [Stony Brook (01104687) and Muddy River (01104683)], were greater than the phosphorus guideline for every storm sampled.

These data suggest that there is an ample supply of nutrients to cause the regular algae blooms and eutrophication observed in the lower Charles River during the summer months. In addition, these eutrophic conditions likely exacerbate low dissolved-oxygen levels in the bottom waters as a result of organic loading and increased sediment oxygen demand (SOD), as heterotrophic bacteria decompose the large supply of organic carbon.

Trace Metals

Trace metals are a primary concern in the lower Charles River Watershed, because they are common in urban stormwater and have accumulated in the bed sediment of the lower Charles River (Breault and others, 2000b). Urban runoff contains a complex mixture of trace metals derived from weathering and erosion of soil and rocks (natural sources), atmospheric deposition, vehicles, paved surfaces, and many other human sources. The order-of-magnitude concentrations for naturally produced trace metals and likely human sources of most trace metals that are likely to be present in urban stormwater are shown in table 12.

The highest mean dry-weather trace-metal concentrations measured in samples collected from upstream and the tributary subbasins, with the exception of those for chromium, were found in samples collected from Faneuil Brook (01104660); dry-weather chromium concentrations (2.0 μ g/L) were highest in samples collected from Charles River at Watertown (01104615). Under storm conditions, all of the trace

elements were found in the highest concentration in samples collected from Stony Brook (01104687). Charles River at Watertown had the lowest mean stormwater trace-element concentrations (table 25).

Among samples from the uniform land-use stations, samples collected from the commercial landuse station (01104677) had the highest mean stormwater concentration of cadmium (0.4 μ g/L), copper $(100 \ \mu g/L)$, lead $(140 \ \mu g/L)$, and zinc $(180 \ \mu g/L)$, in comparison with samples collected from the singlefamily land-use (01104630) and the multifamily landuse (01104673) stations. With the exception of chromium, all of the selected trace elements had stormwater concentrations greater in samples collected from the multifamily land-use station than from the singlefamily land-use station. Samples from single-family land-use station had the highest mean stormwater chromium concentrations (8.2 µg/L). Stormwater traceelement concentrations, with the exceptions of those for cadmium and chromium, were generally highest in samples collected from the commercial land-use station and lowest in samples collected from the singlefamily land-use station; many of these differences are statistically significant (table 11). Cadmium and chromium EMCs were statistically similar between samples collected from the land-use stations, with the exception of chromium concentration differences between the single-family land-use station and the commercial land-use station (p = 0.063).

Historically, the USEPA has recommended that whole-water trace-metal concentrations be used as an indication of bioavalibility (U.S. Environmental Protection Agency, 1986). There are, however, no universal and robust methods to relate whole-water tracemetal concentrations to ecosystem effects. More recently, the USEPA has recommended the use of dissolved (filtered) trace-metal concentrations, in addition to whole-water concentrations, to provide more reliable correlations with toxicity (U.S. Environmental Protection Agency, 1992). Consequently, exceedences of trace-metal standards are not discussed herein. It is important to point out that whole-water trace-metal concentrations were chosen for this study because of the high concentrations found throughout the bottom sediment of the lower Charles River (Breault and others, 2000b) and the need for detailed information concerning total trace-metal loading patterns.

Table 12. Characteristics of selected major and trace elements of potential interest to studies of urban and highway runoff

[Modified from Breault and Granato, 2000. **Crust:** Sources: Lide and Frederikse (1997). Crustal abundance is the estimated abundance in the continental earth crust. **Soils:** Sources: Shacklette and Boerngen (1984). Soil abundance is the average from analysis of about 1,300 soil samples taken throughout the contermi-nous United States. **Freshwaters:** Brownlow (1979); Drever (1988); Appelo and Postma (1993). Freshwater abundance is an order of magnitude estimate of the elemental abundance in unpolluted fresh waters of the United States based on older literature values. **Potential highway source(s):** Source: Bourcier and others (1980); Falahi-Ardakani (1984); Kobriger and Geinopolos (1984); Hodge and Stallard (1986); Smith and Lord (1990); Hildemann and others (1991); Armstrong (1994); Hee (1994); Granato (1996); Helmers (1996); Farago and others (1997); Pearce and others (1997). mg/kg, milligrams per kilogram; mg/L, milligrams per liter; ppm, parts per million; ~ , about; --, not available]

Element name	Nat	ural abundance ((ppm)	
(abbreviation)	Crust (mg/kg)	Soils (mg/kg)	Freshwaters	Potential highway source(s)
Aluminum (Al)	8.23x10 ⁴	7.2x10 ⁴	~10 ⁻²	Auto exhaust, brakes
Antimony (Sb)	2x10 ⁻¹	6.6x10 ⁻¹	~10 ⁻³	Auto exhaust, brakes
Arsenic (As)	1.8×10^{0}	7.2×10^{0}	~10 ⁻³	
Barium (Ba)	4.25×10^2	5.8×10^2	~10 ⁻³	Auto exhaust, brakes, fuel
Beryllium (Be)	2.8×10^{0}	9.2x10 ⁻¹		
Bismuth (Bi)	8.5x10 ⁻³			
Boron (B)	1.0×10^{1}	3.3×10^{1}	~10 ⁻¹	Auto exhaust, deicers
Bromide (Br)	2.4×10^{0}	8.5x10 ⁻¹	~10 ⁻²	Auto exhaust, deicers, fuel
Cadmium (Cd)	1.5x10 ⁻¹			Auto wear, insecticide application, lubricants, tire wear
Calcium (Ca)	4.15×10^4	2.4×10^4	~101	Auto exhaust, brakes, deicers
Carbon (C)	2.00×10^2	2.5×10^4	~10 ²	Auto exhaust, fuel
Cerium (Ce)	6.65×10^{1}	7.5×10^{1}	~10 ⁻⁵	Catalytic converters
Chloride (Cl)	1.45×10^2		~10 ¹	Brakes, deicers
Chromium (Cr)	1.02×10^2	5.4×10^{1}	~10 ⁻³	Auto exhaust, auto wear, brakes
Cobalt (Co)	2.5×10^{1}	9.1×10^{0}	~10 ⁻⁴	Auto exhaust
Copper (Cu)	6.0×10^{1}	2.5×10^{1}	~10 ⁻³	Auto exhaust, auto wear, brakes, deicers
Fluoride (F)	5.85×10^2	4.3×10^{2}	~10 ⁻¹	Deicers
Gold (Au)	4x10 ⁻³		~10 ⁻⁶	
Iodine (I)	4.5x10 ⁻¹	1.2×10^{0}	~10 ⁻³	
Iron (Fe)	5.63×10^4	2.6×10^4	~10 ⁻²	Auto exhaust, auto rust and wear, brakes, deicers
Lead (Pb)	$1.4 x 10^{1}$	1.9×10^{1}	~10 ⁻³	Auto exhaust, bearing wear, deicers, lubricants, tire wear
Lithium (Li)	2.0×10^{1}	2.4×10^{1}	~10 ⁻²	Auto exhaust
Magnesium (Mg)	2.33×10^4	9.0×10^3	~10 ⁰	Auto exhaust, brakes, deicers
Manganese (Mn)	9.5×10^2	5.5×10^2	~10 ⁻²	Engine wear, fuel additive
Mercury (Hg)	8.5x10 ⁻²	9.0x10 ⁻²	~10 ⁻⁵	
Molybdenum (Mo)	1.2×10^{0}	9.7x10 ⁻¹	~10 ⁻⁴	Brakes
Nitrogen (N)	1.9×10^{1}		~10 ⁰	Auto exhaust, deicers, roadside fertilizer
Nickel (Ni)	8.4×10^{1}	1.9×10^{1}	~10 ⁻³	Auto exhaust, wear, asphalt, deicers, fuel, lubricants
Palladium (Pd)	1.5x10 ⁻²			Catalytic converters
Phosphorus (P)	1.05×10^3	4.3×10^2	~10 ⁻¹	Auto exhaust, fuel, lubricants
Platinum (Pt)	5x10 ⁻³			Auto exhaust, catalytic converters
Potassium (K)	2.09×10^4	1.5×10^4	$\sim 10^{0}$	Auto exhaust, deicers
Rhodium (Rh)	1x10 ⁻³			Catalytic converters
Selenium (Se)	5x10 ⁻²	3.9x10 ⁻¹	~10-4	Auto exhaust
Silicon (Si)	2.82×10^5	3.1×10^5	~10 ¹	Auto exhaust, brakes, deicers

	Na	tural abundance (ppm)	
(abbreviation)	Crust (mg/kg)	Soils (mg/kg)	Freshwaters	Potential highway source(s)
Silver (Ag)	7.5x10 ⁻²		~10 ⁻⁴	
Sodium (Na)	2.36x10 ⁴	1.2×10^4	~101	Auto exhaust, deicers
Strontium (Sr)	3.70×10^2	2.4×10^2	~10 ⁻²	Auto exhaust, deicers
Sulfur (S)	3.5×10^2	1.6×10^3	~10 ⁻⁴	Auto exhaust, deicers, fuel, roadway beds
Tellurium (Te)	1x10 ⁻³			
Titanium (Ti)	5.65x10 ³	2.9×10^3	~10 ⁻²	Studded tires
Tin (Sn)	2.3×10^{0}	1.3×10^{0}		Brakes
Tungsten (W)	1.25×10^{0}		~10 ⁻⁵	Studded tires
Vanadium (V)	1.20×10^2	8.0×10^{1}	~10 ⁻³	Auto exhaust, deicers
Zinc (Zn)	7.0×10^{1}	$6.0 ext{x} 10^{1}$	~10 ⁻³	Auto exhaust, brakes, tire wear, lubricants

 Table 12. Characteristics of selected major and trace elements of potential interest to studies of urban and highway runoff—Continued

Water-Quality Properties

Water-quality properties, such as specific conductance, turbidity, BOD-5, TSS, and TDS, are usually used as indicators of the overall health of a stream or river. These properties can be affected by a variety of geological, chemical, biological, and hydrologic processes within the watershed and the river. During dry weather, mean concentrations and values of the selected water-quality properties in samples collected from upstream and the tributary subbasins were highest at Faneuil Brook (01104660) (table 25). Under storm conditions, mean EMCs for BOD-5 (15 mg/L), TSS (107 mg/L), and turbidity (64 NTU) were highest in samples collected from Stony Brook (01104687). Mean TDS concentrations (188 mg/L) and specific conductance (330 µS/cm) during storm conditions were highest in samples collected from Faneuil Brook. Among samples collected from the uniform land-use stations, the samples collected from the single-family land-use station (01104630) had the highest mean stormwater values of BOD-5 (13 mg/L), TSS (92 mg/L), and turbidity (50 NTU), compared to samples collected from the multifamily land-use station (01104673) and the commercial land-use station (01104677). In contrast, specific conductance values were highest (310 µS/cm) in samples collected

from the commercial land-use station, and mean TDS concentrations highest (165 mg/L) in samples collected from the multifamily land-use station.

Comparison between Stormwater Concentrations from This Study and Those from Other Studies

Mean stormwater EMCs of selected constituents from the lower Charles River Watershed were compared to stormwater concentrations from other studies (fig. 18 and table 13). These studies include stormwater data collected from 23 cities between 1978 and 2000 by many different agencies and municipalities. Differences between the EMCs of this study and other studies are expressed as magnitudes and relative percent differences (RPD). It is important to note that differences in reported water-quality values between this study and other studies may be the result of one or more dissimilarities, including sampling, processing, preservation, and analytical and statistical procedures. In addition, spatial and temporal variability can also be responsible for observed differences. The environmental setting, local land use, traffic characteristics, drainage characteristics, and other features are recognized as potential sources of spatial variation (Gupta and others, 1981; Young and others 1996).

Figure 18. Comparison between stormwater event mean concentrations measured in samples from the lower Charles River Watershed, Massachusetts, Water Year 2000, and stormwater concentrations from other studies.

Figure 18. Comparison between stormwater event mean concentrations measured in samples from the lower Charles River Watershed, Massachusetts, Water Year 2000, and stormwater concentrations from other studies—*Continued*.

Figure 18. Comparison between stormwater event mean concentrations measured in samples from the lower Charles River Watershed, Massachusetts, Water Year 2000, and stormwater concentrations from other studies—*Continued*.

Table 13. Summary statistics for selected stormwater constituents from other studies

[Data from Hardee and others (1979); Mattraw and Miller (1981); Malmquist (1983); Athayde and others (1983); Eddins and Crawford (1984); Lopez and Giovannelli (1984). Heaney (1986); Brabets (1986); Hall and Anderson (1988); Marsalek and Schroeter (1988); SCCWRP (1988); Gannon and Busse (1989); Bicknell (1990); Ishaq (1992); Focazio (1995); Cooke and others (1995); Guimaraes (1995); Kjelstrom (1995); Lopes and others (1995); McCarthy (1996); Bell and others (1996); Kerr and Lee (1996); Woodward and Curran (1998); Lee and Bang (2000). CFU/100 mL, colony-forming units per 100 milliliters; µg/L, micrograms per liter; mg/L, milligrams per liter; --, not available]

		Ме	an			Ме	dian	
Constituents	Mixed	Multi- family	Resi- dential	Commer- cial	Mixed	Multi- family	Resi- dential	Commer- cial
Biochemical oxygen demand (mg/L)	22	73	12	18	11	39	9.8	110
Coliform, fecal, membrane filter (CFU/100 mL)	34,000	3,000	29,000	3,900	9,300	6,700	24,000	4,000
Enterococcus, membrane filter (CFU/100 mL)	6,400			23				
Dissolved solids (mg/L)	253	69	209	152	474	53	139	175
Suspended solids (mg/L)	390	135	196	151	145	56.7	89.1	107
Nitrate plus nitrite (mg/L as N)	1.1	.60	1.5	.80	1.1	.20	.60	.70
Nitrogen, ammonia, total (mg/L)	1.9	4.0	2.5	.20	1.4	.20		.40
Nitrogen, total Kjeldahl (mg/L as N)	2.4	1.9	2.1		.20		1.1	1.4
Phosphorus (mg/L)	.60	1.3	28	.30	.40	.20	.40	.20
Cadmium (µg/L)	1.4	5.9	7	2.8	2.3	2.7	6.4	2.1
Chromium (µg/L)	67	13	17	2.8	76	10	7.0	38
Copper (µg/L)	60	46	56	48	48	11	29	37
Lead (µg/L)	200	100	330	210	140	50	140	140
Zinc (μg/L)	410	180	320	430	330	100	130	260

Historical changes, such as the ban on leaded gasoline, can affect the data comparability of different studies (Young and others, 1996; U.S. Environmental Protection Agency, 1999). Seasonality also is a major issue for runoff studies. Determining the magnitude of these factors is beyond the scope of this study; therefore, the following comparisons are for purposes of illustration only.

In general, mean concentrations of the selected constituents and water-quality properties measured in samples collected from Charles River at Watertown (01104615), Laundry Brook (01104640), Faneuil Brook (01104660), Muddy River (01104683), and Stony Brook (01104687) were less than those measured by other studies, with the exception of Enterococcus bacteria (fig. 18), for which there have been little data in the literature. On average, mean concentrations of constituents and water-quality properties measured in samples collected from upstream and the tributary subbasins in this study were between 1.5 and 16 times less than concentrations measured in samples collected in other studies. In contrast, concentrations of Enterococcus bacteria were, on average, about 1.3 times greater in samples collected from upstream and the tributary subbasins compared to those collected in other studies. Comparison of median values showed similar results, with the exception of fecal coliform bacteria and TKN. Fecal coliform bacteria and TKN median concentrations measured in samples collected from upstream and the tributary subbasins in this study were about 1.3 and 7.3 times greater than those collected in other studies, respectively (fig. 18).

About 69 percent of the mean concentrations of the selected constituents and water-quality properties measured in samples collected from the uniform landuse stations [single-family land use (01104630), multifamily land use (01104673), and commercial land use (01104677)] were less than those measured by other studies. The few exceptions include fecal coliform bacteria (RPD of +4), BOD-5 (+6), and TKN (+11) at the single-family land-use station; fecal coliform (+138), *Enterococcus* bacteria (+82), nitrate plus nitrite (+20), and Cu (+32) at the multifamily land-use station; and ammonia (+18), Cr (+61), Cu (+71), fecal coliform (+88) and *Enterococcus* bacteria (+199) at the commercial land-use station. About 51 percent of the median concentrations and water-quality properties measured in samples collected from the uniform landuse subbasins were less than those measured in other studies.

These results indicate that stormwater quality in the study area is generally similar to or better than that reported in studies of other areas of the United States. Despite these findings, the water quality of the lower Charles River becomes impaired after rainstorms (Thomas Faber, U.S. Environmental Protection Agency, written commun., 2001). This finding suggests that the poor water quality of the river after rainstorms may be more a function of the river's inability to assimilate large loads of these contaminants, relative to its size, rather than the discharge of overly contaminated stormwater.

CONTAMINANT LOADS AND YIELDS

Loads for 14 of the 16 water-quality constituents and properties were determined by means of both direct-computation (arithmetic and flow-weighted means) and regression approaches. Dry-weather and stormwater data collected during the 1999-2000 period (tables 22 and 23) were used to compute dry-weather and stormwater loads directly for sampled storms for each water-quality sampling station. Multiple linearregression equations (relating rainfall characteristics, antecedent conditions, and stormwater EMCs) were used to estimate stormwater EMCs for approximately 90 storms in WY 2000. Dry-weather and stormwater volumes for load determination were obtained from calibrated, continuous rainfall-runoff models, except for the Charles River at Watertown (01104615), where observed flow values were used (Zarriello and Barlow, 2002).

Separating dry-weather and stormwater flow periods and assigning the corresponding EMC value was straightforward for the tributary subbasins because of the large differences between dry-weather and stormwater flows. Distinguishing dry-weather and stormwater flows for the Charles River at Watertown (01104615), however, was more difficult. Fortunately, a clear first flush and peak due to local urban runoff could generally be observed, followed by a more gradual recession, which was often followed by another dampened peak. This second peak likely represents stormwater drainage of the upper and mid-Charles River Watershed. Bacterial concentrations were found to be notably higher in the local-urban-runoff portion of the hydrograph and quickly returned to pre-storm values early in the hydrograph recession (fig. 19). Consequently, stormwater EMC values for the Charles River at Watertown were assigned to the initial peak. Dry-weather contaminant EMCs were assigned to the recession and the subsequent peak. Because this "second peak" likely contained stormwater runoff from the upper and mid-Charles River Watershed, the overall flow-weighted dry-weather mean was deemed more appropriate than the arithmetic mean for the calculation of the dry-weather upstream load. This choice was a factor in determining the percentage of the total stormwater and dry-weather loads attributable to upstream sources.

EMCs predicted by the multiple linearregression equations showed good agreement with measured values (fig. 20). Antecedent dry period, generally, was the most important explanatory variable for the constituents and water-quality properties studied (table 26). This result is consistent with buildup-washoff models that are often utilized to simulate stormwater contaminant EMCs. In other words, longer antecedent dry periods allow more time for contaminants to "build up" on roof tops, streets, parking lots, and other impervious surfaces and for bacteria to grow in protected reservoirs (for example, pipes; Marino and Gannon, 1991). Storm duration also explains some of the EMC variability; however, storm duration was inversely related to EMCs. The relation between storm duration and contaminant EMC makes sense physically. More rain tends to dilute flowcomposited contaminant concentrations over time; more "clean" water is collected after the bulk of contaminants are washed away. Maximum rainfall intensity was also an important explanatory variable for contaminant EMCs, especially for trace elements and water-quality properties at two water-quality sampling stations, Charles River at Watertown (01104615) and Stony Brook (01104687). The positive relation between contaminant EMCs and maximum intensity also makes sense physically, but for two contrasting reasons at the two stations. It is likely that intense

Figure 19. Characteristic stormwater hydrograph and pattern of fecal coliform bacterial density before, during, and after a storm at the U.S. Geological Survey gaging station at Charles River at Watertown (01104615), lower Charles River Watershed, Massachusetts, July 26–30, 2000.

Figure 20. Goodness of fit between measured and predicted event mean concentrations of fecal coliform bacteria at two U.S. Geological Survey gaging stations in the lower Charles River Watershed, Massachusetts.

storms in the upstream subbasin mobilize upland soils that may be contaminated with trace elements and ultimately affect water-quality properties. In addition, more intense storms increase the likelihood of CSO activation compared to less intense storms of similar size in the Stony Brook Subbasin.

The regression equations discussed in the study are spatially and temporally specific. Spatially, the unique environment presented by each individual subbasin requires that a different set of equations be produced for

each. For example, CSOs are present in the Stony Brook Subbasin but absent in the other subbasins. Temporally, the regression equations were developed for present conditions, and will likely change in the future as planned conditions are realized (for example, sewer separation or improved stormwater management practices). A good example is the lining of sanitary sewers in the Laundry Brook Subbasin, a change that is expected to greatly reduce inputs of sewage contaminants into storm drains. It is likely that infrastructure improvements such as sewer lining will affect the relation between rainfall and water quality, especially with respect to fecal coliform bacteria; as a result, the equations are likely to change for this subbasin. The spatial and temporal variability of water quality in the lower Charles River demonstrates the need for continued monitoring and reevaluation. Finally, water-quality samples collected at Muddy River (01104683) and Stony Brook (01104687) may not accurately reflect concentrations at the mouth, particularly in the case of Stony Brook, because several CSOs discharge downstream of the USGS gaging station. This factor was taken into account in estimating the density of fecal coliform and other contaminants concentrations after sewer separation in the Stony Brook Subbasin.

Annual Loads

In this section of the report, dry-weather load indicates loading during dry-weather conditions for a particular subbasin, stormwater load indicates loading during storms for a particular subbasin, and annual load is the sum of dry-weather and stormwater loads for a particular subbasin. Total dryweather load is the sum of dry-weather loads, total stormwater load is the sum of stormwater loads, total annual load is the sum of both dry-weather and stormwater loads, and upstream load is load calculated for the Charles River at Watertown (01104615) gaging station. All loads are calculated by means of the regression equations (when appropriate) or overall dry-weather mean or mean EMC concentration. One exception is upstream dryweather loads that were calculated by means of the overall flow-weighted mean. Finally, loads for subbasins with ungaged areas may be underestimated

because EMCs measured at upstream stations may not be indicative of the EMCs that otherwise would have been measured at the mouth. For example, Zarriello and Barlow (2002) reported that the percent impervious area increases as one approaches the lower Charles River, where the subbasins are more urbanized; thus, water samples collected at the mouth might have higher contaminant EMCs than water samples collected at the gage.

Fecal Coliform Bacteria

About 44 percent (table 14) of the total annual fecal coliform load is contributed to the lower Charles River from the Stony Brook Subbasin, compared to 24 percent from upstream, which is the next largest contributor (fig. 21). Almost all of the annual Stony Brook Subbasin fecal coliform load (99.9 percent) is contributed by storms, whereas less than 1 percent is contributed during dry weather (table 15). The pattern of fecal coliform loading from upstream is different; more than 63 percent of the annual upstream load occurs during dry weather. In general, however, most fecal coliform loading can be attributed to stormwater. Stormwater fecal coliform loads to the lower Charles River are proportionally largest from the Stony Brook Subbasin (54 percent of total stormwater load) and the Muddy River Subbasin (17 percent). The total annual fecal coliform load to the lower Charles River is about 7,900 trillion colony forming units (TCFU).

Enterococcus Bacteria

The annual Enterococcus bacterial load comes mostly from upstream (58 percent); the upstream load is more than 3 times greater than the next largest contributor of annual Enterococcus load, Stony Brook Subbasin (table 14; fig. 21). Like fecal coliform, Enterococcus loading for the most part occurs during storms (93 percent of total annual load). Moreover, more than half of the total stormwater Enterococcus bacteria load comes from upstream. The difference between fecal coliform and Enterococcus loading patterns may be caused by different sources and survival characteristics of the bacteria. Enterococcus, once released by the host organism to a stream or river, generally survive longer than fecal coliform (Ronald Stoner, Massachusetts Department of Environmental Protection, oral commun., 2002). Viruses and other pathogens may also have different survival characteristics compared to the bacterial indicators (fecal coliform and *Enterococcus*). The percentage of the total stormwater *Enterococcus* load contributed by the Stony Brook Subbasin (20 percent) is about double the Muddy River Subbasin percentage (12 percent). Dryweather loads of *Enterococcus* generally come from upstream (90 percent). This finding is consistent with the longer residence time of upstream water and the longer-lived character of the *Enterococcus* indicator.

Nitrogen

The largest total annual nitrate, ammonia, and TKN loads enter the lower Charles River from upstream sources (table 14; fig. 21). Upstream sources account for about 87, 82, and 86 percent of the total WY 2000 load of nitrate, ammonia, and TKN, respectively. Upstream annual dry-weather nitrogen loads are larger than the corresponding upstream stormwater loads by a ratio of about two to one (table 15). In addition to being the largest dry-weather contributor of total nitrogen to the lower Charles River for WY 2000, upstream sources of nitrogen also account for the largest percentage of stormwater nitrate, ammonia, and TKN loads (81, 71, and 73 percent, of the WY 2000 stormwater load, respectively).

Phosphorus

As with nitrogen, upstream sources contribute most (81 percent) of the annual total phosphorus load to the lower Charles River (table 14; fig. 21). Most of this load (70 percent) is discharged during dry weather (table 15). Similarly, during storms, upstream sources also are the major contributor to stormwater phosphorus loading (64 percent).

Trace Metals

The selected trace metals (cadmium, chromium, copper, lead, and zinc) exhibit similar loading patterns (tables 14 and 15; fig. 21). The major trace-metal contributor on an annual basis is the upstream watershed (between 53 and 89 percent of the total trace-metal annual load). Almost all of the dry-weather trace-metal load (93 to 98 percent) for WY 2000 can be attributed to upstream sources. Similarly, the largest stormwater trace-metal load for WY 2000 for a single subbasin (34 to 80 percent) can also be attributed to upstream sources.

[All constituents are in percent. C	alculated on 1	the basis of	unrounded d	ata]										
Station name	Biochem- ical oxy- gen demand, 5-day	Coli- form, fecal, mem- brane filter	Entero- coccus mem- brane filter	Dis- solved solids	Sus- pended solids	Nitrate, total (as N)	Nitrogen, ammonia, total (as N)	Nitro- gen, total Kjeldahl (as N)	Phos- phorus, total	Cad- mium, total	Chro- mium, total	Copper, total	Lead, total	Zinc, total
				Ŵ	ater Year	2000 Dry-	Weather Lo	ad						
Charles River at Watertown (01104615) ¹	95.1	80.0	89.6	92.3	95.8	90.4	88.6	93.3	91.9	96.6	97.8	93.0	95.8	97.3
Laundry Brook (01104640).	.31	.74	.53	.33	.15	.57	.15	.22	.26	.19	.12	.43	.17	.11
Faneuil Brook ²	.52	16.9	8.23	.40	.78	.63	69.	.33	.36	.18	.10	.33	.31	.24
Muddy River ³	1.44	67.	.56	1.42	1.29	1.18	2.89	1.99	1.25	.68	44.	1.62	1.21	.57
Stony Brook ⁴	1.67	.19	.14	4.54	1.30	5.93	6.36	3.04	5.37	1.83	1.24	3.36	1.77	1.40
Ungaged area	1.00	1.34	.95	1.02	.71	1.25	1.34	1.08	.85	.53	.34	1.23	.71	.38
				М	ater Year	2000 Stoi	mwater Loa	ad						
Charles River at Watertown														
(01104615) ¹	64.3	10.9	53.9	88.6	79.4	80.8	71.3	73.1	64.0	72.0	79.6	50.1	33.8	52.0
Laundry Brook (01104640).	2.53	1.76	1.26	.79	1.11	1.18	1.05	1.73	1.84	.87	1.25	1.74	2.48	3.38
Faneuil Brook ²	1.75	6.28	5.43	.54	1.44	80.	.88	.95	1.12	96.	<u> 06</u>	1.01	1.99	1.42
Muddy River ³	6.79	17.1	11.5	3.19	4.43	5.47	6.72	5.75	9.71	7.30	5.68	21.9	17.1	13.9
Stony Brook ⁴	16.6	54.2	20.1	3.98	9.55	7.10	14.9	12.5	15.6	14.1	7.81	12.1	32.5	16.6
Ungaged area	8.13	9.79	7.79	2.87	4.08	4.62	5.12	5.96	7.81	4.76	4.77	13.2	12.1	12.6
					Water Y	ear 2000 '	Fotal Load							
Charles River at Watertown														
$(01104615)^{1}$	80.0	23.9	58.2	91.2	82.3	87.3	81.9	85.4	81.1	87.9	89.3	66.0	53.3	84.5
Laundry Brook (01104640).	1.39	1.56	1.17	.47	.93	.76	.50	.81	.87	.43	.65	1.26	1.75	1.04
Faneuil Brook ²	1.12	8.28	5.77	4 .	1.33	.72	LL:	.57	.65	.46	.47	.76	1.46	.57
Muddy River ³	4.05	14.1	10.2	1.97	3.87	2.56	4.37	3.46	4.51	3.02	2.87	14.4	12.1	4.36
Stony Brook ⁴	8.94	44.0	17.6	4.37	8.07	6.30	9.66	6.73	9.31	6.18	4.29	8.85	22.8	5.70
Ungaged area	4.48	8.20	6.96	1.59	3.48	2.34	2.80	2.99	3.54	2.03	2.40	8.75	8.54	3.86
¹ Charles River at Watertown	dry-weathe	r loads wer	e calculated t	using the flc	w-weighted	l average.								
⁻ Includes ungaged areas of ³ Includes Muddy River cond	gaged subbas	sun. aoed areas c	osoed subb	nsin										
⁴ Includes Stony Brook over	flow and ung	gaged areas	of gaged sub	basin.										

