

Prepared in cooperation with the States of Maryland and Delaware, Washington, D.C. and with other agencies

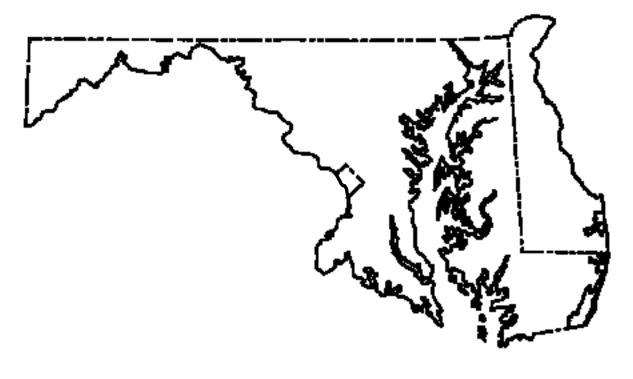
Volume 2. Ground-Water Data

Water-Data Report MD-DE-DC-03-2

U.S. Department of the Interior U.S. Geological Survey

CALENDAR FOR WATER YEAR 2003

OCTOBER NOVEMBER DECEMBER S Μ Т W Т F S S Μ Т W Т F S S Μ Т W Т F S


		JA	NUA	RY					FEE	BRUA	RY					N	IARC	H		
S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S
			1	2	3	4							1							1
5	6	7	8	9	10	11	2	3	4	5	6	7	8	2	3	4	5	6	7	8
12	13	14	15	16	17	18	9	10	11	12	13	14	15	9	10	11	12	13	14	15
19	20	21	22	23	24	25	16	17	18	19	20	21	22	16	17	18	19	20	21	22
26	27	28	29	30	31		23	24	25	26	27	28		23	24	25	26	27	28	29
														30	31					
		ļ	APRIL						I	MAY						J	UNE			
S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S
		1	2	3	4	5					1	2	3	1	2	3	4	5	6	7
6	7	8	9	10	11	12	4	5	6	7	8	9	10	8	9	10	11	12	13	14
13	14	15	16	17	18	19	11	12	13	14	15	16	17	15	16	17	18	19	20	21
20	21	22	23	24	25	26	18	19	20	21	22	23	24	22	23	24	25	26	27	28
27	28	29	30				25	26	27	28	29	30	31	29	30					
											_									
			JULY						AL	JGUS	Т					SEPT	EMB	ER		
S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S
		1	2	3	4	5						1	2		1	2	3	4	5	6
6	7	8	9	10	11	12	3	4	5	6	7	8	9	7	8	9	10	11	12	13

Water Resources Data Maryland, Delaware, and Washington, D.C. Water Year 2003

Volume 2. Ground-Water Data

By The Maryland, Delaware and Washington, D.C District

Water-Data Report MD-DE-DC-03-2

Prepared in cooperation with the States of Maryland, Delaware, Washington, D.C. and with other agencies

U.S. Department of the Interior

Gale A. Norton, Secretary

U.S. Geological Survey

Charles G. Groat, Director

2004

U.S. Geological Survey 8987 Yellow Brick Road Baltimore, MD 21237 410-238-4200

Information about the USGS, MD-DE-DCDistrict is available on the Internet at http://md.water.usgs.gov/usgs/

Information about all USGS reports and products is available by calling 1-888-ASK-USGS or on the Internet via the World Wide Web at http://www.usgs.gov/

Additional earth science information is available by accessing the USGS home page at http://www.usgs.gov/

PREFACE

This volume of the annual hydrologic data report for Maryland, Delaware, and Washington, D.C. is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These streamflow, ground-water-level, and water-quality records provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Maryland, Delaware, and Washington, D.C. are contained in two volumes:

Volume 1. Surface-Water Data

Volume 2. Ground-Water Data

This report (Volume 2) is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey, Maryland Geological Survey (MGS), and Delaware Geological Survey (DGS), who collected, compiled, analyzed, verified, and organized the data, and who reviewed, typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to U.S. Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

> Anderson, Anita L. Beman, Joseph E. Brayton, Michael J. Broadwater, James E. Danner III, Frank A. Drummond, David D (MGS) Fisher, Joseph M. Jeffries, James Lewis, William C. Smigaj, Michael J. Starsonek, Roger J. Strain, Charles J.

Andreasen, David C. (MGS) Bolton, David W. (MGS) Bringman, Deborah A. Curtin, Stephen E. Debrewer, Linda M. Ferrari, Matthew J. Griffith, Jeffrey L. Klohe, Cheryl A. McCreary, Steve (DGS) Smith, Charles T. (DGS) Stearns, William D. Tallman, Anthony J.

Earl A. Greene, Douglas J. Yeskis, Michael J. Smigaj, and Valerie M. Gaine provided technical and editorial reviews for the Introduction section of this report. Richard W. Saffer, Robert H. Pentz, and Anthony J. Tallman provided invaluable assistance and editing support for this volume. Andrew E. LaMotte produced figures 6 through 8, using a Geographic Information System mapping program.

This report was prepared under the general supervision of James M. Gerhart, District Chief, MD-DE-DC District, and Catherine L. Hill, Regional Hydrologist, Northeast Region, and in cooperation with the States of Maryland and Delaware, Washington, D.C., and other agencies.

REPORT DO	CUMENTATION	PAGE	Form Approved OMB No. 0704-0188						
Public reporting burden for this collection of informati gathering and maintaining the data needed, and com collection of information, including suggestions for re Davis Highway, Suite 1204, Arlington, VA 22202-430	on is estimated to average 1 hour per pleting and reviewing the collection ducing this burden, to Washington H 12, and to the Office of Management	r response, including the time for revie of information. Send comments regard eadquarters Services, Directorate for I and Budget, Paperwork Reduction Pr	wing instructions, searching existing data sources, ing this burden estimate or any other aspect of this nformation Operations and Reports, 1215 Jefferson oject (0704-0188), Washington, DC 20503.						
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE December 2004	3. REPORT TYPE AND Annual - Oct. 1, 2	DATES COVERED 2002 to Sept. 30, 2003						
 4. TITLE AND SUBTITLE Water Resources Data - Maryl Water Year 2003 Volume 2. Ground-Water Dat 6. AUTHOR(S) The Maryland, Delaware and V 	a		5. FUNDING NUMBERS						
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Geological Survey, Water Resources Division 8. PERFORMING ORGANIZATION REPORT NUMBER 8987 Yellow Brick Road USGS-WDR-MD-DE-DC-03- Baltimore, MD 21237 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.									
9. SPONSORING / MONITORING AGENCY NA U.S. Geological Survey, Water 8987 Yellow Brick Road Baltimore, MD 21237	10. SPONSORING / MONITORING AGENCY REPORT NUMBER USGS-WDR-MD-DE-DC-03-2								
11. SUPPLEMENTARY NOTES Prepared in cooperation with the agencies.	he states of Maryland	, Delaware, Washingto	n, D.C. and with other						
12a. DISTRIBUTION / AVAILABILITY STATEM	ENT		12b. DISTRIBUTION CODE						
No restriction on distribution. National Technical Informatio									
13. ABSTRACT (Maximum 200 words) Water resources data for the 2003 water year for Maryland, Delaware, and Washington, D.C. consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water Data) contains water levels at 386 observation wells, discharge records for 4 springs, and water quality at 185 wells. Locations of ground-water level wells are shown on figures 6 and 7. Locations of ground- water-quality sites are shown on figure 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State, local, and Federal agencies in Maryland, Delaware, and Washington, D.C.									
 14. SUBJECT TERMS *Maryland, *Delaware, *Washington water, *Water quality, Water levels, Sampling sites. 		• •							
	SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATIO OF ABSTRACT	DN 20. LIMITATION OF ABSTRACT Unclassified						
NSN 7540-01-280-5500		1	Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std 239-18						

²⁹⁸⁻¹⁰²

CONTENTS

	Page
Preface List of ground-water wells, and springs by county or independent city, for which records	iii
of ground-water levels are published in this volume	vi
List of ground-water wells, and springs by county or independent city, for which records.	
of ground-water quality are published in this volume	xii 1
Cooperation	1
Summary of Ground-Water hydrologic conditions	2
Ground-Water Levels and Spring Discharge	3
Ground-Water Networks and Programs.	3
Water Quality Salt-Water Intrusion Monitoring Projects	3
National Water-Quality Assessment (NAWQA) Program	5
NAWQA study programs in the MD-DE-DC, district	5
The Potomac-Delmarva Peninsula study unit (PODL)	5
Explanation of the records	5
Station identification numbers	5
Well naming system	8
Records of ground-water levels	10
Data collection and computation	10
Data presentation	10
Spring discharge tables	11
Water-level tables	11
Hydrographs	11
Records of ground-water quality	11
Data collection and computation	12
Data presentation	12
Remarks codes	12
Water-quality control data	12
Blank Samples	13
Reference Samples	13
Replicate Samples	13 13
Spike SamplesAccess to USGS data	13
Definition of terms.	14
Publications on Techniques of Water-Resources Investigations	21
Selected U.S. Geological Survey Reports on ground-water resources in Maryland, Delaware,	21
and Washington, D.C.	26
Water Resources Investigations Reports	26
Water Data Reports	26
Open-File Reports	26
Station records, ground water	27
Ground-water spring discharge	30
Ground-water levels	34
Ground-water quality records	466
Remarks codes	465
Dissolved trace-elements concentrations	465
Change in national trends network procedures	465
Quality of ground water	466
Index	603

ILLUSTRATIONS

Figure	1.	Monthly ground-water levels at key observation wells	4
	2.	Ground-water levels in selected observation wells in confined	
		aquifers in Maryland	б
	3.	Ground-water levels for Collection of Basic Records wells in	
		Maryland and Delaware	7
	4.	System for numbering wells and miscellaneous sites (latitude and longitude)	8
	5.	Well naming systems used in Maryland, Delaware, and Washington, D.C	9
	б.	Map of Maryland, Delaware, and Washington, D.C. showing location of	
		ground-water network observation wells and springs	27
	7.	Map of Maryland, Delaware, and Washington, D.C. showing location of	
		ground-water project observation wells and springs	28
	8.	Map of Maryland, Delaware, and Washington, D.C. showing location of	
		ground-water-quality project sample wells and springs	29

GROUND-WATER WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

GROUND-WATER SPRING DISCHARGE

Page

MARYLAND:										
CECIL COUNTY										
Spring 393459076045001 Local number CE Cc 40	30									
FREDERICK COUNTY										
Spring 392552077262201 Local number FR Dd 178	31									
Spring 391846077370501 Local number FR Fb 12	32									
WASHINGTON COUNTY										
Spring 392836077442701 Local number WA Di 103	33									

GROUND-WATER LEVELS

DELAWARE:

KENT	CO	UN	.T.7	(

Well	390607075331501	Local	number	Jd42-03	34
Well	390224075391601	Local	number	Кс31-01	35
Well	385041075395601	Local	number	Mc51-01	36
				Mc51-01a	
					39
					40
					41
Well	390723075270901	Local	number	DM103D	42
Well	390734075271402	Local	number	DM106D	43
Well	390734075271401	Local	number	DM106S	44
					45
					46
					47
Well	390744075270401	Local	number	DM110S	48
Well	390833075273601	Local	number	DM202D	49
Well	390827075290401	Local	number	DM204D	50
					51
					52
					53
					54
Well	390815075293401	Local	number	DM348S	55
Well	390811075293802	Local	number	DM349D	56
					57
					58
					59
Well	390747075292601	Local	number	DM378F	60
Well	390629075272701	Local	number	DM412D	61
Well	390655075273701	Local	number	DM421F	62
					63
					64
					65
					66
Well	390703075272601	Local	number	MW48D	67
Well	390651075272001	Local	number	MW80D	68
NEW CAS	TLE COUNTY				
		Local	number	Db15-05	69
					70
					71
					72
Well	393734075371101	Local	number	Db33-19	73
Well	393755075364801	Local	number	Dc34-05	74
					75
					76
					77
					78
					79
Well	391949075410701	Local	number	Hb14-01	80
SUSSEX (COUNTY				
		Loca]	number	Nc45-01	81
					82
				-	83
					84
Well	384438075234801	Local	number	Of12-13	86
Well	384401075224901	Local	number	Of13-03	88
Well	384406075224601	Local	number	Of13-08	90
				Of22-04	
				of22-11	
					95
				Of23-05	
				Of23-11	99
Well	384038074970001	Local	number	Oh54-01 10	00
Well	384038075110002	Local	number	Oh54-02	01
					02
					02
wert	20212001221220T	посат	numer	F127 V2	05

vi

Page

DELAWARE-Continued: SUSSEX COUNTY-Continued Well 383730075213502 Local number Pf24-03..... 104 Well 383138075260201 Local number Qe44-01..... 105 Well 383050075105201 Local number Qh54-04..... 106 Well 383050075105202 Local number Qh54-05..... 107 Well 383050075105203 Local number Qh54-06..... 108 Well 383050075105204 Local number Qh54-07..... 109 Well 383210075035802 Local number Qj32-17..... 110 Well 382808075030501 Local number Rj22-05..... 111 Well 382808075030502 Local number Rj22-06..... 112 Well 382808075030503 Local number Rj22-07..... 113 Well 382808075030504 Local number Rj22-08..... 114 MARYLAND: ALLEGANY COUNTY Well 394024078273401 Local number AL Ah 1...... Well 393009079025201 Local number AL Ca 19..... 116 Well 393148079010601 Local number AL Ca 20..... 117 ANNE ARUNDEL COUNTY Well 391101076404001 Local number AA Ac 11...... 118 Well 391015076373501 Local number AA Ad 29..... 119 Well 391032076385902 Local number AA Ad 90.....120-121 Well 391032076385904 Local number AA Ad 102..... 122 Well 391032076385906 Local number AA Ad 108..... 123 Well 391032076385907 Local number AA Ad 110..... 126 Well 390950076391101 Local number AA Bd 91..... 127 Well 390821076365401 Local number AA Bd 152.....128-129 Well 390938076383701 Local number AA Bd 155......130-130 Well 390737076374401 Local number AA Bd 157......134-135 Well 390744076390001 Local number AA Bd 158..... 136 Well 390737076374402 Local number AA Bd 159..... 137 Well 390945076285601 Local number AA Bf 3.... 140 Well 390629076273601 Local number AA Bf 100..... 141 Well 390303076463201 Local number AA Cb 1..... 142 40..... Well 390423076432001 Local number AA Cc 143 Well 390126076403001 Local number AA Cc 135..... 144 Well 390126076402901 Local number AA Cc 137..... 145 Well 390450076343402 Local number AA Ce 117..... 146 Well 390150076283003 Local number AA Cf 98..... 147 Well 390150076283002 Local number AA Cf 99..... 148 Well 390123076241601 Local number AA Cg 22.... 149 Well 390123076241602 Local number AA Cg 23..... 150 Well 390123076241603 Local number AA Cg 24.... 151 Well 390127076240301 Local number AA Cq 25..... 152 Well 385808076373502 Local number AA Dd 42..... 153 Well 385915076340401 Local number AA De 1..... 154 Well 385921076270701 Local number AA Df 19.... 155 Well 385916076270702 Local number AA Df 20.... 156 Well 385905076293601 Local number AA Df Well 385623076274401 Local number AA Df 103..... 159 45.... Well 385406076383901 Local number AA Ed 160 Well 385406076383902 Local number AA Ed 65.... 161 Well 384646076352401 Local number AA Fd 43..... 162 Well 384644076331201 Local number AA Fe 92..... 163 Well 384644076331202 Local number AA Fe 93..... 164 BALTIMORE CITY Well 391617076322001 Local number 285E- 1..... 165 Well 391600076353301 Local number 3S2E- 5..... 166 Well 391556076315301 Local number 3S5E- 46..... 167 Well 391349076354501 Local number 5S2E- 24..... 168 BALTIMORE COUNTY Well 393129076384201 Local number BA Cd 26..... 169 Well 393102076341801 Local number BA Ce 21..... 170 Well 392045076512501 Local number BA Ea 18.....173-174 Well 392305076432001 Local number BA Ec 43..... 175 Well 392436076332201 Local number BA Ee 145..... 176 Well 392437076332301 Local number BA Ee 161..... 177 Well 392438076332201 Local number BA Ee 170..... 178 Well 392440076332002 Local number BA Ee 183..... 179 Well 392436076331901 Local number Ba Ee 189..... 180 Well 392438076331803 Local number BA Ee 192..... 181 Well 392458076330301 Local number BA Ee 198..... 182 Well 391607076312901 Local number BA Fe 19..... 183 Well 391356076293501 Local number BA Gf 11..... 184

Page

CALVERT	COUNTY						
	384333076394701	Local	number	CA	Вb	27	185
Well	384333076394702	Local	number	CA	Вb	28	186
Well	384114076320301	Local	Number	CA	Bc	25	187
Well	383940076314801	Local	number	CA	Cc	18	188
	383605076344601						189
	383239076354201					47	190
	383216076351401						191
	383244076354201					96	
	383050076305501						194
	382549076260101					52	
	382343076302901 382408076260401						197
	382408076260401						198 199
	382236076255401					85	
	382318076242401						202
	381952076270901						202
	E COUNTY	HOCUI	mandoci	CII	uu	0	205
	390333075504501	Local	number	CO	Bc	1	204
	390227075470201						205
CARROLL	COUNTY						
	394008077005601	Local	number	CL	Ad	47	206
Well	393638076510001	Local	number	CL	Вf	1	207
Well	393754076512401	Local	number	CL	Вf	184	208
Well	392259077052401	Local	number	CL	Ec	75	209
CECIL CO							
	393637075535001						210
	393637075535002						211
	393615075475901						212
	393537075492001						213
	393432075593601						214
	393432075593602						215
	393216075564201						216
	393433075544901						217
	393241075500201						218
	393026075523101						219
	393209075541301						220
	392536075593201						221
	392403075521801	Local	number	CE	Ee	29	222
CHARLES					_		
	383633077083001						223
	383645077062401						224
	383644077055501						225
	383645077062402						226
	383709077061002						227
	383553077032401						228
	383819076555501						229
	383706076575601						230
	383706076575604						231
							232
							233
							234
							235
							236
	383637076545803						237 238
	383746076482901						230
	383706076475401						240
	383706076475401 383422077114601						240 241
	383422077114001						242
	383441077063901						243
	383236076563901						243
	383251076583901					56	
	383250076584001						247
	383254076481401					24	
	382654077152501						250
	382654077152701						251
	382607077002601						252
	382925077010101						253
	382927076552301						254
	382103076560201						255
	382154076574801					70	
	382240076582801					78	
	TER COUNTY						
	383708075503801	Local	number	DO	Bg	59	260
Well	383151076080801	Local	number	DO	Cd	1	261
	383340076041601					5	262
Well	383408076042402	Local	number	DO	Ce	15	263
Well	383256076035301	Local	number	DO	Ce	85	264
	382800076180701						265
	382847076190901						266
Well	382916075491702	Local	number	DO	Dh	27	268

MARYLAND-Continued

Page

				GRO	UND-WATER LEVELS-Continued	P
MARYLAND-Continued FREDERICK COUNTY						
Well 394200077190701	Local	number	FR	Af	27	269
Well 393733077274801					96	270
Well 393156077135701	Local	number	FR	Cg	1	271
Well 392517077190401	Local	number	FR	Df	35	272
GARRETT COUNTY						
Well 394017078581701				5	1	273
Well 393749079190301					1	274
Well 392439079231801					78	275
Well 391512079270901					28	276
Well 391512079270902					29	277
Well 391539079254601 Well 391539079254602					31	278
Well 391539079254602 Well 391539079254603					32	279 280
Well 391539079254603					34	280
Well 391501079260001					38	282
Well 391530079244401					22	283
Well 391530079244403					24	284
Well 391530079244404					25	285
Well 391513079243602					27	286
Well 391513079243605					30	287
Well 391715079223102	Local	number	GA	Fb	36	288
Well 391715079223103	Local	number	GA	Fb	37	289
Well 391715079223104	Local	number	GA	Fb	38	290
Well 391420079264901	Local	number	GA	Ga	16	291
HARFORD COUNTY						
Well 393902076160001					31	292
Well 393158076302601					23	293
Well 392529076180901					89	294
Well 392721076150301					91	295
Well 392721076150302					92	296
Well 392921076100401					66 181	297 298
					182	298
					183	300
					195	301
					198	
Well 392435076203301					11	304
Well 392408076210101					46	305
Well 392455076192101	Local	number	HА	Ed	47	306
Well 392455076192102	Local	number	HA	Ed	48	307
Well 392455076192103	Local	number	HA	Ed	49	308
HOWARD COUNTY						
Well 391910076565701					1	309
Well 391445076555101					79	310
Well 391001076540001	Local	number	HO	Ce	38	311
KENT COUNTY Well 392007076075501	T = = = 1		77 77	7 -	20	210
					20 185	312 313
					185	313 314
					43	314
					171	316
Well 391815075472101						317
Well 391815075472102				-	34	318
Well 391400076101401				-	36	319
Well 391124076101001					97	320
Well 391124076101002	Local	number	KE	Cb	98	321
Well 391124076101003	Local	number	KE	Cb	99	322
					100	323
					101	324
					103	325
Well 391432076015501					44	326
Well 390837076140401					40	327
Well 390626076083301					89	328
Well 390626076083302 MONTGOMERY COUNTY	Local	number	КE	DC	91	329
Well 391142077280601	Togol	numbor	MO	ah	26	330
Well 391314077224201					14	331
Well 390802077283801					68	
Well 390917077244401					59	334
Well 390451077245901					10	335
Well 390434076573002					20	336
PRINCE GEORGES COUNTY			2			
Well 390151076561501	Local	number	PG	Вс	16	337
Well 385130076465501					21	338
Well 384423077004501	Local	number	PG	Fb	36	339
Well 384230076555501	Local	number	PG	Fc	17	340
Well 384131076533301	Local	number	PG	Fd	41	341
Well 383957076520601					5	-343
Well 383348076411301					40	
Well 383348076411302					41	
Well 383348076411303					42	
Well 383250076405304	Local	number	PG	Ηf	44	-350

Page

			GRO	UND-WATER LEVELS-Continued	Page
MARYLAN	D-Continued				
OUEEN AI	NNES COUNTY				
Well	391203076024301	Local	number OA Be	15	351
	391203076024302		~ ~	16	352
	391203076024303		~	17	353
Well	390841075515201	Local	number QA Cg	1	354
Well	390839075515001	Local	number QA Cg	69	355
Well	390201076182701	Local	number OA Db	30	356
	390201076182703		~	32	357
	390023076174301		~		358
	390119076191001		~	35	359
Well	390023076174302	Local	number QA Db	37	360
Well	390251076034401	Local	number QA De	27	361
Well	385718076211501	Local	number OA Ea	77	362
	385718076211502		~	78	363
			~		
	385757076200101		~		364
Well	385757076200102	Local	number QA Ea	80	365
Well	385718076211503	Local	number QA Ea	81	366
Well	385751076171603	Local	number OA Eb	110	367
				111	368
				112	369
Well	385748076172001	Local	number QA Eb	113	370
Well	385843076155302	Local	number QA Eb	155	371
Well	385852076195201	Local	number OA Eb	156	372
				157	373
					374
	385756076105301		~		
	385534075573601		~	29	375
Well	385429076120201	Local	number QA Fc	7	376
ST. MAR	YS COUNTY				
	382838076470101	Local	number SM Ph	15	377
	382838076470102			22	378
	382605076430201			39	9-380
Well	381616076364701	Local	number SM Dd	46	381
Well	381616076364702	Local	number SM Dd	49	382
Well	381807076380001	Local	number SM Dd	50	383
	381616076364703				384
	381615076364701				385
Well	381626076393401	Local	number SM Dd	72	386
Well	XXXXXXXXXX Loca	l numbe	er SM Df 61.		7-388
Well	381841076284401	Local	number SM Df	66	389
	XXXXXXXXXX Loca				390
Well	XXXXXXXXXX Loca	1 numbe	er SM Df 100.		3-394
Well	XXXXXXXXXX Loca	l numbe	er SM Dg 14.		5-396
Well	XXXXXXXXXX Loca	l numbe	er SM Dg 21.		397
				27	398
			-		
				30	399
	380834076303402				400
Well	380724076251901	Local	number SM Ff	36	401
Well	XXXXXXXXXX Loca	l numbe	er SM Ff 64.		2-403
Well	380711076222201	Local	number SM Fa	45	404
	I COUNTY				
		T 1		10	405
	381156075412501				405
	380927075423701				6-407
Well	380616075380701	Local	number SO Cf	2	408
TALBOT (COUNTY				
	385242075593101	Local	number TA Bf	73	409
	385242075593102			74	410
	384923076100601			35	411
	384514076103701			36	412
Well	384709076050301	Local	number TA Cd	57	413
Well	384643076043801	Local	number TA Ce	7	414
	FON COUNTY				-
		Logal	numbor 147 -	1	415
	394154078103501				
	393638078001301			2	416
Well	393851077343001	Local	number WA Bk	25	417
Well	393414077461801	Local	number WA Ch	106	418
	393402077434201			82	419
	392904077371501			2	420
		LUCAL	MA DJ		120
	O COUNTY			10	
	382150075352101				421
Well	382404075355401	Local	number WI Ce	204	422
Well	382037075310801	Loca]	number WI Cf	3	423
				147	424
	382329075263701				425
		LOCAL	number wir Cg	۵U	740
	ER COUNTY				
	382621075174201				426
	382621075174202				427
Well	382621075174203	Local	number WO Ae	25	428

MARYLAND-Continued

PRAINT LIANA.	D-concinueu						
	ER COUNTY-Continu						
	382632075031801					б	429
	382635075030601					35	430
	382635075030602					36	431
	382635075030603					37	-433
	382022075072401				5	1	434
	382359075094501					15	435
Well	382358075094501	Local	number	WO 1	Bg	45	436
Well	382358075094502	Local	number	WO 1	Bg	46	437
Well	382325075063301	Local	number	WO 1	Bg	47	
Well	382325075063302	Local	number	WO 1	Bg	48	
Well	382038075065901	Local	number	WO 1	Bg	49	-443
Well	382215075041801	Local	number	WO 1	Bh	31	444
Well	382443075033501	Local	number	WO 1	Bh	34	-446
Well	382215075041901	Local	number	WO 1	Bh	84	447
Well	382215075041902	Local	number	WO 1	Bh	85	448
Well	382215075041903	Local	number	WO 1	Bh	89	-450
Well	382127075043802	Local	number	WO 1	Bh	98	451
	381939075052101				- 5	72	452
	381037075234301					7	453
	381457075174101					36	454
Well	381427075081102	Local	number	WO 1	Dg	21	455
	381428075081401					23	456
Well	381428075081402	Local	number	WO 1	Dg	24	457
	381428075081403					25	458
Well	380408075335701	Local	number	WO	Fb	2	459
	ION, D.C.:						
	385504076563801					3	460
	385504076563802					4	461
	385238076581501					29	462
	385443076562801					5	463
Well	385443076562802	Local	number	WE (Cb	б	464

Page

GROUND-WATER-QUALITY DATA

DELAWARE:						
<u>NEW CASTLE COUNTY</u> Well 392403075362101	Local	well	number	Gc	14-()4
SUSSEX COUNTY						
)2
						02
MARYLAND:						
ANNE ARUNDEL COUNTY	Local	wall	number	22	ъd	110
						253
						100
						25
						54
BALTIMORE COUNTY	locar	WCII	manuber	nn	DI	105
						145
						146
						147
						149
						150
						151
						153
						154
						155
						156
						158
						159
						160
						161
						163
						164
						165
						167
						169
						170
						171
						172
						174
						175
						176
						177
						179
						180
						181
						182
						184
						185
						186 .501-504 187 .501-504
						187
						189
						190505-508
						191
						193
Well 392437076332105	Local	well	number	BA	Ее	194505-508
	Local	well	number	ΒA	Ее	195
<u>CALVERT COUNTY</u> Well 383323076371201	Logal	we11	numbor	C7	Dh	93
Well 383223076371201 Well 383244076354201						93
Well 382638076295901	Local	well	number	CA	Ed	53
Well 382343076302901						13
Well 382032076250701 CAROLINE COUNTY	Local	well	number	CA	Fd	87509-512
Well 390204075492301	Local	well	number	CO	Bd	57
Well 385557075481201	Local	well	number	CO	Cd	54
Well 385022075450201						75
Well 384648075515201 Well 384631075524901						34
	LUCAL	MCTT	mannoct	20	чu	20

Page

			QU	ALI'	TY	OF GROUND WATERContinued	Page
MARYLAND-Continued							
CARROLL COUNTY							
						179	
						180	
CECIL COUNTY	Local	weii	number	СГ	Ce	205	519-524
	Togol		number	0P	Do	124	E 2 E E 2 0
						123	
						90	
CHARLES COUNTY	LOCAL	werr	number	СĿ	cu	90	525-550
	Logal	woll	numbor	CU	Pa	17	521-524
Well 383422077114601							
Well 383118076433501							
Well 382456076562201						90	
DORCHESTER COUNTY	LUCAL	WEIT	number	Сп	ъс	90	22T-224
Well 383440076144701	Togol		number	DO	0.0	54	E 2 E E 2 0
Well 383133075580501						39	
Well 383333075580501 Well 383338075472301						41	
Well 382058076052001							
Well 382102076053801						18	
Well 381551076105601	Local	weit	number	DO	FC	27	535-538
FREDERICK COUNTY			,	_		C0	
Well 392545077303201						62	
Well 392554077320501							
Well 392053077113601							
Well 392157077102101	Local	well	number	FR	Eg	36	539-546
HARFORD COUNTY	_				-		
						169	
						92	
	Local	well	number	HA	Ec	49	547-552
HOWARD COUNTY							
	Local	well	number	HO	Cd	78	553-555
KENT COUNTY							
	Local	well	number	KE	Be	217	556-557
MONTGOMERY COUNTY							
Well 391113077125101							
Well 391114077114201	Local	well	number	MO	Ce	22	558-568
Well 391138077110101	Local	well	number	MO	Ce	23	558-568
Well 391102077101901	Local	well	number	MO	Ce	24	558-568
Well 391119077134601	Local	well	number	MO	Ce	25	558-568
Well 391004077132601	Local	well	number	MO	Ce	26	558-568
Well 390951077162301	Local	well	number	MO	Dd	26	558-568
Well 390743077160601	Local	well	number	MO	Dd	27	558-568
Well 390538077195701	Local	well	number	MO	Dd	28	558-568
Well 390948077145401	Local	well	number	MO	De	50	558-568
Well 390906077145601	Local	well	number	MO	De	51	558-568
Well 390533077125201	Local	well	number	MO	De	52	558-568
Well 390812077051001	Local	well	number	MO	Df	61	558-568
Well 390606077022201	Local	well	number	MO	Dg	34	558-568
PRINCE GEORGES COUNTY							
Well 384243076445301	Local	well	number	PG	Ef	23	569
OUEEN ANNES COUNTY							
	Local	well	number	ΟA	Db	14	570-572
Well 390022076191801							
						17	
Well 390033076184501						23	
Well 390117076191301						27	
Well 390201076182701						30	
Well 390201076182703						32	
Well 390023076174301						34	
Well 390119076191001						35	
Well 390023076174302						37	
Well 390138076064801						33	
Well 390221076031401						30	
Well 385825076202901						39 42	
Well 385820076202501							
Well 385554076213801						45	
Well 385825076201201						48	
Well 385505076215001						59	
Well 385701076212501				~		60	
Well 385812076202801						61	
Well 385718076211501						77	
Well 385718076211502						78	
Well 385757076200101						79	
Well 385757076200102						80	
Well 385718076211503						81	
Well 385705076212002						82	
Well 385847076184801	Local	well	number	QA	Eb	144	573-575

QUALITY OF GROUND WATER--Continued

Page

MARYLAND-Continued	
	-

	NNES COUNTY-Cont						
							155
					~		156
							157
	385853076081801						53
	385633076094701				~		54
	385925075585701						34
	385354076212701						49
	385024076222501				~		54
	385133076201201						58
	385254076201901						60
	385434076215601				~		63
	385454076214901						64
	385236076215201						66
	385023076222201				~		67
	385254076201301						72
	385227076215401						74
	385155076200401						75
Well	385433076105101	Local	well	number	QA	Fc	13
ST MARY	S COUNTY						
	382208076334301						47
Well	381800076444501	Local	well	number	SM	Dc	63
Well	381921076372601	Local	well	number	SM	Dd	70
Well	380833076303301	Local	well	number	SM	Fe	41
Well	380640076233901	Local	well	number	SM	Fg	65
	T COUNTY						
Well	381245075404002	Local	well	number	SO	Ве	114
TALBOT	COUNTY						
Well	385154076003801	Local	well	number	TA	Ве	91
							91
Well	385154076003801	Local	well	number	TA	Ве	
Well Well	385154076003801 385408076024701	Local Local	well well	number number	TA TA	Be Cb	92
Well Well Well	385154076003801 385408076024701 384602076163901	Local Local Local	well well well	number number number	TA TA TA	Be Cb Cc	92581-588 99581-588
Well Well Well Well	385154076003801 385408076024701 384602076163901 384901076133601	Local Local Local Local	well well well well	number number number number	TA TA TA TA	Be Cb Cc Cc	92581-588 99581-588 52581-588
Well Well Well Well Well	385154076003801 385408076024701 384602076163901 384901076133601 384946076002201	Local Local Local Local Local	well well well well well	number number number number	TA TA TA TA TA	Be Cb Cc Cc Cd	92581-588 99581-588 52581-588 53581-588 53581-588
Well Well Well Well Well Well	385154076003801 385408076024701 384602076163901 384901076133601 384946076002201 384815076064701	Local Local Local Local Local Local	well well well well well well	number number number number number	TA TA TA TA TA	Be Cb Cc Cc Cd Cd	92
Well Well Well Well Well Well	385154076003801 385408076024701 384602076163901 384901076133601 384946076002201 384815076064701 384649076054801	Local Local Local Local Local Local Local	well well well well well well	number number number number number number	TA TA TA TA TA TA	Be Cb Cc Cc Cd Cd Da	92
Well Well Well Well Well Well Well	385154076003801 385408076024701 384602076163901 3849401076133601 384946076002201 384815076064701 384649076054801 384312076201701	Local Local Local Local Local Local Local Local	well well well well well well well	number number number number number number number	TA TA TA TA TA TA TA	Be Cb Cc Cd Cd Cd Da Dc	92 .581-588 99 .581-588 52 .581-588 53 .581-588 64 .581-588 65 .581-588 50 .581-588 50 .581-588
Well Well Well Well Well Well Well Well	385154076003801 385408076024701 384602076163901 384901076133601 384946076002201 384815076064701 384649076054801 384312076201701 384440076104901	Local Local Local Local Local Local Local Local	well well well well well well well	number number number number number number number	TA TA TA TA TA TA TA	Be Cb Cc Cd Cd Cd Da Dc	92 .581-588 99 .581-588 52 .581-588 64 .581-588 65 .581-588 50 .581-588 57 .581-588
Well Well Well Well Well Well Well WICOMIC	385154076003801 385408076024701 384901076133601 384946076002201 384815076064701 384649076054801 384312076201701 384440076104901 384410076102001	Local Local Local Local Local Local Local Local Local	well well well well well well well well	number number number number number number number number	ТА ТА ТА ТА ТА ТА ТА	Be Cb Cc Cd Cd Da Dc Dc	92 .581-588 99 .581-588 52 .581-588 64 .581-588 65 .581-588 50 .581-588 57 .581-588
Well Well Well Well Well Well Well WICOMIC Well	385154076003801 385408076024701 384901076133601 384946076002201 384815076064701 384312076201701 384440076104901 384400076102001 <u>0 COUNTY</u> 382328075411301	Local Local Local Local Local Local Local Local Local	well well well well well well well well	number number number number number number number number	ТА ТА ТА ТА ТА ТА ТА	Be Cb Cc Cd Cd Da Dc Dc	92 .581-588 99 .581-588 52 .581-588 53 .581-588 64 .581-588 65 .581-588 50 .581-588 57 .581-588 58 .581-588 58 .581-588
Well Well Well Well Well Well Well WiCOMIC Well	385154076003801 385408076024701 384901076133601 38494007602201 384946076002201 384815076064701 384649076054801 384312076201701 384440076104901 384400076102001 <u>0 COUNTY</u> 382328075411301 <u>ER COUNTY</u>	Local Local Local Local Local Local Local Local Local	well well well well well well well well	number number number number number number number number	TA TA TA TA TA TA TA TA	Be Cb Cc Cd Cd Da Dc Dc Cd	92
Well Well Well Well Well Well Well WICOMIC Well WORCEST Well	385154076003801 385408076024701 384901076133601 384946076002201 384815076064701 384649076054801 384312076201701 384440076104901 384010076102001 <u>0 COUNTY</u> 382328075411301 <u>ER COUNTY</u> 382635075030602	Local Local Local Local Local Local Local Local Local	well well well well well well well well	number number number number number number number number number	TA TA TA TA TA TA TA TA WI WO	Be Cb Cc Cd Cd Da Dc Dc Cd Cd	92
Well Well Well Well Well Well Well WICOMIC Well WORCEST Well Well Well	385154076003801 385408076024701 384901076133601 384901076133601 384946076002201 384815076064701 384649076054801 384410076102010 0 COUNTY 382328075411301 <u>ER COUNTY</u> 382258075030602 382638075033001	Local Local Local Local Local Local Local Local Local Local	well well well well well well well well	number number number number number number number number number number	TA TA TA TA TA TA TA TA WI WO WO	Be Cb Cc Cd Cd Da Dc Dc Cd Cd Ah	92 .581-588 99 .581-588 53 .581-588 64 .581-588 65 .581-588 57 .581-588 58 .581-588 27 .581-588 27 .589-590 36 .591-601 38 .591-601
Well Well Well Well Well Well Well <u>WICOMIC</u> Well WORCEST Well Well Well	385154076003801 385408076024701 384901076133601 384946076002201 384815076064701 384649076054801 384312076201701 38440076104901 384010076102001 <u>0 COUNTY</u> 382328075411301 <u>ER COUNTY</u> 382635075030602 382638075033001 382305075150001	Local Local Local Local Local Local Local Local Local Local Local Local	well well well well well well well well	number number number number number number number number number number	TA TA TA TA TA TA TA TA WI WO WO	Be Cb Cc Cd Cd Da Dc Cd Cd Ah Ah Bf	92
Well Well Well Well Well Well Well WORCEST Well Well Well Well Well	385154076003801 385408076024701 384901076133601 384946076002201 384815076064701 384312076201701 384440076104901 384010076102001 <u>0 COUNTY</u> 382328075411301 <u>ER COUNTY</u> 382635075030602 382638075033001 382443075033501	Local Local Local Local Local Local Local Local Local Local Local Local	well well well well well well well well	number number number number number number number number number number number number	TA TA TA TA TA TA TA TA WI WO WO WO WO	Be Cb Cc Cc Cd Cd Da Dc Dc Cd Cd Ah Ah Bf Bh	92
Well Well Well Well Well Well Well WORCEST Well Well Well Well Well Well Well	385154076003801 385408076024701 384602076163901 384901076133601 384946076002201 384815076064701 384312076201701 384440076104901 384010076102001 <u>O COUNTY</u> 382328075411301 <u>ER COUNTY</u> 3826350750300602 382638075033001 382305075150001 382215075041901	Local Local Local Local Local Local Local Local Local Local Local Local Local Local	<pre>well well well well well well well wel</pre>	number number number number number number number number number number number number number number	TA TA TA TA TA TA TA TA WI WO WO WO WO	Be Cb Cc Cc Cd Da Dc Dc Cd Cd Ah Ah Bf Bh Bh	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Well Well Well Well Well Well WICOMIC Well WORCEST Well Well Well Well Well Well Well Wel	385154076003801 385408076024701 384901076133601 384946076002201 384815076064701 384649076054801 384312076201701 384440076104901 384010076102001 <u>O COUNTY</u> 382328075411301 <u>ER COUNTY</u> 382635075030602 382638075033001 382305075150001 382443075033501 382215075041901 382215075041902	Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local	<pre>well well well well well well well wel</pre>	number number number number number number number number number number number number number	TA TA TA TA TA TA TA TA WI WO WO WO WO WO	Be Cb Cc Cc Cd Da Dc Dc Cd Cd Ah Ah Bf Bh Bh Bh	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Well Well Well Well Well Well Well Well	385154076003801 385408076024701 384901076133601 384946076002201 384815076064701 384649076054801 384412076201701 384410076102001 0 COUNTY 382328075411301 ER COUNTY 382365075030602 382635075030602 38243075033001 382443075033501 382443075033501 382215075041902 382215075041903	Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local	well well well well well well well well	number number number number number number number number number number number number number number number number	TA TA TA TA TA TA TA TA WI WO WO WO WO WO WO	Be Cb Cc Cd Cd Da Dc Dc Cd Ah Ah Bh Bh Bh Bh	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Well Well Well Well Well Well Well Well	385154076003801 385408076024701 384901076133601 384946076002201 384815076064701 384649076054801 384312076201701 38440076104901 384010076102001 <u>O COUNTY</u> 382328075411301 <u>ER COUNTY</u> 3826350750300602 38236375033001 382305075150001 382215075041901 382215075041901 382125075041903 382127075043802	Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local	<pre>well well well well well well well wel</pre>	number number number number number number number number number number number number number number number number	TA TA TA TA TA TA TA TA TA WI WO WO WO WO WO WO WO WO	Be Cb Cc Cd Cd Da Dc Cd Cd Ah Ah Bh Bh Bh Bh Bh Bh	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Well Well Well Well Well Well Well Well	385154076003801 385408076024701 384602076163901 384946076002201 384946076002201 384815076064701 384312076201701 384440076104901 384010076102001 <u>O COUNTY</u> 382328075411301 <u>ER COUNTY</u> 382635075030001 382305075150001 382215075041901 382215075041902 382215075041902 3822127075043802 382127075043802	Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local	<pre>well well well well well well well wel</pre>	number number number number number number number number number number number number number number number number number number	TA TA TA TA TA TA TA TA TA WI WO WO WO WO WO WO WO WO WO	Be Cb Cc Cd Da Dc Cd Cd Ah Ah Bf Bh Bh Bh Bh Bh Bh	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Well Well Well Well Well Well Well WICOMIC Well Well Well Well Well Well Well Wel	385154076003801 385408076024701 384901076133601 384946076002201 384815076064701 384312076201701 384440076104901 384410076102001 <u>0 COUNTY</u> 382328075411301 <u>ER COUNTY</u> 382635075030602 382635075030602 38245075033001 382215075041901 382215075041901 382215075041903 3822127075043804 381541075271401	Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local	<pre>well well well well well well well wel</pre>	number number number number number number number number number number number number number number number number number number number	TA TA TA TA TA TA TA TA WI WO WO WO WO WO WO WO	Be Cb Cc Cd Da Dc Cd Cd Ah Ah Bf Bh Bh Bh Bh Bh Cc	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Well Well Well Well Well Well Well Well	385154076003801 385408076024701 384901076133601 384901076133601 384946076002201 384815076064701 384649076054801 384312076201701 38440076104901 384010076102001 <u>O COUNTY</u> 382328075411301 <u>ER COUNTY</u> 38235075030602 382638075033001 382305075150001 382215075041901 382215075041902 382215075041903 382127075043802 382127075043802 382127075043802 382127075043802 382127075043802	Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local Local	<pre>well well well well well well well wel</pre>	number number number number number number number number number number number number number number number number number number number number	TA TA TA TA TA TA TA TA WI WO WO WO WO WO WO WO WO WO	Be Cb Cc Cd Cd Da Dc Cd Cd Ah Ah Bh Bh Bh Bh Bh Bh Cc Cg	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Well Well Well Well Well Well Well Well	385154076003801 385408076024701 384901076133601 384946076002201 384815076064701 384312076201701 384440076104901 384410076102001 <u>0 COUNTY</u> 382328075411301 <u>ER COUNTY</u> 382635075030602 382635075030602 38245075033001 382215075041901 382215075041901 382215075041903 3822127075043804 381541075271401	Local Local	<pre>well well well well well well well wel</pre>	number number	TA TA TA TA TA TA TA TA TA WI WO WO WO WO WO WO WO WO WO	Be Cb Cc Cd Cd Da Dc Cd Ah Ah Bh Bh Bh Bh Bh Bh Bh Cc Cg Cg	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

WATER RESOURCES DATA - MARYLAND, DELAWARE, AND WASHINGTON, D.C., WATER YEAR 2003

VOLUME 2. GROUND-WATER DATA

INTRODUCTION

The Water Resources Discipline of the U.S. Geological Survey, in cooperation with State and local agencies, obtains a large amount of data pertaining to the water resources of Maryland, Delaware, and Washington, D.C. each water year. These data, accumulated during many water years, constitute a valuable data base that can be used to develop an improved understanding of the water resources of the States and Washington, D.C. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in the report series entitled **"Water Resources Data - Maryland, Delaware, and Washington, D.C."**

This series of Water Resources Data reports for Maryland, Delaware, and Washington, D.C. began with the 1961 water year report that only contained data relating to the quantity of surface water. For the 1964 water year, a similar report was published, and it contained data relating to surface water, and ground-water quality. Beginning with the 1975 water year, the report was changed to its present format, in one volume, including data on surface-water quantity, surface- and ground-water quality, and groundwater levels. For the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, surface-water and ground-water quality, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River through Patuxent River Basins) and Volume 2 contained data on the Monogahela and Potomac River Basins. Since the 1991 water year, Volume 1 has contained ground-water levels and ground-water quality data,

This report is Volume 2 of the 2003 water year Water Resources Data report series and includes records of water levels and water quality of ground-water wells and springs. It contains discharge data records for 4 springs, water levels at 386 observation wells, and water-quality analyses for 185 wells. The locations of ground-water level wells are shown in figures 6 and 7. The locations of ground-water quality sites are shown in figure 8. These data represent the part of the National Water Data System collected by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Maryland, Delaware, and Washington, D.C.

Prior to the introduction of this series and for several water years concurrent with it, water resources data for Maryland, Delaware, and Washington, D.C. were published in U.S. Geological Survey Water-Supply Papers. Data on water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." These Water-Supply Papers may be found in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey Branch of Information Services, Box 25286, Federal Center, Denver, CO 80225.

Water Resources Data reports are published annually by the U.S. Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water Resources Data Report MD-DE-DC-03-2." For archiving and general distribution, the reports for the 1971-74 water years also are identified as water resources data reports. These water resources data reports are for sale in paper copy or on microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices for ordering specific report, may be obtained from the District Chief at the address given on the bottom of the title page or by telephone at (410)238-4200.

COOPERATION

The U.S. Geological Survey and Maryland State agencies have had cooperative agreements for the collection of water-resource records from 1896 to 1909 and since 1924. Similar cooperative agreements have existed between the Survey and Delaware State agencies since 1943. Organizations that assisted in the funding or services for the preparation of this report through cooperative agreements with the U.S. Geological Survey or through the Maryland Geological Survey and Delaware Geological Survey are:

Maryland Geological Survey, Emery T. Cleaves, Director

Delaware Geological Survey, John H. Talley, Director and State Geologist

Delaware Department of Transportation, Nathan Hayward III, Secretary

Delaware Department of Natural Resources and Environmental Control, John A. Hughes, Secretary of Natural Resources and Environmental Control

District of Columbia Department of Health, Environmental Health Administration, Bureau of Environmental Quality, Water Quality Division

Maryland Department of the Environment, Kendl Philbrick, Secretary

Maryland Department of Natural Resources, Power Plant Assessment Program, Peter Dunbar, Director

Anne Arundel County Department of Public Works, Water Operations, Matthew Mirenzi, Regional Manager

Anne Arundel County Land Use and Environmental Office, Betty Dixon, Land Use Officer

Maryland-National Capital Park and Planning Commission, Nazin Baig, Environmental Planning Coordinator

Calvert County Department of Public Works, Dan Williams, Bureau Chief

Charles County Department of Planning and Growth Management, Roy E. Hancock, Director

Interstate Commission on the Potomac Basin, Joseph Hoffman, Executive Director

Town of Ocean City, Maryland Water Department, Ronald Ellis, Superintendent

U.S. Air Force, Dover Air Force Base, 436th Civil Engineer Squadron, Environmental Flight, Jo Anne Deramo, Restoration Program Manager

U.S. Environmental Protection Agency, National Risk Management Laboratory, Subsurface Protection and Remediation Division, Stephen G. Schmelling, Acting Director

U.S. Navy, Naval Air Station Patuxent River, Civil Engineer Corps, Captain Charles C. Miller, Public Works Officer

Organizations and projects that provided data included in this report are acknowledged in the Site Instrumentation and Remarks description in the Ground-Water Levels section.

SUMMARY OF GROUND-WATER HYDROLOGIC CONDITIONS

This report presents spring discharges, well water levels and water-quality analyses from ground-water studies in Maryland, Delaware, and Washington, D.C. The following ground-water hydrologic summary for the 2003 water year includes data collected from the Maryland, Delaware, and Washington, D.C. cooperative water-level monitoring networks.

Ground-water use in Maryland and Delaware continues to increase with population growth, especially with more people living in rural areas. Growth areas in Southern Maryland, and the northern parts of the Delmarva Peninsula of both Maryland and Delaware are causing water users to withdraw ground water from deeper aquifers. As ground-water users' demands increase, water-level data can provide critical information on how to properly evaluate, plan and manage this natural resource. Water-table monitoring wells can alert users during periods of drought and the information they provide can assist with implementing water-use conservation measures. Confined aquifers, mostly used in the Coastal Plain, provide large quantities of water for municipalities, industry, irrigation, and individual dwellings. Water-level monitoring wells provide the means to track ground-water withdrawal effects on Coastal Plain aquifers, and data on how best to manage water use.

The 2003 water year had higher than normal precipitation across Maryland, Delaware, and Washington, D.C., unlike the previous water year. Precipitation totals reported by the National Oceanic and Atmospheric Administration (NOAA) ranged from approximately 64 inches in Maryland to about 63 inches in Delaware. The average annual precipitation in the Maryland, Delaware, and Washington, D.C. area as observed by NOAA from 1961 through 1990 ranged from under 36 to over 52 inches. The six key water-table wells shown in figure 1 give an overview of how ground-water levels responded to precipitation across the region during the 2003 water year. These graphs show the average, minimum, maximum and 2003 water-year monthly water levels for the six key water-table wells.

In general, the 2003 water year monthly water levels were above the long-term average (fig. 1). Generally the monthly water levels reached a low in late fall or early winter. Higher than normal amounts of precipitation during water year 2003, including Tropical Storm Isabel, caused water levels to rise in these key observation wells and stay above the long-term average.

In Southern Maryland and the northern area of the Delmarva Peninsula, where the confined Coastal Plain aquifers are the main source for municipal water supplies, water levels continued to decline (fig. 2). Additional ground-water withdrawal from irrigation wells may compound the amount of drawdown on the Delmarva Peninsula.

2

WATER RESOURCES DATA - MARYLAND, DELAWARE, AND WASHINGTON, D.C., WATER YEAR 2003

Ground-Water Levels and Spring Discharge

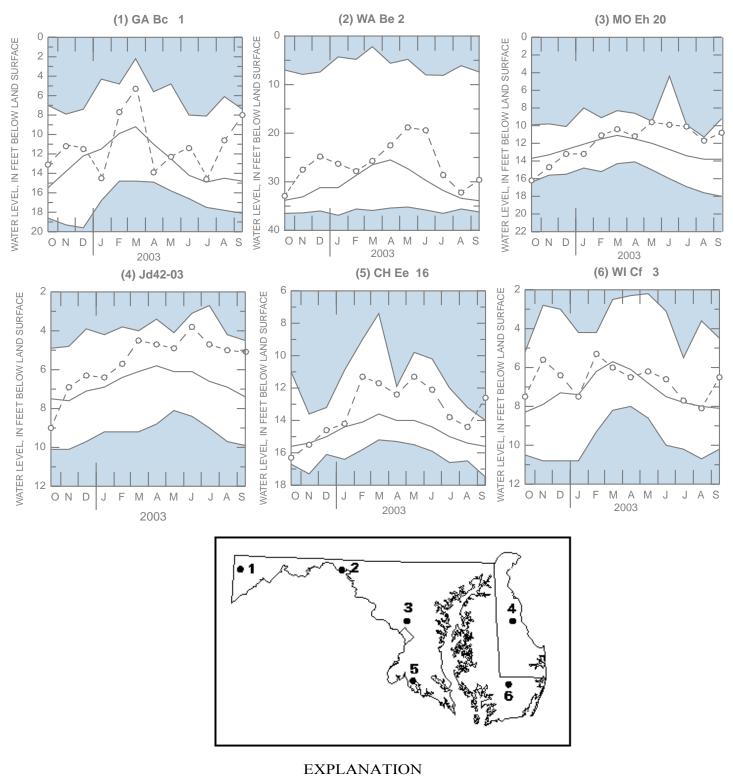
The Maryland, Delaware, and Washington, D.C. area is divided into several physiographic provinces that control ground-water movement through geologic processes related to geomorphology, lithology, and structure. Depending on the amount of ground-water movement through fracture and joint systems and sediments, wells can supply small individual households or larger water users, such as communities, towns, industry, and agriculture. Moving from west to east, the five physiographic provinces in the region are the Appalachian Plateau, the Valley and Ridge, the Blue Ridge, the Piedmont, and the Coastal Plain. Ground-water level conditions for water year 2003 are summarized below by physiographic province.

Appalachian Plateau. -- Ground-water level trends closely paralleled precipitation events in the water-table well GA Bc 1, in Garrett County, Maryland (fig. 1). The ground-water levels in this well for the 2003 water year started just above average and fell below to below average in January. Due to spring recharge water levels rose to a high in March that was above average levels. The water levels then dropped to about average values until August and September when due to higher than normal precipitation water levels rose above average levels.

Valley and Ridge. -- Water-table levels were slightly above the average throughout the 2003 water year in Collection of Basic Records (CBR) well WA Be 2 (figs. 1 and 3). Other wells in Washington County, WA Bk 25 and WA Ch 106, showed a similar pattern with increases in water levels during winter to early spring. Spring WA Di 103 increased flows from a low at the start of the water year to a fairly constant flow throughout the 2003 water year.

Blue Ridge. -- The water-level trend as recorded by water-table wells FR Bd 96 and WA Dj 2 showed water levels were low at the start of the water year and increased due to above normal precipitation. Spring FR Fb 12 responded to rain storms in March and April, with an increase in discharge due to heavy rain events in August and September.

Piedmont. -- Water-table levels were below normal at the start of the 2003 water year in the Piedmont Physiographic Province and increased to above normal by the end of the water year. Well MO Eh 20 (fig. 1), reflects the general trend in water levels during the water year 2003. Well CL Bf 1 in Hampstead, Maryland started the water year at a low in October and rose to a high in June.


Triassic - Jurassic Gettysburg and Culpeper Basins.--Monitoring wells in the Triassic Basins include one well in the Gettysburg Basin in northeastern Frederick County, Maryland (FR Af 27), and four wells in the Culpeper Basin in northwestern Montgomery County, Maryland. These wells are in confined aquifers that yield large volumes of water and are used as a municipal sources. The Dickerson well (MO Cb 26) rose from a low in October and remained flowing throughout much of the 2003 water year.

Coastal Plain. -- Water levels in water-table monitoring wells (Jd 42-03, CH Ee 16, and WI Cf 3) were about average to higher than average throughout the 2003 water year (fig. 1). Water-table levels on the western shore of the Chesapeake Bay were at average to above average during the water year. On the eastern Shore of Maryland, water levels were similar to those on the western shore.

Confined aquifers on the western shore of the Chesapeake Bay lie close to their surfacerecharge zones in the area near the contact with the Piedmont Physiographic Province. These aquifers receive most of their ground-water recharge from this outcrop belt. This area is heavily populated because of its close proximity to the Baltimore-Washington and Annapolis metropolitan areas. These areas rely exclusively on ground-water supplies, except for the Greater Baltimore area, which is supplied by surface-water reservoirs, and the northwestern part of Prince Georges County, where the Washington Suburban Sanitary Commission supplies surface water from the Potomac and Patuxent Rivers. Water-level monitoring wells in Anne Arundel County, Maryland recorded continued ground-water level declines in the Patuxent aquifer throughout the County. Ground-water level declines continue to occur in the Magothy aquifer near Annapolis, and the Aquia aquifer in southern Anne Arundel County. Water levels in the Aquia aquifer in Calvert County continue to decline (fig. 2, well CA Gd 6). The Magothy, Upper Patapsco, and Lower Patapsco ground-water level declines continued for Prince Georges County. In St. Marys County, Maryland water level declines continued in the Piney Point, Aquia, and Upper Patapsco aquifers.

Water Quality -- Saltwater Intrusion Monitoring Projects

Kent Island Ground-Water Monitoring Project.--This project is a continuation of ground-water level and chloride monitoring that was started in 1983, to observe chloride changes through ground-water use in the Aquia aquifer on Kent Island, Queen Annes County, Maryland due to saltwater intrusion from Chesapeake Bay. A total of 14 Aquia aquifer monitoring wells are currently in operation along with 3 monitoring wells in the deeper confining aquifers. Chloride and bromide water-quality analyses are collected yearly from 13 of the water-level monitoring wells and approximately 25 domestic wells. Water resources managers have expanded the water-level monitoring kent Island ground-water monitoring network, a county wide ground-water-level monitoring network will be more effective in managing this natural resource.

Unshaded areas show range between highest and lowest month-end water levels of record.

– – – – 2003 Water Year

— Average

Figure 1.--Monthly ground-water levels at key observation wells.

WATER RESOURCES DATA - MARYLAND, DELAWARE, AND WASHINGTON, D.C., WATER YEAR 2003

Ocean City Ground-Water Monitoring Project.--Saltwater intrusion in ground-water supplies for Ocean City is a water-quality concern. Ocean City is a major Atlantic Coast summer beach resort where populations can increase to over 300,000 on any given day during the summer months, in contrast to the 10,000 permanent residents year round. Ocean City exclusively dominates the southern part of the barrier island of Fenwick Island in Maryland. The main water-producing aquifers in this region are the Ocean City and Manokin aquifers, with the Pocomoke aquifer limited to individual domestic wells mostly on the mainland. There are 24 water-level monitoring wells, including 6 that are equipped with digital waterlevel recorders. Chloride and bromide samples are collected at the end of the summer tourist season so that the highest possible concentrations from six monitoring wells and six water supply wells can be evaluated. The saltwater/freshwater interface is expected to have migrated its farthest distance east due to the increased summer ground-water use.

