Water Resources Data Texas Water Year 1999

Volume 4. Colorado River Basin, Lavaca River Basin, and Intervening Coastal Basins

By S.C. Gandara, W.J. Gibbons, D.L. Barbie and R.E. Jones

Water-Data Report TX-99-4

UNITED STATES DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

GEOLOGICAL SURVEY

Charles G. Groat, Director

For additional information write to:
District Chief, Water Resources Division
U.S. Geological Survey
8027 Exchange Dr.
Austin, Texas 78754-4733

PREFACE

This edition of the annual hydrologic data report of Texas is one of a series of annual reports that document hydrologic data collected from the U.S. Geological Survey's collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by Federal, State, local agencies, and the private sector for developing and managing land and water resources in Texas which are contained in 6 volumes:

Volume 1. Arkansas River Basin, Red River Basin, Sabine River Basin, Neches River Basin, and Intervening Coastal Basins

Volume 2. Trinity River Basin

Volume 3. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening

Coastal Basins

Volume 4. Colorado River Basin, Lavaca River Basin and Intervening Coastal Basins

Volume 5. Guadalupe River Basin, Nueces River Basin, Rio Grande Basin, and Intervening Coastal

Basins

Volume 6. Ground-Water Data

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had the primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to U.S. Geological Survey policy and established guidelines, most of the data were collected, computed, and processed from Subdistrict and Field Offices. The following supervised the collection, processing, and tabulation of the data:

Mick Baldys Jimmy G. Pond
Mike E. Dorsey Roberto Perez
Debra A. Sneck-Fahrer Jeffery T. Sandlin
Bradley L. Mansfield Ken VanZandt
Addis M. Miller III

The following individuals contributed to the collection, processing and preparation of the data:

<u>Houston Subdistrict Office</u>

San Antonio Subdistrict Office

Cindy Billington	Jim S. Hutchison	James M. Briers	Michael Nyman
Jacqueline Braden	Mark C. Kasmarek	Allan K. Clark	Cassi L. Otero
Dexter W. Brown	Patrick O. Keefe	Allen L. Furlow	Joan T. Patton
J. Pat Bruchmiller	Dale Melton	Jon R. Gilhousen	Jorge O. Pena
Mike R. Burnich	Edna M. Paul	Ken C. Grimm	Brian L. Petri
Al Campodonico	S. Lyle Phipps	C.A. Hartmann, Jr.	Roel Reyna
Laura S. Coplin	Cervando S. Ramirez	Stephanie Marr	Richard N. Slattery
Jeff W. East	Horatio X. Santos	Cecillo R. Martinez	John A. Tomlinson
Lee B. Goldstein	Jasper D. Schaer	Vidal Mendoza	John F. Wojcik

Fort Worth Field Office

Austin Field Office

Patrick B. Allen	Paul W. McKee		
Jack D. Benton	G. Dan McElhany	Freeman L. Andrews	Keith R. Snider
Martin J. Danz	Darryl G. Pinion	Searcy M. Jacobs	Randy A. Samuelson
Judith H. Donohue	Clyde T. Schoultz	Milton M. Miller	Milton W. Sunvison
Vernon L. Hastings	J.M. Taylor	Vemezia Muniz	K. Craig Weiss
Fred Liscum	David V. Tudor	C.E. Ranzau	

Wichita Falls Field Office

San Angelo Field Office

Paul Bennett	Michael T. Pettibon	Hector H. Garza	James B. Schiller
Benjamin J. Carr	Anita M. Ross	Henry Jacques, Jr.	Tim E. Teagarden
Jackie D. Kelly		Lawanna M. Kiser	

This report was prepared in cooperation with the State of Texas and other agencies under the supervision of Jayne E. May, District Data Chief.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE April 2000	3. REPORT TYPE AN AnnualOct. 1,	D DATES COVERED 1998 to Sept. 30, 1999
4. TITLE AND SUBTITLE		<u> </u>	5. FUNDING NUMBERS
Water Resources DataTex	as, Water Year 1999, Volum ver and Intervening Coastal B		
	s, D.L. Barbie, and R.E. Jone	S	
7. PERFORMING ORGANIZATION NAM U.S. Geological Survey, Wa Texas District 8027 Exchange Dr. Austin, TX 78754-4733			8. PERFORMING ORGANIZATION REPORT NUMBER USGS-WDR-TX-99-4
9. SPONSORING / MONITORING AGEN	NCY NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING
U.S. Geological Survey, Wa			AGENCY REPORT NUMBER
Texas District 8027 Exchange Dr.			USGS-WDR-TX-99-4
Austin, TX 78754-4733			
11. SUPPLEMENTARY NOTES Prepared in cooperation wit	h Federal, State, and local ag	encies.	
12a. DISTRIBUTION / AVAILABILITY S			12b. DISTRIBUTION CODE
No restriction on distribution This report may be purchased National Technical Informations Springfield, VA 22161	ed from		
discharge, and water quality water levels and water quality stations; stage only at 1 gag tions; and data for 13 partial tions. Also included are 1 surface-water-quality station collection program, and are Water Data System operate	y of streams and canals; stag ity of ground-water wells. V ing station; stage and content l-record stations comprised of ists of discontinued surface ins. Additional water data we published as miscellaneous m	e, contents, and water-q olume 4 contains record s at 11 lakes and reserve f 6 flood-hydrograph, 5 lewater discharge or stag re collected at various site easurements. These data rvey and cooperating Fe	nes, and consist of records of stage, uality of lakes and reservoirs; and is for water discharge at 61 gaging irs; water quality at 30 gaging statow-flow, and 2 miscellaneous stage-only stations and discontinued ites, not part of the systematic datatarepresent that part of the National deral, State, and local agencies in ded.
14. SUBJECT TERMS	u c		15. NUMBER OF PAGES
•	*surface water, *water quali analyses, sediments, water ter	•	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICAT OF ABSTRACT Unclassified	ION 20. LIMITATION OF ABSTRACT

CONTENTS

		Page
Drafaca		iii
	gaging stations, in downstream order, for which records are published	vi
	liscontinued surface-water discharge or stage-only stations	viii
	liscontinued surface-water-quality stations	xi
	tion	1
Coopera	gic conditions	1
Hydrolo	Streamflow	2 2
	Water quality	5
Special r	networks and programs	6
Explanat	tion of the records	7
•	Station identification numbers	7
	Downstream order numbering	7
	Records of stage and water discharge	7
	Data collection and computation	7
	Data presentationStation manuscript	8
	Data table of daily mean values	8
	Statistics of monthly mean data	10
	Summary statistics	10
	Identifying estimated daily discharge	11
	Accuracy of the records	11
	Other records available	11
	Records of surface-water quality	11
	Classification of records	12
	Arrangement of records	12
	On-site measurements and sample collection	12
	Water temperatureSediment	13 13
	Laboratory measurements	13
	Data presentation	13
	Remark codes	14
	Water Quality-Control Data	15
	Blank samples	15
	Reference samples	15
	Replicate samples	15
	Spike samples	15
	o USGS Water Data	15
	on of terms	16
	ions of techniques of water-resources investigations	22
Gaging-s	station records	26
Discharg	ge at partial-record stations and miscellaneous sites	277
	Low-flow partial-record stations Discharge measurements at miscellaneous sites	277 278
Index	Discharge measurements at miscenarious sites	279
muex		219
	ILLUSTRATIONS	
Figure	1. Area of Texas covered by volume 4 and location of selected streamflow and water-quality stations in volume 4	2
	2. Monthly mean discharges at four long-term hydrologic index stations during 1999 water year	3
	and median of the monthly mean discharges for 1961-90 water years	4
	3. Map showing location of gaging stations in the first section of the Colorado River Basin	26
	4. Map showing location of gaging stations in the second section of the Colorado River Basin	58
	5. Map showing location of gaging stations in the third section of the Colorado River Basin	106
	6. Map showing location of gaging stations in the fourth section of the Colorado River Basin	126
	7. Map showing location of gaging stations in the Austin inset of the Colorado River Basin	127
	8. Map showing location of gaging stations in the fifth section of the Colorado River Basin	218
	9. Map showing location of gaging stations in the Lavaca and Coastal River Basins	234
	TADIEC	
	TABLES	
		
Table	1. Streamflow at six selected stations	5
-	2. Comparison of records of discharge-weighted-average concentrations of dissolved	
	solids for the 1999 and 1995-99 water years	5
	solids for the 1999 and 1995-99 water yearsv	

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

[Type of data collected: (d) discharge; (c) chemical; (b) biological; (t) water temperature; (s) sediment; (e) elevation, gage heights, or contents.]

	Station	
	number	Page
WESTERN GULF OF MEXICO BASINS		
COLORADO RIVER BASIN		
Colorado River near Gail (d)	08117995	28
Lake J.B. Thomas near Vincent (e)	08118000	30
Colorado River near Cuthbert (d) (c) (t)	08120700	32
Colorado River at Colorado City (d) (c) (t)	08121000	40
Morgan Creek:		
Lake Colorado City near Colorado City (e)	08123000	46
Champion Creek Reservoir near Colorado City (e)	08123600	48
Beals Creek near Westbrook (d) (c) (t)	08123800	50
Colorado River above Silver (d) (c) (t)	08123850	60
E.V. Spence Reservoir near Robert Lee (e)	08123950	68
Colorado River at Robert Lee (d)	08124000	70
Oak Creek Reservoir near Blackwell (e)	08125500	72
Colorado River near Ballinger (d) (c) (t)	08126380	74
Elm Creek at Ballinger (d)	08127000	78
South Concho River (head of Concho River):	00120000	0.0
South Concho River at Christoval (d)	08128000	80
Middle Concho River above Tankersley (d)	08128400	82
Spring Creek above Tankersley (d)	08129300	84
Dove Creek at Knickerbocker (d)	08130500	86
Twin Buttes Reservoir near San Angelo (e)	08131200	88
Lake Nasworthy near San Angelo (e)	08132000	90
North Concho River at Sterling City (d)	08133500	92
North Concho River near Carlsbad (d)	08134000	94
O.C. Fisher Lake at San Angelo (e)	08134500	96
Concho River at San Angelo (d) Concho River near Veribest (e)	08136000	98
	08136150	100
Concho River at Paint Rock (d) (c) (t) O.H. Ivie Reservoir near Voss (e)	08136500	102
Colorado River near Stacy (d)	08136600	108
Colorado River at Winchell (d)	08136700	110 112
Pecan Bayou:	08138000	112
Jim Ned Creek:		
Hords Creek:		
Hords Creek Lake near Valera (e)	08141000	114
Pecan Bayou near Mullin (d)	08143600	116
San Saba River at Menard (d)	08144500	118
San Saba River near Brady (d)	08144600	120
Brady Creek Reservoir near Brady (e)	08144900	122
San Saba River at San Saba (d)	08146000	124
Colorado River near San Saba (d)	08147000	130
Llano River near Junction (d)	08150000	132
Llano River near Mason (d)	08150700	134
Beaver Creek near Mason (d)	08150800	136
Llano River at Llano (d)	08151500	138
Sandy Creek near Kingsland (d)	08152000	140
Pedernales River near Fredericksburg (d)	08152900	142
Pedernales River near Johnson City (d)	08153500	144
Bull Creek at Loop 360 near Austin (d) (c) (b) (t)	08154700	146
Lake Austin at Austin (c) (t)	08154900	150
Colorado River (Town Lake):		
Barton Creek at State Highway 71 near Oak Hill (d) (c) (b) (t) (s)	08155200	154
Barton Creek at Lost Creek Boulevard, Austin (d) (c) (t) (b) (c)	08155240	158
Barton Creek at Loop 360, Austin (d) (c) (t) (b) (s)	08155300	162
Barton Creek above Barton Springs near Austin (c) (t) (b) (s)	08155400	166
Barton Springs at Austin (d) (c) (b) (t)	08155500	170
Shoal Creek at 12th Street, Austin (d) (c) (b) (t) (s)	08156800	174
East Bouldin Creek at South 1st Street, Austin (c) (t) (b)	08157600	178

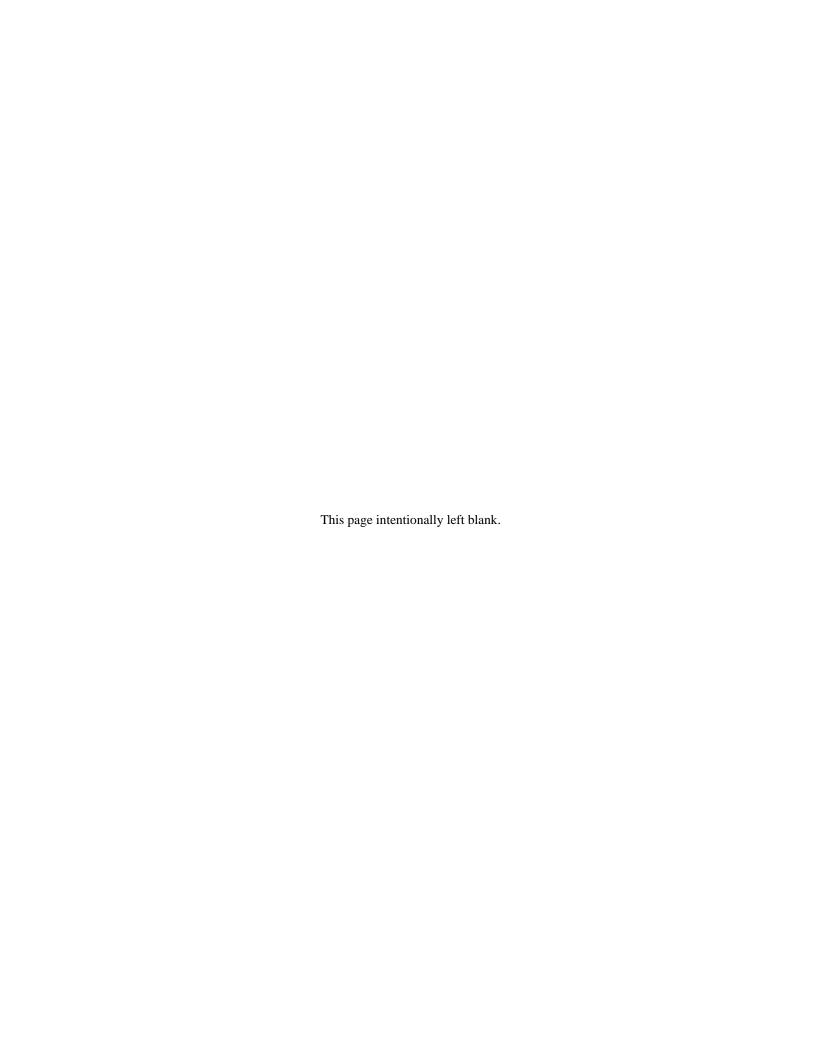
GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

	Station	
	number	Page
WESTERN GULF OF MEXICO BASINSContinued		
COLORADO RIVER BASINContinued		
Colorado River:		
Blunn Creek near Little Stacy Park, Austin (d) (c) (t) (b) (s)		182
Town Lake at Austin (c) (b) (t)		186
Colorado River at Austin (d)		192
Boggy Creek at U.S. Highway 183, Austin (d) (c) (b) (t) (s)	08158050	194
Walnut Creek at Webberville Road, Austin (d) (c) (b) (t) (s)		198
Onion Creek near Driftwood (d) (c) (b) (t)	08158700	202
Bear Creek below Farm to Market Road 1826 near Driftwood (d)	08158810	206
Slaughter Creek at Farm to Market Road 1826 near Austin (d) (c) (t) (b)	08158840	208
Williamson Creek at Brush Country Blvd., Oak Hill (d) (c) (b) (t) (s)	08158922	212
Onion Creek at U.S. Highway 183, Austin (d)	08159000	216
Colorado River at Bastrop (d)		220
Colorado River at Smithville (d)		222
Colorado River above LaGrange (d)	08160400	224
Cummins Creek:		
Redgate Creek near Columbus (d)	08160800	226
Colorado River at Columbus (d)		228
Colorado River at Wharton (d)		230
Colorado River near Bay City (d)		232
TRES PALACIOS RIVER BASIN		
Tres Palacios River near Midfield (d)	08162600	236
LAVACA RIVER BASIN		
Lavaca River at Hallettsville (d)	08163500	240
Lavaca River near Edna (d)	08164000	242
Navidad River near Hallettsville (d)		244
Navidad River near Speaks (d)		246
Navidad River at Morales (d)		248
Navidad River at Strane Park near Edna (d) (c) (t)	08164390	250
Sandy Creek near Ganado (d) (c) (t)		254
Mustang Creek:		
West Mustang Creek near Ganado (d) (c) (t)	08164503	258
East Mustang Creek at Farm to Market Road 647 near Ganado (d) (c) (t)		262
Lake Texana near Edna (c) (t)		266
GARCITAS CREEK BASIN		
Garcitas Creek near Inez (d)	08164600	272
PLACEDO CREEK BASIN		
Placedo Creek near Placedo (d)	08164800	274

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Texas have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as partial-record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the title page of this report.

[Letters after station name designate the type of data collected: (d) discharge, (e) elevation (stage only).]

		Drainage	Period
Station name	Station	area	of record
	number	(mi^2)	(water years)
San Bernard River near West Columbia (e)	08117700	766	1949,
`,			1971-77
Mound Creek Tributary at Guy (e)	08117800	1.48	1966-73
Big Boggy Creek near Wadsworth (d)	08117900	10.30	1970-77
Bull Creek near Ira (d)	08118500	26.30	1948-54,
			1959-62
Colorado River below Bull Creek near Ira (e)	08118600	3,524	1975-78
Bluff Creek near Ira (d)	08119000	42.60	1948-65
Bluff Creek at mouth near Ira (e)	08119100	44.1	1975-78
Colorado River near Ira (d)	08119500	3,483	1948-52,
	00420700	400	1959-89
Deep Creek near Dunn (d)	08120500	198	1953-86
Morgan Creek near Westbrook (d)	08121500	273	1954-63
Graze Creek near Westbrook (d)	08122000	21.70	1954-59
Morgan Creek near Colorado City (d)	08122500	313 198	1947-49
Champlin Creek near Colorado City (d) Sulphur Springs Draw near Wellman (e)	08123500 08123620	41.80	1948-59 1966-74
Beals Creek above Big Spring (d)	08123650	9,319	1959-79
Beals Creek at Big Spring (d)	08123700	9,341	1957-59
Beals Creek near Coahoma (d)	08123720	9,383	1983-88
Coahoma Draw Tributary near Big Spring (e)	08123750	2.38	1966-74
Bull Creek Tributary near Forsan (e)	08123760	0.4	1966-74
Colorado River near Silver (d)	08123900	14,997	1957-70
Bitter Creek near Silver (e)	08123920	4.3	1967-74
Salt Creek Tributary near Hylton (e)	08125450	0.25	1966-74
Oak Creek Reservoir near Blackwell (e)	08125500	238	1953-83
Fish Creek Tributary near Hylton (e)	08126300	0.25	1966-71
Colorado River at Ballinger (d)	08126500	16,413	1907-79
Dry Creek near Christoval (e)	08127100	0.79	1965-73
South Concho Irrigation Co. Canal at Christoval (d)	08127500	N/A	1940-83
South Concho River at Christoval (d)	08128000*	412.6	1931-95
Middle Concho River above Tankersley (d)	08128400*	2,084	1962-95
Middle Concho River near Tankersley (d)	08128500	2,653	1930-61
Spring Creek above Tankersley (d)	08129300*	424.7	1961-95
Dove Creek Springs near Knickerbocker (d)	08129500*	N/A	1944-58
Dove Creek at Knickerbocker (d)	08130500*	226.43	1961-95
Spring Creek near Tankersley (d)	08131000	699	1930-60
South Concho River above Pecan Creek near San Angelo (e)	08131300	470	1963-84
Pecan Creek near San Angelo (d) The Greek near San Angelo (d)	08131400	81.10	1961-86
Tom Green Co. WCID No. 1 Canal near San Angelo (d) South Concho River at San Angelo (d)	08131600	N/A 3,866	1963-81
Quarry Creek near Sterling City (e)	08132500	3.25	1932-53
North Concho River at Sterling City (d)	08133300 08133500*	588.0	1965-73 1939-87
Broome Creek near Broome (e)	08133800	0.29	1965-73
Nolke Station Creek near San Angelo (e)	08134300	0.59	1965-73
Gravel Pit Creek near San Angelo (e)	08134400	0.19	1965-74
North Concho River at San Angelo (d)	08135000	1,525	1916-31,
Trotal Control at San Fingeto (a)	00122000	1,020	1947-90
Puddle Creek near Veribest (e)	08136200	12.0	1966-73
Frog Pond Creek near Eden (e)	08136300	1.96	1967-73
Mukewater Creek SWS No. 10A near Trickham (e)	08136900	15.3	1965-72
Mukewater Creek SWS No. 9 near Trickham (e)	08137000	4.02	1961-72


Drainage Period Station name Station of record area number (mi²)(water years) ______ Deep Creek SWS No. 3 near Placid (e) 08139000 3.42 1954-60 Deep Creek near Mercury (d) 08139500 43.90 1954-73 Deep Creek SWS No. 8 near Mercury (e) 08140000 5.14 1952-71 Dry Prong Deep Creek near Mercury (d) 08140500 8.31 1951-71 Lake Clyde near Clyde (e) 08140600 36.9 1970-85 Pecan Bayou near Cross Cut (d) 08140700 532 1968-79 1965-80 Jim Ned Creek near Coleman (d) 333 08140800 McCall Branch near Coleman (e) 08141100 2.17 1966-73 Hords Creek near Valera 08141500 54.20 1947-91 Hords Creek at Coleman (d) 08142000 107 1941-70 Brown County WID No. 1 Canal near Brownwood (d) 08142500 N/A 1950-83 Pecan Bayou at Brownwood (d) 1,660 1917-18. 08143500 1924-83 Brown Creek Tributary near Goldthwaite (e) 08143700 2.48 1966-73 Noves Canal at Menard (d) 08144000 N/A 1924-83 Brady Creek near Eden (d) 08144800 101 1962-85 Brady Creek at Brady (d) 08145000 588 1939-86 Brady Creek Tributary near Brady (e) 08145100 4.05 1967-73 Lake Buchanan near Burnet (e) 08148000 31.910 1937-90 North Llano River near Junction (d) 1915-77 08148500 914 Llano River Tributary near London (e) 08150200 1966-73 0.58 Stone Creek Tributary near Art (e) 08150900 0.40 1966-73 Llano River near Castell (d) 08151000 3,747 1924-39 Johnson Creek near Valley Spring (e) 08151300 5.66 1967-73 Sandy Creek near Kingsland (d) 1967-93 08152000 327 Little Flatrock Creek near Marble Falls (e) 08152700 3.20 1966-74 Spring Creek near Fredricksburg (e) 15.20 1967-73 08152800 Pedernales River near Fredericksburg (d) 08152900 369 1979-93 Pedernales River at Stonewall (d) 08153000 647 1924-34 Cane Branch at Stonewall (e) 08153100 1.37 1965-71 Pedernales River near Spicewood (d) 08154000 1,294 1924-39 38.755 1940-90 Lake Travis near Austin (d) 08154500 Colorado River below Mansfield Dam, Austin (d) 08154510 38,755 1975-90 West Bull Creek at Loop 360 near Austin (e) 08154750 6.77 1976-82 Bull Creek at FM 2222, Austin (e) 30.4 08154760 1975-78 Bee Creek at West Lake Drive near Austin (e) 1980-82 08154950 3.28 Barton Creek near Camp Craft Road near Austin (d) 08155260 109 1982-89 Skunk Hollow Creek below Pond 1 at Austin (e) 08155400 0.12 1982-84 West Bouldin Creek at Riverside Drive, Austin (e) 08155550 3.12 1976-82 1975-82 Shoal Creek at Steck Avenue, Austin (e) 08156650 2.79 1975-84 Shoal Creek at Northwest Park at Austin (d) 08156700 6.52 Shoal Creek at White Rick Drive, Austin (e) 12.30 1975-82 08156750 Waller Creek at 38th Street, Austin (d) 08157000 2.31 1955-80 Waller Creek at 23rd Street, Austin (d) 08157500 4.13 1955-80 Boggy Creek at U.S. Highway 183, Austin (d) 08158050* 13.10 1976-86 Walnut Creek at Farm-Market 1325 near Austin (e) 1975-88 08158100 12.60 Walnut Creek at Dessau Road, Austin (e) 1975-88 08158200 26.20 Ferguson Branch at Springdale Road, Austin (e) 08158300 1.63 1978-82 Little Walnut Creek at Georgian Drive, Austin (e) 08158380 5.22 1975-88 Little Walnut Creek at IH 35, Austin (e) 08158400 1975-82 5.57 Little Walnut Creek at Manor Road, Austin (e) 08158500 12.1 1975-82 Walnut Creek at Southern Pacific Railroad bridge, Austin (e) 1975-86 08158640 53.5 Onion Creek at Buda (e) 08158800 1961-78. 166 1979-83, 1992-95 Bear Creek at Farm-Market Road 1626 near Manchaca (e) 08158820 24.0 1979-83 Little Bear Creek at Farm-Market Road 1626 near Manchaca (d) 1979 08158825 21.0 Slaughter Creek at FM 2304 near Austin (e) 08158860 23.1 1978-83 Boggy Creek (South) at Circle S Road, Austin (e) 08158880 3.58 1976-88 Fox Branch near Oak Hill (e) 08158900 0.12 1965-73

Station name	Station number	Drainage area (mi ²)	Period of record (water years)
Williamson Creek at Oak Hill (d)	08158920	6.30	1978-93
Williamson Creek at Manchaca Road, Austin (e)	08158930	19	1975-85
Williamson Creek at Jimmy Clay Road, Austin (d)	08158970	27.60	1975-85
Onion Creek below Del Valle (e)	08159100	339	1962-75
Wilbarger Creek near Pflugerville (d)	08159150	4.6	1963-80
Big Sandy Creek near McDade (d)	08159165	38.70	1979-85
Big Sandy Creek near Elgin (d)	08159170	63.80	1979-85
Dogwood Creek near McDade (e)	08159180	0.53	1980-85
Dogwood Creek at Highway 95 near McDade (e)	08159185	5.03	1980-85
Reeds Creek near Bastrop (e)	08159450	5.22	1967-73
Colorado River at Smithville (d)	08159500	39,880	1931-75
Dry Creek at Buescher Lake near Smithville (d)	08160000	1.48	1940-66
Colorado River at La Grange (d)	08160500	40,430	1939-55
Colorado River above Columbus (d)	08160700	41,403	1983-85
Dry Branch Tributary near Altair (e)	08161580	0.68	1966-73
Little Robin Slough near Matagorda (e)	08162530	3.4	1969
Tres Palacios River near Midfield (d)	08162600	145	1970-97
Cashs Creek near Blessing (e)	08162650	14.8	1969-77
East Carancahua Creek near Blessing (e)	08162700	81.2	1968,
			1970-83
West Carancahua Creek near Laward (e)	08162800	57.1	1970-76
Navidad River near Ganado (d)	08164500	826	1939-80

The following stations were discontinued as continuous-record surface-water-quality stations prior to the 1999 water year. Daily records of specific conductance, temperature, sediment, color, pH, dissolved oxygen, or chloride were collected and published for the record shown for each station.

[SC, specific conductance; T, temperature; S, sediment; C, color; pH, pH; DO, dissolved oxygen; Cl, chloride.]

		Drainage		Period
Stationname	Station	area	Type of	of record
	number	(mi ²)	record	(water years)
Colorado River above Bull Creek near Knapp	08118200	N/A	SC, T, Cl	1950-52
Bull Creek near Ira	08118500	26.30	SC, T, pH, Cl	1950-51
Bluff Creek near Ira	08119000	42.60	SC, T, pH, Cl	1950
Colorado River near Ira	08119500	3,483	SC, T	1950-52,
				1959-70,
				1975-82,
			Cl	1951-52
Deep Creek near Dunn	08120500	198	SC, T	1953-54
Morgan Creek near Westbrook	08121500	273	T	1954-55
Graze Creek near Westbrook	08122000	21.70	T	1954-55
Morgan Creek near Colorado City	08122500	313	T	1947-49
Lake Colorado City near Colorado City	08123000	340	T	1954-55
Beals Creek above Big Spring	08123650	9,319	SC, T	1973-78
Beals Creek near Big Spring	08123700	9,341	SC, T	1956-57
Beals Creek near Coahoma	08123720	9,383	SC, T	1983-88
Colorado River near Silver	08123900	14,997	SC, T	1957-68
Colorado River at Robert Lee	08124000	15,307	SC, T, pH, Cl	1948-51,
			S	1949-51
Oak Creek near Blackwell	08126000	209	SC, T	1950
Colorado River at Ballinger	08126500	16,413	SC, T	1961-79,
			S	1978-79
Elm Creek at Ballinger	08127000	450	SC, T	1968-91
Concho River at Paint Rock	08136500	6,574	SC, T	1946-50,
				1967-90,
			S	1978-81
Pecan Bayou at Brownwood	08143500	1,660	SC, T	1948-49
Pecan Bayou near Mullin	08143600	2,073	SC, T	1968-91
San Saba River near San Saba	08145500	N/A	SC, T	1962-65
San Saba River at San Saba	08146000	3,046	SC	1962-69,
			T	1963-70
Colorado River near San Saba	08147000	37,217	SC, T	1947-92,
			S	1951-62
Llano River at Llano	08151500	4,197	SC, T	1979-81
Lake Austin at Austin	08154900	38,240	SC, T	1965-80
Barton Creek below Barton Springs at Austin	08155505	125	SC, T,	1965,
				1975-83,
				1989-91,
				1994-97
Waller Creek at 23rd Street at Austin	08157500	4.13	T	1955-60
Colorado River at Austin	08158000	39,009	SC, T	1948-91
Colorado River above Columbus	08160700	41,403	SC, T	1983-86
Colorado River at Columbus	08161000	41,640	SC	1967-73,
			T	1957-59,
				1961-68
			S	1957-73
Colorado River at Wharton	08162000	42,003	SC	1945-92,
			T	1946-48,
Lavaca River near Edna	08164000	817	SC, T	1978-81
Navidad River near Ganado	08164500	826	SC, T	1960-80

WATER RESOURCES DATA—TEXAS, 1999

VOLUME 4

COLORADO RIVER BASIN, LAVACA RIVER BASIN AND INTERVENING COASTAL BASINS

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and City agencies, obtains a large amount of data pertaining to the water resources of Texas each water year. Such data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in six volumes of this report series entitled "Water Resources Data - Texas."

This report series includes records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs and water levels and water quality of ground water wells. Volume 4 contains records for water discharge at 61 gaging stations; stage only at 1 gaging station; stage and contents at 11 lakes and reservoirs; and water quality at 30 gaging stations. Also included are data for 13 partial-record stations comprised of 6 flood-hydrograph, 5 low-flow, and 2 miscellaneous measurement stations. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating Federal, State, and City agencies in Texas.

This series of annual reports for Texas began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to its present format, with data on quantities and quality of surface water contained in each of three volumes, and expanding to five volumes beginning with the 1999 water year. Ground-water levels and water quality have been published in a separate volume beginning with the 1991 water year.

Prior to introduction of this series and for several water years concurrent with it, water resources data for Texas were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 7 and 8." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from U.S. Geological Survey, Books and Open-File Reports, Federal Center, Bldg. 41, Box 25425 Denver, CO 80225.

Publications similar to this report are published annually by the U.S. Geological Survey for all States. These official U.S. Geological Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water Data Report TX-99-4." For archiving and general distribution, the reports for the 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or may be purchased on microfiche from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161 (703)) 605-6000.

Additional information, including the current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (512) 927-3500.

COOPERATION

Federal agencies that assisted the U.S. Geological Survey in the collection of data in this report in the form of funds or services in water year 1999 are:

- Corps of Engineers, U.S. Army.
 International Boundary and Water Commission, United States and Mexico, U.S. Section.
- ☐ U.S. Bureau of Reclamation.

Organizations that assisted in the collection of data in this report through joint funding agreements through the Texas Water Development Board or through direct joint funding agreements with the U.S. Geological Survey are:

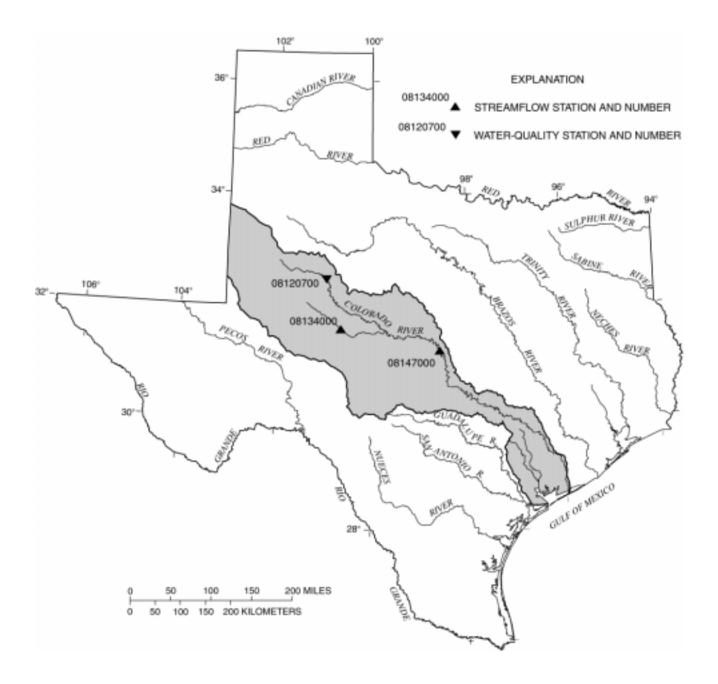
Texas Water Development Board, G.E. Kretzschmar, Executive Administrator; the cities of Abilene, Arlington, Austin, Corpus Christi, Fort Worth, Gainesville, Garland, Georgetown, Graham, Houston, Lubbock, Nacogdoches, San Angelo, and Wichita Falls; Bexar, Medina, and Atascosa Counties Water Improvement District No. 1; Barton Springs/Edwards Aquifer Authority; Brazos River Authority; Canadian Municipal Water Authority; Coastal Water Authority; Colorado River Municipal Water District; Dallas Public Works Department; Dallas Water Utilities; Edwards Underground Water District; Fort Bend Subsidence District; Franklin County Water District; Galveston County; Greenbelt Municipal and Industrial Water Authority; Guadalupe-Blanco River Authority; Harris County Office of Emergency Management Harris-Galveston Coastal Subsidence District; Harris County Flood Control District: Houston-Galveston Area Council; Lavaca-Navidad River Authority; Lower Colorado River Authority; Lower Neches Valley Authority; North Central Texas Council of Governments; North Central Texas Municipal Water Authority; Northeast Texas Municipal Water District; North Texas Municipal Water District; Pecos River Commission; Red Bluff Water Power Control District; Red River Authority; Sabine River Authority of Texas; Sabine River Compact Administration; San Antonio City Public Service Board; San Antonio River Authority; San Antonio Water System; San Jacinto River Authority; Somervell County Water District; Tarrant Regional Water District; Texas Soil & Water Conservation Board; Texas State Department of Highways & Public Transportation; Texas Natural Resources Conservation Commission; Titus County Fresh Water Supply District No. 1; Trinity River Authority; Upper Guadalupe River Authority; Upper Neches River Municipal Water Authority; West Central Texas Municipal Water District; and Wichita County Water Improvement District No. 2.

HYDROLOGIC CONDITIONS

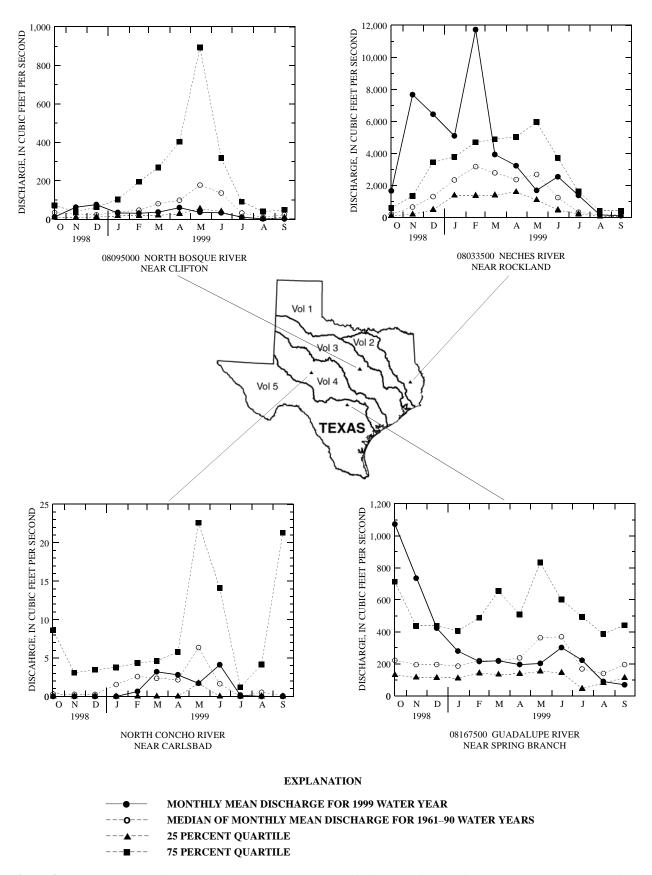
Large variations in precipitation, runoff, and streamflow characterize the usual hydrologic conditions in Texas. In the eastern part of the State, streams typically are deep with wide alluvial flood plains, and streamflow is perennial. In the western part of the State, most streams flow through arroyos, and streamflow usually is ephemeral.

Streamflow across the State averaged normal during water year 1999.

Conservation storage in 77 selected reservoirs throughout the State, with a combined conservation capacity of 34,481,000 acre-feet, increased from 75 percent at the end of September 1998 to 76 percent at the end of September 1999. Records from these reservoirs indicate that storage decreased in 42, increased in 34, and remained the same in 1.


The area for which water resources data are presented in volume 4 includes the Colorado River Basin, Lavaca River Basin, and Intervening Coastal Basins. The area described in volume 4 and the location of selected streamflow-gaging and water-quality stations in the area are shown in figure 1.

Streamflow


In the area covered in volume 4, streamflow averaged normal during water year 1999. Streamflow for water year 1999 and streamflow for the period of record at the two selected stations (fig. 1) for which data are included in volume 4 is presented in table 1.

At the four long-term hydrologic index stations in the State, monthly mean streamflow during water year 1999 was normal. Monthly mean discharges for water year 1999 and the median of the long-term monthly means for water years 1961-90 for the four long-term hydrologic index stations in the State are shown in figure 2. Streamflow at the hydrologic index station North Concho River near Carlsbad had normal streamflow for each month of water year 1999. The station Neches River near Rockland was above normal during October through February and normal for the remaining 7 months. The station North Bosque River near Clifton had above normal streamflow during November and December, below normal streamflow during May, August, and September and normal streamflow for the remaining 7 months. Streamflow for the station Guadalupe River near Spring Branch was above normal during October through December, below normal during September and normal for the remaining 8 months.

Conservation storage in 12 selected reservoirs in this area of the State, with a total combined conservation capacity of 3,962,000 acre-feet, decreased from 65 percent of capacity at

Figure 1. Area of Texas covered by volume 4 (shaded) and location of selected streamflow and water-quality stations in volume 4.

Figure 2. Monthly mean discharges at four long-term hydrologic index stations during 1999 water year and median of the monthly mean discharges for 1961–90 water years.

the end of September 1998 to 60 percent of capacity at the end of September 1999. Records from these reservoirs indicate that storage decreased in 10 and increased in 2.

Water Quality

Dissolved-solids concentrations in most streams in the State are inversely related to streamflow discharges. During years when precipitation and runoff are less than normal, streamflow commonly is more mineralized than during years when precipitation and runoff are normal or greater than normal.

However, for streams where discharge is controlled by reservoirs, the dissolved-solids concentrations may remain relatively constant despite substantial fluctuations in precipitation and runoff.

Records of discharge-weighted-average concentrations of dissolved solids for water year 1999 are compared with those for water years 1995–99 for selected long-term daily or continuous-record water-quality stations (fig. 1) in the Colorado River Basin. Results are shown in table 2.

Table 1. Streamflow at two selected stations Discharge during Discharge during 1999 water year period of record (cubic feet per second) (cubic feet per second) Station no. and name Mean Mean Maximum Minimum Maximum Minimum daily mean daily mean instantaneous instantaneous Colorado River Basin 08134000 North Concho River 62 0 1.06 94,600 0 28.9 near Carlsbad, Tex. 1/ (1924-99)08147000 Colorado River 51,400 50 337 224,000 0 1.041 near San Saba, Tex. (1931-99)1/ Hydrologic index station.

Table 2.--Comparison of records of discharge-weighted-average concentrations of dissolved solids for the 1999 and 1995-99 water years Discharge-weighted-average concentration of Mean discharge Station no. and name (cubic feet dissolved solids per second) (milligrams per liter) 1999 1995-99 1999 1995-99 Colorado River Basin Colorado River near 08120700 32 17 676 1,350 Cuthbert, Tex.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within four of the Nation's largest river basins--the Mississippi, Columbia, Colorado, and Rio Grande. The network consists of 40 stations. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of the constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and remobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals.

Additional information about the NASQAN program is available through the world wide web at:

http://water.usgs.gov/nasqan/

The National Atmospheric Deposition Program/National Trends Network (NAPD/NTN) provides continuous measurement and assessment of the chemical climate of precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to accomplish the following objectives; (1) Provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of over 200 precipitation chemistry monitoring sites. (2) Provide the mechanism to evaluate the effectiveness of the significant reduction in SO₂ emissions that began in 1995 as implementation of the Clean Air Act Amendments (CAAA) occurred. (3) Provide the scientific basis and nationwide evaluation mechanism for implementation of the Phase II CAAA emission reductions for SO₂ and NOx scheduled to begin in 2000.

Data from the network, as well as information about individual sites, are available through the world wide web at:

http://nadp.sws.uiuc.edu

National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. There are currently two NAWQA Programs operating in Texas; the Trinity NAWQA and the South Central Texas NAWQA.

Additional information about the NAWQA Program is available through the world wide web at:

http://water.usgs.gov/nawqa/nawqa_home.html http://tx.usgs.gov/trin http://tx.usgs.gov/sctx

<u>Radiochemical Program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water records published in this report are for the 1999 water year that began October 1, 1998, and ended September 30, 1999. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, and water-quality data for surface water. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells.

Downstream Order Numbering

Since October 1, 1950, the order of listing hydrologic-station records in U.S. Geological Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station, such as 08057000, which appears just to the left

of the station name, includes the 2-digit Part number "08" plus the 6-digit downstream-order number "057000." The Part number designates the major river basin; for example, Part "08" is the Western Gulf of Mexico basin.

Records of Stage and Water Discharge

Records of stage and streamflow may be complete or partial. Complete records of discharge are those obtained using a stage-recording device through which either instantaneous or daily mean discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated for any time, or period of time. They may be obtained using a stage-recording device, but need not be. Because daily-mean discharges and reservoir contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Flood-hydrograph partial records," "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow channel gain and loss studies, may be considered as partial records, but they are presented separately in this report. Instantaneous peak discharges are presented for all but the low-flow partial-record stations.

Data Collection and Computation

The data obtained at a complete record gaging station on a stream or canal consist of records of stage (that is recorded every 15, 30, or 60 minutes), measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relation between stage and discharge. These data, together with supplemental information such as weather records, are used to compute daily mean discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relation between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute lake storage.

Records of stage are obtained with recorders at selected time intervals. Measurements of discharge are made with current meters and indirect procedures using methods adopted by the U.S. Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, TWRI, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves then are constructed. From these curves, rating tables indicating the discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves can be extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques. Stage-discharge ratings at gaging stations are described in TWRI, Book 3, Chapter A10.

Instantaneous discharges are computed by applying each individual recorded stage (gage height) to the stage-discharge table. The daily mean discharge is computed as the mean of the instantaneous discharges. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the rating tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations, that the daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by backwater from reservoirs, tributary streams, bays, or other sources. This necessitates the use of the slope method in which the slope (fall) in a reach of the stream is a factor in computing discharge. The slope is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relation of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes are determined. If the stage-content relation changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relation. Even when this is done, the contents computed may increase in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relations much as other stream discharges are computed.

For some streamflow gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the stage sensor or recorder fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily mean discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surface-water discharge station (gaging station) now consists of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly-mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7- day low-flow minimums, and flow duration.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years which the revisions apply to. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to sea level, and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.-- Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS .-- If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscripts published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the offices whose addresses are given on the back of the title page of this report to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check, because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents.

Data table of daily mean values

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acrefeet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the daily mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period, expressed as "FOR WATER YEARS _____, BY WATER YEAR (WY)," will list the first and last water years of the range selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS _____," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. However, data for partial water years, if any, will only be used in the statistical calculations, if appropriate. For example, all of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINI-MUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the column heading. When this occurs, it should be noted in the REMARKS paragraph or in footnotes. Selected streamflow

duration curve statistics and runoff data are also given. Runoff data is omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period.

INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.

INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

- 10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent.

Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures for more than 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables, is on file in the Texas District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications.

A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values obtained by data logger. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Records of surface-water quality at some National Water Quality Accounting (NAWQA) Sites include data collected by different government agencies as identified in the water-quality data tables under AGENCY COLLECTING SAMPLE (CODE NUMBER). Values for this code are given below:

1028 - U.S. Geological Survey

84823 - International Boundary & Water Commission

Procedures for on site measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" which appears at the end of the introductory text. Detailed information on collecting, treating, and shipping samples may be obtained from the Texas Office of the Central Region Office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (NASQAN) (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors which must be evaluated by the collector. Information on the method used to collect the sample at National Stream Quality Accounting Network sites is given in the water-quality data tables under SAMPLING METHOD. Values for this code are given below:

10 - Equal Width Increment (EWI)

20 - Equal Discharge Increment (EDI)

25 - Timed Sampling Interval

30 - Single Vertical

40 - Multiple Verticals

50 - Point Sample

60 - Weighted Bottle

70 - Grab Sample (DIP)

90 - Discharge Integrated, Centroid

120 - Velocity Integrated

8010 - Other

Detailed information on sampling methods may be found in the following publications: OFR-90-127 "Guidelines for Collection and Analysis of Water-Quality Samples from Streams in Texas", OFR-94-455 "Field Guide for Collecting and Processing Stream-Water Samples for the National Water-Quality Assessment Program", and OFR-94-539 "U.S. Geological Survey protocol for the collection and processing of surfacewater samples for the subsequent determination of inorganic constituents in filtered water". Specific questions pertaining to water-quality sample collection may be directed to the District

Water-Quality Specialist in Austin, Texas, or the Regional Water-Quality Specialist in Denver, Colorado.

Additional information about the NASQAN program is available through the world wide web at:

http://water.usgs.gov/public/nasqan/

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

For chemical-quality stations equipped with water-quality monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly readings beginning at 0100 hours and ending at 2400 hours for the day of record.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the Texas District Office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge-weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that

the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the U.S. Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the U.S. Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Historical and current (1999) dissolved trace-element concentrations are reported herein for water that was collected, processed, and analyzed by using either ultraclean or other than ultraclean techniques. If ultraclean techniques were used, then those concentrations are reported in nanograms per liter. If other than ultraclean techniques were used, then those concentrations are reported in micrograms per liter and could reflect contamination introduced during some phase of the procedure.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radio-chemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuousrecord station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge" same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. These periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remarks Codes

The following remark codes may appear with the water-quality data in this report:

REMARK

PRINTED OUTPUT

e or E	Estimated value.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
K	Results based on colony count outside the acceptance range (non-

L	Biological	organism	count	less
	than 0.5 p	ercent (Org	ganism	may
	be observe	d rather tha	n count	ed).

ideal colony count).

D	Bio	olog	ical orga	anism	cou	nt equal
	to	or	greater	than	15	percent
	(dominant).					

&	Biological	organism	estimated	as
	dominant.			

V Analyte was detected in both the environmental sample and the associated blanks.

Dissolved Trace-Element Concentrations

NOTE: Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (mg/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the mg/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994.

Change in National Trends Network Procedures

NOTE: Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (303-491-5643).

WATER QUALITY-CONTROL DATA

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are:

<u>Field blank</u> - a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

<u>Trip blank</u> - a blank solution that is put in the same type of bottle used for an environmental sample, and kept with the set of sample bottles before and after sample collection.

<u>Equipment blank</u> - a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to field blank but normally done in the more controlled conditions of the office).

<u>Sampler blank</u> - a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

<u>Filter blank</u> - a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

<u>Splitter blank</u> - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

<u>Preservation blank</u> - a blank solution that is treated with the sample preservatives used for an environmental sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

<u>Sequential sample</u> - a type of replicate sample in which the samples collected one after the other, typically over a short time.

<u>Split sample</u> - a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). These data may be accessed at

http://tx.usgs.gov

Some water-quality and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on magnetic tape, 3-1/2 inch floppy disk or CD-ROM. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.)

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 325,851 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

<u>Algae</u> are mostly aquatic single-celled, colonial, or multicelled plants, containing chlorophyll and lacking roots, stems, and leaves

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

<u>Alkalinity</u> is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rod-like, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

<u>Total coliform bacteria</u> are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or fac-

ultative anaerobic, gram-negative, nonspore-forming, rod-sha-ped bacteria which ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at +35 °C \pm 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at +44.5 °C \pm 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal streptococcal bacteria</u> are bacteria found in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms that produce red or pink colonies within 48 hours at $+35\,^{\circ}\text{C}$ $\pm\,1.0\,^{\circ}\text{C}$ on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Bed material</u> is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

<u>Benthic organisms</u> (invertebrates) are the group of animals inhabiting the bottom of an aquatic invironment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 $^{\circ}$ C for 1 hour. Ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²).

<u>Dry mass</u> refers to the mass of residue present after drying in an oven at 105 °C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass.

<u>Wet mass</u> is the mass of living matter plus contained water.

Bottom material: See "Bed material".

<u>Cells/volume</u> refers to the number of plankton cells or natural units counted using a microscope and grid or counting cell. Results are generally reported as cells or units per milliliter.

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll a and b are the two most common green pigments in plants.

<u>Color Unit</u> is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

<u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

<u>Cubic foot per second</u> (ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Cubic foot per second per day</u> [(ft³/s)/d] is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2,447 cubic meters.

<u>Cubic feet per second per square mile</u> [(ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

<u>Instantaneous discharge</u> is the discharge at a particular instant of time.

<u>Dissolved</u> refers to that material in a representative water sample which passes through a $0.45~\mu m$ membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to reflect the change.

<u>Drainage area</u> of a site on a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system with a common outley for it's surface runoff, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Extractable organic halides (EOX) are organic compounds which contain halogen atoms such as chlorine. These organic compounds are semi-volatile and extractable by ethyl acetate from air-dried stream bottom sediments. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of th stream bottom sediments.

<u>Gage height</u> (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Supplementary gage</u> is a gage used to obtain additional data. A supplementary gage may be used in place of the principal gage if the latter is isolated or cut

off from the channel, or registers only above (or below) a certain gage height. One or more supplementary gages may be used on bypass channels or overflow channels, or on streams that flow in several channels, each of which is rated independently.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide.

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Low tide is the minimum height reached by each falling tide.

Mean high tide is the average of all high tides over a specified period.

<u>Mean low tide</u> is the average of all low tides over a specified period.

Mean water level is the average of all tides over a specified period.

<u>Membrane filter</u> is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

<u>Methylene blue active substances</u> (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

<u>Micrograms per gram</u> ($\mu g/g$) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

<u>Micrograms per liter</u> (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Microsiemens per centimeter (μ S/cm, US/CM) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of

solution at a specified temperature. Siemens is the International System of units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.

<u>Multiple-plate samplers</u> are artificial substrates of known surface area used for obtaining benthic-invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

Organism is any living entity.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

<u>Organism count/volume</u> refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

<u>Total organism count</u> is the total number of organisms collected and enumerated in any particular sample.

Parameter Code is a 5-digit number used in the U.S. Geological Survey computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent. The codes used in NWIS are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	on Siz	Size (mm)		Method of analysis	
Clay	0.00024	-	0.004	Sedimentation	
Silt	0.004	-	0.062	Sedimentation	
Sand	0.062	-	2.0	Sedimentation/sieve	
Gravel	2.0	-	64.0	Sieve	

The partial size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for nativewater analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.

<u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL of sample).

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

<u>Green algae</u> have chlorophyll pigments similar in color to those of higher green plants. Some

forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg C/(m²/time)] for periphyton and macrophytes and [mg C/(m³/time)] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg 0/(m²/time)] for periphyton and macrophytes and [mg 0/(m³/time)] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

<u>Radiochemical program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To

achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Return period</u> is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

<u>Runoff in inches</u> (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Sea level</u> was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports and refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

<u>Bed-load discharge</u> (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The entire sample is used for the analysis.

<u>Mean concentration</u> is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027.

<u>Suspended-sediment load</u> is a general term that refers to material in suspension. The term needs to be qualified, such as "annual suspended-sediment load" or

"sand-size suspended-sediment load," and so on. It is not synonymous with either discharge or concentra-

<u>Suspended total residue</u> at 105 °C concentration is the concentration of suspended sediment in the sampled zone expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). A small aliquot of the sample is used for the analysis.

<u>Total-sediment discharge</u> (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a cross section during a given time.

<u>Total-sediment load</u> or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with total-sediment discharge.

<u>Sodium-adsorption-ratio</u> (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

<u>Stage-discharge relation</u> is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

<u>Substrate</u> is the physical surface upon which an organism lives.

<u>Natural substrate</u> refers to any naturally occurring imersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with

clean streamside rocks) and multiplate samplers (made of hard-board) for benthic organism collection, and plexiglass strips for periphyton collection.

<u>Surface area</u> of a lake is that area outlined on the latest USGS topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

<u>Surficial bed material</u> is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a watersediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 µm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total-recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 μ m membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

<u>Synoptic Studies</u> Short-term investigations of specific waterquality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical waterquality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

<u>Taxonomy</u> is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchal scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom Animal
Phylum Arthropoda
Class Insecta
Order Ephemeroptera
Family Ephemeridae
Genus Hexagenia
Species Hexagenia limbata

<u>Thermograph</u> is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

<u>Tons per acre-foot</u> indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

<u>Tons per day</u> (T/DAY) is the rate representing a mass of 1 ton of a constituent in streamflow passing a cross section in 1 day. It is equivalent to 2,000 poinds per day, or 0.9072 metric tons per day.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

<u>Total discharge</u> is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total recoverable is the amount of a given constituent that is in solution after a representative water- suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Volatile Organic Compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are man-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxid and are known or suspected human carcinogens (U.S. Environmental Protection Agency, 1996).

Water year in U.S. Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1990, is called the "1990 water year."

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

<u>WSP</u> is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

PUBLICATIONS OF TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

Book 1. Collection of Water Data by Direct Measurement Section D. Water Quality

- 1-D1. Water temperature-influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of groundwater samples for selected unstable constituents, by W.W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2-D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS--TWRI Book 2, Chapter D2. 1988. 86 pages.

Section E. Subsurface Geophysical Methods

- 2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS--TWRI 11.0
- 2-E2. Borehole geophysics applied to ground-water investigations, by W.S. Scott Keys: USGS--TWRI Book 2, Chapter E2. 1990. 150 pages.

Section F. Drilling and Sampling Methods

2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and Warren E. Teasdale: USGS--TWRI Book 2, Chapter F1. 1989. 97 pages.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS-TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel in streams by dye tracing, by F.A. Kilpatrick, and J.F. Wilson, Jr.: USGS-TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-A10.*Discharge ratings at gaging stations*, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-A11.*Measurement of discharge by moving-boat method*, by G.F. Smoot and C.E. Novak: USGS--TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A12. Fluorometric procedures for dye tracing, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS--TWRI Book 3, Chapter A12, 1986. 41 pages.
- 3-A13. Computations of continuous records of streamflow, by E.J. Kennedy: USGS-- TWRI Book 3, Chapter A13, 1983. 53 pages.
- 3-A14.*Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-A16.*Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS--TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages.

- 3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, N. Yotsukura, G.W. Parker, and L.L. DeLong: USGS--TWRI Book 3, Chapter A18. 1989. 52 pages.
- 3-A19.*Levels of streamflow gaging stations*, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A19. 1990. 27 pages.
- 3-A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS --TWRI Book 3, Chapter A20. 1993. 38 pages.
- 3-A21.*Stream-gaging cableways*, by C. Russell Wagner: USGS--TWRI Book 3, Chapter A21. 1995. 56 pages.

Section B. Ground-Water Techniques

- 3-B1. *Aquifer-test design, observation, and data analysis*, by R.W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self instruction, by G.D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B4. *Regression modeling of ground-water flow*, by Richard L. Cooley and Richard L. Naff: USGS--TWRI Book 3, Chapter B4. 1990. 232 pages.
- 3-B4. Supplement 1. Regression modeling of ground-water flow-Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley. USGS--TWRI Book 3, Chapter B4. 1993. 8 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS--TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS--TWRI Book 3, Chapter B7. 1992. 190 pages.

Section C. Sedimentation and Erosion Techniques

- 3-C1. *Fluvial sediment concepts*, by H.P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. *Field methods for measurement of fluvial sediment*, by H.P. Guy and V.W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. *Computation of fluvial-sediment discharge*, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

4-A1. *Some statistical tools in hydrology*, by H.C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.

4-A2. Frequency curves, by H.C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.

Section B. Surface Water

- 4-B1. *Low-flow investigations*, by H.C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. *Regional analyses of streamflow characteristics*, by H.C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.

Section D. Interrelated Phases of the Hydrologic Cycle

4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman: USGS--TWRI Book 5, Chapter A1. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS--TWRI Book 5, Chapter A3. 1987. 80 pages.
- 5-A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.

Section A. Sediment Analysis

5-C1. *Laboratory theory and methods for sediment analysis*, by H.P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.

Book 6. Modeling Techniques

Section A. Ground Water

- 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS--TWRI Book 6, Chapter A1. 1988. 586 pages.
- 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS--TWRI Book 6, Chapter A2. 1991. 68 pages.

- 6-A3.A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS--TWRI Book 6, Chapter A3. 1993. 136 pages.
- 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS-TWRI Book 6, Chapter A4. 1992. 108 pages.
- 6-A5.A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak. USGS--TWRI Book 6, Chapter A5. 1993. 243 pages.
- 6-A6.A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler. 1995. 125 pages.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by pages.C. Trescott, G.F. Pinder, and S.P. Larson: USGS-TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffrannek, R.A. Baltzer, and D.E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1983. 110 pages.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8-A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages.
- 8-A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.

Section B. Instruments for Measurement of Discharge

8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 8, Chapter B2. 1968. 15 pages.

Book 9. Handbooks for Water-Resources Investigations

- Section A. National Field Manual for the Collection of Water-Quality Data
- 9-A1. National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS--TWRI Book 9, Chapter A1. 1998. 47 pages.

- 9-A2. National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS--TWRI Book 9, Chapter A2. 1998. 94 pages.
- 9-A3. National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS--TWRI Book 9, Chapter A3. 1998. 75 pages.
- 9-A5. National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS--TWRI Book 9, Chapter A5. 1999. 149 pages.
- 9-A6.National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F.D. Wilde and D.B. Radtke: USGS--TWRI Book 9, Chapter A6. 1998. Variously paginated.

- 9-A7. National Field Manual for the Collection of Water-Quality Data: Biological Indicators, edited by D.N. Myers and F.D. Wilde: USGS--TWRI Book 9, Chapter A7. 1997. 49 pages.
- 9-A7. National Field Manual for the Collection of Water-Quality Data: Five-Day Biochemical Oxygen Demand, by G.C. Delzer and S.W. McKenzie: USGS-TWRI Book 9, Chapter A7.2. 1999. 28 pages.
- 9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom Material Samples, by D.B. Radtke: USGS--TWRI Book 9, Chapter A8. 1998. 48 pages.
- 9-A9. National Field Manual for the Collection of Water-Quality Data: Saafety in Field Activities, by S.L. Lane and R.G. Fay: USGS--TWRI Book 9, Chapter A9. 1998. 60 pages.

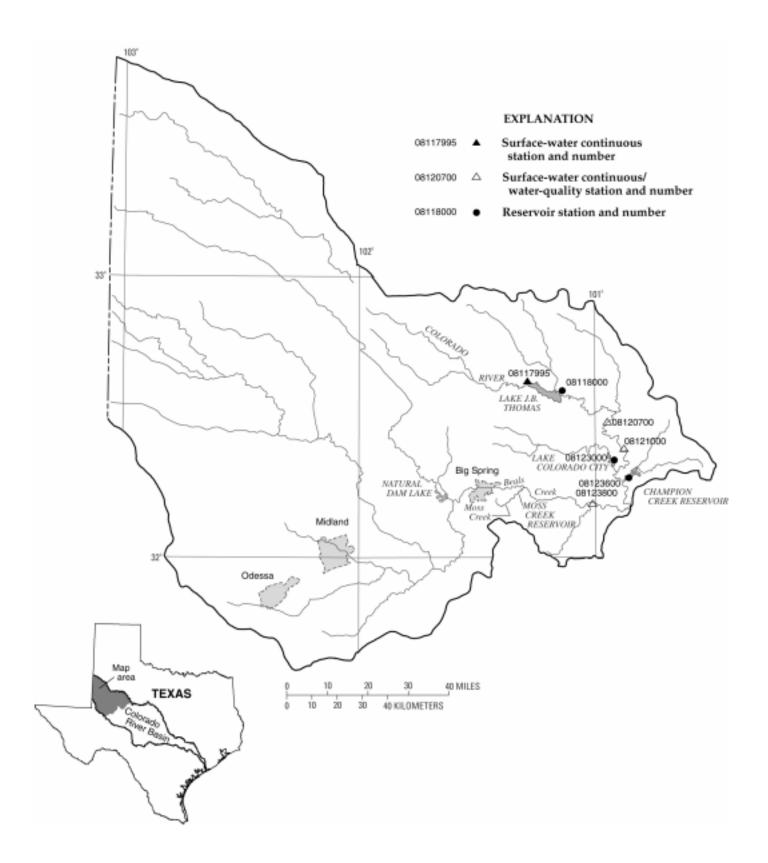


Figure 3.--Map showing location of gaging stations in the first section of the Colorado River
Basin

08117995	Colorado River near Gail, TX	28
08118000	Lake J.B. Thomas near Vincent, TX	30
08120700	Colorado River near Cuthbert, TX	32
08121000	Colorado River at Colorado City, Tx	40
08123000	Lake Colorado City near Colorado City, TX	46
08123600	Champion Creek Reservoir near Colorado City, TX	48
08123800	Beals Creek near Westbrook, TX	50

274 PLACEDO CREEK BASIN

08164800 PLACEDO CREEK NEAR PLACEDO, TX

LOCATION.--Lat 28°43'30", long 96°46'07", Victoria County, Hydrologic Unit 12100401, on right bank at downstream end of bridge on Farm Road 616, 0.1 mi downstream from confluence of Lone Tree Creek and Arroyo Palo Alto, 1.2 mi upstream from Ninemile Creek, and 4.4 mi northeast of Placedo.

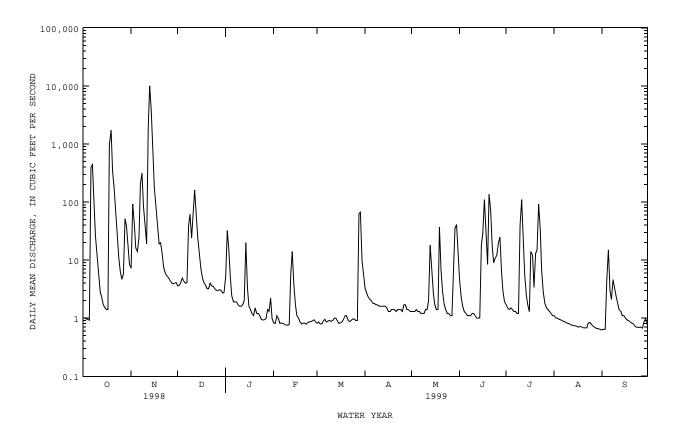
DRAINAGE AREA. -- 68.3 mi².

PERIOD OF RECORD.--Jun 1970 to current year.

Water-quality records.--Chemical data: Oct 1968 to Sep 1979. Biochemical data: Oct 1968 to Sep 1979. Pesticide data: Oct 1968 to Sep 1979.

GAGE.--Water-stage recorder. Datum of gage is 5.58 ft above sea level. Satellite telemeter at station.

REMARKS. -- Records fair. No known regulation or diversions.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1930, 31.9 ft in Sep 1967 and 30.4 ft in 1960 (probably Oct), from information by local resident.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ${\rm ft}^3/{\rm s}$:

Date	Tit	me	Discharge (ft ³ /s)	Gage l (f	neight [t]		Date	Time		Discharge (ft ³ /s)	Gage l	neight t)
Oct 18 Nov 13	220 05		3,470 14,200		.80 .62		Nov 14	1145		4,990	25	.52
		DISCH	ARGE, CUBIC	FEET PER		WATER YI Y MEAN V	EAR OCTOBER ALUES	1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.0 1.0 .97 .95	7.2 93 42 16 14	3.6 3.7 4.1 4.9 4.3	5.2 32 16 5.1 2.4	.83 .81 1.1 .98 .81	.81 .86 .79 .80	3.3 2.7 2.3 2.1 2.0	1.3 1.3 1.3 1.4	4.5 2.3 1.6 1.3	1.7 1.5 1.4 1.5	1.1 1.0 1.0 .96	.63 .64 .64 4.6
6 7 8 9 10	402 444 78 26 11	24 207 317 86 38	4.0 4.1 39 62 24	1.9 1.9 1.9 1.7	.82 .81 .78 .76	.95 .86 .89 .91	1.8 1.8 1.7 1.7	1.3 1.2 1.2 1.2	1.1 1.1 1.1 1.2	1.3 1.3 1.2 1.2 e40	.91 .88 .86 .83	3.0 2.1 4.6 3.3 2.4
11 12 13 14 15	5.3 2.8 2.3 1.7	19 1890 10100 3700 838	73 161 63 25 13	1.6 1.7 2.0 20 3.4	.77 5.9 14 3.8 1.7	.91 .99 1.0 .90	1.6 1.6 1.6 1.6	1.4 2.0 18 6.4 2.7	1.1 1.0 1.0 1.0	e110 e25 5.5 2.5 1.7	.79 .76 .75 .74	1.8 1.4 1.3 1.1
16 17 18 19 20	1.4 1.4 969 1740 346	178 75 36 19 20	7.2 4.9 4.1 3.7 3.2	1.6 1.4 1.2 1.1	1.1 1.0 .85 .79	.83 .86 .96 1.1	1.3 1.3 1.4 1.4	1.7 1.4 1.4 37 6.6	29 110 30 8.4 137	1.3 14 12 3.4	.71 .70 .72 .70	1.0 .93 .91 .86 .83
21 22 23 24 25	170 58 23 11 6.5	13 7.6 6.0 5.3 5.0	3.2 4.0 3.6 3.5 3.2	1.2 1.2 1.1 .95	.82 .78 .84 .86	.92 .87 .91 .97	1.3 1.4 1.4 1.4	2.8 1.7 1.4 1.2	73 17 9.0 11 12	15 92 34 6.5 2.8	.68 .68 .82 .84	.80 .73 .70 .69
26 27 28 29 30 31	4.7 5.8 52 39 16 8.3	4.5 4.1 3.9 4.0 4.1	3.0 3.1 3.0 2.7 2.8	.94 .98 1.4 1.3 2.2	.90 .94 .86 	.91 .91 63 67 10 5.5	1.7 1.7 1.4 1.4	1.1 1.1 5.4 35 41	20 25 6.4 2.9 1.9	1.8 1.5 1.4 1.3 1.2	.73 .70 .67 .66 .65	.70 .67 .88 .98 .78
TOTAL MEAN MAX MIN AC-FT	4431.54 143 1740 .92 8790	17776.7 593 10100 3.9 35260	546.9 17.6 161 2.7 1080	118.38 3.82 32 .93 235	46.05 1.64 14 .75 91	170.05 5.49 67 .79 337	50.0 1.67 3.3 1.3 99	195.4 6.30 41 1.1 388	531.3 17.7 137 1.0 1050	399.5 12.9 110 1.1 792	24.41 .79 1.1 .63 48	55.76 1.86 15 .63 111
STATIS	STICS OF I	MONTHLY MI	EAN DATA FO	R WATER Y	EARS 1970	0 - 1999	, BY WATER Y	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	75.6 291 1998 .004 1990	72.5 593 1999 .021 1989	43.8 389 1992 .015 1990	42.4 262 1991 .052 1990	56.1 455 1992 .002 1994	47.8 516 1997 .086 1989	63.3 541 1991 .019 1989	94.5 354 1972 .17 1996	90.2 510 1973 .000 1989	59.7 559 1990 .031 1989	12.3 107 1972 .012 1988	113 913 1978 .013 1988
SUMMAF	RY STATIS	TICS	FOR 1	998 CALENI	DAR YEAR	1	FOR 1999 WAT	TER YEAR		WATER YE	ARS 1970	- 1999
ANNUAI HIGHES LOWEST HIGHES LOWEST ANNUAI INSTAN INSTAN ANNUAI 10 PER 50 PER	TANEOUS I	MEAN MEAN EAN AY MINIMUI PEAK FLOW PEAK STAGI (AC-FT) EEDS EEDS	<u> </u>	33306.36 91.3 10100 .04 .05 66060 68 1.4 .15	Nov 13		24345.99 66.7 10100 .63 .65 14200 31.62 48290 37 1.5 .80	Aug 31 Aug 28 Nov 13 Nov 13		64.1 154 1.20 11400 .00 18300 31.62 46410 47 1.6 .14	Nov Aug 1 Jul 2 Oct 3 Nov 1	1992 1989 1 1981 12 1981 27 1982 31 1981 13 1998

e Estimated

08164800 PLACEDO CREEK NEAR PLACEDO, TX--Continued

This page intentionally left blank.

08118000 LAKE J.B. THOMAS NEAR VINCENT, TX

LOCATION.--Lat 32°35′35", long 101°08′16", Scurry County, Hydrologic Unit 12080002, on upstream edge of dam 500 feet right of valve tower for Snyder pump station near center of dam on Colorado River, 8.5 mi west of Ira, 9.2 mi northeast of Vincent,

DRAINAGE AREA.--3,389 mi², of which 2,371 mi² probably is noncontributing. Drainage area includes 455 mi² above Bull Creek diversion dam, of which 38 mi² probably is noncontributing.

PERIOD OF RECORD. -- Oct 1953 to Sep 1986, Feb 1999 to Sep 1999. Water-quality records. -- Chemical data: Feb 1970 to May 1984.

REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. Water-stage recorder and nonrecording gage read once daily from Oct 1953 to Sep 1986 at site 4.0 mi upstream at same datum. Nov 4, 1953 to Feb 7, 1955, Colorado River Municipal Water District nonrecording gage at present site and datum. Satellite telemeter at station.

-Records fair except those for estimated daily contents, which are poor. The lake is formed by a rolled earthfill dam, 14,500 ft long. Storage began in Jul 1952 and the dam was completed in Sep 1952. There was no appreciable storage prior to Jul 1953. There are two uncontrolled emergency spillways, both cut through natural ground and located as follows: the first is a 500-foot wide cut located at the left end of dam, and the second cut is 1,600 ft wide located at the right end of dam. These spillways are designed to discharge 161,000 ft 3/s (elevation, 2,275.0 ft. An uncontrolled rectangular concrete drop inlet, 38.0 by 53.0 ft at the crest, discharges into two 10.0-foot concrete conduits. In addition, there is an outlet that can release water through a 24-inch gate into a 30-inch concrete pipe. The dam was built by the Colorado River Municipal Water District to impound water for municipal and industrial supply for the cities of Big Spring, Odessa, and Snyder. A diversion dam on Bull Creek diverts water through a 13,000 ft long gravity canal into Lake J.B. Thomas. These diversions began in Nov 1953. Figures given herein represent total contents. Data regarding the dam are given in the following table:

	Elevation
	(feet)
Top of dam	2,280.0
Crest of right spillway (south)	2,267.0
Crest of left spillway (north)	2,264.0
Crest of drop inlet (top of conservation pool)	2,258.0
Lowest gated outlet (invert)	2,200.0

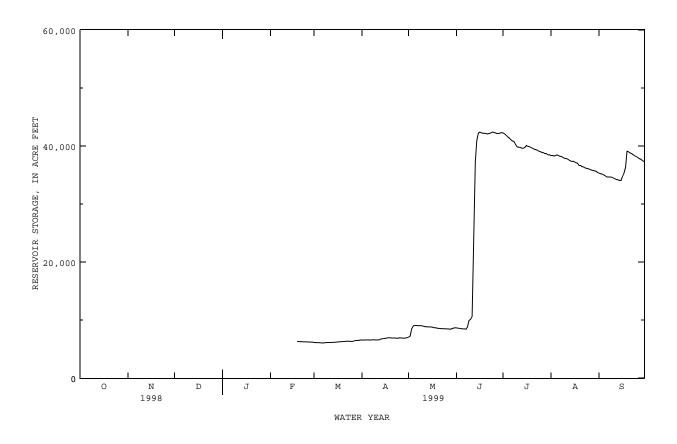
COOPERATION. -- The capacity table dated Jul 1, 1953 was derived from area and capacity curves furnished by Colorado River Municipal Water District and is based on surveys made by Freese and Nichols in 1948 and 1950.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 218,600 acre-ft, Sep 8, 1962 (elevation, 2,259.85 ft); minimum since first appreciable storage, 4,960 acre-ft May 28, 1971 (elevation, 2,206.43 ft).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 42,450 acre-ft, Jun 24 (elevation, 2,226.16 ft); minimum contents, 6,010 acre-ft, Mar 6-7 (elevation, 2,207.51 ft).

RESERVOIR	STORAGE	(ACRE-FEET),	WATER	YEAR	OCTOBER	1998	TO	SEPTEMBER	1999
		DATLY OBS	ERVATT	TA NC	2400 HOT	TRS			

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1						6140	6560	7090	8640	42250	38350	35330
2						6120	6560	7270	8610	42110	38350	35200
3						6110	6570	8520	8550	41820	38270	35150
4						6100	6580	9010	8520	41570	38400	35020
5						6090	6590	9060	8480	41370	38490	34860
6						6050	6560	9050	8470	41090	38320	34680
7						6050	6590	9030	8440	40870	38240	34680
8						6120	6610	9030	8850	40790	38130	34680
9						6120	6590	9030	9960	40280	37970	34650
10						6140	6580	8970	10150	39860	37840	34520
11						6140	6570	8930	10680	39810	37840	34390
12						6140	6580	8860	23970	39780	37700	34260
13						6150	6760	8840	37290	39640	37510	34180
14						6170	6770	8820	40930	39640	37370	34080
15						6200	6840	8810	42220	39780	37370	34030
16						6220	6870	8800	42430	40090	37290	34710
17						6260	6900	8710	42280	39970	37130	35330
18					6300	6280	6960	8690	42190	39890	37020	36320
19					6300	6280	6930	8660	42190	39750	36670	e39100
20					6290	6310	6920	8580	42140	39610	36640	e39000
21					6270	6320	6910	8580	42080	39470	36450	e38800
22					6260	6360	6900	8530	42160	39390	36380	e38700
23					6260	6350	6880	8520	42250	39300	36220	e38500
24					6260	6330	6870	8500	42400	39140	36170	e38300
25					6230	6320	6930	8490	42370	39030	36090	e38200
26					6220	6340	6920	8470	42250	38920	35980	e38000
27					6190	6450	6900	8450	42160	38840	35850	e37800
28					6190	6470	6870	8430	42160	38700	35800	e37700
29						6490	6910	8500	42220	38680	35700	e37500
30						6500	6960	8630	42310	38460	35670	e37300
31						6570		8680		38460	35440	
MAX						6570	6960	9060	42430	42250	38490	39100
MIN						6050	6560	7090	8440	38460	35440	34030
(+)						2208.06	2208.41	2209.85	2226.11	2224.73	2223.60	2224.30
(@)						+380	+390	+1720	+33630	-3850	-3020	+1860


WTR YR 1999 MAX 42430 MIN 6050

⁽⁺⁾ Elevation, in feet, at end of month.
(@) Change in contents, in acre-feet.

e Estimated

08118000 LAKE J.B. THOMAS NEAR VINCENT, TX--Continued

31

08120700 COLORADO RIVER NEAR CUTHBERT, TX

LOCATION.--Lat 32°28'38", long 100°56'58", Mitchell County, Hydrologic Unit 12080002, on left bank at downstream side of bridge on Farm Road 1808, 4.0 mi downstream from Deep Creek, 4.8 mi east of Cuthbert, 8.0 mi northwest of Colorado City, and at mile 810 0

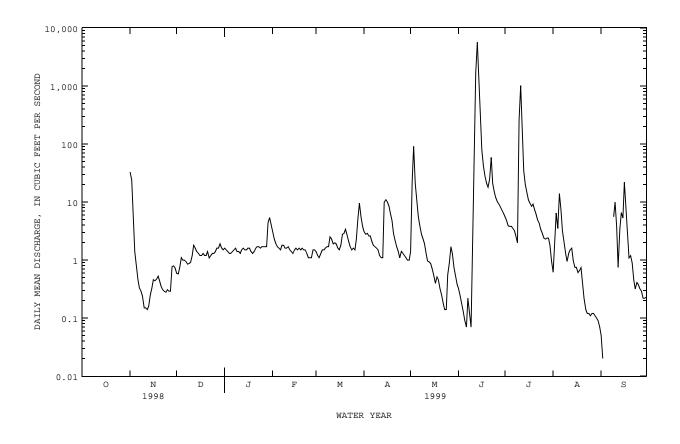
DRAINAGE AREA.--3,912 mi², of which 2,381 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Mar 1965 to current year.

REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,073.49 ft above sea level. Oct 29, 1987, to Oct 23, 1989, water-stage recorder at site on right bank 300 ft downstream at same datum. Satellite telemeter at station.


REMARKS.--No estimated daily discharges. Records good. Since installation of gage in Mar 1965, at least 10% of contributing drainage area has been regulated by Lake J.B. Thomas (station 08118000, normal storage 204,000 acre-ft), 27 mi upstream. There are numerous diversions from Lake J.B. Thomas for municipal use and for oil field operations. No flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods in 1941 and 1946 reached a stage of 36.1 ft, from Texas Department of Transportation bridge plans.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

		DISCHA	RGE, CUBI	C FEET PER		VATER YE MEAN VA		R 1998 T	O SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	.00	33 24 4.9 1.4	.59 .58 .75	1.6 1.5 1.4 1.3	3.1 2.3 1.9	1.4 1.2 1.1 1.3	3.1 2.8 2.9 2.6	1.4 23 91 21	.32 .24 .18	5.5 4.8 3.9 3.8	.62 2.1 6.5 3.5	.05 .02 .00
5	.00	.78	1.0	1.3	1.6	1.5	2.6	10	.09	3.8	14	.00
6 7 8 9 10	.00 .00 .00 .00	.46 .33 .29 .24 .15	1.0 .94 .85 .87 .92	1.4 1.5 1.6 1.4 1.4	1.5 1.8 1.8 1.6 1.6	1.5 1.6 1.7 1.7 2.5	2.1 1.8 1.7 1.6 1.5	5.7 3.9 2.8 2.3 1.9	.07 .22 .12 .07	3.5 3.2 2.6 2.0 261	7.8 3.2 2.0 1.3 .95	.00 .00 .00 5.6
11 12 13 14 15	.00 .00 .00 .00	.15 .14 .16 .25	1.2 1.8 1.6 1.4	1.3 1.5 1.6 1.5	1.7 1.5 1.4 1.3	2.3 1.9 2.0 1.9 1.6	1.2 1.1 1.1 10	1.3 .97 .93 .86	26 1660 5690 1180 348	1020 159 35 20 15	1.3 1.5 1.6 .97 .75	3.7 .75 3.5 6.6 5.3
16 17 18 19 20	.00 .00 .00 .00	.46 .44 .47 .53	1.2 1.2 1.3 1.2	1.6 1.6 1.4 1.3	1.6 1.5 1.6 1.5	1.5 1.8 2.8 2.9 3.4	10 8.5 6.4 4.8 2.9	.54 .40 .51 .45	81 42 28 21 18	11 9.6 8.5 9.3 7.4	.75 .61 .67 .75	8.6 2.7 1.1 1.2
21 22 23 24 25	.00 .00 .00 .00	.35 .31 .29 .28	1.4 1.1 1.2 1.3	1.6 1.7 1.7 1.6 1.7	1.5 1.5 1.3 1.1	2.7 2.1 1.7 1.5 1.6	2.2 1.7 1.4 1.1	.25 .18 .14 .14	25 59 21 15 12	6.2 4.9 4.3 3.4 2.9	.22 .14 .12 .12 .11	.89 .45 .32 .41
26 27 28 29 30 31	.00 .00 .00 .00	.29 .29 .77 .80 .73	1.4 1.6 1.6 1.9 1.6	1.7 1.7 1.7 4.4 5.4 4.1	1.1 1.5 1.5 	1.5 2.3 5.3 9.6 5.6 3.8	1.3 1.2 1.1 1.0 1.0	.89 1.7 1.3 .75 .53	10 9.2 8.1 7.2 6.4	2.4 2.3 2.4 2.4 1.8	.12 .12 .11 .10 .09	.32 .29 .22 .22 .23
TOTAL MEAN MAX MIN AC-FT	0.00 .000 .00 .00	73.34 2.44 33 .14 145	37.90 1.22 1.9 .58 75	56.4 1.82 5.4 1.3 112	44.7 1.60 3.1 1.1 89	75.3 2.43 9.6 1.1 149	93.1 3.10 11 1.0 185	176.79 5.70 91 .14 351	9271.54 309 5690 .07 18390	1622.86 52.4 1020 .96 3220	52.58 1.70 14 .07 104	74.85 2.49 22 .00 148
MEAN MAX (WY) MIN (WY)	28.2 304 1987 .000 1969	8.15 37.1 1985 .092 1971	8.03 51.5 1992 .53 1971	7.26 30.2 1992 .68 1971	11.3 86.5 1992 .82 1971	10.3 66.0 1973 .20	28.2 204 1981 .39 1971	73.0 403 1965 .044 1967	84.4 592 1982 .000 1984	17.9 131 1988 .000 1970	55.7 771 1971 .000 1970	49.5 810 1980 .000 1983
SUMMARY	STATIST	ICS	FOR :	1998 CALEN	DAR YEAR	F	OR 1999 W	ATER YEA	R	WATER YE	ARS 1965	- 1999
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC	MEAN ANNUAL ANNUAL M DAILY ME SEVEN-DA ANEOUS P	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS			Mar 16 May 18 May 18		2200	Jun 1 0 Oct 0 Oct Jun 1 9 Jun 1	3 1 1 3 3	31.3 104 2.55 8770 .00 11500 27.18 22660 25 4.0	Sep	1980 1998 29 1980 13 1965 13 1965 14 1972 29 1980

a From floodmark.

08120700 COLORADO RIVER NEAR CUTHBERT, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --

CHEMICAL DATA: Mar 1965 to Sep 1999 (discontinued).

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Mar 1965 to May 1980 (local observer), Jun 1980 to Oct 1987, Nov 1987 to Sep 1989 (local observer), Oct 1989 to Sep 1999 (discontinued).

WATER TEMPERATURE: Mar 1965 to May 1980 (local observer), Apr 1983 to Oct 1987, Nov 1987 to Sep 1989 (local observer),

Oct 1989 to Sep 1999 (discontinued).

INSTRUMENTATION.--Specific conductance recorder from Mar 1965 to Oct 1987, Oct 1989 to Sep 1999 (discontinued). Water temperature recorder from Apr 1983 to Oct 1987, Oct 1989 to Sep 1999 (discontinued).

REMARKS.--Interruptions in the maximum and minimum specific conductance values were due to malfunction of the instrument. No flow Oct 1-31 and Sep 3-8. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. New regression equations were developed based on data from water years 1990 to 1999. The standard error of estimate for dissolved solids is 6%, chloride is 39%, sulfate is 41% and for hardness is 22%. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon record.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum, 70,000 microsiemens, Nov 17, 1968; minimum, 102 microsiemens, Sep 28, 1980. WATER TEMPERATURE: Maximum, 36.0°C, Aug 7, 1985; minimum, 0.0°C, on many days during winter months.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum, 18,700 microsiemens, Apr 19; minimum, 182 microsiemens, Jun 13. WATER TEMPERATURE: Maximum, 33.4°C, Jul 9; minimum, 0.2°C, Dec 22.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DIS CHARG INST CUBI FEE PEF SECO (0006	GE, SPE T. CIF T. CON TC CON TC DUC TR ANC TO DND (US/	TIC I- TEME TI- ATU EE WAT CM) (DEG	RE ER C)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARI NESS NONCA DISSO FLD. CACO (MG/I (0090	ARB CALC DLV DIS AS SOL D3 (MG	IUM S - I VED SC /L (M CA) AS	GNE- IUM, DIS- DLVED IG/L MG) 925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
DEC 30	1130	1.	.8 362	0 5.	0	740	490) 18	0 71		554
MAY											
05 JUN	1440	9.	.8 370	0 21.	/	500	390) 13	0 44		584
12	1700	2250	20			73	17			.7	9.7
13 14	1350 1340	4500 1110	24 43			87 130	23 45			.8 .5	11 33
DATE	S	ODIUM AD- ORP- TION ATIO		ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	SULFA DIS- SOLV (MG/ AS SO (0094	ATE RI - DI /ED SC /L (N)4) AS	HLO- IDE, IS- DLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVEI (MG/L AS SIO2) (00955)	SUM CON TUE D SO (M	IDS, OF STI- NTS, IS- LVED G/L) 301)
DEC 30 MAY		9	14	250	520) 9	970	1.1	8.8	24	60
05	1	1	8.4	110	370) 9	950	.45	4.8	21	60
JUN 12 13 14		.5 .5 1	6.5 5.9 5.8	56 64 82	24 17 52	7	14 23 52	.28 .21 .26	5.8 7.7 6.9	1	21 35 46

08120700 COLORADO RIVER NEAR CUTHBERT, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1998 TO SEPTEMBER 1999

MONTH YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- SIEMENS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 1998	0								
NOV. 1998	73.34	2470	1530	303	550	110	350	70.2	480
DEC. 1998	37.9	4290	2660	272	1000	104	580	59.1	790
JAN. 1999	56.4	4430	2750	419	1100	160	590	90.6	820
FEB. 1999	44.7	5730	3560	429	1500	175	710	85.3	990
MAR. 1999	75.3	8270	5140	1040	2400	479	840	171	1200
APR. 1999	93.1	9970	6200	1560	3100	789	800	202	1300
MAY 1999	176.79	4460	2770	1320	1100	515	590	279	810
JUNE 1999	9271.54	630	390	9770	130	3260	98	2450	130
JULY 1999	1622.86	1900	1180	5160	420	1850	270	1200	370
AUG. 1999	52.58	4590	2850	404	1100	157	600	85.7	830
SEPT 1999	74.85	3600	2230	451	850	171	490	98.6	670
TOTAL	11579.36	**	**	21130	**	7780	**	4790	**
WTD.AVG.	32	1090	676	**	250	**	150	**	210

	SPECIFIC	CONDUCTA	NCE (MICR	OSIEMENS/	CM AT 25	DEG. C),	WATER YE	AR OCTOE	ER 1998	TO SEPTEMB	ER 1999	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	!	N	OVEMBER		D	ECEMBER			JANUARY	
1				9570	660	2430	6480	6160	6360	4160	3890	4010
2				2260	584	1080	6610	6460	6530	4120	3920	4020
3				3670	2260	3210	6620	5920	6420	4200	4100	4150
4				3690	3600	3650	5920	4930	5240	4190	4060	4140
5				3710	3610	3660	5470	5010	5220	4210	4050	4150
6				3750	3660	3700	5870	5440	5710	4120	4040	4100
7				3850	3750	3790	5860	4820	5350	4110	4030	4070
8				3940	3850	3880	4820	4510	4610	4090	4040	4070
9				4080	3930	3990	4580	4530	4550	4180	3950	4040
10				4210	4080	4150	4610	4520	4550	4210	4050	4110
11				4300	4200	4240	4640	4590	4610	4160	4050	4110
12				4330	4280	4300	4780	4490	4640	4080	4010	4040
13				4470	4330	4400	4500	3980	4310	4330	4060	4210
14				4600	4420	4490	4160	3920	3980	4420	4210	4320
15				4820	4600	4680	4250	3910	4120	4410	4010	4170
16				5800	4820	5340	3910	3630	3760	4420	4190	4340
17				6440	5800	6230	3650	3560	3600	4420	4100	4300
18				6440	6220	6360	3650	3560	3600	4300	4040	4190
19				6770	6340	6490	3660	3540	3600	4340	4080	4240
20				7190	6770	7030	3560	3490	3520	4450	4100	4260
21				7240	6950	7140	3670	3500	3570	4620	4360	4490
22				6950	6400	6680	4200	3670	3920	4680	4490	4590
23				6400	6050	6210	4310	4180	4260	4580	4290	4450
24				6060	5810	5940	4180	4000	4060	4420	4050	4260
25				5830	5580	5680	4150	4020	4090	4340	4220	4290
26				5610	5480	5540	4050	3800	3940	4350	4080	4240
27				5530	5430	5470	3940	3780	3820	4300	4230	4270
28				5920	5440	5710	3980	3700	3830	4340	4250	4300
29				5920	5820	5880	3880	3770	3830	5050	4100	4680
30				6160	5920	6020	4100	3880	4010	6900	4600	5470
31							4210	4070	4170	6730	3840	5030
MONTE	н			9570	584	4910	6620	3490	4440	6900	3840	4290

08120700 COLORADO RIVER NEAR CUTHBERT, TX--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

-	71 2011 10	001120011		SICODIDIDIO	, CI-1 111 2.	, ppg. c,,	MULDIC 11	BAIC OCTO	DDIC 1000	IO SEPIEM		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR!	ď		MARCH			APRIL			MAY	
1	4020	3770	3850	7800	6390	7170	11900	11300	11700	11100	10400	10800
1 2	4110	3860	3940	6390	6070	6190	11800	8780	10400	10600	3180	6780
3	4710	3930	4360	6380	6140	6230	8800	7450	8000	5310	2780	3700
4	5400	4470	5100	6750	6380	6570	7450	7000	7170	4960	2840	4360
5	5550	5340	5450	7290	6750	6980	7750	7180	7490	4250	3650	3830
6	5590	5260	5370	7620	7290	7490	7870	7720	7790	3670	3560	3630
7	6010	5350	5590	7370	6320	6680	7760	7440	7610	3770	3660	3720
8 9	6410 6410	6010 6130	6290 6290	6410 6400	6290 6140	6350 6250	7670 8230	7460 7660	7520 7940	3830 4060	3740 3820	3790 3900
10	6130	5760	5930	6200	5860	5990	8470	8230	8380	4240	4060	4190
11 12	6380 6510	5730 6080	6010 6440	6390 6360	5990 5360	6280 5710	8370 7840	7840 7560	8150 7670	4420 4670	4240 4420	4340 4550
13	6560	6100	6340	5850	5370	5560	7670	7070	7590	5150	4670	4900
14	6540	6280	6390	6270	5850	6100	10600	7420	8200	5540	5150	5350
15	6390	6250	6320	6330	6190	6270	7740	4070	5570	5920	5540	5710
16	6260	6090	6190	6490	6270	6320	7290	5260	6270	6220	5920	6020
17	6260	6090	6180	6950	6480	6770	14300	7290	10900	6550	6150	6310
18	6220	5930	6040	7310	6780	7110	18500	9150	15200	6890	6540	6660
19	5950	5840	5890	7280	6970	7150	18700	17200	18100	7120	6880	6960
20	6020	5950	5980	7980	6920	7330	17200	15700	16400	7320	7090	7180
21	5980	5880	5930	10100	7760	8870	15700	14700	15100	7510	7190	7350
22	6000	5870	5950	10600	9650	10500	14800	14200	14500	7680	7490	7560
23	5900	5770	5830	10500	9930	10300	14300	13900	14100	7850	7680	7760
24 25	6190 6190	5900 5880	6070 6020	9950 10700	9710 9880	9810 10200	14000 13300	13300 12500	13700 12800	8030 8170	7850 7780	7930 7980
	0170				2000		13300	12300	12000	0170		
26	6230	5900	6040	11100	10700	10900	12500	12100	12300	8100	7570	7910
27 28	7210 7770	6230 7210	6660 7590	11200	8650 8800	10400 9270	12200 11700	11700 11400	11900 11600	8670 7610	6630 6120	7740 6630
29		7210		9770 13600	8330	10200	11600	11300	11400	7750	7380	7580
30				10700	8340	9420	11300	11100	11200	7400	6920	7160
31				11300	10700	10900				7120	6850	7020
MONTH	7770	3770	5860	13600	5360	7780	18700	4070	10600	11100	2780	6110
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX		MEAN	MAX		MEAN			MEAN	MAX		
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN	MAX	MIN SEPTEMB	
1	7090	JUNE 6930	7020		JULY	e3400	6250	AUGUST 5920	6140		SEPTEMB	ER e6100
1 2	7090 7020	JUNE 6930 6860	7020 6940		JULY	e3400 e2900	6250 6450	AUGUST 5920 4840	6140 6160		SEPTEMB	e6100 e6200
1 2 3	7090 7020 6990	JUNE 6930 6860 6840	7020 6940 6930		JULY	e3400 e2900 e2900	6250 6450 6240	AUGUST 5920 4840 4380	6140 6160 5450		SEPTEMB	e6100 e6200
1 2	7090 7020	JUNE 6930 6860	7020 6940	 	JULY 	e3400 e2900	6250 6450	AUGUST 5920 4840	6140 6160	 	SEPTEMB	e6100 e6200
1 2 3 4 5	7090 7020 6990 7080 7160	JUNE 6930 6860 6840 6880 7050	7020 6940 6930 6970 7100	 	JULY	e3400 e2900 e2900 e3000 e3100	6250 6450 6240 7490 7430	5920 4840 4380 4290 2860	6140 6160 5450 6430 4910	 	SEPTEMB	e6100 e6200
1 2 3 4 5	7090 7020 6990 7080 7160	JUNE 6930 6860 6840 6880 7050	7020 6940 6930 6970 7100	 	JULY	e3400 e2900 e2900 e3000 e3100	6250 6450 6240 7490 7430	AUGUST 5920 4840 4380 4290 2860 2860	6140 6160 5450 6430 4910	 	SEPTEMB	e6100 e6200
1 2 3 4 5	7090 7020 6990 7080 7160 7270 7260 5880	JUNE 6930 6860 6840 6880 7050 7100 4560 5670	7020 6940 6930 6970 7100 7190 5780 5750	 	JULY	e3400 e2900 e2900 e3000 e3100 e3600 e4100 e4200	6250 6450 6240 7490 7430 3020 3430 3780	5920 4840 4380 4290 2860 2860 3020 3430	6140 6160 5450 6430 4910 2940 3200 3670	 	SEPTEMB	e6100 e6200
1 2 3 4 5 6 7 8	7090 7020 6990 7080 7160 7270 7260 5880 6020	JUNE 6930 6860 6840 6880 7050 7100 4560 5670 5830	7020 6940 6930 6970 7100 7190 5780 5750 5940	 	JULY	e3400 e2900 e2900 e3000 e3100 e3600 e4100 e4200 e4400	6250 6450 6240 7490 7430 3020 3430 3780 3950	5920 4840 4380 4290 2860 2860 3020 3430 3780	6140 6160 5450 6430 4910 2940 3200 3670 3900	 11200	SEPTEMB 5860	e6100 e6200 7780
1 2 3 4 5 6 7 8	7090 7020 6990 7080 7160 7270 7260 5880	JUNE 6930 6860 6840 6880 7050 7100 4560 5670	7020 6940 6930 6970 7100 7190 5780 5750	 	JULY	e3400 e2900 e2900 e3000 e3100 e3600 e4100 e4200	6250 6450 6240 7490 7430 3020 3430 3780	5920 4840 4380 4290 2860 2860 3020 3430	6140 6160 5450 6430 4910 2940 3200 3670	==== ==== ====	SEPTEMB	e6100 e6200
1 2 3 4 5 6 7 8	7090 7020 6990 7080 7160 7270 7260 5880 6020	JUNE 6930 6860 6840 6880 7050 7100 4560 5670 5830 5900	7020 6940 6930 6970 7100 7190 5780 5750 5940 6520	 	JULY	e3400 e2900 e2900 e3000 e3100 e3600 e4100 e4200 e4400	6250 6450 6240 7490 7430 3020 3430 3780 3950	5920 4840 4380 4290 2860 2860 3020 3430 3780	6140 6160 5450 6430 4910 2940 3200 3670 3900 3980 4150	 11200	SEPTEMB 5860	e6100 e6200 7780
1 2 3 4 5 6 7 8 9 10	7090 7020 6990 7080 7160 7270 7260 5880 6020 8900 8640 2020	JUNE 6930 6860 6840 6880 7050 7100 4560 5670 5830 5900 1320 188	7020 6940 6930 6970 7100 7190 5780 5750 5940 6520 3440 680	=======================================	JULY	e3400 e2900 e2900 e3000 e3100 e3600 e4100 e4200 e4400 e3600 e800 e2800	6250 6450 6240 7490 7430 3020 3430 3780 4050 4330 4360	AUGUST 5920 4840 4380 4290 2860 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3670 3900 3980 4150 4310	 11200 6470 5710	SEPTEMB 5860 2550 2550 3810	e6100 e6200 7780 4170 4510 4420
1 2 3 4 5 6 7 8 9 10	7090 7020 6990 7160 7270 7260 5880 6020 8900 8640 2020 692	500 JUNE 6930 6860 6860 6880 7050 7100 4560 5670 5830 59900 1320 188 182	7020 6940 6930 6970 7100 7190 5780 5750 5940 6520 3440 680 347	 	JULY	e3400 e2900 e2900 e3000 e3100 e3600 e4100 e4200 e4400 e3600 e800 e2800 e4700	6250 6450 6240 7490 7430 3020 3430 3780 4050 4330 4360	5920 4840 4380 4280 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3670 3980 4150 4310 e4400	 11200 6470 5710 5440 3980	SEPTEMB 5860 2550 3810 3390	e6100 e6200 7780 4170 4420 3580
1 2 3 4 5 6 7 8 9 10 11 12 13 14	7090 7020 6990 7080 7160 7270 7260 5880 6020 8900 8640 2020 692 692 610	JUNE 6930 6860 6840 6880 7050 7100 4560 5670 5830 5900 1320 188 182 426	7020 6940 6930 6970 7100 7190 5780 5750 6520 3440 680 347 466	 	JULY	e3400 e2900 e2900 e3000 e3100 e3100 e4100 e4400 e3600 e800 e2800 e4700 e5300	6250 6450 6240 7490 7430 3020 3430 3780 3950 4050 4330 4360 	300 AUGUST 5920 4840 4380 4290 2860 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3670 3980 4150 4310 e4400	 11200 6470 5710 5440 3980 6210	SEPTEMB 5860 2550 2550 3310 3390 33970	e6100 e6200 7780 4170 4510 4420 3580 4980
1 2 3 4 5 6 7 8 9 10	7090 7020 6990 7160 7270 7260 5880 6020 8900 8640 2020 692	500 JUNE 6930 6860 6860 6880 7050 7100 4560 5670 5830 59900 1320 188 182	7020 6940 6930 6970 7100 7190 5780 5750 5940 6520 3440 680 347	 	JULY	e3400 e2900 e2900 e3000 e3100 e3600 e4100 e4200 e4400 e3600 e800 e2800 e4700	6250 6450 6240 7490 7430 3020 3430 3780 4050 4330 4360	5920 4840 4380 4280 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3670 3980 4150 4310 e4400	 11200 6470 5710 5440 3980	SEPTEMB 5860 2550 3810 3390	e6100 e6200 7780 4170 4420 3580
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7090 7020 6990 7080 7160 7270 7260 5880 6020 8900 8640 2020 692 610 2530	JUNE 6930 6860 6840 6880 7050 7100 4560 5670 5830 5900 1320 188 182 426 525	7020 6940 6930 6970 7100 7190 5780 5750 6520 3440 682 347 466 1380	 6270	JULY	e3400 e2900 e2900 e3000 e3100 e3100 e4100 e4400 e3600 e800 e2800 e4700 e5300 5700	6250 6450 6240 7490 7430 3020 3430 3780 3950 4050 4330 4360 	AUGUST 5920 4840 4380 4290 2860 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3980 4150 4310 e4400 e4500 e4600	 11200 6470 5710 5440 3980 6210 4250	SEPTEMB 5860 2550 2550 3810 3390 33700 3700	e6100 e6200 7780 4170 4510 4420 3580 4980 3950 2750
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7090 7020 6990 7080 7160 7270 7260 5880 6020 8900 8640 2020 692 610 2530 3930 4870	JUNE 6930 6880 6840 6880 7050 7100 4560 5670 1320 188 182 426 525 2530 3930	7020 6940 6930 6970 7100 7190 5780 5750 6520 3440 680 347 466 1380	 6270 6490	JULY	e3400 e2900 e2900 e3000 e3100 e3600 e4100 e4200 e4400 e3600 e800 e2800 e4700 e5300 5700	6250 6450 6240 7490 7430 3020 3430 3950 4050 4330 4360 	AUGUST 5920 4840 4380 4290 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3670 3990 4150 44400 e4400 e4500 e4600 e4700	 11200 6470 5710 5440 3980 6210 4250	SEPTEMB 5860 2550 2550 3810 3390 3970 3700 1600 1320	e6100 e6200 7780 4170 4510 4420 3580 4980 4980 4980 4980
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7090 7020 6990 7080 7160 7270 7260 5880 6020 8900 8640 2020 692 610 2530 3930 4870 5470	JUNE 6930 6860 6860 6880 7050 7100 4560 5670 5830 5900 1320 188 182 426 525 2530 3930 4870	7020 6940 6930 6970 7100 7190 5780 5750 5940 6520 3440 680 347 466 1380 4450 5190	 6270 6490 6490	JULY	e3400 e2900 e2900 e3000 e3100 e3600 e4100 e4400 e4400 e3600 e2800 e4700 e5300 e5700 6170 6390 6390	6250 6450 6240 7490 7430 3020 3430 3780 4050 4360 	AUGUST 5920 4840 4380 4290 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3670 3980 4150 44400 e4400 e4500 e4600 e4700 e4800	 11200 6470 5710 5440 3980 6210 4250 4370 1810 2040	SEPTEMB 5860 2550 2550 3810 3390 3970 3700 1600 1320 1700	e6100 e6200 7780 4170 4510 4420 3580 4980 3950 2750 1500 1880
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7090 7020 6990 7080 7160 7270 7260 5880 6020 8900 8640 2020 692 610 2530 3930 4870	JUNE 6930 6880 6840 6880 7050 7100 4560 5670 1320 188 182 426 525 2530 3930	7020 6940 6930 6970 7100 7190 5780 5750 6520 3440 680 347 466 1380	 6270 6490	JULY	e3400 e2900 e2900 e3000 e3100 e3600 e4100 e4200 e4400 e3600 e800 e2800 e4700 e5300 5700	6250 6450 6240 7490 7430 3020 3430 3950 4050 4330 4360 	AUGUST 5920 4840 4380 4290 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3670 3990 4150 44400 e4400 e4500 e4600 e4700	 11200 6470 5710 5440 3980 6210 4250	SEPTEMB 5860 2550 2550 3810 3390 3970 3700 1600 1320	e6100 e6200 7780 4170 4510 4420 3580 4980 4980 4980 4980
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7090 7020 6990 7080 7160 7270 7260 5880 6020 8900 8640 2020 692 6130 2530 3930 4870 5470 5960 6240	JUNE 6930 6840 6840 7050 7100 4560 5670 5830 5900 1320 188 182 426 525 2530 3930 4870 5470 5960	7020 6940 6930 6970 7100 7190 5780 5750 5940 6820 3447 466 1380 3230 4450 5720 6110	 6270 6490 6490 6450 5390	JULY	e3400 e2900 e2900 e3000 e3100 e3600 e4100 e4200 e4400 e3600 e800 e2800 e4700 e5300 e5300 e5300 e5300 e5300 e5300 e5300 e5300 e5300 e5300 e5300 e5300 e5300 e5300 e5300 e5300 e3400 e3500 e	6250 6450 6240 7490 7430 3020 3430 3780 4050 4360 	AUGUST 5920 4840 4380 4290 2860 2860 3020 3430 3780 4000 4240	6140 6160 5450 6430 4910 2940 3200 3970 3980 4150 44400 e4400 e4400 e4700 e4800 e4800 e4800	 11200 6470 5710 5440 3980 6210 4250 4370 1810 2040 2330 2750	SEPTEMB 5860 2550 2550 3310 3390 3970 3700 1600 1320 1700 2040 2330	e6100 e6200 7780 4170 4510 4420 3580 4980 3950 2750 1800 2200 2550
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	7090 7020 7020 6990 7080 7160 7270 7260 5880 6020 8900 8640 2020 692 610 2530 3930 4870 5470 5960 6240	JUNE 6930 6860 6840 6880 7050 7100 4560 5670 5830 5900 1320 188 182 426 525 2530 3930 4870 5960	7020 6940 6930 6970 7100 7190 5780 5750 6520 3440 682 347 466 1380 3230 4450 5720 6110	 6270 6490 6490 6450 5390	JULY	e3400 e2900 e3900 e3000 e3100 e3100 e4100 e4400 e3600 e4700 e3600 e4700 e5300 5700 6170 6390 6300 5950 4450	6250 6450 6240 7490 7430 3020 3430 3780 3950 4050 4330 4360 	AUGUST 5920 4840 4380 4290 2860 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3980 4150 4310 e4400 e4500 e4700 e4800 e4800 e4800	 11200 6470 5710 5440 3980 6210 4250 4370 1810 2040 2330 2750	SEPTEMB 5860 2550 2550 3810 3390 33700 1600 1320 1700 2040 2330	e6100 e6200 7780 4170 4510 4420 3580 3950 2750 1500 1880 12200 2550 2840
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	7090 7020 6990 7080 7160 7270 7260 5880 6020 8900 8640 2020 692 610 2530 3930 4870 5470 5960 6240 3930 4380	JUNE 6930 6840 6840 7050 7100 4560 5670 5830 5900 1320 188 182 426 525 2530 3930 4870 5470 5960	7020 6940 6930 6970 7100 7190 5780 5750 5940 6820 3447 466 1380 3230 4450 5720 6110 6110 3270 3270 3370	 6270 6490 6490 6450 5390 4920 3950 3950	JULY	e3400 e2900 e2900 e3000 e3100 e3100 e3600 e4100 e4400 e4400 e4700 e5300 e5300 e5700 6170 6390 6390 6390 6450 4450 4450	6250 6450 6240 7490 7430 3020 3430 3780 3950 4050	AUGUST 5920 4840 4380 4290 2860 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3670 3900 3980 4150 e4400 e4400 e4400 e4700 e4800 e4800 e4800 e4800 e4800 e4800	 11200 6470 5710 5440 3980 6210 4250 4370 1810 2040 2330 2750 2920 3170 3560	SEPTEMB 5860 2550 2550 3380 3390 33700 1600 1320 1700 2040 2330 2750 2920 3170	e6100 e6200 7780 4170 4510 4420 3580 4980 3950 2750 1880 2200 2550 2840 3010 3360
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7090 7020 7020 7080 7160 7270 7260 8800 6020 8900 8640 2020 692 610 2530 3930 4870 5470 5960 6240 6320 3930 4380 5040	JUNE 6930 6860 6840 6880 7050 7100 4560 5670 5830 5900 1320 188 182 426 525 2530 3930 4870 5960 3930 3000 3440 4380	7020 6940 6930 6970 7100 7190 5780 5750 6520 3440 680 347 466 1380 3230 4450 5190 6110 6170 3270 3270 3370 4730	 6270 6490 6490 6450 5390 4920 3950 3500 3450	JULY	e3400 e2900 e3900 e3100 e3100 e3100 e4100 e4400 e3600 e4700 e5300 5700 6170 6390 6390 6390 6450 4450 4000 3480 3150 3170	6250 6450 6240 7490 7430 3020 3430 3950 4050 4330 4360 	AUGUST 5920 4840 4380 4290 2860 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3980 4150 4310 e4400 e4500 e4800 e4900 e4800 e4900 e4900 e5000	 11200 6470 5710 5440 3980 6210 4250 4370 1810 2040 2330 2750 2920 3170 3560 3810	SEPTEMB 5860 2550 2550 3810 3390 3700 1600 1320 1700 2040 2330 2750 2920 3170 3560	e6100 e6200 7780 4170 4510 4420 3580 3950 2750 1500 1880 2200 2550 2840 3010 3360 3690
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	7090 7020 6990 7080 7160 7270 7260 5880 6020 8900 8640 2020 692 610 2530 3930 4870 5470 5960 6240 3930 4380	JUNE 6930 6860 6840 6880 7050 7100 4560 5670 5830 5900 1320 188 182 426 525 2530 3930 4870 5470 5960 3930 3000 3440	7020 6940 6930 6970 7100 7190 5780 5750 5940 6820 3447 466 1380 3230 4450 5720 6110 6110 3270 3270 3370	 6270 6490 6490 6450 5390 4920 3950 3950	JULY	e3400 e2900 e2900 e3000 e3100 e3100 e3600 e4100 e4400 e4400 e4700 e5300 e5300 e5700 6170 6390 6390 6390 6450 4450 4450	6250 6450 6240 7490 7430 3020 3430 3950 4050 4360 	AUGUST 5920 4840 4380 4290 2860 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3670 3900 3980 4150 e4400 e4400 e4400 e4700 e4800 e4800 e4800 e4800 e4800	 11200 6470 5710 5440 3980 6210 4250 4370 1810 2040 2330 2750 2920 3170 3560	SEPTEMB 5860 2550 2550 3380 3390 33700 1600 1320 1700 2040 2330 2750 2920 3170	e6100 e6200 7780 4170 4510 4420 3580 4980 3950 2750 1880 2200 2550 2840 3010 3360
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	7090 7020 7020 7080 7160 7270 7260 8800 8900 8640 2020 692 610 2530 3930 4870 5470 5960 6240 6320 3930 4380 6240	JUNE 6930 6860 6840 6880 7050 7100 4560 5670 5830 5900 1320 188 182 426 525 2530 3930 4870 5960 3930 3000 3440 4380	7020 6940 6930 6970 7100 7190 5780 5750 5940 6520 3440 680 347 466 1380 3230 4450 5720 6110 6170 3270 3970 4730 e5200 e5400	 6270 6490 6490 6450 5390 4920 3950 3500 3450 3790	JULY	e3400 e2900 e3900 e3100 e3100 e3100 e4100 e4400 e3600 e4700 e5300 5700 6170 6390 6390 6300 5950 4450 4000 3480 3150 3170 3610	6250 6450 6240 7490 7430 3020 3430 3780 3950 4050 4330 4360 	AUGUST 5920 4840 4380 4290 2860 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3980 4150 43100 e4400 e4500 e4800 e4900 e4900 e4900 e5000 e5100 e5200		SEPTEMB 5860 2550 2550 3810 3390 3700 1600 1320 1700 2040 2330 2750 2920 3170 3560 3810	e6100 e6200 7780 4170 4510 4420 3580 3950 2750 1500 1880 2200 2550 2840 3010 3369 3920 4050
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27 26 27 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	7090 7020 6990 7080 7160 7270 7260 8900 8640 2020 6920 6920 610 2530 3930 4870 5470 5960 6240 6320 3930 4380 5040	JUNE 6930 6880 6880 7050 7100 4560 5670 5830 5900 1320 188 182 426 525 2530 3930 4870 5960 3930 3000 3440 4380	7020 6940 6930 6970 7100 7190 5780 5750 6520 3440 680 347 466 1380 3230 4450 5190 6110 6170 3270 3970 4730 e5200 e5400 e5400	 6270 6490 6490 6450 5390 4920 3950 3500 3450 3790 4680 5600	JULY	e3400 e2900 e3900 e3100 e3100 e3100 e4100 e4400 e3600 e800 e2800 e4700 e5300 e5300 e5300 e5300 e5300 4700 e390 6300 4450 4000 3480 3150 3170 3610	6250 6450 6240 7490 7430 3020 3430 3950 4050 4330 	AUGUST 5920 4840 4380 4290 2860 3020 3430 3780 3850 4000 4240	6140 6160 6430 4910 2940 3200 3670 3980 4150 4310 e4400 e4500 e4800 e4800 e4800 e4900 e5000 e5000 e5100 e5200 e5400	 11200 6470 5710 5440 3980 6210 4250 4370 1810 2040 2330 2750 2920 3170 3560 3810 4010	SEPTEMB 5860 2550 2550 3810 3390 3700 1600 1320 1700 2330 2750 2920 3170 3560 3810 4010 4010	e6100 e6200 7780 4170 4420 3580 4980 3950 2750 1500 1880 2200 2550 2840 3010 3360 3360 3360 3360 3360 3492 4050 4150
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	7090 7020 6990 7080 7160 7270 7260 5880 6020 8900 8640 2020 692 610 2530 3930 4870 5470 5960 6240 6320 3930 4380 5040	JUNE 6930 6840 6840 6880 7050 7100 4560 5670 1320 188 182 426 525 2530 3930 4870 5960 3930 3440 4380	7020 6940 6930 6970 7100 7190 5780 5750 5940 6520 3447 466 1380 3230 4450 5190 5720 6110 6170 3270 3970 4730 e5200 e5400 e5400 e5400 e5400 e5400 e5400	 6270 6490 6490 6490 6450 5390 3500 3450 3790 4680 5600 6180	JULY 5910 6240 6030 5010 2860 3190 2890 2990 3410 3720 4360 4850	e3400 e2900 e2900 e3000 e3100 e3100 e3600 e4100 e4200 e4400 e3600 e4700 e5300 e5700 6170 6390 6390 6390 6390 4450 4450 4000 3480 3150 3170 3610	6250 6450 6240 7490 7430 3020 3430 3950 4050 4330 	AUGUST 5920 4840 4380 4290 2860 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3670 39900 4310 e44000 e4500 e4500 e4800 e4900 e4900 e5000 e5000 e5100 e5400 e5400 e5600	 11200 6470 5710 5440 3980 6210 4250 4370 1810 2040 2330 2750 3170 3560 3810 4010 4110 4190 4190	SEPTEMB 5860 2550 2550 3810 3390 3970 1600 1320 1700 2040 2330 2750 2920 3170 3560 3810 4010 4100 4100 4090	e6100 e6200
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	7090 7020 6990 7080 7160 7270 7260 8900 8640 2020 6920 6920 610 2530 3930 4870 5470 5960 6240 6320 3930 4380 5040	JUNE 6930 6880 6880 7050 7100 4560 5670 5830 5900 1320 188 182 426 525 2530 3930 4870 5960 3930 3000 3440 4380	7020 6940 6930 6970 7100 7190 5780 5750 5940 6520 3440 680 347 466 1380 3230 4450 5720 6110 6170 3270 3970 4730 e5200 e5400 e5400 e5400 e5400 e4400	 6270 6490 6490 6450 5390 4920 3950 3500 3450 3790 4680 5600 6180 6280	JULY	e3400 e2900 e3900 e3900 e3100 e3100 e3600 e4100 e4400 e3600 e4700 e5300 5700 6170 6390 6390 6390 6450 4450 4450 4450 4450 43150 3170 3610 5950 5950	6250 6450 6240 7490 7430 3020 3430 3950 4050 4330 	AUGUST 5920 4840 4380 4290 2860 3020 3430 3780 3850 4000 4240	6140 6160 5450 6430 4910 2940 3200 3980 4150 4310 e4400 e4400 e4400 e4500 e4900 e4900 e5000 e5000 e5100 e5400 e5400 e5400 e5400 e56400 e56400 e5700		SEPTEMB 5860 2550 2550 3810 3390 3700 1600 1320 1700 2040 2330 2750 2920 3170 3560 3810 4010 4100 4090 3870	e6100 e6200 7780 4170 4510 4420 3580 3950 2750 1500 1800 1200 2550 2840 3010 3369 3920 4050 4150 4150 4150 4150 4150 4150
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	7090 7020 7020 6990 7080 7160 7270 7260 8900 8640 2020 692 610 2530 3930 4870 5960 6240 6320 3930 4380 5040	JUNE 6930 6840 6840 6880 7050 7100 4560 5670 5830 5900 1320 1382 426 525 2530 3930 4870 5960 3930 3000 3440 4380	7020 6940 6930 6970 7100 7190 5780 5750 5940 6520 3447 466 1380 3230 4450 5190 5720 6110 6170 3270 3970 4730 e5200 e5400 e5400 e5400 e5400 e5400 e5400	 6270 6490 6490 6490 6450 5390 3500 3450 3790 4680 5600 6180	JULY 5910 6240 6030 5010 2860 3190 2890 2990 3410 3720 4360 4850	e3400 e2900 e2900 e3000 e3100 e3100 e3600 e4100 e4200 e4400 e3600 e4700 e5300 e5700 6170 6390 6390 6390 6390 4450 4450 4000 3480 3150 3170 3610	6250 6450 6240 7490 7430 3020 3430 3780 3950 4050 4330 4360 	### AUGUST 5920	6140 6160 5450 6430 4910 2940 3200 3670 39900 4310 e44000 e4500 e4500 e4800 e4900 e4900 e5000 e5000 e5100 e5400 e5400 e5600	 11200 6470 5710 5440 3980 6210 4250 4370 1810 2040 2330 2750 3170 3560 3810 4010 4110 4190 4190	SEPTEMB 5860 2550 2550 3810 3390 3970 1600 1320 1700 2040 2330 2750 2920 3170 3560 3810 4010 4100 4100 4090	e6100 e6200
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	7090 7020 6990 7080 7160 7270 7260 5880 6020 8900 8640 2020 692 610 2530 3930 4870 5470 6240 6320 3930 4380 5040 	JUNE 6930 6880 6880 7050 7100 4560 5670 5830 5900 1320 188 182 426 525 2530 3930 4870 5960 3930 3000 3440 4380	7020 6940 6930 6970 7100 7190 5780 5780 5540 6520 3440 680 347 466 1380 3230 4450 5190 6110 6170 3270 3270 3270 3270 3270 3270 3270 32	6270 6490 6490 6450 5390 4920 3950 3500 3450 3790 4680 5600 6180 6280 6120	JULY	e3400 e2900 e3900 e3100 e3100 e3100 e4100 e4400 e3600 e800 e2800 e4700 e5300 5700 6170 6390 6300 5950 4450 4000 3480 3150 3170 3610 4310 5030 5610 5980 5880	6250 6450 6240 7490 7430 3020 3430 3950 4050 4330 4360 	AUGUST 5920 4840 4380 4290 2860 2860 3020 3430 3780 3850 4000 4240	6140 6160 6430 4910 2940 3200 3670 3980 4310 e4400 e4500 e4800 e4900 e5000 e5000 e5000 e5100 e5200 e5400 e56000 e5700 e5700 e5900		SEPTEMB 5860 2550 3810 3390 3700 1600 1320 1700 2040 2330 2750 2920 3170 3560 2920 3170 3560 4010 4100 4000 4090 3870 3870	e6100 e6200 7780 4170 4510 4420 3580 3950 2750 1500 1880 2200 2550 2840 3010 3360 3690 3690 3690 3690 4950 4150 4150 4150 4150 4150 4150 4150 41