58 Streamflow, Water Quality, and Contaminant Loads in the Lower Charles River Watershed, Massachusetts, 1999–2000

Table 15. Percentages of dry-weather and stormwater loads of each constituent at each station in the lower Charles River Watershed, Massachusetts, Water Year 2000

[Charles River-Watertown: Dry-weather loads were calculated by means of the flow-weighted average. Faneuil Brook: Includes ungaged areas of gaged subbasin. Muddy River: Includes Muddy River Conduit and ungaged areas of gaged subbasin. Stony Brook: Includes Stony Brook conduit and ungaged areas of gaged subbasin. All constituents are in percent. Calculated on the basis of unrounded data]

Constituent	Charles at Wate (0110	: River rtown 1615)	Laundry (01104	Brook (640)	Faneuil	Brook	Muddy	River	Stony I	Brook	Ungage	d area
	Dry weather	Storm- water	Dry weather	Storm- water	Dry weather	Storm- water	Dry weather	Storm- water	Dry weather	Storm- water	Dry weather	Storm- water
Biochemical oxygen demand, 5-day	60.76	39.24	11.46	88.54	23.80	76.20	18.14	81.86	9.58	90.42	11.41	88.59
Coliform, fecal, membrane filter	62.99	37.01	8.82	91.18	38.40	61.60	1.06	98.94	.08	99.92	3.06	96.94
Enterococcus membrane filter	18.71	81.29	5.47	94.53	17.36	82.64	99.	99.34	60.	99.91	1.67	98.33
Dissolved solids	69.95	30.05	48.41	51.59	62.17	37.83	49.97	50.03	71.82	28.18	44.27	55.73
Suspended solids	20.85	79.15	2.85	97.15	10.55	89.45	5.98	94.02	2.88	97.12	3.67	96.33
Nitrate, total (as N)	70.20	29.80	50.31	49.69	60.09	39.91	31.13	68.87	63.73	36.27	36.27	63.73
Nitrogen, ammonia, total (as N)	66.40	33.60	18.34	81.66	55.47	44.53	40.60	59.40	40.42	59.58	29.37	70.63
Nitrogen, total Kjeldahl (as N)	66.65	33.35	16.42	83.58	35.52	64.48	35.13	64.87	27.55	72.45	22.15	77.85
Phosphorus, total	69.58	30.42	18.33	81.67	33.87	66.13	17.01	82.99	35.46	64.54	14.78	85.22
Cadmium, total	71.02	28.98	28.42	71.58	25.59	74.41	14.47	85.53	19.15	80.85	16.91	83.09
Chromium, total	58.56	41.44	10.16	89.84	11.37	88.63	8.12	91.88	15.42	84.58	7.63	92.37
Copper, total	52.09	47.91	12.55	87.45	16.00	84.00	4.15	95.85	14.03	85.97	5.20	94.80
Lead, total	56.53	43.47	3.07	96.93	6.73	93.27	3.14	96.86	2.44	97.56	2.63	97.37
Zinc, total	82.54	17.46	7.60	92.40	29.89	70.11	9.34	90.66	17.64	82.36	66.9	93.01

Figure 21. Spatial distribution of annual loads for the tributary subbasins and for the ungaged area, lower Charles River Watershed, Massachusetts, Water Year 2000.

Figure 21. Spatial distribution of annual loads for the tributary subbasins and for the ungaged area, lower Charles River Watershed, Massachusetts, Water Year 2000—*Continued*.

Biochemical Oxygen Demand

Upstream BOD-5 sources contributed about 80 percent of the total annual BOD-5 load to the lower Charles River during WY 2000; of this total annual load, 61 percent was contributed during dry weather (tables 14 and 15; fig. 21). Moreover, the upstream sources accounted for 95 percent of the total dry-weather BOD-5 load. Most of the annual stormwater BOD-5 load (64 percent) was also accounted for by upstream sources.

Total Dissolved Solids

Dry-weather and stormwater loads of TDS to the lower Charles River during WY 2000 were largest from upstream sources (tables 14 and 15; fig. 21). Upstream sources accounted for about 90 percent of both total dry-weather and total stormwater TDS loads. Most of the TDS load (70 percent) was contributed to the lower Charles River during WY 2000 from upstream sources during dry weather. Similarly, dryweather loads account for a greater proportion of the annual TDS load than do stormwater TDS loads for all of the tributary subbasins (fig. 21).

Total Suspended Solids

TSS loading patterns contrast with those of TDS (tables 14 and 15; fig. 21). For example, most of TSS loading occurs during storms. Almost the entire TSS load (96 percent) during dry weather and 79 percent during wet weather comes from upstream sources. Annually, more than 80 percent of the total annual TSS load to the lower Charles River comes from upstream. Although much of the sediment that enters the lower Charles River comes from upstream, this sediment probably contains less contamination than sediment that enters the lower Charles River from the tributary subbasins. In other words, upstream sources may not be mainly responsible for the highly contaminated bed sediment found in the lower Charles River; upstream sediment may dilute sediment from the tributary subbasins (Breault and others, 2000b).

Annual Yields

To compare results among subbasins of different sizes and land use (table 16), it is useful to normalize load values to subbasin area. Loads per unit area are known as yields. Although yields can give insight into whether a subbasin is contributing a disproportionate amount of a particular constituent, yields do not give any information about the quality of water or sediment that comes from a given subbasin. In other words, low contaminant yields do not necessary indicate low contaminant concentrations. For example, small amounts of heavily contaminated suspended sediment would result in low contaminant yields, whereas large amounts of slightly contaminated sediment would result in high contaminant yields. In order to generate this type of information, water-quality sampling strategies must include more specific analysis of different matrix types, including suspended sediment and dissolved (filtered) water samples. In this study, it is useful to compare yields from upstream and the tributary subbasins to one another and from the uniform land-use sites to each other.

Charles River at Watertown

It is not surprising that the upstream subbasin contributes the largest proportion of the total annual load to the lower Charles River for most of the selected constituents and water-quality properties. The upstream subbasin has an area of 268.02 mi², which is about 20 times larger than the largest tributary subbasin (Stony Brook, 13.84 mi²; table 16). In contrast, upstream yields were among the smallest for all of the water-quality properties and constituents, with the exception of TDS (table 17). Upstream yields of BOD-5, fecal coliform bacteria, Enterococcus bacteria, copper, and lead were the smallest among all subbasins. These data indicate that although large loads can be attributed to upstream sources, these loads generally are proportionate to the size of the upstream contributing area.

Laundry Brook Subbasin

Laundry Brook yields were among the lowest compared to the other subbasins (table 17). In particular, yields of BOD-5, TDS, TSS, nitrate, ammonia, TKN, P, Cd, Cr, and Zn were lowest from the Laundry Brook Subbasin. These results, in combination with the small size of the subbasin, indicate that the Laundry Brook Subbasin is generally contributing a small portion of the constituents with respect to the other tributary subbasins of similar size.

Table 16. Land use in the lower Charles River Watershed, Massachusetts

[Land use is in percent. Percentages do not total 100 percent because of rounding. Muddy River: Includes Muddy River Conduit. mi², square mile; --, not determined]

					Tribut	ary subb	asins				Uniforn	land-use su	obasins
Land use	Charles	Laundry	Faneu (0110	l Brook (4660)	Muddy (0110	River 1683)	Stony (0110	Brook 1687)	Charles River		Single-	Multi-	Commercial
	Hiver at Watertown (01104615)	Brook (01104640)	Gage	Mouth	Gage	Mouth	Gage	Mouth	Boston Science Museum (01104710)	ungageu area	laminy land use (01104630)	laminy land use (01104673)	land use (01104677)
Commercial	1.90	7.56	4.98	9.44	7.38	6.87	6.62	6.86	2.80	14.69	0	0	76.36
Cropland	3.51	0	0	0	.84	.80	1.11	66.	3.14	0	0	0	0
Forest	41.05	10.71	4.40	3.89	6.99	6.39	12.17	10.98	36.93	.50	.02	0	0
Industrial	1.89	.21	0	.56	0	0	.79	.91	1.92	6.03	0	0	0
Mining	.60	0	0	0	0	0	0	0	.53	0	0	0	0
Open land	2.10	.21	.73	.56	.30	.32	1.07	66.	1.93	.76	0	0	0
Parks, cemeteries, public and institutional													
greenspace	3.14	8.61	10.84	9.44	10.13	13.42	12.79	13.26	4.27	13.50	.83	21.63	0
Participation recreation	1.43	.42	7.94	6.67	4.77	6:39	8.32	7.77	1.87	3.09	0	0	0
Pasture	1.26	0	0	0	0	0	.58	.53	1.13	0	0	0	0
Residential, 1/4-1/2 acre	9.75	13.24	3.07	2.22	9.86	8.95	1.99	1.83	9.10	1.23	23.87	0	0
Residential less than													
1/4 acre	6.39	50.84	50.48	41.11	22.80	21.09	32.50	30.64	9.33	25.97	73.64	0	0
Residential greater than											,	,	,
1/2 acre	16.55	2.52	0	0	13.31	12.14	.65	.61	14.87	0	0	0	0
Residential-multifamily	.84	.21	11.82	21.11	14.95	14.54	14.05	16.92	2.33	12.29	0	78.37	23.64
Spectator recreation	.70	2.52	3.29	2.78	3.03	3.04	1.84	1.98	.96	4.11	1.64	0	0
Transportation	1.47	1.26	.34	.56	.70	1.12	1.97	2.52	1.69	7.16	0	0	0
Waste disposal	.33	0	0	0	0	0	.76	69.	.32	60.	0	0	0
Water	2.44	.84	1.65	1.11	4.92	4.95	.19	.15	2.63	10.25	0	0	0
Water-based recreation	.02	0	.48	.56	0	0	0	0	.03	.19	0	0	0
Wetland	4.29	.84	0	0	0	0	.37	.30	3.81	.14	0	0	0
Woody perennial	.34	0	0	0	.02	0	2.26	2.06	.39	0	0	0	0
Percent impervions	1	11	ł	14	-	42	ł	19	1	1	17	73	86
Total (mi ²)	268.02	4.76	1.42	1.78	5.44	6.26	11.80	13.10	304.63	9.68	.36	.04	.02

Faneuil Brook Subbasin

The highest fecal coliform bacteria, *Enterococcus* bacteria, and TSS yields were measured from the Faneuil Brook Subbasin (table 17). In addition, BOD-5, TDS, nitrate, and ammonia yields from this subbasin were among the largest from all subbasins. As mentioned previously, illicit sanitary cross-connections are likely responsible for the large annual yields of these contaminants. Because of its small size (1.78 mi²), however, the Faneuil Brook Subbasin is not contributing a large portion of the total load to the lower Charles River. This subbasin, however, is producing a disproportionate amount of fecal coliform bacteria and *Enterococcus* bacteria (table 17) in relation to its size.

Muddy River Subbasin

Yields of many of the constituents and measures of water-quality properties (including TKN, P, Cd, Cr, Cu, Pb, and Zn) were largest from the Muddy River Subbasin (table 17). Yields of the remaining constituents studied were among the largest from all subbasins. The large yields from the Muddy River Subbasin compared to the other tributary subbasins indicate that this subbasin is contributing disproportionately large loads to the lower Charles River, relative to its size. This result is not surprising because the amount of impervious area in this subbasin (42 percent) is more than twice that of the next most impervious of the tributary subbasins—Stony Brook (19 percent) (table 16).

Stony Brook Subbasin

BOD-5, nitrate, ammonia, and Cd yields were the largest from the Stony Brook Subbasin (table 17). Yields of the remaining constituents were among the largest from all subbasins. Large vields in combination with the large size of the subbasin indicate that Stony Brook is contributing disproportionately large loads of these constituents to the lower Charles River. The effect of CSOs in the Stony Brook Subbasin is evident from yields of the selected constituents and measures of water-quality properties. Sewer separation planned for the Stony Brook Subbasin is expected to reduce contaminant yields from Stony Brook. These yields include contributions of the Stony Brook overflow to the Back Bay Fens. Although these loads eventually discharge to the lower Charles River through the Muddy River, they do originate from the Stony Brook Subbasin. Therefore, the Stony Brook overflow loads

were included with the Stony Brook Subbasin loads in the calculation of contaminant yields from this subbasin.

Ungaged Areas

If mean dry-weather and stormwater constituent concentrations of the Laundry Brook and Muddy River Subbasins are considered appropriate for estimating loads from the ungaged areas, then the corresponding yields of the constituents and measures of waterquality properties analyzed would be among the lowest compared to the tributary subbasins. Copper and zinc yields for the ungaged areas were slightly greater than the average compared to the tributary subbasins (table 17).

Uniform Land-use Subbasins

Generally, constituent yields were largest from the commercial land-use subbasin and smallest from the single-family land-use subbasin (table 17). Again, this result demonstrates the effect of impervious area, particularly paved streets, in accumulating contaminants between storms. This commercial land-use subbasin has the largest percentage of impervious area (86 percent), whereas the multifamily land-use subbasin has the second highest (73 percent), and the singlefamily land-use subbasin has the smallest (17 percent; table 16).

Design-Storm Loads

In order to compare stormwater-contaminant loading patterns from upstream sources, tributaries, and CSOs, and between current and future infrastructure conditions, stormwater loads were estimated for two historical "design storms" with recurrence intervals of approximately 3 months (known as the "3-month storm") and 1 year (the "1-year storm;" fig. 22). As noted previously, however, EMCs measured at upstream stations may not be representative of EMCs at the mouth of each tributary. This relation is particularly important for Stony Brook. The MWRA has estimated that about 0.18 million ft^3 and 0.57 million ft³ of combined sewage discharged to Stony Brook during the 3-month and 1-year design storms, respectively; about half of this volume entered downstream of the USGS gaging station (table 18).
Table 17. Constituent yields for 3-month and 1-year design storms, and Water Year 2000, lower Charles River Watershed,

 Massachusetts

[g/mi², grams per square mile; kg/mi², kilograms per square mile; TCFU/mi², trillion colony-forming units per square mile; --, model inappropriate]

Stations	Bio- chemical oxygen demand, 5-day (kg/mi ²)	Coliform, fecal, membrane filter (TCFU/mi ²)	Entero- coccus, membrane filter (TCFU/mi ²)	Dissolved solids (kg/mi ²)	Sus- pended solids (kg/mi ²)	Nitrate plus nitrite (kg/mi ² as N)	Nitrogen, ammonia, total (kg/mi ² as N)						
3-month design storm													
Mixed land use													
Charles River at Watertown (01104615)	16	0.04	0.20	1,480	109	4.5	1.3						
Laundry Brook (01104640)	140	.60	.30	1,560	420	8.0	.70						
Faneuil Brook ¹	100	6.6	5.2	2,670	1,490	9.4	2.4						
Muddy River ^{1,3}		5.0	4.9	5,540	1,760	28	12						
Stony Brook ^{1,4,5}	180	7.0	23	2,240	1,570	15	4.5						
Ungaged area ²	98	1.5	1.6	1,670	528	8.5	3.5						
Uniform land use													
Single-family land use (01104630)	310	6.7	7.5	1,300	2,000	6	4.5						
Multifamily land use (01104673)	820	15	20	15,000	3,100	64	29						
Commercial land use (01104677)	1,300	13	9.5	7,800	6,500	84	37						
	1-ye	ear design sto	rm										
Mixed land use													
Charles River at Watertown (01104615)	40	0.10	0.60	3,750	354	12	3.2						
Laundry Brook (01104640)	350	1.0	.30	2,570	691	13	1.0						
Faneuil Brook ¹	170	11	8.8	4,500	2,520	5.7	6.9						
Muddy River ^{1,3}		9.1	8.9	10,100	3,200	51	21						
Stony Brook ^{1,4,5}	370	15	5.6	4,200	2,970	29	9.7						
Ungaged area ²	160	2.4	2.5	2,660	841	14	5.3						
Uniform land use													
Single-family land use (01104630)	500	11	12	2,000	3,200	3.2	7.2						
Multifamily land use (01104673)	1,400	.80	34	26,000	5,300	110	50						
Commercial land use (01104677)	2,000	21	15	12,000	10,000	130	57						
	W	ater Year 200	0										
Mixed land use													
Charles River at Watertown (01104615)	2,500	8.7	16	297,000	23,100	910	220						
Laundry Brook (01104640)	2,500	32	18	86,500	14,800	450	74						
Faneuil Brook ¹	5,300	450	240	217,000	56,000	1,100	310						
Muddy River ^{1,3}	5,400	220	120	272,000	46,000	1,100	490						
Stony Brook ^{1,4}	5,500	310	96	276,000	43,900	1,300	500						
Ungaged area ²	3,900	83	54	144,000	27,000	680	210						
Uniform land use													
Single-family land use (01104630)	6,100	190	180	170,000	46,000	850	760						
Multifamily land use (01104673)	20,000	210	470	480,000	73,000	2,000	460						
Commercial land use (01104677)	65,000	640	250	5,100,000	210,000	9,400	2,300						

¹Includes ungaged portions of gaged subbasins. ²Does not include ungaged portions of gaged subbasins.

³Includes Muddy River conduit.

⁴Includes Stony Brook overflow.

⁵Calculated by means of equations 6 and 7.

Stations	Nitrogen, total Kjeldahl (kg/mi ² as N)	Phos- phorus, total (kg/mi ²)	Cadmium, total (g/mi ²)	Chromium, total (g/mi ²)	Copper, total (g/mi ²)	Lead, total (g/mi ²)	Zinc, total (g/mi ²)
	3-mon	th design sto	orm				
Mixed land use							
Charles River at Watertown (01104615)	8.6	0.90	0.001	0.02	0.10	0.10	0.20
Laundry Brook (01104640)	27	2.9	.002	.10	.30	.40	.80
Faneuil Brook ¹	22	2.8	.003	.10	.30	.70	1.0
Muddy River ^{1,3}	58	9.7	.01	.20	1.2	1.3	3.6
Stony Brook ^{1,4,5}	31	5.9	.008	.11	.50	1.4	2.0
Ungaged area ²	18	2.9	.003	.10	.30	.4	1.1
Uniform land use							
Single-family land use (01104630)	32	8.1	.01	.20	.60	1.1	1.6
Multifamily land use (01104673)	130	22	.02	.50	.30	4.5	11
Commercial land use (01104677)	150	26	.10	.70	3.5	18	20
	1-yea	r design sto	m				
Mixed land use							
Charles River at Watertown (01104615)	26	23	0.003	0.04	0.10	0.30	0.80
Laundry Brook (01104640)	20 59	4.8	002	10	40	70	14
Faneuil Brook ¹	37	4.7	.01	.20	.10	1.1	1.6
Muddy River ^{1,3}	83	18	.02	.20	2.1	2.3	6.6
Stony Brook ^{1,4,5}	61	12	.014	.20	1.0	2.7	3.9
Ungaged area ²	23	4.7	.01	.10	.60	.60	1.7
Uniform land use							
Single-family land use (01104630)	50	13	.01	.30	.90	1.8	2.5
Multifamily land use (01104673)	220	38	.04	.90	.40	7.8	19
Commercial land use (01104677)	230		.10	1.0		27	25
	Wat	ter Year 200	0				
Mixed land use							
Charles River at Watertown (01104615)	1 200	120	0.20	ΔΔ	6.8	5.9	45
L aundry Brook (01104640)	660	73	10	1.4	7.2	11	31
Faneuil Brook ¹	1 300	150	20	3.5	12	25	46
Muddy River ^{1,3}	2,100	290	30	6.0	63	23 57	99
Stony Brook ^{1,4,5}	1,900	270	.30	4.1	18	49	59
Ungaged area ²	1,200	150	.10	3.3	25	26	57
Uniform land use	-,=00	100		2.0		_0	
Single-family land use (01104630)	1.800	200	20	43	20	26	54
Multifamily land use (01104673)	3 400	590	.20	т. <i>э</i> 12	11	140	330
Commercial land use (01104677)	9.000	4.300	1.9	22	430	440	890

Figure 22. The 3-month design (hourly) storm and 1-year design storms (21 minutes), lower Charles River, Massachusetts.

Consequently, design-storm loads for Stony Brook were calculated by means of equation 6, which takes into account the added effect of downstream CSOs, and is given as

$$L_{i,j} = (sw\overline{C}_i \times (V_j - V_{cso,j})) + (C_i \times V_{cso,j}) , \quad (6)$$

where

 $L_{i,j}$ equals the load for constituent *i* for storm *j*;

 $sw\overline{C}_i$ equals the average concentration of constituent *i* in stormwater without CSO effect (see equation 7);

- V_i equals the total volume for storm *j* (table 7);
- C_i equals the typical concentration of constituent *i* in combined sewage (table 19); and,
- $V_{cso,j}$ equals the total volume of CSO for storm *j* (table 18).

In order to estimate the design-storm loads, (1) the volume of CSO discharged, (2) typical concentrations of constituents in combined sewage (a mixture of stormwater and raw sewage), and (3) non-CSO stormwater EMCs must be known. The MWRA has determined that CSOs tributary to Stony Brook activated (discharged) 32 times during calendar year 2000,
 Table 18. Estimated volume of combined sewage overflow to

 Stony Brook, lower Charles River Watershed, Massachusetts

[Massachusetts Water Resources Authority, written commun., 2001. **Date and time:** Date is in month, day, and year. Time is eastern standard time. CY, calendar year; USGS, U.S. Geological Survey; ft³, cubic foot; --, unknown]

Start date Er and time ar		End da and tir	ate ne	Upstream of USGS gage (ft ³)	Total (ft ³)
1-10-00	1445	1-10-00	1145	84,200	134,000
4-09-00	0015	4-09-00	2045	0	0
5-18-00	1600	5-19-00	2330	0	0
6-02-00	1530	6-03-00	0730	0	0
6-06-00	0800	6-07-00	1,650,000	4,160,000	
7-09-00 2000 7-10-00 0930				9,360	368,000
7-16-00	0000	7-16-00	1200	211,000	434,000
7-27-00	0345	7-27-00	2330	218,000	
9-15-00	0815	9-16-00	0000	127,000	134,000
CY 2000.				5,410,000	14,900,000
January–O	October	2000		4,110,000	9,340,000
3-month^1					181,000
1-year ¹					570,000
Design ye	ar ¹				4,180,000
$3-month^2$					48,100
1-year ²					190,000
Design ye	ar ²				1,000,000

¹Before proposed sewer separation.

²After proposed sewer separation.

and that about 15 million ft³ of combined sewage was discharged; of this volume, 5.4 million ft³ of combined sewage discharged upstream of the USGS gaging station (Massachusetts Water Resources Authority, written commun., 2001). The MWRA has estimated that about 5.2 million ft^3 of combined sewage discharged to Stony Brook during the nine storms sampled in this study, about half of which (2.3 million ft³) came in upstream of the USGS gaging station (table 18). Given the volume of CSO discharge to Stony Brook upstream of the gage, the concentrations of constituents in combined sewage (table 19), and known loads of each constituent in samples collected at the gaging station, EMCs for stormwater without the presence of the combined sewage (or non-CSO EMCs) can be estimated (table 20) from:

Table 19. Mean concentrations of selected constituents and water-quality properties in combined sewage

[Modified from Metcalf & Eddy, 1994. CFU/100 mL, colony-forming unit per 100 milliliters; $\mu g/L$, micrograms per liter; mg/L, milligrams per liter]

Constituent	Sample size	Arithmetic mean	Standard deviation
Biochemical oxygen			
demand, 5-day			
(mg/L)	807	78	76
Coliform, fecal,			
membrane filter			
(CFU/100 mL)	221	538,000	1,375,000
Suspended solids			
(mg/L)	869	140	246
Nitrate plus nitrite			
(mg/L as N)	170	3.4	9.8
Nitrogen, ammonia,			
total (mg/L as N)	205	3.1	3.7
Nitrogen, total Kjeldahl			
(mg/L as N)	182	5.9	5.8
Phosphorus, total (mg/L)	181	3.1	10.5
Copper, total (µg/L)	206	63	52
Zinc, total (µg/L)	199	210	180

$$swC_{i,j} = \frac{L'_{i,j} - [(V'_{cso,j} \times C_i)]}{V'_j - V'_{cso,j}}, \qquad (7)$$

where

- $swC_{i,j}$ equals the stormwater EMC of constituent *i* for storm *j* without CSO effect;
 - $L'_{i,j}$ equals the total load of constituent *i* for storm *j* at the gaging station (table 6);
- $V'_{cso,j}$ equals the volume of CSO discharged upstream of the gaging station for storm *j* (table 18);
 - C_i equals the typical concentration of constituent *i* in combined sewage (table 19); and,
 - V'_j equals the discharge measured at the Stony Brook gaging station (01104687) for storm *j* (table 3).

Stormwater EMCs were determined for each of the nine storms and then averaged to obtain a representative value ($sw\overline{C}_i$). The July 10th storm was omitted because it is considered an outlier. It appears that this sample was heavily affected by combined sewage, although the MWRA estimated that only a small amount of combined sewage discharged upstream of the gaging station during this storm (table 18). As a **Table 20.** Projected constituent event mean concentrationsfor Stony Brook, lower Charles River Watershed,Massachusetts, under conditions of complete sewerseparation

[CFU/100 mL, colony-forming units per 100 milliliters; μ g/L micrograms per liter; μ S/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per liter; NTU, nephelometric turbidity units]

Constituent	Concen- tration
Biochemical oxygen demand, 5-day (mg/L)	9.6
Coliform, fecal, membrane filter (CFU/100 mL	32,000
Enterococcus, membrane filter (CFU/100 mL) ¹	8,500
Dissolved solids (mg/L) ²	138
Suspended solids (mg/L)	96
Nitrate plus nitrite (mg/L as N)	.85
Nitrogen, ammonia, total (mg/L as N)	.21
Nitrogen, total Kjeldahl (mg/L as N)	1.9
Phosphorus, total (mg/L)	.30
Cadmium, total $(\mu g/L)^3$.47
Chromium, total $(\mu g/L)^3$	6.6
Copper, total (µg/L)	31
Lead, total $(\mu g/L)^3$	89
Zinc (µg/L)	120

¹Combined sewage concentrations were estimated by means of the ratio of fecal coliform in stormwater at Faneuil Brook and combined sewage to the concentration of *Enterococcus* in stormwater.

²Estimated.

³Combined sewage concentrations were estimated by means of the ratio of zinc in stormwater at Laundry Brook (01104640) and combined sewage to the concentration of each metal in stormwater.

result, the ratio of upstream to downstream contributions of CSO for this storm is lower than for other storms. In cases where the concentration of a constituent or water-quality property in combined sewage was not given, estimates of constituent concentrations in combined sewage were used (table 20).

Generally, estimated loading patterns among the subbasins for the 3-month and 1-year design storms were similar to patterns for annual loads (table 27). The proportion of the total stormwater load calculated to come from the Stony Brook Subbasin, however, was larger and upstream loads lower than for the annual stormwater loads. The greater load from the Stony Brook Subbasin during the design storms probably resulted from CSO effects, whereas not every storm during a typical year causes CSO activation. The annual load was also calculated by means of equation 6 and there was little difference between these loads and those calculated using the regression equations (average difference of 0.97 percent).

Estimated Stony Brook Subbasin Loads after Sewer Separation

The effects of sewer separation on design-storm and WY 2000 loads from the Stony Brook Subbasin were also estimated. These estimates depend upon the following variables, which were either measured by the USGS or provided by the MWRA: (1) the volume of CSO discharged to Stony Brook before and after separation (table 18), (2) typical constituent concentrations in combined sewage (table 19), (3) non-CSO stormwater EMCs (equation 7), and (4) the increases in stormwater discharge after separation.

There is a certain amount of stormwater mixed with raw sewage that presently is transported out of the subbasins directly to the MWRA's Deer Island Treatment Plant (fig. 23). After sewer separation, however, this stormwater will no longer be transported to the treatment plant but rather be discharged directly to Stony Brook; consequently, stormwater flow will increase. The MWRA has estimated that sewer separation will result in 816,000 ft³ and 1.38 million ft³ increases in stormwater discharge to Stony Brook for the 3-month and 1-year design storms, respectively (Massachusetts Water Resources Authority, written commun., 2001). The estimated annual increase is about 52 million ft³ after sewer separation in the Stony Brook Subbasin. The MWRA has also estimated that, after sewer separation, there will still be a small volume of combined sewage discharge (0.05 million ft³, and 0.19 million ft³) during the 3-month and 1-year design storms, respectively, and 1.0 million ft³ for the design² year (table 18) (Massachusetts Water Resources Authority, written commun., 2001). Non-CSO stormwater EMCs (table 20) were multiplied by projected stormwater flows and added to the remaining

²The design year is a modified hyetograph from 1992 that includes a range of storm sizes which are considered typical for an average year (Metcalf and Eddy, Inc., 1994).

DRY-WEATHER CONDITION

Figure 23. A typical combined sewer.

CSO load after separation to determine the annual (WY 2000) and design storm loads for the Stony Brook Subbasin after sewer separation:

$$L''_{i,j} = sw\overline{C}_i \times [(V_j - V_{cso,j}) + \Delta V_j] , \qquad (8)$$

where

- $L''_{i,j}$ equals the load for constituent *i* after sewer separation for storm *j*;
- $sw\overline{C}_j$ equals the average concentration of constituent *i* in stormwater (see equation 7);
 - V_j equals the total volume for storm *j* after sewer

separation (table 7);

- $V_{cso,j}$ equals the total volume of CSO (table 18) for storm *j*; and,
 - ΔV_j equals the increase in stormwater for storm *j* after sewer separation.

Annual loads (WY 2000) for all of the trace metals, nitrate (plus nitrite), TKN, TSS, and TDS showed slight to moderate increases after sewer separation, whereas the rest of the constituents decreased (fig. 24 and table 21). In particular, fecal coliform loads are projected to decrease about 30 percent, or 1,500 TCFU, annually. The 3-month and 1-year storms are projected to produce a similar pattern of relative change in constituent loading after separation. Under this scenario, constituents associated with street runoff (trace metals) are projected to increase and constituents associated with sewage (BOD-5, bacteria, ammonia, and phosphorus) are projected to decrease after separation.