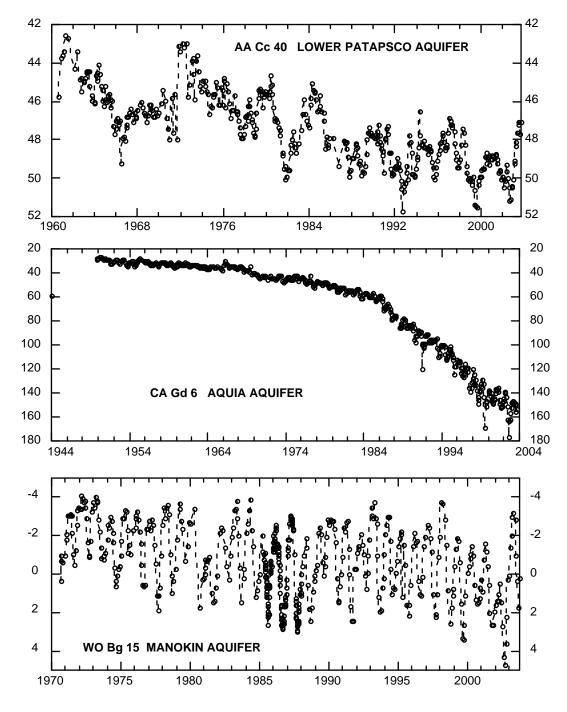
SPECIAL NETWORKS AND PROGRAMS

The ground-water Collection of Basic Records (CBR) wells include the **Climatic Response Network** (**CRN**) National network that provides a framework for collecting and disseminating ground-water level data characterizing climatic variability. The network fills a unique National need and can be used for local, regional, and National investigations of ground-water response to droughts and other climatic effects. The figure 3.

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program designed to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

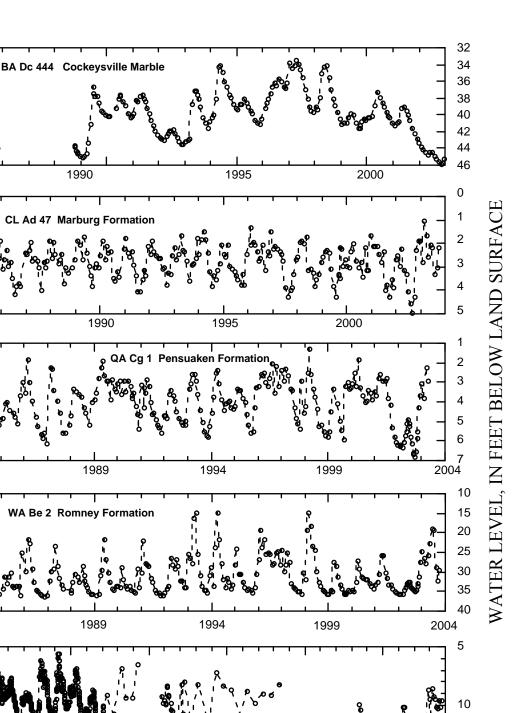
Assessment activities are being conducted in more than 50 river basins and aquifer systems that represent a wide range of environmental settings nationwide and account for a large percentage of the Nation's water use. A wide array of chemical constituents are being measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision-making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and National interest.

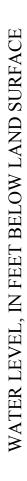
The NAWQA programs in the Maryland, Delaware, and Washington, D.C. District consist of the Potomac River Basin and Delmarva Peninsula study units of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program were combined into a single project, the Potomac-Delmarva Peninsula (PODL) study in 2001. The NAWQA program emphasizes an understanding of the processes governing water quality, trends in water quality, and the relation of these trends to ecological conditions. The goals will be achieved through integrated assessments of hydrology, geology, and biology. The new project began in 2001 and will complete its current cycle in 2007. During the study period, and afterwards, specific surface-water and ground-water sites will be monitored continuously for analysis of water-quality trends.


EXPLANATION OF THE RECORDS

The ground-water levels and quality-of-ground-water records published in this report are for the 2003 water year that began October 1, 2002 and ended September 30, 2003. A calendar of the water year is provided on the inside of the front cover. The records contain ground-water-level data and waterquality data for ground-water. The locations of the ground-water sites where the data were collected are shown in figures 6, 7, and 8. The following sections of text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

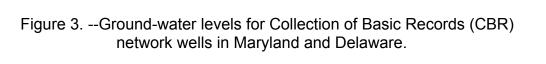
Station Identification Numbers


Each well in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given well or spring and to no other. The number usually is assigned when a well is first established and is retained for that well or spring indefinitely. The system used by the U.S. Geological Survey to assign identification numbers for ground-water well sites is based on geographic location. The "latitude- longitude" system is used for wells.



WATER LEVEL, IN FEET BELOW LAND SURFACE

Figure 2. --Ground-water levels in selected observation wells in confined Coastal Plain aquifers in Maryland.


5 <u>–</u> 1985

CL Ad 47 Marburg Formation

ያ

Pf24-02 Beaverdam Sand

WA Be 2 Romney Formation

WATER RESOURCES DATA - MARYLAND, DELAWARE, AND WASHINGTON, D.C., WATER YEAR 2003

Latitude-Longitude System

The identification numbers for wells are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells (or springs) or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description as the correct latitude and longitude coordinates. (See fig. 4 below.)

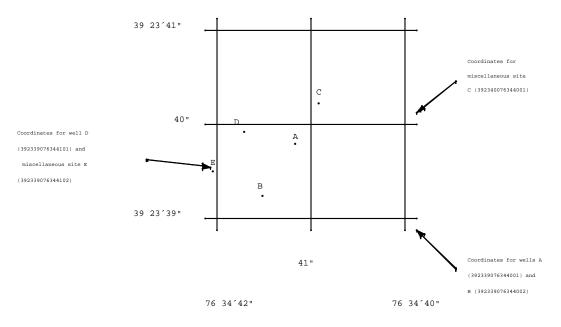
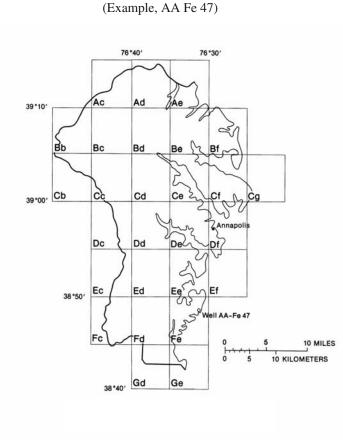


Figure 4.--System for numbering wells and miscellaneou sites (latitude and longitude).

Well-Numbering System


Maryland

Wells in Maryland are also identified on the basis of a second numbering system established by the Maryland Geological Survey. The first two letters of the well number are the county prefix (for example, AL for Allegany). The second part of the well number consists of two letters that designate a 5-minute quadrangle within the county; the first letter (a capital letter) denotes a 5-minute segment of latitude from north to south, and the second letter (lower case) denotes a 5-minute segment of longitude from west to east. The wells are numbered sequentially within each 5-minute quadrangle. For example, well AL Ah 1 is the first well inventoried within the Ah 5-minute quadrangle in Allegany County. Baltimore City well numbers are based on 1-mile grids, with reference to the Washington Monument as the center. Thus, well 7S4E-1 is in the grid cell 7 miles south and 4 miles east of the Washington Monument, and is the first well inventoried in that grid cell.

Delaware

Delaware wells are identified by a numbering system instituted by the Delaware Geological Survey. The State is divided into 5-minute quadrangles of latitude and longitude. The quadrangles are lettered north to south with capital letters and west to east with lower case letters. Each 5-minute quadrangle is further divided into 25 1-minute blocks, which are numbered in sequence from north to south (fig. 5). The identity of a well is established by prefixing the sequence number with an upper and lower case letter followed by two numbers to designate the 5-minute and 1-minute blocks, respectively, in which the well is located. For example, well number Cb41-03 is the third well to be inventoried in the 1-minute block 41 that has coordinate "Cb41".

8

ANNE ARUNDEL COUNTY, MARYLAND

WELL PREFIXES OF MARYLAND COUNTIES

Allegany	AL	Howard	HO
Anne Arundel	AA	Kent	KE
Baltimore	BA	Montgomery	MO
Calvert	CA	Prince Georges	PG
Caroline	CO	Queen Annes	QA
Carroll	CL	St. Marys	SM
Cecil	CE	Somerset	SO
Charles	CH	Talbot	TA
Dorchester	DO	Washington	WA
Frederick	FR	Wicomico	WI
Harford	HA	Worcester	WO
Garrett	GA		

b c d а e 75 45 75*30 A SUBDIVISION OF BLOCK Gd в 39 .45' 11 12 13 14 15 C 21 22 23 24 25 31 32 33 34 35 D ERSE 41 42 43 44 45 CASTLE Е 51 52 53 54 55 39*30' F COUNTY Well Gd 34-G ARYLAND н 39*15 I D 0 5 10 MILES KENT DELAWARE J BAY 5 10 KILOMETERS 0 COUNTY κ 39 *00' L Harrington lilfo м N 38 45' SUSSEX 0 ANTIC COUNT eaford Ρ DCEAN Laurel 0 38*30' Sel R MARYLAND

DELAWARE

(Example Gd 34-2)

WASHINGTON, D.C.

а b С d e f g h 1 i

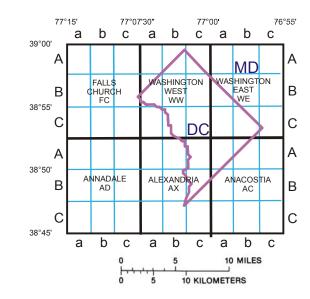


Figure 5. -- Well naming system used in Maryland, Delaware, and Washington, D.C.

Washington, D.C.

Ground-water studies by the U.S. Geological Survey apply a numbering system using the six 7 1/2minute quadrangle maps that cover parts of Washington, D.C. Each quadrangle is divided into nine rectangles by lines drawn at the 2 1/2-minute intervals. The rectangles are lettered A, B, and C from top to bottom, and a, b, and c from west to east. An upper case single or double letter is designated for the quadrangle name as follows:

FC	Falls Churc	ch	AN	 Annandale
WW	Washington	West	AX	 Alexandria
WE	Washington	East	AC	 Anacostia

The wells and springs are numbered sequentially in each quadrangle. Well WW-Cc 12 is the twelfth well inventoried in the southeastern most rectangle designated as Cc, in the Washington West.

Records of Ground-Water Levels

Water-level data and spring discharges from the Maryland and Delaware Ground-Water-Level Monitoring Networks, and observation wells from ground-water projects are reported. These data are intended to provide historical water-level information for ground-water management, and identify ground-water conditions in project areas. The observation-well networks were established to observe ground-water level fluctuations through time and to identify areas of man-induced and natural climatic stress on the ground-water-flow system. The locations of the State network spring and observation wells in Maryland and Delaware are shown on Figure 6. The locations of project wells are shown on Figure 7.

Data Collection and Computation

Measurements of water levels are made in many types of water wells under various conditions. These methods of measurement are standardized to incorporate continuous precision. The equipment and measuring techniques used at each observation well ensure that the measurements at each well are of consistent accuracy and reliability.

The water-level data tables and hydrographs are presented in alphabetical order by counties. The primary identification number is the State well number that appears in the upper left hand corner. The secondary identification number is the 15-digit site identification number (see Latitude-Longitude System section on page 8).

Water levels are measured manually by steel tape or by an electric tape (meter) approximately every 4 to 6 weeks; some wells are equipped with continuous digital water-level recorders to observe daily fluctuations. The water levels are referenced to the nearest hundredth of a foot below land-surface datum (lsd) and/or above sea level. Land-surface datum is a datum plane that is approximately at land surface at each well. The elevation of the land-surface datum and the height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels for wells equipped with graphic or digital recorders report the daily maximum and minimum values.

Data Presentation

A description of each observation well precedes the water-level tables and hydrographs. The following information is given in the description:

SPRING or WELL NUMBER.--(See Well-Numbering System section on page 8.)

SITE ID.--A 15-digit number: the first 6 digits are the latitude, the next 7 digits are the longitude, and the last 2 digits refer to the sequence number for identifying one or more wells at a particular latitude and longitude. The site ID is the best location at the time of inventory. The actual latitude and longitude may be slightly different as a result of more up-to-date knowledge of location. The site ID is basically used as an identification number and not an exact location. (See Latitude-Longitude System section on page 8.)

PERMIT NUMBER.--The permit number is the State permit number required for drilling wells in Maryland and Delaware. Upon completion of the well, the driller must submit a completion report which documents specific data on the construction of the well. This document also reports the pumpage results in terms of pumping period, yield as gallons per minute, and drawdown.

LOCATION.--The location is the latitude and longitude in the appropriate designation of degrees, minutes, and seconds. The hydrologic unit is a code for the river basin where the well is located (U.S. Geological Survey, Hydrologic Unit Map-1974 States of Maryland and Delaware). A brief local description of the location is also given along with the well-owner's name.

AQUIFER.--The aquifer is the geologic formation from which the well receives its water supply. Each aquifer is identified by its geologic age and the U.S. Geological Survey Ground Water Site Inventory (GWSI) data-base aquifer code.

WELL CHARACTERISTICS.--This describes the type of well, the physical characteristics of the well, and includes a summary of the known construction information.

INSTRUMENTATION.--This provides information on the frequency of measurement of well water levels and the water-level equipment or spring discharge equipment used.

DATUM.--This lists the altitude of land surface above sea level at the well to the nearest 10 feet as determined from a 7 1/2-minute quadrangle topographic map, or to the nearest hundredth or tenth of a foot as determined from surveying. The measuring point (MP) is the distance above or below the land surface at the point at which the water-level measurements are made.

REMARKS .-- This section gives important miscellaneous data relevant to the spring or well site.

PERIOD OF RECORD.--The period of record lists the beginning and ending month and year of waterlevel record or "current year" if the records are to be continued into the following year.

EXTREMES FOR PERIOD OF RECORD.--This entry identifies the highest and lowest water levels during the period of record, either as land-surface datum or sea level, and the dates of their occurrence.

Spring Discharge Tables

A table of discharge in gallons per minute follows the station description for each spring. The data appears in a table format showing date and discharge. The discharge measurements are measured volumetrically or by use of a flow meter as indicated in the INSTRUMENTATION section.

Water-Level Tables

A table of water levels follows the station description for each well. Water levels are reported in either of the following table formats:

Hand-held measurements.--If the data are collected by hand-held measurements, the data appear in a table format of date and water level with the datum in reference to land surface or sea level. These values are reported to the nearest hundredth of a foot

Recorder.--Water levels are presented in a two-page 6-month format by water year with columns for daily maximums and minimums. These data are reported in reference to either land surface or sea level datum. The daily maximum column referenced to land-surface data represents the lowest daily water level recorded. The daily minimum column referenced to land surface data represents the highest water level recorded. For data referenced to sea level, the daily maximum column represents the highest daily water level recorded. The daily minimum column represents the lowest daily water level are represented by dashes in the table.

Hydrographs

The hydrographs are a graphic display of water-level fluctuations over a period of time. In this report, a 5-year hydrograph is shown starting October 1, 1998 through September 30, 2003. Hydrographs are either referenced to land surface or sea level datum. Each measurement is indicated by a circle and connected with a dashed line to indicate the trend from one measurement to the next. The trend line should be interpreted as a general direction of water-level movement. Actual water levels may deviate from this line. The trend line is not drawn if the measurements are greater than 60 days apart. Recorder data are graphed as a continuous line using the lowest water level recorded for each day. Missing data are indicated by a blank space. Missing data result from recorder malfunctions, battery or clock failures, and mechanical problems related to the response of water-level movement in a well. Spring hydrographs are a graphic display of total volumetric flow at the time of measurement in gallons per minute.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that, for most sampling sites, they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes slowly; therefore, for most purposes, one annual sampling, or only a few samples taken at infrequent intervals during the year, are sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate or chloride concentrations. In special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes. The locations of water-quality wells in Maryland and Delaware are shown in Figure 8.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as part of groundwater studies in specific areas. Consequently, a number of chemical analyses are presented for some Counties, but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality District-wide. This can be attained only by considering records for this year in context with similar records obtained for these and other springs and wells in earlier years.

Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey Techniques of Water-Resources Investigations (TWRIS) publications referred to in the "On-site Measurements and Sample Collection" and the "Laboratory Measurements" sections in this report. In addition, TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. These methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

Data Presentation

The records of ground-water quality are published in a section titled **QUALITY OF GROUND WATER** immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by a well or spring number (**Well Number**). The prime identification number for wells or springs sampled is the 15-digit (**Site ID**) number derived from the latitude-longitude locations. The site ID includes a two-digit sequence number for use at locations having multiple sites. Under the heading **Station Type**, wells are identified by the abbreviation GW for ground water and SP for springs. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water.

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
Е	Estimated value.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
K	Results based on colony count outside the acceptance range (non-ideal colony count).
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted).
D	Biological organism count equal to or greater than 15 percent (dominant).
&	Biological organism estimated as dominant.
V	Analyte was detected in both the environmental sample and the associated blank.
М	Presence of material verified but not quantified.

WATER-QUALITY CONTROL DATA

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District are described in the following section. Procedures have been established for the storage of water-quality-control data within the U.S. Geological Survey. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analyses of interest. Any measured value for an analyte (a specific component measured in a chemical analysis) found in a blank sample that was absent in the blank solution, is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this District are:

Field Blank - a blank solution that is subjected to all aspects of sample collection, field-processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank - a blank solution that is processed through the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank -a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank - a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank - a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank - a blank solution that is treated with the sampler preservatives used for an environmental sample.

Reference Samples

A Reference sample is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to insure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner so that the samples are considered to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this District are:

Concurrent sample - a type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating collection of samples into two or more compositing containers.

Sequential sample - a type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample - a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

Concurrent sample - a type of spike sample that is collected at the same time with the same sampling and compositing devices then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

Split sample - a type of spike sample in which a sample is split into subsamples contemporaneous in time and space then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

ACCESS TO USGS DATA

The U.S. Geological Survey (USGS) is the principal Federal water-data agency and, as such, collects and disseminates about 70 percent of the water data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. As part of the Geological Survey's program of releasing water data to the public, a large-scale computerized system has been developed for the storage and retrieval of water data collected through its activities. The National Water Information System (NWIS) an updated version of the former National Water Data Storage and Retrieval System (WATSTORE) provides an effective and efficient means for the processing and maintenance of water data collected through the activities of the U.S. Geological Survey and for release of the data to the public. The District computer network system in Baltimore is the main data storage facility for Maryland, Delaware, and Washington, D.C. water data. The following data bases can be accessed for ground-water data:

Ground-Water Site Inventory data base (GWSI) - Contains inventory data for 30,557 ground-water wells, 810 springs, and 2,382 surface water sites. The ground-water data includes site location, geohydrologic characteristics, well construction and manually measured water-level data or spring improvements and discharges, along with other pertinent ground-water information.

Automated Data Processing System (ADAPS) - Contains daily values for 299 observation well waterlevels and 726 streamflow stages, along with water temperature, specific conductance, and dissolved oxygen for surface water stations equipped with water-quality monitors.

Quality Water Data base (QWDATA) - Contains analyses of water samples which include environmental and quality control samples that describe the chemical, physical, biological, and radiochemical characteristics of both ground-water sites (4,718 sites, 11,109 analyses), and surface-water stations (958 sites, 39,770 analyses).

State Water Use Data System (SWUDS) - Contains water user consumption information for 2,248 Maryland, and 519 Delaware ground-water use appropriations, and 773 Maryland surface water use appropriations with monthly and daily water use totals.

Some water-quality and ground-water data also are available through the world wide web (WWW). These data may be accessed at:

http://md.water.usgs.gov/

Specific ground-water real-time and near real-time water-level observation well data and hydrographs can be accessed on the Maryland, Delaware and Washington, D.C., Water Resources Division district world wide web (WWW) page at:

http://md.water.usgs.gov/groundwater/web_wells/current/water_table/counties/

http://md.water.usgs.gov/groundwater/web_wells/current/confined/counties/

In addition, data can be provided in various machine-readable formats, such as CD. Information about the availability of specific types of data or products, and user charges, can be obtained from the District Office (See address on bottom of the title page).

WATER RESOURCES DATA - MARYLAND, DELAWARE, AND WASHINGTON, D.C., WATER YEAR 2003 DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units on the inside of the back cover.

<u>Acid neutralizing capacity (ANC)</u> is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

<u>Algal growth potential (AGP)</u> is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "**filtered**" sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type and the last two digits represent the weight percent of the hydrogen substituted chlorine.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

<u>Cells/volume</u> refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (**mL**) or liter (**L**).

<u>Chemical oxygen demand (COD)</u> is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

<u>Clostridium perfringens (C. perfringens)</u> is a spore-forming bacterium that is common in the feces of human and other warm-blooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

<u>Coliphages</u> are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of waters and of the survival and transport of viruses in the environment.

<u>Color unit</u> is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Confined aquifer</u> is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well. (See also "Aquifer")

<u>Continuous-record station</u> is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

<u>Daily-record station</u> is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis.

<u>Data logger</u> is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from on site data loggers for entry into office data systems.

Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")

16 WATER RESOURCES DATA - MARYLAND, DELAWARE, AND WASHINGTON, D.C., WATER YEAR 2003

Dissolved refers to that material in a representative water sample that passes through a 0.45micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

Dissolved oxygen (DO) is the molecular oxygen (**oxygen gas**) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "**residue-on-evaporation**" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (**as mg/L CaCO₃**) can be converted to carbonate concentration by multiplying by 0.60.

Enterococcus bacteria are commonly found in the feces of humans and other warm-blooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE/EIA method and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium,* and their variants. (See also "Bacteria")

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warm-blooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 'C on mTEC medium. Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) value of a concentration is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<).

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semi-volatile and extractable by ethyl acetate from air-dried streambed sediments. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediments.

Fecal coliform bacteria are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestine of warm-blooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brainheart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semi-volatile organic compounds that are extractable from water in methylene chloride.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

Hydrologic benchmark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a benchmark station may be used to separate effects of natural from human-induced changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped benchmark basin.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Laboratory Reporting Level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a non-detection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually based on the most current quality-control data and may, therefore, change. [Note: In several previous NWQL documents (Connor and others, 1998; NWQL Technical Memorandum 98.07, 1998), the LRL was called the non-detection value or NDV-a term that is no longer used.)

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water monitoring spring or well.

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-Term Method Detection Level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain water level.

Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

<u>Metamorphic stage</u> refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

<u>Method Detection Limit (MDL)</u> is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

<u>Micrograms per gram (UG/G, μ g/g)</u> is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

<u>Micrograms per kilogram (UG/KG, μ g/kg)</u> is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

<u>Micrograms per liter (UG/L, μ g/L)</u> is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.

<u>Microsiemens per centimeter (US/CM, µS/cm</u>) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

Minimum Reporting Level (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method (Timme, 1995).

<u>Most probable number (MPN)</u> is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.

<u>Nanograms per liter (NG/L, ng/L)</u> is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the U.S. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and U.S. first-order terrestrial leveling networks.

<u>Open or screened interval</u> is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organic carbon (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediments. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).

<u>Organism count/area</u> refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (\mathbf{m}^2) , acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

<u>Organism count/volume</u> refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (**mL**) or liter (**L**). Numbers of planktonic organisms can be expressed in these terms.

<u>Organochlorine compounds</u> are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

<u>Parameter Code</u> is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

<u>Partial-record station</u> is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.

Particle size is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine the fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024- 0.004	Sedimentation
Silt	0.004 - 0.062	Sedimentation
Sand	0.062 - 2.0	Sedimentation/sieve
Gravel	2.0 - 64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Percent composition or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions at 25 °C with pH less than 7 are termed "acidic," and solutions with a pH greater than 7 are termed "basic." Solutions with a pH of 7 are neutral. The presence and concentration of many dissolved chemical constituents found in water are, in part, influenced by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms are also influenced, in part, by the hydrogen-ion activity of water.

<u>Picocurie (PC, pCi)</u> is one trillionth (1×10^{-12}) of the amount of radioactive nuclide represented by a curie (**Ci**). A curie is the quantity of radioactive nuclide that yields 3.7 x 10^{10} radioactive disintegrations per second (**dps**). A picocurie yields 0.037 dps, or 2.22 dpm (**disintegrations per minute**).

<u>Polychlorinated biphenyls (PCBs)</u> are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Polychlorinated naphthalenes (PCNs)</u> are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Sea level, as used in this report, refers to one of the two commonly used national vertical datums, (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums. See conversion of units page (inside front cover) for identification of the datum used in this report.

<u>Sodium adsorption ratio (SAR)</u> is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

<u>Stable isotope ratio (part per MIL)</u> is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific waters, to evaluate mixing of different waters, as an aid in determining reaction rates, and other chemical or hydrologic processes.

<u>Suspended (as used in tables of chemical analyses)</u> refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is operationally defined as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

<u>Suspended, total</u> is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

<u>Synoptic studies</u> are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom:	Animal
Phylum:	Arthropoda
Class:	Insecta
Order:	Ephemeroptera
Family:	Ephemeridae
Genus:	Hexagenia
Species:	Hexagenia limbata

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (**that is, less than 95 percent**) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Vertical datum (See "Datum")

20 WATER RESOURCES DATA - MARYLAND, DELAWARE, AND WASHINGTON, D.C., WATER YEAR 2003

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens (U.S. Environmental Protection Agency, 1996).

 $\underline{\text{Water table}} \text{ is the level in the saturated zone at which the pressure is equal to the atmospheric pressure.}$

Water-table aquifer is an unconfined aquifer within which is found the water table.

Water year in USGS Water Resources Discipline reports is the 12-month period starting October 1, and ending September 30 of the following year. Thus, the "2002The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. water year" begins October 1, 2001 and ends September 30, 2002.

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in the "REVISED RECORDS" paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

.

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The USGS publishes a series of manuals titled the "Techniques of Water-Resources Investigations" that describe procedures for planning and conducting specialized work in water-resources investigations. The material in these manuals is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. Each chapter is then limited to a narrow field of the section subject matter. This publication format permits flexibility when revision or printing is required.

Manuals in the Techniques of Water-Resources Investigations series, which are listed below, are available online at http://water.usgs.gov/pubs/twri. Printed copies are available for sale from the USGS, Information Services Box 25286, Federal Center, Denver Colorado 80225 (an authorized agent of the Super-intendent of Documents, Government Printing Office). Please telephone "1-888-ASK-USGS" for current prices, and refer to the title, book number, section number, chapter number, and mention the "U.S. Geo-logical Survey Techniques of Water-Resources Investigations." Other products can be viewed online at http://www.usgs.gov/sales.html, or ordered by telephone at (303) 236-4693. Order forms for FAX requests are available online at http://mac.usgs.gov/isb/pubs/forms. Prepayment by major credit card, check, or money order payable to the U.S. Geological Survey is required.

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

1-D1.Water temperature - influential factors, field measurements, and data presentation, by H.H. Stevens Jr., J.F. Ficke, and G.F. Smoot: USGS - WRI Book 1, Chapter D1. 1975. 65 pages.

1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS - TWRI Book 1, Chapter D2. 1976. 24 pages.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

2-D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Easton, and D.R. Mabey: USGS -TWRI Book 2, Chapter D1. 1974. 116 pages.

2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS - TWRI Book 2, Chapter D2. 1988. 86 pages.

Section E. Subsurface Geophysical Methods

- 2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. Mac-Cary: USGS - TWRI Book 2, Chapter E1. 1971. 126 pages.
- 2-E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS TWRI Book 2, Chapter E2. 1990. 150 pages.

Section F. Drilling and Sample Methods

2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS - TWRI Book 2, Chapter F1. 1989. 97 pages.

Book 3. Application of Hydraulics

Section A. Surface-Water Techniques

- 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Metthai: USGS TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS TWRI Book 3, Chapter A5. 1967. 29 pages.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued

- 3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Dividian: USGS TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by F.A. Kilpatrick, and J.F. Wilson, Jr.: USGS TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-A10. Discharge ratings at gaging stations, by E.J. Kennedy: USGS TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-All. Measurement of discharge by moving-boat method, by G.F. Smoot and C.E. Novak: USGS TWRI Book 3, Chapter All. 1969. 22 pages.
- 3-A12. Flurometric procedures for dye tracing, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS TWRI Book 3, Chapter A12. 1986. 34 pages.
- 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS TWRI Book 3, Chapter A13. 1983. 53 pages
- 3-A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-A16. Measurement of discharge using tracers, by F.A. Kilpatrick and E.D. Cobb: USGS TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS TWRI Book 3, Chapter A17. 1985. 38 pages.
- 3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotskura, G.W. Parker, and L.L. Delong: USGS - TWRI Book 3, Chapter 18. 1989. 52 pages.
- 3-A19. Levels of streamflow gaging stations, by E.J. Kennedy: USGS TWRI Book 3, Chapter A19. 1990. 31 pages.
- 3-A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS TWRI Book 3, Chapter A20. 1993. 38 pages.
- 3-A21. Stream-gaging cableways, by C. Russell Wasgner: USGS TWRI Book 3, Chapter A21. 1995. 56 pages.

Section B. Ground-Water Techniques

- 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G.D. Bennett: USGS TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS TWRI Book 3, Chapter B4. 1990. 232 pages.
- 3-B4. Supplement 1. Regression modeling of ground-water flow Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS TWRI Book 3, Chapter B4. 1993. 8 pages.

22

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued

- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems An introduction, by O.L. Franke, T.W. Reilly, and G.D. Bennett: USGS TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-B7. Analytical solutions for one-, two-, and three dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS TWRI Book 3, Chapter B7. 1992. 190 pages.
- 3-B8. System and boundary conceptualization in ground-water flow simulation, by T.E. Reilly: USGS TWRI Book 3, Chapter B8. 2001. 29 pages.

Section C. Sedimentation and Erosion Techniques

3-C1. Fluvial sediment concepts, by H.P. Guy: USGS - TWRI Book 3, Chapter C1. 1970. 55 pages.

- 3-C2. Field methods of measurement of fluvial sediment, by H.P. Guy and V.W. Norman: USGS TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS TWRI Book 3, Chapter C3. 1972. 66 pages.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS - TWRI Book 4, Chapter A1. 1968. 39 pages.

4-A2. Frequency curves, by H.C. Riggs: USGS - TWRI Book 4, Chapter A2. 1968. 15 pages.

Section B. Surface Water

- 4-A3. Statistical methods in water resources, by D.R. Helsel and R.M. Hirsch: USGS TWRI Book 4, Chapter A3. 1991. Available only online at http:// water.usgs.gov/pubs/twri/twri4a3. Accessed July 2004.
- 4-B1. Low-flow investigations, by H.C. Riggs: USGS TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS TWRI Book 4, Chapter B3. 1973. 15 pages.

Section D. Interrelated phases of the Hydrologic Cycle

4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS - TWRI Book 4, Chapter D1. 1970. 17 pages.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman: USGS TWRI Book 5, Chapter A1. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.,: USGS TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for determination of organic substances in water and fluvial sediments, by R.L. Wershaw,
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L.J. Britton and P.E. Greeson, editors: USGS TWRI Book 5, Chapter A4. 1989. 363 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS - TWRI Book 5, Chapter A6. 1982. 181 Pages.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued

Section C. Sediment Analysis

5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS - TWRI Book 5, Chapter C1. 1969. 58 pages.

Book 6. Modeling Techniques

Section A. Ground Water

- 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS TWRI Book 6, Chapter A1. 1988. 586 pages.
- 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finitedifference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS - TWRI Book 6, Chapter A2. 1991. 68 pages.
- 6-A3. A modular finite-element model (MODFE) for areal and axisymetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS TWRI Book 6, Chapter A3. 1993. 136 pages.
- 6-A4. A modular finite-element model (MODFE) for areal and axisymetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS - TWRI Book 6, Chapter A4. 1992. 108 pages.
- 6-A5. A modular finite-element model (MODFE) for areal and axisymetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS - TWRI Book 6, Chapter A5. 1993. 243 pages.
- 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by E.D. Swain and E.J. Wexler: USGS TWRI Book 6, Chapter A6. 1995. 125 pages.
- 6-A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow, by Weixing Guo and C.D. Langevin: USGS TWRI Book 6, Chapter A7. 2002. 77 pages.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS - TWRI Book 7, Chapter C1. 1976. 116 pages.

7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS - TWRI Book 7, Chapter C2. 1978. 90 pages.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffrannek, R.A. Baltzer, and D.E. Goldberg: USGS TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS TWRI Book 8, Chapter A1. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS TWRI Book 8, Chapter A2. 1983. 57 pages.

Section B. Instruments for Measurement of Discharge

8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS - TWRI Book 8, Chapter B2. 1968. 15 pages.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

9-Al. National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS - TWRI Book 9, Chapter Al. 1998. Variously paginated.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued

- 9-A2. National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS - TWRI Book 9, Chapter A2. 1998. Variously paginated.
- 9-A3. National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS - TWRI Book 9, Chapter A3. 1998. Variously paginated.
- 9-A4. National Field Manual for the Collection of Water-Quality Data: Collection of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS TWRI Book 9, Chapter A4. 1999. Variously Paginated.
- 9-A5. National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS TWRI Book 9, Chapter A5. 1999. Variously Paginated.
- 9-A6. National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F.D. Wilde and D.B. Radtke: USGS TWRI Book 9, Chapter A6. 1999. Variously Paginated.
- 9-A7. National Field Manual for the Collection of Water-Quality Data: Biological Indicators, edited by D.N. Myers and F.D. Wilde: USGS TWRI Book 9, Chapter A7. 1997 and 1999. Variously Paginated.
- 9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom-material samples, edited by D.B. Radtke: USGS TWRI Book 9, Chapter A8. 1998. Variously Paginated.
- 9-A9. National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities, edited by S.L. Lane and R.G. Fay: USGS TWRI Book 9, Chapter A9. 1998. Variously Paginated.

SELECTED U.S. GEOLOGICAL SURVEY REPORTS ON GROUND-WATER RESOURCES IN MARYLAND, DELAWARE, AND WASHINGTON, D.C. PUBLISHED DURING THE 2003 WATER YEAR

Listed below is a selection of reports on ground-water resources in Maryland, Delaware, and Washington, D.C. which were published in 2003, and are available through the U.S. Geological Survey, Branch of Information Services, Federal Center, Building 41, Box 25286, Denver, Colorado 80225 or on the internet at: http://mapping.usgs.gov/esic/prices/other_publications.html.

A list of all the published reports by the U.S. Geological Survey for Maryland, Delaware, and Washington, D.C. can be found on the web at http://md.water.usgs.gov/publications/online.html.

Water Resources Investigations Report

Ground-Water Contamination from Lead Shot at Prime Hook National Wildlife Refuge, Sussex County, Delaware, by Daniel J. Soeder and Cherie V. Miller: U.S. Geological Survey WRIR 02-4282. 2002. 26 pages.

Open-File Reports

- Analytical Results From Ground-Water Sampling Using a Direct-Push Technique at the Dover National Test Site, Dover Air Force Base, Delaware, June-July 2001, by William R. Guertal, Marie Stewart, and Jeffrey R. Barbaro (USGS) and Timothy McHale (Dover National Test Site): U.S. Geological Survey Open-File Report 03-380. 2003. 505 pages.
- Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2002, by Steve E. Curtin: U.S. Geological Survey Open-File Report 03-258. 2003. 1 page.
- Potentiometric Surface of the Upper Patapsco Aquifer in Southern Maryland, September 2002, by Steve E. Curtin: U.S. Geological Survey Open-File Report 03-257. 2003. 1 page.
- Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2002, by Steve E. Curtin: U.S. Geological Survey Open-File Report 03-256. 2003. 1 page.
- Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2002, by Steve E. Curtin: U.S. Geological Survey Open-File Report 03-255. 2003. 1 page.

Water Data Report

Water Resources Data for Maryland, Delaware, and Washington, D.C., Water Year 2002, Volume 2. Ground-Water Data, by Michael J. Smigaj, Richard W. Saffer, and Robert H. Pentz: U.S. Geological Survey WDR-MD-DE-DC-02-2. 572 pages.

References

First Report on the Hydrologic Effects of Underground Coal Mining in Southern Garrett County, Maryland, by Mark T. Duigon and Michael J. Smigaj. Maryland Geological Survey Report of Investigations Number 41. 1985. 99 pages.

Hydrologic and Mining Data from an area of Underground Coal Mining in Garrett County, Maryland, by Steven N. Hiortdahl: Maryland Geological Survey Report of Investigations Number 41-A. 1988. 81 pages.

Hydrology and Ground-Water Quality of the Piney-Point_Nanjemoy and Aquia aquifers, Naval Air Station Patuxent River and Webster Outlying Field, St. Marys County, Maryland, by Cheryl A. Klohe and Erin Feehely: U.S. Geological Survey Water Resources Investigations Report 01-4029. 2001. 51 pages.

Statistical profiles of States, Counties, Cities, Congressional Districts, and Federal Judicial Districts, available at http://www.fedstats.gov/qf/states/24000.html, accessed July 19, 2004.

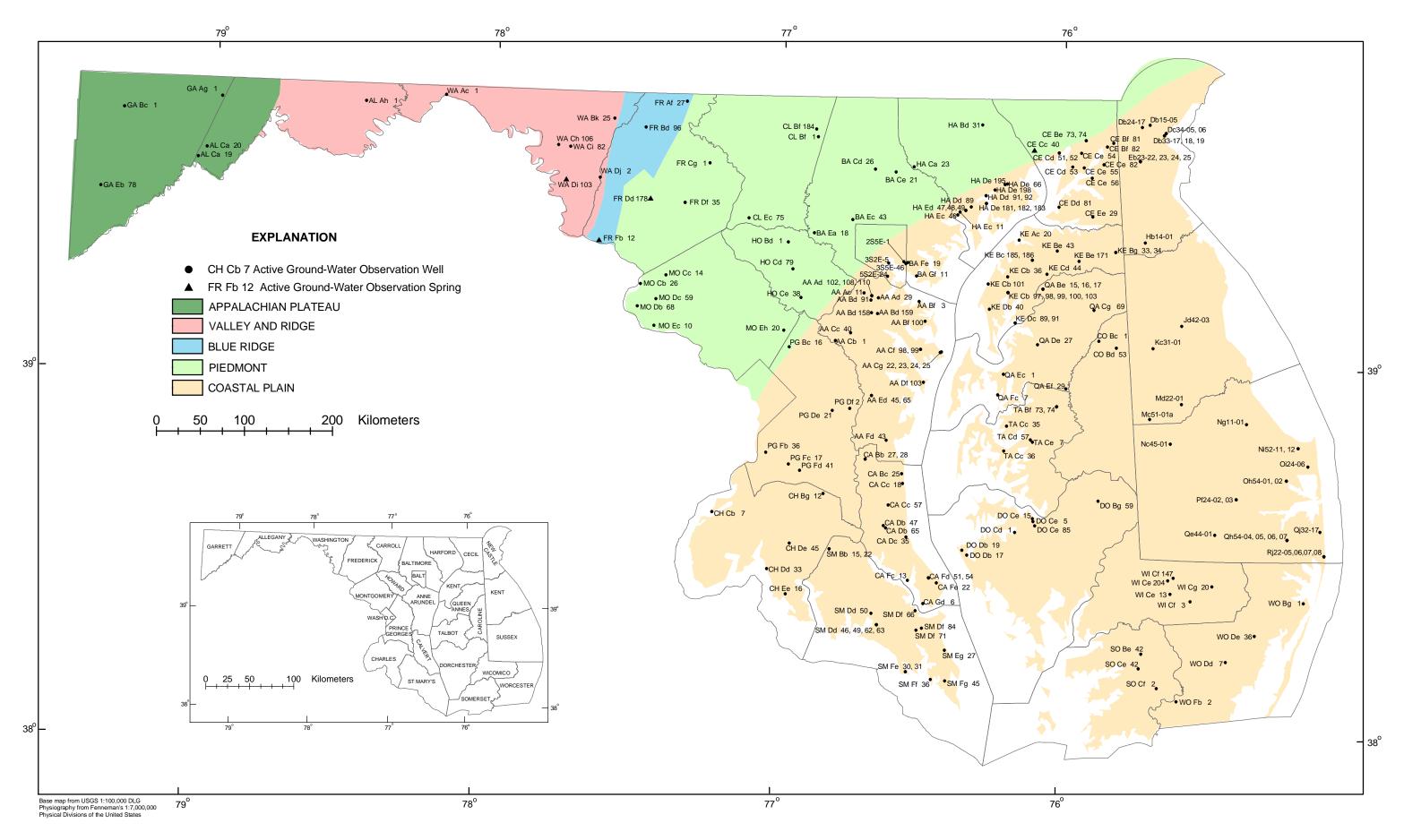


Figure 6. Map of Maryland, Delaware, and Washington D.C. showing location of ground-water network observation wells and springs.

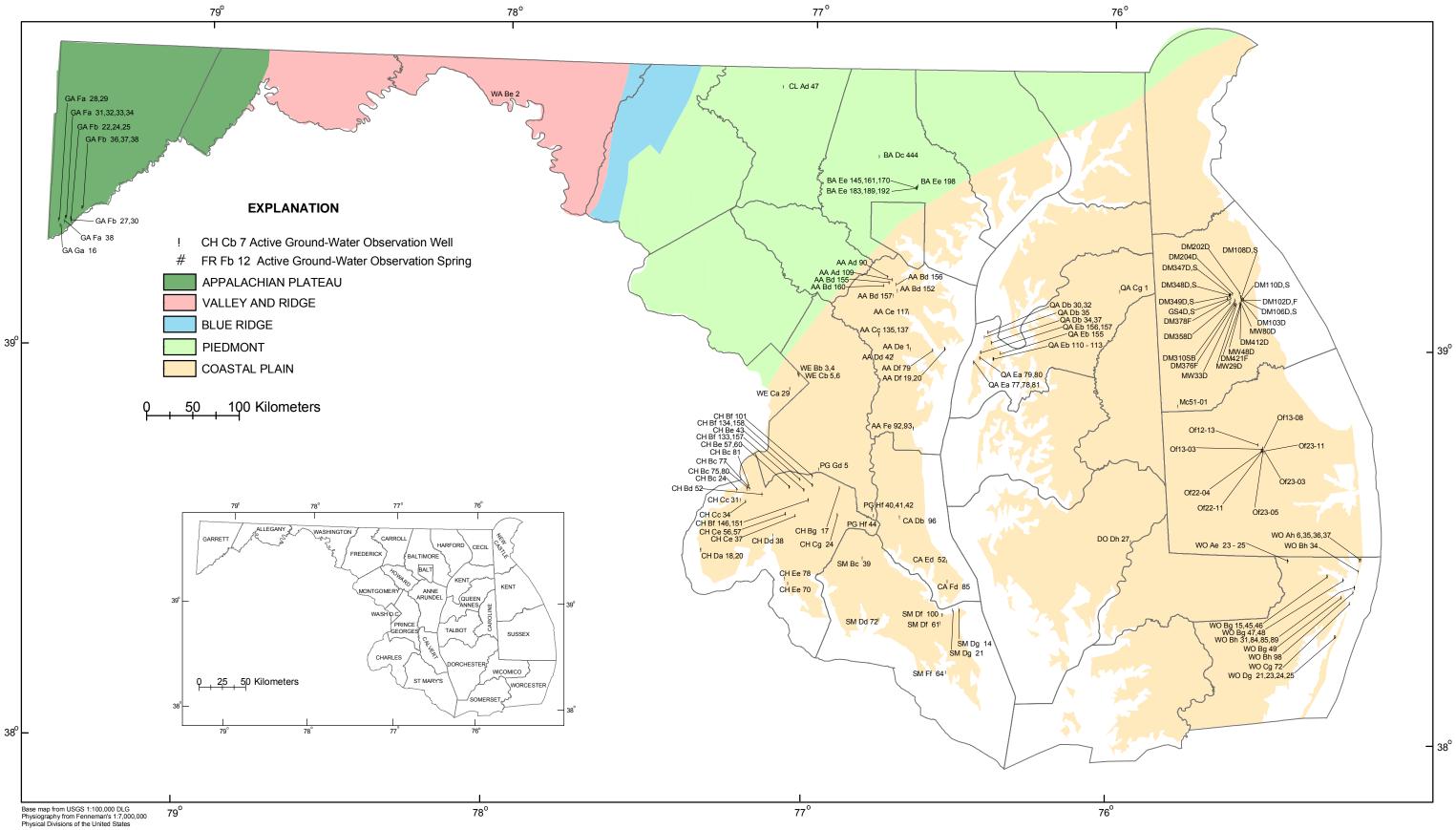


Figure 7. Map of Maryland, Delaware, and Washington D.C. showing location of ground-water project observation wells and springs.

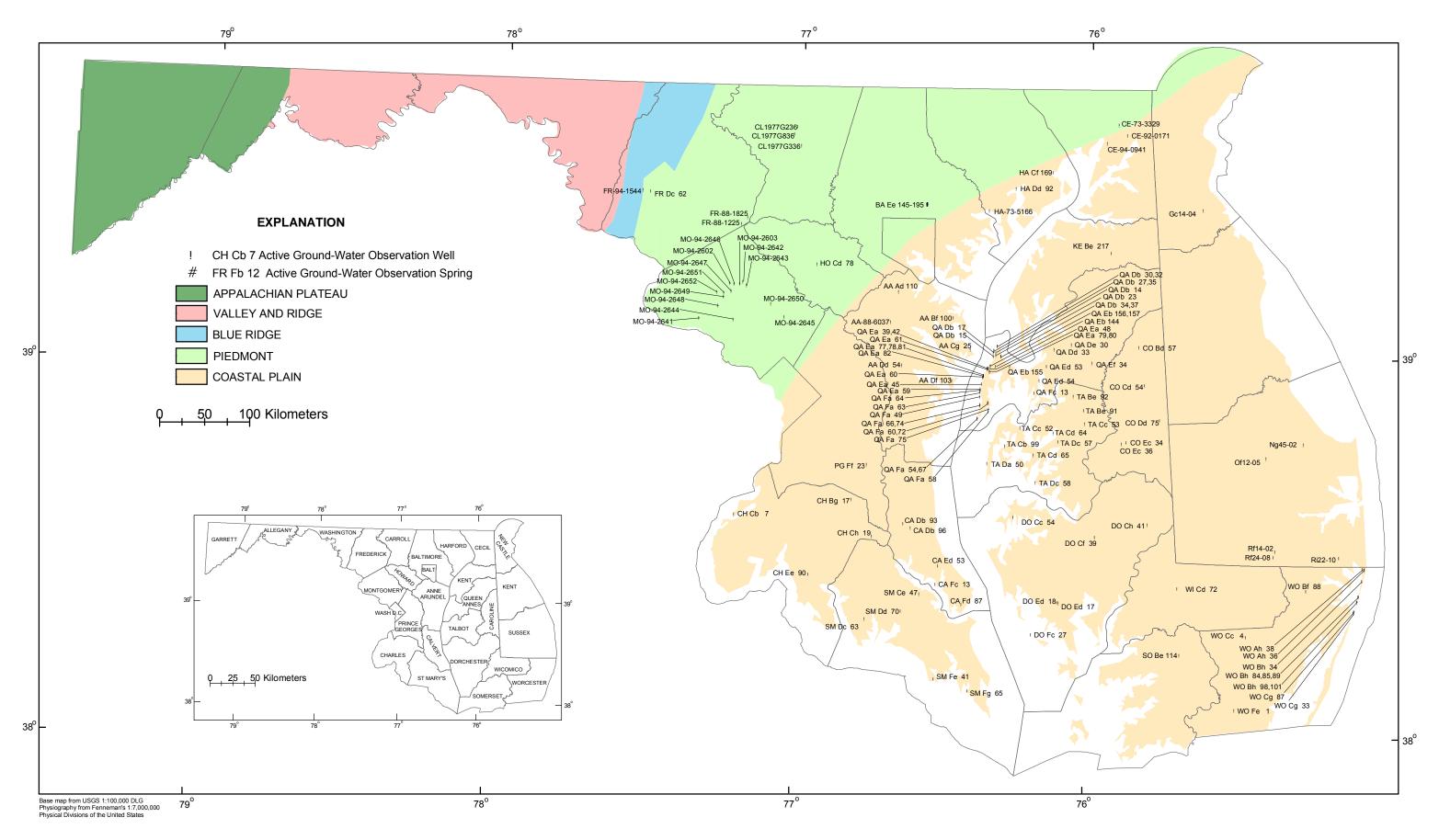


Figure 8. Map of Maryland, Delaware, and Washington D.C. showing location of ground-water-quality observation wells.

29

GROUND-WATER SPRING DISCHARGE IN MARYLAND

CECIL COUNTY

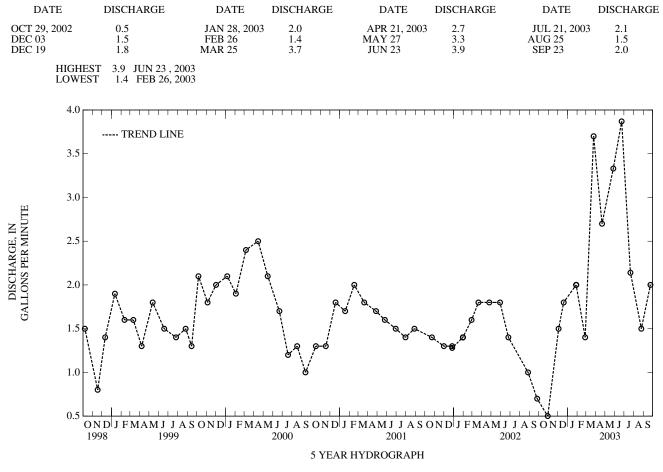
SPRING NUMBER.--CE Cc 40. SITE ID.--393459076045001.

LOCATION.--Lat 39°34'59", long 76°04'50", Hydrologic Unit 02050306, 0.1 mi north of intersection of Cokesbury and St. Marks Church Roads, 0.8 mi northeast of Perryman. Owner: Private Residence.

AQUIFER.--James Run Formation, Frenchtown Member of Paleozoic age. Aquifer code: 300JMSR.

SPRING IMPROVEMENTS .-- 2 in. outflow pipe.

INSTRUMENTATION .-- Monthly volumetric discharge measurements by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 180 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Maryland Ground-Water Spring Discharge Monitoring Network, and Water Quality Network observation spring. Temperature readings are available.

PERIOD OF RECORD .-- April 1981, August 1989 to current year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge measured, 5.9 gal/min, June 7, 1980; minimum discharge measured, 0.5 gal/min, October 29, 2002.

DISCHARGE, IN GALLONS PER MINUTE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

FREDERICK COUNTY

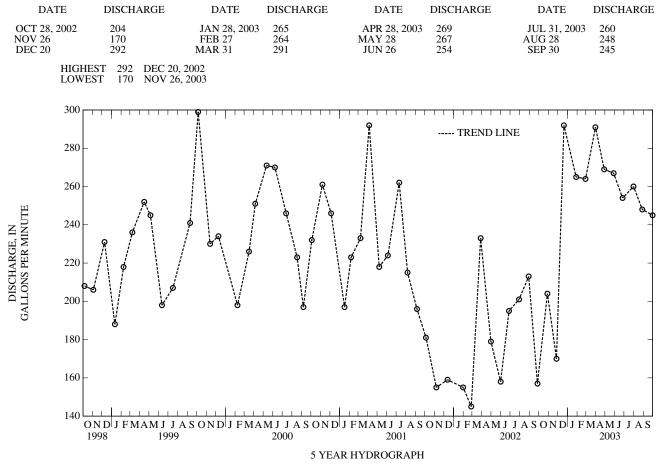
SPRING NUMBER.--FR Dd 178. SITE ID.--392552077262201.

LOCATION.--Lat 39°25'52", long 77°26'22", Hydrologic Unit 02070009, at Frederick County Agricultural Extension Service (formerly Montview State Hospital). Owner: Frederick County.

AQUIFER.--Frederick Limestone of Lower Cambrian age. Aquifer code: 377FDCK.

SPRING IMPROVEMENTS .-- Springhouse with discharge pipe.

INSTRUMENTATION .-- Monthly current meter discharge measurements by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 315 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Maryland Ground-Water Spring Discharge Monitoring Network, and Water Quality Network observation spring. Temperature readings are available.

PERIOD OF RECORD.--April 1981, February 1989, September 1989, April 1991, and March 1992 to current year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge measured, 904 gal/min, May 6, 1993; minimum discharge measured, 145 gal/min, February 26, 2002.

DISCHARGE, IN GALLONS PER MINUTE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

GROUND-WATER SPRING DISCHARGE IN MARYLAND

FREDERICK COUNTY-Continued

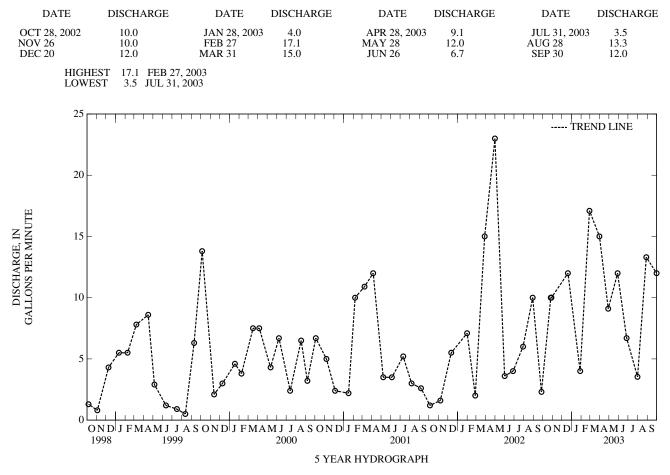
SPRING NUMBER.--FR Fb 12. SITE ID.--391846077370501.

LOCATION.--Lat 39°18'46", long 77°37'05", Hydrologic Unit 02070008, at Brunswick, off Park Ave., 300 ft north of intersection with Potomac St. Owner: Town of Brunswick.

AQUIFER.--Precambrian Erathem of Precambrian age. Aquifer code: 400PCMB.

SPRING IMPROVEMENTS .-- 2 in. outflow pipe.

INSTRUMENTATION .-- Monthly volumetric discharge measurements by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 300 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Maryland Ground-Water Spring Discharge Monitoring Network, and Water Quality Network observation spring. Temperature readings are available.

PERIOD OF RECORD.--January 1960 to April 1964, March 1965, August 1967, December 1968, July 1972, and April 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge measured, 36.0 gal/min, April 30, 1964; minimum discharge measured, 0.5 gal/min, August 12, 1999.

DISCHARGE, IN GALLONS PER MINUTE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

GROUND-WATER SPRING DISCHARGE IN MARYLAND

WASHINGTON COUNTY

SPRING NUMBER.--WA Di 103. SITE ID.--392836077442701.

LOCATION.--Lat 39°28'36", long 77°44'27", Hydrologic Unit 02070004, 0.2 mi southeast of Smoketown Road and Mummas Lane, 1.0 mi north of Sharpsburg. Owner: National Park Service, Antietam National Battlefield.

AQUIFER .-- Conococheague Limestone of Upper Cambrian age. Aquifer code: 371CCCG.

SPRING IMPROVEMENTS .-- Springhouse with cement trough.

INSTRUMENTATION .-- Monthly volumetric discharge measurements by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 475 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Maryland Ground-Water Spring Discharge Monitoring Network, and Water Quality Network observation spring. Temperature readings are available.

PERIOD OF RECORD.--May 1969, April 1987, and January 1991 to current year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge measured, 95.0 gal/min, May 14, 1998; minimum discharge measured, 0.3 gal/min, October 4, 1991 and November 7, 1991.

DISCHARGE, IN GALLONS PER MINUTE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	DATE	DISCHARGE	DATE	DISCHARGE	DATE	DISCHARGE	DATE	DISCHARGE
OCT NOV DEC		6.0 15.0 26.7	JAN 28, 2003 FEB 27 MAR 31	15.0 24.0 30.0	APR 28, 2003 MAY 28 JUN 26	24.0 30.0 30.0	JUL 31, 2003 AUG 28 SEP 30	17.1 20.0 30.0
	HIGHE	ST 30.0 MAR 31 ST 6.0 OCT 28,	, MAY 28, JUN 26 2002	, SEP 30, 2003				
	70 60 -			· · · · · · ·	φ		TRE	ND LINE
DISCHARGE, IN GALLONS PER MINUTE	50 -				Ŷ			_
	40 -		9 9 9					_
	30 -	<i>⊳-</i> •		φ	ð		o A d	
	20 –		8		ø		¢ v	ب م
	10	a a a a	9 ⁰	0 (<i>)</i> 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	^{~~~~} ~~	~~~~~~ ~~~~~~~~	_
		NDJFMAMJJ. 998 1999		2000	J FMAMJ J A S 2001		J J A S O N D J F I 2002	MAMJJAS 2003
				JIEA	AR HYDROGRAPH			

KENT COUNTY

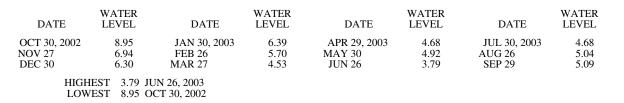
WELL NUMBER .-- Jd42-03. SITE ID. -- 390607075331501. PERMIT NUMBER .-- 10230.

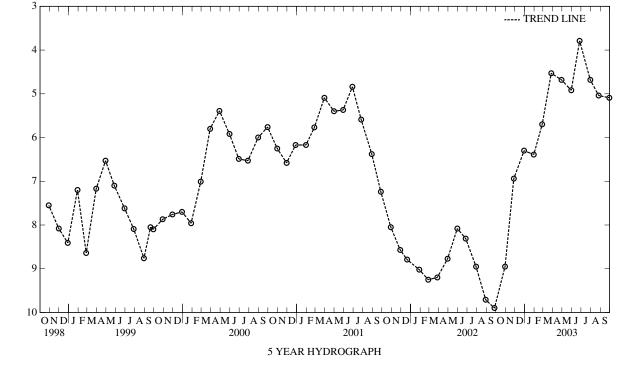
LOCATION.--Lat 39°06'07", long 75°33'15", Hydrologic Unit 02040207, 1 mi south of Camden. Owner: Delaware Department of Transportation.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth ll ft; casing diameter 1.25 in., to 8.5 ft; well point from 8.5 to ll ft.

INSTRUMENTATION.--Monthly water level measurements with electric or chalked steel tape by Delaware Geological Survey or U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 44 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land surface.


REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--October 1950 to December 1961, August 1971 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.69 ft below land surface, July 18, 1975; lowest measured, 10.10 ft below land surface, November 28, 1986.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

KENT COUNTY—Continued

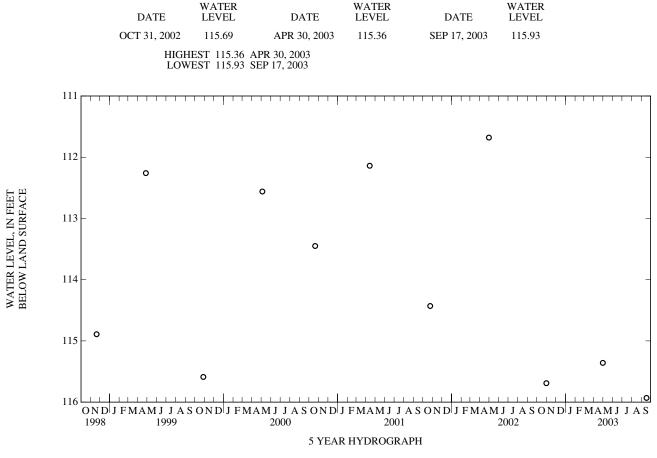
WELL NUMBER .-- Kc31-01. SITE ID.-- 390224075391601. PERMIT NUMBER .-- 33610.