e Estimated

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER		D	DECEMBER			JANUARY	
1				16.4	14.6	15.7	15.4	10.9	13.2	12.2	8.1	9.9
2				16.1		14.6	17.8	12.8	15.1	9.9	5.9	7.5
3 4				15.0 13.6	13.6 11.4	14.3 12.4	17.5 15.5	14.6 12.2	16.1 13.9	5.9 4.5	2.9 1.3	4.5 2.6
5				11.4	10.1	10.6	16.3	11.9	14.2	6.1	1.4	3.4
6				10.2		9.9	16.6	13.0	15.4	7.7	2.8	5.0
7				14.6	9.9	11.6	13.6	10.4	11.9	8.1	3.2	5.5
8 9				16.1 19.8	10.6 13.8	12.9 15.9	10.8 8.3	7.3 5.2	8.9 6.8	6.5 5.9	3.8 2.0	5.2 3.7
10				15.7	10.8	13.1	7.0	6.3	6.6	6.5	1.6	3.7
11				14.8	8.1	11.4	6.3	4.5	5.3	7.9	2.2	4.9
12				13.2		12.1	7.4	3.3	5.1	8.9	5.2	7.2
13 14				14.0 18.0	11.9 11.7	12.8 13.9	8.0 8.7	3.7 4.4	5.7 6.3	9.4 8.5	5.8 4.2	7.4 6.2
15				16.5	10.8	13.3	8.9	4.6	6.6	8.9	3.3	6.0
16				16.8	10.7	13.2	9.0	4.6	6.7	8.4	4.7	6.7
17				15.8	10.6	13.0	8.3	4.9	6.8	10.4	5.3	7.7
18				17.2	12.2	14.4	10.5	6.8	8.4	10.4	6.0	8.1
19 20				19.1 13.6	13.6 11.4	15.6 12.2	9.2 8.8	7.4 6.9	8.1 7.7	11.7 11.8	5.9 6.9	8.7 9.4
21 22				15.2 15.9	10.8 9.6	12.3 12.3	8.8 3.1	3.1	7.2 1.1	12.0 10.6	8.9 7.0	10.6 8.3
23				17.3	11.7	13.8	1.7	.6	1.1	9.9	4.8	7.2
24				15.8	9.8	12.7	3.4	.5	1.6	10.4	5.5	8.0
25				16.7	12.0	13.7	3.9	.7	2.1	11.0	6.3	8.7
26				15.3	9.5	12.0	4.9	1.3	2.8	12.6	7.9	10.2
27				17.7	11.3	14.2	6.0	2.9	4.3	13.8	8.8	11.4
28 29				19.1 18.0	15.5 15.0	17.0 17.1	6.5 8.3	2.5 3.7	4.6 5.8	12.7 9.4	9.4 6.7	11.3 7.3
30				17.0	12.8	14.5	9.4	4.6	6.9	7.9	5.9	6.7
31							8.6	5.7	7.4	10.2	4.6	7.3
MONTH				19.8	8.1	13.4	17.8	.2	7.5	13.8	1.3	7.1
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		MIN FEBRUARY		MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1	12.6	FEBRUARY	9.6	18.8	MARCH	15.1	22.8	APRIL	19.5	20.1	MAY 18.1	18.6
1 2	12.6 12.0	FEBRUARY 6.8 7.4	9.6 9.8	18.8 17.9	MARCH 11.7 12.1	15.1 14.8	22.8 25.1	APRIL 16.5 18.2	19.5 21.3	20.1 23.3	MAY 18.1 16.8	18.6 19.8
1 2 3	12.6 12.0 12.4	FEBRUARY 6.8 7.4 6.8	9.6 9.8 9.5	18.8 17.9 16.3	MARCH 11.7 12.1 10.8	15.1 14.8 13.5	22.8 25.1 22.6	APRIL 16.5 18.2 17.9	19.5 21.3 20.1	20.1 23.3 22.2	MAY 18.1 16.8 19.1	18.6 19.8 20.6
1 2	12.6 12.0	FEBRUARY 6.8 7.4 6.8	9.6 9.8	18.8 17.9	MARCH 11.7 12.1	15.1 14.8	22.8 25.1	APRIL 16.5 18.2	19.5 21.3	20.1 23.3	MAY 18.1 16.8	18.6 19.8
1 2 3 4 5	12.6 12.0 12.4 12.6 17.1	6.8 7.4 6.8 7.1 11.3	9.6 9.8 9.5 9.9 14.0	18.8 17.9 16.3 15.8 18.4	MARCH 11.7 12.1 10.8 10.2 12.5	15.1 14.8 13.5 13.2 15.2	22.8 25.1 22.6 22.1 21.2	APRIL 16.5 18.2 17.9 14.7 14.8	19.5 21.3 20.1 18.1 18.3	20.1 23.3 22.2 22.6 22.6	MAY 18.1 16.8 19.1 19.8 17.6	18.6 19.8 20.6 21.0 19.8
1 2 3 4 5	12.6 12.0 12.4 12.6 17.1	6.8 7.4 6.8 7.1 11.3	9.6 9.8 9.5 9.9 14.0	18.8 17.9 16.3 15.8 18.4	MARCH 11.7 12.1 10.8 10.2 12.5	15.1 14.8 13.5 13.2 15.2	22.8 25.1 22.6 22.1 21.2	APRIL 16.5 18.2 17.9 14.7 14.8	19.5 21.3 20.1 18.1 18.3	20.1 23.3 22.2 22.6 22.6	MAY 18.1 16.8 19.1 19.8 17.6	18.6 19.8 20.6 21.0 19.8
1 2 3 4 5	12.6 12.0 12.4 12.6 17.1 16.8 15.7	6.8 7.4 6.8 7.1 11.3	9.6 9.8 9.5 9.9 14.0	18.8 17.9 16.3 15.8 18.4	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0	15.1 14.8 13.5 13.2 15.2	22.8 25.1 22.6 22.1 21.2 21.3 23.9	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9	19.5 21.3 20.1 18.1 18.3	20.1 23.3 22.2 22.6 22.6 23.8 25.3	MAY 18.1 16.8 19.1 19.8 17.6	18.6 19.8 20.6 21.0 19.8
1 2 3 4 5 6 7 8 9	12.6 12.0 12.4 12.6 17.1 16.8 15.7 14.9 16.2	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 10.6	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 27.4	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6
1 2 3 4 5	12.6 12.0 12.4 12.6 17.1 16.8 15.7	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2	9.6 9.8 9.5 9.9 14.0 15.2 12.9	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6	15.1 14.8 13.5 13.2 15.2	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8
1 2 3 4 5 6 7 8 9	12.6 12.0 12.4 12.6 17.1 16.8 15.7 14.9 16.2	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1 14.4	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 10.6	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 27.4	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6
1 2 3 4 5 6 7 8 9 10	12.6 12.0 12.4 12.6 17.1 16.8 15.7 14.9 16.2 17.9	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7	9.6 9.8 9.5 9.9 14.0 15.2 12.6 13.1 14.4	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 28.5	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7
1 2 3 4 5 6 7 8 9 10	12.6 12.0 12.4 12.6 17.1 16.8 15.7 14.9 16.2 17.9	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1 14.4	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9	20.1 23.3 22.2 22.6 22.6 22.6 25.3 27.4 27.4 28.5 25.7 26.3 24.4	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 20.3	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14	12.6 12.0 12.4 17.1 16.8 15.7 14.9 16.2 17.9	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0	9.6 9.8 9.5 9.9 14.0 15.2 12.6 13.1 14.4 13.8 9.3 8.3 8.3	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 23.0	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 27.4 28.5 25.7 26.3 24.4 28.9	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12.6 12.0 12.4 12.6 17.1 16.8 15.7 14.9 16.7 12.0 11.4 11.5 14.4	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0 8.3	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1 14.4 13.8 9.3 8.3 8.4 11.2	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 10.6 13.7 12.1 10.5 7.8 5.5 7.5	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6 14.9 11.1 9.1 9.2	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 23.0 23.5 21.2	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5 13.3	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 27.4 28.5 25.7 26.3 24.4 28.9 30.9	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 23.5	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12.6 12.4 12.6 17.1 16.8 15.7 14.9 16.2 17.9 16.7 12.0 11.4 11.5 14.4	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0 8.3	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1 14.4 13.8 9.3 8.3 8.4 11.2	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8 5.5 7.5	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6 14.9 11.1 9.1 9.2 11.6	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 23.0 23.0	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5 13.3	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 27.4 28.5 25.7 26.3 24.4 28.9 30.9	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 25.0	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12.6 12.0 12.4 12.6 17.1 16.8 15.7 14.9 16.7 12.0 11.4 11.5 14.4	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0 8.3	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1 14.4 13.8 9.3 8.4 11.2	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8 5.5 7.5	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 16.6 14.9 11.1 9.1 9.1 9.1 11.6 13.5 14.9	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 23.0 23.5 21.2 19.0	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5 13.3 13.2 11.3	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 28.5 26.3 24.4 28.9 30.9	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 23.5	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12.6 12.4 12.6 17.1 16.8 15.7 14.9 16.2 17.9 16.7 12.0 11.4 11.5 14.4	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.7 10.7 6.8 5.3 5.0 8.3	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1 14.4 13.8 9.3 8.3 8.4 11.2	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5 15.9 16.5	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 10.6 13.7 12.1 10.5 7.8 5.5 7.5	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 16.6 14.9 11.1 9.1 9.1 9.2 11.6	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 23.0 23.0 21.2 19.6 22.0 23.5 21.2 19.0	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5 13.3 13.2 11.3 12.2	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 28.5 25.7 26.3 24.4 28.9 30.9	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 23.5 25.0 23.5	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6 27.1 26.6 24.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12.6 12.0 12.4 12.6 17.1 16.8 15.7 14.9 16.7 12.0 11.4 11.5 14.4	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0 8.3	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1 14.4 13.8 9.3 8.4 11.2	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8 5.5 7.5	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 16.6 14.9 11.1 9.1 9.1 9.1 11.6 13.5 14.9	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 23.0 23.5 21.2 19.0	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5 13.3 13.2 11.3	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 28.5 26.3 24.4 28.9 30.9	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 23.5	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	12.6 12.0 12.4 12.6 17.1 16.8 15.7 14.9 16.7 12.0 11.4 11.5 14.7	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.7 10.7 6.8 5.3 5.0 8.3 9.5 9.2 9.5 8.2	9.6 9.8 9.9 14.0 15.2 12.9 12.6 13.1 14.4 13.8 9.3 8.3 8.3 8.1 11.9	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5 16.9 16.5 16.0 17.7 18.7	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8 5.5 7.5 10.7 13.1 13.8 11.4 10.5	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6 14.9 11.1 9.1 9.1 9.1 9.1 9.1 1.6	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 23.0 23.0 21.2 19.0 16.0 18.3 21.9 24.8 25.5	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5 13.3 13.2 11.3 12.2 14.3 16.8	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0 14.4 14.3 16.5 19.2 21.0	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 28.5 25.7 26.3 24.4 28.9 30.9 31.1 31.4 29.3 29.1 30.3	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 21.5 20.3 21.5 25.0 23.5 20.4 20.6 21.5	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6 24.0 24.1 25.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	12.6 12.4 12.6 17.1 16.8 15.7 16.2 17.9 16.7 12.0 11.4 11.5 14.4	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0 8.3 9.5 9.2 9.5 8.2 9.2 8.3	9.6 9.8 9.5 9.9 14.0 15.2 12.6 13.1 14.4 13.8 9.3 8.3 8.4 11.2 12.1 11.9 11.9	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5 16.9 16.5 16.0 17.7 18.7	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8 5.5 7.5 10.7 13.1 13.8 11.4 10.5	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6 14.9 11.1 9.1 9.2 11.6 13.5 14.9 15.2	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 19.6 22.0 23.5 21.2 19.0 16.0 18.3 21.9 24.8 25.5	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5 13.3 13.2 11.3 12.2 14.3 16.8	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0 14.4 14.3 16.5 22.1.0	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 27.4 28.5 25.7 26.3 24.4 28.9 30.9 31.1 31.4 29.3 29.1 30.3	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 23.5 25.0 23.5 20.4 20.6 21.5	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6 24.0 27.1 26.6 24.0 27.1 26.1 26.1 26.1 26.1 26.1 26.1 26.1 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	12.6 12.0 12.4 12.6 17.1 16.8 15.7 14.9 16.7 12.0 11.4 11.5 14.4 14.8 14.2 14.7 14.1 14.7	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0 8.3 9.5 9.2 9.5 8.2 9.2 8.3 8.6 7.0	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1 14.4 13.8 9.3 8.3 8.4 11.2 12.1 11.9 11.3 11.9	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5 16.0 17.7 18.7 20.3 20.3	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 10.6 13.7 12.1 10.5 7.8 5.5 7.5 10.7 13.1 13.8 11.4 10.5	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6 14.9 11.1 9.1 9.1 9.1 11.6 13.5 14.9 15.2 14.2 14.5	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 23.5 21.2 19.0 16.0 18.3 21.9 24.8 25.5	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 16.3 19.6 16.3 19.6 16.3 19.6 16.3 19.6 16.3 19.6 16.3 19.6 16.3 19.6 10.9	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0 14.4 14.3 16.5 19.2 21.0 22.2 23.1 22.5	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 28.5 26.3 24.4 28.9 30.9 31.1 31.4 29.3 29.1 30.5 30.5	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 23.5 25.0 23.5 20.4 20.6 21.5 21.9 23.0 22.2	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6 24.0 24.1 25.1 25.2 26.2 26.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	12.6 12.4 12.6 17.1 16.8 15.7 16.2 17.9 16.7 12.0 11.4 11.5 14.4 14.8 14.2 14.7 14.7 14.7	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0 8.3 9.5 9.2 9.2 9.5 8.2 9.2 8.3 8.6 7.0 7.7	9.6 9.8 9.5 9.9 14.0 15.2 12.6 13.1 14.4 13.8 9.3 8.3 8.4 11.2 12.1 11.9 11.9 11.3 11.9	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5 16.9 16.5 16.0 17.7 18.7	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8 5.5 7.5 10.7 13.1 13.8 11.4 10.5	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6 14.9 11.1 9.2 11.6 13.5 14.9 15.2 14.5 14.2 14.5	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 19.6 22.0 23.5 21.2 19.0 16.0 18.3 21.9 24.8 25.5	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5 13.3 13.2 11.3 12.2 14.3 16.8 19.4 20.0 19.9 14.8	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0 14.4 14.3 16.5 22.1 21.0	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 27.4 28.5 25.7 26.3 24.4 28.9 30.9 31.1 31.4 29.3 29.1 30.3	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 21.5 21.5 23.5 25.0 23.5 20.4 20.6 21.5 21.9 23.0 22.2 22.0	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6 24.0 27.1 26.6 24.1 25.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	12.6 12.0 12.4 12.6 17.1 16.8 15.7 14.9 16.7 12.0 11.4 11.5 14.4 14.8 14.2 14.7 14.1 14.7	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0 8.3 9.5 9.2 9.5 8.2 9.2 8.3 8.6 7.0	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1 14.4 13.8 9.3 8.3 8.4 11.2 12.1 11.9 11.3 11.9	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5 16.0 17.7 18.7 20.3 20.3	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 10.6 13.7 12.1 10.5 7.8 5.5 7.5 10.7 13.1 13.8 11.4 10.5	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6 14.9 11.1 9.1 9.1 9.1 11.6 13.5 14.9 15.2 14.2 14.5	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 23.5 21.2 19.0 16.0 18.3 21.9 24.8 25.5	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 16.3 19.6 16.3 19.6 16.3 19.6 16.3 19.6 16.3 19.6 16.3 19.6 16.3 19.6 10.9	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0 14.4 14.3 16.5 19.2 21.0 22.2 23.1 22.5	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 28.5 26.3 24.4 28.9 30.9 31.1 31.4 29.3 29.1 30.5 30.5	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 23.5 25.0 23.5 20.4 20.6 21.5 21.9 23.0 22.2	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6 24.0 24.1 25.1 25.2 26.2 26.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25	12.6 12.4 12.6 17.1 16.8 15.7 16.2 17.9 16.7 12.0 11.4 11.5 14.4 14.8 14.2 14.7 14.7 14.7	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0 8.3 9.5 9.2 9.2 9.5 8.2 9.2 8.3 8.6 7.0 7.7	9.6 9.8 9.5 9.9 14.0 15.2 12.6 13.1 14.4 13.8 9.3 8.3 8.4 11.2 12.1 11.9 11.9 11.3 11.9	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5 16.9 16.5 16.0 17.7 18.7	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8 5.5 7.5 10.7 13.1 13.8 11.4 10.5	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6 14.9 11.1 9.2 11.6 13.5 14.9 15.2 14.5 14.2 14.5	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 19.6 22.0 23.5 21.2 19.0 16.0 18.3 21.9 24.8 25.5	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5 13.3 13.2 11.3 12.2 14.3 16.8 19.4 20.0 19.9 14.8	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0 14.4 14.3 16.5 22.1 21.0	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 27.4 28.5 25.7 26.3 24.4 28.9 30.9 31.1 31.4 29.3 29.1 30.3	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 21.5 21.5 23.5 25.0 23.5 20.4 20.6 21.5 21.9 23.0 22.2 22.0	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6 24.1 25.1 25.1 25.2 26.2 26.2 23.9 23.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27	12.6 12.4 12.6 17.1 16.8 15.7 14.9 16.7 12.0 11.4 11.5 14.4 14.2 14.7 14.7 14.0 12.8 13.5 15.7 14.0 12.8 13.5 15.7	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.7 10.7 6.8 5.3 5.0 8.3 9.5 9.2 9.5 8.2 9.5 8.2 9.5 8.2 9.1 11.7	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1 14.4 13.8 9.3 8.4 11.2 12.1 11.9 11.9 11.9 11.9 11.1 10.7 10.7 10.7 10.5 14.9	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5 16.0 17.7 18.7 20.3 22.2 20.6 18.1 19.7	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8 5.5 7.5 10.7 13.1 13.8 11.4 10.5 12.1 14.6 15.5 14.6 12.9	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6 14.9 11.1 9.2 11.6 13.5 14.9 15.2 14.5 16.2 18.4 18.2 15.2 15.2	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 23.5 21.2 19.0 16.0 18.3 21.9 24.8 25.5 25.0 27.2 25.1 19.9 21.2	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5 13.3 13.2 11.3 12.2 11.3 12.8 19.4 20.0 19.9 14.8 14.0 17.5 17.4	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0 14.4 14.3 16.5 21.0 22.2 23.1 22.5 16.6 9	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 27.4 28.5 25.7 26.3 24.4 28.9 30.9 31.1 31.4 29.3 30.3 29.7 30.5 30.7 25.7 25.7 25.7 25.8	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 21.5 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 21.9 22.0 19.9 21.9 20.5	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6 24.1 25.1 25.2 26.2 26.2 26.2 23.5 23.5 23.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	12.6 12.0 12.4 12.6 17.1 16.8 15.7 14.9 16.7 12.0 11.4 11.5 14.4 14.8 14.2 14.7 14.7 14.1 14.7 14.7 15.1 18.5 15.1	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0 8.3 9.5 9.2 9.5 8.2 9.5 8.2 9.5 11.7 11.7	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1 14.4 13.8 9.3 8.4 11.2 12.1 11.9 11.9 11.3 11.9 11.1 10.7 10.2 11.5 14.9	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5 16.0 17.7 18.7 20.3 22.2 20.6 18.1 19.7	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8 5.5 7.5 10.7 13.1 13.8 11.4 10.5 12.1 14.6 15.5 14.6 12.9 14.4 14.1 13.7	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 16.6 14.9 11.1 9.1 9.1 9.1 11.6 13.5 14.9 15.2 14.5 16.2 14.5 16.2 18.4 18.2 15.9 16.1	22.8 25.1 21.2 21.3 23.9 25.7 23.0 23.0 19.6 22.0 23.5 21.2 19.0 16.0 18.3 21.9 24.8 25.5 27.2 25.1 19.9 21.2	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 16.3 19.6 16.3 11.3 12.2 14.3 16.8 19.4 20.0 19.9 14.8 14.0 17.5 17.4 19.5	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.9 7 17.5 18.7 20.9 18.8 16.0 14.4 14.3 16.5 19.2 21.0 22.2 23.1 22.5 16.6 16.9 20.9 21.8 21.8 21.9 21.0 22.2 23.1 22.5 16.6 16.9	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 28.5 26.3 24.4 28.9 30.9 31.1 30.3 29.1 30.5 30.7 25.7 26.3 27.4 29.3 29.1 30.5 30.7 29.7 25.7 26.5	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 23.5 20.4 20.6 21.5 21.9 23.0 22.2 22.0 19.9 21.9 20.7	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6 24.0 24.1 25.1 25.2 26.1 23.5 23.9 23.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	12.6 12.4 12.6 17.1 16.8 15.7 16.2 17.9 16.7 11.4 11.5 14.4 14.8 14.2 14.7 14.7 14.0 12.8 13.5 15.1 18.5	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0 8.3 9.5 9.2 9.5 8.2 9.2 8.3 8.6 7.0 7.7 11.7	9.6 9.8 9.5 9.9 14.0 15.2 12.6 13.1 14.4 13.8 9.3 8.4 11.2 12.1 11.9 11.9 11.3 11.9 11.1 10.7 10.7 10.5 14.9	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5 16.0 17.7 18.7 20.3 22.2 20.6 18.1 19.7	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 10.6 13.7 12.1 10.5 7.8 5.5 7.5 10.7 13.1 13.8 11.4 10.5 12.1 14.6 15.5 14.6 12.9 14.4 14.1 13.7 13.9	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6 14.9 11.1 9.2 11.6 13.5 14.9 15.2 14.2 14.5 16.2 18.4 18.2 15.2 16.1	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 23.5 21.2 19.0 16.0 18.3 21.9 24.8 25.5 25.0 27.2 25.1 19.9 21.2	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5 13.3 13.2 11.3 12.2 11.3 12.8 19.4 20.0 19.9 14.8 14.0 17.5 17.4 19.5	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0 14.4 14.3 16.5 19.2 22.1 23.1 22.5 16.6 16.9 20.9 21.8 23.2 21.8 23.2 21.8	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 27.4 28.5 25.7 26.3 24.4 28.9 30.9 31.1 31.4 29.3 29.1 30.3 29.7 30.5 530.7 25.7 25.7 25.7 25.7	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 22.0 19.9 20.5 20.7 22.1	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6 24.1 25.1 25.2 26.2 26.2 26.2 23.8 23.9 23.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	12.6 12.0 12.4 12.6 17.1 16.8 15.7 14.9 16.7 12.0 11.4 11.5 14.4 14.8 14.2 14.7 14.7 14.1 14.7 14.7 15.1 18.5 15.1	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.2 10.7 10.7 6.8 5.3 5.0 8.3 9.5 9.2 9.5 8.2 9.5 8.2 9.5 11.7 11.7	9.6 9.8 9.5 9.9 14.0 15.2 12.9 12.6 13.1 14.4 13.8 9.3 8.4 11.2 12.1 11.9 11.9 11.3 11.9 11.1 10.7 10.2 11.5 14.9	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5 16.0 17.7 18.7 20.3 22.2 20.6 18.1 19.7	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8 5.5 7.5 10.7 13.1 13.8 11.4 10.5 12.1 14.6 15.5 14.6 12.9 14.4 14.1 13.7	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 16.6 14.9 11.1 9.1 9.1 9.1 11.6 13.5 14.9 15.2 14.5 16.2 14.5 16.2 18.4 18.2 15.9 16.1	22.8 25.1 21.2 21.3 23.9 25.7 23.0 23.0 19.6 22.0 23.5 21.2 19.0 16.0 18.3 21.9 24.8 25.5 27.2 25.1 19.9 21.2	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 16.3 19.6 16.3 11.3 12.2 14.3 16.8 19.4 20.0 19.9 14.8 14.0 17.5 17.4 19.5	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.9 7 17.5 18.7 20.9 18.8 16.0 14.4 14.3 16.5 19.2 21.0 22.2 23.1 22.5 16.6 16.9 20.9 21.8 21.8 21.9 21.0 22.2 23.1 22.5 16.6 16.9	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 28.5 26.3 24.4 28.9 30.9 31.1 30.3 29.1 30.5 30.7 25.7 26.3 27.4 29.3 29.1 30.5 30.7 29.7 25.7 26.5	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 23.5 20.4 20.6 21.5 21.9 23.0 22.2 22.0 19.9 21.9 20.7	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6 24.1 25.1 25.2 26.1 23.5 23.9 23.8 23.1 23.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30	12.6 12.4 12.6 17.1 16.8 15.7 14.9 16.2 17.9 16.7 12.0 11.4 11.5 14.4 14.8 14.2 14.7 14.7 14.0 12.8 13.5 15.7 14.0 12.8 13.5 15.7	6.8 7.4 6.8 7.1 11.3 13.7 10.0 10.2 10.7 10.7 6.8 5.3 5.0 8.3 9.5 9.2 9.5 8.2 9.5 8.2 9.5 8.2 9.1 11.7	9.6 9.8 9.5 9.9 14.0 15.2 12.9 13.1 14.4 13.8 9.3 8.4 11.2 12.1 11.9 11.9 11.9 11.7 10.7 10.7 10.5 14.9	18.8 17.9 16.3 15.8 18.4 15.6 13.3 17.1 16.9 20.1 18.4 12.1 10.7 13.3 15.5 16.0 17.7 18.7 20.3 22.2 20.6 18.1 19.7	MARCH 11.7 12.1 10.8 10.2 12.5 11.5 11.0 10.6 13.7 12.1 10.5 7.8 5.5 7.5 10.7 13.1 13.8 11.4 10.5 12.1 14.6 15.5 14.6 12.9 14.4 13.7 13.7 13.9 13.9	15.1 14.8 13.5 13.2 15.2 13.6 11.6 13.5 13.9 16.6 14.9 11.1 9.2 11.6 13.5 14.9 15.2 14.5 16.2 18.4 18.2 15.2 16.1	22.8 25.1 22.6 22.1 21.2 21.3 23.9 25.7 23.0 23.0 23.0 21.2 19.0 16.0 18.3 21.9 21.2 19.0 25.5 25.5 25.7 27.2 25.1 27.1 27.3 23.8 21.2	APRIL 16.5 18.2 17.9 14.7 14.8 13.1 15.9 20.6 19.1 16.4 14.7 16.3 19.6 16.5 13.3 13.2 11.3 12.2 14.8 19.4 20.0 19.9 14.8 14.0 17.5 17.4 19.5 19.6 19.0	19.5 21.3 20.1 18.1 18.3 17.2 19.7 22.8 21.2 19.7 17.5 18.7 20.9 18.8 16.0 14.4 14.3 16.5 221.0 22.2 23.1 22.5 16.6 9 20.9 21.8 23.2 21.8	20.1 23.3 22.2 22.6 22.6 23.8 25.3 27.4 27.4 28.5 25.7 26.3 24.4 28.9 30.9 31.1 31.4 29.3 30.5 30.7 29.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25	MAY 18.1 16.8 19.1 19.8 17.6 15.5 16.0 18.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 22.2 21.5 23.5 25.0 23.5 20.4 20.6 21.5 21.9 23.0 22.2 22.0 19.9 21.9 20.7 22.1	18.6 19.8 20.6 21.0 19.8 19.2 20.5 22.8 24.6 24.7 23.8 22.2 22.1 24.7 26.6 24.1 25.1 25.2 26.2 26.2 26.2 23.8 23.8 25.2 26.2 26.3 26.1 26.6 26.1 26.2 26.2 26.2 26.2 26.2

08120700 COLORADO RIVER NEAR CUTHBERT, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	32.2 28.6 28.8 30.5 27.7	23.3 23.0 23.0 22.8 23.3	27.2 25.8 25.5 25.9 25.3	33.0 32.3 31.8 30.7 31.2	26.4 26.5 25.5 25.8 25.2	29.3 28.9 28.3 27.9 27.8	30.8 31.8 31.7 31.0 30.5	25.7 26.5 25.7 26.6 26.6	28.1 28.3 28.3 28.9 28.6	29.5 29.4 	23.7 23.7 	26.4 26.3
6 7 8 9 10	32.0 30.4 31.4 30.8 32.8	23.1 21.8 22.8 23.7 23.3	26.8 25.9 26.5 26.7 27.6	32.2 32.5 32.9 33.4 30.4	25.5 26.3 26.1 26.6 23.1	28.6 29.2 29.3 29.8 26.3	32.1 32.6 32.2 32.5 32.3	26.2 26.0 26.5 27.5 27.1	28.9 29.2 29.5 29.9 29.7	 28.5 28.9	 22.4 24.4	 26.5 26.4
11 12 13 14 15	31.7 24.8 20.5 22.3 24.7	23.8 17.3 17.3 20.0 21.8	26.8 19.5 19.3 21.0 22.9	25.0 27.5 29.3 30.5 30.7	22.7 23.5 24.2 25.1 25.3	23.6 25.2 26.5 27.7 27.9	31.9 32.3 33.2 32.7 32.1	26.6 26.8 27.3 27.2 26.9	29.2 29.4 30.0 29.7 29.3	30.4 28.5 25.0 25.9 26.8	24.7 25.0 22.0 21.6 21.7	27.2 26.7 23.6 23.7 24.2
16 17 18 19 20	25.9 25.3 25.7 27.4 27.6	22.5 21.4 21.5 22.9 23.6	24.0 23.2 23.6 25.0 25.4	29.9 30.9 30.5 30.7 32.0	24.7 25.3 25.8 25.4 25.7	27.3 27.7 27.9 27.8 28.4	32.6 32.4 31.9 31.6 32.1	27.2 26.1 25.7 26.2 25.7	29.5 28.9 28.5 28.6 28.7	24.7 25.3 26.2 27.5 25.5	21.9 19.6 21.0 21.3 21.8	23.0 22.2 23.4 24.2 23.1
21 22 23 24 25	25.8 27.0 29.9 30.7 31.3	23.6 23.3 23.8 25.4 25.4	24.8 24.9 26.7 27.9 28.4	31.9 31.6 32.4 32.6 32.0	26.1 25.4 25.3 25.4 25.3	28.6 28.2 28.6 28.9 28.7	31.1 31.5 29.3 32.0 31.3	25.1 24.5 25.2 24.7 24.7	27.9 27.6 27.1 27.6 27.6	22.6 23.5 22.8 25.2 27.4	18.5 17.1 16.9 18.9 20.9	20.5 20.1 19.8 21.7 23.7
26 27 28 29 30 31	32.1 32.7 33.3 30.8 32.6	26.2 26.6 27.3 28.1 26.2	29.0 29.4 29.9 29.4 28.9	31.8 31.8 32.0 32.4 32.4 32.3	25.9 26.5 26.4 26.3 27.1 26.9	28.9 29.1 29.2 29.3 29.8 29.3	31.4 31.2 31.2 30.6 30.7 30.2	24.4 24.4 24.3 24.2 23.9 23.2	27.6 27.6 27.6 27.2 26.9 26.3	26.4 27.9 24.5 21.7 20.2	20.5 22.6 17.3 14.7 13.7	23.3 24.8 20.8 17.5 16.8
MONTH	33.3	17.3	25.8	33.4	22.7	28.2	33.2	23.2	28.5			

This page intentionally left blank.

08121000 COLORADO RIVER AT COLORADO CITY, TX

LOCATION.--Lat 32°23'33", long 100°52'42", Mitchell County, Hydrologic Unit 12080002, on right bank at Colorado City, 3,517 ft upstream from bridge on State Highway 377, 4,100 ft upstream from the Texas and Pacific Railroad Company bridge, 1.3 mi downstream from bridge on Interstate Highway 20 and U.S. Highway 80, 1.6 mi upstream from Lone Wolf Creek, and at mile 796.3.

DRAINAGE AREA. -- 3,966 mi², of which 2,381 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Nov 1923 to Aug 1925 (published as "at Colorado"), May 1946 to current year.

REVISED RECORDS.--WSP 1512: 1946(M). WDR TX-81-3: Drainage area.

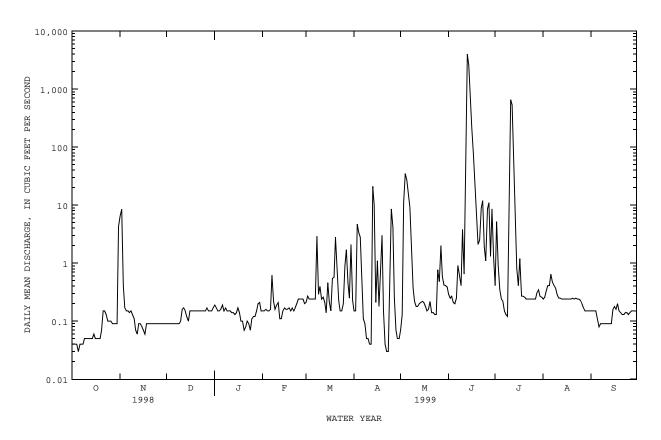
GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,030.16 ft above sea level. Nov 28, 1923, to Aug 31, 1925, nonrecording gage at site 1.4 mi downstream at different datum. May 9 to Aug 5, 1946, nonrecording gage at site 185 ft upstream at present datum. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. Since Jul 1952 at least 10% of contributing drainage area has been regulated by Lake J.B. Thomas (station 08118000, normal storage 204,000 acre-ft) 31 mi upstream. The Colorado River Municipal Water District diverts low flow into an off channel reservoir 3 mi upstream for brine disposal. There are numerous diversions from Lake J.B. Thomas for municipal use and for oil field operations.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--6 years (water years 1947-52) prior to completion of Lake J.B. Thomas, $85.4 \text{ ft}^3/\text{s}$ (61,870 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1947-52).--Maximum discharge, 24,900 ft³/s Jul 6, 1948 (gage height, 22.37 ft, from floodmark); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1910, 35.9 ft Jun 20, 1939, present site and datum, based on floodmarks 1,000 ft upstream and 3,740 ft downstream from gage; discharge, 66,000 ft 3/s, by slope-area measurement of peak flow at site 2.5 mi upstream from gage.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .04 6.5 .09 .19 .21 .07 .29 .41 .24 .15 2 .04 .09 .17 .15 .27 .15 .13 .25 5.2 .26 .41 4.7 11 . 91 3 .04 .09 .15 .16 . 24 . 27 . 33 .15 3.3 .15 .04 .17 .09 .15 .24 .21 .41 35 .35 .15 5 .03 .15 .09 .16 .15 .24 2.8 27 .20 .24 .41 .11 6 .04 .09 .19 .16 .24 16 .25 .22 .65 .08 .04 .14 .09 .15 .62 .24 .11 9.2 .91 .15 .47 .09 2.9 8 .04 .15 .09 .17 . 22 .09 1.5 . 61 .13 . 41 .09 .16 .29 .37 .13 .09 .15 .41 .05 10 .05 3.8 2.4 .29 .11 .10 .15 .19 .40 .22 .09 .05 .07 .21 .04 . 25 11 .15 .65 654 .09 12 .05 .06 .11 .26 .04 .18 386 534 .25 .09 .17 .14 21 13 .05 .09 .15 .14 .11 .21 .20 4010 51 .24 .09 .21 4.7 .24 .09 .12 .13 10 15 .06 .08 .10 .14 .17 .46 .21 .22 798 .81 .24 .16 16 .05 07 .15 .17 .16 .22 1.1 .21 213 .41 .24 .18 .15 .14 .18 1.2 17 . 05 .06 .16 .15 .18 76 .24 .16 18 17 .24 .05 .09 .15 .10 .17 .55 .56 .15 .20 .09 .15 .57 3.0 5.7 .27 .24 19 .05 .15 .10 .16 .15 20 .07 .09 .15 .07 .17 2.8 .15 .22 2.1 .26 .25 .14 21 .15 .09 .15 .08 .15 .75 .04 2.5 . 24 . 24 .13 .09 . 25 22 .15 .15 .10 .17 .23 .03 .14 8.9 . 24 .13 23 .24 .03 12 .24 .09 .15 .09 .15 .13 .14 .13 1.9 24 .09 .15 . 24 .15 . 21 .13 .24 .24 .10 .07 .14 .77 25 .10 .09 .15 .11 .24 .20 8.6 1.1 .24 .23 .13 .14 26 10 0.9 .15 12 . 24 .90 4.2 . 48 8.6 24 . 20 . 25 2.7 .09 .09 .17 .12 . 24 1.7 2.0 11 . 24 .17 .15 1.3 28 .09 .09 .15 .15 .20 .46 .07 . 59 .31 .15 .15 .15 29 .09 09 .20 .25 05 .42 8.6 .35 .15 ---30 .09 .09 .15 . 21 2.1 . 05 . 41 1.3 . 27 .15 .15 4.3 .17 .15 .23 .26 .15 .39 TOTAL 6.33 18.10 4.05 4.31 5.35 17.99 61.72 108.01 8182.85 1259.92 3.91 8.44 MEAN .20 .60 .14 .19 .58 2.06 3.48 40.6 . 27 .13 .13 MAX 4.3 8.5 .17 .21 .62 2.9 21 35 4010 654 .65 .20 . 07 MTN . 03 .06 .09 .07 .11 .14 . 03 . 20 .12 .15 .08 8.5 11 16230 17 7.8 AC-FT 13 36 8.0 36 122 214 2500 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1953 - 1999z. BY WATER YEAR (WY) MEAN 37 0 7 53 5 67 4 41 10 2 7 53 36 6 97 9 83 1 21 0 40 4 57 2 MAX 339 61.1 49.6 33.6 99.0 88.3 332 1048 745 197 684 817 1992 1957 1982 1971 1987 1985 1992 1973 1957 1957 1961 MTN 000 000 026 051 061 000 010 0.01 000 000 000 000 1969 (WY) 1956 1955 1971 1971 1956 1955 1970 1953 1974 1954 1954

08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1953 - 1999z
ANNUAL TOTAL	101.99	9680.98	
ANNUAL MEAN	.28	26.5	34.1
HIGHEST ANNUAL MEAN			143 1957
LOWEST ANNUAL MEAN			.34 1998
HIGHEST DAILY MEAN	8.5 Nov 2	4010 Jun 13	9560 May 25 1957
LOWEST DAILY MEAN	.01 Jul 22	.03 Oct 5	.00 Oct 4 1952
ANNUAL SEVEN-DAY MINIMUM	.01 Jul 22	.04 Oct 1	.00 Oct 4 1952
INSTANTANEOUS PEAK FLOW		6360 Jun 13	13000 May 25 1957
INSTANTANEOUS PEAK STAGE		22.97 Jun 13	27.81 Sep 29 1980
ANNUAL RUNOFF (AC-FT)	202	19200	24700
10 PERCENT EXCEEDS	.55	2.8	25
50 PERCENT EXCEEDS	.10	.16	.52
90 PERCENT EXCEEDS	.02	.07	.00

z Period of regulated streamflow.

08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --

CHEMICAL DATA: May 1946 to Sep 1954, Nov 1956 to current year.

SPECIFIC CONDUCTANCE: May 1946 to Sep 1954 and Nov 1956 to current year (local observer). WATER TEMPERATURE: Nov 1952 to Sep 1954 and Nov 1956 to current year (local observer).

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. New regression equations were developed based on data from water years 1990 to 1999. The standard error of estimate for dissolved solids is 6%, chloride is 72%, sulfate is 29% and for hardness is 32%. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 76,000 microsiemens, Sep 21, 1998; minimum daily, 240 microsiemens, Sep 29, 1980.
WATER TEMPERATURE: Maximum daily, 39.0°C, Jul 21, 1995; minimum daily, 0.0°C, on many days during winter months.

SPECIFIC CONDUCTANCE: Maximum daily, 74,000 microsiemens, Oct 15,16; minimum daily, 300 microsiemens, Jun 13. WATER TEMPERATURE: Maximum daily, 36.0° C, Jun 30, Jul 23, 29, Aug 14; minimum daily, 2.0° C, Dec 24.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DICHARCINS' CUB FE SEC (000	GE, S T. (IC (ET I R A OND (U	SPE- CIFIC CON- DUCT- ANCE JS/CM)	TEME ATU WAT (DEG (000	RE ER (C)	HAR NES TOT (MG AS CAC	S AL /L O3)	HARI NESS NONCE DISSO FLD. CACO (MG/I	S ARB (OLV AS O3 L)	CALCI DIS- SOLV (MG/ AS C	ED L	MAGN SIU DIS SOLV (MG/ AS M	M, ; - ED ; L IG)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
OCT 07	1110		.04	0200	24.	5	590	0	570	0	1400		611		20300
JAN 04	1010		.15 2	27700		5	230	0	210	0	540		242		6800
MAY 05 JUN	1630	22		5090	22.	0	72	0	54	0	170		71		815
12 13 15	1740 1710 1300	710 6350		1420 188 745	19.7 20.0 23.0		17 6 17	67		0 6 5	48 23 52		12 2.3 9.3		204 8.0 75
DATE	2	SODIUM AD- SORP- TION RATIO	POTAS SIUN DIS- SOLVE (MG/I AS K)	S- LII I, WA' - FII D FI - CI	LKA- NITY I DIS X END IELD AC03 MG/L) 9036)	DI SO (M AS	FATE S- LVED G/L SO4) 945)	RI DI SO (M AS	LO- DE, S- LVED G/L CL) 940)	FLUC RIDE DIS SOLV (MG/ AS E	E, S- /ED /L F)	SILIC DIS- SOLV (MG/ AS SIO2 (0095	CA, - VED /L 2)	SOLI SUM (CONS' TUEN' DI SOL' (MG (703)	OF TI- TS, S- VED /L)
OCT 07 JAN		110	52	:	220	55	00	290	00	.75	5	13		564	00
04 MAY		61	18	:	230	24	00	100	00	.63	3	. 9	92	201	00
05 JUN		13	16		180	5	30	13	00	1.0		7.8	3	30	10
12 13 15		7 .4 3	5.4 5.0 6.0		43 61 93		10 11 75		30 8.4 20	.30	5	6.1 7.1 8.1	1	1	45 02 06

08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1998 TO SEPTEMBER 1999

MONTH YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- SIEMENS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 1998	6.33	46880	33780	577	17000	290	3700	63.3	3700
NOV. 1998	18.1	23070	14980	732	7200	352	2200	106	2000
DEC. 1998	4.05	28710	19070	209	9300	101	2600	28.5	2400
JAN. 1999	4.31	29790	19870	231	9700	113	2700	31.3	2500
FEB. 1999	5.35	28350	18820	272	9100	132	2600	37.2	2400
MAR. 1999	17.99	19040	12190	592	5800	283	1800	88.6	1700
APR. 1999	61.72	11530	7140	1190	3400	559	1200	193	1000
MAY 1999	108.01	7010	4260	1240	2000	577	720	210	640
JUNE 1999	8182.85	775	461	10190	210	4680	82	1800	71
JULY 1999	1259.92	5970	3620	12300	1700	5710	620	2100	540
AUG. 1999	8.44	14640	9170	209	4300	98.7	1400	32.9	1300
SEPT 1999	3.91	24610	16150	170	7800	82.3	2300	24.0	2100
TOTAL	9680.98	**	**	27910	**	12980	**	4710	**
WTD.AVG.	27	1760	1070	**	500	**	180	**	160

	SPECIF	IC CONDUCT	FANCE (MIC				, WATER YEA EAN VALUES	AR OCTOBE	R 1998 TO	SEPTEMBE	R 1999	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	73600	25900	24500	29600	29000	23300	14300	9920	7210	10800	12600	17000
2	73100	21000	24600	29500	26900	23300	14300	9730	7100	14100	12500	16900
3	72400	23000	25300	30400	32400	23300	17800	9500	7700	13000	12900	16800
4	72400	22400	25800	29500	29900	23300	12800	8000	7720	10300	12900	16600
5	72100	22200	25800	29500	26900	23300	12500	6000	7720	10300	13100	16600
6	73000	22200	27200	29500	26900	24200	12400	5490	7050	12500	14100	16800
7	70300	22200	27200	30400	32400	24200	11800	5110	7080	13100	14500	17400
8	70300	21600	27100	30000	29900	24200	11600	5600	7620	12500	14400	19400
9	73300	23100	28100	30000	e28500	24500	11900	5960	7620	10100	14800	19800
10	73100	23100	27700	30000	26900	24500	12200	6450	5000	9500	15000	20100
11	73200	24300	27700	30000	32400	e25000	12200	6650	6000	8000	15000	20700
12	72800	24100	27100	30300	32400	25200	10300	7070	3000	3500	15100	20200
13	72800	22800	27400	29800	e32000	23300	11000	7310	300	4000	15000	20600
14	72400	22800	27200	29900	e31000	22000	8830	7510	500	6500	15100	20500
15	74000	22800	28200	29900	e30000	19700	10300	7830	1150	7400	15100	23300
16	74000	22500	28800	30300	e29500	20600	14800	8120	3000	8480	15200	26000
17	71000	22100	28800	29900	e29000	21100	14500	8370	2500	9190	15200	26800
18	71000	22100	29500	30300	e28500	17500	15100	8590	7150	9790	15200	28100
19	70100	22100	29400	29800	e28000	18000	14400	8940	12100	10300	15100	30300
20	66800	22100	29400	30100	e27500	16000	14400	8930	12100	10500	15000	30900
21	58000	e22500	30200	30300	e27000	13500	14100	9050	13100	10700	15100	30800
22	50000	22900	30200	30300	e26500	13300	14000	9110	15700	11000	15100	30300
23	44800	e22500	31100	30300	26000	16100	12100	9300	11700	11300	15100	30000
24	51000	22300	31000	30300	e25500	23800	12000	9290	9250	11700	15200	29100
25	50300	22000	30900	27700	e25000	23900	10700	8860	10100	11800	15300	29100
26 27 28 29 30 31	54000 56700 55000 52900 52700 40000	23600 23700 23700 24600 e24500	31000 e30500 29900 30000 29000 29400	29900 27200 27900 30300 30500 e30000	e24500 e24000 e23500 	17200 16100 14200 14300 16000 14600	9810 10300 10600 10700 12000	9330 8500 8210 7550 7420 7140	11900 9450 9800 10800 10500	11700 11900 12100 12200 12400 12500	15400 15800 16500 16500 16800 16900	29100 29100 e29000 28800 29200
MEAN	64700	22900	28400	29800	28300	20300	12500	7900	7730	10400	14900	24000
MAX	74000	25900	31100	30500	32400	25200	17800	9920	15700	14100	16900	30900
MIN	40000	21000	24500	27200	23500	13300	8830	5110	300	3500	12500	16600

e Estimated

08121000 COLORADO RIVER AT COLORADO CITY, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY INSTANTANEOUS VALUES

MILLI INGILATIANDOO VILLOID												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	30.0 30.0 34.0 34.0 28.0	16.0 18.0 16.0 16.0	17.0 18.0 18.0 20.0 19.0	12.0 10.0 10.0 10.0 12.0	15.0 16.0 16.0 16.0 18.0	18.0 19.0 20.0 20.0 20.0	26.0 26.0 22.0 25.0 22.0	25.0 26.0 26.0 25.0 23.0	32.0 30.0 30.0 33.0 31.0	32.0 32.0 34.0 33.0 32.0	35.0 33.0 34.0 34.0 34.0	34.0 33.0 34.0 34.0 33.0
6 7 8 9 10	28.0 25.0 28.0 34.0 32.0	16.0 16.0 18.0 20.0 15.0	16.0 14.0 10.0 10.0 12.0	10.0 12.0 8.0 8.0 10.0	21.0 16.0 18.0 19.0 19.0	15.0 14.0 19.0 18.5 20.0	20.0 22.0 24.0 24.0 21.0	25.0 26.0 25.0 25.0 25.0	30.0 34.0 31.0 30.0 31.0	33.0 34.0 34.0 32.0 32.0	35.0 27.0 35.0 35.0 35.0	34.0 35.0 33.0 34.0 35.0
11 12 13 14 15	28.0 30.0 28.0 28.0 28.0	16.0 16.0 16.0 18.0 17.0	10.0 10.0 10.0 10.0 12.0	10.0 10.0 12.0 11.0	21.0 21.0 20.0 19.0 18.0	15.0 14.0 14.0 19.0 21.0	20.0 21.0 22.0 20.0 20.0	25.0 27.0 27.0 29.0 31.0	31.0 20.0 20.0 25.0 23.0	32.0 34.0 32.0 35.0 30.0	34.0 35.0 35.0 36.0 35.0	35.0 33.0 30.0 32.0 30.0
16 17 18 19 20	26.0 26.0 22.0 21.0 17.0	20.0 20.0 20.0 20.0 16.0	12.0 12.0 11.0 10.0 4.0	12.0 11.0 11.0 12.0 12.0	18.0 17.0 16.0 17.0 16.0	20.0 18.0 17.0 17.0 19.0	20.0 22.0 24.0 24.0 29.0	29.0 30.0 27.0 28.0 30.0	22.0 24.0 25.0 24.0	32.0 33.0 32.0 33.0 31.0	33.0 35.0 35.0 34.0 35.0	25.0 28.0 30.0 28.0 27.0
21 22 23 24 25	16.0 18.0 20.0 22.0 23.0	18.0 18.0 16.0 16.0 15.0	2.0 2.0 3.0 2.0 4.0	10.0 11.0 10.0 15.0 12.0	20.0 19.0 18.0 18.0 17.0	25.0 27.0 25.0 24.0 25.0	24.0 24.0 23.0 23.0 23.0	30.0 32.0 32.0 26.0 30.0	26.0 34.0 24.0 34.0 34.0	33.0 35.0 36.0 33.0 33.0	33.0 34.0 34.0 33.0 33.0	28.0 28.0 31.0 30.0 30.0
26 27 28 29 30 31	22.0 22.0 25.0 23.0 24.0 20.0	16.0 16.0 20.0 20.0 	6.0 12.0 12.0 10.0 14.0 14.0	11.0 17.0 15.0 15.0	18.0 20.0 18.0 	24.0 16.0 15.0 14.0 14.0 25.0	25.0 29.0 29.0 25.0 22.0	26.0 28.0 27.0 29.0 31.0	32.0 34.0 35.0 33.0 36.0	35.0 34.0 35.0 36.0 35.0	35.0 35.0 34.0 35.0 35.0	32.0 32.0 28.0 26.0 24.0
MEAN MAX MIN	25.5 34.0 16.0		10.8 20.0 2.0		18.0 21.0 15.0	19.1 27.0 14.0	23.4 29.0 20.0	27.6 32.0 23.0		33.3 36.0 30.0	34.2 36.0 27.0	30.9 35.0 24.0

This page intentionally left blank.

08123000 LAKE COLORADO CITY NEAR COLORADO CITY, TX

LOCATION.--Lat 32°20'41", long 100°55'10", Mitchell County, Hydrologic Unit 12080002, on left bank at municipal water-intake structure, 1.7 mi upstream from Colorado City Dam on Morgan Creek, 2.2 mi downstream from the Texas and Pacific Railway Co. bridge, 2.5 mi upstream from mouth, and 4.0 mi southwest of Colorado City.

DRAINAGE AREA. -- 345 mi², of which 42.7 mi² probably is noncontributing.

PERIOD OF RECORD.--Apr 1949 to current year.
Water-quality records.--Chemical data: Dec 1969 to May 1984.

REVISED RECORDS --WDR TX-81-3: Drainage area

GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to Aug 23, 1950, nonrecording gages at or near powerplant about 0.7 mi downstream at same datum. Satellite telemeter at station.

REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by a rolled earthfill dam 4,800 ft long. Storage began in Apr 1949, and the dam was completed in Sep 1949. The dam and lake are owned by the Texas Utilities Electric Co. to operate their thermal electric powerplant. The uncontrolled spillway is an excavated cut channel through natural ground 1,200 ft wide located 600 ft upstream and to the left of left end of dam. The spillway is designed to discharge 150,000 ft ³/s at the maximum design flood elevation. The service spillway is an uncontrolled rectangular drop inlet located 100 ft upstream from dam with two uncontrolled openings of 10.0 by 12.0 ft. The spillway is designed for a maximum discharge of 5,000 ft ³/s. A service outlet is provided for small releases downstream through a 30-inch valve-controlled concrete pipe. Record of pumpage from Champion Creek Reservoir (station 08123600), into Lake Colorado City can be obtained from the Texas Utilities Electric Co. Figures given herein represent total contents. Data regarding the dam are given in the following table:

	Elevation (feet)
Top of dam	2,090.0
Design flood	2,086.7
Crest of spillway	
Crest of service spillway (top of conservation pool)	2,070.2
Lowest gated outlet (invert)	2,024.3

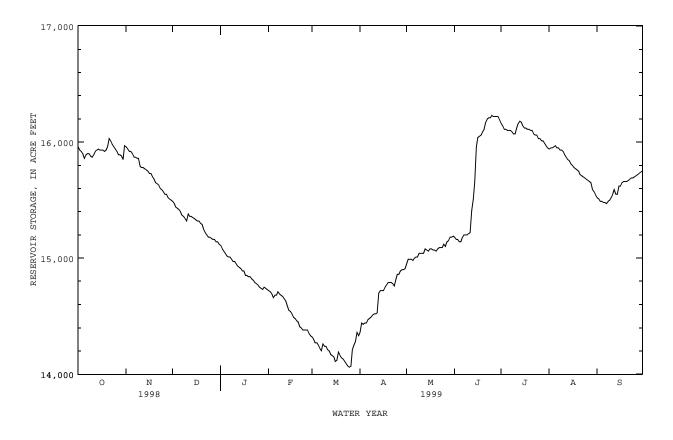
COOPERATION. -- Capacity curve dated Oct 1, 1964 was furnished by the Texas Utilities Electric Co. Record of diversions for municipal use can be obtained from the city of Colorado City.

EXTREMES FOR PERIOD OF RECORD. --Maximum contents, 40,280 acre-ft, Sep 7, 1962 (elevation, 2,075.10 ft); minimum contents after initial filling, 9,740 acre-ft, Aug 30, 31, and Sep 1, 1953 (elevation, 2,051.30 ft).

EXTREMES FOR CURRENT YEAR. -- Maximum contents, 16,270 acre-ft, Jun 26 (elevation, 2,058.42 ft); minimum contents, 14,040 acre-ft, Mar 25 (elevation, 2,056.22 ft).

> RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15960	15960	15490	15110	14720	14320	14360	14950	15180	16160	15940	15520
2	15930	15940	15470	15080	14710	14300	14440	14990	15160	16140	15950	15510
3	15920	15920	15440	15060	14690	14270	14430	14990	15160	16110	15950	15490
4	15900	15920	15430	15040	14660	14270	14440	14990	15140	16110	15960	15490
5	15860	15900	15420	15020	14680	14250	14440	14980	15140	16100	15970	15480
6	15890	15870	15400	15010	14680	14220	14470	15000	15180	16100	15950	15480
7	15900	15870	15370	15010	14710	14200	14480	15010	15200	16100	15950	15470
8	15900	15860	15360	14990	14690	14260	14490	15010	15200	16090	15930	15490
9	15880	15860	15340	14970	14680	14240	14510	15040	15200	16070	15930	15500
10	15870	15790	15320	14970	14670	14240	14520	15040	15210	16070	15920	15520
11	15890	15780	15380	14950	14650	14210	14520	15040	15220	16120	15890	15550
12	15920	15780	15360	14930	14630	14200	14530	15040	15410	16160	15870	15590
13	15930	15770	15360	14920	14590	14170	14700	15080	15510	16180	15850	15550
14	15940	15760	15350	14910	14550	14160	14720	15070	15660	16170	15840	15550
15	15930	15750	15340	14890	14540	14150	14720	15060	15960	16140	15810	15620
16	15930	15730	15330	14890	14520	14110	14720	15080	16040	16120	15800	15620
17	15930	15730	15320	14850	14490	14120	14750	15080	16050	16120	15780	15650
18	15920	15700	15320	14850	14480	14190	14770	15070	16060	16110	15770	15660
19	15930	15680	15300	14840	14460	14160	14790	15070	16090	16110	15760	15660
20	15960	15650	15290	14840	14450	14140	14790	15060	16110	16100	15750	15660
21	16030	15640	15250	14820	14410	14130	14790	15080	16170	16100	15720	15670
22	16010	15630	15220	14810	14400	14110	14780	15090	16200	16070	15710	15680
23	15980	15600	15200	14790	14380	14090	14760	15090	16210	16060	15700	15690
24	15960	15590	15180	14780	14380	14070	14810	15090	16210	16060	15690	15690
25	15940	15570	15180	14770	14380	14060	14860	15120	16230	16030	15680	e15700
26 27 28 29 30 31	15920 15890 15890 15880 15850 15970	15550 15550 15520 15510 15500	15170 15160 15160 15140 15140 15120	14750 14740 14730 14750 14740 14730	14380 14350 14330 	14070 14210 14250 14280 14360 14330	14860 14890 14900 14900 14910	15100 15140 15150 15180 15180 15190	16220 16220 16220 16220 16190	16030 16010 16010 15990 15970 15950	15670 15660 15650 15590 15570 15540	e15710 e15720 e15730 e15740 e15750
MAX	16030	15960	15490	15110	14720	14360	14910	15190	16230	16180	15970	15750
MIN	15850	15500	15120	14730	14330	14060	14360	14950	15140	15950	15540	15470
(+)	2058.14	2057.69	2057.31	2056.93	2056.52	2056.52	2057.11	2057.38	2058.35	2058.12	2057.73	2057.93
(@)	0	-470	-380	-390	-400	0	+580	+280	+1000	-240	-410	+210


CAL YR 1998 MAX 19830 MIN 15120 (@) -4710 WTR YR 1999 MAX 16230 MIN 14060 (@) -220

⁾ Elevation, in feet, at end of month.

^(@) Change in contents, in acre-feet.

e Estimated

47

08123600 CHAMPION CREEK RESERVOIR NEAR COLORADO CITY, TX

LOCATION.--Lat 32°16'53", long 100°51'30", Mitchell County, Hydrologic Unit 12080002, 50 ft downstream from service outlet structure at Champion Creek Dam on Champion Creek, 1.0 mi upstream from mouth, 4.8 mi downstream from State Highway 208, and 7.2 mi south of Colorado City.

DRAINAGE AREA.--207 mi², of which 20.8 mi² probably is noncontributing.

PERIOD OF RECORD.--Oct 1959 to Sep 1987 and May 1997 to current year. Water-quality records.--Chemical data: Aug 1967 to May 1984.

REVISED RECORDS. -- WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to Sep 29, 1959, nonrecording gage at same site and datum. Satellite telemeter at station.

REMARKS.--Records good except those for estimated daily contents, which are fair. The reservoir is formed by a rolled earthfill dam about 6,800 ft long. The dam was completed on Apr 30, 1959. Closure and storage began in Feb 1959. The capacity curve is based on U.S. Geological Survey topographic map surveyed in 1950: excavation for borrow, estimated not to exceed 1,200 acre-ft, is not included. The dam and reservoir are owned and operated by the Texas Utilities Electric Company. Water may be pumped from the reservoir through a 24-inch pipeline to Lake Colorado City (station 08123000) for municipal use and for cooling operations of a steam generating powerplant. There are two spillways. The uncontrolled emergency spillway, 450 ft wide and 800 ft long, is located at the right end of dam. The controlled service spillway, is a cut channel 50 ft wide, about 1,800 ft long, and 8 ft deep, and cut into the emergency spillway at the extreme right end. There is a controlled drop-inlet structure, 4.0 by 5.0 ft, with a side opening of 1.5 by 3.0 ft. Figures given herein represent total contents. Data regarding the dam are given in the following table:

	Elevation (feet)
Top of dam	2,109.0
Design flood	2,104.0
Crest of spillway	2,091.0
Crest of spillway (top of conservation pool	2,083.0
Lowest gated outlet (invert)	2,020.0

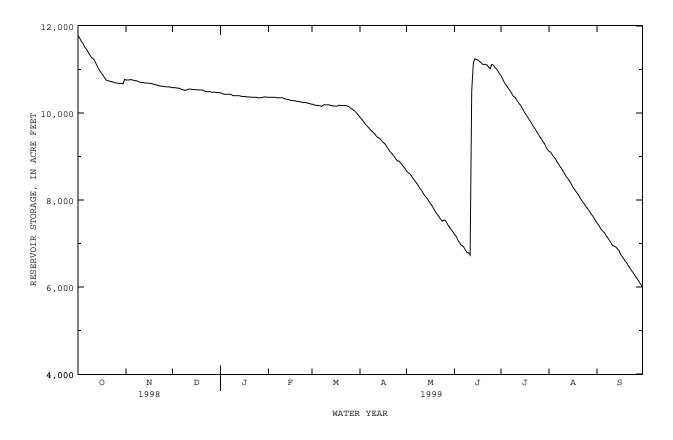
COOPERATION.--The capacity table dated Apr 14, 1959, was prepared from curve furnished by Feese and Nichols, Consulting Engineers, Fort Worth, Texas. Record of diversions into Lake Colorado City may be obtained from Texas Utilities Electric Co.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 47,060 acre-ft, Jun 29, 1982 (elevation, 2,085.79 ft); minimum contents after initial filling, 1,720 acre-ft, Apr 11-15, 1971 (elevation, 2,026.75 ft).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 11,840 acre-ft, Oct 1 (elevation, 2,053.52 ft); minimum contents, 6,020 acre-ft, Sep 30 (elevation, 2,042.49 ft).

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11780	10760	10580	10460	10360	10200	9900	8660	7210	10850	9120	7470
2	11720	10760	10580	10450	10360	10200	9860	8630	7160	10780	9100	7420
3	11650	10760	10580	10430	10360	10180	9810	8610	7090	10710	9040	7360
4	11610	10770	10570	10430	10360	10180	9760	8560	7030	10650	8990	7310
5	11530	10760	10570	10430	10360	10170	e9720	8500	6970	10600	8950	7270
6	11480	10750	10560	10430	10350	10170	e9680	8460	6950	10550	8880	7230
7	11430	10740	10540	10430	10350	10150	e9640	8410	6910	10500	8830	7170
8	11360	10740	10530	10420	10350	10180	e9600	8360	6850	10440	8770	7120
9	11310	10720	10520	10400	10350	10190	e9570	8300	6790	10380	8720	7060
10	11260	10710	10530	10400	10350	10190	e9530	8250	6790	10360	8660	7010
11	11240	10700	10550	10400	10330	10190	e9490	8200	6730	10300	8600	6950
12	e11170	10700	10550	10400	10320	10190	e9450	8140	10510	10250	8540	6940
13	e11100	10690	10550	10400	10310	10170	e9430	8090	11150	10200	8500	6920
14	11030	10690	10540	10390	10310	10170	e9400	8050	11250	10150	8440	6880
15	10960	10690	10540	10380	10290	10160	9360	7990	11230	10090	8380	6840
16	10920	10680	10540	10380	10290	10160	9320	7940	11220	10020	8320	6760
17	10870	10680	10530	10380	10280	10160	9290	7890	11190	9970	8260	6710
18	10820	10670	10530	10370	10280	10180	9240	7830	11160	9910	8210	6660
19	10760	10660	10530	10370	10270	10180	9180	7770	11120	9850	8160	6600
20	10740	10650	10530	10370	10270	10170	9130	7710	11120	9800	8110	6560
21	10740	10640	10520	10360	10260	10170	9090	7660	11110	9740	8050	6490
22	10720	10630	10500	10360	10250	10170	9040	7610	11100	9680	7990	6440
23	10720	10620	10490	10360	10240	10170	9000	7560	11050	9630	7940	6390
24	10710	10620	10490	10360	10240	10160	8950	7510	11020	9570	7890	6340
25	10690	10610	10490	10350	10240	10140	8900	7540	11120	9510	7840	6290
26 27 28 29 30 31	10690 10680 10680 10680 10670 10770	10610 10600 10600 10600 10590	10480 10480 10480 10470 10470	10350 10350 10360 10370 10370 10360	10230 10220 10210 	10100 10090 10060 10030 9990 9940	8900 8860 8810 8770 8720	7530 7470 7410 7360 7310 7260	11100 11050 11010 10960 10900	9450 9400 9340 9290 9220 9160	7790 7740 7680 7640 7580 7520	6230 6180 6130 6070 6020
MAX	11780	10770	10580	10460	10360	10200	9900	8660	11250	10850	9120	7470
MIN	10670	10590	10470	10350	10210	9940	8720	7260	6730	9160	7520	6020
(+)	2051.81	2051.50	2051.29	2051.11	2050.84	2050.35	2048.07	2045.21	2052.03	2048.92	2045.73	2042.49
(@)	-1070	-180	-120	-110	-150	-270	-1220	-1460	+3640	-1740	-1640	-1500


CAL YR 1998 MAX 20260 MIN 10470 (@) -9600 WTR YR 1999 MAX 11780 MIN 6020 (@) -5820

⁽⁺⁾ Elevation, in feet, at end of month.

^(@) Change in contents, in acre-feet.

e Estimated

49

08123800 BEALS CREEK NEAR WESTBROOK, TX

LOCATION.--Lat 32°11'57", long 101°00'49", Mitchell County, Hydrologic Unit 12080007, on left bank at downstream side of bridge on State Highway 163, 2.1 mi downstream from Hackberry Creek, 10.8 mi south of Westbrook, 15.7 mi southwest of Colorado City, and 19.1 mi upstream from mouth.

DRAINAGE AREA.--9,802 mi 2 , of which 7,814 mi 2 probably is noncontributing.

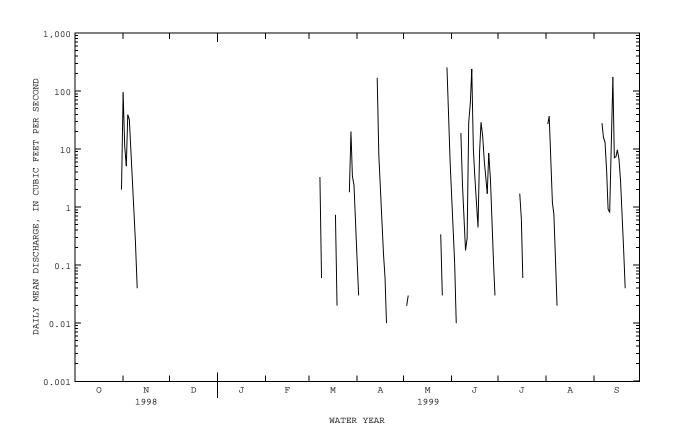
WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Oct 1958 to current year.

REVISED RECORDS.--WRD TX-72-1: 1971. WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,048.74 ft above sea level. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. No known regulation. Low flow is affected by diversion upstream from station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1908, about 24.5 ft in 1922, from information by local resident.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 900 ft^3/s :

Date	Tir	me	Discharge (ft ³ /s)		height ft)		Date	Time		Discharge (ft ³ /s)		height ft)
No peak o	greater	than base	e discharge									
		DISCHA	ARGE, CUBIC	FEET PER		WATER Y MEAN	YEAR OCTOBER VALUES	R 1998 TO	SEPTEME	BER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	95 11 5.1 39 32	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.03 .00 .00	.00 .00 .02 .03	2.1 .49 .11 .01	.00 .00 .00 .00	.00 27 37 6.1 1.2	.00 .00 .00 .00
6 7 8 9 10	.00	11 3.2 .87 .25	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 3.3 .06	.00 .00 .00	.00 .00 .00 .00	.00 19 2.4 .77	.00 .00 .00 .00	.77 .13 .02 .00	28 16 13 4.2 .92
11 12 13 14 15	.00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 169	.00 .00 .00 .00	.29 29 62 240 10	.00 .00 .00 .00	.00 .00 .00 .00	.81 15 175 7.1 7.4
16 17 18 19 20	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .74 .02	.58 .16 .06	.00 .00 .00 .00	3.4 1.4 .45 9.1 29	.62 .06 .00 .00	.00 .00 .00 .00	9.7 6.8 2.8 .89 .19
21 22 23 24 25	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	17 6.4 3.3 1.7 8.5	.00 .00 .00 .00	.00 .00 .00 .00	.04 .00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 	.00 1.8 20 3.4 2.4 .59	.00 .00 .00	.03 .00 .00 256 51 5.8	2.9 .56 .11 .03 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	2.00 .065 2.0 .00 4.0	197.46 6.58 95 .00 392	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	32.31 1.04 20 .00 64	6.01 169 .00	313.22 10.1 256 .00 621	450.20 15.0 240 .00 893	2.38 .077 1.7 .00 4.7	72.22 2.33 37 .00 143	287.85 9.60 175 .00 571
STATIST	CS OF N	MONTHLY ME	EAN DATA FO	R WATER Y	EARS 195	9 - 199	9, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	39.7 572 1987 .000 1964	6.22 29.4 1987 .060 1990	5.32 49.2 1992 .000 1999	5.05 47.0 1987 .000 1999	8.65 94.9 1992 .000 1999	6.93 75.6 1973 .046 1996	256 1966 .012	58.5 334 1994 .14 1962	41.7 254 1987 .009 1998	25.2 258 1961 .000 1964	18.5 168 1971 .005 1970	62.8 680 1980 .000 1998

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1959 - 1999
ANNUAL TOTAL	1514.72	1537.81	
ANNUAL MEAN	4.15	4.21	24.9
HIGHEST ANNUAL MEAN			107 1987
LOWEST ANNUAL MEAN			3.92 1998
HIGHEST DAILY MEAN	574 Aug 19	256 May 29	5890 Sep 29 1980
LOWEST DAILY MEAN	.00 Jun 4	.00 Oct 1	.00 Oct 1 1958
ANNUAL SEVEN-DAY MINIMUM	.00 Jun 4	.00 Oct 1	.00 Oct 1 1958
INSTANTANEOUS PEAK FLOW		670 May 29	8780 May 19 1961
INSTANTANEOUS PEAK STAGE		7.59 May 29	21.94 Sep 29 1980
ANNUAL RUNOFF (AC-FT)	3000	3050	18010
10 PERCENT EXCEEDS	.09	3.4	24
50 PERCENT EXCEEDS	.00	.00	2.1
90 PERCENT EXCEEDS	.00	.00	.01

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --

CHEMICAL DATA: Nov 1958 to current year. BIOCHEMICAL DATA: Nov 1974 to Oct 1977. SEDIMENT DATA: Oct 1974 to Oct 1977.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Nov 1958 to Feb 1981 (local observer) and Mar 1981 to current year. WATER TEMPERATURE: Nov 1958 to Feb 1981 (local observer) and Mar 1981 to current year.

INSTRUMENTATION. -- Water-quality monitor since Mar 5, 1981.

REMARKS.--Interruptions in the maximum and minimum specific conductance and water temperature values were due to malfunction of the instrument. No flow for many days. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. New regression equations were developed based on data from water years 1989 to 1998. The standard error of estimate for dissolved solids is 5%, chloride is 22%, sulfate is 21% and for hardness is 7%. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD. --

EXPECIFIC CONDUCTANCE: Maximum, 24,500 microsiemens, Aug 9, 1989; minimum, 59 microsiemens, Nov 1, 1998.

WATER TEMPERATURE: Maximum daily, 37.0°C, Jun 28, 1960, and Jul 3, 1976; minimum, 0.0°C, on many days during winter months.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum, 4,420 microsiemens, Jul 17; minimum, 59 microsiemens, Nov 1. WATER TEMPERATURE: Maximum, 36.5° C, Jun 28; minimum, 9.6° C, Apr 14.

DTS-

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

HARD-

DATE	TIME	CHARGE INST. CUBIC FEET PER SECON (00061	, SPE CIF CON DUC ANC D (US/	IC - TEME T- ATU E WAT CM) (DEG	PER- TO TRE (M	CO3)		RB CALC: LV DIS- AS SOLV (MG,	- DI /ED SOL /L (MG CA) AS	UM, SODIU S- DIS- VED SOLVE	ED /L NA)
NOV 02 05	1125 1105	6.7 25	92 86			70 70	110 97	47 46	14 13	118 109	
APR 19	1135	.07	64	8 17.	7 1	40	60	39	10	68	3
JUN 01	1155	2.2	63	4 26.	6 1	40	63	40	8.	8 66	5
JUL 15	1225	3.6	153	0 27.	7 3	40	220	88	30	163	3
SEP 09	1405	3.4	214	0 27.	5 4	10	320	94	42	260)
DATE	SC T RA	AD- ORP- TION ATIO	SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	DIS- SOLVED (MG/L AS SO4)	RII DIS SOI (MC AS	S- LVED G/L CL)	DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	CONSTI- TUENTS, DIS- SOLVED (MG/L)	
NOV 02 05		4 4	3.9 4.0	60 71	76 65		10 00	.40	4.2 4.7	512 482	
APR 19		2	4.0	79	42	12	20	.32	4.7	333	
JUN 01		2	4.7	73	46	13	10	.47	7.3	326	
JUL 15 SEP		4	7.5	120	160	3	10	.58	6.8	837	
09		6	14	85	300	43	30	.48	8.4	1200	

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1998 TO SEPTEMBER 1999

MONTH YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- SIEMENS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 1998	2	730	422	2.3	180	0.98	77	0.42	150
NOV. 1998	197.46	680	393	210	170	89.6	72	38.3	140
DEC. 1998	0								
JAN. 1999	0								
FEB. 1999	0								
MAR. 1999	32.31	416	240	20.9	100	9.0	44	3.8	85
APR. 1999	180.17	675	390	190	170	81.1	71	34.7	140
MAY 1999	313.22	1220	708	599	300	255	130	111	250
JUNE 1999	450.2	548	317	385	140	165	58	70.3	110
JULY 1999	2.38	2480	1460	9.4	620	4.0	280	1.8	510
AUG. 1999	72.22	366	211	41.2	90	17.6	38	7.5	74
SEPT 1999	287.85	714	414	322	180	138	76	59.3	150
TOTAL	1537.81	**	**	1780	**	760	**	327	**
WTD.AVG.	4.2	739	428	**	180	**	79	**	150

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN			
		OCTOBER		NOVEMBER			DE	CEMBER		JANUARY					
1				3310	59	606									
2				933	707	859									
3				740	640	661									
4				1450	287	527									
5				1780	793	969									
6				887	737	780									
7				910	735	795									
8				1010	910	968									
9				1030	1010	1020									
10				1050	1030	1040									
11															
12															
13															
14															
15															
16															
17															
18															
19															
20															
21															
22															
23															
24															
25															
26															
27															
28															
29															
30															
31	995	256	730												
MONTH															

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

۵.	PECIFIC	CONDUCTA	HVCH (1711C1	(CODIDINE)	CI AI 23	рыс. с,,	WAILK IL	AIC OCTOL	ER IJJO	TO DEFIEND	June 1000	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
					MAD CIT			3 DD 77				
		FEBRUARY	-		MARCH			APRIL			MAY	
1									e400			
2									e400			
3 4										2680 2680	2510 2090	2610 2190
5												
6 7												
8						570						
9						e700						
10												
11												
12												
13												
14 15							2740 532	228 488	685 516			
13							332	100	310			
16							541	527	533			
17				271	 196	220			500			
18 19				271	190	239 285			e600 640			
20							786	662	725			
0.5												
21 22												
23												
24												
25										3420	1700	2240
26										2690	2420	2580
27				471	390	433						
28						e400						
29						e400				2770	200	1360
30 31						e400 e400				583 625	527 583	557 607
31						C 100				025	303	007
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX		MEAN	MAX		MEAN			MEAN	MAX		
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	
DAY 1	MAX 658		MEAN 640	MAX		MEAN			MEAN	MAX		
1 2	658 685	JUNE 620 650	640 670		JULY		 808	AUGUST 108	 292		SEPTEMBE	ER
1 2 3	658 685 701	JUNE 620 650 685	640 670 691	 	JULY	 	 808 917	AUGUST 108 121	 292 408	 	SEPTEMBE	ER
1 2 3 4	658 685	JUNE 620 650	640 670		JULY		 808 917 480	AUGUST 108 121 413	 292 408 459		SEPTEMBE	ER
1 2 3 4 5	658 685 701 715 	JUNE 620 650 685 700	640 670 691 707	 	JULY		 808 917 480 413	AUGUST 108 121 413 288	 292 408 459 326	 	SEPTEMBE	=R
1 2 3 4 5	658 685 701 715 	JUNE 620 650 685 700	640 670 691 707 	 	JULY	 	808 917 480 413	AUGUST 108 121 413 288 286	292 408 459 326	 	SEPTEMBE	======================================
1 2 3 4 5	658 685 701 715 705	JUNE 620 650 685 700 214	640 670 691 707 307	=== === === ===	JULY		808 917 480 413 314 356	AUGUST 108 121 413 288 286 314	292 408 459 326 295 337	 	SEPTEMBE	ER e600 e500
1 2 3 4 5	658 685 701 715 705 420	JUNE 620 650 685 700 214 264	640 670 691 707 307 317	 	JULY	 	808 917 480 413	AUGUST 108 121 413 288 286	292 408 459 326	 	SEPTEMBE	======================================
1 2 3 4 5	658 685 701 715 705	JUNE 620 650 685 700 214	640 670 691 707 307	 	JULY	 	808 917 480 413 314 356 376	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357	 	SEPTEMBE	ER e600 e500
1 2 3 4 5 6 7 8 9	658 685 701 715 705 420 483 517	JUNE 620 650 685 700 214 264 414 482	640 670 691 707 307 317 455 496	 	JULY		808 917 480 413 314 356 376	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357	 2490	SEPTEMBE 2360	e600 e500 e900 2010 2440
1 2 3 4 5 6 7 8 9 10	658 685 701 715 705 420 483 517	JUNE 620 650 685 700 214 264 414 482 508	640 670 691 707 307 317 455 496	 	JULY	 	808 917 480 413 314 356 376	108 121 413 288 286 314 343	292 408 459 326 295 337 357	 2490	SEPTEMBE 2360 2310	e600 e500 e900 2010 2440
1 2 3 4 5 6 7 8 9 10	658 685 701 715 705 420 483 517 591 1730 2390	JUNE 620 650 685 700 214 264 414 482	640 670 691 707 307 317 455 496 526 740 908		JULY		808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	 2490 2560 2500	SEPTEMBE 2360 2310 953 301	e600 e500 e900 2010 2440 2300 642
1 2 3 4 5 6 7 8 9 10 11 12 13 14	658 685 701 715 705 420 483 517 591 1730 2390 781	JUNE 620 650 685 700 214 264 414 482 508 351 411 316	640 670 691 707 307 317 455 496 526 740 908 425	 	JULY	 	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	 2490 2560 2500 1960 308	SEPTEMBE 2360 2310 953 301 301	e600 e500 e900 2010 2440 2300 642 302
1 2 3 4 5 6 7 8 9 10	658 685 701 715 705 420 483 517 591 1730 2390	JUNE 620 650 685 700 214 264 414 482 508 351 411	640 670 691 707 307 317 455 496 526 740 908		JULY		808 917 480 413 314 356 376	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	 2490 2560 2500	SEPTEMBE 2360 2310 953 301	e600 e500 e900 2010 2440 2300 642
1 2 3 4 5 6 7 8 9 10 11 12 13 14	658 685 701 715 705 420 483 517 591 1730 2390 781	JUNE 620 650 685 700 214 264 414 482 508 351 411 316	640 670 691 707 307 317 455 496 526 740 908 425	 	JULY	 	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	 2490 2560 2500 1960 308	SEPTEMBE 2360 2310 953 301 301	e600 e500 e900 2010 2440 2300 642 302
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	658 685 701 715 705 420 483 517 591 1730 2390 781 442	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405	640 670 691 707 307 317 455 496 526 740 908 425 418	 2490	JULY	 1900	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	 2490 2560 2500 1960 308 316	SEPTEMBE 2360 2310 953 301 301 221 166 228	e600 e500 e900 2010 2440 2300 642 302 302 216 277
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	658 685 701 715 705 420 483 517 591 1730 2390 781 442 441 472 464	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457	 2490 4380 4420	JULY 1540 2280 4330	 1900	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	 2490 2560 2500 1960 308 316 267 325 316	SEPTEMBE 2360 2310 953 301 301 221 166 228 250	e600 e500 e900 2010 2440 2300 642 302 306 216 277 293
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15	658 685 701 715 705 420 483 517 591 1730 2390 781 442 481 472	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450 204	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457 430	 2490	JULY	 1900	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	 2490 2500 2500 2500 308 316 267 325 316 317	SEPTEMBE 2360 2310 953 301 301 221 166 228 250 307	e600 e500 e900 2010 2440 2300 642 302 306 216 277 293 313
1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20	658 685 701 715 705 420 483 517 591 1730 2390 781 442 481 472 464 472 408	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450 204 230	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457 430 325	 2490 4380 4420	JULY 1540 2280 4330	 1900	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	2560 2500 1960 308 316 267 325 316 317 325	SEPTEMBE 2360 2310 953 301 301 221 166 228 250 307 311	egr
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	658 685 701 715 705 420 483 517 591 1730 2390 781 442 481 472 408	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450 204 230	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457 430 325	 2490 4380 4420	JULY 1540 2280 4330	 1900 3870 4370	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	2560 2500 2500 2500 308 316 267 325 317 325	SEPTEMBE 2360 2310 953 301 301 221 166 228 250 307 311	e6000 e5000 e9000 20100 24400 23000 6422 3306 2166 2277 293 313 3317 324
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	658 685 701 715 705 420 483 517 591 1730 2390 2390 442 481 472 464 472 408	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450 204 230 349 657	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457 430 325	 2490 4380 4420 	JULY 1540 2280 4330	1900 3870 4370	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	2560 2500 2500 2500 2500 308 316 267 325 316 317 325	SEPTEMBE 2360 2310 953 301 301 221 166 228 250 307 311	e600 e500 e900 2010 2440 2300 642 302 306 2216 277 293 313 317 324
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	658 685 701 715 705 420 483 517 591 1730 2390 781 442 481 472 408	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450 204 230	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457 430 325	 2490 4380 4420	JULY 1540 2280 4330	 1900 3870 4370	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	2560 2500 2500 2500 308 316 267 325 317 325	SEPTEMBE 2360 2310 953 301 301 221 166 228 250 307 311	e6000 e5000 e9000 20100 24400 23000 6422 3306 2166 2277 293 313 3317 324
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	658 685 701 715 705 420 483 517 591 1730 2390 781 442 481 472 464 472 408 657 2080 1550	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450 204 230 349 657 1170	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457 430 325 414 1700 1310	2490 4380 4420	JULY 1540 2280 4330	 1900 3870 4370 	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	 2490 2560 2500 1960 308 316 267 325 316 317 325	SEPTEMBE 2360 2310 953 301 301 221 166 228 250 307 311 320	e600 e500 e900 2010 2440 2300 642 302 302 216 277 293 313 317
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	658 685 701 715 705 420 483 517 591 1730 2390 781 442 464 472 464 472 408 657 2080 1550 1200 1440	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450 204 230 349 657 1170 1160 894	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457 430 325 414 1700 1310 1180 1150	2490 4380 4420	JULY 1540 2280 4330	1900 3870 4370 1	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	2500 2500 2500 2500 308 316 267 325 316 317 325	SEPTEMBE 2360 2310 953 301 301 221 166 228 250 307 311 320	e6000 e5000 e9000 20100 24440 23000 6422 3006 2216 2277 293 313 3317 324
1 2 3 4 5 6 7 7 8 9 10 11 12 12 13 14 15 16 17 18 19 20 21 22 22 23 24	658 685 701 715 705 420 483 517 591 1730 2390 781 442 464 472 408 657 2080 1550 1200 1440	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450 204 230 349 657 1170 1160 894	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457 430 325 414 1700 1310 1180	2490 4380 4420	JULY 1540 2280 4330	1900 3870 4370	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	 2490 2560 2500 1960 308 316 267 325 316 317 325	SEPTEMBE 2360 2310 953 301 221 166 228 250 307 311 320	e600 e500 e900 2010 2440 2300 642 302 306 2277 293 313 317 324
1 2 3 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	658 685 701 715 705 420 483 517 591 1730 2390 781 442 464 472 464 472 408 657 2080 1250 1210 1110 1180 1230	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450 204 230 349 657 1170 1160 894	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457 430 325 414 1700 1310 1180 1150	2490 4380 4420	JULY 1540 2280 4330	1900 3870 4370 19	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	2560 2500 2500 2500 308 316 267 325 317 325	SEPTEMBE 2360 2310 953 301 301 221 166 228 250 307 311 320	e6000 e5000 e9000 20100 24400 23000 6422 3306 2166 2277 293 313 3317 324
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	658 685 701 715 705 420 483 517 591 1730 2390 781 442 481 472 408 657 2080 1200 1440 1110 1130 1230 1290	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450 204 230 349 657 1170 1160 894 933 1110 1180 1230	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457 430 325 414 1700 1310 1180 1150	2490 4380 4420	JULY 1540 2280 4330	1900 3870 4370	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	2500 2500 2500 2500 308 316 267 325 316 317 325	SEPTEMBE	e6000 e5000 e9000 20100 24400 23000 6422 3306 2166 2277 2933 3317 3244
1 2 3 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	658 685 701 715 705 420 483 517 591 1730 2390 781 442 464 472 464 472 408 657 2080 1250 1210 1110 1180 1230	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450 204 230 349 657 1170 1160 894 933 1110 1180 1230	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457 430 325 414 1700 1310 1150 1200 1200 1200	2490 4380 4420	JULY 1540 2280 4330	1900 3870 4370	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	2560 2500 1960 308 316 267 325 316 317 325	SEPTEMBE	e600 e500 e900 2010 2440 2300 64277 2933 3117 324
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	658 685 701 715 705 420 483 517 591 1730 2390 781 442 464 472 408 657 2080 1200 1200 1210 1110 1180 1230 1290 	JUNE 620 650 685 700 214 264 414 482 508 351 411 316 405 442 451 450 204 230 349 657 1170 1160 894 933 1110 1180 1230	640 670 691 707 307 317 455 496 526 740 908 425 418 470 460 457 430 325 414 1700 1310 1180 1150	2490 4380 4420	JULY 1540 2280 4330	1900 3870 4370	808 917 480 413 314 356 376 	AUGUST 108 121 413 288 286 314 343	292 408 459 326 295 337 357 	2490 2560 2500 2500 1960 308 316 267 325 316 317 325	SEPTEMBE	e6000 e5000 e9000 20100 24400 23000 6422 3306 2166 2277 2933 3317 3244

e Estimated

> 08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER		Ι	DECEMBER			JANUARY	Z
1				18.7	15.6	16.9						
2				17.5	13.8	15.7						
3				16.2	14.5	15.1						
4				13.8	11.1	12.4						
5				10.9	10.4	10.6						
6				10.5	9.9	10.2						
7 8				15.1	10.4	12.4						
9				17.1 20.1	11.6 14.9	14.1 17.1						
10				16.6	13.0	14.8						
11												
12												
13												
14 15												
13												
16												
17												
18 19												
20												
21												
22 23												
24												
25												
26												
26 27												
28												
29												
30 31	19.8	18.7	19.8									
31	19.0	10.7	19.0									
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX			MAX		MEAN	MAX		MEAN	MAX		MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1		FEBRUARY			MARCH		27.5	APRIL 15.9	20.3		MAY	
1 2		FEBRUARY			MARCH			APRIL			MAY	
1		FEBRUARY			MARCH		27.5 28.8	APRIL 15.9 15.0	20.3 22.2		MAY	
1 2 3		FEBRUARY	 	 	MARCH		27.5 28.8 	APRIL 15.9 15.0	20.3	 22.9	MAY 20.8	 22.6
1 2 3 4 5	 	FEBRUARY		 	MARCH	 	27.5 28.8 	15.9 15.0 	20.3 22.2	22.9 23.2	MAY 20.8 19.9	 22.6 21.2
1 2 3 4 5		FEBRUARY		 	MARCH	 	27.5 28.8 	APRIL 15.9 15.0	20.3 22.2	22.9 23.2	MAY 20.8 19.9	 22.6 21.2
1 2 3 4 5	 	FEBRUARY		 	MARCH	 	27.5 28.8 	APRIL 15.9 15.0 	20.3 22.2	22.9 23.2	MAY 20.8 19.9	 22.6 21.2
1 2 3 4 5 6 7 8 9	==== ==== ==== ====	FEBRUARY		 	MARCH	 14.5	27.5 28.8 	15.9 15.0 	20.3 22.2	22.9 23.2 	MAY 20.8 19.9	22.6 21.2
1 2 3 4 5		FEBRUARY		=== === === ===	MARCH	 14.5	27.5 28.8 	APRIL 15.9 15.0 	20.3 22.2	22.9 23.2 	MAY 20.8 19.9	22.6 21.2
1 2 3 4 5 6 7 8 9 10		FEBRUARY		==== ==== ==== ==== ====	MARCH	 14.5	27.5 28.8 	APRIL 15.9 15.0	20.3 22.2	22.9 23.2 	MAY 20.8 19.9	22.6 21.2
1 2 3 4 5 6 7 8 9 10		FEBRUARY		==== ==== ==== ==== ====	MARCH	 14.5 	27.5 28.8 	APRIL 15.9 15.0	20.3 22.2	22.9 23.2 	MAY 20.8 19.9	22.6 21.2
1 2 3 4 5 6 7 8 9 10		FEBRUARY		==== ==== ==== ==== ==== ====	MARCH	 14.5	27.5 28.8 	APRIL 15.9 15.0	20.3 22.2	22.9 23.2 	MAY 20.8 19.9	22.6 21.2
1 2 3 4 5 6 7 8 9 10		FEBRUARY		==== ==== ==== ==== ====	MARCH	 14.5 	27.5 28.8 	APRIL 15.9 15.0	20.3 22.2	22.9 23.2 	MAY 20.8 19.9	22.6 21.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUARY			MARCH	14.5	27.5 28.8 18.5 16.8	APRIL 15.9 15.0 9.6 10.0	20.3 22.2 13.0 13.0	22.9 23.2 	MAY 20.8 19.9	22.6 21.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUARY		======================================	MARCH	14.5	27.5 28.8 18.5 16.8	APRIL 15.9 15.0 9.6 10.0	20.3 22.2 13.0 13.0	22.9 23.2 	MAY 20.8 19.9	22.6 21.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUARY			MARCH	14.5	27.5 28.8 18.5 16.8	APRIL 15.9 15.0 9.6 10.0	20.3 22.2 13.0 13.0	22.9 23.2 	MAY 20.8 19.9	22.6 21.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUARY			MARCH	14.5 	27.5 28.8 18.5 16.0	APRIL 15.9 15.0	20.3 22.2 13.0 13.0	22.9 23.2	MAY 20.8 19.9	22.6 21.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUARY		 18.2	MARCH	 14.5 15.4	27.5 28.8 18.5 16.8	APRIL 15.9 15.0 9.6 10.0 11.2	20.3 22.2 13.0 13.3	22.9 23.2 	MAY 20.8 19.9	 22.6 21.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		FEBRUARY		 18.2	MARCH	 14.5 15.4	27.5 28.8 18.5 16.8	APRIL 15.9 15.0 9.6 10.0 11.2	20.3 22.2 13.0 13.0 13.3	22.9 23.2 	MAY 20.8 19.9	 22.6 21.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		FEBRUARY		 18.2	MARCH	14.5 14.5 15.4 14.5	27.5 28.8 18.5 16.8 16.0	APRIL 15.9 15.0 9.6 10.0 11.2 16.4	20.3 22.2 13.0 13.0 13.3 20.0 20.1	22.9 23.2 	MAY 20.8 19.9	 22.6 21.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23		FEBRUARY			MARCH	14.5 14.5 15.4 14.5	27.5 28.8 18.5 16.0 23.2	APRIL 15.9 15.0 9.6 10.0 11.2 16.4	20.3 22.2 13.0 13.0 13.3 20.0 20.1	22.9 23.2 	MAY 20.8 19.9	 22.6 21.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		FEBRUARY			MARCH	14.5 14.5 15.4 14.5	27.5 28.8 18.5 16.8 16.0 23.2	APRIL 15.9 15.0 9.6 10.0 11.2 16.4	20.3 22.2 13.0 13.0 13.3 20.0 20.1	 22.9 23.2 	MAY 20.8 19.9	22.6 21.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		FEBRUARY		18.2	MARCH	14.5 14.5 15.4 14.5	27.5 28.8 18.5 16.8 16.0 23.2	APRIL 15.9 15.0 9.6 10.0 11.2 16.4	20.3 22.2 13.0 13.0 13.3 20.1	22.9 23.2 31.2	MAY 20.8 19.9	 22.6 21.2 -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26		FEBRUARY			MARCH	14.5 14.5 15.4 14.5	27.5 28.8 18.5 16.8 16.0 23.2	APRIL 15.9 15.0 9.6 10.0 11.2 16.4	20.3 22.2 13.0 13.0 13.3 20.0 20.1	22.9 23.2 31.2	MAY 20.8 19.9	22.6 21.2 24.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27		FEBRUARY		18.2 13.8	MARCH	14.5 14.5 15.4 14.5 15.4	27.5 28.8 18.5 16.8 16.0 23.2	APRIL 15.9 15.0 9.6 10.0 11.2 16.4	20.3 22.2 13.0 13.0 13.3 20.0 20.1	22.9 23.2 31.2	MAY 20.8 19.9	22.6 21.2 24.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26		FEBRUARY			MARCH	14.5 14.5 15.4 14.5	27.5 28.8 18.5 16.8 16.0 23.2	APRIL 15.9 15.0 9.6 10.0 11.2 16.4	20.3 22.2 13.0 13.0 13.3 20.0 20.1	22.9 23.2 31.2	MAY 20.8 19.9	22.6 21.2 24.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30		FEBRUARY		 18.2 13.8 14.2 14.7 14.9	MARCH 13.0 12.7	14.5 14.5 15.4 14.5 13.2	27.5 28.8 18.5 16.8 16.0 23.2	APRIL 15.9 15.0 9.6 10.0 11.2 16.4	20.3 22.2 13.0 13.0 13.3 20.0 20.1	22.9 23.2 31.2 25.6 22.7 27.5	MAY 20.8 19.9	22.6 21.2 24.7 23.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29		FEBRUARY		 18.2 13.8 14.2 14.7	MARCH 13.8 13.0 12.7	14.5 14.5 15.4 14.5 13.2 13.2 13.5	27.5 28.8 18.5 16.8 16.0 23.2	APRIL 15.9 15.0 9.6 10.0 11.2 16.4	20.3 22.2 13.0 13.0 13.3 20.0 20.1	22.9 23.2 31.2 25.6	MAY 20.8 19.9	22.6 21.2 24.7 23.5

08123800 BEALS CREEK NEAR WESTBROOK, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBI	ER
1 2	32.0 30.1	24.6 25.0	27.8 27.3				 27.1	23.4	24.9			
3	28.5	24.2	26.1				29.4	22.9	25.8			
4 5	28.9	23.4	26.3				29.7 31.0	26.3 25.8	27.9 28.0			
6 7	28.8	19.8	24.2				33.4 35.2	26.0 25.8	29.1 29.8	28.5 29.0	24.5 23.8	25.4 26.2
8	31.3	23.6	27.0				34.1	26.2	29.6	29.0	24.8	26.2
9	30.1	24.7	27.1				J4.1			30.0	25.0	27.3
10	33.4	23.6	27.5							30.8	24.9	27.3
11	30.1	22.7	26.0							31.7	24.1	27.5
12	26.5	20.5	24.1							30.2	23.6	26.4
13	26.2	22.4	23.8							23.6	21.1	22.3
14	25.1	20.8	23.0							25.5	21.2	23.2
15	27.6	22.6	24.9	31.8	24.7	27.4				26.9	21.8	23.8
16	30.0	23.3	26.5	31.9	24.6	27.7				23.6	21.2	22.3
17	27.5	21.6	24.5	30.9	25.1	27.6				24.9	19.9	22.3
18 19	28.6 30.4	22.5 23.3	25.3 25.9							26.6 28.7	21.2 21.6	23.6 24.7
20	27.6	23.3	25.9							25.7	21.6	24.7
20	27.0	22.2	24.0							23.7	21.3	23.0
21	25.5	23.6	24.4							23.5	18.7	20.4
22	28.1	23.6	25.4									
23	32.8	24.9	28.3									
24 25	32.1 31.8	26.3 26.3	28.8 28.8									
25	31.8	20.3	28.8									
26	34.1	27.2	30.2									
27	35.4	27.7	30.8									
28	36.5	28.1	31.3									
29	32.0	28.4	30.1									
30												
31												
MONTH												

This page intentionally left blank.

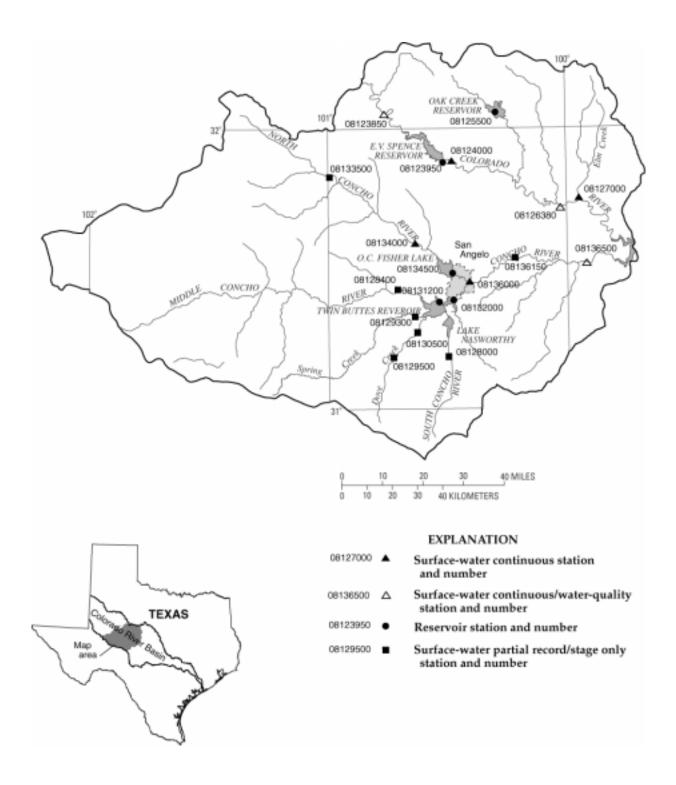


Figure 4.--Map showing location of gaging stations in the second section of the Colorado River Basin

08123850	Colorado River above Silver, TX			 					60
08123950	E.V. Spence Reservoir near Robert Lee, TX			 					68
08124000	Colorado River at Robert Lee, TX			 					70
08125500	Oak Creek Reservoir near Blackwell, TX .								72
08126380	Colorado River near Ballinger, TX			 					74
08127000	Elm Creek at Ballinger, TX			 					78
08128000	South Concho River at Christoval, TX			 					80
08128400	Middle Concho River above Tankersley, TX			 					82
08129300	Spring Creek above Tankersley, TX			 					84
08129500	Dove Creek Spring near Knickerbocker, TX								277
08130500	Dove Creek at Knickerbocker, TX			 					86
08131200	Twin Buttes Reservoir near San Angelo, TX								88
08132000	Lake Nasworthy near San Angelo, TX			 					90
08133500	North Concho River at Sterling City, TX .			 					92
08134000	North Concho River near Carlsbad, TX			 					94
08134500	O.C. Fisher Lake at San Angelo, TX			 					96
08136000	Concho River at San Angelo, TX			 					98
08136150	Concho River near Veribest, TX			 					100
08136500	Concho River at Paint Rock, TX			 					102

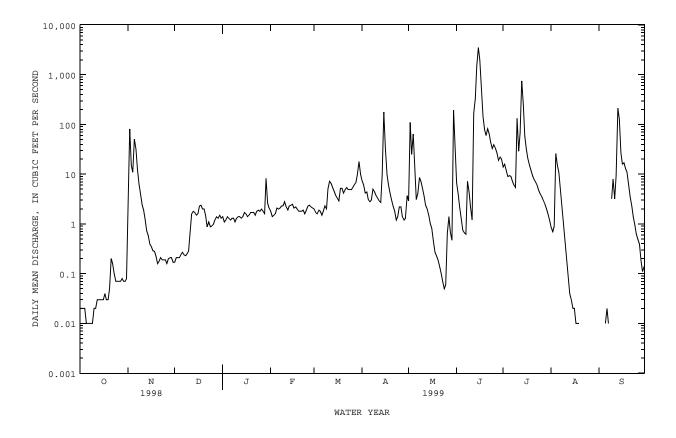
08123850 COLORADO RIVER ABOVE SILVER, TX

LOCATION.--Lat 32°03'13", long 100°45'42", Coke County, Hydrologic Unit 12080008, on right bank 25 ft downstream from Pan American Oil Co. bridge, 4.7 mi west of Silver, and at mile 756.0.