Environmental Implications of Loads

The environmental implications of the different contaminant loads depend upon the contaminant under consideration. The effect of bacterial loading is likely to be controlled by the short-term rate at which bacteria enter the lower Charles River (or loading intensity; fig. 25) and the location of the discharge points along the river reach. For example, as bacteria are introduced into the lower Charles River, they tend to be diluted; the extent of their dilution depends on the geometry of the river reach. The bacteria also begin to die off as soon as they are released to the environment at a rate that is a function of both time and toxicity. Therefore, loading intensity and local reach geometry and chemistry are critical factors that affect a river's capacity to assimilate bacteria and meet the fecal coliform standards.

Considered in isolation, the bacteria loads from Stony Brook and Muddy River would appear to be most responsible for the numerous exceedences of the fecal coliform standard in the lower Charles River during storms. However, both Stony Brook and Muddy River discharge to the wide part of the river downstream of Boston University Bridge, where most of the volume of the lower Charles River water is found. Dilution of stormwater by cleaner water (water with lower constituent concentrations) in the lower reaches of the Charles River may explain why wet-weather fecal coliform concentrations are often lower downstream than upstream, even though most of the bacteria enter the lower Charles River here during storms. In contrast, upstream reaches of the lower Charles River are much smaller in volume than downstream reaches, and, therefore, upstream reaches are affected more by stormwater loading. Spatial and temporal differences in bacterial loading patterns and the physical environment complicate bacterial dynamics of the lower Charles River. Simulation of these dynamics is an objective of a concurrent receiving-water-modeling investigation by the MWRA.

Figure 24. Changes in constituent loads after sewer separation relative to pre-separation loads in the Stony Brook Subbasin, lower Charles River Watershed, Massachusetts. Water Year 2000 includes dry-weather loads and estimated designstorm combined-sewer-overflow loads. **Table 21.** Estimated stormwater loads to Stony Brook after sewer separation for design storms and Water Year 2000, Lower

 Charles River Watershed, Massachusetts

[Annual and design storm loads: Includes load from Stony Brook overflow and load based on increase in stormwater for the "design year" after sewer separation. WY, water year; g, gram; kg, kilogram; TCFU, trillion colony-forming units]

Annual and design storm loads	Biochemical oxygen demand, 5-day (kg)	Coliform, fecal, membrane filter (TCFU)	Entero- coccus, membrane filter (TCFU)	Dissolved solids (kg)	Suspended solids (kg)	Nitrate, total (kg as N)	Nitrogen, ammonia, total (kg as N)
3-month storm ¹	2,400	76	2	33,400	23,200	210	51
1-year storm ¹	4,700	170	5.2	62,100	43,400	390	110
WY 2000 stormwater ²	82,000	2,800	700	1,200,000	801,000	7,100	1,800
Annual and design storm loads	Nitrogen, total Kjeldahl (kg as N)	Phosphorus, total (kg)	Cadmium, total (g)	Chromium, total (g)	Copper, total (g)	Lead, total (g)	Zinc, total (g)
3-month storm ¹	450	72	110	1,600	7,400	21,000	31,000
1-year storm ¹	850	150	210	3,000	14,000	40,000	55,000
WY 2000 stormwater ²	15,000	2,600	3,900	56,000	200,000	740,000	1,000,000

¹Calculated by means of equation 6.

²Calculated by means of regression equations.

Seasonal nitrogen and phosphorus loading affects the lower Charles River by stimulating growth of algae and macrophytes. The lower Charles River can be considered an impoundment or freshwater lake, especially during low-flow conditions in the summer. It is during the summer that nutrient loading is particularly problematic and the river is expected to be most used for recreation, especially for boating and swimming. In addition to low flows, the warmer temperatures and longer hours of sunlight during the summer months promote algae growth. The problems associated with large nutrient loads may be increased by the presence of the "salt wedge" that enters the lower Charles River from Boston Harbor during peak periods of recreational boating in summer (Breault and others, 2000a). The proliferation of algae can lead to low dissolved oxygen concentrations in the bottom water, fish kills, odors, and reduced water-column clarity. Therefore, the unique environment of the lower Charles River increases the environmental effects of seasonal nutrient loading.

Trace-metal loading to the lower Charles River potentially poses a threat to both aquatic organisms and benthic organisms living in and on the bottom sediment. It has been shown that trace-metal contamination is generally greater in lower Charles River surficial sediment than sediment from other urbanized, freeflowing rivers in the United States (Breault and others, 2000b). The lower Charles River is characterized by low hydaulic gradients, a lack of tidal flushing, and a lack of uncontaminated sediment (from erosion of upstream soils) that typically dilutes contaminated urban sediment. The anoxic, sulfide-rich zone within the salt wedge may also be a factor contributing to high trace-metal concentrations in the sediment (Breault and others, 2000a). Consequently, although concentrations of trace metals in dry-weather and stormwater samples may be low compared to aquatic-life criteria and to concentrations determined in other studies, and although annual trace-metal loads may be comparatively modest, the impounded conditions of the lower Charles River amplify the potential environmental effects of the trace-metal loading to the lower Charles River.

Figure 25. Average daily loading intensity of fecal coliform bacteria from upstream and selected tributary subbasins, lower Charles River Watershed, Massachusetts. Water Year 2000.

SUMMARY

The lower Charles River has been impaired by point and non-point pollution sources for many decades. In response to this impairment, the USEPA Region I has designated the lower Charles River as a priority water body, and has set the goal of achieving consistently "fishable and swimmable" water-quality conditions in the entire River by 2005. In 1999, the USEPA, MADEP, MWRA, and the USGS began a cooperative effort to identify the major pathways and magnitudes of constituent loads contributing to the impaired water quality of the lower Charles River after storms.

Water-quality samples were collected between June 1999 and July 2000 at one USGS streamflowgaging station on the main stem of the Charles River, at four streams that drain tributary subbasins, and at three small subbasins with uniform land use. Dry-weather samples were collected approximately monthly on days for which there was less than 0.1 in. of precipita tion in the preceding 72 hr. Stormwater samples were collected during nine storms by automated samplers at the eight gaging stations.

Streamflow in the lower Charles River Watershed can be characterized as being highly variable, or "flashy," and unpredictable. These characteristics result from flood-control practices, the highly impervious character of land throughout the watershed, and extensive wetlands in the headwaters of the upstream watershed. The Charles River upstream of the Watertown Dam is the largest source of water to the lower Charles River (about 92 percent by volume annually). The largest tributaries to the lower Charles River are the Muddy River and Stony Brook. These gaged tributaries together discharge about 5 percent of the total annual flow to the lower Charles River. The remaining gaged and ungaged tributaries contribute the remaining 3 percent of the annual flow.

The water quality of the lower Charles River can be considered good-generally meeting waterquality standards and guidelines—during dry weather. However, water quality at some of the subbasin sampling stations frequently exceeded standards for fecal coliform densities during dry weather; these exceedences indicated the persistence of illicit sanitary cross-connections in some of the subbasins. After rainstorms, the water quality of the river becomes impaired, despite the fact that stormwater quality in the study area is generally equal to or better than that found in other studies. The poor water quality of the river after rainstorms may result from the river's noncapacity to assimilate large contaminant loads than from the unusually high concentrations of constituents in the stormwater.

Most of the dry-weather and stormwater loads of the selected constituents and water-quality properties can be attributed to upstream sources, with the exception of fecal coliform bacteria. Stony Brook, a large tributary affected by combined sewer overflows, contributed more than one-half of the annual fecal coliform load to the lower Charles River for WY 2000, most of it during rainstorms. Sewer separation in the Stony Brook Subbasin would likely reduce annual and design-storm loads of constituents associated with sewage; increases of constituents associated with street runoff are projected.

The unique environment of the lower Charles River compounds the environmental implications of high constituent loads. The lower Charles River is characterized by low hydraulic gradients, a lack of flushing, and a lack of natural uncontaminated sediment from erosion of upstream solids. The lower Charles River also contains an anoxic, sulfide-rich zone within a non-tidal salt wedge. Individually and in combination, these characteristics increase the likelihood of adverse effects by contaminants on the water, biota, and sediment of the lower Charles River. Achievement of water-quality standards in this environment depend critically upon continuing efforts to address the remaining illicit sewer connections, separate combined-sewer areas, improve the quality of non-CSO stormwater, and reduce upstream sources of contamination.

REFERENCES CITED

- Appelo, C.A.J., and Postma D., 1993, Geochemistry, groundwater and pollution: Brookfield, VT, A.A. Balkema Publishers, 536 p.
- Armstrong, L.J., 1994, Contribution of heavy metals to storm water from automotive disc brake pad wear: Sacramento, CA, Proceedings of the Presentation at the California Stormwater Quality Task Force Meeting, April 1994, Woodward–Clyde Consultants, 38 p.

- Athayde, D.N., Shelly, P.E., Driscoll, E.D., Gaboury, D., and Boyd, G., 1983, Results of the nationwide urban runoff program—volume 1—final report: U.S. Environmental Protection Agency, WH-554, 186 p.
- Bell, C.F., Belval, D.L., and Campbell, J.P., 1996, Trends in nutrients and suspended solids at the fall line of five tributaries to Chesapeake Bay in Virginia, July 1988 through June 1995: U.S. Geological Survey Water-Resources Investigations Report 96-4191, 37 p.
- Bicknell, J.C., 1990, Pollutant load contributions from separate storm drain systems to Lake Union, Seattle, Washington: Urban Hydrology, American Water Resources Association, p. 167–175.
- Bourcier, D.R., Hinden, E., and Cook, J.C., 1980, Titanium and tungsten in highway runoff at Pullman, Washington: International Journal of Environmental Science and Technology, v. 15, no. 2, p. 145–149.
- Brabets, T.P., 1986, Quantity and quality of urban runoff from the Chester Creek Basin, Anchorage, Alaska: U.S. Geological Survey Water-Resources Investigations Report 86-4312, 58 p.
- Breault, R.F., and Granato, G.E., 2000, A synopsis of technical issues of concern for monitoring trace elements in highways and urban runoff: U.S. Geological Survey Open-File Report 00-422, 67 p.
- Breault, R.F., Barlow, L.K., Reisig, K.R., and Parker, G.W., 2000a, Spatial distribution, temporal variability, and chemistry of the salt wedge in the lower Charles River, Massachusetts, June 1998 to July 1999: U.S. Geological Survey Water-Resources Investigations Report 00-4124, 1 pl.
- Breault, R.F., Reisig, K.R., Barlow, L.K., and Weiskel,
 P.W., 2000b, Distribution and potential for adverse biological effects of inorganic elements and organic compounds in bottom sediment, lower Charles River, Massachusetts: U.S. Geological Survey Water-Resources Investigations Report 00-4180, 70 p.
- Brownlow, A.H., 1979, Geochemistry: Englewood Cliffs, N.J., Prentice Hall, 437 p.

Cooke, T., Drury, D., Katznelson, R., Lee, C., Mangarrella, P., and Whitman, K., 1995, Storm water NPDES monitoring in Santa Clara Valley, *in* Torno, H.C., ed., Stormwater NPDES Related Monitoring Needs: Crested Butte, CO, American Society of Civil Engineers, August 7–12, 1994, p. 144–171.

Drever, J.I., 1988, The geochemistry of natural waters (2d ed.): Englewood Cliffs NJ., Prentice Hall, 437 p.

Duan, N., 1983, Smearing estimate—A nonparametric retransformation method: Journal of American Statistical Association, 78(383), p. 605–610.

Eddins, W.H., and Crawford, J.K., 1984, Reconnaissance of water-quality characteristics of streams in the city of Charlotte and Mecklenburg County, North Carolina: U.S. Geological Survey Water-Resources Investigations Report 84-4308, 105 p.

Falahi-Arkadahi, A.,1984, Contamination of the environment with heavy metals emitted from automotives: Ecotoxicology and Environmental Safety, v. 8, p. 152–161.

Farago, M.E., Thornton, I., Kazantzis, G., and Simpson, P.R., 1997, Exposure to platinum from vehicle catalytic converters and possible health implications, *in* Wanty, R.B., Marsh, S.P., and Gough, L.P., eds., 4th International Symposium on Environmental Geochemistry Proceedings: U.S. Geological Survey Open-File Report 97-496, 23 p.

Focazio, M.J., and Cooper, R.E., 1995, Selected characteristics of stormflow and base flow affected by land use and cover in the Chickahominy River basin, Virginia, 1989–91: U.S. Geological Survey Water-Resources Investigations Report 94-4225, 37 p.

Fuhrer, G.J., Gilliom, R.J., Hamilton, P.A., Morace, J.L., Nowell, L.H., Rinella, J.F., Stoner, J.D., and Wentz, D.A., 1999, The quality of our Nation's Waters—Nutrients and Pesticides: U.S. Geological Survey Circular 1225, 82 p.

Gannon, J., and Busse, M.K., 1989, E. coli and Enterococci levels in urban stormwater, river water and chlorinated treatment plant effluent: Water Resources Research, v. 23, no. 9, p. 1167–1176. Granato, G.E.,1996, Deicing chemicals as a source of constituents of highway runoff: Transportation Research Record 1533, p. 50–58.

Gray, D., 2000, Qualitative Review of Epidemiology Studies, *in* Regional BEACH Program Conference —1999 Proceedings: U.S. Environmental Protection Agency, Office of Water, EPA 823-R-00-003 February 2000, p. 43–45, accessed in September 2000, at URL http://www.epa.gov/ waterscience/beaches/proceedings/Beach99.pdf.

Guimaraes, W.B., 1995, Water quality in the Withers Swash Basin, with emphasis on enteric bacteria, Myrtle Beach, South Carolina, 1991–93: U.S. Geological Survey Water-Resources Investigations Report 95-4125, 102 p.

Gupta, M.K., Agnew, R.W., and Kobringer, N.P., 1981, Constituents of highway runoff, v. 1, State-of-theart report: U.S. Federal Highway Administration report FHWA/RD-81/042, 111 p.

Hach Company, 1998, Analytical procedures for DR/800 Instruments: Loveland, CO, Hach Company, 8 p., accessed in July 2002, at URL http://ecommerce.hach.com/stores/hach/pdfs/ literature/L8182.pdf.

Hall, K.J. and Anderson, B.C., 1988, The toxicity and chemical composition of urban stormwater runoff: Canadian Journal of Civil Engineering, v. 15, no. 1, p. 98–106.

Hardee, J., Miller, R.A., and Mattraw, H.C., Jr., 1979, Stormwater-runoff data for a multifamily residential area, Dade County, Florida: U.S. Geological Survey Open-File Report 79–1295, 68 p.

Heaney, J.P., 1986, Research needs in urban stormwater pollution: Journal of Water Resources Planning and Management, v. 112, no. 1, p. 36–47.

Hee, S.S.Q., 1994, Availability of elements in leaded/unleaded automobile exhausts, a leaded paint, a soil, and some mixtures: Archives of Environmental Contamination and Toxicology, v. 27, p. 145–153.

Helmers, E., 1996, Elements accompanying platinum emitted from automobile catalysts: Chemosphere, v. 33, no. 3, p. 405–419. Helsel, D.R., and Cohn, T.A., 1998, Estimation of descriptive statistics for multiply-censored waterquality data: Water Resources Research, v. 24, no. 12, p. 1997–2004.

Helsel D.R., and Hirsch, R.M., 1992, Statistical methods in water resources: New York, Elsevier, 522 p.

Hildemann, L.M., Markowski, G.R., and Cass, G.R., 1991, Chemical composition of emissions from urban sources of fine organic aerosol: Environmental Science and Technology, v. 22, no. 4, p. 1469–1478.

Hodge, V.F., and Stallard, M.O., 1986, Platinum and palladium in roadside dust: Environmental Science and Technology, v. 20, no. 10, p. 1058–1060.

Horowitz, A.J., 1991, A primer on sediment-inorganic element chemistry (2d ed.): Boca Raton, FL, Lewis Publishers, 136 p.

Horowitz, A.J., and Sandstrom, M.W., 1999, Cleaning procedures, *in* Wilde, F.W., Radtke, D.B., Gibs, Jacob, and Iwatsubo, R.T., eds., Cleaning procedures of equipment for water sampling—National field manual for the collection of water quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A3, p. 15–30.

Ishaq, M.A., 1992, Surface and subsurface drainage of a metropolitan city in an arid zone: Journal of Irrigation and Drainage Engineering, v. 118, no. 1, p. 19–35.

Joyce, J., 2000, Overview of water quality indicator microbes, *in* Regional BEACH Program Conference—1999 Proceedings: U.S. Environmental Protection Agency, Office of Water, EPA 823-R-00-003, February 2000, p. 11– 12.

Kerr, M., and Lee, V., 1996, Water quality in Rhode Island's urban rivers—Blackstone, Moshassuck, Pawtuxet, Ten Mile, and Woonasquatucket—river rescue results 1990–1995: Coastal Resources Center, Rhode Island Sea Grant NA3 6RG0503, and the University of Rhode Island Order P1422, 96 p. Kjelstrom, L.C., 1995, Data for and adjusted regional regression models of volume and quality of urban storm-water runoff in Boise and Garden City, Idaho, 1993–94: U.S. Geological Survey Water-Resources Investigations Report 95-4228, 36 p.

Kobriger, N.P., and Geinapolos, A., 1984, Sources and migration of highway runoff pollutants, volume III: Federal Highway Administration Final Report FHWA/RD-84/059, 358 p.

Lee, J.H., and Bang, K.W., 2000, Characterization of urban stormwater runoff: Water Research, v. 34, no. 6, p. 1773–1780.

Leo, W.S., Collins, M., Domenica, M., Kirschen, P., Marx, L., Rex, A.C., 1994, Baseline water quality assessment: Boston, MA, Massachusetts Water Resources Authority, ENQUAD ms-024, 465 p.

Lide, D.R., and Frederikse, H.P.R., eds., 1997, CRC handbook of chemistry and physics, (77th ed.): New York, CRC Press, Inc., variously paged.

Lopes, T.J., Fossum, K.D., Phillips, J.V., and Monical, J.E., 1995, Statistical summary of selected physical, chemical, and microbial characteristics, and estimates of constituent loads in urban stormwater, Maricopa County, Arizona: U.S. Geological Survey Water-Resources Investigations Report 94-4240, 62 p.

Lopez, M.A., and Giovannelli, R.F., 1984, Waterquality characteristics of urban runoff and estimates of annual loads in the Tampa Bay area, Florida, 1975–80: U.S. Geological Survey Water-Resources Investigations Report 83-4181, 76 p.

Malmquist, P.A., 1983, Urban stormwater pollutant sources, an analysis of inflows and outflows of nitrogen, phosphorus, lead, zinc, and copper in urban areas: Goteborg, Sweden, Chalmers University of Technology, 372 p.

Marino, R.P., and Gannon, J.J., 1991, Survival of fecal coliforms and fecal streptococci in storm drain sediment: Water Resources Research, v. 25, no. 9, p. 1089–1098.

Marsalek, J., and Schroeter, H., 1988, Annual loadings of toxic contaminants in urban runoff from the Canadian Great Lakes basin: Water Pollution Research Journal of Canada, v. 23, no. 3, p. 360– 378. Massachusetts Water Resources Authority, 1994, Baseline water quality assessment: Master planning and CSO facility planning document, August 1994, variously paged.

_____1996, Fecal coliform-receiving water samples for harbor studies: Boston MA, Massachusetts Water Resources Authority Sewerage Division Laboratories, Deer Island, 14 p.

- _____1997, Combined sewer overflow facilities plan: Environmental impact report, July 31, 1997, variously paged.
- ____1999, Membrane filter method for Enterococci in water using mEI agar: Boston, MA, Massachusetts Water Resources Authority Sewerage Division Laboratories, Deer Island, 20 p.
- Mattraw, H.C., Jr., and Miller, R.A., 1981, Stormwater quality processes for three land-use areas in Broward County, Florida: U.S. Geological Survey Water-Resources Investigations Report 81-23, 56 p.

McCarthy, K.A., 1996, Surface-water quality assessment of the Clover Creek Basin, Pierce County, Washington, 1991–1992: U.S. Geological Survey Water-Resources Investigations Report 95-4181, 113 p.

Metcalf and Eddy, Inc., 1994, Sub-Task 2.5.5. Final technical memorandum, estimation of stormwater flows and loads, master planning and CSO facility planning: Submitted to Massachusetts Water Resources Authority, November 1994, variously paged.

Metropolitan District Commission, 2000, accessed September 2000, at URL http://www.state.ma.us/ mdc.

Mueller, D.K., 1998, Quality of nutrient data from streams and ground water sampled during 1993– 95—National Water-Quality Assessment Program: U.S. Geological Survey, Open-File Report 98-276, 25 p.

Myers, D.N., and Sylvester, M.A., 1998, Fecal indicator bacteria, *in* Myers, D.N. and Wilde, F.W., eds., Biological indicators—National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A7, p. FIB-1–FIB38.

- Paulson, R.W., Chase, E.B., Williams, J.S., and Moody D.W., 1993, State Summaries of Stream Water Quality, *in* Paulson, R.W., Chase, E.B., Williams, J.S., and Moody D.W., eds., National Water Summary 1990–91: U.S. Geological Survey Water-Supply Paper 2400, 590 p.
- Pearce, N.J.G., Brothwood, S.J., Fuge, R., and Perkins, W.T., 1997, Vehicle related emissions of heavy metals and platinum group elements in the urban environment-examples from Birmingham, England, *in* Wanty, R.B., Marsh, S.P., and Gough, L.P., eds., 4th International Symposium on Environmental Geochemistry Proceedings: U.S. Geological Survey Open-File Report 97-496, p. 23.
- Prichett, H.S., Mansfield, S.M., and Dana, R.H., 1903, Report of John R. Freeman, Chief Engineer, *in*Pritchett, H.S., Mansfield, S.M., and Dana, R.H., eds., Report of committee on Charles River Dam: Boston, MA, State Printers, Wright & Potter
 Printing Co., 579 p.
- Radtke, D.B., Davis, J.V., and Wilde, F.W., 1998, Specific electrical conductance, *in* Wilde, F.W., and Radtke, D.B., eds., Field measurements— National field manual for the collection of waterquality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6, p. SC-1–SC-22.
- Rantz, S.E., and others, 1982, Measurement and computation of streamflow—Volume 1.
 Measurement of stage and discharge—Volume 2.
 Computation of discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p.
- SAS Institute, Inc., 1998, Statview reference: Cary, NC, SAS Institute, Inc., SAS Campus Drive, 528 p.
- Shacklette, H.T., and Boerngen, J.G., 1984, Element concentrations in soils and other surficial materials of the conterminous United States: U.S. Geological Survey Professional Paper 1270, 105 p.
- Smith, D.L., and Lord, B.M., 1990, Highway water quality control—Summary of 15 years of research: Washington, D.C., Transportation Research Board, Transportation Research Record 1279, p. 69–74.

Smith, R.,L., 1990, Ecology and field biology: New York, Harper and Row Publishers, 922 p.

- SCCWRP, 1988, Storm runoff in Los Angeles and Ventura Counties from the Southern California Coastal Water Research Project: Long Beach, CA, p. 13–18.
- U.S. Environmental Protection Agency, 1983, Methods for chemical analysis of water and wastes: Cincinnati, OH, EPA 600/4-82-055, U.S. Environmental Protection Agency, variously paged.
 - ____1986, Quality Criteria for Water 1986: U.S. Environmental Protection Agency, EPA 44/5-86-001, variously paged.
 - ____1992, NPDES stormwater sampling guidance document: U.S. Environmental Protection Agency, 121 p.
- _____1993a, Determination of inorganic anions in water by ion chromatography: U.S. Environmental Protection Agency, Office of Research and Development, revision 2.1, variously paged.
 - _____1993b, Methods for the determination of inorganic substances in environmental samples: Cincinnati, OH, EPA/600/R-93/100, U.S. Environmental Protection Agency, 169 p.
 - ____1994, Methods for the determination of metals in environmental samples, supplement 1: Cincinnati, OH, EPA/600/R-94/111, Revision 5.4, May 1994: U.S. Environmental Protection Agency, variously paged.
 - ____1999, Indicators of the environmental impacts of transportation: U.S. Environmental Protection Agency Final Report, EPA 230-R-99-001, 189 p. ___2001, accessed September 2000,at URL http://www.epa.gov/docs/OWOW/estuaries/
- coastlines/coastlines6.3/monicbay.html.
 U.S. Geological Survey, 1992, Recommendations for use of retransformation methods in regression models used to estimate sediment loads ("the biascorrection problem"): U.S. Geological Survey Office of Surface Water Technical Memorandum 93.08, 13 p.

- Webb, W.E., Radtke, D.B., and Iwatsubo, R.T., 1998, Surface-water sampling-collection methods at flowing and still-water sites, *in* Wilde, F.W., Radtke, D.B., Gibs, Jacob and Iwatsubo, R.T., eds., National field manual for the collection of water quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A4.1, p. 23–59.
- Wilde, F.D., and Gibs, Jacob, 1998, Turbidity, *in* Wilde,
 F.W., and Radtke, D.B., eds., National field
 manual for the collection of water quality data:
 U.S. Geological Survey Techniques of WaterResources Investigations, book 9, chap. A6.7,
 15 p.
- Wilde F.D., and Radtke, D.B., 1998, Techniques to prevent sample contamination, *in* Wilde, F.W., Radtke, D.B., Gibs, Jacob and Iwatsubo, R.T., eds., National field manual for the collection of water quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A4.0, p. 15–22.
- Wilde, F.W., Radtke, D.B., Gibs, Jacob, and Iwatsubo, R.T., eds., 1998, Processing of water samples, *in* National field manual for the collection of waterquality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A5, 128 p.
- Woodward and Curran 1998, Boston Water and Sewer Commission summary report: Residential Stormwater Monitoring Project, variously paged.
- Young, G.K., Stein, S., Cole, P., Kammer, T., Graziano., F., and Bank, F., 1996, Evaluation and management of highway runoff water quality: Federal Highway Administration Final report FHWA-PD-96-032, 480 p.
- Zarriello, P., and Barlow, L., 2002, A rainfall-runoff model to simulate runoff to the lower Charles River, Massachusetts, October 1999–2000: U.S. Geological Survey Water-Resources Investigations Report 02-4129, 89 p.