LOCATION.--Lat 39°02'24", long 75°39'16", Hydrologic Unit 02060005, 1.1 mi southwest of Petersburg, off Ironmine Rd., at Norman G. Wilder State Wildlife Area. Owner: U.S. Geological Survey.

AQUIFER.--Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 380 ft; casing diameter 2 in., to 370 ft; screen diameter 2 in., from 370 to 380 ft.

INSTRUMENTATION .-- Twice yearly water level measurements with chalked steel tape by Delaware Geological Survey or U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 55 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.20 ft above land surface.

REMARKS.--Delaware Water-Level Monitoring Network observation well. No Spring 1997 water-level measurement.

PERIOD OF RECORD.--February 1975, April 1982, March 1983, and February 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 92.99 ft below land surface, February 20, 1975; lowest measured, 116.77 ft below land surface, October 29, 1991.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

WELL NUMBER .-- Mc51-01. SITE ID .-- 385041075395601.

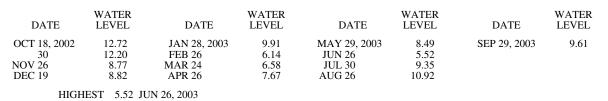
LOCATION.--Lat 38°50'41", long 75°39'56", Hydrologic Unit 02060008, 1.3 mi northeast of Adamsville. Owner: Delaware Department of Transportation.

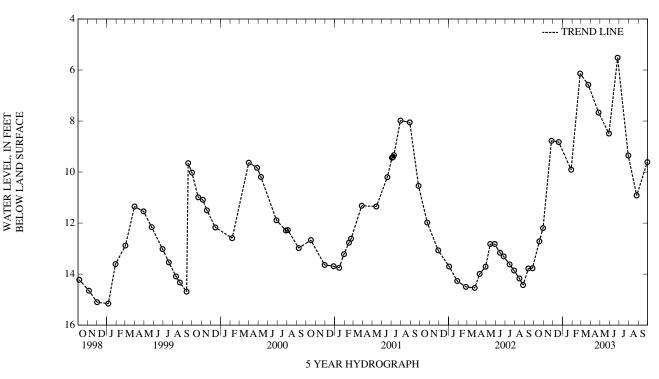
AQUIFER.--Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 18.1 ft; casing diameter 2 in., to 16.1 ft; well point from 16.1 to 18.1 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60 minute recorder interval from October 1999 to July 2001.

DATUM.--Elevation of land surface is 55 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land surface.


REMARKS .-- Delaware Water-Level Monitoring Network observation well.


LOWEST 12.72 OCT 18, 2002

PERIOD OF RECORD .-- September 1958 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.28 ft below land surface, May 31, 1984; lowest measured, 16.29 ft below land surface, January 19, 1988.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

WELL NUMBER .-- Mc51-01a. SITE ID. -- 385041075395602. PERMIT NUMBER .-- 178923.

LOCATION.--Lat 38°50'41", long 75°39'56", Hydrologic Unit 02060008, 1.3 mi northeast of Adamsville. Owner: Delaware Department of Transportation.

AQUIFER.--Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 18.2 ft; casing diameter 2 in., to 15 ft; well point from 15 to 19 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape or chalked steel tape by U.S. Geological Survey personnel. Well equipped with water-level telemetry recorder from July 2001 to current year.

DATUM.--Elevation of land surface is 56 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of recorder platform, 3.75 ft above land surface.

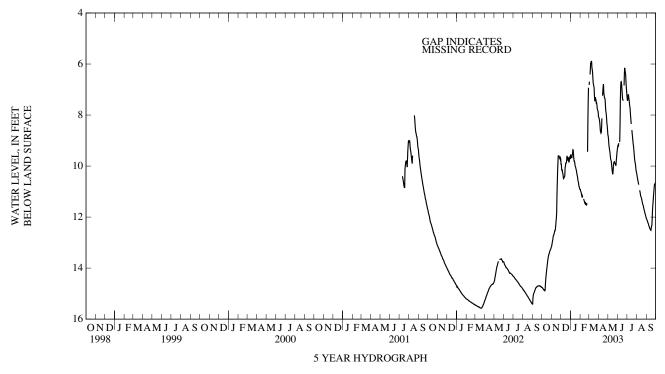
REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- July 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.65 ft below land surface, March 9, 2003 (recorder); lowest measured, 15.57 ft below land surface, March 18-21, 2002 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 26 DEC 19	13.19 9.68 9.74	JAN 28, 2003 FEB 26 MAR 24	10.76 7.23 7.48	APR 29, 2003 MAY 29 JUN 26	8.49 9.43 6.35	AUG 26, 2003 SEP 29	11.77 10.60
HIGH	EST 6.35 JU	JN 26, 2003					


LOWEST 13.19 OCT 30, 2002

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAH	RCH
1 2 3 4 5	14.76 14.76 14.79 14.80 14.82	14.75 14.76 14.76 14.79 14.80	13.14 13.06 12.99 12.92 12.86	13.06 12.99 12.92 12.86 12.75	9.93 9.93 10.14 10.17 10.16	9.72 9.88 9.91 10.14 9.98	9.55 9.67 9.65 9.65 9.66	9.42 9.50 9.51 9.52 9.54	10.92 10.99 11.02 11.06 11.15	10.88 10.92 10.99 10.89 11.06	6.82 6.69 6.41 6.19	6.69 6.34 6.19 5.88
6 7 8 9 10	14.84 14.84 14.87 14.88 14.89	14.82 14.83 14.84 14.87 14.86	12.75 12.71 12.70 12.64 12.59	12.69 12.70 12.64 12.59 12.53	10.27 10.29 10.42 10.49 10.47	10.12 10.27 10.29 10.42 10.44	9.54 9.51 9.36 9.37 9.56	9.46 9.36 9.24 9.24 9.36	11.19 11.16 11.22 11.23	11.13 11.06 11.16 11.21	5.95 5.98 5.88 5.91 6.15	5.71 5.83 5.69 5.65 5.91
11 12 13 14 15	14.86 14.63 14.45 14.30 14.18	14.63 14.45 14.30 14.18 14.06	12.53 12.53 12.46 12.33 12.18	12.51 12.46 12.33 12.18 12.04	10.44 10.43 10.39 10.05 10.02	10.37 10.39 10.05 9.99 9.89	9.72 9.81 9.81 9.87 9.99	9.56 9.72 9.68 9.81 9.87	11.29 11.31 11.36 11.39 11.45	11.22 11.23 11.31 11.36 11.37	6.21 6.32 6.54 6.74 6.80	6.14 6.20 6.31 6.54 6.74
16 17 18 19 20	14.06 13.96 13.85 13.75 13.65	13.96 13.85 13.75 13.65 13.58	12.04 11.82 11.14 10.66 10.19	11.82 11.14 10.66 10.19 9.89	9.89 9.89 9.86 9.78 9.60	9.85 9.86 9.78 9.60 9.49	10.02 10.06 10.12 10.16 10.24	9.89 9.86 10.06 10.08 10.09	11.47 11.41 11.49 11.51 11.53	11.38 11.34 11.41 11.49 11.49	6.86 6.94 7.23 7.44 7.44	6.80 6.83 6.94 7.23 7.20
21 22 23 24 25	13.58 13.51 13.46 13.43 13.39	13.51 13.46 13.43 13.39 13.34	9.89 9.60 9.60 9.60 9.61	9.60 9.49 9.50 9.58 9.56	9.64 9.67 9.74 9.80 9.66	9.59 9.59 9.67 9.66 9.46	10.32 10.38 10.43 10.56 10.60	10.24 10.32 10.37 10.43 10.56	11.52 11.45 9.44 8.29	11.45 10.84 8.29 7.49	7.30 7.37 7.41 7.53 7.52	7.22 7.30 7.34 7.38 7.41
26 27 28 29 30 31	13.34 13.30 13.28 13.25 13.21 13.17	13.30 13.28 13.25 13.21 13.17 13.14	9.68 9.70 9.73 9.68 9.72	9.57 9.57 9.66 9.55 9.54	9.84 9.84 9.71 9.66 9.68 9.59	9.66 9.71 9.57 9.56 9.59 9.54	10.65 10.76 10.80 10.85 10.90 10.92	10.58 10.65 10.74 10.76 10.85 10.90	7.49 6.93 	6.93 6.64 	7.61 7.74 7.80 7.82 7.89 8.07	7.38 7.61 7.74 7.74 7.77 7.87
MONTH	14.89	13.14	13.14	9.49	10.49	9.46	10.92	9.24	11.53	6.64	8.07	5.65

KENT COUNTY—Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	ΑY	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	8.09 8.12 8.20 8.28 8.44	7.93 8.02 8.10 8.19 8.28	8.81 8.93 9.12 9.24 9.32	8.73 8.81 8.93 9.12 9.24	9.21 9.23 9.20 9.10	9.10 9.19 9.10 9.05	7.35 7.44 7.38 7.22 7.19	7.22 7.35 7.20 7.19 7.17	10.33 10.41 10.48 10.55 10.61	10.27 10.33 10.41 10.48 10.55	12.06 12.11 12.13 12.16 12.21	12.04 12.06 12.11 12.13 12.16
6 7 8 9 10	8.63 8.65 8.71 8.69 8.46	8.44 8.57 8.62 8.46 8.13	9.41 9.49 9.63 9.72 9.78	9.31 9.41 9.49 9.63 9.72	9.05 9.03 8.44 7.48 6.93	9.03 8.44 7.48 6.93 6.70	7.32 7.39 7.51 7.64 7.71	7.18 7.29 7.39 7.50 7.64	10.68 10.73 10.95	10.61 10.68 10.88	12.24 12.27 12.32 12.36 12.39	12.21 12.24 12.27 12.32 12.36
11 12 13 14 15	8.13 7.24 7.05 6.88	7.55 7.05 6.88 6.71	9.81 9.95 10.07 10.19 10.28	9.76 9.81 9.95 10.07 10.19	6.70 6.69 6.79 6.96 7.15	6.62 6.63 6.68 6.78 6.96	7.88 8.07 8.22 8.35	7.66 7.88 8.06 8.22	11.01 11.08 11.16 11.20 11.23	10.95 11.01 11.08 11.16 11.20	12.43 12.46 12.49 12.51 12.52	12.39 12.43 12.46 12.49 12.43
16 17 18 19 20	6.79 7.11 7.22 7.31 7.35	6.69 6.79 7.10 7.22 7.30	10.32 10.16 9.96 9.87 9.84	10.16 9.96 9.87 9.84 9.81	7.35 7.39 7.44 	7.15 7.35 7.38 	8.59 8.73 8.85 8.99 9.11	8.44 8.59 8.73 8.84 8.99	11.27 11.33 11.40 11.46 11.50	11.23 11.27 11.33 11.40 11.46	12.43 12.36 12.33 12.10 11.76	12.36 12.33 12.10 11.76 11.56
21 22 23 24 25	7.36 7.57 7.78 7.89 7.97	7.29 7.34 7.57 7.78 7.89	9.83 9.88 9.89 9.92 9.97	9.80 9.83 9.87 9.86 9.92	6.84 6.36 6.15 6.25 6.32	6.36 6.14 6.11 6.15 6.25	9.20 9.33 9.46 9.63 9.76	9.11 9.20 9.32 9.46 9.63	11.54 11.58 11.65 11.71 11.74	11.50 11.54 11.58 11.65 11.71	11.56 11.40 11.22 11.06 10.91	11.40 11.22 11.06 10.91 10.77
26 27 28 29 30 31	8.14 8.34 8.42 8.58 8.78	7.94 8.14 8.34 8.42 8.58	9.97 9.79 9.66 9.51 9.38 9.30	9.79 9.66 9.51 9.38 9.30 9.11	6.42 6.66 6.89 7.05 7.22	6.32 6.42 6.66 6.88 7.05	9.84 9.90 10.00 10.13 10.20 10.27	9.76 9.84 9.89 10.00 10.13 10.20	11.80 11.85 11.90 11.94 12.00 12.04	11.74 11.79 11.85 11.90 11.94 12.00	10.77 10.68 10.63 10.65	10.68 10.59 10.56 10.63
MONTH YEAR	8.78 14.89	6.69 5.65	10.32	8.73	9.23	6.11	10.27	7.17	12.04	10.27	12.52	10.56

Daily Low Water Levels

KENT COUNTY-Continued

WELL NUMBER .-- Md22-01. SITE ID .-- 385310075331301. PERMIT NUMBER .-- 10221.

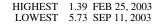
LOCATION.--Lat 38°53'10", long 75°33'13", Hydrologic Unit 02040207, 2.4 mi west of Williamsville. Owner: Delaware Department of Transportation.

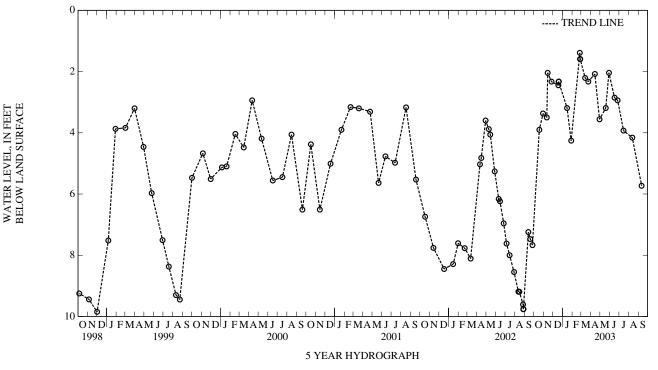
AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 17 ft; casing diameter 1 in., to 14 ft; well point from 14 to 17 ft.

INSTRUMENTATION.--Monthly water level measurements with electric or chalked steel tape by U.S. Geological Survey or Delaware Geological Survey personnel.

DATUM.--Elevation of land surface is 58 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land surface.


REMARKS .-- Delaware Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- September 1958 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.07 ft below land surface, July 14, 1975; lowest measured, 11.14 ft below land surface, January 6, 1966.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

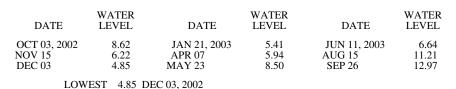
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18, 2002 30 NOV 11 14 26	3.90 3.37 3.50 2.04 2.33	DEC 19, 2002 JAN 15, 2003 28 FEB 25 26	2.33 3.19 4.26 1.39 1.59	MAR 24, 2003 APR 14 29 MAY 19 29	2.33 2.08 3.56 3.19 2.04	JUN 26, 2003 JUL 15 AUG 12 SEP 11	2.94 3.93 4.16 5.73
DEC 18	2.45	MAR 14	2.21	JUN 16	2.85		

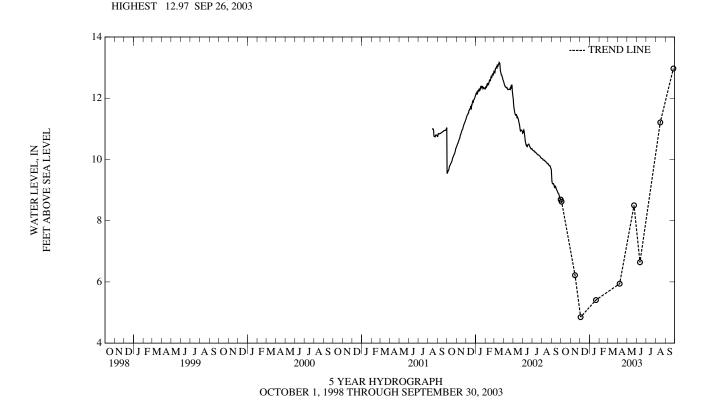
KENT COUNTY-Continued

WELL NUMBER .-- DM102D. SITE ID .-- 390733075264802. PERMIT NUMBER .-- 95533.

LOCATION.--Lat 39°07'33", long 75°26'48", Hydrologic Unit 2040207, at Dover Air Force Base, Dover. Owner: U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.


- WELL CHARACTERISTICS.--Drilled, observaion, water table well, depth 57.97 ft; casing diameter 2 in., to 49.24 ft; screen diameter 2 in., from 49.24 to 59.24 ft.
- INSTRUMENTATION.--Monthly measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60minute recorder interval from August 2001 to September 2002.
- DATUM.--Altitude of land surface is 19.12 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.32 ft above land surface.


REMARKS .-- Dover Ai Force Base Project observation well.

PERIOD OF RECORD .-- August 2001 to September 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.79 ft above sea level, October 10, 2002; lowest measured, 4.85 ft above sea level, December 3, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

WELL NUMBER .-- DM102F. SITE ID .-- 390733075264801. PERMIT NUMBER .-- 96950.

LOCATION.--Lat 39°07'33", long 75°26'48", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

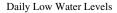
AQUIFER.--Frederica aquifer in the Calvert Formation of Lower Middle Miocene age. Aquifer code: 122FRDC.

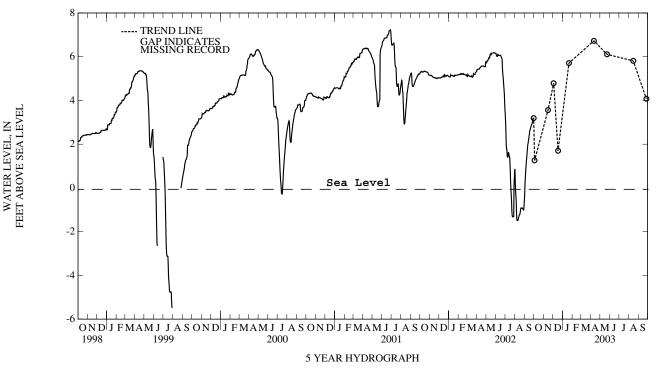
WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 112.5 ft; casing diameter 3 in., to 102.5 ft; screen diameter 2 in., from 102.5 to 112.5 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from October 1995 to September 2002.

DATUM.--Elevation of land surface is 18.54 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 2.32 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.


PERIOD OF RECORD.--September 1995 to September 2003.


EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.24 ft above sea level, June 28 and 29, 2001; lowest measured, 5.49 ft below sea level, July 29, 1999.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 03, 2002 NOV 15 DEC 03	1.26 3.56 4.79	DEC 17, 2002 JAN 21, 2003 APR 11	1.70 5.71 6.73	MAY 23, 2003 AUG 15 SEP 26	6.11 5.81 4.08
LOW	EST 1.26 O	CT 03, 2002			

HIGHEST 6.73 APR 11, 2003

KENT COUNTY-Continued

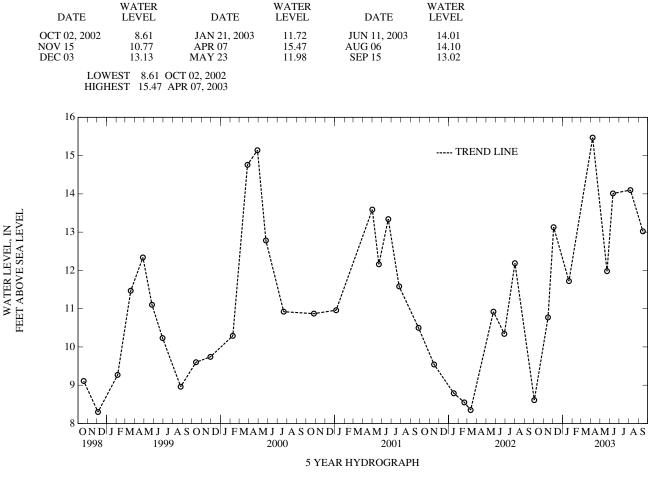
WELL NUMBER .-- DM103D. SITE ID .-- 390723075270901. PERMIT NUMBER .-- 95533.

LOCATION.--Lat 39°07'23", long 75°27'09", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. Owner: U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS.-Drilled, observation, water-table well, depth 76 ft; protective casing diameter 6 in., from +2.5 to 6 ft, casing diameter 2 in., to 66 ft; screen diameter 2.5 in., from 66 to 75 ft.

INSTRUMENTATION .-- Monthly measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 23.82 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing at land surface. Prior to July 2000, 2.98 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD .-- January 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.75 ft above sea level, March 12, 1998; lowest measured, 8.30 ft above sea level, December 4, 1998.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

KENT COUNTY-Continued

WELL NUMBER .-- DM106D. SITE ID .-- 390734075271402. PERMIT NUMBER .-- 96636.

LOCATION.--Lat 39°07'34", long 75°27'14", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER.--Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

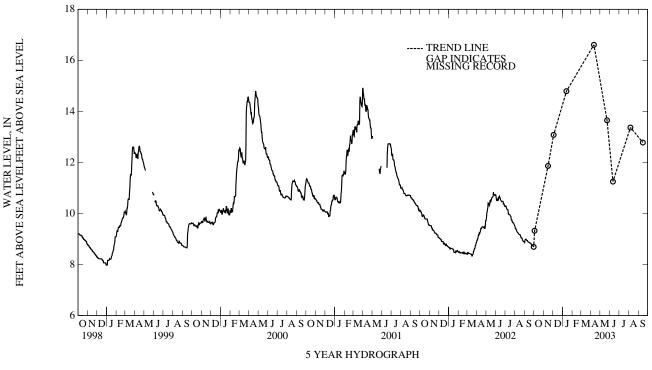
WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 82.4 ft; casing diameter 2 in., to 72.4 ft; screen diameter 2 in., from 72.4 to 82.4 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from October 1996, to September 2002.

DATUM.--Elevation of land surface is 23.51 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 3.60 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well.

PERIOD OF RECORD.--December 1995 to September 2003.


EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 17.11 ft above sea level, June 22 and 23, 2003; lowest measured, 7.97 ft above sea level, January 1 and 2, 1999.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL			
OCT 03, 2002 NOV 15 DEC 03	9.32 11.86 13.08	JAN 13, 2003 APR 11 MAY 23	14.79 16.61 13.65	JUN 11, 2003 AUG 06 SEP 15	11.25 13.37 12.78			
LOWEST 9 32 OCT 03 2002								

HIGHEST 16.61 APR 11, 2003

Daily Low Water Levels

KENT COUNTY-Continued

WELL NUMBER .-- DM106S. SITE ID .-- 390734075271401. PERMIT NUMBER .-- 95513.

LOCATION.--Lat 39°07'34", long 75°27'14", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

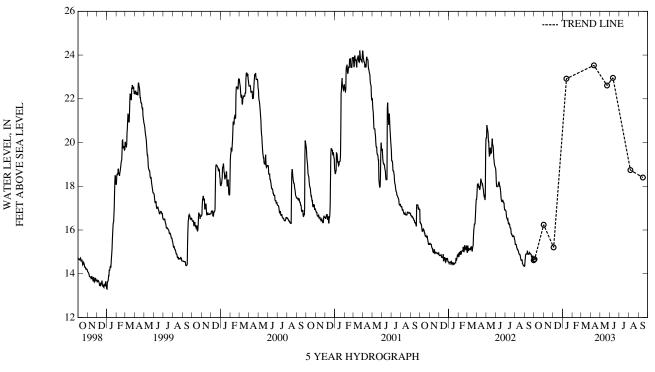
WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 17.4 ft; casing diameter 2 in., to 7.4 ft; screen diameter 2 in., from 7.4 to 17.4 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from December 1995, to September 2002.

DATUM.--Elevation of land surface is 23.31 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 2.73 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD.--December 1995 to September 2003.


EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 24.40 ft above sea level, March 22, 2001; lowest measured, 13.30 ft above sea level, January 2, 2000.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
14.66 16.24	JAN 13, 2003 APR 11	22.92 23.53	JUN 11, 2003 AUG 06	22.96 18.74
15.20	MAY 23	22.61	SEP 15	18.40
	LEVEL 14.66 16.24 15.20	LEVEL DATE 14.66 JAN 13, 2003 16.24 APR 11 15.20 MAY 23	LEVEL DATE LEVEL 14.66 JAN 13, 2003 22.92 16.24 APR 11 23.53 15.20 MAY 23 22.61	LEVEL DATE LEVEL DATE 14.66 JAN 13, 2003 22.92 JUN 11, 2003 16.24 APR 11 23.53 AUG 06 15.20 MAY 23 22.61 SEP 15

LOWEST 14.66 OCT 03, 2002 HIGHEST 23.53 APR 11, 2003

Daily Low Water Levels

KENT COUNTY-Continued

WELL NUMBER .-- DM108D. SITE ID .-- 390801075272302. PERMIT NUMBER .-- 95551.

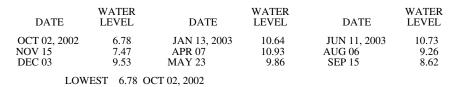
LOCATION.--Lat 39°08'01", long 75°27'23", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. Owner: U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

HIGHEST 10.93 APR 07, 2003

WELL CHARACTERISTICS.-Drilled, observation, water-table well, depth 32.8 ft; protective casing from +2 to 2.5 ft, casing diameter 2 in., to 22.8 ft; screen diameter 2 in., from 22.8 to 32.8 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 11.46 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 2.85 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD .-- October 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.86 ft above sea level, March 12, 1998; lowest measured, 6.17 ft above sea level, December 4, 1998.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

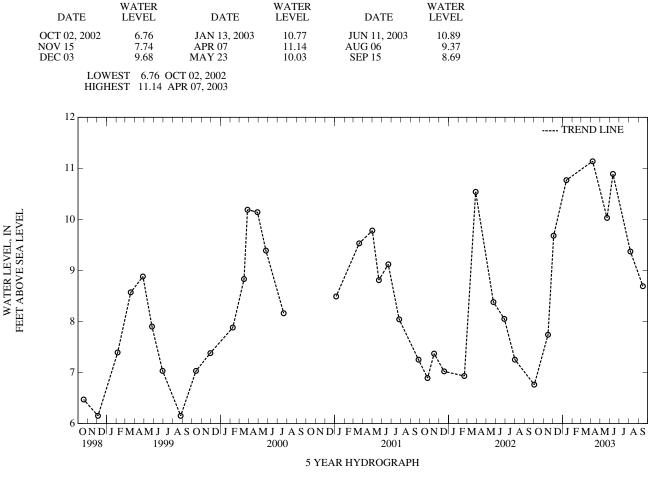
WELL NUMBER.--DM108S. SITE ID.--390801075272301. PERMIT NUMBER.--95525.

LOCATION.--Lat 39°08'01", long 75°27'23", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 17 ft; protective casing diameter 6 in., from +2.5 to 2.5 ft, casing diameter 2 in., to 6.9 ft; screen diameter 2 in., from 6.9 to 16.9 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 11.66 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 2.84 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD .-- July 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.14 ft above sea level, April 7, 2003; lowest measured, 6.15 ft above sea level, December 4, 1998, and August 26, 1999.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

KENT COUNTY-Continued

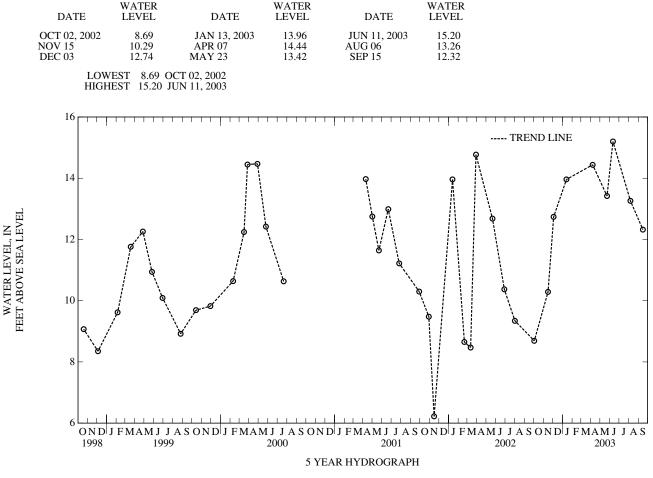
WELL NUMBER .-- DM110D. SITE ID .-- 390744075270402. PERMIT NUMBER .-- 95553.

LOCATION.--Lat 39°07'44", long 75°27'04", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 74 ft; casing diameter 2 in., to 63.4 ft; screen diameter 2 in., from 63.4 to 73.4 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 25.66 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 4.06 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well.

PERIOD OF RECORD.--October 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.12 ft above sea level, March 9, 1998; lowest measured, 6.22 ft above sea level, November 15, 2001.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

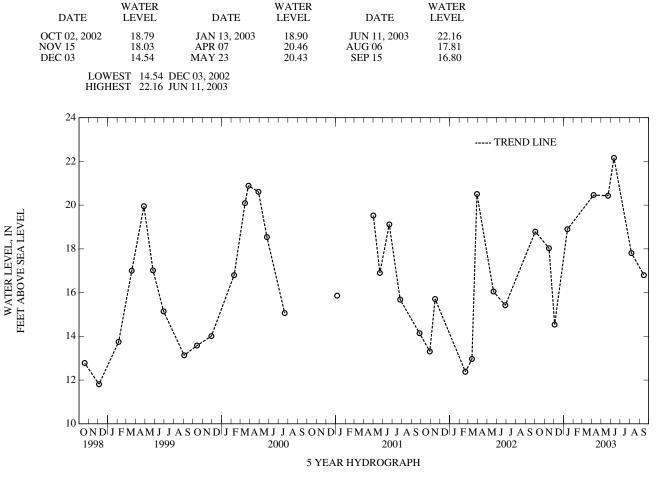
WELL NUMBER .-- DM110S. SITE ID .-- 390744075270401. PERMIT NUMBER .-- 95528.

LOCATION.--Lat 39°07'44", long 75°27'04", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 19 ft; casing diameter 2 in., to 10.3 ft; screen diameter 2 in., from 10.3 to 20.3 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 25.66 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 3.70 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD.--October 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 22.16 ft above sea level, June 11, 2003; lowest measured, 11.81 ft above sea level, December 1-2, and 4, 1998.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

WELL NUMBER .-- DM202D. SITE ID .-- 390833075273601. PERMIT NUMBER .-- 95544.

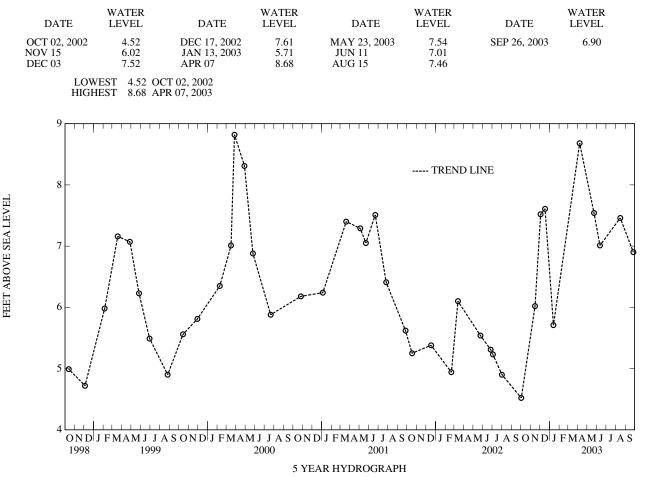
LOCATION.--Lat 39°08'33", long 75°27'36", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 28.0 ft; casing diameter 2 in., to 17.6 ft; screen diameter 2 in., from 17.6 to 27.6 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 13.74 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing at land surface. Prior to July 2000, 2.23 ft above land surface.


REMARKS .-- Dover Air Force Base Project observation well.

PERIOD OF RECORD.--October 1995 to current year.

WATER LEVEL. IN

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.00 ft above sea level, March 9, 1998; lowest measured, 4.52 ft above sea level, October 2, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

KENT COUNTY-Continued

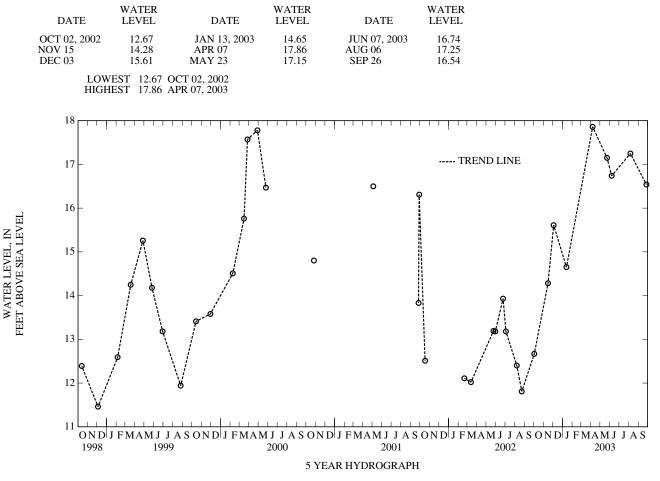
WELL NUMBER .-- DM204D. SITE ID .-- 390827075290401. PERMIT NUMBER .-- 95546.

LOCATION.--Lat 39°08'27", long 75°29'04", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 34 ft; casing diameter 2 in., to 24.7 ft; screen diameter 2 in., from 24.7 tt o 34.7 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 22.28 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing at land surface. Prior to October 2000, 2.48 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well.

PERIOD OF RECORD.--June 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.07 ft above sea level, March 12, 1998; lowest measured, 11.46 ft above sea level, December 4, 1998.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

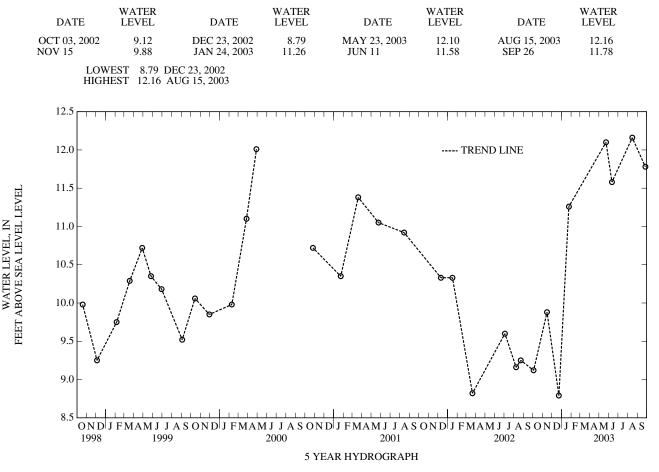
WELL NUMBER .-- DM310SB. SITE ID .-- 390729075283701. PERMIT NUMBER .-- 96051.

LOCATION.--Lat 39°07'29", long 75°28'37", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 20 ft; protective casing diameter 4 in., from +2.5 to 2.5 ft, casing diameter 2 in., to 10 ft; screen diameter 2 in., from 10 to 20 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 20.38 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 0.28 ft below land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD .-- July 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.52 ft above sea level, March 12, 1998; lowest measured, 8.79 ft above sea level, December 23, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

KENT COUNTY-Continued

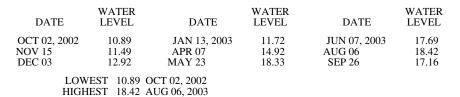
WELL NUMBER .-- DM347D. SITE ID .-- 390819075292902. PERMIT NUMBER .-- 96044.

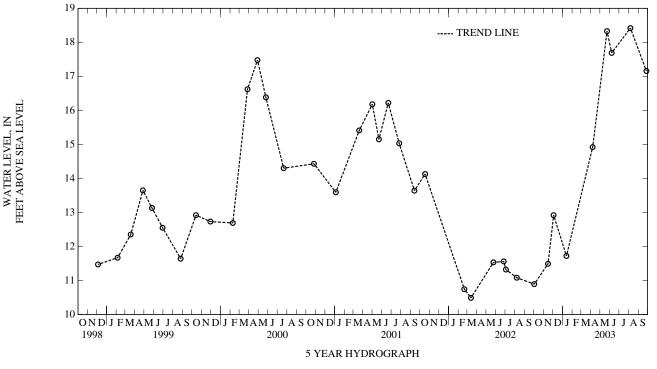
LOCATION.--Lat 39°08'19", long 75°29'29", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. Owner: U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS.-Drilled, observation, water-table well, depth 41.1 ft; protective casing diameter 4 in., from +2.5 to 2.5 ft, casing diameter 2 in., to 31.1 ft; screen diameter 2 in., from 31.1 to 41.1 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 25.90 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 2.84 ft above land surface.


REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD .-- October 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.50 ft above sea level, April 8, 1998; lowest measured, 10.49 ft above sea level, March 13, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

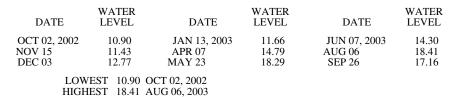
WELL NUMBER .-- DM347S. SITE ID.-- 390819075292901. PERMIT NUMBER .-- 95919.

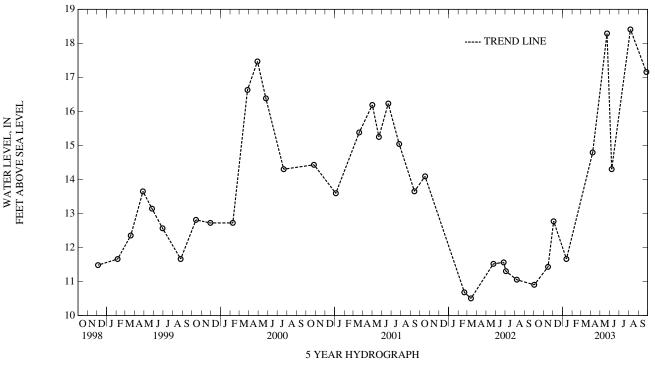
LOCATION.--Lat 39°08'19", long 75°29'29", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. Owner: U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS.-Drilled, observation, water-table well, depth 20.3 ft; protective casing diameter 4 in., from +2.5 to 2.5 ft, casing diameter 2 in., to 10.3 ft; screen diameter 2 in., from 10.3 to 20.3 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 25.89 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 2.84 ft above land surface.


REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD.--October 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.51 ft above sea level, April 8, 1998; lowest measured, 10.50 ft above sea level, March 13, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

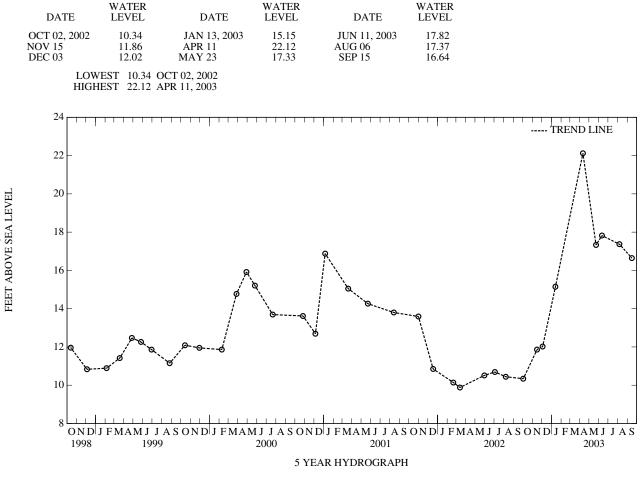
WELL NUMBER .-- DM348D. SITE ID .-- 390815075293402. PERMIT NUMBER .-- 96041.

LOCATION.--Lat 39°08'15", long 75°29'34", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. Owner: U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS.-Drilled, observation, water-table well, depth 36 ft; protective casing diameter 4 in., from +2.5 to 2.5 ft, casing diameter 2 in., to 24 ft; screen diameter 2 in., from 24 to 34 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 26.09 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 3.04 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD .-- October 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 22.12 ft above sea level, April 11, 2003; lowest measured, 10.34 ft below sea level, October 2, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN

KENT COUNTY-Continued

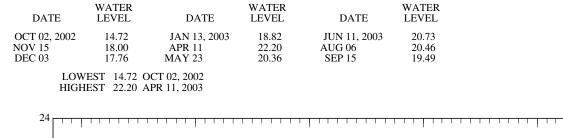
WELL NUMBER .-- DM348S. SITE ID .-- 390815075293401. PERMIT NUMBER .-- 95916.

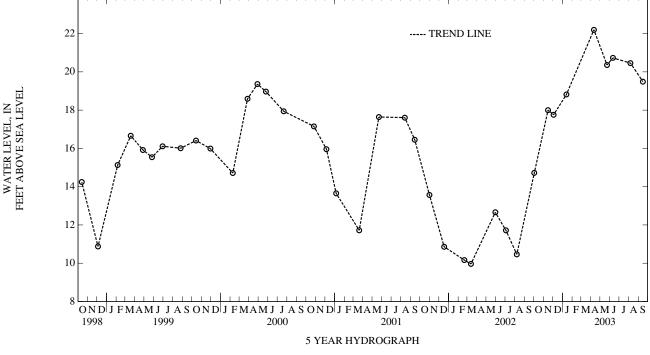
LOCATION.--Lat 39°08'15", long 75°29'34", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. Owner: U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS.-Drilled, observation, water-table well, depth 21.2 ft; protective casing diameter 4 in., from +2.5 to 2.5 ft, casing diameter 2 in., to 11.2 ft; screen diameter 2 in., from 11.2 to 21.2 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 26.09 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 3.12 ft above land surface.


REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD .-- October 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 22.20 ft above sea level, April 11, 2003; lowest measured, 9.96 ft above sea level, March 13, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

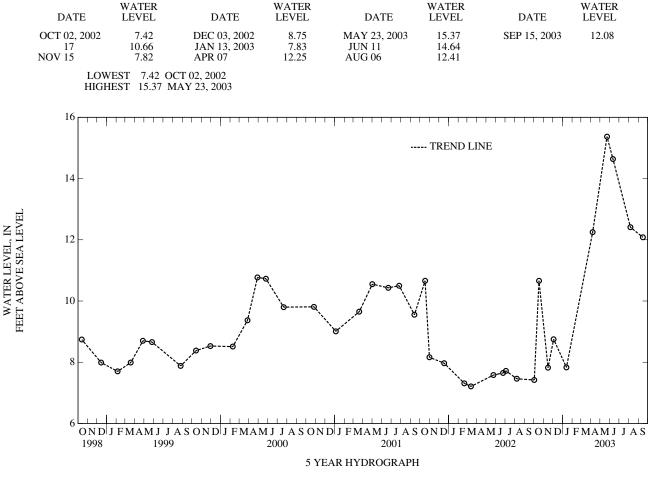
WELL NUMBER .-- DM349D. SITE ID .-- 390811075293802. PERMIT NUMBER .-- 96042.

LOCATION.--Lat 39°08'11", long 75°29'38", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. Owner: U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS.-Drilled, observation, water-table well, depth 34.4 ft; protective casing diameter 4 in., from +2.5 to 2.5 ft, casing diameter 2 in., to 24.4 ft; screen diameter 2 in., from 24.4 to 34.4 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 29.40 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 2.60 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD .-- October 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.37 ft above sea level, May 23, 2003; lowest measured, 7.21 ft above sea level, March 13, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

KENT COUNTY-Continued

WELL NUMBER .-- DM349S. SITE ID .-- 390811075293801. PERMIT NUMBER .-- 95917.

LOCATION.--Lat 39°08'11", long 75°29'38", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. Owner: U.S. Air Force.

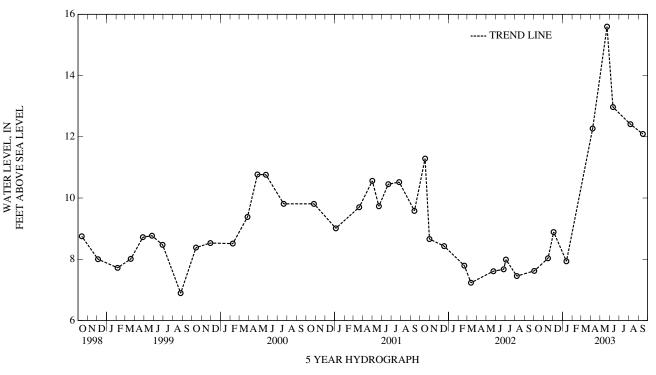
AQUIFER.--Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

HIGHEST 15.60 MAY 23, 2003

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 27.9 ft; protective casing diameter 4 in., from +2.5 to 2.5 ft, casing diameter 2 in., to 17.9 ft; screen diameter 2 in., from 17.9 to 27.9 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 29.72 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 2.71 ft above land surface.


REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD.--October 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.60 ft above sea level, May 23, 2003; lowest measured, 6.89 ft above sea level, August 26, 1999.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 02, 2002 NOV 15 DEC 03	7.62 8.03 8.89	JAN 13, 2003 APR 07 MAY 23	7.93 12.27 15.60	JUN 11, 2003 AUG 06 SEP 15	12.97 12.41 12.09
LOW	EST 7.62 O	СТ 02 2002			

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

KENT COUNTY-Continued

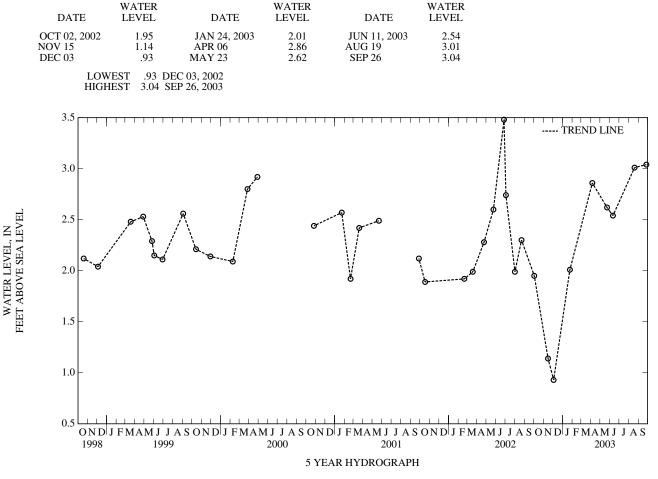
WELL NUMBER .-- DM358D. SITE ID .-- 390707075293401. PERMIT NUMBER .-- 96066.

LOCATION.--Lat 39°07'07", long 75°29'34", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 22 ft; casing diameter 2 in., to 6.7 ft; screen diameter 2 in., from 6.7 to 21.7 ft.

INSTRUMENTATION.--Periodic water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with pressure transducer waterlevel recorder--60-minute recorder interval from October 1995 to December 1998.


DATUM .-- Elevation of land surface is 12.32 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.85 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well.

PERIOD OF RECORD .-- October 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.88 ft above sea level, May 13, 1998; lowest measured, 0.93 ft above sea level, December 3, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

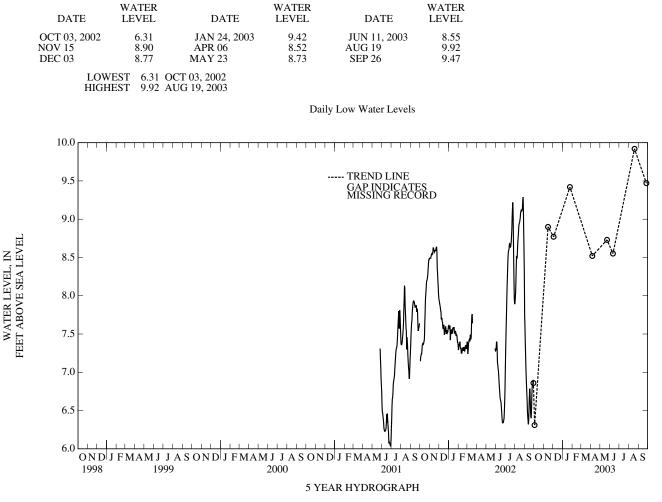
WELL NUMBER .-- DM376F SITE ID .-- 390653075284501. PERMIT NUMBER .-- 96949.

LOCATION.--Lat 39°06'53", long 75°28'45", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. Owner: U.S. Air Force.

AQUIFER .-- Frederica aquifer in the Calvert Formation of the Lower Middle Miocene age. Aquifer code: 122FRDC.

WELL CHARACTERISTICS.--Drilled, observation, water table well, depth 62 ft; casing diameter 3 in., from 0 to 52 ft; screen diameter 3 in., from 52 to 62 ft. INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level

recorder from May 2001 to September 2002.


DATUM.--Elevation of land surface is 10 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 1.93 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD .-- May 2001 to September 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.07 ft above sea level, September 1, 2002 (recorder); lowest measured, 6.04 ft above sea level, June 28, 2001 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY—Continued

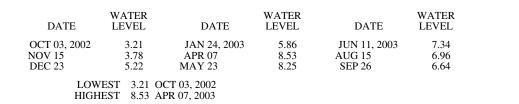
WELL NUMBER .-- DM378F. SITE ID .-- 390747075292601. PERMIT NUMBER .-- 96947.

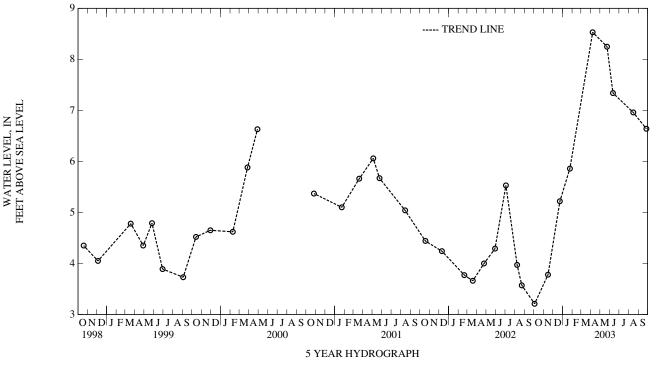
LOCATION.--Lat 39°07'47", long 75°29'26", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. Owner: U.S. Air Force.

AQUIFER.--Frederica aquifer in the Calvert Formation of Lower middle Miocene age. Aquifer code: 122FRDC.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 80 ft; casing diameter 8 in., to 50 ft, and casing diameter 3 in., from +1.49 to 69.2 ft; screen diameter 3 in., from 69.2 to 79.2 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 32.40 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 1.49 ft above land surface.


REMARKS .-- Dover Air Force Base Project observation well.

PERIOD OF RECORD .-- October 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.53 ft above sea level, April 7, 2003; lowest measured, 3.07 ft above sea level, August 16, 1999 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

KENT COUNTY-Continued

WELL NUMBER .-- DM412D. SITE ID .-- 390629075272701. PERMIT NUMBER .-- 95941.

LOCATION.--Lat 39°06'29", long 75°27'27", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

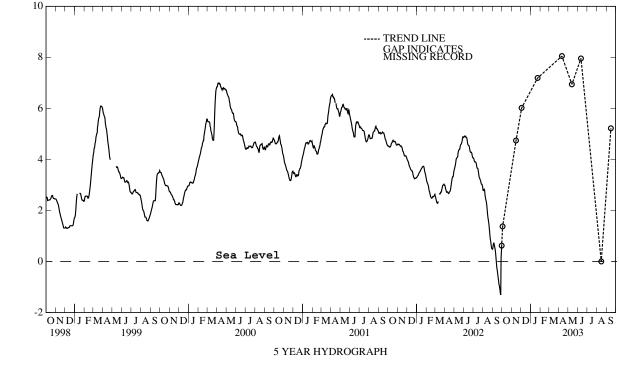
WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 70.0 ft; casing diameter 2 in., to 59.6 ft; screen diameter 2 in., from 59.6 to 69.6 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from October 1995 to September 2002.

DATUM .-- Elevation of land surface is 21.19 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.86 ft above land surface.

REMARKS.--Dover Air Force Base Project observation well. Periods of equal maximum and minimum daily values may be questionable due to the float hanging-up in small diameter wells or other construction factors.

PERIOD OF RECORD .-- October 1995 to September 2003.


WATER LEVEL, IN FEET ABOVE SEA LEVEI

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.77 ft above sea level, February 21, 1997; lowest measured, 1.31 ft below sea level, September 27, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 03, 2002 NOV 15 DEC 03	1.37 4.74 6.02	JAN 23, 2003 APR 11 MAY 13	7.19 8.05 6.94	JUN 11, 2003 AUG 15 SEP 15	7.96 .00 5.22
LOW: HIGH		JG 15, 2003 PR 11, 2003			

Daily Low Water Levels

KENT COUNTY—Continued

WELL NUMBER .-- DM421F. SITE ID.-- 390655075273701. PERMIT NUMBER .-- 96951.

LOCATION.--Lat 39°06'55", long 75°27'37", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

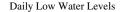
AQUIFER .-- Frederica aquifer in the Calvert Formation of Lower Middle Miocene age. Aquifer code: 122FRDC.

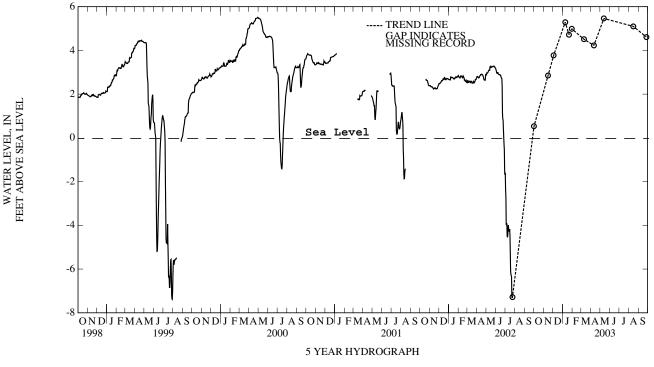
WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 100 ft; protective casing diameter 8 in., from +2.5 to 57 ft; casing diameter 3 in., from +2.76 to 88.7 ft, screen diameter 3 in., from 88.7 to 98.7 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from July 1997 to July 2002.

DATUM.--Elevation of land surface is 23.46 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 2.76 ft above land surface.

REMARKS.--Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation. Periods of equal maximum and minimum daily values may be questionable due to the float hanging-up in small diameter wells or other well construction factors.


PERIOD OF RECORD .-- July 1997 to current year.


EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.20 ft above sea level, April 3, 1998; lowest measured, 7.32 ft below sea level, July 23, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 01, 2002 NOV 15 DEC 03	.53 2.85 3.77	JAN 09, 2003 21 30	5.29 4.72 4.99	MAR 10, 2003 APR 11 MAY 13	4.51 4.23 5.46	AUG 15, 2003 SEP 26	5.10 4.61

LOWEST .53 OCT 01, 2002 HIGHEST 5.46 MAY 13, 2003

KENT COUNTY-Continued

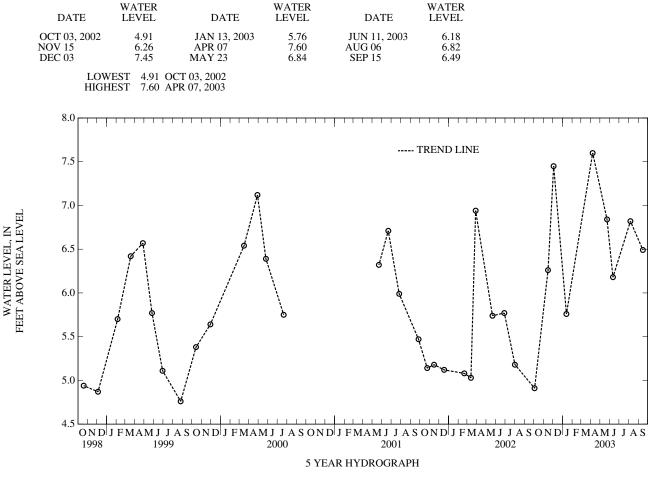
WELL NUMBER.--GS4D. SITE ID.--390742075300102. PERMIT NUMBER.--104544.

LOCATION.--Lat 39°07'42", long 75°30'01", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 25 ft; casing diameter 2 in., to 18.2 ft; screen diameter 2 in., from 18.2 to 21.2 ft.

INSTRUMENTATION .-- Monthly measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 4.50 ft above sea level. Measuring point: Top of casing, 5.00 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well.

PERIOD OF RECORD .-- September 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.96 ft above sea level, March 8, 9, and 21, 1998; lowest measured, 4.35 ft above sea level, August 13, 1999.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

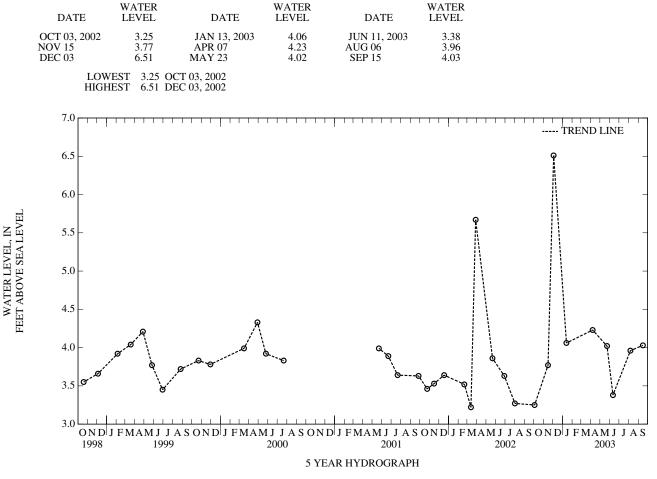
WELL NUMBER.--GS4S. SITE ID.--390742075300101. PERMIT NUMBER.--104542.

LOCATION.--Lat 39°07'42", long 75°30'01", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 5.0 ft; casing diameter 2 in., to 5.3 ft; screen diameter 2 in., from 5.3 to 5.8 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 3.27 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 7.20 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD.--September 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.87 ft above sea level, September 16, 1999 (recorder); lowest measured, 3.16 ft above sea level, August 6, 1999 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

KENT COUNTY-Continued

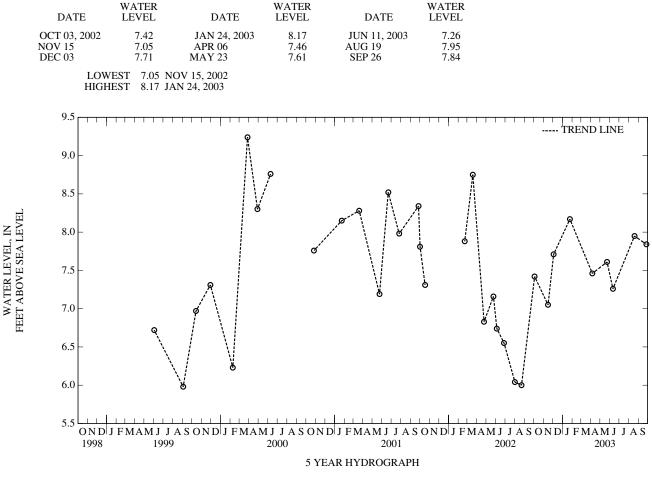
WELL NUMBER .-- MW29D. SITE ID .-- 390654075282202. PERMIT NUMBER .-- 73705.

LOCATION.--Lat 39°06'54", long 75°28'22", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 57.97 ft; casing diameter 2 in., to 50.4 ft; screen diameter 2 in., from 50.4 to 55.4 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 17.60 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 2.60 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD .-- June 1999 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.24 ft above sea level, March 27, 2000; lowest measured, 5.98 ft above sea level, September 3, 1999.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

KENT COUNTY—Continued

WELL NUMBER .-- MW33D. SITE ID .-- 390647075283301. PERMIT NUMBER .-- 73713.