DRAINAGE AREA.--14,910 mi², of which 10,260 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Aug 1967 to current year.


REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,907.66 ft above sea level. Prior to Oct 4, 1972, water-stage recorder at site 0.5 mi downstream at same datum. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. Since installation of gage in Aug 1967, at least 10% of contributing drainage area has been regulated by Lake J.B. Thomas (station 08118000, normal storage 204,000 acre-ft). Additional regulation by Lake Colorado City (station 08123000), and by Champion Creek Reservoir (station 08123600), combined normal storage 74,140 acre-ft. The Colorado River Municipal Water District diverts low flow into an off channel reservoir 3 mi above Colorado River at Colorado City (station 08121000) for brine disposal. There are numerous diversions from Lake J.B. Thomas for municipal use and for oil field operations.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES DAY OCT NOV DEC FEB JUL SEP JAN MAR APR MAY JUN AUG 02 1.7 17 1.4 1.8 2.0 7 4 2.9 6.8 14 85 0.0 2 81 .21 1.4 1.7 110 .70 .02 6.1 4.0 16 .00 .02 15 .21 1.5 1.6 25 2.2 12 .90 .00 4 . 02 11 . 21 1.4 1.6 1.9 4.4 64 1.3 9.0 26 .00 5 2.1 1.8 1.3 9.4 15 .01 51 .24 3.1 13 .74 .01 . 27 2.0 6 7 .01 32 1.2 1.5 2.8 3.1 . 66 9.1 11 .02 1.8 4.2 7.2 4.2 .01 13 .24 1.3 2.1 3.0 .01 .62 2.3 8.6 .01 .23 1.3 2.3 1.8 .00 .83 . 01 4.2 . 25 1.1 2.3 2.0 4.4 7.0 4.4 5.4 3.2 10 .02 2.4 .29 1.3 2.8 5.1 3.7 5.2 2.2 132 .45 8.0 7.2 1.9 . 68 2.2 3.3 3.6 29 . 20 3.2 11 .02 1.4 1.2 1.2 1.6 1.9 2.9 2.4 12 .03 1.4 6.5 168 68 .10 9.3 2.3 5.3 2.7 2.0 335 749 .04 13 .03 1.8 213 2.4 9.9 14 . 03 .58 1.7 1.4 4.5 1.5 1490 253 . 03 130 15 .03 .39 1.5 2.5 3.7 179 1.0 3540 59 .02 27 . 03 2.1 . 81 2000 .02 16 .35 1.6 1.6 3.3 33 32 16 17 2.2 2.9 21 .01 17 .04 .29 2.3 1.4 10 .45 536 18 .03 .28 2.4 1.5 2.0 5.2 6.2 .27 15 .01 13 146 19 03 22 2.0 1 8 5 2 4 2 23 79 12 01 11 1.8 4.2 20 .05 3.1 60 9.3 .00 6.0 21 .20 .18 1.5 1.7 1.8 4.9 2.3 .14 82 7.9 .00 3.5 22 .87 1.9 5.4 2.3 .16 .21 1.5 1.8 .10 64 .00 23 .10 .19 1.1 1.8 1.6 4.9 1.2 .07 44 5.9 .00 1.4 24 .07 .19 .88 1.9 1.9 4.9 1.4 .05 33 4.7 .00 .96 25 .07 .91 2.3 4.9 2.2 .06 4.0 .63 26 .07 .16 2.4 2.2 .65 .00 .49 .98 2.0 5.5 33 3.5 27 .07 .20 1.2 1.8 2.2 6.2 1.4 1.4 27 2.9 .00 .39 .68 28 . 08 .21 1.4 1.6 2.1 6.9 1.2 19 2.5 .00 .18 29 .07 8.2 10 .47 22 2.0 .00 1.3 .11 30 .07 .17 1.5 2.6 18 3.7 193 .00 20 31 . 08 1.3 2.1 9.9 ---28 1.2 .00 ------TOTAL 1 51 225.71 32 84 54.7 57.3 151 2 317.1 480.07 8768.32 1510.6 62.17 466.84 MEAN .049 7.52 1.06 1.76 2.05 4.88 10.6 15.5 292 48.7 2.01 15.6 MAX .20 81 8.2 2.8 179 193 3540 749 26 213 2.4 18 MIN .01 16 .17 1 1 1.4 1.5 1.2 05 0.0 0.0 AC-FT 3.0 448 65 108 114 300 629 952 17390 3000 123 926 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 1999, BY WATER YEAR (WY) MEAN 122 19.6 30.6 27.7 50.7 153 150 18.6 17.6 167 51.9 84.6 MAX 1834 67.5 1973 120 90 7 256 1992 280 599 681 1242 313 1122 1853 (WY) 1987 1973 1994 1988 1971 1987 1992 1981 1982 1980 .000 MIN .000 .000 .30 1.02 .70 1.91 .000 .010 .36 1971 1971 1.968 (WY) 1969 1971 1971 1971 1998 1984 1998 1970 1984 FOR 1999 WATER YEAR SUMMARY STATISTICS FOR 1998 CALENDAR YEAR WATER YEARS 1967 - 1999 ANNUAL TOTAL 1596.07 12128.36 ANNUAL MEAN 4.37 33.2 74.8 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 298 1987 4.69 1998 15900 HIGHEST DAILY MEAN 529 Aug 20 3540 Jun 15 Sep 30 .00 .00 Jun 21 .00 Aug 20 2 1968 2 1968 LOWEST DAILY MEAN Aug ANNUAL SEVEN-DAY MINIMUM Aug 20 .00 Jun 21 .00 .00 Aug INSTANTANEOUS PEAK FLOW 3830 18900 Jun Sep 22.73 13.31 Sep 9 1980 INSTANTANEOUS PEAK STAGE Jun 15 ANNUAL RUNOFF (AC-FT) 3170 24060 54220 10 PERCENT EXCEEDS 4.1 25 95 8 7 50 PERCENT EXCEEDS 28 1 8 90 PERCENT EXCEEDS .00 .19 .03

61

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --

CHEMICAL DATA: Aug 1967 to current year. BIOCHEMICAL DATA: Nov 1977 to Aug 1994. PESTICIDE DATA: Oct 1969 to Aug 1981. SEDIMENT DATA: Aug 1977 to Aug 1994.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: Dec 1967 to current year. WATER TEMPERATURE: Dec 1967 to May 1981 (local observer) and Jun 1981 to current year.

INSTRUMENTATION. -- Specific conductance recorder since Dec 1967. Water-temperature recorder since Jun 1981.

REMARKS.--Interruptions in the maximum and minimum specific conductance values were due to malfunction of the instrument. No flow Aug 20 to Sep 4 and Sep 8. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. New regression equations were developed based on data from water years 1990 to 1999. The standard error of estimate for dissolved solids is 6%, chloride is 29%, sulfate is 47% and for hardness is 28%. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 19,900 microsiemens, Sep 10, 1988; minimum, 154 microsiemens, Sep 21, 1990. WATER TEMPERATURE: Maximum, 35.5°C, Aug 2, 7, 1985; minimum, 0.0°C, on many days during winter months.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum, 11,500 microsiemens, Mar 24; minimum observed, 233 microsiemens, Jun 15. WATER TEMPERATURE: Maximum, 34.7°C, Jun 28; minimum, 0.4°C, Dec 22.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECONE (00061)	CIFI CON- DUCT ANCE (US/C	C WHO FIE C (STA AR M) UNI	ER LE LD TEME ND- ATU D WAT TS) (DEG	JRE TER G C)	OXYGI DI: SOL' (MG:	EN, S- VED /L)	OXYGE DIS SOLV (PEF CEN SATU ATIO (0030	S- HAR /ED NES R- TO NT (MC JR- AS ON) CAC	SS 1 FAL 1 S/L 1 S CO3)	HARD NESS NONCA DISSO FLD. CACO (MG/L (0090	RB CALC LV DIS AS SOL 3 (MG	;- LVED ;/L CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
JAN 07	1140	1.4	7240	8.	0 7.	.9	12.	1	112	2 200	00	1900	55	0	156
FEB 18	1210	2.2	8750				9.		106			2100			196
APR 15	1310	140	2920	7.	6 15.	. 3	7.	1	76	5 52	20	460	13	0	47
JUN 15	1315	3730	233	3 7.	8 21.	. 5	5.	4	65	5 8	32	6	2	18	3.1
JUL 22	1300	7.1	5640	7.	8 28.	. 0	7.	7	107	7 99	90	860	25	0	89
DATE JAN 07	DI SOL (M AS	SIUM, S- S WED IG/L F NA) 930) (C	SODIUM AD- SORP- TION ATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	DIS SOI (MC AS	S- LVED G/L SO4) 945)	CHL RID DIS SOL (MG AS (009	E, - VED /L CL) 40)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS-	CA, - VED /L 2) 55)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITE GEI NITE DIE SOLI (MG AS 1	N, ATE S- VED /L N) 18)
FEB 18			.2	12	100	20		210		.46	.9		6270	2.6	
APR 15	4	25	8	7.0	59	2!	50	75	0	.37	4.4		1650	.5	77
JUN 15		11	.5	4.9	76	:	16	1	4	.21	6.3		131	.3	78
JUL 22	8	28 1	.1	10	130	88	80	130	0	.38	7.6		3460	-	-
DATE	G NIT D SO (M AS	EN, PRITE NO DIS- DLVED S IG/L (N) P	GEN, 02+NO3 DIS- SOLVED MG/L SSN)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN MON: ORGA DI: (MO	ANIC	PHO PHOR DI SOL (MG AS (006	US S- VED /L P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHO: PHA' ORTI DI: SOL' (MG AS PO	TE, HO, S- VED /L O4)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	DIS	- ED /L BA)
JAN 07	<.	010 <	.050	.042	. 41		45	<.0	50	<.010	_	_	3	8	8
FEB 18			2.72	.024	.70		72	<.0		<.010	_	_	2	6	
APR 15		024	.601	.065	.39		45	<.0	50	.015	. !	05	<1	30	4
JUN 15		033	.411	.160	.24	- '	40	.0	72	.040		12	3	7.	1
JUL 22	<.	010 <	.050	<.020		. !	59	<.0	50	<.010	-	-	4	27	7

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
JAN										
07	<1.0	<1.0	<1.0	<50	<1.0	E12	<.1	5	<1.0	<100
FEB 18	<1.0	<1.0	<1.0	<50	<1.0	54	<.1	4	<1.0	<100
APR	VI.0	\1.0	VI.0	130	\I.0	34	·. ·		VI.0	100
15	<1.0	<1.0	1.6	<30	<1.0	<9.0	<.1	<1	<1.0	<60
JUN										
15	<1.0	<1.0	<1.0	E5.7	<1.0	E1.6	<.1	<1	<1.0	<20
JUL 22	<1.0	<5.0	<1.0	<30	<1.0	E8.6	<.1	<1	<1.0	<60
22	<t.u< td=""><td><5.0</td><td><1.U</td><td>< 30</td><td>< I. U</td><td>Eo. O</td><td><.⊥</td><td>< T</td><td><1.U</td><td><00</td></t.u<>	<5.0	<1.U	< 30	< I. U	Eo. O	<.⊥	< T	<1.U	<00

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1998 TO SEPTEMBER 1999

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- SIEMENS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	1998	1.51	6690	4480	18.3	1500	6.1	1400	5.7	1600
NOV.	1998	225.71	2200	1370	837	440	267	420	255	530
DEC.	1998	32.84	5020	3270	290	1100	95.4	1000	89.3	1200
JAN.	1999	54.7	8400	5800	857	2000	292	1800	267	2000
FEB.	1999	57.3	8510	5870	909	2000	310	1800	283	2000
MAR.	1999	151.2	9320	6540	2670	2300	920	2000	834	2200
APR.	1999	317.1	4040	2620	2250	860	738	810	691	970
MAY	1999	480.07	2970	1900	2460	620	799	580	754	710
JUNE	1999	8768.32	838	518	12270	160	3900	160	3740	200
JULY	1999	1510.6	3300	2130	8670	690	2830	650	2660	790
AUG.	1999	62.17	7170	4870	818	1600	276	1500	254	1700
SEPT	1999	466.84	1270	786	991	250	315	240	302	300
TOTAL		12128.36	**	**	33040	**	10740	**	10130	**
WTD.A	VG.	33	1580	1010	**	330	**	310	**	380

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

					, 2	,	,					
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCHODED			NOTTEMBED		Ε.	ECEMPED			TANTIADIA	
		OCTOBER		-	NOVEMBER		D.	ECEMBER			JANUARY	
1	6330	6200	6260	6460	5150	6310	5170	5120	5140	6230	5880	6020
2	6370	6270 6300	6340	5890	899	2650 835 1710	5190 5230	5150	5170 5200	6560 6940	6230	6400
3 4	6450	6300	6400	943	750	835	5230	5190 5220	5200	6940 7100	6540	6740
5	6530 6640	6370 6530	6460 6570	6460 5890 943 2950 3120	1500	1710 2560	5340 5270	5230	5250 5250	7220	6920 7090	7010 7150
6	6760	6680	6720	1760	1280	1440	5300	5240	5260	7300 7400	7220	7270
7 8	6860 7040	6710 6820	6790 6880	1320	1250 1320	1280 1420	5340 5370	5300 5310	5310 5350	7400 7670	7300 7400	7350 7500
9	6960	6840	6920	1790	1540	1650	5400	5360	5380	7880	7660	7780
10	7010	6900	6960	1760 1320 1540 1790 2080	1790	1650 1940	5300 5340 5370 5400 5400	5360	5380	8180	7840	8000
11	7090	6870	6980		2080			5210	5330	0.410	8170	8270
12	7060	6860	6980	2390 2740 3060 3330 3530	2390	2550	5380 5240 5070 4960 4960	5060	5150	8410 8790 9130 9530 9740	8380	8590
13	7040	6900	6980	3060	2740	2550 2890 3210 3440	5070	4840	5150 4940	9130	8790	8960
14	7050	6900	6990	3330	3060	3210	4960	4850	4900	9530	9080	9350
15	7100	6970	7060	3530	3330	3440	4960	4910	4930	9740	9530	9630
16	7120	7010	7090	3690 3850 3990 4140 4280	3530	3610	4950 4910 4920 4850 4780	4880	4930	9790 9790 9730 9640 9460	9700	9750
17	7140	6990	7090	3850	3690	3790 3910	4910	4810	4890	9790	9670	9730
18	7190	7050	7140	3990	3850	3910	4920	4780	4870	9730	9580	9650
19 20	7230 7230	7000 7040	7180 7130	4140 4280	3940 4140	4050 4210	4850 4780	4750 4670	4810 4720	9640	9340 9340	9520 9400
20	7230	7010	7130		11.10			1070	1720	3100	2310	2100
21	7080	6560	6850	4380	4280	4320	4730	4640	4670	9370	9110	9280
22 23	6590 6520	6450 6410	6520	4480 4600	4370 4480	4420 4540	4820	4710 4750	4760 4820	9310 9190	9170 8940	9250 9090
24	6520	6410 6380	6470 6470	4480 4600 4740 4780	4590	4540	4880 4950	4870	4820 4910	9190	8940	8980
25	6500	6410	6460	4780	4690	4730	4730 4820 4880 4950 5000	4890	4950	9000	8870	8940
0.5	5400	6450	6450	4000	4500			4000	4050	0050	0050	
26 27	6490 6530	6450 6460	6470 6500	4890 4900 4970 5040 5120	4780 4590	4820 4760	5020 5090 5300 5470 5650 5880	4890 4890	4950 4980	8950 8880 8770 8750 8010 7570	8850 8750	8900 8820
28	6530 6580	6460 6460	6520	4970	4580	4760 4810	5090 5300	5090	5190	8770	8720	8750
29	6630	6540	6580	5040	4960	4990	5470	5300	5380	8750	7680	8140
30	6680	6610	6640	5120	4700	4930	5650	5450	5560	8010 7570	7470	7730
31	6710	6460	6670				5880	5650	5760	7570	7400	7470
MONTH	7230	6200	6740	6460	750	3420	5880	4640	5100	9790	5880	8370
DAY	MAX	MTN	MEAN	MAX	MTN	MEAN	MAX	MTN	MEAN	MAX	MTN	MEAN
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		MIN FEBRUARY		MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2	7510 7590	FEBRUARY			MARCH			APRIL			MAY	3250 2530
1 2 3	7510 7590 7780	FEBRUARY			MARCH			APRIL			MAY	3250 2530 1250
1 2 3 4	7510 7590 7780 7930	7430 7510 7570 7780			MARCH			APRIL			MAY	3250 2530 1250 783
1 2 3	7510 7590 7780	7430 7510 7570 7780 7930	7480 7560 7680 7850 8020	9200 9220 9270 9310 9270	9050 9130 9170 9190 9130	9150 9170 9220 9240 9200	8370 9060 9210 9130 8410	7690 8370 9060 8410 7900	8000 8750 9140 8810 8120	3260 3230 1930 944 517	MAY 3230 1220 892 514 484	3250 2530 1250
1 2 3 4 5	7510 7590 7780 7930 8090	7430 7510 7570 7780 7930	7480 7560 7680 7850 8020	9200 9220 9270 9310 9270	9050 9130 9170 9190 9130	9150 9170 9220 9240 9200	8370 9060 9210 9130 8410	7690 8370 9060 8410 7900	8000 8750 9140 8810 8120	3260 3230 1930 944 517	MAY 3230 1220 892 514 484	3250 2530 1250 783 496
1 2 3 4 5	7510 7590 7780 7930 8090 8220 8270	7430 7510 7570 7780 7930	7480 7560 7680 7850 8020	9200 9220 9270 9310 9270	9050 9130 9170 9190 9130	9150 9170 9220 9240 9200	8370 9060 9210 9130 8410	7690 8370 9060 8410 7900	8000 8750 9140 8810 8120	3260 3230 1930 944 517	MAY 3230 1220 892 514 484	3250 2530 1250 783 496 573 704
1 2 3 4 5 6 7 8	7510 7590 7780 7930 8090 8220 8270 8250	7430 7510 7570 7780 7930 8090 8170 8130	7480 7560 7680 7850 8020 8150 8240 8200	9200 9220 9270 9310 9270	9050 9130 9170 9190 9130 9180 9250 9120	9150 9170 9220 9240 9200	8370 9060 9210 9130 8410	7690 8370 9060 8410 7900 7410 7010 6730	8000 8750 9140 8810 8120	3260 3230 1930 944 517	MAY 3230 1220 892 514 484	3250 2530 1250 783 496 573 704 825
1 2 3 4 5	7510 7590 7780 7930 8090 8220 8270	7430 7510 7570 7780 7930	7480 7560 7680 7850 8020 8150 8240 8200	9200 9220 9270 9310 9270	9050 9130 9170 9190 9130	9150 9170 9220 9240 9200	8370 9060 9210 9130 8410	7690 8370 9060 8410 7900 7410 7010 6730	8000 8750 9140 8810 8120	3260 3230 1930 944 517	MAY	3250 2530 1250 783 496 573 704 825 1410
1 2 3 4 5 6 7 8 9	7510 7590 7780 7930 8090 8220 8270 8250 8230 8220	7430 7510 7570 7780 7930 8090 8170 8130 7970 7970	7480 7560 7680 7850 8020 8150 8240 8200 8190 8150	9200 9220 9270 9310 9270 9280 9290 9270 9310 9580	9050 9130 9170 9190 9130 9190 9130 9180 9250 9120 9160 9280	9150 9170 9220 9240 9200 9240 9270 9240 9370	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910	7690 8370 9060 8410 7900 7410 7010 6730 6790 6800	8000 8750 9140 8810 8120 7640 7230 6840 6840 6840	3260 3230 1930 944 517 633 774 950 2120 3790	MAY 3230 1220 892 514 484 517 633 750 950 2120	3250 2530 1250 783 496 573 704 825 1410 2950
1 2 3 4 5 6 7 8 9	7510 7590 7780 7930 8090 8220 8270 8250 8230 8220	7430 7510 7570 7780 7930 8090 8170 8130 7970 7970	7480 7560 7680 7850 8020 8150 8240 8200 8190 8150	9200 9220 9270 9310 9270 9280 9290 9270 9310 9580	9050 9130 9170 9190 9130 9190 9130 9180 9250 9120 9160 9280	9150 9170 9220 9240 9200 9240 9270 9240 9370	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910	7690 8370 9060 8410 7900 7410 7010 6730 6790 6800	8000 8750 9140 8810 8120 7640 7230 6840 6840 6840	3260 3230 1930 944 517 633 774 950 2120 3790	MAY 3230 1220 892 514 484 517 633 750 950 2120	3250 2530 1250 783 496 573 704 825 1410 2950
1 2 3 4 5 6 7 8 9	7510 7590 7780 7930 8090 8220 8270 8250 8230 8220	7430 7510 7570 7780 7930 8090 8170 8130 7970 7970	7480 7560 7680 7850 8020 8150 8240 8200 8190 8150	9200 9220 9270 9310 9270 9280 9290 9270 9310 9580	9050 9130 9170 9190 9130 9190 9130 9180 9250 9120 9160 9280	9150 9170 9220 9240 9200 9240 9270 9240 9370	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910	7690 8370 9060 8410 7900 7410 7010 6730 6790 6800	8000 8750 9140 8810 8120 7640 7230 6840 6840 6840	3260 3230 1930 944 517 633 774 950 2120 3790	MAY 3230 1220 892 514 484 517 633 750 950 2120	3250 2530 1250 783 496 573 704 825 1410 2950
1 2 3 4 5 6 7 8 9 10	7510 7590 7780 7930 8090 8220 8270 8250 8230 8220 8420 8520 8570 8600	7430 7510 7570 7780 7930 8090 8170 8130 7970 7970 8090 8420 8420 8430 8470	7480 7560 7680 7850 8020 8150 8240 8290 8150 8300 8450 8550	9200 9220 9270 9310 9270 9280 9290 9270 9310 9580 9800 10500 10800 10900	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 9800 10500 10700	9150 9170 9220 9240 9200 9270 9200 9240 9370 9600 10200 10700 10800	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080	7690 8370 9060 8410 7900 7410 7010 6730 6790 6800 6860 7130 7080 7080 7080	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7190 7190 6270	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7060
1 2 3 4 5 6 7 8 9 10	7510 7590 7780 7930 8090 8220 8270 8250 8230 8420 8520 8570	7430 7510 7570 7570 7780 7930 8090 8170 8130 7970 7970 8090 8420 8430	7480 7560 7680 7850 8020 8150 8240 8200 8150 8300 8470 8510	9200 9220 9270 9310 9270 9280 9290 9270 9310 9580 9800 10500 10800	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 9800 10500	9150 9170 9220 9240 9200 9240 9270 9200 9240 9370 9600 10200 10700	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230	7690 8370 9060 8410 7900 7410 6730 6730 6800 7130 7080	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7180 7190	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7510 7590 7780 7930 8090 8220 8270 8250 8230 8220 8420 8520 8570 8600 8640	7430 7510 7570 7570 7780 7930 8090 8170 8130 7970 7970 8090 8420 8430 8470 8520	7480 7560 7680 7850 8020 8150 8240 8290 8150 8300 8470 8510 8550 8600	9200 9220 9270 9310 9270 9380 9290 9270 9310 9580 9800 10500 10800 10900	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 9800 10500 10700	9150 9170 9220 9240 9200 9240 9270 9200 9240 9370 9600 10200 10700 10800	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080 7260	7690 8370 9060 8410 7900 7410 6730 6790 6800 6860 7130 7080 5620 2050	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7180 7190 6270 3390	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300 7500	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7060 7400
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7510 7590 7780 77930 8090 8220 8270 8230 8230 8220 8420 8520 8570 8600 8640 8740	7430 7510 7570 7570 7780 7930 8090 8170 8130 7970 7970 8420 8430 8470 8520	7480 7560 7680 7850 8020 8150 8240 8290 8150 8300 8470 8510 8550 8660 8700	9200 9220 9270 9310 9270 9380 9290 9270 9310 9580 10500 10800 10900 10900	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 10700 10700 10800 10800	9150 9170 9220 9240 9200 9240 9270 9200 9240 9370 9600 10200 10700 10800 10800	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7280 7260	7690 8370 9060 8410 7900 7410 7010 6730 6800 6860 7130 7080 5620 2050 2110 2010	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7180 7190 6270 3390 2370 2100	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300 7500	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280 7490	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7060 7400 7530 7570
1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18	7510 7590 7780 7930 8090 8220 8270 8230 8230 8220 8420 8570 8600 8640 8740 8810	7430 7510 7570 7770 7780 7930 8090 8170 8130 7970 7970 8090 8420 8430 8470 8520 8620 8580 8720	7480 7560 7680 7850 8020 8150 8240 8290 8150 8300 8470 8510 8550 8660 8700 8770	9200 9220 9270 9310 9270 9280 9290 9270 9310 9580 9800 10500 10800 10900 10900	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 10500 10700 10800 9740	9150 9170 9220 9240 9220 9240 9270 9200 9240 9370 9600 10200 10700 10800 10800 10800 10800 10200	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080 7260 2500 2250 2770	7690 8370 9060 8410 7900 7410 6730 6790 6800 6860 7130 7080 5620 2050 2110 2010 2140	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7180 7190 6270 3390 2100 2440	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300 7500 7590 7640 7640	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280 7490 7490 7460	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7060 7400 7570 7590
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7510 7590 7780 7930 8090 8220 8250 8230 8220 8420 8570 8600 8640 8700 8740 8810 8860	7430 7510 7570 7570 7780 7930 8090 8170 8170 8170 8170 81420 8420 8430 84470 8520 8620 8580 8720 8780	7480 7560 7680 7850 8020 8150 8240 8190 8150 8300 8470 8550 8600 8660 8700 8700 8830	9200 9220 9270 9310 9270 9380 9290 9270 9310 9580 10500 10900 10900 10900 10900 10900 10900 10900	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 9800 10500 10700 10700 10800 10800 9720	9150 9170 9220 9240 9220 9240 9270 9200 9240 9370 9600 10700 10800 10800 10800 10800 10800 10800 10200 10100	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080 7260 2500 2250 2770 3210	7690 8370 9060 8410 7900 7410 7010 6730 6790 6800 6860 7130 7080 5620 2050 2110 20140 2140 2770	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7190 6270 3390 2370 2100 2440 3010	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300 7500 7590 7640 7640 7630	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280 7490 7460 7490	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7060 7400 7570 7570 7580
1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18	7510 7590 7780 7930 8090 8220 8270 8230 8230 8220 8420 8570 8600 8640 8740 8810	7430 7510 7570 7770 7780 7930 8090 8170 8130 7970 7970 8090 8420 8430 8470 8520 8620 8580 8720	7480 7560 7680 7850 8020 8150 8240 8290 8150 8300 8470 8510 8550 8660 8700 8770	9200 9220 9270 9310 9270 9280 9290 9270 9310 9580 9800 10500 10800 10900 10900	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 10500 10700 10800 9740	9150 9170 9220 9240 9220 9240 9270 9200 9240 9370 9600 10200 10700 10800 10800 10800 10800 10200	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080 7260 2500 2250 2770	7690 8370 9060 8410 7900 7410 6730 6790 6800 6860 7130 7080 5620 2050 2110 2010 2140	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7180 7190 6270 3390 2100 2440	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300 7500 7590 7640 7640	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280 7490 7490 7460	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7060 7400 7570 7590
1 2 3 4 5 6 7 8 9 10 11 12 12 13 14 15 16 17 18 19 20 21	7510 7590 7780 7930 8090 8220 8220 8230 8220 8520 8570 8640 8700 8740 8810 8860 8930	7430 7510 7570 7570 7780 7930 8090 8170 8130 7970 7970 8420 8430 8420 8430 8470 8520 8620 8580 8720 8780 8790	7480 7560 7680 7850 8020 8150 8240 8190 8150 8300 8470 8550 8600 8660 8700 8830 8880	9200 9220 9270 9310 9270 9380 9290 9270 9310 9580 10500 10900 10900 10900 10900 10900 10900 10900 10900	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 10500 10700 10700 10800 9720 10200	9150 9170 9220 9240 9220 9240 9270 9200 9240 9370 9600 10700 10800 10800 10800 10800 10800 10100 10300	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080 7260 2500 2250 2770 3210 3410	7690 8370 9060 8410 7900 7410 7010 6730 6790 6800 6860 7130 7080 5620 2050 2110 2010 2140 2770 3210	8000 8750 9140 8810 8120 7640 7640 6840 6840 7010 7190 6270 3390 2370 2100 2440 3010 3320	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300 7500 7590 7640 7640 7660 7700	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280 7490 7490 7490 7540	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7060 7400 7570 7570 7580 7610
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	7510 7590 7780 7930 8090 8220 8270 8230 8220 8520 8520 8640 8740 8810 8860 8930	7430 7510 7570 7780 7930 8090 8170 8130 7970 7970 8420 8420 8430 84470 8520 8620 8720 8720 8780 8790	7480 7560 7680 7850 8020 8150 8240 8190 8150 8300 8470 8510 8550 8600 8700 8770 8830 8880	9200 9220 9270 9310 9270 9310 9270 9280 9290 9270 9310 9580 10500 10900 10900 10900 10900 10900 10400	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 10500 10700 10800 10700 10800 9740 9720 10200	9150 9170 9270 9220 9240 9200 9240 9270 9200 9240 9370 9600 10200 10800 10800 10800 10800 10200 10100 10300	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7230 7260 2550 2770 3210 3410	7690 8370 9060 8410 7900 7410 7010 6730 6790 6800 6860 7130 7080 5620 2050 2110 2010 2140 2770 3210 3400 3460	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7180 7190 2270 3390 2370 2100 2440 3010 3320 3450 3500	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300 7500 7590 7640 7640 7640 7640 7630 7660	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280 7490 7490 7490 7540 7540 7590	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7060 7590 7590 7590 7590 7650 7680
1 2 3 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	7510 7590 7780 7930 8090 8220 8270 8230 8220 8520 8570 8640 8740 8810 8860 8930 8970 9040 9010	7430 7510 7570 7570 7780 7930 8090 8170 8130 7970 7970 8090 8420 8430 8470 8520 8620 8780 8790 8780 8790	7480 7560 7680 7850 8020 8150 8240 8150 8300 8470 8510 8550 8600 8700 8770 8830 8880 9900 9000 9040	9200 9220 9270 9310 9270 9380 9290 9270 9310 9580 10500 10800 10900 10900 10900 10900 10300 10400	9050 9130 9130 9170 9190 9130 9180 9250 9120 9160 9280 10500 10700 10700 10800 9740 9720 10200	9150 9170 9220 9240 9220 9240 9270 9200 9270 9200 10200 10700 10800 10800 10800 10800 10100 10300 10200 10100 10300	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080 7260 2500 2250 2770 3210 3410 3490 3550 3580	7690 8370 9060 8410 7900 7410 6730 6790 6800 6860 7130 7080 5620 2050 2110 2010 2140 2770 3210 3400 3490	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7180 7190 6270 3390 2370 2100 2440 3010 3320 3500 3540	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300 7500 7590 7640 7640 7640 7660	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280 7490 7490 7490 7540 7540 7590 7650	3250 2530 1250 783 496 573 704 825 1410 2950 4220 6360 7060 7400 7530 7570 7580 7610 7650 7680 7720
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	7510 7590 7780 7930 8090 8220 8270 8230 8220 8520 8520 8640 8740 8810 8860 8930	7430 7510 7570 7780 7930 8090 8170 8130 7970 7970 8420 8420 8430 84470 8520 8620 8720 8720 8780 8790	7480 7560 7680 7850 8020 8150 8240 8190 8150 8300 8470 8510 8550 8600 8700 8770 8830 8880	9200 9220 9270 9310 9270 9310 9270 9280 9290 9270 9310 9580 10500 10900 10900 10900 10900 10900 10400	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 10500 10700 10800 10700 10800 9740 9720 10200	9150 9170 9270 9220 9240 9200 9240 9270 9200 9240 9370 9600 10200 10800 10800 10800 10800 10200 10100 10300	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7230 7260 2550 2770 3210 3410	7690 8370 9060 8410 7900 7410 7010 6730 6790 6800 6860 7130 7080 5620 2050 2110 2010 2140 2770 3210 3400 3460	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7180 7190 2270 3390 2370 2100 2440 3010 3320 3450 3500	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300 7500 7590 7640 7640 7640 7640 7630 7660	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280 7490 7490 7490 7540 7540 7590	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7060 7590 7590 7590 7590 7650 7680
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	7510 7590 7780 77930 8090 8220 8270 8230 8220 8520 8520 8570 8600 8640 8740 8810 8860 8930 8970 9040 9010 9070	7430 7510 7570 7570 7780 7930 8090 8170 8130 7970 7970 8420 8430 8470 8520 8620 8780 8780 8790 8870 8940 8970 8910 8860	7480 7560 7680 7850 8020 8150 8240 8190 8150 8300 8470 8510 8600 8770 8830 88700 8770 8830 8920 9000 9040 9000 8940	9200 9220 9270 9310 9270 9310 9270 9280 9290 9270 9310 9580 10500 10800 10900 10900 10900 10900 10400 10400 11400 11500 11300	9050 9130 9130 9170 9190 9130 9180 9250 9120 9160 9280 10500 10700 10700 10800 9740 9720 10200 10100 10300 11300 10900	9150 9170 9170 9220 9240 9200 9240 9270 9200 9240 9370 9600 10200 10800 10800 10800 10100	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080 7260 2500 2250 2770 3210 3410 3490 3550 3580 3620 3540	7690 8370 9060 8410 7900 7410 7010 6730 6800 6860 7130 7080 5620 2050 2110 2010 2140 2770 3210 3400 3490 3540 3370	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7180 7190 6270 3390 2470 2100 2440 3010 3320 3450 3580 3450	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300 7500 7590 7640 7640 7640 7670 7770 7810 7870	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280 7490 7490 7460 7490 7540 7540 7540 7650 7680 7680	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7060 7570 7590 7580 7650 7680 7720 7750 7770
1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	7510 7590 7780 7930 8090 8220 8220 8220 8220 8420 8570 8640 8740 8810 8860 8930 8970 9040 9070 9070	7430 7510 7570 7570 7780 7930 8090 8170 8170 8170 8190 8420 8430 8470 8520 8620 8580 8720 8780 8790 8940 8940 8940 8940 8940 8940 8940 89	7480 7560 7680 7850 8020 8150 8240 8190 8150 8300 8470 8550 8600 8700 8770 8830 8880 8920 9000 9000 9000 8940	9200 9220 9270 9310 9270 9310 9270 9280 9290 9310 9580 10500 10900 10900 10900 10900 10900 10900 10400 11000 11400 11500 11300	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 10500 10700 10700 10800 10700 10800 10200	9150 9170 9220 9240 9220 9240 9270 9200 9240 9370 9600 10700 10800 10800 10800 10800 10100 10100 10100 10100 10100 10100 10100 10100 10100 10100	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080 7260 2500 2250 2770 3210 3410 3490 3550 3580 3620 3540	7690 8370 9060 8410 7900 7410 7010 6790 6800 6860 7130 5620 2050 2110 2010 2140 2770 3210 3400 3490 3540 3370	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7190 6270 3390 2370 2100 2440 3010 3320 3450 3580 3580 3450 3310	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 7300 7500 7590 7640 7640 7630 7660 7770 7770 7810	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 7490 7490 7490 7540 7540 7540 7550 7680 7680	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7400 7530 7570 7590 7610 7650 7680 7770 7770 7390
1 2 3 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	7510 7590 7780 7780 7930 8090 8220 8270 8230 8220 8520 8520 8640 8740 8810 8860 8930 8970 9040 9010 9070 9010 9050 90150	7430 7510 7570 7780 7930 8090 8170 8130 7970 7970 8420 8420 8430 8470 8520 8620 8720 8780 8790 8970 8970 8970 8970 8970 897	7480 7560 7680 7850 8020 8150 8240 8290 8150 8300 8470 8550 8600 8770 8830 8920 9000 9040 9000 9940 8950 8990 9080	9200 9220 9270 9310 9270 9310 9270 9280 9290 9270 9310 9580 10500 10800 10900 10900 10900 10900 10400 11400 11500 11300 11400 11500 11300	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 10700 10700 10800 9740 9720 10200 10100 11300 11300 11300 11300 10900	9150 9170 9170 9220 9240 9200 9240 9270 9200 9240 9370 9600 10200 10800 10800 10800 10100	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7230 7260 2500 2250 2770 3210 3410 3490 3550 3580 3620 3540 3400 3280 3330	7690 8370 9060 8410 7900 7410 7010 6730 6800 6860 7130 7080 5620 2050 2110 2010 2140 2770 3210 3400 3460 3490 3540 3250 3250 3260	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7180 7190 6270 3390 2440 3010 2440 3010 3500 3540 3580 3450 3580 3450 3290	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7500 7590 7640 7640 7640 7640 7770 7810 7870 7790 7310 7330 7330	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280 7490 7460 7490 7540 7540 7590 7650 7680 7680 7680 7680	3250 2530 1250 783 496 573 704 825 5320 6360 7060 7590 7590 7590 7590 7750 7770 7390 6910 7300
1 2 3 4 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	7510 7590 7780 7930 8090 8220 8220 8220 8220 8420 8570 8640 8700 8840 8810 8860 8930 8970 9040 9070 9070 9070	7430 7510 7570 7570 7780 7930 8090 8170 8130 7970 7970 8090 8420 8430 8420 8420 8580 8720 8580 8720 8580 8790 88910 8860 88930 9000	7480 7560 7680 7850 8020 8150 8240 8190 8150 8300 8470 8550 8600 8770 8830 8880 8920 9000 9040 9000 8940 8950 8990 9090	9200 9220 9270 9310 9270 9310 9270 9280 9290 9310 9580 10500 10900 10900 10900 10900 10900 10400 11000 11400 11500 11300 11500 11300 10200 8400 7630	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 10700 10700 10700 10800 10700 10800 10200 10100 10300	9150 9170 9220 9240 9220 9240 9270 9270 9240 9370 9600 10700 10800 10800 10800 10800 10200 10100 10300 10400	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080 7260 2500 2250 2770 3210 3410 3490 3550 3580 3620 3540 3280 3280 3330 3330 3338	7690 8370 9060 8410 7900 7410 7010 6790 6800 6860 7130 5620 2050 2110 2010 2140 2770 3210 3400 3490 3540 3370 3250 3250 3250 3260 3330	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7190 6270 3390 2370 2100 2440 3010 3320 3450 3580 3580 3580 3450	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 7300 7500 7590 7640 7640 7640 7740 7770 7810 7870 7790 7310 7330 7330 7330	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 7490 7490 7490 7540 7540 7590 7680 7680 7680 7680 7690 7190	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7400 7530 7570 7590 7580 7610 7650 7720 7770 7390 6910 7390 6910 73280
1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	7510 7590 7780 7930 8090 8220 8250 8220 8520 8520 8570 8640 8740 8860 8930 8970 9040 9010 9070 9070 9050 9150 9150	7430 7510 7570 7780 7930 8090 8170 8130 7970 7970 8090 8420 8430 8470 8520 8620 8580 8720 8580 8720 8780 8790 8870 8910 8910 8860 8880 8930 9000	7480 7560 7680 7850 8020 8150 8240 8150 8300 8470 8550 8600 8700 8700 8830 8880 8920 9040 9040 9040 8950 8990 9080 9080	9200 9220 9270 9310 9270 9310 9270 9280 9290 9270 9310 9580 10500 10900 10900 10900 10900 10900 10400 11500 11400 11500 11400 11500 11500 11500 11500 11500 11700 11700 10900	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 10500 10700 10800 10700 10800 10700 10800 10100 10300 11300 11300 11300 10900	9150 9170 9220 9240 9220 9240 9270 9270 9240 9370 9600 10200 10800 10800 10800 10800 10100 10100 10100 10100 11100 11400 11100	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080 7260 2500 2250 2770 3410 3490 3550 3580 3620 3540 3400 3280 3330 3380 3390	7690 8370 9060 8410 7900 7410 7010 6730 6790 6800 6860 7130 7080 2050 2110 2010 2140 3460 3490 3540 3370 3250 3250 3330 3320	8000 8750 9140 8810 8120 7640 7230 6840 6840 6840 7010 7180 7180 720 3390 2370 2100 2440 3320 3500 3545 3580 3580 3580 3580 3580 3680 3290 3360 3390 3300	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300 7500 7540 7640 7640 7740 7770 7810 7870 7790 7330 7330 7340 7490	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280 7490 7490 7490 7540 7540 7540 7550 7680 7680 7650 7190 71440	3250 2530 1250 783 496 573 704 82950 4220 5320 6360 7400 7590 7590 7590 7590 7750 7610 7650 7720 7770 7390 6910 7300 7280 7280 7280 7280 7280 7280 7390 7490 7590 7590 7590 7590 7590 7590 7590 75
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	7510 7590 7780 7930 8090 8220 8220 8220 8220 8420 8570 8640 8740 8810 8860 8930 8970 9040 9070 9070 9050 9150 9150	7430 7510 7570 7570 7780 7930 8090 8170 8130 7970 7970 8090 8420 8420 8420 8420 8580 8720 8580 8790 8870 8940 8910 8860 8880 8930 9000	7480 7560 7680 7850 8020 8150 8240 8190 8150 8300 8470 8550 8600 8700 9000 9000 9000 9940 8950 8990 9089	9200 9220 9270 9310 9270 9310 9270 9280 9290 9270 9310 9580 10500 10900 10900 10900 10900 10900 10400 11300 11400 11300 11400 11500 11300 10200 8400 7630 7690	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 10500 10700 10700 10800 10700 10800 10700 10800 10300	9150 9170 9220 9240 9220 9240 9270 9200 9240 9370 9600 10700 10800 10800 10800 10800 10100	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080 7260 2500 2250 2770 3210 3410 3490 3550 3580 3620 3540 3280 3280 3280 3380 3390 	7690 8370 9060 8410 7900 7410 7010 6790 6800 6860 7130 2050 2110 2010 2140 2770 3210 3400 3490 3540 3370 3250 3250 3250 3260 3330 3240	8000 8750 9140 8810 8120 7640 7230 6840 6840 7010 7190 6270 3390 2370 2100 2440 3010 3320 3450 3580 3580 3580 3580 3580 3580 3580 3680 3780 3780 3780 3780 3780 3780 3780 37	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 7300 7500 7590 7640 7640 7640 7740 7770 7810 7870 7790 7310 7310 7310 7310 7310 7490 7440	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 7490 7490 7490 7540 7540 7590 7680 7680 7680 7680 7650 7680 7680 7680	3250 2530 1250 783 496 573 704 825 1410 2950 4220 5320 6360 7400 7530 7570 7590 7610 7650 7680 7770 7770 7390 6910 7390 6910 7300 4550 1260
1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	7510 7590 7780 7930 8090 8220 8250 8220 8520 8520 8570 8640 8740 8860 8930 8970 9040 9010 9070 9070 9050 9150 9150	7430 7510 7570 7780 7930 8090 8170 8130 7970 7970 8090 8420 8430 8470 8520 8620 8580 8720 8580 8720 8780 8790 8870 8910 8910 8860 8880 8930 9000	7480 7560 7680 7850 8020 8150 8240 8150 8300 8470 8550 8600 8700 8700 8830 8880 8920 9040 9040 9040 8950 8990 9080 9080	9200 9220 9270 9310 9270 9310 9270 9280 9290 9270 9310 9580 10500 10900 10900 10900 10900 10900 10400 11500 11400 11500 11400 11500 11500 11500 11500 11500 11700 11700 10900	9050 9130 9170 9190 9130 9180 9250 9120 9160 9280 9500 10500 10700 10800 10700 10800 10700 10800 10100 10300 11300 11300 11300 10900	9150 9170 9220 9240 9220 9240 9270 9270 9240 9370 9600 10200 10800 10800 10800 10800 10100 10100 10100 10100 11100 11400 11100	8370 9060 9210 9130 8410 7910 7410 7010 6900 6910 7130 7220 7230 7080 7260 2500 2250 2770 3410 3490 3550 3580 3620 3540 3400 3280 3330 3380 3390	7690 8370 9060 8410 7900 7410 7010 6730 6790 6800 6860 7130 7080 2050 2110 2010 2140 3460 3490 3540 3370 3250 3250 3330 3320	8000 8750 9140 8810 8120 7640 7230 6840 6840 6840 7010 7180 7180 720 3390 2370 2100 2440 3320 3500 3545 3580 3590 3590 3360 3290 3360 3390 3300	3260 3230 1930 944 517 633 774 950 2120 3790 4650 5890 6790 7300 7500 7540 7640 7640 7740 7770 7810 7870 7790 7330 7330 7340 7490	MAY 3230 1220 892 514 484 517 633 750 950 2120 3790 4650 5890 6790 7280 7490 7490 7490 7540 7540 7540 7550 7680 7680 7650 7190 71440	3250 2530 1250 783 496 573 704 82950 4220 5320 6360 7400 7590 7590 7590 7590 7750 7610 7650 7720 7770 7390 6910 7300 7280 7280 7280 7280 7280 7280 7390 7490 7590 7590 7590 7590 7590 7590 7590 75

65

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	ER
1	1310	1200	1260			e6800			e7300			
2	1410	1310	1360			e8100			e7300			
3	1510	1400	1460			e9200			e7300			
4	1620	1510	1560			e9400			e7800			
5	1740	1610	1680			e9300			e8600	5540	5400	5500
6	1860	1740	1800			e9000			e6600	5580	5480	5540
7	1960	1860	1920			e8600			e3300	5620	5550	5580
8	2050	1820	1930			e8400			e2700	5620		
						e8400 e8300			e2700 e2600			
9	1900	1840	1860			e8300 e6400			e2600 e2600	5980	4780	5630
10	1860	1560	1700			e6400			e2600	5620	5100	5300
11	1560	1500	1520			e2600			e2800	5750	5590	5670
12			e1600			e3100			e2900	5770	2360	5170
13			e1100			e2600			e3100	6340	244	827
14			900			e1800			e3100	2460	796	1310
15			300			e2200			e3300	1220	808	935
15			300			e2200			e3300	1220	808	935
16			e600			e2800			e3400	840	735	802
17			e900			e3400			e3600	848	737	783
18			e1700			e3900			e3700	1270	817	1070
19			e2600			e4400			e3800	1650	1090	1240
20			e3500			e4800				2350	1640	2110
21			e4200			e5100				2630	2340	2500
22			e4100			5400				2810	2630	2730
23			e4400			e5800				2910	2800	2850
24			e4700			e6100				3040	2910	2970
25			5300			e6300				3150	3000	3070
25			5300			60300				3130	3000	3070
26			e6100			e6500				3230	3130	3170
27			e6000			e6700				3330	3230	3270
28			e6600			e6800				3490	3320	3390
29			e6400			e6900				3540	3470	3510
30			e5900			e7000				3660	3540	3570
31						e7100						
31						2,100						
MONTH			2830			5960						

e Estimated

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		N	OVEMBER		D	ECEMBER			JANUARY	7
1	28.3	25.4	26.9	19.1	14.8	16.9	15.8	12.9	14.5	14.1	9.9	11.7
2	29.3	24.4	26.3	16.1	12.5	14.5	17.3	14.6	15.8	11.6	7.0	8.4
3	30.1	24.2	26.3	16.8	13.6	15.0	17.4	15.4	16.2	7.1	4.0	5.5
4	29.8	24.6	26.8	15.1	12.2	13.5	17.3	13.4	15.0	5.4	2.3	3.9
5	27.0	23.5	25.4	12.2	10.1	11.1	17.5	14.3	15.8	7.5	3.2	5.4
6	24.0	19.9	21.6	10.1	9.3	9.6	17.1	14.1	16.0	9.1	5.3	7.2
7	23.7	17.8	19.8	13.6	9.5	11.1	14.1	11.9	12.8	10.4	6.4	8.2
8	23.9	17.8	20.2	15.8	11.0	13.0	11.9	9.7	10.6	10.6	7.8	9.3
9	23.3	18.2	20.7	18.5	13.4	15.6	9.9	7.4	8.9	7.8	4.4	6.2
10	23.7	18.6	21.0	16.3	12.0	13.7	8.7	7.4	8.0	8.2	3.6	6.1
11	24.9	19.2	22.0	13.6	9.6	11.9	7.4	4.1	5.9	10.1	5.1	7.7
12	25.4	21.2	22.9	12.9	11.5	12.1	7.3	4.1	5.8	11.9	8.3	10.1
13	26.1	21.2	23.5	12.9	11.9	12.4	8.7	5.6	7.2	11.1	8.1	9.7
14	26.0	21.9	23.8	16.5	12.1	14.0	9.4	6.6	8.2	9.5	6.4	8.1
15	24.7	20.3	22.3	16.3	12.6	14.2	10.5	7.1	8.8	10.5	5.8	8.2
16	23.3	20.9	21.9	16.5	12.9	14.6	10.5	7.1	9.0	11.9	7.8	9.7
17	25.3	21.5	22.9	15.1	12.8	13.9	10.0	7.2	8.9	12.9	8.7	10.8
18	22.7	19.1	20.9	18.9	13.7	15.9	11.8	8.8	10.2	12.3	9.2	10.9
19	22.6	18.5	20.2	19.8	15.7	17.2	11.2	9.0	9.6	14.6	9.7	11.8
20	20.3	17.4	18.8	15.9	13.0	13.9	10.3	8.2	9.1	14.7	11.4	12.8
21	17.4	15.4	16.0	15.5	12.0	13.5	11.0	5.4	9.6	14.8	11.5	13.0
22	17.8	15.1	16.3	16.6	12.1	14.4	5.4	.4	1.9	12.5	7.9	9.4
23	18.9	15.6	17.2	17.4	14.1	15.6	2.7	.5	1.8	10.8	6.2	8.3
24	20.0	15.3	17.7	16.7	13.6	14.9	3.9	2.4	3.1	12.5	7.9	10.3
25	21.5	16.7	19.0	17.4	14.5	15.7	4.7	3.1	3.9	14.9	10.4	12.5
26 27 28 29 30 31	21.6 21.4 25.0 23.6 22.0 21.2	19.3 19.6 20.6 21.3 20.2 19.1	20.3 20.5 22.3 22.3 21.0 19.9	15.6 18.9 19.6 18.4 17.0	12.4 14.2 16.6 16.4 13.9	14.2 16.2 18.0 17.7 15.3	7.1 8.7 9.4 10.3 11.0 10.8	4.2 5.8 5.6 6.5 6.9 8.3	5.4 7.0 7.5 8.4 9.1 9.7	15.4 16.5 15.7 11.9 8.4 10.9	11.9 12.9 11.9 7.7 7.0 5.9	13.7 14.6 14.1 8.8 7.7 8.3
MONTH	30.1	15.1	21.5	19.8	9.3	14.3	17.5	. 4	9.2	16.5	2.3	9.4

08123850 COLORADO RIVER ABOVE SILVER, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	13.2 12.6 13.6 13.8 17.4	9.0 9.4 8.9 9.4 12.4	11.0 11.2 11.4 11.9 14.6	19.3 17.6 16.6 16.2 18.0	13.2 13.9 12.6 11.4 13.6	15.8 16.0 14.8 14.0 15.5	24.9 25.9 23.7 22.0 21.2	17.3 19.9 19.3 16.3 15.3	20.8 22.8 21.4 19.1 18.6	21.2 21.1 25.0 23.0 23.5	17.3 19.1	19.4 19.4 21.7 21.8 20.5
6 7 8 9 10	18.9 17.4 17.1 17.9 19.6	16.0 12.4 12.5 12.7 13.8	17.2 14.8 14.6 15.0 16.6	16.4 14.6 17.0 17.5 20.7	13.4 11.6 11.6 12.6 13.9	15.0 12.6 14.2 15.1 16.7	21.1 24.5 25.5 24.5 23.8	14.8 17.1 21.6 18.9 18.4	18.1 20.6 23.4 21.6 21.3	24.4 26.7 28.6 27.9 28.5	15.2 17.5 20.6 22.4 20.3	19.3 21.5 23.9 24.5 24.0
11 12 13 14 15	18.3 12.2 11.8 12.8 14.4	11.6 8.0 7.4 8.6 9.8	14.7 10.2 9.8 10.6 12.0	19.4 14.7 12.3 13.4 16.4	14.7 12.3 7.8 5.7 9.8	17.0 13.1 9.7 9.3 13.1	21.7 23.8 24.4 22.8 17.6	16.3 17.6 21.2 17.1 14.8	19.1 20.6 22.6 20.3 16.4	27.6 27.2 25.9 29.5 32.0	21.6 19.6 21.2 22.4 24.8	24.4 23.3 23.4 25.7 27.6
16 17 18 19 20	15.7 15.5 14.8 15.0 15.1	11.4 11.3 11.7 11.3 11.1	13.4 13.4 13.3 13.1 13.4	17.5 17.5 20.0 18.0 18.9			16.5 20.0 23.6 26.2 26.1		15.0 15.3 17.7 20.7 22.4	30.7 29.9 29.4 28.0 29.0	25.5 25.1 22.4 21.7 21.8	27 1
21 22 23 24 25	14.6 12.7 14.5 17.2 20.3	8.8 8.5 10.2	12.7 11.0 11.2 13.8 16.9	21.4 22.4 20.6 18.8 19.3	14.4 16.2 17.3 15.8 14.0	17.8 19.4 19.1 16.9 16.6	26.3 28.1 26.3 22.3 21.4	19.9 21.0 21.7 16.6 15.6	23.0 24.2 24.0 18.3 17.4	28.9 30.5 31.3 27.9 28.3	24.7 25.3	26.0 27.4 27.6 26.1 25.0
26 27 28 29 30 31	19.9 18.8 18.1 	16.9 15.7 13.0 	18.1 17.2 15.6 	17.8 15.5 15.5	15.0 13.9 13.5 14.3 14.6 13.7	16.2 14.6 14.4 15.0 15.3 17.9	25.3 26.6 27.4 24.9 23.3	19.3 19.1 22.0 20.6 19.2		26.1 25.7 27.4 28.7 26.2 30.6	22.3 20.3 22.0 22.7 23.1 23.9	22.8 23.9 25.2
MONTH	20.3	7.4	13.5	23.2				11.8	20.6		15.2	24.2
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	JULY			AUGUST	MEAN		MIN SEPTEMBE	
DAY 1 2 3 4 5	MAX 31.3 29.8 28.9 29.6 26.6	JUNE 24.6 25.6 23.8	MEAN 27.5 27.6 26.2 26.3 24.8	33.4 32.4 31.4 30.6 29.9	JULY 25.9 26.1 25.2 24.8 25.0	29.4 29.1 28.1 27.5 27.5	30.7 31.2 31.9 30.7 31.4	AUGUST 25.9 27.2 25.9 26.1 27.1	MEAN 28.2 28.7 28.3 28.8 29.0	 		
1 2 3 4	31.3 29.8 28.9 29.6	JUNE 24.6 25.6 23.8 23.3 23.7 23.6 23.0 23.8	27.5 27.6 26.2 26.3	33.4	JULY 25.9 26.1 25.2 24.8 25.0	29.4 29.1 28.1 27.5 27.5	30.7 31.2 31.9 30.7 31.4	AUGUST 25.9 27.2 25.9 26.1 27.1	28.2 28.7 28.3 28.8 29.0	 29.6 29.4 31.0	SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10	31.3 29.8 28.9 29.6 26.6 29.1 30.7 31.2 30.9	JUNE 24.6 25.6 23.8 23.7 23.6 23.0 23.8 24.5 23.7	27.5 27.6 26.2 26.3 24.8 25.5 26.6 27.6 27.3 26.9	33.4 32.4 31.4 30.6 29.9	JULY 25.9 26.1 25.2 24.8 25.0 25.7 26.4 26.9 27.3 23.4 23.6 24.5	29.4 29.1 28.1 27.5 27.5 28.6 29.7 30.0 30.4 26.2 26.2 26.9	30.7 31.2 31.9 30.7 31.4 33.3 33.9 33.9 33.7 33.4	25.9 27.2 25.9 26.1 27.1 27.0 26.5 27.8 28.1 28.4	28.2 28.7 28.3 28.8 29.0 30.0 30.4 30.5 30.8	 29.6 29.4 31.0	SEPTEMBE 27.3 26.0 26.0 28.1 25.6	27. 3 28. 3 27. 3 28. 5 29. 3 27. 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14	31.3 29.8 28.9 29.6 26.6 29.1 30.7 31.2 30.9 30.7 30.5 27.7 25.5 24.5	JUNE 24.6 25.6 23.8 23.3 23.7 23.6 23.0 23.8 24.5 23.7 23.5 19.4 18.6 20.7	27.5 27.6 26.3 24.8 25.5 26.5 27.6 27.3 26.9 27.0 24.8 22.1 22.6	33.4 32.4 31.4 30.6 29.9 32.1 33.4 33.7 30.9 30.0 30.1 28.1 29.8	JULY 25.9 26.1 25.2 24.8 25.0 25.7 26.4 26.9 27.3 23.4 23.6 24.5 25.3 24.9	29.4 29.1 28.1 27.5 27.5 28.6 29.7 30.0 30.4 26.2 26.2 26.9 26.3 27.1	30.7 31.2 31.9 30.7 31.4 33.3 33.9 33.7 33.4 32.9 33.6 33.4	25.9 27.2 25.9 26.1 27.1 27.0 26.5 27.8 28.4 28.3 26.9 27.8	28.2 28.7 28.3 28.8 29.0 30.0 30.4 30.5 30.8	29.6 29.4 31.0 31.5 30.6 29.1 25.5 26.3	SEPTEMBE 27.3 26.0 26.0 26.0 28.1 25.6 24.8 24.1 21.2 22.2	28.3 27.3 28.5 29.3 27.5 26.5 22.8 24.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	31.3 29.8 28.9 29.6 26.6 29.1 30.7 30.7 30.5 27.7 25.5 24.5 22.6 25.0 25.2 25.9 28.9	JUNE 24.6 25.6 23.8 23.3 23.7 23.6 23.0 23.8 24.5 23.7 23.5 19.4 18.6 20.7 20.5 22.1 22.7 23.1 24.3	27.5 27.6 26.2 26.3 24.8 25.5 27.6 27.3 26.9 27.0 24.8 22.1 22.6 21.4 23.4 23.8 24.5 26.2	33.4 32.4 31.4 30.6 29.9 32.1 33.4 33.7 30.9 30.0 30.1 29.8 31.5 31.3 31.7 31.0 31.8	JULY 25.9 26.1 25.2 24.8 25.0 25.7 26.4 26.9 27.3 23.4 23.6 24.5 25.3 24.9 26.5	29.4 29.1 28.1 27.5 27.5 28.6 29.7 30.0 30.4 26.2 26.2 26.3 27.1 28.7 27.9 28.1 28.3 28.6	30.7 31.2 31.9 30.7 31.4 33.3 33.9 33.7 33.4 32.6 32.1 31.4 32.9 33.3 32.9	25.9 27.2 25.9 26.1 27.1 27.0 26.5 27.8 28.1 28.4 28.3 26.9 27.8 27.8 27.7	28.2 28.7 28.3 28.8 29.0 30.0 30.0 30.4 30.5 30.8 30.5 29.8 29.9 29.7	29.6 29.4 31.0 31.5 30.6 29.1 25.5 26.3 27.2 26.2 27.0 27.4 28.8	SEPTEMBE 27.3 26.0 26.0 26.0 28.1 25.6 24.8 24.1 21.2 22.2 22.6 22.7 21.0 21.9 21.9	28.3 27.3 28.3 27.3 28.5 29.3 27.9 27.5 26.5 22.8 24.0 24.6 24.2 23.8 24.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	31.3 29.8 28.9 29.6 26.6 29.1 30.7 30.7 30.5 27.7 25.5 22.6 25.0 25.2 25.9 29.7 26.9 28.5 30.6	JUNE 24.6 25.6 23.8 23.3 23.7 23.6 23.0 23.8 24.5 23.7 23.5 19.4 18.6 20.7 20.5 22.1 22.7 23.1 24.3 25.0 24.5 24.1 25.4 26.5	27.5 27.6 26.2 26.3 24.8 25.5 27.6 27.3 26.9 27.0 24.8 22.1 4 23.4 23.8 24.5 26.2 26.9 25.5 26.2 27.7	33.4 32.4 31.4 30.6 29.9 32.1 33.4 33.7 30.9 30.0 30.1 29.8 31.5 31.3 31.7 31.8 32.7	JULY 25.9 26.1 25.2 24.8 25.0 25.7 26.4 26.9 27.3 23.4 23.6 24.5 25.3 24.9 26.5 25.3 25.2 25.8 25.6 26.4 25.9 25.3 25.7	29.4 29.1 28.1 27.5 27.5 28.6 29.7 30.0 30.4 26.2 26.2 26.9 27.1 28.7 27.9 28.1 28.6 29.4 28.7 28.4 29.4	30.7 31.2 31.9 30.7 31.4 33.3 33.9 33.7 33.4 32.6 32.1 31.4 32.9 33.3 32.9	25.9 27.2 25.9 26.1 27.1 27.0 26.5 27.8 28.1 28.4 28.3 26.9 27.8 27.8 27.7 27.6 26.9 27.1 28.3	28.2 28.7 28.3 28.8 29.0 30.0 30.4 30.5 30.8 30.5 29.8 29.9 29.7 29.2 29.7 30.6	29.4 31.0 29.4 31.5 30.6 29.1 25.5 26.3 27.2 26.2 27.0 27.4 28.8 27.2 24.5 23.3 24.9 26.8	SEPTEMBE 27.3 26.0 26.0 28.1 25.6 24.8 24.1 21.2 22.2 22.6 22.7 21.0 21.9 21.9 23.4 19.5 18.7 19.0 20.3	2R

This page intentionally left blank.

08123950 E.V. SPENCE RESERVOIR NEAR ROBERT LEE, TX

LOCATION.--Lat 31°52′46", long 100°31′01", Coke County, Hydrologic Unit 12080008, in outlet works of Robert Lee Dam on the Colorado River, 2.2 mi west of Robert Lee, and at mile 716.0.

DRAINAGE AREA.--15,278 mi 2 , approximately, of which 10,260 mi 2 probably is noncontributing.

PERIOD OF RECORD. -- Dec 1968 to current year.

Water-quality records.--Chemical data: Nov 1969 to Aug 1988. Biochemical data: Jan 1978 to Aug 1988.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to Jun 24, 1969, nonrecording gage at same site and datum. Satellite telemeter at station.

REMARKS.--Records good except those for estimated daily contents, which are fair. The reservoir is formed by a rolled earthfill MARKS.--Records good except those for estimated daily contents, which are fair. The reservoir is formed by a rolled earthfill dam 21,500 ft long. Closure was made Dec 30, 1968, and dam was completed in Jun 1969. The dam is the property of the Colorado River Municipal Water District, which has a permit to divert 50,000 acre-ft annually for municipal, mining, and industrial uses. Inflow into the reservoir is partially regulated by Lake J.B. Thomas (station 08118000), Lake Colorado City (station 08123000), and Champion Creek Reservoir (station 08123600). There are two spillways: The controlled service spillway is a morning-glory type that is partially controlled by 12 lift gates, 14.48 by 22.0 ft, and discharges through a 28.0-footdiameter concrete conduit. The uncontrolled spillway is a 3,200-foot-wide cut through natural ground near the right end of dam. Figures given herein represent total contents. Data regarding the dam are given in the following table:

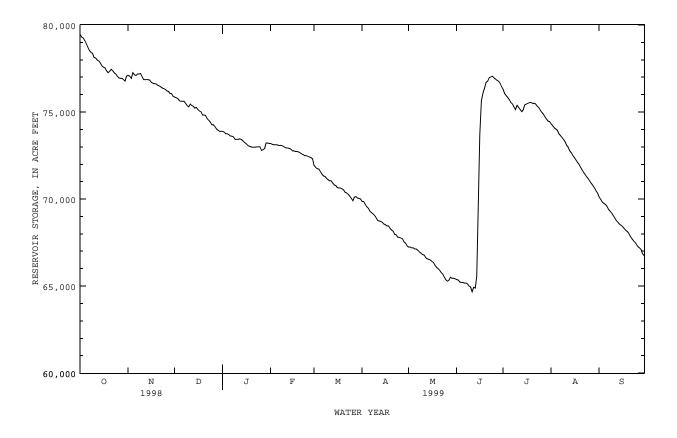
	Elevation
	(feet)
Top of dam	
Crest of spillway	1,908.0
Top of gates	1,900.0
Top of conservation pool	1,898.0
Crest of spillway	
Lowest gated outlet (invert)	1,815.85

COOPERATION.--Capacity table dated Mar 1972 was furnished by the Colorado River Municipal Water District. Records of diversions can be obtained from the city of San Angelo and from the Colorado River Municipal Water District.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 355,300 acre-ft, Jun 16, 1987 (elevation, 1,887.03 ft); minimum contents after initial filling, 66,750 acre-ft, Sep 30, 1999 (elevation, 1845.67 ft).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 79,660 acre-ft, Oct 1 (elevation, 1,849.19 ft); minimum contents, 64,610 acre-ft, Jun 12 (elevation, 1,845.06 ft).

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY OBSERVATION AT 2400 HOURS


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	79460 79300 79260 79100 78900	77100 77060 76940 77260 77140	75860 75820 75780 75660 75620	73890 73850 73750 73750 73710	73190 73150 73120 73120 73120	71930 71820 71750 71720 71580	69860 69860 69690 69550 69480	67240 67240 67200 67200 67130	65380 65350 65240 65210	76300 76060 75940 75820 75700	74310 74200 74100 74030 73960	70110 69970 69830 69760 69690
6	78700	77100	75620	73610	73080	71430	69300	67130	65170	75540	73750	69580
7	78540	77180	75620	73610	73080	71330	69230	67060	65170	75460	73640	69410
8	78420	77180	75500	73570	73080	71300	69160	66960	65130	75300	73540	69300
9	78380	77220	75380	73430	73050	71190	69060	66890	65000	75140	73400	69200
10	78140	77020	75300	73430	72980	71120	68920	66810	64960	75380	73290	69060
11	78100	76860	75460	73430	72940	71050	68780	66780	64680	75260	73080	68920
12	77980	76860	75380	73460	72940	71050	68740	66640	64930	75140	72980	68780
13	77940	76860	75340	73430	72910	70910	68710	66570	64890	75020	72770	68670
14	77820	76860	75220	73360	72870	70810	68670	66540	65590	75140	72660	68570
15	77660	76820	75260	73260	72770	70770	68570	66500	68670	75420	72490	68500
16	77580	76700	75140	e73200	72770	70660	68530	66430	73710	75460	72380	68430
17	77540	76660	75060	e73100	72730	70630	68460	66360	75660	75500	72240	68320
18	77380	76620	75020	73040	72730	70630	68460	66190	76100	75540	72100	68220
19	77260	76620	74830	73010	72700	70590	68320	66080	76380	75540	72000	68150
20	77340	76540	74830	72980	72660	70530	68220	66010	76700	75500	71820	68040
21	77460	76500	74800	72980	72590	70390	68150	65910	76780	75500	71680	67870
22	77380	76460	74620	72980	72560	70350	67970	65770	76980	75460	71510	67730
23	77260	76380	74520	e73000	72490	70280	67940	65700	77020	75340	71400	67620
24	77180	76340	74410	e73000	72490	70170	67800	65520	77060	75260	71260	67520
25	77060	76300	74270	e73000	72450	70040	67800	65380	76980	75100	71160	67410
26 27 28 29 30 31	76960 76940 76940 76860 76780 77060	76220 76180 76060 76060 75900	74270 74170 74030 73960 73890 73890	72800 72840 72910 73220 73220 73190	72420 72380 72310 	69900 70110 70140 70070 70040 70000	67760 67730 67550 67480 67310	65280 65350 65520 65450 65450 65420	76900 76820 76780 76660 76460	74980 74870 74730 74590 74480 74450	71020 70880 70770 70630 70460 70320	67270 67200 67100 66850 66750
MAX	79460	77260	75860	73890	73190	71930	69860	67240	77060	76300	74310	70110
MIN	76780	75900	73890	72800	72310	69900	67310	65280	64680	74450	70320	66750
(+)	1848.54	1848.25	1847.71	1847.51	1847.26	1846.60	1845.83	1845.29	1848.39	1847.87	1846.69	1845.67
(@)	-2520	-1160	-2010	-700	-880	-2310	-2690	-1890	+11040	-2010	-4130	-3570

MAX 124500 MIN 73890 (@) -50610 MAX 79460 MIN 64680 (@) -12830 CAL YR 1998 WTR YR 1999

⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet.

e Estimated

69

08124000 COLORADO RIVER AT ROBERT LEE, TX

LOCATION.--Lat 31°53'07", long 100°28'49", Coke County, Hydrologic Unit 12080008, on left bank 190 ft upstream from bridge on State Highway 208 in Robert Lee, 0.4 mi upstream from Mountain Creek, 2.7 mi downstream from Messbox Creek, 3.6 mi downstream from Robert Lee Dam, and at mile 712.4.

DRAINAGE AREA.--15,307 mi², of which 10,260 mi² probably is noncontributing.

PERIOD OF RECORD.--Oct 1923 to Dec 1927, Apr 1939 to May 1956, Oct 1968 to current year. Prior to Dec 1927, published as "near Robert Lee".

Water-quality records. -- Chemical data: Oct 1947 to Sep 1957.

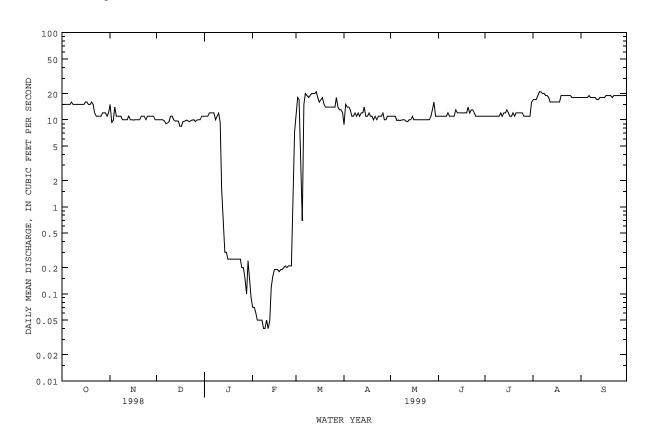
REVISED RECORDS.--WSP 1723: 1925(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,771.70 ft above sea level. Prior to Dec 31, 1927, nonrecording gage at site 9 mi downstream at different datum. Apr 18 to Sep 26, 1939, nonrecording gage, and Sep 27, 1939 to May 9, 1956, water-stage recorder at site 200 ft downstream at same datum. Satellite telemeter at station.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Beginning Apr 1949, flow was affected by Lake Colorado City (station 08123000, normal storage 31,640 acre-ft) and since Jul 1952, at least 10% of contributing drainage area has been regulated by Lake J.B. Thomas (station 08128000, normal storage 204,000 acre-ft). Since Dec 1968, flow completely regulated by E.V. Spence Reservoir (station 08123950, normal storage 488,760 acre-ft) 3.6 mi upstream. There are many diversions above station for municipal, mining, agricultural, and industrial uses. Several observations of water temperature were made during the year.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--16 years (water years 1925-27, 1940-52) prior to completion of Lake J.B. Thomas, 220 ft³/s (159,100 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS, 1925-27, 1940-52).—Maximum discharge, 32,500 ft 3 /s Sep 6, 1926 (gage height, 20.20 ft, site and datum then in use), from rating curve extended above 15,000 ft 3 /s; no flow at times.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1907, 26.7 ft Oct 13, 1957, from floodmarks. Flood in Apr 1922 reached a stage of 25.5 ft, present datum, from information by local resident.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUIN JUIL AUG SEP .07 8.8 9.4 .07 9.9 .06 .05 2.8 9.8 . 05 .69 9.7 .05 9.9 9.0 . 05 2.0 9.8 9.9 9.2 .04 9.5 q .04 . 05 9.4 9.6 .04 1.6 .05 9.5 .70 .12 .16 9.7 e.30 9.6 e.30 .19 9.9 8.4 e.25 .19 8.4 e.25 .19 9.5 e.25 .18 9.6 e.25 .19 9.9 e.25 .19 9.8 e.25 .20 e.25 .21 9.5 9.8 e.25 .20 9.9 e.25 . 21 e.20 .21 9.5 . 20 .21 9.9 .15 . 88 .10 7.3 1.8 . 24 ---.15 .09 ___ 325.5 TOTAL 321.2 304.5 129.68 11.45 473.49 344.8 9.82 .41 7.3 MEAN 14.0 10.7 4.18 15.3 11.5 10.5 11.6 11.5 18.1 18.4 MAX 2.1 9.4 .04 8.4 .09 8.8 MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1953 - 1999hz, BY WATER YEAR (WY) MEAN 38.8 10.3 2.47 1.89 4.78 9.66 29.5 96.4 40.6 43.6 54.0 34.8 MAX 11.8 (WY) .000 .011 MIN .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 (WY)

08124000 COLORADO RIVER AT ROBERT LEE, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1953 - 1999hz
ANNUAL TOTAL	15097.4	4164.62	30.4
ANNUAL MEAN HIGHEST ANNUAL MEAN	41.4	11.4	237 1954
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	471 Feb 24	21 Mar 14	1.04 1969 13400 May 12 1954
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	1.4 Jan 29 7.9 Jan 24	.04 Feb 8 .05 Feb 5	.00 Oct 4 1952 .00 Oct 4 1952
INSTANTANEOUS PEAK FLOW	7.5 Can 21	27 Mar 27	24500 Sep 9 1980
INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT)	29950	1.98 Mar 27 8260	20.63 Sep 9 1980 22010
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	22 14	18 11	15 .69
90 PERCENT EXCEEDS	10	.25	.00

Estimated See PERIOD OF RECORD paragraph. Period of regulated streamflow.

08125500 OAK CREEK RESERVOIR NEAR BLACKWELL, TX

LOCATION.--Lat $32^{\circ}03'25$ ", long $100^{\circ}17'37$ ", Coke County, Hydrologic Unit 12080008, on left bank at municipal pump station, 1.9 mi upstream from dam on Oak Creek, 2.5 mi southeast of Blackwell, 14 mi north of Bronte, and 20 mi upstream from mouth.

DRAINAGE AREA. -- 238 mi 2.

PERIOD OF RECORD.--May 1953 to Sep 1983, Mar 1999 to Sep 1999.

Water-quality records.--Chemical data: Apr 1964 to Jan 1967 and Nov 1970 to Apr 1983.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. May 1953 to Sep 1983, nonrecording gage at same site and datum. Satellite telemeter at station.

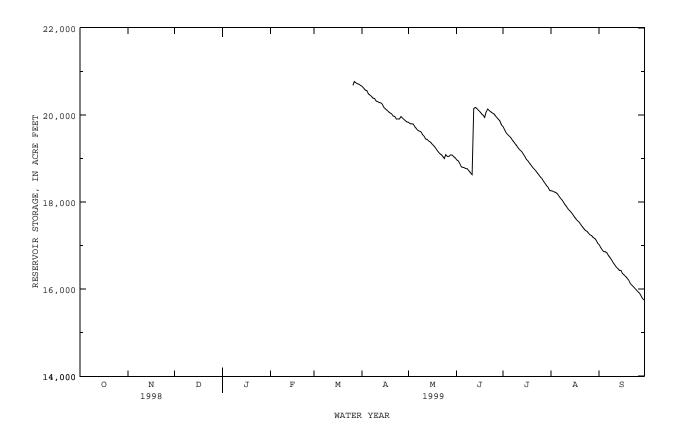
REMARKS.--Records good. The reservoir is formed by a rolled earthfill dam 3,800 ft long. The dam was completed in May 1952, and deliberate impoundment began May 12, 1953. The uncontrolled emergency spillway is an 800-foot-wide cut through natural ground, located 1,200 ft from right end of dam. The service spillway is an uncontrolled cut channel through natural ground 300 ft wide, located 2,000 ft from right end of dam. The reservoir and dam are the property of city of Sweetwater. The dam was built to impound water for municipal and industrial uses by the cities of Sweetwater, Blackwell, and Bronte. Since Apr 1962, West Texas Utilities Company has operated a steam generating power plant located on the reservoir. There is a gated outlet at the service spillway that can release water downstream to Oak Creek through a 24-inch concrete pipe. The capacity curve is based on a 1950 topographic survey. Figures given herein represent total contents. Data regarding the dam are given in the following table:

	Elevation
	(feet)
Top of dam	2,014.0
Crest of spillway	2,005.0
Crest of spillway (top of conservation pool)	2,000.0
Lowest gated outlet (invert)	1,951.0

COOPERATION.--Capacity table dated Nov 9, 1953 prepared from curve furnished by city of Sweetwater.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 49,100 acre-ft, Oct 13, 1957 (elevation, 2,003.80 ft); minimum observed, 6,050 acre-ft, Sep 6-8, 1980 (elevation, 1,974.5 ft).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 20,780 acre-ft, Mar 27 (elevation, 1,990.17 ft); minimum contents, 15,750 acre-ft, Sep 30 (elevation, 1,986.28 ft).


KESEKVUIK	STORAGE	(ACRE-FEI	51),	WAILK	YEAR	OCTOR	3LK	T338	TO	SEPTEMBER	1999
		DAILY	OBS	ERVATIO	N AT	2400	JOH	JRS			

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							20660	19830	18970	19730	18260	17020
2							20620	19800	18950	19660	18250	16950
3							20570	19800	18890	19590	18230	16900
4							20560	19790	18810	19550	18220	16860
5							20490	19730	18800	19510	18190	16860
6							20460	19690	18790	19480	18140	16830
7							20430	19650	18770	19420	18090	16770
8							20390	19630	18760	19380	18050	16720
9							20380	19610	18710	19330	17990	16670
10							20320	19550	18670	19280	17940	16610
11							20310	19510	18630	19230	17890	16560
12							20290	19450	20150	19190	17840	16510
13							20280	19440	20180	19160	17800	16470
14							20250	19400	20150	19100	17760	16430
15							20180	19380	20110	19050	17710	16430
1.0							00140	10040	00000	10000	17.660	1.5050
16							20140	19340	20080	18980	17660	16360
17							20110	19300	20030	18950	17610	16330
18							20080	19260	20000	18890	17570	16290
19							20050	19210	19940	18850	17540	16250
20							20030	19160	20070	18800	17490	16210
21							19980	19120	20140	18760	17440	16130
22							19970	19090	20100	18720	17390	16090
23							19910	19050	20080	18670	17350	16060
24							19910	19000	20050	18630	17330	16020
25							19910	19090	20030	18580	17290	15980
26						20680	19970	19050	19980	18540	17250	15940
27						20770	19930	19050	19940	18480	17230	15910
28						20740	19900	19080	19900	18430	17190	15840
29						20720	19870	19080	19860	18380	17170	15780
30						20710	19840	19050	19770	18340	17120	15750
31						20680		19020		18270	17050	
MAX							20660	19830	20180	19730	18260	17020
MIN							19840	19000	18630	18270	17050	15750
(+)							1989.51	1988.92	1989.46	1988.35	1987.39	1986.28
(@)							-840	-820	+750	-1500	-1220	-1300

WTR YR 1999 MAX 20770 MIN 15750

⁽⁺⁾ Elevation, in feet, at end of month.

^(@) Change in contents, in acre-feet.

08126380 COLORADO RIVER NEAR BALLINGER, TX

LOCATION.--Lat 31°42'55", long 100°01'34", Runnels County, Hydrologic Unit 12090101, at left downstream end of bridge on Farm Road 2111, 0.4 mi upstream from Rocky Creek, 5.0 mi northwest of Ballinger, and at mile 665.8.

DRAINAGE AREA.--16,358 mi², approximately, of which 10,260 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Jun 1907 to Sep 1979 (published as "at Ballinger", station 08126500) and Oct 1979 to current year. Monthly discharge only for some periods published in WSP 1312. Gage-height records collected in this vicinity from 1903-29 are contained in reports of the National Weather Service.

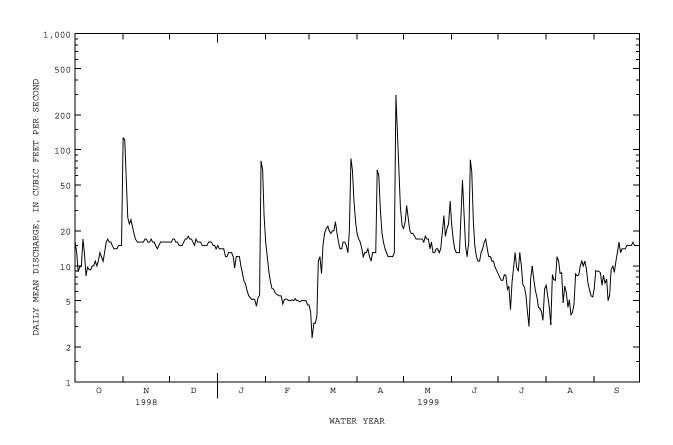
REVISED RECORDS.--WSP 1118: Drainage area. WSP 1512: 1916-17, 1919-20, 1921(M), 1922-25, 1928(M), 1930(M). WSP 1712: 1935, 1954-55(M). WDR TX-78-3: 1975-77.

GAGE.--Water-stage recorder. Datum of gage is 1,606.51 ft above sea level. Prior to Nov 29, 1930, nonrecording gages at several sites and at various datums near site 5.4 mi downstream. Nov 29, 1930, to May 1, 1975, water-stage recorder at site 6.2 mi downstream and May 1, 1975,08117995.1999.sw.plt.raw to Sep 30, 1979, water-stage recorder at site 5.4 mi downstream, both at datum 12.77 ft lower. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. Since water year 1980 at least 10% of contributing drainage area has been regulated by E.V. Spence Reservoir (station 08123950, normal storage 488,760 acre-ft). Many diversions upstream from station for irrigation, municipal supplies, and for oil field operations. Flow is also affected by Oak Creek Reservoir (station 08125500), and at times by discharge from the floodwater-retarding structures in the Kickapoo and Valley Creeks drainage

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--61 years (water years 1908-68) prior to completion of E.V. Spence Reservoir, 336 ft³/s (243,400 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1908-68).--Maximum discharge, 75,400 ft³/s Sep 18, 1936 (gage height, 28.6 ft, at former site and datum); no flow at times.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, about 36 ft sometime in 1884, at former site and datum, from information by local residents. Flood of Aug 6, 1906, reached a stage of about 32.0 ft, at former site and datum, from floodmarks (backwater from Elm Creek).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES OCT DAY NOV DEC JAN FEB MAR APR MAY JUIN JUIL AUG SEP 8.5 6.8 4.6 6.3 8.0 5.4 4.5 4.0 9.1 8.9 8.9 2.4 7.5 9.0 9.0 9.9 6.4 3.2 8.4 8.4 8.7 6.3 3.7 8.3 7.6 6.8 6.3 5.9 7.5 8.3 8.2 5.7 9.7 5.6 8.6 8.6 9.3 7.3 5.0 9.2 5.5 8.7 5.6 9.6 4.7 4.8 9.3 9.6 6.7 5.2 9.0 5.9 8.8 5.1 4.4 17 13 5.0 5.1 8.6 5.0 6.9 3.8 5.1 6.5 4.0 7.0 5.0 5.2 5.5 8.5 3.9 6.1 5.0 5.5 3.0 8.2 5.0 7.7 5.3 8.4 5.1 4.9 5.2 5.0 7.8 5.0 5 1 6.2 5.0 4.5 5.4 5.0 4.4 9.3 5.3 5.6 4.6 4.3 7.1 ---9.8 4.0 6.2 5.5 9.1 ___ 6.3 5.4 TOTAL 446.3 170.1 586.7 603.9 MEAN 12.6 25.4 15.9 14.4 6.08 18.9 34.2 19.0 20.1 7.18 7.21 11.4 MAX MIN 2.4 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1999z, BY WATER YEAR (WY) 57.2 97.0 MEAN 99.4 40.8 33.1 28.3 48.7 41.5 91.9 51.3 MAX (WY) 1.52 .47 1.07 .000 2.33 2.48 .000 MIN .78 .82 .67 1.13 .23 (WY)

08126380 COLORADO RIVER NEAR BALLINGER, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1969 - 1999z
ANNUAL TOTAL	18317.1	5856.9	
ANNUAL MEAN	50.2	16.0	70.4
HIGHEST ANNUAL MEAN			405 1987
LOWEST ANNUAL MEAN			7.18 1984
HIGHEST DAILY MEAN	682 Jun 10	296 Apr 26	9220 Aug 28 1986
LOWEST DAILY MEAN	3.4 May 15	2.4 Mar 3	.00 Mar 20 1971
ANNUAL SEVEN-DAY MINIMUM	5.9 May 10	3.7 Feb 28	.00 Mar 20 1971
INSTANTANEOUS PEAK FLOW		607 Apr 26	g16600 Aug 3 1978
INSTANTANEOUS PEAK STAGE		7.17 Apr 26	27.50 Sep 21 1990
ANNUAL RUNOFF (AC-FT)	36330	11620	50990
10 PERCENT EXCEEDS	53	22	120
50 PERCENT EXCEEDS	17	13	14
90 PERCENT EXCEEDS	11	5.1	1.2

Period of regulated streamflow. At site and datum then in use.

08126380 COLORADO RIVER NEAR BALLINGER, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --

CHEMICAL DATA: Sep 1961 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Oct 1961 to Sep 1997 (local observer).
WATER TEMPERATURE: Oct 1961 to Sep 1997 (local observer).
SUSPENDED SEDIMENT DISCHARGE: Jan 1978 to Sep 1981 (local observer).

REMARKS.--Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous years using daily (or continuous) records of specific conductance and regression relations between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request.

JUN 24...

SEP 03... 4

10

9.1

31

130

130

360

1300

320

1400

.47

.80

8.0

11

1140

4180

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 13,500 microsiemens, May 3, 1963; minimum daily, 244 microsiemens, Sep 9, 1980.
WATER TEMPERATURE: Maximum daily, 39.0°C, Jul 3, 1977; minimum daily, 0.0°C, Jan 9-11, 1973.
SEDIMENT CONCENTRATION: Maximum daily mean, 3,740 mg/L, Sep 9 1980; minimum daily mean, 4 mg/L, Feb 2, 1980.
SEDIMENT LOADS: Maximum daily, 94,100 tons Aug 3, 1978; minimum daily, 0 tons on many days during 1978 and 1980-81.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

	DATE	TIME	CHARGE INST. CUBIC FEET PER SECON (00061	, SPE CIF CON DUC ANC D (US/	IC - TEMF T- ATU E WAT CM) (DEG	TRE (MC TER AS FC) CAC	RD- NE SS NON TAL DIS S/L FLD S CA CO3) (MG	SSOLV D. AS ACO3 B/L)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	DIS SOLV (MG/ AS N	JM, SOI S- DI /ED SOI /L (I /IG) A	DIUM, IS- LVED MG/L S NA) 0930)
OC	02	1245	14	403	0 27.	5 98	30 8	360	210	108	3 !	506
AF	27	1200	5.5	488	0 13.	5 150	00 13	300	350	147	7 !	556
	26 27	1000 1030	572 141	290 58				92	140 43	70 14		362 48
	24 27	1215	13	193	0 26.	5 48	30 3	350	120	45	5 :	200
	03	1330	10	645	0 28.	2 150	00 14	100	310	174	1	860
	DATE	SC T RA	AD- ORP- TION ATIO	SIUM, DIS- SOLVED (MG/L AS K)	FIX END FIELD	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (MG/L AS CL)	RID DI SOL (MG AS	E, D S- S VED (1 /L F) S	AS		- , D
	OCT 02 JAN		7	16	120	830	800	.5	6 1	1	2560	
	27 APR		6	14	160	1300	900	. 5	9	8.0	3370	
	26 27		6 2	12 5.9	110 71	500 89	600 73	.4		1.1 5.1	1750 321	

This page intentionally left blank.

08127000 ELM CREEK AT BALLINGER, TX

LOCATION.--Lat 31°44′57", long 99°56′51", Runnels County, Hydrologic Unit 12090101, on right bank 1,000 ft upstream from storage dam at Ballinger and 1.9 mi upstream from mouth.

DRAINAGE AREA. -- 450 mi², of which 63.5 mi² is above Lake Winters Dam.

PERIOD OF RECORD. -- Apr 1932 to current year.

Water-quality records.--Chemical data: Sep 1958, Mar 1964 to Aug 1991. Specific conductance: Oct 1967 to Sep 1991.
Water temperature: Oct 1967 to Sep 1991.

REVISED RECORDS.--WSP 1442: 1935, 1946, 1954. WDR TX-81-3: Drainage area. WDR TX-96-3.

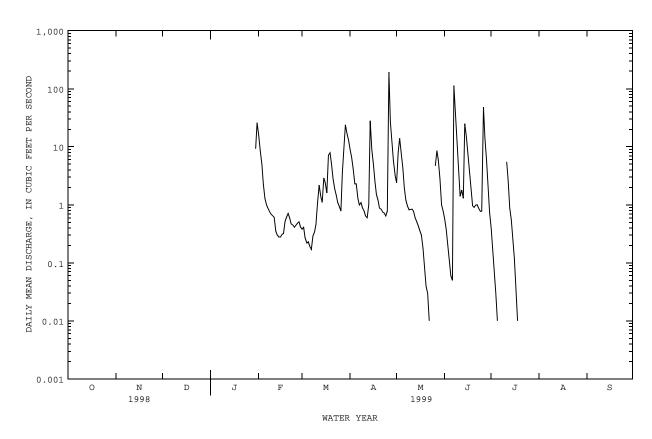
GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,617.72 ft above sea level. Satellite telemeter at station.

REMARKS.--Records good except those below 10 ft³/s, which are fair. The stage-discharge relation during periods of low flow are affected by wind action and by occasional accumulation of drift on dam. Since water year 1983 at least 10% of contributing drainage area has been regulated by New Lake Winters (normal storage, 8,370 acre-ft) The city of Winters diverts water from New Lake Winters for municipal use. Prior to Jun 1982, capacity of Old Lake Winters (just upstream from new dam) was 3,060 acre-ft

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--50 years (water years 1933-82) prior to completion of New Lake Winters, $47.6 \text{ ft}^3/\text{s}$ (34,490 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1933-82).—Maximum discharge, $50,000 \text{ ft}^3/\text{s}$ Oct 13, 1957 (gage height, 14.20 ft, from floodmark); no flow at times. Highest stage not affected by backwater from the Colorado River since at least 1904, was that of Oct 13, 1957, from information by local residents.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in Aug 1906 reached a stage of 14.5 ft, affected by backwater from Colorado River.

DAILY MEAN VALUES DAY OCT NOV DEC JAN MAR APR MAY JUN JUL AUG SEP .00 .00 .00 .00 16 .38 9 1 2.4 .58 .40 0.0 .00 8.5 5.0 .00 .00 .00 .00 .41 6.6 8.1 .38 .18 .00 .00 3 .00 .00 .00 .00 . 27 4.1 14 . 23 .07 .00 .00 2.3 8.0 .00 .00 .00 .00 2.3 .22 .12 .03 .00 .00 5 .00 .00 .00 .00 .23 2.3 4.3 .06 .01 .00 .00 6 .00 .00 .00 .00 1.0 .19 1.3 2.0 .00 .00 .00 .05 113 .00 .00 .00 .00 .87 1.0 1.2 .00 .00 .00 .95 8 .00 .00 .00 .00 . 76 . 29 1.1 34 .00 .00 .00 .00 .00 .00 .00 .69 .34 .88 .82 12 .00 .00 .00 10 .00 .00 .00 .00 .65 .46 .78 .83 4.5 .00 .00 .00 11 .00 .00 .00 .00 .61 .64 .84 5.5 .00 12 .00 .00 .00 .35 2.2 1.8 2.7 .00 .00 .00 .60 .77 1.4 1.0 . 60 .89 .00 13 .00 .00 .00 .00 . 30 1.3 .00 .28 .00 .00 .51 .55 .00 15 .00 .00 .00 .28 2.9 9.0 .43 15 .29 .00 .00 .00 .00 .00 .00 2.4 7.8 12 .00 16 .00 .31 5.0 .36 .00 1.6 7.2 17 .00 .00 .00 .00 .32 2.5 .30 3.7 .04 .00 .00 18 .00 .00 .00 .00 .52 1.5 .18 1.8 .01 .00 .00 1.2 19 .00 .00 .62 8.0 .09 .00 .00 20 .00 .00 .00 .00 .71 5.1 .88 .04 .90 .00 .00 .00 21 .00 .00 .00 .00 .59 2.8 .84 .03 .99 .00 .00 .00 22 23 . 00 .00 .00 .00 .47 1.9 .75 .01 1.0 .00 .00 .00 .72 .00 .87 .00 .45 1.5 .00 .00 .00 .00 .00 .00 .77 24 .00 .41 1.1 .00 .00 .00 .00 .00 .64 .00 .00 25 .00 .00 .00 .00 .45 .94 .78 .00 .78 .00 .00 .00 .48 26 .00 .00 0.0 00 .78 194 4.7 48 .00 .00 .00 .00 .00 2.7 .00 .00 .51 3.6 27 8.6 14 .00 .00 .00 28 .00 .00 .41 11 12 5.8 6.0 .00 .00 .00 .00 .00 29 .00 .00 .00 .00 24 5.8 2.8 2.1 .00 .00 .00 .75 30 .00 .00 .00 9.2 ---17 3.2 1.0 .00 .00 .00 13 .00 .00 26 .78 .00 .00 10.79 TOTAL 0.00 0.00 0.00 0.00 35.20 45.14 113.58 325.51 70.44 299.84 0.00 10.9 MEAN .000 .000 1.14 .000 .000 .000 1.61 3.66 2.27 9.99 .35 .00 MAX .00 .00 .00 26 16 24 194 14 113 5 5 .00 MTN .00 .00 .00 .00 . 28 .17 .60 .00 .05 .00 .00 .00 646 AC-FT .00 .00 .00 70 90 225 140 595 21 .00 .00 .01 .01 .02 .00 CFSM .00 .00 .00 0.0 0.0 .02 0.0 .00 .01 TN. .00 .00 .00 .00 .00 . 01 .03 .02 .00 .00 .00 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1999z, BY WATER YEAR (WY) MEAN 38.1 78.9 118 7.67 63.4 MAX 165 59.7 1987 576 164 911 268 76.4 655 770 42.5 90.1 760 (WY) 1987 1992 1992 1992 1992 1992 1994 1997 1997 1995 1996 MIN .000 .000 1984 1986 1986 (WY) 1984 1989 1999 1986 1984 1984 1984 1983 1983

08127000 ELM CREEK AT BALLINGER, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1983 - 1999z
ANNUAL TOTAL	2527.48	900.50	
ANNUAL MEAN	6.92	2.47	42.9
HIGHEST ANNUAL MEAN			188 1992
LOWEST ANNUAL MEAN			.96 1984
HIGHEST DAILY MEAN	432 May 27	194 Apr 26	12400 Sep 15 1996
LOWEST DAILY MEAN	.00 Jul 3	.00 Oct 1	.00 Jul 20 1983
ANNUAL SEVEN-DAY MINIMUM	.00 Jul 15	.00 Oct 1	.00 Jul 20 1983
INSTANTANEOUS PEAK FLOW		676 Apr 26	16700 Jun 23 1997
INSTANTANEOUS PEAK STAGE		4.56 Apr 26	9.06 Jun 23 1997
ANNUAL RUNOFF (AC-FT)	5010	1790	31090
ANNUAL RUNOFF (CFSM)	.015	.005	.095
ANNUAL RUNOFF (INCHES)	.21	.07	1.30
10 PERCENT EXCEEDS	14	4.8	61
50 PERCENT EXCEEDS	.16	.00	2.7
90 PERCENT EXCEEDS	.00	.00	.00

 ${\tt z}\ \ {\tt Period}$ of regulated streamflow.

08128000 SOUTH CONCHO RIVER AT CHRISTOVAL, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 31°11'13", long 100°30'06", Tom Green County, Hydrologic Unit 12090102, on left upstream side of U.S. Highway 277 bridge, 9.5 mi upstream from Twin Buttes Dam, and 23.7 mi upstream from mouth.

DRAINAGE AREA.--413 mi², of which 58.6 mi² probably is noncontributing.

PERIOD OF RECORD.--Feb 1930 to Sep 1995 (daily mean discharge). Oct 1995 to current year (peak discharges greater than base discharge).

REVISED RECORDS.--WSP 1118: 1943(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,010.22 ft above sea level. Prior to Jul 17, 1930, nonrecording gage at same site and datum. Jul 17, 1930, to Nov 15, 1977, water-stage recorder at same site and datum. Nov 16, 1977, to May 5, 1987, water-stage recorder at site 160 ft downstream at same datum. Satellite telemeter at station.

REMARKS.--Records good. No known regulation. Low flow is affected by diversions to the South Concho Irrigation Company canal 800 ft upstream from station.

AVERAGE DISCHARGE.--65 years (water years 1931-95), 31.4 ft³/s (22,770 acre-ft/year).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 100,000 ft 3 /s Jul 23, 1938 (gage height, 21.95 ft, from floodmark), from rating curve extended above 15,100 ft 3 /s on basis of slope-area measurement of 80,100 ft 3 /s; prior to Oct 1, 1995, no flow Feb 28 and Mar 1, 1955.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1882, about 23 ft Aug 6, 1906 (discharge, 115,000 ft 3/s), from rating curve extended as noted above, from information by local residents.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 160 ${\rm ft}^3/{\rm s}$:

Discharge Gage height Date Time (ft $^3/s$) (ft) Date Time (ft $^3/s$) (ft) (ft) Date Time (ft $^3/s$) (ft)

No peak greater than base discharge.

This page intentionally left blank.

08128400 MIDDLE CONCHO RIVER ABOVE TANKERSLEY, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 31°25'38", long 100°42'39", Irion County, Hydrologic Unit 12090103, on left bank 0.3 mi upstream from East Rocky Creek, 0.5 mi southwest of Tullos Ranch Headquarters, 6.7 mi northwest of Tankersley, and 20.9 mi upstream from mouth.

DRAINAGE AREA. -- 2,084 mi², of which 968 mi² probably is noncontributing.

PERIOD OF RECORD.--Mar 1961 to Sep 1995 (daily mean discharge). Oct 1995 to current year (peak discharges greater than base discharge).

Water-quality records. -- Chemical data: Aug 1964 to Apr 1965.

REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,986.47 ft above sea level. Satellite telemeter at station.

REMARKS.--Records good. No known regulation or diversions.

AVERAGE DISCHARGE.--34 years (water years 1962-95), $16.7 \text{ ft}^3/\text{s}$ (12,060 acre-ft/year).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,500 ${\rm ft}^3/{\rm s}$ Sep 21, 1974 (gage height, 24.98 ft); prior to Oct 1, 1995, no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1900, 29.5 ft Sep 26, 1936. A flood in 1900 reached the same stage, from information by local resident.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $250~{\rm ft}^3/{\rm s}$:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
May 24 Jun 6	2300 2345	4,300 643	a15.38 9.65	Jun 23	1515	3,980	15.00

a From floodmark.

This page intentionally left blank.

08129300 SPRING CREEK ABOVE TANKERSLEY, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 31°19'48", long 100°38'24", Tom Green County, Hydrologic Unit 12090102, on right bank at downstream side of bridge on Farm Road 2335, 1.4 mi south of Tankersley, 2.5 mi upstream from Dove Creek, and 10.4 mi upstream from mouth.

DRAINAGE AREA.--425 mi², of which 19.7 mi² probably is noncontributing.

PERIOD OF RECORD.--Oct 1960 to Sep 1995 (daily mean discharge). Oct 1995 to current year (peak discharges greater than base discharge).

Water-quality records. -- Chemical data: Sep 1964 to May 1967.

REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,964.72 ft above sea level. Prior to Nov 10, 1960, nonrecording gage at same site and datum. Satellite telemeter at station.

REMARKS.--Records fair. No known regulation. There are many small diversions above station for irrigation.

AVERAGE DISCHARGE.--35 years (water years 1961-95), 13.1 ft^3/s (9,490 acre-ft/year).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $30,400~{\rm ft}^3/{\rm s}$ Aug 12, 1971 (gage height, $16.57~{\rm ft}$); prior to Oct 1, 1995, no flow at times most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Notable floods since at least 1853 occurred in 1882 and 1884. Flood of Oct 3, 1959, reached a stage of 18.4 ft, from floodmarks. At former gage near Tankersley 8 mi downstream, the flood of Oct 3, 1959, had a discharge of 82,100 ft³/s and was found to be about 3 ft lower than the 1882 flood, the greatest at that location since at least 1853.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $250 \text{ ft}^3/\text{s}$:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr 26	1500	664	5 74	No other	neak greater	than hage disch	narge

This page intentionally left blank.

08130500 DOVE CREEK AT KNICKERBOCKER, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 31°16′26", long 100°37′50", Tom Green County, Hydrologic Unit 12090102, on left downstream end of bridge on Farm Road 2335, 0.5 mi west of Knickerbocker, and 5.7 mi upstream from mouth.

DRAINAGE AREA.--226 mi², of which 8.4 mi² probably is noncontributing.

PERIOD OF RECORD.--Oct 1960 to Sep 1995 (daily mean discharge). Oct 1995 to current year (peak discharges greater than base discharge).

REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,001.45 ft above sea level. Prior to Nov 10, 1960, nonrecording gage, Nov 10, 1960 to Mar 17, 1986, water-stage recorder, both at site 278 ft to the right at present datum. Satellite telemeter at station.

REMARKS.--Records good. No known regulation. Flow is affected by diversions from two small upstream channel dams, and by small upstream diversions (for irrigation). Flow is sustained by springflow from Dove Creek Spring about 9 mi upstream.

AVERAGE DISCHARGE.--35 years (water years 1961-95), 16.2 ft³/s (11,740 acre-ft/year).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,500 ft³/s Aug 12, 1971 (gage height, 20.66 ft); prior to Oct 1, 1995, no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, 30.4 ft in 1906 and Oct 3, 1959; floods in 1882 and 1884 reached about the same stage, from information by local resident.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 100 ft^3/s :

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Apr 26	1000	1,340	9.93	No other pe	ak greater	than base disch	narge.

This page intentionally left blank.

08131200 TWIN BUTTES RESERVOIR NEAR SAN ANGELO, TX

LOCATION.--Lat 31°22'55", long 100°32'17", Tom Green County, Hydrologic Unit 12090102, in outlet control tower at Twin Buttes Dam on Middle Concho River, Spring Creek, and South Concho River, 3.8 mi upstream from Lake Nasworthy Dam, 8.1 mi southwest of San Angelo, and 75.0 mi upstream from mouth.

DRAINAGE AREA. -- 3,868 mi², of which 1,055 mi² probably is noncontributing.

PERIOD OF RECORD.--Oct 1962 to current year. Water-quality records.--Chemical data: May 1965 to Nov 1966 and Jul 1970 to Apr 1984.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder on Middle Concho-Spring Creek pool and nonrecording gage on South Concho pool. Datum of gage is sea level. Satellite telemeter at station.

REMARKS.--Records good except those for estimated combined daily contents, which are fair. The South Concho and Middle Concho-Spring Creek pools were not equalized. The reservoir is formed by a rolled earthfill dam 8.1 mi long, including a 200-foot-wide uncontrolled off-channel concrete gravity spillway with ogee weir section. Outlet works consist of three 15.5-foot concrete conduits, each controlled by a 12.0- by 15.0-foot fixed-wheel gate and a 12.0- by 15.0-foot radial gate, located in the Middle Concho-Spring Creek pool. Low-flow releases are made through 2.0- by 2.0-foot gates located in the center of three fixed-wheel gates. The South Concho and Middle Concho-Spring Creek pools are connected by a 3.22-mile equalizing channel. At an elevation of 1,926.5 ft, the two pools join to form one lake. Below elevation 1,926.5 ft, daily contents are obtained from capacity tables for South Concho and Middle Concho-Spring Creek pools and summed to obtain combined daily contents. Lake level elevations below 1,926.5 ft represent Middle Concho-Spring Creek pool only. Deliberate impoundment of water began on Dec 1, 1962; dam was completed Feb 13, 1963. In Jun 1999, construction of a cutoff wall to stop seepage was completed. Capacity curve is based on a survey made in 1958. Reservoir was built for flood control, irrigation, and municipal uses. Figures given herein represent total contents. Data regarding the dam are given in the following table:

	EIEVALIO
	(feet)
Top of dam	1,991.0
Crest of spillway	1,969.1
Top of conservation storage	1,940.2
Bottom of equalizing channel (Middle Concho-Spring Creek pool)	1,926.5
Dead storage in South Concho pool	1,926.5
Lowest gated outlet (invert at Middle Concho-Spring Creek pool)	1,885.0

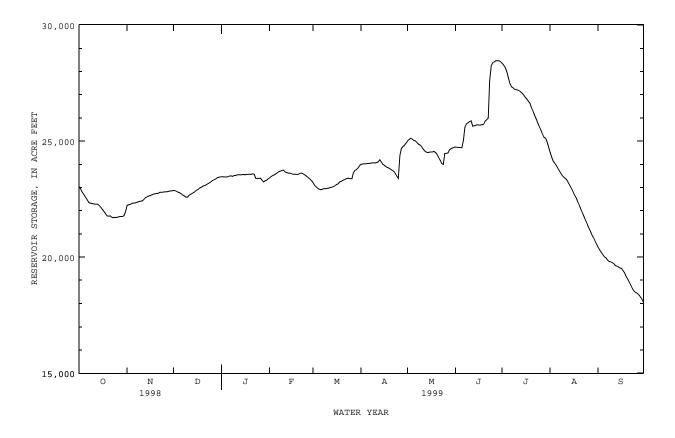
COOPERATION .-- Capacity curve dated Mar 1964 furnished by the U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 205,200 acre-ft, May 12, 1975 (elevation, 1,942.20 ft); minimum since first appreciable storage, 2,120 acre-ft, Apr 15, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum combined daily contents, 28,470 acre-ft, Jun 27; minimum combined daily, 18,080 acre-ft, Sep 30.

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	23040	22230	22870	23460	23420	23200	24000	25010	24740	28350	24510	20420
2	22920	22250	22860	23460	23480	23090	24010	25070	24730	28270	24300	20300
3	22800	22270	22830	23450	23520	23030	24020	25120	24720	28180	24130	20200
4	22700	22310	22790	23450	23540	22960	e24020	25090	24710	27990	24040	20110
5	22590	22330	22770	23460	23600	22920	e24030	25020	24710	27730	23940	20010
6	22490	22330	22730	23490	23650	22900	e24040	25010	25030	27490	23820	19970
7	22380	22350	22660	23500	23690	22920	e24040	24940	25600	27340	23710	19870
8	22320	22380	22630	23480	23710	22950	24060	24860	25750	27300	23600	19810
9	22310	22400	22580	23510	23740	22940	24060	24830	25800	27230	23490	19800
10	22290	22410	22580	23510	23740	22960	e24050	24760	25840	27220	23430	19770
11	22280	22430	22670	23540	23670	22970	e24070	24650	25870	27200	23380	19720
12	22280	22500	22710	23550	23640	23000	e24100	24580	25640	27170	23300	19640
13	22280	22570	22750	23540	23620	23010	24200	24530	25660	27120	23170	19610
14	22220	22600	22790	23550	23620	23040	24100	24500	25680	27050	23050	19580
15	22140	22630	22840	23560	23600	23070	24000	24520	25700	26980	22910	19530
16	22050	22650	22890	23540	23570	23120	23960	24530	25690	26880	22780	19520
17	21960	22680	22930	23560	23570	23150	23900	24530	25690	26800	22640	19420
18	21880	22720	22980	23560	23560	23230	23860	24560	25710	26700	22520	19320
19	21770	22720	23010	23570	23560	23260	23830	24510	25720	26620	22350	19180
20	21760	22740	23070	23560	23590	23300	23790	24420	25860	26420	22200	19060
21	21780	22750	23080	23600	23620	23330	23740	24290	25910	26280	22030	18920
22	21720	22790	23120	23570	23610	23370	23700	24160	25980	26110	21870	18790
23	21690	22790	23160	23390	23570	23390	23600	24030	27610	25950	21720	18650
24	21710	22800	23200	23390	23530	23400	23490	23990	28260	25790	21550	18550
25	21700	22810	23240	23390	23470	23380	23390	24460	28380	25620	21410	18490
26 27 28 29 30 31	21720 21740 21750 21750 21790 21950	22810 22820 22840 22850 22850	23300 23330 23370 23410 23440 23450	23400 23310 23240 23290 23310 23380	23420 23360 23290 	23380 23640 23740 23770 23840 23950	24390 24680 24770 24820 24920	24470 24490 24620 24670 24700 24730	28420 28470 28460 28460 28420	25470 25290 25160 25130 24980 24740	21250 21100 20960 20830 20680 20540	18450 18390 18300 18210 18080
MAX	23040	22850	23450	23600	23740	23950	24920	25120	28470	28350	24510	20420
MIN	21690	22230	22580	23240	23290	22900	23390	23990	24710	24740	20540	18080
(+)	1898.68	1899.10	1899.47	1899.73	1899.83	1900.38	1901.10	1901.02	1903.48	1901.23	1898.24	1896.36
(@)	-1210	+900	+600	-70	-90	+660	+970	-190	+3690	-3680	-4200	-2460


CAL YR 1998 MAX 46430 MIN 21690 (@) -20180 WTR YR 1999 MAX 28470 MIN 18080 (@) -5080

⁽⁺⁾ Elevation, in feet, at end of month of Middle Concho and Spring Creek pool.