TABLES 22–27

Table 22. Dry-weather constituent concentrations and physical properties measured between July 1999 and July 2000, Lower

[Date: Is in month, day, and year. Time: All times are eastern standard and are in hours and minutes. CFU/100 mL, colony-forming units per 100 milliliters; S, split samples; e, estimated; <, less than value shown; --, not measured]

Charles River at Watertown (01104615) 6-29-99 0930 420 4.0 230 <10	Date	Time	Specific conductance (µS/cm)	Turbidity (NTU)	Biochemical oxygen demand (mg/L)	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Dissolved solids (mg/L)	Suspended solids (mg/L)	Nitrate, total (mg/L as N)
				C	harles River at	Watertown (01	104615)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6-29-99	0930	420	4.0		230	<10	461	4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-19-99	1300	390	2.0	<2	270	40	232	5	0.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-30-99	1225	380	2.0	<2			185	<4	.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8-26-99	1100	94	2.3	<2	90	40	257	<2.5	.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8-26-99S				<2			245	<2.5	.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9-27-99	1245	260	4.0	3.1	330	100	207	6	.30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-26-99	1152	310	3.9	<2	60	60	208	6	.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11-19-99	1245			<2	5,000	3,000	219	3	.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12-29-99	0950	59	2.0	<2	40	60	282	3	.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12-29-99S				<2	60	50	252	3	.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-24-00	1350	370	2.6	4.3	260	20	202	<4	.80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-24-00	0900	77	3.0	<2	60	90	258	3	1.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-23-00	0920	280	1.9	<2	30	10	128	4	.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5-01-00	1050	250	8.5	<2	70	20	136	6	.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-27-00	0930	320	3.7	<2	390	90	148	4	.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-27-00S				<2	560	70	143	4	.50
Single-family land use (01104630) $6-29-99$ 61423 $7-19-99$ 113093022.015.0120,00061,000427200.80 $7-30-99$ 104520060 $8-26-99$ 0930462.8<2	7-25-00	0530	260	9.6	3.6	510	180	190	8	.20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Single-family	land use (01104	630)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6-29-99							614	23	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-19-99	1130	930	22.0	15.0	120.000	61,000	427	20	0.80
8-26-99 0930 46 2.8 <2 5800 5400 153 <2.5 2.80 $9-27-99$ 1041 540 2.7 <2 $4,900$ $10,000$ 313 3 4.10 $10-26-99$ 0950 460 1.3 <2 $2,900$ $1,500$ 246 <2.5 2.60 $11-19-99$ 1145 $$ $$ <2 <10 <10 198 4 1.20 $12-29-99$ 1200 730 10.0 <2 <10 <10 198 4 1.20 $12-29-99$ 1200 730 10.0 <2 <10 <10 198 4 1.20 $12-29-99$ 1200 730 10.0 <2 <10 <10 1990 12 $.20$ $1-24-00$ 1245 350 3.7 2.0 <10 <10 264 7 $.80$ $2-24-00$ 1030 360 9.3 <2 <10 <10 987 6 1.40 $3-24-00$ 1100 520 1.3 <2 <10 <10 265 $e2.5$ 1.80 $5-01-00$ 1145 700 7.2 <2 <10 <10 345 <2.5 2.10 $6-27-00$ 1030 610 2.8 <2 $21,000$ 850 301 <2.5 2.40 $7-25-00$ 645 44 22.0 4.9 670 $1,700$ 250 5 3.30 Laun	7-30-99	1045				200	60			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8-26-99	0930	46	2.8	<2	58.000	5.400	153	<2.5	2.80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9-27-99	1041	540	2.7	<2	4,900	10,000	313	3	4.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-26-99	0950	460	1.3	<2	2,900	1,500	246	<2.5	2.60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11-19-99	1145			<2	<10	<10	198	4	1.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12-29-99	1200	730	10.0	<2	<10	<10	1,910	12	.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-24-00	1245	350	3.7	2.0	<10	<10	264	7	.80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-24-00	1030	360	9.3	<2	<10	<10	987	6	1.40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-24-00	1100	520	1.3	<2	<10	<10	265	e2.5	1.80
6-27-00 1030 610 2.8 <2 21,000 850 301 <2.5 2.40 7-25-00 0645 44 22.0 4.9 670 1,700 250 5 3.30 Laundry Brook (01104640) 6-29-99	5-01-00	1145	700	7.2	<2	<10	<10	345	<2.5	2.10
7-25-00 0645 44 22.0 4.9 670 1,700 250 5 3.30 Laundry Brook (01104640) 6-29-99	6-27-00	1030	610	2.8	<2	21,000	850	301	<2.5	2.40
Laundry Brook (01104640) 6-29-99 <td>7-25-00</td> <td>0645</td> <td>44</td> <td>22.0</td> <td>4.9</td> <td>670</td> <td>1,700</td> <td>250</td> <td>5</td> <td>3.30</td>	7-25-00	0645	44	22.0	4.9	670	1,700	250	5	3.30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Laundry B	Brook (01104640))			
7-19-99 1207 430 10.0 <2 790 $2,600$ 247 <4 2.30 $7-30-99$ 1025 $1,900$ $1,400$ $8-26-99$ 1000 91 2.3 <2 $1,200$ 310 265 <2.5 2.90 $8-26-99S$ $1,800$ 180	6-29-99									
7-30-99 1025 $$ $$ $1,900$ $1,400$ $$ $$ $$ $8-26-99$ 1000 91 2.3 <2 $1,200$ 310 265 <2.5 2.90 $8-26-99$ $$ $$ $$ $$ $$ $$ $$ $$ $8-26-99$ $$ $$ $$ $$ $$ $$ $$ $8-26-99$ $$ $$ $$ $$ $$ $$ $$ $$	7-19-99	1207	430	10.0	</td <td>790</td> <td>2.600</td> <td>247</td> <td><4</td> <td>2.30</td>	790	2.600	247	<4	2.30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7_30_00	1025			~2	1 900	1 400			
8-26-998 1800 180	, 50-99 8-26-99	1000	- 91	23	</td <td>1 200</td> <td>310</td> <td>265</td> <td><25</td> <td>2.90</td>	1 200	310	265	<25	2.90
	8-26-995					1.800	180			

Charles River Watershed, Massachusetts

µS/cm, microsiemens per centimeter at 25 degrees Celsius; NTU, nephelometric turbidity units; µg/L, micrograms per liter; mg/L, milligrams per liter;

Date	Time	Nitrogen, ammonia, total (mg/L as N)	Nitrogen, total Kjeldahl (mg/L as N)	Phos- phorus, total (mg/L)	Cadmium, total (µg/L)	Chromium, total (μg/L)	Copper, total (µg/L)	Lead, total (µg/L)	Zinc, total (μg/L)			
Charles River at Watertown (01104615)												
6-29-99	0930				< 0.05	e1.1	2.7	3.4	10.0			
7-19-99	1300	0.10	0.80	< 0.05	<.05	e1	2.8	3.8	10.0			
7-30-99	1225	<.075	.50	<.05	<.5	e.8	2.2	1.3	<10			
8-26-99	1100	.10	.80	.10	<.2	2.0	2.2	1.0	e4			
8-26-99S		.10	.70	.10	<.2	<2	2.0	.9	2.7			
9-27-99	1245	.10	1.00	.10	<.2	e4	e5	4.9	15.0			
10-26-99	1152	.10	.90	e.05	<.2	e3	e4	3.4	12.0			
11-19-99	1245	.10	.90	.10	<.2	2.0	e3	2.2	9.0			
12-29-99	0950	.20	.80	.10	<.2	2.0	e2	2.2	19.0			
12-29-99S		.20	.80	<.1	<.2	<2	8.0	2.3	18.0			
1-24-00	1350	.20	.70	.10	<.2	2.0	e3	2.4	15.0			
2-24-00	0900	.20	.70	.10	<.2	5.0	e3	1.6	17.0			
3-23-00	0920	.20	.60	<.1	<.5	<2	e3	2.6	9.8			
5-01-00	1050	<.075	.70	.10	<.2	2.0	e3	3.8	99.0			
6-27-00	0930	.10	.70	.10	<.2	e2	e4	5.2	14.0			
6-27-00S		.10	.80	.10	<.2	2.0	4.0	5.2	14.0			
7-25-00	0530	<.075	.80	.10	<.2	<2	3.6	3.4	9.7			
				Single-famil	ly land use (01	104630)						
6-29-99					0.1	e1.8	27.0	9.7	24.0			
7-19-99	1130	15.00	19.00	1.20	.6	e1	13.0	23.0	88.0			
7-30-99	1045											
8-26-99	0930	<.075	.90	.50	<.2	<2	15.0	5.5	39.0			
9-27-99	1041	1.60	2.00	.40	<.2	<2	19.0	2.1	17.0			
10-26-99	0950	.90	2.10	.20	<.2	<2	e8	1.2	14.0			
11-19-99	1145	.70	1.70	.30	<.2	<2	e5	1.1	7.7			
12-29-99	1200	.60	1.00	.10	<.2	e2	e12	7.6	14.0			
1-24-00	1245	.50	.90	.10	<.2	<2	e7	2.4	8.7			
2-24-00	1030	.50	1.60	.10	<.2	<5	14.0	8.9	32.0			
3-24-00	1100	.50	2.00	.10	<.5	<2	7.7	.8	15.0			
5-01-00	1145	.50	1.40	.10	<.2	<2	9.6	.8	15.0			
6-27-00	1030	.40	1.20	.30	<.2	e1	e9	1.0	12.0			
7-25-00	0645	1.10	1.80	.40	<.2	<2	12.0	4.5	17.0			
				Laundry	Brook (01104	640)						
6-29-99					0.1	e1	3.0	0.5	11.0			
7-19-99	1207	0.10	0.50	0.10	< .05	e.71	4.6	1.5	11.0			
7-30-99	1025											
8-26-99	1000	<.075	.40	.10	<.2	<2	6.3	e.6	19.0			
8-26-99S												

Table 22. Dry-weather constituent concentrations and physical properties measured between July 1999 and July 2000, Lower

Date	Time	Specific conductance (µS/cm)	Turbidity (NTU)	Biochemical oxygen demand (mg/L)	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Dissolved solids (mg/L)	Suspended solids (mg/L)	Nitrate, total (mg/L as N)			
Laundry Brook (01104640)—Continued												
9-27-99	1126	300	0.7	2.2	4,600	290	201	<2.5	1.20			
10-26-99	1042	300	3.3	3.1	2,000	520	178	4	.90			
11-19-99	1215			<2	50	40	232	e2.5	1.00			
12-29-99	1045	71	2.5	2.4	760	140	322	<2.5	1.30			
1-24-00	1320	570	1.9	<2	4,500	380	295	<4	1.50			
2-24-00	1000	180	4.2	<2	5,500	1,300	503	3	1.50			
3-24-00	1030	610	2.4	<2	830	220	332	e4	1.50			
5-01-00	1110	500	2.6	<2	480	440	268	4	1.80			
6-27-00	1000	460	2.2	2.7	1,000	570	227	<2.5	.70			
7-25-00	0645	150	11.0	<2	150	290	180	<5	.80			
7-25-00S				<2	210	240	190	<5	.80			
				Faneuil Br	rook (01104660))						
6-29-99												
7-19-99	1340	740		22.0	230,000	49,000	497	109	2.90			
7-30-99	0745	850	52.0	8.8	270,000	24,000	349	10	3.50			
8-26-99	1115	180	100.0	6.4	78,000	2,500	466	35	2.10			
9-27-99	1120	690	97.0	3.2	27,000	4,200	407	117	1.80			
10-26-99	1100	1,100	1.6	<2	14,000	1,400	562	<2.5	3.00			
11-19-99	1300			4.8	67,000	22,000	592	e2.5	3.10			
12-29-99	1230	160	2.0	2.7	22,000	3,200	478	<2.5	2.20			
12-29-99S				3.2	31,000	3,100	506	<2.5	2.40			
1-24-00	1415	950	4.2	<2	13,000	3,000	492	<5	3.30			
2-24-00	1330	500	37.0	3.6	5,400	1,700	783	11	1.90			
3-24-00	0930	870	2.2	4.6	11,000	88,000	469	3	2.50			
5-01-00	1045			<2	22,000	450	478	<2.5	2.40			
6-27-00	1230	980	2.5	<2	64,000	1,900	532	<2.5	2.60			
7-25-00	0800	360	15.0	2.5	39,000	6,400	530	<5	e2			
				Multifamily la	and use (011046	573)						
6-29-99												
7-19-99												
7-30-99	0900			2.6	<10	<10	1,010	15	3.40			
8-26-99	0930	220	5.8	<2	320	320	1,050	7	3.70			
9-27-99	1040	1,100	1.6	<2	1,800	170	954	<2.5	3.50			
10-26-99	1100	1,100	.8	<2	180	30	675	<2.5	2.40			
10-26-99S				<2	57	21	635	<2.5	2.40			
11-19-99	1225			2.4	3,500	130	656	e2.5	5.00			
12-29-99	1135	200	1.7	3.3	350	40	742	<2.5	3.80			
1-24-00	1200	920	1.7	4.8	5,800	3,500	1,010	<4	2.10			

Charles River Watershed, Massachusetts—Continued

Date	Time	Nitrogen, ammonia, total (mg/L as N)	Nitrogen, total Kjeldahl (mg/L as N)	Phos- phorus, total (mg/L)	Cadmium, total (µg/L)	Chromium, total (μg/L)	Copper, total (µg/L)	Lead, total (µg/L)	Zinc, total (μg/L)				
Laundry Brook (01104640)—Continued													
9-27-99	1126	< 0.075	0.60	0.10	<0.2	e2	9.0	2.8	11.0				
10-26-99	1042	<.075	1.10	.10	<.2	<2	e5	2.4	11.0				
11-19-99	1215	.10	.80	.10	<.2	<2	e6	3.2	9.9				
12-29-99	1045	<.075	.60	.10	<.2	<2	e9	3.6	12.0				
1-24-00	1320	.10	.60	.10	<.2	<2	e4	2.0	13.0				
2-24-00	1000	.30	.90	.10	<.2	<5	e8	3.4	27.0				
3-24-00	1030	.10	.60	.10	<.5	<2	6.2	2.5	18.0				
5-01-00	1110	.10	.70	.10	<.2	<2	e5	1.7	40.0				
6-27-00	1000	<.075	.70	.10	<.2	e1	e5	2.0	9.2				
7-25-00	0645	<.075	.80	<.05	<.2	<2	5.3	2.3	7.3				
7-25-00S		<.075	.60	.10	<.2	<2	5.4	2.3	7.2				
				Faneuil	Brook (011046	60)							
6-29-99													
7-19-99	1340	2.20	6.40	0.90	0.3	3.0	25.0	38.0	100.0				
7-30-99	0745	1.20	2.50	.20	<.5	e.7	4.6	3.8	15.0				
8-26-99	1115	.80	1.60	.20	<.2	<2	4.2	4.3	11.0				
9-27-99	1120	.50	1.20	.20	<.2	e6	e13	16.0	80.0				
10-26-99	1100	.60	1.10	.10	<.2	<2	e4	.5	13.0				
11-19-99	1300	.70	1.60	.10	<.5	<2	e4	.7	200.0				
12-29-99	1230	.60	1.20	.10	<.2	<2	e4	.7	77.0				
12-29-99S		.50	1.10	<.1	<.2	<2	3.2	.7	78.0				
1-24-00	1415	.40	.90	.10	<.2	<2	e4	8.8	63.0				
2-24-00	1330	.30	1.20	.10	<.2	<5	e10	5.9	50.0				
3-24-00	930	.20	.80	<.1	<.5	<2	4.0	.8	29.0				
5-01-00	1045	.20	1.00	.10	<.2	<2	e6	1.1	21.0				
6-27-00	1230	.30	.90	.10	<.2	e1	e5	.6	9.7				
7-25-00	0800	.50	1.60	.20	<.2	<2	4.8	1.0	9.9				
				Multifamily	y land use (011	04673)							
6-29-99													
7-19-99													
7-30-99	0900	<.075	0.80	0.30	<0.5	7.6	25.0	180.0	180.0				
8-26-99	0930	<.075	1.50	.20	.6	<2	19.0	21.0	160.0				
9-27-99	1040	.10	.40	.30	.2	e.9	¹ 9	10.0	350.0				
10-26-99	1100	.20	.80	.30	<.2	<2	e7	1.9	24.0				
10-26-99S		.20	.80	.30	<.2	<2	6.3	1.7	25.0				
11-19-99	1225	.70	1.50	.70	<.2	<2	13.0	3.6	44.0				
12-29-99	1135	.30	1.20	.40	<.2	<2	e10	3.3	27.0				
1-24-00	1200	2.60	3.20	1.00	<.2	<2	16.0	8.6	45.0				

Date	Time	Specific conductance (µS/cm)	Turbidity (NTU)	Biochemical oxygen demand (mg/L)	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Dissolved solids (mg/L)	Suspended solids (mg/L)	Nitrate, total (mg/L as N)
			Mult	tifamily land us	e (01104673)—	Continued			
2-24-00	1220	350	35.0	5.6	22,000	10,000	1,380	18	1.80
3-24-00	1030	1,200	.5	<2	1,400	2,300	1,180	e2.5	3.10
5-01-00	1145			4.6	27,000	1,800	287	3	2.00
6-27-00	1045	960	2.9	17.0	19,000	1,200	564	<2.5	2.50
7-26-00	0742	25	7.6	7.8	21,000	1,300	930	9	5.20
				Commercial la	and use (01104	677)			
6-29-99									
7-19-99									
7-30-99	1045			45.0			490	21	0.30
8-26-99	1015	400	110.0	10.0	170	150	631	6	.20
9-27-99	1015	1,600	.7	<2	<10	<10	648	3	.30
10-26-99	0945	1,200	1.0	<2	10	10	616	52	.60
11-19-99	1145			<2	<10	30	699	e2.5	.40
12-29-99	1055	250	3.1	<2	1,100	1,000	671	3	2.60
1-24-00	1100	1,800	6.2	<2	<10	20	484	<4	1.50
2-24-00	1055	510	32.0	3.3	120	360	926	13	1.50
3-24-00	1120	2,100	1.3	<2	10	20	691	e2.5	2.30
5-01-00	1215	4,100	3.7	<2	<10	<10	632	<2.5	1.90
6-27-00	1000	1,100	2.6	2.9	54,000	780	950	<2.5	.40
7-25-00	0825	110	9.3	<2	250	90	560	19	.50
				Muddy Ri	iver (01104683)				
6-29-99							547	11	
7-19-99	1450	360		2.2	<10	<10	196	5	0.30
7-30-99									
8-26-99	0840	59	5.3	<2	<10	<10	176	5	.30
9-27-99	0957	350	5.1	<2	10	<10	224	8	.50
10-26-99	0930	400	5.3	<2	20	<10	218	7	.70
11-19-99	1025			<2	<10	20	204	5	.50
12-29-99	1230	75	2.6	<2	10	<10	324	3	1.10
1-24-00	1210	860	13.0	4.6	660	610	525	5	1.00
2-24-00	1100	220	10.0	<2	260	300	626	6	1.30
3-24-00	1325	590	3.4	<2	10	<10	307	3	1.50
3-24-00S				<2			302	3	1.50
5-01-00	1230	670	8.0	4.4	250	160	366	7	1.60
6-27-00	1100	700	5.8	2.9	4,200	1,100	350	11	.90
7-25-00	1000	120	23.0	4.6	1,200	160	200	11	.50

Table 22. Dry-weather constituent concentrations and physical properties measured between July 1999 and July 2000, Lower

Charles River Watershed, Massachusetts-Continued

Date	Time	Nitrogen, ammonia, total (mg/L as N)	Nitrogen, total Kjeldahl (mg/L as N)	Phos- phorus, total (mg/L)	Cadmium, total (µg/L)	Chromium, total (μg/L)	Copper, total (μg/L)	Lead, total (µg/L)	Zinc, total (μg/L)				
Multifamily land use (01104673)—Continued													
2-24-00	1220	1.30	2.50	0.40	< 0.2	<5	26.0	15.0	61.0				
3-24-00	1030	1.70	2.70	.40	<.5	<2	14.0	2.1	49.0				
5-01-00	1145	.30	.80	.20	<.2	2.2	18.0	14.0	65.0				
6-27-00	1045	3.70	5.70	.60	<.2	e2	36.0	15.0	91.0				
7-25-00	0742	.40	1.00	.60	<.2	2.0	19.0	41.0	60.0				
				Commercia	l land use (011	04677)							
6-29-99													
7-19-99													
7-30-99	1045	0.60	1.60	0.70	< 0.5	e1	40.0	23.0	110.0				
8-26-99	1015	.30	1.60	2.70	<.2	<2	25.0	4.6	60.0				
9-27-99	1015	.10	.20	.20	<.2	e.9	e11	3.0	42.0				
10-26-99	1045	<.075	.30	.40	<.2	<2	17.0	34.0	38.0				
11-19-99	1145	<.075	.30	.20	<.2	<2	e6	1.4	28.0				
12-29-99	1055	.10	.60	.30	<.2	<2	e8	6.8	64.0				
1-24-00	1100	<.075	.30	.20	<.2	<2	e3	.8	15.0				
2-24-00	1055	.30	1.00	.20	<.2	<5	23.0	24.0	100.0				
3-24-00	1120	<.075	.50	.10	<.5	<2	6.1	1.2	14.0				
5-01-00	1215	.10	.50	.10	<.2	<2	e7	1.5	25.0				
6-27-00	1000	.70	.70	.30	<.2	e1	61.0	20.0	120.0				
7-25-00	0825	.20	.50	.20	<.2	<2	21.0	9.4	38.0				
				Muddy	River (011046	83)							
6-29-99					0.1	e0.96	4.7	2.6	10.0				
7-19-99	1450	0.50	1.20	0.10	<.05	e.73	5.6	4.7	12.0				
7-30-99													
8-26-99	0840	.40	1.00	.10	<.2	<2	5.2	4.5	e10				
9-27-99	0957	.60	1.10	.10	<.2	<2	e8	e4.3	29.0				
10-26-99	0930	.50	1.10	.10	<.2	2.0	e7	6.3	15.0				
11-19-99	1025	.60	1.10	.10	<.2	<2	e6	3.9	9.7				
12-29-99	1230	.50	.90	<.1	<.2	<2	e6	3.3	14.0				
1-24-00	1210	.60	1.30	.20	<.2	<2	e5	3.6	20.0				
2-24-00	1100	.40	1.10	.10	<.2	<5	e9	4.8	30.0				
3-24-00	1325	.30	1.40	<.1	<.5	<2	6.2	3.4	15.0				
3-24-00S		.30	1.00	<.1	<.5	<2	4.9	2.9	15.0				
5-01-00	1230	.30	1.10	.10	<.2	<2	e5	4.9	97.0				
6-27-00	1100	.80	1.30	.20	<.2	e1	e7	5.6	18.0				
7-25-00	1000	.40	9.00	.10	<.2	<2	6.8	4.4	9.1				

Date	Time	Specific conductance (µS/cm)	Turbidity (NTU)	Biochemical oxygen demand (mg/L)	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Dissolved solids (mg/L)	Suspended solids (mg/L)	Nitrate, total (mg/L as N)
				Stony Bro	ook (01104687)				
6-29-99									
7-19-99									
7-30-99	0900	470	2.0	<2	310	90	230	<4	1.30
8-26-99	0815	100	3.5	<2	20	<10	172	<2.5	1.40
9-27-99	0855	600	3.1	<2	10	<10	351	<2.5	1.50
9-27-995				\sim			342	~25	1.50
10_26_99	0835	560	1.6	\sim	<10	<10	295	<2.5	1.30
11-19-99	1000			<2	20	<10	223	e2.5	1.20
12-29-99	0945	110	19	<2	<10	<10	318	<2.5	1.30
1-24-00	1310	670	4.3	3.1	40	30	844	4	1.50
2 24 00	0020	220	69	~?	40	<10	622	2	1 20
2-24-00	0930	220	0.8	<2	40	<10	033	3	1.50
2-24-003	1330	680			50	<10 60	367	 e2 5	1.90
3-24-00	1550		2.5	~2	50	20			1.90
5-01-00	1325		7.2	\sim	20	<10	365	3	1.90
5-01-00	1525	000	1.2	\ 2	20	<10	505	5	1.90
5-01-00S				<2	50	<10	374	3	1.90
6-27-00	1145	720	5.0	<2	40	<10	369	<2.5	2.00
7-25-00	0910	250	23.0	<2	<10	10	370	<5	1.90
			Charles	River at Boston	Science Museu	um (01104710)			
6-29-99	1310				<10	<10	876	6	
7-19-99	1300			5.5	10	<10	889	<5	0.10
7-30-99									
8-26-99	0740	350	4.2	<2	20	<10	885	<2.5	.20
9-27-99	0850	490	3.1	<2	20	<10	875	5	.40
10-26-99	0811	500	3.0	<2	30	10	635	e4	.50
11-19-99	0950			2.3	80	10	266	e4	.50
12-29-99	1400	71	2.3	2.1	30	10	295	<4	.80
1-24-00	1130	470	3.3	2.7	<10	20	188	<4	.80
2-24-00	1135	120	6.0	<2	100	20	328	3	1.00
3-24-00	1230	450	2.9	<2	30	10	430	5	e.7
5-01-00	1310	290	4.2	<2	10	10	143	3	.50
5-01-00S				<2	10	10	134	3	.50
6-27-00	1130	460	5.2	<2	30	10	233	4	.50
7-25-00	0910	970	2.4	<2	60	10	520	<5	.50

Table 22. Dry-weather constituent concentrations and physical properties measured between July 1999 and July 2000, Lower

Charles River Watershed, Massachusetts—Continued

Date	Time	Nitrogen, ammonia, total (mg/L as N)	Nitrogen, total Kjeldahl (mg/L as N)	Phos- phorus, total (mg/L)	Cadmium, total (µg/L)	Chromium, total (μg/L)	Copper, total (µg/L)	Lead, total (µg/L)	Zinc, total (μg/L)
				Stony H	Brook (0110468	37)			
6-29-99									
7-19-99									
7-30-99	0900	0.50	1.20	1.30	< 0.5	e0.5	3.2	1.8	<10
8-26-99	0815	.40	1.20	<.1	<.2	<2	3.4	.9	e8
9-27-99	0855	.40	1.00	.10	<.2	e.9	e4	1.1	20.0
9-27-99S		.40	.80	.10	<.2	<.2	3.8	1.0	19.0
10-26-99	0835	.30	1.00	.10	<.2	<2	e4	1.0	20.0
11-19-99	1000	.40	.90	.10	<.2	<2	e4	1.0	11.0
12-29-99	0945	.40	1.00	<.1	<.2	<2	e3	9.5	23.0
1-24-00	1310	.50	1.30	.10	<.2	<2	e4	2.1	16.0
2-24-00	0930	.30	.90	.10	<.2	<5	7.0	e4.2	35.0
2-24-00S									
3-24-00	1330	.30	.90	<.1	<.5	<2	4.7	1.3	23.0
3-24-00S									
5-01-00	1325	.20	.80	.10	<.2	<2	e7	1.8	25.0
5-01-00S		.20	.80		<.2	<2	e4	1.8	24.0
6-27-00	1145	.40	.80	.10	<.2	e1	e7	1.7	36.0
7-25-00	0910	.50	1.10	.10	<.2	<2	5.2	1.1	17.0
			Charles l	River at Bost	on Science Mu	seum (0110471	0)		
6-29-99	1310				0.1	e1.4	5.9	2.8	10.0
7-19-99	1300	< 0.075	0.80	< 0.05	<.05	e.82	6.6	2.2	<10
7-30-99									
8-26-99	0740	<.075	.60	<.1	<.2	<2	6.1	1.6	23.0
9-27-99	0850	.30	.70	.10	<.2	e2	e6	5.5	12.0
10-26-99	0811	.10	.70	.10	<.2	e3	e6	5.0	19.0
11-19-99	0950	.20	.80	.10	<.2	<2	e4	3.7	11.0
12-29-99	1400	.20	.70	<.01	<.2	<2	e5	2.6	22.0
1-24-00	1130	.20	.70	.10	<.2	e2	e8	1.8	16.0
2-24-00	1135	.20	.70	.20	<.2	<5	e4	2.4	20.0
3-24-00	1230	.40	.50	<.01	<.5	<2	5.3	2.8	19.0
5-01-00	1310	<.075	.80	<.05	<.2	<2	e6	3.9	12.0
5-01-00S		.10	.70		<.2	<2	e4	3.8	11.0
6-27-00	1130	.30	1.00	.10	<.2	e2	e7	8.9	21.0
7-25-00	0910	.20	.70	<.05	<.2	<2	6.9	6.4	31.0

Table 23. Event mean concentrations of stormwater constituents and water-quality properties measured between January 2000

[Date: Is in month, day, and year. Time: All times are eastern standard and are in hours and minutes. CFU/100 mL, colony-forming units per 100 milliliters; S, split samples; e, estimated; <, less than value shown; --, not measured]

Start da and tin	nte ne	End d and ti	ate me	Specific conduc- tance (µS/cm)	Turbidity (NTU)	Biochemical oxygen demand, 5-day (mg/L)	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Dis- solved solids (mg/L)	Suspended solids (mg/L)	Nitrate, total (mg/L as N)
					Charles Ri	ver at Waterto	wn (0110461	5)			
1-10-00	1430	1-11-00	1845			2.1	650	1,700	214	7	0.70
4-09-00	0015	4-10-00	0000				220	180	156	10	.50
5-18-00	1600	5-20-00	0000	280	6.2	<2	510	810	175	10	.50
6-02-00	1630	6-03-00	0730	280	7.4	3.4	3,900	2,600	e180	12	.60
6-06-00	0800	6-07-00	1900	240	7.4		1,900	1,600	137	14	.50
7-09-00	1915	7-10-00	2330	340	5.0		4,500	2,700	220	<10	.50
7-16-00	0000	7-16-00	1800	330	3.7	<2	5,200	3,800	190	6	.40
7-27-00	0545	7-28-00	0000	270	9.6	<2	4,700	8,300	160	16	.20
7-27-00S						3.0			140	18	.20
9-15-00	0730	9-16-00	0000	270	14.0		17,000		130	20	.30
					Single-f	amily land use	e (01104630)				
1-10-00	1515	1-10-00	2200	130	57.0	4.0	16,000	5,500	118	91	0.60
4-09-00	0015	4-09-00	0930	120	76.0		2,800	9,400	43	103	.30
5-18-00	1845	5-18-00	1645	94	50.0	13.0	28,000	87,000	65	55	.60
6-02-00	1745	6-02-00	2100	150	100.0	24.0	14,000	39,000	e130	269	1.30
6-02-00S						20.0			e120	240	1.40
6-06-00	0800	6-07-00	1030	49	17.0		34,000	30,000	20	61	.20
7-09-00	1915	7-09-00	2345	130	44.0	20.0	94,000	38,000	120	82	2.00
7-16-00	0000	7-16-00	0615	130	28.0	15.0	21,000	7,600	32	27	1.20
7-27-00	0400	7-27-00	1515	44	22.0	3.1	32,000	54,000	38	48	.30
9-15-00	0630	9-15-00	1445								
					Lau	ndry Brook (02	1104640)				
1-10-00	1445	1-11-00	1215	240	12.0	5.2	3,500	1,700	172	16	1.00
4-09-00	0015	4-09-00	2115				1,200	3,600	124	51	.60
5-18-00	1600	5-19-00	2330	240	16.0	7.2	9,100	13,000	154	20	.70
6-02-00	1730	6-03-00	1145	250	86.0	20.0	36,000	10,000	e170	142	1.10
6-06-00	0815	6-08-00	0000	160	12.0		25,000	29,000	89	23	.30
7-09-00	1915	7-10-00	2000	310	27.0	12.0	9,400	4,600	200	62	1.00
7-16-00	0000	7-16-00	2045	240	18.0	9.3	44,000	29,000	110	33	.60
7-27-00	0445	7-27-00	2115	150	11.0	3.4	34,000	46,000	83	18	.30
9-15-00	0615	9-15-00	1700	250	23.0		32,000		120	36	.40
					Fan	euil Brook (01	104660)				
1-10-00	1500	1-10-00	0245	120	12.0	8.4	27,000	13,000	152	49	1.10
4-09-00	0015	4-09-00	0915	320	32.0		24,000	4,400	155	34	.70
5-18-00	1900	5-19-00	0818	340	44.0	8.6	43,000	63,000	212	45	1.10
6-02-00	1730	6-02-00	2115	230	160.0	20.0	41,000	34,000		318	e.8
6-06-00	0815	6-07-00	1115	190	24.0		21,000	19,000	102	43	.30

and September 2000, Lower Charles River Watershed, Massachusetts

µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per liter; NTU, nephelometric turbidity units;