LOCATION.--Lat 39°06'47", long 75°28'33", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

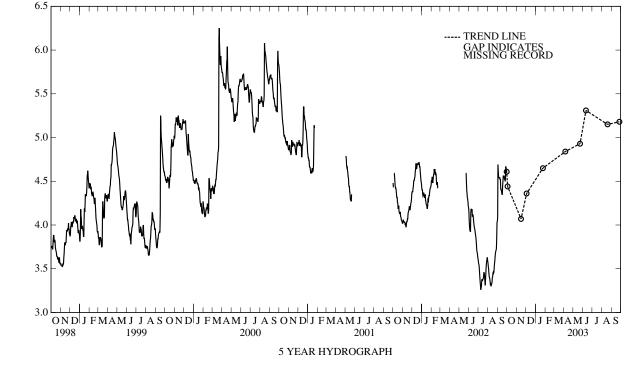
AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 50 ft; casing diameter 2 in., to 50.1 ft; screen diameter 2 in., from 50.1 to 55.1 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with pressure transducer waterlevel recorder--60-minute recorder interval from June 1996 to September 2002.

DATUM.--Elevation of land surface is 8.92 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 1.77 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well.


PERIOD OF RECORD .-- June 1996 to September 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.96 ft above sea level, March 8, 9, and 21, 1998; lowest measured, 1.60 ft above sea level, May 25, 1997.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 03, 2002 NOV 15 DEC 03	4.44 4.07 4.36	JAN 24, 2003 APR 06 MAY 23	4.65 4.84 4.93	JUN 11, 2003 AUG 19 SEP 26	5.31 5.15 5.18
	EST 4.07 NO EST 5.31 JU	,			

Daily Low Water Levels

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET ABOVE SEA LEVEI

KENT COUNTY-Continued

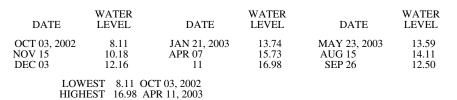
WELL NUMBER .-- MW48D. SITE ID .-- 390703075272601. PERMIT NUMBER .-- 73749.

LOCATION.--Lat 39°07'03", long 75°27'26", Hydrologic Unit 02040207, at Dover Air Force Base, Dover. U.S. Air Force.

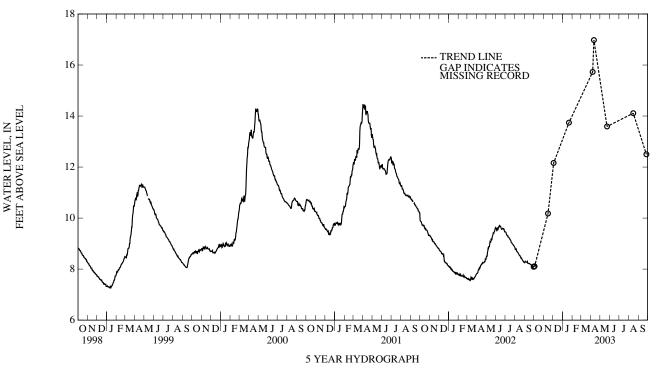
AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 80 ft; casing diameter 2 in., to 73.4 ft; screen diameter 2 in., from 73.4 to 78.4 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from September 1995 to September 2002.


DATUM.--Elevation of land surface is 27.54 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 1.57 ft above land surface.

REMARKS.--Dover Air Force Base Project. Periods of equal maximum and minimum daily values may be questionable due to the float hanging up in small diameter wells or other well construction factors.


PERIOD OF RECORD .-- September 1995 to September 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.15 ft above sea level, June 23, 2003; lowest measured, 7.26 ft above sea level, January 13, 14, 1999.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Daily Low Water Levels

KENT COUNTY-Continued

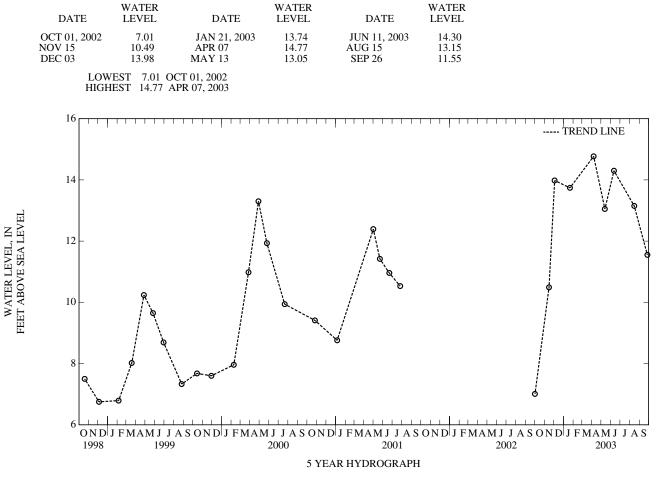
WELL NUMBER .-- MW80D. SITE ID .-- 390651075272001. PERMIT NUMBER .-- 74707.

LOCATION.--Lat 39°06'51", long 75°27'20", Hydrologic Unit 02040207 at Dover Air Force Base, Dover. U.S. Air Force.

AQUIFER.--Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .-- Drilled, observaion, water table well, depth 77.15 ft.

INSTRUMENTATION .-- Monthly measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Altitude of land surface is 27.46 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.35 ft above land surface.

REMARKS .-- Dover Air Force Base Project observation well. Water levels may be affected by agricultural irrigation.

PERIOD OF RECORD.--January 1996 to current year.

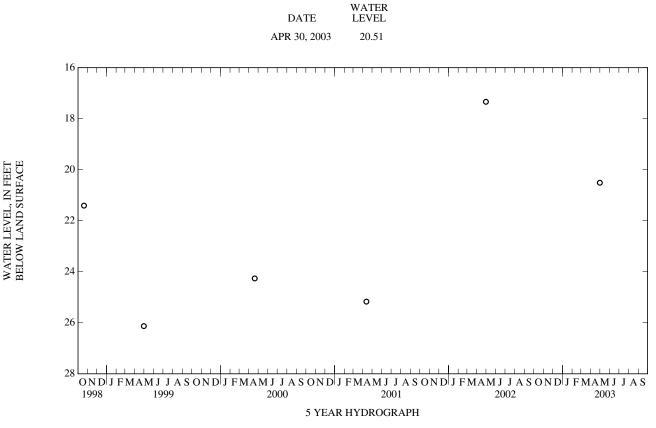
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.18 ft above sea level, March 12, 1998; lowest measured, 6.75 ft above sea level, December 4, 1998.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

NEW CASTLE COUNTY

WELL NUMBER .-- Db15-05. SITE ID .-- 393917075401601.

LOCATION.--Lat 39°39'17", long 75°40'16", Hydrologic Unit 02040205, Smalley's Dam, at the United Water Delaware plant. Owner: United Water Delaware.


AQUIFER.--Lower Potomac aquifer in the Potomac Group of Lower Cretaceous age. Aquifer code: 217PTMC.

- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 306 ft; casing diameter 12 in., to 215.5 ft, and 238.5 to 273.5 ft, screen diameter 12 in., from 215.5 to 238.5 ft and 273.5 to 306 ft.
- INSTRUMENTATION.--Once yearly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from March 1979 to November 1981.
- DATUM.--Elevation of land surface is 20 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 12 in. casing, 2.27 ft above land surface.
- REMARKS.--Delaware Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. No fall 2003 waterlevel measurement was made.

PERIOD OF RECORD .-- March 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 17.34 ft below land surface, April 30, 2002; lowest measured, 39.31 ft below land surface, September 30, 1981 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

NEW CASTLE COUNTY-Continued

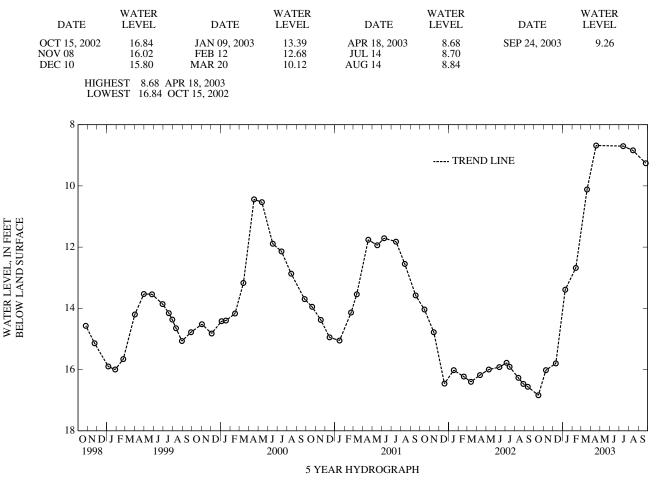
WELL NUMBER .-- Db24-17. SITE ID .-- 393856075415602. PERMIT NUMBER .-- 65430.

LOCATION.--Lat 39°38'55", long 75°41'54", Hydrologic Unit 02040205, 2 mi south of Ogletown. Owner: Delaware Department of Transportation.

AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 22 ft; casing diameter 2 in., to 17 ft; screen diameter 2 in., from 17 to 22 ft.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel.


DATUM.--Elevation of land surface is 77 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.55 ft above land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--June 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.42 ft below land surface, April 29, 1993; lowest measured, 16.84 ft below land surface, October 15, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

NEW CASTLE COUNTY-Continued

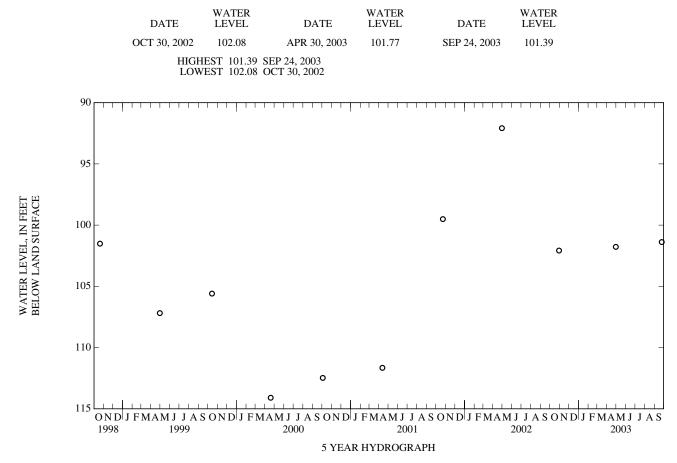
WELL NUMBER .-- Db33-17. SITE ID.-- 393734075371103. PERMIT NUMBER -- 44612.

LOCATION.--Lat 39°37'34", long 75°37'11", Hydrologic Unit 02040205, off Salem Church Road, near Beck's Pond. Owner: U.S. Geological Survey.

AQUIFER.--Lower Potomac aquifer in the Potomac Group of Lower Cretaceous age. Aquifer code: 217PTMC.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 189 ft; casing diameter 2 in., to 185 ft; screen diameter 2 in., from 185 to 189 ft. Installed in an 8 in. borehole with Db33-18, and Db33-19.

INSTRUMENTATION.--Twice yearly water level measurements with electric tape by U.S. Geological Survey personnel. Monthly water level measurements from October 1980 to November 1981.


DATUM.--Elevation of land surface is 48 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of coupling, 3.26 ft above land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD.--October 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 90.30 ft below land surface, October 12, 1995; lowest measured, 115.82 ft below land surface, October 15, 1990.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

NEW CASTLE COUNTY-Continued

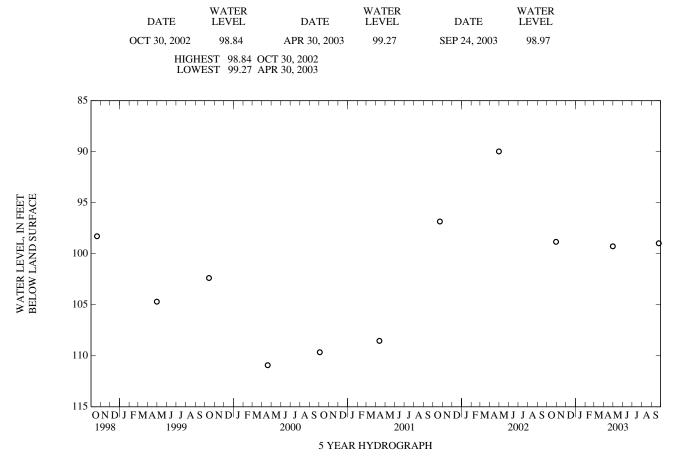
WELL NUMBER .-- Db33-18. SITE ID.-- 393734075371102. PERMIT NUMBER -- 44612.

LOCATION.--Lat 39°37'34", long 75°37'11", Hydrologic Unit 02040205, off Salem Church Road, near Beck's Pond. Owner: U.S. Geological Survey.

AQUIFER.--Lower Potomac aquifer in the Potomac Group of Lower Cretaceous age. Aquifer code: 217PTMC.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 143 ft; casing diameter 2 in., to 139 ft; screen diameter 2 in., from 139 to 143 ft. Installed in an 8 in. borehole with Db33-17, and Db33-19.

INSTRUMENTATION.--Twice yearly water level measurements with electric tape by U.S. Geological Survey personnel. Monthly water level measurements from October 1980 to November 1981.


DATUM.--Elevation of land surface is 48 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of coupling, 3.24 ft above land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- October 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 88.31 ft below land surface, October 12, 1995; lowest measured, 113.44 ft below land surface, October 15, 1990.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

NEW CASTLE COUNTY-Continued

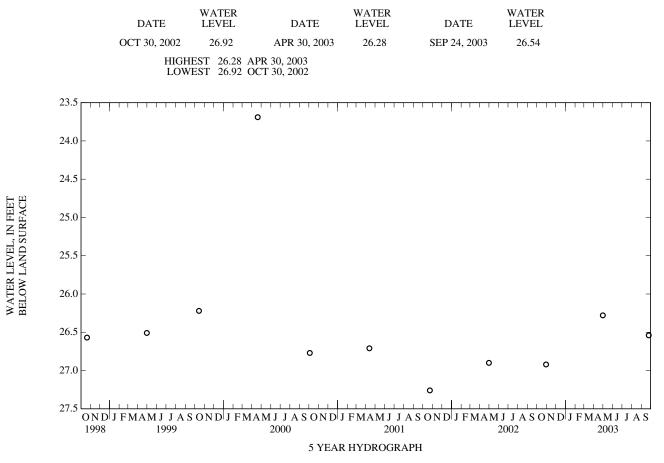
WELL NUMBER .-- Db33-19. SITE ID.-- 393734075371101. PERMIT NUMBER -- 44612.

LOCATION.--Lat 39°37'34", long 75°37'11", Hydrologic Unit 02040205, off Salem Church Road, near Beck's Pond. Owner: U.S. Geological Survey.

AQUIFER.--Columbia Formation of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS.-Drilled, observation, water-table well, depth 39 ft; casing diameter 2 in; to 35 ft; screen diameter 2 in., from 35 to 39 ft. Installed in an 8 in. borehole with Db33-17, and Db33-18.

INSTRUMENTATION.--Twice yearly water level measurements with electric tape by U.S. Geological Survey personnel. Monthly water level measurements from October 1980 to November 1981.


DATUM.--Elevation of land surface is 48 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of coupling, 3.29 ft above land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- October 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 23.69 ft below land surface, April 19, 2000; lowest measured 28.23 ft below land surface, April 3, 1981.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

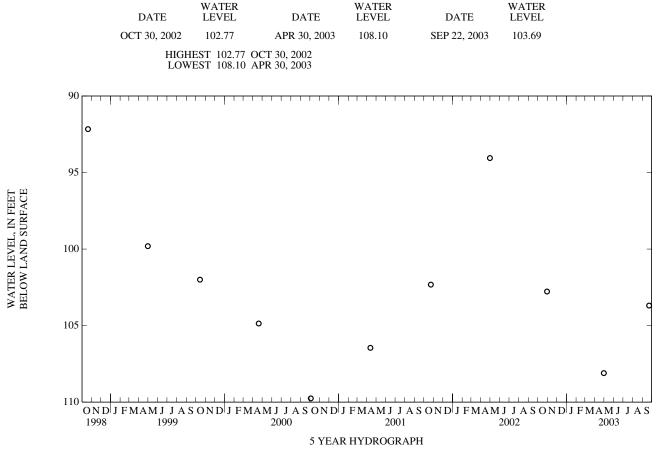
WELL NUMBER .-- Dc34-05. SITE ID .-- 393755075364801.

LOCATION.--Lat 39°37'55", long 75°36'48", Hydrologic Unit 02040205, east side of Rt. 9, at National Guard Rifle Range. Owner: U.S. Geological Survey.

AQUIFER.--Lower Potomac aquifer in the Potomac Group of Lower Cretaceous age. Aquifer code: 217PTMC.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 579 ft; casing diameter 2 in., to 574 ft; screen diameter 2 in., from 574 to 579 ft.

INSTRUMENTATION.--Twice yearly water level measurements with electric tape by U.S. Geological Survey personnel. Monthly water level measurements from November 1975 to November 1981.


DATUM.--Elevation of land surface is 28 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of coupling, 2.10 ft above land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- November 1975 to curent year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 88.38 ft below land surface, October 10, 1984; lowest measured, 130.62 ft below land surface, May 5, 1978.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

NEW CASTLE COUNTY—Continued

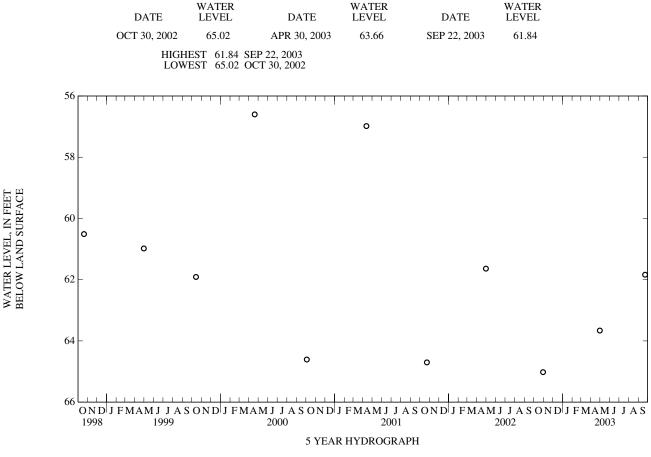
WELL NUMBER .-- Dc34-06. SITE ID .-- 393755075364802.

LOCATION.--Lat 39°37'55", long 75°36'48", Hydrologic Unit 02040205, east side of Rt. 9, at National Guard Rifle Range. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Potomac aquifer in the Potomac Group of Lower Cretaceous age. Aquifer code: 217PTMC.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 188 ft; casing diameter 2 in., to 183 ft; screened from 183 to 188 ft.

INSTRUMENTATION.--Twice yearly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from November 1975 to October 1982.


DATUM.--Elevation of land surface is 28 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 6 in. casing, 2.00 ft above land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- November 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.94 ft below land surface, February 15, 1976 (recorder); lowest measured, 65.02 ft below land surface, October 30, 2002.

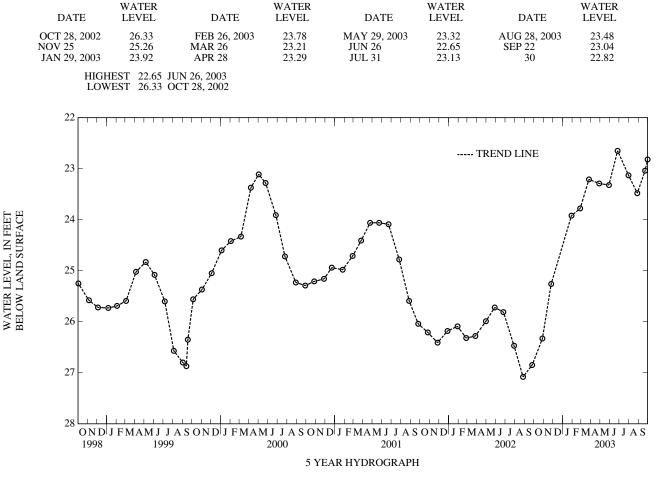
WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WELL NUMBER .-- Eb23-22. SITE ID .-- 393316075421601.

LOCATION.--Lat 39°33'16", long 75°42'16", Hydrologic Unit 02040205, at Lums Pond State Park. Owner: U.S. Geological Survey.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code : 211MGTY.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 105 ft; casing diameter 2 in., to 101 ft, screened 2 in., from 101 to 105 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 60 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.50 ft above land surface.

REMARKS.--Delaware Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--November 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 22.19 ft below land surface, April 4, 1997; lowest measured, 27.42 ft below land surface, October 2, 1992.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

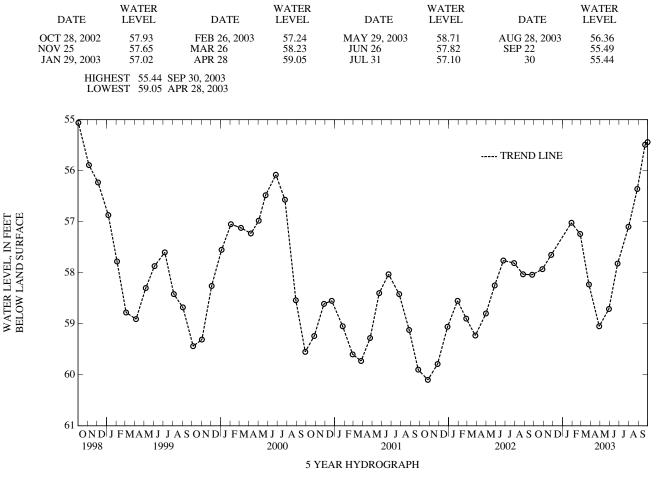
WELL NUMBER.--Eb23-23. SITE ID.--393316075421602.

LOCATION.--Lat 39°33'16", long 75°42'16", Hydrologic Unit 02040205, at Lums Pond State Park. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Potomac aquifer in the Potomac Group of Lower Cretaceous age. Aquifer code: 217PTMC.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 292 ft; casing diameter 2 in., to 288 ft, screened 2 in., from 288 to 292 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 60 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.35 ft above land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--November 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 52.38 ft below land surface, October 12, 1982; lowest measured, 60.60 ft below land surface, June 3, 1992.

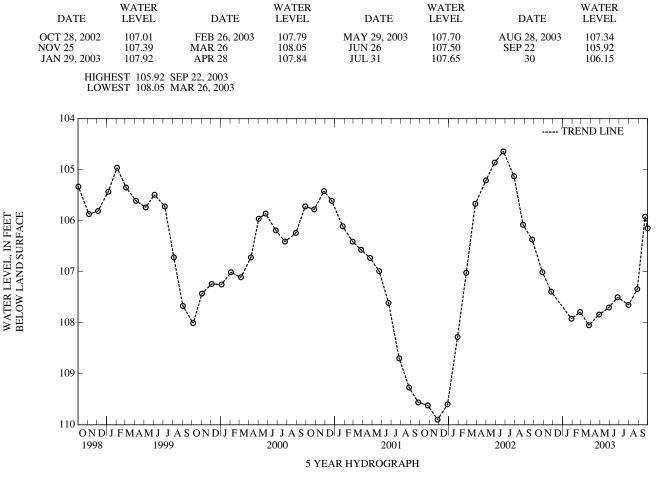
WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WELL NUMBER .-- Eb23-24. SITE ID .-- 393316075421603.

LOCATION.--Lat 39°33'16", long 75°42'16", Hydrologic Unit 02040205, at Lums Pond State Park. Owner: U.S. Geological Survey.

AQUIFER .-- Middle Potomac aquifer in the Potomac Group of Lower Cretaceous age. Aquifer code: 217PTMC.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 436 ft; casing diameter 2 in., to 432 ft, screened 2 in., from 432 to 436 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 60 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.38 ft above land surface.

REMARKS.--Delaware Water-Level Monitoring Network observation well. Water-levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--November 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 88.17 ft below land surface, November 13, 1980; lowest measured, 109.90 ft below land surface, November 26, 2001.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

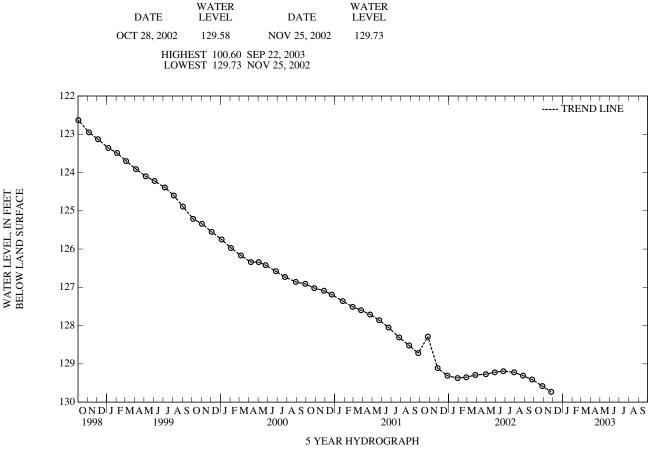
WELL NUMBER .-- Eb23-25. SITE ID .-- 393316075421604.

LOCATION.--Lat 39°33'16", long 75°42'16", Hydrologic Unit 02040205, at Lums Pond State Park. Owner: U.S. Geological Survey.

AQUIFER .-- Lower Potomac aquifer in the Potomac Group of Lower Cretaceous age. Aquifer code: 217PTMC.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 605 ft; casing diameter 2 in., to 600 ft, screened 2 in., from 600 to 604 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by Delaware Geological Survey personnel.


DATUM.--Elevation of land surface is 60 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS.--Delaware Water-Level Monitoring Network observation well. Water-levels are affected by regional ground-water withdrawal. This well has failed due to collapse.

PERIOD OF RECORD .-- November 1980 to November 2002.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 100.16 ft below land surface, September 30, 2003; lowest measured, 129.73 ft below land surface, November 25, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WELL NUMBER .-- Hbl4-01. SITE ID .-- 391949075410701.

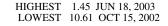
LOCATION.--Lat 39°19'49", long 75°41'07", Hydrologic Unit 02040205, at Prices Corners. Owner: Delaware Department of Transportation.

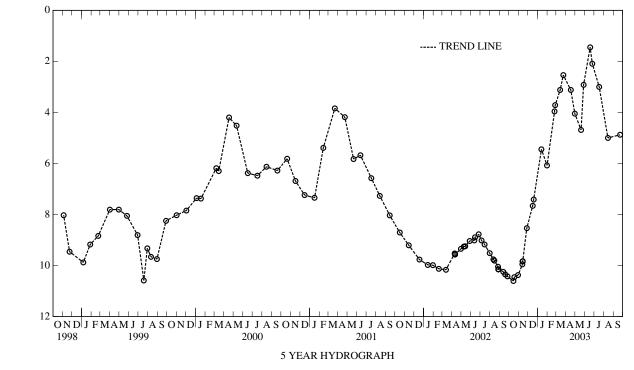
AQUIFER .-- Columbia Formation of Pleistocene age. Aquifer code: 112CLMB

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 19 ft; casing diameter 1 in., to 15.6 ft; well point from 15.6 to 18.6 ft.

INSTRUMENTATION.--Monthly water level measurements with electric or chalked steel tape by U.S. Geological Survey or Delaware Geological Survey personnel.

DATUM.--Elevation of land surface is 72 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land surface.


REMARKS .-- Delaware Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- October 1957 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.45 ft below land surface, June 18, 2003; lowest measured, 11.95 ft below land surface, August 31, 1966.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15, 2002	10.61	DEC 16, 2002	7.66	MAR 14, 2003	3.12	JUN 18, 2003	1.45
18	10.46	19	7.42	24	2.54	25	2.09
30	10.38	JAN 13, 2003	5.45	APR 17	3.12	JUL 17	3.00
NOV 13	9.96	31	6.08	30	4.05	AUG 14	5.00
14	9.84	FEB 24	3.96	MAY 20	4.69	SEP 22	4.88
27	8.54	26	3.72	28	2.92		

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

SUSSEX COUNTY

WELL NUMBER .-- Nc45-01. SITE ID .-- 384639075353101. PERMIT NUMBER .-- 10226.

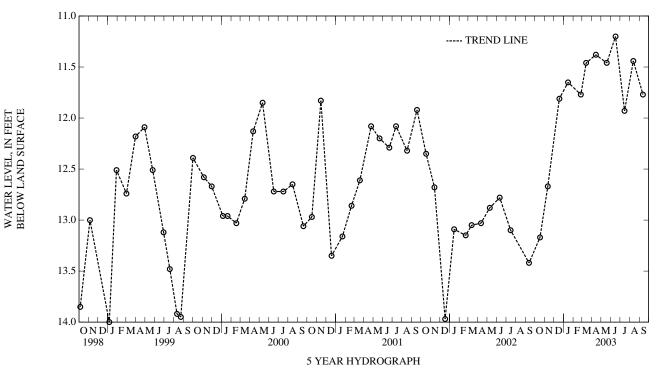
LOCATION.--Lat 38°46'39", long 75°35'31", Hydrologic Unit 02060008, 2.0 mi south of Greenwood. Owner: Private Residence.

AQUIFER .-- Columbia Formation (Staytonville unit) of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .- Driven, observation, water-table well, depth 15.45 ft; casing diameter l in., to 12.95 ft; screened from 12.95 tt 15.45 ft.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel.

DATUM.--Elevation of land surface is 43 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land surface.


REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--January 1956 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.82 ft below land surface, April 9, 1958; lowest measured, 14.66 ft below land surface, December 11, 1978.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 17, 2002 NOV 11 DEC 18	13.17 12.67 11.81	JAN 15, 2003 FEB 25 MAR 14	11.65 11.77 11.46	APR 14, 2003 MAY 19 JUN 16	11.38 11.46 11.20	JUL 15, 2003 AUG 12 SEP 12	11.93 11.44 11.77
	EST 11.20 J EST 13.17 C						

SUSSEX COUNTY-Continued

WELL NUMBER .-- Ngll-01. SITE ID .-- 384955075192801. PERMIT NUMBER .-- 10227.

LOCATION.--Lat 38°49'55", long 75°19'28", Hydrologic Unit 02040207, 1.2 mi east of Jefferson Crossroads. Owner: Delaware Department of Transportation.

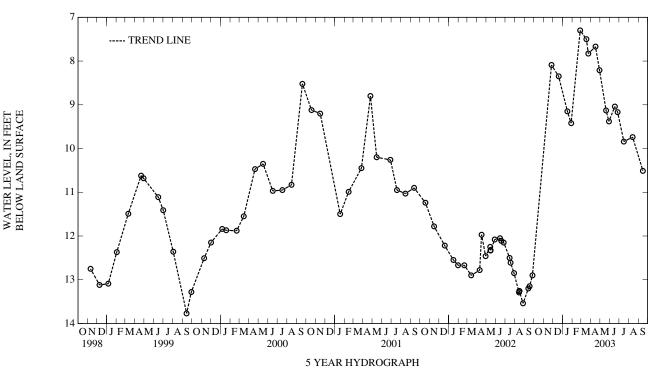
AQUIFER.--Omar Formation of Pleistocene age. Aquifer code: 1120MAR.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 19 ft; casing diameter 1 in., to 16 ft; well point from 16 to 19 ft.

INSTRUMENTATION.--Monthly water level measurements with electric or chalked steel tape by U.S. Geological Survey or Delaware Geological Survey personnel.

DATUM.--Elevation of land surface is 24 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well.


LOWEST 10.51 SEP 15, 2003

PERIOD OF RECORD .-- September 1959 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.91 ft below land surface, April 10, 1984; lowest measured, 14.64 ft below land surface, January 7, 1966.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 26, 2002 DEC 19 JAN 16, 2003	8.09 8.35 9.15	FEB 26, 2003 MAR 18 24	7.30 7.50 7.83	APR 29, 2003 MAY 20 29	8.21 9.13 9.38	JUN 26, 2003 JUL 16 AUG 13	9.17 9.84 9.74
28 HIGH	9.42 EST 7.30 F	APR 16 FB 26, 2003	7.67	JUN 17	9.04	SEP 15	10.51

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

SUSSEX COUNTY-Continued

WELL NUMBER .-- Ni52-11. SITE ID .-- 384558075083501. PERMIT NUMBER .-- 057363.

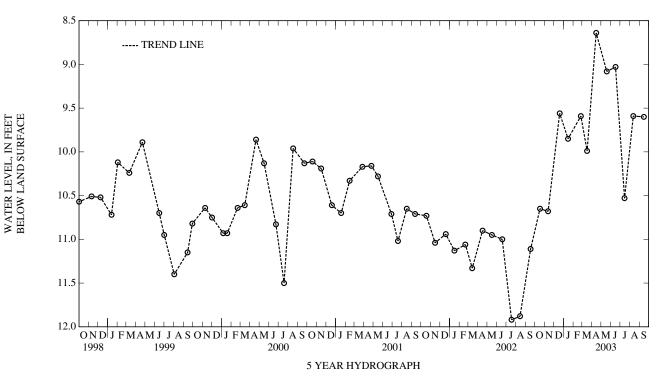
LOCATION.--Lat 38°45'58", long 75°08'35", Hydrologic Unit 02040207, in Lewes Library Park, near railroad tracks. Owner: Town of Lewes.

AQUIFER .-- Pocomoke aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122PCMK.

WELL CHARACTERISTICS .- Drilled, observation, artisian well, depth 155 ft; casing diameter 4 in., to 145 ft; screened from 145 to 155 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Intermittent water level measurements from May 1985 to July 1987. Twice yearly water level measurements from February 1988 to January 1992.

DATUM.--Elevation of land surface is 16 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 0.5 ft above land surface.


REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- May 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.16 ft below land surface, March 4, 1998; lowest measured, 11.92 ft below land surface, July 18, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 NOV 12 DEC 19	10.65 10.68 9.56	JAN 15, 2003 FEB 25 MAR 17	9.85 9.59 9.99	APR 15, 2003 MAY 19 JUN 16	8.64 9.08 9.03	JUL 15, 2003 AUG 12 SEP 15	10.53 9.59 9.60
HIGH LOW		PR 15, 2003 IOV 12, 2002					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

SUSSEX COUNTY-Continued

WELL NUMBER .-- Ni52-12. SITE ID.-- 384558075083502. PERMIT NUMBER .-- 057365.

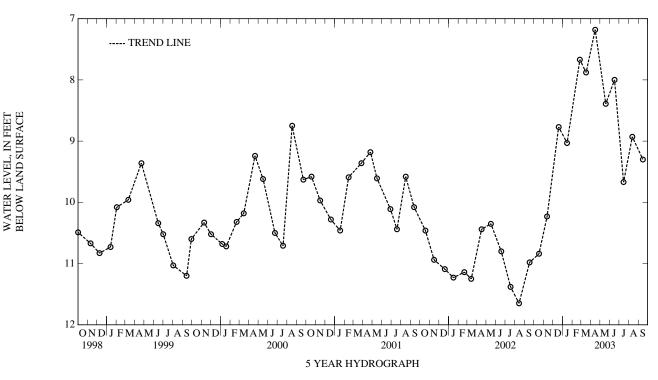
LOCATION.--Lat 38°45'58", long 75°08'35", Hydrologic Unit 02040207, in Lewes Library Park, near railroad tracks. Owner: Town of Lewes.

AQUIFER .-- Columbia Formation (Delaware Bay deposits) of Pleistocene age. Aquifer code: 112CLMB.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 80 ft; casing diameter 2 in., to 70 ft; screened from 70 to 80 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Intermittent water level measurements from July 1986 to July 1987. Twice yearly water level measurements from February 1988 to January 1992. Water level measurements from 1986 to 1992, measured by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 16 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 6 in. casing at land surface.


REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- July 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.57 ft below land surface, March 31, 1994; lowest measured, 11.70 ft below land surface, November 20, 1986.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 NOV 12 DEC 19	10.84 10.23 8.77	JAN 15, 2003 FEB 25 MAR 17	9.03 7.67 7.88	APR 15, 2003 MAY 19 JUN 16	7.18 8.39 8.00	JUL 15, 2003 AUG 12 SEP 15	9.67 8.93 9.30
HIGH LOW	EST 7.18 Al EST 10.84 O	PR 15, 2003 OCT 17, 2002					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

SUSSEX COUNTY—Continued

WELL NUMBER .-- Of12-13. SITE ID .-- 384438075234801. PERMIT NUMBER .-- 07473.

LOCATION.--Lat 38°44'38", long 75°23'48", Hydrologic Unit 02060008, near Redden State Forest. Owner: Delaware Department of Transportation.

AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 17 ft; casing diameter 2 in., to 14 ft; screen diameter 2 in., from 14 to 17 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from December 1993 to current year.

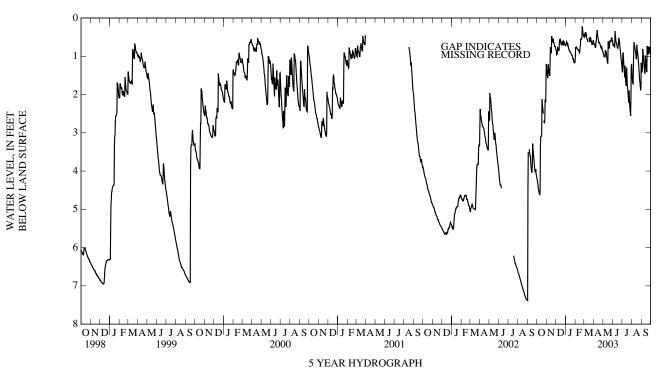
DATUM.--Altitude of land surface is 46.36 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 2.58 ft above land surface.

REMARKS.--Delaware Department of Transportation Wetlands Project observation well. Periods of equal maximum and minimum daily values may be questionable due to the float hanging up in small diameter wells or other well construction factors.

PERIOD OF RECORD.--September 1993 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.06 ft below land surface, March 3, 1994 (recorder); lowest measured, 7.38 ft below land surface, September 1, 2002 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003


DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22, 2002 DEC 02	2.52 JAN 08, 200 .81 MAR 04		.65 .44	APR 15, 2003 JUN 06	.52 .72	JUL 21, 2003 AUG 20	2.02 .92
HIGH LOW	EST .44 M/ EST 2.52 O	AR 04, 2003 CT 22, 2002					

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBR	UARY	MAH	RCH
1 2 3 4 5	4.21 4.24 4.31 4.34 4.46	4.16 4.21 4.24 4.31 4.34	1.31 1.41 1.49 1.55 1.57	1.20 1.31 1.41 1.48 1.21	$\begin{array}{c} 0.84 \\ 0.86 \\ 0.96 \\ 0.95 \\ 0.94 \end{array}$	0.81 0.81 0.86 0.94 0.71	0.72 0.68 0.62 0.64	0.61 0.63 0.52 0.53 0.62	1.00 0.76 0.78 0.77 0.76	0.69 0.69 0.76 0.61 0.66	$\begin{array}{c} 0.50 \\ 0.44 \\ 0.42 \\ 0.47 \\ 0.45 \end{array}$	$\begin{array}{c} 0.44 \\ 0.30 \\ 0.35 \\ 0.42 \\ 0.33 \end{array}$
6 7 8 9 10	4.47 4.53 4.57 4.60 4.61	4.46 4.46 4.53 4.57 4.47	1.21 1.31 1.36 1.43 1.47	1.05 1.19 1.31 1.36 1.43	0.77 0.78 0.83 0.85 0.85	0.71 0.77 0.78 0.83 0.83	0.66 0.71 0.69 0.73 0.77	$\begin{array}{c} 0.63 \\ 0.66 \\ 0.65 \\ 0.65 \\ 0.73 \end{array}$	0.79 0.80 0.82 0.83 0.83	$0.76 \\ 0.73 \\ 0.80 \\ 0.82 \\ 0.76$	0.37 0.39 0.43 0.52 0.55	$\begin{array}{c} 0.27 \\ 0.35 \\ 0.39 \\ 0.43 \\ 0.52 \end{array}$
11 12 13 14 15	4.47 3.32 3.10 3.09 3.09	3.32 3.10 3.02 3.04 3.06	$ 1.51 \\ 1.17 \\ 0.76 \\ 0.83 \\ 0.90 $	$ \begin{array}{r} 1.16 \\ 0.75 \\ 0.68 \\ 0.76 \\ 0.83 \\ \end{array} $	0.83 0.57 0.59 0.54 0.58	0.46 0.49 0.39 0.39 0.54	$0.82 \\ 0.84 \\ 0.84 \\ 0.85 \\ 0.90$	$\begin{array}{c} 0.77 \\ 0.81 \\ 0.79 \\ 0.83 \\ 0.84 \end{array}$	0.83 0.85 0.88 0.91 0.89	$0.78 \\ 0.79 \\ 0.85 \\ 0.88 \\ 0.73$	0.56 0.57 0.63	0.54 0.55 0.57
16 17 18 19 20	3.06 2.12 2.24 2.31 2.40	2.04 2.03 2.12 2.23 2.31	0.92 0.47 0.55 0.59 0.62	$\begin{array}{c} 0.43 \\ 0.41 \\ 0.42 \\ 0.55 \\ 0.59 \end{array}$	0.63 0.68 0.70 0.70 0.67	0.57 0.63 0.68 0.67 0.51	0.90 0.91 0.93 0.94 0.97	0.85 0.83 0.91 0.90 0.90	$\begin{array}{c} 0.77 \\ 0.72 \\ 0.54 \\ 0.56 \\ 0.56 \end{array}$	$\begin{array}{c} 0.72 \\ 0.45 \\ 0.48 \\ 0.53 \\ 0.53 \end{array}$	0.51 0.59 0.62 0.62	0.45 0.51 0.59 0.44
21 22 23 24 25	2.50 2.68 2.73 2.75	2.40 2.58 2.68 2.67	$\begin{array}{c} 0.63 \\ 0.54 \\ 0.61 \\ 0.65 \\ 0.69 \end{array}$	$\begin{array}{c} 0.46 \\ 0.44 \\ 0.54 \\ 0.61 \\ 0.65 \end{array}$	0.62 0.64 0.70 0.72 0.59	0.55 0.62 0.64 0.59 0.43	$\begin{array}{c} 0.97 \\ 0.99 \\ 1.02 \\ 1.08 \\ 1.09 \end{array}$	0.94 0.97 0.98 1.02 1.08	0.55 0.50 0.22 0.28 0.37	$\begin{array}{c} 0.50 \\ 0.18 \\ 0.12 \\ 0.22 \\ 0.28 \end{array}$	0.50 0.52 0.57 0.61 0.63	$\begin{array}{c} 0.41 \\ 0.44 \\ 0.52 \\ 0.57 \\ 0.61 \end{array}$
26 27 28 29 30 31	2.67 2.13 2.16 2.20 1.52 1.20	1.95 1.99 2.13 1.52 1.13 1.13	0.72 0.75 0.75 0.75 0.81	0.69 0.70 0.73 0.71 0.71	$\begin{array}{c} 0.62 \\ 0.63 \\ 0.65 \\ 0.69 \\ 0.72 \\ 0.72 \end{array}$	0.56 0.62 0.63 0.65 0.69 0.71	$1.08 \\ 1.15 \\ 1.14 \\ 1.16 \\ 1.17 \\ 1.15$	1.06 1.08 1.13 1.13 1.15 1.00	0.43 0.46 0.49 	0.37 0.43 0.45 	$\begin{array}{c} 0.70 \\ 0.67 \\ 0.69 \\ 0.69 \\ 0.58 \\ 0.63 \end{array}$	$\begin{array}{c} 0.63 \\ 0.66 \\ 0.67 \\ 0.58 \\ 0.54 \\ 0.55 \end{array}$
MONTH	4.61	1.13	1.57	0.41	0.96	0.39	1.17	0.52	1.00	0.12	0.70	0.27

SUSSEX COUNTY—Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JU	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	0.64 0.67 0.69 0.71 0.74	0.61 0.64 0.67 0.69 0.71	0.91 0.95 0.97 1.01 1.01	0.88 0.90 0.95 0.97 0.99	0.67 0.72 0.72 0.69 0.69	0.58 0.67 0.69 0.62 0.62	1.36 1.42 0.96 0.90 1.03	1.26 0.96 0.68 0.75 0.90	1.38 1.54 1.67 1.71 1.72	1.20 1.38 1.54 1.67 1.19	1.29 1.41 1.40 1.25 0.81	1.17 1.29 1.25 0.63 0.65
6 7 8 9 10	0.77 0.77 0.61 0.61 0.44	0.74 0.55 0.56 0.36 0.39	0.99 1.03 0.84 0.86 0.87	0.98 0.78 0.76 0.82 0.84	$0.76 \\ 0.76 \\ 0.34 \\ 0.44 \\ 0.53$	0.69 0.21 0.21 0.34 0.44	1.19 1.29 1.41 1.55 1.25	1.03 1.17 1.28 1.25 1.18	1.20 0.84 0.63 0.71 0.74	$0.80 \\ 0.47 \\ 0.48 \\ 0.63 \\ 0.70$	0.91 1.01 1.12 1.22 1.33	0.81 0.91 1.01 1.12 1.22
11 12 13 14 15	$\begin{array}{c} 0.41 \\ 0.32 \\ 0.45 \\ 0.50 \\ 0.54 \end{array}$	$\begin{array}{c} 0.25 \\ 0.26 \\ 0.32 \\ 0.45 \\ 0.50 \end{array}$	0.90 1.00 1.07 1.12 1.18	0.86 0.90 1.00 1.07 1.12	0.62 0.65 0.65 0.71 0.76	0.53 0.59 0.60 0.65 0.71	1.43 1.63 1.76 1.76 1.30	1.21 1.43 1.63 1.13 1.15	$0.80 \\ 0.85 \\ 0.89 \\ 0.97 \\ 1.06$	0.73 0.80 0.85 0.89 0.97	1.43 1.44 0.98 1.07 1.10	1.33 0.96 0.93 0.98 1.07
16 17 18 19 20	$0.60 \\ 0.65 \\ 0.65 \\ 0.64 \\ 0.67$	$0.54 \\ 0.60 \\ 0.62 \\ 0.63 \\ 0.64$	$ 1.18 \\ 0.61 \\ 0.65 \\ 0.70 \\ 0.76 $	$\begin{array}{c} 0.53 \\ 0.55 \\ 0.60 \\ 0.65 \\ 0.70 \end{array}$	$\begin{array}{c} 0.78 \\ 0.79 \\ 0.73 \\ 0.69 \\ 0.52 \end{array}$	0.76 0.73 0.68 0.42 0.45	1.48 1.69 1.82 1.88 2.00	1.30 1.48 1.69 1.81 1.88	$ \begin{array}{r} 1.06 \\ 0.70 \\ 0.81 \\ 0.86 \\ 0.95 \end{array} $	0.63 0.58 0.70 0.81 0.86	$1.26 \\ 1.40 \\ 1.40 \\ 0.73 \\ 0.83$	1.10 1.26 0.59 0.56 0.73
21 22 23 24 25	0.68 0.72 0.76 0.77 0.79	0.67 0.67 0.72 0.76 0.72	$\begin{array}{c} 0.80 \\ 0.60 \\ 0.60 \\ 0.60 \\ 0.62 \end{array}$	$0.60 \\ 0.56 \\ 0.53 \\ 0.54 \\ 0.60$	$0.55 \\ 0.60 \\ 0.69 \\ 0.78 \\ 0.86$	$\begin{array}{c} 0.45 \\ 0.55 \\ 0.60 \\ 0.69 \\ 0.78 \end{array}$	2.11 2.21 1.90 2.10 2.28	2.00 1.89 1.83 1.89 2.10	1.02 1.14 1.25 1.38 1.50	0.94 1.02 1.14 1.25 1.38	0.90 0.94 0.94 0.75 0.84	0.83 0.90 0.57 0.65 0.75
26 27 28 29 30 31	0.73 0.79 0.81 0.85 0.89	0.69 0.73 0.79 0.81 0.85	$\begin{array}{c} 0.62 \\ 0.54 \\ 0.55 \\ 0.51 \\ 0.59 \\ 0.59 \end{array}$	$\begin{array}{c} 0.43 \\ 0.50 \\ 0.43 \\ 0.45 \\ 0.51 \\ 0.57 \end{array}$	0.93 1.04 1.09 1.18 1.26	0.85 0.92 1.03 1.08 1.16	2.38 2.47 2.56 2.08 1.29 1.20	2.28 2.38 2.08 1.19 1.11 1.11	1.64 1.69 1.80 1.89 1.82 1.17	1.50 1.56 1.69 1.67 1.09 1.08	0.91 0.91 0.75 0.87 0.94	0.84 0.66 0.67 0.75 0.87
MONTH YEAR	0.89 4.61	0.25 0.12	1.18	0.43	1.26	0.21	2.56	0.68	1.89	0.47	1.44	0.56

Daily Low Water Levels

SUSSEX COUNTY—Continued

WELL NUMBER .-- Of13-03. SITE ID .-- 384401075224901. PERMIT NUMBER .-- 95801.

LOCATION.--Lat 38°44'01", long 75°22'49", Hydrologic Unit 02060008, near Redden State Forest. Owner: Delaware Department of Transportation.

AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code:121BVDM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 20 ft; casing diameter 2 in., to 17 ft; screen diameter 2 in., from 17 to 20 ft.

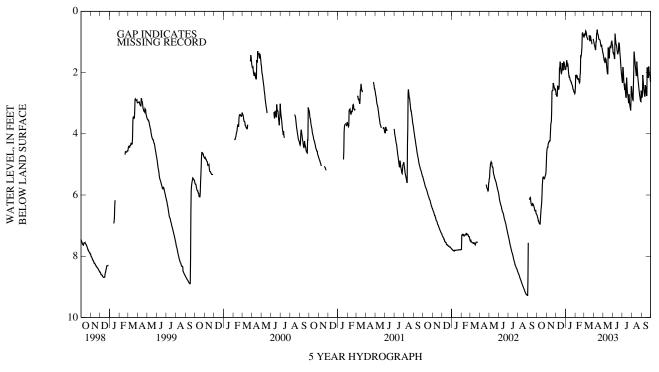
INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from December 1993 to current year.

DATUM.--Altitude of land surface is 48.37 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 3.28 ft above land surface.

REMARKS.--Delaware Department of Transportation Wetlands Project observation well. Missing data due to recorder malfunction. Periods of equal maximum and minimum daily values may be questionable due to the float hanging up in small diameter wells or other well construction factors.

PERIOD OF RECORD.--September 1993 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.06 ft above land surface, March 3, 1994 (recorder); lowest measured, 9.28 ft below land surface, September 1, 2002 (recorder).


WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22, 2002 DEC 02	5.40 2.62	JAN 08, 2003 MAR 04	1.72 .76	APR 15, 2003 JUN 06	.75 1.46	JUL 21, 2003 AUG 20	2.83 2.00
	EST .75 AP EST 5.40 OC						

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBR	UARY	MAI	RCH
1 2 3 4 5	6.66 6.68 6.74 6.76 6.84	6.64 6.66 6.68 6.74 6.75	4.64 4.52 4.46 4.44 4.44	4.52 4.46 4.44 4.42 4.32	2.71 2.71 2.77 2.77 2.77	2.59 2.62 2.62 2.77 2.39	1.90 1.79 1.79 1.60 1.65	1.64 1.64 1.43 1.43 1.60	2.50 2.08 2.12 2.09 2.10	2.02 2.02 2.08 1.83 1.93	0.84 0.74 0.74 0.77 0.75	$0.74 \\ 0.58 \\ 0.60 \\ 0.74 \\ 0.58$
6 7 8 9 10	6.84 6.88 6.92 6.94 6.95	6.83 6.83 6.88 6.92 6.94	4.32 4.29 4.29 4.24 4.23	4.28 4.28 4.24 4.23 4.21	2.43 2.45 2.49 2.56 2.53	2.39 2.41 2.42 2.49 2.47	1.69 1.77 1.75 1.84 1.99	1.65 1.69 1.68 1.68 1.84	2.15 2.13 2.20 2.22 2.21	2.10 2.03 2.13 2.19 2.06	0.64 0.66 0.71 0.79 0.86	0.52 0.61 0.66 0.70 0.79
11 12 13 14 15	6.95 6.79 6.61 6.47 6.37	6.79 6.61 6.47 6.37 6.24	4.24 4.23 3.99 3.73 3.63	4.22 3.99 3.73 3.63 3.61	2.47 1.86 1.86 1.64 1.73	1.82 1.81 1.50 1.48 1.64	2.08 2.14 2.13 2.17 2.24	1.99 2.08 2.05 2.13 2.17	2.20 2.23 2.30 2.34 2.32	2.09 2.13 2.23 2.30 2.03	0.87 0.89 0.94 	0.86 0.86 0.89
16 17 18 19 20	6.24 6.02 5.69 5.54 5.42	6.02 5.69 5.54 5.42 5.41	3.61 3.26 2.61 2.59 2.59	3.26 2.61 2.59 2.54 2.56	1.89 1.98 2.03 2.01 1.90	1.71 1.89 1.98 1.90 1.53	2.25 2.27 2.31 2.31 2.36	2.16 2.13 2.27 2.28 2.26	2.09 2.02 1.44 1.47 1.43	2.02 1.35 1.35 1.41 1.31	0.78 0.90 0.96 0.96	0.73 0.78 0.90 0.73
21 22 23 24 25	5.41 5.42 5.46 5.47 5.47	5.40 5.40 5.42 5.46 5.43	2.58 2.34 2.38 2.43 2.47	2.34 2.20 2.24 2.38 2.43	1.69 1.78 1.87 1.93 1.70	1.56 1.69 1.78 1.70 1.34	2.40 2.42 2.44 2.54 2.55	2.36 2.40 2.39 2.44 2.54	$ 1.31 \\ 1.16 \\ 0.74 \\ 0.69 \\ 0.74 $	$ \begin{array}{r} 1.16 \\ 0.74 \\ 0.58 \\ 0.65 \\ 0.67 \end{array} $	0.79 0.84 0.91 0.96 0.99	0.73 0.74 0.84 0.91 0.96
26 27 28 29 30 31	5.43 5.39 5.36 5.33 5.21 4.94	5.39 5.36 5.33 5.21 4.94 4.64	2.51 2.55 2.57 2.55 2.59	2.47 2.47 2.55 2.45 2.47	1.64 1.68 1.72 1.86 1.90 1.90	1.43 1.64 1.68 1.72 1.86 1.87	2.56 2.63 2.63 2.66 2.69 2.66	2.52 2.56 2.61 2.61 2.66 2.50	0.77 0.80 0.84 	0.74 0.77 0.80 	1.06 1.06 0.90 0.96	0.99 1.02 0.84 0.84
MONTH	6.95	4.64	4.64	2.20	2.77	1.34	2.69	1.43	2.50	0.58	1.06	0.52

SUSSEX COUNTY—Continued												
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	AΥ	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	$\begin{array}{c} 0.99 \\ 1.05 \\ 1.10 \\ 1.14 \\ 1.18 \end{array}$	0.96 0.99 1.05 1.10 1.14	1.39 1.45 1.53 1.59 1.62	1.36 1.39 1.45 1.53 1.59	1.25 1.36 1.39 1.37 1.40	1.10 1.25 1.36 1.25 1.25	2.29 2.34 1.82 1.84 2.04	2.18 1.82 1.54 1.58 1.84	2.60 2.74 2.84 2.90 2.91	2.46 2.60 2.74 2.84 2.38	2.67 2.81 2.80 2.70 2.08	2.58 2.67 2.70 1.89 1.89
6 7 8 9 10	1.25 1.25 1.00 1.00 0.74	1.18 0.94 0.94 0.65 0.67	1.64 1.69 1.51 1.54 1.57	1.60 1.40 1.39 1.48 1.52	1.54 1.54 0.73 0.86 0.95	1.40 0.63 0.63 0.73 0.86	2.26 2.36 2.46 2.57 2.36	2.04 2.24 2.36 2.36 2.32	2.38 1.97 1.32 1.44 1.54	1.89 1.16 1.16 1.32 1.44	2.23 2.37 2.50 2.60 2.68	2.08 2.23 2.37 2.50 2.60
11 12 13 14 15	0.69 0.60 0.71 0.74 0.77	0.50 0.50 0.60 0.71 0.74	1.62 1.77 1.87 1.98 2.04	1.57 1.62 1.77 1.87 1.98	1.06 1.09 1.13 1.21 1.30	0.95 0.99 1.07 1.12 1.21	2.57 2.71 2.81 2.81 2.17	2.35 2.57 2.70 2.00 2.00	1.65 1.78 1.87 1.99 2.10	1.54 1.65 1.78 1.87 1.99	2.77 2.77 2.41 2.47 2.47	2.67 2.41 2.37 2.41 2.46
16 17 18 19 20	$\begin{array}{c} 0.83 \\ 0.91 \\ 0.91 \\ 0.92 \\ 0.93 \end{array}$	0.77 0.83 0.87 0.87 0.92	2.04 1.18 1.24 1.36 1.46	1.12 1.12 1.18 1.24 1.36	1.37 1.40 1.34 1.31 1.02	1.30 1.34 1.29 0.89 0.91	2.36 2.54 2.66 2.73 2.84	2.17 2.36 2.54 2.65 2.73	2.10 1.64 1.85 1.98 2.14	1.54 1.45 1.64 1.85 1.98	2.64 2.75 2.75 1.83 2.01	2.47 2.63 1.72 1.64 1.83
21 22 23 24 25	$\begin{array}{c} 0.95 \\ 1.01 \\ 1.09 \\ 1.12 \\ 1.16 \end{array}$	$\begin{array}{c} 0.93 \\ 0.95 \\ 1.01 \\ 1.09 \\ 1.07 \end{array}$	1.54 1.19 1.15 1.14 1.19	1.19 1.12 1.04 1.04 1.14	1.04 1.09 1.26 1.41 1.53	0.91 1.02 1.09 1.26 1.41	2.93 3.00 2.71 2.90 3.04	2.84 2.69 2.66 2.71 2.90	2.25 2.35 2.47 2.57 2.66	2.14 2.24 2.34 2.47 2.57	2.12 2.16 2.16 1.80 1.94	2.01 2.12 1.52 1.61 1.80
26 27 28 29 30 31	1.09 1.19 1.22 1.29 1.36	1.02 1.09 1.19 1.22 1.29	$ 1.19 \\ 1.04 \\ 1.05 \\ 0.96 \\ 1.08 \\ 1.10 $	$\begin{array}{c} 0.90 \\ 0.96 \\ 0.86 \\ 0.86 \\ 0.96 \\ 1.08 \end{array}$	1.68 1.84 1.97 2.08 2.18	1.53 1.68 1.84 1.97 2.07	$3.10 \\ 3.16 \\ 3.24 \\ 3.01 \\ 2.46 \\ 2.46$	3.04 3.10 3.01 2.40 2.43 2.44	2.75 2.81 2.89 2.94 2.95 2.59	2.66 2.70 2.81 2.85 2.54 2.53	2.07 2.07 2.09 2.25 2.31	1.94 2.03 1.98 2.09 2.25
MONTH	1.36	0.50	2.04	0.86	2.18	0.63	3.24	1.54	2.95	1.16	2.81	1.52

Daily Low Water Levels

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

YEAR

6.95

0.50

SUSSEX COUNTY---Continued

WELL NUMBER .-- Of13-08. SITE ID .-- 384406075224601. PERMIT NUMBER .-- 97463.