^(@) Change in combined contents, in acre-feet.

e Estimated

89

08132000 LAKE NASWORTHY NEAR SAN ANGELO, TX

LOCATION.--Lat 31°23'19", long 100°28'41", Tom Green County, Hydrologic Unit 12090102, on left bank 250 ft upstream from Nasworthy Dam on South Concho River, 3.8 mi downstream from Twin Buttes Dam, 6.0 mi southwest of San Angelo, and 68.9 mi

DRAINAGE AREA.--3,975 mi², of which 3,868 mi² is above Twin Buttes Reservoir and 1,055 mi² probably is noncontributing.

PERIOD OF RECORD.--Mar 1930 to current year. Prior to Oct 1969, end of month contents only.
Water-quality records.--Chemical data: Mar 1964 to May 1965 and Nov 1969 to Apr 1984.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to Oct 1, 1996, datum was 1,840.00 ft. Satellite telemeter at station.

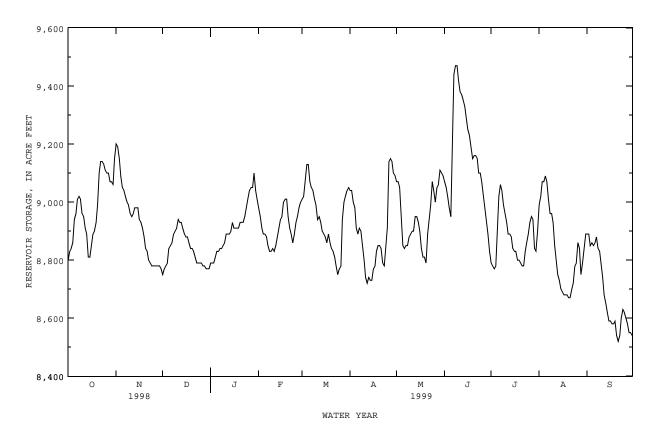
REMARKS.--Records fair. The lake is formed by a 6,090-foot dam with a 5,590-foot earthen section that has an earthen spillway 300 ft long, a concrete spillway 475 ft long with a bank of fifteen 25.0- by 18.0-foot tainter gates, and a 25.0- by 3.0-foot collapsible floodgate. The dam was completed and storage began Mar 28, 1930. Since Jul 1966, West Texas Utilities Co. has operated a steam generating powerplant on the lake. Since Sep 1962, the lake has been almost totally controlled by releases or pumpage from Twin Buttes Reservoir (station 08131200). Siltation surveys in Dec 1938 and May 1953 by the National Resource Conservation Service (formerly the Soil Conservation Service) show that 1,191 acre-ft of silt was deposited from Mar 1930 to Dec 1938 and an additional 1,023 acre-ft was deposited from Dec 1938 to May 1953, totaling 2,214 acre-ft. Water is used for part of San Angelo municipal supply and for irrigation east of San Angelo. The capacity curve is based on a survey by the Texas Water Development Board in Aug and Sep 1993 and has been used since Oct 1995. The city of San Angelo is in the process of planning and securing necessary permits to dredge Lake Nasworthy in the near future. Figures given herein represent total contents. Data regarding the dam are given in the following table:

	Elevation
	(feet)
Top of dam	1,883.5
Crest of spillway (300 ft)	1,879.1
Top of gates	1,873.2
Top of collapsible floodgate	1,872.2
Lowest outlet to canal (invert)	1,867.5
Crest of spillway (tainter gates sill)	1,855.3
Lowest gated outlet (invert)	1,836.0

COOPERATION. -- Capacity curve dated Dec 2, 1993, furnished by city of San Angelo.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 26,900 acre-ft, Sep 15, 1936 (elevation, 1,878.36 ft); minimum, 209 acre-ft, Aug 22, 1964 (elevation, 1,853.21 ft).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 9,490 acre-ft, Jun 8 (elevation, 1,871.83 ft); minimum contents, 8,520 acre-ft, Sep 21-22 (elevation, 1,871.05 ft).


RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8800	9200	8750	8790	8980	9010	9040	9070	9070	8790	8990	8890
2	8830	9190	8770	8790	8950	9020	9040	9070	9050	8780	9020	8890
3	8840	9150	8780	8790	8910	9070	9000	9050	9020	8770	9070	8850
4	8860	9090	8790	8810	8890	9130	8980	8960	8980	8780	9070	8860
5	8940	9050	8840	8830	8890	9130	8910	8850	8950	8910	9090	8850
6	8960	9040	8850	8830	8880	9070	8890	8840	9250	9020	9070	8860
7	9010	9020	8860	8840	8850	9050	8910	8850	9440	9060	9010	8880
8	9020	9000	8890	8840	8830	9040	8900	8850	9470	9040	8960	8840
9	9010	8990	8900	8850	8830	9010	8850	8880	9470	8990	8960	8830
10	8960	8960	8910	8860	8840	8990	8800	8890	9420	8960	8930	8790
11	8950	8950	8940	8890	8830	8940	8740	8900	9380	8930	8850	8740
12	8910	8960	8930	8890	8850	8950	8720	8900	9370	8890	8800	8680
13	8890	8980	8930	8890	8880	8930	8740	8950	9350	8890	8750	8650
14	8810	8980	8910	8900	8910	8900	8730	8950	9330	8880	8730	8620
15	8810	8980	8890	8930	8940	8890	8730	8930	9290	8840	8700	8590
16	8850	8940	8880	8910	8950	8880	8770	8900	9250	8830	8690	8590
17	8890	8930	8880	8910	9000	8860	8780	8840	9230	8830	8680	8580
18	8900	8910	8860	8910	9010	8890	8830	8810	9190	8800	8680	8580
19	8930	8880	8840	8910	9010	8860	8850	8810	9150	8800	8680	8590
20	8990	8840	8840	8930	8950	8840	8850	8790	9160	8790	8670	8540
21	9100	8830	8830	8930	8910	8830	8840	8890	9160	8780	8670	8520
22	9140	8800	8810	8930	8890	8810	8790	8940	9150	8780	8700	8540
23	9140	8790	8790	8950	8860	8780	8780	8990	9100	8830	8720	8600
24	9130	8780	8790	8980	8890	8750	8840	9070	9100	8860	8780	8630
25	9110	8780	8790	9010	8930	8770	8910	9040	9070	8890	8790	8620
26 27 28 29 30 31	9100 9100 9070 9070 9060 9150	8780 8780 8780 8780 8770	8790 8780 8780 8770 8770	9040 9050 9050 9100 9040 9010	8950 8980 9000 	8780 8940 9000 9020 9040 9050	9140 9150 9140 9100 9090	9000 9050 9060 9110 9100 9090	9020 8980 8930 8890 8830	8930 8950 8940 8840 8830 8900	8860 8840 8750 8790 8840 8890	8600 8580 8550 8550 8540
MAX	9150	9200	8940	9100	9010	9130	9150	9110	9470	9060	9090	8890
MIN	8800	8770	8750	8790	8830	8750	8720	8790	8830	8770	8670	8520
(+)	1871.56	1871.25	1871.25	1871.45	1871.44	1871.48	1871.51	1871.51	1871.30	1871.36	1871.35	1871.07
(@)	+360	-380	0	+240	-10	+50	+40	0	-260	+70	-10	-350

CAL YR 1998 MAX 9230 MIN 8650 (@) -130 WTR YR 1999 MAX 9470 MIN 8520 (@) -250

⁽⁺⁾ Elevation, in feet, at end of month.(@) Change in contents, in acre-feet.

91

08133500 NORTH CONCHO RIVER AT STERLING CITY, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 31°49'48", long 100°59'36", Sterling County, Hydrologic Unit 12090104, on right bank 100 ft upstream from bridge on State Highway 163, 0.5 mi south of Sterling City, 4.0 mi upstream from Sterling Creek, 5.1 mi downstream from Lacy Creek, and at mile 57.2.

DRAINAGE AREA.--588 mi 2 , of which 19.6 mi 2 probably is noncontributing.

PERIOD OF RECORD.--Sep 1939 to Sep 1985 (daily mean discharge), Oct 1985 to Sep 1995 (daily discharges greater than 100 $\rm ft^3/s$), Oct 1995 to current year (peak discharges greater than base discharge).

REVISED RECORDS.--WSP 1512: 1945, 1948. WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,242.36 ft above sea level. Prior to Dec 6, 1939, nonrecording gage at same site and datum. Satellite telemeter at station.

AVERAGE DISCHARGE.--46 years (water years 1940-85), 7.80 ft 3 /s (5,650 acre-ft/year).

REMARKS.--Records good. No known regulation. There are several small diversions above station for irrigation.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $16,300 \text{ ft}^3/\text{s}$ Jul 6, 1948 (gage height, 23.70 ft); prior to Oct 1, 1985, no flow at times each year. Maximum stage since at least 1891, that of Jul 6, 1948.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft^3/s :

Discharge Gage height Date Time (ft^3/s) (ft) Date Time (ft^3/s) (ft)

No peak greater than base discharge.

This page intentionally left blank.

08134000 NORTH CONCHO RIVER NEAR CARLSBAD, TX (Hydrologic index station)

LOCATION.--Lat 31°35'33", long 100°38'12", Tom Green County, Hydrologic Unit 12090104, near left bank at downstream side of bridge on county road, 0.6 mi southeast of Carlsbad, 1.5 mi upstream from Mule Creek, 2.5 mi upstream from Grape Creek, 16.2 mi upstream from O.C. Fisher Dam, and 21.3 mi upstream from mouth.

DRAINAGE AREA.--1,266 mi 2 , of which 75.1 mi 2 probably is noncontributing.

PERIOD OF RECORD. -- Mar 1924 to current year.

Water-quality records.--Chemical data: Apr 1980 to Jul 1982. Biochemical data: Apr 1980 to Jul 1982.

REVISED RECORDS.--WSP 1512: 1924(M), 1925, 1926(M), 1928, 1930, 1932(M), 1935, 1937-38(M), 1941(M), 1945(M), 1947-49(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,968.02 ft above sea level. Prior to Feb 4, 1925, and Sep 27, 1936, to Feb 7, 1937, nonrecording gage; Feb 4, 1925, to Sep 26, 1936, and Feb 8, 1937, to Nov 6, 1955, water-stage recorder, all at site 2.5 mi upstream at datum 32.76 ft higher. Satellite telemeter at station.

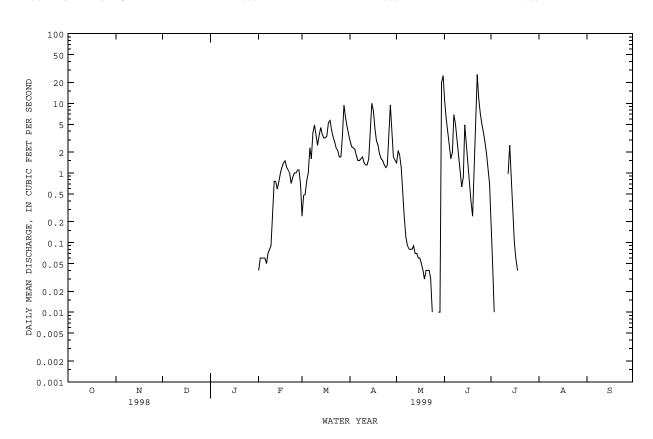
REMARKS.--No estimated daily discharges. Records good. No known regulation. There are several diversions (by pumping) upstream from station.

Discharge

Gage height

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since Jun 1853, that of Sep 26, 1936.

Discharge


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $1,500~{\rm ft}^3/{\rm s}$:

Gage height

Date	Time		ft ³ /s)		Et)		Date	Time		(ft ³ /s)		t)
No peak	greater th	nan base d	ischarge	:.								
		DISCHARG	E, CUBIC	FEET PER		WATER Y MEAN	YEAR OCTOBER VALUES	1998 TO	SEPTEME	BER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.04 .06 .06 .06	.24 .48 .49 .79	2.4	1.4 2.1 1.8 1.2	11 6.1 4.0 2.6 1.6	.23 .05 .01 .00	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9 10	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.05 .07 .08 .09	2.3 1.6 3.8 4.9 3.6	1.5 1.5 1.6 1.7	.23 .12 .09 .08	2.0 6.9 5.0 2.9 1.8	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.76 .75 .59 .75	2.5 3.5 4.5 3.6 3.2	1.3 1.3 1.6 4.2	.08 .09 .07 .07	1.1 .63 .87 4.9 2.5	.00 .97 2.5 1.1 .43	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	1.2 1.4 1.5 1.2	3.2 3.4 5.3 5.7 4.2	7.8 4.3 2.9 2.5 1.9	.06 .05 .04 .03	1.3 .70 .39 .24	.10 .06 .04 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.98 .71 .87 1.0	3.3 2.8 2.3 2.1 1.7	1.6 1.5 1.3 1.2	.04 .04 .03 .01	5.3 26 12 7.2 5.2	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	1.1 1.1 .67 	1.7 3.3 9.5 6.5 4.7 3.6	4.3 9.5 3.7 1.7 1.5	.00 .00 .01 .01 20 25	3.8 2.8 1.9 1.2 .70	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	18.50 .66 1.5 .04 37	99.80 3.22 9.5 .24 198	2.82 5 10 1.2	53.38 1.72 25 .00 106	123.93 4.13 26 .24 246	5.49 .18 2.5 .00 11	0.00 .000 .00 .00	0.00 .000 .00 .00
STATIST	ICS OF MOD	NTHLY MEAN	DATA FO	R WATER Y	EARS 192	4 - 199	9, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	36.0 1463 1958 .000 1934	4.02 65.2 1935 .000 1934	4.15 20.1 1931 .000 1953	3.96 16.0 1937 .000 1953	6.75 85.0 1935 .000 1953	10.2 307 1926 .000 1953	631 1925 .000	78.6 1355 1925 .000 1967	26.8 252 1937 .000 1934	39.6 1195 1948 .000 1924	16.4 255 1953 .000 1929	82.4 4019 1936 .000 1930

08134000 NORTH CONCHO RIVER NEAR CARLSBAD, TX--Continued (Hydrologic index station)

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1924 - 1999
ANNUAL TOTAL	1190.83	385.80	
ANNUAL MEAN	3.26	1.06	28.9
HIGHEST ANNUAL MEAN			336 1936
LOWEST ANNUAL MEAN			.000 1970
HIGHEST DAILY MEAN	354 May 26	26 Jun 22	62900 Sep 17 1936
LOWEST DAILY MEAN	.00 May 17	.00 Oct 1	.00 Jun 20 1924
ANNUAL SEVEN-DAY MINIMUM	.00 May 17	.00 Oct 1	.00 Jun 20 1924
INSTANTANEOUS PEAK FLOW	-	62 May 30	94600 Sep 26 1936
INSTANTANEOUS PEAK STAGE		5.09 May 30	29.10 Sep 26 1936
ANNUAL RUNOFF (AC-FT)	2360	765	20920
10 PERCENT EXCEEDS	3.7	3.3	12
50 PERCENT EXCEEDS	.00	.00	1.5
90 PERCENT EXCEEDS	.00	.00	.00

08134500 O.C. FISHER LAKE AT SAN ANGELO, TX

LOCATION.--Lat 31°29'04", long 100°28'53", Tom Green County, Hydrologic Unit 12090104, in intake structure of O.C. Fisher Dam on North Concho River, 3.1 mi northwest of San Angelo, and 6.6 mi upstream from mouth.

DRAINAGE AREA.--1,488 mi², of which 105 mi² probably is noncontributing.

PERIOD OF RECORD.--Feb 1952 to current year. Published as "San Angelo Reservoir" prior to Oct 1970, and as "San Angelo Lake", Oct 1970 to Sep 1974.

REVISED RECORDS. -- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to May 12, 1953, non-recording gage at same site and datum. Satellite telemeter at station.

REMARKS.--The lake is formed by a rolled earthfill dam 40,885 ft long, including spillway. Closure was completed Mar 7, 1951, and the dam was completed May 3, 1951. Deliberate impoundment began Feb 1, 1952. The lake is operated for flood control and recreation with part as municipal supply for the city of San Angelo. The spillway is an uncontrolled off-channel concrete gravity dam with ogee weir section 1,150 ft wide located to the right and upstream from the right end of dam. The spillway is designed to discharge 356,000 ft³/s at maximum design flood level. The control outlet works consist of six gate-controlled outlets, 7.5 by 14.5 ft, opening into two 18.0-foot-diameter concrete conduits, and two 2.5-foot gate-controlled outlets for water-supply outlets. Since Feb 1973, the capacity is based on a survey made in 1962. Prior to 1973, the capacity was based on a survey made in 1944. Figures given herein represent total contents. Data regarding the dam are given in the following table:

	Elevation
	(feet)
Top of dam	
Design flood	1,958.0
Crest of spillway	1,938.5
Top of conservation pool	1,908.0
Lowest gated outlet (invert)	1,840.0

COOPERATION.--Record of contents furnished by the U.S. Army Corps of Engineers and reviewed by the U.S. Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 174,100 acre-ft, Oct 14, 1957 (elevation, 1,916.47 ft); minimum since first appreciable storage, lake dry Jul 16, 1970, to Apr 15, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 14,150 acre-ft, Oct 1 (elevation, 1,873.66 ft); minimum contents, 9,020 acre-ft, Sep 30 (elevation, 1,868.56 ft).

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14150	13660	13340	13020	12680	12100	11830	11460	11060	11240	10470	9660
2	14140	13660	13340	12970	12670	12080	11830	11460	11030	11190	10440	9660
3	14110	13660	13350	12910	12670	12050	11820	11470	11010	11140	10430	9650
4	14080	13650	13350	12880	12640	12050	11800	11470	10980	11100	10410	9630
5	14050	13630	13340	12880	12630	12030	11770	11430	10950	11070	10410	9590
6	14000	13610	13330	12880	12640	11990	11720	11370	10970	11050	10390	9580
7	13950	13600	13270	12890	12640	11960	11700	11340	11350	11030	10360	9560
8	13940	13600	13210	12890	12640	11980	11700	11310	11520	11030	10350	9540
9	13930	13630	13210	12850	12600	11950	11700	11300	11520	11000	10330	9520
10	13900	13590	13180	12830	12580	11940	11670	11310	11530	11010	10300	9490
11	13880	13550	13170	12850	12490	11920	11620	11280	11530	11020	10280	9480
12	13840	13540	13170	12860	12390	11930	11600	11250	11520	11010	10250	9450
13	13830	13550	13170	12830	12350	11910	11610	11230	11510	11010	10210	9410
14	13830	13550	13150	12800	12350	11870	11640	11210	11490	10990	10190	9390
15	13810	13550	13130	12810	12350	11860	11570	11200	11480	10960	10160	9380
16	13780	13550	13130	12810	12230	11860	11530	11180	11450	10920	10130	9350
17	13760	13540	13120	12810	12300	11840	11500	11150	11420	10880	10110	9340
18	13700	13540	13140	12780	12280	11840	11490	11110	11410	10840	10090	9320
19	13660	13520	13130	12780	12260	11820	11480	11100	11390	10820	10060	9310
20	13650	13470	13120	12780	12220	11800	11480	11070	11400	10790	10040	9280
21	13650	13460	13100	12810	12180	11800	11490	11050	11400	10770	10010	9240
22	13640	13460	13050	12790	12180	11820	11490	11030	11400	10740	9990	9210
23	13640	13440	13040	12730	12150	11800	11420	11000	11400	10740	9970	9210
24	13640	13440	13020	12700	12150	11780	11390	10960	11380	10710	9950	9200
25	13640	13420	13000	12680	12150	11750	11390	10950	11380	10690	9920	9170
26	13630	13410	13020	12680	12150	11730	11480	10940	11380	10660	9890	9160

-280

1871.61

-340

-410

1870.87

+210

1871.08

-750

1870.30

1869.46 -750

-760

1868.56

CAL YR 1998 MAX 18460 MIN 12980 (@) -3250 WTR YR 1999 MAX 14150 MIN 9020 (@) -5160

-230

1873.01

-390

1872.67

-300

1872.40

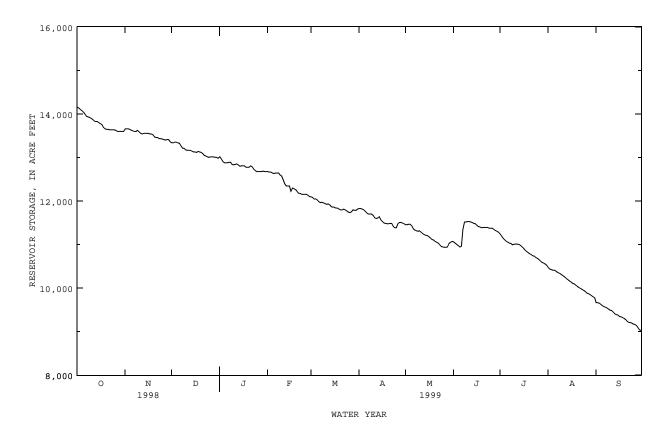
-580

1871.88

MAX

MTN

(a)


-580

1873.21

⁽⁺⁾ Elevation, in feet, at end of month.

^(@) Change in Contents, in acre-feet.

97

08136000 CONCHO RIVER AT SAN ANGELO, TX

LOCATION.--Lat 31°27'16", long 100°24'37", Tom Green County, Hydrologic Unit 12090105, on left bank 0.4 mi downstream from confluence of North and South Concho Rivers, 1.8 mi southeast of Tom Green County Courthouse, in San Angelo at Rio Concho Sports Complex on Rio Concho Dr. below Bell St. bridge, and 61.9 mi upstream from mouth.

DRAINAGE AREA. --5,542 mi², of which 1,131 mi² probably is noncontributing.

PERIOD OF RECORD.--Sep 1915 to current year. Prior to Oct 1969, published as "near San Angelo".

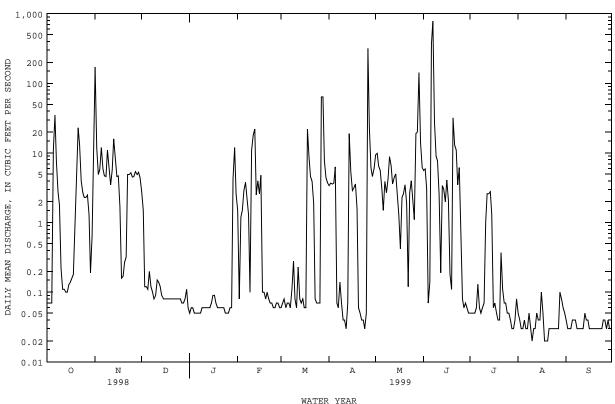
REVISED RECORDS.--WSP 568: 1915-16, 1919-22. WSP 1148: 1916-22(M), 1924(M), 1925-26, 1929(M), 1930-32, 1935-37. WSP 1512: 1917-18. WSP 1712: 1936. WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,776.79 ft above sea level. Prior to Aug 11, 1917, nonrecording gage at same site and datum. Aug 11, 1917, to May 15, 1963, water-stage recorder on right bank at same datum. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good except those above 500 ft³/s, which are fair. Since water year 1931 at least 10% of contributing drainage area has been regulated by Lake Nasworthy (station 08132000, normal storage 13,990 acre-ft). There are many diversions upstream from station for irrigation, industrial, and municipal supply. Since Dec 1962, flow regulated by Twin Buttes Reservoir (station 08131200, normal storage 186,203 acre-ft) on the South Concho River and since Feb 1952 by O.C. Fisher Lake (station 08134500, normal storage 119,200 acre-ft) on the North Concho River. Several observations of water temperatures were made during the year.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--15 years (water years 1916-30) prior to completion of Lake Nasworthy, $142 \text{ ft}^3/\text{s}$ (102,600 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS, 1916-30).--Maximum discharge, 92,000 ft 3/s Apr 26, 1922 (gage height, 36.8 ft, from floodmarks), on basis of slope-area measurements of 167,000 and 230,000 ft 3/s in 1936; no flow at times in 1921.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1853, 47.5 ft Aug 6, 1906 (discharge, about 246,000 ft 3/s), from information by local resident. Other large floods are known to have occurred in Jun 1853, Aug 1882, and Apr 1900.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES DAY OCT NOV DEC JAN APR MAY JUN JUL AUG SEP 5.6 .07 172 2.8 .05 1.5 .06 3.4 9.4 .05 .05 .04 2 .07 12 1.5 .06 .08 .07 3.7 9.9 5.9 .05 .04 .03 4.9 5.8 .12 1.2 1.5 3 .07 .06 .08 3.6 6.5 3.1 .05 .03 .03 3.7 5.6 .07 .07 .03 .12 .05 .06 .05 .03 5 12 11 .11 .05 2.9 .07 .14 .06 .04 .04 6 35 5.9 .20 .05 3.8 .07 .07 368 .03 .04 7.6 4.7 .12 .05 2.2 .06 .06 3.9 785 .06 .03 .04 8 2.8 4.6 .10 . 05 1.3 .11 .14 2.7 28 .05 .05 .03 .07 4.3 1.8 11 .08 .06 .10 .28 9.0 .06 .03 .03 10 6.0 11 .22 .09 .06 .08 .04 8.9 7.7 .07 .02 .03 3.5 .06 .04 .03 11 .06 18 6.6 2.5 1.0 .03 .19 12 5.8 .06 22 .23 .03 3.6 2.6 .03 .03 .11 .14 2.5 13 .10 16 .12 .06 .08 .07 4.4 2.6 .05 .05 8.8 4.0 19 5.0 .09 .06 .07 15 .13 4.6 .08 .07 2.6 .08 5.4 2.5 2.0 1.3 .04 .04 16 .14 4.7 .08 .09 4.8 .06 2.9 1.3 4 1 .06 10 .03 .09 .42 .03 17 .16 1.7 .08 .10 .06 3.2 2.1 .07 .05 .16 22 2.3 18 .18 .02 .18 .08 .07 .10 3.6 .05 .03 19 1.0 .17 .08 8.6 2.6 .02 .08 .11 .04 .03 20 5.4 .27 .08 .06 .10 4.6 .06 3.5 32 .04 .02 .03 21 .32 .08 .06 .08 3.9 .05 1.9 13 .37 .03 .03 23 22 23 13 4.9 4.9 .08 .06 .07 1.9 .04 .12 11 .11 .03 .03 4.0 3.5 .07 .08 .04 .03 .08 .06 .03 24 2.7 5.2 .06 .07 .03 4.0 6.2 .03 .03 .08 .05 .07 25 2.3 4.5 .08 .05 .06 .07 .05 2.2 1.6 .05 .03 .04 26 2 3 4.6 0.8 05 .07 .07 318 1 1 0.8 05 03 04 2.7 2.5 5.4 .07 .06 .07 64 23 19 .06 .04 .03 .03 4.9 28 1.3 .07 .06 64 6.2 20 .07 .03 .10 .06 .04 .19 7 7 29 5.3 .08 4.3 4.6 142 06 .03 .08 03 ---4.4 30 .63 4.4 .11 12 6.1 14 .05 .04 .06 .03 15 2.6 6.2 .06 .08 .05 TOTAL 329.02 7.09 20.57 80.40 186.67 415.09 301.24 1297.71 1.25 1.01 133.05 12.13 6.02 .040 MEAN 4.29 11.0 .23 .66 2.87 13.8 9.72 43.3 .39 .034 .05 MAX 35 172 2.8 12 22 64 318 142 785 2.8 .10 .06 . 06 MTN .07 .16 . 05 .06 .03 .12 .05 .03 .02 .03 2.0 AC-FT 264 653 14 41 159 370 823 2570 24 2.5 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 1999z. BY WATER YEAR (WY) MEAN 122 33 2 34 1 30 5 35 9 29 1 95 0 190 86 4 105 40 6 259 MAX 2659 434 274 205 213 242 1604 3984 1132 2137 900 13190 1975 1975 1941 1960 1975 1938 1949 1957 1941 1938 1942 1936 MTN 077 11 095 055 062 050 067 083 090 069 040 034 1971 1974 (WY) 1953 1974 1971 1971 1972 1971 1971 1969 1999 1999

08136000 CONCHO RIVER AT SAN ANGELO, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1931 - 1999z
ANNUAL TOTAL ANNUAL MEAN	1610.83 4.41	2785.23 7.63	88.5
HIGHEST ANNUAL MEAN	1.11	7.03	1132 1936
LOWEST ANNUAL MEAN	054	705 - 7	1.62 1952
HIGHEST DAILY MEAN	254 May 27 .02 Jul 9	785 Jun 7	128000 Sep 17 1936 .00 Sep 14 1952
ANNUAL SEVEN-DAY MINIMUM	.02 Jul 9 .03 Jul 8	.02 Aug 10 .03 Aug 18	.00 Sep 14 1952 .00 Sep 16 1952
INSTANTANEOUS PEAK FLOW	.03 041 8	3660 Jun 6	c230000 Sep 17 1936
INSTANTANEOUS PEAK STAGE		a7.95 Jun 6	a46.60 Sep 17 1936
ANNUAL RUNOFF (AC-FT)	3200	5520	64110
10 PERCENT EXCEEDS	10	8.1	68
50 PERCENT EXCEEDS	.11	.10	7.3
90 PERCENT EXCEEDS	.04	.03	.12

z a c Period of regulated streamflow. From floodmark. From rating curve extended above 105,000 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurements of 167,000 and 230,000 ${\rm ft}^3/{\rm s}$.

WATER YEAR

08136150 CONCHO RIVER NEAR VERIBEST, TX

LOCATION.--Lat 31°32′15", long 100°13′09", Tom Green County, Hydrologic Unit 12090105, at upper end of county park, about 0.1 mi above low-water crossing on FM 2334, also known as Mullins Crossing, 2.8 mi downstream from Crownest Creek, 4.5 mi northeast of Veribest, and 17.3 mi downstream from Concho River at San Angelo (station 08136000).

DRAINAGE AREA. -- 5,541 mi², of which 1,131 mi² probably is noncontributing.

PERIOD OF RECORD.--Apr 1970 to Apr 1974 (periodic discharge measurements). Jul 1998 to current year (gage heights only). Water-quality records.--Chemical data: Feb 1969 to Sep 1981. Biochemical data: Feb 1969 to Sep 1981.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,694.66 ft above sea level. From Jul 28, 1970, to Sep 30, 1981, nonrecording gage at same site and datum. Satellite telemeter at station.

REMARKS.--Records good. Interruptions in the maximum and minimum gage heights were the result of no flow. Since Feb 1969, at least 10% of contributing drainage area has been regulated by Lake Nasworthy (station 08132000,) and Twin Buttes Reservoir (station 08131200), combined normal storage 200,193 acre-ft, on the South Concho River and by O.C. Fisher Lake (station 08134500, normal storage 119,200 acre-ft) on the North Concho River. There are many diversions upstream from station for irrigation, industrial, and municipal supply.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood on May 9, 1957, reached a stage of 29.76 ft, from U.S. Army Corps of Engineers, Fort Worth.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 5.87 ft Jun 7, 1999; minimum gage height, 0.16 ft at times each year.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 5.87 ft Jun 7; minimum gage height, 0.16 ft several days.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECEN	MBER	JAN	JARY	FEBRU	JARY	MAF	RCH
1 2			1.70 1.62	.79 1.07	.94	.93	.83	.78 .78	.84	.72 .81	.43	.41
3			1.02	.93	.94	.91	.82	. 80	.83	.79	.43	.40
4			.94	.88	.92	.89	.84	.81	.81	.78	.47	.41
5			.88	.84	.90	.88	.86	.79	.82	.80	.45	.43
6			.89	.84	.90	.86	.79	.63	.80	.78	.45	.40
7			.90	.86	.86	.84	.63	.58	.80	.76	.41	.38
8			.87	.83	.86	.83	.58	.53	.78	.76	.43	.38
9			. 85	.81	.83	.81	.53	.50	.84	.77	.39	.20
10			.83	.80	.85	.81	.77	.50	.79	.66	.20	.16
11	.34	.17	.86	.83	.87	.83	.79	.53	.66	.54		
12	.70	.34	.85	.82	.86	.84	.53	.26	.56	.53		
13	.70	.60	. 85	.83	.84	.83	.26	.16	.94	.56		
14	.65	.56	.94	.84	.83	.82			.94	.85		
15	.65	.63	.94	.91	.83	.82			.85	.76		
16	.74	.63	.92	.88	.84	.82			.80	.76		
17	.77	.74	.90	.87	.84	.82			.76	.64	.18	.16
18	.79	.77	.89	.82	. 86	.83	.32	.16	.64	.58	.72	.18
19	.80	.79	.83	.80	. 85	.82	.67	.32	.60	.58	.71	.69
20	.83	. 79	.83	.80	.87	.84	.68	.62	.61	.58	.89	.71
21	.85	.81	.86	.80	.86	.81	.66	.58	.61	.53	.85	.80
22	. 85	.84	. 85	.79	.84	.81	.68	.64	.54	.45	.80	.74
23	.95	.83	.83	.78	.83	.81	.69	.60	.45	.42	.74	.68
24	.90	.84	.84	.82	.83	.81	.60	.54	.42	.40	.68	.62
25	.84	.81	.91	.84	.85	.83	.54	.50	.41	.39	.63	.52
26	.81	. 78	.91	.89	.84	.81	.50	.47	.40	.37	.52	.48
27	.80	. 77	.89	.87	. 85	.80	. 49	. 47	.39	.37	.54	. 47
28	.79	. 77	.88	.86	.87	.85	.50	.46	.41	.39	1.47	.51
29	.77	. 75	. 93	.87	.87	.81	1.01	.48			1.28	.96
30	.76	.74	.94	.90	.84	.80	.97	.79			.96	.85
31	.79	.72			.81	.79	.79	.72			.85	.78
MONTH			1.70	.78	.94	.79			.94	.37		

08136150 CONCHO RIVER NEAR VERIBEST, TX--Continued

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MZ	ΔY	JUI	NE	JUL	Ϋ́	AUGU	JST	SEPTE	MBER
1	.78	.75	.77	.72	.83	.68	.45	.39				
2	.75	.64	.82	.73	.68	.60	.42	.36				
3	.64	. 47	.86	.79	.67	.62	.41	.35				
4	. 47	.41	.83	.71	.65	.60	.39	.34				
5	.47	.41	.71	.63	.69	.59	.35	.33				
6	.64	. 45	.63	.53	1.10	.62	.35	.33				
7	.72	.58	.53	.48	5.87	1.10	.34	.32				
8	.58	.26	. 48	.43	2.02	1.18	.33	.16				
9	.26	.16	. 44	.39	1.19	.99						
10			.44	.39	1.00	.90						
11			. 42	.38	.91	.87						
12			.40	.36	.90	.83						
13			.38	.35	.87	.81						
14			.39	.35	1.04	.85						
15			.38	.34	.88	.83						
13			. 30	.31	.00	.03						
16			.38	.34	.83	.71						
17			.37	.33	.74	.70						
18			.36	.33	.70	.57						
19			.35	.32	.58	.52						
20			.34	.30	.72	.56						
21			.33	.29	1.00	.72						
22			.33	.30	.98	.89						
23			.32	.30	.90	.82						
24			.33	.29	.82	.73						
25			.34	.29	.77	.73						
26	2.28	.18	.34	.30	.76	.73						
27	1.93	1.12	.38	.32	.77	.74						
28	1.12	.92	.37	.34	.74	.64						
29	.92	.82	1.58	.36	.64	.50						
30	.83	.71	1.43	.98	.50	. 43						
31	.03	. / 1	.99	.82	.50	.43						
31			. 99	.02								
MONTH			1.58	.29	5.87	.43						

08136500 CONCHO RIVER AT PAINT ROCK, TX

LOCATION.--Lat 31°30′57", long 99°55′09", Concho County, Hydrologic Unit 12090105, near left bank at downstream end of pier of bridge on U.S. Highway 83, 0.5 mi north of Concho County Courthouse in Paint Rock, 2.7 mi downstream from Kickapoo Creek, and 20.0 mi upstream from mouth.

DRAINAGE AREA.--6,574 mi², of which 1,131 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Sep 1915 to current year. Prior to Oct 1970, published as "near Paint Rock".

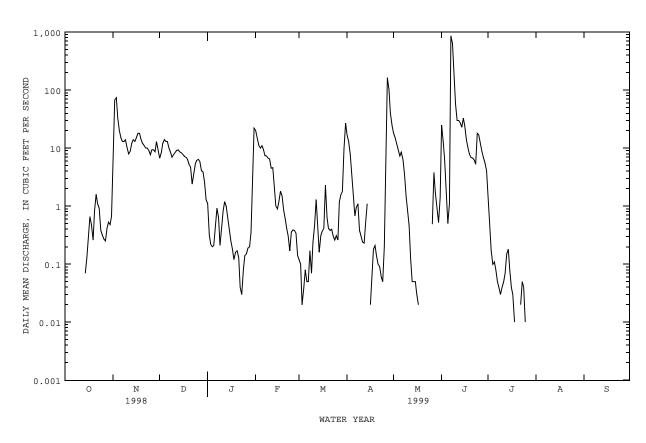
REVISED RECORDS.--WSP 458: 1915-16. WSP 568: 1919-20. WSP 1712: 1922(M). WSP 1732: 1918(M), 1923(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,574.36 ft above sea level. See WSP 1922 for history of changes prior to Jan 15, 1940. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. Since water year 1931 at least 10% of contributing drainage area has been regulated by Lake Nasworthy (station 08132000, capacity 13,990 acre-ft). There are many diversions above station for irrigation and municipal supply. Flow affected at times by discharge from the flood-detention pools of two floodwater-retarding structures with a combined detention capacity of 2,690 acre-ft. These structures control runoff from 16.5 mi² in the Willow Creek drainage basin.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--15 years (water years 1916-30) prior to construction of Lake Nasworthy, 186 ${\rm ft}^3/{\rm s}$ (134,700 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1916-30).--Maximum discharge, 76,500 ft³/s Apr 27, 1922 (gage height, 27.50 ft); no flow at times.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in Aug 1882 reached a stage of about 39.9 ft, and flood in Aug 1906 reached a stage of 39.5 ft, from information by local resident. Maximum stage since at least 1853, 43.3 ft Sep 17, 1936.

		DISCHA	RGE, CUB	IC FEET P		WATER YI Y MEAN V		R 1998 T	O SEPTEMBE	R 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	5.3 68 74 33 20	6.7 8.3 12 14 13	1.1 .32 .22 .20 .21	20 15 11 10 11	.12 .10 .02 .04	17 13 7.9 4.0 1.9	18 15 12 9.3 7.3	25 13 6.3 2.0 .50	1.5 .53 .17 .10	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9 10	.00 .00 .00 .00	15 13 13 14 10	13 10 8.4 7.0 7.8	.49 .93 .63 .21	9.4 7.4 7.3 6.7	.05 .05 .17 .07	.68 .96 1.1 .38 .30	8.5 6.5 3.6 1.5	1.1 862 635 148 58	.08 .05 .04 .03	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .07 .13	8.0 8.9 12 14 13	8.5 9.1 9.3 8.6 8.3	.85 1.2 .99 .61	4.5 4.6 2.2 1.0 .89	.46 1.3 .40 .16	.24 .23 .55 1.1	.46 .13 .05 .05	30 30 27 23 33	.05 .07 .15 .18	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.30 .66 .49 .26 .84	15 18 18 14 12	7.8 7.2 7.0 6.4 5.2	.25 .18 .12 .16	1.2 1.8 1.5 .85 .62	.37 .42 2.3 .64 .41	.02 .07 .18 .21 .14	.03 .02 .00 .00	24 14 10 7.7 6.9	.04 .03 .01 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	1.6 1.1 .92 .38 .32	11 10 10 9.1 7.7	4.7 2.4 3.6 5.4 6.2	.13 .04 .03 .08	.41 .31 .17 .36 .39	.38 .40 .31 .26	.10 .09 .06 .05	.00 .00 .00 .00	6.7 6.2 5.3 18	.00 .02 .05 .04	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	. 27 . 25 . 42 . 53 . 48 . 67	9.4 9.4 8.6 13 9.4	6.4 5.9 4.1 3.9 2.5 1.3	.15 .19 .20 .36 2.0	.38 .34 .14 	.26 1.2 1.6 1.8 9.8 27	3.5 163 103 40 24	.49 3.8 1.7 .92 .52	12 8.8 6.8 5.6 4.1	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	9.69 .31 1.6 .00	495.8 16.5 74 5.3 983	224.0 7.23 14 1.3 444	34.96 1.13 22 .03 69	125.96 4.50 20 .14 250	51.03 1.65 27 .02 101	383.96 12.8 163 .00 762	92.20 2.97 18 .00 183	2047.00 68.2 862 .50 4060	3.38 .11 1.5 .00 6.7	0.00 .000 .00 .00	0.00 .000 .00 .00
STATIST	CICS OF M	ONTHLY ME	AN DATA	FOR WATER	YEARS 193	1 - 1999:	z, BY WATE	R YEAR (WY)			
MEAN MAX (WY) MIN (WY)	201 3805 1931 .000 1935	57.9 615 1975 .000 1952	57.8 367 1975 .000 1952	53.7 274 1975 .000 1955	67.2 740 1992 .000 1955	53.6 318 1992 .000 1955	138 2131 1949 .000 1955	301 4756 1957 .057 1984	137 1227 1941 .000 1967	152 3519 1938 .000 1934	58.7 980 1942 .000 1952	377 17220 1936 .000 1954

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1931 - 1999z
ANNUAL TOTAL	12082.00 33.1	3467.98	120
ANNUAL MEAN HIGHEST ANNUAL MEAN	33.1	9.50	138 1470 1936
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	8210 May 27	862 Jun 7	9.50 1999 134000 Sep 17 1936
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	.00 Apr 23 .00 Apr 23	.00 Oct 1 .00 Oct 1	.00 Sep 28 1931 .00 Sep 28 1931
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE		2460 Jun 7 15.03 Jun 7	c301000 Sep 17 1936 a43.40 Sep 17 1936
ANNUAL RUNOFF (AC-FT)	23960	6880	99960
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	24 2.3	14 .38	129 26
90 PERCENT EXCEEDS	.00	.00	. 20

Period of regulated streamflow. From floodmark. From rating curve extended above 98,000 ft 3 /s on basis of slope-area measurements of 144,000 and 301,000 ft 3 /s.

08136500 CONCHO RIVER AT PAINT ROCK, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --

RIOD OF RECORD.--CHEMICAL DATA: Apr 1946 to Oct 1949 and Mar 1964 to current year. BIOCHEMICAL DATA: Mar 1964 to current year. PESTICIDE DATA: Apr 1968 to Oct 1981. SEDIMENT DATA: Feb 1978 to Sep 1981.

PERIOD OF DAILY RECORD. --

RIOD OF DALLY RECORD.-SPECIFIC CONDUCTANCE: Apr 1946 to Oct 1949 and Oct 1967 to Sep 1990 (local observer).
WATER TEMPERATURE: Apr 1946 to Oct 1949 and Oct 1967 to Sep 1990 (local observer).
SUSPENDED SEDIMENT DISCHARGE: Feb 1978 to Sep 1981 (local observer).

EXTREMES FOR PERIOD OF DAILY RECORD.--

EXPECIFIC CONDUCTANCE: Maximum daily, 3,690 microsiemens, Jun 28, Aug 12, 1984; minimum daily, 268 microsiemens, Sep 9, 1980. WATER TEMPERATURE: Maximum daily, 35.0°C, on several days during summer months; minimum daily, 0.0°C, on many days during

Willer Unionitis.

SEDIMENT CONCENTRATION: Maximum daily mean, 4,190 mg/L, Sep 9, 1980; minimum daily mean, 3 mg/L, Feb 2, 1979.

SEDIMENT LOADS: Maximum daily, 269,000 tons Sep 9, 1980; minimum daily, 0.0 tons on several days during Sep 1980.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

				~	•												
Ι	DATE	TIME	DIS- CHARGE INST. CUBIC FEET PER SECON (00061	CIF CON DUC ANC D (US/	CIC WHO I- FIE TT- (STA CE AR CM) UNI	ER DLE LD TEM LND- ATO LD WAT TS) (DEC	JRE FER G C)	OXYG DI: SOL' (MG (003)	S- VED /L)	OXYG DI SOL (PE CE SAT ATI (003	S- VED R- NT UR- ON)	OXYGE DEMAN BIO- CHEM ICAL 5 DA (MG/ (0031	D, 1 [- : Y L) (HARD- NESS FOTAL (MG/L AS CACO3)	HAR NES NONC DISS FLD. CAC (MG/ (009	S ARB OLV AS O3 L)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
JAN 06.		1120	.39	269	0 8.	3 7	. 0	10.	9	9	6	1.6		890	70	0	190
FEB 18.		1520	1.2	286	0 8.	3 14	. 5	9.	9	10	4	3.0		940	78	0	200
APR 27.		1445	339	313	0 8.	1 23	. 5	8.	1	10	3	3.9	:	1100	99	0	250
JUN 08.		1130	634	64				7.		9	3	4.7		180	10	0	42
		1130	001			3 21			_		,			100			12
Ι	DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM DIS- SOLVED (MG/L AS NA	SOR SOR TI RAT	D- SI P- DI ON SOL TO (MG AS	VED FII K) (M	TY DIS END ELD	SULFI DIS- SOL' (MG AS SO	- VED /L O4)	CHL RID DIS SOL (MG AS	E, - VED /L CL)	FLUC RIDE DIS SOLV (MG/ AS F	ED L	ILICA, DIS- SOLVED (MG/L AS SIO2)	CONS' TUEN DI SOL' (MG	OF TI- TS, S- VED /L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)
JAN 06.		98	236	3	6.	3 19	90	45	0	52	0	.61	. :	14	164	0	2.63
FEB 18.		104	245	3	6.	7 10	50	52	0	56	0	.49		7.9	175	0	
APR 27.		121	252	3	7.	0 1:	30	64	0	59	0	.51	. :	11	195	0	1.90
JUN 08.		18	56	2	5.	1 '	78	5	8	11	0	.24		7.4	34	8	.372
	DAT	NIT NIT SC SC TE (1 AS	GEN, FRITE N DIS- DLVED MG/L S N)	DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	AS N)	GEN MON ORG DI (M AS	ANIC S. IG/L N)	PHON SOI (MO AS	RUS IS- LVED G/L P)	ORT DIS SOLV (MG/ AS E	RUS THO, S- /ED /L	DIS- SOLVI (MG/I AS PO-	E, D, AR - : ED S L (1 4) A	SENIC DIS- OLVED UG/L S AS) 1000)	DI SOL (U AS	S- VED G/L BA)
	JAN 06		.028	2.65	<.020			68	<.(050	.0)11	.0	3			
	FEB 18	. <	.010	<.050	.035	.41		45	<.(050	<.0	010			3	1	48
	APR 27		.030	1.93	.031	.56		59	<.(050	.0)22	.0	7			
	JUN 08		.019	.391	.165	.32		49	E.0	039	.0	016	. 0!	5	3		64
	DAT	I SC TE (U AS	OMIUM DIS- DLVED UG/L S CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) 01030)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	D SO (U AS	AD, IS- LVED G/L PB)	NES DI SOI (UC AS	IS- LVED 3/L MN)		IS- LVED HG)	SELE- NIUM DIS- SOLVI (UG/I AS SI	, SI ED S L (1 E) A	LVER, DIS- OLVED UG/L S AG) 1075)	D SO (U AS	NC, IS- LVED G/L ZN) 090)
	JAN 06										_						
	FEB 18	. <	1.0	<1.0	1.2	<30	1	.0	<9	. 0	<.	.1	6	<	1.0	<	60
	APR 27										_						
	JUN 08		1.0	<1.0	1.1	<10	<1	.0	<3	. 0	<.	.1	2	<	1.0	<	20

This page intentionally left blank.

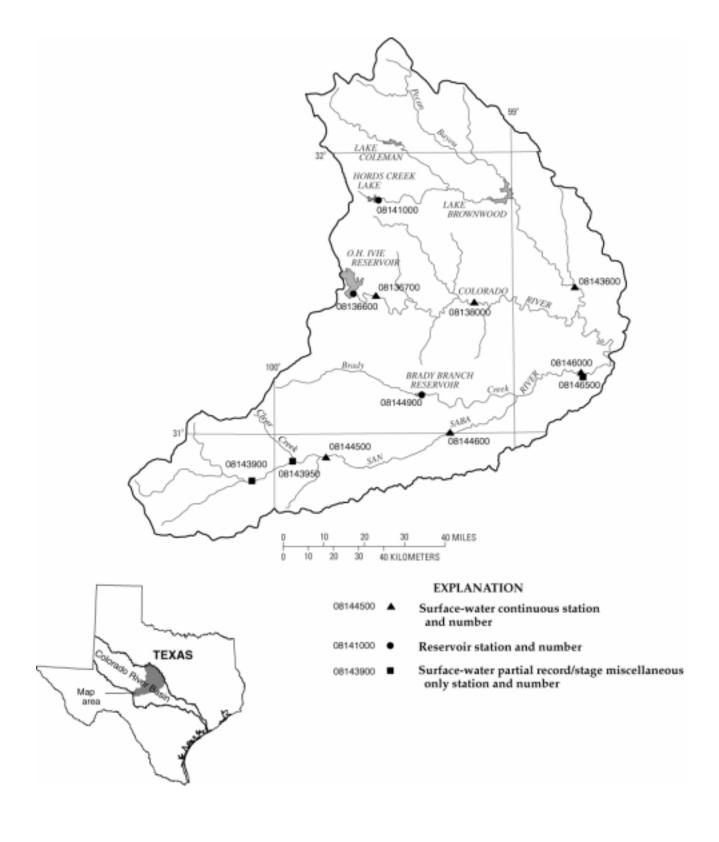


Figure 5.--Map showing location of gaging stations in the third section of the Colorado River
Basin

08136600	O.H. Ivie Reservoir near Voss, TX	108
08136700	Colorado River near Stacy, TX	110
08138000	Colorado River at Winchell, TX	112
08141000	Hords Creek Lake near Valera, TX	114
08143600	Pecan Bayou near Mullin, TX	116
08143900	Springs at Fort McKavett, TX	277
08143950	Clear Creek near Menard, TX	278
08144400	San Saba River at Menard, TX	118
08144600	San Saba River near Brady, TX	120
08144900	Brady Creek Reservoir near Brady, TX	122
08146000	San Saba River at San Saba, TX	124
08146500	San Saba Springs at San Saba, TX	277

08136600 O.H. IVIE RESERVOIR NEAR VOSS, TX

LOCATION.--Lat 31°30′00", long 99°40′05", Coleman County, Hydrologic Unit 12090106, on left bank, in outlet structure of Freese-Nichols Dam on Colorado River, 8 mi northeast of Millersview, 10 mi southwest of Voss, and at mile 615.1.

DRAINAGE AREA.--24,038 mi², of which 11,391 mi² probably is noncontributing.

PERIOD OF RECORD. -- Sep 1990 to current year.

GAGE.--Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station.

REMARKS.--Records good. The lake is formed by a concrete dam and spillway with six 50- by 40-foot tainter gates, and a 6,000 ft overflow spillway with a 2,000 ft tapered fuse plug release feature. Total length of the dam is 12,000 ft. The dam was completed and storage began Mar 15, 1990. Recording equipment was installed May 30, 1990, but water did not reach the sensing point until Sep 21, 1990 (at an elevation of 1,502.05 ft). Water is utilized for municipal use for several West Texas communities, the city of San Angelo being the largest user. The capacity curve is based on a survey made in 1989 by Freese and Nichols, Consulting Engineers, Fort Worth, Tex. Figures given herein represent total contents. Data regarding the dam are given in the following table:

	Elevation
	(feet)
Top of dam	1,584.0
Crest of overflow spillway	1,563.0
Top of conservation storage	1,551.5
Crest of spillway (tainter gates sill)	1,528.0
Lowest gated outlet (service outlet)	1,440.0

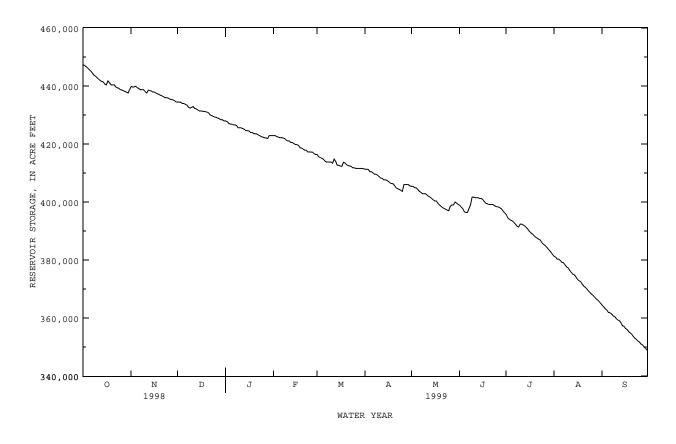
COOPERATION.--The capacity table dated Sep 15, 1990, was furnished by the Colorado River Municipal Water District.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 574,700 acre-ft, Jun 26, 1997 (elevation, 1,552.55 ft); minimum contents after initial filling, 348,900 acre-ft, Sep 30, 1999 (elevation, 1,539.10 ft).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 448,400 acre-ft, Oct 1 (elevation, 1,545.59 ft); minimum contents, 348,900 acre-ft, Sep 30 (elevation, 1,539.10 ft).

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	447400	439900	434500	428000	422900	416400	411300	405400	398900	395700	381300	364400
2	447100	439600	434400	427700	422900	415600	411300	405400	398300	394600	381000	363800
3	446700	439700	434400	427100	422500	415400	411200	404900	397800	394100	380300	363200
4	446200	439900	434000	426900	422400	415100	410500	404900	396700	393800	380300	362800
5	445600	439400	434000	426900	422200	414800	410500	404300	396400	393500	379800	361900
6	445100	439100	433700	426600	422200	414200	410100	403700	396400	393000	379200	361800
7	444400	438700	433400	426600	422100	413800	409600	403400	397700	392400	379100	361500
8	443700	438700	432700	426400	421900	413800	409600	402900	399000	391700	378300	360800
9	443400	438700	432400	425600	421400	413800	409300	402900	401700	391400	377600	360500
10	442900	438100	432700	425600	421100	413800	408800	402900	401700	392400	377300	359900
11	442400	437600	432900	425600	421100	413400	408300	402400	401500	392400	376500	359400
12	441900	438600	432300	425300	420500	414800	408200	402000	401500	392100	375800	359200
13	441600	438400	432100	425100	420500	414000	407700	401700	401500	391800	375200	358400
14	441400	438300	431800	424600	420200	412700	407700	401200	401200	391200	374900	357400
15	440600	437900	431400	424600	419800	412700	407500	400700	401200	390600	374200	357200
16	440400	437900	431400	424500	419800	412400	407100	400400	400900	389900	373400	356500
17	441700	437600	431300	424000	419500	412300	406600	400300	400100	389400	372900	356100
18	441100	437300	431300	424000	418700	413700	406400	399500	399500	389000	372600	355400
19	440400	437100	431100	423700	418600	413500	406300	399000	399400	388400	371800	355000
20	440400	436800	431000	423500	418300	412900	405700	398600	399200	387900	371100	354500
21	440400	436600	430800	423500	417900	412600	404900	398100	399200	387600	370700	353700
22	439700	436300	430000	423200	417900	412400	404600	397800	399200	387200	370100	353100
23	439400	436000	429800	422900	417300	412300	404400	397500	399000	386900	369400	352700
24	439200	436000	429500	422500	417300	411800	404100	397200	398600	386100	368900	352100
25	438700	435800	429300	422400	417200	411800	403700	397000	398400	385500	368300	351800
26 27 28 29 30 31	438600 438400 438100 437900 437600 438700	435500 435300 435200 435000 434500	429200 428900 428700 428400 428400 428000	422200 422100 421900 422900 422900 422900	417200 416700 416400 	411600 411600 411600 411600 411500	406000 406000 406000 406000 405500	398600 399000 399000 400000 399700 399200	398300 398000 397700 396900 396300	385100 384500 383900 383300 382700 381900	367900 367300 366700 366300 365700 365100	351100 350800 350000 349600 348900
MAX	447400	439900	434500	428000	422900	416400	411300	405400	401700	395700	381300	364400
MIN	437600	434500	428000	421900	416400	411500	403700	397000	396300	381900	365100	348900
(+)	1545.01	1544.75	1544.35	1544.03	1543.62	1543.31	1542.93	1542.52	1542.33	1541.38	1540.24	1539.10
(@)	-9700	-4200	-6500	-5100	-6500	-4900	-6000	-6300	-2900	-14400	-16800	-16200


CAL YR 1998 MAX 525700 MIN 428000 (@) -81100 WTR YR 1999 MAX 447400 MIN 348900 (@) -99500

⁽⁺⁾ Elevation, in feet, at end of month.

^(@) Change in contents, in acre-feet.

109

08136600 O.H. IVIE RESERVOIR NEAR VOSS, TX--Continued

08136700 COLORADO RIVER NEAR STACY, TX

LOCATION.--Lat 31°29'37", long 99°34'25", Coleman County, Hydrologic Unit 12090106, on left bank at downstream side of bridge on Farm Road 503, 1.2 mi upstream from Bois d'Arc Creek, 1.8 mi northeast of Stacy, 10.5 mi downstream from O.H. Ivie Reservoir, 24 mi downstream from Concho River, and at mile 604.8.

DRAINAGE AREA. --24,193 mi², of which approximately 11,391 mi² probably is noncontributing.

PERIOD OF RECORD.--Mar 1968 to current year. Prior to Oct 1970, published as "at Stacy".

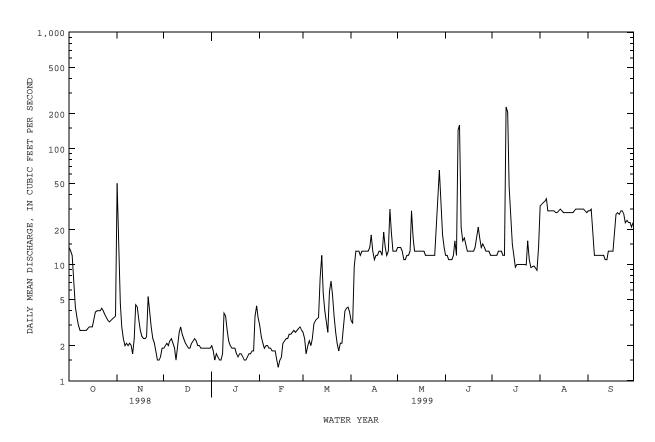
Water-quality records.--Chemical data: Dec 1961 to Jul 1994. Biochemical data: Oct 1974 to Aug 1977. Pesticide data:

Apr 1975 to Aug 1977. Sediment data: Oct 1974 to Oct 1977. Specific conductance: Apr 1968 to Sep 1994. Water temperature:

Apr 1968 to Sep 1994.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,394.66 ft above sea level (Texas Department of Transportation bridge plans). Satellite telemeter at station.


REMARKS.--No estimated daily discharges. Records good. Since installation of gage in Mar 1968, at least 10% of contributing drainage area has been regulated by upstream reservoirs, and since Mar 15, 1990, flow completely regulated by 0.H. Ivie Reservoir (station 08136600, normal storage 554,340 acre-ft), 10.5 mi upstream. There are many diversions above station for irrigation, municipal, and oil field operations. Wastewater effluent is returned to the river from numerous wastewater plants above station. At times flow may be slightly affected by discharge from the flood-detention pools of 42 floodwater-retarding structures with a combined detention capacity of 56,730 acre-ft. These structures control runoff from 277 mi 2 above this

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1882, 356,000 ft 3/s Sep 18, 1936 (gage height, 64.59 ft), by slope-area measurement of peak flow. The flood of Sep 18, 1936, was 4 ft higher than the 1906 flood and 7 to 8 ft higher than the 1882 flood, from information by local resident.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES OCT DAY NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2.6 14 50 1 9 2.0 3.0 3.3 14 12 12 32 29 2.3 13 14 2.0 1.8 2.4 14 12 12 4.6 1.5 2.1 3 12 2.1 9.6 14 11 12 34 30 1.9 12 4 2.0 2.0 13 13 11 35 20 5 13 37 4.3 2.3 2.2 1.6 2.0 2.2 13 11 11 12 2.0 6 3.5 2.3 1.5 2.0 2.0 13 11 12 13 29 12 2.1 1.5 1.9 2.3 3.0 12 12 13 29 8 2.7 1.9 3.1 13 12 12 12 29 12 2.1 1.5 3.8 1.8 3.3 13 13 144 12 29 12 10 2.7 2.0 2.0 3.6 1.8 3.4 13 29 159 228 29 12 1.7 2.7 17 205 12 11 2.7 2.6 3.5 28 12 2.7 2.9 2.2 7.7 13 47 28 2.3 1.5 13 16 11 2.8 2.0 1.3 13 4.5 2.5 12 14 13 17 28 29 11 4.3 5.7 2.3 18 15 30 15 2.9 3.3 2.1 1.9 4.0 13 13 12 29 1.6 13 13 16 2.9 2.7 2.0 2.1 11 13 13 9.5 28 13 3.3 17 3.4 2.4 1.9 1.7 2.2 2.6 12 13 13 10 28 13 18 3.9 2.3 1.9 1.6 2.3 5.8 12 13 13 10 28 19 19 4.0 2.3 2.1 2.3 7.2 13 12 13 10 28 27 20 4.0 2.4 2.2 1.7 2.5 5.5 13 12 14 10 28 28 21 4.0 5.3 2.3 2.5 3.6 12 12 17 10 28 27 1.6 22 23 4.2 4.0 2.2 1.5 2.6 2.6 2.1 19 12 12 21 10 28 29 4.0 2.0 17 9.9 29 1.5 14 29 3.7 24 2.3 2.0 2.6 1.8 12 12 16 30 27 25 3.5 2.1 1.9 1.7 2.7 2.1 13 12 15 11 30 23 9.4 26 3.3 1.8 1.9 1.7 2.8 2.1 30 20 14 30 24 1.5 1.5 2.9 2.7 3.2 1.9 1.8 2.8 19 39 13 9.6 30 23 28 3.3 1.9 4.0 13 65 9.7 30 23 1.8 13 29 3.4 1.6 1.9 3.6 4.2 13 35 13 9.3 30 21 30 3.5 1.9 1.9 4.4 ---4.3 13 18 12 8.9 29 23 28 3.6 1.9 3.5 14 14 64.7 TOTAL 137.1 115.7 526 697 589 136.9 64.3 61.4 396.0 813.3 922 2.19 29.7 MEAN 4.42 4.57 2.07 2.09 3.73 13.2 17.0 23.2 26.2 19.6 MAX 14 50 2.9 4.4 3.0 12 30 65 159 228 37 30 2.7 1.7 MTN 1.5 1.5 1.5 1.3 3.1 11 11 8.9 2.8 11 272 785 AC-FT 272 128 128 122 229 1040 1380 1610 1830 1170 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 1999, BY WATER YEAR (WY) MEAN 235 120 103 104 106 146 143 332 376 117 172 272 732 1516 2953 1475 1344 470 666 873 1783 MAX 562 1440 623 1978 (WY) 1987 1975 1975 1975 1987 1977 1987 1996 1987 1980 MTN 4.42 4 57 2 07 2.09 2 19 3 73 41 000 000 000 2 24 000 (WY) 1999 1999 1999 1999 1999 1999 1986 1984 1984 1974 1983 1983

08136700 COLORADO RIVER NEAR STACY, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1968 - 1999
ANNUAL TOTAL	18728.3	4523.4	
ANNUAL MEAN	51.3	12.4	184
HIGHEST ANNUAL MEAN			719 1987
LOWEST ANNUAL MEAN			12.4 1999
HIGHEST DAILY MEAN	654 Mar 21	228 Jul 10	31300 Sep 10 1980
LOWEST DAILY MEAN	1.5 Nov 27	1.3 Feb 13	.00 Jun 22 1974
ANNUAL SEVEN-DAY MINIMUM	1.7 Nov 26	1.6 Jan 18	.00 Jun 22 1974
INSTANTANEOUS PEAK FLOW		1280 Jul 10	45000 Sep 10 1980
INSTANTANEOUS PEAK STAGE		7.41 Jul 10	28.00 Sep 10 1980
ANNUAL RUNOFF (AC-FT)	37150	8970	133300
10 PERCENT EXCEEDS	30	29	383
50 PERCENT EXCEEDS	14	9.6	46
90 PERCENT EXCEEDS	2.2	1.9	6.5

08138000 COLORADO RIVER AT WINCHELL, TX

LOCATION.--Lat 31°28'04", long 99°09'43", McCulloch-Brown County line, Hydrologic Unit 12090106, near left bank at downstream end of pier of old abandoned bridge, 300 ft upstream from bridge on U.S. Highway 377, 0.3 mi south of Winchell, 5.9 mi downstream from Home Creek, and at mile 560.7.

DRAINAGE AREA.--25,179 mi², approximately, of which 11,391 mi² probably is noncontributing.

PERIOD OF RECORD.--Nov 1923 to Sep 1934 (published as "near Milburn"), Jun 1939 to Sep 1993, and Oct 1997 to current year.
Water-quality records.--Chemical data: Nov 1967 to Sep 1985, Dec 1990 to Sep 1993. Biochemical data: Dec 1990 to Aug 1993.
Specific conductance: Feb 1991 to Sep 1993. Water temperature: Feb 1991 to Sep 1993.

REVISED RECORDS.--WDR TX-81-3: Drainage area. WDR TX-88-3: 1985.

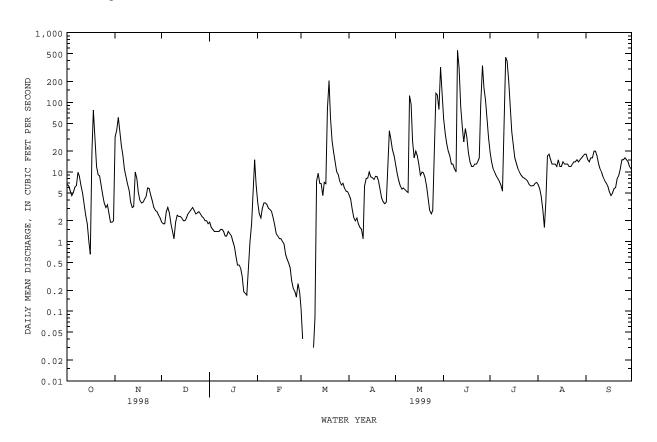
GAGE.--Water-stage recorder. Datum of gage is 1,264.86 ft above sea level. Nov 1923 to Sep 1934, nonrecording gage at site 4.2 mi downstream at datum 10.14 ft lower. Jan 13, 1939, to Mar 24, 1940, nonrecording gage at present site and datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. There are many diversions above station for irrigation, municipal supply, and for oil field operation. Since water year 1931, at least 10% of contributing drainage area has been regulated by Lake Nasworthy (station 08132000, normal storage 13,990 acre-ft). Since Mar 15, 1990, 95 percent of the drainage area above this station has been regulated by O.H. Ivie Reservoir (station 08136600), 54.4 miles upstream, and by eight other upstream reservoirs, with a total combined (9 reservoirs) capacity of 1,676,000 acre-ft at conservation level. At times, flow may also be affected by discharge from the flood-detention pools of 89 floodwater-retarding structures with a combined detention capacity of 105,100 acre-ft. These flood-detention structures control runoff from 512 mi² above this station

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--6 years (water years 1925-30) prior to construction of Lake Nasworthy, 798 ft³/s (578,400 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1925-30).--Maximum discharge, 42,300 ft 3 /s Jun 15, 1930 (gage height, 38.3 ft, at site 4.2 mi downstream at datum 10.14 ft lower); no flow Aug 8-10, Sep 1-5, 1929.


EXTREMES OUTSIDE PERIOD OF RECORD.—Highest stages since 1882 were 62.2 ft Sep 19, 1936, and 56.2 ft Aug 8, 1906, at railway bridge 1,000 ft upstream and converted to present site and datum, from information by Gulf, Colorado, and Santa Fe Railway Co.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.7 6.3 5.4 4.6 5.1	32 40 61 39 24	1.9 1.8 1.8 2.7 3.1	1.9 1.6 1.5 1.4	3.7 2.5 2.2 3.0 3.6	.11 .04 .00 .00	4.7 4.1 2.9 2.2 2.0	13 9.5 7.6 6.3 5.7	59 36 26 20 17	19 14 11 9.8 8.7	6.6 5.7 4.5 2.9 1.6	18 15 14 16
6 7 8 9 10	6.1 6.4 9.9 8.6 6.3	17 11 8.5 6.8 5.4	2.6 1.8 1.4 1.1	1.4 e1.4 1.5 1.5	3.6 3.4 3.0 2.9 2.7	.00 .00 .00 .03	2.2 1.8 1.6 1.5	5.9 5.6 5.3 5.1 125	13 13 11 10 560	8.0 7.3 6.5 5.3	3.7 17 18 15	20 20 17 13 11
11 12 13 14 15	4.9 3.4 2.4 1.8 1.0	3.7 3.1 3.2 10 8.0	2.4 2.3 2.3 2.2 2.0	1.2 1.2 1.4 1.3	2.2 1.7 1.3 1.2	7.4 9.6 6.9 6.8 4.6	6.3 8.0 8.2 10 8.5	94 28 16 20 17	310 87 44 27 42	442 391 202 76 38	13 13 12 15 12	9.8 8.4 7.4 6.9 6.2
16 17 18 19 20	.66 19 77 26 12	5.1 3.9 3.6 3.7 4.1	2.0 2.2 2.5 2.7 2.9	1.0 .84 .62 .46 .46	1.1 1.0 .92 .65	7.1 6.8 81 205 60	8.3 7.8 8.7 8.6 7.5	13 9.0 10 9.7 8.3	32 19 14 12	24 16 13 11 9.8	12 14 13 13	5.2 4.6 5.0 5.8 6.0
21 22 23 24 25	9.1 8.8 6.4 4.6 3.6	4.5 5.9 5.8 4.6 3.8	3.1 2.8 2.5 2.6 2.7	.41 .32 .19 .18	.49 .42 .27 .21	28 19 14 10 9.1	5.7 4.2 3.7 3.5 3.7	6.2 4.1 2.8 2.5 2.8	13 13 14 16 93	9.0 8.4 8.2 7.9 7.5	12 12 13 14 14	8.1 9.0 11 15 15
26 27 28 29 30 31	3.1 3.4 2.5 1.9 1.9 2.0	3.1 2.8 2.7 2.4 2.2	2.5 2.3 2.2 2.0 2.0	.38 1.0 1.8 4.7 15 6.7	.16 .25 .19 	7.2 6.5 6.9 5.9 5.3	16 39 29 21 17	30 135 127 79 319 136	339 164 108 57 31	6.7 6.3 6.3 6.4 6.9 7.1	15 14 15 16 17	16 15 14 12 11
TOTAL MEAN MAX MIN AC-FT	260.86 8.41 77 .66 517	330.9 11.0 61 2.2 656	70.1 2.26 3.1 1.1 139	55.53 1.79 15 .17 110	44.51 1.59 3.7 .16 88	512.56 16.5 205 .00 1020	248.8 8.29 39 1.1 493	1258.4 40.6 319 2.5 2500	2212 73.7 560 10 4390	1448.1 46.7 442 5.3 2870	378.0 12.2 18 1.6 750	351.4 11.7 20 4.6 697
STATIS	TICS OF N	MONTHLY MEA	AN DATA 1	FOR WATER	YEARS 19	31 - 1999h	ız, BY WA	TER YEAR (WY)			
MEAN MAX (WY) MIN (WY)	720 9878 1931 .074 1964	149 1515 1975 1.09 1952	160 1907 1992 .000 1952	151 1718 1968 .000 1952	176 2453 1992 .000 1952	198 1069 1987 .000 1952	490 4576 1949 .29 1959	1310 13910 1957 .000 1984	762 5313 1941 .000 1984	424 4746 1945 .000 1974	271 2227 1942 .000 1952	559 6020 1932 .000 1954

08138000 COLORADO RIVER AT WINCHELL, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1931 - 1999hz
ANNUAL TOTAL	24156.83	7171.16	
ANNUAL MEAN	66.2	19.6	445
HIGHEST ANNUAL MEAN			2070 1957
LOWEST ANNUAL MEAN			19.6 1999
HIGHEST DAILY MEAN	4440 Mar 16	560 Jun 10	67000 Oct 14 1930
LOWEST DAILY MEAN	.00 Aug 4	.00 Mar 3	.00 Aug 15 1934
ANNUAL SEVEN-DAY MINIMUM	.05 Aug 3	.00 Mar 3	.00 Aug 15 1934
INSTANTANEOUS PEAK FLOW		1520 Jun 10	76100 Oct 15 1930
INSTANTANEOUS PEAK STAGE		6.94 Jun 10	51.80 Oct 15 1930
ANNUAL RUNOFF (AC-FT)	47920	14220	322700
10 PERCENT EXCEEDS	192	30	667
50 PERCENT EXCEEDS	6.1	6.4	60
90 PERCENT EXCEEDS	1.8	1.1	2.9

Estimated See PERIOD OF RECORD paragraph. Period of regulated streamflow.

e h z

08141000 HORDS CREEK LAKE NEAR VALERA, TX

 $\label{location.--Lat 31°49'58", long 99°33'38", Coleman County, Hydrologic Unit 12090108, at outlet-works structure near right end of dam on Hords Creek, 5.6 mi north of Valera, and 8.8 mi west of Coleman.$

DRAINAGE AREA. --48 mi², approximately.

PERIOD OF RECORD.--Apr 1948 to current year. Prior to Oct 1970, published as "Hords Creek Reservoir". Water-quality records.--Chemical data: Oct 1969 to Aug 1982.

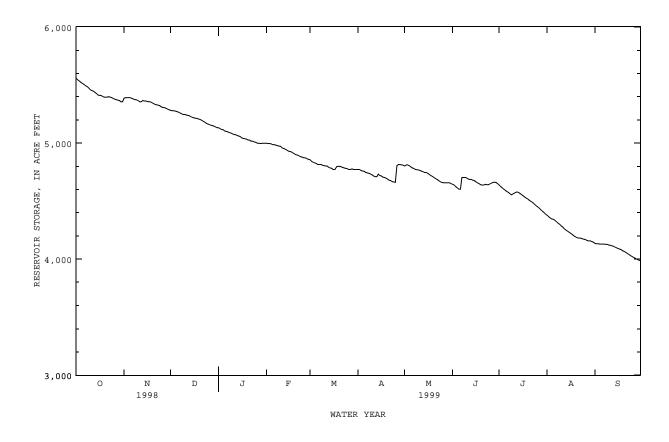
GAGE.--Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station.

REMARKS.--The lake is formed by a rolled earthfill dam 6,800 ft long, including spillway. Deliberate impoundment of water began Apr 7, 1948, and the dam was completed in Jun 1948. The spillway is an excavated channel through natural ground, 500 ft wide, located about 600 ft from the right end of dam. The spillway consists of three concrete conduits; two controlled by 5.0- by 6.0-foot slide gates, and a third uncontrolled ogee spillway 4.0 ft wide and 19.5 ft high. The lake is operated for flood control and municipal water supply for the city of Coleman. The capacity table of Aug 1974 is based on a sedimentation survey made in 1948. Flow is affected at times by discharge from the flood-detention pool of one floodwater-retarding structure with a detention capacity of 1,370 acre-ft. This structure controls runoff from 6.82 mi² in the Jim Ned Creek drainage basin. Figures given herein represent total contents. Data regarding the dam are given in the following table:

	Elevacion
	(feet)
Top of dam	1,939.0
Design flood	1,933.6
Crest of spillway	
Crest of spillway (top of conservation pool)	1,900.0
Lowest gated outlet (invert)	1,856.0

COOPERATION. -- Record of contents furnished by U.S. Army Corps of Engineers and reviewed by the U.S. Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 12,790 acre-ft, May 1, 1956 (elevation 1906.86 ft); maximum elevation, Mar 4, 1992 (elevation, 1907.31 ft); minimum since first appreciable storage in Jun 1951, 1,550 acre-ft, Sep 2, 1984 (elevation, 1878.01 ft).


EXTREMES FOR CURRENT YEAR.--Maximum contents, 5,580 acre-ft, Oct 1 (elevation, 1,894.22 ft); minimum contents, 3,990 acre-ft, Sep 30 (elevation, 1,889.42 ft).

		RESE	RVOIR STO			WATER YEA			SEPTEMBER	1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5560	5390	5280	5130	5000	4860	4770	4800	4650	4640	4380	4140
2	5540	5390	5280	5120	5000	4840	4770	4810	4640	4630	4370	4130
3	5540	5390	5280	5120	5000	4840	4760	4810	4630	4620	4360	4130
4	5530	5390	5280	5110	4990	4830	4760	4810	4620	4600	4350	4130
5	5510	5390	5270	5100	4990	4830	4760	4800	4600	4590	4340	4130
6	5510	5380	5270	5100	4990	4820	4750	4790	4600	4580	4330	4130
7	5500	5380	5260	5100	4980	4820	4740	4780	4700	4570	4320	4130
8	5490	5370	5250	5090	4980	4820	4740	4770	4700	4560	4310	4130
9	5480	5370	5250	5090	4970	4810	4730	4770	4700	4550	4300	4130
10	5460	5370	5250	5080	4970	4810	4730	4770	4700	4560	4290	4120
11	5450	5360	5240	5070	4960	4800	4720	4760	4690	4570	4280	4120
12	5450	5360	5240	5070	4950	4800	4710	4760	4690	4580	4260	4110
13	5440	5370	5240	5070	4950	4790	4710	4750	4690	4580	4250	4110
14	5430	5360	5230	5060	4940	4790	4730	4750	4680	4570	4240	4100
15	5410	5360	5220	5050	4930	4780	4720	4750	4680	4560	4230	4100
16	5410	5360	5220	5040	4930	4770	4720	4740	4670	4550	4220	4090
17	5410	5360	5210	5040	4920	4770	4710	4730	4660	4540	4220	4090
18	5400	5360	5210	5040	4910	4800	4700	4720	4650	4530	4200	4080
19	5400	5350	5210	5030	4910	4800	4700	4710	4640	4520	4190	4070
20	5400	5340	5200	5030	4900	4800	4690	4700	4640	4510	4190	4060
21	5400	5330	5200	5030	4900	4800	4680	4690	4640	4500	4180	4060
22	5400	5330	5190	5020	4890	4790	4680	4690	4650	4490	4180	4050
23 24	5400 5390	5330 5320	5180 5170	5020 5010	4880 4880	4790 4780	4670 4660	4680 4670	4640 4640	4480 4470	4180 4170	4040
24 25	5390	5320	5170	5010	4880 4870	4780 4780	4660	4670	4640 4650	4470	4170	4030 4020
26	5380	5310	5160	5000	4870	4770	4810	4660	4650	4450	4170	4010
27	5370	5300	5150	5000	4870	4770	4820	4660	4660	4440	4160	4010
28	5370	5300	5150	5000	4860	4780	4820	4660	4660	4420	4160	4000
29	5370	5290	5150	5000		4770	4810	4660	4660	4410	4160	3990
30	5360	5290	5140	5000		4770	4810	4660	4650	4400	4150	3990
31	5360		5130	5000		4770		4650		4390	4140	
MAX	5560	5390	5280	5130	5000	4860	4820	4810	4700	4640	4380	4140
MIN	5360	5290	5130	5000	4860	4770	4660	4650	4600	4390	4140	3990
(+)	1893.64	1893.45	1893.00	1892.63	1892.22	1891.95	1892.07	1891.58	1891.58	1890.77	1889.95	1889.43
(@)	-210	-70	-160	-130	-140	-90	+40	-160	0	-260	-250	-150

CAL YR 1998 MAX 7070 MIN 5130 (@) -1520 WTR YR 1999 MAX 5560 MIN 3990 (@) -1580

⁽⁺⁾ Elevation, in feet, at end of month.
(@) Change in Contents, in acre-feet.

115 08141000 HORDS CREEK LAKE NEAR VALERA, TX--Continued

08143600 PECAN BAYOU NEAR MULLIN, TX

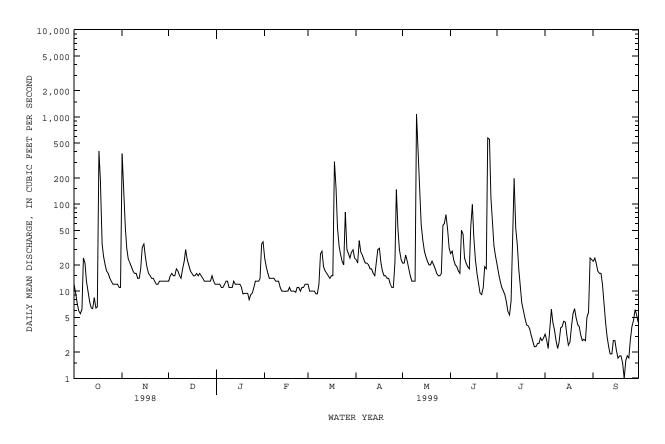
 $\label{location.--Lat 31°31'02", long 98°44'25", Mills County, Hydrologic Unit 12090107, on right bank 44 ft downstream from bridge on Farm Road 573, 0.6 mi downstream from Blanket Creek, 5.5 mi southwest of Mullin, and 13.6 mi upstream from mouth.$

DRAINAGE AREA.--2,073 mi².

PERIOD OF RECORD.--Oct 1967 to current year.

Water-quality records.--Chemical data: Oct 1967 to Aug 1996. Biochemical data: Nov 1991 to Aug 1996. Specific conductance: Oct 1967 to Sep 1991. Water temperature: Oct 1967 to Sep 1991.

REVISED RECORDS.--WDR TX-81-3: Drainage area.


GAGE.--Water-stage recorder. Datum of gage is 1,202.93 ft above sea level. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. Since installation of gage in water year 1968, at least 10% of contributing drainage area has been regulated by Lake Brownwood (station 08143000, normal storage 118,900 acre-ft) 45 miles upstream. In addition, flow from 152 mi² (from an intervening drainage area of 641 mi²) above this station and below Lake Brownwood was partly controlled by 41 floodwater-retarding structures, with a combined detention capacity of 43,420 acre-ft below the flood-spillway crests.

		DISCHAR	GE, CUBIO	C FEET PER		WATER Y	EAR OCTOBER	1998 TC	SEPTEMBE	R 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	12 9.4 7.3 5.9 5.5	380 163 54 31 23	13 15 16 15 15	12 12 12 11 11	24 19 16 14	12 10 10 10	23 21 38 28 26	21 21 26 22 18	27 29 23 20 19	20 16 13 11	3.2 2.7 2.2 3.8 6.2	22 24 21 17 16
6 7 8 9 10	6.2 24 21 13 10	21 19 17 16 16	18 17 15 14 18	12 13 13 11 11	14 14 13 13	9.3 9.3 12 27 29	23 21 21 20 18	15 13 13 13 1080	17 16 50 45 24	9.1 7.5 5.8 5.3 7.7	4.4 3.6 2.7 2.2 2.6	16 12 7.1 4.3 3.0
11 12 13 14 15	7.6 6.4 6.3 8.4 6.4	14 14 18 32 35	22 30 23 20 17	11 13 12 12 12	11 10 10 9.9	19 17 16 15 14	18 16 15 21 30	458 152 59 39 29	21 19 18 55 99	51 197 53 34 18	3.8 3.9 4.5 4.4 3.1	2.3 1.9 1.9 2.7 2.7
16 17 18 19 20	6.6 406 193 35 25	25 19 16 15 14	16 15 15 16 15	12 11 9.3 9.4 9.4	10 11 10 10	15 15 308 152 54	31 21 17 15 15	25 22 20 20 22	42 23 16 12 9.5	11 7.3 5.8 4.9 4.1	2.4 2.6 4.0 5.5 6.3	2.1 1.7 1.8 1.8 1.5
21 22 23 24 25	20 17 16 14 13	14 13 12 12 13	16 15 14 13	9.4 8.0 9.1 9.5	9.7 11 11 10 11	33 26 22 20 81	14 14 12 11	20 18 16 15 15	9.1 11 19 18 575	4.0 3.7 3.1 2.7 2.3	5.0 4.1 3.9 3.1 2.7	1.0 1.6 1.8 1.7 2.7
26 27 28 29 30 31	12 12 12 12 12 11	13 13 13 13 13	13 13 13 15 13	13 13 13 14 35 37	11 12 12 	30 27 24 28 30 24	21 147 51 30 23	16 57 60 76 52 31	555 119 56 33 25	2.3 2.5 2.5 2.9 2.7 2.9	2.8 2.7 5.0 5.7 24 23	3.9 4.6 6.1 5.4 4.4
TOTAL MEAN MAX MIN AC-FT	965.0 31.1 406 5.5 1910	1071 35.7 380 12 2120	495 16.0 30 12 982	401.1 12.9 37 8.0 796	343.6 12.3 24 9.7 682	1108.6 35.8 308 9.3 2200	772 25.7 147 11 1530	2464 79.5 1080 13 4890	2004.6 66.8 575 9.1 3980	523.1 16.9 197 2.3 1040	156.1 5.04 24 2.2 310	196.0 6.53 24 1.0 389
STATIS	rics of Mo	ONTHLY MEA		OR WATER Y	EARS 196	8 - 1999	, BY WATER Y		(1)			
MEAN MAX (WY) MIN (WY)	151 987 1975 .59 1989	82.5 1227 1975 4.79 1989	194 4741 1992 3.90 1984	146 1965 1968 4.57 1986	241 4416 1992 6.55 1983	247 2361 1992 5.45 1996	231 3510 1990 3.63 1984	294 1975 1994 .12 1984	356 2898 1997 .000 1984	55.5 434 1997 .000 1974	26.6 195 1971 .000 1980	80.8 980 1991 .79 1989
SUMMAR	Y STATISTI	ICS	FOR :	1998 CALEN	IDAR YEAR	. 1	FOR 1999 WAT	TER YEAR	2	WATER YE	ARS 1968	- 1999
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERO 50 PERO		EAN EAN AN C MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS		44715.1 123 6060 4.2 4.8 88690 97 20 6.2	Mar 16 Sep 7 Sep 6		10500.1 28.8 1080 1.0 1.6 2600 8.00 20830 35 14 3.1	May 10 Sep 21 Sep 17 May 10 May 10	;)	175 1245 9.01 37000 .00 .00 38300 42.15 126700 271 15 3.0	Apr 2 Jun 2 Jun 2 Apr 2	1992 1984 27 1990 29 1974 29 1974 27 1990 27 1990

117

08143600 PECAN BAYOU NEAR MULLIN, TX--Continued

08144500 SAN SABA RIVER AT MENARD, TX

LOCATION.--Lat 30°55′08", long 99°47′07", Menard County, Hydrologic Unit 12090109, at downstream side of bridge on U.S. Highway 83 in Menard, 1.1 mi downstream from Las Moras Creek, 1.9 mi upstream from Volkmann Draw, and 116.3 mi upstream from mouth.

DRAINAGE AREA.--1,135 mi², of which 6.6 mi² probably is noncontributing.

PERIOD OF RECORD.--Sep 1915 to Sep 1993 and Oct 1997 to current year. Water-quality records.--Chemical data: Nov 1964 to Jul 1967.

REVISED RECORDS.--WDR TX-81-3: Drainage area. WSP 1512: 1918-20, 1922-25, 1926(M), 1927-32, 1934(M), 1936, 1938(M).

GAGE.--Water-stage recorder. Datum of gage is 1,863.05 ft above sea level. Sep 14, 1915, to Mar 12, 1924, nonrecording gage at site 635 ft downstream at datum 2.20 ft lower. Mar 13, 1924, to Feb 21, 1939, nonrecording gage at site 1,000 ft upstream at datum 2.00 ft higher. Feb 22, 1939, to Jan 25, 1940, nonrecording gage at present site and datum. Jan 26, 1940, to Sep 19, 1957, water-stage recorder at site 240 ft to right at present datum. Feb 8, 1962, to Jan 22, 1963, nonrecording gage at site 600 ft downstream at present datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since about 1890, low flow regulated during irrigation season by diversions to Noyes Canal 4.6 mi upstream and diversions by pumping at several locations upstream.

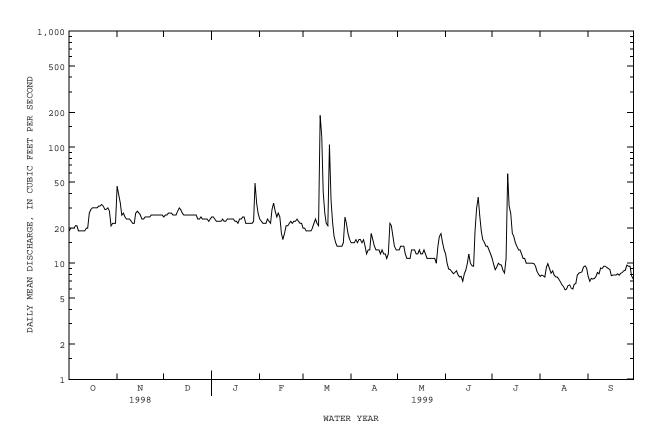
COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes, and publishes streamflow record.

Discharge

Gage height

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, 23.3 ft Jun 6, 1899, present site and datum, from information by local resident.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $670 \text{ ft}^3/\text{s}$:


Gage height

Discharge

Date	Time		(ft ³ /s)		ft)		Date	Time		(ft ³ /s)		ft)
Mar 12	1015		1,060	6	.30		No other	r peak gre	ater than	n base dis	charge.	
		DISCHA	RGE, CUBIC	FEET PER		WATER Y	YEAR OCTOBI VALUES	ER 1998 TO	SEPTEMBI	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 20 20 20 21	46 39 33 26 27	25 26 26 27 27	25 25 24 23 23	24 23 22 22 22	20 20 19 19	15 15 15 16 15	13 13 14 14 14	12 9.9 8.9 8.8 8.4	11 9.8 8.8 9.3	7.7 7.9 7.8 7.6 9.2	7.7 7.0 7.4 7.3 7.4
6 7 8 9 10	21 19 19 19	25 24 24 24 23	27 26 26 26 28	23 e23 24 23 23	24 23 22 29 33	19 20 22 24 22	16	12 11 11 11 13	8.1 8.3 8.6 7.9 7.6	9.7 9.6 8.7 8.2	9.9 9.0 8.2 8.6 7.9	7.7 8.3 8.1 9.1
11 12 13 14 15	19 20 20 27 29	22 22 27 28 27	30 29 27 26 26	24 24 24 24 24	28 25 27 25 18	21 188 123 41 27	12 13 13 18 16	13 13 12 12 13	7.7 7.0 8.1 8.7	59 31 27 18 17	7.6 7.6 7.3 6.9	9.4 9.4 9.2 9.0 8.8
16 17 18 19 20	30 30 30 30 31	26 24 24 25 25	26 26 26 26 26	23 23 22 24 24	16 18 21 21 22	22 21 105 35 23	13 13 13	12 12 13 12 11	12 10 9.5 9.4	15 14 13 13	6.3 5.9 6.0 6.4 6.5	7.8 7.9 7.9 7.9 8.1
21 22 23 24 25	31 32 31 29 29	25 25 26 26 26	26 26 24 24 25	25 25 22 22 22	23 22 23 23 24	17 15 14 14 14	12 12 11	11 11 11 11 11	30 37 26 19 16	11 11 10 10	6.1 6.0 6.6 6.7 7.9	7.9 8.2 8.3 8.6 8.7
26 27 28 29 30 31	30 28 21 22 22 22	26 26 26 26 26	24 24 24 24 23 24	22 22 23 49 33 27	23 22 22 	14 15 25 22 18 16	21 17 14	10 14 17 18 15 13	15 14 14 13 12	10 10 9.9 9.4 8.5 8.0	8.2 8.3 8.4 9.3 9.5	9.6 9.4 9.4 7.8 7.3
TOTAL MEAN MAX MIN AC-FT	760 24.5 32 19 1510	799 26.6 46 22 1580	800 25.8 30 23 1590	764 24.6 49 22 1520	647 23.1 33 16 1280	994 32.1 188 14 1970	14.6 22 11	391 12.6 18 10 776	385.9 12.9 37 7.0 765	422.9 13.6 59 8.0 839	236.8 7.64 9.9 5.9 470	249.6 8.32 9.6 7.0 495
STATIST	ICS OF MO	NTHLY ME	AN DATA FO	R WATER Y	EARS 191	.6 - 199	9h, BY WAT	ER YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	88.9 914 1942 .000 1957	36.6 383 1924 .000 1957	31.8 152 1985 .000 1955	32.0 80.4 1985 .035 1957	38.4 261 1958 .82 1955	33.2 251 1922 .99 1956	1206 1922 .89	77.7 1631 1957 1.22 1964	57.8 667 1958 .000 1953	104 5140 1938 .000 1952	43.1 869 1974 .000 1952	136 2870 1936 .000 1954

08144500 SAN SABA RIVER AT MENARD, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1916 - 1999h
ANNUAL TOTAL	8563.4	6887.2	
ANNUAL MEAN	23.5	18.9	62.4
HIGHEST ANNUAL MEAN			485 1938
LOWEST ANNUAL MEAN			6.12 1952
HIGHEST DAILY MEAN	1530 Aug 26	188 Mar 12	53300 Jul 23 1938
LOWEST DAILY MEAN	3.0 Aug 2	5.9 Aug 17	.00 Jul 12 1918
ANNUAL SEVEN-DAY MINIMUM	3.3 Jul 28	6.2 Aug 16	.00 Jul 19 1918
INSTANTANEOUS PEAK FLOW		1060 Mar 12	c130000 Jul 23 1938
INSTANTANEOUS PEAK STAGE		6.30 Mar 12	a22.20 Jul 23 1938
ANNUAL RUNOFF (AC-FT)	16990	13660	45180
10 PERCENT EXCEEDS	27	27	59
50 PERCENT EXCEEDS	18	18	23
90 PERCENT EXCEEDS	7.7	7.9	2.1

Estimated See PERIOD OF RECORD paragraph. From rating curve extended above $56,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of $130,000~{\rm ft}^3/{\rm s}$. From floodmark.

08144600 SAN SABA RIVER NEAR BRADY, TX

LOCATION.--Lat 31°00′14", long 99°16′07", McCulloch County, Hydrologic Unit 12090109, on right bank at downstream side of bridge on U.S. Highways 87 and 377, 0.4 mi upstream from Hudson Branch, and 8.4 mi southeast of Brady, and 72.9 mi upstream from mouth

DRAINAGE AREA.--1,633 mi², of which 6.60 mi² probably is noncontributing.

Discharge

PERIOD OF RECORD.--Jul 1979 to Sep 1993 and Oct 1997 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,530.98 ft above sea level. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records poor. No known regulation. Noyes Canal at Menard (discontinued station 08144000) diverts water from right bank of San Saba River 4.6 mi upstream from Menard for irrigation near Menard. First diversion was about 1890.

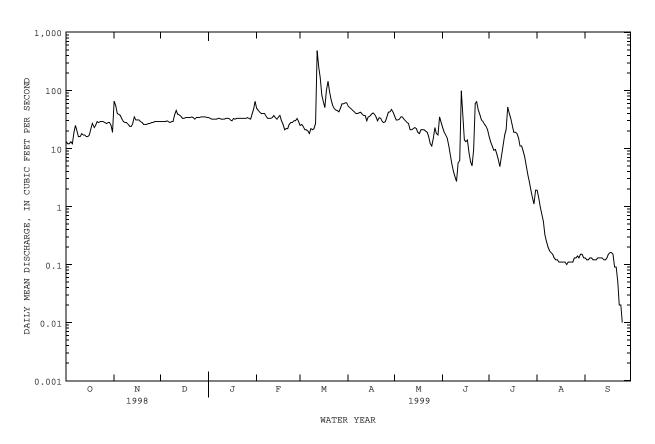
COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record.

Discharge

Gage height

EXTREMES OUTSIDE PERIOD OF RECORD.--Highest stage since Jun 1899, 33.8 ft Jul 23, 1938, from floodmark on left bank 150 ft upstream from present site.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$:


Gage height

Date	Time		(ft ³ /s)		Et)		Date	Time		(ft ³ /s)		t)
Mar 12	1515		2,460	6	.17		No other	peak grea	ater tha	n base dis	charge.	
		DISCHA	RGE, CUBIC	FEET PER		WATER LY MEAN	YEAR OCTOBE VALUES	R 1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAF	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	13 12 12 13 12	65 55 40 39 37	29 29 29 29 30	34 33 32 32 32	49 45 42 40 40	25 26 24 21 21	51 48 45	36 31 31 32 35	23 19 17 15 11	16 13 11 9.3 9.6	1.9 1.4 1.0 .75	.13 .12 .12 .13 .13
6 7 8 9 10	19 25 20 16 16	32 29 28 28 26	29 28 29 29 38	32 e33 33 32 32	40 36 33 33 33	20 18 22 21 22	40 41 42	35 32 30 28 27	7.5 5.4 4.0 3.2 2.7	8.0 6.3 4.9 7.3	.33 .25 .20 .17	.12 .12 .12 .13 .13
11 12 13 14 15	18 17 17 16 16	24 24 27 35 31	45 39 38 36 33	32 33 33 33 31	34 37 34 32 35	25 489 251 168 84	37 30 35	21 21 22 23 22	5.7 6.2 98 41 14	17 21 52 40 33	.15 .13 .12 .12 .11	.13 .13 .12 .12
16 17 18 19 20	17 22 27 23 25	31 31 29 28 26	33 34 34 34 34	30 33 32 33 33	37 30 26 21 22	65 51 101 144 97	. 41 . 39 . 35	19 18 21 21 21	13 14 8.5 5.9 5.0	25 19 19 18 15	.11 .11 .11 .11	.15 .16 .16 .15
21 22 23 24 25	29 28 29 29 29	26 26 27 27 28	35 34 32 34 34	33 33 33 33 33	22 26 28 28 30	70 55 49 46 45	33 29 3 28	20 19 16 12 11	9.5 60 64 46 39	11 11 8.9 7.2 5.1	.11 .11 .11 .11	.09 .05 .02 .02
26 27 28 29 30 31	28 27 28 28 25 19	28 29 29 29 29	34 35 35 35 35 35 34	34 33 32 39 48 65	30 33 29 	43 49 59 59 61	42 43 47 42	15 23 18 17 35 28	31 29 26 24 21	3.5 2.6 1.9 1.4 1.1	.13 .14 .13 .15 .15	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	655 21.1 29 12 1300	943 31.4 65 24 1870	1036 33.4 45 28 2050	1064 34.3 65 30 2110	925 33.0 49 21 1830	2294 74.0 489 18 4550	38.8 54 3 28	740 23.9 36 11 1470	668.6 22.3 98 2.7 1330	411.0 13.3 52 1.1 815	9.28 .30 1.9 .10 18	2.78 .093 .16 .00 5.5
STATIST	ICS OF MOD	NTHLY ME	AN DATA FO	R WATER Y	EARS 197	79 - 199	9h, BY WATE	R YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	48.9 118 1991 10.5 1984	44.6 91.3 1991 19.0 1998	87.2 516 1985 22.6 1986	68.0 282 1985 26.8 1986	75.4 400 1992 33.0 1999	64.5 160 1992 24.1 1986	144 1992 16.3	62.8 167 1987 6.35 1984	97.8 511 1987 .75 1984	81.9 901 1990 .49 1998	55.7 543 1990 .30 1999	195 1631 1980 .074 1984

08144600 SAN SABA RIVER NEAR BRADY, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1979 - 1999h
ANNUAL TOTAL	10049.01	9912.66	
ANNUAL MEAN	27.5	27.2	78.4
HIGHEST ANNUAL MEAN			256 1990
LOWEST ANNUAL MEAN			17.0 1984
HIGHEST DAILY MEAN	886 Aug 27	489 Mar 12	23900 Sep 8 1980
LOWEST DAILY MEAN	.16 Aug 2	.00 Sep 26	.00 Sep 26 1999
ANNUAL SEVEN-DAY MINIMUM	.17 Jul 29	.00 Sep 24	.00 Sep 24 1999
INSTANTANEOUS PEAK FLOW		2460 Mar 12	66000 Sep 8 1980
INSTANTANEOUS PEAK STAGE		6.17 Mar 12	25.50 Sep 8 1980
ANNUAL RUNOFF (AC-FT)	19930	19660	56790
10 PERCENT EXCEEDS	38	44	91
50 PERCENT EXCEEDS	26	28	40
90 PERCENT EXCEEDS	.40	.13	6.3

e Estimated h See PERIOD OF RECORD paragraph.

08144900 BRADY CREEK RESERVOIR NEAR BRADY, TX

LOCATION.--Lat 31°08'17", long 99°23'07", McCulloch County, Hydrologic Unit 12090110, at mouth of Bear Creek on Brady Creek, 280 ft upstream from Farm Road 3022 over Brady Creek Dam, 3.0 mi west of Brady, and 34.1 mi upstream from mouth.

DRAINAGE AREA. -- 523 mi².

PERIOD OF RECORD.--May 1963 to Sep 1983, Jan 1999 to Sep 1999. Water-quality records.--Chemical data: Sep 1964 to Apr 1983.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station.

REMARKS.--Records good. The reservoir is formed by a compacted earthfill dam 8,400 ft long. The dam was completed and storage began in May 1963. The dam was built by the city of Brady in cooperation with the Soil Conservation Service and the Farmers Home Administration for flood control, municipal, and industrial water supply. The spillway is a cut channel through natural ground 1,000 ft wide located at right end of dam. The top of conservation pool is an uncontrolled concrete drop-inlet structure that discharges through a 7.0 by 7.0-foot concrete box conduit and is designed to discharge 4,000 ft 3/s at a 19.4-ft head. The gated outlet is a 36-inch pipe that extends through the embankment and is equipped with three sluice gates for controlled releases downstream. Flow into reservoir is affected at times by discharge from the flood-detention pools of 35 floodwater-retarding structures with a combined detention capacity of 77,950 acre-ft. These structures were built during the period Feb 1955 to Jul 1962 and control runoff from 263 mi 2 in the Brady Creek watershed above this station. Figures given herein represent total contents. Data regarding the dam are given in the following table:

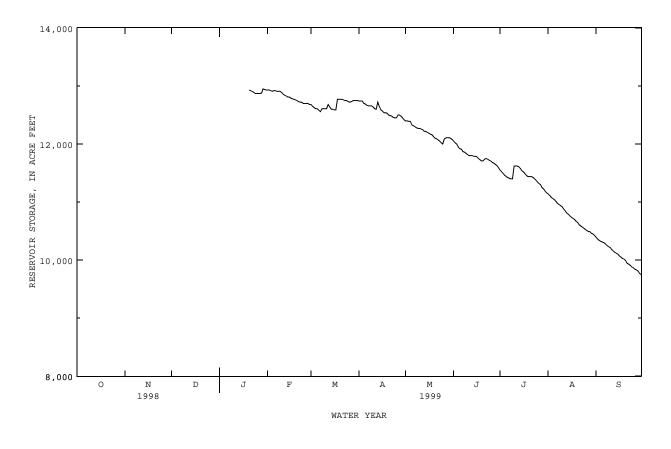
		Elevation
		(feet)
Top of dam		1,783.0
Crest of emergency spillway		1,762.4
Crest of service spillway (top of conservation	pool)	1,743.0
Lowest gated outlet (invert)		1,712.0

COOPERATION.--The capacity table dated May 22, 1963 was prepared from curve obtained from the city of Brady. The capacity curve is based on U.S. Geological Survey topographic map but was not adjusted for borrow. Records of diversions may be obtained from the city of Brady.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 40,880 acre-ft, Sep 24, 1971 (elevation, 1,747.70 ft); minimum since first appreciable storage, 1,030 acre-ft Sep 18, 1964 (elevation, 1,710.40 ft).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 13,000 acre-ft, Jan 30 (elevation, 1,731.88 ft); minimum contents, 9,750 acre-ft, Sep 30 (elevation, 1,728.75 ft).

		RESERV	OIR STORA		(ACRE-FEET), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY OBSERVATION AT 2400 HOURS							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					12930	12680	12740	12400	12050	11550	11140	10390
2					12930	12650	12740	12400	12020	11520	11110	10360
3					12920	12630	12740	12390	12000	11490	11080	10340
4					12910	12610	12700	12390	11950	11460	11060	10320
5					12920	12610	12690	12330	11920	11440	11040	10310
6					12920	12580	12670	12320	11910	11420	11010	10300
7					12910	12560	12660	12300	11870	11410	10980	10280
8					12910	12610	12660	12280	11860	11400	10960	10250
9					12910	12610	12660	12270	11840	11400	10940	10230
10					12890	12610	12640	12270	11820	11620	10920	10220
11					12860	12610	12610	12260	11800	11620	10880	10180
12					12840	12680	12600	12250	11800	11620	10850	10160
13					12830	12640	12720	12220	11800	11610	10810	10130
14					12810	12600	12650	12220	11790	11580	10790	10120
15					12810	12600	12590	12200	11790	11540	10760	10100
16					12790	12590	12570	12190	11780	11520	10740	10070
17					12780	12590	12540	12170	11750	11490	10720	10050
18					12770	12770	12540	12160	11730	11460	10700	10030
19					12760	12770	12530	12130	11710	11440	10670	10020
20				12930	12750	12770	12500	12100	11710	11440	10650	9990
21				12920	12730	12770	12490	12090	11740	11440	10610	9940
22				12910	12720	12760	12480	12070	11750	11430	10590	9930
23				12890	12720	12750	12460	12050	11740	11410	10570	9910
24				12870	12700	12750	12450	12020	11720	11380	10550	9880
25				12870	12700	12730	12450	12000	11710	11350	10530	9870
26				12870	12700	12720	12500	12090	11680	11320	10510	9840
27				12870	12700	12730	12500	12110	11670	11300	10490	9830
28				12880	12680	12750	12480	12110	11650	11250	10490	9810
29				12950		12750	12450	12110	11630	11230	10460	9770
30				12940		12750	12420	12100	11590	11190	10450	9750
31				12930		12750		12080		11160	10420	
MAX					12930	12770	12740	12400	12050	11620	11140	10390
MIN					12680	12560	12420	12000	11590	11160	10420	9750
(+)					1731.60	1731.66	1731.37	1731.06	1730.60	1730.19	1729.45	1728.75
(@)					-250	+70	-330	-340	-490	-430	-740	-670


WTR YR 1999 MAX 12950 MIN 9750

⁽⁺⁾ Elevation, in feet, at end of month.

^(@) Change in contents, in acre-feet.

123

08144900 BRADY CREEK RESERVOIR NEAR BRADY, TX--Continued

08146000 SAN SABA RIVER AT SAN SABA, TX

LOCATION.--Lat 31°12'47", long 98°43'09", San Saba County, Hydrologic Unit 12090109, on left bank near left downstream end of bridge on State Highway 16, 1.2 mi north of San Saba, 2.7 mi upstream from Mill Creek, 4.8 mi downstream from China Creek, and 16.8 mi upstream from mouth.

DRAINAGE AREA. -- 3,046 mi², of which 6.6 mi² probably is noncontributing.

PERIOD OF RECORD.--Dec 1904 to Dec 1906 (gage heights only), Sep 1915 to Sep 1993, and Oct 1997 to current year. Published as "near San Saba" Dec 1904 to Dec 1906 and Sep 1915 to Aug 1930. Water-quality records.--Chemical data: Sep 1947 to Feb 1949, Nov 1958 to Sep 1969. Water temperature: Sep 1962 to Sep 1969.

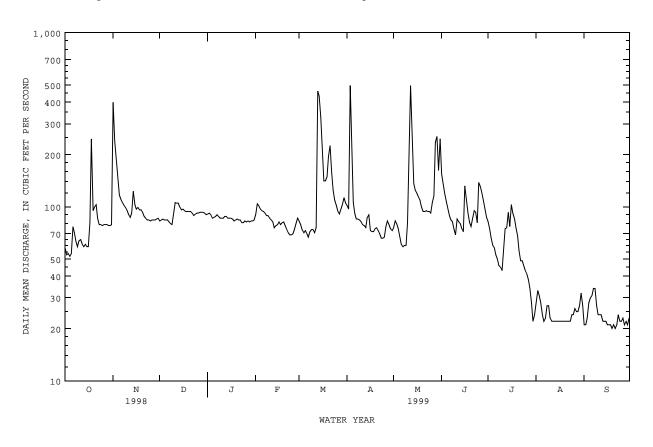
REVISED RECORDS.--WSP 458: 1915-16. WSP 1282: WDR TX-81-3: Drainage area. WSP 1512: 1918-19(M), 1922, 1931(M), 1935 WSP 1922: 1917

GAGE.--Water-stage recorder. Datum of gage is 1,162.16 ft above sea level. See WSP 1922 for brief history of changes prior to Jul 8, 1953. From Oct 1956 to Sep 1993, at site 250 ft to right and supplementary water-stage recorder 2,780 ft to right of main channel gage used for floodflows at same datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Many diversions above station for irrigation and municipal use that affect low flows. Flow partly affected by Brady Creek Reservoir (station 08144900).