	Start da and tin	ate ne	End da and tii	ate me	Nitrogen, ammonia, total (mg/L as N)	Nitrogen, total Kjeldahl (mg/L as N)	Phos- phorus, total (mg/L)	Cadmium, total (µg/L)	Chromium, total (µg/L)	Copper, total (µg/L)	Lead, total (µg/L)	Zinc, total (µg/L)
						Charles F	River (0110	4615)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-10-00	1430	1-11-00	1845	0.10	0.80	0.10	< 0.2	2.0	4.1	4.8	16.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4-09-00	0015	4-10-00	0000	<.075	.80	.10	<.5	e2	5.0	e5.2	17.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5-18-00	1600	5-20-00	0000	.10	.80	.20	<.2	e2	e5	5.2	15.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-02-00	1630	6-03-00	0730	.20	1.00	.10	.2	e2	e9	8.4	30.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6-06-00	0800	6-07-00	1900	.10	.70	.10	<.2	2.2	5.7	8.3	25.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-09-00	1915	7-10-00	2330	.20	1.10	.10	<.2	e2	e10	6.4	20.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-16-00	0000	7-16-00	1800	.20	.90	.10	<.2	e2	4.8	4.4	14.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-27-00	0545	7-28-00	0000	.30	.80	.10	<.2	2.5	7.9	10.0	18.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7-27-00S				.30	.90	.10	.2	2.4	7.5	9.8	32.0
	9-15-00	0730	9-16-00	0000	.20	1.60	.20	<.2	e3	8.0	12.9	92.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					S	Single-family	land use (0	01104630)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-10-00	1515	1-10-00	2200	0.34	1.40	0.20	0.2	e9	31.2	57.9	79.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-09-00	0015	4-09-00	0930	<.075	1.30	.20	<.5	9.6	31.3	54.5	86.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5-18-00	1845	5-18-00	1645	.20	2.60	.50	<.2	e7	35.5	32.0	90.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-02-00	1745	6-02-00	2100	1.20	5.20	e.91	.5	17.0	72.8	135.0	230.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-02-00S				1.20	5.60	e.96	.5	16.0	72.0	129.0	230.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-06-00	0800	6-07-00	1030	.10	.90	.30	<.2	4.3	13.7	22.4	45.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-09-00	1915	7-09-00	2345	1.30	3.80	.50	.3	8.2	63.6	53.3	160.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-16-00	0000	7-16-00	0615	.70	2.40	.40	<.5	5.0	35.3	23.2	92.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-27-00	0400	7-27-00	1515	.20	.90	.10	.2	5.4	19.4	35.3	64.0
Laundry Brook (01104640) $1-10-00$ 1445 $1-11-00$ 1215 0.10 0.90 0.10 <0.2 $e3$ $e16$ 16.0 40.0 $4-09-00$ 0015 $4-09-00$ 2115 <0.75 1.20 $.20$ $<.5$ $e5$ 20.0 39.0 120.0 $5-18-00$ 1600 $5-19-00$ 2330 $.10$ 1.40 $.20$ $<.2$ $e3$ 26.0 18.0 63.0 $6-02-00$ 1730 $6-03-00$ 1145 $.80$ 3.40 $.60$ $.9$ 15.0 82.0 110.0 270.0 $6-06-00$ 0815 $6-08-00$ 0000 $.10$ $.80$ $.10$ $<.2$ 2.9 13.0 17.0 38.0 $7-09-00$ 1915 $7-10-00$ 2000 $.50$ 2.60 $.30$ $.3$ $e5$ 36.0 39.0 120.0 $7-16-00$ 0000 $7-16-00$ 2045 $.50$ 1.80 $.20$ $<.5$ 3.0 20.0 24.0 100.0 $7-27-00$ 2415 $.10$ 1.40 $.10$ $<.2$ 3.0 10.0 12.0 24.0 $9-15-00$ 0615 $9-15-00$ 1700 $.20$ 3.40 $.30$ $<.2$ $e3$ 15.0 18.0 43.0 Faneuil Brook (01104660)1-10-00 1245 0.10 1.10 0.10 0.2 $e4$ $e15$ 34.0 85.0 4.09-00 0915 <075 $.90$ </td <td>9-15-00</td> <td>0630</td> <td>9-15-00</td> <td>1445</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	9-15-00	0630	9-15-00	1445								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						Laundry I	Brook (0110)4640)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-10-00	1445	1-11-00	1215	0.10	0.90	0.10	< 0.2	e3	e16	16.0	40.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-09-00	0015	4-09-00	2115	<.075	1.20	.20	<.5	e5	20.0	39.0	120.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5-18-00	1600	5-19-00	2330	.10	1.40	.20	<.2	e3	26.0	18.0	63.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-02-00	1730	6-03-00	1145	.80	3.40	.60	.9	15.0	82.0	110.0	270.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-06-00	0815	6-08-00	0000	.10	.80	.10	<.2	2.9	13.0	17.0	38.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-09-00	1915	7-10-00	2000	.50	2.60	.30	.3	e5	36.0	39.0	120.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-16-00	0000	7-16-00	2045	.50	1.80	.20	<.5	3.0	20.0	24.0	100.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-27-00	0445	7-27-00	2115	.10	1.40	.10	<.2	3.0	10.0	12.0	24.0
$\hline Faneuil Brook (01104660) \\ \hline 1-10-00 1500 1-10-00 0245 0.10 1.10 0.10 0.2 e4 e15 34.0 85.0 \\ 4-09-00 0015 4-09-00 0915 <.075 .90 .10 <.5 e4 15.0 23.0 69.0 \\ 5-18-00 1900 5-19-00 0818 <.075 1.70 .30 <.2 e4 28.0 21.0 70.0 \\ 6-02-00 1730 6-02-00 2115 .80 3.40 e.17 .8 16.0 73.0 140.0 230.0 \\ 6-06-00 0815 6-07-00 1115 <.075 80 10 <.2 36 13.0 20.0 50.0 \\ \hline$	9-15-00	0615	9-15-00	1700	.20	3.40	.30	<.2	e3	15.0	18.0	43.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						Faneuil B	rook (0110	4660)				
$4 \cdot 09 \cdot 00$ 0015 $4 \cdot 09 \cdot 00$ 0915 $< .075$ $.90$ $.10$ 0.2 $e4$ $e13$ $34\cdot 0$ $83\cdot 0$ $4 \cdot 09 \cdot 00$ 0015 $4 \cdot 09 \cdot 00$ 0915 $< .075$ $.90$ $.10$ $< .5$ $e4$ $15\cdot 0$ $23\cdot 0$ $69\cdot 0$ $5 \cdot 18 \cdot 00$ 1900 $5 \cdot 19 \cdot 00$ 0818 $< .075$ 1.70 $.30$ $< .2$ $e4$ $28\cdot 0$ $21\cdot 0$ $70\cdot 0$ $6 \cdot 02 \cdot 00$ 1730 $6 \cdot 02 \cdot 00$ 2115 $.80$ 3.40 $e \cdot 17$ $.8$ $16\cdot 0$ $73\cdot 0$ $140\cdot 0$ $230\cdot 0$ $6 \cdot 06 \cdot 00$ 0815 $6 \cdot 07 \cdot 00$ 1115 < 075 80 10 < 2 36 $13\cdot 0$ $20\cdot 0$ $50\cdot 0$	1_10_00	1500	1-10.00	0245	0.10	1 10	0.10	0.2	e/	e15	34.0	85.0
5-18-00 1900 $5-19-00$ 0818 $<.075$ 1.70 $.30$ $<.2$ $e4$ 13.0 23.0 09.0 $6-02-00$ 1730 $6-02-00$ 2115 $.80$ 3.40 $e.17$ $.8$ 16.0 73.0 140.0 230.0 $6-06-00$ 0815 $6-07-00$ 1115 <075 80 10 <2 36 13.0 20.0 50.0	1-10-00	0015	1-10-00	0243	0.10 ~ 075	1.10	10	0.2	c+ e/	150	24.0 22.0	60.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5-18-00	1900	5_10_00	0919	< 075	.90 1 70	30	<.5	e4	28.0	23.0	70.0
6-06-00 0815 6-07-00 1115 < 075 80 10 < 2 36 13.0 20.0 50.0	6_02_00	1730	6_02_00	2115	<.075 80	3.40	.30 e 17	<.2 Q	16.0	20.0 73.0	140.0	230.0
	6-06-00	0815	6-07-00	1115	< 075	80	10	.0	3.6	13.0	20.0	230.0 50.0

Stari and	t date time	End d and ti	ate me	Specific conduc- tance (µS/cm)	Turbidity (NTU)	Biochemical oxygen demand, 5-day (mg/L)	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Dis- solved solids (mg/L)	Suspended solids (mg/L)	Nitrate, total (mg/L as N)
					Faneuil B	rook (0110466	0)—Continue	ed			
7-09-0	0 1930	7-10-00	0230	530	50.0	16.0	26.000	30,000	340	94	2.20
7-16-0	0 0000	7-16-00	0445	500	76.0	13.0	26,000 86.000	50,000	160	100	1.80
7-27-0	0 0345	7-27-00	1500	360	15.0	2.8	41.000	56.000	210	29	.70
9-15-0	0 0615	9-15-00	1500	340	65.0		300,000		170	160	1.00
					Multifa	mily land use	(01104673)				
1-10-0	0 1445	1-10-00	2200	62	9.0	2.9	5,500	22,000	99	26	0.40
4-09-0	0 0145	4-09-00	0815	110	24.0		2,200	3,200	32	15	<.023
5-18-0	0 1845	5-18-00	2030	170	28.0	14.0	20,000	32,000	121	36	.70
6-02-0	0 1730	6-03-00	0245	89	18.0	8.3	26,000	9,300	e120	21	.80
6-06-0	0 0800	6-07-00	1430	110	17.0		4,500	14,000	212	46	1.20
7-09-0	0 1845	7-10-00	0200	160	26.0	9.6	17,000	13,000	180	41	1.70
7-16-0	0 0000	7-16-00	0745	130	23.0	15.0	31,000	34,000	480	72	.50
7-27-0	0 0215	7-27-00	1830	25	7.6	5.0	25,000	49,000	79	17	.40
9-15-0	0 0615	9-15-00	1800								
					Comme	ercial land use	(01104677)				
1_10_0	0 1445	1-10-00	2200	220	16.0	3.0	2 200	9.400	38	23	0.50
4-09-0	0 0145	4-09-00	0815				680	2 100	34	34	40
5-18-0	0 1845	5-19-00	2145	200	29.0	18.0	10,000	15,000	116	54	.+0 80
6-02-0	0 1730	6-03-00	0245	200	18.0	7.1	12,000	8 600	e60	22	.00
6-02-0	0 0730	6-07-00	1430	200	75	7.1	6 500	8 300	42	18	20
0 00 0	0 0750	0 07 00	1150	200	7.5		0,500	0,500	12	10	.20
7-09-0	0 1915	7-10-00	0100	300	20.0	15.0	3,300	7,200	130	62	1.40
7-16-0	0 0000	7-16-00	0945	920	29.0	15.0	28,000	24,000	43	78	.80
7-16-0	0S								<10	58	.80
7-27-0	0 0215	7-27-00	1800	110	9.3	<2	17,000	35,000	26	110	.10
9-15-0	0 0630	9-15-00	1430								
					Mu	ddy River (01	104683)				
1-10-0	0 1445	1-11-00	1500			4.5	3,100	4,000	150	27	0.90
4-09-0	0 0015	4-09-00	2330				3,100	3,500	113	43	.50
5-18-0	0 1745	5-19-00	2330	330	23.0	6.3	19,000	7,600	212	25	.90
6-02-0	0 1530	6-03-00	0830	370	34.0	13.0	28,000	11,000	e229	49	1.10
6-06-0	0 0945	6-07-00	1445	150	27.0		26,000	21,000	86	50	.50
7-09-0	0 1915	7-10-00	0900	250	16.0	89	7 700	1 300	160	24	1.00
7_09_0	05	, 10-00				8.1			160	24	1.00
7-16-0	0 0000	7-16-00	1645	160	24.0	89	38,000	19 000	10	36	.50
7-27-0	0 0245	7-28-00	0000	120	23.0	<2	25,000	20.000	70	32	.30
9-15-0	0 0815	9-15-00	2115	180	39.0		7,200		75	65	.60

Table 23. Event mean concentrations of stormwater constituents and water-quality properties measured between January 2000

and Se	ptember	2000, L	ower	Charles	River	Watershed,	Massachusetts	-Continued
--------	---------	---------	------	---------	-------	------------	---------------	------------

Start da and tin	ate ne	End da and tii	ate me	Nitrogen, ammonia, total (mg/L as N)	Nitrogen, total Kjeldahl (mg/L as N)	Phos- phorus, total (mg/L)	Cadmium, total (µg/L)	Chromium, total (µg/L)	Copper, total (µg/L)	Lead, total (µg/L)	Zinc, total (μg/L)
				Fa	neuil Brook (01104660)-	-Continued				
7-09-00	1930	7-10-00	0230	0.60	2.60	0.30	0.2	e6	39.0	37.0	100.0
7-16-00	0000	7-16-00	0445	.40	2.00	.40	<.5	5.0	28.0	35.0	79.0
7-27-00	0345	7-27-00	1500	.20	.90	.10	<.2	3.3	12.0	16.0	30.0
9-15-00	0615	9-15-00	1500	.30	2.00	.50	.3	e8	28.0	70.0	100.0
					Multifamily l	and use (02	1104673)				
1-10-00	1445	1-10-00	2200	0.20	0.90	0.10	0.4	e4	41.0	46.0	110.0
4-09-00	0145	4-09-00	0815	<.075	.70	.10	<.5	4.0	34.0	28.0	110.0
5-18-00	1845	5-18-00	2030	<.075	2.20	.30	.4	e7	84.0	75.0	200.0
6-02-00	1730	6-03-00	0245	.70	1.70	.40	.4	e7	85.0	73.0	190.0
6-06-00	0800	6-07-00	1430	.20	1.30	.20	.5	7.0	46.0	61.0	140.0
7-09-00	1845	7-10-00	0200	.60	2.40	.30	.4	e6	120.0	130.0	240.0
7-16-00	0000	7-16-00	0745	.60	1.30	.40	<.5	6.0	58.0	96.0	140.0
7-27-00	0215	7-27-00	1830	.20	1.30	.10	<.2	4.0	39.0	32.0	73.0
9-15-00	0615	9-15-00	1800								
					Commercial	land use (0	1104677)				
1-10-00	1445	1-10-00	2200	0.30	0.90	0.20	0.3	e3	50.0	120.0	150.0
4-09-00	0145	4-09-00	0815	.20	.90	.10	<.5	e5	75.0	110.0	150.0
5-18-00	1845	5-19-00	2145	.10	2.60	.30	.4	e7	130.0	110.0	210.0
6-02-00	1730	6-03-00	0245	.70	2.00	.30	.3	e4	150.0	130.0	190.0
6-06-00	0730	6-07-00	1430	.10	.50	.10	.2	2.8	32.0	57.0	74.0
7-09-00	1915	7-10-00	0100	.50	2.80	.30	1.0	7.5	250.0	200.0	310.0
7-16-00	0000	7-16-00	0945	.40	2.50	.30	<.5	7.1	81.0	110.0	190.0
7-16-00S				.30	2.70	.30	<.5	7.7	83.0	110.0	190.0
7-27-00	0215	7-27-00	1800	.10	.80	.10	.4	5.3	49.0	260.0	150.0
9-15-00	0630	9-15-00	1430								
					Muddy R	tiver (01104	4683)				
1-10-00	1445	1-11-00	1500	0.40	1.10	0.20	0.2	3.3	21.0	25.0	77.0
4-09-00	0015	4-09-00	2330	.10	1.60	.20	<.5	4.0	28.0	34.0	92.0
5-18-00	1745	5-19-00	2330	.30	1.80	.20	e.2	12.0	33.0	18.0	100.0
6-02-00	1530	6-03-00	0830	.60	2.40	.40	.3	e6	52.0	42.0	120.0
6-06-00	0945	6-07-00	1445	.10	.90	.10	.2	4.2	22.0	27.0	66.0
7-09-00	1915	7-10-00	0900	.50	1.90	.20	<.2	e3	52.0	26.0	78.0
7-09-00S				.50	1.90	.20	<.2	e3	50.0	25.0	76.0
7-16-00	0000	7-16-00	1645	.40	1.60	.20	<.5	3.0	32.0	25.0	60.0
7-27-00	0245	7-28-00	0000	.20	.90	.10	.5	4.4	22.0	24.0	52.0
9-15-00	0815	9-15-00	2115	.40	1.60	.30	<.2	5.0	34.0	45.0	80.0

Table 23. Event mean concentrations of stormwater constituents and water-quality properties measured between January 2000

Start da and tim	ite ie	End da and tir	ate ne	Specific conduc- tance (µS/cm)	Turbidity (NTU)	Biochemical oxygen demand, 5-day (mg/L)	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Dis- solved solids (mg/L)	Suspended solids (mg/L)	Nitrate, total (mg/L as N)
					Sto	ony Brook (011	.04687)				
1-10-00	1445	1-10-00	1145			5.7	24,000	11,000	150	39	1.50
4-09-00	0015	4-09-00	2045				15,000	6,600	144	104	.60
5-18-00	1600	5-19-00	2330	430	17.0	5.7	15,000	5,700	261	23	1.30
5-18-00S						4.3			265	22	1.40
6-02-00	1530	6-03-00	0730	220	220.0	25.0	60,000	23,000	130	260	1.10
6-06-00	0800	6-07-00	1715	130	18.0		24,000	23,000	91	36	.50
7-09-00	2000	7-10-00	0930	450	84.0	28.0	210,000	30,000	280	180	1.60
7-16-00	0000	7-16-00	1200	260	55.0	16.0	180,000	29,000	98	120	.90
7-27-00	0345	7-27-00	2330	250	23.0	10.0	29,000	24,000	140	110	.80
9-15-00	0815	9-16-00	0000	200	39.0		31,000		100	89	.90

and September 2000, Lower Charles River Watershed, Massachusetts - Continued

Start da and tin	ate ne	End da and tii	ate ne	Nitrogen, ammonia, total (mg/L as N)	Nitrogen, total Kjeldahl (mg/L as N)	Phos- phorus, total (mg/L)	Cadmium, total (µg/L)	Chromium, total (µg/L)	Copper, total (μg/L)	Lead, total (μg/L)	Zinc, total (μg/L)
					Stony Br	ook (01104	687)				
1-10-00	1445	1-10-00	1145	0.30	1.20	0.20	0.2	3.5	15.0	34.0	67.0
4-09-00	0015	4-09-00	2045	.10	1.20	.40	<.5	e7	28.0	86.0	140.0
5-18-00	1600	5-19-00	2330	.20	1.50	.20	<.2	e2	e16	19.0	57.0
5-18-00S				.30	1.40	.20	<.20	e2	e15	20.0	58.0
6-02-00	1530	6-03-00	0730	.70	4.40	e.83	1.2	20.0	75.0	260.0	290.0
6-06-00	0800	6-07-00	1715	.10	.80	.20	.2	3.5	11.0	28.0	49.0
7-09-00	2000	7-10-00	0930	.80	4.60	.70	.9	10.0	73.0	160.0	220.0
7-16-00	0000	7-16-00	1200	.50	2.90	.50	<.5	6.0	38.0	84.0	120.0
7-27-00	0345	7-27-00	2330	.20	1.70	.40	.4	7.2	36.0	120.0	120.0
9-15-00	0815	9-16-00	0000	.30	2.10	.40	e.33	6.0	34.0	79.0	180.0

Table 24. Bacterial densities in discrete stormwater samples collected between January 2000 and September 2000, Lower Charles River Watershed, Massachusetts

[Date Is in month, day, and year. Time: All times are eastern standard time and are in hours and minutes. R, concurrent replicates; S, split; CFU/100mL, colony-forming units per 100 milliliters; <, actual value is less than value shown; --, not sampled]

Date	Time	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Date	Time	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)
	Charles	River (01104615)		Single	e-family land	use (01104630)—Ca	ontinued
12-15-99	1010	1,100	2,000	4-09-00	1200	30	280
12-18-99	1400	300	100	4-09-00	1333	<10	<10
12-18-99R	1400	250	90	5-18-00	1740	6,000	11,000
1-10-00	1945	1,700	7,800	5-19-00	0950	40,000	31,000
1-10-00	2330	690	1,000	5-19-00	1345	39,000	180,000
1-11-00	0647	280	410	5-19-00	1521	13,000	120,000
4-09-00	0100	110	70	6-02-00	1738	2,000	13,000
4-09-00	0300	300	270	6-02-00	1822	17,000	40,000
4-09-00	1300	180	210	6-02-00	1920	16,000	49,000
5-18-00	2100	690	560	6-02-00R	1921	19,000	33,000
5-19-00	0740	620	430	6-06-00	1238-1326	48,000	42,000
5-19-00	1225	420	920	6-07-00	1109	160	480
5-19-00	1645	440	2,400	7-09-00	1946	210,000	37,000
6-02-00	1750	130	160	7-09-00	2030	47,000	39,000
6-02-00	2010	8,100	5,400	7-10-00	0200	19,000	43,000
6-06-00	1330–1445	630	590	7-16-00	0500	90,000	33,000
6-07-00	1155	3,500	2,900	7-27-00	0512	35,000	60,000
7-09-00	1955	420	100	7-27-00	1020	33,000	53,000
7-09-00	2340	10,000	8,900	7-27-00	1400	8,000	26,000
7-10-00	0255	6,700	3,200		Laundry	Brook (01104640)	
7-16-00	0100	560	360	12-06-99	1910	9.000	8 300
7-16-00	0430	5,100	2,800	12-06-99	2100	20,000	4 500
7-16-00	0630	11,000	8,300	12-07-99	1025	18,000	21,000
7-27-00	0900	8,600	14,000	12-07-99	1210	26.000	22,000
7-27-00	1205	15,000	16,000	12-07-99	1420	28,000	25,000
7-27-00	1345	1,700	9,000	12-10-99	1935	2.700	2.600
9-15-00	0930	19,000		12-10-99R	1936	2.900	3.000
9-15-00	1305	28,000		12-10-99	2035	3.700	2,400
	Single-family	y land use (0110463)))	12-10-99	2135	16.000	460.000
			<u> </u>	12-15-99	1020	3,100	5,400
1-10-00	1600	34,000	10,000				
1-10-00	1900	2,500	2,000	1-10-00	1900	6,000	1,800
4-09-00	0900	2,800	7,200	1-10-00	2030	1,700	2,400
4-09-00	1030	1,600	3,600	4-08-00	2328-248	620	5,400
4-09-00	0016-228	2,900	11,000	4-09-00	0638	1,700	6,400
				4-09-00	0722	700	3,100

Table 24. Bacterial densities of discrete stormwater samples collected between January 2000 and September 2000, Lower

 Charles River Watershed, Massachusetts—Continued

	Date	Time	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Date	Time	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)
	La	aundry Brook	(01104640)—Contin	nued	Fa	aneuil Brook	(01104660)— <i>Contin</i>	ued
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-09-00	0849	740	2,200	5-19-00	1404	16,000	41,000
	4-09-00	1249	2,200	1,500	5-19-00	1624	11,000	33,000
	5-18-00	1908	8,200	2,800	6-02-00	1730	90,000	61,000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5-19-00	0756	21,000	20,000	6-02-00	1846	17,000	24,000
	5-19-00	1230	8,100	20,000	6-02-00	2030	9,400	9,000
	5-19-00	1504	5,700	16,000	6-06-00	1248-1530	20,000	24,000
	6-02-00	1726	2,800	2,300	6-06-00 S	1248-1530	15,000	27,000
	6-02-00	1818	110,000	18,000	6-07-00	0754	24,000	5,400
	6-02-00	2032	9,100	9,800	7-09-00	1922	46,000	59,000
	6-06-00	1300-1432	26,000	29,000	7-09-00	2206	4,600	3,800
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6-07-00	1138	28,000	33,000	7-10-00	0138	23,000	9,500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-09-00	1922	23,000	9,700	7-16-00	0004	73,000	86,000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7-09-00	2332	4,000	2,900	7-16-00	0136	100,000	50,000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-10-00	0230	1,600	1,300	7-16-00	0430	18,000	4,400
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-16-00	0022	7,000	18,000	7-27-00	0530	28,000	45,000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-16-00	0200	100,000	64,000	7-27-00R	0531	24,000	53,000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7-16-00	0524	2,600	1,600	7-27-00	0940	62,000	91,000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7-27-00	0552	20,000	53,000	7-27-00	1213	22,000	11,000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7-27-00	1032	48,000	65,000	9-15-00	0854	100,000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7-27-00	1340	47,000	24,000	9-15-00	1116	2,000,000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9-15-00	0810	38,000			Multifamily	land use (01104673)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9-15-00	1045	35,000		1-10-00	1600	8,800	32.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Faneuil I	Brook (01104660)		1-10-00	2000	1,300	11,000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12-10-99	1006	8 500	710	4-09-00	0800	1,900	4,200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12-10-99	1900	8,500 6 800	660	4-09-00	0900	2,500	6,300
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12-10-99K	2006	82,000	3 600	4-09-00	1000	920	4,100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12-10-99	2000	11,000	2,600	5-18-00	1740	4 100	4 800
1219-99 1035 22,000 0,000 5-19-00 0730 20,000 29,000 1-10-00 1600 37,000 17,000 5-19-00 1358 26,000 53,000 1-10-00 2130 11,000 7,600 6-02-00 1816 53,000 19,000 4-09-00 0448 33,000 3,300 6-02-00 1816 53,000 13,000 4-09-00 1035 2,900 7,400 6-02-00 1850 15,000 12,000 4-09-00 1135 3,500 2,800 6-02-00 1936 17,000 12,000 4-09-00 1235 12,000 2,900 6-06-00 1258-1424 6,000 20,000 4-09-00 1335 5,700 1,000 7-09-00 1936 1,500 2,400 4-09-00 1335 5,700 1,000 7-09-00 1906 25,000 5,700 5-18-00 1854 27,000 6,200 7-09-00 1906 25,000 5,700 5-19-00 0740 76,000 100,000 100,000 <td>12-15-99</td> <td>1035</td> <td>22,000</td> <td>2,000</td> <td>5-19-00</td> <td>0736</td> <td>26,000</td> <td>29,000</td>	12-15-99	1035	22,000	2,000	5-19-00	0736	26,000	29,000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 15 77	1055	22,000	0,000	5-19-00	1358	26,000	53,000
1-10-00 2130 11,000 7,600 5 19 00 1155 5,000 19,000 4-09-00 0448 33,000 3,300 6-02-00 1816 53,000 13,000 4-09-00 1035 2,900 7,400 6-02-00 1850 15,000 12,000 4-09-00 1135 3,500 2,800 6-02-00 1936 17,000 12,000 4-09-00 1135 3,500 2,800 6-02-00 1936 17,000 12,000 4-09-00 1235 12,000 2,900 6-06-00 1258-1424 6,000 20,000 4-09-00 1335 5,700 1,000 7-09-00 1936 1,500 2,400 4-09-00 1335 5,700 1,000 7-09-00 1906 25,000 5,700 5-18-00 1854 27,000 6,200 7.00 1906 25,000 5,700 5-19-00 0740 76,000 100,000 100,000 100,000 100,000 100,000 100,000	1-10-00	1600	37,000	17,000	5-19-00	1733	8 700	19,000
4-09-00 0448 33,000 3,300 6-02-00 1010 55,000 15,000 4-09-00 1035 2,900 7,400 6-02-00 1850 15,000 12,000 4-09-00 1135 3,500 2,800 6-02-00 1936 17,000 12,000 4-09-00 1235 12,000 2,900 6-06-00 1258-1424 6,000 20,000 4-09-00 1335 5,700 1,000 7-09-00 1936 1,500 2,400 5-18-00 1854 27,000 6,200 7-09-00 1906 25,000 5,700 5-18-00 2056 6,000 7,100 100,000 100,000 100,000 100,000	1-10-00	2130	11,000	7,600	6-02-00	1816	53,000	13,000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-09-00	0448	33,000	3,300	0 02 00	1010	22,000	15,000
4-09-00 1135 3,500 2,800 6-02-00 1936 17,000 12,000 4-09-00 1235 12,000 2,900 6-06-00 1258-1424 6,000 20,000 4-09-00 1335 5,700 1,000 6-07-00 0536 1,500 2,400 5-18-00 1854 27,000 6,200 7-09-00 1906 25,000 5,700 5-18-00 2056 6,000 7,100 5-19-00 0740 76,000 100,000	4-09-00	1035	2,900	7,400	6-02-00	1850	15,000	12,000
4-09-00 1235 12,000 2,900 6-06-00 1258-1424 6,000 20,000 4-09-00 1335 5,700 1,000 6-07-00 0536 1,500 2,400 5-18-00 1854 27,000 6,200 7-09-00 1906 25,000 5,700 5-18-00 2056 6,000 7,100 7 1906 25,000 5,700 5-19-00 0740 76,000 100,000 100,000 100,000 100,000 100,000	4-09-00	1135	3,500	2,800	6-02-00	1936	17,000	12,000
4.09-00 1335 5,700 1,000 6-07-00 0536 1,500 2,400 4-09-00 1335 5,700 1,000 7-09-00 1906 25,000 5,700 5-18-00 2056 6,000 7,100 5-19-00 0740 76,000 100,000	4-09-00	1235	12 000	2 900	6-06-00	1258-1424	6,000	20,000
100 00 1000 1,000 7-09-00 1906 25,000 5,700 5-18-00 1854 27,000 6,200 7-09-00 1906 25,000 5,700 5-18-00 2056 6,000 7,100 7 1906 25,000 5,700 5-19-00 0740 76,000 100,000	4-09-00	1235	5 700	1,000	6-07-00	0536	1,500	2,400
5-18-00 2056 6,000 7,100 5-19-00 0740 76,000 100,000	5-18-00	185/	27,000	6 200	7-09-00	1906	25,000	5,700
5-19-00 0740 76.000 100.000	5-18-00	2056	6 000	7 100				
	5-19-00	0740	76 000	100.000				

Table 24. Bacterial densities of discrete stormwater samples collected between January 2000 and September 2000, Lower