LOCATION.--Lat 38°44'06", long 75°22'46", Hydrologic Unit 02040207, near Redden State Forest. Owner: Delaware Department of Transportation.

AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 16 ft; casing diameter 2 in., to 13 ft; screen diameter 2 in., from 13 to 16 ft.

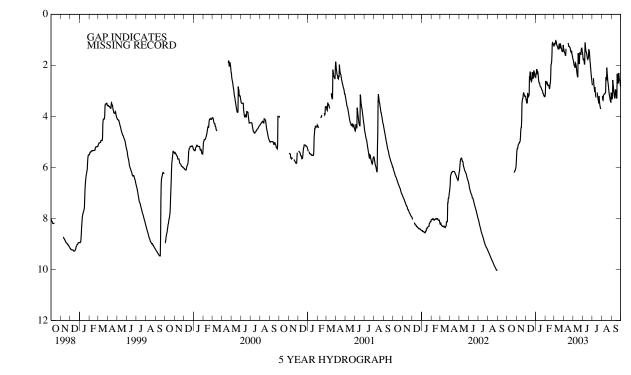
INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with water-level recorder--60minute recorder interval from December 1993 to current year.

DATUM.--Altitude of land surface is 48.91 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 2.63 ft above land surface.

REMARKS.--Delaware Department of Transportation Wetlands Project observation well. Missing data due to recorder malfunction. Periods of equal maximum and minimum daily values may be questionable due to the float hanging up in small diameter wells or other well construction factors.

PERIOD OF RECORD.--September 1993 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.40 ft below land surface, March 3, 1994 (recorder); lowest measured, 10.05 ft below land surface, August 31, 2002 (recorder).


WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22, 2002 DEC 02	6.13 3.32	JAN 08, 2003 MAR 04	2.26 1.17	APR 15, 2003 JUN 06	1.11 1.84	JUL 21, 2003 AUG 20	3.35 2.47
HIGH LOW	EST 1.11 AI EST 6.13 O	PR 15, 2003 CT 22, 2002					

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBR	UARY	MA	RCH
1 2 3 4 5	 	 	5.47 5.32 5.26 5.26 5.19	5.32 5.26 5.26 5.18 5.10	3.35 3.35 3.47 3.48 3.47	3.24 3.32 3.33 3.47 3.11	2.47 2.33 2.33 2.15 2.19	2.18 2.20 2.14 2.14 2.15	3.08 2.61 2.67 2.65 2.65	2.57 2.57 2.61 2.45 2.46	1.24 1.14 1.14 1.16 1.13	$1.14 \\ 1.14 \\ 1.14 \\ 1.13 \\ 0.95$
6 7 8 9 10	 	 	5.11 5.09 5.07 5.04 5.04	5.06 5.07 5.04 5.04 4.97	3.11 3.12 3.17 3.22 3.19	3.11 3.10 3.11 3.17 3.14	2.21 2.31 2.29 2.38 2.55	2.17 2.21 2.21 2.21 2.38	2.71 2.69 2.76 2.79 2.78	2.65 2.60 2.69 2.76 2.68	1.03 1.04 1.08 1.17 1.23	0.87 1.00 1.04 1.07 1.17
11 12 13 14 15	 	 	4.99 4.98 4.85 4.57 4.45	4.97 4.85 4.57 4.45 4.44	3.14 2.49 2.51 2.24 2.33	2.47 2.47 2.13 2.13 2.24	2.64 2.69 2.69 2.73 2.81	2.55 2.64 2.62 2.69 2.73	2.77 2.79 2.86 2.91 2.90	2.69 2.72 2.79 2.86 2.70	1.24 1.26 1.32 1.36 1.36	1.21 1.21 1.25 1.32 1.33
16 17 18 19 20	 	 	4.44 4.15 3.49 3.38 3.30	4.15 3.49 3.38 3.28 3.28	2.49 2.59 2.64 2.62 2.54	2.32 2.49 2.59 2.54 2.12	2.83 2.84 2.88 2.89 2.93	2.73 2.70 2.84 2.84 2.84	2.71 2.70 2.43 1.98 1.95	2.70 2.43 1.89 1.90 1.87	1.36 1.15 1.26 1.32 1.32	1.03 1.02 1.15 1.26 1.06
21 22 23 24 25	6.17 6.18 6.18	6.14 6.17 6.13	3.29 3.16 3.06 3.11 3.14	3.16 2.98 2.98 3.06 3.10	2.27 2.37 2.47 2.52 2.33	2.13 2.27 2.37 2.33 1.89	2.97 2.99 3.01 3.10 3.11	2.93 2.97 2.96 3.01 3.10	1.87 1.61 1.15 1.11 1.13	$ \begin{array}{r} 1.61 \\ 1.15 \\ 0.95 \\ 1.05 \\ 1.08 \end{array} $	1.14 1.20 1.27 1.33 1.37	1.04 1.09 1.20 1.27 1.33
26 27 28 29 30 31	6.13 6.12 6.09 6.04 5.96 5.76	6.10 6.09 6.04 5.96 5.76 5.47	3.17 3.22 3.22 3.21 3.24	3.14 3.15 3.21 3.18 3.18	2.20 2.25 2.28 2.42 2.46 2.46	1.97 2.20 2.25 2.28 2.42 2.44	3.12 3.19 3.19 3.22 3.23 3.21	3.07 3.12 3.16 3.16 3.21 3.08	1.18 1.21 1.24 	1.13 1.18 1.21 	1.44 1.44 1.46 1.46 1.20 1.32	1.35 1.34 1.44 1.17 1.17 1.18
MONTH	6.18	5.47	5.47	2.98	3.48	1.89	3.23	2.14	3.08	0.95	1.46	0.87

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	ΥY	JUI	JUNE		JLY	AUC	JUST	SEPTE	MBER
1 2 3 4 5	1.36 1.43 1.48 1.51 1.55	1.30 1.36 1.43 1.48 1.49	1.78 1.84 1.92 1.99 2.02	1.73 1.77 1.84 1.92 1.99	1.64 1.76 1.80 1.74 1.81	1.46 1.64 1.74 1.67 1.67	2.73 2.78 2.50	2.62 2.32 2.28	3.21 3.23 3.36 3.37	3.13 3.21 3.23 3.17	3.15 3.30 3.31 3.26 2.58	3.07 3.15 3.26 2.44 2.44
6 7 8 9 10	1.61 1.61 1.35 	1.49 1.23 1.23 	2.04 2.10 1.90 1.92 1.97	1.98 1.71 1.71 1.85 1.90	1.95 1.95 1.10 1.22 1.34	1.81 0.90 0.94 1.10 1.22	2.71 2.82 2.93 3.04 2.85	2.50 2.71 2.82 2.85 2.80	3.17 3.16 3.15 3.13 3.11	3.16 3.15 3.13 3.11 3.09	2.72 2.85 3.00 3.10 3.19	2.57 2.72 2.85 3.00 3.10
11 12 13 14 15	 1.12	 1.11	2.04 2.19 2.28 2.38 2.45	1.97 2.04 2.19 2.28 2.38	1.44 1.48 1.52 1.59 1.69	1.32 1.34 1.44 1.49 1.59	3.05 3.17 3.26	2.83 3.05 3.17 	3.09 3.09 3.06 2.46 2.56	3.09 3.06 2.27 2.32 2.46	3.28 3.28 2.97 2.96 2.98	3.18 2.97 2.91 2.92 2.96
16 17 18 19 20	1.19 1.26 1.26 1.26 1.29	1.12 1.19 1.22 1.22 1.26	2.45 1.52 1.62 1.76 1.88	1.37 1.42 1.52 1.62 1.76	1.75 1.77 1.72 1.67 1.37	1.69 1.72 1.64 1.17 1.21	3.06 3.18 3.24 3.34	2.88 3.06 3.18 3.24	2.59 2.09 2.31 2.45 2.61	2.00 1.89 2.09 2.31 2.45	3.14 3.28 3.28 2.33 2.52	2.97 3.14 2.32 2.15 2.33
21 22 23 24 25	1.30 1.37 1.45 1.48 1.50	1.28 1.29 1.37 1.45 1.35	1.95 1.51 1.51 1.51 1.57	1.44 1.39 1.35 1.38 1.51	1.41 1.47 1.66 1.82 1.96	1.23 1.35 1.47 1.66 1.82	3.40 3.49 3.20 3.37 3.51	3.32 3.20 3.16 3.19 3.37	2.71 2.81 2.96 3.07 3.16	2.61 2.71 2.81 2.96 3.07	2.63 2.69 2.69 2.30 2.44	2.52 2.63 2.01 2.09 2.30
26 27 28 29 30 31	1.43 1.55 1.60 1.67 1.74	1.32 1.43 1.55 1.60 1.67	1.57 1.39 1.41 1.31 1.47 1.49	1.20 1.30 1.18 1.20 1.31 1.46	2.10 2.26 2.39 2.51 2.62	1.96 2.10 2.26 2.39 2.51	3.59 3.65 3.71 	3.51 3.59 3.62 	3.24 3.29 3.38 3.43 3.44 3.07	3.16 3.22 3.29 3.38 3.05 3.02	2.57 2.59 2.61 2.76 2.83	2.44 2.56 2.53 2.61 2.75
MONTH YEAR	1.74 6.18	1.11 0.87	2.45	1.18	2.62	0.90	3.71	2.28	3.44	1.89	3.31	2.01

Daily Low Water Levels

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

90

WATER LEVEL, IN FEET BELOW LAND SURFACE

SUSSEX COUNTY---Continued

WELL NUMBER .-- Of 22-04. SITE ID .-- 384343075230401. PERMIT NUMBER .-- 95800.

LOCATION.--Lat 38°43'43", long 75°23'04", Hydrologic Unit 02040207, near Redden State Forest. Owner: Delaware Department of Transportation.

AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 15 ft; casing diameter 2 in., to 12 ft; screen diameter 2 in., from 12 to 15 ft.

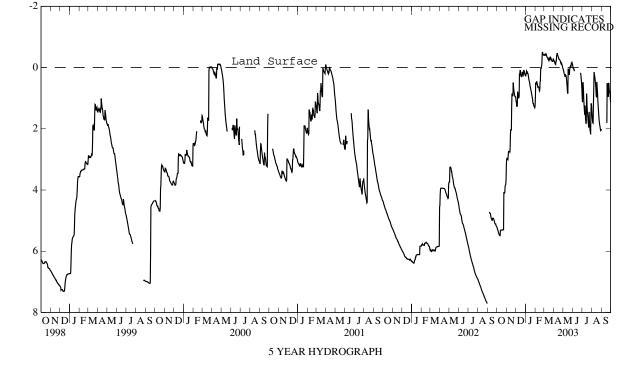
INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from December 1993 to current year.

DATUM.--Altitude of land surface is 47.62 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 2.68 ft above land surface.

REMARKS.--Delaware Department of Transportation Wetlands Project observation well. Missing data due to recorder malfunction. Periods of equal maximum and minimum daily values may be questionable due to the float hanging up in small diameter wells or other well construction factors.

PERIOD OF RECORD .-- September 1993 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.75 ft above land surface, March 3, 1994 (recorder); lowest measured, 7.71 ft below land surface, August 31, 2002 (recorder).


WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 (READINGS ABOVE LAND-SURFACE INDICATED BY "-")

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22, 2002 DEC 02	4.03 1.11	JAN 08, 2003 MAR 04	.17 36	APR 15, 2003 JUN 06	35 .08	JUL 21, 2003 AUG 20	1.76 .86
HIGH LOW	EST36 MA EST 4.03 O	AR 04, 2003 CT 22, 2002					

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	DECEMBER		JANUARY		UARY	MAR	RCH
1 2 3 4 5	5.23 5.24 5.30 5.31 5.37	5.20 5.23 5.24 5.30 5.31	2.99 2.97 2.99 3.00 3.01	2.93 2.94 2.97 2.97 2.85	1.10 1.11 1.26 1.27 1.26	0.97 1.10 1.10 1.26 0.63	$\begin{array}{c} 0.27 \\ 0.20 \\ 0.20 \\ 0.11 \\ 0.13 \end{array}$	$\begin{array}{c} 0.15 \\ 0.15 \\ 0.05 \\ 0.05 \\ 0.11 \end{array}$	$ \begin{array}{r} 1.01 \\ 0.51 \\ 0.56 \\ 0.55 \\ 0.47 \end{array} $	$0.46 \\ 0.46 \\ 0.51 \\ 0.33 \\ 0.37$	-0.36 -0.39 -0.39 -0.36 -0.36	-0.39 -0.46 -0.45 -0.39 -0.44
6 7 8 9 10	5.39 5.43 5.46 5.47 5.49	5.37 5.39 5.43 5.46 5.47	2.85 2.74 2.74 2.74 2.74	2.67 2.71 2.72 2.74 2.72	0.79 0.83 0.89 0.99 0.99	0.64 0.79 0.83 0.89 0.93	$\begin{array}{c} 0.15 \\ 0.19 \\ 0.19 \\ 0.24 \\ 0.31 \end{array}$	0.13 0.15 0.17 0.19 0.24	$\begin{array}{c} 0.52 \\ 0.55 \\ 0.62 \\ 0.66 \\ 0.65 \end{array}$	$\begin{array}{c} 0.47 \\ 0.50 \\ 0.55 \\ 0.62 \\ 0.56 \end{array}$	-0.41 -0.41 -0.40 -0.34 -0.31	-0.48 -0.44 -0.41 -0.40 -0.34
11 12 13 14 15	5.49 5.32 5.31 5.31 5.31	5.32 5.31 5.31 5.31 5.31	2.76 2.68 2.21 2.02 2.04	2.68 2.21 2.02 2.01 2.01	$\begin{array}{c} 0.93 \\ 0.20 \\ 0.22 \\ 0.08 \\ 0.12 \end{array}$	$\begin{array}{c} 0.18 \\ 0.18 \\ 0.05 \\ 0.05 \\ 0.08 \end{array}$	$\begin{array}{c} 0.38 \\ 0.44 \\ 0.48 \\ 0.54 \\ 0.62 \end{array}$	$\begin{array}{c} 0.31 \\ 0.38 \\ 0.44 \\ 0.48 \\ 0.54 \end{array}$	$0.65 \\ 0.68 \\ 0.74 \\ 0.80 \\ 0.78$	$0.57 \\ 0.62 \\ 0.68 \\ 0.74 \\ 0.46$	-0.29 -0.28 -0.25 -0.23 -0.23	-0.31 -0.29 -0.28 -0.25 -0.24
16 17 18 19 20	5.31 5.31 5.30 5.30 5.30	5.31 5.30 5.30 5.30 5.30	2.04 1.28 0.85 0.87 0.92	1.28 0.72 0.72 0.83 0.87	0.20 0.26 0.30 0.30 0.29	$\begin{array}{c} 0.12 \\ 0.20 \\ 0.26 \\ 0.29 \\ 0.09 \end{array}$	0.65 0.71 0.75 0.80 0.87	0.62 0.64 0.71 0.75 0.80	$0.50 \\ 0.47 \\ 0.07 \\ 0.07 \\ 0.04$	0.47 0.07 0.07 0.04 -0.02	-0.21 -0.31 -0.27 -0.23 -0.23	-0.31 -0.33 -0.31 -0.27 -0.33
21 22 23 24 25	5.30 5.30 4.07 4.09 4.10	5.30 4.02 4.03 4.07 4.08	0.92 0.49 0.63 0.74 0.81	$\begin{array}{c} 0.49 \\ 0.42 \\ 0.46 \\ 0.63 \\ 0.73 \end{array}$	$\begin{array}{c} 0.14 \\ 0.17 \\ 0.23 \\ 0.25 \\ 0.16 \end{array}$	0.10 0.14 0.17 0.16 -0.01	0.93 0.99 1.04 1.16 1.19	0.87 0.93 0.99 1.04 1.16	-0.02 -0.12 -0.43 -0.48 -0.42	-0.12 -0.43 -0.56 -0.52 -0.48	-0.32 -0.31 -0.28 -0.25 -0.22	-0.37 -0.35 -0.31 -0.28 -0.25
26 27 28 29 30 31	4.08 3.88 3.84 3.82 3.67 3.19	3.88 3.84 3.81 3.67 3.19 2.99	0.87 0.93 0.95 0.95 0.97	0.81 0.83 0.92 0.87 0.87	$\begin{array}{c} 0.08 \\ 0.11 \\ 0.14 \\ 0.21 \\ 0.24 \\ 0.26 \end{array}$	$\begin{array}{c} 0.02 \\ 0.08 \\ 0.11 \\ 0.14 \\ 0.21 \\ 0.24 \end{array}$	1.19 1.27 1.29 1.30 1.33 1.29	1.18 1.19 1.27 1.27 1.29 1.01	-0.39 -0.38 -0.37 	-0.42 -0.39 -0.38 	-0.19 -0.19 -0.18 -0.18 -0.26 -0.26	-0.22 -0.21 -0.19 -0.26 -0.30 -0.30
MONTH	5.49	2.99	3.01	0.42	1.27	-0.01	1.33	0.05	1.01	-0.56	-0.18	-0.48

SUSSEX COUNTYContinued												
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	AΥ	JUI	NE	JU	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	-0.23 -0.20 -0.18 -0.15 -0.13	-0.26 -0.23 -0.20 -0.18 -0.16	0.05 0.09 0.13 0.19 0.22	$0.02 \\ 0.05 \\ 0.09 \\ 0.13 \\ 0.19$	$\begin{array}{c} -0.04 \\ 0.02 \\ 0.05 \\ 0.05 \\ 0.05 \end{array}$	-0.11 -0.04 0.02 -0.01 -0.01	0.98 1.13 0.48 0.50 0.73	$\begin{array}{c} 0.71 \\ 0.48 \\ 0.30 \\ 0.32 \\ 0.50 \end{array}$	1.47 1.62 1.75 1.81 1.82	1.24 1.47 1.62 1.74 1.10	2.03 2.03 	2.02 2.03
6 7 8 9 10	-0.11 -0.10 -0.21 -0.21 -0.39	-0.13 -0.24 -0.23 -0.41 -0.41	$\begin{array}{c} 0.26 \\ 0.30 \\ 0.22 \\ 0.25 \\ 0.27 \end{array}$	$\begin{array}{c} 0.22 \\ 0.16 \\ 0.16 \\ 0.20 \\ 0.23 \end{array}$	0.12	0.05 	1.05 1.22 1.39 1.54 1.24	0.73 1.01 1.22 1.18 1.16	$ \begin{array}{c} 1.16 \\ 0.71 \\ 0.15 \\ 0.24 \\ 0.28 \end{array} $	$0.53 \\ 0.08 \\ 0.08 \\ 0.15 \\ 0.24$	 	
11 12 13 14 15	-0.41 -0.47 -0.42 -0.39 -0.35	-0.52 -0.52 -0.47 -0.42 -0.39	0.31 0.42 0.53 0.67 0.83	$\begin{array}{c} 0.27 \\ 0.31 \\ 0.42 \\ 0.53 \\ 0.67 \end{array}$	 	 	1.53 1.70 1.82 1.82 0.85	1.22 1.53 1.70 0.58 0.61	0.36 0.46 0.56 0.73 0.93	0.28 0.36 0.46 0.56 0.73	 	
16 17 18 19 20	-0.34 -0.28 -0.28 -0.27 -0.25	-0.35 -0.34 -0.29 -0.28 -0.27	0.85 0.04 0.06 0.12 0.19	$0.04 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.12$	 	 	1.11 1.35 1.50 1.59 1.75	0.85 1.11 1.34 1.49 1.59	$0.97 \\ 0.47 \\ 0.66 \\ 0.80 \\ 1.05$	$\begin{array}{c} 0.40 \\ 0.34 \\ 0.47 \\ 0.66 \\ 0.80 \end{array}$	 1.81 0.51 0.68	0.38 0.35 0.51
21 22 23 24 25	-0.24 -0.20 -0.16 -0.13 -0.11	-0.25 -0.24 -0.20 -0.16 -0.15	0.24 0.05 0.01 -0.04 -0.02	0.05 0.01 -0.07 -0.07 -0.04	 	 	1.86 1.96 1.45 1.72 1.92	1.74 1.31 1.31 1.45 1.72	1.22 1.37 1.54 1.68 1.79	1.05 1.22 1.36 1.54 1.68	$\begin{array}{c} 0.83 \\ 0.94 \\ 0.94 \\ 0.50 \\ 0.63 \end{array}$	0.68 0.83 0.32 0.36 0.50
26 27 28 29 30 31 MONTH	-0.14 -0.10 -0.07 -0.02 0.02 	-0.17 -0.14 -0.10 -0.07 -0.02 -0.52	-0.02 -0.13 -0.13 -0.19 -0.13 -0.11 0.85	-0.17 -0.17 -0.21 -0.21 -0.19 -0.13 -0.21	0.17 0.28 0.38 0.52 0.71 	0.09 0.17 0.28 0.38 0.52 	2.03 2.10 2.18 1.50 1.17 1.24 2.18	1.92 2.02 1.50 0.94 1.12 1.14 0.30	$ \begin{array}{r} 1.87 \\ 1.92 \\ 2.00 \\ 2.06 \\ 2.05 \\ 2.03 \\ 2.06 \\ \end{array} $	$1.78 \\ 1.77 \\ 1.91 \\ 1.98 \\ 2.03 \\ 2.02 \\ 0.08$	0.78 0.81 0.79 1.01 1.13 2.03	0.63 0.68 0.65 0.79 1.01
MONTH	0.02	-0.52	0.85	-0.21	0.71	-0.11	2.10	0.50	2.00	0.00	2.05	0.52

Daily Low Water Levels

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

YEAR

WATER LEVEL, IN FEET BELOW LAND SURFACE 5.49

-0.56

SUSSEX COUNTY---Continued

WELL NUMBER .-- Of 22-11. SITE ID .-- 384341075230001. PERMIT NUMBER .-- 95795.

LOCATION.--Lat 38°43'44", long 75°23'01", Hydrologic Unit 02040207, near Redden State Forest. Owner: Delaware Department of Transportation.

AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 16 ft; casing diameter 2 in., to 13 ft; screen diameter 2 in., from 13 to 16 ft.

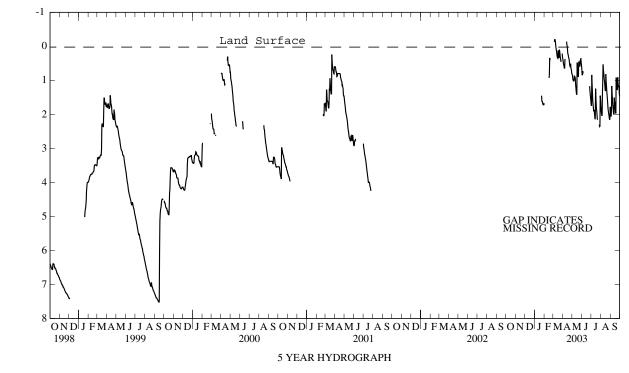
INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from December 1993 to July 2001.

DATUM.--Altitude of land surface is 47.92 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 2.70 ft above land surface.

REMARKS.--Delaware Department of Transportation Wetlands Project observation well. Missing data due to recorder malfunction. Periods of equal maximum and minimum daily values may be questionable due to the float hanging up in small diameter wells or other well construction factors.

PERIOD OF RECORD.--September 1993 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.53 ft above land surface, March 3, 1994 (recorder); lowest measured, 7.52 ft below land surface, September 15, 1999 (recorder).


WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 (READINGS ABOVE LAND-SURFACE INDICATED BY "-")

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
MAR 04, 2003 APR 15	10 02	JUN 06, 2003 JUL 21	.85 2.05	AUG 20, 2003	1.20
	EST10 MA EST 2.05 JU				

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	DBER	NOVE	MBER	DECE	DECEMBER		JANUARY		UARY	MAF	RCH
1												
2												
3												
4												
5											-0.13	-0.23
6											-0.20	-0.30
7											-0.20	-0.24
8											-0.15	-0.20
9											-0.07	-0.15
10											0.04	-0.07
11											0.09	0.04
12											0.15	0.09
13											0.23	0.15
14											0.30	0.23
15											0.34	0.30
16									0.93	0.84	0.35	0.02
17									0.84	0.08	0.12	0.02
18									0.34	0.16	0.23	0.12
19									0.41	0.34	0.33	0.23
20											0.33	0.00
21											0.10	0.02
22											0.14	0.06
23							1.45	1.39			0.23	0.14
24							1.61	1.45			0.32	0.23
25							1.63	1.61			0.37	0.32
26							1.63	1.59			0.45	0.29
27							1.70	1.60			0.42	0.30
28							1.71	1.64				
29							1.70	1.64				
30							1.73	1.67			0.21	0.13
31							1.67	1.45			0.31	0.17
MONTH							1.73	1.39	0.93	0.08	0.45	-0.30

					SUSSEX C	OUNTY	-Continued						
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	
	API	RIL	MA	ΥY	JUNE		JUI	JULY		AUGUST		SEPTEMBER	
1 2 3 4 5	$\begin{array}{c} 0.37 \\ 0.43 \\ 0.50 \\ 0.54 \\ 0.59 \end{array}$	$\begin{array}{c} 0.31 \\ 0.37 \\ 0.43 \\ 0.49 \\ 0.47 \end{array}$	0.82 0.86 0.94 0.99 1.01	0.78 0.81 0.86 0.94 0.97	0.69 0.83 0.85 0.73 0.80	0.50 0.69 0.73 0.51 0.55	1.72 1.75 0.84 1.14 1.36	$1.60 \\ 0.84 \\ 0.56 \\ 0.84 \\ 1.14$	1.73 1.88 1.97 2.03 2.03	1.54 1.72 1.87 1.97 1.25	1.89 2.05 2.05 1.85 1.17	1.78 1.89 1.85 0.73 0.82	
6 7 8 9 10	0.64 0.64 0.37 	0.49 0.17 0.21	0.99 1.02 0.86 0.90 0.90	0.93 0.56 0.56 0.73 0.83	 	 	1.61 1.70 1.81 1.91 1.88	1.35 1.55 1.70 1.80 1.87	$ 1.38 \\ 1.02 \\ 0.53 \\ 0.69 \\ 0.77 $	0.64 0.08 0.15 0.52 0.69	1.38 1.55 1.69 1.80 1.91	1.17 1.38 1.54 1.68 1.79	
11 12 13 14 15	 -0.14 -0.06 0.00	 -0.22 -0.14 -0.06	0.93 1.12 1.22 1.33 1.41	0.90 0.93 1.12 1.22 1.33	 	 	1.89 2.02 2.13 2.13 1.24	1.83 1.89 2.01 0.78 0.97	$0.87 \\ 0.99 \\ 1.06 \\ 1.19 \\ 1.30$	$0.76 \\ 0.87 \\ 0.99 \\ 1.06 \\ 1.18$	1.99 1.99 1.51 1.63 1.66	1.90 1.38 1.38 1.51 1.60	
16 17 18 19 20	$\begin{array}{c} 0.08 \\ 0.22 \\ 0.23 \\ 0.29 \\ 0.34 \end{array}$	$\begin{array}{c} 0.00 \\ 0.08 \\ 0.22 \\ 0.23 \\ 0.29 \end{array}$	$1.41 \\ 0.48 \\ 0.60 \\ 0.74 \\ 0.84$	$\begin{array}{c} 0.10 \\ 0.29 \\ 0.48 \\ 0.60 \\ 0.74 \end{array}$	 	 	1.49 1.71 1.85 1.92 2.07	1.24 1.49 1.71 1.84 1.92	1.30 0.82 1.05 1.17 1.33	$\begin{array}{c} 0.46 \\ 0.43 \\ 0.82 \\ 1.05 \\ 1.16 \end{array}$	1.82 1.96 1.96 0.92 1.11	$ \begin{array}{r} 1.60 \\ 1.82 \\ 0.43 \\ 0.39 \\ 0.92 \end{array} $	
21 22 23 24 25	$\begin{array}{c} 0.37 \\ 0.44 \\ 0.54 \\ 0.58 \\ 0.61 \end{array}$	$\begin{array}{c} 0.34 \\ 0.36 \\ 0.44 \\ 0.54 \\ 0.39 \end{array}$	$0.90 \\ 0.46 \\ 0.46 \\ 0.51 \\ 0.58$	0.29 0.29 0.31 0.34 0.51	 	 	2.16 	2.05	1.44 1.56 1.70 1.84 1.91	1.33 1.43 1.55 1.70 1.83	1.22 1.27 1.27 0.91 1.06	$ \begin{array}{c} 1.11 \\ 1.22 \\ 0.36 \\ 0.66 \\ 0.91 \end{array} $	
26 27 28 29 30 31	0.51 0.63 0.67 0.73 0.81	0.39 0.51 0.63 0.66 0.73	$\begin{array}{c} 0.58 \\ 0.41 \\ 0.45 \\ 0.35 \\ 0.49 \\ 0.55 \end{array}$	0.27 0.28 0.27 0.27 0.35 0.49	1.17 1.32 1.42 1.52 1.61	1.01 1.12 1.32 1.41 1.48	2.30 2.36 2.35 1.45 1.54	2.25 2.30 1.13 1.39 1.45	1.98 2.03 2.11 2.16 2.12 1.78	1.90 1.88 2.03 1.91 1.63 1.63	1.19 1.19 1.16 1.38 1.47	1.06 1.07 1.04 1.16 1.38	
MONTH YEAR	0.81 2.36	-0.22 -0.30	1.41	0.10	1.61	0.50	2.36	0.56	2.16	0.08	2.05	0.36	

Daily Low Water Levels

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

SUSSEX COUNTY-Continued

WELL NUMBER .-- Of 23-03. SITE ID .-- 384333075222901. PERMIT NUMBER .-- 95793.

LOCATION.--Lat 38°43'33", long 75°22'29", Hydrologic Unit 02040207, near Redden State Forest. Owner: Delaware Department of Transportation.

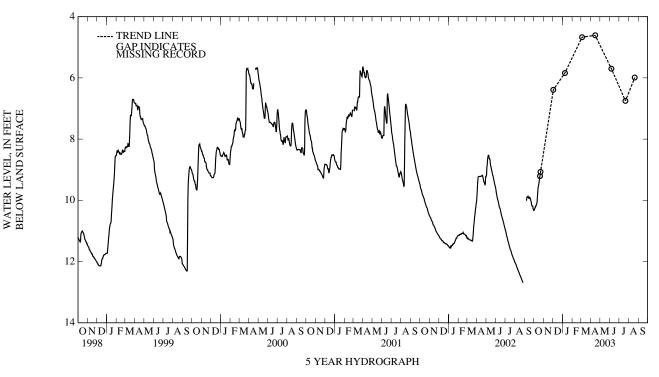
AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 20 ft; casing diameter 2 in., to 17 ft; screen diameter 2 in., from 17 to 20 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from December 1993 to current year.

DATUM.--Altitude of land surface is 51.40 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 3.20 ft above land surface.

REMARKS.--Delaware Department of Transportation Wetlands Project observation well. Periods of equal maximum and minimum daily values may be questionable due to the float hanging up in small diameter wells or other well construction factors.


PERIOD OF RECORD .-- September 1993 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.34 ft below land surface, April 1, 1994 (recorder); lowest measured, 12.69 ft below land surface, August 27, 2002 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22, 2002 DEC 02	9.07 6.39	JAN 08, 2003 MAR 04	5.84 4.67	APR 15, 2003 JUN 06	4.61 5.70	JUL 21, 2003 AUG 20	6.75 5.99
HIGH LOW		APR 15, 2003 DCT 22, 2002					

Daily Low Water Levels

WELL NUMBER .-- Of23-05. SITE ID .-- 384341075223801. PERMIT NUMBER .-- 95794.

LOCATION .-- Lat 38°43'41", long 75°22'38", Hydrologic Unit 02060008, near Redden State Forest. Owner: Delaware Department of Transportation

AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 18 ft; casing diameter 2 in., to 15 ft; screen diameter 2 in., from 15 to 18 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from October 1998 to current year.

DATUM.--Elevation of land surface is 46.49 ft above National Geodetic Vertical Datum of 1929. Prior to July 2, 1998, (due to excavation of material during construction of artificial wetland), the elevation of land surface was 50.13 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 3.30 ft above land surface.

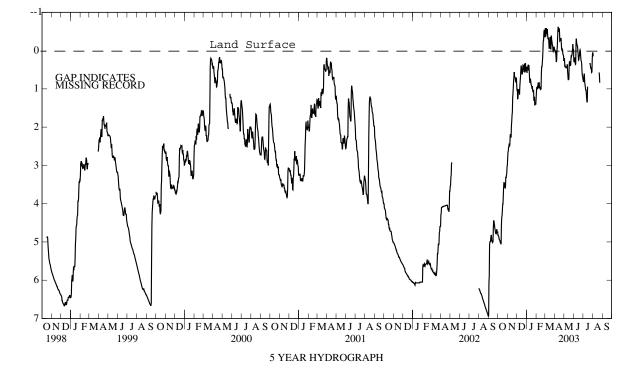
REMARKS.--Delaware Department of Transportation Wetlands Project observation well. Periods of equal maximum and minimum daily values may be questionable due to the float hanging up in small diameter wells or other well construction factors.

PERIOD OF RECORD .-- September 1993 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.60 ft above land surface, April 15, 2003 (recorder); lowest measured, 9.95 ft below land surface, October 19, 1995.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 (READINGS ABOVE LAND-SURFACE INDICATED BY "-")

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22, 2002 DEC 02	3.45 .97	JAN 08, 2003 MAR 04	.27 45	APR 15, 2003 JUN 06	60 .33	JUL 21, 2003 AUG 20	.17 .50
HIGH	EST60 AF	PR 15, 2003					


LOWEST 3.45 OCT 22, 2002

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	DECEMBER		JANUARY		UARY	MAR	RCH
1 2 3 4 5	4.83 4.83 4.86 4.88 4.94	4.82 4.80 4.81 4.83 4.82	2.81 2.65 2.63 2.51 2.53	2.59 2.52 2.49 2.41 2.06	1.05 1.00 1.27 1.23 1.07	$\begin{array}{c} 0.91 \\ 0.90 \\ 0.93 \\ 1.07 \\ 0.73 \end{array}$	$\begin{array}{c} 0.44 \\ 0.58 \\ 0.48 \\ 0.45 \\ 0.46 \end{array}$	0.13 0.30 0.18 0.23 0.33	$ \begin{array}{r} 1.11 \\ 0.97 \\ 0.97 \\ 0.95 \\ 0.99 \\ \end{array} $	$0.95 \\ 0.88 \\ 0.74 \\ 0.60 \\ 0.93$	-0.36 -0.59 -0.37 -0.44 -0.59	-0.59 -0.84 -0.64 -0.60 -0.77
6 7 8 9 10	4.95 4.96 5.01 5.02 5.05	4.92 4.90 4.96 5.01 5.02	2.43 2.50 2.45 2.23 2.18	2.05 2.43 2.22 2.17 2.16	1.02 1.02 1.04 1.15 0.93	0.95 0.84 0.85 0.93 0.80	0.37 0.52 0.38 0.52 0.70	0.31 0.22 0.19 0.19 0.49	0.98 0.84 0.97 0.87 0.83	$\begin{array}{c} 0.73 \\ 0.55 \\ 0.83 \\ 0.81 \\ 0.51 \end{array}$	-0.46 -0.45 -0.56 -0.41 -0.31	-0.76 -0.66 -0.73 -0.78 -0.41
11 12 13 14 15	5.05 4.55 4.36 4.31 4.18	4.55 4.36 4.23 4.18 3.93	2.26 2.26 1.97 1.85 1.69	2.16 1.96 1.85 1.69 1.61	$\begin{array}{c} 0.80 \\ 0.70 \\ 0.54 \\ 0.39 \\ 0.46 \end{array}$	$\begin{array}{c} 0.64 \\ 0.54 \\ 0.03 \\ 0.03 \\ 0.28 \end{array}$	0.83 0.83 0.73 0.81 0.89	0.70 0.73 0.51 0.72 0.76	$\begin{array}{c} 0.99 \\ 0.94 \\ 0.97 \\ 1.03 \\ 1.00 \end{array}$	$0.76 \\ 0.70 \\ 0.83 \\ 0.91 \\ 0.86$	-0.31 -0.34 -0.20 -0.05 -0.20	-0.43 -0.43 -0.44 -0.20 -0.32
16 17 18 19 20	4.01 4.01 3.79 3.58 3.44	3.66 3.78 3.58 3.28 3.35	1.61 1.23 1.12 0.97 0.79	1.23 1.04 0.97 0.70 0.69	$0.57 \\ 0.61 \\ 0.61 \\ 0.47 \\ 0.38$	0.23 0.54 0.47 0.29 0.14	$\begin{array}{c} 0.90 \\ 0.93 \\ 1.00 \\ 0.93 \\ 1.05 \end{array}$	0.63 0.57 0.83 0.77 0.75	$ \begin{array}{r} 1.00 \\ 0.59 \\ 0.42 \\ 0.42 \\ 0.32 \end{array} $	$\begin{array}{c} 0.59 \\ 0.40 \\ 0.35 \\ 0.24 \\ 0.19 \end{array}$	-0.24 -0.35 -0.17 -0.03 -0.14	-0.35 -0.47 -0.44 -0.17 -0.47
21 22 23 24 25	3.46 3.47 3.58 3.59 3.57	3.43 3.44 3.47 3.52 3.25	$0.69 \\ 0.56 \\ 0.69 \\ 0.69 \\ 0.70$	0.56 0.38 0.51 0.68 0.64	$\begin{array}{c} 0.39 \\ 0.44 \\ 0.54 \\ 0.56 \\ 0.34 \end{array}$	0.38 0.28 0.44 0.31 -0.09	1.07 1.06 1.05 1.31 1.29	$\begin{array}{c} 0.95 \\ 0.98 \\ 0.90 \\ 1.05 \\ 1.16 \end{array}$	0.19 0.00 -0.25 -0.26 -0.46	0.00 -0.48 -0.65 -0.68 -0.57	-0.39 -0.28 -0.23 -0.16 -0.13	-0.50 -0.39 -0.32 -0.24 -0.27
26 27 28 29 30 31	3.30 3.33 3.26 3.22 3.04 2.99	3.16 3.24 3.18 3.04 2.91 2.81	0.79 0.82 0.82 0.71 0.91	0.57 0.57 0.70 0.49 0.59	$\begin{array}{c} 0.57 \\ 0.48 \\ 0.33 \\ 0.52 \\ 0.54 \\ 0.45 \end{array}$	$\begin{array}{c} 0.34 \\ 0.32 \\ 0.28 \\ 0.30 \\ 0.39 \\ 0.37 \end{array}$	1.21 1.43 1.36 1.39 1.41 1.28	1.05 1.21 1.19 1.19 1.28 1.11	-0.53 -0.53 -0.36 	-0.59 -0.60 -0.60 	-0.02 0.02 0.00 -0.09 -0.09 -0.02	-0.27 -0.02 -0.09 -0.16 -0.27 -0.25
MONTH	5.05	2.81	2.81	0.38	1.27	-0.09	1.43	0.13	1.11	-0.68	0.02	-0.84

SUSSEX COUNTY-	-Continued
SUSSEA COUNTI-	-commucu

SUSSEX COULT Communica												
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	AΥ	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4	-0.02 0.00 0.04 0.03	-0.27 -0.13 -0.08 -0.07	$0.20 \\ 0.22 \\ 0.40 \\ 0.39$	0.10 0.05 0.22 0.36	0.28 0.29 0.27 0.18	-0.17 0.22 0.18 0.14	0.78 0.82 0.74 0.60	0.73 0.74 0.53 0.55	0.06 0.15 	0.00 0.06	 	
5	0.18	-0.03	0.43	0.33	0.28	0.14	0.68	0.60				
6 7 8 9 10	0.30 0.25 0.00 -0.10 -0.34	0.18 -0.10 -0.10 -0.34 -0.54	$\begin{array}{c} 0.43 \\ 0.45 \\ 0.45 \\ 0.44 \\ 0.41 \end{array}$	0.29 0.36 0.35 0.28 0.29	0.36 0.35 -0.19 -0.31 -0.21	0.28 -0.19 -0.41 -0.48 -0.31	$\begin{array}{c} 0.85 \\ 0.89 \\ 0.97 \\ 1.03 \\ 1.03 \end{array}$	0.68 0.81 0.88 0.95 0.92	 	 	 	
11 12 13 14 15	-0.54 -0.62 -0.52 -0.49 -0.58	-0.84 -0.84 -0.62 -0.59 -0.69	0.36 0.54 0.66 0.76 0.76	0.23 0.31 0.53 0.66 0.74	-0.15 -0.14 -0.09 0.01 0.11	-0.29 -0.21 -0.15 -0.10 0.01	1.13 1.24 1.34 1.34 0.94	0.87 1.13 1.23 0.94 0.72	 	 	 	
16 17 18 19 20	-0.51 -0.25 -0.26 -0.29 -0.30	-0.63 -0.51 -0.32 -0.33 -0.33	$\begin{array}{c} 0.75 \\ 0.41 \\ 0.28 \\ 0.30 \\ 0.32 \end{array}$	0.41 0.25 0.21 0.25 0.30	$\begin{array}{c} 0.25 \\ 0.24 \\ 0.15 \\ 0.14 \\ 0.00 \end{array}$	0.11 0.15 0.10 -0.03 -0.03	 	 	 	 	 	
21 22 23 24 25	-0.33 -0.16 -0.03 -0.01 -0.05	-0.43 -0.40 -0.18 -0.11 -0.10	$\begin{array}{c} 0.40 \\ 0.37 \\ 0.19 \\ 0.12 \\ 0.14 \end{array}$	0.31 0.19 -0.01 -0.04 0.11	-0.02 0.02 0.17 0.25 0.28	-0.11 -0.04 0.01 0.17 0.21	0.35 0.33 0.39 0.45	0.23 0.26 0.26 0.39	0.57 0.64 0.84 	0.52 0.56 0.63	 	
26 27 28 29 30 31	-0.01 0.10 0.11 0.14 0.27	-0.21 -0.02 0.01 -0.01 0.14	0.11 0.04 -0.05 -0.17 -0.02 -0.02	-0.01 -0.05 -0.17 -0.22 -0.18 -0.18	0.33 0.51 0.64 0.67 0.73	0.27 0.33 0.51 0.61 0.65	$\begin{array}{c} 0.47 \\ 0.44 \\ 0.57 \\ 0.56 \\ 0.22 \\ 0.06 \end{array}$	$\begin{array}{c} 0.42 \\ 0.37 \\ 0.42 \\ 0.22 \\ 0.06 \\ 0.03 \end{array}$	 	 	 	
MONTH YEAR	0.30 5.05	-0.84 -0.84	0.76	-0.22	0.73	-0.48	1.34	0.03	0.84	0.00		

Daily Low Water Levels

WATER LEVEL, IN FEET BELOW LAND SURFACE

WELL NUMBER .-- Of 23-11. SITE ID .-- 384345075225101. PERMIT NUMBER .-- 159964.

LOCATION.--Lat 38°43'45", long 75°22'50", Hydrologic Unit 02040207, near Redden State Forest. Owner: Delaware Department of Transportation.

AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 19 ft; casing diameter 2 in., to 16 ft; screen diameter 2 in., from 16 to 19 ft.

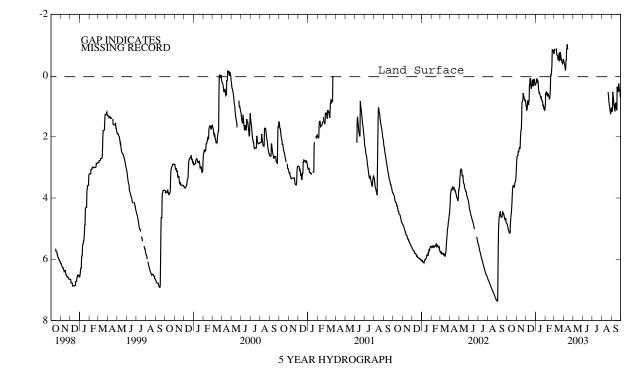
INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from October 1998 to current year.

DATUM.--Altitude of land surface is 46.64 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 3.60 ft above land surface.

REMARKS.--Delaware Department of Tranportation Wetlands Project observation well. Missing data due to recorder malfunction. Periods of equal maximum and minimum daily values may be questionable due to the float hanging up in small diameter wells or other well construction factors.

PERIOD OF RECORD .-- August 24, 1998 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.17 ft above land surface April 12, 2003 (recorder); lowest measured, 7.37 ft, August 31, 2002 (recorder).


WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 (READINGS ABOVE LAND-SURFACE INDICATED BY "-")

	DATE	WATER LEVEL		DATE	WATE LEVE		DATE	WATER LEVEL		DATE	WATER LEVEL	
	OCT 22, 2002 DEC 02	3.59 .95		AN 08, 2003 AR 04	.10 78) }	APR 15, 2003 JUN 06	87 04		IL 21, 2003 G 20	1.15 .39	
		HEST87 WEST 3.59										
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTOBER NOVEMBER		IBER	DECEN	IBER	JANUA	ARY	FEBRU	JARY	MARCH		
1 2 3 4 5	4.84 4.86 4.92 4.94 5.03	4.81 4.84 4.86 4.91 4.90	2.81 2.67 2.64 2.61 2.61	2.65 2.58 2.58 2.54 2.35	1.00 1.00 1.13 1.12 1.07	0.88 0.90 0.92 1.07 0.77	0.29 0.24 0.22 0.10 0.14	0.01 0.07 -0.08 -0.08 0.10	0.95 0.58 0.61 0.52 0.59	0.58 0.53 0.52 0.36 0.48	-0.72 -0.87 -0.80 	-0.87 -1.08 -0.98
6 7 8 9 10	5.04 5.08 5.12 5.14 5.15	5.01 4.99 5.08 5.12 5.14	2.49 2.50 2.49 2.38 2.36	2.34 2.48 2.37 2.34 2.30	0.83 0.83 0.87 0.96 0.86	$0.78 \\ 0.77 \\ 0.77 \\ 0.86 \\ 0.78$	0.13 0.24 0.16 0.27 0.43	0.09 0.07 0.05 0.05 0.27	$0.64 \\ 0.56 \\ 0.66 \\ 0.65 \\ 0.62$	0.53 0.41 0.56 0.61 0.43	-0.89 -0.87 -0.75 -0.67	-0.94 -0.94 -0.96 -0.75
11 12 13 14 15	5.14 4.83 4.68 4.57 4.48	4.83 4.68 4.56 4.48 4.31	2.38 2.38 2.09 1.88 1.77	2.31 2.09 1.88 1.77 1.74	0.78 0.31 0.28 0.08 0.16	0.31 0.27 -0.10 -0.12 0.08	0.52 0.58 0.54 0.59 0.66	0.43 0.51 0.41 0.53 0.57	0.66 0.67 0.72 0.78 0.73	0.55 0.53 0.64 0.72 0.58	-0.66 -0.66 -0.57 -0.49 -0.54	-0.72 -0.71 -0.69 -0.57 -0.58
16 17 18 19 20	4.31 4.15 3.87 3.71 3.60	4.13 3.87 3.71 3.54 3.56	1.75 1.40 0.88 0.86 0.81	1.40 0.86 0.86 0.74 0.78	0.31 0.39 0.43 0.37 0.23	0.08 0.31 0.37 0.23 0.02	0.68 0.69 0.74 0.72 0.80	0.54 0.49 0.68 0.67 0.63	0.61 0.41 -0.03 -0.01 -0.05	0.41 -0.08 -0.09 -0.08 -0.18	-0.53 -0.75 -0.59 -0.50 -0.52	-0.75 -0.83 -0.77 -0.59 -0.83
21 22 23 24 25	3.59 3.60 3.64 3.65 3.64	3.56 3.57 3.58 3.61 3.51	0.78 0.57 0.66 0.68 0.73	0.57 0.42 0.49 0.65 0.67	0.13 0.21 0.29 0.35 0.15	0.04 0.09 0.21 0.15 -0.24	0.81 0.84 0.85 0.99 0.99	0.76 0.79 0.76 0.85 0.95	-0.18 -0.34 -0.84 -0.84 -0.83	-0.34 -0.84 -1.02 -0.98 -0.92	-0.77 -0.67 -0.59 -0.52 -0.50	-0.85 -0.79 -0.67 -0.59 -0.56
26 27 28 29 30 31	3.51 3.49 3.45 3.41 3.26 3.05	3.45 3.44 3.39 3.26 3.05 2.81	0.79 0.82 0.83 0.79 0.88	0.68 0.68 0.77 0.66 0.70	$\begin{array}{c} 0.13 \\ 0.15 \\ 0.14 \\ 0.29 \\ 0.33 \\ 0.29 \end{array}$	-0.05 0.13 0.14 0.14 0.25 0.25	0.98 1.10 1.07 1.11 1.13 1.08	0.90 0.98 1.01 1.01 1.08 0.95	-0.82 -0.79 -0.72 	-0.85 -0.83 -0.82 	-0.44 -0.42 -0.39 -0.42 -0.54 -0.50	-0.54 -0.46 -0.42 -0.54 -0.68 -0.68
MONTH	5.15	2.81	2.81	0.42	1.13	-0.24	1.13	-0.08	0.95	-1.02	-0.39	-1.08

	SUSSEX C	COUNTY-	Continued		
MIN	MAX	MIN	MAX	MIN	

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	-0.48 -0.43 -0.37 -0.34 -0.27	-0.58 -0.50 -0.44 -0.40 -0.35	 	 	 	 	 	 	 	 	$1.05 \\ 1.17 \\ 1.17 \\ 1.10 \\ 0.53$	$\begin{array}{c} 0.99 \\ 1.05 \\ 1.10 \\ 0.44 \\ 0.43 \end{array}$
6 7 8 9 10	-0.18 -0.19 -0.49 -0.50 -0.84	-0.27 -0.56 -0.56 -0.91 -0.90	 	 	 	 	 	 	 	 	0.63 0.73 0.88 0.97 1.04	0.53 0.63 0.73 0.88 0.97
11 12 13 14 15	-0.90 -1.02 -0.89 -0.86	-1.16 -1.17 -1.02 -0.89	 	 	 	 	 	 	 	 	$ 1.14 \\ 1.15 \\ 0.93 \\ 0.90 \\ 0.90 $	1.04 0.93 0.86 0.87 0.87
16 17 18 19 20	 	 	 	 	 	 	 	 	 	 	$1.02 \\ 1.12 \\ 1.12 \\ 0.36 \\ 0.43$	0.88 1.02 0.36 0.26 0.34
21 22 23 24 25	 	 	 	 	 	 	 	 	0.54 0.64 0.79 0.88 0.96	$\begin{array}{c} 0.48 \\ 0.54 \\ 0.64 \\ 0.79 \\ 0.88 \end{array}$	0.52 0.52 0.51 0.26 0.36	$\begin{array}{c} 0.43 \\ 0.50 \\ 0.13 \\ 0.16 \\ 0.26 \end{array}$
26 27 28 29 30 31	 	 	 	 	 	 	 	 	1.02 1.13 1.21 1.24 1.22 1.08	0.96 1.01 1.13 1.19 1.08 1.00	0.48 0.48 0.51 0.69 0.72	0.36 0.43 0.40 0.51 0.69
MONTH YEAR	-0.18 5.15	-1.17 -1.17							1.24	0.48	1.17	0.13

Daily Low Water Levels

WATER LEVEL, IN FEET BELOW LAND SURFACE

SUSSEX COUNTY-Continued

WELL NUMBER .-- Oh54-01. SITE ID .-- 384038075110001.

LOCATION.--Lat 38°40'38", long 75°11'00", Hydrologic Unit 02060010, at intersection of DE Rts. 24 and 277, near Angola. Owner: U.S. Geological Survey.

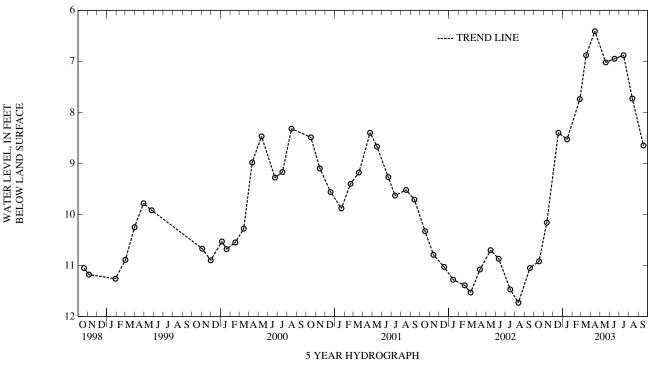
AQUIFER .-- Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 290 ft; casing diameter 2 in., to 280 ft; screen diameter 2 in., from 280 to 290 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Monthly water level measurements from November 1977 to December 1979. Twice yearly water level measurements from March 1980 to October 1984. Monthly water level measurements by U.S. Geological Survey and Delaware Geological Survey personnel from February 1985 to July 1987.

DATUM.--Elevation of land surface is 18 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of steel casing, 1.5 ft above land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.


PERIOD OF RECORD.--November 1977 to current year.

LOWEST 10.92 OCT 17, 2002

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.35 ft below land surface, April 4, 1984; lowest measured, 12.44 ft below land surface, December 1, 1993.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 NOV 11 DEC 18	10.92 10.16 8.40	JAN 15, 2003 FEB 25 MAR 17	8.53 7.74 6.88	APR 14, 2003 MAY 19 JUN 16	6.41 7.02 6.95	JUL 15, 2003 AUG 12 SEP 17	6.88 7.73 8.65
HIGH	EST 6.41 A	PR 14, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

SUSSEX COUNTY-Continued

WELL NUMBER .-- Oh54-02. SITE ID .-- 384038075110002.

LOCATION.--Lat 38°40'38", long 75°11'00", Hydrologic Unit 02060010, at intersection of DE Rts. 24 and 277, near Angola. Owner: U.S. Geological Survey.

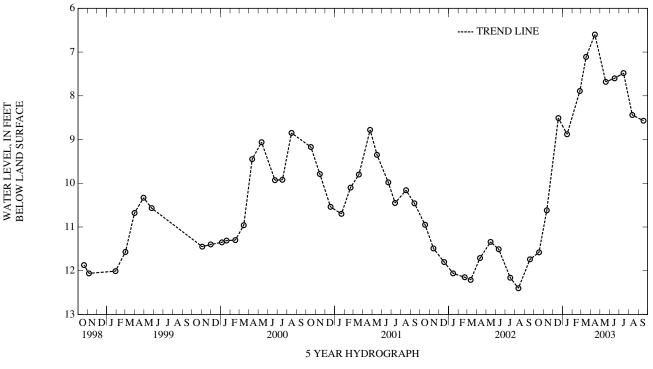
AQUIFER .-- Pocomoke aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122PCMK.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 189 ft; casing diameter 2 in., to 179 ft; screen diameter 2 in., from 179 to 189 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Monthly water level from November 1977 to December 1979. Twice yearly water level measurements from March 1980 to October 1984. Monthly water level measurements by U.S. Geological Survey and Delaware Geological Survey personnel from February 1985 to July 1987.

DATUM.--Elevation of land surface is 18 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of steel casing, 1.5 ft above land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.


PERIOD OF RECORD.--November 1977 to current year.

LOWEST 11.58 OCT 17, 2002

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.44 ft below land surface, April 2, 1979; lowest measured, 13.85 ft below land surface, September 23, 1981.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 NOV 11 DEC 18	11.58 10.62 8.51	JAN 15, 2003 FEB 25 MAR 17	8.88 7.89 7.11	APR 14, 2003 MAY 19 JUN 16	6.60 7.68 7.60	JUL 15, 2003 AUG 12 SEP 17	7.48 8.44 8.57
HIGH	EST 6.60 A	PR 14, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

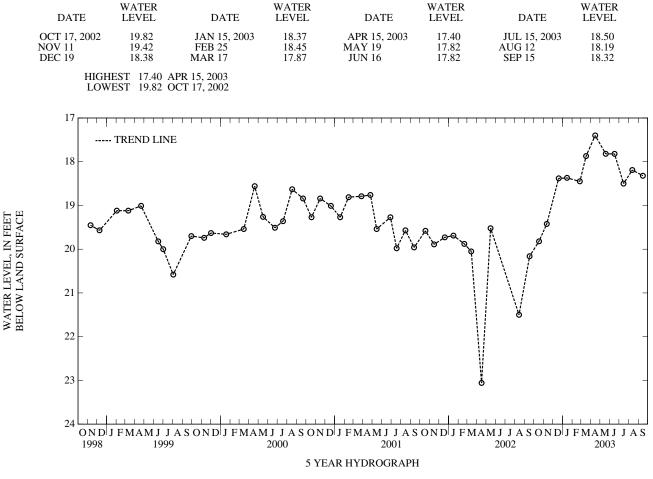
WELL NUMBER .-- Oi24-06. SITE ID .-- 384258075063101. PERMIT NUMBER .-- 03489.

LOCATION.--Lat 38°42'58", long 75°06'31", Hydrologic Unit 02060010, near DE Rt. 1, at Rehobeth Water Pumping Station. Owner: City of Rehobeth.

AQUIFER .-- Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS .- Drilled, observation, artisian well, depth 250 ft; casing diameter 4 in., to 230 ft; screened 230 to 250 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Equipped with graphic waterlevel recorder from June 1976 to December 1979. Monthly water level measurements from January 1980 to December 1981.


DATUM .-- Elevation of land surface is 25 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.70 ft above land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- May 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.90 ft below land surface, March 25, 1979. lowest measured, 23.06 ft below land surface, April 16, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

SUSSEX COUNTY—Continued

WELL NUMBER .-- Pf24-02. SITE ID .-- 383730075213501.

LOCATION.--Lat 38°37'30", long 75°21'35", Hydrologic Unit 02060010, near DE Rt. 113, near Stockley Hospital. Owner: U.S. Geological Survey.

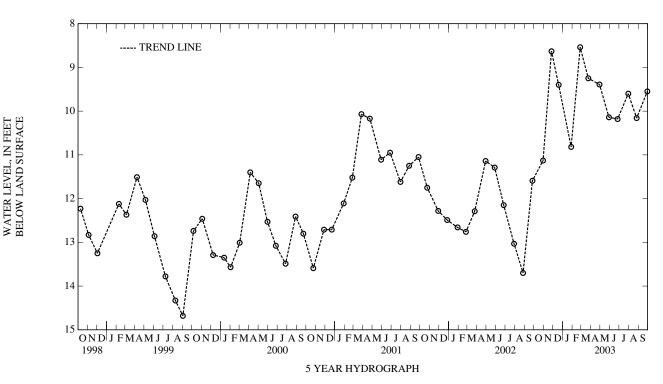
AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 49 ft; casing diameter 4 in., to 46 ft; screen diameter 4 in., from 46 to 49 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape or electric tape by U.S. Geological Survey personnel from June 1998 to current year. Equipped with graphic water-level recorder from January 1970 to January 1982. Intermittent water level measurements from April 1982 to August 1987. Twice yearly water level measurements from February 1988 to April 1993.