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jun 6, 1899, reached a stage of 36.7 ft, present site and datum, from information by local residents.


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,000 ft^3/s :

Date	Time	:	Discharge (ft ³ /s)	Gage l (f	neight [t)		Date	Time		Discharge (ft ³ /s)		height [t)
No peak	greater th	nan base	discharge									
		DISCHA	RGE, CUBIC	FEET PER		WATER Y MEAN	YEAR OCTOBER VALUES	1998 TO	SEPTEME	BER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	2 APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	58 53 54 52 54	398 238 183 147 117	83 84 85 84 84	91 92 90 86 87	90 104 101 97 95	83 79 74 71 73	97 498 188	76 83 80 75 67	155 135 120 108 98	82 75 66 60 58	28 33 31 28 24	21 21 23 28 30
6 7 8 9 10	77 71 63 59 64	110 106 102 99 95	84 82 80 79 91	88 e90 88 86 86	94 92 89 89	70 67 72 74	85 85 84	61 59 60 60 81	89 84 82 74 69	53 50 46 45 43	22 23 27 27 23	31 34 34 27 24
11 12 13 14 15	65 61 59 61 59	90 87 92 123 103	106 105 105 100 96	86 88 88 86 86	84 82 76 78 79	71 76 462 432 325	78 76 8 87	188 496 222 136 124	85 82 80 75 72	58 75 76 93 77	22 22 22 22 22 22	24 24 22 22 22 22
16 17 18 19 20	59 81 245 95 100	97 99 96 96 93	97 95 94 94	86 85 83 84 85	82 79 81 82 78	211 141 141 149 195	. 72 . 72) 75	120 114 109 100 94	132 111 92 81 77	103 92 85 76 68	22 22 22 22 22	21 21 21 20 21
21 22 23 24 25	103 86 79 79 78	88 86 84 84 83	94 92 89 91 92	84 84 81 81 83	74 71 69 69 70	225 157 125 109 102	70 66 66	94 95 94 94 92	86 95 93 81 138	56 49 49 46 43	22 22 22 24 24	20 21 24 22 22
26 27 28 29 30 31	79 79 79 78 78 79	84 84 84 85 86	92 93 93 93 92 90	82 83 82 83 83 84	74 80 86 	94 91 97 103 113	83 79 8 75 8 73	106 116 234 254 162 246	130 120 108 97 87	41 38 34 28 22 24	26 25 25 27 32 27	23 21 22 21 23
TOTAL MEAN MAX MIN AC-FT	2387 77.0 245 52 4730	3419 114 398 83 6780	2833 91.4 106 79 5620	2651 85.5 92 81 5260	2331 83.3 104 69 4620	4261 137 462 67 8450	97.5 2 498 7 66	3992 129 496 59 7920	2936 97.9 155 69 5820	1811 58.4 103 22 3590	762 24.6 33 22 1510	710 23.7 34 20 1410
STATIST	ICS OF MON	THLY ME	AN DATA FO	R WATER YI	EARS 191	6 - 199	9h, BY WATER	YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	270 2150 1931 11.9 1957	137 791 1924 11.6 1957	139 893 1992 16.1 1957	156 896 1968 14.9 1957	171 1542 1992 21.3 1957	154 635 1992 14.8 1955	5157 1922 3 23.4	373 3031 1957 10.3 1984	247 1873 1935 5.31 1984	286 12050 1938 .32 1964	124 1768 1971 .25 1954	320 4164 1936 5.40 1954

08146000 SAN SABA RIVER AT SAN SABA, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR Y	YEAR FOR 1999	WATER YEAR	WATER YEARS	1916 - 1999h
ANNUAL TOTAL	44982	31018			
ANNUAL MEAN	123	85.0	0	221	
HIGHEST ANNUAL MEAN				1318	1938
LOWEST ANNUAL MEAN				29.2	1984
HIGHEST DAILY MEAN	4150 Mar	ır 16 498	Apr 3	117000	Jul 23 1938
LOWEST DAILY MEAN	31 Aug	ıg 3 20	Sep 19	.00	Jul 6 1918
ANNUAL SEVEN-DAY MINIMUM	34 Jul	1 29 21	Sep 16	.00	Jul 13 1954
INSTANTANEOUS PEAK FLOW		1310	Apr 3	c203000	Jul 23 1938
INSTANTANEOUS PEAK STAGE		7.3	15 Apr 3	39.30	Jul 23 1938
ANNUAL RUNOFF (AC-FT)	89220	61520		160100	
10 PERCENT EXCEEDS	162	118		290	
50 PERCENT EXCEEDS	91	82		88	
90 PERCENT EXCEEDS	47	23		26	

Estimated See PERIOD OF RECORD paragraph. From rating curve extended above $41,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of 203,000 ${\rm ft}^3/{\rm s}$.

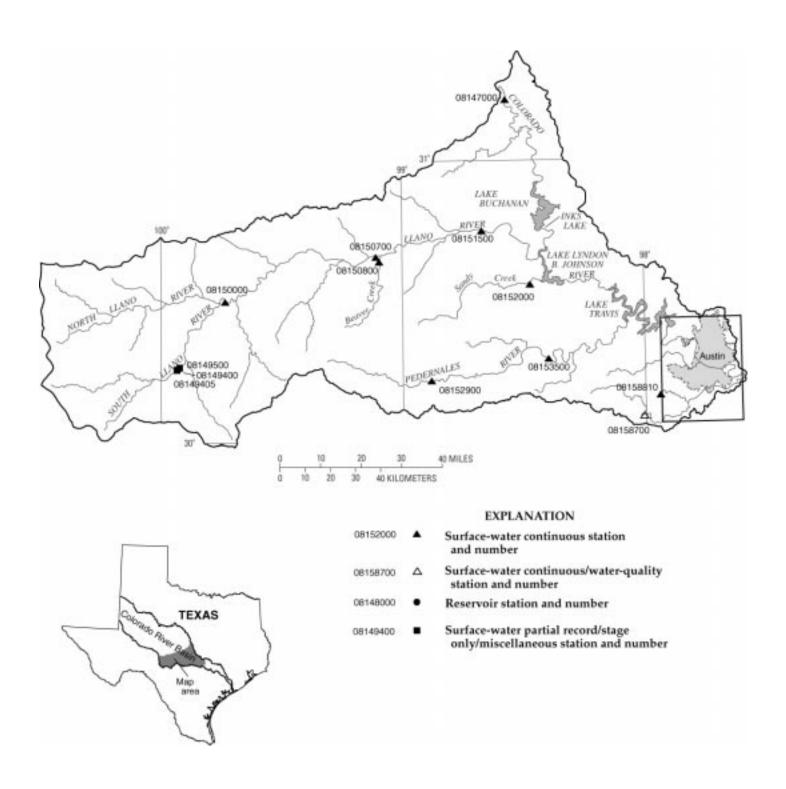


Figure 6.--Map showing location of gaging stations in the fourth section of the Colorado River Basin

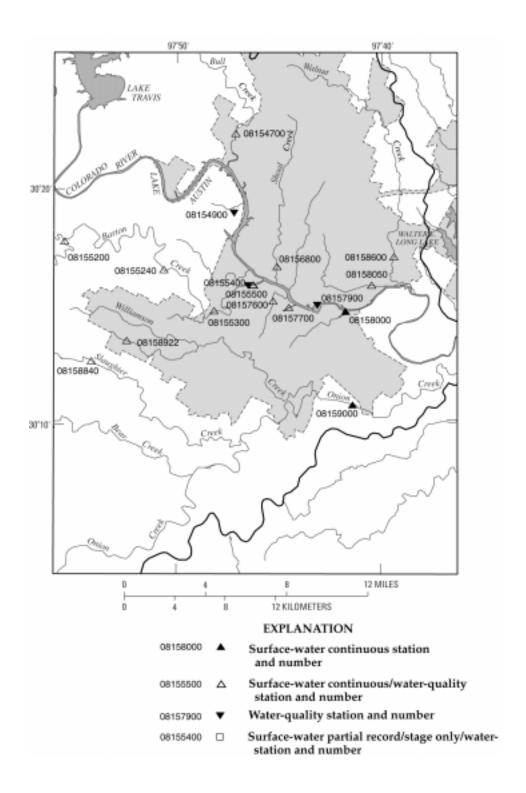


Figure 7.--Map showing location of gaging stations in the Austin inset of the Colorado River
Basin

Colorado River near San Saba, TX	130
South Llano River near Telegraph, TX	277
Tanner Springs near Telegraph, TX	278
Seven Hundred Springs near Telegraph, TX	277
Llano River near Junction, TX	132
	134
Beaver Creek near Mason, TX	136
Llano River at Llano, TX	138
Sandy Creek near Kingsland, TX	140
Pedernales River near Fredericksburg, TX	142
Pedernales River near Johnson City, TX	144
Bull Creek at Loop 360 near Austin, TX	146
Lake Austin at Austin, TX	150
Barton Creek at State Highway 71 near Oak Hill, TX	154
Barton Creek at Lost Creek Boulevard, Austin, TX	158
Barton Creek at Loop 360, Austin, TX	162
Barton Creek above Barton Springs near Austin, TX	166
Barton Springs at Austin, TX	170
Shoal Creek at 12th Street, Austin, TX	174
East Bouldin Creek at South 1st Street, Austin, TX	178
Blunn Creek at Little Stacy Park, Austin, TX	182
Town Lake at Austin, TX	186
Colorado River at Austin, TX	192
Boggy Creek at U.S. Highway 183, Austin, TX	194
Walnut Creek at Webberville Road, Austin, TX	198
Onion Creek near Driftwood, TX	202
Bear Creek below Farm Road 1826 near Driftwood, TX	206
Slaughter Creek at Farm Road 1826 near Austin, TX	208
Williamson Creek at Brushy Country Blvd., Oak Hill, TX	212
Onion Creek at U.S. Highway 183, Austin, TX	216
	South Llano River near Telegraph, TX Tanner Springs near Telegraph, TX Seven Hundred Springs near Telegraph, TX Llano River near Junction, TX Llano River near Mason, TX Beaver Creek near Mason, TX Llano River at Llano, TX Sandy Creek near Kingsland, TX Pedernales River near Johnson City, TX Bull Creek at Loop 360 near Austin, TX Lake Austin at Austin, TX Barton Creek at State Highway 71 near Oak Hill, TX Barton Creek at Loop 360, Austin, TX Barton Creek at Loop 360, Austin, TX Barton Creek at Doop 360, Austin, TX Barton Creek at Loop 360, Austin, TX Barton Creek at Loop 360, Austin, TX Barton Creek at South Springs near Austin, TX Barton Springs at Austin, TX Shoal Creek at 12th Street, Austin, TX East Bouldin Creek at South 1st Street, Austin, TX Town Lake at Austin, TX Town Lake at Austin, TX Boggy Creek at U.S. Highway 183, Austin, TX Walnut Creek near Driftwood, TX Bear Creek below Farm Road 1826 near Driftwood, TX Slaughter Creek at Brushy Country Blvd., Oak Hill, TX

This page intentionally left blank.

08147000 COLORADO RIVER NEAR SAN SABA, TX

LOCATION.--Lat 31°13′04", long 98°33′51", San Saba-Lampasas County line, Hydrologic Unit 12090201, on left bank at downstream side of bridge on U.S. Highway 190, 5.2 mi downstream from San Saba River, 9.2 mi east of San Saba, and at mile 474.3.

DRAINAGE AREA.--31,217 mi², approximately, of which 11,398 mi² probably is noncontributing.

PERIOD OF RECORD.--Oct 1915 to Oct 1922 (published as "near Chadwick"), Oct 1923 to Aug 1930 (published as "near Tow"), Sep 1930 to current year. Monthly discharge only for some periods, published in WSP 1312.

Water-quality records.--Chemical data: Aug 1941, Sep 1947 to Sep 1967, Jan 1968 to Aug 1993. Biochemical data: Jan 1968 to Aug 1993. Pesticide data: Jan 1968 to Apr 1982. Sediment data: May 1951 to Oct 1962 and Oct 1977 to Aug 1993. Suspended sediment discharge: Dec 1950 to Sep 1962. Specific conductance: Sep 1947 to Sep 1992. Water temperature: Sep 1947 to Sep 1992.

REVISED RECORDS.--WSP 458: 1916. WSP 858: 1900(M), 1936(M). WDR TX-81-3: Drainage area. WSP 1512: 1916-18(M), 1936. WSP 1732: 1925-26(M)

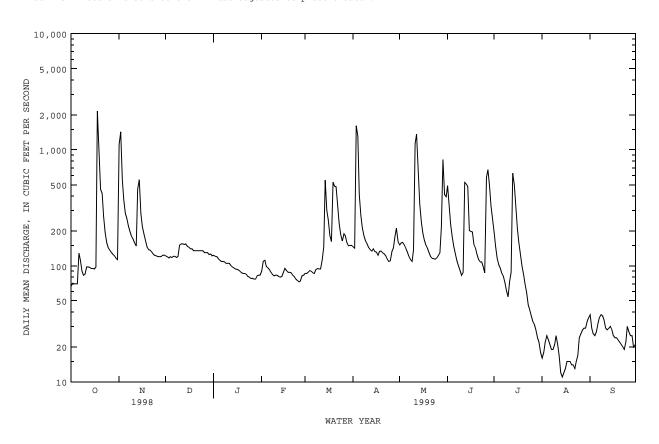
GAGE.--Water-stage recorder. Datum of gage is 1,096.22 ft above sea level. See WSP 1922 for brief history of changes prior to May 23, 1940. From May 1940 to Nov 1996, at site 150 ft right at same datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since water year 1931 at least 10% of contributing drainage area has been regulated by Lake Nasworthy (station 08132000, capacity 13,990 acre-ft). Since Mar 15, 1990, 66% of the drainage area above this station has been controlled by O.H. Ivie Reservoir (station 08136600), 140.8 miles upstream, and by an additional twelve reservoirs (8 above and 4 below O.H. Ivie Reservoir), for a total combined capacity (13 reservoirs) of 1,897,000 acre-ft at conservation level. Flow is also affected at times by discharge from the flood-detention pools of 187 floodwater-retarding structures with a combined capacity of 205,700 acre-ft. These flood-detention structures control runoff from an 944 mi² area above this station. There are many diversions above station for irrigation, municipal use, and for oil field operations.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation of low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--12 years (water years 1917-19, 1921-22, 1924-30) prior to completion of Lake Nasworthy, 1,440 $\rm ft^3/s$ (1,040,000 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1917-19, 1921-22, 1924-30).--Maximum discharge, 130,000 ft³/s Apr 26, 1922 (gage height about 54.0 ft, present site), from information by local residents; minimum observed discharge, 1.5 ft³/s Aug 22, 23, 1918.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1878 to Jul 22, 1938, 58.4 ft Sep 25, 1900 (discharge, 184,000 ft³/s, present site), from floodmarks at former site.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES OCT DAY NOV DEC JAN FEB MAR APR MAY JUIN JUIL AUG SEP 7 12 e145 e140 e140 e135 €135 e135 e135 e135 e135 2.2 e135 e130 2.7 e130 ---2.0 ___ TOTAL MEAN 95.5 86.6 19.9 27.1 MAX AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 1999z, BY WATER YEAR (WY) MEAN MAX (WY) 39.3 40.5 33.6 11.2 2.06 29.5 31.8 41.5 24.4 4.16 2.68 11.9 MIN (WY)

08147000 COLORADO RIVER NEAR SAN SABA, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALEN	DAR YEAR	FOR 1999 WAT	TER YEAR	WATER YEARS	3 1931 - 1999z
ANNUAL TOTAL	169008		59394			
ANNUAL MEAN	463		163		1041	
HIGHEST ANNUAL MEAN					3880	1938
LOWEST ANNUAL MEAN					84.1	1984
HIGHEST DAILY MEAN	21200	Mar 17	2160	Oct 18	191000	Jul 23 1938
LOWEST DAILY MEAN	32	Aug 2	11	Aug 14	.00	Aug 27 1954
ANNUAL SEVEN-DAY MINIMUM	34	Jul 29	13	Aug 13	.00	Aug 3 1963
INSTANTANEOUS PEAK FLOW			4190	Apr 3	224000	Jul 23 1938
INSTANTANEOUS PEAK STAGE			7.09	Apr 3	aa62.24	Jul 23 1938
ANNUAL RUNOFF (AC-FT)	335200		117800		754400	
10 PERCENT EXCEEDS	696		321		1610	
50 PERCENT EXCEEDS	154		114		225	
90 PERCENT EXCEEDS	57		25		55	

e Estimated z Period of regulated streamflow. aa From floodmarks at site then in use adjusted to present datum.

08150000 LLANO RIVER NEAR JUNCTION, TX

LOCATION.--Lat 30°30′15", long 99°44′03", Kimble County, Hydrologic Unit 12090204, on right bank 960 ft upstream from abandoned low-water crossing, 1.0 mi east of Junction, 2.6 mi downstream from bridge on Interstate Highway 10, 2.8 mi downstream from confluence of North and South Llano Rivers, 5.3 mi upstream from Johnson Fork, and 114.8 mi upstream from mouth.

DRAINAGE AREA. -- 1,854 mi², of which 5.1 mi² probably is noncontributing.

Discharge

 (ft^3/s)

Date

Time

PERIOD OF RECORD.--Sep 1915 to May 1993, Oct 1997 to current year.

REVISED RECORDS.--WSP 568: 1915-16, 1918-20, 1922. WDR TX-81-3: Drainage area. WSP 1922: 1920, 1923.

GAGE.--Water-stage recorder. Datum of gage is 1,634.32 ft above sea level. Prior to Aug 14, 1925, nonrecording gage, and Aug 14, 1925, to May 17, 1940, and Aug 18, 1944, to Oct 12, 1981, water-stage recorder at site 5,330 ft downstream at datum 6.0 ft lower, designated as regular gage (destroyed by flood of Oct 13, 1981). Prior to Jun 13, 1990, at datum 2.0 ft higher. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records good except those for estimated daily discharges, which are poor. No known regulation. There are diversions above station for irrigation.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record.

Discharge

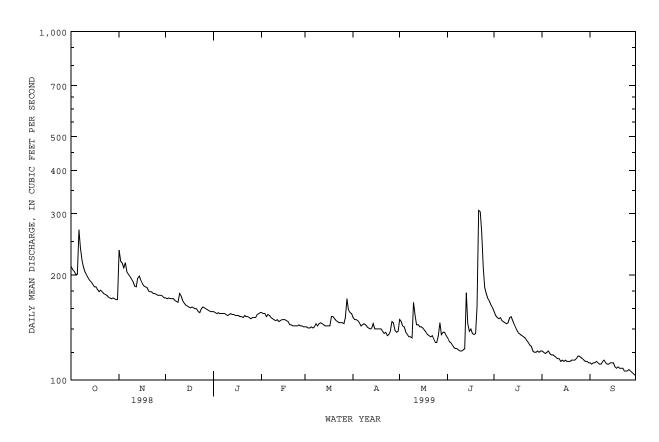
(ft³/s)

Gage height

(ft)

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875, that of Jun 14, 1935. A major flood in 1889 was the highest known prior to Jun 14, 1935.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft 3/s:


Gage height

(ft)

				//		,					(/-/	, -	- /
No peak greater than base discharge.													
			DISCHARGE	E, CUBIC	FEET PER		WATER '	YEAR OCTOBER VALUES	1998 TO	SEPTEMBI	ER 1999		
	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	1 2 3	212 207 205	236 219 216	172 171 172	157 156 155	156 e155 e155	142 142 141	149	149 147 143	132 129 128	157 153 151	121 120 119	112 111 112
	4 5	201 201	210 217	171 171	156 155	152 154	141 142	148 146	142 137	126 124	150 151	120 121	112 113
	6 7 8 9 10	270 240 221 211 204	204 201 198 195 191	171 169 168 167 177	155 e155 155 154 153	153 151 150 149 148	141 142 145 143 145		135 133 133 132 167	123 123 122 121 121	148 147 146 145 146	119 118 118 117 116	112 111 111 113 114
	11 12 13 14 15	200 196 193 191 188	186 185 196 199 193	174 169 166 164 163	154 155 154 154 153	149 147 148 149 149	146 145 144 143 143	141 140	153 144 144 142 142	122 123 178 145 138	151 152 148 144 141	115 115 113 114 113	112 111 111 112 112
	16 17 18 19 20	185 185 182 179 181	189 186 185 184 180	162 161 162 161 160	153 153 152 152 151	149 148 147 144	143 143 152 152 150	140 140 140 140 138	141 139 137 135 134	140 136 135 136 162	138 136 135 134 133	114 113 113 113 114	112 109 108 109 108
	21 22 23 24 25	179 177 176 175 173	179 179 177 177 176	160 157 156 160 162	153 152 152 151 150	143 143 143 143 144	148 147 146 146 146	136 137 134 135 138	133 134 131 128 128	307 304 266 210 184	132 130 128 126 125	114 114 115 117 117	108 108 106 106 106
	26 27 28 29 30 31	172 171 172 171 170 170	175 175 175 174 172	161 160 159 158 157	151 151 151 154 155 156	143 143 142 	145 151 171 159 156 155	147 146 139 137 138	134 146 135 137 137	176 171 168 164 161	121 120 120 121 120 121	116 115 114 113 113 112	107 106 105 104 103
	TOTAL MEAN MAX MIN AC-FT CFSM IN.	5958 192 270 170 11820 .10	5729 191 236 172 11360 .10 .12	5098 164 177 156 10110 .09	4758 153 157 150 9440 .08 .10	4141 148 156 142 8210 .08 .08	4555 147 171 141 9030 .08 .09	142 151 134	4306 139 167 128 8540 .08	4775 159 307 121 9470 .09	4270 138 157 120 8470 .07	3586 116 121 112 7110 .06 .07	3284 109 114 103 6510 .06 .07
	STATIST	CICS OF MO	ONTHLY MEAN	DATA FO	R WATER Y	EARS 191	6 - 199	9h, BY WATER	YEAR (W	Y)			
	MEAN MAX (WY) MIN (WY)	261 2708 1924 15.8 1957	142 1572 1924 21.5 1957	140 1229 1985 25.3 1957	124 641 1968 26.2 1957	132 816 1958 27.9 1954	117 428 1992 27.0 1954	1222 1977 21.3	242 2395 1925 30.3 1954	293 5797 1935 12.4 1953	206 4236 1938 10.5 1956	185 2299 1974 11.4 1956	338 4298 1932 13.1 1956

08150000 LLANO RIVER NEAR JUNCTION, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR	YEAR	FOR 1999 W	ATER YEAR	WATER YEAR:	S 1916 - 1999h
ANNUAL TOTAL	82689		54713			
ANNUAL MEAN	227		150		196	
HIGHEST ANNUAL MEAN					708	1935
LOWEST ANNUAL MEAN					29.8	1953
HIGHEST DAILY MEAN	10800 Au	ıg 23	307	Jun 21	124000	Jun 14 1935
LOWEST DAILY MEAN	67 Ju	ıl 23	103	Sep 30	3.7	Aug 17 1956
ANNUAL SEVEN-DAY MINIMUM	70 Ju	ıl 20	105	Sep 24	4.2	Aug 11 1956
INSTANTANEOUS PEAK FLOW			409	Jun 22	c319000	Jun 14 1935
INSTANTANEOUS PEAK STAGE			1.5	2 Jun 22	a43.30	Jun 14 1935
ANNUAL RUNOFF (AC-FT)	164000		108500		141900	
ANNUAL RUNOFF (CFSM)	.12		.0	81	.11	
ANNUAL RUNOFF (INCHES)	1.66		1.1	0	1.44	
10 PERCENT EXCEEDS	216		185		220	
50 PERCENT EXCEEDS	138		146		99	
90 PERCENT EXCEEDS	75		113		42	

Estimated See PERIOD OF RECORD paragraph. From rating curve extended above $54,000~\rm{ft}^3/s$ on basis of slope-area measurements of $154,000~\rm{and}~319,000~\rm{ft}^3/s$. From floodmark.

08150700 LLANO RIVER NEAR MASON, TX

LOCATION.--Lat 30°39'38", long 99°06'32", Mason County, Hydrologic Unit 12090204, on right bank 98 ft downstream from downstream bridge on U.S. Highway 87, 1.0 mi upstream from Beaver Creek, 9.1 mi southeast of Mason, 10.2 mi downstream from James River, and 61.1 mi upstream from mouth.

DRAINAGE AREA. -- 3,247 mi², of which 5.1 mi² probably is noncontributing.

Discharge

PERIOD OF RECORD. -- Mar 1968 to May 1993 and Oct 1997 to current year.

REVISED RECORDS.--WDR TX-75-3: 1968(P). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,230.36 ft above sea level. Prior to Jan 19, 1971, at site 190 ft upstream at same datum. Radio telemeter at station. Satellite telemeter at station.

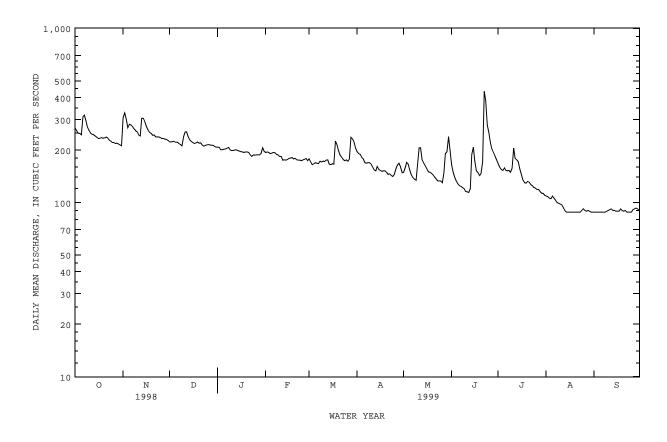
REMARKS.--Records good except those for estimated daily discharges, which are poor. No known regulation or diversion.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes streamflow record.

Discharge

Gage height

EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since at least 1875, about 46 ft Jun 14, 1935 (discharge, about 380,000 $\,\mathrm{ft^3/s}$), from information by Texas Department of Transportation; at site 17.0 mi downstream discharge was 388,000 $\,\mathrm{ft^3/s}$ by slope-area measurement. Discharges for other floods are 258,000 $\,\mathrm{ft^3/s}$, 1952; 218,000 $\,\mathrm{ft^3/s}$, 1889.


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,000 ft^3/s :

Gage height

Date	Time	е	(ft^3/s)	_	(ft)		Date	Time		(ft^3/s)	_ (f	t)
No peak	greater	than base	discharg	e.								
		DISCHA	RGE, CUBI	C FEET PE		WATER YE. Y MEAN VA	AR OCTOBER LUES	1998 TO	SEPTEMBI	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	267 258 250 249 245	307 327 301 270 282	223 223 224 224 222	208 207 201 201 202	194 195 194 191 192	178 171 165 167 169	196 191 189 181 178	149 158 170 166 153	165 149 140 133 128	167 160 155 153 158	109 108 106 105 109	88 88 88 88
6 7 8 9 10	311 317 294 271 259	279 273 265 259 255	222 218 215 212 239	203 e205 207 201 199	194 193 189 188 184	168 167 173 171 173	169 168 169 169 166	144 139 136 134 165	125 124 122 120 116	153 152 153 149 157	106 103 100 99 98	88 88 89 90
11 12 13 14 15	250 246 245 241 237	244 241 304 304 290	255 254 238 229 224	199 200 201 199 197	184 175 176 175 177	172 175 176 166 165	160 154 152 161 155	206 206 175 168 162	115 114 120 189 208	205 179 176 171 156	97 94 90 88 88	91 92 90 90 89
16 17 18 19 20	233 234 236 234 235	274 261 253 249 243	221 218 220 223 219	196 195 194 195 195	179 180 181 178 179	167 166 225 214 199	153 151 152 152 149	156 150 149 147 144	173 152 148 143 147	145 135 130 129 132	88 88 88 88	89 89 92 90 89
21 22 23 24 25	238 235 228 225 221	244 238 238 238 238 236	220 214 211 213 214	194 188 184 188 187	176 175 175 174 176	187 182 177 174 176	145 146 143 141 145	140 136 133 133	172 435 386 279 255	131 127 125 122 121	88 88 88 90 92	90 88 88 88
26 27 28 29 30 31	221 218 219 217 214 212	233 233 231 230 227	215 214 213 213 210 208	188 188 188 191 206 197	177 179 174 	173 178 237 232 223 205	156 164 168 161 148	130 148 191 196 239 196	220 202 193 185 176	119 119 116 113 113 110	90 89 90 89 88	91 92 93 92 90
TOTAL MEAN MAX MIN AC-FT	7560 244 317 212 15000	7829 261 327 227 15530	6868 222 255 208 13620	6104 197 208 184 12110	5104 182 195 174 10120	5671 183 237 165 11250	4832 161 196 141 9580	4952 160 239 130 9820	5334 178 435 114 10580	4431 143 205 110 8790	2920 94.2 109 88 5790	2684 89.5 93 88 5320
STATIST	ICS OF M	ONTHLY ME.	AN DATA F	OR WATER	YEARS 196	8 - 1999h	, BY WATER	YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	518 3222 1974 72.9 1984	237 675 1975 105 1969	303 1929 1985 108 1984	240 1053 1985 118 1984	262 1530 1992 98.5 1984	237 875 1992 89.0 1984	296 2097 1977 71.5 1984	371 1559 1990 66.0 1984	352 1791 1987 49.1 1984	243 1439 1988 38.4 1980	414 3331 1974 31.2 1980	414 3427 1980 38.1 1984

08150700 LLANO RIVER NEAR MASON, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALEN	DAR YEAR	FOR 1999 WAT	ER YEAR	WATER YEAR	3 1968 - 3	1999h
ANNUAL TOTAL	101338		64289				
ANNUAL MEAN	278		176		326		
HIGHEST ANNUAL MEAN					835		1974
LOWEST ANNUAL MEAN					77.7		1984
HIGHEST DAILY MEAN	11200	Aug 24	435	Jun 22	69200	Sep 8	1980
LOWEST DAILY MEAN	66	Aug 2	88	Aug 14	10	Jul 17	1984
ANNUAL SEVEN-DAY MINIMUM	69	Jul 28	88	Aug 14	18	Jul 12	1984
INSTANTANEOUS PEAK FLOW			743	Jun 22	c260000	Sep 8	1980
INSTANTANEOUS PEAK STAGE			2.67	Jun 22	a37.00	Sep 8	1980
ANNUAL RUNOFF (AC-FT)	201000		127500		236200		
10 PERCENT EXCEEDS	309		244		420		
50 PERCENT EXCEEDS	193		176		179		
90 PERCENT EXCEEDS	86		90		90		

e Estimated
h See PERIOD OF RECORD paragraph.
c From rating curve extended above 151,000 ft³/s on basis of slope-area measurement and discharge measurement of 145,000 ft³/s.
a From floodmark.

Discharge

08150800 BEAVER CREEK NEAR MASON, TX

LOCATION.--Lat 30°38'36", long 99°05'44", Mason County, Hydrologic Unit 12090204, on left bank at downstream side of downstream bridge on U.S. Highway 87, 1.8 mi upstream from Llano River, 6.4 mi downstream from Spring Creek, and 11.1 mi southeast of Mason.

DRAINAGE AREA. -- 215 mi².

PERIOD OF RECORD.--Jul 1963 to current year.

REVISED RECORDS.--WSP 2122: 1964-65. WDR TX-81-3: Drainage area.

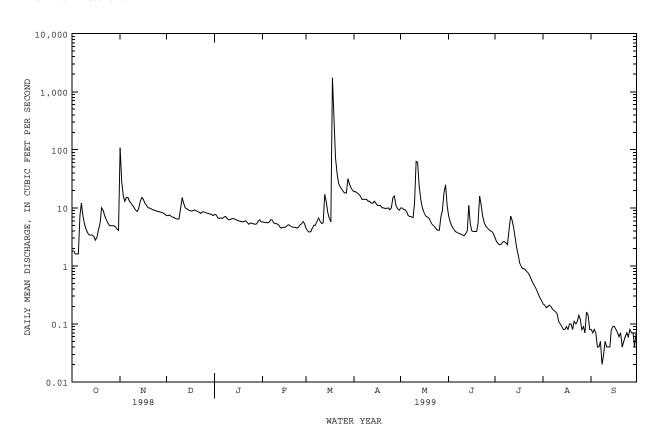
GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,253.24 ft above sea level. Prior to Aug 3, 1978, at site 300 ft upstream at same datum. Satellite telemeter at station.

Discharge

Gage height

REMARKS.--No estimated daily discharges. Records good except those for Mar 18-22, which are fair. No known regulation or diversions. Several observations of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$:


Gage height

Date	Tim	е	(ft ³ /s)		(ft)		Date	Time		(ft ³ /s)	(f	t)
Mar 18	133	0	9,340	a	8.44		No other	peak grea	ater than	base disc	harge.	
		DISCHA	RGE, CUBI	C FEET PE		, WATER YE LY MEAN VA		R 1998 TO	SEPTEMBE	R 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.8 1.8 1.6 1.6	108 28 16 13 15	7.3 7.4 7.5 7.1 6.9	7.7 7.5 6.7 6.6 6.7	5.7 5.6 5.6 5.5 5.6	4.4 4.0 3.8 3.9 4.5	19 19 18 17 16	9.9 9.9 9.4 9.2 8.4	7.3 5.7 4.9 4.4 4.0	3.0 2.6 2.4 2.3 2.4	.22 .21 .19 .20	.08 .07 .08 .07
6 7 8 9 10	7.4 12 7.2 5.3 4.3	15 13 12 11 10	6.8 6.5 6.4 6.4 9.8	6.6 6.9 7.1 6.6 6.2	6.2 6.2 5.5 5.4 5.3	5.0 5.8 6.7 5.9	14 14 14 14 13	7.3 7.1 7.0 6.8 12	3.8 3.7 3.6 3.5 3.4	2.6 2.6 2.5 2.3 4.3	.20 .18 .17 .16 .15	.04 .05 .02 .03
11 12 13 14 15	3.7 3.4 3.4 3.4 3.2	9.1 8.7 9.8 13	15 12 10 9.7 9.2	6.3 6.5 6.5 6.4 6.2	5.2 4.7 4.5 4.6 4.6	5.4 5.5 17 13 8.3	13 12 12 13 12	63 61 24 14 10	3.3 3.6 4.1 11 5.2	7.2 6.1 4.5 2.9 2.0	.11 .10 .09 .08	.04 .04 .04 .08
16 17 18 19 20	2.8 3.1 4.1 5.5	14 12 11 10 9.9	8.9 8.8 8.9 9.3 8.9	6.0 5.9 5.8 5.7 5.8	4.7 5.0 5.1 4.8 4.7	6.6 5.7 1730 281 74	11 11 11 10 10	8.4 7.3 7.0 6.8 6.1	4.0 3.9 3.9 3.9 5.4	1.5 1.1 .94 .90	.09 .08 .10 .10	.09 .08 .07 .06
21 22 23 24 25	9.0 7.4 6.3 5.5 5.0	9.6 9.3 9.1 8.9 8.7	8.7 8.4 8.0 8.5 8.5	6.0 5.6 5.2 5.5 5.4	4.6 4.6 4.5 4.6 5.1	39 26 23 21 19	9.7 9.8 9.9 9.3	5.3 5.0 4.7 4.3 4.1	16 11 7.2 5.5 4.8	.82 .77 .71 .62	.11 .10 .11 .14	.04 .05 .06 .07
26 27 28 29 30 31	4.9 4.9 4.9 4.7 4.3	8.6 8.4 8.3 8.1 7.7	8.3 8.1 8.0 7.8 7.7 7.4	5.3 5.2 5.3 5.9 6.2 5.7	5.3 5.8 5.3 	18 18 32 26 22 20	15 16 11 9.7 9.1	4.1 7.1 9.0 18 25	4.5 4.2 4.0 3.9 3.5	.47 .42 .37 .32 .28	.08 .09 .07 .16 .14	.08 .07 .07 .04 .07
TOTAL MEAN MAX MIN AC-FT CFSM IN. STATIST	148.2 4.78 12 1.6 294 .02 .03	440.2 14.7 108 7.7 873 .07 .08	262.2 8.46 15 6.4 520 .04 .05	191.0 6.16 7.7 5.2 379 .03 .03	144.3 5.15 6.2 4.5 286 .02 .02	2459.5 79.3 1730 3.8 4880 .37 .43	382.5 12.8 19 9.1 759 .06 .07	392.2 12.7 63 4.1 778 .06 .07	157.2 5.24 16 3.3 312 .02	60.58 1.95 7.2 .25 120 .01	4.00 .13 .22 .07 7.9 .00	1.80 .060 .09 .02 3.6 .00
MEAN MAX (WY) MIN (WY)	30.7 329 1997 .37 1983	8.16 32.2 1970 .91 1980	14.5 220 1992 1.44 1983	13.3 183 1968 1.84 1971	23.2 285 1992 1.41 1984	22.7 164 1997 1.29 1967	19.4 132 1977 .49 1984	29.2 197 1975 .72 1996	28.3 327 1987 .21 1971	3.86 24.3 1997 .003 1964	20.0 443 1978 .000 1985	10.9 167 1964 .021 1977

08150800 BEAVER CREEK NEAR MASON, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1963 - 1999
ANNUAL TOTAL	2537.99	4643.68	
ANNUAL MEAN	6.95	12.7	18.7
HIGHEST ANNUAL MEAN			91.5 1997
LOWEST ANNUAL MEAN			1.97 1967
HIGHEST DAILY MEAN	167 Mar 16	1730 Mar 18	12800 Aug 3 1978
LOWEST DAILY MEAN	.03 Aug 3	.02 Sep 8	.00 Aug 3 1963
ANNUAL SEVEN-DAY MINIMUM	.05 Jul 29	.04 Sep 5	.00 Aug 3 1963
INSTANTANEOUS PEAK FLOW		9340 Mar 18	66900 Aug 3 1978
INSTANTANEOUS PEAK STAGE		a8.44 Mar 18	24.00 Aug 3 1978
ANNUAL RUNOFF (AC-FT)	5030	9210	13560
ANNUAL RUNOFF (CFSM)	.032	.059	.087
ANNUAL RUNOFF (INCHES)	. 44	.80	1.18
10 PERCENT EXCEEDS	12	14	22
50 PERCENT EXCEEDS	6.6	5.6	3.2
90 PERCENT EXCEEDS	.21	.09	.20

a From floodmark.

08151500 LLANO RIVER AT LLANO, TX

LOCATION.--Lat $30^{\circ}45'04$ ", long $98^{\circ}40'10$ ", Llano County, Hydrologic Unit 12090204, on right bank in Llano, 0.4 mi down-stream from bridge on State Highway 16, 7 mi upstream from Little Llano River, and 29.3 mi upstream from mouth.

DRAINAGE AREA.--4,197 mi², of which 5.1 mi² probably is noncontributing.

PERIOD OF RECORD.--Sep 1939 to current year.

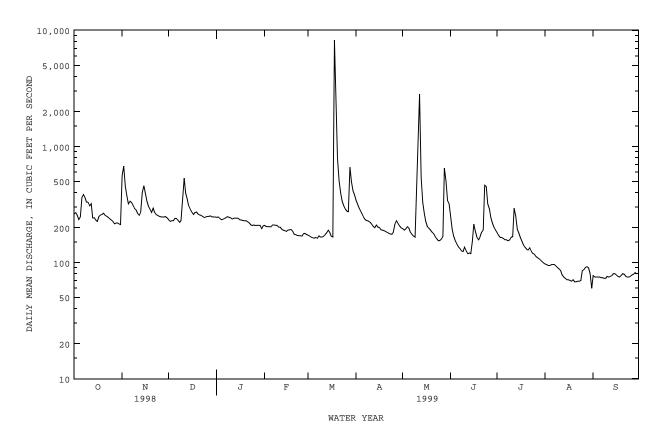
Water-quality records.--Chemical data: Apr 1948 to Oct 1967, Apr 1979 to Sep 1986. Biochemical data: Apr 1979 to Sep 1986. Sediment data: Sep 1964, Apr 1979 to Sep 1986. Specific conductance: Apr 1979 to Sep 1980. Water temperature: Apr 1979 to Sep 1980.

REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 970.01 ft above sea level. Radio telemeter at station. Satellite telemeter at station.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes streamflow record.

REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. Part of low flow of the Llano River disappears into various formations, many of which are faulted, between this station and Llano River near Junction (station 08150000) operated by Lower Colorado River Authority.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1879, 41.5 ft Jun 14, 1935 (discharge, 380,000 $\rm ft^3/s$), from information by local resident.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $7,500~{\rm ft}^3/{\rm s}$:

Date	Time	Ι	Discharge (ft ³ /s)		neight [t)		Date	Time		Discharge (ft ³ /s)		height Et)
Mar 18	1445		37,800	14	.64		May 11	2345		10,400	8	.24
		DISCHAF	RGE, CUBIC	FEET PER		WATER Y MEAN	YEAR OCTOBER VALUES	1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	261 268 256 235 248	559 676 453 381 321	233 226 229 229 240	245 246 240 234 236	209 204 204 203 203	172 169 166 163 162	318 292 275	196 190 194 204 198	249 193 169 154 144	180 171 164 164 161	97 96 94 94 96	77 75 75 75 75
6 7 8 9 10	365 386 362 332 330	338 330 312 293 283	239 231 222 230 358	239 244 249 245 243	210 210 209 209 202	164 162 170 166 166	233 230 227	183 175 169 165 573	136 132 126 124 135	157 157 154 156 165	96 96 93 90 88	74 74 73 73 76
11 12 13 14 15	308 322 242 243 231	264 255 272 401 460	534 396 352 308 284	237 240 241 241 239	201 193 190 188 185	168 174 181 190 181	205 200 210	1310 2820 538 329 263	126 119 121 119 152	167 294 252 193 180	85 78 75 73 71	75 76 77 80 80
16 17 18 19 20	226 249 256 260 266	396 338 304 286 269	271 259 269 272 261	233 232 230 228 229	190 191 192 186 175	168 166 8260 2740 791	191 190 188	225 204 197 190 182	214 185 164 157 167	164 153 141 135 130	71 70 69 71 68	78 76 75 77 80
21 22 23 24 25	254 251 245 238 233	294 270 258 254 250	257 254 249 244 247	224 220 211 208 210	174 171 170 170 169	507 396 339 308 288	179 176 175	177 167 160 154 154	183 191 464 450 321	128 134 125 120 118	68 69 69 70 85	79 76 75 75 76
26 27 28 29 30 31	226 216 219 219 215 212	247 246 246 249 243	249 250 252 247 246 246	208 209 209 209 196 207	177 178 174 	276 274 665 501 415 381	229 217 207 199	159 169 652 507 340 319	288 242 217 201 190	113 110 108 105 102 99	87 91 92 90 80 60	78 79 82 80 80
TOTAL MEAN MAX MIN AC-FT	8174 264 386 212 16210	9748 325 676 243 19340	8384 270 534 222 16630	7082 228 249 196 14050	5337 191 210 169 10590	19029 614 8260 162 37740	220 344 175	11463 370 2820 154 22740	5833 194 464 119 11570	4700 152 294 99 9320	2532 81.7 97 60 5020	2301 76.7 82 73 4560
STATIST	CICS OF MON	THLY MEA	AN DATA FO	R WATER YI	EARS 194	0 - 199	9, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	529 3700 1974 18.0 1952	234 1005 1975 20.7 1957	294 3179 1992 27.5 1955	284 2483 1968 31.7 1957	387 3754 1992 37.7 1954	329 2798 1997 23.7 1954	3115 1977 20.9	520 3350 1957 41.0 1984	573 4620 1997 7.93 1953	229 1796 1988 .000 1956	321 3605 1974 .087 1952	450 3891 1952 .56 1954

08151500 LLANO RIVER AT LLANO, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALEN	NDAR YEAR	FOR 1999 WAT	TER YEAR	WATER YEAR	S 1940 - 1999
ANNUAL TOTAL	124150		91172			
ANNUAL MEAN	340		250		377	
HIGHEST ANNUAL MEAN					1308	1997
LOWEST ANNUAL MEAN					50.0	1954
HIGHEST DAILY MEAN	13300	Aug 24	8260	Mar 18	78100	Jun 23 1997
LOWEST DAILY MEAN	33	Aug 4	60	Aug 31	.00	Aug 5 1952
ANNUAL SEVEN-DAY MINIMUM	47	Jul 30	69	Aug 17	.00	Aug 27 1952
INSTANTANEOUS PEAK FLOW			37800	Mar 18	260000	Jun 23 1997
INSTANTANEOUS PEAK STAGE			14.64	Mar 18	38.86	Jun 23 1997
ANNUAL RUNOFF (AC-FT)	246300		180800		273100	
10 PERCENT EXCEEDS	395		334		535	
50 PERCENT EXCEEDS	240		204		157	
90 PERCENT EXCEEDS	87		79		41	

08152000 SANDY CREEK NEAR KINGSLAND, TX

LOCATION.--Lat 30°33'27", long 98°28'18", Llano County, Hydrologic Unit 12090201, at right downstream end of bridge on State Highway 71, 6.6 mi upstream from mouth.

DRAINAGE AREA. -- 346 mi².

PERIOD OF RECORD.--Oct 1966 to Mar 1993, Oct 1997 to current year. Water-quality records.--Sediment data: Jan 1968 to Sep 1975.

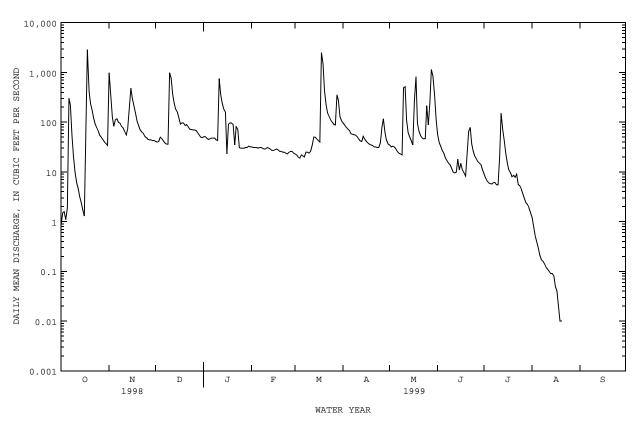
REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 862.31 ft above sea level. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records fair. No known regulation. There are several small diversions above station for irrigation.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes streamflow record.

EXTREMES OUTSIDE PERIOD OF RECORD.—The flood of Sep 11, 1952, the highest since at least 1881, reached a stage of 34.2 ft (discharge, $163,000 \text{ ft}^3/\text{s}$), from slope—area measurement at gage site.


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $2,500~{\rm ft}^3/{\rm s}$:

Date	Time		Discharge (ft ³ /s)		height ft)		Date	Time	Ι	Discharge (ft ³ /s)		height t)
Oct 18 Nov 1 Dec 10	0403 0804 1303		6,810 2,510 2,510	8	9.96 3.13 7.96		Mar 18 May 18 May 28	1730 0030 1830		11,200 5,000 5,120	9	.41 .22 .27
		DISCHA	RGE, CUBIC	FEET PER		WATER YE Y MEAN VA		R 1998 TO	SEPTEMBE	IR 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.86 1.5 1.6 1.1	987 345 129 83 112	41 40 41 50 47	51 51 48 45 46	32 31 31 31 30	23 22 20 19 e22	96 87 79 73 68	35 32 33 32 29	57 39 33 27 24	9.0 7.5 6.5 6.0 5.8	1.2 .76 .52 .39	.00 .00 .00 .00
6 7 8 9 10	304 219 53 21	117 100 95 83 76	42 38 36 e36 986	48 e48 48 44 43	31 31 30 29 29	21 20 25 25 24	59 57 56 55 51	26 24 23 22 493	19 17 15 14 12	5.7 6.1 6.1 5.5 5.5	.21 .17 .16 .14	.00 .00 .00 .00
11 12 13 14 15	6.1 4.6 3.2 2.4 1.7	65 55 74 199 482	755 367 240 181 158	755 367 240 181 158	31 30 29 27 27	26 34 50 50 46	46 42 41 52 45	523 111 61 50 42	10 9.6 10 18 11	21 151 71 42 24	.11 .10 .09 .09	.00 .00 .00 .00
16 17 18 19 20	1.3 218 2870 412 236	304 214 152 104 86	123 91 97 96 86	23 91 97 96 90	28 29 28 26 26	43 40 2500 1500 437	41 38 36 35 34	35 268 822 94 66	15 11 9.5 8.2 21	15 11 9.6 8.0 8.5	.05 .04 .02 .01	.00 .00 .00 .00
21 22 23 24 25	174 121 91 76 66	70 64 60 52 49	90 81 72 71 70	35 81 72 31 30	25 25 24 23 25	225 150 129 110 99	32 32 31 31 38	53 48 46 47 215	65 79 37 26 21	7.8 9.1 5.6 5.3 4.5	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	54 49 44 40 37 34	45 44 44 43 43	70 68 62 56 50 49	30 30 31 31 33 32	26 26 24 	90 88 355 275 129 106	79 117 63 44 36	88 253 1150 836 358 112	18 16 15 14 11	3.6 2.9 2.4 2.2 1.9	.00 .00 .00 .00	.00 .00 .00 .00
MEAN MAX MIN AC-FT CFSM IN.	5155.26 166 2870 .86 10230 .48 .55	4376 146 987 43 8680 .42 .47	4290 138 986 36 8510 .40 .46	3006 97.0 755 23 5960 .28 .32	784 28.0 32 23 1560 .08	6703 216 2500 19 13300 .62 .72	1594 53.1 117 31 3160 .15	6027 194 1150 22 11950 .56	682.3 22.7 79 8.2 1350 .07	471.6 15.2 151 1.5 935 .04	4.56 .15 1.2 .00 9.0 .00	0.00 .000 .00 .00 .00 .00
	STICS OF MO								•			
MEAN MAX (WY) MIN (WY)	67.3 306 1972 .045 1990	35.3 195 1975 .045 1989	80.5 1074 1992 1.10 1990	58.8 511 1968 1.06 1990	92.2 936 1992 4.19 1967	83.3 425 1992 1.86 1967	60.6 528 1977 1.41 1984	128 510 1975 .71 1984	120 862 1987 .055 1971	24.0 258 1976 .10 1980	23.8 358 1974 .000 1989	28.6 188 1976 .000 1989

08152000 SANDY CREEK NEAR KINGSLAND, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALEND	DAR YEAR	FOR 1999 WAT	ER YEAR	WATER YEAR	S 1967 - 1999h
ANNUAL TOTAL	30310.62		33093.72			
ANNUAL MEAN	83.0		90.7		67.4	
HIGHEST ANNUAL MEAN					279	1992
LOWEST ANNUAL MEAN					3.62	1984
HIGHEST DAILY MEAN	3560	Mar 16	2870	Oct 18	14200	Dec 21 1991
LOWEST DAILY MEAN	.00	Aug 12	.00	Aug 21	.00	Jul 16 1967
ANNUAL SEVEN-DAY MINIMUM	.00	Aug 12	.00	Aug 21	.00	Jul 16 1967
INSTANTANEOUS PEAK FLOW			11200	Mar 18	39500	Dec 20 1991
INSTANTANEOUS PEAK STAGE			11.41	Mar 18	17.63	Jun 16 1987
ANNUAL RUNOFF (AC-FT)	60120		65640		48850	
ANNUAL RUNOFF (CFSM)	.24		.26		.19	
ANNUAL RUNOFF (INCHES)	3.26		3.56		2.65	
10 PERCENT EXCEEDS	152		177		98	
50 PERCENT EXCEEDS	23		32		12	
90 PERCENT EXCEEDS	.15		.00		.14	

Estimated See PERIOD OF RECORD paragraph

08152900 PEDERNALES RIVER NEAR FREDERICKSBURG, TX

LOCATION.--Lat 30°13'13", long 98°52'10", Gillespie County, Hydrologic Unit 12090206, on left bank at downstream side of bridge on U.S. Highway 87, 2.0 mi upstream from Mueseback Creek, 3.8 mi south of Fredricksburg, and 88.7 mi upstream from mouth.

DRAINAGE AREA. -- 369 mi².

PERIOD OF RECORD.--July 1979 to May 1993, Mar 1998 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,564,96 ft above sea level. Radio telemeter at station. Satellite telemeter at station.

REMARKS. -- Records fair. No known regulation or diversion above station.

Discharge

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes streamflow record.

AVERAGE DISCHARGE.--14 years, 61.8 $\rm ft^3/s$ (44,770 acre-ft/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,600 ft³/s May 3, 1990 (gage height, 25.68 ft); no flow July 13-18, 1984.

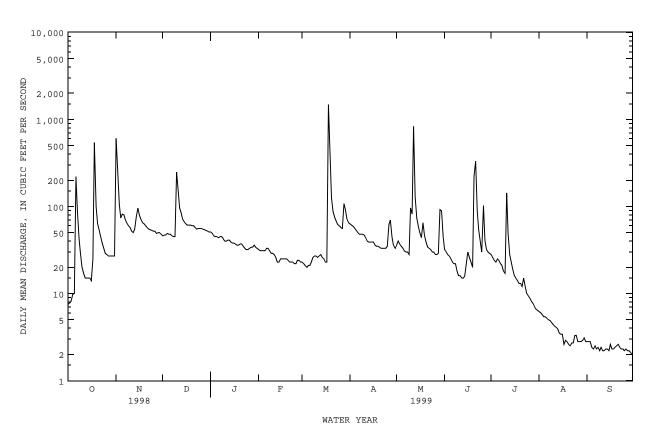
EXTREMES OUTSIDE PERIOD OF RECORD.—The flood of Aug. 2, 1978, which is the highest since 1907, reached a stage of 41.6 ft (discharge not determined). The highest known discharge was $64,000 \text{ ft}^3/\text{s}$ June 1, 1979 (gage height, 34.4 ft, from floodmark), from rating curve extended above a discharge measurement of $42,300 \text{ ft}^3/\text{s}$ June 1, 1979.

Discharge

Gage height

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $1,500~{\rm ft}^3/{\rm s}$ and maximum (*):

Gage height


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $1,500~{\rm ft}^3/{\rm s}$:

Date	Time	е	(ft ³ /s)	5	(ft)		Date	Time		(ft ³ /s)	(ft)
Oct 18 Mar 18	0400 174		1,510 6,340	1	7.10 L2.08		May 12	0500		3,420	9	9.31
		DISCHAR	GE, CUBIC	FEET PER		WATER YE MEAN VA	AR OCTOBER LUES	1998 ТО	SEPTEMBI	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.5 7.8 8.2 9.8	605 247 106 74 82	46 47 47 49 48	51 49 46 45 45	32 31 31 31 31	23 22 21 20 21	63 61 59 56 53	36 40 37 35 33	32 30 28 27 25	28 26 24 23 25	6.2 6.0 5.7 5.4 5.4	2.8 2.8 2.8 2.4 2.3
6 7 8 9 10	220 89 44 29 20	80 70 64 60 57	48 46 45 45 248	44 e45 45 43 40	33 33 31 29 29	21 23 26 27 27	50 48 48 48 47	31 30 30 28 96	23 22 22 18 16	24 22 21 18 17	5.2 5.0 4.9 4.6 4.4	2.5 2.3 2.4 2.2 2.4
11 12 13 14 15	17 15 15 15 15	52 50 55 76 96	151 96 e84 71 66	40 41 41 39 38	28 26 23 23 25	26 27 28 26 25	44 40 39 39 39	82 833 129 74 59	16 15 15 16 22	143 48 28 23 19	4.2 4.1 3.9 3.5 3.4	2.2 2.2 2.3 2.3 2.2
16 17 18 19 20	14 25 542 100 64	80 71 65 63 60	63 61 61 61	38 37 36 36 37	25 25 25 25 24	23 23 1480 504 126	39 36 35 35 34	50 44 e65 47 39	30 26 23 20 225	16 15 14 13	3.4 2.6 2.9 2.8 2.6	2.6 2.3 2.3 2.4 2.5
21 22 23 24 25	54 46 38 33 29	57 55 54 53 52	60 57 55 56 56	37 35 33 32 32	23 23 23 22 22	87 75 68 62 60	33 33 33 33 35	34 33 32 30 30	331 89 54 39 30	12 15 12 10 9.4	2.5 2.7 2.7 3.3 3.3	2.6 2.4 2.3 2.3 2.2
26 27 28 29 30 31	28 27 27 27 27 27	52 49 50 50 48	56 55 54 53 52 51	33 34 34 36 34 33	24 24 23 	57 56 108 92 71 65	62 70 45 36 33	28 28 29 92 89 45	102 41 32 30 29	8.8 8.1 7.7 7.0 6.6 6.4	2.8 2.8 2.9 3.1 2.8	2.3 2.2 2.2 2.1 2.0
MEAN MAX MIN AC-FT	1630.3 52.6 542 7.5 3230	2633 87.8 605 48 5220	2048 66.1 248 45 4060	1209 39.0 51 32 2400	744 26.6 33 22 1480	3320 107 1480 20 6590	1326 44.2 70 33 2630	2288 73.8 833 28 4540	1428 47.6 331 15 2830	663.0 21.4 143 6.4 1320	117.9 3.80 6.2 2.5 234	70.8 2.36 2.8 2.0 140
							, BY WATER	•				
MEAN MAX (WY) MIN (WY)	68.2 408 1986 3.45 1983	30.3 87.8 1999 7.17 1990	107 993 1992 7.18 1990	42.5 173 1992 8.78 1990	76.7 631 1992 8.32 1984	65.8 370 1992 9.77 1984	49.3 224 1992 5.96 1984	91.4 261 1990 2.95 1984	114 635 1987 2.33 1984	39.6 191 1987 .90 1984	14.7 48.2 1987 .23 1985	16.9 48.8 1981 .31 1984

08152900 PEDERNALES RIVER NEAR FREDERICKSBURG, TX--Continued

SUMMARY STATISTICS	FOR 1999 WATER YEAR	WATER YEARS 1980 - 1999h
ANNUAL TOTAL	17478.0	
ANNUAL MEAN	47.9	61.8
HIGHEST ANNUAL MEAN		244 1992
LOWEST ANNUAL MEAN		5.31 1984
HIGHEST DAILY MEAN	1480 Mar 18	14800 Dec 20 1991
LOWEST DAILY MEAN	2.0 Sep 30	.00 Jul 13 1984
ANNUAL SEVEN-DAY MINIMUM	2.2 Sep 24	.01 Jul 12 1984
INSTANTANEOUS PEAK FLOW	6340 Mar 18	49900 Dec 20 1991
INSTANTANEOUS PEAK STAGE	12.08 Mar 18	32.09 Dec 20 1991
ANNUAL RUNOFF (AC-FT)	34670	44750
10 PERCENT EXCEEDS	72	87
50 PERCENT EXCEEDS	31	22
90 PERCENT EXCEEDS	2.8	3.4

e Estimated h See PERIOD OF RECORD paragraph.

08153500 PEDERNALES RIVER NEAR JOHNSON CITY, TX

LOCATION.--Lat 30°17'30", long 98°23'57", Blanco County, Hydrologic Unit 12090206, near left downstream end of bridge on U.S. Highway 281, 0.2 mi downstream from Towhead Creek, 1.1 mi northeast of Johnson City, 3.4 mi downstream from Buffalo Creek, and 48.0 mi upstream from mouth.

DRAINAGE AREA. -- 901 mi 2.

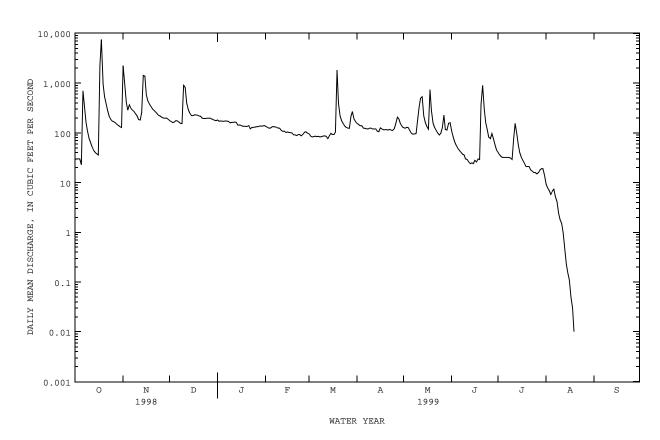
PERIOD OF RECORD.--May 1939 to current year.
Water-quality records.--Chemical data: Apr 1948 to Sep 1950, Oct 1971 to Sep 1985.

REVISED RECORDS.--WSP 1632: 1953(M), 1957, 1958(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,096.70 ft above sea level. May 4 to Sep 13, 1939, nonrecording gage, and Sep 14, 1939, to Sep 10, 1952, water-stage recorder at upstream side of bridge at same datum. Sep 11, 1952, to Jun 29, 1953, nonrecording gage, and Jun 30, 1953, to Oct 7, 1954, water-stage recorder at site 360 ft downstream at same datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--No estimated daily discharge. Records good. There are diversions above station for irrigation. During the year, the city of Fredericksburg discharged varying amounts of wastewater effluent into the river upstream from station. The city of Johnson City diverts varying amounts of water from the pool at gage and discharges wastewater effluent into river below the gage. Flow is affected at times by discharge from the flood-detention pools of four floodwater-retarding structures with a combined detention capacity of 4,580 acre-ft. These structures control runoff from 15.6 mi² in the Williamson Creek drainage basin.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes streamflow record.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jul 1869, reached a stage of 33 ft from information by local residents.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,100 ft 3/s:

Date	Time		Discharg (ft ³ /s)	re Gage	e height (ft)		Date	Time	I	Discharge (ft ³ /s)		height Et)
Oct 17 Oct 18	0945 0545		9,930 18,900		13.75 15.65		Nov 1 Mar 19	0945 0245		6,110 5,110		.78 .51
		DISCH	ARGE, CUE	SIC FEET PI		WATER YE Y MEAN V		R 1998 TO	SEPTEMBE	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	29 30 30 30 23	2230 921 409 288 364	176 168 161 165 176	181 171 174 171 171	136 130 125 125 132	96 86 83 84 86	156 147 139 139 125	127 124 130 127 110	110 83 66 56 49	40 36 33 32 32	9.2 7.7 6.9 5.8 6.8	.00 .00 .00 .00
6 7 8 9 10	699 364 165 110 78	311 286 268 242 217	174 165 156 153 899	173 172 170 159 162	134 131 130 125 124	84 85 83 84 86	123 121 120 125 125	99 94 95 97 169	44 41 37 36 30	32 32 32 31 29	7.4 5.2 4.1 2.4 1.8	.00 .00 .00 .00
11 12 13 14 15	63 51 44 40 38	184 182 258 1420 1380	816 406 296 252 222	163 164 162 142 144	112 107 109 102 104	87 85 77 87 98	120 120 120 108 106	330 498 535 220 160	29 26 24 25 24	77 155 99 57 40	1.5 1.0 .47 .23	.00 .00 .00 .00
16 17 18 19 20	36 2270 7520 949 533	586 436 375 334 300	222 231 228 227 218	142 136 136 135 135	102 101 99 91 91	93 92 105 1830 392	126 120 115 115 116	135 118 737 282 157	28 26 30 29 377	32 28 24 21 21	.11 .05 .03 .01	.00 .00 .00 .00
21 22 23 24 25	378 283 214 186 172	280 263 241 223 217	216 196 194 194 197	140 121 128 129 130	88 92 92 87 94	219 174 154 137 129	114 118 113 112 122	127 111 99 90 97	897 305 163 115 82	21 18 17 16 16	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	167 159 147 141 133 128	206 199 197 199 188	197 198 191 185 179 176	133 133 138 136 137 140	103 105 99 	124 123 215 269 190 167	158 206 188 153 134	126 227 117 114 156 160	77 97 75 58 45	15 16 18 19 19	.00 .00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	15210 491 7520 23 30170	13204 440 2230 182 26190	7634 246 899 153 15140	4628 149 181 121 9180	3070 110 136 87 6090	5704 184 1830 77 11310	3904 130 206 106 7740	5768 186 737 90 11440	3084 103 897 24 6120	1072 34.6 155 14 2130	60.85 1.96 9.2 .00 121	0.00 .000 .00 .00
STATIST	rics of Mon	NTHLY M	EAN DATA	FOR WATER	YEARS 193	39 - 1999,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	230 2041 1960 .44 1952	93.7 600 1975 2.51 1952	181 3161 1992 2.44 1955	128 1177 1968 1.68 1957	211 2794 1992 4.83 1957	181 1289 1992 2.07 1956	242 2369 1977 .060 1956	337 1673 1975 2.05 1956	332 2905 1987 .52 1971	101 872 1987 .001 1971	116 1953 1978 .000 1954	196 6332 1952 .000 1984

08153500 PEDERNALES RIVER NEAR JOHNSON CITY, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1939 - 1999
ANNUAL TOTAL	87653.56	63338.85	
ANNUAL MEAN	240	174	196
HIGHEST ANNUAL MEAN			840 1992
LOWEST ANNUAL MEAN			4.12 1956
HIGHEST DAILY MEAN	12400 Mar 16	7520 Oct 18	129000 Sep 11 1952
LOWEST DAILY MEAN	.86 Aug 14	.00 Aug 20	.00 Aug 8 1951
ANNUAL SEVEN-DAY MINIMUM	1.6 Jul 30	.00 Aug 20	.00 Aug 8 1951
INSTANTANEOUS PEAK FLOW		18900 Oct 18	441000 Sep 11 1952
INSTANTANEOUS PEAK STAGE		15.65 Oct 18	42.50 Sep 11 1952
ANNUAL RUNOFF (AC-FT)	173900	125600	142100
10 PERCENT EXCEEDS	391	281	284
50 PERCENT EXCEEDS	111	115	51
90 PERCENT EXCEEDS	14	.00	4.8

Discharge

08154700 BULL CREEK AT LOOP 360 NEAR AUSTIN, TX

LOCATION.--Lat 30°22'19", long 97°47'04", Travis County, Hydrologic Unit 12090205, on right bank at downstream side of bridge at Loop 360, 1.0 mi upstream from West Fork Bull Creek and Farm Road 2222, and 7.1 mi northwest of the State Capitol Building in Austin

DRAINAGE AREA. -- 22.3 mi².

WATER-DISCHARGE RECORDS

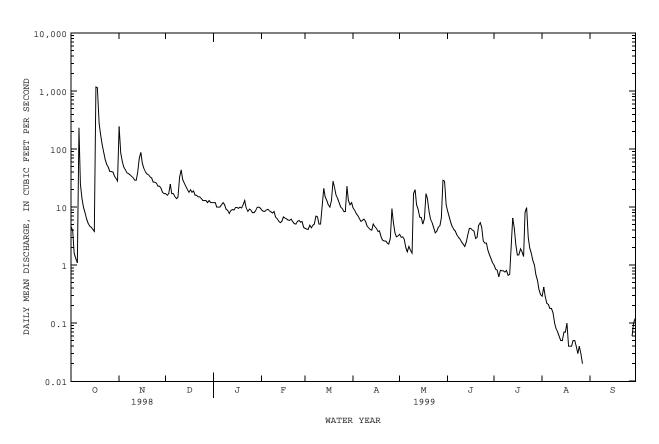
PERIOD OF RECORD.--Apr 1976 to Jul 1978 (operated as a flood-hydrograph partial-record station), Jul 1978 to current year.

GAGE.--Water-stage recorder, concrete control, and crest-stage gage. Datum of gage is 534.08 ft above sea level (levels from city of Austin benchmark). Satellite telemeter at station.

Discharge

Gage height

REMARKS.--No estimated daily discharges. Records good. No known regulation or diversions. Several observations of water temperature were made during the year.


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft^3/s :

Gage height

Date	Time	1	(ft ³ /s)		(ft)		Date	Time	1	(ft ³ /s)		neignt t)
Oct 6 Oct 17	0230 1130		1,540 4,790		5.85 8.20		Oct 18 Nov 1	0400 0700		2,920 1,500		.91 .82
		DISCHAF	RGE, CUBIC	FEET PE	R SECOND, DAILY	WATER YE MEAN VA		R 1998 TO	SEPTEMBE	IR 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.6 3.9 1.6 1.3	246 86 61 49 44	17 16 17 25 17	12 12 10 10	8.9 8.5 8.4 8.9 9.2	4.3 4.2 4.1 4.9 4.4	9.7 8.8 7.7 7.1 6.4	3.4 3.0 3.1 2.8 2.0	8.6 6.8 5.5 4.6 4.1	1.0 .85 .82 .63 .82	. 29 . 42 . 29 . 22 . 21	.00 .00 .00 .00
6 7 8 9 10	232 25 14 10 8.0	39 38 36 34 32	17 15 14 15 33	11 12 11 9.3 8.8	8.6 8.3 7.9 8.4 6.7	4.9 5.1 7.0 6.8 5.1	5.7 5.9 6.2 5.7 4.7	1.7 2.1 1.8 1.6	3.8 3.3 3.0 2.8 2.5	.80 .80 .76 .81 .67	.18 .18 .15 .10	.00 .00 .00 .00
11 12 13 14 15	6.2 5.2 4.7 4.5 4.1	29 29 40 70 88	44 30 26 23 20	7.8 8.7 9.1 8.9 9.8	6.3 5.7 5.4 5.7 6.8	5.1 11 21 15 13	4.4 4.1 4.0 5.1 4.6	20 11 9.1 6.7 6.6	2.3 2.1 2.5 3.3 4.3	.70 2.3 6.5 4.3 2.3	.07 .06 .05 .05	.00 .00 .00 .00
16 17 18 19 20	3.8 1180 1150 279 180	57 46 40 37 36	18 20 18 19 16	9.9 9.5 10 9.7	6.5 6.3 6.0 5.9 6.2	11 10 13 28 22	4.3 3.8 3.9 3.1 2.7	5.1 6.3 17 14 8.4	4.3 4.0 3.9 2.9 3.0	1.5 1.5 1.9 1.7	.07 .10 .04 .04	.00 .00 .00 .00
21 22 23 24 25	120 90 66 54 49	33 32 27 27 26	16 15 15 14 13	13 9.7 8.4 9.3 8.9	5.6 5.2 5.1 5.7 5.9	16 14 12 10 9.4	2.6 2.6 2.4 2.3 2.9	6.1 5.3 4.4 3.6 3.8	4.9 5.4 4.5 2.6 2.4	8.1 9.8 3.0 2.0 1.6	.05 .05 .04 .03	.00 .00 .00 .00
26 27 28 29 30 31	41 41 40 34 31 28	23 23 21 18 17	13 13 12 13 12 12	8.0 8.7 9.9 10 9.7	5.5 5.7 4.5 	8.3 8.4 23 13 11 12	9.4 5.5 3.6 3.1 3.2	4.5 4.8 6.6 29 28 11	2.4 1.8 1.5 1.3 1.1	1.2 1.0 .68 .54 .38	.03 .02 .00 .00	.00 .00 .06 .10
TOTAL MEAN MAX MIN AC-FT CFSM IN.	3713.0 120 1180 1.1 7360 5.37 6.19	1384 46.1 246 17 2750 2.07 2.31	568 18.3 44 12 1130 .82 .95	304.1 9.81 13 7.8 603 .44 .51	187.8 6.71 9.2 4.5 373 .30	337.0 10.9 28 4.1 668 .49 .56	145.5 4.85 9.7 2.3 289 .22 .24	249.8 8.06 29 1.6 495 .36 .42	105.5 3.52 8.6 1.1 209 .16	60.67 1.96 9.8 .31 120 .09	2.97 .096 .42 .00 5.9 .00	0.28 .009 .12 .00 .6 .00
STATIS' MEAN MAX (WY) MIN (WY)	TICS OF MON 17.4 120 1999 .27 1979	NTHLY MEA 10.9 46.1 1999 .60 1989	16.9 130 1992 .64 1990	13.1 55.9 1992 1.08 1990	YEARS 1978 17.7 114 1992 1.92 1996	15.8 64.7 1992 2.06 1996	11.9 69.4 1997 1.28 1984	25.4 58.9 1992 .33 1984	27.4 141 1987 .57 1998	4.29 22.6 1997 .043 1994	3.91 26.3 1991 .096 1999	3.85 15.3 1987 .009 1999

08154700 BULL CREEK AT LOOP 360 NEAR AUSTIN, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1978 - 1999
ANNUAL TOTAL	9730.01	7058.62	
ANNUAL MEAN	26.7	19.3	14.1
HIGHEST ANNUAL MEAN			40.6 1992
LOWEST ANNUAL MEAN			1.86 1984
HIGHEST DAILY MEAN	1180 Oct 17	1180 Oct 17	1180 Oct 17 1998
LOWEST DAILY MEAN	.00 Aug 1	.00 Aug 28	.00 Jul 4 1984
ANNUAL SEVEN-DAY MINIMUM	.01 Jul 29	.00 Aug 28	.00 Jul 4 1984
INSTANTANEOUS PEAK FLOW		4790 Oct 17	13700 May 13 1982
INSTANTANEOUS PEAK STAGE		8.20 Oct 17	12.31 Oct 7 1994
ANNUAL RUNOFF (AC-FT)	19300	14000	10190
ANNUAL RUNOFF (CFSM)	1.20	.87	.63
ANNUAL RUNOFF (INCHES)	16.23	11.77	8.57
10 PERCENT EXCEEDS	41	31	25
50 PERCENT EXCEEDS	13	5.7	4.2
90 PERCENT EXCEEDS	.14	.04	.32

08154700 BULL CREEK AT LOOP 360 NEAR AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Apr 1978 to current year. BIOCHEMICAL DATA: Apr 1978 to current year. RADIOCHEMICAL DATA: Jan to Apr 1980. PESTICIDE DATA: Jun 1978 to Sep 1986, Jan 1993 to Jun 1995.

INSTRUMENTATION. -- Stage-activated automatic sampler.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DIS- CHARGI INST CUBIO FEE' PER SECOI (0006)	E, SPE CIFI C CON- F DUCT ANCE ND (US/C	C WHOL FIEL - (STAN ARD M) UNIT	E D TEMPE D- ATUR WATE S) (DEG	E INUM R COBA C) UNIT	T- TUR I- BIC LT ITY 'S) (NTU	D- DIS SOLV (MG/	- CEN ED SATU L) ATIO	- DEMANI ED CHEM - ICAL T (HIGI R- LEVEL N) (MG/L	D, DEMAN BIO- CHEM H ICAL) 5 DA) (MG/	D, FORM, FECAL, - 0.7 , UM-MF Y (COLS., L) 100 ML
MAR 03 JUN	0925	4.3	574				1.0			<10	.5	37
30	0815	1.2	609	7.7	27.0	5	1.4	4.9	63	<10	. 4	180
DA	T (TE 1	STREP- COCOCCI FECAL, CF AGAR (COLS. PER .00 ML) (31673)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	RESIDUE FIXED NON FILTER- ABLE (MG/L) (00540)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
MAR 03 JUN		190	180	2	1	1	<.010	<.050	<.020			.12
30	•	280	180	4	2	2	<.010	.063	.024	.27	.19	.21
DA	TE	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
MAR 03 JUN		<.050	<.050	<.010		2.1	E.250	<.100	<1	1	<1	<10
30	•	E.031	<.050	.016	.05	2.3	E.180	<.100	<1	<1	<1	<40

This page intentionally left blank.

08154900 LAKE AUSTIN AT AUSTIN, TX

LOCATION.--Lat 30°18′53", long 97°47′10", Travis County, Hydrologic Unit 12090205, at city of Austin Waterplant No. 2 and 1.5 mi upstream from Tom Miller Dam on the Colorado River at Austin.

DRAINAGE AREA.--38,846 mi 2 , of which 11,403 mi 2 probably is noncontributing.

PERIOD OF RECORD.--CHEMICAL DATA: Oct 1978 to Aug 1990, Oct 1990 to current year. BIOCHEMICAL DATA: Oct 1978 to Aug 1990, Oct 1990 to current year. PESTICIDE DATA: Oct 1978 to Aug 1990.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

			301	739097471	.601 - LAK	E AUSTIN	SITE AR				
		DATE	TIME		SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		(DEG C)	(MG/L)			
		T 06 06 06	1348 1350 1352 1354		497 497 497 497	8.0 8.0 8.0 7.9	25.5 25.5 25.5 25.5	5.4 5.3 5.3 5.2	66 65 65 64		
			301	739097471	.201 - LAK	E AUSTIN	SITE AC				
DATE	TIME		CON- DUCT- ANCE (US/CM)	(STAND- ARD UNITS)	TEMPER- ATURE	DISK) (M)	TUR- BID- ITY (NTU)	SOLVED (MG/L)	SATUR- ATION)	WAT DIS FIX END FIELD CAC03 (MG/L)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT 06 06 06 06 06	1404 1406 1408 1410 1412 1414	1.00 10.0 20.0 30.0 40.0 49.0	496 497 496 494 501 509	8.0 8.0 8.0 8.0 7.4 7.4	25.5 25.5 25.5 25.0 22.5 22.0	1.77 		5.2 5.4 5.2 5.1 .0	64 66 64 62 0	140 170	289 299
			301	739097471	.201 - LAK	E AUSTIN	SITE AC				
DATE	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	DIS- SOLVED (MG/L AS P)	ORTHO, DIS- SOLVED (MG/L AS P)	ORTHO, DIS- SOLVED (MG/L AS PO4)	ORGANIC TOTAL (MG/L AS C)	DIS- SOLVED (UG/L AS CU)	(UG/L AS PB)
OCT 06	2	<.010	.060	<.020	<.050	<.050	<.010		4.1	1.0	<1.0
06 06											
06											
06 06	3	<.010	.057	.198	.039	.037	.035			<1.0	<1.0
			301	739097470	1901 – LAK	E AUSTIN	SITE AL				
		DATE	TIME		CON- DUCT-	(STAND- ARD UNITS)	ATURE WATER (DEG C)		CENT SATUR- ATION)		
		T 06 06 06	1432 1434 1436	1.00 10.0 23.0	494 494 494	8.0 8.0 8.0	25.5 25.5 25.5		67 67 67		

08154900 LAKE AUSTIN AT AUSTIN, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

302043097472401 - LAKE AUSTIN SITE BC

DATE	TIME	(FEE (0000	G DUCT H ANCE T) (US/C 3) (0009	C WHOL FIEL (STAN ARD M) UNIT (5) (0040	E D TEMPE D- ATUR WATE S) (DEG 0) (0001	E (SECC R DISK C) (M) 0) (0007	Y TUR HI BIC (NTU (NTU	D- DIS 7 SOLV J) (MG/ 76) (0030	G- CEN /ED SATU /L) ATIO 00) (0030	- LINIT ED WAT D - FIX E T FIEL R- CACO N) (MG/ 1) (3903	Y RESID IS AT 18 ND DEG. D DIS 3 SOLV L) (MG/ 6) (7030	DUE TOTAL 0 AT 105 C DEG. C, SUS- TED PENDED L) (MG/L) 0) (00530)
06 06 06	1458 1500 1502	10.0	500	8.1	25.5			- 5.8	71	150 		
06	1504	29.0	395	7.9	22.5		20	5.6	65	120	235	28
		NITRO-	NITRO-	302 NITRO-	043097472 NITRO-	401 - LAK	E AUSTIN	SITE BC PHOS-	PHOS-			
DAT	E	GEN,	GEN,	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN,	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS-	PHOSE PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT 06 06			<.010	.066	<.020	<.050	<.050	<.010		3.7	1.2	<1.0
06 06		.428	.011	.439	.043	.051	.028	.024	.07	6.1	1.1	<1.0
				302	044097472	301 - LAK	E AUSTIN	SITE BL				
			DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)		
			06 06 06	1448 1450 1452	1.00 10.0 17.0	500 497 485	8.0 8.0 8.0	25.5 25.5 25.5	5.6 5.5 5.3	69 68 65		
				301	926097502	201 - LAK	E AUSTIN	SITE CC				
DAT	E	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 06 06		1534 1536 1538	1.00 10.0 24.0	499 499 499	7.9 7.9 7.9	24.5 24.5 24.5	2.53	.70 .92	4.9 4.8 5.0	59 58 61	150 150	289 288
				301	926097502	201 - LAK	E AUSTIN	SITE CC				
DAT	E	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT 06 06		2	<.010	.078	.034	.010	.013	.011	.03	3.5	1.2	<1.0
06		2	<.010	.080	.031	.013	<.050	.010	.03	4.1	1.3	<1.0

08154900 LAKE AUSTIN AT AUSTIN, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

302021097540001 - LAKE AUSTIN SITE DC

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
OCT	1602	1.00	492	7.9	24.0	4.9	59
06	1604	10.0	492	7.9	24.0	4.9	59
06	1606	15.0	492	7.9	24.0	4.8	58

This page intentionally left blank.

08155200 BARTON CREEK AT STATE HIGHWAY 71 NEAR OAK HILL, TX

LOCATION.--Lat 30°17′46", long 97°55′31", Travis County, Hydrologic Unit 12090205, at upstream side of bridge on State Highway 71, 0.1 mi downstream from Little Barton Creek, and 5.8 mi northwest of Oak Hill.

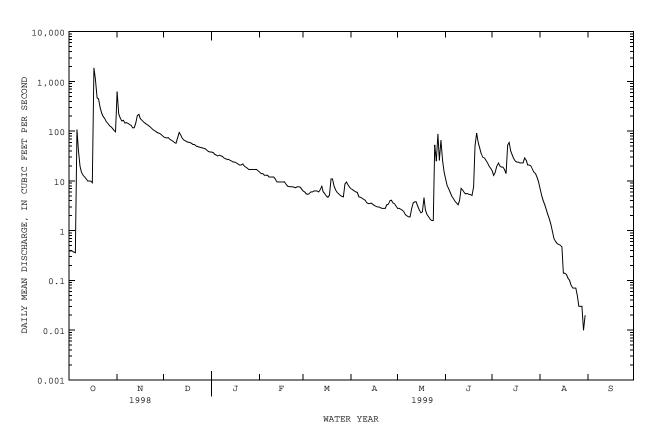
DRAINAGE AREA.--89.7 mi 2 .

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Aug 1975 to Feb 1978 (operated as a flood-hydrograph partial-record station), Feb 1978 to Sep 1982, Jan 1989 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 737.04 ft above sea level. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records poor. No known regulation or diversions.


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft^3/s :

Date	Time	I	Discharge (ft ³ /s)		height (ft)		Date	Time	Ι	Discharge (ft ³ /s)	Gage l	neight t)
Oct 17 Oct 18	1445 1000		8,940 2,000		4.83 7.80		Nov 1	1200		1,940	7.	.70
		DISCHA	RGE, CUBIC	FEET PE		WATER YE Y MEAN VA	AR OCTOBER LUES	1998 то	SEPTEMBE	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.39 .39 .39 .37	621 221 182 161 165	77 74 73 74 69	38 37 34 33 32	15 14 14 13 13	6.3 6.0 5.5 5.4 5.6	7.0 6.7 6.3 6.0 5.9	2.8 2.8 2.7 2.6 2.4	11 8.0 7.0 5.9 4.9	16 13 15 20 23	6.9 5.0 4.0 3.3 2.6	.00 .00 .00 .00
6 7 8 9 10	108 42 20 15 13	146 149 144 137 130	66 63 59 57 73	33 32 31 29 28	13 12 12 12 12	6.0 6.3 6.3 6.3	4.8 4.7 4.5 4.3 4.1	2.1 2.0 1.9 1.9 2.7	4.4 3.9 3.6 3.3 4.0	20 19 19 17 14	2.1 1.7 1.3 .92 .68	.00 .00 .00 .00
11 12 13 14 15	12 11 10 10 9.9	116 117 144 204 218	94 84 72 67 64	27 27 26 25 24	9.6 9.5 9.5 9.5	6.0 6.7 7.9 6.0 5.5	3.7 3.5 3.5 3.6 3.4	3.6 3.8 3.8 3.1 2.6	7.1 6.5 5.8 5.5 5.6	53 60 40 33 28	.60 .55 .53 .51	.00 .00 .00 .00
16 17 18 19 20	9.2 1880 1130 470 445	177 166 154 145 138	61 60 59 57 54	24 23 22 21 21	9.5 9.6 8.5 7.8 7.7	5.0 4.7 5.2 11	3.2 3.1 3.0 3.0 2.9	2.3 2.4 4.6 2.6 2.1	5.4 5.3 5.1 7.6 51	25 24 24 23 23	.14 .14 .13 .11	.00 .00 .00 .00
21 22 23 24 25	299 231 196 177 156	131 125 116 108 103	54 50 49 48 47	22 20 19 18 17	7.6 7.6 7.5 7.3 7.6	7.9 6.5 5.9 5.5 5.1	2.8 2.8 2.8 3.3 3.4	1.9 1.7 1.6 1.6	92 59 46 35 30	23 29 26 21 21	.08 .07 .07 .07	.00 .00 .00 .00
26 27 28 29 30 31	143 129 123 113 103 97	99 93 91 88 82	46 45 44 41 39 38	17 17 17 17 17 16	7.6 7.5 6.8 	4.9 4.8 8.7 9.5 8.3 7.4	4.0 4.1 3.6 3.5 3.1	25 88 26 66 26 15	29 26 23 20 18	20 17 15 14 12 9.6	.03 .03 .03 .01 .02	.00 .00 .00 .00
MEAN MAX MIN AC-FT CFSM IN.	5954.00 192 1880 .36 11810 2.14 2.47 STICS OF MON	4671 156 621 82 9260 1.74 1.94	1858 59.9 94 38 3690 .67 .77	764 24.6 38 16 1520 .27 .32	281.7 10.1 15 6.8 559 .11 .12	203.2 6.55 11 4.7 403 .07 .08	120.6 4.02 7.0 2.8 239 .04 .05	360.6 11.6 88 1.6 715 .13 .15	538.9 18.0 92 3.3 1070 .20	716.6 23.1 60 9.6 1420 .26 .30	32.24 1.04 6.9 .00 64 .01	0.00 .000 .00 .00 .00
MEAN MAX (WY) MIN (WY)	24.8 192 1999 .000 1991	18.3 156 1999 .059 1990	53.3 520 1992 .039 1990	47.7 293 1992 .046 1990	66.1 465 1992 .072 1990	64.8 338 1992 .020 1996	47.9 196 1979 .057 1996	70.8 226 1992 .001 1996	106 613 1981 .000 1996	13.1 56.5 1997 .000 1978	2.95 15.2 1991 .000 1996	2.26 24.2 1991 .000 1999

08155200 BARTON CREEK AT STATE HIGHWAY 71 NEAR OAK HILL, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR	YEAR	FOR 1999 WAT	CER YEAR	WATER YEARS	1978 -	1999h
ANNUAL TOTAL	27597.10		15500.84				
ANNUAL MEAN	75.6		42.5		46.2		
HIGHEST ANNUAL MEAN					182		1992
LOWEST ANNUAL MEAN					.17		1996
HIGHEST DAILY MEAN	1880 Oc	t 17	1880	Oct 17	4960	Dec 21	1991
LOWEST DAILY MEAN	.00 Au	ıg 16	.00	Aug 31	.00	Feb 7	1978
ANNUAL SEVEN-DAY MINIMUM	.00 Au	ıg 25	.00	Aug 31	.00	Feb 7	1978
INSTANTANEOUS PEAK FLOW		_	8940	Oct 17	14900	Dec 20	1991
INSTANTANEOUS PEAK STAGE			14.83	Oct 17	18.10	Dec 20	1991
ANNUAL RUNOFF (AC-FT)	54740		30750		33440		
ANNUAL RUNOFF (CFSM)	.84		.47		.51		
ANNUAL RUNOFF (INCHES)	11.44		6.43		6.99		
10 PERCENT EXCEEDS	167		110		93		
50 PERCENT EXCEEDS	38		9.5		4.6		
90 PERCENT EXCEEDS	.02		.04		.03		

h See PERIOD OF RECORD paragraph.

08155200 BARTON CREEK AT STATE HIGHWAY 71 NEAR OAK HILL, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Apr 1978 to Sep 1982, Feb 1989 to current year.
BIOCHEMICAL DATA: Apr 1978 to Sep 1982, Feb 1989 to current year.
RADIOCHEMICAL DATA: Oct 1979 to Sep 1980.
PESTICIDE DATA: Apr 1978 to Sep 1982, Jan 1993 to Jun 1995.

INSTRUMENTATION.--Stage-activated automatic sampler.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)
OCT 06 06 06 07 MAR	0325 0510 1100 1110	 	291 183 236 125	255 157 341 361	6.8 7.9 8.1 7.6	19.0 19.0 20.5	50 60 30 20	260 240 27 5.0	 7.8	 88	14 11 <10 <10
02 MAY	0935		6.5		7.8	18.0		1.0	8.9		
17 MAY	1105		2.2	497	7.6	26.0	<1	10	7.0	89	<10
26-27 JUN	2030	95		364	8.2		20	60			<10
20-21 29 JUL	1755 0830	105	21	448 496	7.9 8.0	 28.5	10 <1	3.0 1.5	6.0	 80	<10 <10
11-11	0555	64		492	7.7		5	1.6			<10
AUG 16	1040		.16	540	7.6	29.0	11	.24	5.0	67	<10
DATE	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	RESIDUE FIXED NON FILTER- ABLE (MG/L) (00540)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
OCT 06 06 06 07	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	LINITY WAT DIS FIX END FIELD CAC03 (MG/L)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	VOLA- TILE, SUS- PENDED (MG/L)	FIXED NON FILTER- ABLE (MG/L)	GEN, NITRATE DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)
OCT 06 06 07 MAR 02	DEMAND, BIO- CHEM- ICAI, 5 DAY (MG/L) (00310) 4.7 4.8 2.0	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 46000 24000 4400	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) 42000 56000 12000	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	VOLA- TILE, SUS- PENDED (MG/L) (00535)	FIXED NON FILTER- ABLE (MG/L) (00540) 548 312 48	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
OCT 06 06 07 MAR 02 MAY 17	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 4.7 4.8 2.0 1.7	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 46000 24000 4400 K1300	TOCOCCI FECAL, KF AGA, (COLS. PER 100 ML) (31673) 42000 56000 12000 4700	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 59 59 130 130	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 624 368 57 8	VOLA- TILE, SUS- PENDED (MG/L) (00535) 76 56 9 5	FIXED NON FILTER-ABLE (MG/L) (00540) 548 312 48 3	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .246 .271	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .011 .023 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .257 .294 .170 .114	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .054 <.020 .068 <.020
OCT 06 06 07 MAR 02 MAY 17 MAY 26-27	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 4.7 4.8 2.0 1.7	FORM, FECAL, 0.7 0.7 UM-MF (COLS./100 ML) (31625) 46000 24000 4400 K1300 K5	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) 42000 56000 12000 4700	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 59 59 130 130	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 624 368 57 8	VOLA- TILE, SUS- PENDED (MG/L) (00535) 76 56 9 5	FIXED NON FILTER-ABLE (MG/L) (00540) 548 312 48 3 2	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .011 .023 <.010 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .257 .294 .170 .114	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .054 <.020 .068 <.020 <.020
OCT 06 06 07 MAY 17 MAY 26-27 JUN 20-21 29	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 4.7 4.8 2.0 1.7	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 46000 24000 4400 K1300 K5	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) 42000 56000 12000 4700 140 K2700	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 59 59 130 130 170	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 624 368 57 8 3	VOLA- TILE, SUS- PENDED (MG/L) (00535) 76 56 9 5 1	FIXED NON FILTER-ABLE (MG/L) (00540) 548 312 48 3 2	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .246 .271	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .011 .023 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .257 .294 .170 .114 <.050	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .054 <.020 .068 <.020 <.020 <.020
OCT 06 06 07 MAR 02 MAY 17 MAY 26-27 JUN 20-21	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 4.7 4.8 2.0 1.7 .5 .7	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 46000 24000 4400 K1300 K5 21 E5000	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) 42000 56000 12000 4700 140 K2700 K7000	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 59 59 130 130 170 160 120	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 624 368 57 8 3 <1 77 8	VOLA- TILE, SUS- PENDED (MG/L) (00535) 76 56 9 5 1 3 20	FIXED NON FILTER-ABLE (MG/L) (00540) 548 312 48 3 2 57	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .246 .271	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .011 .023 <.010 <.010 <.010 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .257 .294 .170 .114 <.050 .053 .131 <.050	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .054 <.020 .068 <.020 <.020 <.020 .025 <.020

> 08155200 BARTON CREEK AT STATE HIGHWAY 71 NEAR OAK HILL, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	NITRO- GEN, TOTAL (MG/L AS N) (00600)	GEN,	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVEI (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
OCT 06				.358	<.050	<.010		28			
06 06	1.4	 .56	1.1	.174	E.033	<.010 <.010		17 4.7			
07 MAR	.34		.22 E.07	<.050	<.050	<.010		3.9			
02 MAY 17			<.10	<.050 <.050	<.050 <.050	<.010		1.7 2.4	<.100	<.100 <.100	
MAY 26-27	.69	.53	.56	.053	<.050	.012	.04	39			71
JUN 20-21			.31	E.044	<.050	.013	.04	3.2			3
29 JUL		.49	.51	<.050	<.050	.010	.03	3.0	E.170	<.100	
11-11 AUG			.16	<.050	<.050	<.010		3.4			5
16	.18		.13	<.050	<.050	<.010		1.3	.340	<.100	
DATE	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	(UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
OCT 06							<1				7
06 06							<1 <1	 			5 1
07 MAR 02							<1 <1				2 <1
MAY 17							<1				<1
MAY 26-27	18	98	D26	<1.0	22	<1.0	<1	<1.0	<1.0	<1.0	2
JUN 20-21	.85	100					<1				<1
29 JUL							<1				<1
11-11 AUG	.87	91					<1 <1				<1 <1
16							<1				<.
D	DI SC DATE (U AS	PPER, TO IS- RE DLVED EF JG/L (U IS CU) AS	ECOV- I RABLE SO JG/L (U B PB) AS	EAD, NE DIS- D DIVED SO JG/L (U S PB) AS	SE, DE DIS- I DLVED SO IG/L (U S MN) AS	DIS- D DLVED S JG/L (JG/L (DIS- SOLVED S UG/L (AS NI) F	LVER, TO DIS- RE SOLVED ER UG/L (U	COV- DABLE SC IG/L (US ZN) AS	NC, NAT OIS- D OLVED SO G/L (U S ZN) AS	NIUM URAL IS- LVED G/L U) 703)
OCT 06.		1	1						30		
06. 06.			7		 				20		
07. MAR			:1						:10		
02. MAY		<	:1					<	:10		
17. MAY			:1						:40		
26- JUN						.4					.0
20- 29.			:1 :1						:40 :40		
JUL 11-	-11	<	:1					<	40		
AUG 16.			:1					<	:40		

08155240 BARTON CREEK AT LOST CREEK BOULEVARD, AUSTIN, TX

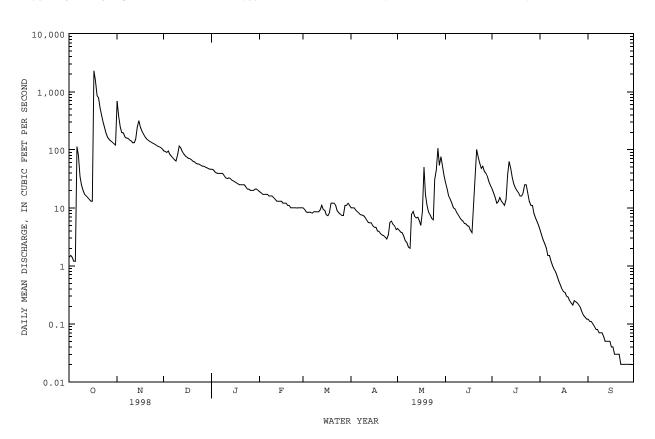
DRAINAGE AREA.--107 mi 2 .

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Jan 1979 to Sep 1980 (periodic gage heights and discharge measurements only). Dec 1988 to current year.

GAGE.--Water-stage recorder. Datum of gage is 600 ft above sea level, from topographic map. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. No known regulation or diversions. No flow at times. Several observations of water temperature were made during the year.


EXTREMES OUTSIDE PERIOD OF RECORD.—The flood of May 28, 1929, was probably the highest since that date (discharge 39,400 ${\rm ft}^3/{\rm s}$), based on slope-area measurement of peak flow at a site about 2.1 mi downstream.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft 3 /s:

Date	Time		Discharge (ft ³ /s)	Gag	e height (ft)		Date	Time	:	Discharge (ft ³ /s)		height ft)
Oct 17 Oct 18	1815 1230		7,210 2,130		9.55 5.84		Nov 1	1445		1,790	5	.51
		DISCH	ARGE, CUBI	C FEET P	ER SECOND, DAII	, WATER YE LY MEAN VA		R 1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.4 1.5 1.4 1.2	688 373 243 197 195	96 93 90 95 83	46 45 42 40 39	19 18 17 17	10 9.4 8.5 8.3 8.4	10 10 9.9 9.1 8.6	4.4 4.1 3.8 3.7 3.2	27 21 16 14 12	21 18 15 12 13	4.1 3.3 2.8 2.4 2.0	.12 .11 .11 .10
6 7 8 9 10	113 81 35 25 20	167 159 157 148 142	77 72 67 64 82	39 39 39 36 33	17 16 16 16 15	8.3 8.1 8.6 8.5 8.5	8.1 7.6 7.5 7.3 6.8	2.7 2.5 2.1 2.0 7.8	10 9.6 8.4 7.6 6.9	15 13 12 11 14	1.5 1.5 1.2 1.0	.08 .08 .07 .07
11 12 13 14 15	17 16 15 14 13	131 132 152 247 318	116 109 93 85 78	32 33 32 30 29	14 13 13 13 13	8.5 9.2 11 9.4 9.0	6.2 5.6 5.5 5.5 4.9	8.7 7.2 6.7 6.9	6.3 6.0 5.4 5.3 4.9	38 63 48 33 26	.78 .67 .55 .47	.06 .05 .05 .05
16 17 18 19 20	13 2300 1590 854 783	246 209 185 165 154	75 71 70 67 63	28 27 26 25 25	12 12 12 11 11	7.6 7.3 8.3 12	4.6 4.6 4.0 3.9 3.6	5.0 8.6 50 17 11	4.8 4.1 3.7 13 32	22 20 18 16 16	.36 .35 .30 .29	.04 .04 .03 .03
21 22 23 24 25	515 392 296 233 188	146 140 135 130 126	62 58 57 56 54	25 25 23 21 21	10 10 10 10 9.9	12 11 8.9 8.2 7.8	3.4 3.3 3.1 2.9 3.4	8.3 7.5 6.6 6.2	101 75 59 48 52	18 25 25 18 13	.23 .21 .25 .24 .23	.03 .02 .02 .02
26 27 28 29 30 31	161 148 141 134 127 121	121 116 113 110 104	52 52 50 49 47 46	20 20 20 21 21 21	10 10 10 	7.4 7.4 11 11 12	5.6 5.9 5.2 4.9 4.2	45 106 54 76 51 35	42 39 34 28 24	11 8.0 6.7 5.8 5.0	.21 .19 .16 .14 .13	.02 .02 .02 .02 .02
TOTAL MEAN MAX MIN MED AC-FT CFSM	8351.7 269 2300 1.2 113 16570 2.52	5649 188 688 104 153 11200 1.76	2229 71.9 116 46 70 4420 .67	922 29.7 46 20 28 1830 .28	371.9 13.3 19 9.9 13 738 .12	288.6 9.31 12 7.3 8.6 572 .09	175.2 5.84 10 2.9 5.5 348 .05	590.0 19.0 106 2.0 7.2 1170	720.0 24.0 101 3.7 14 1430 .22	590.5 19.0 63 5.0 16 1170 .18	27.20 .88 4.1 .12 .36 54	1.54 .051 .12 .02 .05 3.1
MEAN MAX (WY) MIN (WY)	34.0 269 1999 .10 1994	25.3 188 1999 .23 1990	84.0 627 1992 .22 1990	68.9 307 1992 .40 1990	101 581 1992 .96 1996	79.6 381 1992 .81 1996	62.8 247 1997 .84 1996	97.3 264 1992 .42 1996	119 701 1997 .93 1998	14.0 67.8 1997 .17 1996	3.80 23.2 1991 .005 1998	3.26 25.6 1991 .051 1999

08155240 BARTON CREEK AT LOST CREEK BOULEVARD, AUSTIN, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1989 - 1999
ANNUAL TOTAL	35365.33	19916.64	
ANNUAL MEAN	96.9	54.6	59.7
HIGHEST ANNUAL MEAN			212 1992
LOWEST ANNUAL MEAN			1.14 1996
HIGHEST DAILY MEAN	2300 Oct 17	2300 Oct 17	7000 Dec 21 1991
LOWEST DAILY MEAN	.00 Jul 27	.02 Sep 22	.00 Aug 24 1993
ANNUAL SEVEN-DAY MINIMUM	.00 Jul 27	.02 Sep 22	.00 Aug 24 1993
INSTANTANEOUS PEAK FLOW		7210 Oct 17	16400 Dec 21 1991
INSTANTANEOUS PEAK STAGE		9.55 Oct 17	12.90 Dec 21 1991
ANNUAL RUNOFF (AC-FT)	70150	39500	43230
ANNUAL RUNOFF (CFSM)	.91	.51	.56
10 PERCENT EXCEEDS	197	130	127
50 PERCENT EXCEEDS	46	12	6.5
90 PERCENT EXCEEDS	.00	.21	.22

08155240 BARTON CREEK AT LOST CREEK BOULEVARD, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Dec 1988 to current year. BIOCHEMICAL DATA: Dec 1988 to current year. PESTICIDE DATA: Jan 1993 to May 1995.

INSTRUMENTATION. -- Stage-activated automatic sampler.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

	WA	TEK-QUALI	II DAIA,	WAIER IEA	R OCIOBER	1990 10	PERIFMPER	1999		
DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
OCT 06 06 06 07	0400 0545 0810 1135 1145	 	38 75 108 157 75	626 406 481 441 429	8.1 8.0 8.1 8.1 7.8	23.0 21.5 21.0 20.0	20 30 40 25 20	2.3 7.4 23 60 4.1	 7.6	 84
MAR 02	1050		9.5	519	7.8	19.0	5	1.2	7.9	88
MAY 17	1030		4.4	568	7.4	25.5	<1	1.5	6.2	78
MAY 26-28	2340	83		459	8.3		10	3.2		
JUN 20-22 29	2145 0930	89 	 29	448 523	7.9 7.9	 28.0	10 5	2.4	6.3	 82
AUG 16	1130		.40	663	7.8	30.0	12	.22	6.0	81
DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	RESIDUE FIXED NON FILTER- ABLE (MG/L) (00540)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
OCT 06 06 06 07 MAR	<10 <10 <10 <10 <10	2.6 3.0 2.7 2.7 1.9	2200 20000 K6000 4000 2300	10000 110000 79000 28000 1800	170 110 130 140 150	8 11 45 94 9	6 11 7 20 5	2 .00 38 74 4	.674 	<.010 .011 <.010 <.010 <.010
02 MAY	<10	.7	K10	64	160	1	<1			<.010
17 MAY	10	.7	84	840	190	<1	2			<.010
26-28 JUN	<10	1.8	3200	2500	160	8	8	.00		<.010
20-22 29	12 <10	1.5 .5	К900 200	4200 230	160 170	8	4 1	4 2		<.010 <.010
16	<10	.8	21	170	210	<1	2			<.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)		PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)
OCT 06 06 06	.189 .685 .505 .443	.042 .057 .027 .026	 1.0	 .58	 .61	.055 .212 .106 .094 <.050	<.050 .129 E.035 <.050 <.050	.020 .129 .036 .016 <.010	.06 .40 .11 .05	4.2 7.6 7.0 7.1 3.9
MAR 02	.062	.024	.16	.08	.10	<.050	<.050	<.010		2.8
MAY 17	<.050	.029		.20	.23	<.050	<.050	.013	.04	1.8
MAY 26-28	.068	.023	.34	.25	.27	E.030	<.050	.016	.05	37
JUN 20-22 29	.102 .131	<.020 .028	.30	.22	.20	<.050 <.050	<.050 <.050	.010 <.010	.03	2.7 2.1
AUG 16	<.050	<.020			.29	<.050	<.050	<.010		2.9

08155240 BARTON CREEK AT LOST CREEK BOULEVARD, AUSTIN, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
OCT									
06						<1	1	1	10
06						<1	2	4	10
06						<1	2	2	10
06						<1	2	2	10
07						<1	<1	<1	<10
MAR									
02	E.150	<.100				<1	<1	<1	<10
MAY						_	_	_	
17	.260	<.100				<1	<1	<1	<40
MAY			7	1 6	100	.1	.1	. 4	.40
26-28			/	1.6	100	<1	<1	<1	<40
JUN 20-22			17	4.1	85	<1	<1	<1	<40
29	2.10	.400	1/	4.1	85	<1	<1	<1	<40
AUG	2.10	.400				<1	<1	< 1	<±U
16	.620	<.100				<1	<1	<1	<40
10	.020					~±	~1		- 10

Discharge

08155300 BARTON CREEK AT LOOP 360, AUSTIN, TX

LOCATION.--Lat $30^{\circ}14'40"$, long $97^{\circ}48'07"$, Travis County, Hydrologic Unit 12090205, on Loop 360, 0.9 mi west of the intersection of Ben White and Lamar Boulevards, and 4.3 mi southwest of the State Capitol Building in Austin.

DRAINAGE AREA.--116 mi 2 .

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Jun 1975 to Jan 1977 (operated as a flood-hydrograph partial-record station only), Feb 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 510.32 ft above sea level (Texas Department of Transportation bench mark). Satellite telemeter at station.