 Charles River Watershed, Massachusetts—Continued

Date	Time	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Date	Time	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)
Mult	tifamily land u	ıse (01104673)—Con	ntinued		Muddy River ((01104683)—Contin	ued
7-09-00	2014	19,000	15,000	1-10-00	1745	2,300	2,100
7-09-00	2245	530	11,000	1-10-00	2300	4,400	6,500
7-16-00	0054	34,000	42,000	1-11-00	0835	<10.0	<10.0
7-16-00	0250	29,000	26,000	4-09-00	0200	2,400	540
7-27-00	0504	37,000	56,000	4-09-00	0400	5,900	6,500
7-27-00	0930	16,000	38,000	4-09-00	0800	2,400	4,400
7-27-00	1048	25,000	74,000	4-09-00	1000	2,200	3,200
	Commercial	land use (01104677)	4-09-00	1201	4,700	1,900
			,	5-19-00	0908	17,000	9,300
1-10-00	1700	1,100	9,500	5-19-00	1443	31,000	11,000
1-10-00	2100	6,600	13,000	6 02 00	1000	12 000	25,000
4-09-00	0100	20	2,000	6.02.00	1020	15,000	23,000
4-09-00	0300	550	2,900	6.02.00	1938	43,000	7,000
4-09-00	0500	1,400	3,400	6.06.00	1328 1518	32,000	7,000
5-18-00	1815	5 800	3 900	6.07.00	1526-1518	20,000	28,000
5-19-00	0814	19,000	17,000	0-07-00	0954	20,000	15,000
5-19-00	1416	7 900	23,000	7-09-00	2146	670	930
5-19-00	1815	3,500	9,000	7-09-00	2343	19,000	2,200
6-02-00	1815	11,000	2,000 4,000	7-10-00	0128	8,000	1,200
0-02-00	1004	11,000	4,000	7-16-00	0210	62,000	29,000
6-02-00	1843	13,000	10,000	7-16-00	0338	64,000	40,000
6-02-00	1943	18,000	17,000	7 16 00	0508	16,000	2 (00
6-06-00	1224–1336	6,900	8,000	7-16-00	0508	16,000	3,600
6-07-00	1308	6,200	11,000	7-27-00	0553	3,900	1,700
7-09-00	1910	1,400	8,500	7-27-00	1118	52,000	44,000
7 00 00	2014	4 600	<u> </u>	7-27-00	1555	8,800	4,300
7-09-00	2014	4,000	8,100 2,200	9-13-00	1225	1 400	
7-16-00	2300	37,000	30,000	9-13-00	1223	1,400	
7-16-00	0050	28,000	26,000		Stony B	rook (01104687)	
7-10-00	0730	19,000	20,000	12-10-99	2115	20	360
7-27-00	0750	19,000	27,000	12-18-99	1142	2.800	2.600
7-27-00	0948	21,000	61.000	1-10-00	1815	33,000	15,000
7-27-00	1130	20,000	74 000	1-11-00	0915	120	30
7 27 00	Muddy	River (01104683)	71,000	4-09-00	0203	6,800	1,000
				4.00-00	0242	12 000	7 200
12-10-99	1720	<10.0	<10.0	4.09-00	0242	12,000	2 000
12-15-99	1108	30	<10.0	4-09-00	0312	900	7 000
12-15-99R	1110	<10.0	20	4.09-00	0352	14 000	16,000
4-09-00	1301	2,100	1,100	4-09-00 1-00 00	0422	28 000	0 500
4-09-00R	1301	2,000	1,000	4-09-00	044/	20,000	9,500

Table 24. Bacterial densities of discrete stormwater samples collected between January 2000 and September 2000, Lower

 Charles River Watershed, Massachusetts—*Continued*

Date	Time	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- Coliform, fecal, coccus, nembrane filter membrane Date (CFU/100 mL) filter (CFU/100 mL)		Time	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)
St	tony Brook ((01104687)—Continu	ued	St	tony Brook (01104687)—Continu	ued
4-09-00	1400	3,200	3,400	7-16-00	0452	240,000	32,000
5-19-00	0832	16,000	6,300	7-27-00	0537	29,000	3,900
5-19-00	1353	29,000	4,500	7-27-00	0952	39,000	38,000
5-19-00	1607	34,000	17,000	7-27-00	1322	21,000	20,000
6-02-00	1903	31,000	30,000	9-15-00	0900	18,000	
6-02-00	1942	43,000	14,000	9-15-00	1027	49,000	
6-02-00	2032	120,000	34,000	Charles R	iver at Bosto	n Science Museum	(01104710)
6-06-00	1523	22,000	18,000				· /
6-07-00	1018	30,000	35,000	12-18-99	1347	200	<10.0
6-07-00R	1018	29,000	19,000	1-10-00	2030	180	630
7 00 00	2012	62,000	10,000	1-10-00R	2032	130	720
7-09-00	2013	62,000	19,000	1-11-00	1115	80	70
7-09-00	2347	430,000	1 700	5-19-00	1800	20	20
7-10-00	0400	33,000 40,000	1,700	5 10 00P	1901	20	20
7-10-00	0038	49,000	13,000	J-19-00K	1601	20 <10	20
/-10-00	0243	200,000	45,000	7-10-00	1245	<10	110
				7-27-00	1243 1813	90	20

Table 25. Statistical summary for constituents and water-quality properties of dry-weather and stormwater flow-composite

[Statistics were calculated on unrounded values. Bold, statistics determined by setting censored data equal to one-half the detection limit. e, estimated; mg/L, milligrams per liter; NTU, nephelometric turbidity units; <, less than minimum reporting level; --, not determined]

	Dry weather									
Constituent	Num san	umber of amples Less than detec- tion	_ Mean	Standard deviation	Coeffi- cient of variation	Lower quartile	Median	Upper quartile	Inter- quartile range	Flow- weighted mean
or property	Total									
			Charles H	River at Wat	tertown (01	104615)				
Specific conductance.										
laboratory (µS/cm)	13	0	270	120	45	250	280	370	0.424	220
Turbidity, laboratory (NTU)	13	0	3.8	2.5	65	2.0	3.0	4.0	.667	4.1
Biochemical oxygen demand,										
5-day (mg/L)	13	10	2.1	1.0	47	1.3	1.9	2.8	.769	1.1
Coliform, fecal, membrane										
filter (CFU/100 mL)	13	0	560	1300	240	60	230	330	1.174	490
Enterococcus, membrane										
filter (CFU/100 mL)	13	1	290	820	290	20	60	95	1.250	270
Dissolved solids (mg/L)	14	0	222	82	37.1	186	208	251	311	185
Suspended solids (mg/L)	14	3	4 20	1 73	41.3	2.80	3 75	6.00	853	4.3
Nitrate plus nitrite (mg/L)	11	5	1.20	1.75	11.5	2.00	5.15	0.00	.055	-1.5
as N)	13	0	.50	.30	64	.20	.50	.60	.870	.6
Nitrogen, ammonia, total										
(mg/L as N)	13	3	.10	.10	40	.10	.10	.20	.738	.1
Nitrogen, total Kjeldahl										
(mg/L as N)	13	0	.80	.10	16	.70	.80	.80	.133	.70
Phosphorus total (mg/L)	13	3	10	02	32	10	10	10	643	10
Cadmium total (ug/L)	14	14	.10	.02		.10	.10	.10		.10
Chromium total ($\mu g/L$)	14	2	2.0	13	64	10	20	23	650	2.3
Copper total ($\mu g/L$)	14	0	3.1	8	26	2.7	3.0	3.5	242	31
Lead total ($\mu g/L$)	14	0	2.9	.0	43	2.7	3.0	3.5	500	3.0
Zinc total ($\mu g/L$)	14	1	18	24	140	9.5	11	15	534	33
	11	1	Single	-family land	1 10 1 1160 (01104	1630)	11	15	.551	
			Single			1050)				
Specific conductance,										
laboratory (µS/cm)	11	0	480	270	57	360	520	650	0.571	450
Turbidity, laboratory (NTU)	11	0	7.8	7.7	99	2.7	3.7	9.8	1.910	6.2
Biochemical oxygen demand,										
5-day (mg/L)	12	9	1.9	4.4	230	.02	.1	1.6	12.954	1.50
Coliform, fecal, membrane										
filter (CFU/100 mL)	13	6	16,000	35,000	220	5.0	440	8,900	20.506	3,300
Enterococcus, membrane										
filter (CFU/100 mL)	13	6	6,200	17,000	270	5.0	460	2,600	5.758	430

samples measured between July 1999 and September 2000, Lower Charles River Watershed, Massachusetts

CFU/100 mL, colony-forming units per 100 milliliters; µg/L, micrograms per liter; µS/cm, microsiemens per centimeter at 25 degrees Celsius;

	Stormwater									
Constituent	Number of samples				0				Inter	
or property	Total	Less than detec- tion	Mean	Standard deviation	cient of variation	Lower quartile	Median	Upper quartile	inter- quartile range	Flow- weighted mean
			C	Charles Rive	er (011046)	15)				
Specific conductance,										
laboratory (µS/cm)	7	0	290	35	12	270	280	310	0.128	190
Turbidity, laboratory (NTU)	7	0	7.6	3.4	45	5.6	7.4	8.5	.395	5.3
Biochemical oxygen demand,										
5-day (mg/L)	5	3	2.1	1.1	53	1.0	2.1	3.0	.952	.80
Coliform, fecal, membrane										
filter (CFU/100 mL)	9	0	4,300	5,100	120	650	3,900	4,700	1.042	2,600
Enterococcus, membrane										
filter (CFU/100 mL)	8	0	2,700	2,500	93	1,400	2,100	3,000	.736	1,900
Dissolved solids (mg/L)	9	0	174	31.4	18.1	156	175	190	.194	168
Suspended solids (mg/L)	9	1	11.0	5.12	46.6	6.50	10.3	15.2	.840	11
Nitrate plus nitrite (mg/L										
as N)	9	0	.50	.20	33	.40	.50	.50	.348	.50
Nitrogen, ammonia, total										
(mg/L as N)	9	1	.20	.10	36	.10	.20	.20	.444	.10
Nitrogen, total Kjeldahl										
(mg/L as N)	9	0	.90	.30	29	.80	.80	1.00	.271	.90
Phosphorus, total (mg/L)	9	0	.10	.05	45	.10	.10	.10	.777	.10
Cadmium, total (µg/L)	9	8	.10	.10	45	.10	.10	.10	0	.10
Chromium, total (µg/L)	9	0	2.2	.30	16	2.0	2.0	2.2	.122	2.1
Copper, total (µg/L)	9	0	6.6	2.1	32	5.0	5.7	8.0	.524	6.0
Lead, total (µg/L)	9	0	7.3	2.9	39	5.2	6.4	8.4	.500	7.0
Zinc, total (µg/L)	9	0	27	25	90	15	18	25	.522	23
			Singl	e-family laı	nd use (011	04630)				
Specific conductance										
laboratory (µS/cm)	8	0	100	39	37	83	120	130	0.368	61
Turbidity, laboratory (NTU)	8	0	50	29	59	26	47	62	.756	28
Biochemical oxygen demand.	5	-						~-		
5-day (mg/L)	6	0	13	8.4	64	6.3	14	19	.893	3.3
Coliform, fecal, membrane										
filter (CFU/100 mL)	8	0	30,000	28,000	91	16,000	24,000	33,000	.701	26,000
Enterococcus, membrane										
filter (CFU/100 mL)	8	0	34,000	28,000	82	8,900	34,000	43,000	.988	27,000
					Dry	weather				
---	------------	--------------------------------	-------------	-------------------------	--------------------	-------------------	--------	-------------------	-------------------	------------------
Constituent	Num san	ber of			Coeffi				Inter-	Flow
or property	Total	Less than detec- tion	Mean	Standard deviation	cient of variation	Lower quartile	Median	Upper quartile	quartile range	weighted mean
		Sir	ngle-family	land use ¹ (01104630)-	-Continued				
Dissolved solids (mg/L)	13	0	483	482	100	250	301	427	0.588	494
Suspended solids (mg/L) Nitrate plus nitrite (mg/L	13	4	6.85	7.31	107	2.19	4.80	8.45	1.305	4.19
as N) Nitrogen, ammonia, total	12	0	1.9	1.2	59	1.1	2.0	2.6	.786	1.8
(mg/L as N)	12	1	1.9	4.2	220	.50	.60	1.0	.966	.6
(mg/L as N)	12	0	3.0	5.1	170	1.2	1.7	2.0	.515	1.5
Phosphorus, total (mg/L)	12	0	.30	.30	98	.10	.20	.40	1.351	.2
Cadmium, total (µg/L)	13	11	.10	.10	91	.10	.10	.10	.025	.1
Chromium, total (µg/L)	13	9	1.3	.50	40	1.0	1.0	1.2	.200	1.2
Copper, total (µg/L)	13	0	12	5.9	48	8.0	12	14	.475	9.3
Lead, total (µg/L)	13	0	5.3	6.2	120	1.1	2.4	7.6	2.708	2.8
Zinc, total (µg/L)	13	0	23	21	92	14.1	15	24	.730	15
			La	undry Broo	k (01104640	0)				
Specific conductance,										
laboratory (µS/cm)	11	0	330	190	58	160	300	480	1.065	350
Turbidity, laboratory (NTU)	11	0	3.9	3.3	84	2.3	2.5	3.7	.591	3.2
Biochemical oxygen demand, 5-day (mg/L)	12	8	1.8	.7	35	1.3	1.7	2.4	.612	1.6
Coliform, fecal, membrane filter (CFU/100 mL)	13	0	1,800	1,800	100	760	1,000	2,000	1.192	1,600
Enterococcus, membrane			,	,			,	,		,
filter (CFU/100 mL)	13	0	650	710	110	290	380	570	.737	440
Dissolved solids (mg/L)	12	0	271	88.7	32.8	221	256	302	.317	281
Suspended solids (mg/L) Nitrate plus nitrite (mg/L	12	7	2.72	.80	29.3	2.14	2.55	3.55	.553	2.84
as N) Nitrogen, ammonia, total	12	0	1.5	.60	43	1.00	1.4	1.60	.436	1.3
(mg/L as N)	12	6	.10	.10	76	.04	.10	.10	1.063	.10
(mg/L as N)	12	0	.70	.20	26	.60	.70	.80	.364	.7
Phosphorus, total (mg/L)	12	1	.10	.03	30	.10	.10	.10	.438	.10
Cadmium, total (µg/L)	13	12	.10	.10	50	.10	.10	.10	.000	.10
Chromium, total (µg/L)	13	9	1.2	.5	42	1.0	1.0	1.0	.000	1.1
Copper, total (µg/L)	13	0	5.9	1.8	31	5.0	5.3	6.3	.245	5.8
Lead, total (µg/L)	13	0	2.2	1.0	44	1.7	2.3	2.8	.478	2.5
Zinc, total (µg/L)	13	0	15	9.0	59	11	11	18	.632	18

					S	tormwater				
Constituent	Num san	iber of nples	_	Standard	Coeffi-	l ower		Upper	Inter-	Flow-
or property	Total	Less than detec- tion	Mean	deviation	cient of variation	quartile	Median	quartile	quartile range	weighted mean
		1	Single-fami	ly land use	(01104630))—Continu	ed			
Dissolved solids (mg/L)	8	0	71	45	64	37	54	119	1.526	42
Suspended solids (mg/L) Nitrate plus nitrite (mg/L	8	0	92	76	82	53	72	94	.570	65
as N)	8	0	.80	.60	77	.30	.60	1.20	1.576	0
Nitrogen, ammonia, total (mg/L as N)	8	1	.50	.50	99	.10	.30	.90	2.616	.2
Nitrogen, total Kjeldahl (mg/L as N)	8	0	2.3	1.5	66	1.2	1.9	2.9	.891	1.2
Phosphorus, total (mg/L)	8	0	.40	.30	65	.20	.30	.50	.880	.2
Cadmium, total (µg/L)	8	4	.2	.2	73	.10	.20	.30	.984	.1
Chromium, total (µg/L)	8	0	8.2	4.1	50	5.3	7.6	9.2	.507	5.2
Copper, total (µg/L)	8	0	38	20	54	28	33	43	.429	20
Lead, total $(\mu g/L)$	8	0	52	36	71	30	44	55	.577	31
Zinc, total (µg/L)	8	0	110	61	58	75	88	110	.380	59
			La	aundry Bro	ok (011046	540)				
Specific conductance,										
laboratory (µS/cm)	8	0	230	52	23	220	240	250	0.142	180
Turbidity, laboratory (NTU)	8	0	25	25	99	12	17	24	.677	17
Biochemical oxygen demand,										
5-day (mg/L)	6	0	9.5	6.0	63	5.7	8.3	11	.682	3
Coliform, fecal, membrane filter (CFU/100 mL)	9	0	22,000	16,000	74	9,100	25,000	34,000	.963	22,000
Enterococcus, membrane										
filter (CFU/100 mL)	8	0	17,000	16,000	92	4,400	12,000	29,000	2.066	20,000
Dissolved solids (mg/L)	9	0	136	40.2	29.6	110	124	170	.484	115
Suspended solids (mg/L) Nitrate plus nitrite (mg/L)	9	0	44.6	39.7	88.9	20.2	33.0	51.2	.939	33.0
as N)	9	0	.70	.30	45	.40	.60	1.0	.839	.50
Nitrogen, ammonia, total (mg/L as N)	9	1	.30	.30	92	.10	.10	.50	3.287	.20
Nitrogen, total Kjeldahl (mg/L as N)	9	0	1.9	1.0	54	1.2	1.4	2.6	1.000	1.5
Phosphorus, total (mg/L)	9	0	.20	.20	74	.10	.20	.30	.713	.20
Cadmium, total (µg/L)	9	7	.10	.10	45	.10	.10	.10	.000	.20
Chromium, total (µg/L)	9	0	4.8	4.0	84	3	3.0	5.0	.667	3.8
Copper, total (µg/L)	9	0	26	22	84	15	20	26	.531	19
Lead, total (µg/L)	9	0	32	29	91	17	18	39	1.183	24
Zinc, total (µg/L)	9	0	90	75	83	40	63	120	1.214	61

					Dry	weather				
Constituent	Num sar	ber of								
or property	Total	Less than detec- tion	Mean	Standard deviation	Coeffi- cient of variation	Lower quartile	Median	Upper quartile	Inter- quartile range	Flow- weighted mean
			Fa	neuil Brook	. (0110466 0))				
Specific conductance.										
laboratory (µS/cm)	11	0	670	321	48	431	740	910	0.654	500
Turbidity, laboratory (NTU)	10	0	31	39	130	2.3	9.6	48	4.794	5.9
Biochemical oxygen demand,	12	4	1 9	57	120	1.2	2.0	5.6	1 264	22
G-liferent for all momentum	15	4	4.0	5.7	120	1.2	5.2	5.0	1.304	2.3
filter (CFU/100 mL)	13	0	66,000	84,000	130	14,000	27,000	67,000	1.963	28,000
Enterococcus, membrane										
filter (CFU/100 mL)	13	0	16,000	26,000	160	1,900	3,200	22,000	6.281	14,000
Dissolved solids (mg/L)	13	0	510	103	20.2	469	492	532	.128	536
Suspended solids (mg/L) Nitrate plus nitrite (mg/L	13	6	22.3	41.4	185	.33	2.5	22.7	8.946	2.78
as N)	13	0	2.6	.60	22	2.1	2.5	3.0	.372	2.5
Nitrogen, ammonia, total	13	0	.60	.50	83	.30	.50	.7	.745	.4
Nitrogen, total Kjeldahl	12	0	1.7	1.5	00	1.0	1.0	1.6	500	11
(IIIg/L as N)	15	0	1.7	1.5	00	1.0	1.2	1.0	.300	1.1
Phosphorus, total (mg/L)	13	1	.2	.2	110	.10	.10	.20	.660	.1
Cadmium, total (µg/L)	13	12	.20	.10	54	.10	.10	.30	1.500	.1
Chromium, total (µg/L)	13	9	1.5	1.5	100	.65	1.0	1.7	1.107	1.1
Copper, total (µg/L)	13	0	7.1	6.0	84	4.0	4.6	6.0	.435	5.2
Lead, total (µg/L)	13	0	6.2	10	170	.70	1.1	5.9	4.727	2.0
Zinc, total (µg/L)	13	0	52.	54	100	13	29.	77	2.170	45
			Multi	family land	use (01104	673)				
Specific conductance.										
laboratory (µS/cm)	9	0	680	470	69	220	920	1,100	0.995	510
Turbidity, laboratory (NTU)	9	0	6.3	11	170	1.6	1.7	5.8	2.448	5.3
Biochemical oxygen demand,										
5-day (mg/L)	12	4	4.3	4.5	100	1.2	3.0	5.4	1.424	5.8
Coliform, fecal, membrane filter (CFU/100 mL)	12	1	8.500	10.000	120	340	2.700	20.000	7.229	13.000
Enterococcus, membrane			-,	,			_,	,		,
filter (CFU/100 mL)	12	1	1,700	2,800	160	110	760	1,900	2.391	2,200
Dissolved solids (mg/L)	12	0	869	297	34.2	670	942	1,020	.371	802
Suspended solids (mg/L)	12	5	5.13	5.93	116	1.01	2.50	8.28	2.91	4.53
Nitrate plus nitrite (mg/L	12	0	3.2	11	35	23	3.2	37	118	31
Nitrogen ammonia total	14	0	5.2	1.1	55	2.3	5.2	5.7	.++0	5.1
(mg/L as N)	12	2	1.0	1.2	120	.20	.40	1.6	3.806	1.3
Nitrogen, total Kjeldahl (mg/L as N)	12	0	1.8	1.5	81	.80	1.4	2.6	1.283	2.2

					S	stormwater				
Constituent	Num san	iber of nples			0				1	F 1
or property	Total	Less than detec- tion	Mean	Standard deviation	cient of variation	Lower quartile	Median	Upper quartile	quartile range	weighted mean
			F	aneuil Broo	ok (011046	60)				
Specific conductance.										
laboratory (µS/cm)	9	0	330	130	41	230	340	360	0.374	260
Turbidity, laboratory (NTU)	9	0	53	46	87	24	44	65	.942	35
Biochemical oxygen demand,										
5-day (mg/L)	6	0	11	6.1	54	8.5	11	15	.630	3
Coliform, fecal, membrane filter (CELI/100 mL)	0	0	68 000	90.000	130	26.000	41.000	43 000	410	72 000
Enterococcus membrane	,	0	00,000	90,000	150	20,000	41,000	45,000	.410	72,000
filter (CFU/100 mL)	8	0	34,000	21,000	63	18,000	32,000	51,000	1.047	24,000
Dissolved solids (mg/L)	8	0	188	70.7	37.2	154	165	211	341	146
Suspended solids (mg/L)	9	Ő	96.8	93.2	96.3	42.6	48.8	100	1 177	69.8
Nitrate plus nitrite (mg/L		0	2010	<i>,</i>	2010	.2.0		100		0210
as N)	9	0	1.1	.60	54	.70	1.0	1.1	.381	.70
Nitrogen, ammonia, total		0		.00	0.1		110		1001	
(mg/L as N)	9	3	.30	.30	93	.10	.20	.50	2.579	.20
Nitrogen, total Kieldahl										
(mg/L as N)	9	0	1.7	.90	52	.90	1.7	2.0	.624	1.20
	0	0	20	10	50	10	20	20	1 252	20
Phosphorus, total (mg/L)	9	0	.20	.10	59	.10	.20	.30	1.353	.20
Cadmium, total ($\mu g/L$)	9	5	.20	.20	100	.10	.20	.30	.944	.20
Chromium, total (µg/L)	9	0	6.0	3.9	66	4.0	4.0	6.0	.500	4.8
Copper, total (µg/L)	9	0	28	19	69	15	28	28	.482	19
Lead, total ($\mu g/L$)	9	0	44	40	91	21	34	37	.461	33
Zinc, total (μ g/L)	9	0	92	58	64	69	79	100	.427	68
			Mul	tifamily lan	d use (011)	04673)				
Specific conductance,										
laboratory (µS/cm)	8	0	130	87	66	82	120	160	0.651	86
Turbidity, laboratory (NTU)	8	0	19	7.8	41	15	20	25	.498	14
Biochemical oxygen demand,										
5-day (mg/L)	6	0	9.1	4.8	52	5.8	9.0	13	.791	2.7
Coliform, fecal, membrane										
filter (CFU/100 mL)	8	0	16,000	11,000	67	5,200	19,000	25,000	1.086	9,600
Enterococcus, membrane										
filter (CFU/100 mL)	8	0	22,000	15,000	70	12,000	18,000	33,000	1.168	18,000
Dissolved solids (mg/L)	8	0	165	139	84.0	94.0	121	188	.779	154
Suspended solids (mg/L)	8	õ	34.20	19.0	55.7	19.6	30.9	42.3	.733	32.7
Nitrate plus nitrite (mg/L)	0	5	2 1.20	17.0	2011	1710	20.7	. 2.0		
as N)	8	1	.70	.50	75	.40	.60	.90	.867	.7
Nitrogen, ammonia, total	-				-					
(mg/L as N)	8	3	.30	.30	81	.20	.20	.60	2.088	.2
Nitrogen, total Kjeldahl										
(mg/L as N)	8	0	1.5	.60	40	1.2	1.3	1.8	.490	1.1

					Dry	weather				
Constituent	Num sar	ber of								
or property	Total	Less than detec- tion	Mean	Standard deviation	Coeffi- cient of variation	Lower quartile	Median	Upper quartile	Inter- quartile range	Flow- weighted mean
		N	Aultifamily	land use (0	1104673)—	-Continued				
Phosphorus, total (mg/L)	12	0	0.40	0.20	50	0.30	0.40	0.60	0.625	0.50
Cadmium, total (µg/L)	12	10	.20	.20	84	.10	.10	.20	1.425	.10
Chromium, total (µg/L)	12	7	1.9	1.9	97	1.0	1.0	2.1	1.050	1.6
Copper, total (µg/L)	12	0	18	8.2	47	12	17	21	.497	19
Lead, total (µg/L)	12	0	27	51	190	3.5	12	17	1.118	13
Zinc. total (µg/L)	12	0	96	93	97	45	60	110	1.067	55
.,			Comn	nercial land	use (01104	677)		-		
Specific conductance.										
laboratory (µS/cm)	10	0	1.300	1.200	90	430	1.200	1.700	1.110	1.200
Turbidity, laboratory (NTU)	10	0	16	32	200	1.7	3.4	8.5	2.013	6.6
Biochemical oxygen demand	10	Ũ	10		200		511	010	2.010	010
5-day (mg/L)	12	8	5.2	13	250	.03	.30	3.2	12.424	1.5
Coliform fecal membrane		0	0.12	10	200	100		0.2		
filter (CFU/100 mL)	11	4	5.100	16.000	320	5.0	10	210	20.500	6.200
Enterococcus membrane		-	0,100	10,000	020		10		_0.000	0,200
filter (CFU/100 mL)	11	2	220	350	160	15	30	260	8.000	260
Dissolved solids (mg/L)	12	0	667	145	21.7	602	640	693	0.142	692
Suspended solids (mg/L)	12	3	10.3	15.0	145	1.95	2.65	17.00	5.886	10.8
Nitrate plus nitrite (mg/L	12	0	1.0	90	85	30	60	16	2 246	13
Nitrogen ammonia total	12	0	1.0	.90	05	.50	.00	1.0	2.240	1
(mg/L as N)	12	4	20	20	110	04	10	30	2 075	20
Nitrogen total Kieldahl	12	-	.20	.20	110	.04	.10	.50	2.075	.20
(mg/L as N)	12	0	.70	.50	71	.30	.50	.70	.793	.50
Phosphorus, total (mg/L)	12	0	.50	.70	160	.20	.20	.30	.686	.20
Cadmium, total (ug/L)	12	12	<	<		<	<	<		.10
Chromium total (ug/L)	12	9	1.1	.4	39	1.0	1.0	1.0	.000	1.2
Copper total (ug/L)	12	Ó	19	17	90	6.8	14	23	1 207	17
Lead total ($\mu g/L$)	12	0	11	11	110	1.5	57	20	3 3 3 3	11
Zinc. total ($\mu g/L$)	12	0	55	37	68	27	40	73	1 147	50
	12	0	M	uddy River	(01104683)	-10	15	1.14/	50
			111		(01101000	,				
Specific conductance,		0	100	070	<u>(</u> 0	170	260	(20)	1 005	100
iaboratory (µS/cm)	11	0	400	270	68	1/0	300	030	1.295	420
Turbidity, laboratory (NTU)	10	0	8.1	6.0	74	5.1	5.5	9.7	.826	7.9
Biochemical oxygen demand, 5-day (mg/L)	12	7	2.4	1.4	60	1.2	1.9	4.0	1.447	2.5
Coliform, fecal, membrane										
filter (CFU/100 mL)	12	3	550	1,200	220	9	15	360	23.417	690
filter (CFU/100 mL)	12	6	190	330	170	5	13	200	15.200	240