DATUM .-- Elevation of land surface is 50 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land surface.

REMARKS .-- Collection of Basic Records (CBR) observation well.


PERIOD OF RECORD.--January 1970 to April 1993, June 1998 to current year.

LOWEST 11.13 OCT 30, 2002

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.53 ft below land surface, March 10, 1979. lowest measured, 14.68 ft below land surface, September 2, 1999.

WATER LEVELS	. IN FEET BELOW L	AND SURFACE. WATER	R YEAR OCTOBER 2002 T	O SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 26 DEC 19	11.13 8.63 9.40	JAN 28, 2003 FEB 26 MAR 24	10.82 8.54 9.25	APR 29, 2003 MAY 29 JUN 26	9.39 10.14 10.18	JUL 30, 2003 AUG 26 SEP 29	9.60 10.16 9.55
шсн	IEST 854 EE	FR 26 2003					

SUSSEX COUNTY-Continued

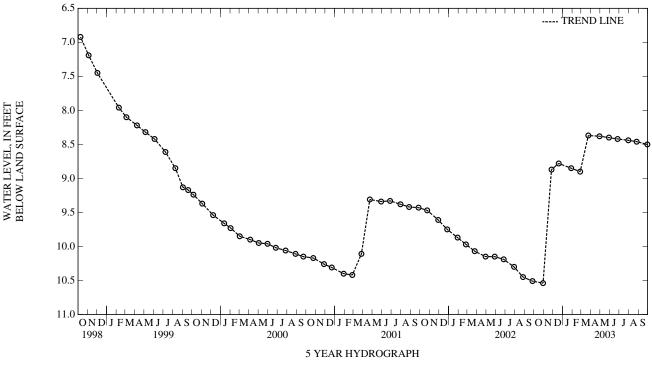
WELL NUMBER.--Pf24-03. SITE ID.--383730075213502.

LOCATION.--Lat 38°37'30", long 75°21'35", Hydrologic Unit 02060010, near DE Rt. 113, near Stockley Hospital. Owner: U.S. Geological Survey.

AQUIFER .-- Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

- WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 178 ft; casing diameter 4 in., to 58 ft; casing diameter 2 in., to 168 ft; screen diameter 2 in., from 168 to 178 ft.
- INSTRUMENTATION.--Monthly water level measurements with chalked steel tape or electric tape by U.S. Geological Survey personnel from June 1998 to current year. Weekly water level measurements from November 1976 to May 1977. Monthly water level measurements from June 1977 to December 1986. Intermittent water level measurements from February 1987 to November 1988. Twice yearly water level measurements from April 1989 to April 1993.

DATUM .-- Elevation of land surface is 50 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.70 ft above land surface.


REMARKS.--Delaware Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD.--November 1976 to April 1993, June 1998 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.67 ft below land surface, April 2, 1979. lowest measured, 12.72 ft below land surface, August 28, 1979.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 26 DEC 19	10.54 8.87 8.78	JAN 28, 2003 FEB 26 MAR 24	8.85 8.90 8.37	APR 29, 2003 MAY 29 JUN 26	8.38 8.40 8.42	JUL 30, 2003 AUG 26 SEP 29	8.44 8.46 8.50
	EST 8.37 M EST 10.54 C	,					

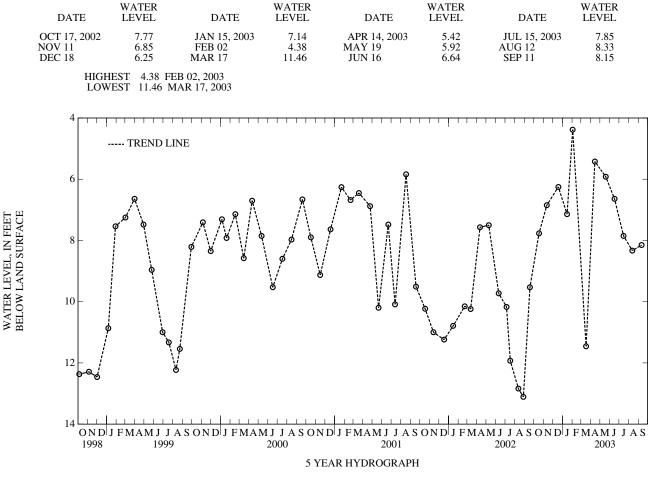
OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WELL NUMBER .-- Qe44-01. SITE ID .-- 383138075260201. PERMIT NUMBER .-- 49320.

LOCATION.--Lat 38°31'38", long 75°26'02", Hydrologic Unit 02060008, l.0 mi east of Whaleys Crossroads. Owner: Delaware Department of Transportation. AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 25 ft; casing diameter l in., to 22 ft; well point from 22 to 25 ft.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel.


DATUM.--Elevation of land surface is 50 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--September 1959 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.66 ft below land surface, January 10, 1994; lowest measured, 13.11 ft below land surface, August 28, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

SUSSEX COUNTY-Continued

WELL NUMBER .-- Qh54-04. SITE ID.-- 383050075105201.

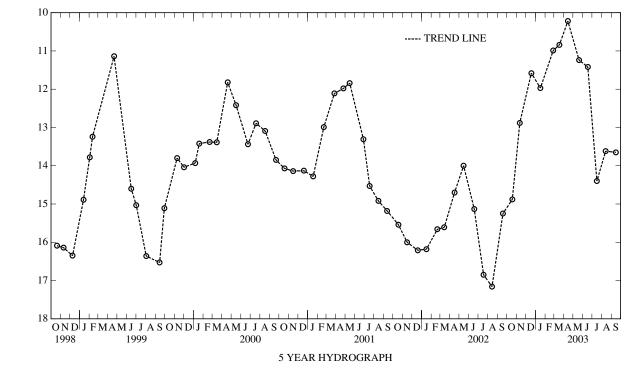
LOCATION.--Lat 39°30'50", long 75°10'52", Hydrologic Unit 02060010, at Pyle Center, Omar. Owner: U.S. Geological Survey.

AQUIFER .-- Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 328 ft; casing diameter 2 in., to 324 ft; screen diameter 2 in., from 324 to 328 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Monthly water level measurements from November 1978 to December 1979. Intermittent water level measurements from March 1980 to February 1985. Monthly water level measurements from April 1985 to November 1988.

DATUM .-- Elevation of land surface is 28 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.00 ft above land surface.


REMARKS .-- Delaware Water-Level Network Monitoring observation well.

PERIOD OF RECORD .-- November 1978 to present.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.07 ft below land surface, April 2, 1979; lowest measured, 17.16 ft below land surface, August 14, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18, 2002 NOV 11 DEC 18	14.88 12.88 11.58	JAN 16, 2003 FEB 26 MAR 18	11.97 10.99 10.84	APR 14, 2003 MAY 20 JUN 17	10.22 11.24 11.42	JUL 16, 2003 AUG 13 SEP 15	14.40 13.62 13.65
	EST 10.22 A EST 14.88 C	APR 14, 2003 DCT 18, 2002					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

SUSSEX COUNTY-Continued

WELL NUMBER .-- Qh54-05. SITE ID .-- 383050075105202.

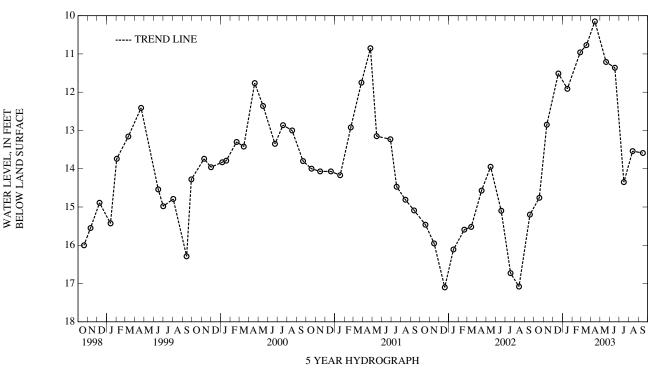
LOCATION.--Lat 39°30"50", long 75°10'52", Hydrologic Unit 02060010, at Pyle Center, Omar. Owner: U.S. Geological Survey.

AQUIFER .-- Ocean City aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122OCNC.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 232 ft; casing diameter 2 in., to 229 ft; screen diameter 2 in., from 229 to 232 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Monthly water level measurements from November 1978 to December 1979, and from April 1985 to November 1988. Intermittent water level measurements from March 1980 to February 1985.

DATUM .-- Elevation of land surface is 28 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.00 ft above land surface.


REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- November 1978 to present.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.63 ft below land surface, March 1, 1979; lowest measured, 17.10 ft below land surface, December 19, 2001.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18, 2002 NOV 11 DEC 18	14.76 12.85 11.51	JAN 16, 2003 FEB 26 MAR 18	11.91 10.96 10.77	APR 14, 2003 MAY 20 JUN 17	10.15 11.21 11.36	JUL 16, 2003 AUG 13 SEP 15	14.35 13.54 13.59
	EST 10.15 A EST 14.76 C						

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

SUSSEX COUNTY-Continued

WELL NUMBER .-- Qh54-06. SITE ID .-- 383050075105203.

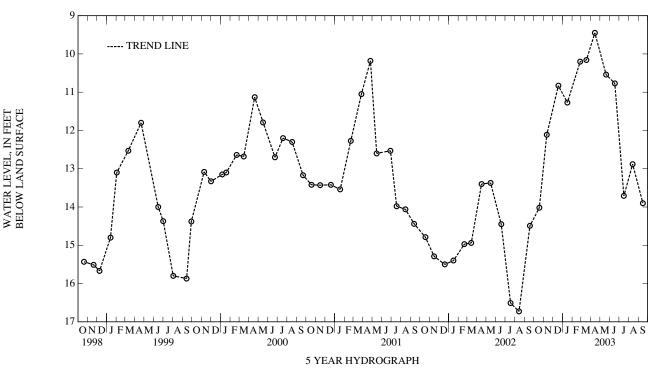
LOCATION.--Lat 39°30'50", long 75°10'52", Hydrologic Unit 02060010, at Pyle Center, Omar. Owner: U.S. Geological Survey.

AQUIFER .-- Pocomoke aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122PCMK.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 148 ft; casing diameter 2 in., to 144 ft; screen diameter 2 in., from 144 to 148 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Monthly water level measurements from November 1978 to December 1979. Intermittent water level measurements from March 1980 to February 1985. Monthly water level measurements from April 1985 to November 1988.

DATUM .-- Elevation of land surface is 28 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.00 ft above land surface.


REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- November 1978 to present.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.95 ft below land surface, March 1, 1979; lowest measured, 17.10 ft below land surface, July 24, 1986.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18, 2002 NOV 11 DEC 18	14.02 12.11 10.83	JAN 16, 2003 FEB 26 MAR 18	11.27 10.20 10.16	APR 14, 2003 MAY 20 JUN 17	9.45 10.54 10.77	JUL 16, 2003 AUG 13 SEP 15	13.71 12.88 13.90
	EST 9.45 A EST 14.02 C						

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WELL NUMBER .-- Qh54-07. SITE ID.-- 383050075105204.

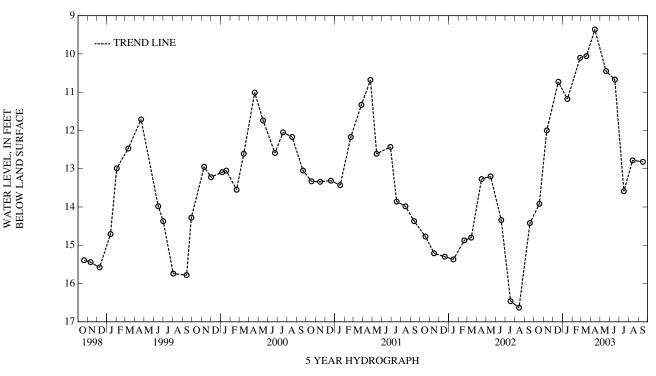
LOCATION.--Lat 39°30'50", long 75°10'52", Hydrologic Unit 02060010, at Pyle Center, Omar. Owner: U.S. Geological Survey.

AQUIFER .-- Omar Formation of Pleistocene age. Aquifer code: 1120MAR.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 108 ft; casing diameter 2 in., to 104 ft; screen diameter 2 in., from 104 to 108 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Monthly water level measurements from November 1978 to December 1979, and April 1985 to November 1988. Intermittent water level measurements from March 1980 to February 1985.

DATUM .-- Elevation of land surface is 28 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.00 ft above land surface.


REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- December 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.83 ft below land surface, March 1, 1979; lowest measured, 16.63 ft below land surface, August 14, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18, 2002 NOV 11 DEC 18	13.92 12.00 10.73	JAN 16, 2003 FEB 26 MAR 18	11.18 10.10 10.06	APR 14, 2003 MAY 20 JUN 17	9.36 10.45 10.67	JUL 16, 2003 AUG 13 SEP 15	13.59 12.78 12.82
	EST 9.36 A EST 13.92 C						

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

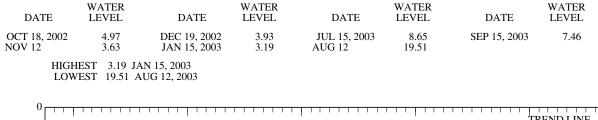
WELL NUMBER .-- Qj32-17. SITE ID.-- 383210075035802. PERMIT NUMBER .-- 45428.

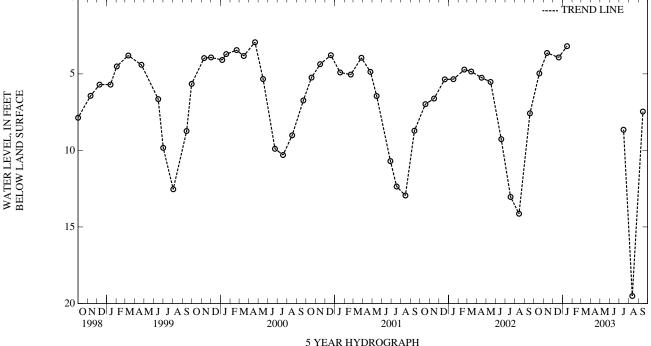
LOCATION.--Lat 38°32'10", long 75°03'58", Hydrologic Unit 02060010, 0.5 mi southwest of intersection with DE Rts. 1 and 26, Bethany Beach. Owner: Town of Bethany Beach.

AQUIFER.--Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS .- Drilled, observation, artisian well, depth 400 ft; casing diameter 4 in., to 335 ft; screen diameter 4 in., from 335 to 400 ft.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel.


DATUM .-- Elevation of land surface is 7 ft. above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, at land surface.


REMARKS .-- Delaware Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--February 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.12 ft below land surface, April 1, 1993; lowest measured, 19.51 ft below land surface, August 12, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WELL NUMBER .-- Rj22-05. SITE ID .-- 382808075030501.

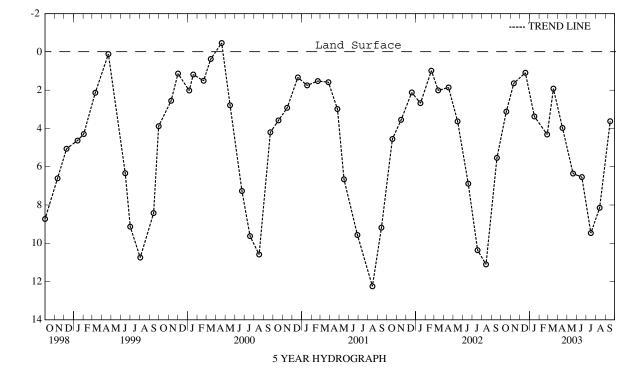
LOCATION.--Lat 38°28'08", long 75°03'05", Hydrologic Unit 02060010, at Fenwick Island State Park. Owner: U.S. Geological Survey.

AQUIFER .-- Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

- WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 455 ft; casing diameter 1.25 in., to 450 ft; screen diameter 2 in., from 450 to 455 ft.
- INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Monthly water level measurements from April 1977 to March 1980, and April 1985 to July 1987. Intermittent water level measurements from September 1980 to February 1985.

DATUM.--Elevation of land surface is 5 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land surface.

REMARKS .-- Delaware Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- April 1977 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.00 ft above land surface, March 4, 1997; lowest measured, 13.81 ft below land surface, July 30, 1992.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18, 2002 NOV 11 DEC 18	3.12 1.64 1.09	JAN 16, 2003 FEB 26 MAR 18	3.37 4.32 1.92	APR 16, 2003 MAY 20 JUN 17	3.97 6.36 6.54	JUL 16, 2003 AUG 13 SEP 16	9.47 8.15 3.62
HIGH LOW		EC 18, 2002 JL 16, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WELL NUMBER .-- Rj22-06. SITE ID .-- 382808075030502.

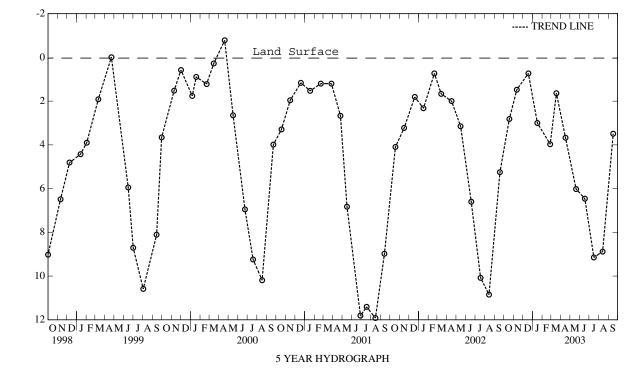
LOCATION.--Lat 38°28'08", long 75°03'05", Hydrologic Unit 02060010, at Fenwick Island State Park. Owner: U.S. Geological Survey.

AQUIFER .-- Ocean City aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122OCNC.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 295 ft; casing diameter 1.25 in., to 290 ft; screen diameter 2 in., from 290 to 295 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Monthly water level measurements from April 1977 to March 1980, and April 1985 to July 1987. Intermittent water level measurements from September 1980 to February 1985.

DATUM.--Elevation of land surface is 5 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land surface.


REMARKS .-- Delaware Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- April 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.00 ft above land surface, April 2, 1979, April 4, 1984, and March 4, 1997; lowest measured, 12.86 ft below land surface, July 30, 1992.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18, 2002 NOV 11 DEC 18	2.82 1.48 .73	JAN 16, 2003 FEB 26 MAR 18	3.00 3.97 1.64	APR 16, 2003 MAY 20 JUN 17	3.67 6.02 6.46	JUL 16, 2003 AUG 13 SEP 16	9.15 8.88 3.49
HIGH LOW		EC 18, 2002 JL 16, 2003					

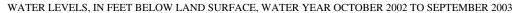
OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

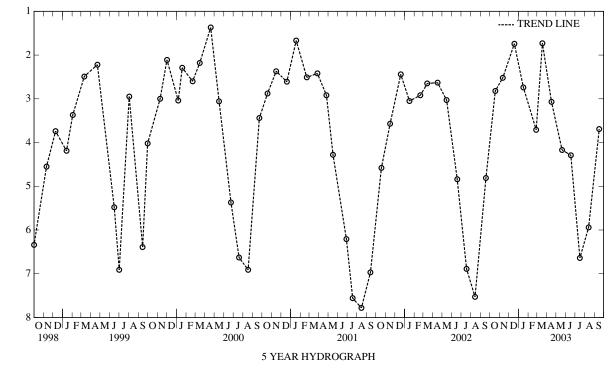
WELL NUMBER .-- Rj22-07. SITE ID .-- 382808075030503.

LOCATION.--Lat 38°28'08", long 75°03'05", Hydrologic Unit 02060010, at Fenwick Island State Park. Owner: U.S. Geological Survey.

AQUIFER .-- Pocomoke aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122PCMK.


- WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 185 ft; casing diameter 1.25 in., to 180 ft; screen diameter 2 in., from 180 to 185 ft.
- INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Monthly water level measurements from April 1977 to March 1980, and April 1985 to July 1987. Intermittent water level measurements were collected from September 1980 to February 1985.
- DATUM.--Elevation of land surface is 5 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land surface.

REMARKS .-- Delaware Water-Level monitoring Network observation well. Water levels are affect by local ground-water withdrawal.


PERIOD OF RECORD .-- April 1977 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE LOWEST 6.64 JUL 16, 2003

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.33 ft above land surface, February 20, 1986; lowest measured, 10.00 ft below land surface, August 4, 1993.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18, 2002 NOV 11 DEC 18	2.82 2.52 1.74	JAN 16, 2003 FEB 26 MAR 18	2.74 3.71 1.73	APR 16, 2003 MAY 20 JUN 17	3.07 4.17 4.29	JUL 16, 2003 AUG 13 SEP 16	6.64 5.94 3.69
HIGH	EST 1.73 M	AR 18, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WELL NUMBER .-- Rj22-08. SITE ID .-- 382808075030504.

LOCATION.--Lat 38°28'08", long 75°03'05", Hydrologic Unit 02060010, at Fenwick Island State Park. Owner: U.S. Geological Survey.

AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

9-----

1999

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 115 ft; casing diameter 1.25 in., to 110 ft; screen diameter 2 in., from 110 to 115 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Delaware Geological Survey personnel. Monthly water level measurements from April 1977 to March 1980, and April 1985 to July 1987. Intermittent water level measurements from September 1980 to February 1985.

DATUM.--Elevation of land surface is 5 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land surface.

REMARKS.--Delaware Water-Level Monitoring Network observation well. The water level measurement of 8.20 ft below land surface on August 2, 1999, is the result of nearby ground-water withdrawal due to dewatering during the installation of an underground pipeline.

PERIOD OF RECORD .-- April 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.13 ft below land surface, January 6, 2000; lowest measured, 5.39 ft below land surface, July 24, 1981 (See REMARKS).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18, 2002 NOV 11 DEC 18	2.57 2.31 3.58	JAN 16, 2003 FEB 26 MAR 18	4.25 4.67 2.82	APR 16, 2003 MAY 20 JUN 17	3.82 3.85 2.65	JUL 16, 2003 AUG 13 SEP 16	4.48 3.83 3.03
HIGH LOW	EST 2.31 NC EST 4.67 FE	DV 11, 2002 B 26, 2003					
							Rend Line

ond J FMAMJ J A S OND J FMAMJ J A S

5 YEAR HYDROGRAPH OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

2001

2002

2003

2000

WATER LEVEL, IN FEET BELOW LAND SURFACE

8

10

1998

GROUND-WATER LEVELS IN MARYLAND

ALLEGANY COUNTY

WELL NUMBER .-- AL Ah 1. SITE ID .-- 394024078273401.

LOCATION.--Lat 39°40'24", long 78°27'34", Hydrologic Unit 02070003, near Fifteen Mile Creek, 2.8 mi southeast of Pratt. Owner: Green Ridge State Forest.

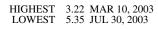
AQUIFER.--Brallier Formation of Upper Devonian Age. Aquifer code: 341BRLR.

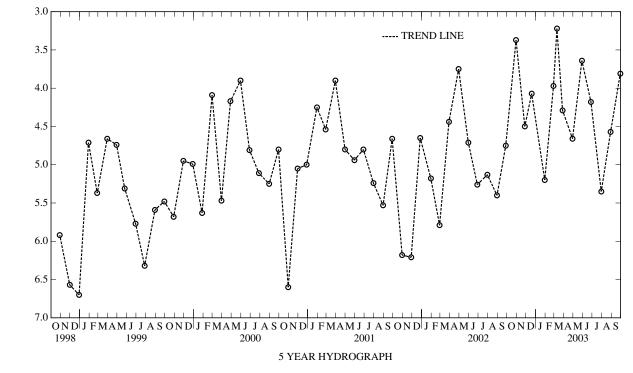
WELL CHARACTERISTICS.--Drilled, unused, artesian well, reported depth 300 ft, measured depth 114.5 ft; casing diameter 8 in., to unknown depth; open hole.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 720 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of sanitary seal in casing, 0.25 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water level was more than 40 ft below land surface on November 19, 1969, and February 12, 1970, when well was being pumped. Water levels may be affected by local ground-water withdrawal.


PERIOD OF RECORD .-- December 1949 to current year.


WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.80 ft below land surface, May 18, 1978; lowest measured 19.75 ft below land surface, July 17, 1968.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 27 DEC 19 JAN 30, 2003	3.37 4.50 4.07 5.20	FEB 27, 2003 MAR 10 28 APR 29	3.97 3.22 4.29 4.66	MAY 29, 2003 JUN 27 JUL 30 AUG 29	3.64 4.18 5.35 4.57	SEP 29, 2003	3.81

GROUND-WATER LEVELS IN MARYLAND

ALLEGANY COUNTY-Continued

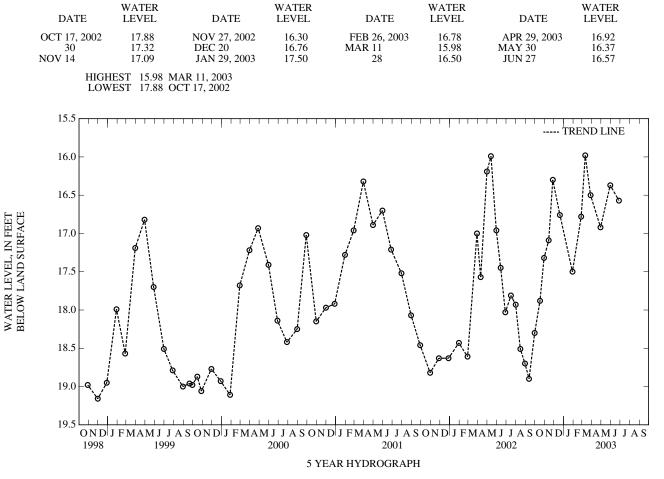
WELL NUMBER .-- AL Ca 19. SITE ID .-- 393009079025201. PERMIT NUMBER .-- AL-05-0057.

LOCATION .-- Lat 39°30'09", long 79°02'52", Hydrologic Unit 02070002, north end of Franklin. Owner: Private Residence.

AQUIFER.--Conemaugh Group of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS .- Drilled, unused, water-table well, measured depth 86 ft; casing diameter 6 in., to 46 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 1,035 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--July 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.88 ft below land surface, March 19, 1984; lowest measured, 19.30 ft below land surface, November 1, 1977.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

GROUND-WATER LEVELS IN MARYLAND

ALLEGANY COUNTY-Continued

WELL NUMBER .-- AL Ca 20. SITE ID .-- 393148079010601. PERMIT NUMBER .-- AL-81-0477.

LOCATION.--Lat 39°31'48", long 79°01'06", Hydrologic Unit 02070002, at Barton Municipal Park. Owner: Town of Barton.

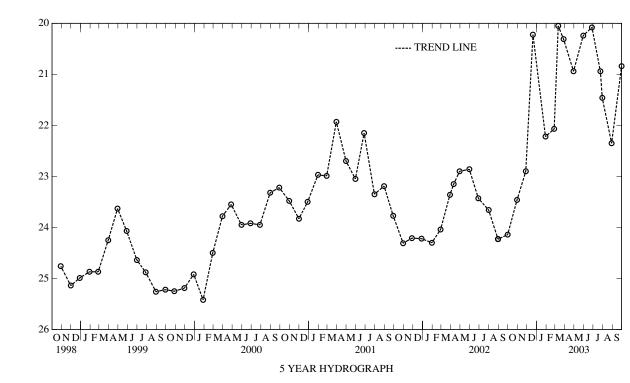
AQUIFER.--Conemaugh Group of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 71 ft; casing diameter 8 in., to 20 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 1,250 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.70 ft above land surface through June 2003, 4.00 ft above land surface from July 2003 to present.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- March 1992 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 20.05 ft below land surface, March 11, 2003; lowest measured, 26.00 ft below land surface, March 17, 1992.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 27 DEC 20 JAN 29, 2003	23.46 22.90 20.22 22.22	FEB 26, 2003 MAR 11 28 APR 29	22.07 20.05 20.31 20.94	MAY 30, 2003 JUN 27 JUL 24 30	20.24 20.08 20.94 21.46	AUG 29, 2003 SEP 30	22.35 20.84
HIGHEST 20.05 MAR 11, 2003 LOWEST 23.46 OCT 30, 2002							

ANNE ARUNDEL COUNTY

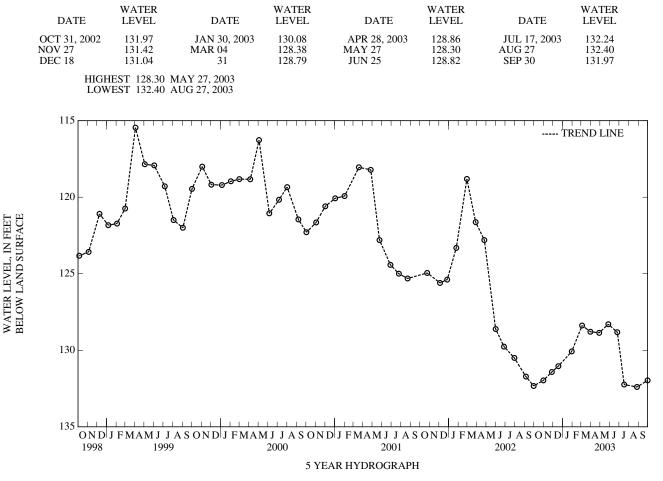
WELL NUMBER.--AA Ac 11. SITE ID.--391101076404001. PERMIT NUMBER.--AA-00-2445.

LOCATION.--Lat 39°11'01", long 76°40'40", Hydrologic Unit 02060003, Baltimore-Washington International Airport. Owner: Maryland Department of Transportation.

AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS .-- Drilled, unused, artesian well, depth 320 ft; casing diameter 6 in., to 312 ft; screened from 312 to 320 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 136.9 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.00 above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Well used during construction of airport. Water level reported by driller as 90 ft below land surface, April 23, 1948. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- June 1959 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 86.60 ft below land surface, March 9, 1965; lowest measured, 132.40 ft below land surface, August 27, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Ad 29. SITE ID .-- 391015076373501.

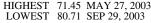
LOCATION.--Lat 39°10'15", long 76°37'35", Hydrologic Unit 02060003, near Linden Lane, Glen Burnie, near the Anne Arundel County Department of Public Works office. Owner: Anne Arundel County Department of Public Works.

AQUIFER.--Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

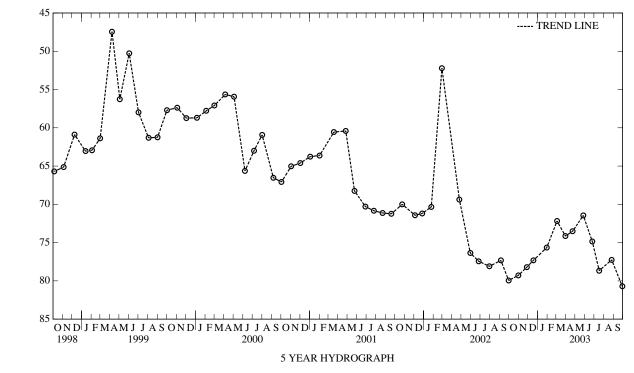
WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 500 ft; casing diameter 3 in., to 395 ft, and from 400 to 420 ft; casing diameter 2 in. from 420 to 460 ft; screened with 3 in. slotted pipe from 395 to 400 ft; screened with 2 in. slotted pipe from 460 to 500 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with graphic water-level recorder from July 19, 1948 to January 18, 1968.

DATUM.--Elevation of land surface is 37.0 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.85 ft above land surface. Prior to December 5, 1972, measuring point was 16.3 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--June 1948 to February 1968, April 1974 to current year.


EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.04 ft above land surface, September 2, 1952; lowest measured, 80.71 ft below land surface, September 29, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 27 DEC 18	79.28 78.21 77.33	JAN 30, 2003 MAR 04 31	75.65 72.18 74.15	APR 23, 2003 MAY 27 JUN 25	73.51 71.45 74.86	JUL 17, 2003 AUG 26 SEP 29	78.67 77.25 80.71

WATER LEVEL, IN FEET BELOW LAND SURFACE

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Ad 90. SITE ID .-- 391032076385902. PERMIT NUMBER .-- AA-04-0298.

LOCATION.--Lat 39°10'32", long 76°38'59", Hydrologic Unit 02060003, off Aviation Blvd, 0.5 mi north of Dorsey Road intersection. Owner: Anne Arundel County Department of Public Works.

AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 453 ft; casing diameter 6 in., to 443 ft; screen diameter 6 in., from 443 to 453 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with graphic water-level recorder from August 1977 to September 1979. Periodic measurements from September 1979 to March 1980. Equipped with digital water-level recorder--30-minute recorder interval from March 1980 to December 1984, and August 1989 to current year.

DATUM.--Elevation of land surface is 77.85 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 2.20 ft above land surface.

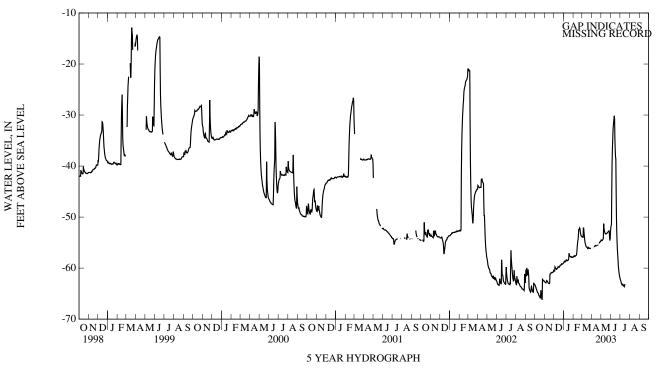
REMARKS.--Anne Arundel County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- April 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 22.87 ft above sea level, November 20, 1978 (recorder); lowest measured, 82.85 ft below sea level, September 17, 2003 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002	-62.02	JAN 30, 2003	-57.87	APR 23, 2003	-55.19	JUL 17, 2003	-62.60
NOV 27	-60.76	MAR 04	-52.09	MAY 27	-52.62	AUG 26	-59.17
DEC 18	-59.80	25	-56.07	JUN 25	-59.35	SEP 29	-68.82


LOWEST -68.82 SEP 29, 2003 HIGHEST -52.09 MAR 04, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECEN	MBER	JANU	ARY	FEBR	UARY	MAR	RCH
1	-63.17	-63.31	-62.61	-62.68	-60.48	-60.59	-58.63	-58.92	-57.64	-57.77	-53.85	-53.88
2	-63.31	-63.46	-62.67	-62.75	-60.44	-60.58	-58.61	-58.77	-57.64	-57.69	-53.65	-53.85
3	-63.46	-63.66	-62.75	-62.83	-58.93	-60.59	-58.59	-58.67	-57.58	-57.70	-53.74	-53.95
4	-63.66	-63.78	-62.79	-62.88	-59.23	-59.74	-58.65	-58.82	-57.42	-57.59	-52.06	-53.96
5	-63.77	-64.06	-62.75	-62.91	-59.68	-59.84	-58.74	-58.83	-57.59	-57.72	-52.12	-52.14
6	-64.06	-64.21	-62.50	-62.75	-59.84	-60.07	-58.67	-58.74	-57.64	-57.74	-52.02	-52.15
7	-64.18	-64.40	-62.24	-62.50	-60.04	-60.08	-58.50	-58.72	-57.48	-57.64	-52.15	-52.95
8	-64.40	-64.60	-62.31	-62.43	-60.07	-60.19	-58.32	-58.50	-57.52	-57.57	-52.95	-53.65
9	-64.60	-64.75	-62.43	-62.55	-60.19	-60.26	-58.30	-58.38	-57.49	-57.53	-53.65	-54.35
10	-64.75	-64.84	-62.55	-62.59	-60.06	-60.21	-58.37	-58.48	-57.29	-57.49	-54.35	-54.88
11	-64.81	-64.88	-62.59	-62.79	-59.84	-60.06	-58.48	-58.55	-56.93	-57.42	-54.88	-55.17
12	-64.88	-65.06	-62.79	-62.86	-59.89	-60.00	-58.54	-58.58	-56.07	-56.93	-55.17	-55.38
13	-65.06	-65.26	-62.84	-62.95	-59.62	-59.97	-58.35	-58.54	-55.35	-56.07	-55.38	-55.61
14	-65.26	-65.45	-62.95	-62.99	-59.57	-59.70	-58.36	-58.43	-54.74	-55.35	-55.61	-55.83
15	-65.43	-65.49	-62.98	-63.03	-59.66	-59.74	-58.34	-58.42	-54.38	-54.74	-55.83	-55.88
16	-65.30	-65.48	-62.91	-63.04	-59.61	-59.78	-58.10	-58.42	-53.73	-54.38	-55.87	-55.89
17	-65.48	-65.76	-60.98	-62.91	-59.78	-59.83	-56.50	-58.10	-51.99	-53.73	-55.87	-55.90
18	-65.29	-65.92	-61.01	-61.18	-59.77	-59.83	-56.68	-57.09	-52.12	-52.44	-55.90	-56.06
19	-62.69	-65.29	-61.08	-61.18	-59.51	-59.78	-57.09	-57.32	-52.43	-52.47	-56.06	-56.20
20	-63.17	-64.35	-61.04	-61.10	-59.30	-59.51	-57.31	-57.57	-51.89	-52.44	-55.92	-56.20
21	-64.35	-65.11	-60.85	-61.04	-59.37	-59.41	-57.57	-57.69	-51.93	-52.13	-55.93	-55.96
22	-65.11	-65.61	-60.75	-60.85	-59.31	-59.42	-57.69	-57.73	-52.13	-52.26	-55.96	-56.03
23	-65.61	-66.05	-60.78	-60.89	-59.34	-59.39	-57.67	-57.73	-52.17	-52.79	-56.03	-56.08
24	-62.02	-66.20	-60.88	-60.89	-59.19	-59.39	-57.70	-57.85	-52.79	-53.21	-56.08	-56.13
25	-62.11	-62.18	-60.83	-60.88	-58.90	-59.19	-57.79	-57.85	-53.21	-53.58	-56.06	-56.13
26 27 28 29 30 31	-62.09 -62.25 -62.40 -62.46 -62.46 -62.49	-62.25 -62.40 -62.47 -62.53 -62.50 -62.62	-60.77 -60.75 -60.69 -60.46 -60.35	-60.88 -60.78 -60.78 -60.69 -60.48	-59.07 -59.17 -59.05 -59.03 -59.04 -58.90	-59.26 -59.26 -59.17 -59.14 -59.13 -59.04	-57.68 -57.77 -57.75 -57.68 -57.85 -57.77	-57.79 -57.91 -57.89 -57.85 -57.89 -57.89	-53.58 -53.69 -53.72 	-53.70 -53.72 -53.87 	-56.00 -56.08 -56.12 -55.99 	-56.08 -56.16 -56.16 -56.12
MONTH	-62.02	-66.20	-60.35	-63.04	-58.90	-60.59	-56.50	-58.92	-51.89	-57.77	-52.02	-56.20

ANNE ARUNDEL COUNTY-Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΥY	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1			-54.42	-54.49	-51.71	-51.95	-61.90	-62.16				
2	-55.90	-55.97	-54.42	-54.50	-51.42	-51.71	-62.16	-62.32				
3			-54.50	-54.59	-44.44	-51.42	-62.32	-62.54				
4			-54.54	-54.60	-39.49	-44.44	-62.54	-62.77				
5			-54.41	-54.54	-36.70	-39.49	-62.77	-62.98				
6	-55.93	-56.04	-54.33	-54.41	-34.86	-36.70	-62.98	-63.15				
7	-55.92	-56.04	-54.21	-54.33	-33.01	-34.86	-63.14	-63.29				
8			-48.99	-54.21	-32.08	-33.01	-63.01	-63.14				
9	-55.77	-55.87	-49.59	-51.28	-31.37	-32.08	-63.02	-63.14				
10	-55.66	-55.78	-51.28	-52.13	-30.74	-31.37	-63.14	-63.26				
11	-55.51	-55.66	-52.13	-52.52	-30.15	-30.74	-63.26	-63.41				
12	-55.47	-55.58	-52.52	-52.86	-29.65	-30.15	-63.34	-63.38				
13	-55.58	-55.66	-52.86	-53.06	-29.43	-30.82	-63.36	-63.56				
14	-55.63	-55.67	-53.06	-53.24	-30.82	-34.55	-63.38	-63.65				
15	-55.38	-55.64	-53.24	-53.30	-34.55	-36.83	-63.13	-63.44				
16	-55.40	-55.48	-53.21	-53.26	-36.83	-38.23	-62.96	-63.13				
17			-53.24	-53.29	-37.76	-38.50						
18			-53.20	-53.25	-37.76	-44.76						
19	-55.55	-55.62	-53.15	-53.20	-44.76	-50.07						
20	-55.39	-55.55	-53.04	-53.15	-50.07	-53.01						
21	-55.18	-55.39	-52.95	-53.04	-53.01	-54.88						
22			-52.94	-52.97	-54.88	-56.29						
23			-52.82	-52.94	-56.29	-57.38						
24	-55.07	-55.17	-52.76	-52.82	-57.38	-58.29						
25	-54.91	-55.07	-52.69	-52.76	-58.29	-59.62						
26	-54.81	-54.91	-52.56	-52.69	-59.62	-60.18						
27	-54.84	-54.89	-52.59	-52.84	-60.18	-60.76						
28	-54.74	-54.87	-52.84	-53.99	-60.76	-61.21						
29	-54.67	-54.74	-53.99	-54.60	-61.21	-61.58						
30	-54.34	-54.74	-52.84	-54.18	-61.58	-61.90						
31			-51.95	-52.84								
MONTH	-54.34	-56.04	-48.99	-54.60	-29.43	-61.90	-61.90	-63.65				
YEAR	-29.43	-66.20										

Daily Low Water Levels

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Ad 102. SITE ID .-- 391032076385904. PERMIT NUMBER .-- AA-81-2641.

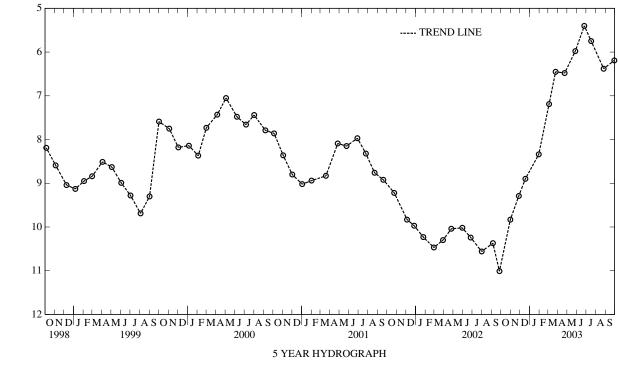
LOCATION.--Lat 39°10'32", long 76°38'59", Hydrologic Unit 02060003, off Aviation Blvd., 0.5 mi north of Dorsey Road intersection. Owner: U.S. Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

- WELL CHARACTERISTICS.--Drilled, observation, artesian well (semi-confined), depth 95 ft; casing diameter 6 in., to 85 ft; screen diameter 6 in., from 85 to 95 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from December 1983 to October 1990.

DATUM .-- Elevation of land surface is 76.72 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 5.27 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.


PERIOD OF RECORD.--December 1983 to current year.

LOWEST 9.83 OCT 31, 2002

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.75 ft below land surface, April 3, 1998; lowest measured, 14.36 ft below land surface, November 3, 1986.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 27 DEC 18	9.83 9.29 8.90	JAN 30, 2003 MAR 04 25	8.34 7.19 6.45	APR 23, 2003 MAY 27 JUN 25	6.48 5.98 5.40	JUL 17, 2003 AUG 26 SEP 29	5.75 6.38 6.19
HIGH	EST 5.40 JU	JN 25, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Ad 108. SITE ID .-- 391032076385906. PERMIT NUMBER .-- AA-81-3475.

LOCATION.--Lat 39°10'32", long 76°38'59", Hydrologic Unit 02060003, off Aviation Blvd., 0.5 mi north of Dorsey Road intersection. Owner: U.S. Geological Survey.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

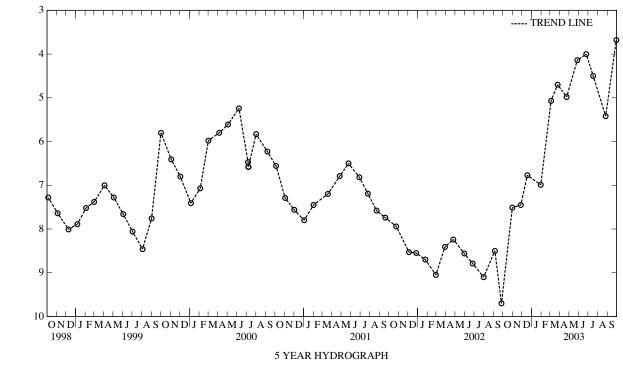
WELL CHARACTERISTICS.-Drilled, observation, water-table well, depth 11 ft; casing diameter 4 in., to 6 ft and casing diameter 6 in., to 3 ft; screen diameter 4 in., from 6 to 11 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from February 1986 to September 1990.

DATUM.--Elevation of land surface is 78.31 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 5.50 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

LOWEST 7.51 OCT 31, 2002


PERIOD OF RECORD .-- August 1984 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.68 ft below land surface, September 29, 2003; lowest measured, Dry on August 22, 1985; January 17, 1986; May 20, 1986; July 8, 1986 and November 3, 1986 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 27 DEC 18	7.51 7.45 6.77	JAN 30, 2003 MAR 04 25	6.99 5.07 4.70	APR 23, 2003 MAY 27 JUN 25	4.98 4.14 4.00	JUL 17, 2003 AUG 26 SEP 29	4.50 5.42 3.68
HIGH	EST 3.68 SH	EP 29, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Ad 109. SITE ID. -- 391006076380101. PERMIT NUMBER .-- AA-81-4890.

LOCATION.--Lat 39°10'06", long 76°38'01", Hydrologic Unit 02060003, 0.05 mi south of Dorsey Road, 0.17 mi west of MD Rt. 648, near Robert Pascal Senior Center. Owner: U.S. Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 46 ft; casing diameter 4 in., to 36 ft; screen diameter 4 in., from 36 to 46 ft.

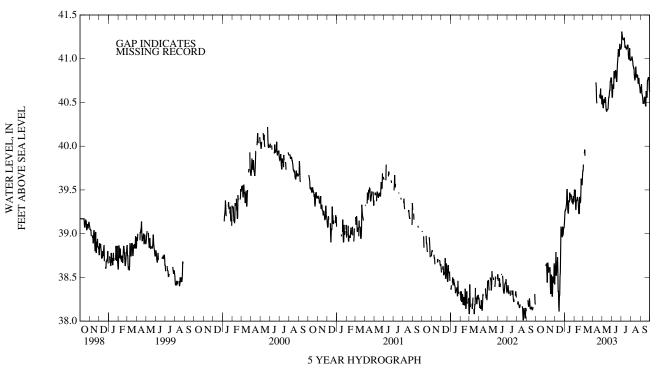
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from October 1985 to July 1998, and 30-minute recorder interval from July 1998 to current year.
- DATUM.--Elevation of land surface is 35.78 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 7.10 ft above land surface. On August 1, 1996, 1.15 ft of casing was added. The new measuring point height was 5.44 ft. This extended casing was later removed on March 24, 1997. On January 5, 2000 an extension pipe was added to the casing. The new measuring point height is 7.10 ft above land surface.
- REMARKS.--Anne Arundel County Ground-Water-Level Monitoring Network observation well. Water levels before February 23, 1986 are not currently available. Water levels are affected by local ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD.--October 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, (See Measuring point) 39.17 ft above sea level (flowing, recorder), flowing on numerous days (see hydrograph); with added casing highest level measured, 41.35 ft above sea level July 3, 2003 (recorder); lowest measured, 20.20 ft above sea level, October 15, 1987 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002	38.46	JAN 30, 2003	39.35	APR 23, 2003	40.60	JUL 17, 2003	41.10
NOV 27	38.70	MAR 04	39.85	MAY 29	40.78	AUG 26	40.77
DEC 18	38.77	31	40.59	JUN 25	41.13	SEP 29	40.70


LOWEST 38.46 OCT 31, 2002 HIGHEST 41.13 JUN 25, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAI	RCH
1			38.66	38.63	38.73	38.54	39.47	39.19	39.60	39.50	39.79	39.72
2			38.66	38.64	38.73	38.63	39.46	39.26	39.59	39.50	40.06	39.79
3			38.69	38.65	38.83	38.63	39.42	39.26	39.54	39.48		
4			38.69	38.66	38.83	38.79	39.42	39.28	39.68	39.50		
5			38.69	38.55	38.79	38.52	39.32	39.28	39.50	39.30	40.11	39.92
6			38.59	38.44	38.70	38.56	39.39	39.32	39.36	39.27	40.13	39.96
7			38.71	38.59	38.70	38.66	39.50	39.35	39.50	39.36	39.99	39.89
8			38.71	38.67	38.73	38.65	39.59	39.50	39.48	39.38		
9			38.67	38.63	38.81	38.73	39.62	39.51	39.41	39.38	40.24	40.14
10			38.63	38.56	38.79	38.59	39.51	39.36	39.60	39.41		
11			38.64	38.56	38.59	38.34	39.36	39.26	39.55	39.42		
12			38.66	38.61	38.50	38.34	39.26	39.23	39.51	39.40		
13			38.61	38.61	38.50	38.16	39.45	39.24	39.40	39.38		
14			38.61	38.61	38.28	38.11	39.42	39.38	39.38	39.31	40.21	40.07
15			38.61	38.61	38.39	38.28	39.39	39.37	39.38	39.23		
16			38.61	38.40	38.51	38.30	39.49	39.36	39.23	39.23		
17			38.40	38.31	38.56	38.51	39.52	39.47	39.53	39.23		
18			38.59	38.37	38.81	38.56	39.47	39.38	39.53	39.42		
19			38.59	38.53	39.08	38.81	39.51	39.43	39.42	39.38		
20			38.53	38.51	39.27	39.08	39.56	39.45	39.39	39.35		
21			38.51	38.32	39.15	39.05	39.45	39.44	39.50	39.37		
22			38.32	38.28	39.08	39.04	39.44	39.43	39.99	39.50		
23			38.51	38.31	39.04	38.98	39.50	39.43	40.04	39.63		
24			38.51	38.51	39.08	38.96	39.50	39.36	39.63	39.56		
25			38.51	38.48	39.38	39.08	39.40	39.36	39.63	39.56		
26			38.53	38.46	39.24	38.99	39.51	39.40	39.66	39.56	40.57	40.50
27			38.70	38.44	39.05	38.98	39.49	39.34	39.77	39.66		
28			38.72	38.66	39.14	39.05	39.46	39.34	39.78	39.72		
29			38.66	38.44	39.15	39.07	39.50	39.43			40.60	40.47
30			38.54	38.42	39.11	39.07	39.43	39.36				
31					39.19	39.11	39.50	39.38				
MONTH			38.72	38.28	39.38	38.11	39.62	39.19	40.04	39.23	40.60	39.72

ANNE ARUNDEL COUNTY-Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JU	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	 	 	40.58 40.66 40.62 40.48 40.51	40.50 40.58 40.48 40.44 40.44	40.89 40.64 40.67 40.72 40.72	40.64 40.56 40.56 40.67 40.71	41.14 41.31 41.35 41.32 41.28	41.13 41.14 41.31 41.28 41.25	41.00 41.00 41.02 41.02 41.02	40.98 41.00 40.99 41.02 41.02	40.68 40.69 40.71 40.75 40.75	40.61 40.67 40.67 40.71 40.62
6 7 8 9 10	 	 	40.54 40.56 40.56 40.53 40.56	40.51 40.54 40.50 40.50 40.53	40.71 40.91 40.91 40.86 40.82	40.66 40.66 40.86 40.82 40.78	41.25 41.23 41.23 41.22 41.25	41.23 41.22 41.22 41.22 41.21	41.02 40.99 40.97 40.92 40.91	40.99 40.97 40.92 40.91 40.89	40.62 40.59 40.58 40.55 40.49	40.59 40.58 40.55 40.49 40.49
11 12 13 14 15	40.84 40.85 40.69 40.53	40.73 40.69 40.53 40.49	40.67 40.67 40.54 40.46 40.41	40.56 40.54 40.46 40.41 40.40	40.85 40.87 40.88 40.88 40.88	40.78 40.85 40.87 40.86 40.82	41.30 41.24 41.19 41.13 41.15	41.24 41.19 41.13 41.13 41.13	40.97 40.93 40.81 40.77 40.84	40.89 40.81 40.77 40.76 40.77	40.50 40.55 40.61 40.59 40.58	40.49 40.49 40.55 40.56 40.56
16 17 18 19 20	40.73 	40.50 	40.46 40.45 40.42 40.43 40.50	40.40 40.42 40.42 40.42 40.43	40.82 40.85 40.94 41.00 41.06	40.74 40.74 40.85 40.94 40.99	41.19 41.17 41.15 41.15 41.13	41.15 41.11 41.11 41.13 41.12	40.94 40.96 40.91 40.82 40.79	40.84 40.91 40.82 40.79 40.79	40.58 40.51 40.90 40.92 40.63	40.51 40.46 40.46 40.63 40.59
21 22 23 24 25	40.76 40.70 40.59 40.66	40.62 40.59 40.55 40.58	40.56 40.56 40.60 40.64 40.64	40.50 40.56 40.56 40.60 40.64	41.14 41.14 41.11 41.07 41.15	41.04 41.11 41.07 41.03 41.03	41.18 41.20 41.20 41.14 41.04	41.12 41.16 41.14 41.04 41.00	40.82 40.89 40.89 40.80 40.76	40.79 40.82 40.80 40.72 40.72	40.59 40.75 41.11 40.85 40.79	40.56 40.56 40.75 40.76 40.76
26 27 28 29 30 31	40.73 40.69 40.58 40.60 40.58	40.66 40.55 40.54 40.58 40.48	40.84 40.79 40.84 40.84 40.80 40.89	40.64 40.74 40.74 40.78 40.78 40.78	41.20 41.20 41.17 41.12 41.13	41.15 41.17 41.12 41.11 41.11	41.03 41.12 41.12 41.12 41.03 40.98	40.99 41.03 41.12 41.03 40.98 40.98	40.79 40.79 40.78 40.73 40.73 40.66	40.76 40.78 40.70 40.69 40.66 40.61	40.79 40.80 40.82 40.78 40.65	40.79 40.78 40.78 40.65 40.62
MONTH YEAR	40.85 41.35	40.48 38.11	40.89	40.40	41.20	40.56	41.35	40.98	41.02	40.61	41.11	40.46

Daily Low Water Levels

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Ad 110. SITE ID .-- 391032076385907. PERMIT NUMBER .-- AA-88-8878.

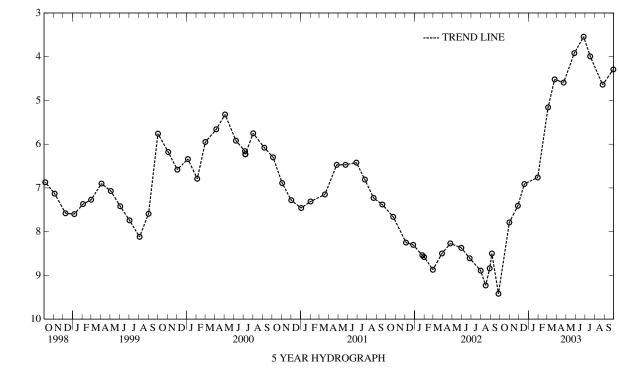
LOCATION.--Lat 39°10'32", long 76°38'59", Hydrologic Unit 02060003, off Aviation Blvd. 0.5 mi of Dorsey Road interestion. Owner: Maryland State Highway Administration.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 28 ft; casing diameter 4 in., to 18 ft; screen diameter 4 in., from 18 to 28 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM .-- Elevation of land surface is 77.42 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 5.03 ft. above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- December 1992 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.29 ft below land surface, April 3, 1998; lowest measured, 9.89 ft below land surface, December 3, 1992.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER DATE LEVEL		WATER LEVEL	DATE	WATER DATE LEVEL DATE				
OCT 31, 2002 NOV 27 DEC 18	7.79 7.41 6.91	JAN 30, 2003 MAR 04 25	6.76 5.16 4.52	APR 23, 2003 MAY 27 JUN 26	4.59 3.92 3.54	JUL 17, 2003 AUG 26 SEP 29	3.99 4.64 4.29		
HIGH LOW	EST 3.54 JU EST 7.79 O	JN 26, 2003 CT 31, 2002							

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

ANNE ARUNDEL COUNTY-Continued

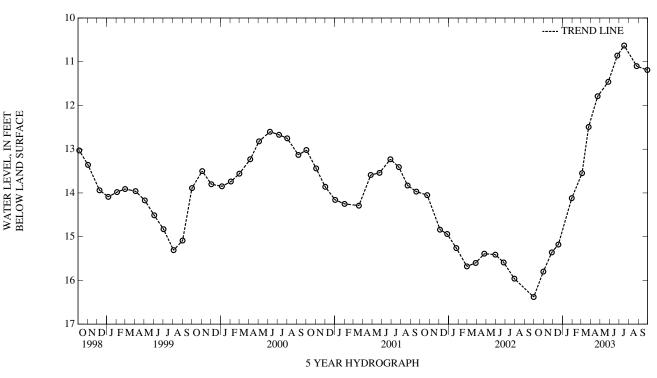
WELL NUMBER .-- AA Bd 91. SITE ID .-- 390950076391101. PERMIT NUMBER .-- AA-04-2029.

LOCATION.--Lat 39°09'50", long 76°39'11", Hydrologic Unit 02060003, 0.3 mi southeast of the intersection of Dorsey Road and Baltimore Annapolis Blvd., in the median of MD Rt. 176, Glen Burnie. Owner: Anne Arundel County Department of Public Works.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

- WELL CHARACTERISTICS.--Drilled, artesian (semi-confined), observation well, depth 160 ft; casing diameter 6 in., to 119 ft; casing diameter 4 in., from 119 to 155 ft; screen diameter 2 in., from 155 to 160 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital recorder from April 1981 to March 1986.

DATUM .-- Elevation of land surface is 82.63 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.25 ft above land surface.


REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels were affected by local ground-water withdrawal up to May 1995; when the nearby pumping station discontinued ground-water withdrawal from the Patapsco aquifer.

PERIOD OF RECORD .-- March 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.60 ft below land surface, May 7, 1998; lowest measured, 75.20 ft below land surface, September 1, 1982.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 27 DEC 18	15.80 15.36 15.18	JAN 30, 2003 MAR 04 25	14.12 13.55 12.49	APR 23, 2003 MAY 27 JUN 25	11.79 11.46 10.86	JUL 17, 2003 AUG 26 SEP 29	10.63 11.10 11.19
	EST 10.63 J EST 15.80 C						

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Bd 152. SITE ID. -- 390821076365401. PERMIT NUMBER .-- AA-81-3463.