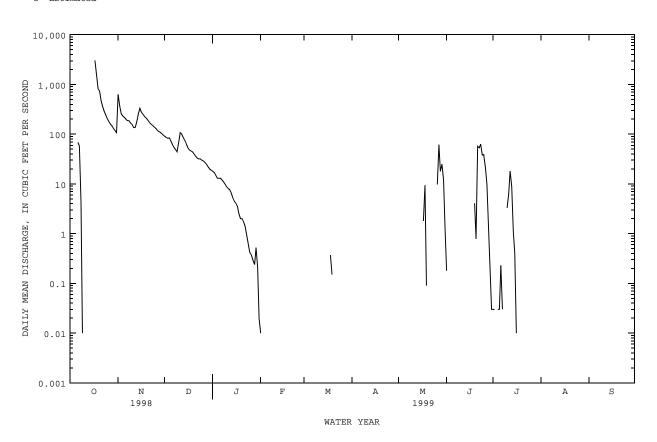
Discharge

Gage height

REMARKS.--Records fair. No known regulation or diversions. Several observations of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.—The flood of May 28, 1929, was probably the highest since that date (discharge 39,400 ${\rm ft}^3/{\rm s}$), based on a slope-area measurement of peak flow at a site about 2 mi upstream.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft 3 /s:


Gage height

Date	Time	2	(ft ³ /s)	5	(ft)		Date	Time		(ft ³ /s)	(f	t)
Oct 17 Oct 17	1315 1930		9,960 7,660		12.74 11.39		Oct 18 Nov 1	1400 1600		2,090 1,650		.54 .06
		DISCHA	ARGE, CUB	IC FEET P	ER SECOND, DAIL	WATER YE Y MEAN VA		R 1998 TC	SEPTEMB:	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	632 370 253 231 219	91 86 83 84 74	18 17 15 13	.01 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.18 .00 .00 .00	.03 .03 .00 .03	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9 10	68 57 4.3 .01 .00	199 188 185 169 155	62 54 49 44 67	13 12 11 10 8.8	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.23 .03 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	135 137 175 252 331	107 101 85 75 63	8.1 7.7 6.6 5.2 4.4	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	6.3 18 8.9 1.1 .41	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.00 3050 1600 815 739	280 252 227 211 194	53 48 46 44 40	4.1 3.5 2.5 2.0 2.0	.00 .00 .00 .00	.00 .00 .37 .15	.00 .00 .00 .00	.00 1.8 9.4 .09	.00 .00 .00 4.1 .79	.01 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	467 362 288 242 206	175 162 152 142 133	36 33 32 32 30	1.7 1.4 .90 .60	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	57 53 63 38 39	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	179 159 145 130 117	123 115 110 104 97	29 27 25 22 20 19	.37 .29 .24 .52 .21	.00 .00 .00 	.00 .00 .00 .00	.00 .00 .00 .00	9.7 61 18 25 12	21 e9.9 e1.6 .22 .03	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00
MEAN MAX MIN AC-FT CFSM IN.	2.43 2.80	6108 204 632 97 12120 1.76 1.96	1661 53.6 107 19 3290 .46 .53	183.57 5.92 18 .02 364 .05	0.01 .000 .01 .00 .02 .00	0.52 .017 .37 .00 1.0 .00	.000 .00 .00 .00	138.09 4.45 61 .00 274 .04	287.82 9.59 63 .00 571 .08	38.40 1.24 18 .00 76 .01	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00 .00
	STICS OF MC							·	•			
MEAN MAX (WY) MIN (WY)	28.7 282 1999 .000 1978	17.1 204 1999 .000 1978	73.2 865 1992 .000 1978	41.0 281 1992 .000 1978	64.3 609 1992 .000 1978	54.8 342 1992 .000 1978	49.2 319 1977 .000 1978	80.1 321 1992 .000 1978	156 1142 1987 .000 1978	8.29 73.1 1981 .000 1977	.75 13.9 1991 .000 1977	.51 7.57 1983 .000 1977

08155300 BARTON CREEK AT LOOP 360, AUSTIN, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR Y	EAR	FOR 1999 WAT	TER YEAR	WATER YEARS	3 1977 - 1999
ANNUAL TOTAL	31764.92		17152.72			
ANNUAL MEAN	87.0		47.0		47.3	
HIGHEST ANNUAL MEAN					229	1992
LOWEST ANNUAL MEAN					.000	1978
HIGHEST DAILY MEAN	3050 Oct	17	3050	Oct 17	10800	Dec 21 1991
LOWEST DAILY MEAN	.00 May	9	.00	Oct 1	.00	Apr 11 1977
ANNUAL SEVEN-DAY MINIMUM	.00 May	9	.00	Oct 10	.00	Jun 10 1977
INSTANTANEOUS PEAK FLOW			12500	Oct 17	18100	May 25 1981
INSTANTANEOUS PEAK STAGE			12.74	Oct 17	15.03	May 25 1981
ANNUAL RUNOFF (AC-FT)	63010		34020		34290	
ANNUAL RUNOFF (CFSM)	.75		.41		.41	
ANNUAL RUNOFF (INCHES)	10.19		5.50		5.54	
10 PERCENT EXCEEDS	208		134		98	
50 PERCENT EXCEEDS	20		.00		.00	
90 PERCENT EXCEEDS	.00		.00		.00	

e Estimated

08155300 BARTON CREEK AT LOOP 360, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Jan 1979 to current year. BIOCHEMICAL DATA: Jan 1979 to current year. RADIOCHEMICAL DATA: Apr 1980. PESTICIDE DATA: Jan 1979 to Sep 1986.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

								. 1000		
DATE	TIME	IN CUBIC FEET PER SECOND		CIFIC CON- DUCT- ANCE (US/CM)	WHOLE FIELD (STAND- ARD UNITS)	ATURE WATER (DEG C)	INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L) (00300)	CENT SATUR- ATION)
OCT 06 06	0635 1200 0755	 	12 157 71	90 115 395	7.4 7.9 7.6	18.5 19.5	60 65 25	2.7 36 27	 8.0	 88
MAY 26-28	2030	49		443	8.3		5	10		
JUN 20-22	2132		45	438	7.8		20	3.0		
28	1135		1.6	438 477	8.3	29.5	5	1.2	7.8	105
DATE	CHEM- ICAL (HIGH LEVEL) (MG/L)	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	FECAL, KF AGAR (COLS. PER 100 ML)	LINITY WAT DIS FIX END FIELD CAC03 (MG/L)	AT 105 DEG. C, SUS- PENDED (MG/L)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L)	FIXED NON FILTER- ABLE (MG/L)	NITRATE DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)
OCT 06	11	3.7	11000	27000	43	7	8	.00	.294	.034
06 07		3.6 2.4	29000 1100	21000 7400	56 130	58 30	16 6	42 24	.497	.020 <.010
MAY 26-28	<10	1.5	K1600	5700		3	6	.00		<.010
JUN										
20-22 28	13 <10	1.1	К6800 160	19000 580	150 150	11 4	6 1	5 3		<.010 <.010
	NITRO- GEN, NO2+NO3 DIS-	NITRO- GEN, AMMONIA DIS-	NITRO- GEN,	NITRO- GEN, ORGANIC	NITRO- GEN,AM- MONIA + ORGANIC	PHOS-	PHOS- PHORUS	PHOS- PHORUS ORTHO,	PHOS- PHATE, ORTHO,	CARBON,
DATE	(MG/L AS N) (00631)	(MG/L AS N) (00608)	TOTAL (MG/L AS N) (00600)	TOTAL (MG/L AS N) (00605)	TOTAL (MG/L AS N) (00625)	TOTAL (MG/L AS P) (00665)	SOLVED (MG/L AS P) (00666)	SOLVED (MG/L AS P) (00671)	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	TOTAL (MG/L AS C) (00680)
OCT										
OCT 06 06	.328 .517	.030				.136	.090	.088	.27	8.0 9.1
OCT 06 06 07	.328 .517 .335	.030 .024 .022	 .69		 .35	.136	.090	.088	.27	8.0
OCT 06 06 07 MAY 26-28 JUN	.328 .517 .335	.030 .024 .022				.136 .143 E.037	.090 .074 <.050	.088	. 27 . 22 	8.0 9.1
OCT 06 06 07 MAY 26-28 JUN	.328 .517 .335	.030 .024 .022	 .69	 .33 	 .35 .23	.136 .143 E.037 <.050	.090 .074 <.050	.088 .071 <.010	.27 .22 .03	8.0 9.1 5.2
OCT 06 06 07 MAY 26-28 JUN 20-22	.328 .517 .335 .059 .157 .058 CHLC PHY PLA TO CHRC	.030 .024 .022 <.020 .044 .020 .0R-A CHLC TO- PHY NK- PLA NN TO MO CHRC MO FLUC (I/L) (UG		 .33 .64 .19 SED MEN I- DI T, CHAR - SU DED PEN /L) (T/D	 .35 .23 .69 .21 I- SE T, SU S- SIE GE, DI S- % FI DED TH AY) .062	.136 .143 E.037 <.050 <.050 <.050 CD. SSP. CADM VVE WAT LAM. UNFI NER TOTI LAN (UG 12N AS	.090 .074 <.050 <.050 <.050 <.050 <.050 IIUM COPP ER TOT ITRD REC AL ERA I/L (UG CD) AS	.088 .071 <.010 .010 .014 <.010 EER, LEA 'AL TOT OV-REC BLE ERA t/L (UG CU) AS	.27 .22 .03 .04 .2D, ZIN .2AL TOT .2OV- .2BLE ERA .5/L (UG .PB) AS	8.0 9.1 5.2 34 3.4 4.2 IC, AL OV-BLE E/L ZN)
OCT 06 06 07 MAY 26-28 JUN 20-22 28 DAT	.328 .517 .335 .059 .157 .058 CHLC PHY PLA TC CHRC	.030 .024 .022 <.020 .044 .020 PHY NK- PLA NN TO MO CHRO ROM FLUC (JL) (UG 53) (709		 .33 .64 .19 SED MEN I- DI T, CHAR - SU DED PEN /L) (T/D 54) (801	 .35 .23 .69 .21 I- SE T, SU GE, SIE GE, SF FI DED TH AY) .062 55) (703	.136 .143 E.037 <.050 <.050 <.050 <.050 D.SSP. CADM YVE WAT LAM. UNFI NER TOT LAN (UG 1MA AS 331) (010	.090 .074 <.050 <.050 <.050 <.050 <.050 IIUM COPP ER TOT TRD REC AL ERA I/L (UG CD) AS 27) (010	.088 .071 <.010 .010 .014 <.010 EER, LEA 'AL TOT OV-REC BLE ERA '/L (UG CU) AS 42) (010	.27 .22 .03 .04 .2D, ZIN .2AL TOT .2OV-REC .BLE ERA .5/L (UG .PB) AS .51) (010	8.0 9.1 5.2 34 3.4 4.2 (C, AL (OV-BLE E/L ZN) 92)
OCT 06 06 07 MAY 26-28 JUN 20-22 28 DAT	.328 .517 .335 .059 .157 .058 CHLC PHY PLA TC CHRC CHRC (103 (709	.030 .024 .022 <.020 .044 .020 .0R-A CHLC TO- PHY NK- PLA NY TC MO CHRC ROM FLUC (7L) (UG 53) (709				.136 .143 E.037 <.050 <.050 <.050 SD. CADM VE WAT .AM. UNFI .AM. UNFI .AM. UNFI .AM. (UG 2 MM AS 331) (010	.090 .074 <.050 <.050 <.050 <.050 <.050 ER TOI TITED REC 'AL ERA '/L (UG CD) AS 27) (010	.088 .071 <.010 .010 .014 <.010 EER, LEA PAL TOI OV- REC BBLE ERA L/L (UG CU) AS 42) (010	.27 .2203 .04 MD, ZIN PAL TOT OV- REC BBLE ERA S/L (UG PB) AS S/S1) (010	8.0 9.1 5.2 34 3.4 4.2 CC, AL OV- BLE E//L ZN) 92)
OCT 06 07 MAY 26-28 JUN 20-22 28 DAT OCT 06 06 07 MAY	.328 .517 .335 .059 .157 .058 CHLC PHY PLA TC CHRC FLUC (UG (709	.030 .024 .022 <.020 .044 .020 .0R-A CHLC TO- PHY NK- PLA NN TO MO CHRC WOM FLUC (1/L) (UG 53) (709		 .33 .64 .19 SED MEN I- DII T, CHAR - SU DED PEN (T/D) (T/D 54) (801	35 .23 .69 .21 I- SE T, SU S- SIE GE, DI S- % FI DED TH AY) .062 55) (703	.136 .143 E.037 <.050 <.050 <.050 <.050 SD. CADM VE WAT IAM. UNFI INER TOT IAN (UG IAN (UG IAN (UG IAN (UG IAN (UG IAN (UG) (UG) (UG) (UG) (UG) (UG) (UG) (UG)	.090 .074 <.050 <.050 <.050 <.050 <.050 IIUM COPP EER TOT ITRD REC AL ERA I/L (UG CD) AS 27) (010	.088 .071 <.010 .010 .014 <.010 EER, LEAR PAL TOTOOV- REC BLE ERA L/L (UG CU) AS 42) (010	.27 .22 .03 .04 .2IN .2IN .2IN .2IN .2IN .2IN .2IN .2IN	8.0 9.1 5.2 34 3.4 4.2 IC, AL OV- BLE I/L ZN) 92) 0 0
OCT 06 06 07 MAY 26-28 JUN 20-22 28 DAT	.328 .517 .335 .059 .157 .058 CHLC PHY PLA TC CHRC (CHRC (CHRC (TO9)	.030 .024 .022 <.020 .044 .020 .044 .020 .08R-A CHLC TO- PHY .08 TO MO CHRC (MO CHRC (MO CHRC (JL) (UG 53) (709				.136 .143 E.037 <.050 <.050 <.050 <.050 SD. CADM VE WAT IAM. UNFI INER TOT IAN (UG IAN (UG IAN (UG IAN (UG IAN (UG IAN (UG) (UG) (UG) (UG) (UG) (UG) (UG) (UG)	.090 .074 <.050 <.050 <.050 <.050 <.050 IIUM COPPER TOTITED RECAL ERA AL ERA AL/L (UGCD) AS 27) (010	.088 .071 <.010 .010 .014 <.010 EER, LEA AL TOT OV- REC BLE ERA 42) (010 CU) AS 42) (010	.27 .22 .23 .03 .04 DD, ZIN PAL TOT OV- REC BLE ERA STAL (UG PB) AS (010	8.0 9.1 5.2 34 3.4 4.2 CC, AL OV- BLE ZN) 92) 0 0

This page intentionally left blank.

08155400 BARTON CREEK ABOVE BARTON SPRINGS AT AUSTIN, TX

 $\label{location.--Lat 30°15'48", long 97°46'19", Travis County, Hydrologic Unit 12090205, on left bank of Barton Creek approximately 200 ft above Barton Springs pool.$

DRAINAGE AREA.--125 mi 2

PERIOD OF RECORD.-CHEMICAL DATA: Oct 1998 to Aug 1999.
BIOCHEMICAL DATA: Oct 1998 to Aug 1999.
TRACE METAL DATA: Oct 1998 to Aug 1999.
PESTICIDE DATA: Oct 1998 to Aug 1999.
Water-discharge records.--Sep 1981 to Oct 1984 (low-flow partial-record station).

 ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	DEMAND, CHEM- ICAL (HIGH
OCT											
06	0710		104	148	7.8	18.5	60	75			<10
06	0900		42 19	163	7.8 7.8	19.0	60	66 55			<10
06 06	0955 1219		21	182 236	7.8	19.0 19.5	55 40	40			<10 <10
07	1217		50	437	7.8	20.0	30	16	7.9	87	<10
17	1207		2390	90	7.7		150	200			10
17	1230		4670	105	7.7		130	240			19
17 17	1345 1615		7300 3310	146 193	7.9 7.9	22.0	250 180	370 260			14 16
19	1414		1300	456	8.2	20.5	25	7.5			<10
MAR											
02 APR	1145		1.7	602	7.3	21.0	5	1.8	8.0	92	<10
26 MAY	2100										
17	1258		1.8	634	7.2	23.0	<1	9.0	8.4	100	<10
MAY 17-18	2215	33		202	7.6		120	200			37
MAY 26-27	1830	17		305	8.2		25	85			15
JUN 21-22	1610	27		377	7.9		20	4.0			21
29	1245	2 / 	1.4	570	7.9	25.5	20 <1	1.4	7.8	 97	<10
JUL	1210			3.0	,	23.3			,		-20
10-11	2120	39		222	7.6		100	150			24
AUG 16	1230		.14	640	7.5	27.0	6	.50	8.2	104	<10
DATE	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)		(COLS. PER	WAT DIS FIX END FIELD CAC03 (MG/L)		RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	RESIDUE FIXED NON FILTER- ABLE (MG/L) (00540)	NITRATE DIS- SOLVED (MG/L AS N)	DIS-	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	DIS- SOLVED (MG/L AS N)
OCT	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	VOLA- TILE, SUS- PENDED (MG/L) (00535)	FIXED NON FILTER- ABLE (MG/L) (00540)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
OCT 06	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	VOLA- TILE, SUS- PENDED (MG/L) (00535)	FIXED NON FILTER- ABLE (MG/L) (00540)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
OCT 06 06	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) K72000 44000	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	VOLA- TILE, SUS- PENDED (MG/L) (00535)	FIXED NON FILTER- ABLE (MG/L) (00540)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
OCT 06	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 3.1	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	VOLA- TILE, SUS- PENDED (MG/L) (00535)	FIXED NON FILTER- ABLE (MG/L) (00540)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
OCT 06 06 06 07	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 3.1 2.7 2.2	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 39000 33000 K25000 1100	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) K72000 44000 60000 25000 5600	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 46 56 59 89 130	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16	VOLA- TILE, SUS- PENDED (MG/L) (00535)	FIXED NON FILTER- ABLE (MG/L) (00540) 98 76 64 34 14	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .966 .956 .932 1.01 .483	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024
OCT 06 06 06 07	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 3.1 2.7 2.2	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 33000 K25000 1100 27000	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) K72000 44000 60000 25000 5600 64000	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 46 56 59 89 130 30	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16 760	VOLA- TILE, SUS- PENDED (MG/L) (00535)	FIXED NON FILTER- ABLE (MG/L) (00540) 98 76 64 34 14 704	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992 	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .966 .956 .932 1.01 .483 .527	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020
OCT 06 06 06 07 17	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 3.1 2.7 2.2 .8 1.1	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 33000 K25000 1100 27000 64000	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) K72000 44000 60000 25000 5600 64000 86000	LINITY WAT DIS FIX END FIELD CACO3 (MG/L) (39036) 46 56 59 89 130 30 33	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16	VOLA- TILE, SUS- PENDED (MG/L) (00535) 16 16 14 14 2 56 32	FIXED NON FILTER- ABLE (MG/L) (00540) 98 76 64 34 14 704 484	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992 .531	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .966 .956 .932 1.01 .483 .527 .543	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020 <.020
OCT 06 06 06 07 17 17	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 3.1 2.7 2.2 .8 1.1 1.7	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 33000 K25000 1100 27000 64000 19000 8800	TOCOCCI FECAL, KF AGAM (COLS. PER 100 ML) (31673) K72000 44000 60000 25000 5600 64000 86000 60000 26000	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 46 56 59 89 130 30 33 56 72	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16 760 516 1070 492	VOLA- TILE, SUS- PENDED (MG/L) (00535) 16 16 14 14 14 2 56 32 60 40	FIXED NON FILTER-ABLE (MG/L) (00540) 98 76 64 34 14 704 484 1010 452	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992 .531 .532	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010 <.010 .012 .012 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .966 .932 1.01 .483 .527 .543 .544 .505	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020 <.020 .029 <.029
OCT 06 06 06 07 17 17 17	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 3.1 2.7 2.2 .8 1.1	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 X25000 1100 27000 64000	TOCOCCI FECAL, KF AGRA (COLS. PER 100 ML) (31673) K72000 44000 60000 25000 5600 64000 86000 60000	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 46 56 59 89 130 30 33 56	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16 760 516 1070	VOLA- TILE, SUS- PENDED (MG/L) (00535) 16 16 14 14 2 56 32 60	FIXED NON FILTER-ABLE (MG/L) (00540) 98 76 64 34 14 704 484 1010	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992 531 .532	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010 <.010 .012 .012	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .966 .956 .932 1.01 .483 .527 .543	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020 <.020 .029
OCT 06 06 06 07 17 17 17 18	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 2.7 2.2 .8 1.1 1.7 .9	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 33000 K25000 1100 27000 64000 19000 8800 2100	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) K72000 44000 60000 25000 56000 64000 86000 60000 26000 4400	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 46 56 59 89 130 30 30 33 56 72 180	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16 760 516 1070 492 16	VOLA- TILE, SUS- PENDED (MG/L) (00535) 16 16 14 14 2 56 32 60 40 3	FIXED NON FILTER-ABLE (MG/L) (00540) 98 76 64 34 14 704 484 1010 452 13	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992531 .532	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010 .010 .012 .012 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .966 .956 .932 1.01 .483 .527 .543 .544 .505 .455	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020 <.020 .029 <.020 <.020
OCT 06 06 06 17 17 17 19 MAR 02 APR	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 3.1 2.7 2.2 .8 1.1 1.7	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 33000 K25000 1100 27000 64000 19000 8800	TOCOCCI FECAL, KF AGAM (COLS. PER 100 ML) (31673) K72000 44000 60000 25000 5600 64000 86000 60000 26000	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 46 56 59 89 130 30 33 56 72	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16 760 516 1070 492	VOLA- TILE, SUS- PENDED (MG/L) (00535) 16 16 14 14 14 2 56 32 60 40	FIXED NON FILTER-ABLE (MG/L) (00540) 98 76 64 34 14 704 484 1010 452	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992 .531 .532	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010 <.010 .012 .012 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .966 .932 1.01 .483 .527 .543 .544 .505	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020 <.020 .029 <.029
OCT 06 06 07 17 17 19 MAR 02	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 2.7 2.2 .8 1.1 1.7 .9	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 33000 K25000 1100 27000 64000 19000 8800 2100	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) K72000 44000 60000 25000 56000 64000 86000 60000 26000 4400	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 46 56 59 89 130 30 30 33 56 72 180	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16 760 516 1070 492 16	VOLA- TILE, SUS- PENDED (MG/L) (00535) 16 16 14 14 2 56 32 60 40 3	FIXED NON FILTER-ABLE (MG/L) (00540) 98 76 64 34 14 704 484 1010 452 13	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992531 .532	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010 .010 .012 .012 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .966 .956 .932 1.01 .483 .527 .543 .544 .505 .455	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020 <.020 .029 <.020 <.020
OCT 06 06 06 07 17 17 19 MAR 02 APR 26	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 2.7 2.2 .8 1.1 1.7 .9	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 33000 K25000 1100 27000 64000 19000 8800 2100	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) K72000 44000 60000 25000 56000 64000 86000 60000 26000 4400	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 46 56 59 89 130 30 30 33 56 72 180	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16 760 516 1070 492 16	VOLA- TILE, SUS- PENDED (MG/L) (00535) 16 16 14 14 2 56 32 60 40 3	FIXED NON FILTER-ABLE (MG/L) (00540) 98 76 64 34 14 704 484 1010 452 13	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992531 .532	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010 .010 .012 .012 <.010 <.010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .966 .956 .932 1.01 .483 .527 .543 .544 .505 .455	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020 <.020 .029 <.020 <.020
OCT 06 06 06 17 17 19 MAR 02 APR 26 MAY 17	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 3.1 2.7 2.2 .8 1.1 1.7 .9 .5	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 33000 K25000 1100 27000 64000 19000 8800 2100	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) K72000 44000 60000 25000 5600 64000 86000 60000 26000 4400	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 46 56 59 89 130 30 33 56 72 180 230	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)(00530) 114 92 78 48 16 760 516 1070 492 16	VOLA- TILE, SUS- PENDED (MG/L) (00535) 16 16 14 14 2 56 32 60 40 3	FIXED NON FILTER-ABLE (MG/L) (00540) 98 76 64 34 14 704 484 1010 452 13 .00	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992531 .532 1.50	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010 <.010 .012 .012 <.010 <.010 .0110	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .966 .956 .932 1.01 .483 .527 .543 .544 .505 .455	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020 <.020 <.020 <.020 <.020 <.020 <.020
OCT 06 06 06 17 17 17 19 MAR 02 APR 26 MAY 17 MAY	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 3.1 2.7 2.2 .8 1.1 1.7 .9 .5	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 33000 K25000 1100 27000 64000 19000 8800 2100 K5 160	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) K72000 44000 25000 5600 64000 86000 60000 26000 4400	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 46 56 59 89 130 30 30 31 56 72 180 230 250	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16 760 516 1070 492 16 2 <1	VOLA- TILE, SUS- PENDED (MG/L) (00535) 16 16 14 14 2 56 32 60 40 3 4	FIXED NON FILTER-ABLE (MG/L) (00540) 98 76 64 34 14 704 484 1010 452 13 .00	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992531 .5321.50	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 .010 .012 .010 .010 .010 .010 .010 .010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .966 .956 .952 1.01 .483 .527 .543 .544 .505 .455 1.51 1.88	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020 <.020 <.020 <.020 <.020 <.020027
OCT 06 06 06 07 17 17 19 MAR 02 APR 26 MAY 17 MAY 17 MAY 17 MAY 17.18 MAY 26-27 JUN 21-22	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 2.7 2.2 8 1.1 1.7 9.5 1.1 .4 3.8 4.5	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 39000 27000 64000 19000 8800 2100 K5 160 530000 59000 K1100	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) K72000 44000 60000 25000 5600 64000 86000 64000 26000 4400 560 330 110000 22000 K1100	LINITY WAT DIS FIX END FIELD CACO3 (MG/L) (39036) 46 56 59 89 130 30 33 56 72 180 230 250 76 150	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16 760 516 1070 492 16 2 <1 250 121	VOLA- TILE, SUS- PENDED (MG/L) (00535) 16 16 14 14 14 2 56 32 60 40 3 4 3 36 26	FIXED NON FILTER-ABLE (MG/L) (00540) 98 76 64 34 14 704 484 1010 452 13	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992531 .5321.50728 .718 .331	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010 .012 .010 .011 .010 .010 .010 .010	GEN, NO2+NO3 DIS-SOLVED (MG/L AS N) (00631) .966 .956 .932 1.01 .483 .527 .543 .544 .505 .455 1.51 1.88 .743 .730 .343	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020 <.020 <.029 <.020 <.020027 .140 .064 <.020
OCT 06 06 06 17 17 17 19 MAR 02 APR 26 MAY 17-18 MAY 26-27 JUN 21-22 29	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 3.1 2.7 2.2 .8 1.1 1.7 .9 .5 1.1	FORM, FECAL, O.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 33000 K25000 1100 27000 64000 19000 8800 2100 K5 160 530000 59000	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) K72000 44000 25000 5600 64000 26000 4400 560 330 110000	LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036) 46 56 59 89 130 30 30 31 56 72 180 230 250 76 150	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16 760 516 1070 492 16 2 <1 250 121	VOLA- TILE, SUS- PENDED (MG/L) (00535) 16 16 14 14 2 56 32 60 40 3 4 3 36 26	FIXED NON FILTER-ABLE (MG/L) (00540) 98 76 64 34 14 704 484 1010 452 13	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992531 .532 1.50728 .718	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010 <.010 .012 .012 <.010 .010 .010 .010 .010 .010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .966 .956 .932 1.01 .483 .527 .543 .544 .505 .455 1.51 1.88 .743	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020 <.020 <.020 <.020 <.020 <.020027 .140 .064
OCT 06 06 06 07 17 17 19 MAR 02 APR 26 MAY 17 MAY 17 MAY 17 MAY 17.18 MAY 26-27 JUN 21-22	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) 2.7 3.1 2.7 2.2 8 1.1 1.7 9.5 1.1 .4 3.8 4.5	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35000 39000 39000 27000 64000 19000 8800 2100 K5 160 530000 59000 K1100	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673) K72000 44000 60000 25000 5600 64000 86000 64000 26000 4400 560 330 110000 22000 K1100	LINITY WAT DIS FIX END FIELD CACO3 (MG/L) (39036) 46 56 59 89 130 30 33 56 72 180 230 250 76 150	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 114 92 78 48 16 760 516 1070 492 16 2 <1 250 121	VOLA- TILE, SUS- PENDED (MG/L) (00535) 16 16 14 14 14 2 56 32 60 40 3 4 3 36 26	FIXED NON FILTER-ABLE (MG/L) (00540) 98 76 64 34 14 704 484 1010 452 13	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .944 .937 .914 .992531 .5321.50728 .718 .331	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .022 .019 .018 .019 <.010 .012 .010 .011 .010 .010 .010 .010	GEN, NO2+NO3 DIS-SOLVED (MG/L AS N) (00631) .966 .956 .932 1.01 .483 .527 .543 .544 .505 .455 1.51 1.88 .743 .730 .343	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .063 .059 .057 .040 .024 <.020 <.020 <.029 <.020 <.020027 .140 .064 <.020

167

08155400 BARTON CREEK ABOVE BARTON SPRINGS AT AUSTIN, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	PHYTO- PLANK- TON CHROMO	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
OCT											
06 06				.252 .221	.109 .100	.096 .094	. 29 . 29	10 8.5			
06	1.5	.53	.59	.162	.082	.082	.25	8.2			
06	1.6	.52	.56	.146	.060	.062	.19	7.1			
07	.88	.37	.40	E.037	<.050	<.010		5.4			
17 17	1.5 3.2		.98 2.7	.283 .561	.078 .077	.064	.20 .12	26 22			
17	1.7	1.1	1.1	.296	E.045	.040	.12	28			
17	1.7		1.2	.199	E.034	<.010		27			
19	.77		.31	<.050	<.050	<.010		6.7			
MAR 02			E.10	<.050	<.050	<.010		.90	.340	<.100	
APR 26											
MAY 17			<.10	<.050	<.050	<.010		1.3	.350	<.100	
MAY 17-18	2.1	1.2	1.4	.333	.053	.055	.17	13			264
MAY 26-27 JUN	1.6	.81	.87	.173	E.035	.025	.08	41			120
21-22	.86		.52	.069	E.031	.017	.05	5.7			25
29 JUL	1.1	.10	.16	<.050	<.050	<.010		2.3	.530	E.100	
10-11 AUG	1.1		.76	.167	<.050	.023	.07	11			103
16	1.7		.14	E.031	<.050	<.010		1.6	.590	<.100	
DATE	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
OCT	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
OCT 06	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
OCT 06 06	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN. .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
OCT 06	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
OCT 06 06 06 07	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLIRD TOTAL (UG/L AS CD) (01027)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
OCT 06 06 06 07	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FIMER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027) <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
OCT 06 06 06 07 17	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLITED TOTAL (UG/L AS CD) (01027) <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
OCT 06 06 06 07	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027) <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
OCT 06 06 06 17 17 17	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027) <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
OCT 06 06 06 07 17 17 19	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLITAD TOTAL (UG/L AS CD) (01027) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 3 3 2 3 1 8 8 3 12 5 <1
OCT 06 06 06 17 17 17	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 3 3 2 3 1 8 3 1 2 5
OCT 06 06 06 17 17 17 19	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLITAD TOTAL (UG/L AS CD) (01027) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 3 3 2 3 1 8 8 3 12 5 <1
OCT 06 06 06 17 17 19 MAR 02 APR 26	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLITAD TOTAL (UG/L AS CD) (01027) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 3 3 2 3 1 8 8 3 12 5 <1
OCT	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLIRED TOTAL (UG/L AS CD) (01027) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- REABLE (UG/L AS CU) (01042) 3 3 2 3 1 1 8 3 12 5 <1 <1 <1 5
OCT 06 06 07 17 17 17 19 MAR 02 APR 26 MAY 17 MAY 18	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLIRED TOTAL (UG/L AS CD) (01027) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 3 3 2 3 1 8 3 12 5 <1 <1 <1 5
OCT 06 06 06 17 17 17 19 MAR 02 APR 26 MAY 17 MAY 17-18 MAY 26-27 JUN 21-22 29	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLIRED TOTAL (UG/L AS CD) (01027) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- REABLE (UG/L AS CU) (01042) 3 3 2 3 1 1 8 3 12 5 <1 <1 <1 5
OCT	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	WATER UNFLIRED TOTAL (UG/L AS CD) (01027) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- REABLE (UG/L AS CU) (01042) 3 3 2 3 1 1 8 3 12 5 <1 <1 <1 5 3 1 1

08155400 BARTON CREEK ABOVE BARTON SPRINGS AT AUSTIN, TX--Continued

DATE	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)
OCT										
06		3						20		
06		2						10		
06		2						10		
06		1						10		
07		<1						<10		
17		25						60		
17		6						20		
17		18						50		
17		7						20		
19		<1						<10		
MAR										
02		<1						<10		
APR										
26	1.2		<1.0	4.1	15	13	<1.0		3.8	<1.0
MAY		_								
17		<1						<40		
MAY										
17-18		16						E30		
MAY		7						700		
26-27		-7						E20		
JUN 21-22		<1						<40		
		_								
29 JUL		<1						<40		
10-11		8						E30		
AUG		0						ESU		
16		<1						<40		
10		^ 1						<±0		

This page intentionally left blank.

08155500 BARTON SPRINGS AT AUSTIN, TX

LOCATION.--Lat 30°15'48", long 97°46'16", Travis County, Hydrologic Unit 12090205, at ground-water well (YD 58-42-903), on right bank 0.4 mi upstream from Barton Springs Road bridge over Barton Creek, 0.7 mi upstream from mouth, and 1.8 mi southwest of the State Capitol Building in Austin.

DRAINAGE AREA. -- Not applicable. Only springflow is published for this station.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Nov 1894 to Apr 1917, and Oct 1918 to Feb 1978 (discharge measurements only), May 1917 to Sep 1918 (published as "Barton Creek at Austin, Texas"), Mar 1978 to 1994 (daily mean discharge), Oct 1994 to current year (discharge at 1200 hours).

GAGE.--Water-stage recorder. Datum of gage, at ground-water well (YD 58-42-903), is 462.34 ft above sea level. May 1917 to Sep 1918, nonrecording gage at site 1,000 ft downstream at different datum. Satellite telemeter at station.

REMARKS.--Records poor. Only springflow from the Edwards and associated limestones in the Balcones Fault Zone is published for this station. Operation of Barton Springs pool significantly affects level recorded in well. Pool is drained at closing and allowed to fill after cleaning operations. Under normal conditions gage height is in direct relation with discharge. Determination of flow from spring is considered best when pool/well level has stabilized at 1200 hrs. Beginning 1995, daily flow has been determined using the recorded level at 1200 hrs.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

EXTREMES FOR PERIOD OF RECORD (DISCHARGE MEASUREMENTS ONLY).--Maximum measured discharge, 166 ft 3 /s May 10, 1941; minimum measured, 9.6 ft 3 /s Mar 29, 1956.

		DISCHA	KGE, COBI		ILY OBSERV				SEFIEMBE	X 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	59	e99	106	103	98	92	e88	81	75	67	62	48
2	59	e107	107	103	98	91	88	81	73	67	61	48
3	59	e105	107	103	98	91	88	e80	e72	66	60	49
4	58	103	107	103	97	91	88	e80	71	65	60	49
5	58	e103	107	103	97	91	87	e79	70	65	59	47
6	76	102	107	102	97	90	87	e79	70	64	59	46
7	77	102	107	e102	97	91	87	e78	69	65	59	46
8	75	102	107	102	97	90	87	e78	68	64	58	45
9	74	102	107	102	96	90	86	e78	68	64	58	45
10	73	102	108	102	96	90	86	e77	67	63	57	44
11	72	101	108	102	96	e90	86	e77	66	66	57	43
12	71	101	108	102	95	90	85	e76	65	68	57	43
13	70	103	108	102	95	91	85	e76	65	69	56	43
14	70	103	107	102	95	91	85	e76	66	69	56	42
15	e69	105	104	102	95	90	85	e75	65	69	56	42
16	69	106	104	102	95	90	85	e75	68	68	55	41
17	e68	105	e104	102	95	90	84	e74	68	67	54	41
18	e99	105	104	102	e95	90	84	e74	67	68	54	41
19	e115	e105	104	102	95	92	84	74	65	67	53	40
20	e116	105	104	102	95	92	84	74	65	67	53	40
21	e113	105	104	102	95	92	84	73	68	67	53	39
22	e106	105	104	102	95	91	83	72	70	68	52	39
23	e100	106	e104	101	94	90	83	71	71	67	52	39
24	101	106	e104	101	94	90	83	71	71	67	51	39
25	100	106	104	101	94	90	82	74	70	66	51	38
26	99	106	104	100	93	89	83	74	71	65	50	38
27	99	106	104	100	93	89	83	76	71	64	50	37
28	99	106	104	e99	92	89	82	76	70	64	50	37
29	99	106	104	99		89	82	78	69	63	49	38
30	99	106	104	99		88	82	77	68	63	49	37
31	98		103	99		88		76		62	49	
TOTAL	2600	3124	3268	3148	2672	2798	2546	2360	2062	2044	1700	1264
MEAN	83.9	104	105	102	95.4	90.3	84.9	76.1	68.7	65.9	54.8	42.1
MAX	116	107	108	103	98	92	88	81	75	69	62	49
MIN	58	99	103	99	92	88	82	71	65	62	49	37
AC-FT	5160	6200	6480	6240	5300	5550	5050	4680	4090	4050	3370	2510

e Estimated

08155500 BARTON SPRINGS AT AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Oct 1903, Jun 1941 to Feb 1959, Dec 1978 to current year.
BIOCHEMICAL DATA: Dec 1978 to current year.
RADIOCHEMICAL DATA: Jan to Sep 1980.
ORGANIC DATA: Dec 1978 to Nov 1994.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)
MAR 02	1250		91	598	6.9	20.5	5	1.5	7.0	80	<10	.0
MAY	1215		7.4	641		01 0	.1	0.0	6.0	60	.10	0
17 27	1315 0820	76	74 	641 	7.1	21.0	<1	8.0	6.0	69 	<10	.2
27 JUN	1150		76	576	7.9		<1	2.1			<10	.1
22	0930		69	614	7.3		<1	1.4			<10	. 4
29	1300		69	624	7.0	21.5	<1	1.2	5.8	67	<10	.1
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS FIX END FIELD CACO3 (MG/L) (39036)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)
MAR 02 MAY	K8	K4							1.2	230	25	21
17												
	K8	K8	300	52	84	21	16	. 4	1.2	250	28	25
27												
27 27												

08155500 BARTON SPRINGS AT AUSTIN, TX--Continued

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	RESIDUE FIXED NON FILTER- ABLE (MG/L) (00540)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
MAR 02 MAY	.20			1	6	.00	<.010	1.22	<.020			<.10
17	.17	11	341	<1	4		<.010	1.36	<.020	1.8		.43
27 27 JUN				2	10	.00	<.010	1.30	<.020	1.4		.12
22				2 2	1 <1	1	<.010 <.010	1.37 1.15	<.020 .021	1.3	.11	E.08
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)
MAR 02 MAY	<.050	<.050	<.010		3.9	<.100	<.100					
17	E.036	<.050	.012	.04	1.6	<.100	<.100					
27											1.7	<1.0
27 JUN	<.050	<.050	.023	.07	.60			6	1.2	84		
22	E.030 E.030	<.050 <.050	.018 <.010	.06 	.50 8.4	<.100	<.100					

08155500 BARTON SPRINGS AT AUSTIN, TX--Continued

DATE	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
MAR 02 MAY	<1			<1				<1			<1	
17 27 27	<1 	55 55 	<1.6 <1.0 	<1 <1	<8.0 <1.0 	<14 <1.0 	<7.0 <1.0 	<1 <1	<10 <1.0 	<10 	<1 <1	<100 <1.0
JUN 22 29				<1 <1				<1 <1			<1 <1	
DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)
MAR 02	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	NATURAL DIS- SOLVED (UG/L AS U)
MAR	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	DIS- SOLVED (UG/L AS ZN)	NATURAL DIS- SOLVED (UG/L AS U)

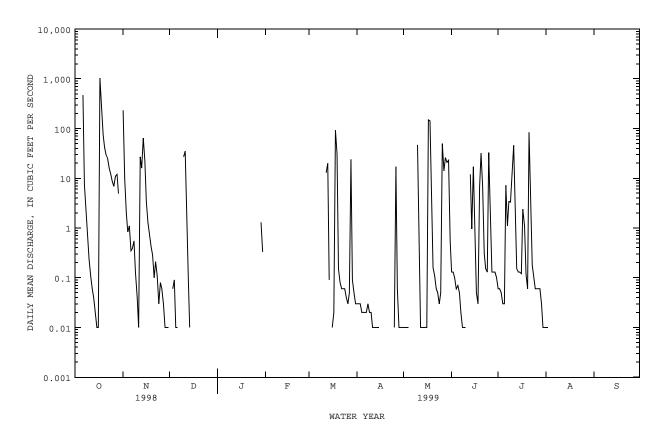
08156800 SHOAL CREEK AT 12TH STREET, AUSTIN, TX

DRAINAGE AREA.--12.3 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Nov 1974 to Mar 1975 (periodic discharge measurement, and associated peak discharges along with annual maximum), Apr 1975 to Sep 1984 (flood-hydrograph partial-record), Oct 1984 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 455.33 ft above sea level. Satellite telemeter at station.


REMARKS.--No estimated daily discharges. Records good. No known regulation or diversions. Several observations of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$:

Date	Tir	ne	Discharge (ft ³ /s)		height ft)		Date	Time		Discharge (ft ³ /s)		height [t)
Oct 6 Oct 17 Oct 18	023 131 033	L5	3,160 5,350 1,170	15	1.03 5.61 5.60		Nov 1 Mar 18 May 17	0700 2130 2335)	2,690 1,180 4,080	6	.91 .63 .80
		DISCHA	ARGE, CUBIC	FEET PEF		, WATER YE LY MEAN VA		ER 1998 TO	SEPTEMB:	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	234 9.6 2.0 .83 1.1	.00 .00 .06 .09	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.03 .03 .03 .02	.01 .01 .01 .01	.13 .13 .10 .06	.06 .06 .05 .03	.01 .01 .00 .00	.00 .00 .00 .00
6 7 8 9 10	470 7.5 2.7 .86 .24	.35 .39 .55 .13	.01 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .01 .00	.02 .02 .03 .02	.00 .00 .00 .00	.05 .02 .01 .01	7.2 1.1 3.4 3.3	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.11 .06 .04 .02	.01 27 16 64 22	35 .97 .11 .01 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 13 20 .09	.01 .01 .01 .01	.46 .01 .01 .01	.00 .00 12 .95	46 2.2 .15 .13 .13	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.01 1030 342 76 42	3.4 1.3 .74 .42 .29	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.01 .02 92 31 .15	.00 .00 .00 .00	.01 149 143 2.6 .16	.74 .05 .03 6.7	.12 2.4 1.1 .12 .06	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	29 25 16 12 8.7	.10 .21 .11 .03 .08	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.08 .06 .06 .06	.00 .00 .00 .00	.11 .06 .05 .03	6.8 .31 .15 .13	84 9.9 .18 .11 .06	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	6.9 11 12 4.9 .00	.06 .03 .01 .01	.00 .00 .00 .00 .00	.00 .00 .00 1.3 .33	.00 .00 .00	.03 .05 24 .09 .05	17 .06 .01 .01 .01	50 14 26 21 23	1.4 .13 .13 .13 .10	.06 .06 .03 .01	.00 .00 .00 .00 .00	.00 .00 .00 .00
MEAN MAX MIN AC-FT CFSM IN.	2097.05 67.6 1030 .00 4160 5.50 6.34	384.80 12.8 234 .01 763 1.04 1.16	63.26 2.04 35 .00 125 .17	1.63 .053 1.3 .00 3.2 .00	0.00 .000 .00 .00 .00	180.83 5.83 92 .00 359 .47 .55	17.39 .58 17 .00 34 .05	477.17 15.4 149 .00 946 1.25 1.44	112.34 3.74 33 .00 223 .30 .34	173.12 5.58 84 .01 343 .45 .52	0.02 .001 .01 .00 .04 .00	0.00 .000 .00 .00 .00 .00
MEAN MAX (WY) MIN (WY)	14.4 67.6 1999 .22 1997	6.13 14.9 1986 .000 1989	10.4 70.8 1992 .065 1996	5.06 22.6 1991 .000 1996	5.89 29.2 1992 .000 1999	5.29 15.5 1995 .012 1996	5.43 18.2 1997 .41 1998	16.6 38.7 1995 .11 1998	11.2 46.1 1987 .82 1998	2.49 11.9 1987 .000 1989	6.09 38.9 1996 .000 1993	5.33 12.5 1986 .000 1999

08156800 SHOAL CREEK AT 12TH STREET, AUSTIN, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1985 - 1999
ANNUAL TOTAL	3615.68	3507.61	
ANNUAL MEAN	9.91	9.61	7.88
HIGHEST ANNUAL MEAN			15.7 1992
LOWEST ANNUAL MEAN			3.26 1988
HIGHEST DAILY MEAN	1030 Oct 17	1030 Oct 17	1030 Oct 17 1998
LOWEST DAILY MEAN	.00 Mar 22	.00 Oct 1	.00 Oct 1 1984
ANNUAL SEVEN-DAY MINIMUM	.00 May 3	.00 Dec 15	.00 May 6 1985
INSTANTANEOUS PEAK FLOW		5350 Oct 17	16000 May 24 1981
INSTANTANEOUS PEAK STAGE		15.61 Oct 17	23.11 May 24 1981
ANNUAL RUNOFF (AC-FT)	7170	6960	5710
ANNUAL RUNOFF (CFSM)	.81	.78	.64
ANNUAL RUNOFF (INCHES)	10.94	10.61	8.71
10 PERCENT EXCEEDS	11	12	13
50 PERCENT EXCEEDS	.06	.01	.02
90 PERCENT EXCEEDS	.00	.00	.00

08156800 SHOAL CREEK AT 12TH STREET, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Feb 1943, Nov 1974 to current year.
BIOCHEMICAL DATA: Feb 1943, Nov 1974 to current year.
RADIOCHEMICAL DATA: Apr 1980.
PESTICIDE DATA: Jan 1975 to Sep 1985, Jan 1993 to May 1996.

INSTRUMENTATION. -- Stage-activated automatic sampler.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)
MAR 12	1200	6.1									
MAR 18-19	2120	178		199	7.8		80	450			110
MAR 28-28 28 APR	0048 0100	69 69		340	7.3			420			61
26-26	0910	37		378	7.2	22.0	80	240			60
JUN 28	0915		.13	619	7.6	26.0	5	1.5	4.5	57	<10
DATE	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	FECAL,	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	RESIDUE FIXED NON FILTER- ABLE (MG/L) (00540)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
MAR 12											
MAR			150000		1220	150	1100			406	
18-19 MAR	8.0	60000	150000	53	1330	152	1180	.387	.019	.406	.117
28-28 28	7.8	12000	24000	89 	792 	104	688	.821	.030	.851	.398
APR 26-26	4.7	K740000	410000	94	203	21	182	.652	.038	.690	.055
JUN 28	.1	3100	3100	170	6	2	4	.374	.012	.386	.075
DATE	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
MAR 12											
MAR 18-19	4.8	4.3	4.4	1.23	E.047	.013	.04	30			1450
MAR 28-28	3.6	2.3	2.7	.745	.118	.013	.28	24			984
28 28 APR	3.6	2.3		.745	.118						20 1
26-26 JUN	2.8	2.1	2.1	.508	E.036	.036	.11	16			390
28	.66	.20	.28	E.044	<.050	.014	.04	5.2	1.40	.270	

08156800 SHOAL CREEK AT 12TH STREET, AUSTIN, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)
MAR										
12	6.6		5.9	23	1.1	2.7	<1.0		23	<1.0
MAR										
18-19		53						150		
MAR										
28-28		19						70		
28	3.2		<1.0	43	2.0	3.5	<1.0		9.7	<1.0
APR										
26-26		15						50		
JUN										
28		<1						<40		

08157600 EAST BOULDIN CREEK AT SOUTH 1ST STREET, AUSTIN, TX

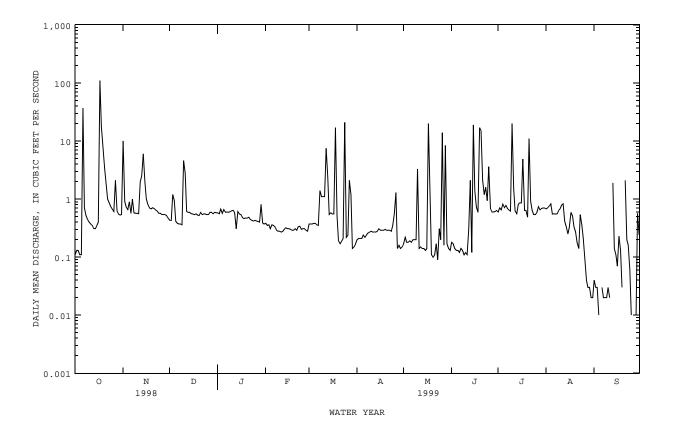
DRAINAGE AREA.--2.4 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1997 to current year.

REVISED RECORDS. -- none

GAGE.--Water-stage recorder. Satellite telemeter at station.


REMARKS.--Records fair. No flow at times. No known regulation or diversion.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 $\rm ft^3/s$:

Date	Tim	e	Discharge (ft ³ /s)	Gage l	neight (t)		Date	Time		Discharge (ft ³ /s)		neight t)
Oct 6 Oct 17 Oct 17 May 17	013 120 130 224	0 5	650 811 943 570	6 . 7 .	.43 .28 .01		May 26 Jul 10 Sep 21	1840 2125 0900		525 636 527	5	.81 .36 .82
		DISCH	ARGE, CUBIC	C FEET PER		WATER YE MEAN VA		R 1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.11 .13 .13 .11	10 .91 .72 .66 e.90	.43 .43 1.2 .94 .41	.58 .56 .67 .57	.38 .35 .36 .31	.37 .37 .37 .38	.20 .21 .21 .21 .24	.17 .22 .18 .18	.18 .17 .14 .13	.60 .70 .65 .82	.68 .71 .76 .83	.04 .03 .03 .01
6 7 8 9 10	37 .71 .52 .45 .40	e.57 e1.0 e.58 e.57 e.57	.38 .37 .37 .36 4.6	.59 .60 .59 .61	.35 .33 .29 .28	.36 .35 1.4 1.1	.22 .24 .26 .27	.18 .20 .20 .20 .3.3	.12 .14 .13 .11	.78 .69 .65 .62	.56 .55 .56 .64	.03 .02 .02 .02 .03
11 12 13 14 15	.37 .35 .31 .31	e.56 e2.0 e2.5 e6.0 e2.0	2.8 .61 .59 .59	.64 .58 .31 .61	. 27 . 28 . 30 . 32 . 31	1.1 7.5 2.4 .54 .58	.27 .27 .27 .28 .31	.14 .15 .14 .14	.11 .30 2.1 .12	1.5 .62 .56 .82 .86	.79 .83 .41 .33	.02 .00 1.9 .14 .11
16 17 18 19 20	.40 110 18 7.9 3.5	e1.0 e.80 e.70 .68 .71	.55 .54 .56 .53	.54 .48 .46 .47 .47	.31 .30 .29 .29	.55 .56 17 .51 .19	.29 .29 .29 .30 .29	.14 20 .92 .11 .10	1.4 .73 .59 17	.86 4.9 .64 .64	.33 .59 .51 .33	.07 .23 .13 .03
21 22 23 24 25	1.9 1.0 .86 .74 .67	.69 .65 .62 .57	.59 .54 .56 .55	. 49 . 45 . 43 . 42 . 43	. 29 . 33 . 34 . 30 . 31	.17 .19 .21 21	.29 .29 .28 .35	.11 .17 .09 .31	2.1 1.2 1.6 .94 3.6	.92 .63 .54	.18 .14 .54 .36	2.1 .20 .16 .06
26 27 28 29 30 31	.61 2.1 .62 .55 .53	.54 .54 .54 .52 .47	.54 .59 .59 .56 .59	.42 .41 .40 .81 .39	.31 .29 .28 	.24 2.1 1.2 .14 .15	1.3 .14 .16 .14 .15	14 .16 8.4 .17 .14	.68 .60 .60 .61 .64	.59 .74 .65 .69 .70	.10 .04 .03 .03 .02	.00 .00 .01 .57 .24
TOTAL MEAN MAX MIN AC-FT	191.28 6.17 110 .11 379	39.14 1.30 10 .47 78	23.57 .76 4.6 .36 47	16.19 .52 .81 .31	8.72 .31 .38 .27	62.90 2.03 21 .14 125	8.86 .30 1.3 .14 18	50.87 1.64 20 .09 101	70.29 2.34 19 .11 139	55.81 1.80 20 .49 111	12.83 .41 .83 .02 25	6.21 .21 2.1 .00 12
STATIS	TICS OF M	ONTHLY M	EAN DATA FO	OR WATER Y	EARS 1997	- 1999	, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	3.85 6.17 1999 1.54 1998	1.14 1.30 1999 .97 1998	.90 1.04 1998 .76 1999	.61 .70 1998 .52 1999	.69 1.07 1998 .31 1999	1.77 2.03 1999 1.50 1998	1.15 2.58 1997 .30 1999	1.98 4.07 1997 .21 1998	2.90 6.12 1997 .24 1998	.81 1.80 1999 .11 1998	.65 .81 1997 .41 1999	.66 1.52 1998 .21 1999
SUMMAR	Y STATIST	ICS	FOR 1	1998 CALENI	DAR YEAR	I	FOR 1999 WA	ATER YEAR		WATER YE	ARS 1997	- 1999
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER 50 PER	TOTAL MEAN T ANNUAL ANNUAL M T DAILY ME SEVEN-DA TANEOUS P TANEOUS P TANEOUS F (CENT EXCE CENT EXCE	EAN EAN AN Y MINIMU EAK FLOW EAK STAG AC-FT) EDS EDS	M E	455.50 1.25 110 .00 .00 903 1.8 .23 .02	Oct 17 Sep 1 Sep 1		546.67 1.50 110 .00 .02 943 7.01 1080 1.4 .45	Oct 17 Oct 17 Sep 5 Sep 3 Oct 17 Oct 17		1.17 1.50 .85 110 .00 .00 943 7.01 851 2.0 .30	Oct : Sep : Sep : Oct :	1999 1998 17 1998 14 1997 14 1997 17 1998 17 1998

e Estimated

179

08157600 EAST BOULDIN CREEK AT SOUTH 1ST STREET, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Jun 1997 to current year. BIOCHEMICAL DATA: Jun 1997 to current year.

 ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)
MAR 01 MAR	1305		.35	761	8.3	19.0	10	2.2	13.9		<10	.7
18-19 JUN	2030	52		118	7.9		40	200			78	8.4
30	0905		.58	787	8.0	25.0	5	1.4	7.1	88	<10	.1
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	RESIDUE FIXED NON FILTER- ABLE (MG/L) (00540)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)
MAR 01 MAR	240	460	190	1	4	.00		<.010	. 235	<.020	.39	
18-19 JUN	46000	130000	51	504	76	428	.326	.020	.346	.091	3.9	3.4
30	2200	K2700	200	4	<1			<.010	1.23	.027	1.6	.31
DATE	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
MAR 01 MAR	.16	<.050	<.050	.012	.04	2.4	E.220	<.100	<1	2	<1	<10
18-19 JUN	3.5	.837	.099	.062	.19	22			<1	26	53	120
30	.34	.080	.061	.046	.14	3.0	E.160	<.100	<1	2	<1	<40

This page intentionally left blank.

08157700 BLUNN CREEK NEAR LITTLE STACY PARK, AUSTIN, TX

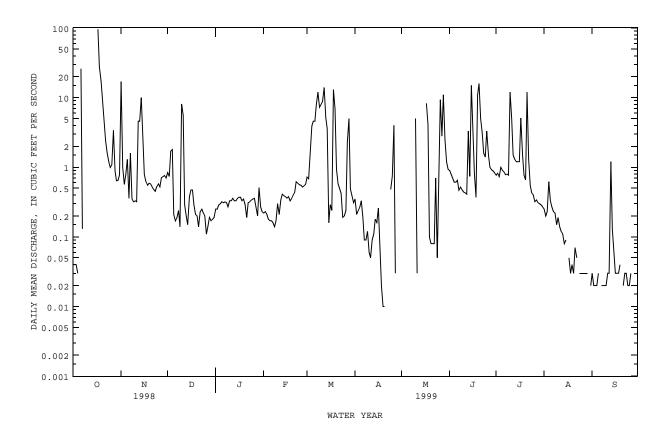
LOCATION.--Lat 30°14′50", long 97°44′37", Travis County, Hydrologic Unit 12060204, on right bank near intersection of Sunset Lane and Eastside drive.

DRAINAGE AREA.--1.2 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1997 to current year.

REVISED RECORDS. -- none


GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 490 ft above sea level. Satellite telemeter at station. REMARKS.--Records fair. No flow at times. No known regulation or diversions.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 200 ft 3 /s:

Date	Tim	e	Discharge (ft ³ /s)	Gage l	neight [t]		Date	Time		Discharge (ft ³ /s)		height ft)
Oct 17 Oct 17	114 131		662 827		.12 .65		Jun 19 Jun 19	1835 1925		203 243		.95 .20
		DISCH	ARGE, CUBIC	C FEET PER		WATER Y	EAR OCTOBER ALUES	1998 то	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.04 .04 .04 .03	17 1.0 .57 .78 1.3	.84 .74 1.7 1.8	.25 .25 .29 .30	.22 .23 .21 .18 .17	.72 .68 1.6 3.9 4.6	.35 .21 .24 .27	.00 .00 .00 .00	.90 .79 .70 .61	.77 .82 .73 1.0	.25 .20 .23 .62	.03 .02 .02 .02
6 7 8 9 10	26 .13 .00 .00	.36 1.6 .35 .32	.17 .19 .24 .14	.31 .32 .31 .27	.17 .16 .14 .17	4.6 7.9 12 7.3 8.0	.19 .09 .09 .12	.00 .00 .00 .00 5.0	.65 .47 .52 .47 .44	.86 .78 .80 .77	.27 .23 .22 .15 .19	.00 .02 .02 .02
11 12 13 14 15	.00 .00 .00 .00	.32 4.6 4.6 10 2.2	5.6 .29 .20 .15 e.38	.33 .36 .33 .33	.21 .34 .41 .39 .38	8.9 14 e5.2 e3.6 .16	.05 .09 .11 .18	.03 .00 .00 .00	.43 .41 3.3 .74	5.0 1.5 1.3 1.2	.14 .12 .11 .08 .09	.03 .03 1.2 .13 .06
16 17 18 19 20	.00 96 28 17 10	.79 .62 .55 .59	e.47 .47 .29 .21 .20	.37 .37 .33 .35	.36 .38 .33 .36 .40	.29 .24 13 6.9 .94	.26 .07 .02 .01	.00 8.3 4.1 .10	3.3 .81 .37 11 16	1.2 5.1 1.5 .77	.00 .05 .03 .04	.03 .03 .03 .04
21 22 23 24 25	5.0 2.4 1.6 1.2	.52 .48 .45 .53	.14 .23 .25 .22	.19 .31 .32 .34	.44 .62 .59 .56	.58 .49 .42 .19	.00 .00 .00 .48 .75	e.08 e.08 e.70 .05	5.0 3.1 1.6 1.4 3.3	12 1.3 .55 .43 .40	.07 .05 .00 .03	.02 .03 .03 .02
26 27 28 29 30 31	1.1 3.4 .89 .64 .65	.52 .71 .74 .76 .70	.11 .14 .19 .17 .18	.36 .27 .20 .51 .27	.52 .54 .57 	.24 2.3 5.0 .49 .39	4.0 .03 .00 .00	9.3 2.8 11 2.5 1.2	1.5 1.0 .92 .89	.32 .34 .31 .30 .29	.03 .03 .03 .03 .00	.03 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	195.94 6.32 96 .00 389	54.45 1.82 17 .32 108	24.41 .79 8.1 .11 48	9.72 .31 .51 .19	9.90 .35 .62 .14 20	115.14 3.71 14 .16 228	8.17 .27 4.0 .00 16	46.52 1.50 11 .00 92	77.06 2.57 16 .37 153	55.37 1.79 12 .27 110	3.70 .12 .62 .00 7.3	1.93 .064 1.2 .00 3.8
STATIS	TICS OF M	ONTHLY M	EAN DATA FO	OR WATER Y	EARS 199	7 - 1999	, BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	3.42 6.32 1999 .52 1998	1.83 1.84 1998 1.81 1999	.89 1.00 1998 .79 1999	.29 .31 1999 .27 1998	.36 .38 1998 .35 1999	2.37 3.71 1999 1.02 1998	.30 .32 1998 .27 1999	.75 1.50 1999 .097 1998	1.22 2.57 1999 .086 1998	.69 1.79 1999 .094 1998	.26 .51 1998 .12 1999	.55 1.51 1998 .064 1999
SUMMAR	Y STATIST	ICS	FOR 1	1998 CALENI	DAR YEAR	2 :	FOR 1999 WA	TER YEAR		WATER YE.	ARS 1997	- 1999
LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER 50 PER		EAN EAN AN Y MINIMU EAK FLOW EAK STAG AC-FT) EDS EDS		.00	Oct 17 Apr 19 May 3)	.00 827	Oct 17 Oct 5 Oct 8 Oct 17 Oct 17		1.14 1.65 .64 96 .00 .27 6.65 828 2.0 .21	Oct Apr May Oct	1999 1998 17 1998 19 1998 3 1998 17 1998 17 1998

e Estimated

183

08157700 BLUNN CREEK NEAR LITTLE STACY PARK, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Mar 1999 to Jun 1999. BIOCHEMICAL DATA: Mar 1999 to Jun 1999.

 ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$

	**	AIDK QUADI	II DAIA,	WAIER IER	K OCIOBER	1990 10	SEPIEMBER	. 1999		
DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)		TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
MAR 01	1340		1.1	1210	7.4	17.5	10	1.1	8.2	
MAR										
18-19 MAR	2015	35		207	8.0		50	190		
27-28 JUN	2213	69		424	8.0		50	44		
30	0930		.96	823	7.6	24.5	5	1.5	5.3	65
DATE	CHEM- ICAL (HIGH LEVEL) (MG/L)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	0.7 UM-MF (COLS./ 100 ML)	(COLS. PER 100 ML)	WAT DIS FIX END FIELD CAC03 (MG/L)	DEG. C, SUS- PENDED (MG/L)	VOLA-	NON FILTER- ABLE (MG/L)	DIS- SOLVED (MG/L AS N)	DIS- SOLVED (MG/L AS N)
MAR 01	<10	1.1	600	860	240	3	1	2		<.010
MAR 18-19	81	7.6	K12000	26000	60	490	70	420	.395	.017
MAR										
27-28 JUN	88	5.5	52000	66000	100	105	31	74	.810	.029
30	<10	.1	780	1500	240	2	1	1		<.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	GEN, ORGANIC TOTAL (MG/L AS N)	ORGANIC TOTAL (MG/L AS N)	TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	TOTAL (MG/L AS C)
MAR 01 MAR	.397	<.020	.62		.23	<.050	<.050	.013	.04	2.1
18-19 MAR	.412	.070	3.3	2.8	2.9	.871	.095	.074	.23	28
27-28	.839	.436	3.3	2.0	2.4	.422	.164	.140	.43	27
JUN 30	.635	.024	.88	.22	.25	.050	E.042	.034	.10	2.3
Ē	PH PL T CHR PATE FLU (U	ANK- PLA ON TO OMO CHRO	TTO- ANK- SED ON MEN OMO SUS OROM PEN	T, CHAR - SU DED PEN :/L) (T/D	T, SUSSE SIES SIES SIES SIES SIES SIES SIE	EVE WATE EAM. UNFI ENER TOT IAN (UC EMM AS	TRD REC TAL ERA G/L (UG CD) AS	CAL TOT COV- REC BLE ERA CU) AS	CAL TOT COV- RECABLE ERA G/L (UG PB) AS	PAL POV- BLE F/L ZN)
MAR 01.	E.	140 <.1	.00 –			<1	. 1	<1	. <1	.0
MAR 18-			59	3 56	97	′ <1	. 23	53	3 11	.0
MAR 27-			10	0 19	97	′ <1	. 14	16	5 6	0
JUN 30.	E.	270 <.1	.00 -			<1	. 2	<1	<4	.0

This page intentionally left blank.

08157900 TOWN LAKE AT AUSTIN, TX

LOCATION.--Lat $30^{\circ}14'56"$, long $97^{\circ}43'03"$, Travis County, Hydrologic Unit 12090205, at Longhorn Dam on the Colorado River at Austin, 1.5 mi downstream from Interstate Highway 35, and 2.3 mi southeast of the State Capitol Building in Austin.

DRAINAGE AREA.--39,003 mi 2 , approximately, of which 11,403 mi 2 probably is noncontributing.

PERIOD OF RECORD. --

DATE

19...

19... 19...

22...

22... 22...

DATE

19...

19... 19...

22... 22...

22...

MAR 19...

JUL 22... K1500

--

3700

--

4700

4900

--

272

303

250

274

160

180

140

150

18

1

1

.281

.319

--

.011

.012

<.010

< .010

.292

.331

.137

.107

.068

.098

<.020

.087

.67

.73

.43 --

.44

.31

.30

.24

MAR 19...

JUL 22...

CHEMICAL DATA: Feb 1975 to Aug 1990, Oct 1990 to current year.
BIOCHEMICAL DATA: Feb 1975 to Aug 1990, Oct 1990 to current year.
TRACE METAL DATA: Feb 1991 to current year.
PESTICIDE DATA: Feb 1975 to Aug 1990, Feb 1991 to current year.

REMARKS.--Trace metal and pesticide analyses of bottom sediments at selected sites Feb 1991 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

301559097424801 - TOWN LAKE AR

	DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)		
	19 19 19	1032 1034 1036 1038	1.00 10.0 20.0 27.0	495 497 512 521	7.6 7.6 7.6 7.3	17.0 17.5 17.5 17.0	8.0 8.0 7.9 7.3	83 84 83 76		
	22 22 22 22	0900 0902 0904 0906	1.00 10.0 20.0 27.0	465 480 503 502	7.6 7.5 7.4 7.0	26.0 25.5 25.0 23.5	6.7 6.2 4.2 .2	83 76 51 2		
			30150009	7424801 -	TOWN LAK	E AC				
TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)
1046 1048 1050 1052	1.00 10.0 20.0 27.0	478 471 467 527	7.6 7.6 7.6 7.5	17.5 17.0 17.0 17.0	.43 	18 5.8	7.6 7.6 7.0 6.8	79 79 72 70	<10 	.9 1.4
0918 0920 0922 0924	1.00 10.0 20.0 25.0	464 480 502 502	7.6 7.5 7.4 7.2	26.0 25.5 25.0 24.0	.91 	10 4.5	6.4 6.2 4.4 1.3	79 76 54 16	13 	.9 .8
			30150009	7424801 -	TOWN LAK	E AC				
COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)

08157900 TOWN LAKE AT AUSTIN, TX--Continued

			30150009	97424801 -	- TOWN L	AKE AC				
DATE	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS IN TOTAL SK (MG/L (I AS P) AS (00665) (00	PHOS- PHO DRUS OF DIS- DI DLVED SOI MG/L (MG S P) AS 0666) (00	HOS- PHORUS PHOR	HOS- HATE, RTHO, C DIS- O DLVED MG/L PO4) D660) (ARBON, RGANIC TOTAL (MG/L AS C) 00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
MAR 19	.38	E.045 <	.050	.013	.04	3.3	.920	<.100	1.8	<1.0
19 19 19		 <.050 <				2.9				 <1.0
JUL 22							1.80	.150		<1.0
22 22 22	 33	<.050 < <.050 <	 050 <	 010		 3.1		.150 	3.9	 <1 0
22	.55								3.5	12.0
				97424701 -				OXYG	EN.	
	DATE	: TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	WATER WHOLE FIELD (STAND ARD UNITS	TEMPE - ATUR WATE) (DEG) (0001	GR- OXYGE EE DI GR SOL' C) (MG	DI SOL EN, (PE S- CE VED SAT /L) ATI	S- VED R- NT UR- ON)	
	MAR 19 19	1110 1112 1114	1.00 10.0 18.0	445 446 445	7.7 7.7 7.7	17.0 17.0 17.0	7.	7 80 8 81 7 80		
	JUL 22 22 22	0938 0940 0942								
			30150009	97440801 -	- TOWN L	AKE BR				
	DATE	: TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND ARD UNITS (00400	TEMPE - ATUR WATE) (DEG) (0001	CR- OXYGE CE DIE CR SOLE C) (MG	OXYG DI SOL EN, (PE S- CE VED SAT /L) ATI 00) (003	EN, S- VED R- NT UR- ON)	
	MAR 19 19 19 19	1124 1126 1128 1130	1.00 10.0 20.0 27.0	491 489 485 482	7.7 7.7 7.7 7.7	17.0 17.0 17.0	7.1 7.1 7.1 7.1	7 80 6 79 6 79 5 78		
	22 22 22 22	0956 0958 1000 1002	1.00 10.0 20.0 26.0	448 439 472 472	7.6 7.5 7.5 7.5	25.5 25.0 24.5 24.5	5.	5 66		
			30150409	97440901 -	- TOWN L	AKE BC				
	DATE	: TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND ARD UNITS (00400	TEMPE - ATUR WATE	EE DI: CR SOL' C) (MG	EN, (PE S- CE VED SAT /L) ATI	S- VED R- NT UR- ON)	
	MAR 19 19 19 19 JUL	1130 1132 1134 1136	1.00 10.0 20.0 30.0	483 485 487 486	7.8 7.8 7.8 7.8	17.0 17.0 17.0	7. 7.	8 81 8 81		
	22 22 22 22	1006 1008 1010 1012	1.00 10.0 20.0 29.0	451 446 470 476	7.6 7.6 7.5 7.5	25.5 25.5 24.5 24.5	6. 5.	4 78 8 70		

08157900 TOWN LAKE AT AUSTIN, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

301544097445201 - TOWN LAKE CR

		DAT	E	TIME	SAM PLI DEP (FE (000	C: I- CC ING DI PTH AI ET) (U:	PE- IFIC ON- JCT- NCE S/CM)	PH WAT WHO FIE (STA AF UNI (004	TER OLE ELD AND- RD ITS)	TEMP ATU WAT (DEG (000	RE ER C)	OXYG DI SOL (MG (003	S- VED /L)	OXYGH DIS SOLV (PEH CEN SATU ATIO	S- /ED R- NT JR- ON)			
		19 19 19		1144 1146 1148	1. 10. 18.	0	196 197 197	7. 7. 7.	. 8	17. 17. 17.	0	7. 7. 7.	7	81 80 79				
	J	Д 22 22 22		1024 1026 1028	1. 10. 18.	0	168 188 189	7. 7. 7.	. 5	24. 23. 23.	5	6. 5. 5.	8	75 68 66				
					3015	4609744	5101 -	- TOWN	1 LAK	E CC								
DATE	TIME	SAM PLII DEP' (FE:	- (NG I TH A ET) (U	SPE- CIFIC CON- DUCT- ANCE JS/CM		TER DLE LD TEI ND- A' LD WI TTS) (DI	MPER- FURE ATER EG C) 0010)	P <i>I</i> EN	1)	TU BI IT (NT (000	Y U)	OXYG DI: SOL' (MG (003	S- VED /L)	OXYGH DIS SOLV (PEH CEN SATU ATIO (0030	S- I /ED R- NT JR- I ON) (DEMAN CHEM ICAL (HIG LEVEL MG/L	D, DE - B C H I) 5	YGEN MAND IO- HEM- CAL, DAY MG/L 0310
MAR 19 19 19 JUL	1152 1154 1156	1. 10. 17.	0	485 491 492	7. 7. 7.	9 1'	7.0 7.0 7.0	-	. 25 	4. - 7.	-	8. 8. 7.	0	83 83 81		13 		M.6 1.6
22 22 22	1040 1042 1044	1. 10. 16.	0	466 481 489	7. 7. 7.	6 2	5.5 3.5 3.5	-	. 40 	14 - 4.		5. 5. 5.	8	72 68 64		11 		.7 .4
					3015	4609744	5101 -	- TOWN	1 LAK	E CC								
DATE	FC FE 0. UN (CC 100	DLI- DRM, ECAL, .7 M-MF DLS./ DML) L625)	STREI TOCOCC FECAI KF AGA (COLS PER 100 MI (3167)	CI LI L, WA AR FI . I	AT DIS	SOLIDS RESIDU AT 180 DEG. (DIS- SOLVE (MG/L (70300	E TOTAT C DEC SU D PET	TAL 105 G. C, US- NDED MG/L)	G NIT D SO (M AS	TRO- EN, RITE US- LVED G/L N) 613)	GE NO2+ DI	S- VED J/L N)	GE AMMO DI SOI	IS- LVED F/L N)	NITE GEN TOTA (MG/ AS N	1) 'L AL 1,	NITRO GEN, ORGANI TOTAL (MG/L AS N)	С
MAR 19		290	450		150	280		7	<.	010		.52	. 0	35	. 4	15	.26	
19 19					150	284		8		010		.43		 029	.6		.43	
JUL 22 22	4	1400	4300		140	253	:	13		010		.56		040	. 4		.20	
22					140	265		2		010		20)47	.4		.26	
					3015	4609744	5101 -	- TOWN	J LAK	E CC								
DATE	GEN MON ORG TO (N AS	ITRO- I,AM- NIA + GANIC DTAL MG/L S N)	PHOS- PHORUS TOTAL (MG/I AS P	PH	PHOS-HORUS DIS-SOLVED (MG/L AS P)	PHOS- PHORUS ORTHO DIS- SOLVED (MG/L AS P) (00671	PI , OI I S((1) AS	HOS- HATE, RTHO, DIS- DLVED MG/L PO4) 0660)	ORG TO (M AS	BON, ANIC TAL G/L C) 680)	PHY PLA TO CHRO FLUO	MO ROM J/L)	PHY PLA TO CHRO FLUO	ZTO- ANK- ON OMO OROM G/L)	COPPE DIS- SOLV (UG/ AS (· ÆD 'L ŒU)	LEAD, DIS- SOLVE (UG/L AS PB (01049	D)
MAR 19		.30	<.050		<.050	<.010				.1		90		L10	1.6		<1.0	
19 19		.46	<.050		<.050	<.010				.9		-		-	1.4		<1.0	
JUL 22		.24	<.050		<.050	.010		.03		.2		00	<.1		2.8		<1.0	
22 22		.31	<.050		<.050	<.010				.0		-			2.9		<1.0	

08157900 TOWN LAKE AT AUSTIN, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

301556097452301 - TOWN LAKE DR

	JU	DAT: R 19 19 L 22		PL IME DE (F	M- ING PTH EET) (0003) (ANCE US/CM) 00095) 508 503	AR UNI (004	ER LE LD ND- D TS) 00)	WATE (DEG (0001		DLVED 1G/L) 1300)	SATI ATI (003)	S- VED R- NT UR- ON)			
				301	5580974	52201 -	- TOWN	LAKE	DC							
DATE	TIME	DEP' (FE	CII - COI NG DUO IH ANO ET) (US	PE- WA FIC WH N- FI CT- (ST CE A (CM) UN 095) (00	TER OLE ELD T AND- RD ITS) (WATER DEG C)	DIS (M	R- CY CHI K)	TUF BII ITY (NTU	(SC J) (N	NLVED NG/L)	DIS SOL' (PE) CE) SATI ATIO	S- VED R- NT UR- ON)	CHEM ICAL (HIG LEVEL (MG/L	D, H)	5 DAY (MG/L)
MAR 19 19 19 JUL	1222 1224 1226	1. 10. 20.	00 49 0 49 0 49	91 7 91 7 91 7	.9 .9 .9	17.0 17.0 17.0	1. - -	28 - -	4.6	5 8	3.1 3.1 7.9	84 84 82		13 		.8 1.2
22 22 22	1112 1114 1116	1. 10. 20.	00 4 0 5 0 5	10 7 15 7 15 7	.6 .2 .1	25.5 23.0 23.0	- -	52 - -	17 3.0	- 5	5.0 5.2 5.3	74 61 62		16 		. 4 . 4
				301	5580974	52201 -	- TOWN	LAKE	DC							
DATE	FC FE 0. UM (CC 100	RM, CAL, 7 I-MF DLS./ ML)	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	RESID AT 18 DEG. DIS SOLV (MG/	OUE TO: 0 AT C DE: 5- SI 7ED PEI (L) (1	TAL 105 G. C, US- NDED MG/L)	GE NITR DI SOL (MG AS	N, ITE S- VED I/L N)	GEN, NO2+NO3 DIS- SOLVEI (MG/L AS N)	GI AMMO DI SOI (MO AS	EN, ONIA IS- LVED G/L N)	TOT (MG AS	EN, FAL E/L N)	ORGA TOT (MG AS	NIC AL J/L N)
MAR 19	v	140	260	150	288		4	<.0	1.0	.135		021		12		27
19 19			 	150	285			<.0	-	.135		021 025	-	. 43 . 47	-	31
JUL 22										.174		025		.49		29
22				120 190			 1	-	-				-	 .72	-	
22				100	505		_		10	.555	• '	011	•	. / 2	•	12
				301	5580974	52201 -	- TOWN	LAKE	DC							
DATE	GEN MON ORG TO (M AS		PHOS- PHORUS TOTAL (MG/L AS P) (00665)	DIS- SOLVED (MG/L AS P)	ORTH DIS- SOLVE (MG/L AS P)	IO, OI · I ID S(I (1	RTHO, DIS- DLVED MG/L PO4)	CARE ORGA TOT (MG AS	ON, NIC AL J/L C)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUORON (UG/L) (70953)	PHT PLA TO CHRO I FLUO	YTO- ANK- ON OMO	DIS SOI (UG AS	LVED G/L CU)	DI	S- VED /L PB)
MAR 19		.29	<.050	<.050	<.01	.0		3.	2	1.70		170	1.	. 4	<1.	0
19 19		.33	<.050	<.050	<.01			3.	-						<1.	-
JUL 22		.32	.055	<.050	.01		.03	3.		.540		100	2.		<1.	
22		.16	<.050	<.050	<.01			2.	-				3.		<1.	-

08157900 TOWN LAKE AT AUSTIN, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

301712097470701 - TOWN LAKE EC

DATE	TIME	SAM- PLIN DEPTI (FEE'	H ANC I) (US/	TIC	PH WATER WHOLE FIELD STAND- ARD UNITS)	TEMP ATU WAT (DEG	RE ER (C)	TRA PA EN (SEC DIS (M	R- CY CHI K)	TUI BII (NT) (000'	D- Y U)	OXYG DI SOL (MG (003	S- VED /L)	OXYG DI SOL (PE CE SAT ATI	S- VED R- NT UR- ON)	OXYG DEMA CHE ICA (HI LEVE (MG/	ND, M- L GH L) L)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L
MAR 19 19	1256 1258 1300	1.0 10.0 17.0	0 48 49 49	1	8.0 8.0 8.0	17. 17. 17.	0	-	91 - -	3.4	-	8. 8. 8.	6	89 89 88		<1 - -	-	M.7 1.4
JUL 22 22 22	1146 1148 1150	1.0 10.0 17.0	0 49 50 62	4	7.6 7.4 6.9	24. 23. 22.	0		89 - -	2.! 1.6	-	5. 5. 5.	8	69 68 66		1 - -	_	.6 .1
				3	0171209	974707	01 -	TOWN	LAK	E EC								
DATE	FC FF 0. UN E (CC 100	ECAL, .7 1 M-MF DLS./ D ML) 1	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	WAT D	Y RES IS AT ND DE D I 3 SC L) (N	LIDS, SIDUE 180 EG. C DIS- DLVED MG/L)	TOT: AT DEG SU: PEN:	AL 105 . C, S-	G NIT D SO (M AS	TRO- EN, RATE IS- LVED G/L N) 618)	GI NITI DI SOI (MO AS	IS- LVED G/L	MO2 D SO (M AS	TRO- EN, +NO3 IS- LVED G/L N) 631)	GH AMM(DI SOI	IS- LVED 3/L N)	G TO (M AS	TRO- EN, TAL G/L N) 600)
MAR 19		80	170	150		284		1		128		010		138		022		.44
19 19				 150		 283		3				 010		 143		 020		 .45
JUL 22		92	58	150	2	271	<	1			<.(010		117	<.(020		.33
22 22				240		 353		 1				 010		 891		 020		
				3	0171209	974707	01 –	TOWN	Τ.ΔΚ	E EC								
DATE	ORC TC T() E ()	GEN, I GANIC (DTAL MG/L S N)	NITRO- GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N) (00625)	PHOS	PH - PH(S I L S(L (N) AS	HOS- DRUS DIS- DLVED MG/L S P)	PHO PHO OR' DI: SOL' (MG AS	OS- RUS THO, S- VED /L	CAR ORG TO (M	BON, ANIC TAL G/L C) 680)	PHT PLE TO CHRO FLUO (UO	OR-A YTO- ANK- ON OMO OROM G/L)	PH PL T CHR FLU (U	YTO- ANK- ON OMO	(UC	S- LVED S/L CU)	D SO (U AS	AD, IS- LVED G/L PB) 049)
MAR		20	20	. 05	0 .	050		010	2	0	2.	7.0		250	1	2	-1	0
19 19 19		.28	.30 .31	<.05 <.05		.050 .050		010 010		.0 .2		70 		350 	-	. 3 . 6	<1 <1	
JUL																		
22 22			.21	<.05		.050		010		.9		500 		100 	-	. 6 		
22			E.06	<.05	0 <.	.050	<.	010	1	.1					4.	. 2	<1	.0
				3	0160109	974540	01 -	TOWN	LAK	E FC								
		DATE	TI	ME	SAM- PLING DEPTH (FEET) 00003)	SPE CIF CON DUC ANC (US/	IC - T- E CM)	PH WAT WHO FIE (STA AR UNI (004	ER LE LD ND- D TS)	TEMPI ATUI WATI (DEG (000)	RE ER C)	OXYG DI SOL (MG (003	S- VED /L)	OXYG DI SOL (PE CE SAT ATI (003	S- VED R- NT UR- ON)			
	MZ	19	12	42	4.00	61	.8	7.	0	20.0	0	7.	3	80				
	Л	几 22	11	34	3.00	61	.0	7.	0	23.0	0	6.	5	76				

This page intentionally left blank.

08158000 COLORADO RIVER AT AUSTIN, TX

LOCATION.--Lat 30°14'40", long 97°41'39", Travis County, Hydrologic Unit 12090205, on right bank 1,000 ft upstream from upstream bridge on U.S. Highway 183 in Austin, 1.4 mi downstream from Longhorn Dam, and at mile 290.3.

DRAINAGE AREA.-39,009 mi², approximately, of which 11,403 mi² probably is noncontributing.

PERIOD OF RECORD.--Feb 1898 to current year. Records of daily discharge for Dec 13-26, 1914, and Feb 9-17, 1915, published in WSP 408, have been found unreliable and should not be used.

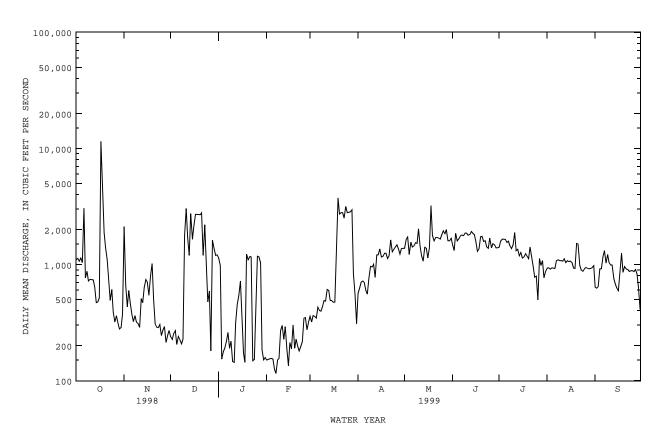
Water-quality records.--Chemical data: Oct 1947 to Sep 1993. Specific conductance: Oct 1947 to Sep 1991. Water temperature: Oct 1947 to Sep 1991.

REVISED RECORDS.--WSP 508: 1915(m). WSP 528: 1900(M), 1918(m). WSP 548: 1901-16. WSP 1342: Drainage area. WSP 1562: 1908,

GAGE.--Water-stage recorder. Datum of gage is 402.27 ft above sea level. Prior to Jun 19, 1939, all records collected at or near Congress Avenue bridge 3.9 mi upstream at datum 19.6 ft higher; prior to Jun 18, 1915, nonrecording gages, recording gages thereafter; Jun 20, 1939, to Oct 16, 1963, at site 1,000 ft downstream from present site at datum 5.0 ft higher. Satellite telemeter at station.

REMARKS.--Records fair. Since installation of gage in 1898, at least 10% of contributing drainage area has been regulated by Town Lake, Lake Austin, Lake Travis, and other reservoirs. The city of Austin diverts water for municipal use upstream from station and returns wastewater effluent downstream. There are many other diversions above Lake Buchanan for irrigation, municipal supplies, and oil field operations.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at medium to high stages, computes, and publishes streamflow record.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1833, 51 ft Jul 7, 1869, present site and datum (adjusted to present site on basis of record for flood of Jun 15, 1935), determined from information concerning stage at former site furnished by Dean T.U. Taylor.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	1100	2120	238	1140	150	358	562	1380	1480	1410	931	636		
2	1130	661	226	985	152	320	627	1650	1320	1590	936	625		
3	1070	432	255	153	154	363	706	1730	1860	1650	912	646		
4	1140	598	270	177	155	356	722	1220	1600	1650	936	915		
5	1040	459	205	190	153	345	698	1560	1670	1640	929	921		
6	3050	369	240	e220	125	428	595	1420	1770	1550	924	1170		
7	768	322	223	e260	115	402	556	1450	1800	1590	1080	1320		
8	876	363	207	e190	150	395	767	1540	1770	1450	1100	1030		
9	721	319	228	219	155	434	964	1520	1870	1370	1080	1220		
10	744	309	1790	146	270	488	953	2030	1860	1470	1080	1040		
11	740	287	3040	143	298	483	1010	1430	1790	1890	1070	986		
12	738	509	e1710	315	227	609	775	1190	1810	1320	1120	989		
13	644	468	e1200	454	291	599	1210	1070	1920	1350	1040	753		
14	470	639	e2750	543	189	490	1210	1410	1860	1190	1080	679		
15	477	742	1650	e721	134	487	1360	1380	1810	1270	1060	623		
16	516	702	e2150	e380	213	473	1160	1140	1590	1140	1070	594		
17	11500	544	e2700	173	187	474	1180	1390	1300	1160	1040	836		
18	5410	797	e2700	e143	301	1300	1250	3210	1370	1240	932	1250		
19	1890	1020	2690	e1230	190	3740	1250	1780	1730	1180	922	856		
20	1400	508	2680	e1100	228	2730	1130	1600	1750	1120	1520	961		
21	1110	307	e2800	1170	197	2800	1190	1710	1580	1420	1500	913		
22	783	288	e1200	1160	180	2790	1630	1710	1600	1160	983	903		
23	491	286	e2200	148	196	2510	1290	1690	1420	957	895	873		
24	609	305	1030	152	217	3170	1350	1660	1380	779	876	880		
25	389	244	475	333	345	2800	1420	1800	1690	797	913	887		
26 27 28 29 30 31	320 362 312 278 286 374	271 292 213 242 270	591 180 1620 1380 1200 1210	1180 1160 1030 184 151 158	350 274 321 	2810 2840 2970 839 555 309	1480 1370 1230 1370 1380	1950 1840 2000 1600 1600 1690	1390 1510 1480 1390 1390	496 1130 983 1080 769 871	941 930 918 925 941 979	869 905 824 624 407		
TOTAL	40738	14886	41038	15708	5917	39667	32395	50350	48760	38672	31563	26135		
MEAN	1314	496	1324	507	211	1280	1080	1624	1625	1247	1018	871		
MAX	11500	2120	3040	1230	350	3740	1630	3210	1920	1890	1520	1320		
MIN	278	213	180	143	115	309	556	1070	1300	496	876	407		
AC-FT	80800	29530	81400	31160	11740	78680	64260	99870	96720	76710	62610	51840		
STATIST	TICS OF M	IONTHLY ME	AN DATA	FOR WATER	YEARS 189	8 - 1999,	BY WATER	R YEAR (WY	()					
MEAN	1997	1479	1450	1226	1477	1541	2686	4174	3837	2746	1792	2572		
MAX	20080	11050	23800	15080	25890	13640	21800	30710	31940	36110	12310	42630		
(WY)	1931	1919	1914	1992	1992	1992	1900	1922	1935	1938	1906	1936		
MIN	57.5	38.7	43.9	46.2	49.7	55.0	145	964	238	256	70.3	156		
(WY)	1935	1990	1964	1967	1964	1964	1907	1921	1910	1933	1917	1907		

08158000 COLORADO RIVER AT AUSTIN, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDA	R YEAR	FOR 1999 WAT	TER YEAR	WATER YEAR:	3 1898 - 1999
ANNUAL TOTAL	722500		385829			
ANNUAL MEAN	1979		1057		2254	
HIGHEST ANNUAL MEAN					7535	1914
LOWEST ANNUAL MEAN					590	1917
HIGHEST DAILY MEAN	12300	Mar 18	11500	Oct 17	323000	Jun 15 1935
LOWEST DAILY MEAN	177	Jan 3	115	Feb 7	.00	Sep 29 1914
ANNUAL SEVEN-DAY MINIMUM	232	Dec 2	143	Feb 1	18	Oct 25 1990
INSTANTANEOUS PEAK FLOW			39400	Oct 17	481000	Jun 15 1935
INSTANTANEOUS PEAK STAGE			24.40	Oct 17	a50.00	Jun 15 1935
ANNUAL RUNOFF (AC-FT)	1433000		765300		1633000	
10 PERCENT EXCEEDS	3430		1810		3900	
50 PERCENT EXCEEDS	1770		957		1140	
90 PERCENT EXCEEDS	322		220		176	

Estimated From floodmark.

08158050 BOGGY CREEK AT U.S. HIGHWAY 183, AUSTIN, TX

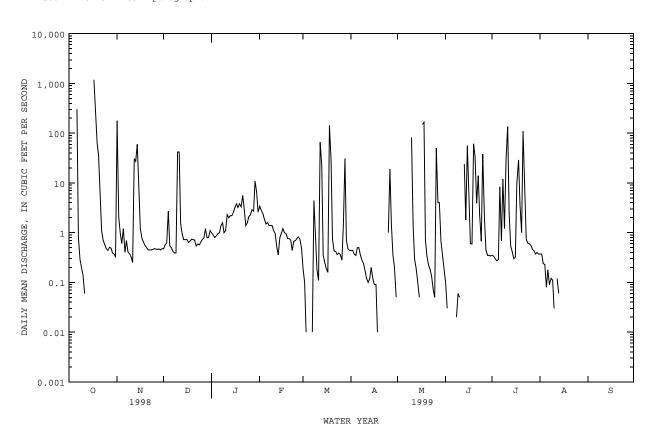
DRAINAGE AREA.--13.1 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Jan to Jul 1975 (periodic discharge measurements only), Aug 1975 to Jun 1977 (operated as a flood-hydrograph partial-record station only), Jun 1977 to Sep 1986, (daily mean discharge), Oct 1986 to May 1994 (annual maximum discharge), May 1994 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 411.29 ft sea level (levels from city of Austin benchmark). Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. Several observations of water temperature were made during the year.


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $750~{\rm ft}^3/{\rm s}$:

Date	T	ime	Discharg (ft ³ /s)		e height (ft)		Date	Tim	ie	Discharge (ft ³ /s)		height (ft)
Oct 6 Oct 1 Oct 18 Nov 1 Mar 12 Mar 18	5 0° 7 13 8 09 1 0° 2 25	300 730 300 515 715 130	2,700 854 5,930 1,060 2,600 791 1,900		9.94 6.06 17.24 6.49 9.71 5.92 8.23		May 10 May 18 Jun 15 Jun 19 Jul 11 Jul 21	043 001 193 201 155 182	5 30 50	796 4,830 796 945 2,000 1,380	1	5.93 4.65 5.93 6.25 8.43 7.18
		DISCHA	ARGE, CUBI	C FEET PE		WATER YE Y MEAN VA		R 1998 TO) SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	178 2.1 .95 .61 1.2	.48 .58 .62 2.7 .54	.99 .89 .80 .86	3.4 2.8 2.4 1.9	.19 .10 .01 .00	.44 .44 .37 .35	.00 .00 .00 .00	.10 .03 .00 .00	.35 .34 .30 .27 .29	.37 .37 .24 .23	.00 .00 .00 .00
6 7 8 9 10	303 .81 .29 .20 .14	.40 .70 .41 .38 .32	.50 .42 .39 .39	1.0 1.4 1.6 1.0	1.6 1.4 1.4 1.4	.00 .01 4.4 .69 .18	.50 .36 .28 .24 .17	.00 .00 .00 .00	.00 .00 .02 .06	8.3 .68 12 1.2 31	.18 .09 .12 .11 .03	.00 .00 .00 .00
11 12 13 14 15	.06 .00 .00 .00	.25 31 27 60 11	42 1.5 .93 .72 .72	2.3 2.0 2.2 2.2 2.6	.95 .51 .36 .79	.11 66 22 .35 .25	.12 .10 .12 .20	1.4 .30 .19 .10	.00 .00 24 1.8 56	136 2.5 .53 .41 .30	.00 .12 .06 .00	.00 .00 .00 .00
16 17 18 19 20	.00 1190 269 64 36	1.2 .78 .64 .55	.73 .63 .67 .74	3.2 3.8 3.2 3.8 3.3	1.2 1.0 .95 .76	.19 .16 143 30 .75	.09 .09 .01 .00	.00 150 168 .70 .33	4.5 .60 .59 61 34	.32 9.6 29 3.6 1.0	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	4.7 1.1 .70 .57 .48	.45 .45 .45 .46	.71 .54 .59 .57	5.6 3.1 1.4 1.6 2.1	.71 .44 .67 .69	.43 .42 .36 .39	.00 .00 .00 .00	.22 .18 .13 .07	3.9 14 2.2 .67 38	110 5.2 .74 .62 .60	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	.44 .51 .49 .39 .37	.47 .46 .47 .45 .48	.74 .77 1.2 .79 .81	2.3 2.9 2.7 11 6.5 2.6	.82 .73 .48 	.28 1.4 31 .70 .47 .44	19 1.5 .35 .21 .05	50 4.0 4.0 .67 .34 .18	1.9 .45 .35 .35 .34	.56 .46 .43 .37 .40	.00 .00 .00 .00	.00 .00 .00 .00
MEAN MAX MIN AC-FT CFSM IN.	1873.57 60.4 1190 .00 3720 4.61 5.32	322.61 10.8 178 .25 640 .82 .92	106.45 3.43 42 .39 211 .26 .30	81.00 2.61 11 .80 161 .20 .23	32.47 1.16 3.4 .36 64 .09	304.64 9.83 143 .00 604 .75 .87	26.61 .89 19 .00 53 .07	462.91 14.9 168 .00 918 1.14 1.31	244.91 8.16 61 .00 486 .62 .70	357.74 11.5 136 .27 710 .88 1.02	2.00 .065 .37 .00 4.0 .00	0.00 .000 .00 .00 .00 .00
			EAN DATA F									
MEAN MAX (WY) MIN (WY)	12.1 60.4 1999 .44 1979	6.23 16.8 1986 .10 1980	4.94 14.9 1997 .027 1978	2.45 7.48 1998 .055 1996	110 1580 1977 .28 1996	6.28 18.5 1983 .31 1986	4.48 18.5 1997 .063 1984	16.1 48.7 1979 .39 1984	11.7 55.2 1981 .025 1994	5.55 54.5 1979 .025 1986	6.21 51.0 1996 .002 1984	6.67 20.2 1998 .000 1999

08158050 BOGGY CREEK AT U.S. HIGHWAY 183, AUSTIN, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDA	AR YEAR	FOR 1999 WAT	TER YEAR	WATER YEARS	S 1977 - 1999h
ANNUAL TOTAL	4033.77		3814.91			
ANNUAL MEAN	11.1		10.5		7.42	
HIGHEST ANNUAL MEAN					15.1	1979
LOWEST ANNUAL MEAN					1.29	1984
HIGHEST DAILY MEAN	1190	Oct 17	1190	Oct 17	1660	Feb 11 1977
LOWEST DAILY MEAN	.00	Мау б	.00	Oct 1	.00	Jul 13 1978
ANNUAL SEVEN-DAY MINIMUM	.00	May 19	.00	May 1	.00	Jul 13 1978
INSTANTANEOUS PEAK FLOW			5930	Oct 17	6100	May 23 1975
INSTANTANEOUS PEAK STAGE			17.24	Oct 17	17.24	Oct 17 1998
ANNUAL RUNOFF (AC-FT)	8000		7570		5370	
ANNUAL RUNOFF (CFSM)	.84		.80		.57	
ANNUAL RUNOFF (INCHES)	11.45		10.83		7.69	
10 PERCENT EXCEEDS	12		7.2		9.1	
50 PERCENT EXCEEDS	.62		.44		.29	
90 PERCENT EXCEEDS	.00		.00		.00	

h See PERIOD OF RECORD paragraph.

08158050 BOGGY CREEK AT U.S. HIGHWAY 183, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Jan 1975 to Sep 1986, Apr 1994 to current year.
BIOCHEMICAL DATA: Jan 1975 to Sep 1986, Apr 1994 to current year.
RADIOCHEMICAL DATA: Jan 1980.
PESTICIDE DATA: Jan 1975 to Dec 1984.

INSTRUMENTATION. -- Stage-activated automatic sampler.

		WATER-	QUALITY D	ATA, WATE	R YEAR OC	TOBER 199	8 TO SEPT	EMBER 199	9		
DATE	TIME	IN	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	ARD UNITS)	WATER	COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L) (00300)	SATUR- ATION)	DEMAND, CHEM- ICAL (HIGH
MAR 15 MAR	1000		.27	504	7.5	13.0	10	1.4	9.5	90	13
18-19 18	2130 2200	218 218		171	7.9		60	460			76
MAY 10-10	0420	160		214	7.8		200	250			76
JUN 28	1315		.40	527	8.0	31.0	20	1.5	8.4	115	21
	OXYGEN DEMAND, BIO-	COLI- FORM, FECAL,	STREP- TOCOCCI FECAL,	ALKA- LINITY WAT DIS			RESIDUE FIXED	NITRO- GEN, NITRATE	GEN,	NITRO- GEN, NO2+NO3	NITRO- GEN, AMMONIA
DATE	CHEM- ICAL, 5 DAY (MG/L) (00310)	0.7 UM-MF (COLS./		FIX END FIELD CAC03 (MG/L)	DEG. C, SUS- PENDED (MG/L)	TILE, SUS- PENDED (MG/L)	NON FILTER- ABLE (MG/L)		DIS- SOLVED (MG/L AS N)	DIS- SOLVED (MG/L AS N)	DTS-
MAR 15 MAR	.8	K380	400	160	2	25650	.00		<.010	.208	.029
18-19 18	7.9	45000	140000	51 	1120	144	980	.332	.020	.352	.078
MAY 10-10	8.1	86000	220000	71	576	96	480	.717	.032	.749	.324
JUN 28	1.3	100	K28	150	2	1	1		<.010	<.050	<.020
DATE	(MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P)	SOLVED (MG/L AS P)	DIS- SOLVED (MG/L AS P)	DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	PLANK- TON CHROMO FLUOROM (UG/L)	MENT, SUS- PENDED (MG/L)
MAR 15	.49	. 25	. 28	E.041	<.050	.011	.03	7.3	.450	<.100	
MAR 18-19	3.8	3.4	3.5	1.15	.057	.045	.14	30			384
18 MAY	4.0										917
10-10 JUN 28	4.0	3.0	3.3	.811	.117	.104	.32	16 8.4	6.30	1.60	917
20			. 10	.000	1.030	1.010		0.4	0.30	1.00	
DATE	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)		UNFLTRD TOTAL (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	DIS-	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
MAR 15							<1				2
MAR 18-19 18	226	100	 11	 <1.0	 25	 <1.0	<1	2.3	 <1.0	 <1.0	23
MAY 10-10	396	92					<1				19
JUN 28							<1				2

08158050 BOGGY CREEK AT U.S. HIGHWAY 183, AUSTIN, TX--Continued

DATE	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	
MAR											
15 MAR		<1						E20			
18-19		59						150			
18	1.7		<1.0	1.8	1.0	1.5	<1.0		46	<1.0	
MAY											
10-10		31						100			
JUN											
28		<1						<40			

Discharge

08158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX

LOCATION.--Lat 30°16′59", long 97°39′17", Travis County, Hydrologic Unit 12090205, on left bank 190 ft downstream from bridge on Farm Road 969, 0.8 mi downstream from Little Walnut Creek, 2.8 mi upstream from Colorado River, 5.2 mi east of the State Capitol Building in Austin, and 2.8 mi upstream from mouth.

DRAINAGE AREA. -- 51.3 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

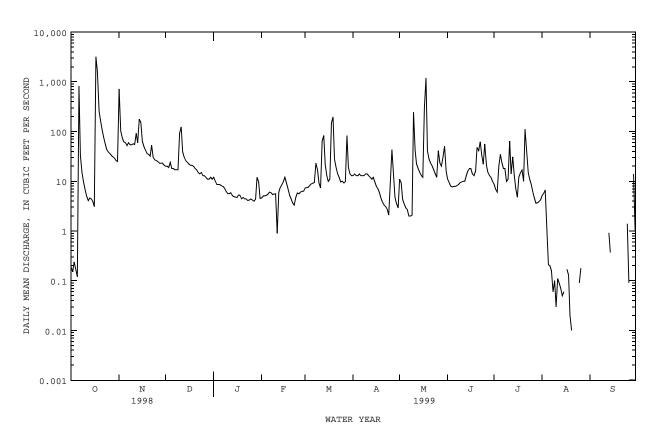
GAGE.--Water-stage recorder. Datum of gage is 425.96 ft above sea level. Satellite telemeter at station.

Gage height

REMARKS.--No estimated daily discharges. Records fair except those above 150 ${\rm ft}^3/{\rm s}$, which are poor. No known regulation or diversions. Several observations of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jun 15, 1935, reached a stage of 24 ft, backwater from Colorado River. A flood in 1919 reached a stage of 22 ft, from information by local residents. Maximum stage since at least 1891, that of May 25, 1981.

Discharge


Gage height

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft³/s:

Date	Time		(ft ³ /s)		(ft)		Date	Time		(ft ³ /s)		ft)
Oct 6 Oct 17 Oct 18	0630 1430 0700		2,800 9,460 4,450		14.97 25.22 18.41		Nov 1 Mar 18 May 18	0730 2330 0030		2,940 1,850 9,640	12	.30 .38 .40
		DISCHA	RGE, CUBI	C FEET P		WATER YE Y MEAN V		ER 1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.19 .15 .24 .17	715 103 74 62 60	20 20 19 24 18	12 10 8.6 8.6 8.6	4.6 5.1 5.1 5.2 5.5	7.3 7.4 7.5 8.3 8.9	13 14 13 13	11 9.3 4.3 3.5 2.9	11 9.4 8.0 7.7 7.9	8.7 6.9 6.0 20	5.2 5.8 6.7 .87 .21	.00 .00 .00 .00
6 7 8 9 10	819 33 15 10 6.9	52 60 54 54 57	18 17 17 17 93	8.1 7.9 7.2 6.3 5.7	6.1 5.9 5.4 5.5 5.6	9.2 9.4 23 17 9.3	13 13 13 14 14	2.7 2.0 2.0 2.1 243	7.9 8.2 8.6 9.4 9.7	24 18 18 10 11	.20 .16 .06 .10	.00 .00 .00 .00
11 12 13 14 15	5.0 4.1 4.6 4.4 3.9	55 93 59 179 150	124 39 30 26 24	5.6 5.9 5.2 4.9	.90 6.0 7.5 8.6	7.3 64 83 22 13	13 12 11 12 9.7	42 22 18 15 13	10 10 13 16 18	64 14 31 13 7.2	.11 .09 .07 .05	.00 .00 .92 .37
16 17 18 19 20	3.1 3190 1630 256 166	64 50 42 36 35	22 21 21 20 18	4.7 5.3 5.2 4.4 4.7	12 9.2 7.0 5.2 4.4	10 11 148 196 28	7.9 7.0 5.9 4.5 3.8	12 305 1190 41 28	18 14 13 16 48	4.8 12 15 17	.00 .17 .13 .02	.00 .00 .00 .00
21 22 23 24 25	108 78 57 43 39	32 53 30 27 26	17 15 14 15 13	4.4 4.4 4.1 4.2 4.4	3.6 3.3 4.7 5.8 5.6	19 14 12 9.7	3.3 3.1 2.7 2.1 7.8	23 20 17 14 12	41 62 34 22 56	111 44 15 11 8.6	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	36 33 31 29 26 25	25 23 23 23 21	13 12 11 11 12 11	4.2 4.0 4.4 12 9.7 4.5	6.1 6.3 6.3 	9.2 9.8 83 19 14	43 16 4.8 3.6 2.9	41 23 20 30 51 16	21 15 13 12 9.9	6.0 4.5 3.6 3.7 3.9 4.2	.18 .00 .00 .00 .00	.09 .00 .00 14 1.0
MEAN MAX MIN AC-FT CFSM IN.	6656.87 215 3190 .12 13200 4.19 4.83 STICS OF MON	2337 77.9 715 21 4640 1.52 1.69	24.3 124 11 1490 .47 .55	6.26 12 4.0 385 .12 .14	330 .12 .12	29.1 196 7.3 1790 .57 .65	10.3 43 2.1 615 .20 .22	2235.8 72.1 1190 2.0 4430 1.41 1.62	549.7 18.3 62 7.7 1090 .36 .40	561.1 18.1 111 3.6 1110 .35 .41	20.31 .66 6.7 .00 40 .01	17.78 .59 14 .00 35 .01
MEAN MAX (WY) MIN (WY)	33.9 215 1999 1.37 1979	22.4 161 1975 1.03 1967	34.3 367 1992 1.22 1967	29.3 237 1968 1.07 1967	31.7 203 1992 1.88 1967	27.2 121 1992 1.06 1967	24.7 90.0 1977 1.79 1971	59.0 170 1981 .58 1971	43.0 435 1981 .23 1967	11.6 55.7 1987 .052 1971	11.3 77.6 1996 .32 1977	13.2 51.7 1973 .59 1999

08158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALEND	AR YEAR	FOR 1999 WAT	CER YEAR	WATER YEAR	S 1966 - 1999
ANNUAL TOTAL	15310.01		14703.46			
ANNUAL MEAN	41.9		40.3		28.6	
HIGHEST ANNUAL MEAN					94.6	1992
LOWEST ANNUAL MEAN					1.91	1967
HIGHEST DAILY MEAN	3190	Oct 17	3190	Oct 17	4330	Dec 21 1991
LOWEST DAILY MEAN	.03	Sep 30	.00	Aug 16	.00	Jun 17 1967
ANNUAL SEVEN-DAY MINIMUM	.13	Jul 30	.00	Aug 27	.00	Jun 17 1967
INSTANTANEOUS PEAK FLOW			9640	May 18	14300	May 25 1981
INSTANTANEOUS PEAK STAGE			25.40	May 18	27.24	May 25 1981
ANNUAL RUNOFF (AC-FT)	30370		29160		20730	
ANNUAL RUNOFF (CFSM)	.82		.79		.56	
ANNUAL RUNOFF (INCHES)	11.10		10.66		7.58	
10 PERCENT EXCEEDS	55		54		43	
50 PERCENT EXCEEDS	15		10		7.5	
90 PERCENT EXCEEDS	.57		.03		1.0	

08158600 WALNUT CREEK AT WEBBERVILLE ROAD, AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Apr 1976 to current year. BIOCHEMICAL DATA: Apr 1976 to current year. RADIOCHEMICAL DATA: Jan 1980. PESTICIDE DATA: Nov 1976 to Sep 1986. SEDIMENT DATA: Dec 1977 to Jul 1982.

 ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	CUBIC FEET PER	CIFIC CON- DUCT- ANCE (US/CM)	FIELD (STAND- ARD UNITS)		COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU)	DIS- SOLVED (MG/L)	ATION)
MAR 01	1115		7.1	642	7.9	15.0	10	1.2	11.6	117
MAY 18-18	0010	2490		137	6.9		240	2000		
AUG 17	1130		.19	617	7.8	28.5	13	.63	5.6	73
DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	RESIDUE VOLA- TILE, SUS- PENDED	RESIDUE FIXED NON FILTER- ABLE (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)
MAR 01	11	1.0	140	50	150	1	2	.00		<.010
MAY 18-18	120	8.4	62000	86000	40	3310	344	2970	.454	.011
AUG 17	<10	1.2	27	1200	140	1	2	.00		<.010
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	AS N)	GEN, TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	(MG/L AS P)	ORTHO, DIS- SOLVED (MG/L AS PO4)	ORGANIC TOTAL (MG/L AS C)
MAR										
01 MAY	.425	<.020	.58		.15	<.050	<.050	<.010		2.7
18-18 AUG	.465	.199	4.0	3.4	3.6	.306	E.039	.046	.14	46
17	<.050	<.020			.25	E.030	<.050	<.010		3.6
DAT	PHY PLA TC CHRC	N TO NMO CHRO ROM FLUO F/L) (UG	TO- NK- SED N MEN MO SUS ROM PEN	- SU DED PEN /L) (T/D	T, SUSSE SIES SIES SIES SIES SIES SIES SIE	SP. CADM VE WAT AM. UNFL INER TOT IAN (UG		AL TOT COV- REC BLE ERA CU) AS	CAL TOT COV- REC BLE ERA C/L (UG PB) AS	CAL COV- BLE J/L ZN)
MAR 01	3	30 <.1	00 -			- <1	. 1	<1	. <1	.0
MAY 18-18	3 –		- 325	0 219	00 99	<1	. 25	44	: 14	.0
AUG 17		80 <.1	00 -			- <1	. <1	<1	<4	.0

This page intentionally left blank.

08158700 ONION CREEK NEAR DRIFTWOOD, TX

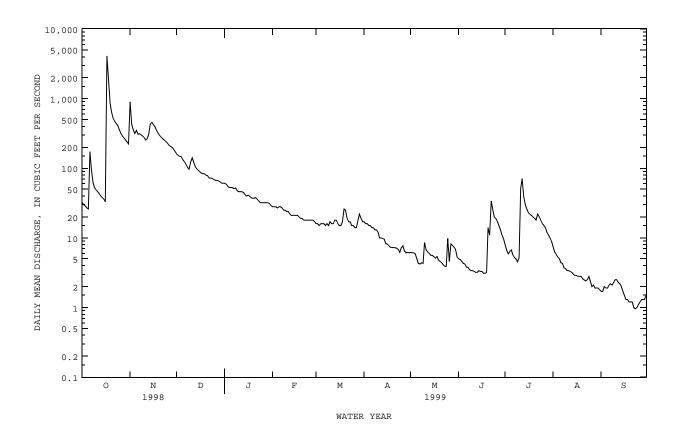
LOCATION.--Lat 30°04'58", long 98°00'27", Hays County, Hydrologic Unit 12090205, on left bank, 160 ft left of the upstream side of bridge at low-water crossing on Farm Road 150, 3.2 mi southeast of Driftwood, and 10 mi west of Buda.

DRAINAGE AREA.--124 mi ².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Apr 1958, Nov 1961 to Jun 1979 (periodic discharge measurements only), Jul 1979 to current year.

GAGE.--Water-stage recorder. Datum of gage is 878.13 ft above sea level. Satellite telemeter at station.


REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. Several observations of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft^3/s :

Date	Time	1	Discharge (ft ³ /s)	Gage l	neight it)		Date	Time		Discharge (ft ³ /s)	Gage l	neight t)
Oct 17 Oct 18	1400 0945		15,800 2,820	25.			Nov 1 Nov 14	1130 2045		2,780 562	8.	27
Oct 19	1615		1,210	6.	.08							
		DISCHA	RGE, CUBIC	FEET PER		WATER YE MEAN VA	AR OCTOBER LUES	1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	32 30 29 27 26	899 424 355 316 352	160 152 149 146 133	61 59 55 53 53	28 28 28 27 28	16 16 15 16 16	17 16 16 15 15	6.2 6.1 6.1 5.9 5.0	5.0 4.9 4.6 4.3 4.2	8.0 6.7 5.9 6.4 6.7	7.4 6.2 5.8 5.3 5.0	1.7 1.7 2.0 1.9
6 7 8 9 10	174 96 63 53 49	308 313 304 293 276	124 114 103 97 122	53 51 52 48 46	28 27 25 25 24	16 15 16 15 17	14 14 13 13	4.3 4.2 4.4 4.3 8.6	3.8 3.8 3.5 3.4 3.4	5.7 5.2 5.0 4.5 5.2	4.4 4.3 3.7 3.6 3.4	2.1 2.2 2.1 2.3 2.5
11 12 13 14 15	46 43 40 38 36	253 266 307 429 457	141 122 106 98 93	46 46 45 42 40	24 22 21 21 21	16 16 18 18 16	10 10 9.8 9.6 8.3	6.7 6.3 6.0 5.6 5.6	3.3 3.2 3.2 3.4 3.3	51 71 39 30 26	3.4 3.3 3.2 3.0 2.9	2.5 2.3 2.2 2.0 1.7
16 17 18 19 20	33 4100 1900 858 644	422 395 350 319 297	89 85 84 83 79	41 40 38 37 37	21 21 20 19 19	15 15 17 26 25	8.1 7.7 7.3 7.3 7.2	5.4 5.1 5.4 4.8 4.6	3.3 3.1 3.1 3.2	23 22 21 20 19	2.9 2.8 2.8 2.8 2.6	1.5 1.3 1.3 1.2
21 22 23 24 25	521 472 436 410 359	280 266 255 243 230	78 72 72 71 69	38 36 34 32 32	18 18 18 18	19 17 17 15 15	7.2 7.1 6.8 6.2 7.2	4.4 4.1 3.9 3.9 9.8	11 34 26 20 19	18 22 20 18 16	2.5 2.4 2.5 2.8 2.4	1.2 1.0 .96 1.0 1.1
26 27 28 29 30 31	319 289 273 255 237 223	215 207 199 189 174	67 67 66 64 61 61	32 32 32 32 31 29	18 18 17 	14 14 18 22 19 17	7.7 6.5 6.1 6.2 6.1	4.6 8.2 7.8 7.4 6.8 5.3	17 15 13 11 9.7	15 14 12 11 10 8.9	2.0 2.1 1.9 1.9 1.9	1.2 1.3 1.3 1.3
TOTAL MEAN MAX MIN AC-FT CFSM IN.	12111 391 4100 26 24020 3.15 3.63	9593 320 899 174 19030 2.58 2.88	3028 97.7 160 61 6010 .79	1303 42.0 61 29 2580 .34 .39	620 22.1 28 17 1230 .18 .19	527 17.0 26 14 1050 .14 .16	297.4 9.91 17 6.1 590 .08	176.8 5.70 9.8 3.9 351 .05	259.7 8.66 34 3.1 515 .07	546.2 17.6 71 4.5 1080 .14 .16	103.0 3.32 7.4 1.8 204 .03	49.46 1.65 2.5 .96 98 .01
STATIST	CICS OF MOD	NTHLY ME	AN DATA FO	R WATER Y	EARS 1979	- 1999,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	37.1 391 1999 .22 1990	32.0 320 1999 .10 1989	70.9 548 1992 .10 1989	56.2 316 1992 .43 1990	71.9 506 1992 .87 1990	73.3 356 1992 2.29 1989	52.8 231 1997 1.16 1996	73.3 202 1992 .27 1996	152 792 1987 .089 1996	26.7 109 1997 .13 1996	5.69 22.0 1987 .055 1996	7.56 49.8 1998 .006 1994
SUMMARY	STATISTIC	CS	FOR 1	998 CALENI	DAR YEAR	F	OR 1999 WA	TER YEAR		WATER YE	ARS 1979	- 1999
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS			4100 1.1 1.3 91160 1.02 13.79 291 65 2.6	Oct 17 Aug 14 Aug 10		28614.56 78.4 4100 .96 1.1 15800 25.10 56760 .63 8.58 247 17 2.5	Oct 17 Sep 23 Sep 19 Oct 17 Oct 17		54.8 196 2.06 5060 .00 15800 25.10 39680 .44 6.00 127 9.6		1992 1996 21 1991 21 1984 4 1984 7 1998 7 1998	

08158700 ONION CREEK NEAR DRIFTWOOD, TX--Continued

203

08158700 ONION CREEK NEAR DRIFTWOOD, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Jan 1974 to current year. BIOCHEMICAL DATA: Jan 1974 to current year. RADIOCHEMICAL DATA: Jan 1980. PESTICIDE DATA: Jan 1978 to Sep 1986.

INSTRUMENTATION. -- Stage-activated automatic sampler.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)
MAR 03 AUG	1035	15	502	7.9	16.5	5	2.0	9.4	98	<10
16	0920	2.9	480	7.7	28.5	6	.21	6.0	80	<10
DATE	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
MAR 03 AUG	.2	28	120	190	<1	5	<.010	<.050	<.020	.11
16	.7	20	K3000	170	<1	<1	<.010	<.050	<.020	.18
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	PHYTO- PLANK- TON CHROMO	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
MAR 03	<.050	<.050	<.010	2.0	E.170	<.100	<1	<1	<1	<10
AUG 16	<.050	<.050	<.010	1.9	.460	<.100	<1	<1	<1	<40

This page intentionally left blank.

08158810 BEAR CREEK BELOW FARM ROAD 1826 NEAR DRIFTWOOD, TX

LOCATION.--Lat 30°09'19", long 97°56'23", Hays County, Hydrologic Unit 12090205, 0.8 mi southeast of Farm Road 1826 and 5.9 mi northeast of Driftwood.

DRAINAGE AREA. -- 12.2 mi².

PERIOD OF RECORD.--Mar 1978 to Jul 1979 (periodic discharge measurements only), Oct 1978 to Jun 1979 (peak discharges above base only), Jul 1979 to current year.

Water-quality records.--Chemical data: Mar 1978 to Jun 1997. Biochemical data: Mar 1978 to Jun 1997. Radiochemical data: Jan 1980. Pesticide data: Jun 1978 to Sep 1986.

GAGE.--Water-stage recorder. Elevation of gage is 860 ft above sea level from topographic map. Satellite telemeter at station.

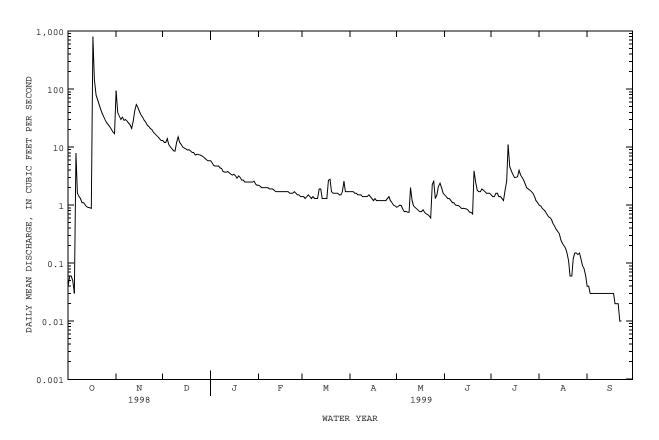
REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. Several observations of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jun 9, 1939 (corrected), reached a stage of 16.2 ft; discharge, 14,200 ft³/s, and is the highest since at least 1924, from information by local resident. A flood in 1915 was purported to be 2 ft higher than the 1939 flood, from information by local resident.

Discharge

Gage height

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft^3/s :


Gage height

Discharge

Date	Time		(ft ³ /s)	ouge (ft)		Date	Time		(ft ³ /s)	(:	ft)
Oct 17	1030		6,440	12	2.01		Nov 1	0715		593	5	.48
		DISCH	ARGE, CUBIC	C FEET PER		WATER YE Y MEAN VA		R 1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.04 .06 .06 .05	94 39 34 30 33	13 12 12 14 11	5.8 5.3 4.8 4.7 4.7	2.2 2.1 2.0 2.0 2.0	1.4 1.4 1.3 1.4	1.7 1.7 1.7 1.6 1.6	.92 .95 1.0 .98 .85	1.5 1.4 1.3 1.3	1.5 1.4 1.4 1.6	1.0 .97 .88 .83 .77	.04 .04 .03 .03
6 7 8 9 10	7.9 1.6 1.4 1.3	29 30 28 26 24	10 9.4 8.6 8.5	4.7 4.4 4.3 3.8 3.7	2.0 2.0 1.9 1.9	1.4 1.3 1.4 1.3	1.5 1.5 1.5 1.4	.77 .78 .76 .75 2.0	1.1 1.1 1.0 .99	1.4 1.4 1.3 1.2	.70 .63 .61 .56	.03 .03 .03 .03
11 12 13 14 15	1.1 1.0 .94 .91	21 28 42 54 48	15 12 11 10 9.6	3.7 3.8 3.6 3.4 3.3	1.8 1.7 1.7 1.7	1.3 1.9 1.9 1.3	1.4 1.4 1.5 1.4	1.2 .97 .91 .86	.93 .87 .88 .87	2.6 11 4.6 3.9 3.4	. 43 . 38 . 35 . 32 . 25	.03 .03 .03 .03
16 17 18 19 20	.88 800 147 78 66	42 36 33 29 27	9.3 8.9 9.0 8.6 8.1	3.4 3.2 2.9 3.2 3.0	1.7 1.7 1.7 1.7	1.3 1.3 2.7 2.8 1.7	1.2 1.3 1.2 1.2	.77 .77 .83 .76	.83 .76 .75 .70	3.0 3.0 3.1 4.0 3.3	.22 .20 .18 .15	.03 .03 .03 .02
21 22 23 24 25	54 45 38 33 29	24 23 21 20 18	8.1 7.3 7.5 7.5 7.3	2.7 2.7 2.5 2.5 2.5	1.6 1.6 1.6 1.7	1.6 1.6 1.6 1.5	1.2 1.2 1.2 1.2 1.3	.69 .65 .60 2.3 2.6	2.5 1.8 1.7 1.7	3.0 2.7 2.3 2.0 1.9	.06 .06 .12 .15	.02 .01 .01 .00
26 27 28 29 30 31	26 24 22 20 18 17	17 16 15 14 13	7.1 6.9 6.5 6.2 5.8	2.5 2.5 2.5 2.6 2.3 2.2	1.5 1.5 1.4 	1.5 1.7 2.6 1.7 1.7	1.4 1.2 1.1 1.0 .97	1.3 1.5 2.1 2.4 2.0 1.6	1.8 1.7 1.6 1.6	1.8 1.7 1.6 1.4 1.2	.14 .15 .12 .09 .08	.00 .00 .00 .00
MEAN MAX MIN AC-FT CFSM IN.	1436.27 46.3 800 .03 2850 3.80 4.38	908 30.3 94 13 1800 2.48 2.77	288.0 9.29 15 5.8 571 .76	107.2 3.46 5.8 2.2 213 .28 .33	49.6 1.77 2.2 1.4 98 .15	50.0 1.61 2.8 1.3 99 .13	40.47 1.35 1.7 .97 80 .11	36.09 1.16 2.6 .60 72 .10	41.12 1.37 3.9 .70 82 .11	77.2 2.49 11 1.1 153 .20 .24	11.20 .36 1.0 .06 22 .03	0.64 .021 .04 .00 1.3 .00
STATIS' MEAN MAX (WY) MIN (WY)	4.66 46.3 1999 .000 1989	3.34 30.3 1999 .000 1989	9.39 91.8 1992 .000 1989	6.44 33.3 1992 .000 1989	8.50 49.4 1992 .017 1990	9 - 1999, 7.80 32.3 1992 .053 1996	6.13 26.2 1991 .048 1996	8.40 23.7 1992 .013 1996	18.7 144 1981 .001 1984	2.33 8.22 1997 .000 1984	.71 3.59 1979 .000 1984	.55 2.71 1991 .000 1984

08158810 BEAR CREEK BELOW FARM ROAD 1826 NEAR DRIFTWOOD, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALEND	AR YEAR	FOR 1999 WAT	CER YEAR	WATER YEAR	S 1979 - 1999
ANNUAL TOTAL	4954.01		3045.79			
ANNUAL MEAN	13.6		8.34		6.37	
HIGHEST ANNUAL MEAN					22.3	1992
LOWEST ANNUAL MEAN					.10	1996
HIGHEST DAILY MEAN	800	Oct 17	800	Oct 17	1000	Dec 20 1991
LOWEST DAILY MEAN	.00	Jun 25	.00	Sep 24	.00	Aug 28 1980
ANNUAL SEVEN-DAY MINIMUM	.00	Jun 25	.00	Sep 24	.00	Aug 28 1980
INSTANTANEOUS PEAK FLOW			6640	Oct 17	10200	Dec 20 1991
INSTANTANEOUS PEAK STAGE			12.01	Oct 17	14.23	Dec 20 1991
ANNUAL RUNOFF (AC-FT)	9830		6040		4620	
ANNUAL RUNOFF (CFSM)	1.11		.68		.52	
ANNUAL RUNOFF (INCHES)	15.11		9.29		7.10	
10 PERCENT EXCEEDS	29		20		14	
50 PERCENT EXCEEDS	4.6		1.6		1.2	
90 PERCENT EXCEEDS	.00		.06		.00	

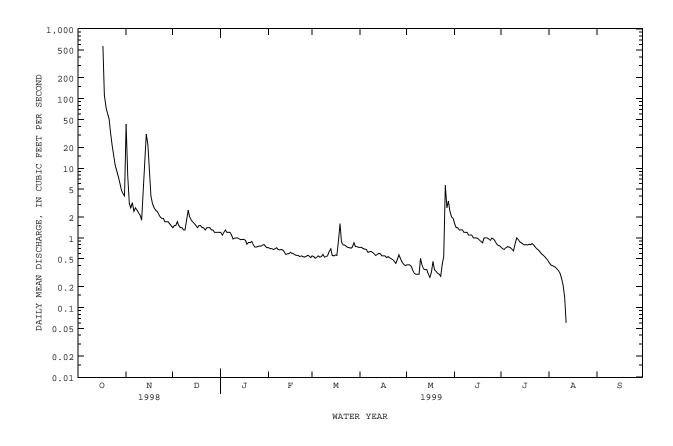
08158840 SLAUGHTER CREEK AT FARM ROAD 1826 NEAR AUSTIN, TX

LOCATION.--Lat 30°12'32", long 97°54'11", Travis County, Hydrologic Unit 12090205, 1.7 mi south of the intersection on U.S. Highway 290 and Farm Road 1826, and 11.9 mi southwest of the State Capitol Building in Austin.

DRAINAGE AREA.--8.24 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Jan 1978 to current year.


GAGE.--Water-stage recorder. Datum of gage is 876.14 ft above sea level. Satellite telemeter at station.

REMARKS.--Records fair. No known regulation or diversions. Several observations of water temperature were made during year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft^3/s :

Date	Time		Discharge (ft ³ /s)		height (ft)		Date	Time	I	Discharge (ft ³ /s)	Gage h (ft	
Oct 17	1045		4,100		9.87				ater than	n base disc		,
		DISCHA	RGE, CUBIC		R SECOND,	WATER YE MEAN VA	AR OCTOBER				J	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	43 7.9 3.1 2.7 3.2	1.4 1.5 1.5 1.7	1.2 1.1 1.2 1.3	.72 .70 .70 .68 .70	.55 .54 .51 .53	.73 .73 .70 .69	.41 .41 .41 .39	1.6 1.4 1.4 1.3	.73 .70 .68 .72 .75	.44 .41 .40 .39	.00 .00 .00 .00
6 7 8 9 10	.50 .00 .00 .00	2.4 2.7 2.5 2.3 2.1	1.4 1.4 1.3 1.3	1.2 1.2 1.1 .97	.72 .68 .67 .68 .67	.53 .54 .58 .53	.62 .63 .64 .62	.31 .30 .30 .30	1.3 1.2 1.2 1.2	.74 .72 .69 .65	.36 .34 .31 .26	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	1.8 4.4 11 31 22	2.5 2.0 1.8 1.7 1.6	1.0 1.0 .97 .94 .95	.63 .58 .59 .59	.55 .64 .70 .56	.56 .58 .60 .59	. 40 . 36 . 35 . 35 . 30	1.1 1.1 1.0 1.0	1.0 .95 .88 .85	.14 .06 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.00 570 112 74 61	8.8 4.0 3.1 2.7 2.5	1.5 1.4 1.5 1.5	.95 .92 .81 .86	.60 .59 .57 .56	.57 .56 .90 1.6 .87	.55 .55 .52 .54 .52	. 27 . 32 . 46 . 35 . 33	.98 .93 .89 .85	.79 .80 .79 .81 .80	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	51 32 21 15	2.4 2.2 2.0 1.9 1.9	1.4 1.3 1.4 1.4	.89 .80 .74 .74	.54 .55 .54 .53	.79 .79 .76 .73 .72	.50 .49 .46 .43 .49	.31 .30 .28 .42 .54	1.0 1.0 .97 .92	.83 .79 .74 .70 .67	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	9.0 7.5 6.0 4.8 4.3 4.0	1.7 1.7 1.7 1.6 1.5	1.3 1.3 1.2 1.2 1.2	.76 .76 .79 .80 .75	.56 .55 .52 	.71 .74 .85 .75 .75	.57 .51 .45 .42 .40	5.7 2.7 3.4 2.4 2.0 1.9	.96 .90 .82 .78 .77	.63 .59 .57 .54 .51	.00 .00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT CFSM IN.	983.10 31.7 570 .00 1950 3.85 4.44	181.8 6.06 43 1.5 361 .74	46.0 1.48 2.5 1.2 91 .18	29.21 .94 1.3 .72 58 .11 .13	17.14 .61 .72 .52 .34 .07	21.22 .68 1.6 .51 42 .08	16.91 .56 .73 .40 .34 .07	27.12 .87 5.7 .27 54 .11	31.97 1.07 1.6 .77 63 .13	22.74 .73 1.0 .48 45 .09	3.70 .12 .44 .00 7.3 .01	0.00 .000 .00 .00 .00
STATIS	TICS OF MC	NTHLY ME	AN DATA FO	R WATER	YEARS 1978	3 - 1999,	BY WATER	YEAR (WY				
MEAN MAX (WY) MIN (WY)	4.51 35.5 1987 .000 1983	2.50 18.5 1986 .000 1989	8.46 75.0 1992 .000 1989	5.12 24.4 1992 .000 1990	6.41 40.6 1992 .000 1996	5.86 22.2 1998 .000 1989	4.63 27.1 1979 .000 1996	10.3 33.0 1995 .021 1984	15.8 101 1981 .002 1996	1.16 5.31 1979 .000 1984	.37 2.28 1983 .000 1980	.42 4.33 1991 .000 1984
SUMMAR	Y STATISTI	CS	FOR 1	998 CALE	NDAR YEAR	F	OR 1999 W	ATER YEAR		WATER YE	ARS 1978	- 1999
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN ANNUAL ANNUAL ANNUAL 10 PER 50 PER	T ANNUAL ME ANNUAL ME T DAILY MEA SEVEN-DAY TTANEOUS PE TRUNOFF (A RUNOFF (C RUNOFF (C RUNOFF (E CENT EXCEE	AN A	I	570 .0 .0 6290 1.0 14.3 21 1.7	5 2		6.23 2.4 .70	Oct 17 Oct 17 Oct 17 Oct 7 Oct 17 Oct 17 Oct 17		901 .00 6330 10.79 4070 .68 9.27	Jun 1 Jan 2 Jan 2 Jan 2 Jan 2 Jan 2 Jan 2	1992 1996 1 1981 6 1978 6 1978 0 1991 1 1981
90 PER	CENT EXCEE	DS.		.0	U		.00	J		.00	1	

209

08158840 SLAUGHTER CREEK AT FARM ROAD 1826 NEAR AUSTIN, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Jun 1983 to current year. BIOCHEMICAL DATA: Jun 1983 to current year. PESTICIDE DATA: Jun 1983 to Sep 1986.

INSTRUMENTATION. -- Stage-activated automatic sampler.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)
MAR 03 JUN	1005	7.1	733	7.7	17.5	15	3.0	10.3	110	<10	.6
28	1005	13	731	7.9	28.5	<1	1.5	8.2	110	<10	. 4
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	RESIDUE FIXED NON FILTER- ABLE (MG/L) (00540)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
MAR 03	к7	37	220	3	3	.00	<.010	<.050	<.020		.11
JUN 28	43	280	240	4	<1		<.010	<.050	.032	.16	.20
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
MAR 03	<.050	<.050	<.010		2.3	1.30	<.100	<1	<1	<1	<10
JUN 28	<.050	<.050	.010	.03	2.3	.380	<.100	<1	<1	<1	<40
20	<.050	<.USU	.010	.03	4.0	.300	<.IUU	<t< td=""><td><u> </u></td><td>< ±</td><td>V40</td></t<>	<u> </u>	< ±	V40

This page intentionally left blank.

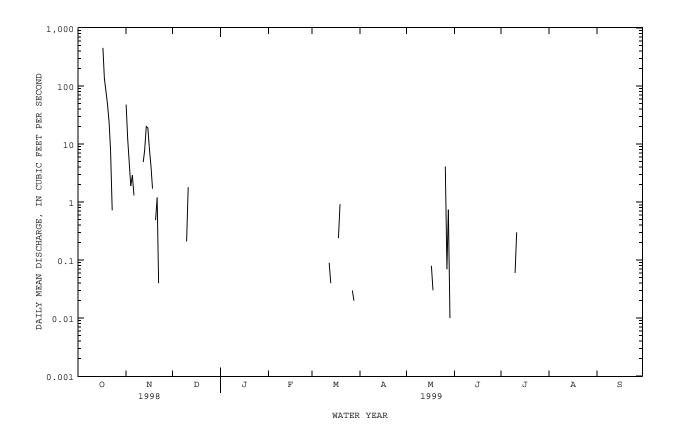
08158922 WILLIAMSON CREEK AT BRUSH COUNTRY BOULEVARD, OAK HILL, TX

LOCATION.--Lat $30^{\circ}13'34$ ", long $97^{\circ}52'28$ ", Travis County, Hydrologic Unit 12090205, at downstream side of bridge on Brush Country Boulevard near Oak Hill, and 7.7 mi southwest of the State Capitol Building in Austin.

DRAINAGE AREA.--6.79 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Mar 1993 to current year.


GAGE.--Water-stage recorder. Datum of gage is 740.25 ft above sea level, (levels from city of Austin benchmark). Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. Several observations of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft^3/s :

Date	Tir	me	Discharge (ft ³ /s)		height ft)		Date	Time		ischarge (ft ³ /s)		height t)
Oct 17	110	00	2,700	7	.10		Oct 17	1300		2,560	6	.98
		DISCH	ARGE, CUBIC	FEET PER		WATER Y MEAN	YEAR OCTOBER VALUES	1998 TO	SEPTEMBE	R 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	48 12 5.1 1.9 2.9	.00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9 10	25 .00 .00 .00	1.3 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.01 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.01 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	.00 4.9 7.9 20 19	1.8 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .09 .04 .00	.00	.00 .00 .00 .00	.00 .00 .00 .00	.30 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.00 455 136 74 48	8.6 4.3 1.7 .00 .49	.00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .24 .92	.00	.00 .08 .03 .00	.00 .00 .00 .00	.00 .03 .00 .00	.00	.00 .00 .00 .00
21 22 23 24 25	23 7.4 .72 .00	1.2 .04 .00 .00	.00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .01	.00 .01 .00 .00	.04 .00 .00 .00	.00	.00 .00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 	.00 .03 .02 .00 .00	.00 .00 .00	4.1 .07 .74 .01 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	769.12 24.8 455 .00 1530	139.33 4.64 48 .00 276	2.01 .065 1.8 .00 4.0	0.00 .000 .00 .00	0.00 .000 .00 .00	1.35 .044 .92 .00 2.7	.000	5.07 .16 4.1 .00 10	0.17 .006 .11 .00	0.44 .014 .30 .00	0.00 .000 .00 .00	0.00 .000 .00 .00
MEAN MAX (WY) MIN	4.97 24.8 1999 .000	.81 4.64 1999 .001	.61 2.38 1995 .000	.31 1.76 1998 .000	2.67 15.9 1998 .000	.88 4.88 1998 .000	3.48 1997 .000	2.82 10.3 1997 .004	2.57 13.1 1997 .001	.004 .014 1999 .000	.087 .55 1994 .000	.032 .14 1994 .000
(WY)	1997 Y STATIS	1994	1996 FOR 1	1994 .998 CALEN	1999 DAR VEAR	1996	1999 FOR 1999 WA	1998	1994	1993	1999 ARS 1993	1993
ANNUAL ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER 50 PER	TOTAL	MEAN MEAN MEAN EAN AY MINIMU PEAK FLOW PEAK STAG (AC-FT) EEDS EEDS	M r EE	1564.01 4.28 455 .00	Oct 17 Jan 1 Jan 10		917.49 2.51 455 .00 .00	Oct 17 Oct 1 Oct 7 Oct 17 Oct 17		1.44 2.51 .03 455	9 Oct Mar Mar Oct Oct	1999 1996 17 1998 11 1993

213

08158922 WILLIAMSON CREEK AT BRUSH COUNTRY BOULEVARD, OAK HILL, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Oct 1993 to current year. BIOCHEMICAL DATA: Oct 1993 to current year.

 ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)
MAY 26-27	1825	9.6	149	7.7	50	40	29	6.9	K7200	K4400	50
DATE	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	RESIDUE VOLA- TILE, SUS- PENDED (MG/L) (00535)	RESIDUE FIXED NON FILTER- ABLE (MG/L) (00540)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
MAY 26-27	97	24	73	.451	.015	.466	.108	1.9	1.4	1.5	.187
DATE	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
MAY 26-27	.067	.060	.18	27	85	2.2	100	<1	5	7	E20

This page intentionally left blank.

08159000 ONION CREEK AT U.S. HIGHWAY 183, AUSTIN, TX

LOCATION.--Lat 30°10'40", long 97°41'18", Travis County, Hydrologic Unit 12090205, on right bank at downstream side of downstream bridge on U.S. Highway 183, 2.4 mi downstream from Williamson Creek, 3.2 mi southwest of Del Valle, and 7.5 mi southeast of the State Capitol Building in Austin.

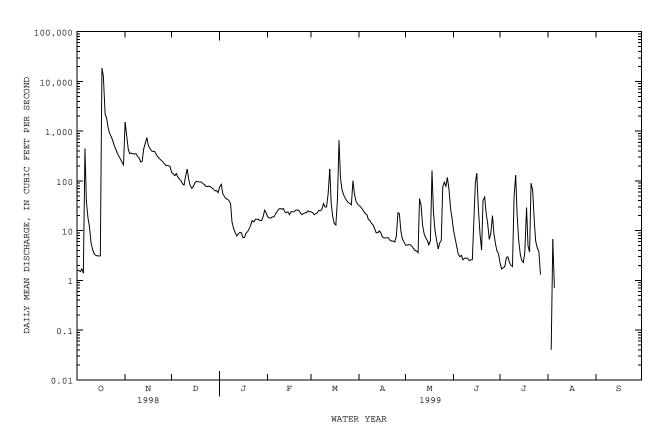
PERIOD OF RECORD.--May 1924 to Mar 1930 station was published as "near Del Valle", Mar 1976 to current year.

Water-quality records.--Chemical data: Oct 1976 to Sep 1988. Biochemical data: Oct 1976 to Sep 1988. Radiochemical data: Jan 1980. Pesticide data: Oct 1976 to Sep 1986. Sediment data: Oct 1976 to Sep 1982.

GAGE.--Water-stage recorder. Datum of gage is 442.85 ft above sea level (Texas Department of Transportation datum). May 15, 1924 to Mar 15, 1930, nonrecording gage at highway bridge 1,700 ft upstream at 6.42 ft higher datum. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. Flow is slightly affected by several small ponds on main channel and tributaries above station. Several observations of water temperature were made during the

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1869 occurred about Jul 3, 1869, stage about 38 ft, from newspaper accounts, and Sep 9, 1921, stage 38.0 ft, from floodmark, present site and datum.


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,500 ft³/s:

Date	1	Time	Dischar (ft ³ /s		ge height (ft)		Date	Time	e	Discharge (ft 3/s)		height ft)
Oct 1	7 1	L830	53,90	0	32.36		Nov 1	204	5	3,250	12	2.31
		DISCHA	ARGE, CUB	IC FEET P	ER SECOND, DAIL	WATER YEA Y MEAN VAI		R 1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.6 1.6 1.5 1.7	1530 792 425 353 366	147 139 128 140 120	76 86 56 49 44	19 18 18 19	24 23 21 22 23	32 30 27 24 22	5.1 5.1 5.2 5.2 4.9	10 6.9 5.0 3.4 3.0	2.2 1.7 1.8 1.9 2.9	.00 .00 .04 6.7 .71	.00 .00 .00 .00
6 7 8 9 10	449 38 18 12 5.7	352 348 353 311 288	110 101 87 82 126	43 40 35 15	22 24 27 28 27	26 25 27 35 30	21 17 16 14 13	4.4 4.0 3.9 3.6 44	3.2 2.6 2.8 2.8 2.8	3.0 2.3 2.0 1.9	.00	.00 .00 .00 .00
11 12 13 14 15	4.2 3.4 3.2 3.1 3.1	241 252 440 567 746	173 110 81 71 78	9.1 7.9 8.6 9.2 9.0	28 24 23 24 21	30 56 173 35 19	9.1 9.1 9.9 9.0	32 13 8.6 7.1 6.3	2.5 2.6 2.6 12 93	130 21 6.3 3.3 2.5	.00	.00 .00 .00 .00
16 17 18 19 20	3.1 18600 12700 2190 1860	517 447 401 393 393	92 99 96 95 95	7.3 7.2 8.8 9.5	24 24 24 26 26	14 13 42 651 114	7.5 7.1 7.1 7.2 7.1	5.2 6.3 163 24 10	142 27 8.6 4.1 41	2.3 3.7 29 5.0 3.7	.00	.00 .00 .00 .00
21 22 23 24 25	1170 900 777 638 517	343 310 282 265 246	90 85 78 77 79	13 16 15 17 17	26 23 21 22 23	66 52 45 40 37	6.4 6.2 6.2 5.9 7.6	6.3 4.3 5.7 6.4 75	48 22 14 6.7 8.6	90 66 16 6.2 4.5	.00	.00 .00 .00 .00
26 27 28 29 30 31	432 355 309 273 235 210	228 209 204 202 196	76 73 68 63 64 58	17 16 16 19 26 23	23 25 24 	35 33 101 55 39 34	23 22 9.6 6.8 5.8	94 79 118 69 28 17	20 8.7 5.4 3.9 3.4	3.8 1.3 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
MEAN MAX MIN AC-FT CFSM IN.	41716.6 1346 18600 1.4 82740 4.19 4.83	12000 400 1530 196 23800 1.25 1.39	2981 96.2 173 58 5910 .30 .35	737.6 23.8 86 7.2 1460 .07 .09	652 23.3 28 18 1290 .07 .08	1940 62.6 651 13 3850 .19 .22	399.6 13.3 32 5.8 793 .04 .05	863.6 27.9 163 3.6 1710 .09 .10	518.6 17.3 142 2.5 1030 .05	463.30 14.9 130 .00 919 .05 .05	7.45 .24 6.7 .00 15 .00	0.00 .000 .00 .00 .00 .00
MEAN MAX (WY) MIN (WY)	84.6 1346 1999 .000 1929	38.1 400 1999 .27 1994	95.9 1526 1992 .000 1990	52.9 487 1992 .002 1990	81.4 908 1992 1.65 1925	84.5 576 1992 1.80 1996	106 847 1926 1.39 1994	181 1767 1929 1.40 1984	243 2305 1981 .010 1925	33.2 133 1981 .000 1925	7.21 47.6 1983 .000 1925	8.75 48.0 1986 .000 1988

08159000 ONION CREEK AT U.S. HIGHWAY 183, AUSTIN, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1924 - 1999h
ANNUAL TOTAL	71754.31	62279.75	
ANNUAL MEAN	197	171	83.7
HIGHEST ANNUAL MEAN			379 1992
LOWEST ANNUAL MEAN			1.49 1925
HIGHEST DAILY MEAN	18600 Oct 17	18600 Oct 17	30500 May 28 1929
LOWEST DAILY MEAN	.00 Jun 3	.00 Jul 28	.00 Jun 3 1925
ANNUAL SEVEN-DAY MINIMUM	.00 Jun 3	.00 Aug 6	.00 Jun 3 1925
INSTANTANEOUS PEAK FLOW		53900 Oct 17	76000 May 28 1929
INSTANTANEOUS PEAK STAGE		32.36 Oct 17	32.36 Oct 17 1998
ANNUAL RUNOFF (AC-FT)	142300	123500	60640
ANNUAL RUNOFF (CFSM)	.61	.53	.26
ANNUAL RUNOFF (INCHES)	8.32	7.22	3.54
10 PERCENT EXCEEDS	337	268	132
50 PERCENT EXCEEDS	12	17	6.3
90 PERCENT EXCEEDS	.00	.00	.00

h See PERIOD OF RECORD paragraph.

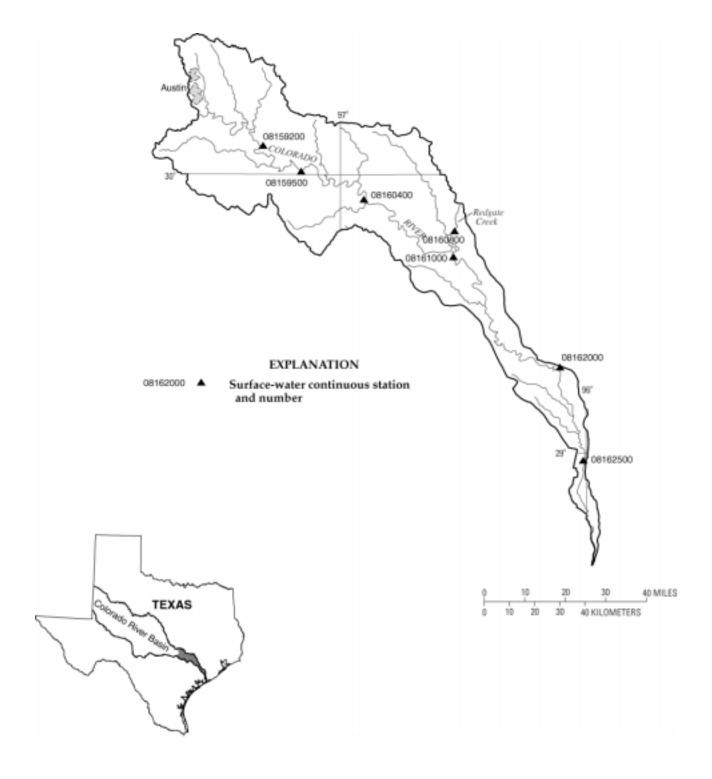


Figure 8.--Map showing location of gaging stations in the fifth section of the Colorado River $\,$ Basin

08159200	Colorado River at Bastrop, TX	220
08159500	Colorado River at Smithville, TX	222
08160400	Colorado River above LaGrange, TX	224
08160800	Redgate Creek near Columbus, TX	226
08161000	Colorado River at Columbus, TX	228
08162000	Colorado River at Wharton, TX	230
08162500	Colorado River near Bay City. TX	232

08159200 COLORADO RIVER AT BASTROP, TX

LOCATION.--Lat $30^{\circ}06'16$, long $97^{\circ}19'09$, Bastrop County, Hydrologic Unit 12090301, at the downstream side of bridge on State Highway 71 bridge, at Bastrop, 0.3 mi upstream from Gills Branch, 1.2 mi downstream from Piney Creek, and at mile 236.6.

DRAINAGE AREA.--39,979 mi^2 , approximately, of which 11,403 mi^2 probably is noncontributing.

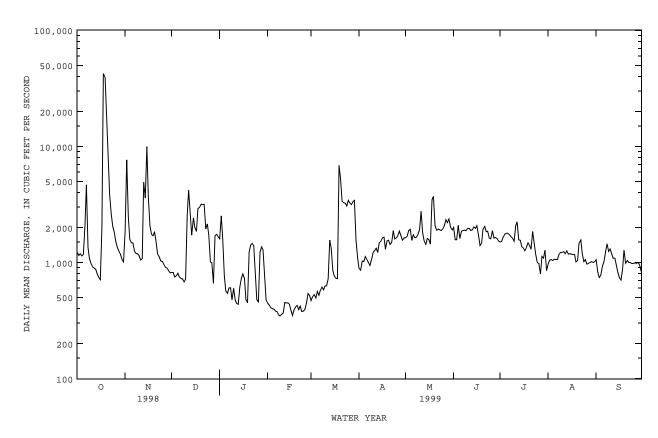
PERIOD OF RECORD.--Oct 1973 to Sep 1975, daily discharges estimated by hydrographic comparison with Colorado River at Austin (station 08158000) and Colorado River near Smithville (station 08159500), Mar 1960 to current year.

Water-quality records.--Chemical data: Mar 1944, Feb 1968 to Sep 1994. Biochemical data: Feb 1968 to Sep 1994. Specific conductance: Nov 1986 to Sep 1994. ph: Nov 1986 to Sep 1994. Water temperature: Nov 1986 to Sep 1994. Dissolved oxygen: Nov 1986 to Sep 1994.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 307.38 ft above sea level. Prior to May 10, 1960, nonrecording gage at a site 400 ft upstream from present site and at same datum. May 10, 1960 to Sep 30, 1973, Oct 1, 1975 to Oct 28, 1986, at a site 400 ft upstream from present site and at same datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. Since installation of gage in 1960, at least 10% of contributing drainage area has been regulated by Town Lake, Lake Austin, Lake Travis, and other reservoirs. There are many diversions above station for irrigation and for municipal supply. The city of Austin diverts water into Decker Lake (by pumpage) upstream from this station. The Lower Colorado River Authority also diverts water from the Colorado into Lake Bastrop (by pumpage) upstream from this station.


COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. USGS maintains stage discharge relation at medium to high stages, computes, and publishes streamflow record.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1845, 60.3 ft Jul 7 or 8, 1869. Flood of Jun 16, 1935, reached a stage of 57.0 ft, and flood of Dec 4, 1913, reached a stage of 53.3 ft, from information by local resident.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1230	1840	820	1600	445	470	886	1630	2010	1500	975	1060
2	1150	7650	818	2520	429	508	858	1680	1570	1520	1050	823
3	1190	2490	750	1600	407	530	1030	1880	1570	1660	1060	745
4	1140	1580	770	773	400	495	1020	1930	2090	1760	1040	778
5	1170	1480	808	566	395	562	1120	1550	1610	1790	1070	926
6	2070	1470	752	541	380	521	1060	1730	1860	1780	1060	1020
7	4660	1260	729	604	377	576	1000	1630	1890	1730	1060	1220
8	1350	1190	722	606	354	615	941	1660	1900	1670	1180	1450
9	1080	1190	680	475	346	579	1060	1760	1880	1620	1220	1250
10	979	1140	720	600	358	627	1220	1910	1970	1520	1220	1310
11	915	1050	2540	476	366	629	1270	2760	1970	2070	1240	1190
12	894	1080	4190	443	452	724	1330	1830	1890	2240	1190	1090
13	875	4920	2610	436	448	1560	1220	1530	1910	1570	1260	1090
14	797	3600	1720	617	450	1330	1480	1430	2030	1550	1180	951
15	739	9990	2430	735	436	858	1520	1610	1970	1370	1190	820
16	710	3670	2000	795	390	765	1630	1580	2080	1330	1180	739
17	2010	2090	1850	727	350	730	1660	1440	1750	1260	1170	705
18	42400	1750	2930	477	391	725	1300	3460	1400	1360	1170	873
19	39200	1700	2990	449	415	6880	1540	3710	1480	1470	1010	1280
20	14300	1840	3190	1230	426	5350	1560	2080	1950	1400	1040	986
21	6660	1490	3150	1420	393	3370	1430	1900	2050	1300	1470	1040
22	3910	1180	3170	1460	420	3270	1490	1940	1840	1850	1570	1000
23	2630	1120	1940	1390	378	3250	1880	1910	1860	1450	1200	999
24	2040	1030	2150	760	381	3070	1600	1890	1620	1180	1020	977
25	1830	1020	1720	477	396	3430	1630	1950	1600	1000	1060	982
26 27 28 29 30 31	1510 1340 1240 1170 1060 1010	960 909 894 852 813	1010 998 660 1710 1750 1670	458 1220 1360 1280 778 476	444 539 518 	3240 3160 3350 3430 1570 1100	1710 1860 1700 1560 1630	2070 2340 2210 2370 2010 1910	1880 1620 1640 1610 1530	979 795 1130 1090 1280 851	968 986 1000 1020 1000 1020	989 984 1000 961 839
TOTAL	143259	63248	53947	27349	11484	57274	41195	61290	54030	45075	34879	30077
MEAN	4621	2108	1740	882	410	1848	1373	1977	1801	1454	1125	1003
MAX	42400	9990	4190	2520	539	6880	1880	3710	2090	2240	1570	1450
MIN	710	813	660	436	346	470	858	1430	1400	795	968	705
AC-FT	284200	125500	107000	54250	22780	113600	81710	121600	107200	89410	69180	59660
STATIS	TICS OF 1	M YLHTMON	EAN DATA	FOR WATER	YEARS 19	60 - 1999	, BY WATER	R YEAR (W	Y)			
MEAN	1453	1258	1492	1703	2170	2354	2539	3465	4531	2606	1893	1724
MAX	6380	11330	14770	17490	29140	16910	11080	10420	23620	12750	3705	4930
(WY)	1974	1975	1992	1992	1992	1992	1977	1975	1987	1997	1961	1974
MIN	291	94.6	111	109	138	131	565	1471	1489	1302	1125	1003
(WY)	1965	1964	1964	1964	1964	1964	1962	1962	1993	1967	1999	1999

08159200 COLORADO RIVER AT BASTROP, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR Y	YEAR FOR 1999	WATER YEAR	WATER YEAR	3 1960 - 1999
ANNUAL TOTAL	979916	623107			
ANNUAL MEAN	2685	1707		2265	
HIGHEST ANNUAL MEAN				9073	1992
LOWEST ANNUAL MEAN				828	1964
HIGHEST DAILY MEAN	42400 Oct	t 18 42400	Oct 18	65800	Dec 22 1991
LOWEST DAILY MEAN	547 Jan	n 5 346	Feb 9	75	Apr 1 1964
ANNUAL SEVEN-DAY MINIMUM	740 Dec	c 4 368	Feb 5	84	Oct 19 1964
INSTANTANEOUS PEAK FLOW		56500	Oct 18	79600	Oct 29 1960
INSTANTANEOUS PEAK STAGE		32	.27 Oct 18	37.48	Dec 22 1991
ANNUAL RUNOFF (AC-FT)	1944000	1236000		1641000	
10 PERCENT EXCEEDS	4130	2450		4230	
50 PERCENT EXCEEDS	2050	1240		1570	
90 PERCENT EXCEEDS	870	488		254	

08159500 COLORADO RIVER AT SMITHVILLE, TX

LOCATION.--Lat 30°00'45", long 97°09'42", Bastrop County, Hydrologic Unit 12090301, on right bank 28 ft downstream from bridge on Business State Highway 71 in Smithville, 500 ft below mouth of Gazley Creek, 3.9 mi below mouth of Alum Creek, and at mile 212 1

DRAINAGE AREA.--40,371 mi² approximately, of which 11,403 mi² probably is noncontributing.

PERIOD OF RECORD.--Jul 1930 to Sep 1975, Oct 1997 to current year. Gage-height records collected in this vicinity since 1920 are contained in reports of the National Weather Service.

Water-quality records.--Chemical data: Oct 1973 to Sep 1975. Biological data: Oct 1973 to Sep 1975.

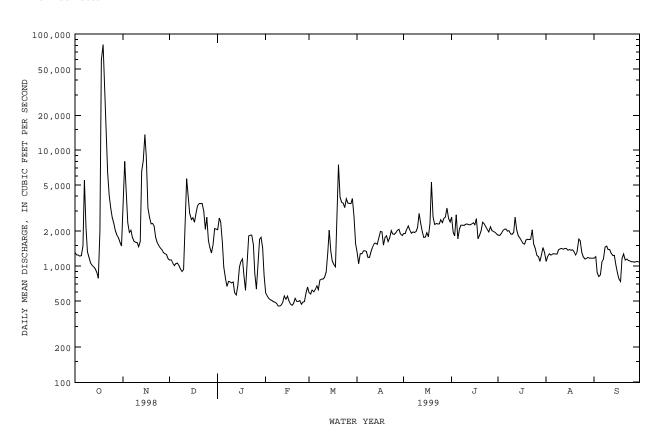
REVISED RECORDS.--WSP 1342: Drainage are. WSP 1562: 1934. WSP 1712: 1953, 1954(M), 1957-58.

GAGE.--Water-stage recorder. Datum of gage is 270.14 ft above sea level. Prior to Apr 9, 1931, nonrecording gage at same site and datum. Apr 9, 1931 to Sep 2, 1971, water-stage recorder at site 360 ft downstream at same datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records fair. Since installation of gage in 1930, at least 10% of contributing drainage area has been regulated by Town Lake (station 08157900), Lake Austin (station 08154900), Lake Travis (station 08154500), and many other reservoirs (combined normal storage of greater than 4,000,000 acre-ft). At times, low-flow releases from Lake Travis are made for generation of electric power and to fulfill downstream watercontracts. There are many diversions above station for irrigation and municipal supply.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes, and publishes streamflow record.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1860, occurred Jul 8, 1869, and was several feet higher than flood of Dec 4, 1913, which reached a stage of 47.4 ft and was the highest since 1869, from information by local residents.


EXTREMES FOR CURRENT YEAR.--Maximum discharge, 96,700 ft³/s, Oct 18 (gage height, 34.75 ft); minimum discharge, 441 ft³/s, Feb 18 (gage height, 1.76 ft).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUIN JUIT AUG SEP e3000 e8000 e4000 e780 e1010 e670 e740 e940 e899 e940 e3900 e2850 ---___ TOTAL MEAN MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1930 - 1999, BY WATER YEAR (WY) MEAN MAX (WY) MIN (WY)

08159500 COLORADO RIVER AT SMITHVILLE, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALEN	DAR YEAR	FOR 1999 WAT	TER YEAR	WATER YEAR	S 1930 - 1999
ANNUAL TOTAL	1121394		843473			
ANNUAL MEAN	3072		2311		2713	1005
HIGHEST ANNUAL MEAN					6780	1935
LOWEST ANNUAL MEAN					794	1952
HIGHEST DAILY MEAN	80900	Oct 19	80900	Oct 19	219000	Jun 16 1935
LOWEST DAILY MEAN	774	Jan 5	452	Feb 10	79	Nov 1 1934
ANNUAL SEVEN-DAY MINIMUM	980	Oct 10	475	Feb 6	84	Oct 27 1934
INSTANTANEOUS PEAK FLOW			96700	Oct 18	305000	Jun 16 1935
INSTANTANEOUS PEAK STAGE			34.75	Oct 18	42.50	Jun 16 1935
ANNUAL RUNOFF (AC-FT)	2224000		1673000		1966000	
10 PERCENT EXCEEDS	4530		2900		4850	
50 PERCENT EXCEEDS	2020		1550		1640	
90 PERCENT EXCEEDS	1130		633		340	

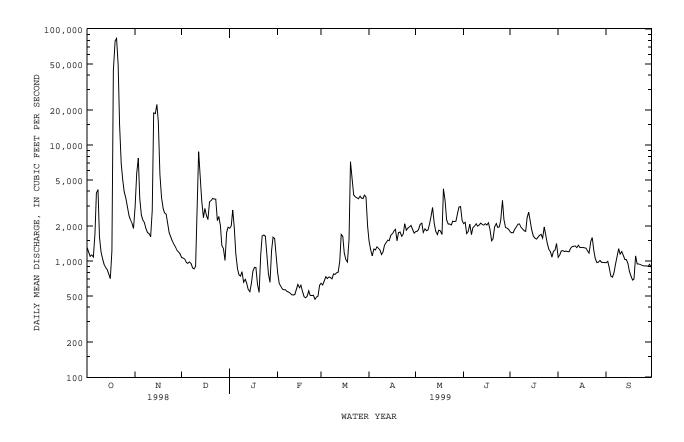
e Estimated

08160400 COLORADO RIVER ABOVE LAGRANGE, TX

LOCATION.--Lat 29°54′44", long 96°54′13", Fayette County, Hydrologic Unit 12090301, at right downstream end of bridge on new State Highway 71, 1.4 mi upstream from Buckners Creek, and at mile 177.

DRAINAGE AREA.--40,874 mi², of which 11,403 mi² probably is noncontributing.

PERIOD OF RECORD.--1979-82 (discharge measurements only), Apr 1988 to current year.


GAGE.--Water-stage recorder. Datum of gage is 210.04 ft above sea level. Dec 12, 1979 to Sep 30, 1982, discharge measurements only were made at old State Highway 71 bridge, 1.0 mi downstream and at different datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Ne estimated daily discharge. Records good. Since installation of gage, at least 10% of contributing drainage area has been regulated by Town Lake (station 08157900), Lake Austin (station 08154900), Lake Travis (station 08154500), and many other reservoirs (combined normal storage of greater than 4,000,000 acre-ft). At times, low-flow releases from Lake Travis are made for generation of electric power and to fulfill downstream water contracts. There are many diversions above station for irrigation and municipal supply. One observation of water temperature was made during the year.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes, and publishes streamflow record.

EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since at least 1869, about 56.7 ft on Jul 9, 1869 (from marble high-water marker in LaGrange). Stages of other floods are as follows: Dec 5, 1913, 56.4 ft, from floodmark; Jun 17, 1935, 50.84 ft, from floodmarks (discharge 255,000 ft 3/s) from rating curve extended above 200,000 ft 3/s); Jul 27, 1938, 42.95 ft (discharge, 200,000 ft 3/s). This data was collected at a site 2.6 mi downstream at streamflow station and published as Colorado River at LaGrange at datum different than at present site.

		DISCHA	ARGE, CUBI	IC FEET PE		WATER Y Y MEAN V	YEAR OCTOBE	R 1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1310	2950	1070	1920	790	645	1490	1790	2100	1790	1080	967
2	1190	5740	1060	2020	637	623	1260	1810	2160	1750	1130	995
3	1100	7720	1040	2760	604	670	1110	1880	1730	1760	1220	883
4	1130	3480	974	1930	575	731	1270	2080	1810	1890	1230	742
5	1080	2490	954	1170	566	706	1250	2130	2090	1980	1210	727
6	1720	2240	983	857	565	728	1330	1770	1690	2080	1220	794
7	3880	2150	955	762	547	721	1290	1900	1940	2090	1210	935
8	4150	1900	878	743	541	702	1250	1830	2000	1960	1200	1090
9	1630	1770	856	809	531	774	1140	1860	2100	1900	1290	1280
10	1200	1720	905	659	515	769	1210	2090	2000	1830	1330	1150
11	1040	1620	3620	699	509	792	1380	2450	2050	1800	1340	1210
12	929	2730	8780	646	514	801	1450	2900	2130	2370	1350	1130
13	879	19000	5400	570	564	1000	1520	2140	2070	2640	1310	1030
14	841	18700	3350	545	629	1690	1500	1800	2040	2210	1370	1030
15	769	22400	2370	646	590	1630	1670	1690	2100	1850	1310	954
16	707	15900	2850	817	622	1180	1720	1850	2050	1640	1310	819
17	1230	5560	2470	883	547	1030	1830	1820	2150	1580	1310	743
18	43900	3540	2280	879	494	979	1880	1690	1870	1550	1300	686
19	79100	2850	3240	628	483	1540	1500	4200	1500	1610	1290	702
20	83300	2600	3330	538	497	7170	1760	3350	1560	1670	1220	1110
21	48900	2540	3470	1130	554	5040	1780	2260	1980	1700	1170	942
22	14800	2130	3430	1650	506	3710	1640	2080	2110	1580	1480	947
23	6970	1750	3410	1680	505	3580	1720	2090	1950	1970	1590	933
24	4950	1610	2230	1640	507	3520	2100	2050	1970	1680	1230	923
25	3930	1480	2420	1160	469	3450	1850	2200	2250	1420	1050	910
26 27 28 29 30 31	3490 2930 2460 2260 2110 1910	1400 1320 1230 1200 1150	2030 1360 1280 1010 1770 1960	780 657 1240 1610 1570 1170	490 500 620 	3630 3490 3460 3700 3560 2010	1930 1970 2030 1890 1740	2190 2210 2540 2920 2950 2230	3340 2290 1950 1930 1880	1260 1200 1080 1220 1240 1420	972 978 1010 974 974 972	908 906 903 938 887
TOTAL	325795	142870	71735	34768	15471	64031	47460	68750	60790	53720	37630	28174
MEAN	10510	4762	2314	1122	553	2066	1582	2218	2026	1733	1214	939
MAX	83300	22400	8780	2760	790	7170	2100	4200	3340	2640	1590	1280
MIN	707	1150	856	538	469	623	1110	1690	1500	1080	972	686
AC-FT	646200	283400	142300	68960	30690	127000	94140	136400	120600	106600	74640	55880
STATIS	TICS OF	MONTHLY MI	EAN DATA E	FOR WATER	YEARS 198	8 - 1999	, BY WATER	YEAR (WY	()			
MEAN	2099	872	2429	2899	4093	4186	3016	3510	4735	2934	1706	1568
MAX	10510	4762	16350	18640	31160	18080	7333	8290	15180	12900	2096	1902
(WY)	1999	1999	1992	1992	1992	1992	1997	1992	1997	1997	1992	1992
MIN	476	244	248	247	356	403	987	1915	1989	1543	1214	939
(WY)	1997	1989	1990	1990	1990	1990	1990	1988	1993	1996	1999	1999
SUMMAR	Y STATIS	TICS	FOR	1998 CALE	NDAR YEAR		FOR 1999 W	ATER YEAR		WATER	YEARS 1988	- 1999
LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER 50 PER	MEAN T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D TANEOUS	MEAN MEAN EAN AY MINIMUN PEAK FLOW PEAK STAGH (AC-FT) EEDS	E	1307416 3582 83300 489 640 2593000 6050 2250 999	Oct 20 Jan 5 Jan 26		951194 2606 83300 469 503 89800 45.4 1887000 3440 1550 658	Oct 20	i 1	2867 9913 1157 84000 167 170 89800 45. 2077000 4940 1520 389	Dec : Dec : Oct :	1992 1990 23 1991 21 1989 16 1989 20 1998 20 1998

Discharge

08160800 REDGATE CREEK NEAR COLUMBUS, TX

LOCATION.--Lat 29°47′56", long 96°31′55", Colorado County, Hydrologic Unit 12090301, on left bank at downstream side of bridge on Farm Road 109, 1.9 mi upstream from Cummins Creek, and 7.0 mi north of Columbus.

DRAINAGE AREA.--17.3 mi².

PERIOD OF RECORD. -- Apr 1962 to current year.

REVISED RECORDS.--WSP 2122: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 210.82 ft above sea level. Prior to Oct 1, 1975, datum 10.00 ft higher. Satellite telemeter at station.

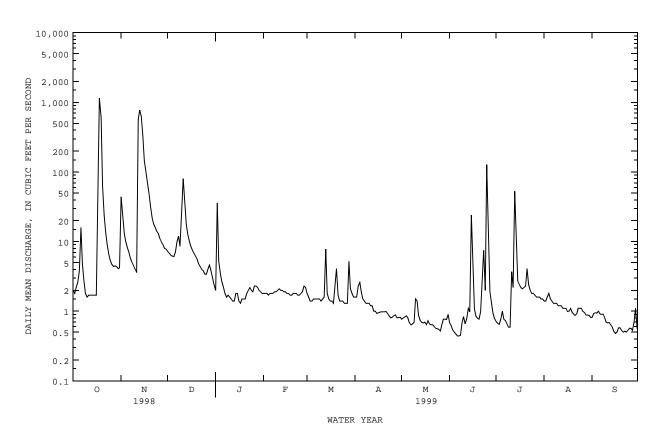
Discharge

Gage height

REMARKS.--Records poor. No known regulation or diversions.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1860, about 33.4 ft in late Jun or early Jul 1940, from information by Texas Department of Transportation and local resident.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft^3/s :


Gage height

Date	Tir	me	(ft ³ /s)	5	(ft)		Date	Time		(ft ³ /s)	(ft)
Oct 18 Oct 19 Oct 19	060 083 133	30	3,490 1,150 1,140		22.97 16.92 16.89		Nov 12 Nov 14 Nov 14	2330 0800 2330)	2,420 1,590 1,030	18	0.31 8.18 5.56
		DISCHA	ARGE, CUB	IC FEET P		, WATER YI LY MEAN V	EAR OCTOBE ALUES	R 1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.0 1.8 2.2 2.6 3.8	44 24 13 10 e8.2	e7.2 e6.8 e6.4 e6.2 e6.1	e2.0 36 5.3 3.5 2.7	e1.8 e1.8 e1.7 e1.8	1.8 1.6 1.4 1.4	1.6 1.6 2.3 2.6 1.9	.77 .80 .83 .86	.68 .62 .54 .50	.71 .67 .65 .77	1.4 1.4 1.6 1.8	.82 .93 .95 .94
6 7 8 9 10	16 4.8 2.7 1.8 1.6	e7.0 e5.8 e5.0 e4.5 e4.0	e7.0 9.9 12 8.6 23	2.2 1.8 1.6 1.7	e1.8 e1.8 e1.9 e1.9 e2.0	1.5 1.5 1.5 1.5	1.5 1.4 1.3 1.3	.69 .64 .66 .69	.44 .44 .45 .69	.77 .73 .66 .59	1.4 1.3 1.3 1.3	.91 .90 .91 .81
11 12 13 14 15	1.7 1.7 1.7 1.7	e3.6 566 778 631 325	80 42 18 13 10	1.5 1.4 1.4 1.8	e2.1 e2.0 e2.0 e1.9 e1.9	1.5 1.6 7.8 1.8	1.2 1.2 1.0 1.0	1.4 .87 .74 .69	.66 .78 1.1 .98	3.7 2.2 53 8.6 2.7	1.2 1.2 1.1 1.1	.68 .69 .63 .59
16 17 18 19 20	1.7 185 1150 614 63	145 e100 e70 e48 e32	8.5 e7.5 e6.8 e6.2 e5.6	1.4 1.3 1.5 1.5	e1.8 e1.8 1.7 1.7	1.4 1.4 1.3 2.5 4.1	.95 .97 .98 .98	.70 .64 .73 .66	4.6 1.1 .84 .79	2.4 2.2 2.1 2.2 2.3	.99 1.0 1.1 .97	.48 .50 .58 .58
21 22 23 24 25	24 14 9.0 6.6 5.4	e22 e18 e16 e14 e13	e4.8 e4.4 e4.0 e3.8 e3.4	1.8 2.0 2.2 2.0 1.9	1.8 1.8 1.7 1.7	1.7 1.4 1.4 1.3	.99 .92 .85 .80	.64 .60 .57 .56	.99 2.7 7.5 2.0 128	4.1 2.4 2.0 1.8 1.8	.87 .92 1.1 1.1	.50 .52 .50 .53
26 27 28 29 30 31	4.7 4.4 4.5 4.4 4.1 4.2	e11 e9.8 e9.0 e8.0 e7.8	e3.4 e4.0 e4.6 e3.8 e3.0 e2.4	2.3 2.3 2.2 e2.0 e1.9 e1.8	1.9 2.3 2.2 	1.3 1.3 5.2 2.1 1.8 1.6	.87 .89 .80 .81 .82	. 52 . 65 . 77 . 77 . 76 . 90	7.9 1.9 1.3 .94 .78	1.7 1.6 1.6 1.5 1.5	.99 .96 .88 .88 .87	.57 .53 .70 1.1 .56
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2146.8 69.3 1150 1.6 4260 4.00 4.62	2952.7 98.4 778 3.6 5860 5.69 6.35	332.4 10.7 80 2.4 659 .62	95.9 3.09 36 1.3 190 .18	52.2 1.86 2.3 1.7 104 .11	60.5 1.95 7.8 1.3 120 .11	35.56 1.19 2.6 .80 71 .07	23.28 .75 1.5 .52 46 .04	195.30 6.51 128 .44 387 .38 .42	110.14 3.55 53 .59 218 .21 .24	35.35 1.14 1.8 .81 70 .07	20.72 .69 1.1 .48 41 .04
							, BY WATER	•				
MEAN MAX (WY) MIN (WY)	6.71 69.3 1999 .000 1964	5.04 98.4 1999 .070 1967	4.90 25.4 1992 .25 1967	6.77 31.9 1974 .24 1967	8.03 67.5 1992 .21 1967	6.37 38.1 1973 .19 1967	7.44 39.9 1991 .24 1971	12.0 55.5 1979 .33 1971	9.64 83.4 1993 .065 1990	1.08 4.44 1993 .007 1971	1.24 17.4 1974 .000 1970	3.36 38.5 1974 .040 1963

08160800 REDGATE CREEK NEAR COLUMBUS, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1962 - 1999
ANNUAL TOTAL	6458.54	6060.85	
ANNUAL MEAN	17.7	16.6	6.08
HIGHEST ANNUAL MEAN			20.7 1992
LOWEST ANNUAL MEAN			.82 1964
HIGHEST DAILY MEAN	1150 Oct 18	1150 Oct 18	1180 Jun 13 1973
LOWEST DAILY MEAN	.02 Jul 27	.44 Jun 6	.00 Aug 7 1962
ANNUAL SEVEN-DAY MINIMUM	.02 Jul 27	.49 Jun 2	.00 Aug 7 1962
INSTANTANEOUS PEAK FLOW		3490 Oct 18	5360 May 22 1979
INSTANTANEOUS PEAK STAGE		22.97 Oct 18	27.19 May 22 1979
ANNUAL RUNOFF (AC-FT)	12810	12020	4400
ANNUAL RUNOFF (CFSM)	1.02	.96	.35
ANNUAL RUNOFF (INCHES)	13.89	13.03	4.77
10 PERCENT EXCEEDS	11	10	5.3
50 PERCENT EXCEEDS	1.7	1.6	.88
90 PERCENT EXCEEDS	.13	.66	.10

e Estimated

08161000 COLORADO RIVER AT COLUMBUS, TX

LOCATION.--Lat 29°42′22", long 96°32′12", Colorado County, Hydrologic Unit 12090302, near right bank at downstream side of pier of bridge on U.S. Highway 90 at eastern edge of Columbus, 340 ft downstream from Texas and New Orleans Railroad Co. bridge, 2.6 mi downstream from Cummins Creek, and at mile 135.1.

DRAINAGE AREA. --41,640 mi², approximately, of which 11,403 mi² probably is noncontributing.

PERIOD OF RECORD.--Jan 1903 to Dec 1911 (gage heights only), May 1916 to current year. Discharge records for 1902-11, published in WSP 84, 99, 132, 174, 210, 288, and 308, have been found to be unreliable and should not be used. Records collected at site 23 mi downstream Oct 1930 to May 1939, published as "near Eagle Lake". Gage-height records collected in this vicinity since 1903 are contained in reports of the National Weather Service.

Water-quality records.--Chemical data: Oct 1967 to Sep 1981. Biochemical data: Feb 1968 to Sep 1981. Sediment data:

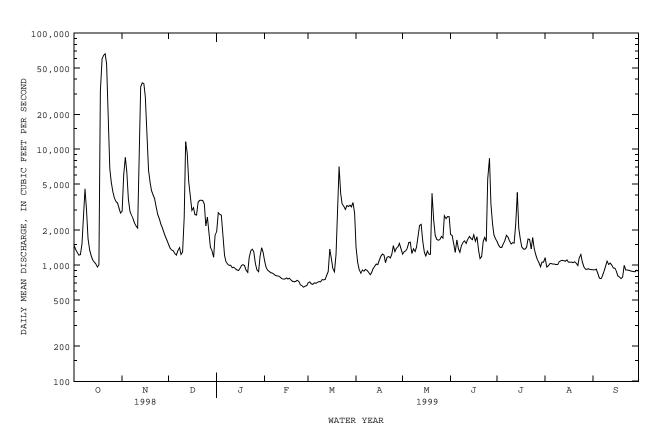
Mar 1957 to Sep 1973.

REVISED RECORDS.-- WSP 1562: 1920-21(M), 1922. WDR TX-81-3: Drainage area. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 145.52 ft above sea level. Prior to May 1, 1919, various nonrecording gages at sites in the immediate vicinity at datum 7.00 ft higher. May 1, 1919 to Nov 23, 1930, water-stage recorder at site about 300 ft downstream at datum 7.00 ft higher. Sep 17, 1930 to Jun 12, 1939 (Oct 1, 1930, to May 31, 1939, used herein), water-stage recorder at site 23 mi downstream at different datum. May 17 to Nov 14, 1939, nonrecording gage at present site and datum 10.00 ft higher. Gage-height telemeter at station. Satellite telemeter at station.

REMARKS.--Records good. Since installation of gage in May 1916, at least 10% of contributing drainage area has been regulated by Lake Austin (station 08154900, capacity 73,100 acre-ft). Flow is also affected at times by discharge from the flood-detention pools of 20 floodwater-retarding structures with a combined detention capacity of 25,570 acre-ft. These structures control runoff from 73.1 mi² in the Cummins Creek watershed. There are many other diversions above this station for irrigation and for municipal supply. Low-flow releases from Lake Travis, 251 mi upstream, are made for the generation of electric power to fulfill downstream water contracts.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage-discharge relation at low stages. U.S. Geological Survey maintains stage-discharge relation at medium to high stages, computes, and publishes streamflow record.


EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1852, 51.6 ft, present datum, in Jul 1869 and Dec 6, 1913, from information by local resident. River divided each time and left Columbus on an island. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

		DISCH	IARGE, CU	RIC PEEL PI		, WATER YE LY MEAN V		ER 1998 T	O SEPTEMB.	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1480	2900	1500	1950	1080	704	1430	1250	1840	1590	1160	911
2	1360	6040	1390	2830	945	718	1060	1310	1800	1480	964	910
3	1290	8500	1350	2740	898	691	912	1330	1530	1420	987	926
4	1220	6470	1330	2700	882	683	852	1400	1290	1420	1030	848
5	1230	3720	1260	1850	e859	705	908	1570	1650	1540	1030	772
6	1520	2900	1220	1220	e852	699	888	1580	1380	1630	1020	764
7	2420	2700	1340	1070	e837	711	921	1260	1290	1810	1020	810
8	4540	2520	1420	1020	e815	721	904	1380	1480	1750	1010	886
9	3050	2310	1240	996	e808	719	870	1310	1580	1620	1010	987
10	1690	2160	1300	1000	806	749	829	1430	1620	1520	1070	1080
11	1350	2090	2570	949	786	745	861	1780	1540	1560	1090	1010
12	1200	6520	11600	960	768	754	938	2200	1670	1550	1100	1040
13	1110	34400	9200	935	756	819	983	2250	1770	2260	1090	995
14	1060	37300	5300	912	761	880	1020	1610	1700	4240	1080	944
15	1020	36600	3770	898	777	1370	1010	1290	1660	2080	1110	941
16	965	28200	2970	937	760	1160	1110	1200	1830	1670	1060	882
17	1010	13900	3150	996	770	933	1200	1320	1610	1430	1060	805
18	31600	6580	2730	1010	744	873	1250	1240	1760	1370	1060	789
19	60700	5170	2700	992	724	1240	1220	1240	1340	1370	1050	764
20	64200	4370	3490	902	718	3070	1050	4160	1140	1430	1070	791
21	66300	4010	3610	866	724	7070	1170	2470	1190	1680	1040	996
22	54200	3740	3630	1160	741	4160	1190	1800	1610	1660	993	909
23	17500	3160	3600	1330	726	3370	1150	1670	1730	1380	1160	906
24	6790	2720	3350	1370	679	3220	1230	1640	1600	1730	1240	903
25	5200	2500	2180	1300	665	3010	1470	1660	5540	1380	1070	894
26 27 28 29 30 31	4310 3770 3520 3440 3080 2810	2260 2090 1900 1750 1630	2600 1930 1420 1330 1170 1820	1030 908 878 1190 1410 1290	647 658 665 	3270 3200 3280 3180 3470 2810	1310 1400 1440 1540 1370	1770 1710 2660 2520 2620 2610	8330 3380 2270 1820 1680	1220 1110 1050 968 1060 1060	964 922 919 932 918 913	885 879 878 902 892
TOTAL	354935	241110	87470	39599	21851	58984	33486	55240	60630	49038	32142	26899
MEAN	11450	8037	2822	1277	780	1903	1116	1782	2021	1582	1037	897
MAX	66300	37300	11600	2830	1080	7070	1540	4160	8330	4240	1240	1080
MIN	965	1630	1170	866	647	683	829	1200	1140	968	913	764
AC-FT	704000	478200	173500	78540	43340	117000	66420	109600	120300	97270	63750	53350
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	16 - 1999	, BY WATE	R YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	3040 25310 1937 204 1935	2328 13360 1975 197 1918	2131 16450 1992 162 1964	19800 1992 182	2688 33800 1992 203 1967	2557 20220 1992 275 1952	3538 17350 1922 308 1925	5468 40630 1922 1257 1937	5327 30060 1935 574 1934	3295 25710 1938 569 1933	1939 10030 1938 128 1917	2895 32690 1936 347 1934

08161000 COLORADO RIVER AT COLUMBUS, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALEN	NDAR YEAR	FOR 1999 WAT	TER YEAR	WATER YEAR	S 1916 - 1999
ANNUAL TOTAL	1482404		1061384			
ANNUAL MEAN	4061		2908		3141	
HIGHEST ANNUAL MEAN					10810	1992
LOWEST ANNUAL MEAN					653	1917
HIGHEST DAILY MEAN	66300	Oct 21	66300	Oct 21	164000	Jun 19 1935
LOWEST DAILY MEAN	664	Jan 6	647	Feb 26	93	Sep 1 1918
ANNUAL SEVEN-DAY MINIMUM	794	Jan 27	677	Feb 24	106	Aug 22 1917
INSTANTANEOUS PEAK FLOW			67800	Oct 21	190000	Jun 18 1935
INSTANTANEOUS PEAK STAGE			43.56	Oct 21	48.50	Jun 18 1935
ANNUAL RUNOFF (AC-FT)	2940000		2105000		2276000	
10 PERCENT EXCEEDS	7020		3670		5970	
50 PERCENT EXCEEDS	2230		1300		1630	
90 PERCENT EXCEEDS	1240		806		400	

e Estimated

08162000 COLORADO RIVER AT WHARTON, TX

LOCATION.--Lat 29°18'32", long 96°06'13", Wharton County, Hydrologic Unit 12090302, near left bank at downstream side of downstream bridge on U.S. Highway 59 in Wharton, 1,100 ft downstream from Texas and New Orleans Railroad Co. bridge, 12 mi upstream from Jones Creek, and at mile 66.6.

DRAINAGE AREA.--42,003 mi², approximately, of which 11,403 mi² probably is noncontributing.

PERIOD OF RECORD.--Jul 1916 to Aug 1918 (intermittent periods), Mar 1919 to Sep 1925, Jul and Aug 1938 (flood discharge measurements only), Oct 1938 to current year. Jun to Nov 1901, May to Sep 1902, daily records published in U.S. Department of Agriculture, Office of Experiment Stations, Bulletin Nos. 119 and 133. Gage-height records collected in this vicinity since 1935 are contained in reports of the National Weather Service.

Water-quality records.--Chemical data: Apr 1944 to Sep 1995. Biochemical data: Jan 1968 to Sep 1995. Radiochemical data:

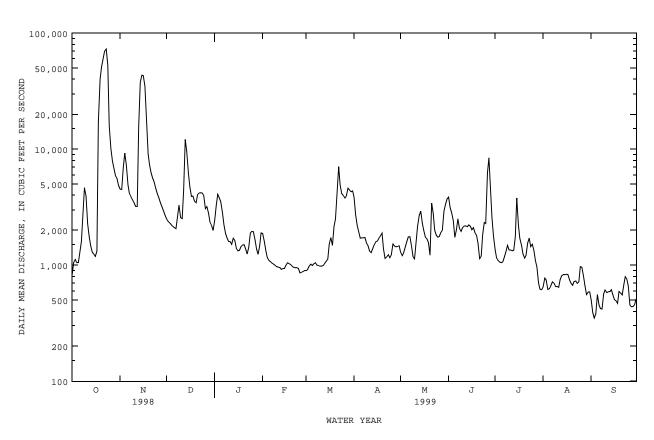
Water-quality records.--Chemical data: Apr 1944 to Sep 1995. Biochemical data: Jan 1968 to Sep 1995. Radiochemical data Dec 1973 to Sep 1995. Pesticide data: Oct 1967 to Jun 1982. Sediment data: Oct 1974 to Sep 1995.

REVISED RECORDS.--WSP 878: 1938(M). WDR TX-81-3: Drainage area. WDR TX-88-3: 1985.

GAGE.--Water-stage recorder. Datum of gage is 52.42 ft above sea level. Prior to Oct 1, 1938, various types of recording and nonrecording gages 800 ft upstream at different datum. Oct 1, 1938 to Jun 1, 1956, nonrecording gage 100 ft upstream at datum 13.00 ft higher. Jun 1, 1966 to Sep 30, 1975, water-stage recorder at present site at datum 13.00 ft higher. Oct 1, 1975 to Mar 1, 1983, water-stage recorder at present site at datum 10.00 ft higher. Satellite telemeter at station.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Since installation of gage in Oct 1938, at least 10% of contributing drainage area has been regulated by Lake Austin (station 08154900, capacity 73,100 acre-ft). Flow is also affected at times by discharge from the flood-detention pools of 20 floodwater-retarding structures with a combined detention capacity of 25,570 acre-ft. There are many diversions above station for irrigation, municipal supply, cooling water for thermal-electric power plant, and for oil field operations.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1869, 51.9 ft Dec 8, 1913, present datum, from information by local residents; below Wharton floodwater combined with that of the Brazos River. Flood of about Jul 12, 1869, reached about same height. Flood of Jun 20, 1935, reached a stage of 51.2 ft, present datum, furnished by National Weather Service (discharge, 159,000 ft³/s), from rating curve defined by current-meter measurements below 145,000 ft³/s. Flood of Jul 30, 1938, reached a stage of 50.4 ft, present datum, observed by U.S. Geological Survey personnel (discharge, 145,000 ft³/s).


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

		DISCH	ARGE, COL	OIC FEET F		, WAIER IE LY MEAN VA		EK 1990 IV	J SEFIEMBE	IK 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	820	4520	2490	2430	1870	896	3870	1290	3860	1360	653	504
2	1060	4490	2370	3280	1610	917	2720	1210	3110	1150	773	390
3	1120	7000	2310	4080	1330	981	2190	1280	2830	1090	742	e350
4	1050	9250	2220	3790	1160	1020	1930	1430	2440	1060	618	380
5	1050	7260	2160	3530	1100	993	1710	1600	1740	1050	629	559
6	1310	4950	2110	2810	1070	1030	1720	1750	2020	1070	666	455
7	1600	4140	2060	2220	1040	1050	1720	1760	2510	1180	719	422
8	2610	3860	2630	1870	1020	1000	1730	1470	2070	1300	698	418
9 10	4650	3660	3300 2560	1720 1600	999 971	993 979	1550	1180 1130	e1950	1480 1350	653 655	566 610
10	3940	3420					1460		e2100			
11	2280	3210	2520	1590	961	978	1320	1620	e2170	1350	645	579
12	1750	3200	4430	1510	952	993	1280	2160	e2180	1330	748	590
13	1470	15600	12100	1700	921	1040	1390	2660	e2150	1340	813	592
14	1290	37800	9670	1630	935	1080	1500	2920	e2220	1760	830	615
15	1240	43300	6180	1390	935	1130	1590	2300	e2170	3790	826	552
16	1190	42900	4710	1330	1000	1520	1620	1990	2020	2250	837	504
17	1320	34900	3910	1340	1050	1730	1720	1740	2110	1710	829	493
18	17200	17300	3940	1440	1030	1480	1790	1680	1900	1480	747	467
19	40200	9140	3560	1490	1010	2160	1900	1560	1800	1250	697	594
20	51300	7300	3440	1500	981	2500	1380	1220	1540	1150	670	575
21	60700	6230	4050	1370	959	4210	1140	3420	1140	1220	723	553
22	69900	5640	4180	1250	949	7080	1180	2790	1200	1550	729	679
23	73100	5190	4210	1430	952	4920	1230	2000	1840	1710	695	793
24	53100	4570	4170	1890	939	4130	1160	1810	2330	1450	717	758
25	15900	4110	3950	1950	857	3980	1230	1740	2290	1520	969	664
26	10200	3800	3070	1940	870	3790	1520	1770	6270	1340	958	452
27	7900	3450	3210	1660	883	3960	1460	1920	8410	1090	808	438
28	6730	3180	2830	1370	900	4610	1440	2010	4390	964	668	440
29	5900	2930	2340	1240		4440	1450	2920	2560	705	559	454
30	5540	2690	2180	1460		4290	1470	3360	1760	621	588	511
31	4880		1990	1900		4380		3730		613	587	
	452300	308990	114850	59710	29254	74260	49370	61420	77080	42283	22449	15957
MEAN	14590	10300	3705	1926	1045	2395	1646	1981	2569	1364	724	532
MAX	73100	43300	12100	4080	1870	7080	3870	3730	8410	3790	969	793
MIN	820	2690	1990	1240	857	896	1140	1130	1140	613	559	350
AC-FT	897100	612900	227800	118400	58030	147300	97930	121800	152900	83870	44530	31650
STATIS	TICS OF I	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	39 - 1999,	BY WATER	R YEAR (W	Y)			
MEAN	2333	2417	2275	2515	3001	2801	3122	4176	4772	2532	1371	1883
MAX	14590	13870	15060	21810	35520	21550	13730	27300	30910	15010	3916	9394
(WY)	1999	1975	1992	1992	1992	1992	1977	1957	1987	1997	1945	1961
MIN	296	220	253	224	268	328	566	825	838	706	406	436
(WY)	1957	1957	1990	1964	1967	1952	1951	1962	1948	1967	1964	1954

08162000 COLORADO RIVER AT WHARTON, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YE	EAR FOR 1999 WAS	TER YEAR	WATER YEARS	3 1939 - 1999
ANNUAL TOTAL	1635356	1307923			
ANNUAL MEAN	4480	3583		2762	
HIGHEST ANNUAL MEAN				11120	1992
LOWEST ANNUAL MEAN				615	1964
HIGHEST DAILY MEAN	73100 Oct	23 73100	Oct 23	90600	Jul 3 1940
LOWEST DAILY MEAN	429 Sep	6 350	Sep 3	42	Aug 22 1964
ANNUAL SEVEN-DAY MINIMUM	511 Sep	2 425	Sep 2	110	Dec 11 1956
INSTANTANEOUS PEAK FLOW		74800	Oct 23	100000	Jul 3 1940
INSTANTANEOUS PEAK STAGE		48.72	Oct 23	48.99	Jul 3 1940
ANNUAL RUNOFF (AC-FT)	3244000	2594000		2001000	
10 PERCENT EXCEEDS	7990	4780		5490	
50 PERCENT EXCEEDS	1850	1560		1330	
90 PERCENT EXCEEDS	1120	654		475	

e Estimated

08162500 COLORADO RIVER NEAR BAY CITY, TX

LOCATION.--Lat 28°58′26", long 96°00′44", Matagorda County, Hydrologic Unit 12090302, on left bank, 6,300 ft downstream from bridge on State Highway 35, 7,100 ft downstream from Texas and New Orleans Railroad Co. bridge, 2.8 mi west of Bay City, and at mile 32.5

DRAINAGE AREA. -- 42,240 mi², approximately, of which 11,403 mi² probably is noncontributing.

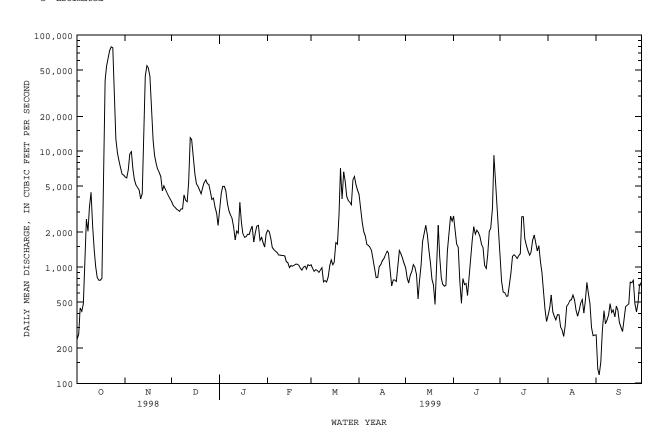
PERIOD OF RECORD.--Jul 1940 (WSP 1046), Apr 1948 to current year. Records of elevation collected in this vicinity since 1946 are contained in reports of the National Weather Service.

Water-quality records.--Chemical data: Oct 1974 to Sep 1975. Biochemical data: Oct 1974 to Sep 1975.

REVISED RECORDS.--WDR TX-81-3: Drainage area. WDR TX-88-3: 1985.

GAGE.--Water-stage recorder. Datum of gage is sea level. Jul 2-6, 1940, nonrecording gage at highway bridge, 6,300 ft upstream at datum 30.60 ft lower. On Feb 19, 1992, gage was temporarily moved 6,200 ft upstream at same datum. Gage re-established on left bank 6,300 ft downstream on May 12, 1993. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records good. Since installation of gage in Apr 1948, at least 10% of contributing drainage area has been regulated by Lake Austin (station 08154900, capacity 73,100 acre-ft). Flow is also affected at times by discharge from the flood-detention pools of 20 floodwater-retarding structures with a combined detention capacity of 25,570 acre-ft. These structures control runoff from a 73.1 mi² area in the Cummins Creek watershed. There are many other diversions above this station for irrigation and for municipal supply. No flow at times in 1951-53 and 1956.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation since 1869, 56.1 ft Dec 10, 1913. Flood in Jul 1869 probably reached about same elevation. Elevation of other floods are as follows: May 8, 1922, 55.4 ft; Jun 1929, 55.0 ft; Jun 22, 1935, 54.6 ft; Oct 5, 1936, 52.2 ft; Aug 2, 1938, 53.4 ft; Nov 27, 1940, 47.6 ft. All above flood data from information by Texas and New Orleans Railroad Co. and adjusted to present site. 48.2 ft, present datum, Jul 4, 1940, at site 6,300 ft upstream at bridge on State Highway 35, observed by U.S. Army Corps of Engineers (elevation, 46.6 ft), adjusted to present site.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 239 5980 3660 3120 2080 1050 4240 992 2760 1100 387 261 2 266 5880 3390 4350 2020 974 3150 804 2090 754 448 133 3 444 6940 3300 4960 1760 920 2430 729 1580 611 576 118 4 415 9450 3180 4970 1470 953 1860 921 748 561 376 288 6 1240 6980 3030 3500 1370 901 1570 1050 488 563 352 421 7 2600 5680 3180 3060 1340 948 1540 1000 797 721 388			DISCH	ARGE, CUI	BIC FEET PE		, WATER :	YEAR OCTOBE VALUES	R 1998 T	O SEPTEMBI	ER 1999		
2 266 5880 3390 4350 2020 974 3150 804 2090 754 448 133 3 444 6940 3300 4960 1760 920 2430 729 1580 611 576 118 4 415 9450 3180 4970 1470 953 2010 849 1480 601 411 152 5 486 9910 3110 4590 1410 935 1860 921 748 561 376 288 6 1240 6980 3030 3500 1370 901 1570 1050 488 563 352 421 7 2600 5680 3180 3060 1340 948 1540 1000 797 721 388 326 8 2040 5100 3180 2800 1270 992 1480 865 708 881 388 350 9 3300 4870 4200 2640 1270 746 <td>DAY</td> <td>OCT</td> <td>NOV</td> <td>DEC</td> <td>JAN</td> <td>FEB</td> <td>MAR</td> <td>APR</td> <td>MAY</td> <td>JUN</td> <td>JUL</td> <td>AUG</td> <td>SEP</td>	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3 444 6940 3300 4960 1760 920 2430 729 1580 611 576 118 4 415 9450 3180 4970 1470 953 2010 849 1480 601 411 152 5 486 9910 3110 4590 1410 935 1860 921 748 561 376 288 6 1240 6980 3030 3500 1370 901 1570 1050 488 563 352 421 7 2600 5680 3180 3060 1340 948 1540 1000 797 721 388 326 8 2040 5100 3180 2800 1270 992 1480 865 708 881 388 350 9 3300 4870 4200 2640 1270 746 1390 533 724 1240 304													
4 415 9450 3180 4970 1470 953 2010 849 1480 601 411 152 5 486 9910 3110 4590 1410 935 1860 921 748 561 376 288 6 1240 6980 3030 3500 1370 901 1570 1050 488 563 352 421 7 2600 5680 3180 3060 1340 948 1540 1000 797 721 388 326 8 2040 5100 3180 2800 1270 992 1480 865 708 881 350 9 3300 4870 4200 2640 1270 746 1390 533 724 1240 304 388 10 4420 4600 3770 2230 e1260 743 968 1050 849 1240 253 407 <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2090</td> <td></td> <td></td> <td></td>	2									2090			
5 486 9910 3110 4590 1410 935 1860 921 748 561 376 288 6 1240 6980 3030 3500 1370 901 1570 1050 488 563 352 421 7 2600 5680 3180 3060 1340 948 1540 1000 797 721 388 326 8 2040 5100 3180 2800 1270 992 1480 865 708 881 388 350 9 3300 4870 4200 2640 1270 746 1390 533 724 1240 304 388 10 4420 4600 3770 2230 e1260 768 1140 767 569 1280 288 484 11 2260 3880 3660 1720 e1260 743 968 1050 849 1240 253<													
6 1240 6980 3030 3500 1370 901 1570 1050 488 563 352 421 7 2600 5680 3180 3060 1340 948 1540 1000 797 721 388 326 8 2040 5100 3180 2800 1270 992 1480 865 708 881 388 350 9 3300 4870 4200 2640 1270 746 1390 533 724 1240 304 388 10 4420 4600 3770 2230 e1260 768 1140 767 569 1280 288 484 11 2260 3880 3660 1720 e1260 768 1140 767 569 1280 288 484 11 2260 3880 3660 1720 e1260 743 968 1050 849 1240 253 407 12 1400 4300 5360 2040 1250 819 814 1660 1250 1190 311 429 13 1010 15200 13000 1960 1120 1030 818 1940 1740 1260 462 373 14 809 44300 12500 3620 1090 1150 1010 2300 2230 1310 483 461 15 770 54500 8530 2420 993 1050 1050 1900 1930 2730 517 423 16 772 52000 6360 1940 1030 1110 1140 1430 2080 2710 523 335 17 806 44000 5210 1810 1020 1630 1190 1100 1990 1760 574 303 18 7620 25800 4980 1830 1040 1580 1280 783 1830 1520 521 278 19 40600 12400 4630 1920 1060 2860 1370 701 1560 1380 427 352													
7 2600 5680 3180 3060 1340 948 1540 1000 797 721 388 326 8 2040 5100 3180 2800 1270 992 1480 865 708 881 388 350 9 3300 4870 4200 2640 1270 746 1390 533 724 1240 304 388 10 4420 4600 3770 2230 e1260 768 1140 767 569 1280 288 484 11 2260 3880 3660 1720 e1260 743 968 1050 849 1240 253 407 12 1400 4300 5360 2040 1250 819 814 1660 1250 1190 311 429 13 1010 15200 13000 1960 1120 1030 818 1940 1740 1260													
8 2040 5100 3180 2800 1270 992 1480 865 708 881 388 350 9 3300 4870 4200 2640 1270 746 1390 533 724 1240 304 388 10 4420 4600 3770 2230 e1260 768 1140 767 569 1280 288 484 11 2260 3880 3660 1720 e1260 743 968 1050 849 1240 253 407 12 1400 4300 5360 2040 1250 819 814 1660 1250 1190 311 429 13 1010 15200 13000 1960 1120 1030 818 1940 1740 1260 462 373 14 809 44300 12500 3620 1090 1150 1010 2300 2230 1310 483 461 15 770 54500 8530 2420 993 </td <td></td> <td>421</td>													421
9 3300 4870 4200 2640 1270 746 1390 533 724 1240 304 388 10 4420 4600 3770 2230 e1260 768 1140 767 569 1280 288 484 11 2260 3880 3660 1720 e1260 743 968 1050 849 1240 253 407 12 1400 4300 5360 2040 1250 819 814 1660 1250 1190 311 429 13 1010 15200 13000 1960 1120 1030 818 1940 1740 1260 462 373 14 809 44300 12500 3620 1090 1150 1010 2300 2230 1310 483 461 15 770 54500 8530 2420 993 1050 1050 1900 1930 2730 <td></td>													
10 4420 4600 3770 2230 e1260 768 1140 767 569 1280 288 484 11 2260 3880 3660 1720 e1260 743 968 1050 849 1240 253 407 12 1400 4300 5360 2040 1250 819 814 1660 1250 1190 311 429 13 1010 15200 13000 1960 1120 1030 818 1940 1740 1260 462 373 14 809 44300 12500 3620 1090 1150 1010 2300 2230 1310 483 461 15 770 54500 8530 2420 993 1050 1050 1900 1930 2730 517 423 16 772 52000 6360 1940 1030 1110 1140 1430 2080 2710													
11 2260 3880 3660 1720 e1260 743 968 1050 849 1240 253 407 12 1400 4300 5360 2040 1250 819 814 1660 1250 1190 311 429 13 1010 15200 13000 1960 1120 1030 818 1940 1740 1260 462 373 14 809 44300 12500 3620 1090 1150 1010 2300 2230 1310 483 461 15 770 54500 8530 2420 993 1050 1050 1900 1930 2730 517 423 16 772 52000 6360 1940 1030 1110 1140 1430 2080 2710 523 335 17 806 44000 5210 1810 1020 1630 1190 1100 1990 17													
12 1400 4300 5360 2040 1250 819 814 1660 1250 1190 311 429 13 1010 15200 13000 1960 1120 1030 818 1940 1740 1260 462 373 14 809 44300 12500 3620 1090 1150 1010 2300 2230 1310 483 461 15 770 54500 8530 2420 993 1050 1050 1900 1930 2730 517 423 16 772 52000 6360 1940 1030 1110 1140 1430 2080 2710 523 335 17 806 44000 5210 1810 1020 1630 1190 1100 1990 1760 574 303 18 7620 25800 4980 1830 1040 1580 1280 783 1830 1520 521 278 19 40600 12400 4630 1920 1060 2860 1370 701 1560 1380 427 352	10	4420	4600	3770	2230	e1260	768	1140	767	569	1280	288	484
13 1010 15200 13000 1960 1120 1030 818 1940 1740 1260 462 373 14 809 44300 12500 3620 1090 1150 1010 2300 2230 1310 483 461 15 770 54500 8530 2420 993 1050 1050 1900 1930 2730 517 423 16 772 52000 6360 1940 1030 1110 1140 1430 2080 2710 523 335 17 806 44000 5210 1810 1020 1630 1190 1100 1990 1760 574 303 18 7620 25800 4980 1830 1040 1580 1280 783 1830 1520 521 278 19 40600 12400 4630 1920 1060 2860 1370 701 1560 1380 427 352													
14 809 44300 12500 3620 1090 1150 1010 2300 2230 1310 483 461 15 770 54500 8530 2420 993 1050 1050 1900 1930 2730 517 423 16 772 52000 6360 1940 1030 1110 1140 1430 2080 2710 523 335 17 806 44000 5210 1810 1020 1630 1190 1100 1990 1760 574 303 18 7620 25800 4980 1830 1040 1580 1280 783 1830 1520 521 278 19 40600 12400 4630 1920 1060 2860 1370 701 1560 1380 427 352													
15 770 54500 8530 2420 993 1050 1900 1900 1930 2730 517 423 16 772 52000 6360 1940 1030 1110 1140 1430 2080 2710 523 335 17 806 44000 5210 1810 1020 1630 1190 1100 1990 1760 574 303 18 7620 25800 4980 1830 1040 1580 1280 783 1830 1520 521 278 19 40600 12400 4630 1920 1060 2860 1370 701 1560 1380 427 352													
16 772 52000 6360 1940 1030 1110 1140 1430 2080 2710 523 335 17 806 44000 5210 1810 1020 1630 1190 1100 1990 1760 574 303 18 7620 25800 4980 1830 1040 1580 1280 783 1830 1520 521 278 19 40600 12400 4630 1920 1060 2860 1370 701 1560 1380 427 352													
17 806 44000 5210 1810 1020 1630 1190 1100 1990 1760 574 303 18 7620 25800 4980 1830 1040 1580 1280 783 1830 1520 521 278 19 40600 12400 4630 1920 1060 2860 1370 701 1560 1380 427 352	15	770	54500	8530	2420	993	1050	1050	1900	1930	2/30	517	423
18 7620 25800 4980 1830 1040 1580 1280 783 1830 1520 521 278 19 40600 12400 4630 1920 1060 2860 1370 701 1560 1380 427 352	16	772	52000	6360	1940	1030	1110	1140	1430	2080	2710	523	335
19 40600 12400 4630 1920 1060 2860 1370 701 1560 1380 427 352													
													278
20 54000 9190 4290 1910 1060 7100 1320 478 1470 1270 378 456	19	40600	12400	4630	1920	1060	2860	1370	701	1560	1380	427	
	20	54000	9190	4290	1910	1060	7100	1320	478	1470	1270	378	456
21 63600 7810 4800 2110 1040 3880 964 1080 1030 1350 419 469													
22 73300 6990 5380 2260 984 6630 690 2300 975 1710 496 483													
23 79300 6560 5650 1650 943 5570 774 1240 1270 1890 528 743					1650								
24 77600 6030 5240 1990 1000 4070 776 809 2050 1630 403 734													
25 29600 4540 5170 2260 1020 3740 754 711 2170 1380 508 774	25	29600	4540	5170	2260	1020	3740	754	711	2170	1380	508	774
26 12800 5020 4470 2300 959 3620 1050 685 3230 1530 738 486													
27 9690 4660 3830 1700 1050 3450 1390 700 9210 1110 585 411								1390					411
28 8200 4340 3940 1810 1030 5690 1300 1370 5430 903 487 494								1300					
29 7230 4100 3290 1630 6070 1200 1960 2810 608 302 705													
30 6340 3870 2910 1490 5130 1070 2750 1670 438 257 740													
31 6220 2290 1920 4580 2490 340 260	31	6220		2290	1920		4580		2490		340	260	
TOTAL 499377 384880 149490 78510 34199 80689 41738 37947 58718 37571 13350 12777	TOTAL												
MEAN 16110 12830 4822 2533 1221 2603 1391 1224 1957 1212 431 426	MEAN	16110	12830	4822	2533	1221	2603	1391	1224		1212	431	
MAX 79300 54500 13000 4970 2080 7100 4240 2750 9210 2730 738 774	MAX	79300	54500	13000	4970	2080	7100	4240	2750	9210	2730		774
MIN 239 3870 2290 1490 943 743 690 478 488 340 253 118	MIN		3870	2290	1490	943		690		488			
AC-FT 990500 763400 296500 155700 67830 160000 82790 75270 116500 74520 26480 25340	AC-FT	990500	763400	296500	155700	67830	160000	82790	75270	116500	74520	26480	25340
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1948 - 1999, BY WATER YEAR (WY)	STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	48 - 1999	9, BY WATER	YEAR (W	Y)			
MEAN 2547 2378 2297 2607 3292 2847 2871 3960 4546 1707 835 1758	MEAN	2547	2378	2297	2607	3292	2847	2871	3960	4546	1707	835	1758
MAX 16110 13470 16200 25780 42200 25780 13410 27750 30360 14240 2876 11160													
(WY) 1999 1975 1992 1992 1992 1992 1997 1957 1987 1997 1961 1961													
MIN 254 226 292 249 246 257 125 227 155 1.00 114 93.9													
(WY) 1990 1957 1990 1957 1967 1967 1964 1964 1971 1967 1964 1966													

08162500 COLORADO RIVER NEAR BAY CITY, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDA	AR YEAR	FOR 1999 WAT	TER YEAR	WATER YEAR	s 1948 - 1999
ANNUAL TOTAL	1755754		1429246			
ANNUAL MEAN	4810		3916		2645	
HIGHEST ANNUAL MEAN					14270	1992
LOWEST ANNUAL MEAN					375	1964
HIGHEST DAILY MEAN	79300	Oct 23	79300	Oct 23	79300	Oct 23 1998
LOWEST DAILY MEAN	15	Sep 6	118	Sep 3	.00	Jun 1 1951
ANNUAL SEVEN-DAY MINIMUM	68	Sep 2	210	Aug 30	.44	Oct 4 1969
INSTANTANEOUS PEAK FLOW			81800	Oct 24	84100	Jun 26 1960
INSTANTANEOUS PEAK STAGE			40.95	Oct 24	46.40	Jun 26 1960
ANNUAL RUNOFF (AC-FT)	3483000		2835000		1916000	
10 PERCENT EXCEEDS	9780		6130		5800	
50 PERCENT EXCEEDS	1750		1370		909	
90 PERCENT EXCEEDS	292		422		246	

e Estimated

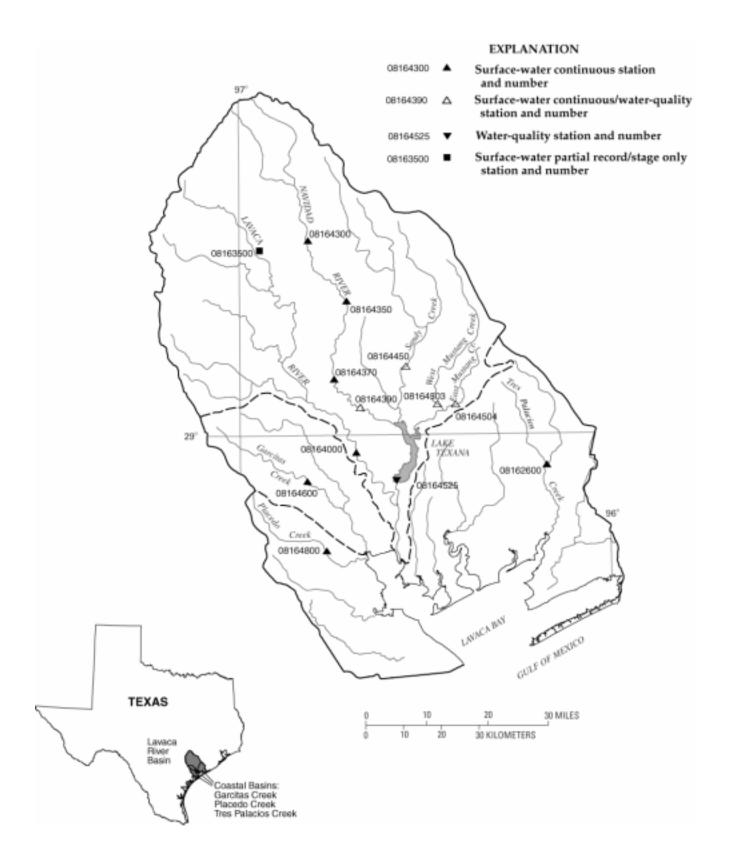


Figure 9.--Map showing location of gaging stations in the Lavaca and Coastal River Basins

08162600	Tres Palacios River near Midfield, TX	236
08163500	Lavaca River at Hallettsville, TX	240
08164000	Lavaca River near Edna, TX	242
08164300	Navidad River near Hallettsville, TX	244
08164350	Navidad River near Speaks, TX	246
08164370	Navidad River at Morales, TX	248
08164390	Navidad River at Strane Park near Edna, TX	250
08164450	Sandy Creek near Ganado, TX	254
08164503	West Mustang Creek near Ganado, TX	258
08164504	East Mustang Creek at FM 647 near Louise, TX	262
08164525	Lake Texana near Edna, TX	266
08164600	Garcitas Creek near Inez, TX	272
08164800	Placedo Creek near Placedo TX	274

236 TRES PALACIOS RIVER BASIN

08162600 TRES PALACIOS RIVER NEAR MIDFIELD, TX

 $\label{location.--Lat 28°55'40", long 96°10'15", Matagorda County, Hydrologic Unit 12100401, at left downstream end of bridge on Farm Road 456, 1.0 mi downstream from Juanita Creek, and 2.4 mi southeast of Midfield.$

DRAINAGE AREA. -- 145 mi².

PERIOD OF RECORD.--Jun 1970 to current year. Prior to Oct 1973, published as "Tres Palacios Creek near Midfield".

Water-quality records.--Chemical data: Oct 1968 to Sep 1981. Biochemical data: Oct 1968 to Sep 1981. Pesticide data: Oct 1968 to Sep 1981.

GAGE.--Water-stage recorder. Datum of gage is 5.38 ft above sea level. Jun 17, 1970, to Apr 28, 1988, at same site and datum. Apr 29, 1988, to Sep 4, 1991, at right downstream end of bridge at same datum. Satellite telemeter at station.

REMARKS.--Records fair. No known regulation. There are ten known diversions above station, but amounts are unknown. An undetermined amount of water from irrigated rice fields enters the river at various points upstream from station. Extensive channel cleaning upstream and downstream from the gage was begun during the 1983 water year and completed during the 1984 water year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1885, 37 ft in Jun 1960, and 35 ft in Aug 1945, from information by local residents.

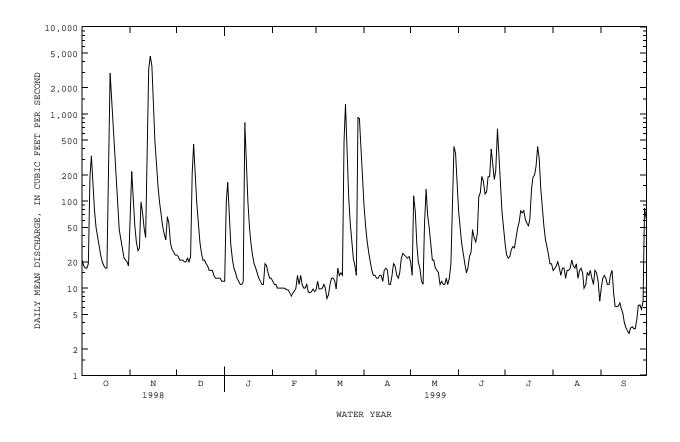
PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,600 ft^3/s :

Date	Time		Discharg (ft ³ /s)		e height (ft)		Date	Time	I	Discharge (ft ³ /s)		height (ft)
Oct 19 Nov 14	0815 1500		3,350 4,890		24.94 28.08		Mar 20 Mar 28	0100 1815		1,840 1,630		9.77 8.75
		DISCH	ARGE, CUB	IC FEET PI		WATER YE Y MEAN VA	EAR OCTOBER	1997 TO	SEPTEMBI	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	65 44 31 32 27	14 12 11 28 233	66 37 118 168 90	11 10 9.8 10	47 593 770 234 101	140 79 55 40 31	15 16 15 14 13	13 13 17 17	9.8 8.3 7.0 8.0 8.8	25 20 17 17 17	7.2 7.5 5.6 7.7 9.1	11 10 11 8.9 7.3
6 7 8 9 10	80 266 1100 2990 4260	276 58 25 16 94	46 26 38 70 56	16 31 180 76 38	75 54 39 33 31	28 28 23 21 20	15 15 17 26 16	25 22 16 12 17	8.7 10 11 10 8.4	16 14 12 11 9.6	9.5 15 79 79 52	6.6 7.0 9.2 13 717
11 12 13 14 15	4850 4020 3960 4000 1730	119 765 844 461 202	32 19 13 11	20 14 11 11	36 45 143 73 51	18 18 17 21 24	16 13 13 20 21	20 20 15 12	8.9 8.6 11 9.4 7.3	6.1 5.5 6.3 7.5 7.3	31 21 20 33 108	7580 7530 5040 2790 790
16 17 18 19 20	654 332 186 117 77	113 70 44 80 86	9.3 9.0 8.4 8.0 9.4	8.4 7.7 7.4 6.9 6.7	323 481 205 597 621	267 389 176 84 44	23 24 18 27 38	14 12 17 15	8.3 9.4 9.2 7.4	9.7 9.0 8.4 7.4 8.0	94 54 33 27 25	1850 2210 823 361 193
21 22 23 24 25	55 41 35 35 35	59 39 27 19 15	502 370 140 149 172	16 1230 534 168 81	249 1590 665 241 120	29 23 20 18 18	31 24 18 16 18	12 13 11 11 12	9.2 9.4 10 9.8	8.9 9.3 7.4 9.5	17 1280 1340 640 592	118 81 61 46 37
26 27 28 29 30 31	28 21 17 15 16 14	13 11 12 15 97	88 51 33 22 16 13	52 42 33 30 26 25	943 867 300 	17 17 17 17 17 16	30 20 22 22 18	9.4 11 15 10 12	10 8.5 12 21 31	15 15 11 8.1 6.3 6.0	356 97 45 27 18 13	32 28 25 22 22
TOTAL MEAN MAX MIN AC-FT	29133 940 4850 14 57790	3858 129 844 11 7650	2400.1 77.4 502 8.0 4760	2737.9 88.3 1230 6.7 5430	9527 340 1590 31 18900	1732 55.9 389 16 3440	594 19.8 38 13 1180	445.4 14.4 25 9.4 883	312.4 10.4 31 7.0 620	343.3 11.1 25 5.5 681	5142.6 166 1340 5.6 10200	30440.0 1015 7580 6.6 60380
STATIST	rics of Mon	THLY M	EAN DATA	FOR WATER	YEARS 197	0 - 1998,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	263 1375 1985 10.2 1992	130 582 1993 9.53 1991	136 568 1992 5.87 1991	147 542 1991 4.83 1971	163 978 1992 6.66 1976	124 1058 1997 7.79 1996	154 689 1997 10.4 1989	239 1080 1982 14.4 1998	185 699 1996 10.4 1990	111 623 1981 11.1 1998	57.5 166 1998 14.8 1997	260 1308 1979 14.5 1990

08162600 TRES PALACIOS RIVER NEAR MIDFIELD, TX--Continued

SUMMARY STATISTICS	FOR 1997 CALENDAR YEA	AR FOR 1998 WAT	ER YEAR	WATER YEARS	1970 - 1998
ANNUAL TOTAL	144970.3	86665.7			
ANNUAL MEAN	397	237		164	
HIGHEST ANNUAL MEAN				325	1992
LOWEST ANNUAL MEAN				42.2	1986
HIGHEST DAILY MEAN	6650 Sep 2	23 7580	Sep 11	12500	Oct 19 1994
LOWEST DAILY MEAN	5.3 May	8 5.5	Jul 12	1.0	Nov 3 1978
ANNUAL SEVEN-DAY MINIMUM	8.3 May	2 6.9	Jul 29	1.1	Oct 30 1978
INSTANTANEOUS PEAK FLOW		8270	Sep 11	17000	Oct 17 1984
INSTANTANEOUS PEAK STAGE		30.75	Sep 11	32.43	Oct 17 1984
ANNUAL RUNOFF (AC-FT)	287500	171900		119100	
10 PERCENT EXCEEDS	1000	469		263	
50 PERCENT EXCEEDS	32	21		24	
90 PERCENT EXCEEDS	11	8.8		8.5	

08162600 TRES PALACIOS RIVER NEAR MIDFIELD, TX--Continued


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	21 18 17 17	52 219 104 53 34	24 23 21 21 21	12 98 164 70 32	12 11 11 10 10	9.5 12 9.8 9.8	88 51 34 25 20	20 14 115 77 32	77 49 33 25 e19	32 24 22 23 28	16 17 18 20 17	9.8 13 14 13
6 7 8 9 10	192 330 159 80 50	27 29 98 75 48	20 20 22 20 23	21 17 15 13 12	10 10 10 9.9 9.6	11 10 7.6 8.4	16 14 14 13	20 17 12 11 55	e15 17 23 26 47	30 29 37 48 57	14 17 17 13 16	11 14 16 8.8 6.2
11 12 13 14 15	39 30 24 20 18	38 177 3270 4630 3580	e210 e450 e220 98 52	11 11 12 801 310	9.5 8.8 8.1 8.8 9.3	13 13 12 9.8 17	14 14 12 16 17	137 70 50 32 21	38 34 42 111 126	77 73 78 62 56	16 17 21 18 17	6.1 6.2 6.8 5.8 5.1
16 17 18 19 20	17 17 523 2960 1340	1220 486 250 143 97	34 25 21 21 19	99 50 33 24 19	10 14 11 14 11	14 15 14 485 1300	16 11 11 14 19	21 17 16 15 11	192 168 121 128 189	52 61 139 189 201	19 13 16 17 15	4.0 3.5 3.2 3.0 3.5
21 22 23 24 25	497 231 122 73 47	71 52 42 36 66	18 16 16 16 14	13 12 11	10 10 11 9.0 8.9	361 112 58 35 22	18 14 13 15 22	12 11 11 13 11	192 396 279 178 221	251 424 303 143 82	10 11 15 14 16	3.6 3.4 3.4 4.4 6.3
26 27 28 29 30 31	36 28 22 21 20 18	56 33 28 26 24	13 13 13 13 12 12	11 19 18 15 13	9.1 9.8 9.1 	18 14 913 888 393 184	25 24 23 22 23	13 19 98 425 354 141	677 328 147 76 49	52 36 30 24 19	13 11 16 15 12 7.1	6.4 5.7 7.1 83 63
TOTAL MEAN MAX MIN AC-FT	7006 226 2960 17 13900	15064 502 4630 24 29880	1521 49.1 450 12 3020	1981 63.9 801 11 3930	284.9 10.2 14 8.1 565	4989.9 161 1300 7.6 9900	631 21.0 88 11 1250	1871 60.4 425 11 3710	4023 134 677 15 7980	2701 87.1 424	474.1 15.3 21 7.1 940	350.3 11.7 83 3.0 695
STATIST	rics of M	ONTHLY MEA	N DATA FO	OR WATER Y	EARS 197	0 - 1999,	BY WATER Y	EAR (WY)				
MEAN MAX (WY) MIN (WY)	262 1375 1985 10.2 1992	143 582 1993 9.53 1991	133 568 1992 5.87 1991	144 542 1991 4.83 1971	158 978 1992 6.66 1976	125 1058 1997 7.79 1996	149 689 1997 10.4 1989	233 1080 1982 14.4 1998	184 699 1996 10.4 1990	110 623 1981 11.1 1998	56.1 166 1998 14.8 1997	251 1308 1979 11.7 1999
SUMMARY	Y STATIST	CICS	FOR 3	1998 CALEN	IDAR YEAR	F	OR 1999 WAT	ER YEAR		WATER YE	ARS 1970	- 1999
LOWEST HIGHEST LOWEST ANNUAL INSTANT	MEAN F ANNUAL ANNUAL M F DAILY ME SEVEN-DA FANEOUS P FANEOUS P	IEAN IEAN		74865.6 205 7580 5.5 6.9	Sep 11 Jul 12 Jul 29		81120	Nov 14 Sep 19 Sep 17 Nov 14 Nov 14		163 325 42.2 12500 1.0 1.1 17000 32.43	Oct Nov Oct Oct	1992 1986 19 1994 3 1978 30 1978 17 1984 17 1984
10 PERG 50 PERG	CENT EXCE CENT EXCE	EDS EDS		358 21 8.9			192 19 9.8			257 23 8.6		

e Estimated

TRES PALACIOS RIVER BASIN 239

08162600 TRES PALACIOS RIVER NEAR MIDFIELD, TX--Continued

08163500 LAVACA RIVER AT HALLETTSVILLE, TX (Flood-hydrograph partial-record station)

 $\label{location.--Lat 29°26'35", long 96°56'41", Lavaca County, Hydrologic Unit 12100101, at downstream side of bridge on U.S. Highway 77 in Hallettsville and 0.7 mi downstream from Campbell Branch.$

DRAINAGE AREA. -- 108 mi 2.