					S	tormwater				
Constituent	Num san	ber of			0				Inter	F law
or property	Total	Less than detec- tion	Mean	Standard deviation	cient of variation	Lower quartile	Median	Upper quartile	quartile range	weighted mean
			Multifamil	y land use ((01104673)-	—Continue	d			
Phosphorus, total (mg/L)	8	0	0.20	0.10	43	0.10	0.30	0.30	0.717	0.2
Cadmium, total (µg/L)	8	3	.30	.10	54	.10	.40	.40	.757	.3
Chromium, total (µg/L)	8	0	5.6	1.4	25	4.0	6.0	7.0	.498	5.2
Copper, total (µg/L)	8	0	64	31	49	41	52	84	.846	44
Lead, total (µg/L)	8	0	67	34	50	42	67	81	.570	51
Zinc, total (µg/L)	8	0	150	55	37	110	140	190	.594	120
			Com	mercial lan	d use (0110)4677)				
Specific conductance										
laboratory (µS/cm)	7	0	310	280	90	200	200	260	0.317	200
Turbidity, laboratory (NTU)	7	0	18	8.4	46	13	18	24	.655	12
Biochemical oxygen demand.										
5-day (mg/L)	6	1	9.9	7.1	72.0	4.0	11	15	.993	4.5
Coliform, fecal, membrane										
filter (CFU/100 mL)	8	0	9,900	9,000	91	3,100	8,400	13,000	1.198	8,500
Enterococcus, membrane										
filter (CFU/100 mL)	8	0	14,000	11,000	79	8,000	9,000	17,000	1.001	13,000
Dissolved solids (mg/L)	8	0	61.2	39.5	64.5	37	42.9	74.0	0.862	47.7
Suspended solids (mg/L)	8	0	50.1	32.4	64.6	22.9	43.8	66.0	.984	42.7
Nitrate plus nitrite (mg/L	0	0		10	<i>.</i>	10	(0)	0.0	505	40
as N)	8	0	.70	.40	64	.40	.60	.80	.727	.40
Nitrogen, ammonia, total	0	0	20	20	70	10	20	10	1 0 0 0	20
(mg/L as N)	8	0	.30	.20	13	.10	.20	.40	1.230	.20
Nitrogen, total Kjeldahl	0	0	1.6	00	50	00	15	2.5	1 1 2 5	1.1
(mg/L as N)	8	0	1.0	.90	58	.90	1.5	2.5	1.135	1.1
Phosphorus, total (mg/L)	8	0	.20	.10	45	.10	.20	.30	.612	.10
Cadmium, total (µg/L)	8	2	.40	.30	80	.20	.3	.40	.654	.30
Chromium, total (μ g/L)	8	0	5.2	1.9	36	3.8	5.2	7.0	.636	4.1
Copper, total ($\mu g/L$)	8	0	100	71	70	50	78	130	1.064	69
Lead, total (μ g/L)	8	0	140	64	47	110	110	150	.309	110
Zinc, total (µg/L)	8	0	180	66	37	150	170	200	.263	130
			1	Muddy Rive	er (0110468	3)				
Specific conductance,										
laboratory (µS/cm)	7	0	220	97	43	160	180	290	0.732	150
Turbidity, laboratory (NTU)	7	0	26	7.7	29	23	24	30	.313	25
Biochemical oxygen demand,										
5-day (mg/L)	6	1	7.1	4.2	59	4.9	7.6	8.9	.524	1.7
Coliform, fecal, membrane										
filter (CFU/100 mL)	9	0	17,000	13,000	73	7,200	19,000	26,000	.968	20,000
Enterococcus, membrane										
filter (CFU/100 mL)	8	0	11,000	8,000	74	3,900	9,200	19,000	1.682	14,000

					Dry	weather				
Constituent	Num san	iber of nples			Cooffi				Intor	Flow
or property	Total	Less than detec- tion	Mean	Standard deviation	cient of variation	Lower quartile	Median	Upper quartile	quartile range	weighted mean
			Muddy 2	River (0110-	4683)— <i>Con</i>	ntinued				
Dissolved solids (mg/L)	13	0	328	151	46.0	204	307	366	0.528	342
Suspended solids (mg/L) Nitrate plus nitrite (mg/L	13	0	6.62	2.75	41.6	4.80	5.80	7.80	.517	6.53
as N) Nitrogen, ammonia, total	12	0	.90	.50	54	.50	.80	1.2	.807	1.0
(mg/L as N) Nitrogen, total Kjeldahl	12	0	.50	.20	33	.40	.50	.60	.437	.50
(mg/L as N)	12	0	1.8	2.3	130	1.1	1.1	1.3	.182	2.0
Phosphorus, total (mg/L)	12	2	.10	.02	20	.10	.10	.10	.292	.10
Cadmium, total (µg/L)	13	12	.10	.10	50	.10	.10	.10	.000	.10
Chromium, total (µg/L)	13	9	1.2	.5	42	1.0	1.0	1.0	.000	1.3
Copper, total (µg/L)	13	0	6.3	1.3	20	5.2	6.0	7.0	.300	6.4
Lead, total (µg/L)	13	0	4.3	1.0	23	3.6	4.4	4.8	.273	4.5
Zinc, total (µg/L)	13	0	22	23	110	10	15	20	.644	29
			St	ony Brook (011046887)				
Specific conductance,										
laboratory (µS/cm)	11	0	460	240	53	240	560	670	0.774	430
Turbidity, laboratory (NTU)	11	0	5.5	6.1	110	2.2	3.5	5.9	1.064	5.8
Biochemical oxygen demand, 5-day (mg/L)	12	11	1.2	.60	52	1.0	1.0	1.0	.000	1.2
Coliform, fecal, membrane filter (CFU/100 mL)	12	3	47	84	180	6.8	20	40	1.661	25
Enterococcus, membrane										
filter (CFU/100 mL)	12	8	17	29	170	.60	2.9	25	8.562	14
Dissolved solids (mg/L)	12	0	378	186	49.3	279	358	369	.253	421
Suspended solids (mg/L) Nitrate plus nitrite (mg/L	12	7	2.41	.73	30.1	1.88	2.26	2.88	.442	2.48
as N) Nitrogen, ammonia, total	12	0	1.6	.30	18	1.3	1.4	1.9	.400	1.60
(mg/L as N) Nitrogen, total Kjeldahl	12	0	.40	.10	25	.30	.40	.40	.296	.40
(mg/L as N)	12	0	1.0	.20	17	.90	1.0	1.1	.262	.90
Phosphorus, total (mg/L)	12	3	.20	.40	200	.10	.10	.10	.391	.10
Cadmium, total (µg/L)	12	12	<	<		<	<	<		.10
Chromium, total (µg/L)	12	9	1.2	.60	52	1.0	1.0	1.0	.000	1.2
Copper, total (μ g/L)	12	0	4.7	1.5	32	3.9	4.0	5.7	.450	5.1
Lead, total (µg/L)	12	0	2.3	2.4	110	1.1	1.5	1.9	.533	2.6
Zinc, total (µg/L)	12	1	20	9.5	48	15	20	23	.440	23

					s	tormwater				
Constituent	Num san	iber of nples			Coeffi				Inter-	Elow-
or property	Total	Less than detec- tion	Mean	Standard deviation	cient of variation	Lower quartile	Median	Upper quartile	quartile range	weighted mean
			Muddy	River (011	04683)—C	ontinued				
Dissolved solids (mg/L)	9	0	123	71.3	58.0	75.0	113	160	0.752	98.9
Suspended solids (mg/L) Nitrate plus nitrite (mg/L	9	0	39.0	13.8	35.5	26.7	36.0	49.4	.632	45.3
as N) Nitrogen, ammonia, total	9	0	.70	.30	41	.50	.60	.90	.742	.50
(mg/L as N) Nitrogen, total Kieldahl	9	0	.30	.20	52	.20	.40	.40	.519	.20
(mg/L as N)	9	0	1.5	.50	32	1.1	1.6	1.8	.409	1.2
Phosphorus, total (mg/L)	9	0	.20	.10	42	.20	.20	.20	.415	.20
Cadmium, total (μ g/L)	9	4	.20	.10	57	.10	.20	.20	.505	.20
Chromium, total (µg/L)	9	0	4.9	2.7	54	3.3	4.2	5.0	.400	4.5
Copper, total (µg/L)	9	0	33.0	12.0	36	22	32	34	.380	27
Lead, total (µg/L)	9	0	29.0	8.9	30	25	26	34	.347	29
Zinc. total (ug/L)	9	0	81.0	21.0	26	66	78	92	.339	72
			S	Stony Brook	x (01104688	87)				
Specific conductance.										
laboratory (uS/cm)	7	0	280	120	43	210	250	350	0.558	150
Turbidity Jaboratory (NTL)	, 7	0	200 64	71	110	210	30	70	1 250	28
Biochamical oxygen demand	,	0	04	/ 1	110	21	57	70	1.230	20
5 day (mg/L)	6	0	15	0.7	64	68	13	23	1 227	3 2
Galiform facel membrane	0	0	15	9.7	04	0.8	15	23	1.227	3.2
filter (CFU/100 mL)	9	0	65,000	74,000	110	24,000	29,000	60,000	1.205	34,000
filter (CFU/100 mL)	8	0	19 000	9 800	52	9 900	23 000	25,000	655	20.000
	0	0	19,000	,,000	52	,,,00	23,000	20,000	.055	20,000
Dissolved solids (mg/L)	9	0	155	69	45	100	140	150	.360	113
Suspended solids (mg/L)	9	0	107	76	71	39	104	120	.782	62.6
Nitrate plus nitrite (mg/L										
as N)	9	0	1.0	.40	39	.80	.90	1.3	.596	.70
Nitrogen, ammonia, total (mg/L as N)	9	0	.40	.20	69	.20	.30	.50	1.319	.20
Nitrogen, total Kjeldahl										
(mg/L as N)	9	0	2.3	1.4	62	1.2	1.7	2.9	1.000	1.3
Phosphorus, total (mg/L)	9	0	.40	.20	53	.20	.40	.50	.515	.30
Cadmium, total (µg/L)	9	3	.40	.40	85	.20	.30	.70	1.455	.30
Chromium, total (µg/L)	9	0	7.2	5.3	73	3.5	6.0	7.2	.617	4.9
Copper. total (µg/L)	9	0	36	23	64	16	34	38	.645	21
Lead total (ug/L)	9	0 0	96	74	78 78	34	84	120	1 029	55
Zinc, total $(\mu g/L)$.	9	Ő	140	81	59	67	120	180	.957	85
,				<i>.</i>	~ /	0,				~~

					Dry	weather				
Constituent	Num san	ber of								
or property	Total	Less than detec- tion	Mean	Standard deviation	Coeffi- cient of variation	Lower quartile	Median	Upper quartile	Inter- quartile range	Flow- weighted mean
		Char	les River a	t Boston Sci	ence Museı	ım (0110471	0)			
Specific conductance,										
laboratory (µS/cm)	10	0	420	250	60	300	460	480	0.393	
Turbidity, laboratory (NTU)	10	0	3.6	1.2	33	2.9	3.2	4.2	.417	
Biochemical oxygen demand, 5-day (mg/L)	12	8.0	1.5	1.5	100.0	.4	.9	2.3	1.989	
Coliform fecal membrane										
filter (CFU/100 mL)	13	2	33	29	89	10	30	45	1.167	
Enterococcus membrane		_								
filter (CFU/100 mL)	13	4	10	5.0	50	8.8	10	10	.125	
Dissolved solids (mg/L)	13	0	505	293	58.0	266	430	875	1.416	
Suspended solids (mg/L)	13	5	3.71	1.01	27.2	2.83	3.89	4.55	.443	
Nitrate plus nitrite (mg/L	12	0	50	30	48	40	50	70	545	
Nitrogan ammonia total	12	0	.50	.50	+0	.+0	.50	.70	.545	
(mg/L as N)	12	3	.20	.10	45	.10	.20	.20	.798	
Nitrogen, total Kjeldahl	10	0	70	10	16	70	70	00	110	
(mg/L as N)	12	0	.70	.10	16	.70	.70	.80	.110	
Phosphorus, total (mg/L)	12	6	.10	.10	100	.02	.04	.10	1.078	
Cadmium, total (µg/L)	13	12	.10	.10	50	.10	.10	.10	.000	
Chromium, total (µg/L)	13	7	1.5	.70	46	1.0	1.2	2.0	.833	
Copper, total (µg/L)	13	0	5.9	1.1	19	5.3	6.0	6.6	.217	
Lead, total (µg/L)	13	0	3.8	2.1	56	2.4	2.8	5.0	.929	
Zinc. total (ug/L)	13	1	17	6.9	41	12	19	21	.517	
	10		17	Total wat	ershed				1017	
Specific conductance,										
laboratory (µS/cm)	97	0	540	530	97	250	430	690	1.040	
Turbidity, laboratory (NTU)	95	0	9.4	19.1	200	2.3	3.4	7.2	1.463	
Biochemical oxygen demand,						_				
5-day (mg/L)	110	69	2.7	5.2	200	.5	1.2	3.0	2.140	
Coliform, fecal, membrane filter (CFU/100 mL)	112	19	11,000	37,000	330	20	220	3,700	17.000	
Enterococcus, membrane										
filter (CFU/100 mL)	112	28	2,900	11,000	390	8.8	75	1,000	13.383	
Dissolved solids (mg/L)	114	0	465	299	64.2	236	366	624	1.060	
Suspended solids (mg/L)	114	40	7.05	16	225	1.4	3.09	6.0	1.491	
Nitrate plus nitrite (mg/L	110	0	15	11	74	50	13	2.1	1 107	
Nitrogen ammonis total	110	0	1.5	1.1	/-	.50	1.5	2.1	1.192	
(mg/L as N)	110	19	.50	1.5	270	.10	.30	.50	1.375	
Nitrogen, total Kjeldahl (mg/L as N)	110	0	1.3	2.0	150	.70	.90	1.2	.547	

						S	tormwater				
Construction or property Less Total Mean detection Standard Celetion variation Lower quartile Heelin Upper quartile Inter- quartile Flow- quartile Specific conductance, laboratory (ISCm) -	0	Num san	ber of								
Charles River at Boston Science Museum (01104710) Specific conductance, laboratory (JS/cm)	or property	Total	Less than detec- tion	Mean	Standard deviation	Coeffi- cient of variation	Lower quartile	Median	Upper quartile	Inter- quartile range	Flow- weighted mean
Specific conductance, laboratory (JS/cm)			Cha	rles River	at Boston S	cience Mus	eum (0110	4710)			
laboratory (JSCm) <td>Specific conductance,</td> <td></td>	Specific conductance,										
	laboratory (µS/cm)										
Biochemical oxygen demand, 5-day (mg/L)	Turbidity, laboratory (NTU)										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Biochemical oxygen demand, 5-day (mg/L)										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coliform fecal membrane										
Enterococcus, membrane filter (CFU/100 mL) i i i i i i i i i i i i i i i i	filter (CFU/100 mL)										
filter (CFU/100 mL)	Enterococcus, membrane										
Dissolved solids (mg/L),	filter (CFU/100 mL)										
Suspended solids (mg/L)	Dissolved solids (mg/L)										
Nitrate plus nitrite (mg/L as N)	Suspended solids (mg/L)										
Nitrogen, ammonia, total (mg/L as N)	Nitrate plus nitrite (mg/L as N)										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nitrogen ammonia total										
Nitrogen, total Kjeldahl (mg/L as N)	(mg/L as N)										
$\begin{array}{cccccccc} (mg/L \ as \ N) \dots & & & & & & & &$	Nitrogen, total Kieldahl										
Phosphorus, total (mg/L)	(mg/L as N)										
Cadmium, total ($\mu g/L$) <td>Phosphorus, total (mg/L)</td> <td></td>	Phosphorus, total (mg/L)										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cadmium, total (µg/L)										
Copper, total ($\mu g/L$)	Chromium, total (µg/L)										
Lead, total (μ g/L)	Copper, total (µg/L)										
Zinc, total (μ g/L)	Lead, total (µg/L)										
Total watershed Specific conductance, laboratory (µS/cm)	Zinc, total (µg/L)										
Specific conductance, laboratory (μ S/cm)					Total w	atershed					
laboratory (μ S/cm)610230140601302203000.755Turbidity, laboratory (NTU)6103436.0110.015.023.0391.048Biochemical oxygen demand, 5-day (mg/L)4759.96.970.03.48.6151.349Coliform, fecal, membrane filter (CFU/100 mL)69030,00048,0001605,20020,00031,0001.268Enterococcus, membrane filter (CFU/100 mL)64019,00018,000945,30013,00029,0001.915Dissolved solids (mg/L)68013579.158.785.11301710.657Suspended solids (mg/L)69159.361.110322.038.675.01.356Nitrate plus nitrite (mg/L as N)691.80.5059.40.701.0.824Nitrogen, ammonia, total (mg/L as N)698.30.3087.10.20.501.775Nitrogen, total Kjeldahl (mg/L as N)6901.71.059.901.42.2907	Specific conductance,										
Turbidity, laboratory (NTU) 61 0 34 36.0 110.0 15.0 23.0 39 1.048 Biochemical oxygen demand, 5-day (mg/L)	laboratory (µS/cm)	61	0	230	140	60	130	220	300	0.755	
Biochemical oxygen demand, 5-day (mg/L)	Turbidity, laboratory (NTU)	61	0	34	36.0	110.0	15.0	23.0	39	1.048	
5-day (mg/L)4759.96.970.0 3.4 8.6 15 1.349 Coliform, fecal, membrane filter (CFU/100 mL)690 $30,000$ $48,000$ 160 $5,200$ $20,000$ $31,000$ 1.268 Enterococcus, membrane filter (CFU/100 mL)640 $19,000$ $18,000$ 94 $5,300$ $13,000$ $29,000$ 1.915 Dissolved solids (mg/L)680 135 79.1 58.7 85.1 130 171 0.657 Suspended solids (mg/L)691 59.3 61.1 103 22.0 38.6 75.0 1.356 Nitrate plus nitrite (mg/L as N)691 $.80$ $.50$ 59 $.40$ $.70$ 1.0 $.824$ Nitrogen, ammonia, total (mg/L as N)698 $.30$ $.30$ 87 $.10$ $.20$ $.50$ 1.775 Nitrogen, total Kjeldahl (mg/L as N)690 1.7 1.0 59 $.90$ 1.4 2.2 $.907$	Biochemical oxygen demand,										
Coliform, fecal, membrane filter (CFU/100 mL)	5-day (mg/L)	47	5	9.9	6.9	70.0	3.4	8.6	15	1.349	
Enterococcus, membrane filter (CFU/100 mL) 64 0 19,000 18,000 94 5,300 13,000 29,000 1.915 Dissolved solids (mg/L) 68 0 135 79.1 58.7 85.1 130 171 0.657 Suspended solids (mg/L) 69 1 59.3 61.1 103 22.0 38.6 75.0 1.356 Nitrate plus nitrite (mg/L as N) 69 1 .80 .50 59 .40 .70 1.0 .824 Nitrogen, ammonia, total (mg/L as N) 69 8 .30 .30 87 .10 .20 .50 1.775 Nitrogen, total Kjeldahl	Coliform, fecal, membrane filter (CFU/100 mL)	69	0	30,000	48,000	160	5,200	20,000	31,000	1.268	
filter (CFU/100 mL) 64 0 19,000 18,000 94 5,300 13,000 29,000 1.915 Dissolved solids (mg/L) 68 0 135 79.1 58.7 85.1 130 171 0.657 Suspended solids (mg/L) 69 1 59.3 61.1 103 22.0 38.6 75.0 1.356 Nitrate plus nitrite (mg/L as N) 69 1 .80 .50 59 .40 .70 1.0 .824 Nitrogen, ammonia, total (mg/L as N) 69 8 .30 .30 87 .10 .20 .50 1.775 Nitrogen, total Kjeldahl	Enterococcus, membrane										
Dissolved solids (mg/L) 68 0 135 79.1 58.7 85.1 130 171 0.657 Suspended solids (mg/L) 69 1 59.3 61.1 103 22.0 38.6 75.0 1.356 Nitrate plus nitrite (mg/L as N) 69 1 .80 .50 59 .40 .70 1.0 .824 Nitrogen, ammonia, total (mg/L as N) 69 8 .30 .30 87 .10 .20 .50 1.775 Nitrogen, total Kjeldahl	filter (CFU/100 mL)	64	0	19,000	18,000	94	5,300	13,000	29,000	1.915	
Suspended solids (mg/L) 69 1 59.3 61.1 103 22.0 38.6 75.0 1.356 Nitrate plus nitrite (mg/L as N) 69 1 .80 .50 59 .40 .70 1.0 .824 Nitrogen, ammonia, total (mg/L as N) 69 8 .30 .30 87 .10 .20 .50 1.775 Nitrogen, total Kjeldahl (mg/L as N) 69 0 1.7 1.0 59 .90 1.4 2.2 .907	Dissolved solids (mg/L)	68	0	135	79.1	58.7	85.1	130	171	0.657	
Nitrate plus nitrite (mg/L as N) 69 1 .80 .50 59 .40 .70 1.0 .824 Nitrogen, ammonia, total (mg/L as N) .69 8 .30 .30 87 .10 .20 .50 1.775 Nitrogen, total Kjeldahl (mg/L as N)	Suspended solids (mg/L)	69	1	59.3	61.1	103	22.0	38.6	75.0	1.356	
$as r()$ r_{10} r_{10} r_{10} r_{24} r_{24} Nitrogen, ammonia, total (mg/L as N) r_{20}	Nitrate plus nitrite (mg/L	60	1	80	50	50	40	70	1.0	824	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nitrogen ammonia total	09	1	.60	.50	59	.40	.70	1.0	.024	
Nitrogen, total Kjeldahl $(mg/L as N)$	(mg/L as N)	69	8	.30	.30	87	.10	.20	.50	1.775	
	Nitrogen, total Kjeldahl (mg/L as N)	69	0	1.7	1.0	59	.90	1.4	2.2	.907	

					Dry	weather				
Constituent	Num san	ber of ples			Coeffi				Inter-	Elow-
or property	Total	Less than detec- tion	Mean	Standard deviation	cient of variation	Lower quartile	Median	Upper quartile	quartile range	weighted mean
			Tota	al watershed	I—Continu	ed				
Phosphorus, total (mg/L)	110	16	0.20	0.30	150	0.10	0.10	0.20	1.169	
Cadmium, total (µg/L)	115	107	.10	.10	68	.10	.10	.10	.000	
Chromium, total (µg/L)	115	70	1.4	1.0	70	1.0	1.0	2.0	1.000	
Copper, total (µg/L)	115	0	8.9	8.5	95	4.0	6.0	9.0	.833	
Lead, total $(\mu g/L)$	115	0	7.0	18	260	1.7	3.3	5.4	1.121	
Zinc, total (µg/L)	115	3	35	46	130	11	18	37	1.385	

					S	tormwater				
Constituent	Num san	ber of			Coeffi				Inter-	Flow
or property	Total	Less than detec- tion	Mean	Standard deviation	cient of variation	Lower quartile	Median	Upper quartile	quartile range	weighted mean
			То	tal watersh	ed—Contin	ued				
Phosphorus, total (mg/L)	69	0	0.30	0.20	70	0.10	0.20	0.30	0.950	
Cadmium, total (µg/L)	69	36	.30	.20	84	.10	.20	.30	1.038	
Chromium, total (µg/L)	69	0	5.5	3.6	66	3.0	4.3	7.0	.932	
Copper, total (µg/L)	69	0	40	39	97	15	31	50	1.115	
Lead, total (µg/L)	69	0	57	56	98	20	34	79	1.733	
Zinc, total (µg/L)	69	0	110	71	67	57	90	140	.948	

Table 26. Regression coefficients of models used to estimate event-mean concentrations from storm-rainfall characteristics

[CFU/100 mL, colony-forming units per 100 milliliters; in., inches; µS/cm, microsiemens per centimeter at 25 degrees Celsius; µg/L, micrograms per liter;

Explanatory variable	Specific conduc- tance (µS/cm)	Turbidity (NTU)	Biochemi- cal oxygen demand, 5-day (mg/L)	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Dis- solved solids (mg/L)	Sus- pended solids (mg/L)	Nitrate, total (mg/L as N)
	Charles F	liver at Wa	tertown (01	104615)				
Intercept	316.75	8.528	0.697	2.488	nm	158.665	-2.813	0.670
Duration (hours)				019	nm		0.254	
Total rainfall (in.)	24.041				nm		0.786	
Intensity, maximum in inches per hour					nm		10.484	
Antecedent dry period (>0.1 in.), in hours			.013		nm	.358	0.043	
Antecedent dry period (>0.5 in.), in hours		006	001		nm		-0.003	
Antecedent dry period (>1 in.), in hours			.0002	.001	nm	037		.000
Antecedent rainfall (48 hours), in inches					nm			
Antecedent rainfall (72 hours), in inches		92.506			nm		117.912	
Antecedent rainfall (168 hours), in inches					nm			
	Single-	family lan	d use (01104	1630)				
Intercept	155.258	nm	20.875	nm	nm	25.274	nm	-0.357
Duration (hours)	-1.881	nm		nm	nm		nm	
Total rainfall (in.)	-16.213	nm		nm	nm		nm	.060
Intensity, maximum in inches per hour		nm		nm	nm		nm	949
Antecedent dry period (>0.1 in.), in hours		nm		nm	nm	.798	nm	.009
Antecedent dry period (>0.5 in.), in hours		nm		nm	nm	090	nm	.0005
Antecedent dry period (>1 in.), in hours		nm		nm	nm	050	nm	
Antecedent rainfall (48 hours), in inches		nm		nm	nm		nm	
Antecedent rainfall (72 hours), in inches		nm		nm	nm		nm	-6.967
Antecedent rainfall (168 hours), in inches		nm	-17.349	nm	nm		nm	
	Lau	Indry Broo	ok (01104640))				
Intercept	294.11	nm	11.621	3.138	3.651	79.806	-4.076	0.513
Duration (hours)	-2.11	nm						
Total rainfall (in.)	-23.349	nm	-7.908					
Intensity, maximum in inches per hour		nm	51.391		-1.156			
Antecedent dry period (>0.1 in.), in hours		nm	035		003	.442	0.385	.003
Antecedent dry period (>0.5 in.), in hours		nm						
Antecedent dry period (>1 in.), in hours		nm		.001	.001			.0004
Antecedent rainfall (48 hours), in inches		nm						
Antecedent rainfall (72 hours), in inches		nm						
Antecedent rainfall (168 hours), in inches		nm	-7.565					
	Fa	neuil Broo	k (01104660)				
Intercept	243.411	nm	-1.511	4,588	4,122	136.256	nm	0.636
Duration (hours)		nm					nm	
Total rainfall (in.)		nm					nm	
Intensity, maximum in inches per hour		nm					nm	-1.555
Antecedent dry period (>0.1 in.), in hours		nm	.084	002		.805	nm	.004

and antecedent conditions, lower Charles River Watershed, Massachusetts

NTU, nephelometric turbidity units; nm, no model; >,greater than value shown; --, explanatory variable not used in the model]

Explanatory variable	Nitro- gen, ammo- nia, total (mg/L as N)	Nitro- gen, total, Kjeldahl (mg/L as N)	Phospho- rus, total (mg/L)	Cad- mium, total (μg/L)	Chro- mium, total (μg/L)	Copper, total (μg/L)	Lead, total (µg/L)	Zinc, total (µg/L)
	Charles Ri	ver at Wat	ertown (011	04615)				
Intercept	nm	0.517	0.138	nm	1.609	nm	2.226	12.209
Duration (hours)	nm			nm		nm		
Total rainfall (in.)	nm			nm		nm		
Intensity, maximum in inches per hour	nm	.734		nm		nm	18.011	40.076
Antecedent dry period (>0.1 in.), in hours	nm			nm		nm		
Antecedent dry period (>0.5 in.), in hours	nm	.001		nm		nm		
Antecedent dry period (>1 in.), in hours	nm			nm	.0004	nm		
Antecedent rainfall (48 hours), in inches	nm			nm		nm		
Antecedent rainfall (72 hours), in inches	nm			nm	6.467	nm		
Antecedent rainfall (168 hours), in inches	nm		084	nm	.326	nm		-6.592
	Single-f	amily land	use (01104	630)				
Intercept	-0.563	-0.589	0.672	0.468	nm	-2.981	nm	-6.592
Duration (hours)				007	nm		nm	
Total rainfall (in.)					nm		nm	
Intensity, maximum in inches per hour					nm		nm	
Antecedent dry period (>0.1 in.), in hours	.008	.021			nm	.299	nm	.821
Antecedent dry period (>0.5 in.), in hours					nm		nm	
Antecedent dry period (>1 in.), in hours					nm		nm	
Antecedent rainfall (48 hours), in inches					nm		nm	
Antecedent rainfall (72 hours), in inches			-9.726		nm		nm	
Antecedent rainfall (168 hours), in inches			541		nm		nm	
	Lau	ndry Brool	k (01104640)				
Intercept	-0.124	1.120	0.365	nm	nm	19.321	nm	-8.857
Duration (hours)	008			nm	nm	.119	nm	
Total rainfall (in.)		691		nm	nm		nm	
Intensity, maximum in inches per hour		5.393		nm	nm		nm	
Antecedent dry period (>0.1 in.), in hours	.002			nm	nm	.083	nm	.779
Antecedent dry period (>0.5 in.), in hours				nm	nm		nm	
Antecedent dry period (>1 in.), in hours	.0003	.001		nm	nm	007	nm	
Antecedent rainfall (48 hours), in inches				nm	nm		nm	
Antecedent rainfall (72 hours), in inches				nm	nm		nm	
Antecedent rainfall (168 hours), in inches		959	346	nm	nm	-13.869	nm	
	Fan	euil Brook	(01104660))				
Intercept	-0.285	0.454	0.109	nm	nm	5.596	nm	100.991
Duration (hours)				nm	nm		nm	-1.733
Total rainfall (in.)	062			nm	nm		nm	
Intensity, maximum in inches per hour	.671			nm	nm		nm	
Antecedent dry period (>0.1 in.), in hours	.003	.010		nm	nm	.090	nm	

Table 26. Regression coefficients of models used to estimate event-mean concentrations from storm-rainfall characteristics