LOCATION.--Lat 39°08'21", long 76°36'54", Hydrologic Unit 02060003, 100 ft north of MD Rt. 100, 0.2 mi southeast of the intersection of Oakwood Road and Funke Road, at Woodside Elementary School. Owner: U.S. Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

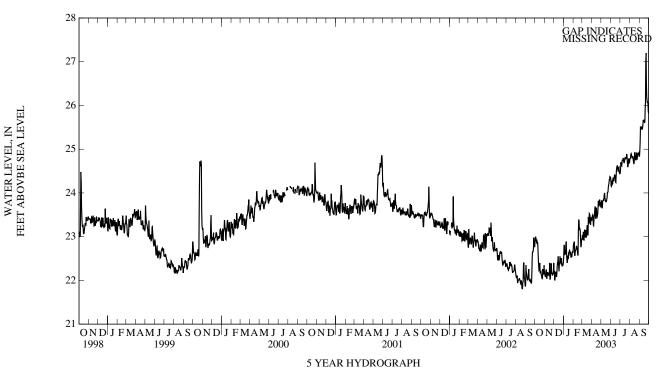
- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 103 ft; casing diameter 6 in., to 90 ft; and casing diameter 4 in., from 100 to 103 ft; screen diameter 4 in., from 90 to 100 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from March 1985 to December 1996, and 30-minute recorder interval from December 1996 to current year.
- DATUM.--Elevation of land surface is 53.29 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 3.00 ft above land surface.
- REMARKS.--Anne Arundel County Ground-Water-Level Monitoring Network observation well. Water levels before February 23, 1986 are currently not available. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- March 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 27.61 ft above sea level, September 22, 2003 (recorder); lowest measured, 19.88 ft above sea level, August 21, 1987 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 27 DEC 18	22.23 22.22 22.51	JAN 30, 2003 MAR 04 25	22.63 22.95 23.68	APR 28, 2003 MAY 27 JUN 25	23.71 24.31 24.53	JUL 17, 2003 AUG 26 SEP 29	24.78 24.87 25.96


LOWEST 22.22 NOV 27, 2002 HIGHEST 25.96 SEP 29, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBR	UARY	MAR	RCH
1 2 3 4 5	22.98 23.04 23.04 23.08 23.10	22.88 22.96 23.00 22.96 22.92	22.25 22.21 22.13 22.17 22.33	22.20 22.13 22.09 22.09 22.09	22.40 22.31 22.29 22.10 22.36	22.18 22.19 22.01 22.01 22.10	23.17 23.19 22.89 22.84 22.64	22.53 22.80 22.80 22.59 22.59	22.93 22.99 22.89 23.15 22.89	22.79 22.85 22.79 22.89 22.59	23.04 23.34 23.29 23.11 23.28	22.95 23.04 22.98 22.93 23.11
6 7 8 9 10	22.97 23.04 22.93 22.93 22.98	22.86 22.93 22.83 22.88 22.88	22.48 22.26 22.13 22.18 22.31	22.25 22.05 22.05 22.12 22.18	22.33 22.27 22.29 22.17 22.31	22.19 22.19 22.17 22.08 22.14	22.71 22.83 23.01 23.04 22.89	22.64 22.63 22.83 22.89 22.66	22.66 22.84 22.79 22.75 22.97	22.56 22.66 22.69 22.70 22.75	23.29 23.08 23.19 23.27 23.16	23.08 22.91 23.01 23.16 23.01
11 12 13 14 15	22.82 22.62 22.42 22.30 22.40	22.62 22.42 22.30 22.22 22.23	22.32 22.23 22.23 22.17 22.19	22.18 22.13 22.13 22.12 22.16	22.54 22.53 22.70 22.77 22.55	22.31 22.39 22.38 22.55 22.43	22.66 22.49 22.69 22.61 22.60	22.49 22.40 22.44 22.57 22.50	22.92 22.91 22.77 22.72 22.77	22.79 22.76 22.72 22.66 22.58	23.06 23.15 23.23 23.15 23.15 23.13	23.00 23.05 23.15 22.98 23.01
16 17 18 19 20	22.68 22.50 22.28 22.31 22.30	22.40 22.28 22.16 22.19 22.20	22.42 22.50 22.40 22.15 22.19	22.18 22.40 22.03 22.03 22.12	22.53 22.38 22.51 22.55 22.77	22.30 22.21 22.38 22.38 22.55	22.68 22.75 22.68 22.74 22.87	22.50 22.64 22.57 22.68 22.69	23.12 23.41 23.47 23.45 23.45	22.58 23.12 23.38 23.38 23.19	23.26 23.35 23.36 23.23 23.49	23.13 23.26 23.23 23.04 23.04
21 22 23 24 25	22.21 22.15 22.15 22.07 22.26	22.13 22.12 22.05 22.04 22.06	22.39 22.48 22.40 22.20 22.21	22.19 22.39 22.19 22.16 22.16	22.67 22.55 22.47 22.51 22.90	22.50 22.47 22.41 22.37 22.51	22.69 22.66 22.74 22.72 22.61	22.65 22.63 22.65 22.53 22.53	23.19 23.57 23.59 23.14 22.92	23.15 23.17 23.14 22.92 22.76	23.50 23.46 23.56 23.70 23.75	23.45 23.36 23.30 23.53 23.52
26 27 28 29 30 31	22.38 22.26 22.19 22.36 22.38 22.36	22.26 22.16 22.16 22.15 22.35 22.20	22.21 22.25 22.24 22.49 22.53	22.11 22.15 22.15 22.24 22.40	22.75 22.37 22.50 22.51 22.42 22.53	22.35 22.32 22.37 22.37 22.36 22.42	22.72 22.67 22.68 22.82 22.67 22.80	22.61 22.54 22.60 22.67 22.63 22.65	22.89 23.03 23.06 	22.78 22.89 22.95 	23.72 23.49 23.37 23.48 23.53 23.53	23.49 23.31 23.27 23.37 23.44 23.39
MONTH	23.10	22.04	22.53	22.03	22.90	22.01	23.19	22.40	23.59	22.56	23.75	22.91

ANNE ARUNDEL COUNTY-Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	ΥY	JU	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	23.52 23.52 23.52 23.52 23.52 23.54	23.38 23.45 23.48 23.50 23.48	23.83 23.94 23.86 23.73 23.81	23.73 23.83 23.73 23.65 23.69	24.53 24.30 24.26 24.31 24.32	24.30 24.16 24.15 24.26 24.27	24.52 24.70 24.75 24.70 24.66	24.46 24.52 24.70 24.64 24.63	24.82 24.82 24.90 24.91 24.94	24.76 24.79 24.80 24.88 24.90	24.99 25.18 25.52 25.64 25.61	24.85 24.99 25.18 25.52 25.48
6 7 8 9 10	23.48 23.44 23.46 23.56 23.66	23.26 23.25 23.41 23.46 23.54	23.85 23.89 23.91 23.91 23.97	23.81 23.83 23.84 23.82 23.89	24.27 24.49 24.47 24.41 24.34	24.20 24.21 24.34 24.34 24.27	24.72 24.98 24.85 24.82 24.83	24.62 24.72 24.76 24.73 24.77	24.93 24.90 24.87 24.89 24.87	24.88 24.84 24.80 24.80 24.83	25.50 25.54 25.59 25.52 25.50	25.47 25.50 25.52 25.46 25.46
11 12 13 14 15	23.79 23.85 23.69 23.48 23.66	23.66 23.69 23.47 23.41 23.48	24.11 24.11 24.01 23.92 23.85	23.97 24.00 23.89 23.85 23.80	24.40 24.45 24.48 24.48 24.45	24.32 24.37 24.42 24.40 24.36	24.88 24.80 24.80 24.74 24.81	24.80 24.74 24.69 24.69 24.73	24.93 24.91 24.74 24.72 24.85	24.83 24.74 24.69 24.66 24.72	25.65 25.67 25.79 25.68 25.75	25.50 25.59 25.67 25.65 25.66
16 17 18 19 20	23.73 23.70 23.50 23.52 23.66	23.66 23.47 23.45 23.48 23.52	23.94 23.87 23.86 23.89 24.01	23.83 23.80 23.81 23.86 23.89	24.36 24.39 24.52 24.65 24.68	24.25 24.24 24.39 24.52 24.59	24.86 24.83 24.86 24.87 24.82	24.81 24.78 24.78 24.82 24.80	24.96 24.99 24.93 24.81 24.81	24.85 24.93 24.81 24.77 24.76	25.74 25.65 26.10 26.11 27.00	25.65 25.60 25.63 25.91 26.06
21 22 23 24 25	23.86 23.88 23.82 23.76 23.86	23.66 23.82 23.75 23.69 23.76	24.09 24.09 24.14 24.21 24.22	24.01 24.01 24.03 24.14 24.18	24.67 24.68 24.65 24.57 24.58	24.60 24.63 24.57 24.50 24.50	24.94 24.95 24.91 24.83 24.70	24.82 24.89 24.82 24.70 24.60	24.92 24.97 24.96 24.85 24.91	24.81 24.92 24.85 24.76 24.82	27.44 27.61 27.20 26.53 26.19	27.00 27.20 26.53 26.19 26.12
26 27 28 29 30 31	23.96 23.86 23.80 23.83 23.79	23.85 23.75 23.72 23.79 23.67	24.65 24.57 24.39 24.43 24.42 24.53	24.22 24.30 24.30 24.37 24.36 24.36	24.70 24.71 24.59 24.51 24.51	24.58 24.59 24.47 24.45 24.45	24.69 24.82 24.84 24.87 24.76 24.76	24.60 24.69 24.79 24.76 24.69 24.70	24.94 24.97 24.94 25.06 25.05 24.92	24.87 24.92 24.87 24.91 24.92 24.83	26.12 26.10 26.13 26.04 25.86	26.07 26.07 26.04 25.86 25.82
MONTH YEAR	23.96 27.61	23.25 22.01	24.65	23.65	24.71	24.15	24.98	24.46	25.06	24.66	27.61	24.85

Daily Low Water Levels

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Bd 155. SITE ID. -- 390938076383701. PERMIT NUMBER .-- AA-81-3460.

LOCATION.--Lat 39°09'38", long 76°38'37", Hydrologic Unit 02060003, 200 ft off MD Rt. 3, 0.4 mi south of MD Rt. 176 intersection, off Stewart Avenue near bike trail. Owner: U.S. Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 159 ft; casing diameter 6 in., to 145 ft. screen diameter 4 in., from 145 to 155 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from October 1984 to June 1998, and 30-minute recorder interval June 1998 to current year.

DATUM.--Elevation of land surface is 57.50 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 2.50 ft above land surface.

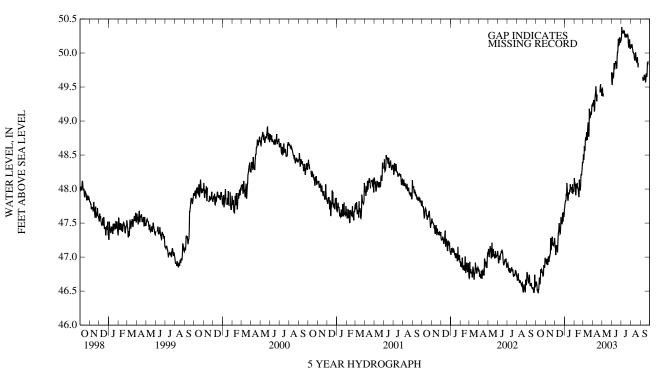
REMARKS .-- Anne Arundel County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- October 1984 to current year

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 50.45 ft above sea level, July 11, 2003 (recorder); lowest measured, 32.39 ft above sea level, November 3, 1986.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 27 DEC 18	46.98 47.24 47.36	JAN 30, 2003 MAR 04 25	47.96 48.54 49.19	APR 23, 2003 MAY 29 JUN 25	49.46 49.75 50.18	JUL 17, 2003 AUG 26 SEP 29	50.23 49.87 49.79
LOW	TOT 46.00 C	OCT 21 2002					


LOWEST 46.98 OCT 31, 2002 HIGHEST 50.23 JUL 17, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBR	UARY	MAR	RCH
1	46.68	46.62	47.04	46.97	47.27	47.14	47.98	47.73	48.22	48.16	48.51	48.39
2	46.69	46.64	47.02	46.95	47.30	47.17	47.92	47.79	48.17	48.09	48.73	48.51
3	46.68	46.62	46.96	46.91	47.26	47.03	47.99	47.81	48.19	48.09	48.64	48.43
4	46.70	46.59	47.00	46.90	47.17	47.05	47.96	47.83	48.31	48.06	48.63	48.48
5	46.71	46.51	47.13	46.90	47.39	47.17	47.93	47.83	48.06	47.92	48.76	48.63
6	46.61	46.50	47.23	46.98	47.27	47.17	47.99	47.93	48.07	47.91	48.77	48.57
7	46.65	46.53	46.98	46.89	47.27	47.17	48.13	47.90	48.19	48.07	48.71	48.57
8	46.53	46.47	47.00	46.89	47.26	47.13	48.18	48.09	48.09	48.01	48.89	48.71
9	46.54	46.51	47.02	46.98	47.19	47.07	48.19	48.02	48.09	48.06	48.93	48.76
10	46.63	46.53	47.08	47.01	47.31	47.19	48.03	47.90	48.28	48.09	48.77	48.71
11	46.77	46.63	47.08	46.94	47.49	47.31	47.90	47.84	48.16	48.02	48.83	48.73
12	46.75	46.70	47.06	46.93	47.46	47.37	47.92	47.83	48.19	48.02	48.89	48.83
13	46.73	46.64	47.06	47.02	47.74	47.39	48.10	47.92	48.07	48.00	48.95	48.83
14	46.67	46.60	47.07	47.01	47.77	47.50	48.02	47.95	48.02	47.96	48.83	48.72
15	46.82	46.67	47.08	47.04	47.56	47.45	48.01	47.93	48.08	47.89	48.94	48.83
16	47.04	46.82	47.28	47.05	47.60	47.38	48.13	47.93	48.14	47.89	48.98	48.92
17	46.90	46.81	47.36	47.28	47.40	47.34	48.18	47.99	48.21	48.14	49.02	48.98
18	46.82	46.77	47.28	47.10	47.44	47.35	48.08	47.96	48.14	48.00	49.02	48.86
19	46.94	46.82	47.25	47.11	47.64	47.44	48.14	48.07	48.06	47.99	48.86	48.77
20	46.89	46.81	47.25	47.20	47.78	47.59	48.19	48.00	48.05	47.98	49.25	48.83
21	46.83	46.78	47.38	47.25	47.59	47.54	48.06	48.00	48.19	48.05	49.26	49.18
22	46.82	46.77	47.41	47.30	47.63	47.53	48.06	48.01	48.64	48.19	49.18	49.08
23	46.80	46.72	47.30	47.18	47.55	47.49	48.14	48.03	48.68	48.22	49.11	49.05
24	46.77	46.72	47.22	47.18	47.65	47.49	48.09	47.95	48.35	48.20	49.10	49.06
25	46.96	46.75	47.26	47.20	47.91	47.65	48.07	47.95	48.32	48.25	49.22	49.09
26 27 28 29 30 31	47.01 46.89 46.90 46.99 47.03 47.01	46.88 46.86 46.85 46.85 46.99 46.95	47.29 47.30 47.29 47.45 47.44	47.16 47.20 47.19 47.28 47.27	47.70 47.66 47.73 47.74 47.70 47.77	47.52 47.53 47.66 47.59 47.60 47.70	48.15 48.07 48.12 48.15 48.03 48.16	48.07 47.93 47.97 48.00 47.96 48.03	48.40 48.49 48.50 	48.31 48.40 48.39 	49.26 49.14 49.23 49.31 49.33 49.32	49.14 49.09 49.12 49.23 49.24 49.22
MONTH	47.04	46.47	47.45	46.89	47.91	47.03	48.19	47.73	48.68	47.89	49.33	48.39

ANNE ARUNDEL COUNTY-Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	49.41 49.37 49.37 49.36 49.39	49.22 49.27 49.28 49.31 49.27	49.54 49.61 49.49 49.41 49.49	49.44 49.49 49.38 49.36 49.40	49.84 49.60 49.71 49.75 49.74	49.57 49.53 49.59 49.71 49.69	50.26 50.39 50.44 50.38 50.35	50.19 50.25 50.38 50.33 50.32	50.15 50.13 50.14 50.15 50.14	50.12 50.09 50.08 50.13 50.12	 	
6 7 8 9 10	49.27 49.36 49.39 49.47 49.51	49.14 49.16 49.33 49.39 49.43	 	 	49.69 49.94 49.91 49.89 49.84	49.63 49.67 49.85 49.82 49.76	50.34 50.37 50.35 50.38 50.41	50.30 50.31 50.30 50.32 50.31	50.12 50.09 50.07 50.05 50.04	50.07 50.05 50.01 50.01 49.99	 49.72 49.66 49.66	49.65 49.60 49.60
11 12 13 14 15	49.61 49.62 49.42 49.39 49.56	49.51 49.42 49.32 49.29 49.39	 	 	49.89 49.92 49.95 49.93 49.89	49.84 49.85 49.88 49.86 49.84	50.45 50.33 50.31 50.29 50.36	50.33 50.28 50.23 50.25 50.27	50.09 50.03 49.94 49.96 50.01	49.99 49.93 49.89 49.91 49.94	49.66 49.70 49.77 49.69 49.73	49.61 49.61 49.68 49.66 49.67
16 17 18 19 20	 	 	 	 	49.85 49.94 50.02 50.07 50.12	49.77 49.78 49.94 50.01 50.01	50.38 50.28 50.31 50.31 50.26	50.28 50.23 50.26 50.25 50.23	50.08 50.07 49.97 49.90 49.92	50.01 49.97 49.89 49.87 49.88	49.69 49.61 49.99 49.99 49.71	49.61 49.57 49.59 49.70 49.67
21 22 23 24 25	 49.51 49.59	 49.42 49.51	 	 	50.21 50.22 50.21 50.16 50.24	50.11 50.21 50.16 50.12 50.13	50.33 50.31 50.25 50.13	50.26 50.27 50.25 50.13 50.08	49.95 50.00 49.97 49.86 49.90	49.90 49.94 49.86 49.79 49.85	49.70 49.86 50.05 49.93 49.93	49.65 49.69 49.86 49.83 49.88
26 27 28 29 30 31	49.63 49.54 49.53 49.55 49.47	49.54 49.44 49.42 49.47 49.37	 49.77 49.87	 49.71 49.71	50.28 50.28 50.20 50.21 50.24	50.23 50.20 50.15 50.16 50.19	50.19 50.28 50.27 50.22 50.11 50.13	50.10 50.19 50.20 50.11 50.06 50.08	 	 	 49.77	 49.72
MONTH YEAR	49.63 50.45	49.14 46.47	49.87	49.36	50.28	49.53	50.45	50.06	50.15	49.79	50.05	49.57

Daily Low Water Levels

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Bd 156. SITE ID .-- 390922076371001. PERMIT NUMBER .-- AA-81-3462.

LOCATION.--Lat 39°09'22", long 76°37'10", Hydrologic Unit 02060003, off Wardour Road, 0.3 mi north of Aquahart Road intersection, next to the Baltimore and Annapolis bike trail. Owner: U.S. Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

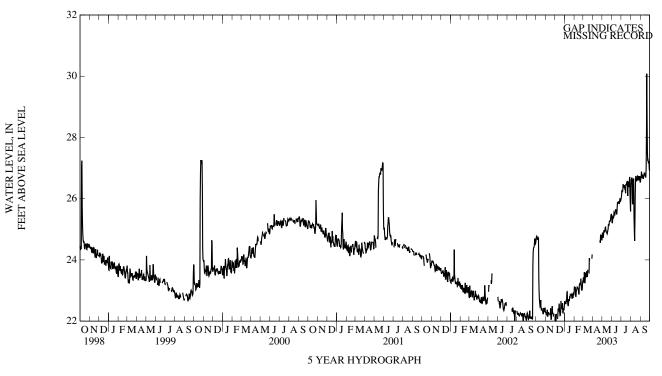
- WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 173 ft; casing diameter 6 in., to 160 ft; casing diameter 4 in., from 170 to 173 ft; screen diameter 4 in., from 160 to 170 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with digital water-level recorder--30-minute recorder interval from October 1984 to June 1998, and 15-minute recorder interval from June 1998 to current year.
- DATUM.--Elevation of land surface is 68.99 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 2.26 ft above land surface.
- REMARKS.--Anne Arundel County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- October 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.70 ft above sea level, September 22, 2003 (recorder); lowest measured, 12.76 ft above sea level, September 14, 1987.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 27 DEC 18	22.31 22.28 22.21	JAN 30, 2003 MAR 04 31	22.86 23.32 24.09	APR 23, 2003 MAY 29 JUN 25	24.61 25.50 25.88	JUL 17, 2003 AUG 26 SEP 29	26.43 26.74 27.01
LOW	EST 22.21 F	EC 18 2002					


HIGHEST 27.01 SEP 29, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAI	RCH
1 2 3 4 5	24.74 24.80 24.80 24.87 24.88	24.63 24.74 24.77 24.74 24.69	22.37 22.35 22.28 22.29 22.49	22.29 22.27 22.21 22.23 22.23	22.47 22.38 22.37 22.16 22.51	22.21 22.21 22.00 22.00 22.16	22.94 22.89 22.84 22.83 22.67	22.65 22.60 22.60 22.57 22.57	23.27 23.24 23.24 23.42 23.42 23.11	23.13 23.11 23.09 23.11 22.83	23.43 23.77 23.66 23.67 23.75	23.31 23.43 23.27 23.27 23.60
6 7 8 9 10	24.79 24.86 24.76 24.77 24.78	24.66 24.76 24.69 24.72 23.39	22.64 22.37 22.22 22.29 22.43	22.37 22.16 22.16 22.22 22.29	22.43 22.20 22.41	22.24 22.07 22.19	22.76 22.95 23.12 23.16 22.96	22.67 22.66 22.95 22.96 22.69	22.97 23.20 23.15 23.11 23.40	22.79 22.97 23.01 23.06 23.11	23.69 23.40 23.70 23.81 23.58	23.35 23.24 23.40 23.58 23.45
11 12 13 14 15	23.39 22.93 22.71 22.57 22.71	22.93 22.71 22.57 22.47 22.49	22.43 22.26 22.26	22.22 22.19 22.25	22.59 22.52 22.81 22.89 22.57	22.41 22.33 22.33 22.57 22.43	22.69 22.56 22.94 22.79 22.75	22.54 22.49 22.55 22.72 22.67	23.31 23.29 23.11 23.06 23.13	23.09 23.09 23.06 23.00 22.89	23.56 23.67 23.76 23.63 23.68	23.45 23.56 23.63 23.44 23.49
16 17 18 19 20	22.91 22.69 22.47 22.55 22.55	22.69 22.47 22.37 22.38 22.43	22.42 22.52 22.43 22.20 22.23	22.25 22.42 22.06 22.06 22.18	22.59 22.27 22.30 22.66 22.88	22.27 22.18 22.19 22.30 22.66	22.91 23.02 22.87 23.00 23.10	22.67 22.81 22.75 22.87 22.86	23.19 23.39 23.37 23.27 23.27	22.87 23.19 23.22 23.20 23.23	23.84 23.77 24.06	23.68 23.57 23.57
21 22 23 24 25	22.43 22.35 22.34 22.26 22.49	22.35 22.34 22.26 22.24 22.25	22.50 22.58 22.49	22.23 22.49 22.23	22.66 22.59 22.49 22.59 22.97	22.50 22.49 22.41 22.40 22.59	22.88 22.87 23.01 22.99 22.90	22.85 22.85 22.87 22.75 22.75	23.39 23.76 23.83 23.15 23.13	23.25 23.39 23.15 23.02 23.01	24.12 24.09 	24.06 23.98
26 27 28 29 30 31	22.55 22.43 22.35 22.63 22.51 22.44	22.43 22.34 22.34 22.31 22.44 22.29	22.29 22.33 22.29 	22.15 22.23 22.21 	22.68 22.40 22.57 22.59 22.51 22.65	22.28 22.25 22.40 22.40 22.39 22.51	23.05 22.99 23.02 23.09 22.94 23.13	22.90 22.77 22.77 22.94 22.85 22.91	23.21 23.41 23.43 	23.02 23.21 23.31 	24.34 24.23 24.20 	24.07 24.04 24.18
MONTH	24.88	22.24	22.64	22.06	22.97	22.00	23.16	22.49	23.83	22.79	24.34	23.24

ANNE ARUNDEL COUNTY-Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	AY	JU	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	 	 	24.89 25.03 24.94 24.76 24.92	24.72 24.89 24.76 24.72 24.76	25.74 25.32 25.40 25.47 25.47	25.32 25.20 25.23 25.40 25.45	26.09 26.24 26.29 26.26 26.25	26.01 26.09 26.24 26.22 26.23	26.63 26.65 26.69 26.75 26.78	26.38 26.63 26.64 26.69 26.65	26.71 26.74 26.88 26.94 26.93	26.57 26.71 26.73 26.88 26.76
6 7 8 9 10	 	 	24.98 25.02 25.02 24.99 25.06	24.92 24.97 24.93 24.92 24.98	25.45 25.62 25.61 25.58 25.53	25.37 25.38 25.55 25.53 25.45	26.77 27.51 26.48 26.44 26.47	26.25 26.48 26.37 26.37 26.37	26.73 26.62 26.65 26.69 26.70	25.84 25.82 26.50 26.64 26.66	26.76 26.81 26.81 26.76 26.73	26.67 26.74 26.76 26.69 26.65
11 12 13 14 15	 	 	25.27 25.25 25.07 24.98 24.95	25.06 25.07 24.98 24.93 24.90	25.62 25.66 25.70 25.69 25.67	25.52 25.61 25.64 25.64 25.61	26.52 26.44 26.38 26.36 26.48	26.44 26.38 26.29 26.32 26.18	26.71 26.46 26.22 26.24 26.62	25.40 25.02 24.62 25.24 26.17	26.87 26.84 26.89 26.83 26.90	26.73 26.75 26.83 26.81 26.81
16 17 18 19 20	 	 	24.97 24.89 24.96 25.00 25.14	24.88 24.85 24.89 24.96 25.00	25.61 25.69 25.86 25.92 25.92	25.50 25.50 25.69 25.86 25.85	26.54 26.52 26.58 26.58 26.58	26.48 26.43 26.48 26.54 26.54	26.80 26.80 26.74 26.60 26.65	26.62 26.74 26.59 26.58 26.59	26.89 26.77 27.21 28.07 30.08	26.77 26.69 26.73 27.01 28.07
21 22 23 24 25	 24.73 24.83	 24.64 24.56	25.17 25.15 25.25 25.30 25.29	25.14 25.13 25.13 25.25 25.27	25.91 25.92 25.92 25.90 25.93	25.86 25.90 25.90 25.84 25.84	26.73 26.72 26.60 26.60 26.47	26.58 26.09 26.56 26.47 26.38	26.77 26.84 26.83 26.70 26.75	26.65 26.76 26.70 26.60 26.66	30.54 30.70 28.53 27.53 27.28	30.08 28.53 27.53 27.24 27.26
26 27 28 29 30 31	24.91 24.84 24.81 24.86 24.80	24.83 24.69 24.68 24.80 24.64	25.36 25.33 25.46 25.54 25.54 25.54	25.28 25.27 25.33 25.46 25.49 25.49	26.27 26.24 26.01 25.97 26.04	25.93 26.01 25.91 25.92 25.97	26.55 26.74 26.74 26.72 26.48 26.46	26.41 26.55 26.71 26.23 25.88 25.58	26.78 26.78 27.03 27.03 26.76 26.62	26.74 26.66 26.60 26.74 26.62 26.53	27.26 27.26 27.29 27.20 26.95	27.18 27.19 27.20 26.95 26.91
MONTH YEAR	24.91 30.70	24.56 22.00	25.66	24.72	26.27	25.20	27.51	25.58	27.03	24.62	30.70	26.57

Daily Low Water Levels

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Bd 157. SITE ID .-- 390737076374401. PERMIT NUMBER .-- AA-81-3464.

LOCATION.--Lat 39°07'37", long 76°37'44", Hydrologic Unit 02060003, off Nolfield Dr., 0.14 mi east of Phirne Rd., at Rippling Woods Elementary School. Owner: U.S. Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

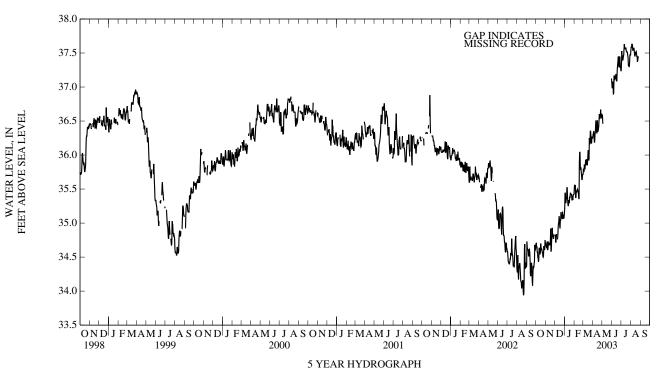
- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 180 ft; casing diameter 6 in., to 167 ft; and casing diameter 4 in., from 177 to 180 ft; screen diameter 4 in., from 167 to 177 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from March 1985 to December 1996, and 30-minute recorder interval from December 1996 to current year.
- DATUM.--Elevation of land surface is 75.75 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 2.50 ft above land surface.
- REMARKS.--Anne Arundel County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- March 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.88 ft above sea level, September 23, 2003 (recorder); lowest measured, 32.02 ft above sea level, September 4, 1992.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 27 DEC 18	34.70 34.85 35.17	JAN 30, 2003 MAR 04 25	35.46 35.78 36.59	APR 28, 2003 MAY 29 JUN 25	36.62 37.17 37.40	JUL 17, 2003 AUG 26 SEP 29	37.64 37.51 38.44
LOW	TOT 2470 0	CT 21 2002					


LOWEST 34.70 OCT 31, 2002 HIGHEST 38.44 SEP 29, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBR	UARY	MAF	RCH
1 2 3 4 5	34.71 34.74 34.74 34.73 34.74	34.69 34.71 34.65 34.65 34.57	34.74 34.73 34.68 34.70 34.83	34.70 34.68 34.65 34.64 34.63	34.96 34.94 34.91 34.79 35.00	34.82 34.83 34.72 34.72 34.79	35.75 35.74 35.50 35.46 35.36	35.21 35.44 35.44 35.30 35.30	35.62 35.68 35.60 35.82 35.56	35.54 35.55 35.53 35.56 35.38	35.80 36.02 35.95 35.86 36.00	35.72 35.80 35.76 35.76 35.86
6 7 8 9 10	34.64 34.68 34.51 34.53 34.63	34.57 34.49 34.48 34.43 34.47	34.93 34.73 34.66 34.71 34.78	34.73 34.61 34.61 34.66 34.71	34.93 34.82 34.93	34.84 34.76 34.82	35.42 35.52 35.61 35.62 35.52	35.36 35.36 35.52 35.52 35.38	35.48 35.58 35.51 35.49 35.66	35.37 35.48 35.45 35.47 35.49	36.03 35.86 36.01 36.05 35.93	35.83 35.79 35.86 35.93 35.86
11 12 13 14 15	34.74 34.70 34.65 34.58 34.70	34.63 34.63 34.58 34.54 34.57	34.78 34.78 34.78 34.72 34.74	34.70 34.68 34.68 34.68 34.72	35.13 35.14 35.29 35.31 35.10	34.93 34.99 35.02 35.10 35.05	35.38 35.30 35.42 35.37 35.36	35.30 35.25 35.27 35.34 35.30	35.59 35.61 35.51 35.46 35.52	35.50 35.48 35.46 35.43 35.36	35.91 35.97 36.03 35.94 35.99	35.86 35.91 35.94 35.85 35.89
16 17 18 19 20	34.92 34.77 34.65 34.70 34.67	34.70 34.65 34.60 34.62 34.61	34.96 35.02 34.92 34.74 34.79	34.73 34.92 34.58 34.60 34.74	35.14 35.08 35.21 35.16 35.33	34.96 34.92 35.04 35.04 35.16	35.45 35.50 35.44 35.50 35.56	35.30 35.39 35.37 35.44 35.44	35.90 36.10 36.11 36.12 36.12	35.36 35.90 36.04 36.04 35.82	36.07 36.14 36.15 36.02 36.31	35.97 36.07 36.02 35.92 35.94
21 22 23 24 25	34.62 34.58 34.57 34.53 34.70	34.57 34.57 34.51 34.50 34.52	34.94 35.00 34.93 34.82 34.84	34.79 34.93 34.81 34.81 34.81	35.20 35.16 35.11 35.17 35.45	35.12 35.11 35.08 35.06 35.17	35.45 35.43 35.48 35.47 35.40	35.42 35.42 35.42 35.34 35.34	35.82 36.17 36.15 35.76 35.72	35.78 35.82 35.75 35.70 35.64	36.29 36.25 36.48 36.56 36.59	36.25 36.19 36.16 36.35 36.35
26 27 28 29 30 31	34.76 34.66 34.65 34.75 34.78 34.77	34.66 34.61 34.61 34.61 34.75 34.70	34.86 34.87 34.87 	34.77 34.82 34.81 	35.27 35.12 35.19 35.20 35.14 35.22	35.07 35.06 35.12 35.10 35.09 35.14	35.48 35.48 35.46 35.59 35.48 35.55	35.40 35.34 35.40 35.42 35.42 35.42	35.70 35.79 35.82 	35.64 35.70 35.72 	36.44 36.28 36.24 36.33 36.41 36.36	36.28 36.18 36.17 36.24 36.27 36.25
MONTH	34.92	34.43	35.02	34.58	35.45	34.72	35.75	35.21	36.17	35.36	36.59	35.72

ANNE ARUNDEL COUNTY-Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	M	ΑY	JU	NE	JU	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	36.40 36.38 36.38 36.38 36.41	36.25 36.31 36.32 36.35 36.32	36.67 36.70 36.58 	36.59 36.58 36.46 	37.28 37.06 37.08 37.11 37.11	37.06 36.99 36.99 37.08 37.02	37.35 37.54 37.57 37.53 37.47	37.24 37.35 37.53 37.43 37.44	37.59 37.59 37.63 37.63 37.65	37.54 37.59 37.58 37.63 37.63	 	
6 7 8 9 10	36.32 36.34 36.34 36.45 36.51	36.19 36.19 36.30 36.33 36.43	 	 	37.02 37.24 37.21 37.21 37.16	36.89 36.91 37.17 37.16 37.10	37.49 37.54 37.55 37.58 37.64	37.39 37.41 37.45 37.47 37.56	37.65 37.62 37.55 37.60 37.58	37.62 37.54 37.54 37.55 37.57	 	
11 12 13 14 15	36.63 36.65 36.49 36.36 36.51	36.51 36.49 36.36 36.32 36.36	 	 	37.21 37.23 37.23 37.25 37.22	37.14 37.12 37.16 37.19 37.17	37.69 37.63 37.61 37.62 37.61	37.63 37.59 37.57 37.56 37.56	37.64 37.63 37.52 37.47 37.56	37.57 37.52 37.47 37.45 37.47	 	
16 17 18 19 20	36.57 36.52 36.39 36.43 36.51	36.51 36.35 36.35 36.38 36.42	 	 	37.17 37.22 37.30 37.39 37.43	37.09 37.09 37.22 37.30 37.35	37.66 37.66 37.57 37.58 37.57	37.58 37.54 37.52 37.52 37.51	37.60 37.58 37.58 37.52 37.49	37.51 37.51 37.52 37.49 37.45	 	
21 22 23 24 25	36.64 36.65 36.60 36.58 36.67	36.51 36.60 36.55 36.53 36.56	 	 	37.47 37.47 37.47 37.33 37.45	37.40 37.45 37.31 37.29 37.32	37.57 37.55 37.50 37.44 37.39	37.51 37.46 37.44 37.32 37.32	37.51 37.45 37.45 37.45 37.45	37.45 37.37 37.39 37.43 37.45	 	
26 27 28 29 30 31	36.75 36.68 36.64 36.66 36.61	36.67 36.58 36.57 36.60 36.54	 37.17 37.28	 37.12 37.12	37.51 37.51 37.41 37.35 37.36	37.45 37.41 37.29 37.29 37.24	37.36 37.39 37.48 37.50 37.50 37.50	37.30 37.30 37.37 37.48 37.47 37.47	 	 	 	
MONTH YEAR	36.75 37.69	36.19 34.43	37.28	36.46	37.51	36.89	37.69	37.24	37.65	37.37		

Daily Low Water Levels

ANNE ARUNDEL COUNTY-Continued

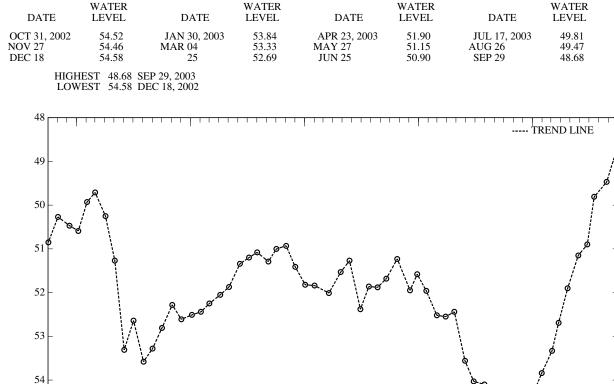
WELL NUMBER .-- AA Bd 158. SITE ID .-- 390744076390001. PERMIT NUMBER .-- AA-81-3459.

LOCATION.--Lat 39°07'44", long 76°39'00", Hydrologic Unit 02060003, 0.05 mi off Stevenson Rd., 0.45 mi west of New Cut Road, at Center for Applied Technology-North. Owner: U.S. Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 187 ft; casing diameter 6 in., to 174 ft; screen diameter 4 in., from 174 to 184 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from January 1985 to 1989.


DATUM .-- Elevation of land surface is 108.25 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.60 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- January 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 48.68 ft below land surface, September 29, 2003; lowest measured, 55.90 ft below land surface, September 14, 1987 and January 15, 1988.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

ONDJFMAMJJASONDJFMAMJJASONDJFMAMJJAS 1998 1999 2000 2001 2002 2003 5 YEAR HYDROGRAPH

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

55

ANNE ARUNDEL COUNTY-Continued

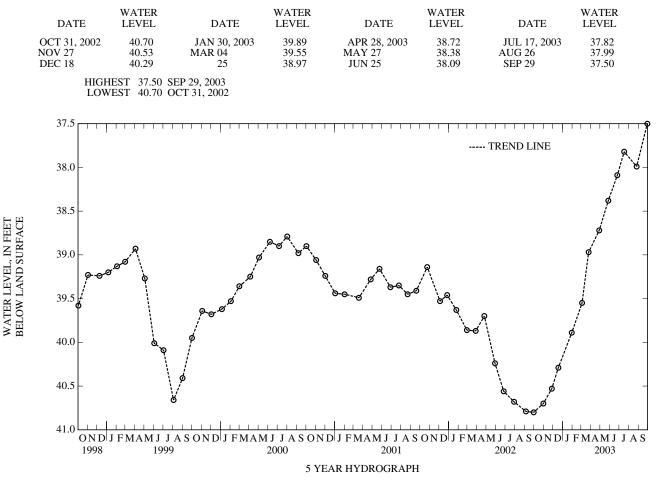
WELL NUMBER .-- AA Bd 159. SITE ID .-- 390737076374402. PERMIT NUMBER .-- AA-81-3949.

LOCATION.--Lat 39°07'37", long 76°37'44", Hydrologic Unit 02060003, off Nolfield Dr., 0.14 mi east of Phrine Rd., at Rippling Woods Elementary School. Owner: U.S. Geological Survey.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 99 ft; casing diameter 6 in., to 89 ft; screen diameter 4 in., from 89 to 99 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from March 1985 to July 1989.


DATUM .-- Elevation of land surface is 75.48 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.50 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- March 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 34.77 ft below land surface, September 14, 1987; lowest measured, 42.38 ft below land surface, September 7, 1995.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Bd 160. SITE ID. -- 390908076394402. PERMIT NUMBER .-- AA-81-3461.

LOCATION.--Lat 39°09'08", long 76°39'44", Hydrologic Unit 02060003, 0.08 mi north of Queenstown Road, 0.41 mi. east of WB & A Road, at Queenstown Park. Owner: U.S. Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 118 ft; casing diameter 6 in., to 105 ft. screen diameter 4 in., from 105 to 115 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from April 1985 to December 1996, and 30-minute recorder interval from December 1996 to current year.

DATUM.--Elevation of land surface is 88.0 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 2.50 ft above land surface.

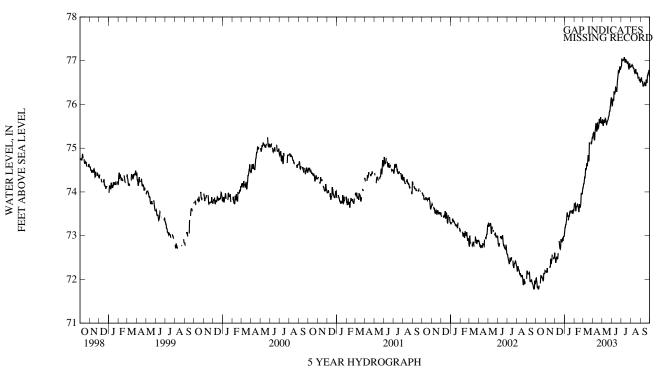
REMARKS.--Anne Arundel County Ground-Water-Level Network observation well. Water levels are affected by local ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- April 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 77.12 ft above sea level, July 11, 2003 (recorder); lowest measured, 66.30 ft above sea level, March 20, 1985.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002	72.20	JAN 30, 2003	73.59	APR 28, 2003	75.62	JUL 17, 2003	76.97
NOV 27	72.54	MAR 04	74.20	MAY 29	76.13	AUG 26	76.62
DEC 18	72.69	25	75.12	JUN 25	76.80	SEP 29	76.71


LOWEST 72.20 OCT 31, 2002 HIGHEST 76.97 JUL 17, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JAN	JUARY	FEBR	UARY	MAI	RCH
1 2 3 4 5	72.09 72.08 72.04 71.97 71.98	72.02 72.03 71.97 71.93 71.82	72.23 72.22 72.19 72.19 72.29	72.19 72.19 72.17 72.16 72.16	72.61 72.57 72.56 72.46 72.64	72.48 72.48 72.39 72.39 72.46	73.34 73.31 73.37 73.36 73.32	73.19 73.19 73.25	73.81 73.80 73.78 73.90 73.74	73.73 73.73 73.73 73.74 73.59	74.15 74.37 74.35 74.27 74.44	74.09 74.15 74.19 74.19 74.27
6 7 8 9 10	71.85 71.90 71.82 71.80 71.86	71.81 71.82 71.78 71.78 71.79	72.40 72.26 	72.26 72.16 	72.61 72.56 72.57 72.49 72.60	72.51 72.51 72.49 72.46 72.49	73.37 73.48 73.60 73.60 73.53		73.66 73.78 73.76 73.70 73.86	73.56 73.66 73.66 73.67 73.70	74.46 74.40 74.56 74.61 74.54	74.35 74.31 74.40 74.54 74.51
11 12 13 14 15	71.99 71.95 72.04	71.86 71.91 71.92	 72.29 72.31	 72.26 72.29	72.79 73.03 72.88	72.60 72.88 72.82	73.52 73.48 73.49	73.35 73.45 73.44	73.83 73.80 73.69 73.66 73.69	73.73 73.69 73.66 73.62 73.55	74.58 74.66 74.74 74.68 74.73	74.51 74.58 74.66 74.59 74.63
16 17 18 19 20	72.27 72.18 72.10 72.13 72.13	72.04 72.10 72.05 72.05 72.06	72.47 72.54 72.50 72.44 72.45	72.29 72.47 72.36 72.36 72.42	72.89 72.74 72.74 72.92 73.06	72.74 72.70 72.69 72.74 72.92	73.58 73.64 73.56 73.61 73.68		73.72 73.80 73.77 73.68 73.69	73.55 73.72 73.68 73.65 73.65	74.84 74.92 74.94 74.81 75.13	74.73 74.84 74.81 74.70 74.73
21 22 23 24 25	72.07 72.04 72.04 71.99 72.15	72.03 72.03 71.98 71.97 71.99	72.57 72.64 	72.45 72.57 	72.98 72.92 72.89 72.95 73.19	72.89 72.89 72.86 72.86 72.95	73.57 73.57 73.64 73.64 73.58		73.79 74.23 74.30 	73.69 73.79 73.98 	75.18 75.16 	75.13 75.10
26 27 28 29 30 31	72.21 72.20 72.25 72.24	72.15 72.12 72.20 72.19	72.52 72.54 72.54 72.68 72.70	72.46 72.50 72.50 72.54 72.61	73.08 72.98 73.03 73.06 73.03 73.11	72.89 72.89 72.98 72.98 72.98 72.98 73.03	73.64 73.62 73.64 73.69 73.61 73.73	73.51	74.02 74.14 74.15 	73.94 74.02 74.09 	75.22 75.16 75.16 75.27 75.31 75.31	75.15 75.10 75.10 75.16 75.24 75.25
MONTH	72.27	71.78	72.70	72.16	73.19	72.39	73.73	73.10	74.30	73.55	75.31	74.09

ANNE ARUNDEL COUNTY-Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	AY	JU	NE	JUI	LY	AUG	UST	SEPTE	MBER
1	75.37	75.24	75.66	75.58	76.25	76.05	76.88	76.86	76.91	76.86	76.59	76.51
2	75.37	75.33	75.74	75.66	76.05	75.97	77.05	76.88	76.90	76.87	76.60	76.58
3	75.37	75.34	75.69	75.56	76.10	75.98	77.11	77.05	76.92	76.87	76.62	76.58
4	75.38	75.36	75.56	75.52	76.15	76.10	77.09	77.03	76.93	76.90	76.66	76.62
5	75.40	75.35	75.63	75.52	76.17	76.13	77.04	77.01	76.93	76.91	76.64	76.54
6	75.35	75.19	75.66	75.63	76.13	76.09	77.02	77.00	76.93	76.89	76.54	76.53
7	75.36	75.19	75.68	75.65	76.32	76.09	77.03	77.00	76.90	76.89	76.53	76.52
8	75.40	75.36	75.68	75.59	76.32	76.30	77.05	77.02	76.89	76.84	76.52	76.48
9	75.51	75.40	75.67	75.59	76.32	76.27	77.05	77.02	76.86	76.84	76.49	76.42
10	75.57	75.50	75.68	75.63	76.27	76.23	77.09	77.04	76.86	76.82	76.44	76.42
11	75.70	75.57	75.77	75.68	76.31	76.27	77.12	77.08	76.89	76.82	76.46	76.43
12	75.71	75.55	75.76	75.67	76.39	76.28	77.08	77.04	76.86	76.76	76.50	76.43
13	75.55	75.41	75.68	75.63	76.41	76.39	77.04	76.97	76.76	76.73	76.58	76.50
14	75.44	75.38	75.63	75.57	76.41	76.38	77.00	76.97	76.73	76.71	76.52	76.49
15	75.59	75.44	75.57	75.54	76.41	76.37	77.04	76.97	76.80	76.72	76.54	76.49
16	75.64	75.59	75.67	75.55	76.37	76.30	77.06	77.04	76.85	76.80	76.53	76.46
17	75.62	75.44	75.64	75.61	76.43	76.30	77.04	76.97	76.88	76.80	76.46	76.43
18	75.46	75.44	75.64	75.62	76.54	76.43	77.01	76.97	76.80	76.72	76.72	76.43
19	75.50	75.46	75.65	75.64	76.61	76.54	77.02	76.98	76.72	76.72	76.72	76.57
20	75.59	75.50	75.71	75.65	76.67	76.61	76.98	76.95	76.72	76.70	76.57	76.52
21	75.71	75.59	75.75	75.71	76.77	76.67	77.01	76.96	76.74	76.70	76.52	76.50
22	75.74	75.67	75.74	75.72	76.78	76.77	76.98	76.93	76.78	76.73	76.65	76.50
23	75.67	75.61	75.82	75.74	76.80	76.76	77.02	76.98	76.77	76.66	76.84	76.65
24	75.61	75.59	75.86	75.82	76.76	76.73	77.00	76.89	76.66	76.61	76.75	76.68
25	75.71	75.61	75.86	75.85	76.84	76.74	76.89	76.83	76.65	76.62	76.77	76.70
26 27 28 29 30 31	75.77 75.71 75.64 75.68 75.64	75.71 75.59 75.59 75.63 75.56	76.02 76.00 76.09 76.15 76.17 76.24	75.85 75.95 76.00 76.09 76.15 76.15	76.89 76.92 76.87 76.84 76.87	76.84 76.87 76.79 76.81 76.84	76.88 76.95 76.99 76.99 76.90 76.87	76.80 76.88 76.94 76.90 76.85 76.85	76.65 76.68 76.62 76.62 76.61 76.56	76.62 76.62 76.55 76.55 76.56 76.51	76.75 76.82 76.84 76.79 76.66	76.73 76.74 76.79 76.66 76.63
MONTH YEAR	75.77 77.12	75.19 71.78	76.24	75.52	76.92	75.97	77.12	76.80	76.93	76.51	76.84	76.42

Daily Low Water Levels

ANNE ARUNDEL COUNTY-Continued

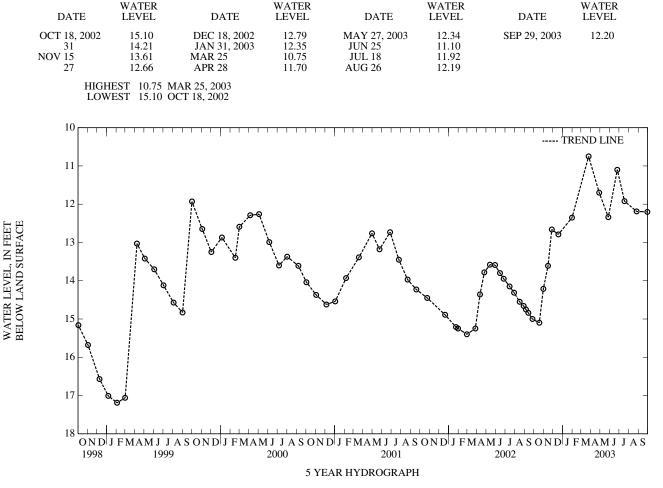
WELL NUMBER .-- AA Bf 3. SITE ID .-- 390945076285601.

LOCATION.--Lat 39°09'45", long 76°28'56", Hydrologic Unit 02060003, 8 mi east of Glen Burnie at Fort Smallwood Park. Owner: Baltimore City Department of Recreation and Parks.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS .-- Dug, brick-lined, unused, water-table well, diameter 48 in., depth 22.8 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 20.38 ft above National Geodetic Vertical Datum of 1929. Measuring point: Hole in concrete cover at land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water level measured 14.10 ft below land surface, January 27, 1944.

PERIOD OF RECORD .-- April 1956 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.40 ft below land surface, March 31, 1958; lowest measured, 19.09 ft below land surface, December 7, 1965.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

ANNE ARUNDEL COUNTY-Continued

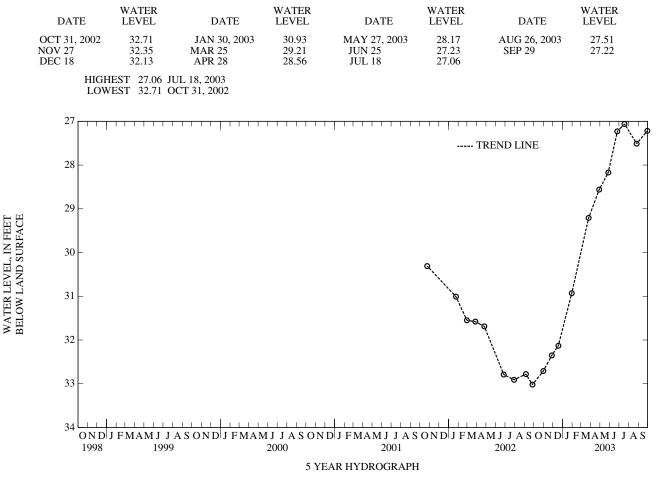
WELL NUMBER .-- AA Bf 100. SITE ID .-- 390629076273601. PERMIT NUMBER .-- AA-94-7214.

LOCATION .-- Lat 39°06'29", long 76°27'36", Hydrologic Unit 02060003, at Chesapeake High School. Owner: Anne Arundel County School Board.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.--Drilled, artesian well, depth 145 ft; casing diameter 2in., to 125 ft; screen diameter 2 in., from 125 to 145 ft;

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 52 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD.--October 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 27.06 ft below land surface, July 18,2003; lowest measured, 33.02 ft below land surface, September 26, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Cb 1. SITE ID. -- 390303076463201. PERMIT NUMBER .-- AA-03-5695.

LOCATION.--Lat 39°03'03", long 76°46'32", Hydrologic Unit 02060006, on Duvall Bridge Rd., Patuxent Wildlife Research Center. Owner: U.S. Fish and Wildlife (formerly U.S. Army).

AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

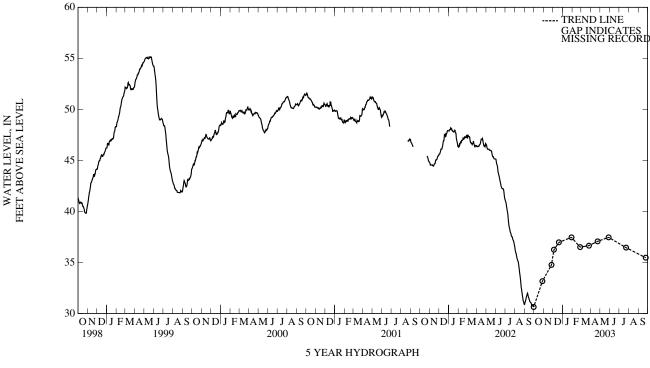
WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 505 ft; casing diameter 6 in., to 485 ft; screen diameter 6 in., from 485 to 505 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from July 1984 to current year.

DATUM.--Elevation of land surface is 129.10 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 3.35 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- March 1962 to current year.


EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 88.50 ft above sea level, May 1, 1962; lowest measured, 30.63 ft above sea level, September 30, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002	33.16	DEC 20, 2002	36.97	MAR 26, 2003	36.65	JUL 23, 2003	36.45
NOV 26	34.76	JAN 29, 2003	37.46	APR 23	37.07	SEP 24	35.46
DEC 04	36.25	FEB 26	36.50	MAY 28	37.46		

LOWEST 33.16 OCT 28, 2002 HIGHEST 37.46 JAN 29, 2002 and MAY 28, 2003

Daily Low Water Levels

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Cc 40. SITE ID .-- 390423076432001. PERMIT NUMBER .-- AA-03-5693.

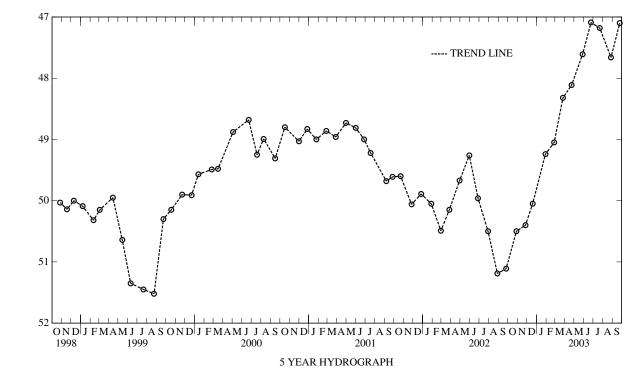
LOCATION.--Lat 39°04'23", long 76°43'20", Hydrologic Unit 02060006, on Rifle Range Rd., Fort George Meade. Owner: U.S. Army.

AQUIFER .-- Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 238 ft; casing diameter 6 in., to 208 ft; screened diameter 6 in., from 208 to 238 ft.
 INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from December 1959 to July 1960 and January 1978 to December 1985.

DATUM .-- Elevation of land surface is 136.92 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.60 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Network observation well. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD.--December 1959 to current year

WATER LEVEL, IN FEET BELOW LAND SURFACE LOWEST 50.50 OCT 28, 2002

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.58 ft below land surface, March 25, 1961; lowest measured, 51.69 ft below land surface, September 1, 1992.

WATER LEVELS, IN FEET BELO	W LAND SURFACE, WATER YEAR	COCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 28, 2002 NOV 26 DEC 19	50.50 50.40 50.05	JAN 29, 2003 FEB 26 MAR 26	49.24 49.05 48.32	APR 23, 2003 MAY 28 JUN 24	48.11 47.61 47.09	JUL 22, 2003 AUG 27 SEP 24	47.18 47.66 47.10
HIGH	EST 47.09 J	UN 24, 2003					

ANNE ARUNDEL COUNTY-Continued

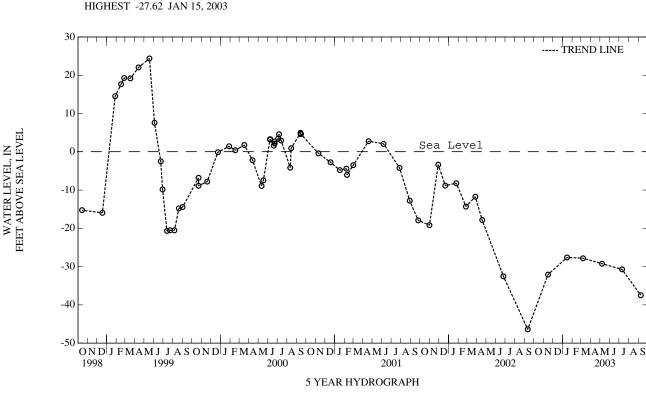
WELL NUMBER .-- AA Cc 135. SITE ID. -- 390126076403001. PERMIT NUMBER .-- AA-93-0998.

LOCATION.--Lat 39°01'26", long 76°40'30", Hydrologic Unit 02060006, near Reidel Rd and Johns Hopkins Rd, at Crofton Meadows. Owner: Anne Arundel County.

AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 1,100 ft; casing diameter 4 in., to 299 ft, and casing diameter 2 in., from 299 to 985 ft, and 1,035 to 1,070 ft; screen diameter 2 in., from 985 to 1,035 ft, and 1,070 to 1,100 ft.

- INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Maryland Geological Survey personnel. Equipped with digital waterlevel recorder--15-minute recorder interval from May 1998 to current year.
- DATUM.--Elevation of land surface is 114.81 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 3.48 ft above land surface.


REMARKS.--Anne Arundel County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- December 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 23.78 ft above sea level, May 4, 1999 (recorder); lowest measured, 46.40 ft below sea level, September 11, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 15, 2002 JAN 15, 2003	-32.07 -27.62	MAR 07, 2003 MAY 07	-27.81 -29.24	JUL 10, 2003 SEP 08	-30.73 -37.47
LOW	EST -37.47 S	SEP 08, 2003			

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Cc 137. SITE ID. -- 390126076402901. PERMIT NUMBER .-- AA-93-0993.