PERIOD OF RECORD.--Jul 1939 to Apr 1993 (daily mean discharge), May 1993 to current year (peak discharges greater than base discharge).

REVISED RECORDS.--WSP 1312: 1942(M), 1944(M). WSP 1732: 1952(M). WSP 2123: Drainage area.

GAGE.--Crest-stage gage. Datum of gage is 186.72 ft above sea level. Prior to Apr 19, 1960, water-stage recorder for high stages and movable nonrecording gage for stages below about 6.2 ft, Apr 20, 1960, to Jun 2, 1961, movable nonrecording gage at same site. Jun 3, 1961 to Apr 7, 1993, water-stage recorder at site 75 ft downstream. All gages at same datum.

REMARKS.--Records good. No known regulation or diversions. The Lavaca County Flood Control District No. 3 began channel rectification 1.6 mi downstream from gage in Aug 1983. This rectification project reached the gage on Jan 26, 1984, and was completed in Jun 1984. The channel was previously rectified in 1959-60.

AVERAGE DISCHARGE.--53 years (water years 1940-92), 50.8 ft³/s (6.39 in/yr), 36,780 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge, 99,500 ft 3/s Aug 31, 1981 (gage height, 41.1 ft, from floodmark), from rating curve extended above 23,000 ft 3/s on basis of slope-area measurement of peak flow; no flow at times in 1953, 1956, and 1990.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage from about 1870 to 1940, 32.8 ft Jul 16, 1936, from information by local resident. Maximum stage since at least 1840, that of Aug 31, 1981.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,300 ft³/s:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct 18	Unknown	c22,300	a28.53	Nov 13	Unknown	10,100	a21.87
Nov 2	Unknown	3,010	a15.17	Jun 27	Unknown	8,560	a20.73

c From rating curve extended above $20,000 \text{ ft}^3/\text{s}$.

a From floodmark.

This page intentionally left blank.

08164000 LAVACA RIVER NEAR EDNA, TX

southwest of Edna.

DRAINAGE AREA. -- 817 mi².

PERIOD OF RECORD.--Aug 1938 to current year.

Water-quality records.--Chemical data: Aug 1945 to Aug 1993. Biochemical data: Feb 1971 to Aug 1993. Pesticide data:

Jan 1968 to Aug 1981. Sediment data: Nov 1977 to Aug 1993. Specific conductance: Nov 1977 to Sep 1981. Water temperature:

Nov 1977 to Sep 1981.

REVISED RECORDS. -- WSP 1923: 1955. WRD TX-73-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 14.10 ft above sea level. Prior to Jun 6, 1939, nonrecording gage (property of U.S. Army Corps of Engineers); Jun 6, 1939 to Apr 3, 1957, nonrecording gage at site 110 ft downstream; Apr 4, 1957, to Mar 21, 1961, nonrecording gage; all at same datum. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. No known regulation. Small diversions above station for irrigation.

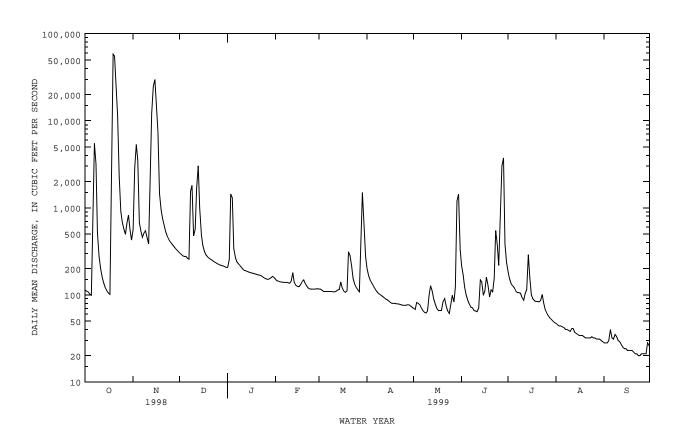
EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, 33.8 ft May 25, 1936 (discharge, 83,400 ft 3/s), from information by local resident.

Discharge

Gage height

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $4,100~{\rm ft}^3/{\rm s}$:

Gage height


Discharge

Date	Ti	me	(ft ³ /s)	ge Gage	(ft)		Date	Time		(ft ³ /s)		neignt (t)
Oct 7 Oct 19 Nov 4	19 20 01	30	6,540 80,000 6,580) 3	20.80 82.38 20.84		Nov 15 Jun 28	0715 0845		32,100 5,130		.40
		DISCH	IARGE, CUI	BIC FEET PE		WATER YE Y MEAN V	EAR OCTOBER ALUES	1998 TO	SEPTEME	BER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	114	563	303	207	150	116	201	70	217	182	47	28
2	110	2880	291	255	145	116	166	68	169	152	45	28
3	108	5340	282	1440	143	113	147	82	122	134	44	28
4	102	3560	276	1300	141	109	136	80	99	126	44	30
5	99	678	277	342	140	109	127	77	86	120	43	40
6	1290	537	263	266	139	109	118	71	78	110	42	32
7	5500	458	257	238	139	109	111	66	72	106	40	31
8	3190	517	1550	226	139	109	105	63	71	106	40	35
9	517	548	1820	217	138	109	102	62	66	104	39	33
10	279	449	475	205	136	108	99	66	65	93	38	30
11	200	383	568	195	144	108	96	100	64	87	41	29
12	159	1690	1680	190	180	110	93	127	71	103	41	27
13	137	12100	3030	188	139	114	89	111	148	115	37	25
14	121	24800	1000	185	129	115	88	89	141	289	36	24
15	111	29800	487	181	125	141	85	78	99	161	35	24
16	105	17000	367	179	124	120	82	70	110	100	34	23
17	101	7570	314	178	131	110	80	66	160	90	34	23
18	6420	1460	288	175	142	107	80	66	129	85	34	23
19	57900	951	274	173	149	111	80	66	95	84	33	23
20	55000	757	264	171	136	312	79	84	114	84	32	22
21	24100	628	257	169	126	282	79	91	108	83	32	21
22	11500	536	250	168	120	212	78	74	156	86	32	21
23	2300	472	242	164	117	154	77	65	551	101	32	20
24	916	431	236	159	116	132	76	61	376	81	33	20
25	689	406	230	155	116	121	76	78	218	67	33	21
26 27 28 29 30 31	571 497 680 827 553 427	384 364 345 331 317	225 221 218 215 211 207	152 151 154 158 163 158	116 117 118 	114 108 443 1500 616 276	76 77 77 75 72	99 83 122 1200 1440 333	978 3040 3740 385 236	61 57 54 52 50 48	32 31 31 31 30 29	21 21 21 28 26
TOTAL	174623	116255	16578	8262	3755	6413	2927	5208	11964	3171	1124	778
MEAN	5633	3875	535	267	134	207	97.6	168	399	102	36.3	25.9
MAX	57900	29800	3030	1440	180	1500	201	1440	3740	289	47	40
MIN	99	317	207	151	116	107	72	61	64	48	29	20
AC-FT	346400	230600	32880	16390	7450	12720	5810	10330	23730	6290	2230	1540
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 193	88 - 1999	, BY WATER	YEAR (WY)				
MEAN	493	337	250	289	398	277	501	672	650	210	88.2	355
MAX	7118	3875	2400	1564	5214	2696	5014	3239	5005	3999	713	2842
(WY)	1995	1999	1977	1979	1992	1997	1997	1982	1973	1940	1946	1978
MIN	.58	.003	.19	.055	13.5	6.58	4.43	8.16	.72	2.14	.16	.13
(WY)	1991	1957	1991	1957	1954	1956	1956	1956	1990	1954	1990	1989

08164000 LAVACA RIVER NEAR EDNA, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALEN	IDAR YEAR	FOR 1999 WAT	TER YEAR	WATER YEAR	S 1938 - 1999
ANNUAL TOTAL	473193		351058			
ANNUAL MEAN	1296		962		376	
HIGHEST ANNUAL MEAN					1385	1992
LOWEST ANNUAL MEAN					6.12	1956
HIGHEST DAILY MEAN	57900	Oct 19	57900	Oct 19	122000	Oct 19 1994
LOWEST DAILY MEAN	11	Jul 30	20	Sep 23	.00	Nov 10 1954
ANNUAL SEVEN-DAY MINIMUM	11	Jul 30	21	Sep 21	.00	Jul 2 1956
INSTANTANEOUS PEAK FLOW			80000	Oct 19	c150000	Oct 19 1994
INSTANTANEOUS PEAK STAGE			32.38	Oct 19	a35.49	Oct 19 1994
ANNUAL RUNOFF (AC-FT)	938600		696300		272400	
10 PERCENT EXCEEDS	1890		716		423	
50 PERCENT EXCEEDS	127		118		54	
90 PERCENT EXCEEDS	22		32		9.4	

From floodmark. From rating curve extended above current meter measurement of 71,500 $\rm ft^3/s$.

08164300 NAVIDAD RIVER NEAR HALLETTSVILLE, TX

LOCATION.--Lat 29°28'00", long 96°48'45", Lavaca County, Hydrologic Unit 12100102, on right bank 28 ft downstream from bridge on U.S. Highway 90-A, 0.8 mi downstream from Mixons Creek, 1.2 mi southwest of Sublime, and 8 mi northeast of Hallettsville.

DRAINAGE AREA.--332 mi².

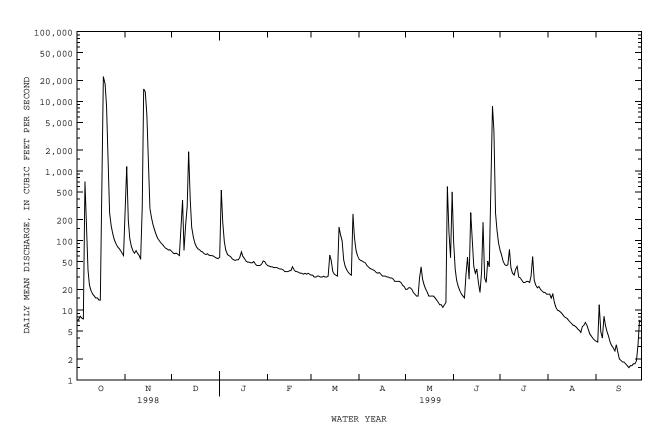
PERIOD OF RECORD. -- Oct 1961 to current year.

REVISED RECORDS.--WSP 2123: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 159.28 ft above sea level. Satellite telemeter at station.

REMARKS.--Records fair. No known regulation or diversion.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1860, 40 ft in Jun 1940; flood in Jul 1936 reached a stage of 39 ft, from information by local residents and Southern Pacific Railroad Company.


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $2,500~{\rm ft}^3/{\rm s}$:

Date	Time		Discharge (ft ³ /s)		height ft)		Date	Time		Discharge (ft ³ /s)		height ft)
Oct 18 Nov 13	1115 1745		28,700 20,200		.22		Jun 26	1700		11,300	27	.24
		DISCH	ARGE, CUBIC	FEET PER		WATER Y	EAR OCTOBER ALUES	1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.1 7.4 8.2 7.7 7.5	321 1160 194 108 83	70 66 65 66 64	58 530 185 97 73	44 43 42 42 41	32 32 30 30 31	54 52 51 49 48	20 20 21 21 20	97 39 27 22 19	72 62 50 45 44	17 17 15 17 13	3.6 3.5 12 4.9 4.0
6 7 8 9 10	704 175 38 23 19	71 66 72 66 61	61 174 383 72 167	63 61 59 55 53	41 41 40 39 39	31 30 30 31 30	44 42 40 39 38	18 17 16 16 29	17 16 15 34 58	45 75 41 34 32	11 10 9.8 9.4 8.9	8.2 6.1 4.9 4.2 3.5
11 12 13 14 15	17 16 15 15 14	54 304 15000 13700 6330	311 1890 391 156 111	52 53 53 58 69	38 36 36 36 37	30 31 62 52 36	37 35 34 35 33	42 28 23 20 18	28 253 91 43 34	39 43 30 29 27	8.3 7.9 7.7 7.2 6.8	3.1 2.9 2.6 3.2 2.5
16 17 18 19 20	14 373 22700 17700 8420	1090 293 212 168 142	92 81 76 74 70	59 55 51 49 49	37 42 38 36 36	33 32 31 157 122	31 31 31 30 30	16 16 e16 16 15	39 25 18 36 183	25 25 26 26 25	6.5 6.1 6.0 5.8 5.4	2.0 1.9 1.8 1.8
21 22 23 24 25	1600 250 163 125 104	122 108 100 93 88	69 65 63 65 62	48 48 50 46 44	35 34 34 33 34	100 53 43 38 35	29 29 28 26 26	14 13 12 12 11	29 25 51 42 948	31 59 27 23 21	5.2 4.8 5.8 6.1 6.7	1.6 1.5 1.6 1.7
26 27 28 29 30 31	91 82 77 72 66 61	83 78 76 73 74	61 60 58 56 55	44 44 46 51 50 46	33 34 33 	33 32 242 112 73 60	26 26 25 23 22	12 13 e600 132 57 e500	8520 3780 251 143 92	22 20 19 18 18 17	6.1 5.2 4.5 4.2 3.9 3.7	1.7 1.9 3.3 7.1 6.8
TOTAL MEAN MAX MIN AC-FT CFSM IN.	52971.9 1709 22700 7.1 105100 5.15 5.94	40390 1346 15000 54 80110 4.06 4.53	5115 165 1890 55 10150 .50 .57	2299 74.2 530 44 4560 .22 .26	1054 37.6 44 33 2090 .11 .12	1714 55.3 242 30 3400 .17 .19	1044 34.8 54 22 2070 .10 .12	1784 57.5 600 11 3540 .17 .20	14975 499 8520 15 29700 1.50 1.68	1070 34.5 75 17 2120 .10 .12	252.0 8.13 17 3.7 500 .02 .03	107.2 3.57 12 1.5 213 .01
							, BY WATER					
MEAN MAX (WY) MIN (WY)	161 1709 1999 .000 1991	138 1346 1999 .035 1991	122 943 1977 .97 1991	136 691 1968 6.38 1990	170 1251 1992 8.46 1996	119 611 1992 9.87 1991	204 1158 1973 7.17 1996	323 1502 1972 2.39 1996	265 1792 1973 .68 1990	24.6 91.6 1973 .16 1990	26.7 332 1971 .014 1990	155 1975 1974 .014 1990

08164300 NAVIDAD RIVER NEAR HALLETTSVILLE, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1962 - 1999
ANNUAL TOTAL	121457.57	122776.1	
ANNUAL MEAN	333	336	153
HIGHEST ANNUAL MEAN			508 1992
LOWEST ANNUAL MEAN			11.5 1990
HIGHEST DAILY MEAN	22700 Oct 18	22700 Oct 18	30500 Sep 14 1974
LOWEST DAILY MEAN	.99 Aug 2	1.5 Sep 22	.00 Aug 5 1964
ANNUAL SEVEN-DAY MINIMUM	1.0 Jul 30	1.6 Sep 20	.00 Sep 2 1964
INSTANTANEOUS PEAK FLOW		28700 Oct 18	53500 Sep 13 1974
INSTANTANEOUS PEAK STAGE		32.22 Oct 18	36.05 Sep 13 1974
ANNUAL RUNOFF (AC-FT)	240900	243500	111000
ANNUAL RUNOFF (CFSM)	1.00	1.01	.46
ANNUAL RUNOFF (INCHES)	13.61	13.76	6.27
10 PERCENT EXCEEDS	208	165	132
50 PERCENT EXCEEDS	43	36	22
90 PERCENT EXCEEDS	2.2	6.1	2.3

e Estimated

08164350 NAVIDAD RIVER NEAR SPEAKS, TX

 $\hbox{LOCATION.--Lat } 29^{\circ}19'18", \hbox{long } 96^{\circ}42'32", \hbox{Lavaca County, Hydrologic Unit } 12100102, \hbox{at right downstream end of bridge on Farm Road } 530, \hbox{100 ft downstream from Ragsdale Creek, and } 4.6 \hbox{mi north of Speaks.}$

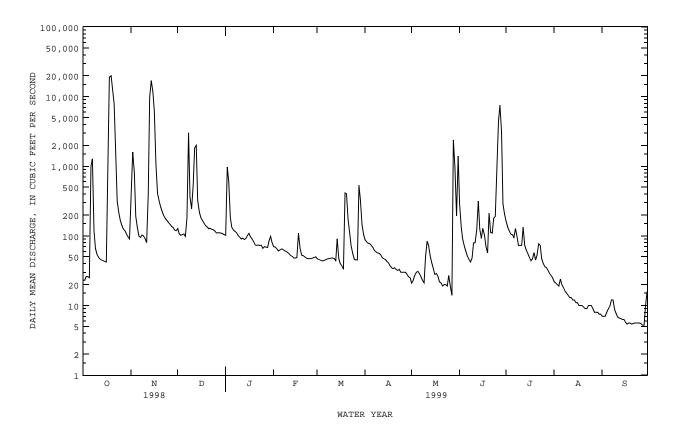
DRAINAGE AREA.--437 mi 2 .

PERIOD OF RECORD.--Oct 1981 to Sep 1989, Oct 1994 to Sep 1996 (discharge measurements only), Oct 1996 to current year. Water-quality records.--Pesticide data: Apr 1996 to Aug 1997.

GAGE.--Water-stage recorder. Datum of gage is 120.00 ft above sea level. Satellite telemeter at station.

REMARKS.--Records fair except those above $10,000~{\rm ft}^3/{\rm s}$, which are poor. No known regulation or diversions.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,500 ft 3 /s:


Date	Ti	me	Discharge (ft ³ /s)	Gage h (f			Date	Time	I	Discharge (ft ³ /s)		height [t]
Oct 18 Nov 14 Dec 8		known known 15	25,500 18,700 4,100	a30. e29. a19.	00		Dec 13 May 28 Jun 27	0545 1230 1400		2,810 3,920 8,260		.78 .10 .33
		DISCH	ARGE, CUBI	C FEET PER		WATER YE MEAN VA	EAR OCTOBER ALUES	1998 TO	SEPTEMBI	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	23 23 26 26 25	326 1600 818 192 132	128 107 102 104 107	102 975 612 186 133	70 69 65 61 63	e47 e46 e45 e44 e44	88 82 78 77 73	21 23 27 30 31	288 136 91 72 60	161 135 118 106 104	22 21 20 19 24	e7.0 e7.0 7.0 e8.0 e9.0
6 7 8 9 10	1000 1280 119 66 54	99 95 103 100 91	98 183 3020 361 246	121 116 111 102 96	65 64 61 60 58	e45 e46 e47 e47 e48	68 62 59 57 56	29 26 23 21 50	51 46 42 48 79	94 128 101 73 73	20 18 16 15 14	e10 e12 e12 8.7 7.7
11 12 13 14 15	49 46 45 44 43	80 392 e10000 e17000 11700	536 1840 2010 324 218	90 93 89 92 102	55 52 51 48 48	e48 e47 44 91 47	54 49 47 46 43	84 73 52 41 34	80 122 317 126 92	73 134 73 62 56	13 13 12 12 11	6.8 6.6 6.5 6.3
16 17 18 19 20	42 407 e19000 e20000 13200	6230 1080 407 320 263	183 166 153 141 135	109 97 91 83 74	49 e110 66 e53 e52	e40 e37 e33 413 402	41 37 35 e34 e35	28 29 26 22 21	129 104 70 57 212	49 44 47 58 45	11 e10 e10 e10 e9.5	5.8 5.4 5.6 5.6 5.4
21 22 23 24 25	7810 1600 315 216 169	224 197 178 167 156	127 129 124 123 118	73 74 73 73 66	e50 e48 e47 e47 e47	174 112 72 56 46	33 32 e33 e30 e30	19 20 20 19 27	112 110 180 190 942	53 77 73 47 40	e9.0 e9.0 e10 e10 e10	5.5 5.6 5.6 5.6
26 27 28 29 30 31	142 125 118 106 97 90	148 138 132 122 119	110 111 111 109 108 104	70 69 68 85 98	e48 e49 e50 	e45 45 533 329 146 105	e30 e30 e28 e26 e25	19 14 2390 943 194 1400	4410 7540 3180 e290 205	36 35 32 29 27 25	e9.0 e8.0 e8.0 e8.0 e7.5	5.5 5.2 5.2 10 16
TOTAL MEAN MAX MIN AC-FT	66306 2139 20000 23 131500	52609 1754 17000 80 104300	11436 369 3020 98 22680	4303 139 975 66 8540	1606 57.4 110 47 3190	3324 107 533 33 6590	1418 47.3 88 25 2810	5756 186 2390 14 11420	19381 646 7540 42 38440	2208 71.2 161 25 4380	396.5 12.8 24 7.5 786	218.5 7.28 16 5.2 433
STATIS	TICS OF	MONTHLY M	EAN DATA F	OR WATER YE	ARS 1982	- 1999	, BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	355 2139 1999 1.01 1989	384 1754 1999 1.62 1989	180 744 1987 3.63 1989	152 518 1997 35.4 1988	246 827 1998 22.8 1988	195 670 1997 34.9 1986	176 1295 1997 12.1 1989	275 833 1982 24.3 1984	333 1445 1987 18.5 1985	32.7 146 1983 4.07 1998	9.71 38.1 1983 .56 1989	64.2 324 1996 .70 1989
SUMMAR	Y STATIS	TICS	FOR :	1998 CALEND	AR YEAR	I	FOR 1999 WA	TER YEAR		WATER YE	ARS 1982	- 1999
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER 50 PER	SEVEN-D TANEOUS TANEOUS	MEAN MEAN EAN AY MINIMUI PEAK FLOW PEAK STAG! (AC-FT) EEDS EEDS	M E	.78			168962.0 463 20000 5.2 5.5 c25500 a30.24 335100 325 61 10	Sep 27		197 463 38.6 20000 .00 .00 c25500 a30.24 143100 197 30 2.8	Sep Sep Oct	1999 1988 19 1998 1 1989 1 1989 18 1998 18 1998

e Estimated

c From rating curve extended above current meter discharge measurement of $7,480~{\rm ft}^3/{\rm s}$.

From floodmark.

247

Discharge

08164370 NAVIDAD RIVER AT MORALES, TX

LOCATION.--Lat 29°08'07", long 96°44'39", Jackson County, Hydrologic Unit 12100102, on County Road 283, 1.2 mi northeast of Morales.

DRAINAGE AREA. -- 549 mi².

PERIOD OF RECORD.--Oct 1994 to Sep 1995 (discharge measurements only), Oct 1996 to current.

GAGE.--Water-stage recorder. Datum of gage is 65.44 ft above sea level. Satellite telemeter at station.

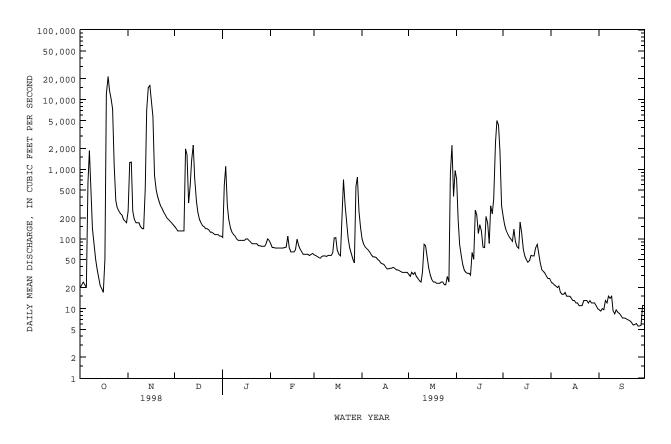
Gage height

REMARKS.--Records poor. No known regulation. Much of low flow during the irrigation season (Apr to Sep) comes from drainage from rice fields irrigated by diversions originating from the Colorado River.

Discharge

Gage height

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $4,000 \text{ ft}^3/\text{s}$:


Date	Ti	me	(ft ³ /s)		Et)		Date	Time	1	(ft ³ /s)	Gage 1 (f	
Oct 19 Nov 15	05 un	00 known	25,000 unknown	e33 unki	.50 nown		Jun 28	1615		6,180	28.	.68
		DISCH	ARGE, CUBI	C FEET PER		WATER YE Y MEAN VA	EAR OCTOBER ALUES	1998 TO	SEPTEMBI	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	20 22 24 22 20	251 1250 1270 e250 e190	e150 e140 e130 e130 e130	e105 588 1100 305 e190	e85 e75 e75 e74 e74	59 58 56 54 53	101 84 76 72 69	e31 e29 33 31 33	727 181 83 e58 e42	210 160 131 116 106	24 23 22 21 20	9.6 9.2 10 9.6 13
6 7 8 9 10	644 1850 384 141 82	e170 e170 e170 e150 e140	e130 e130 1960 1620 328	143 e125 e115 e110 e100	e74 e74 e74 e74 75	56 57 57 56 58	64 59 55 55 54	29 27 25 24 34	e35 e33 e32 e32 e30	99 92 138 91 77	21 17 16 16 17	12 15 14 15 9.2
11 12 13 14 15	51 36 28 21 19	e140 524 7060 e15000 e16000	589 1350 2220 742 348	e95 e95 e95 e95 e95	e76 e110 e75 e65 e65	58 58 64 103 104	51 49 45 44 43	84 80 56 38 30	64 51 259 220 e120	73 175 120 71 57	15 15 15 14 13	8.4 9.5 8.8 8.5 7.9
16 17 18 19 20	17 51 12100 21500 13400	e10000 5740 817 515 408	e240 e190 e170 e155 e150	e100 e100 e95 e90 e85	e65 e70 e100 80 71	69 60 57 172 707	40 37 37 38 38	26 24 24 23 23	e160 e130 76 e75 e210	50 46 49 58 57	13 12 12 11 11	7.3 7.3 7.2 7.0 6.8
21 22 23 24 25	10200 7320 1120 356 e280	342 296 271 e240 e220	e140 e140 e135 e125 e125	e85 e85 e85 e80 e80	e65 e60 e60 e60 e60	308 181 103 74 61	39 38 e36 e36 e35	23 24 24 22 22	169 86 299 e230 e380	57 75 84 62 45	11 13 13 13 12	6.6 6.2 5.8 5.9 6.1
26 27 28 29 30 31	e250 e230 e220 e190 e180 e170	e200 e190 e180 e170 e160	e120 e115 e115 e115 e110 e110	e78 78 e78 e85 e100 e95	e58 e60 e62 	51 45 574 775 247 144	e34 e33 e33 e33 	29 24 856 2210 408 962	e2400 e5000 e4300 1810 302	36 34 32 29 27 27	13 12 12 12 12 11 9.9	5.6 5.6 5.8 11 11
TOTAL MEAN MAX MIN AC-FT	70948 2289 21500 17 140700	62484 2083 16000 140 123900	12352 398 2220 110 24500	4755 153 1100 78 9430	2016 72.0 110 58 4000	4579 148 775 45 9080	1461 48.7 101 33 2900	5308 171 2210 22 10530	17594 586 5000 30 34900	2484 80.1 210 27 4930	459.9 14.8 24 9.9 912	264.9 8.83 15 5.6 525
STATIST	TICS OF	MONTHLY M	EAN DATA F	OR WATER Y		5 - 1999,	BY WATER					
MEAN MAX (WY) MIN (WY)	1156 2289 1999 9.95 1997	789 2083 1999 53.5 1997	263 398 1999 56.4 1997	336 631 1997 153 1999	423 870 1998 72.0 1999	571 1314 1997 148 1999		390 973 1997 26.4 1998	679 1392 1997 58.1 1998	36.8 80.1 1999 7.30 1996	36.3 57.8 1998 14.8 1999	257 677 1998 8.83 1999
SUMMAR	Y STATIS	TICS	FOR	1998 CALENI	DAR YEAR	I	FOR 1999 WA	TER YEAR		WATER YE	ARS 1996	- 1999
ANNUAL HIGHES' LOWEST HIGHES' LOWEST ANNUAL INSTAM: INSTAM: INSTAM: INSTAM: ANNUAL 10 PERO	F ANNUAL ANNUAL F DAILY DAILY M SEVEN-D FANEOUS FANEOUS	MEAN MEAN EAN AY MINIMUI PEAK FLOW PEAK STAGI LOW FLOW (AC-FT) EEDS	M E	211385.2 579 21500 3.4 5.3 419300 937 69			184705.8 506 21500 5.6 5.9 c25000 e33.50 366400 519 73	Sep 26 Sep 22		458 543 326 21500 .00 c25000 e33.50 1.9 332100 766 58	Aug Aug Oct 1 Oct 1	1997 1998 9 1998 1 1996 1 1996 1 1998 9 0000 9 1998 5 1998
	CENT EXC			7.5			12			7.1		

e Estimated

c From rating curve extended above current meter discharge measurement of 7,480 ft³/s.

249

08164370 NAVIDAD RIVER AT MORALES, TX--Continued

Discharge

08164390 NAVIDAD RIVER AT STRANE PARK NEAR EDNA, TX

LOCATION.--Lat $29^{\circ}03'55$ ", long $96^{\circ}40'26$ ", Jackson County, Hydrologic Unit 12100102, on County Road 401, 6.3 mi north of Edna. DRAINAGE AREA.--579 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD.--Jun 1996 to current. Discharge measurements only prior to Oct 1996.

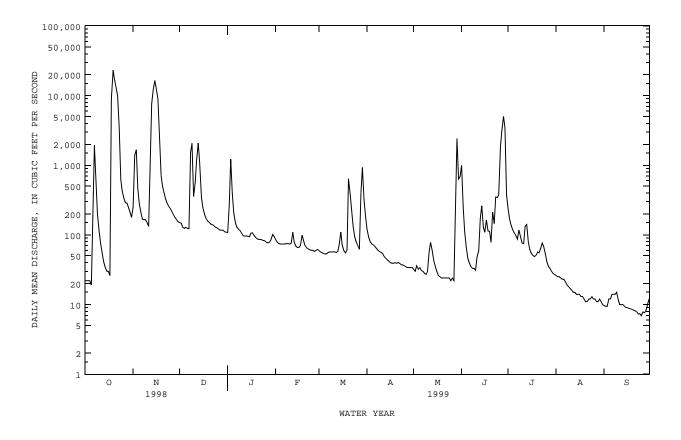
GAGE.--Water-stage recorder. Datum of gage is 42.53 ft above sea level. Satellite telemeter at station.

Gage height

REMARKS.--No estimated daily discharges. Records good, except those above $10,000 \text{ ft}^3/\text{s}$ which are poor. No known regulation or diversions. Much of low flow during the irrigation season (Apr to Sep) comes from drainage from rice fields irrigated by diversions originating from the Colorado River.

Discharge

Gage height


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $4,000 \text{ ft}^3/\text{s}$:

Date	Tim		(ft ³ /s)		neight [t]		Date	Time	D1 (.scharge ft ³ /s)	Gage r (f	
Oct 19 Nov 15	051 050		25,000 18,000	a30 28	.08 .92		Jun 29	0230		5,840	24.	84
		DISCHA	RGE, CUBIC	FEET PER		WATER YE Y MEAN VA	LAR OCTOBER ALUES	1998 TO	SEPTEMBER	1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	22 22 22 22 22	250 1390 1670 470 276	151 147 129 124 129	108 272 1230 388 206	85 78 75 74 74	59 57 55 54 53	121 93 79 74 72	32 30 36 32 34	999 252 112 67 46	234 168 136 117 106	26 25 25 24 23	9.6 9.4 9.4 12 12
6 7 8 9 10	334 1930 687 200 116	209 169 165 165 149	124 123 1520 2070 355	148 128 120 115 106	74 74 75 75 74	54 56 57 57 57	68 64 60 58 56	31 30 28 27 30	39 35 33 33 31	98 87 118 94 76	23 21 19 18 17	14 14 14 15
11 12 13 14 15	75 54 41 34 30	133 881 7670 12400 16500	563 1210 2080 1080 346	97 96 97 95 94	76 110 78 69 66	57 56 58 72 110	54 49 46 44 42	57 78 60 43 35	49 59 175 262 129	75 133 141 79 62	16 15 15 14 14	10 9.9 10 9.5 9.0
16 17 18 19 20	30 26 8850 23300 16900	12500 9070 2330 708 498	247 200 173 159 152	106 107 98 92 88	66 71 99 81 70	71 59 55 61 639	40 39 39 40 39	30 26 25 24 24	109 164 114 112 78	54 51 49 51 57	14 13 13 12 11	9.0 8.8 8.7 8.5 8.3
21 22 23 24 25	13000 9910 3490 623 426	394 326 283 256 237	143 141 136 129 127	86 86 85 83 82	65 63 61 60 60	399 219 133 93 78	40 39 37 37 36	24 24 24 24 22	213 145 349 345 377	55 64 76 68 54	11 12 12 13 12	8.1 7.8 7.3 7.4 6.9
26 27 28 29 30 31	338 290 284 248 211 179	215 195 177 166 154	122 117 117 116 111 109	78 77 79 86 101 95	58 60 62 	69 62 403 931 324 183	35 34 34 34 34	24 22 366 2400 634 697	1880 3230 5050 3440 374	41 35 33 30 28 27	12 11 11 12 11 9.9	7.8 7.6 8.3 10 12
TOTAL MEAN MAX MIN AC-FT	81713 2636 23300 19 162100	70006 2334 16500 133 138900	12450 402 2080 109 24690	4729 153 1230 77 9380	2033 72.6 110 58 4030	4691 151 931 53 9300	1537 51.2 121 34 3050	4973 160 2400 22 9860	18301 610 5050 31 36300	2497 80.5 234 27 4950	484.9 15.6 26 9.9 962	296.3 9.88 15 6.9 588
STATIST	rics of M						BY WATER					
MEAN MAX (WY) MIN (WY)	1319 2636 1999 13.7 1997	873 2334 1999 59.6 1997	274 402 1999 70.9 1997	357 690 1997 153 1999	439 904 1998 72.6 1999	655 1540 1997 151 1999	713 2030 1997 51.2 1999	409 1038 1997 27.7 1998	768 1632 1997 62.9 1998	44.9 80.5 1999 8.11 1996	43.4 72.1 1998 15.6 1999	328 848 1998 9.88 1999
SUMMAR	Y STATIST	ICS	FOR 1	998 CALENI	DAR YEAR	F	OR 1999 WA	TER YEAR		WATER YE	ARS 1996	- 1999
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERO 50 PERO	MEAN I ANNUAL ANNUAL M I DAILY M DAILY ME SEVEN-DA IANEOUS P IANEOUS P	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS	ı	237646.1 651 23300 4.1 5.5 471400 1140 71 9.6	Oct 19 Aug 5 Sep 3		203711.2 558 23300 6.9 7.6 c25000 a30.08 404100 524 74 12	Oct 19 Sep 25 Sep 21 Oct 19 Oct 19		515 627 361 23300 1.2 1.3 c25000 a30.08 373300 833 66 8.5	Oct 1 Jul 2 Jul 2 Oct 1 Oct 1	1997 1998 9 1998 4 1996 9 1996 9 1998 9 1998

c From rating curve extended above current meter discharge measurement of $9,150~{\rm ft}^3/{\rm s}$.

a From floodmark.

08164390 NAVIDAD RIVER AT STRANE PARK NEAR EDNA, TX--Continued

08164390 NAVIDAD RIVER AT STRANE PARK NEAR EDNA, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Jun 1998 to current year. PESTICIDE DATA: Jun 1998 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	2,4,5-T TOTAL (UG/L) (39740)	2,4-D, TOTAL (UG/L) (39730)	SILVEX, TOTAL (UG/L) (39760)	DICAMBA TOTAL (UG/L) (82052)	2,4-DP TOTAL (UG/L) (82183)
MAY 25 AUG	1255	22	736	7.9	28.0	9.9	126	<.010	<.010	<.010	<.010	<.010
24	1300	13	713	7.9	29.0	7.3	95	<.010	<.010	<.010	<.010	<.010
DATE	PIC- LORAM UNFILT RECOVER (UG/L) (39720)	TOTAL TRI- THION (UG/L) (39786)	CHLOR- PYRIFOS TOTAL RECOVER (UG/L) (38932)	DI- AZINON, TOTAL (UG/L) (39570)	DISUL- FOTON UNFILT RECOVER (UG/L) (39011)	ETHION, TOTAL (UG/L) (39398)	FONOFOS (DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	PARA- THION, TOTAL (UG/L) (39540)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PHORATE TOTAL (UG/L) (39023)	DEF TOTAL (UG/L) (39040)
MAY 25 AUG	.020	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
24	.026	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010

This page intentionally left blank.

08164450 SANDY CREEK NEAR GANADO, TX

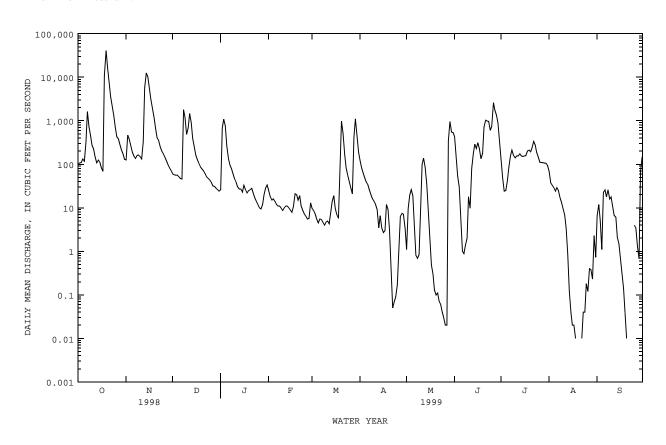
LOCATION.--Lat 29°09'36", long 96°32'46", Jackson County, Hydrologic Unit 12100102, on left bank at downstream end of bridge on Farm Road 710, 0.9 mi upstream from Goldenrod Creek, and 10.1 mi northwest of Ganado.

DRAINAGE AREA.--289 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Oct 1977 to current year. Prior to Oct 1997, published as "near Louise."

GAGE.--Water-stage recorder. Datum of gage is 59.72 ft above sea level. Satellite telemeter at station.


REMARKS.--Records fair except for estimated daily discharges, which are poor. Much of the low flow during the irrigation season (Apr to Sep) is drainage from rice fields irrigated by water originally diverted from the Colorado River. No known regulation or diversions.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ${\rm ft}^3/{\rm s}$:

Date	Tir	ne	Discharg (ft ³ /s)		e height (ft)		Date	Tin	ne	Discharge (ft ³ /s)		height ft)
Oct 7 Oct 19 Oct 21 Nov 14 Dec 8	061 004 124 141 183	15 15 15	2,380 35,200 7,290 13,700 2,860) 	13.23 29.85 19.02 22.90 14.13		Dec 12 Jan 2 May 28 Jun 26	153 213 240 194	30 00	1,800 1,880 1,540 3,410	1 1	1.91 2.10 1.27 5.00
		DISCH	ARGE, CUE	BIC FEET P		, WATER YI LY MEAN V		ER 1998 7	TO SEPTEME	BER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	102 108 109 132 118	125 468 372 270 191	60 57 56 56 52	26 682 1090 766 270	25 18 15 16 14	9.7 8.6 7.3 5.4 4.5	124 82 62 48 39	1.1 9.7 19 26 19	428 132 54 30 6.3	111 50 24 25 42	68 37 33 29 24	6.6 12 5.3 1.1 23
6 7 8 9 10	321 1640 727 474 274	153 137 160 163 149	47 46 1800 1200 486	133 96 78 61 46	12 11 11 9.9 8.7	5.6 5.4 4.6 4.0 4.7	34 26 20 16 14	4.6 .81 .69 .84	1.0 .88 1.4 2.0	85 156 211 161 141	29 25 17 13 9.6	26 18 26 16 18
11 12 13 14 15	224 144 109 125 111	132 328 e5760 e12600 e10100	688 1480 909 395 234	38 30 27 27 23	10 11 11 10 8.8	5.0 4.3 7.9 14 19	12 9.1 3.5 6.6 3.4	100 139 86 35 9.6	9.8 81 175 291 232	157 156 175 156 152	6.9 3.5 .89 .12	11 6.7 6.0 2.1 1.5
16 17 18 19 20	84 69 10800 e41100 e16800	e5550 3060 1940 1170 675	160 125 104 86 77	33 26 22 25 26	7.9 11 21 20 15	9.8 6.9 5.7 112 981	2.7 3.0 12 9.1 3.2	2.0 .49 .30 .13	313 227 134 180 729	156 158 204 213 193	.02 .02 .01 .00	.64 .29 .14 .04
21 22 23 24 25	e7400 e3620 2190 1310 724	401 357 252 200 173	70 60 51 47 43	28 22 17 14 12	19 11 8.7 7.2 6.3	501 169 84 56 40	.38 .05 .07 .09	.11 .07 .06 .04	1030 984 968 603 746	239 336 277 187 147	.00 .01 .04 .04	.00 .00 .00 .00
26 27 28 29 30 31	427 382 275 212 173 130	146 120 97 83 72	38 32 31 28 26 24	10 9.4 12 20 29 34	5.5 5.7 13 	28 21 432 1110 492 189	1.1 6.4 7.5 7.1 3.3	.02 .02 342 967 551 532	2600 1730 1340 892 279	111 110 109 106 106 94	.12 .40 .38 .23 2.3	3.4 1.3 .68 68 149
TOTAL MEAN MAX MIN AC-FT	90414 2917 41100 69 179300	45404 1513 12600 72 90060	8568 276 1800 24 16990	3732.4 120 1090 9.4 7400	342.7 12.2 25 5.5 680	4347.4 140 1110 4.0 8620	555.76 18.5 124 .05 1100	2857.71 92.2 967 .02 5670	14217.38 474 2600 .88 28200	4548 147 336 24 9020	300.53 9.69 68 .00 596	406.80 13.6 149 .00 807
				FOR WATER								
MEAN MAX (WY) MIN (WY)	380 2917 1999 19.4 1980	200 1513 1999 3.93 1992	143 746 1992 .008 1991	276 956 1992 1.36 1982	282 2331 1992 .28 1988	179 1406 1997 .080 1996	220 1316 1997 3.14 1980	310 1150 1993 1.82 1996	372 1866 1993 .030 1990	127 475 1983 7.25 1997	35.5 147 1996 3.21 1991	249 1364 1978 11.8 1988

08164450 SANDY CREEK NEAR GANADO, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1978 - 1999
ANNUAL TOTAL ANNUAL MEAN	198226.56 543	175694.68 481	230
HIGHEST ANNUAL MEAN	343	401	606 1992
LOWEST ANNUAL MEAN			51.2 1990
HIGHEST DAILY MEAN	41100 Oct 19	41100 Oct 19	41100 Oct 19 1998
LOWEST DAILY MEAN	.00 May 15	.00 Aug 19	.00 Apr 5 1978
ANNUAL SEVEN-DAY MINIMUM	.00 May 15	.01 Aug 16	.00 Mar 10 1980
INSTANTANEOUS PEAK FLOW		c63400 Oct 19	c63400 Oct 19 1998
INSTANTANEOUS PEAK STAGE		a32.72 Oct 19	a32.72 Oct 19 1998
ANNUAL RUNOFF (AC-FT)	393200	348500	166900
10 PERCENT EXCEEDS	1010	684	469
50 PERCENT EXCEEDS	50	30	21
90 PERCENT EXCEEDS	.04	.35	.07

Estimated From rating curve extended above 29.0 ft, 29,200 $\rm ft^3/s.$ From floodmark.

08164450 SANDY CREEK NEAR GANADO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Oct 1977 to current year.
BIOCHEMICAL DATA: Oct 1977 to current year.
PESTICIDE DATA: Nov 1977 to Jul 1981, Apr 1996 to current year.
SEDIMENT DATA: Sep 1978 to Apr 1979.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	2,4,5-T TOTAL (UG/L) (39740)	2,4-D, TOTAL (UG/L) (39730)	SILVEX, TOTAL (UG/L) (39760)	DICAMBA TOTAL (UG/L) (82052)	2,4-DP TOTAL (UG/L) (82183)
MAY 25 AUG 24	1145 1130	.02	392 387	7.0 6.5	30.5	4.6	61	<.010 <.010	<.010 2.60	<.010 <.010	<.010 <.010	<.010 <.010
DATE	PIC- LORAM UNFILT RECOVER (UG/L) (39720)	TOTAL TRI- THION (UG/L) (39786)	CHLOR- PYRIFOS TOTAL RECOVER (UG/L) (38932)	DI- AZINON, TOTAL (UG/L) (39570)	DISUL- FOTON UNFILT RECOVER (UG/L) (39011)	ETHION, TOTAL (UG/L) (39398)	FONOFOS (DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	PARA- THION, TOTAL (UG/L) (39540)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PHORATE TOTAL (UG/L) (39023)	DEF TOTAL (UG/L) (39040)
MAY 25 AUG 24	<.010 <.010	<.010 <.020	<.010 <.020	<.010 <.020	<.010 <.020	<.010 <.020	<.010 <.020	<.010 <.020	<.010 <.020	<.010 <.020	<.010 <.020	<.010 <.020

This page intentionally left blank.

Discharge

08164503 WEST MUSTANG CREEK NEAR GANADO, TX

LOCATION.--Lat 29°04'17", long 96°28'01", Jackson County, Hydrologic Unit 12100102, on right bank at downstream end of downstream bridge on U.S. Highway 59, 2.1 mi upstream from Middle Mustang Creek, and 3.6 mi east of Ganado.

DRAINAGE AREA.--178 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Oct 1977 to current year.

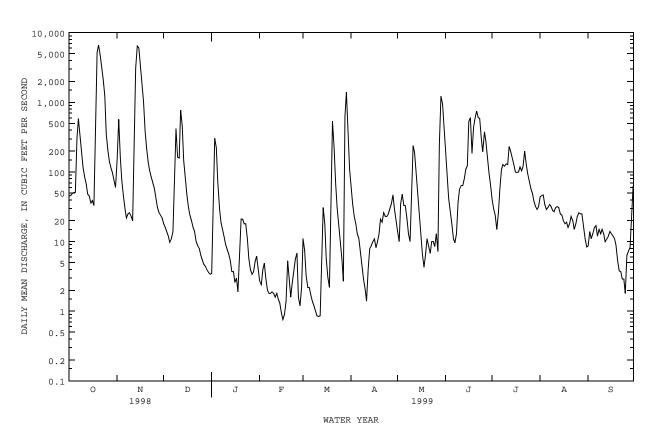
GAGE.--Water-stage recorder. Datum of gage is 40.12 ft above sea level. Satellite telemeter at station.

Gage height

REMARKS.--Records fair. No known regulation. Much of low flow during the irrigation season (Apr to Sep) comes from drainage from rice fields irrigated by diversions originating from the Colorado River.

Discharge

Gage height


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $1,500~{\rm ft}^3/{\rm s}$:

Date	Time		(ft ³ /s)		(ft)		Date	Time		(ft ³ /s)	cage (ft)
Oct 19 Nov 14	2345 1230		7,110 6,900		L9.72 L9.53		Mar 29	0615	i	1,550	13	1.52
		DISCHA	ARGE, CUBI	C FEET PE		, WATER Y	EAR OCTOBER ALUES	R 1998 TC	SEPTEME	BER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	45 46 49 51 51	149 572 161 77 46	18 16 14 12 9.8	3.5 38 305 225 73	2.7 2.4 4.0 4.9 2.9	11 7.5 3.3 2.2 2.2	61 35 23 18 13	14 10 35 48 33	188 80 42 27 18	40 30 24 15 26	44 46 47 34 29	8.7 14 11 13 16
6 7 8 9 10	305 584 321 196 117	30 22 25 26 23	11 14 107 418 163	30 19 15 12 9.1	2.0 1.8 1.8 1.9	1.7 1.4 1.2 1.0	11 7.0 4.5 2.9 2.1	33 22 13 10 33	11 9.6 13 37 57	56 108 128 121 131	31 34 32 28 27	17 12 15 13 15
11 12 13 14 15	85 67 48 45 36	20 134 3110 6410 5970	159 775 459 148 77	7.7 6.7 5.4 3.7 3.7	1.6 1.8 1.5 1.3	.84 .86 5.3 31	1.4 4.0 8.0 8.7	238 191 89 47 27	64 64 80 109 123	128 232 196 157 129	31 32 31 25 24	13 10 11 12 14
16 17 18 19 20	39 33 854 5240 6650	3430 1950 1030 387 224	47 31 24 20 16	2.6 3.0 1.9 5.5	.76 .90 1.4 5.3 2.9	5.7 3.1 2.2 23 536	11 8.2 9.9 13 21	15 6.6 4.3 6.3	529 602 185 443 588	100 98 100 118 104	20 18 19 16 18	13 12 11 8.9 5.4
21 22 23 24 25	4830 3280 2150 1240 353	140 106 85 70 58	14 10 8.7 7.9 6.4	21 18 18 11 5.8	1.6 e2.5 e3.8 5.6 6.9	226 67 31 17 9.5	19 26 23 23 25	8.6 6.8 10 10 8.5	751 604 590 308 197	120 199 130 95 75	23 20 15 18 23	3.8 3.7 2.9 2.9 1.8
26 27 28 29 30 31	206 141 114 97 76 60	43 31 26 24 22	5.4 4.7 4.4 3.9 3.6 3.4	4.0 3.4 3.7 5.1 6.2 4.3	1.6 1.2 2.2 	5.6 2.7 630 1400 451 109	30 35 47 30 20	13 7.2 251 1230 945 411	377 273 154 98 65	58 49 38 32 29 32	26 25 25 17 11 8.4	6.3 7.3 8.3 22 63
TOTAL MEAN MAX MIN AC-FT CFSM IN.	27409 884 6650 33 54370 4.97 5.73	24401 813 6410 20 48400 4.57 5.10	2611.2 84.2 775 3.4 5180 .47 .55	891.3 28.8 305 1.9 1770 .16	70.00 2.50 6.9 .76 139 .01	3607.16 116 1400 .84 7150 .65	550.7 18.4 61 1.4 1090 .10	3787.3 122 1230 4.3 7510 .69 .79	6686.6 223 751 9.6 13260 1.25 1.40	2898 93.5 232 15 5750 .53 .61	797.4 25.7 47 8.4 1580 .14	367.0 12.2 63 1.8 728 .07
STATIST	TICS OF MO	NTHLY MI	EAN DATA F	OR WATER	YEARS 19	78 - 1999	, BY WATER	YEAR (WY	()			
MEAN MAX (WY) MIN (WY)	271 1746 1995 14.2 1988	148 813 1999 7.29 1981	115 587 1992 .17 1991	188 881 1980 .72 1982	162 1243 1992 .87 1986	118 988 1997 .81 1986	167 1107 1997 12.3 1983	209 702 1993 11.2 1978	209 958 1993 5.56 1990	106 412 1983 38.1 1986	54.0 161 1998 24.2 1982	219 1063 1979 5.33 1988

08164503 WEST MUSTANG CREEK NEAR GANADO, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALENDAR YEAR	FOR 1999 WATER YEAR	WATER YEARS 1978 - 1999
ANNUAL TOTAL	103372.21	74076.66	
ANNUAL MEAN	283	203	164
HIGHEST ANNUAL MEAN			325 1997
LOWEST ANNUAL MEAN			45.2 1990
HIGHEST DAILY MEAN	6650 Oct 20	6650 Oct 20	18700 Oct 19 1994
LOWEST DAILY MEAN	.30 Mar 28	.76 Feb 16	.00 Dec 19 1990
ANNUAL SEVEN-DAY MINIMUM	1.2 Mar 25	1.1 Mar 6	.01 Dec 19 1990
INSTANTANEOUS PEAK FLOW		7110 Oct 19	20000 Oct 19 1994
INSTANTANEOUS PEAK STAGE		19.72 Oct 19	28.39 Oct 19 1994
ANNUAL RUNOFF (AC-FT)	205000	146900	118600
ANNUAL RUNOFF (CFSM)	1.59	1.14	.92
ANNUAL RUNOFF (INCHES)	21.60	15.48	12.50
10 PERCENT EXCEEDS	554	313	306
50 PERCENT EXCEEDS	27	23	23
90 PERCENT EXCEEDS	3.8	2.8	1.6

e Estimated

08164503 WEST MUSTANG CREEK NEAR GANADO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Oct 1977 to current year.
BIOCHEMICAL DATA: Oct 1977 to current year.
PESTICIDE DATA: Nov 1977 to Jul 1981, Apr 1996 to current year.
SEDIMENT DATA: Sep 1978 to Apr 1979.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	2,4,5-T TOTAL (UG/L) (39740)	2,4-D, TOTAL (UG/L) (39730)	SILVEX, TOTAL (UG/L) (39760)	DICAMBA TOTAL (UG/L) (82052)	2,4-DP TOTAL (UG/L) (82183)
MAY 25 AUG 24	1040 1030	10 15	822 822	7.4 7.2	25.0	7.2	87	<.010 <.010	.018	<.010 <.010	<.010	<.010 <.010
DATE	PIC- LORAM UNFILT RECOVER (UG/L) (39720)	TOTAL TRI- THION (UG/L) (39786)	CHLOR- PYRIFOS TOTAL RECOVER (UG/L) (38932)	DI- AZINON, TOTAL (UG/L) (39570)	DISUL- FOTON UNFILT RECOVER (UG/L) (39011)	ETHION, TOTAL (UG/L) (39398)	FONOFOS (DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	PARA- THION, TOTAL (UG/L) (39540)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PHORATE TOTAL (UG/L) (39023)	DEF TOTAL (UG/L) (39040)
MAY 25 AUG 24	.017	<.010 <.010	<.010 <.010	<.010 <.010	<.010 <.010	<.010 <.010	<.010 <.010	<.010 <.010	<.010 <.010	<.010 <.010	<.010 <.010	<.010 <.010

This page intentionally left blank.

Discharge

08164504 EAST MUSTANG CREEK AT FM 647 NEAR GANADO, TX

LOCATION.--Lat 29°04'14", long 96°25'01", Wharton County, Hydrologic Unit 12100102, on right bank, 50 ft downstream from right end of bridge on Farm Road 647, 2.7 mi south of Ganado.

DRAINAGE AREA.--90.8 mi 2 .

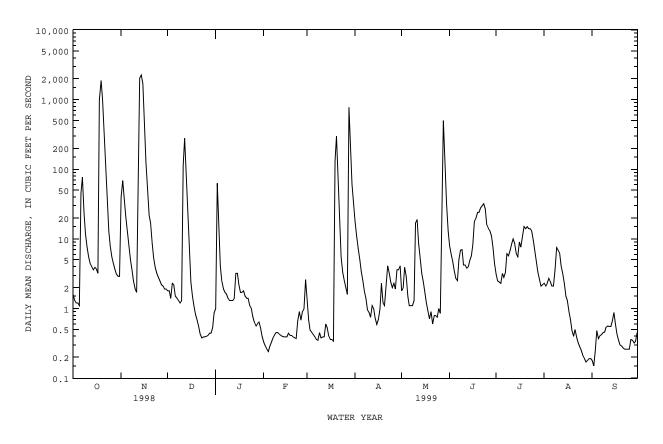
WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Jun 1996 to current year.

GAGE.--Water-stage recorder. Datum of gage is 43.02 ft above sea level. Satellite telemeter at station.

Gage height

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Much of the low flow during the irrigation season (Apr to Sep) is drainage from rice fields irrigated by water originally diverted from the Colorado River and ground-water wells. No known regulation or diversions.


Discharge

Gage height

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,000 ft^3/s :

Date	Tir	me	(ft ³ /s)		neignt Et)		Date	Time	1	(ft ³ /s)		neignt t)
Oct 18	240	00	2,230	19	.90		Nov 14	1500		2,430	20	.31
		DISCH	ARGE, CUBI	C FEET PER		, WATER Y LY MEAN V	YEAR OCTOBE VALUES	R 1998 TO	SEPTEMBE	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.6 1.3 1.2 1.2	40 69 e37 e21 e13	1.8 1.8 1.4 2.3 2.2	1.0 63 15 4.1 2.5	.33 .29 .26 .24 .29	1.3 .69 .49 .45	18 11 7.2 5.0 3.4	1.8 2.0 3.9 2.9 1.5	e8.0 e6.0 4.8 3.5 2.7	3.1 2.5 2.4 2.3 3.2	2.3 2.1 2.3 2.7 2.4	.18 .15 .24 .48
6 7 8 9 10	45 77 24 12 7.7	e8.0 e5.1 e3.6 e2.5 1.9	1.5 1.4 1.3 1.2	1.9 1.7 1.6 1.4	.33 .38 .42 .45	.39 .36 .35 .45	2.5 e1.8 e1.4 .95 .87	1.1 1.1 1.1 1.3	2.5 5.0 6.9 7.0 4.2	2.8 3.3 6.1 5.7 6.8	2.1 2.1 3.6 7.5 6.9	.41 .42 .45 .46
11 12 13 14 15	5.5 4.4 4.0 3.6 3.9	1.7 113 2060 2270 1690	114 279 58 15 4.9	1.3 1.3 1.4 3.2 3.2	.43 .41 .40 .39	.39 .39 .60 .53	.75 1.1 .98 .72 .59	19 8.8 5.1 3.2 2.4	4.2 3.8 4.0 4.9 5.7	8.5 10 8.5 6.1 5.5	6.2 4.1 3.2 2.3 1.5	.56 .55 .55 .66
16 17 18 19 20	3.7 3.2 993 1890 996	466 128 52 22 17	2.4 1.5 1.1 .82 .68	2.2 1.7 1.7 1.8 1.5	.39 .44 .41 .41	.36 .36 .34 131 299	.70 .99 2.3 1.2 1.1	1.7 e1.2 .92 .71 e.90	8.2 18 20 24 24	9.0 7.6 11 15 14	1.3 .91 .68 .48	.61 .43 .35 .30
21 22 23 24 25	361 126 38 13 7.9	8.8 5.4 3.9 3.2 2.8	.56 .43 .38 .39	1.4 1.4 1.1 1.0 .76	.38 .37 .67 .90 .68	57 14 5.5 3.3 2.5	2.0 4.1 3.2 2.4 2.0	e.60 e.79 .79 .75	28 30 32 27 16	15 14 14 13 9.6	.50 .38 .32 .28 .25	. 27 . 26 . 26 . 26 . 26
26 27 28 29 30 31	5.5 4.4 3.6 3.1 2.9 2.9	2.5 2.2 2.1 1.9 1.9	.40 .41 .44 .53	.63 .56 .61 .64 .52	.90 1.0 2.6 	2.0 1.6 773 285 61 33		e.85 e27 e500 e130 e32 e13	14 13 11 7.6 4.4	6.5 4.5 3.3 2.6 2.1 2.2	.21 .19 .17 .18 .19	.36 .35 .32 .34 .45
TOTAL MEAN MAX MIN AC-FT	4647.7 150 1890 1.1 9220	7055.5 235 2270 1.7 13990	498.83 16.1 279 .38 989	121.82 3.93 63 .40 242	15.00 .54 2.6 .24 30	1676.55 54.1 773 .34 3330	91.75 3.06 18 .59 182	784.41 25.3 500 .60 1560	350.4 11.7 32 2.5 695	220.2 7.10 15 2.1 437	57.93 1.87 7.5 .17 115	12.01 .40 .88 .15 24
STATIS'	TICS OF N				EARS 199	96 - 1999	, BY WATER					
MEAN MAX (WY) MIN (WY)	174 371 1998 1.73 1997	98.9 235 1999 29.7 1997	30.9 61.6 1997 15.1 1998	64.7 161 1997 3.93 1999	41.4 63.3 1997 .54 1999	132 310 1997 30.8 1998	126 374 1997 2.05 1998	53.0 131 1997 2.32 1998	10.5 18.7 1997 1.23 1998	5.75 7.82 1996 3.09 1998	42.9 83.5 1998 1.87 1999	155 368 1998 .40 1999
SUMMAR	Y STATIST	rics	FOR	1998 CALEN	DAR YEAF	?	FOR 1999 W	ATER YEAR		WATER YE	EARS 1996	- 1999
LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER 50 PER	MEAN T ANNUAL ANNUAL M T DAILY M DAILY M SEVEN-DA TANEOUS I	MEAN MEAN EAN AY MINIMUI PEAK FLOW PEAK STAGI (AC-FT) EEDS EEDS		29679.11 81.3 3640 .34 .41 58870 83 2.3 .67	Sep 11 Mar 13 Dec 22	L 3 2	2430	Nov 14 5 Sep 2 8 Aug 27 Nov 14 1 Nov 14		76.8 104 42.6 3640 .15 .18 4100 22.16 55610 119 3.6 .50	Sep 2 Sep 3 Rug 2 Sep 3 Sep 3	1997 1999 11 1998 2 1999 27 1999 11 1998 11 1998

e Estimated

08164504 EAST MUSTANG CREEK AT FM 647 NEAR GANADO, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Apr 1996 to current year PESTICIDE DATA: Apr 1996 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	2,4,5-T TOTAL (UG/L) (39740)	2,4-D, TOTAL (UG/L) (39730)	SILVEX, TOTAL (UG/L) (39760)	DICAMBA TOTAL (UG/L) (82052)	2,4-DP TOTAL (UG/L) (82183)
MAY												
25 AUG	1110	1.1	605	7.5	27.5	6.4	81	<.010	.089	<.010	<.010	<.010
24	1215	.26	656	7.6		7.6		<.010	<.010	<.010	<.010	<.010
DATE	PIC- LORAM UNFILT RECOVER (UG/L) (39720)	TOTAL TRI- THION (UG/L) (39786)	CHLOR- PYRIFOS TOTAL RECOVER (UG/L) (38932)	DI- AZINON, TOTAL (UG/L) (39570)	DISUL- FOTON UNFILT RECOVER (UG/L) (39011)	ETHION, TOTAL (UG/L) (39398)	FONOFOS (DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	PARA- THION, TOTAL (UG/L) (39540)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PHORATE TOTAL (UG/L) (39023)	DEF TOTAL (UG/L) (39040)
MAY 25 AUG	.086	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010
24	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010	<.010

This page intentionally left blank.

08164525 LAKE TEXANA NEAR EDNA, TX

LOCATION.--Lat 28°53′30", long 96°34′00", Jackson County, Hydrologic Unit 12100101, at upstream side of dam at old river channel on the Navidad River, 4.9 mi upstream from confluence with Lavaca River, 4.0 mi north of Lolita, and 7.2 mi southeast of

DRAINAGE AREA. -- 1,370 mi².

PERIOD OF RECORD.--CHEMICAL DATA: Jan 1988 to current year. BIOCHEMICAL DATA: Jan 1988 to current year. PESTICIDE DATA: May 1994 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

285331096343501 - LAKE TEXANA SITE AC

				285331	096343501	- LAKE T	EXANA SIT	E AC				
DATE	TIME	RESER- VOIR STORAGE (AC-FT) (00054)	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
MAR 09 09 09 09 09 09 MAY	1030 1032 1034 1036 1038 1040 1042	161000 	1.00 10.0 20.0 30.0 40.0 50.0	168 167 167 168 169 168 168	7.9 7.9 7.9 7.8 7.8 7.7	19.0 19.0 19.0 19.0 18.5 18.5	2.62 	8.2 8.2 8.2 8.1 8.1 8.0 7.8	88 88 88 86 86 85	61 63	 	21 22
05 05 05 05 05 05	0840 0842 0844 0846 0848 0850 0852	161000 	1.00 10.0 20.0 30.0 40.0 50.0	218 218 218 218 218 217 219	8.1 8.1 8.1 8.1 7.9 7.3	24.0 24.0 24.0 24.0 24.0 23.5 22.0	2.62 	7.1 7.3 7.3 7.2 7.2 6.5 3.0	85 88 88 86 86 77 35	80 79	0	28 27
09 09 09 09 09 09	0825 0827 0829 0831 0833 0835 0837	142000 	1.00 10.0 20.0 30.0 40.0 50.0 60.0	235 235 235 235 235 235 234 277 286	7.6 7.6 7.5 7.5 7.4 7.4 7.0	29.0 29.0 29.0 29.0 28.5 28.5 25.0 24.0	3.61 	4.9 4.8 4.6 4.5 4.1 4.0 .0	64 62 60 58 53 51 0	80 100	6 	27 34
				285331	096343501	- LAKE T	EXANA SIT	E AC				
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM PERCENT (00932)		ALKA- LINITY WAT DIS FIX END FIELD CACO3 (MG/L) (39036)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
MAR 09 09 09 09 09 09 MAY	2.0 2.1	7.5 7.6	. 4 . 4	20 20	3.0 3.0	67 67	4.0 4.0	9.1 9.5	<.10 <.10	8.7 8.9	96 97	
05 05 05 05 05	2.7 2.7	10 9.6	.5 .5	21 20	3.0 3.1	80 81	5.2 5.7	13 12	.12 .11	9.2 10	120 120	<1 <1
SEP 09 09 09 09 09	3.2	13 	.6 	25 	3.3	74 	5.7 	17 	.16 	13 	127 	
09	3.5	11	.5	18	3.1	110	.82	14	.12	20	 158	

08164525 LAKE TEXANA NEAR EDNA, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

285331096343501 - LAKE TEXANA SITE AC

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	DIS-	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
MAR											
09 09	1.0	<1.0	1	82	<1.0	<1.0	2.6	<1.0	1.8	E8.9	<1.0
09											
09											
09 09											
09	1.1	<1.0	1	82	<1.0	<1.0	2.9	<1.0	2.0	15	<1.0
MAY 05	1.6	<1.0	1	94	<1.0	<1.0	<1.0	<1.0	2.2	E6.7	<1.0
05	1.6									EO./	
05											
05 05											
05											
05	1.1	<1.0	<1	94	<1.0	<1.0	<1.0	<1.0	2.1	E6.0	<1.0
SEP 09	<1.0	<1.0	4	89	<1.0	<1.0	<1.0	<1.0	2.3	<10	<1.0
09											
09 09											
09											
09											
09 09	 <1.0	 <1.0	29	152	<1.0	<1.0	<1.0	 3.6	<1.0	2700	<1.0
05	-1.0	-1.0	27	132	-1.0	-2.0	-1.0	3.0	-2.0	2,00	-1.0
			285	331096343	501 - LAK	E TEXANA	SITE AC				
		MANICA	285		501 - LAK		SITE AC	CTDON	173 NTA		IID ANITIM
	LITHIUM	MANGA- NESE,	285	MOLYB-	501 - LAK	SELE-	SITE AC	STRON- TIUM,	VANA- DIUM,	ZINC,	URANIUM NATURAL
	DIS-	NESE, DIS-	MERCURY DIS-	MOLYB- DENUM, DIS-	NICKEL, DIS-	SELE- NIUM, DIS-	SILVER, DIS-	TIUM, DIS-	DIUM, DIS-	DIS-	NATURAL DIS-
DATE	DIS- SOLVED	NESE, DIS- SOLVED	MERCURY DIS- SOLVED	MOLYB- DENUM, DIS- SOLVED	NICKEL, DIS- SOLVED	SELE- NIUM, DIS- SOLVED	SILVER, DIS- SOLVED	TIUM, DIS- SOLVED	DIUM, DIS- SOLVED	DIS- SOLVED	NATURAL DIS- SOLVED
DATE	DIS-	NESE, DIS-	MERCURY DIS-	MOLYB- DENUM, DIS-	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)	NATURAL DIS-
DATE	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	MERCURY DIS- SOLVED (UG/L	MOLYB- DENUM, DIS- SOLVED (UG/L	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NATURAL DIS- SOLVED (UG/L
DATE MAR	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)	NATURAL DIS- SOLVED (UG/L AS U)
MAR 09	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)
MAR 09 09	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)
MAR 09 09 09	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)
MAR 09 09 09 09	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)
MAR 09 09 09 09	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)
MAR 09 09 09 09 09 09	DIS- SOLVED (UG/L AS LI) (01130) <6 <6	NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0 <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085) <10 <10	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703) <1.0 <1.0
MAR 09 09 09 09 09 09 09 05	DIS- SOLVED (UG/L AS LI) (01130) <6 <6 <6	NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.1 <.1 <.1	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0 <1.0 <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 1.4 1.3	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085) <10 <10 <10	DIS- SOLVED (UG/L AS ZN) (01090) 1.9 1.2	NATURAL DIS- SOLVED (UG/L AS U) (22703) <1.0 <1.0 <1.0
MAR 09 09 09 09 09 09	DIS- SOLVED (UG/L AS LI) (01130) <6 <6	NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0 <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085) <10 <10	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703) <1.0 <1.0
MAR 09 09 09 09 09 09 05 05	DIS- SOLVED (UG/L AS LI) (01130) <6 <6 <6 	NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.1 <.1 <.1	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0 <1.0 <1.0 <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 1.4 1.3	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1 <1	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 65 66 85	DIUM, DIS- SOLVED (UG/L AS V) (01085) <10 <10 <10	DIS- SOLVED (UG/L AS ZN) (01090) 1.9 1.2 1.7	NATURAL DIS- SOLVED (UG/L AS U) (22703) <1.0
MAR 09 09 09 09 09 09 09 05 05 05	DIS- SOLVED (UG/L AS LI) (01130) <6 <6 <6 <6	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.0 1.6	MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.1 <.1 <.1	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0 <1.0 <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 1.4 1.3 <1.0	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 65 66 85 	DIUM, DIS- SOLVED (UG/L AS V) (01085) <10 <10 <10	DIS- SOLVED (UG/L AS ZN) (01090) 1.9 1.2	NATURAL DIS- SOLVED (UG/L AS U) (22703) <1.0 <1.0 <1.0
MAR 09 09 09 09 09 09 09 05 05 05 05 05	DIS- SOLVED (UG/L AS LI) (01130) <6 <6 <6 	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.0 1.6 1.3	MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.1 <.1 <.1	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0 <1.0 <1.0 <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 1.4 1.3 <1.0	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 65 66 85 67	DIUM, DIS- SOLVED (UG/L AS V) (01085) <10 <10 <10 	DIS- SOLVED (UG/L AS ZN) (01090) 1.9 1.2 1.7	NATURAL DIS- SOLVED (UG/L AS U) (22703) <1.0
MAR 09 09 09 09 09 09 05 05 05 05 05	DIS- SOLVED (UG/L AS LI) (01130) <6 <6 <6 <6	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.0 1.6 1.3 1.6	MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.1 <.1 <.1 <.1 <.1 <.1	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 1.4 1.3 <1.0 1.1	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1 <1 <1 <1 <1 <1	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 65 66 85 83	DIUM, DIS- SOLVED (UG/L AS V) (01085) <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN) (01090) 1.9 1.2 1.7 4.6	NATURAL DIS- SOLVED (UG/L AS U) (22703) <1.0
MAR 09 09 09 09 09 09 09 05 05 05 05 05	DIS- SOLVED (UG/L AS LI) (01130) <6 <6 <6 	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.0 1.6 1.3	MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.1 <.1 <.1 	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0 <1.0 <1.0 <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 1.4 1.3 <1.0	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1 <1	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 65 66 85	DIUM, DIS- SOLVED (UG/L AS V) (01085) <10 	DIS- SOLVED (UG/L AS ZN) (01090) 1.9 1.2 1.7	NATURAL DIS- SOLVED (UG/L AS U) (22703) <1.0 <1.0 <1.0
MAR 09 09 09 09 09 09 05 05 05 05 SEP 09	DIS- SOLVED (UG/L AS LI) (01130) <6 <6 <6 <6 <4 	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.0 1.6 1.3 164 2.1	MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.1 <.1 <.1 <.1 <.1 <.1 <.1	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 1.4 1.3 <1.0 1.1 1.5 1.1	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1 <1 <1 <1 <1 <1 <1	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 65 66 85 83 90	DIUM, DIS- SOLVED (UG/L AS V) (01085) <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN) (01090) 1.9	NATURAL DIS- SOLVED (UG/L AS U) (22703) <1.0
MAR 09 09 09 09 09 09 05 05 05 05 05 05 05 05	DIS- SOLVED (UG/L AS LI) (01130) <6	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.0 1.6 1.3 164	MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.1 <.1 <.1 <.1 <.1 <.1 <.1	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 1.4 	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 65 66 85 85 83 90	DIUM, DIS- SOLVED (UG/L AS V) (01085) <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN) (01090) 1.9 1.2 1.7 4.6 1.3	NATURAL DIS- SOLVED (UG/L AS U) (22703) <1.0
MAR 09 09 09 09 09 09 05 05 05 05 SEP 09	DIS- SOLVED (UG/L AS LI) (01130) <6 <6 <6 <6 <4 	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.0 1.6 1.3 164 2.1	MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.1 <.1 <.1 <.1 <.1 <.1 <.1	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 1.4 1.3 <1.0 1.1 1.5 1.1	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1 <1 <1 <1 <1 <1 <1	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 65 66 85 83 90	DIUM, DIS- SOLVED (UG/L AS V) (01085) <10 <10 <10 <10 <10 <10 <	DIS- SOLVED (UG/L AS ZN) (01090) 1.9	NATURAL DIS- SOLVED (UG/L AS U) (22703) <1.0
MAR 09 09 09 09 09 09 09 05 05 05 05 05 05 05 05 09 99	DIS- SOLVED (UG/L AS LI) (01130) <6 <6 <6 <6 <4 	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.0 1.6 1.3 164 2.1	MERCURY DIS- SOLVED (UG/L AS HG) (71890) <.1 <.1 <.1 <.1 <.1	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 1.4	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	SILVER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 65 66 85 83 90	DIUM, DIS- SOLVED (UG/L AS V) (01085) <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN) (01090) 1.9	NATURAL DIS- SOLVED (UG/L AS U) (22703) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <-

DATE

MAR 09... 09... 09... 09...

09...

05... 05... 05...

05... 05... SEP 09... 09... 09...

MAY 05...

08164525 LAKE TEXANA NEAR EDNA, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

285326096342101 - TAKE TEXANA SITE AL

		285	326096342	101 - LAK	E TEXANA	SITE AL				
		TIME	DEPTH (FEET)	CON- DUCT- ANCE (US/CM)	UNITS)	ATURE WATER (DEG C)		CENT SATUR- ATION)		
	R 09 09 09						8.3 8.2 8.2 8.1			
	Y 05 05 05	0925 0927 0929 0931								
	09 09 09	0905 0907 0909 0911	1.00 10.0 20.0 32.0	235 234 235 234	7.6 7.6 7.6 7.6	29.0 29.0 29.0 29.0	5.1 5.1 5.1 5.0	66 66 65		
		285	534096322	301 - LAK	E TEXANA	SITE BC				
	DATE	TIME	DEPTH (FEET)	DUCT- ANCE (US/CM)	(STAND- ARD UNITS)	ATURE WATER (DEG C)		ATION)		
	09 09 09 09	1120 1122 1124 1126 1128	1.00 10.0 20.0 30.0 38.0	185 185 184 183 182	7.9 7.9 7.9 7.9 7.9	19.0 18.5 18.5 18.5	8.3 8.3 8.3 8.3	89 88 88 88		
	Y 05 05 05 05						7.4 7.2 7.2 7.1 7.1	89 86 86 85 85		
S.F.	09 09 09 09	0935 0937 0939 0941 0943	1.00 10.0 20.0 30.0 41.0	241 241 250 253 246	7.8 7.7 7.5 7.4 7.4	29.5 29.5 29.5 29.0 29.0	5.7 5.5 4.5 4.2 3.7	75 72 59 54 48		
		285	816096320	201 - LAK	E TEXANA	SITE CC				
TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	2,4,5-T TOTAL (UG/L) (39740)	2,4-D, TOTAL (UG/L) (39730)	SILVEX, TOTAL (UG/L) (39760)
0850 0852 0854 0855 0856 0858	1.00 10.0 20.0 15.0 30.0 37.0	213 212 219 222 224 227	7.8 7.8 7.7 7.7 7.7 7.6	19.0 18.5 18.5 18.5 18.5	2.62 	7.9 7.8 7.7 7.7 7.7 8.0	84 82 81 81 81 85	 <.010 <.010	 .014 .014	 <.010 <.010
1045 1047 1049 1051 1053 1055	1.00 10.0 17.0 30.0 34.0	241 241 240 241 241	8.0 8.0 8.0 8.0	25.0 24.5 24.5 24.5 24.5	1.64 	7.1 7.1 7.0 7.0 7.0	87 86 85 85 85	 <.010 <.010	 <.010 <.010	 <.010 <.010
1025 1027 1029 1031 1033	1.00 10.0 17.0 30.0 35.0	263 270 281 285 286	7.7 7.6 7.4 7.4 7.3	30.0 29.5 29.0 29.0 29.0	5.58 	5.6 5.1 3.9 3.7 3.7	74 67 51 48 48	 <.010 <.010	 .061 .056	 <.010 <.010

08164525 LAKE TEXANA NEAR EDNA, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

285816096320201 - LAKE TEXANA SITE CC

	285816096320201 - LAKE TEXANA SITE CC											
DAT	E	DICAMBA TOTAL (UG/L) (82052)	TOTAL (UG/L)	PIC- LORAM UNFILT RECOVER (UG/L) (39720)	TOTAL TRI- THION (UG/L) (39786)	TOM MA-	CHLOR- PYRIFOS TOTAL RECOVER (UG/L) (38932)		DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)		ETHION, TOTAL (UG/L) (39398)	
MAR 09												
09												
09 09		<.010	<.010	<.010	<.010		<.010	<.010		<.030	<.010	
09 09		<.010	<.010	<.010	<.010		<.010	<.010		<.020	<.010	
MAY 05												
05 05		 <.010	<.010	.031	<.010		<.010	<.010		<.010	<.010	
05 05		<.010	<.010	.024	<.010		<.010	<.010		<.010	<.010	
05 05 SEP						<.200			<.200			
09												
09 09		<.010	<.010	.059								
09 09		<.010	<.010	.051								
				28581609	96320201 -	- LAKE TEX	KANA SITE	CC				
DAT	E (ETHION, TOTAL IN BOT- FOM MA- TERIAL (UG/KG) (39399)	FONOFOS (DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	PHORATE TOTAL (UG/L) (39023)	DEF TOTAL (UG/L) (39040)	
MAR												
09 09												
09 09			<.010	<.040		<.010		<.010		<.010	<.010	
09			<.010	<.020		<.010		<.010		<.010	<.010	
MAY 05												
05			 <.010			 <.010						
05 05				<.010				<.010		<.010	<.010	
05 05		<.200	<.010	<.010	<.200	<.010	<.200	<.010	<.200	<.010	<.010	
SEP 09												
09 09												
09 09												
09												
				29004209	6331401 -	- LAKE TEX	KANA SITE	DC				
			ar.	PH		EED 7	NG		EN, OIL			
			CI	E- WAT	DLE	PA		SOI	S- GREA	CAL		
		SAM PLI	NG DU		AND- ATT		CCHI DI	IS- CE	INT GRA	AVI- 2,4,	5-T 2,4-D,	
DATE	TIME	E DEP (FE		ICE AF I/CM) UNI	RD WAT	TER DIS GC) (M						
		(000	003) (00	095) (004	100) (000	010) (000)78) (003	300) (003	301) (005	556) (397	40) (39730)	
MAR 09	0940	0 1.	00 4	05 8.	.1 19	.5 -	- 7.	. 8 84				
09 09	0942	2 10.		13 8. 29 8.				. 8 84 . 7 83	•	 <.0		
09	0944	4 20.	0 4	45 8.	.0 19	.5 -	- 7.	.7 83	-			
09 MAY	0946			63 7.				.3 79				
05 05	1140 1142	2 10.	0 3	14 8. 18 8.	.1 25	. 0 -	7.	. 2 89 . 0 86	-	 		
05 05	1144 1146			18 8. 10 8.			6. 6.		-	<.0		
05 05	1148	8 25.	0 3	09 8.	.0 25	. 0 -	6. 	. 8 83	-	<.0		
SEP 09	1110			42 7.				.3 71				
09	1112	2 8.	00 3	46 7.	. 4 30	. 0 -	2.	.9 38	3 -	<.0	10 .053	
09	1114	4 16.	υ 3	50 7.	.5 30	. 0 -	2.	.5 33	-	<.0	10 .063	

08164525 LAKE TEXANA NEAR EDNA, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

290042096331401 - LAKE TEXANA SITE DC												
DATE	TOTAL (UG/L)	DICAMBA TOTAL (UG/L) (82052)	TOTAL (UG/L)	PIC- LORAM UNFILT RECOVER (UG/L) (39720)		TOM MA- TERIAL (UG/KG)	RECOVER (UG/L)	AZINON, TOTAL (UG/L)	TERIAL (UG/KG)	UNFILT RECOVER (UG/L)	TOTAL (UG/L)	
MAR 09												
09 09	<.010	 <.010	 <.010	<.010	<.010		<.010	<.010		<.030	 <.010	
09	<.010	<.010	<.010	<.010	<.010		<.010	<.010		<.030	<.010	
MAY 05												
05 05	<.010	.033	 <.010	.055	<.010		 <.010	 <.010		 <.010	 <.010	
05												
05 05	<.010	.030	<.010	.053	<.010	<.200	<.010	<.010	<.200	<.010	<.010	
SEP 09												
09 09	<.010 <.010	<.010 <.010	<.010 <.010	.068 .067								
			290	042096331	401 - LAF	KE TEXANA	SITE DC					
DAT	TC IN TOM E TE (UG	IION, (I DTAL FON BOT- WA I MA- WE CRIAL TOT G/KG) (UG	IATE) TER MA IOLE TH TREC TO	TO LLA- IN HION, TOM	ION, TAL BOT- PA MA- TH RIAL TO /KG) (U	TH TC ARA- IN HION, TOM DTAL TE JG/L) (UG	BOT- PA I MA- TH RIAL TO F/KG) (U	THYL TH RA- TOT ION, BO TAL M G/L) (UG	RA- IION, '. IN 'TTOM PHO IATL. TO I/KG) (UG	TAL TO	TAL /L)	
MAR												
09 09												
09 09				0 1 0		.010		010			010	
09 MAY		<.	010 <.	040	<	.010	<.	010	<.	010 <.	010	
05 05												
05 05				010		.010		010			010	
05 05		<.	010 <.	010	<	.010	<.	010	<.	010 <.	010	
SEP 09						(.	200		200			
09												
09												
			285	940096312	101 - LAF	CE TEXANA	SITE EC					
DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	2,4,5-T TOTAL (UG/L) (39740)	2,4-D, TOTAL (UG/L) (39730)	SILVEX, TOTAL (UG/L) (39760)	
MAR 09 09 09	0920 0922 0924 0926	1.00 10.0 20.0 27.0	227 228 230 237	7.7 7.7 7.7 7.7	19.0 19.0 19.0	1.64 	7.8 7.8 7.5 7.3	83 83 80 78	 <.010	 E.007	 <.010	
MAY 05 05 05 05 05 SEP	1105 1107 1109 1111 1113 1115	1.00 10.0 13.0 20.0 26.0	198 200 200 203 204	7.8 7.7 7.7 7.6 7.6	26.0 24.5 24.5 24.5 24.0	1.31	6.8 6.8 6.7 6.4 6.3	84 82 81 77 75	 <.010 <.010	 <.010 <.010	 <.010 <.010	
09 09 09 09	1040 1042 1044 1046	1.00 13.0 20.0 26.0	280 340 320 320	7.8 7.1 7.1 7.1	29.0 29.0 29.0 29.0	5.58 	6.2 2.1 2.1 2.2	80 27 27 29	<.010 <.010	.033 .034	<.010 <.010	

08164525 LAKE TEXANA NEAR EDNA, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

285940096312101 - LAKE TEXANA SITE EC

DATE	DICAMBA TOTAL (UG/L) (82052)	2,4-DP TOTAL (UG/L) (82183)	PIC- LORAM UNFILT RECOVER (UG/L) (39720)	TOTAL TRI- THION (UG/L) (39786)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39787)	CHLOR- PYRIFOS TOTAL RECOVER (UG/L) (38932)	DI- AZINON, TOTAL (UG/L) (39570)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	DISUL- FOTON UNFILT RECOVER (UG/L) (39011)	ETHION, TOTAL (UG/L) (39398)
MAR										
09										
09										
09	<.010	<.010	<.010	<.010		<.010	<.010		<.020	<.010
MAY	1.010	1.010	1.010	1.010		1.010	1.010		1.020	1.010
05										
05										
05	<.010	<.010	.033	<.010		<.010	<.010		<.010	<.010
05										
05 05	<.010	<.010	.080	<.010	<.200	<.010	<.010	<.200	<.010	<.010
SEP					<.200			<.200		
09										
09	<.010	<.010	.053	<.010		<.010	<.010		<.010	<.010
09										
09	<.010	<.010	.043	<.010		<.010	<.010		<.010	<.010
DATE	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	FONOFOS (DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA-THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	PHORATE TOTAL (UG/L) (39023)	DEF TOTAL (UG/L) (39040)
	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L)	MALA- THION, TOTAL	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	TOTAL (UG/L)	TOTAL (UG/L)
DATE MAR 09	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L)	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	TOTAL (UG/L)	TOTAL (UG/L)
MAR	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023)	TOTAL (UG/L) (39040)
MAR 09 09 09	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023)	TOTAL (UG/L) (39040)
MAR 09 09 09	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023)	TOTAL (UG/L) (39040)
MAR 09 09 09 09 MAY	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	(DY-FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023)	TOTAL (UG/L) (39040)
MAR 09 09 09 09 MAY 05	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023)	TOTAL (UG/L) (39040)
MAR 09 09 09 09 MAY 05	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023) < < < < < <	TOTAL (UG/L) (39040)
MAR 09 09 09 09 MAY 05 05	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023)	TOTAL (UG/L) (39040)
MAR 09 09 09 09 MAY 05	TOTAL IN BOTT TOM MA TERIAL (UG/KG) (39399)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023) <.010 <.010	TOTAL (UG/L) (39040) <.010 <.010
MAR 09 09 09 09 MAY 05 05 05 05	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530)	MALA- THION, TOTAL IN BOT- TOM MA- TERTAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERTAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023) <.010 <.010	TOTAL (UG/L) (39040)
MAR 09 09 09 09 09 05 05 05 05	TOTAL IN BOTT- TOM MA- TERIAL (UG/KG) (39399)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614) 	MALA- THION, TOTAL (UG/L) (39530)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023) <.010 <.010 <.010 <.010	TOTAL (UG/L) (39040) <.010 <.010 <.010 <.010
MAR 09 09 09 09 05 05 05 05 05	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530) <.020 <.010 <.010	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540) <.010 <.010 <.010	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600) <.010 <.010 <.010	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023) <.010 <.010 <.010 <.010	TOTAL (UG/L) (39040) <.010 <.010 <.010 <.010
MAR 09 099 099 MAY 05 05 05 05 05 05	TOTAL IN BOTT TOM MA TERIAL (UG/KG) (39399)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614) <.010 <.010 <.010 <.010	MALA- THION, TOTAL (UG/L) (39530)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600) <.010 <.010 <.010 <.010 <.010	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023)	TOTAL (UG/L) (39040) <.010 <.010 <.010 <.010 <.010
MAR 09 09 09 09 05 05 05 05 05	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	(DY- FONATE) WATER WHOLE TOT.REC (UG/L) (82614)	MALA- THION, TOTAL (UG/L) (39530) <.020 <.010 <.010	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	PARA- THION, TOTAL (UG/L) (39540) <.010 <.010 <.010	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	METHYL PARA- THION, TOTAL (UG/L) (39600) <.010 <.010 <.010	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	TOTAL (UG/L) (39023) <.010 <.010 <.010 <.010	TOTAL (UG/L) (39040) <.010 <.010 <.010 <.010

272 GARCITAS CREEK BASIN

Discharge

08164600 GARCITAS CREEK NEAR INEZ, TX

LOCATION.--Lat 28°53'28", long 96°49'08", Victoria County, Hydrologic Unit 12100402, at right downstream end of bridge on U.S. Highway 59 access road, 0.3 mi upstream from Southern Pacific Railroad bridge, 2.0 mi southwest of Inez, and 3.6 mi upstream from Casa Blanca Creek.

DRAINAGE AREA. -- 91.7 mi².

PERIOD OF RECORD.--Jun 1970 to current year.

Water-quality records.--Chemical data: Apr 1965 to Aug 1988. Biochemical data: Apr 1965 to Aug 1988. Pesticide data: Jul 1970 to Jul 1981.

REVISED RECORDS.--WDR TX-94-3: 1992-93.

GAGE.--Water-stage recorder. Datum of gage is 29.16 ft above sea level. Satellite telemeter at station.

Gage height

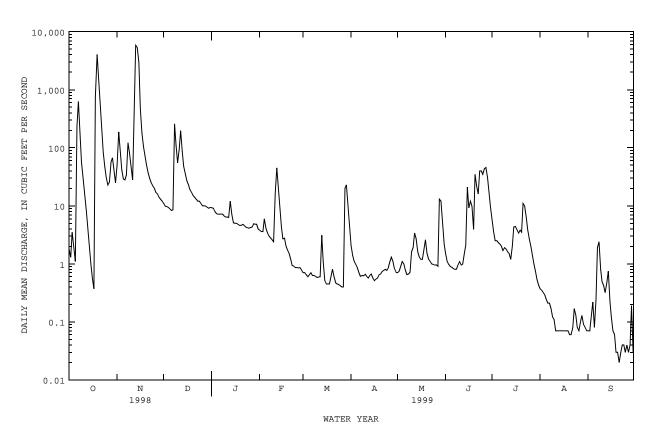
REMARKS.--No estimated daily discharges. Records good. No known regulation or diversions. An undetermined amount of return water from irrigation enters the stream above this station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1903-70, 24.5 ft Oct 26, 1960. In 1929, a flood nearly as high as the 1960 flood occurred, and a flood in Sep 1967 reached a stage of 23.4 ft, from information by local resident.

Discharge

Gage height

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ${\rm ft}^3/{\rm s}$:


Date	Time		(ft ³ /s)		(ft)		Date	Time		(ft ³ /s)		t)
Oct 19	0730		4,900	2	2.10		Nov 13	1815		7,320	24	.95
		DISCH	ARGE, CUBIC	FEET PE		WATER YI Y MEAN VA	EAR OCTOBER ALUES	1998 TO	SEPTEMB	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.8 1.3 3.5 2.0	51 188 90 42 29	11 9.8 9.7 9.4 8.9	9.3 9.1 8.0 7.4 7.2	3.8 3.6 3.6 6.0 4.1	.70 .71 .65 .60	2.1 1.4 1.1 .97	.70 .75 .90 1.1 1.0	1.5 1.1 .98 .90 .87	5.5 3.6 2.5 2.5 2.3	.37 .35 .32 .29 .24	.07 .07 .12 .22
6 7 8 9 10	236 626 147 58 30	28 34 122 83 46	8.3 8.5 258 114 55	7.2 7.2 7.2 6.7 6.4	3.4 3.0 2.8 2.6 2.4	.70 .63 .63 .61	.71 .61 .63 .62	.79 .65 .67 .72	.83 .80 .81 .97	2.2 2.0 1.7 1.9	.21 .21 .17 .12 .11	.24 1.9 2.4 .81 .49
11 12 13 14 15	16 8.6 4.3 2.1 1.0	28 317 5810 5340 2930	94 196 87 48 35	6.4 6.3 12 7.1 5.1	16 45 20 8.7 4.3	.59 .60 3.1 1.1 .51	.61 .57 .63 .67	1.9 3.4 2.7 1.6 1.3	.95 1.0 1.5 2.1	1.6 1.5 1.2 2.0 4.3	.07 .07 .07 .07	.42 .32 .48 .75
16 17 18 19 20	.58 .37 756 4050 1220	477 181 104 70 50	27 23 19 17 15	5.0 5.0 4.8 4.6 4.6	2.7 2.8 2.0 1.7 1.5	.45 .45 .45 .62	.51 .55 .57 .65	1.2 1.2 1.8 2.6 1.5	9.2 12 9.7 3.9 35	4.4 3.9 3.4 3.8 3.5	.07 .07 .07 .07 .06	.12 .07 .06 .03
21 22 23 24 25	451 185 85 47 31	37 30 25 22 20	14 13 12 12	4.8 4.6 4.3 4.2 4.1	1.2 .94 .91 .86	.60 .47 .45 .44	.74 .77 .81 .77	1.2 1.1 1.0 .98 .95	22 16 40 40 35	11 9.9 6.4 3.9 2.7	.06 .08 .17 .13 .08	.02 .03 .04 .04
26 27 28 29 30 31	23 26 57 67 41 25	17 16 14 13 12	10 10 9.9 9.5 9.1	4.2 4.3 4.9 4.8 4.8	.85 .86 .78 	.40 .40 20 23 11 4.4	1.1 1.3 1.1 .83 .71	.96 .91 13 12 5.2 2.2	44 46 31 17 9.3	2.0 1.4 1.0 .74 .54	.07 .10 .13 .09 .08	.04 .03 .04 .19
MEAN MAX MIN AC-FT CFSM IN.	8203.65 265 4050 .37 16270 2.89 3.33 STICS OF MO	16226 541 5810 12 32180 5.90 6.58	1173.5 37.9 258 8.3 2330 .41 .48	185.6 5.99 12 4.0 368 .07 .08	147.26 5.26 45 .78 292 .06 .06	76.72 2.47 23 .40 152 .03 .03	24.65 .82 2.1 .51 49 .01 .01	67.58 2.18 13 .65 134 .02 .03	406.51 13.6 46 .80 806 .15 .16	95.61 3.08 11 .43 190 .03	4.14 .13 .37 .06 8.2 .00	9.40 .31 2.4 .02 19 .00
MEAN MAX (WY) MIN (WY)	73.9 695 1995 .000 1990	45.6 541 1999 .000 1990	37.8 263 1977 .006 1990	41.5 220 1992 .022 1990	52.8 558 1992 .14 1990	45.5 578 1997 .48 1996	83.6 658 1991 .25 1996	114 503 1979 .045 1996	118 745 1981 .000 1990	21.0 218 1983 .006 1998	6.77 64.1 1998 .056 1988	77.3 789 1978 .000 1988

GARCITAS CREEK BASIN 273

08164600 GARCITAS CREEK NEAR INEZ, TX--Continued

SUMMARY STATISTICS	FOR 1998 CALEND	AR YEAR	FOR 1999 WAT	TER YEAR	WATER YEAR	S 1970 - 1999
ANNUAL TOTAL	46177.81		26620.62			
ANNUAL MEAN	127		72.9		59.8	
HIGHEST ANNUAL MEAN					144	1992
LOWEST ANNUAL MEAN					2.65	1989
HIGHEST DAILY MEAN	5810	Nov 13	5810	Nov 13	13100	Oct 19 1994
LOWEST DAILY MEAN	.00	Jun 14	.02	Sep 21	.00	May 22 1971
ANNUAL SEVEN-DAY MINIMUM	.00	Jun 14	.03	Sep 19	.00	May 26 1971
INSTANTANEOUS PEAK FLOW			7320	Nov 13	19700	Jun 12 1981
INSTANTANEOUS PEAK STAGE			24.95	Nov 13	a33.43	Oct 19 1994
ANNUAL RUNOFF (AC-FT)	91590		52800		43300	
ANNUAL RUNOFF (CFSM)	1.38		.80		.65	
ANNUAL RUNOFF (INCHES)	18.73		10.80		8.86	
10 PERCENT EXCEEDS	134		45		56	
50 PERCENT EXCEEDS	5.0		2.0		3.2	
90 PERCENT EXCEEDS	.00		.12		.29	

a From floodmark.

28 COLORADO RIVER BASIN

08117995 COLORADO RIVER NEAR GAIL, TX

LOCATION.--Lat 32°37′43", long 101°17′06", Borden County, Hydrologic Unit 12080002, near right downstream end of bridge on FM 1205, 5.0 mi north of junction with FM 1785, 13 mi southeast of Gail, 14 mi northwest of Vincent, and 25 mi west of Ira.

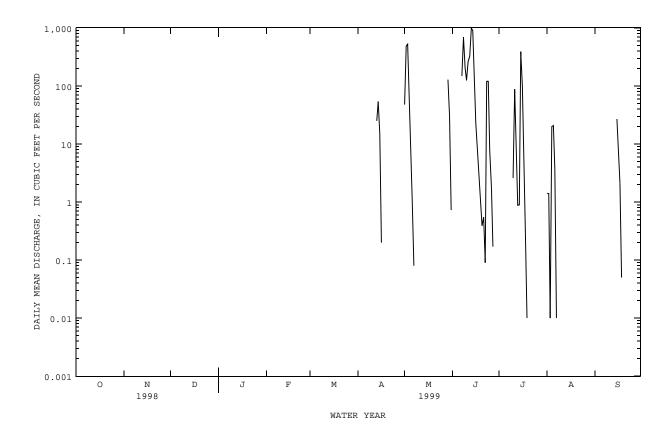
DRAINAGE AREA.--498 mi².

PERIOD OF RECORD. -- Mar 1988 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,240 ft above sea level, from topographic map. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. No known regulation or diversions.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 600 ft^3/s :


Date	Time		ischarge (ft ³ /s)		neight [t)		Date	Time		Discharge (ft ³ /s)		height ft)
May 3 Jun 8	0215 0715		1,060 798	a12 10	.00 .52		Jun 14 Jul 15	060 164		1,210 773		.81 .51
		DISCHAR	GE, CUBIC	FEET PER		VATER YE MEAN VA	CAR OCTOBE	R 1998 T	O SEPTEME	ER 1999		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	2.0 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	48 490 527 45 6.3	.00 .00 .00 .00	.00	1.4 1.4 .01 20 21	.00 .00 .00 .00
6 7 8 9 10	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.99 .08 .00 .00	.00 148 694 209 126	.00 .00 .00 .00	3.7 .01 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 25 54 15	.00 .00 .00 .00	264 325 991 910 181	88 18 .88 .89	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.20 .00 .00 .00	.00 .00 .00 .00	23 8.3 3.2 1.1 .39	101 4.0 .21 .01	.00 .00 .00 .00	6.7 2.1 .05 .00
21 22 23 24 25	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.55 .09 121 120 7.8	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .04 .00 .00	.00 .00 .00 .00	.00 .00 .00 129 30 .73	1.7 .17 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	0.00 .000 .00 .00	2.00 .067 2.0 .00 4.0	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	0.04 .001 .04 .00	94.20 3.14 54 .00 187	1277.10 41.2 527 .00 2530	4135.30 138 991 .00 8200	607.59 19.6 392 .00 1210	47.52 1.53 21 .00 94	35.85 1.19 27 .00 71
STATIS	TICS OF MON	THLY MEA	N DATA FOI	R WATER YI	EARS 1988	- 1999,	BY WATER	YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	1.47 10.6 1992 .000 1990	1.22 4.71 1992 .000 1990	1.83 15.6 1992 .000 1990	1.53 8.42 1992 .000 1995	3.74 23.8 1992 .000 1991	2.01 10.0 1990 .000 1991	5.84 51.5 1990 .000 1991	36.2 263 1992 .000 1993	44.7 166 1992 .000 1990	12.7 107 1988 .000 1994	5.20 22.6 1996 .000 1994	16.0 49.1 1989 .000 1997
SUMMAR	Y STATISTIC	CS	FOR 1	998 CALENI	OAR YEAR	F	'OR 1999 W	ATER YEA	R	WATER YE	ARS 1988	- 1999
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN ANNUAL 10 PER 50 PER	TOTAL MEAN T ANNUAL MEA T ANNUAL MEA T DAILY MEA T DAILY MEA T DAILY MEA TANEOUS PEA TANEOUS PEA TANEOUS PEA TANEOUS PEA CENT EXCEEL CENT EXCEEL CENT EXCEEL	AN AN I MINIMUM AK FLOW AK STAGE C-FT) OS		.00	Aug 20 Jan 1 Jan 1		1210	Jun 1 0 Oct : 0 Oct : Jun 1 1 Jun 1	1 1 4	10.7 46.2 .48 2060 .00 4010 m16.43 7760 7.0 .00	May Jun Jun Jun Jul May	1992 1998 25 1992 7 1988 7 1988 3 1988 26 1992

a From floodmark.

m Result of earthen dam.

08117995 COLORADO RIVER NEAR GAIL, TX--Continued

29

The U.S. Geological Survey collects limited streamflow data at sites other than continuous stream-gaging stations because the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage of those events. The data collected for special reasons are called measurements at miscellaneous sites.

Streamflow data collected at partial-record stations where water-quality data other than observations of water temperature are not obtained are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations; the second is a table of annual maximum stage and (or) discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low and high flows are given in a third table. Discharge measurements and water-quality data collected at partial-record stations are presented in downstream order in the section of this report entitled "Gaging-station records."

Low-flow partial-record stations

Measurements of streamflow at low-flow partial-record stations that are not published in the gaging-station section are given in the following table. Most of the measurements of low flow were made during periods when streamflow was sustained primarily by ground-water discharge. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will indicate the low-flow potential of the stream. The years listed in the column headed "Period of record" identifies the water years in which measurements were made at the same or at practically the same site.

Discharge measurements made at low-flow partial-record station during water year 1998

				Period of record	Measurements	
Station number	Station name	Location	Drainage area (mi ²)		Date	Dis- charge (ft ³ /s)
		Colorado River Basin				
08129500	Dove Creek Spring near Knickerbocker, Tex.	Lat 31°11'06", long 100°43'51", Irion County, at headquarters ranch house, 500 ft upstream from Dove Creek, 1.8 mi upstream from Stilson Dam on Dove Creek and 8.5 mi southwest of Knickerbocker.		1944-58守 1959-99	10-15-98 01-05-99 03-15-99 05-24-99 07-21-99 08-12-99 09-20-99	7.81 7.28 6.76 9.19 7.98 7.55 6.77
08143900	Springs at Fort McKavett, Tex.	Lat 30°50'03", long 100°05'37", Menard County, 0.9 mi northwest of Fort McKavett at low-water crossing on Ranch Road 864.		1902, 1905, 1922, 1942, 1948-49, 1951-52, 1955-56, 1958-99	10-28-98 12-03-98 02-02-99 03-16-99 05-26-99 07-28-99 09-20-99	15.1 14.8 13.8 15.0 12.4 12.3 11.6
08146500	San Saba Springs at San Saba, Tex.	Lat 31°11'44", long 98°42'42", San Saba County, 150 ft upstream from bridge on U.S. Highway 190 at San Saba and 0.8 mi east of courthouse.		1939, 1952, 1957, 1959-99	10-27-98 12-02-98 02-03-99 03-15-99 05-25-99 07-27-99 09-23-99	8.66 9.71 11.7 7.80 7.13 8.31 8.62
08149400	South Llano River near Telegraph, Tex.	Lat 30°15'43", long 99°56'01", Edwards County, 3.7 mi upstream from Paint Creek, 5.7 mi south of Telegraph, and 18.7 mi southwest of Junction.	508	1939, 1952, 1956, 1959-99	10-28-98 12-03-98 02-02-99 03-16-99 05-26-99 07-28-99 09-20-99	37.5 35.5 30.7 29.2 27.8 26.5 24.3
08149500	Seven Hundred Springs near Telegraph, Tex.	Lat 30°16'12", long 99°55'22", Edwards County, about 3 mi upstream from Paint Creek, about 5 mi south of Telegraph, and about 18 mi southwest of Junction.		1939, 1952, 1955-56, 1959-99	10-28-98 12-03-98 02-02-99 03-16-99 05-26-99 07-28-99 09-20-99	27.2 22.3 21.6 18.9 24.4 21.4 21.7

Properated as a continuous-record station.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Measurements of streamflow at points other than gaging stations or partial-record stations are given in the following table:

Discharge measurements made at miscellaneous sites during water year 1999

					Measurements	
Station number	Tributary to	Location	Drainage area (mi ²)	Measured previously (water years)	Date	Discharge (ft ³ /s)
		Colorado River Basin				
Clear Creek near Menard, Tex. 08143950	San Saba River	Lat 30°54'13", long 99°55'27", Menard County, at bridge on U.S. Highway 190, about 9 mi west of Menard.	106	1984-99	10-28-98 02-02-99 05-26-99	12.2 13.2 11.5
Tanner Springs near Telegraph, Tex. 08149405	South Llano River	Lat 30°15'45", long 99°56'03", Edwards County, about 5.6 mi south of Telegraph, Kimble County, and 18.6 mi southwest of Junction at mouth.		1939, 1962, 1989-99	10-28-98 12-03-98 02-02-99 03-16-99 05-26-99 07-28-99 09-20-99	14.1 14.9 13.4 14.2 13.0 12.4 12.3

INDEX

	Page		Page
Barton Creek, above Barton Springs at Austin	166-168	Lake Nasworthy near San Angelo	90-91
at Loop 360, Austin	162-164	Lake Texana near Edna	266-271
at Lost Creek Boulevard, Austin	158-161	Lavaca River, at Hallettsville	240
at State Highway 71 near Oak Hill	154-157	near Edna	242-243
Barton Springs at Austin	170-172	Lavaca River basin, gaging-station records in	240-271
Beals Creek near Westbrook	50-56	Llano River, at Llano	138-139
Bear Creek below Farm Road 1826 near Driftwood	206-207	near Junction	132-133
Beaver Creek near Mason	136-137	near Mason	134-135
Blunn Creek near Little Stacy Park, Austin	182-184	Low-flow partial-record stations	277
Boggy Creek at U.S. Highway 183, Austin	194-197		
Brady Creek Reservoir near Brady	122-123	Middle Concho River above Tankersley	82
Bull Creek at Loop 360 near Austin	146-148	Miscellaneous partial-record stations	278
Champion Creek Reservoir near Colorado City	48-49	Navidad River, at Morales	248-249
Clear Creek near Menard	278	at Strane Park near Edna	250-252
Colorado River, above LaGrange	224-225	near Hallettsville	244-245
above Silver	60-66	near Speaks	246-247
at Austin	192-193	North Concho River, at Sterling City	92
at Bastrop	220-221	near Carlsbad	94-95
at Colorado City	40-44		
at Columbus	228-229	O.C. Fisher Lake at San Angelo	96-97
at Robert Lee	70-71	O.H. Ivie Reservoir near Voss	108-109
at Smithville	222-223	Oak Creek Reservoir near Blackwell	72-73
at Wharton	230-231	Onion Creek, at U.S. Highway 183, Austin	216-217
at Winchell	112-113	near Driftwood	202-204
near Ballinger	74-76	iicai Diiitwood	202-20-
near Bay City	232-233	Partial-record stations, low-flow	277
near Cuthbert	32-38		278
near Gail	28-29	miscellaneous	
near San Saba	130-131	Pecan Bayou near Mullin	
near Stacy	110-111	Pedernales River, near Fredericksburg	
Colorado River Basin, discharge measurements		near Johnson City	
at miscellaneous sites	278	Placedo Creek near Placedo	274-275
gaging-station records in	26-233		
low-flow partial-record stations in	277	Redgate Creek near Columbus	226-227
Concho River, at San Angelo	98-99		
at Paint Rock	102-104	San Saba River, at Menard	
near Veribest	100-101	at San Saba	
		near Brady	
Definition of terms	16	San Saba Springs at San Saba	
Discharge, at low-flow partial-record stations	277	Sandy Creek, near Ganado	254-256
measurements at miscellaneous sites	278	near Kingsland	140-141
Dove Creek at Knickerbocker	86	Seven Hundred Springs near Telegraph	
Dove Creek Spring near Knickbocker	277	Shoal Creek at 12th Street, Austin	174-177
r		Slaughter Creek at Farm Road 1826 near Austin	208-210
East Bouldin Creek at South 1st Street, Austin	178-180	South Concho River at Christoval	80
East Mustang Creek at FM 647 near Ganado	262-264	South Llano River near Telegraph	277
Elm Creek at Ballinger	78-79	Spring Creek above Tankersley	84
E.V. Spence Reservoir near Robert Lee	68-69	Springs at Fort McKavett	277
Gaging-station records	26-275	Tanner Spring near Telegraph	278
Garcitas Creek near Inez	272-273	Town Lake at Austin	186-190
		Tres Palacios River near Midfield	236-239
Hords Creek Lake near Valera	114-115	Twin Buttes Reservoir near San Angelo	88-89
Lake Austin at Austin	150-152	Walnut Creek at Webberville Road, Austin	198-200
Lake Colorado City near Colorado City	46-47	West Mustang Creek near Ganado	258-260
Lake J.B. Thomas near Vincent	30-31	Williamson Creek at Brush Country Boulevard, Oak Hill	212-214