Explanatory variable	Specific conduc- tance (µS/cm)	Turbidity (NTU)	Biochemi- cal oxygen demand, 5-day (mg/L)	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Dis- solved solids (mg/L)	Sus- pended solids (mg/L)	Nitrate, total (mg/L as N)
	Faneuil B	Brook (011	04660)— <i>Col</i>	ntinued				
Antecedent dry period (>0.5 in.), in hours	0.216	nm		0.001			nm	0.001
Antecedent dry period (>1 in.), in hours		nm			0.001		nm	
Antecedent rainfall (48 hours), in inches		nm					nm	
Antecedent rainfall (72 hours), in inches		nm			-12.235		nm	
Antecedent rainfall (168 hours), in inches		nm				-103.766	nm	
	Multifa	amily lland	l use (01104	673)				
Intercept		nm	nm	3.660	nm	nm	nm	nm
Duration (hours)		nm	nm		nm	nm	nm	nm
Total rainfall (in.)		nm	nm	372	nm	nm	nm	nm
Intensity, maximum in inches per hour		nm	nm	869	nm	nm	nm	nm
Antecedent dry period (>0.1 in.), in hours		nm	nm		nm	nm	nm	nm
Antecedent dry period (>0.5 in.), in hours		nm	nm		nm	nm	nm	nm
Antecedent dry period (>1 in.), in hours		nm	nm	.001	nm	nm	nm	nm
Antecedent rainfall (48 hours), in inches		nm	nm		nm	nm	nm	nm
Antecedent rainfall (72 hours), in inches		nm	nm		nm	nm	nm	nm
Antecedent rainfall (168 hours), in inches		nm	nm	.398	nm	nm	nm	nm
	Comm	ercial lanc	d use (01104	677)				
Intercept		25.051	nm	nm	3,596	28,739	nm	-0.159
Duration (hours)			nm	nm			nm	
Total rainfall (in.)		-5.537	nm	nm			nm	
Intensity maximum in inches per hour			nm	nm			nm	
Antecedent dry period (>0.1 in.), in hours			nm	nm			nm	.006
					001	150		
Antecedent dry period (>0.5 in.), in nours			nm	nm	.001	.150	nm	
Antecedent dry period (>1 in.), in nours			nm	nm			nm	
Antecedent rainfall (48 nours), in inches			nm	nm			nm	
Antecedent rainfall (12 nours), in inches			nm	nm			nm	
Antecedent rainfall (168 nours), in inches			nm	nm			nm	
	IVIO		(01104003)					
Intercept	329.732	nm	8.287	3.569	nm	nm	nm	0.336
Duration (hours)		nm			nm	nm	nm	
Total rainfall (in.)		nm	-6.665		nm	nm	nm	
Intensity, maximum in inches per hour	-356.082	nm			nm	nm	nm	
Antecedent dry period (>0.1 in.), in hours		nm			nm	nm	nm	.003
Antecedent dry period (>0.5 in.), in hours		nm			nm	nm	nm	
Antecedent dry period (>1 in.), in hours		nm	.005	.001	nm	nm	nm	
Antecedent rainfall (48 hours), in inches		nm			nm	nm	nm	
Antecedent rainfall (72 hours), in inches		nm		-5.981	nm	nm	nm	
Antecedent rainfall (168 hours), in inches		nm			nm	nm	nm	

and antecedent conditionslower Charles River Watershed, Massachusetts—Continued

Explanatory variable	Nitro- gen, ammo- nia, total (mg/L as N)	Nitro- gen, total, Kjeldahl (mg/L as N)	Phospho- rus, total (mg/L)	Cad- mium, total (μg/L)	Chro- mium, total (µg/L)	Copper, total (µg/L)	Lead, total (µg/L)	Zinc, total (μg/L)
	Faneuil B	rook (0110	4660)— <i>Con</i>	ntinued				
Antecedent dry period (>0.5 in.), in hours			0.0003	nm	nm	0.015	nm	
Antecedent dry period (>1 in.), in hours				nm	nm		nm	
Antecedent rainfall (48 hours), in inches				nm	nm		nm	
Antecedent rainfall (72 hours), in inches				nm	nm		nm	
Antecedent rainfall (168 hours), in inches				nm	nm		nm	
	Multifa	mily land u	use (011046	673)				
Intercept	-0.207	0.980	nm	nm	nm	-43.356	10.229	62.34
Duration (hours)			nm	nm	nm	1.426		
Total rainfall (in.)	206		nm	nm	nm			
Intensity, maximum in inches per hour	1.882		nm	nm	nm			
Antecedent dry period (>0.1 in.), in hours	.001		nm	nm	nm	.613	.415	.639
Antecedent dry period (>0.5 in.), in hours		.002	nm	nm	nm			
Antecedent dry period (>1 in.), in hours	.0002		nm	nm	nm			
Antecedent rainfall (48 hours), in inches	33.817		nm	nm	nm			
Antecedent rainfall (72 hours), in inches			nm	nm	nm			
Antecedent rainfall (168 hours), in inches	037		nm	nm	nm			
	Comme	ercial land	use (011040	677)				
Intercept	-0.226	0.178	0.365	0.215	nm	16.337	nm	163.929
Duration (hours)					nm		nm	
Total rainfall (in.)			243		nm		nm	-32.285
Intensity, maximum in inches per hour					nm	-247.945	nm	
Antecedent dry period (>0.1 in.), in hours	.005	.010	001		nm	1.143	nm	
Antecedent dry period (>0.5 in.), in hours	001			.001	nm		nm	.242
Antecedent dry period (>1 in.), in hours			.0002		nm		nm	
Antecedent rainfall (48 hours), in inches			40.684		nm		nm	
Antecedent rainfall (72 hours), in inches			.699		nm		nm	
Antecedent rainfall (168 hours), in inches			.071		nm		nm	
	Mu	ddy River	(01104683)					
Intercept	0.514	2.068	nm	nm	nm	4.724	26.709	nm
Duration (hours)	012		nm	nm	nm			nm
Total rainfall (in.)		283	nm	nm	nm			nm
Intensity, maximum in inches per hour			nm	nm	nm			nm
Antecedent dry period (>0.1 in.), in hours			nm	nm	nm	.199		nm
Antecedent dry period (>0.5 in.), in hours			nm	nm	nm			nm
Antecedent dry period (>1 in.), in hours			nm	nm	nm			nm
Antecedent rainfall (48 hours), in inches			nm	nm	nm			nm
Antecedent rainfall (72 hours), in inches			nm	nm	nm	176.699	163.774	nm
Antecedent rainfall (168 hours), in inches		668	nm	nm	nm			nm

Table 26. Regression coefficients of models used to estimate event-mean concentrations from storm-rainfall characteristics

Explanatory variable	Specific conduc- tance (µS/cm)	Turbidity (NTU)	Biochemi- cal oxygen demand, 5-day (mg/L)	Coliform, fecal, membrane filter (CFU/100 mL)	Entero- coccus, membrane filter (CFU/100 mL)	Dis- solved solids (mg/L)	Sus- pended solids (mg/L)	Nitrate, total (mg/L as N)
	St	ony Brool	c (01104687)					
Intercept	319.125	39.725	-1.460	3.271	nm	nm	162.427	1.268
Duration (hours)					nm	nm		
Total rainfall (in.)		-26.202		.113	nm	nm		187
Intensity, maximum in inches per hour	-410.857	277.066			nm	nm	155.274	
Antecedent dry period (>0.1 in.), in hours	.924		.125	.005	nm	nm		
Antecedent dry period (>0.5 in.), in hours				.003	nm	nm		
Antecedent dry period (>1 in.), in hours		089			nm	nm	118	
Antecedent rainfall (48 hours), in inches					nm	nm		
Antecedent rainfall (72 hours), in inches					nm	nm		
Antecedent rainfall (168 hours), in inches			-6.084		nm	nm	-137.780	

and antecedent conditionslower Charles River Watershed, Massachusetts-Continued

Explanatory variable	Nitro- gen, ammo- nia, total (mg/L as N)	Nitro- gen, total, Kjeldahl (mg/L as N)	Phospho- rus, total (mg/L)	Cad- mium, total (μg/L)	Chro- mium, total (μg/L)	Copper, total (μg/L)	Lead, total (µg/L)	Zinc, total (μg/L)
	Sto	ny Brook	(01104687)					
Intercept	-0.206	-0.828	0.296	0.424	-4.920	7.396	nm	270.951
Duration (hours)							nm	-3.270
Total rainfall (in.)				041			nm	
Intensity, maximum in inches per hour		1.573		.756	18.162	30.944	nm	106.654
Antecedent dry period (>0.1 in.), in hours	.004	.018	.002	.002	.045	.226	nm	
Antecedent dry period (>0.5 in.), in hours		.002					nm	241
Antecedent dry period (>1 in.), in hours				.0004			nm	
Antecedent rainfall (48 hours), in inches							nm	
Antecedent rainfall (72 hours), in inches	1.934	5.503					nm	
Antecedent rainfall (168 hours), in inches		588	281	388		-24.238	nm	-150.016

Annual loads	Biochemical oxygen demand, 5-day (kg)	Coliform, fecal, filter membrane (TCFU)	Entero- coccus, filter membrane (TCFU)	Dissolved solids (kg)	Suspended solids (kg)	Nitrate, total (kg as N)	Nitrogen, ammonia, total (kg as N)
	(Charles River	at Watertown	n (01104615)			
Average							
Dry weather	640,000	1,700	860	67,000,000	1,270,000	140,000	38,000
Stormwater	280,000	5,600	3,600	22,800,000	1,440,000	61,000	20,000
Weighted average							
Dry weather	410,000	1,500	820	55,700,000	1,290,000	170,000	39,000
Stormwater	100,000	3,500	2,500	22,100,000	1,490,000	63,000	16,000
Regression analysis							
Stormwater	270,000	860		23,900,000	4,900,000	73,000	
		Single-fami	ily land use (0	1104630)			
Average							
Dry weather	190	16	6.0	46,900	666	190	180
Stormwater	2,300	52	58	12,200	15,800	140	89
Weighted average							
Dry weather	130	3.0	1.0	44,700	380	160	55
Stormwater	590	46	48	6,940	11,000	69	40
Regression analysis							
Stormwater	2,000			14,300		110	88
		Laundr	y Brook (0110	4640)			
Average							
Dry weather	1,400	13	4.8	199,000	2,000	1,100	65
Stormwater	15,000	340	270	216,000	71,100	1,100	450
Weighted average							
Dry weather	1,100	12	3.3	207,000	2,090	930	68
Stormwater	4,800	350	320	184,000	52,700	820	290
Regression analysis							
Stormwater	10,000	140	83	213,000	68,300	1,100	290
		Faneu	il Brook Subb	asin			
Average							
Dry weather	2,300	310	75	240,000	10,500	1,200	300
Stormwater	11,000	630	310	173,000	89,100	990	270
Weighted average							
Dry weather	1,100	130	64	252,000	1,310	1,200	180
Stormwater	2,800	660	220	135,000	64,300	670	140
Regression analysis							
Stormwater	7,200	500	360	146,000		800	240

[g, gram; kg, kilogram; TCFU, trillion colony-forming units; --, no model]

1-year design storms, Lower Charles River Watershed, Massachusetts

Annual loads	Nitrogen, total Kjeldahl (kg as N)	Phos- phorus, total (kg)	Cadmium, total (g)	Chromium, total (g)	Copper, total (g)	Lead, total (g)	Zinc, total (g)
		Charles Rive	er at Waterto	wn (01104620))		
Average							
Dry weather	230,000	23,000	30,000	600,000	940,000	890,000	5,300,000
Stormwater	120,000	14,000	16,000	290,000	870,000	960,000	3,600,000
Weighted average							
Dry weather	220,000	23,000	38,000	690,000	940,000	900,000	10,000,000
Stormwater	110,000	13,000	17,000	280,000	780,000	910,000	3,100,000
Regression analysis							
Stormwater	110,000	9,900		490,000		690,000	2,100,000
		Single-fa	mily land use	(01104630)			
Average							
Dry weather	290	31	14	120	1,200	510	2,300
Stormwater	400	67	37	1,400	6,500	8,900	18,000
Weighted average							
Dry weather	140	17	11	110	840	250	1,300
Stormwater	210	45	27	930	3,600	5,600	11,000
Regression analysis							
Stormwater	360	40	54		6,000		17,000
		Laune	dry Brook (01	104640)			
Average							
Dry weather	520	64	75	860	4,300	1,600	11,000
Stormwater	3,000	350	190	7,600	42,000	51,000	140,000
Weighted average							
Dry weather	550	61	87	850	4,300	1,800	14,000
Stormwater	2,300	250	260	6,000	30,000	38,000	97,000
Regression analysis							
Stormwater	2,600	280			30,000		140,000
		Fan	euil Brook Su	bbasin			
Average							
Dry weather	790	88	71	700	3,300	2,900	25,000
Stormwater	1,600	220	210	5,500	26,000	41,000	84,000
Weighted average							
Dry weather	520	49	61	530	2,400	930	21,000
Stormwater	1,100	170	160	4,400	17,000	30,000	62,000
Regression analysis							
Stormwater	1,400	170			18,000		58,000

Annual loads	Biochemical oxygen demand, 5-day (kg)	Coliform, fecal, filter membrane (TCFU)	Entero- coccus, filter membrane (TCFU)	Dissolved solids (kg)	Suspended solids (kg)	Nitrate, total (kg as N)	Nitrogen, ammonia, total (kg as N)
		Multifamil	y land-use ² (01	104673)			
Average							
Dry weather	25	0.50	0.10	4,920	29	18	5.4
Stormwater	730	13	18	13,300	2,750	57	26
Weighted average							
Dry weather	29	.6	.1	4,040	22.9	16	6.6
Stormwater	210	7.8	14	12,400	2,630	59	17
Regression analysis							
Stormwater		7.4					12
		Commerci	al land use (01	104677)			
Average							
Dry weather	880	8.6	0.40	113,000	1,750	170	35
Stormwater	600	6.0	8.3	3,700	3,030	39	17
Weighted average							
Dry weather	250	10	.40	117,000	1,860	220	29
Stormwater	270	5.2	7.8	2,870	2,580	26	11
Regression analysis							
Stormwater			5.4	3,890			
		Ν	Auddy River				
Average							
Dry weather	2,200	5.0	1.8	298,000	6,010	770	440
Stormwater	22,000	550	340	385,000	122,000	2,200	1,000
Weighted average							
Dry weather	2,300	6.3	2.2	311,000	5,920	950	420
Stormwater	5,300	620	440	310,000	142,000	1,700	680
Regression analysis							
Stormwater	11,000	680				2,200	810
		Mud	dy River condu	ıit			
Average							
Dry weather	4,100	9.5	3.3	562,000	11,400	1,500	830
Stormwater	28,000	680	420	476,000	151,000	2,700	1,300
Weighted average							
Dry weather	4,300	12	4.1	588,000	11,200	1,800	790
Stormwater	6,600	770	550	383,000	176,000	2,100	840
Regression analysis							
Stormwater	17,600	680				2,800	1,000

1-year design storms, Lower Charles River Watershed, Massachusetts

Annual loads	Nitrogen, total Kjeldahl (kg as N)	Phos- phorus, total (kg)	Cadmium, total (g)	Chromium, total (g)	Copper, total (g)	Lead, total (g)	Zinc, total (g)
		Multifa	mily land use (01104673)			
Average							
Dry weather	10	2.5	1.0	11	100	150	540
Stormwater	120	20	22	450	5,100	5,400	12,000
Weighted average							
Dry weather	11	2.5	.60	8.0	93	64	270
Stormwater	92	15	25	420	3,500	4,100	9,400
Regression analysis							
Stormwater	120	20	22	450	300	5,200	12,000
		Comme	rcial land use ((01104677)			
Average							
Dry weather	110	78	17	190	3,200	1,800	9,200
Stormwater	98	12	22	310	6,100	8,200	11,000
Weighted average							
Dry weather	88	38	20	200	2,900	1,900	8,400
Stormwater	67	8.3	18	250	4,200	6,800	7,900
Regression analysis							
Stormwater	90	21	27		6,500		11,000
			Muddy River	r			
Average							
Dry weather	1,600	110	92	1,100	5,700	3,900	20,000
Stormwater	4,800	670	710	15,000	100,000	92,000	250,000
Weighted average							
Dry weather	1,800	99	110	1,200	5,800	4,100	27,000
Stormwater	3,700	570	780	14,000	84,000	92,000	220,000
Regression analysis							
Stormwater	3,700				160,000	150,000	
		Mu	uddy River cor	nduit			
Average							
Dry weather	3,100	200	170	2,000	11,000	7,400	38,000
Stormwater	6,000	830	870	19,000	130,000	110,000	310,000
Weighted average							
Dry weather	3,500	190	200	2,200	11,000	7,800	50,000
Stormwater	4,600	710	960	18,000	100,000	110,000	280,000
Regression analysis							
Stormwater	5,000				220,000	200,000	

Annual loads	Biochemical oxygen demand, 5-day (kg)	Coliform, fecal, filter membrane (TCFU)	Entero- coccus, filter membrane (TCFU)	Dissolved solids (kg)	Suspended solids (kg)	Nitrate, total (kg as N)	Nitrogen, ammonia, total (kg as N)
		Stony	Brook Subbas	sin			
Average							
Dry weather	7,200	3.4	1.2	2,740,000	17,500	11,000	2,800
Stormwater	100,000	4,300	1,300	1,030,000	707,000	6,700	2,400
Weighted average							
Dry weather	10,000	2.0	1.2	3,440,000	20,200	13,000	3,000
Stormwater	21,000	2,300	1,300	746,000	415,000	4,500	1,300
Regression analysis							
Stormwater	68,000	4,200			568,000	6,300	4,100
		Stony	y Brook overflo)W			
Average							
Dry weather	0	0	0	0	0	0	0
Stormwater	4,800	210	61	49,600	34,200	320	110
Weighted average							
Dry weather	0	0	0	0	0	0	0
Stormwater	1,000	110	63	35,100	20,100	220	61
Regression analysis							
Stormwater	830	90			21,900	120	35
		τ	Jngaged area				
Average							
Dry weather	4,300	25	8.7	615,000	9,610	2,400	590
Stormwater	50,000	1,200	840	774,000	250,000	4,100	1,800
Weighted average							
Dry weather	4,200	23	7.0	641,000	9,630	2,400	570
Stormwater	14,000	1,300	1,000	641,000	234,000	3,200	1,200
Regression analysis							
Stormwater	34,000	780	510	775,000	252,000	4,200	1,400

Design storm loads	Biochemical oxygen demand, 5-day (kg)	Coliform, fecal, filter membrane (TCFU)	Entero- coccus, filter membrane (TCFU)	Dissolved solids (kg)	Suspended solids (kg)	Nitrate, total (kg as N)	Nitrogen, ammonia, total (kg as N)
		Charles River	at Watertown	(01104620)			
Average							
3-month	4,800	97	61	394,000	24,900	1,000	340
1-year	12,000	250	160	1,000,000	63,300	2,700	870
Weighted average							
3-month	1,800	67	44	382,000	25,800	1,100	280
1-year	4,500	150	110	970,000	65,500	2,800	710

1-year design storms, Lower Charles River Watershed, Massachusetts

Annual loads	Nitrogen, total Kjeldahl (kg as N)	Phos- phorus, total (kg)	Cadmium, total (g)	Chromium, total (g)	Copper, total (g)	Lead, total (g)	Zinc, total (g)
		Sto	ony Brook Sub	basin			
Average							
Dry weather	7,200	1,300	720	8,700	34,000	17,000	140,000
Stormwater	15,000	2,900	2,900	48,000	240,000	630,000	910,000
Weighted average							
Dry weather	7,800	670	950	9,500	42,000	22,000	190,000
Stormwater	8,800	1,700	1,900	33,000	140,000	360,000	560,000
Regression analysis							
Stormwater	19,000	2,300	3,000	45,000	200,000		650,000
		Sto	ony Brook ove	rflow			
Average							
Dry weather	0	0	0	0	0	0	0
Stormwater	730	140	140	2,300	12,000	31,000	44,000
Weighted average							
Dry weather	0	0	0	0	0	0	0
Stormwater	430	83	94	1,600	6,600	18,000	27,000
Regression analysis							
Stormwater	290	59	81	2,200	5,200		22,000
			Ungaged are	a			
Average							
Dry weather	2,600	210	210	2,400	12,000	6,700	39,000
Stormwater	10,000	1,300	1,000	29,000	180,000	180,000	510,000
Weighted average							
Dry weather	2,800	200	240	2,500	13,000	7,200	49,000
Stormwater	7,900	1,000	1,200	25,000	140,000	160,000	400,000
Regression analysis							
Stormwater	9,000	1,200			230,000	250,000	510,000

Design storm Ioads	Nitrogen, total Kjeldahl (kg as N)	Phos- phorus, total (kg)	Cadmium, total (g)	Chromium, total (g)	Copper, total (g)	Lead, total (g)	Zinc, total (g)		
Charles River at Watertown (01104615)									
Average									
3-month	2,200	240	270	5,000	15,000	17,000	62,000		
1-year	5,500	600	680	13,000	38,000	42,000	160,000		
Weighted average									
3-month	1,900	230	290	4,900	14,000	16,000	53,000		
1-year	4,900	570	740	12	34,000	40,000	140,000		

Design storm Ioads	Biochemical oxygen demand, 5-day (kg)	Coliform, fecal, filter membrane (TCFU)	Entero- coccus, filter membrane (TCFU)	Dissolved solids (kg)	Suspended solids (kg)	Nitrate, total (kg as N)	Nitrogen, ammonia, total (kg as N)
	Charle	es River at Wa	tertown (0110	4620)— <i>Contin</i>	ued		
Regression analysis							
3-month	4,200	9.9		396,000	29,100	1,200	
1-year	11,000	24		1,010,000	94,900	3,100	
		Single-fam	ily land use (0	1104630)			
Average							
3-month	100	2.4	2.7	557	726	6.4	4.1
1-year	170	3.8	4.3	887	1,150	10	6.5
Weighted average							
3-month	26	2.0	2.1	306	484	3.0	1.8
1-year	41	3.2	3.4	487	771	4.8	2.8
Regression analysis							
3-month	110			456		2.1	1.6
1-year	180			727		1.1	2.6
		Laundr	y Brook (0110	4640)			
Average							
3-month	580	13	10	8,260	2,710	41	17
1-year	950	22	17	13,600	4,470	67	28
Weighted average							
3-month	180	14	12	7,010	2,010	31	11
1-year	300	22	20	11,500	3,310	52	18
Regression analysis							
3-month	690	3.0	1.6	7,430	2,000	38	3.5
1-year	1,700	4.9	1.3	12,200	3,290	63	4.9
		Faneu	il Brook Subb	asin			
Average							
3-month	310	19	9.3	5,150	2,650	30	7.9
1-year	530	31	16	8,690	4,480	50	13
Weighted average							
3-month	82	20	6.6	4,010	1,910	20	2.5
1-year	140	33	11	6,780	3,230	34	4.4
Regression analysis							
3-month	180	12	9.2	4,750		17	4.3
1-year	300	20	16	8,010		10	12
		Multifami	ly land use (01	104673)			
Average							
3-month	31	0.60	0.80	561	116	2.4	1.1
1-year	54	1.0	1.3	972	201	4.2	1.9
Weighted average							
3-month	9	.30	.60	523	111	2.5	.70
1-year	16	.60	1.0	907	192	4.3	1.3

Design storm loads	Nitrogen, total Kjeldahl (kg as N)	Phos- phorus, total (kg)	Cadmium, total (g)	Chromium, total (g)	Copper, total (g)	Lead, total (g)	Zinc, total (g)
	Charles	River at W	atertown (0110	94615)—Contin	nued		
Regression analysis							
3-month	2,300	240		4,600		21,000	58,000
1-year	6,900	610		12,000		80,000	210,000
		Single-fan	nily land use (0	1104630)			
Average							
3-month	18	3.1	1.7	65	300	410	830
1-year	29	4.9	2.7	100	480	650	1,300
Weighted average							
3-month	9.3	2.0	1.2	41	160	240	470
1-year	15	3.1	1.9	65	250	390	740
Regression analysis							
3-month	11	2.9	2.5		200		570
1-year	18	4.6	3.9		320		910
		Laund	ry Brook (0110	4640)			
Average							
3-month	110	13	7.2	290	1.600	1.900	5,500
1-year	190	22	12	480	2,600	3,200	9,000
Weighted average							
3-month	89	9.7	10	230	1,100	1,400	3,700
1-year	150	16	16	380	1,900	2,400	6,100
Regression analysis							
3-month	130	14			1,300		4,000
1-year	280	23			2,100		6,600
		Fane	uil Brook Subb	asin			
Average							
3-month	47	6.5	6.2	160	760	1.200	2,500
1-year	79	11	10	280	1,300	2,000	4,200
Weighted average					,	,	
3-month	20	3.1	2.9	78	310	540	1,100
1-year	35	5.4	5.0	140	240	950	2,000
Regression analysis							
3-month	39	5.0			480		1,800
1-year	65	8.4			810		2,900
		Multifam	ily land use (01	1104673)			
Average							
3-month	5.0	0.80	0.90	19	220	230	510
1-year	8.7	1.4	1.6	33	380	400	880
Weighted average							
3-month	3.9	.60	1.0	18	150	170	400
1-year	6.7	1.1	1.8	31	260	300	690

1-year design storms, Lower Charles River Watershed, Massachusetts—Continued

Design storm Ioads	Biochemical oxygen demand, 5-day (kg)	Coliform, fecal, filter membrane (TCFU)	Entero- coccus, filter membrane (TCFU)	Dissolved solids (kg)	Suspended solids (kg)	Nitrate, total (kg as N)	Nitrogen, ammonia, total (kg as N)
	Mu	ultifamily land	l use (0110467.	3)—Continued	!		
Regression analysis							
3-month		.10					1.1
1-year							1.9
		Commerci	al land use (01	104677)			
Average							
3-month	29	0.30	0.40	180	148	1.9	0.80
1-year	45	.40	.60	278	227	3.0	1.3
Weighted average							
3-month	13	0.30	0.40	140	126	1.9	0.50
1-year	21	.40	.60	216	194	3.0	.80
Regression analysis							
3-month			.20	177			
1-year			.30	273			
		Ν	Auddy River				
Average							
3-month	990	24	15	17.100	5.420	96	45
1-year	1,900	47	29	33,200	10,500	190	88
Weighted average							
3-month	240	28	20	13,800	6,300	76	42
1-year	460	58	42	26,700	12,200	150	79
Regression analysis							
3-month		15				87	36
1-year		30				170	68
		Mud	dy River cond	uit			
Average							
3-month	1,000	26	16	17,900	5,700	100	47
1-year	1,800	43	27	30,500	9,670	170	81
Weighted average							
3-month	250	29	21	14,500	6,620	80	32
1-year	420	49	35	24,500	11,200	140	54
Regression analysis							
3-month		16				91	38
1-year		28				150	62
		Stony	Brook Subbas	sin ¹			
3-month	2,500	97	32	31 000	21,700	200	62
1-vear	52.000	220	22 77	58.000	41.100	400	140

Design storm Ioads	Nitrogen, total Kjeldahl (kg as N)	Phos- phorus, total (kg)	Cadmium, total (g)	Chromium, total (g)	Copper, total (g)	Lead, total (g)	Zinc, total (g)
	Mu	ltifamily land	d use (0110467	3)—Continued	1		
Regression analysis							
3-month	4.8				11	170	420
1-year	8.2				16	290	730
		Commerc	ial land use (01	1104677)			
Average							
3-month	4.8	0.60	1.1	15	300	400	520
1-year	7.4	.90	1.6	24	460	620	810
Weighted average							
3-month	3.3	0.40	0.90	12	200	330	390
1-year	5.1	.60	1.4	19	310	510	590
Regression analysis							
3-month	3.4		1.3		79		460
1-year	5.2		1.9				570
			Muddy River				
Average							
3-month	210	30	31	690	4.600	4,100	11.000
1-year	420	58	61	1,300	8,800	7,900	22,000
Weighted average							
3-month	230	36	49	880	5,200	5,800	14,000
1-year	430	66	90	1,600	9,700	11,000	26,000
Regression analysis							
3-month	180				3,600	3,900	
1-year	270				6,900	7,700	
		Muc	ldy River cond	uit			
Average							
3-month	230	31	33	720	4,800	4,300	12,000
1-year	380	53	56	1,200	8,100	7,300	20,000
Weighted average							
3-month	170	27	36	660	3,900	4,300	10,000
1-year	300	45	62	1,100	6,600	7,300	18,000
Regression analysis							
3-month	190				3,700	4,100	
1-year	250				6,400	7,000	
		Stony	y Brook Subba	sin ¹			
3-month	430	81	0.10	15	7.0	20	28
1-year	840	170	.19	2.9	13	37	53

1-year design storms, Lower Charles River Watershed, Massachusetts-Continued

Design storm Ioads	Biochemical oxygen demand, 5-day (kg)	Coliform, fecal, filter membrane (TCFU)	Entero- coccus, filter membrane (TCFU)	Dissolved solids (kg)	Suspended solids (kg)	Nitrate, total (kg as N)	Nitrogen, ammonia, total (kg as N)			
Ungaged area										
Average										
3-month	950	25	16	16,200	5,160	91	43			
1-year	1,500	40	25	25,900	8,220	140	68			
Weighted average										
3-month	600	59	46	27,300	9,970	130	50			
1-year	960	95	73	43,400	15,900	220	80			
Regression analysis										
3-month	950	14	15	16,200	5,110	82	34			
1-year	1,600	23	24	25,800	8,140	130	51			

¹Calculated by means of equation 6.

1-year design storms, Lower Charles River Watershed, Massachusetts-Continued

Design storm Ioads	Nitrogen, total Kjeldahl (kg as N)	Phos- phorus, total (kg)	Cadmium, total (g)	Chromium, total (g)	Copper, total (g)	Lead, total (g)	Zinc, total (g)
			Ungaged area				
Average							
3-month	200	28	29	650	4,300	3,900	11,000
1-year	330	45	47	1,000	6,800	6,200	17,000
Weighted average							
3-month	340	43	53	1,100	5,800	6,800	17,000
1-year	540	69	84	1,700	9,200	11,000	27,000
Regression analysis							
3-month	170	28			3,400	3,800	11,000
1-year	230	45			5,300	6,000	17,000