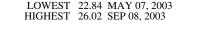
LOCATION.--Lat 39°01'26", long 76°40'29", Hydrologic Unit 02060006, near Reidel Rd and Johns Hopkins Rd, at Crofton Meadows. Owner: Anne Arundel County.

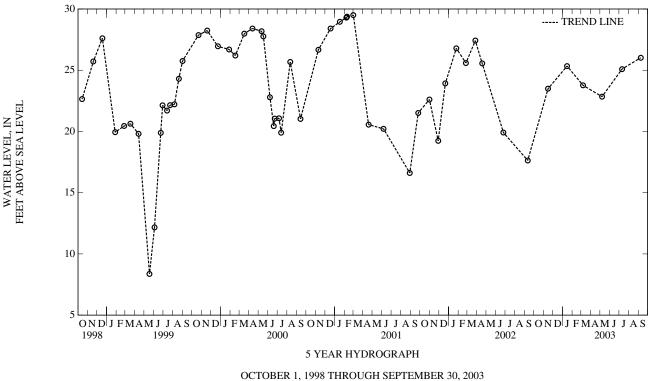
AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 690 ft; casing diameter 4 in., to 300 ft, and casing diameter 2 in., from 300 to 476 ft, and 506 to 536 ft, 576 to 606 ft, and 686 to 690 ft; screen diameter 2 in., from 476 to 506 ft, and 536 to 576 ft, and 606 to 686 ft.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by Maryland Geological Survey personnel. Equipped with digital waterlevel recorder--15-minute recorder interval from May 1998 to current year.

DATUM.--Elevation of land surface is 115.34 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 2.10 ft above land surface.


REMARKS.--Anne Arundel County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. Missing data due to recorder malfunction.


PERIOD OF RECORD .-- December 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.28 ft above sea level, February 17, 2001 (recorder); lowest measured, 4.49 ft above sea level, June 2, 1999 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 15, 2002	23.49	MAR 07, 2003	23.77	JUL 10, 2003	25.09
JAN 15, 2003	25.34	MAY 07	22.84	SEP 08	26.02

Daily Low Water Levels

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Ce 117. SITE ID .-- 390450076343402. PERMIT NUMBER .-- AA-73-0172.

LOCATION.--Lat 39°04'50", long 76°34'35", Hydrologic Unit 02060004, 0.1 mi southwest of intersection of Severndale Road and Southway Road. Owner: Anne Arundel County Department of Public Works.

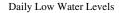
AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

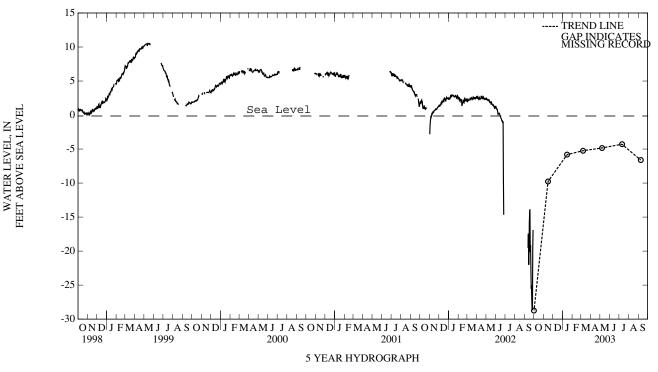
WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 922 ft; casing diameter 6 in., to 836 ft, 851 to 870 ft, and 890 to 907 ft; screen diameter 6 in., from 836 to 851 ft, 870 to 890 ft, and 907 to 922 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by Maryland Geological Survey personnel. Equipped with digital water-level recorder--30-minute recorder interval from August 1977 to April 1980, and August 1983 to September 2002.

DATUM.--Elevation of land surface is 86.0 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 0.5 ft above land surface.

REMARKS.--Anne Arundel County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. Missing data due to recorder malfunction.


PERIOD OF RECORD .-- August 1977 to current year.


EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 22.58 ft above sea level, March 27, 1978 (recorder); lowest measured, 28.66 ft below sea level, September 26, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 15, 2002 JAN 15, 2003	-9.76 -5.82	MAR 07, 2003 MAY 07	-5.24 -4.84	JUL 10, 2003 SEP 08	-4.29 -6.62
LOW	FST -976 N	OV 15 2002			

HIGHEST -4.29 JUL 10, 2003

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Cf 98. SITE ID .-- 390150076283003. PERMIT NUMBER .-- AA-70-0199.

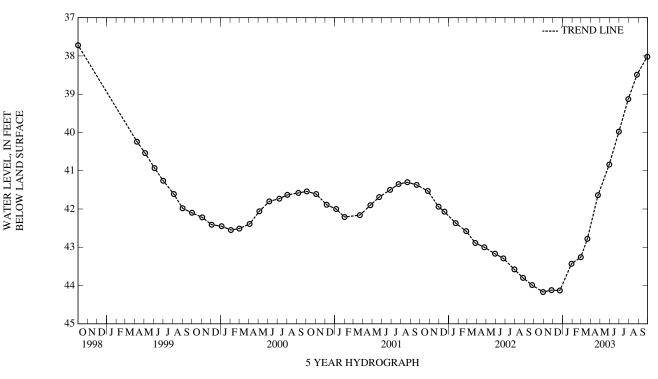
LOCATION.--Lat 39°01'50", long 76°28'30", Hydrologic Unit 02060004, 3.1 mi northeast of Annapolis, near Anne Arundel Co. Traffic Engineering Building, Broad Neck. Owner: Anne Arundel Co. Dept. of Recreation and Parks.

AQUIFER.--Severn Formation (Monmouth aquifer) of Upper Cretaceous age. Aquifer code: 211SVRN.

WELL CHARACTERISTICS .- Drilled, artesian, observation well, depth 100 ft; casing diameter 2 in., to 90 ft; screen diameter 2 in., from 90 to 100 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Twice yearly water level measurements from September 1969 to September 1986, and April 1989 to February 1999.

DATUM .-- Elevation of land surface is 93.42 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.51 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--September 1969 to September 1986, April 1989 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 34.14 ft below land surface, August 3, 1972; lowest measured, 44.39 ft below land surface, November 15, 1988.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 26 DEC 23	44.17 44.12 44.13	JAN 29, 2003 FEB 28 MAR 21	43.43 43.26 42.78	APR 24, 2003 MAY 30 JUN 30	41.64 40.84 39.98	JUL 30, 2003 AUG 27 SEP 29	39.13 38.49 38.02
	EST 38.02 S EST 44.17 C						

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

ANNE ARUNDEL COUNTY-Continued

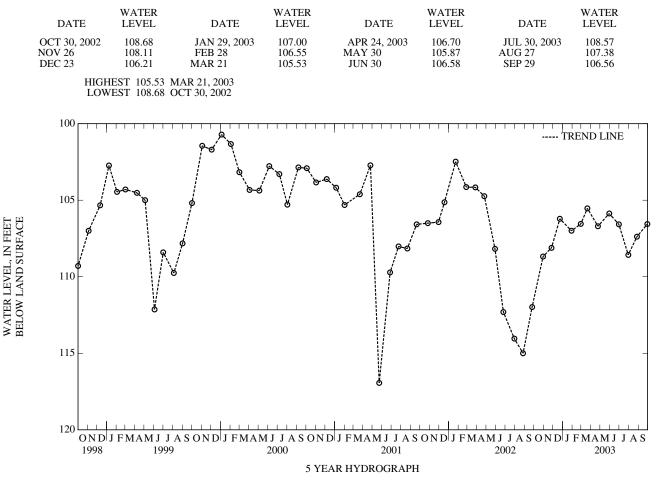
WELL NUMBER .-- AA Cf 99. SITE ID .-- 390150076283002. PERMIT NUMBER .-- AA-70-0199.

LOCATION.--Lat 39°01'50", long 76°28'30", Hydrologic Unit 02060004, 3.1 mi northeast of Annapolis, near Anne Arundel Co. Traffic Engineering Building, Broad Neck. Owner: Anne Arundel Co. Dept. of Recreation and Parks.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS .- Drilled, artesian, observation well, depth 220 ft; casing diameter 2 in., to 210 ft; screen diameter 2 in., from 210 to 220 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with graphic water-level recorder from September 1969 to July 1971.


DATUM .-- Elevation of land surface is 93.70 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.60 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- September 1969 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 89.29 ft below land surface, April 13, 1976; lowest measured, 116.94 ft below land surface, May 23, 2001.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Cg 22. SITE ID .-- 390123076241601. PERMIT NUMBER .-- AA-73-8606.

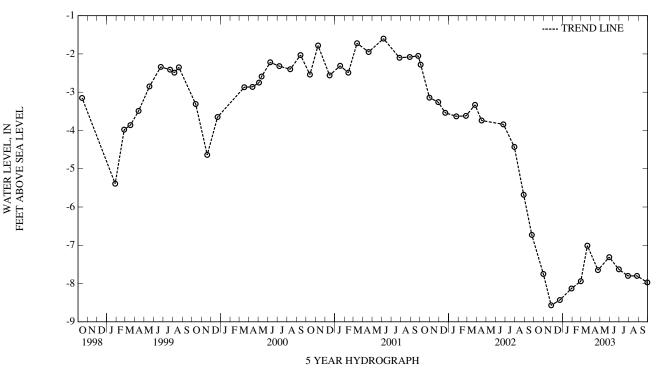
LOCATION.--Lat 39°01'23", long 76°24'16", Hydrologic Unit 02060004, 1,500 ft northeast of Oceanic Dr. and South Beach Rd., at Sandy Point State Park. Owner: U.S. Geological Survey

AQUIFER.--Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 1,760 ft; casing diameter 10 in., to 163 ft; casing diameter 8 in., 0 to 1,760 ft; screen diameter 4 in., from 1,735 to 1,755 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM .-- Elevation of land surface is 12.61 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.47 ft above sea level, September 6, 1979; lowest measured, 8.57 ft below sea level, November 25, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 25 DEC 23	-7.75 -8.57 -8.43	JAN 29, 2003 FEB 28 MAR 21	-8.13 -7.94 -7.01	APR 24, 2003 MAY 30 JUN 30	-7.65 -7.31 -7.63	JUL 29, 2003 AUG 27 SEP 29	-7.80 -7.80 -7.97
	'EST -8.57 N EST -7.01 N						

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Cg 23. SITE ID .-- 390123076241602. PERMIT NUMBER .-- AA-73-8959.

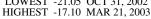
LOCATION.--Lat 39°01'23", long 76°24'16", Hydrologic Unit 02060004, 1500 ft northeast of Oceanic Dr. and South Beach Rd., at Sandy Point State Park. Owner: U.S. Geological Survey

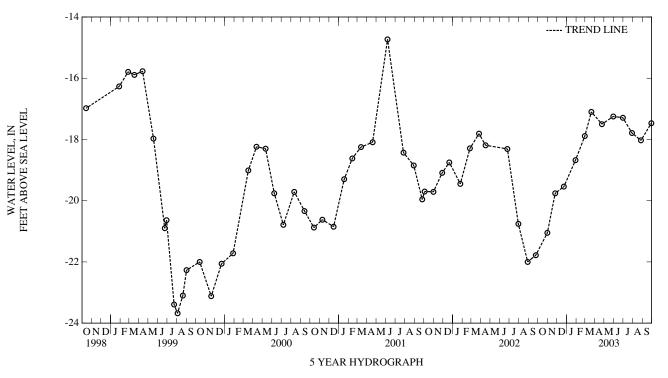
AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 986 ft; casing diameter 4 in., to 968 ft; and 978 to 986 ft; screen diameter 4 in., from 968 to 978 ft.

INSTRUMENTATION.-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with a graphic water-level recorder from September 1978 to February 1980. Equipped with digital water-level recorder--60-minute recorder interval from September 1990 to August 2001.

DATUM .-- Elevation of land surface is 12.57 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 3.00 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD .-- September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.92 ft above sea level, September 6, 1979; lowest measured, 23.93 ft below sea level, August 9, 1999.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 25 DEC 23	-21.05 -19.76 -19.54	JAN 29, 2003 FEB 28 MAR 21	-18.68 -17.89 -17.10	APR 24, 2003 MAY 30 JUN 30	-17.50 -17.25 -17.29	JUL 29, 2003 AUG 27 SEP 29	-17.79 -18.03 -17.47
LOW	EST 21.05 C	OCT 21 2002					

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Cg 24. SITE ID .-- 390123076241603 PERMIT NUMBER .-- AA-73-8960.

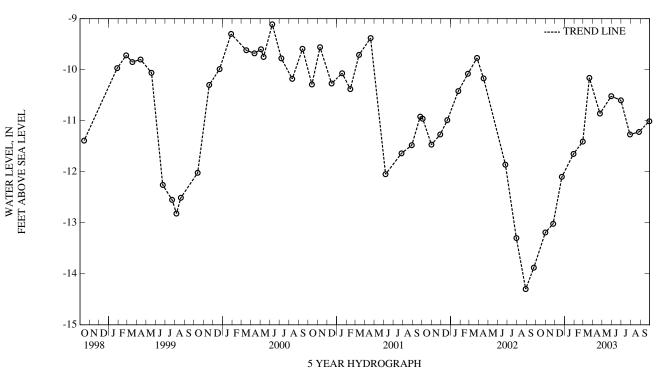
LOCATION.--Lat 39°01'23", long 76°24'16", Hydrologic Unit 02060004, 1500 ft northeast of Oceanic Dr. and South Beach Rd., at Sandy Point State Park. Owner: U.S. Geological Survey

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 664 ft; casing diameter 6 in., to 158 ft; casing diameter 4 in., 158 to 605 ft, 615 to 648 ft, and 658 to 664 ft; screen diameter 4 in., from 605 to 615 ft, and 648 to 658 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by Maryland Geological Survey personnel.

DATUM .-- Elevation of land surface is 12.68 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 3.16 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network obersvation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.21 ft above sea level, August 15, 1980; lowest measured, 14.30 ft below sea level, August 29, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 25 DEC 23	-13.19 -13.02 -12.10	JAN 29, 2003 FEB 28 MAR 21	-11.65 -11.41 -10.16	APR 24, 2003 MAY 30 JUN 30	-10.86 -10.52 -10.60	JUL 29, 2003 AUG 27 SEP 29	-11.27 -11.22 -11.01
LOWEST -13.19 OCT 31, 2002 HIGHEST -10.16 MAR 21, 2003							

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Cg 25. SITE ID .-- 390127076240301. PERMIT NUMBER .-- AA-74-1240.

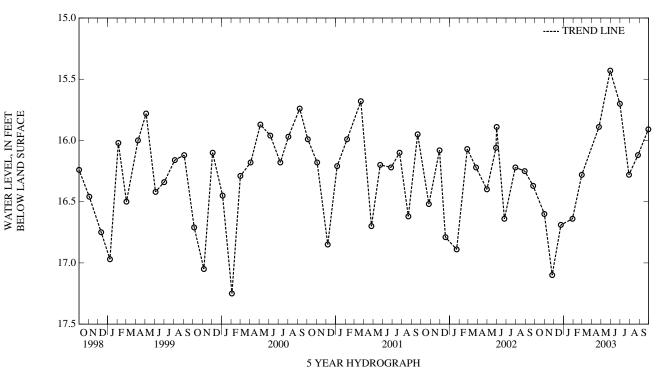
LOCATION.--Lat 39°01'27", long 76°24'03", Hydrologic Unit 02060004, at Sandy Point State Park, near maintenance area. Owner: Maryland Department of Natural Resources.

AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 107 ft; casing diameter 3 in., to 100 ft; screen diameter 3 in., from 100 to 107 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM .-- Elevation of land surface is 17.33 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.43 ft above land surface.


REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- April 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.40 ft below land surface, March 21, 2003; lowest measured, 18.25 ft below land surface, October 1, 1986.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

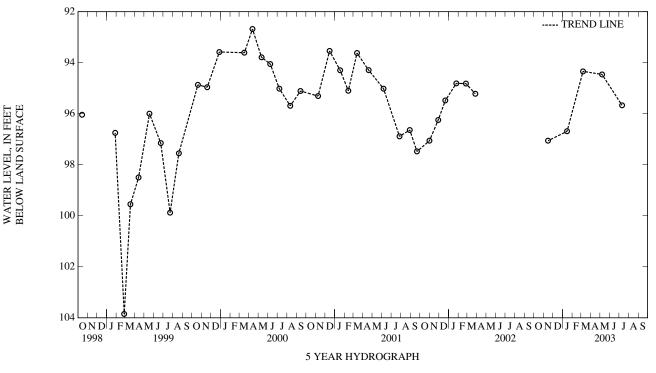
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002	16.60	JAN 29, 2003	16.64	MAY 30, 2003	15.43	AUG 27, 2003	16.12
NOV 25	17.10	FEB 28	16.28	JUN 30	15.70	SEP 29	15.91
DEC 23	16.69	APR 24	15.89	JUL 29	16.28		
	EST 15.43 M						
LOW	EST 17.10 N	OV 25, 2002					

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Dd 42. SITE ID .-- 385808076373502. PERMIT NUMBER .-- AA-71-0231.

LOCATION.--Lat 38°58'10", long 76°37'35", Hydrologic Unit 02060004, 30 ft south of MD Rt 50, 0.5 mi from intersection with Howard Grove Rd. and Rutland Rd. Owner: U.S. Geological Survey.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.


- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 275 ft; casing diameter 4 in., to 190 ft; casing diameter 2 in., from 200 to 225 ft, and 235 to 265 ft. screen diameter 2 in., from 190 to 200 ft., 225 to 235 ft, and 265 to 275 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with graphic water-level recorder from December 1971 to August 1975 and with a digital water-level recorder--30-minute recorder interval from August 1975 to May 1992.
- DATUM.--Elevation of land surface is 105.48 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 0.72 ft above land surface.
- REMARKS.--Southern Maryland Ground-Water-Level Monitoring Network. Water levels are affected by local ground-water withdrawal. Water-level measurements could not be taken from April to October 2002.

PERIOD OF RECORD.--October 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 80.25 ft below land surface May 4, 1973. lowest measured, 103.85 ft below land surface, February 26, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 15, 2002 JAN 15, 2003	97.06 96.69	MAR 07, 2003 MAY 07	94.34 94.46	JUL 10, 2003	95.67	
	EST 94.34 N EST 97.06 N					

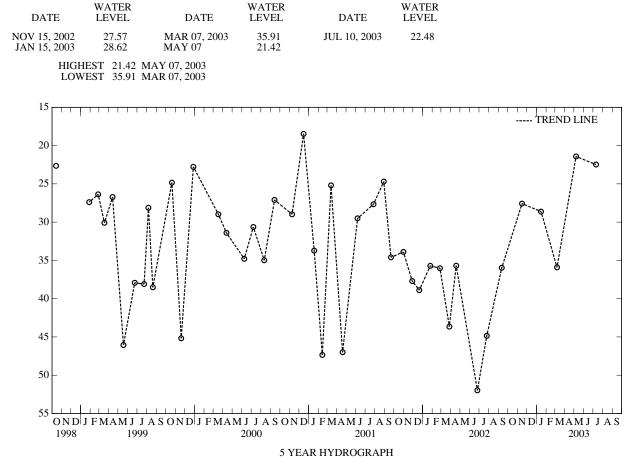
ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA De 1. SITE ID .-- 385915076340401.

LOCATION.--Lat 38°59'15", long 76°34'03", Hydrologic Unit 02060004, 0.07 mi north of MD Rt. 450, 1.1 mi west of Generals Highway. Owner: City of Annapolis.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 237 ft; casing diameter 10 in., to 207 ft; screen diameter 6 in., from 207 to 237 ft.


- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with graphic water-level recorder from May 1969 to December 1977 and with a digital water-level recorder--15-minute recorder interval from December 1977 to September 1996.
- DATUM.--Elevation of land surface is 13.72 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 2.00 ft above land surface.

REMARKS .-- Southern Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- May 1969 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.25 ft below land surface, November 14, 1988 (recorder); lowest measured, 52.90 ft below land surface, May 18, 1997.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Df 19. SITE ID .-- 385921076270701.

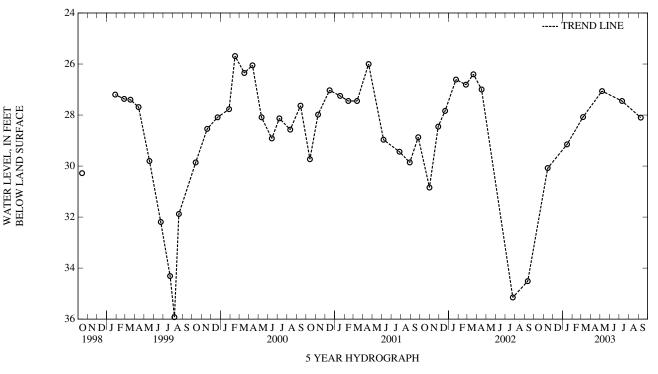
LOCATION.--Lat 38°59'22", long 76°27'04", Hydrologic Unit 02060004, 200 ft east of intersection with McLean and Hooper Rd. Owner: U.S. Navy.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 590 ft; casing diameter 10 in., to 151.6 ft; casing diameter 8 in., from 151.6 to 464.3 ft, and casing diameter 6 in., from 0 to 565 ft; screen diameter 10 in., from 565 to 590 ft.

INSTRUMENTATION.--Periodic water level measurements with electric tape by Maryland Geological Survey personnel. Equipped with graphic water-level recorder from November 1979 to April 1980.

DATUM .-- Elevation of land surface is 15.84 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 2.5 ft above land surface.


REMARKS .-- Southern Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- March 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.34 ft below land surface, March 9, 1977; lowest measured, 35.92 ft below land surface, August 6, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
	30.08 29.15 EST 27.06 M EST 30.08 N		28.08 27.06	JUL 10, 2003 SEP 08	27.45 28.10	

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Df 20. SITE ID .-- 385916076270702.

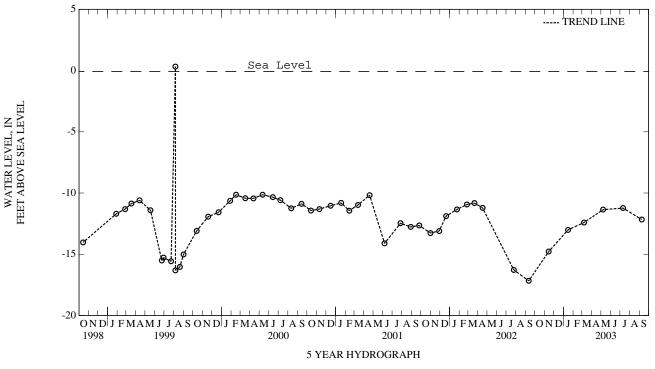
LOCATION.--Lat 38°59'16", long 76°27'07", Hydrologic Unit 02060004, off Hooper Rd., 400 ft from McLean Rd. Owner: U.S. Navy.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 255 ft; casing diameter 10 in., to 150 ft; casing diameter 8 in., from 135 to 233 ft; screen diameter 8 in., from 229.4 to 255 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by Maryland Geological Survey personnel. Equipped with graphic water-level recorder from June 1969 to December 1977. Equipped with digital water-level recorder--30-minute recorder interval from December 1977 to current year.

DATUM.--Elevation of land surface is 21.87 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 3.0 ft above land surface.


REMARKS.--Anne Arundel County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- June 1969 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.91 ft below sea level, June 20, 1980 (recorder); lowest measured, 17.80 ft below sea level, August 31, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 14, 2002 JAN 15, 2003	-14.78 -13.01	MAR 07, 2003 MAY 07	-12.41 -11.36	JUL 10, 2003 SEP 08	-11.23 -12.16
	EST -14.78 I EST -11.23 J	NOV 14, 2002 IUL 10, 2003			

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Df 79. SITE ID .-- 385905076293601. PERMIT NUMBER .-- AA-03-7867.

LOCATION.--Lat 38°59'05", long 76°29'36", Hydrologic Unit 02060004, off Dorsy Creek Rd., 500 ft north of MD Rt. 450. Owner: U.S.Navy.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 695 ft; casing diameter 6 in., to 300 ft; 320 to 572 ft, and 592 to 675 ft; screen diameter 6 in., from 300 to 320 ft, 572 to 592 ft, and 675 to 695 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with graphic water-level recorder from May 1969 to December 1977. Equipped with digital water-level recorder--60-minute recorder interval from December 1977 to January 2003.

DATUM.--Elevation of land surface is 5.17 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 2.8 ft above land surface.

REMARKS.--Anne Arundel County Ground-Water-Level Monitoring Network observation. Water levels are affected by local ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- May 1969 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.65 ft above sea level, February 20, 1974 (recorder); lowest measured, 19.40 ft below sea level, August 25, 2002 (recorder).

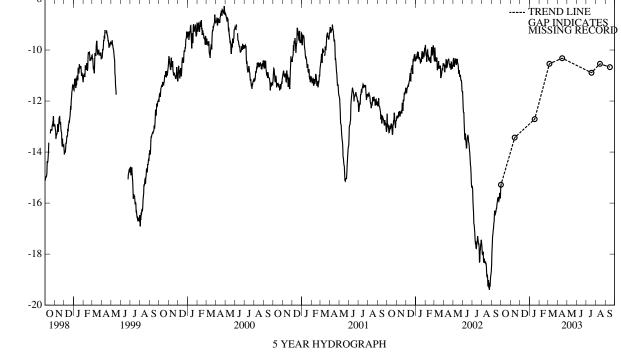
WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 01, 2002 NOV 14	-15.28 -13.43	JAN 17, 2003 MAR 05	-12.71 -10.54	APR 15, 2003 JUL 18	-10.32 -10.89	AUG 14, 2003 SEP 15	-10.54 -10.67
LOW	TOT 15 00 (OCT 01 2002					

LOWEST -15.28 OCT 01, 2002 HIGHEST -10.32 APR 15, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAI	RCH
1 2 3 4 5	-15.18 -15.16 -15.09 -14.80 -14.59	-15.54 -15.47 -15.48 -15.46 -15.06	-14.14 -14.08 -14.18 -13.90 -13.80	-14.47 -14.58 -14.50 -14.38 -14.34	-12.77 -12.66 -12.60 -12.84 -12.72	-13.16 -12.94 -13.39 -13.39 -13.07	-11.04 -11.19 -11.07 -11.27 -11.40	-11.42 -11.44 -11.35 -11.64 -11.80	 	 	 	
6 7 8 9 10	-14.68 -14.63 -14.90 -14.83 -14.97	-15.30 -15.24 -15.25 -15.30 -15.33	-13.68 -13.92 -13.66 -13.80 -13.55	-14.10 -14.30 -14.25 -14.08 -14.14	-12.66 -12.53 -12.52 -12.69 -12.53	-13.01 -12.76 -12.88 -13.20 -12.78	-11.45 -11.64 -11.59 -11.68 -11.85	-11.67 -12.18 -12.00 -12.02 -12.11	 	 	 	
11 12 13 14 15	-14.91 -14.84 -14.87 -15.06 -14.93	-15.24 -15.22 -15.25 -15.54 -15.18	-13.52 -13.57 -13.70 -13.47 -13.43	-13.85 -13.92 -13.94 -13.86 -13.87	-12.49 -12.34 -12.26 -11.98 -12.10	-12.68 -12.71 -12.46 -12.45 -12.51	-11.85 -12.20 -12.18 -12.46 -12.55	-12.21 -12.74 -12.66 -12.98 -12.99	 	 	 	
16 17 18 19 20	-14.65 -14.74 -14.96 -14.51 -14.68	-14.97 -15.15 -15.20 -15.01 -15.08	-13.48 -13.07 -13.15 -13.36 -13.40	-13.81 -13.65 -13.52 -13.70 -13.83	-12.17 -12.42 -12.35 -12.19 -11.82	-12.69 -12.72 -12.55 -12.52 -12.26	-12.56 -12.45 -12.50 -12.36 -12.15	-13.03 -12.83 -12.85 -12.64 -12.50	 	 	 	
21 22 23 24 25	-14.66 -14.57 -14.48 -14.66 -14.48	-15.08 -14.97 -14.99 -15.00 -14.91	-13.01 -12.70 -12.91 -13.11 -13.01	-13.69 -13.35 -13.39 -13.49 -13.46	-11.86 -11.98 -11.97 -11.77 -11.47	-12.18 -12.22 -12.19 -12.12 -12.01	-12.31 	-12.62 	 	 	 	
26 27 28 29 30 31	-14.21 -14.29 -14.38 -14.30 -14.15 -14.34	-14.68 -14.59 -14.68 -14.64 -14.52 -14.64	-13.06 -12.88 -12.95 -12.51 -12.31	-13.39 -13.37 -13.26 -13.01 -12.92	-11.54 -11.62 -11.62 -11.42 -11.32 -11.30	-12.18 -12.10 -11.85 -11.81 -11.84 -11.68	 	 	 	 	 	
MONTH	-14.15	-15.54	-12.31	-14.58	-11.30	-13.39	-11.04	-13.03				

ANNE ARUNDEL COUNTY-Continued


DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JU	NE	JUI	LY	AUG	UST	SEPTE	MBER
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
MONTH												
VEAR	-11.04	-15.54										

YEAR

-11.04 -15.54

Daily Low Water Levels

WATER LEVEL, IN FEET ABOVE SEA LEVEL

ANNE ARUNDEL COUNTY-Continued

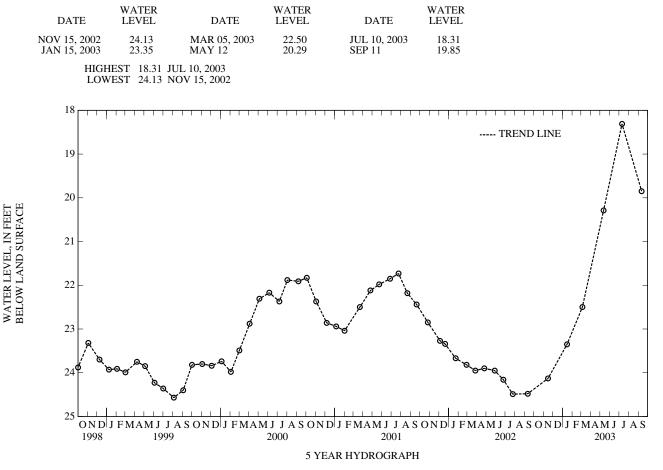
WELL NUMBER .-- AA Df 103. SITE ID. -- 385623076274401. PERMIT NUMBER .-- AA-73-3315.

LOCATION.--Lat 38°56'23", long 76°27'44", Hydrologic Unit 02060004, off West Lake Dr, 900 ft north of intersection with Farragut Rd. Owner: Private Residence.

AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, unused, artesian well, depth 46 ft; casing diameter 4 in., to 39 ft; screen diameter 2 in., from 39 to 46 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 26.51 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.57 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--May 1987, January 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.31 ft below land surface, July 10, 2003; lowest measured, 25.39 ft below land surface, April 9, 1990.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

ANNE ARUNDEL COUNTY-Continued

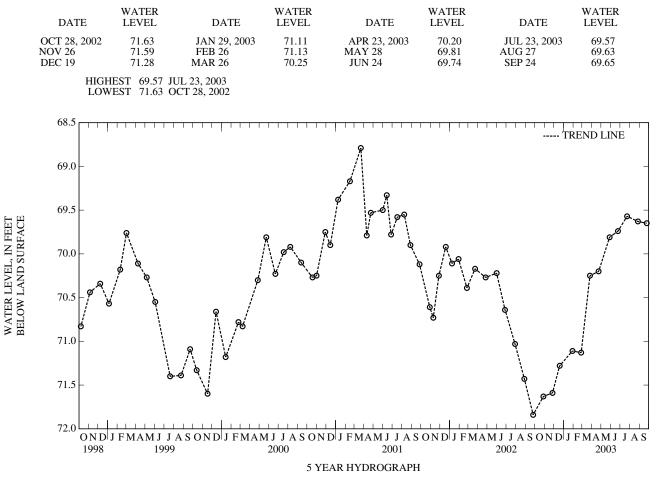
WELL NUMBER .-- AA Ed 45. SITE ID .-- 385406076383901. PERMIT NUMBER .-- AA-74-1005.

LOCATION.--Lat 38°54'06", long 76°38'39", Hydrologic Unit 02060006, at Anne Arundel County Police Academy, near Davidsonville. Owner: U.S. Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 157 ft; casing diameter 4 in., to 147 ft; screen diameter 2 in., from 147 to 157 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 110 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.87 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- August 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 63.51 ft below land surface, May 6, 1980; lowest measured, 71.84 ft below land surface, September 25, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

ANNE ARUNDEL COUNTY-Continued

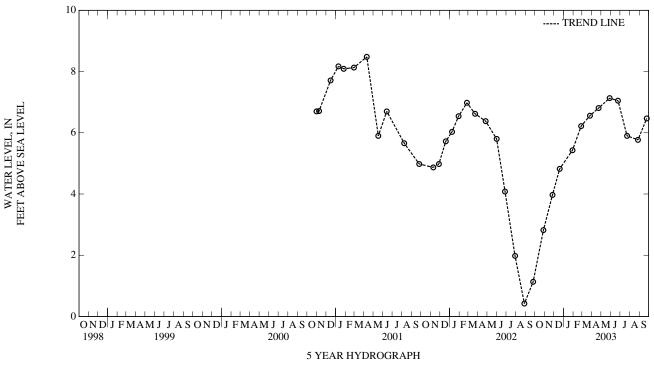
WELL NUMBER .-- AA Ed 65. SITE ID .-- 385406076383902. PERMIT NUMBER .-- AA-94-5387.

LOCATION.--Lat 38°54'06", long 76°38'39", Hydrologic Unit 02060006, at Anne Arundel County Police Academy, near Davidsonville. Owner: Maryland Geological Survey.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS.--Drilled, artesian well, depth 310 ft; casing diameter 4.5 in., to 285 ft, and 305 to 310 ft; screen diameter 4.5 in., from 285 to 305 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 110 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.60 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--October 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.86 ft above sea level, April 1, 2001 (recorder); lowest measured, 0.42 ft above sea level, August 28, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 26 DEC 19	2.82 3.97 4.82	JAN 29, 2003 FEB 26 MAR 26	5.43 6.22 6.56	APR 23, 2003 MAY 28 JUN 24	6.81 7.13 7.05	JUL 23, 2003 AUG 27 SEP 24	5.90 5.77 6.47
LOW	EST 2.82 O EST 7.13 M	CT 28, 2002 AY 28, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

ANNE ARUNDEL COUNTY-Continued

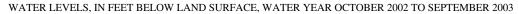
WELL NUMBER .-- AA Fd 43. SITE ID .-- 384646076352401. PERMIT NUMBER .-- AA-74-1004.

LOCATION.--Lat 38°46'46", long. 76°35'24", Hydrologic Unit 02060004 at Tracys Landing Regional Park, 0.2 mi east of Tracys Landing. Owner: U.S. Geological Survey.

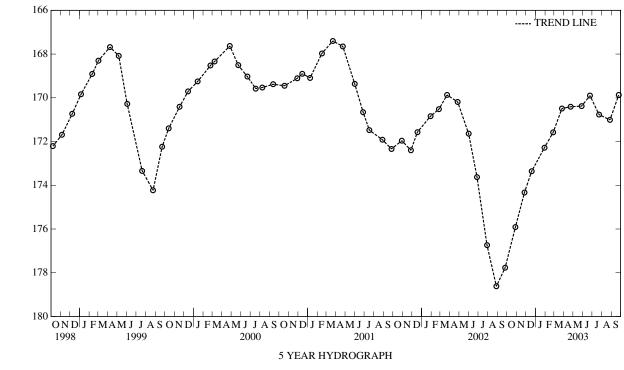
AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 280 ft, casing diameter 4 in., to 231 ft; casing diameter 2 in., from 231 to 270 ft; screen diameter 2 in., from 270 to 280 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 150 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.94 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.


PERIOD OF RECORD .-- August 1979 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 143.90 ft below land surface, May 6, 1980; lowest measured, 178.62 ft below land surface, August 28, 2002.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 26 DEC 19	175.91 174.33 173.36	JAN 29, 2003 FEB 26 MAR 26	172.28 171.58 170.49	APR 23, 2003 MAY 28 JUN 24	170.41 170.38 169.90	JUL 23, 2003 AUG 27 SEP 24	170.77 171.01 169.87
	EST 169.87 EST 175.91	SEP 24, 2003 OCT 28, 2002					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

ANNE ARUNDEL COUNTY-Continued

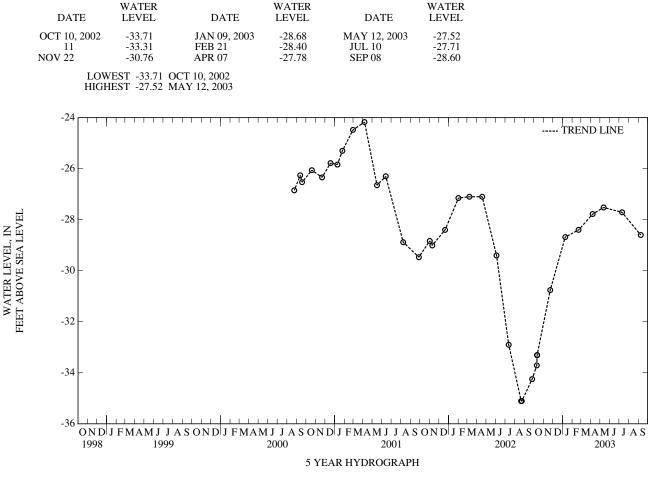
WELL NUMBER .-- AA Fe 92. SITE ID .-- 384644076331201. PERMIT NUMBER .-- AA-94-5386.

LOCATION.--Lat 38°46'44", long 76°33'12", Hydrologic Unit 02060004, at Deale. Owner: Maryland Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.--Drilled, artesian well, depth 205 ft; casing diameter 4.5 in., to 170 ft, and 200 to 205 ft; screen diameter 4.5 in., from 170 to 200 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 9 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of shelter platform, 3.00 ft above land surface.

REMARKS .-- Anne Arundel County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- August 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 23.88 ft below sea level, March 22, 2001 (recorder); lowest measured, 36.20 ft below sea level, August 20, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

Daily Low Water Levels

ANNE ARUNDEL COUNTY-Continued

WELL NUMBER .-- AA Fe 93. SITE ID .-- 384644076331202. PERMIT NUMBER .-- AA-94-5391.

LOCATION .-- Lat 38°46'44", long 76°33'12", Hydrologic Unit 02060004, at Deale. Owner: Maryland Geological Survey.

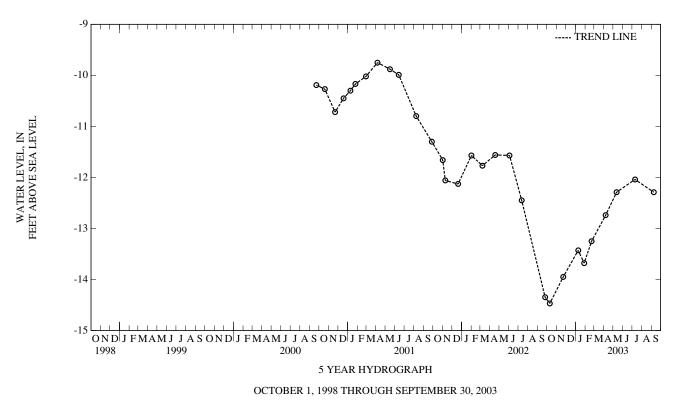
AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

HIGHEST -12.04 JUL 10, 2003

WELL CHARACTERISTICS.-Drilled, artesian well, depth 470 ft; casing diameter 4.5 in., to 429 ft, 449 to 454 ft, and 464 to 470 ft; screen diameter 4.5 in., from 429 to 449 ft, and 454 to 464 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by Maryland Geological Survey personnel.

DATUM.--Elevation of land surface is 9 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of shelter platform, 3.35 ft above land surface.


REMARKS.--Anne Arundel County Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- September 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.55 ft below sea level, March 22, 2001 (recorder); lowest measured, 14.47 ft below sea level, October 16, 2002 (See REMARKS, recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 10, 2002 NOV 22 JAN 09, 2003	-14.47 -13.95 -13.43	JAN 28, 2003 FEB 21 APR 07	-13.68 -13.25 -12.74	MAY 12, 2003 JUL 10 SEP 08	-12.29 -12.04 -12.29
LOW	EST 1447	OCT 10 2002			

Daily Low Water Levels

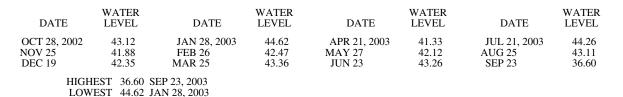
BALTIMORE CITY

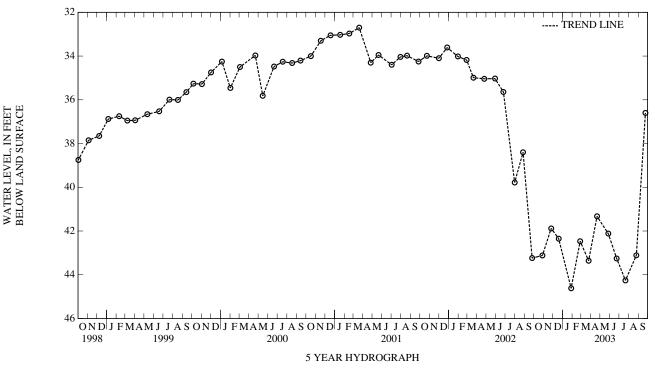
WELL NUMBER .-- 285E- 1. SITE ID .-- 391617076322001.

LOCATION.--Lat 39 16'17", long 76 32'20", Hydrologic Unit 02060003, near Holabird Ave. and Pumphrey St. at Ft. Holabird Industrial Park. Owner: City of Baltimore.

AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 290 ft; casing diameter 12 in. to unknown depth.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 30 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing extension, 2.35 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water level reported 58 ft below land surface in 1934.

PERIOD OF RECORD .-- April 1943 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.70 ft below land surface, March 20, 2001; lowest measured, 103.70 ft below land surface, October 15, 1948.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

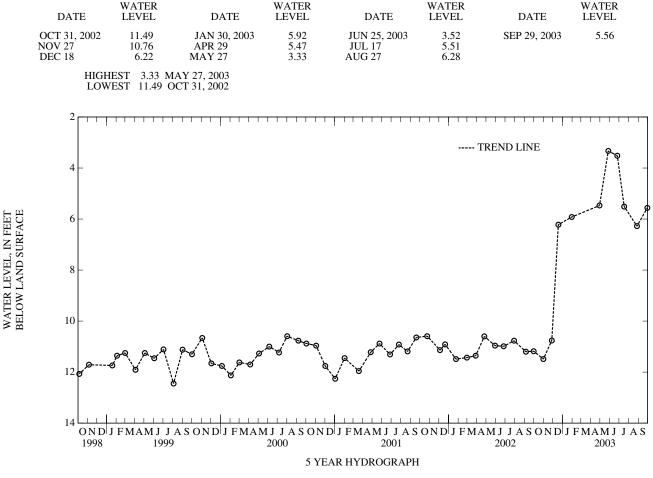
BALTIMORE CITY—Continued

WELL NUMBER.--3S2E- 5. SITE ID.--391600076353301. PERMIT NUMBER.--BC-81-0087.

LOCATION.--Lat 39 16'00", long 76 35'33", Hydrologic Unit 02060003, at Latrobe Park. Owner: U.S. Geological Survey.

AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 136 ft; casing diameter 4 in., to 126 ft; screen diameter 3 in., from 126 to 136 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM .-- Elevation of land surface is 14.44 ft. above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.92 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- January 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.33 ft below land surface, May 27, 2003; lowest measured, 17.71 ft below land surface, December 30, 1983.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

BALTIMORE CITY—Continued

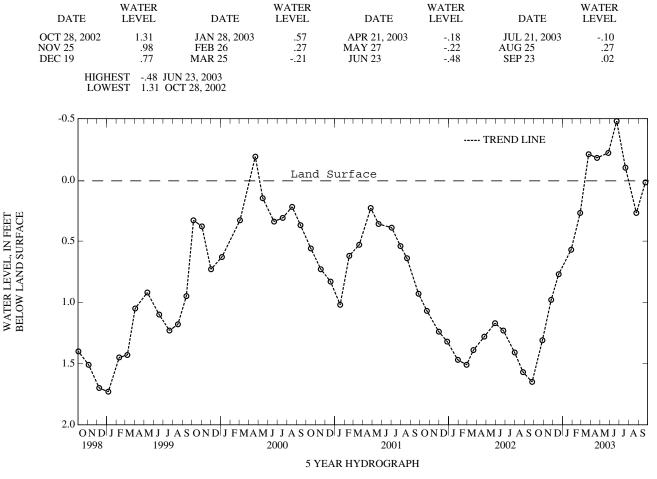
WELL NUMBER .-- 385E-46. SITE ID .-- 391556076315301. PERMIT NUMBER .-- BC-81-0088.

LOCATION.--Lat 39 15'56", long 76 31'53", Hydrologic Unit 02060003, at Ft. Holabird Industrial Park, near Colgate Creek. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSC.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 73 ft; casing diameter 4 in., to 63 ft; screen diameter 3 in., from 63 to 73 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.07 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- January 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.48 ft above land surface, June 23, 2003; lowest measured, 3.07 ft below land surface, July 8, 1986.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 (READINGS ABOVE LAND SURFACE INDICATED BY "-")

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

BALTIMORE CITY—Continued

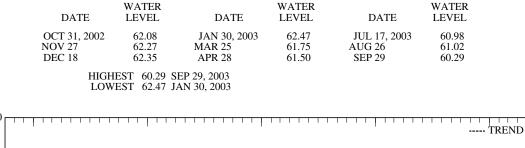
WELL NUMBER .-- 5S2E- 24. SITE ID .-- 391349076354501. PERMIT NUMBER .-- BC-81-0089.

LOCATION.--Lat 39 13'49", long 76 35'45", Hydrologic Unit 02060003, at Farrington Park. Owner: U.S. Geological Survey.

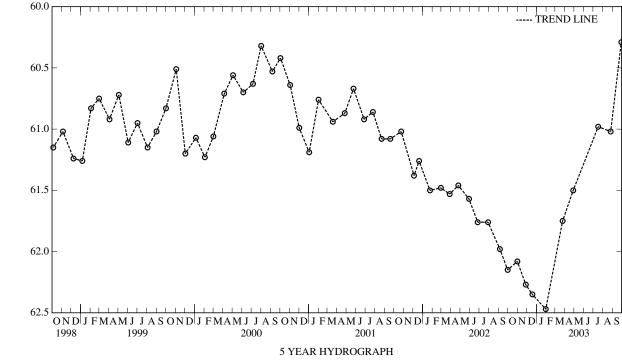
AQUIFER.--Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 272 ft; casing diameter 4 in., to 262 ft; screen diameter 3 in., from 262 ft to 272 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 75 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.35 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- January 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 60.29 ft below land surface, September 29, 2003; lowest measured, 66.36 ft below land surface, May 5, 1983.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

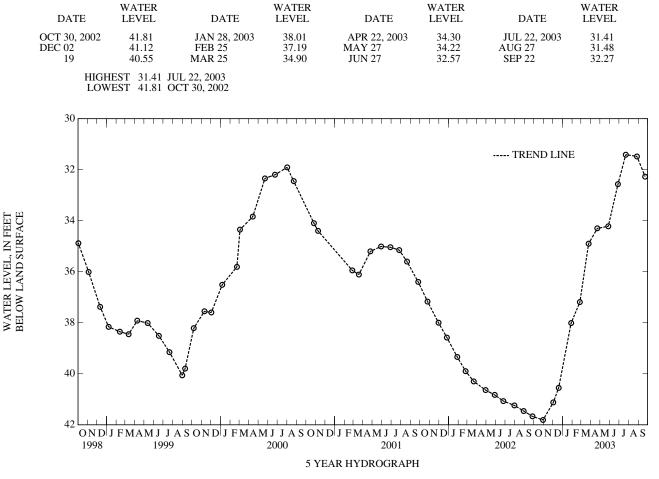
BALTIMORE COUNTY

WELL NUMBER.--BA Cd 26. SITE ID.--393129076384201. PERMIT NUMBER.--BA-02-8527.

LOCATION.--Lat 39°31'29", long 76°38'42", Hydrologic Unit, 02060003, 1.4 mi south of Sparks, near York Road. Owner: Diecraft Division, Leica Inc.

AQUIFER .-- Baltimore Gneiss of Precambrian age. Aquifer code: 400BLMR.

WELL CHARACTERISTICS .-- Drilled, unused, water-table well, depth 250 ft; casing diameter 6 in., to 19 ft; open hole.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 480 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.30 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- January 1959 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.42 ft below land surface, September 9, 1975; lowest measured, 80.20 ft below land surface, December 23, 1969.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

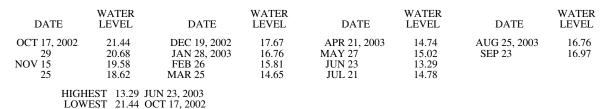
BALTIMORE COUNTY-Continued

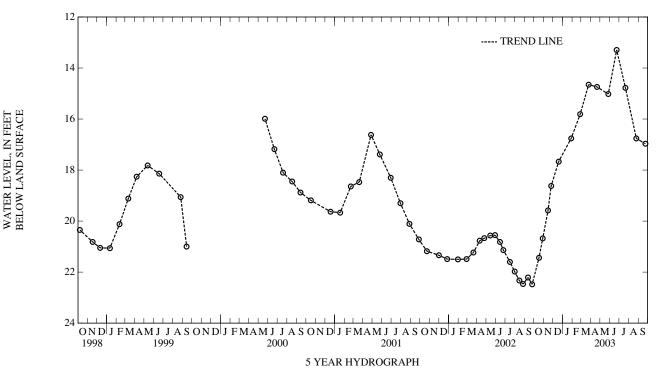
WELL NUMBER .-- BA Ce 21. SITE ID .-- 393102076341801. PERMIT NUMBER .-- BA-02-1266.

LOCATION.--Lat 39°31'02", long 76°34'18", Hydrologic Unit 02060003, on Paper Mill Road, 0.6 mi west of Jacksonville. Owner: Baltimore County.

AQUIFER.--Loch Raven Formation of Cambrian Age. Aquifer code: 370LCRV.

WELL CHARACTERISTICS.--Drilled, unused, water-table well, depth 350 ft; casing diameter 10 in., to 12.4 ft; casing diameter 6 in., to 33.2 ft; open hole. INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 536 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--November and December 1955, November 1956 through September 1975, July 1977 through July 1996, November 1996 to September 1999, and May 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.60 ft below land surface, June 23, 1972; lowest measured, 22.48 ft below land surface, September 25, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

BALTIMORE COUNTY—Continued

WELL NUMBER .-- BA Dc 444. SITE ID .-- 392931076410301. PERMIT NUMBER .-- BA-81-4198.

LOCATION.--Lat 39°29'31", long 76°41'03", Hydrologic Unit 02060003, at Oregon Ridge Park. Owner: Baltimore County Parks and Recreation.

AQUIFER.--Cockeysville Marble of Cambrian age. Aquifer code: 370CCKV.

WELL CHARACTERISTICS .-- Drilled, unused, water-table well, depth 300 ft; casing diameter 6 in., to 88 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recorder interval from November 1998 to current year.

DATUM.--Elevation of land surface is 390 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of shelter platform, 1.62 ft above land surface.

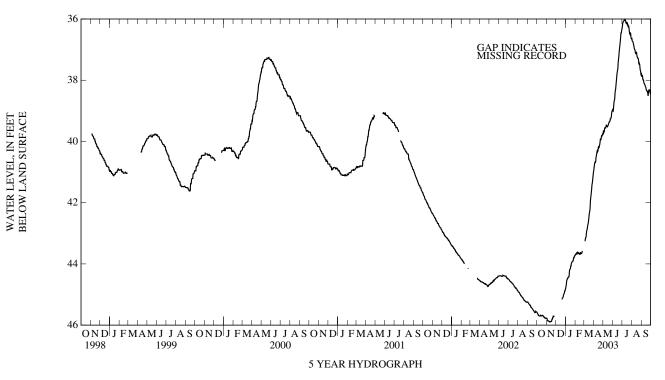
REMARKS .-- Collection of Basic Records (CBR) observation well. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- September 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 33.46 ft below land surface, April 9, 1997; lowest measured, 45.78 ft below land surface, October 30, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 27 DEC 19 JAN 28, 2003	45.78 45.68 45.16 43.76	FEB 25, 2003 MAR 03 25 APR 22	43.48 43.26 41.54 39.87	MAY 27, 2003 JUN 27 JUL 22 AUG 27	39.17 36.45 36.26 37.51	SEP 22, 2003	38.41


HIGHEST 36.26 JUL 22, 2003 LOWEST 45.78 OCT 30, 2002

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAF	RCH
1 2 3 4 5	45.59 45.60 45.63 45.64 45.67	45.57 45.59 45.60 45.63 45.63 45.63	45.77 45.78 45.83 45.86 45.86	45.76 45.77 45.78 45.83 45.84 45.84	 	 	44.80 44.72 44.68 44.57 44.52 44.49	44.72 44.68 44.57 44.52 44.48 44.48	43.69 43.68 43.68 43.66 43.68 43.68	43.65 43.66 43.66 43.61 43.65 43.63	 43.26 43.18 43.14	43.18 43.12 43.08
6 7 8 9 10	45.67 45.69 45.70 45.70 45.70	45.67 45.67 45.69 45.70 45.70	45.86 45.87 45.87 45.88 45.88	45.84 45.86 45.86 45.86 45.88	 	 	44.49 44.49 44.46 44.43 44.43	44.48 44.45 44.43 44.43 44.43	43.68 43.63 43.65 43.64 43.63	43.63 43.61 43.63 43.63 43.60	43.14 43.13 43.03 42.93 42.90	43.08 43.03 42.93 42.90 42.85
11 12 13 14 15	45.70 45.68 45.70 45.70 45.70	45.68 45.68 45.68 45.70 45.70	45.90 45.90 45.89 45.88 45.88	45.88 45.88 45.88 45.88 45.88	 	 	44.43 44.38 44.23 44.18 44.17	44.38 44.23 44.17 44.17 44.16	43.66 43.65 43.66 43.66 43.69	43.61 43.63 43.65 43.65 43.63	42.85 42.78 42.72 42.68 42.60	42.78 42.72 42.66 42.60 42.52
16 17 18 19 20	45.70 45.68 45.68 45.68 45.70	45.66 45.67 45.67 45.67 45.68	45.88 45.86 45.81 45.81 45.76	45.85 45.81 45.81 45.76 45.76	 45.16	 45.10	44.16 44.07 44.07 43.99 43.97	44.07 44.07 43.99 43.97 43.90	43.69 43.62 43.65 43.66 43.66	43.61 43.61 43.62 43.64 43.64	42.52 42.41 42.32 42.29 42.20	42.41 42.32 42.25 42.20 41.97
21 22 23 24 25	45.70 45.72 45.74 45.74 45.74	45.70 45.70 45.72 45.74 45.73	45.76 45.71 45.72 45.72 45.71	45.70 45.70 45.70 45.71 45.70	45.12 45.11 45.10 45.07 45.01	45.11 45.10 45.07 45.01 44.93	43.94 43.92 43.91 43.91 43.90	43.90 43.91 43.90 43.90 43.80	43.66 43.63 43.59 43.58	43.63 43.54 43.49 43.49	41.97 41.85 41.77 41.67 41.57	41.85 41.77 41.67 41.57 41.43
26 27 28 29 30 31	45.77 45.77 45.77 45.78 45.77 45.77	45.73 45.77 45.77 45.76 45.77 45.77	45.71 	45.70 	44.99 44.97 44.93 44.88 44.88 44.82	44.96 44.93 44.88 44.88 44.82 44.80	43.80 43.80 43.80 43.74 43.74 43.74	43.78 43.79 43.73 43.71 43.72 43.69	 	 	41.43 41.37 41.30 41.18 41.09 40.99	41.36 41.30 41.18 41.07 40.98 40.93
MONTH	45.78	45.57	45.90	45.70	45.16	44.80	44.80	43.69	43.69	43.49	43.26	40.93

BALTIMORE COUNTY—Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	AΥ	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1	40.95	40.80	39.73	39.63	39.00	38.85	36.28	36.21	36.64	36.61	37.81	37.76
2	40.84	40.76	39.64	39.58	39.01	38.93	36.21	36.12	36.71	36.64	37.86	37.78
3	40.77	40.70	39.71	39.64	38.93	38.81	36.12	36.07	36.73	36.71	37.87	37.83
4	40.71	40.66	39.69	39.65	38.81	38.69	36.10	36.06	36.74	36.72	37.86	37.79
5	40.66	40.60	39.65	39.55	38.69	38.66	36.08	36.05	36.76	36.74	37.96	37.86
6	40.70	40.66	39.56	39.54	38.66	38.61	36.07	36.02	36.82	36.76	37.99	37.96
7	40.66	40.53	39.55	39.52	38.61	38.43	36.04	36.01	36.86	36.82	37.99	37.97
8	40.53	40.48	39.56	39.52	38.43	38.34	36.04	36.01	36.92	36.86	38.05	37.99
9	40.48	40.42	39.56	39.50	38.34	38.28	36.03	35.99	36.97	36.92	38.10	38.05
10	40.42	40.35	39.52	39.47	38.29	38.17	36.04	35.97	37.00	36.97	38.11	38.09
11	40.35	40.26	39.47	39.39	38.17	38.06	36.03	35.96	37.01	36.98	38.14	38.10
12	40.31	40.24	39.48	39.43	38.06	37.94	36.07	36.03	37.09	37.01	38.15	38.13
13	40.34	40.30	39.51	39.47	37.94	37.82	36.13	36.07	37.13	37.09	38.20	38.13
14	40.32	40.25	39.51	39.48	37.82	37.73	36.14	36.10	37.13	37.11	38.22	38.20
15	40.25	40.15	39.52	39.49	37.74	37.67	36.11	36.05	37.12	37.08	38.24	38.19
16	40.16	40.12	39.49	39.43	37.68	37.63	36.12	36.04	37.10	37.06	38.31	38.24
17	40.21	40.15	39.47	39.42	37.63	37.44	36.17	36.12	37.18	37.06	38.34	38.31
18	40.20	40.14	39.43	39.39	37.44	37.33	36.15	36.13	37.23	37.18	38.34	38.14
19	40.14	40.09	39.40	39.38	37.33	37.23	36.20	36.13	37.27	37.23	38.36	38.14
20	40.10	40.03	39.38	39.33	37.25	37.11	36.24	36.20	37.28	37.27	38.38	38.36
21	40.03	39.93	39.35	39.32	37.11	37.00	36.22	36.18	37.28	37.26	38.43	38.38
22	39.93	39.89	39.35	39.33	37.00	36.91	36.24	36.21	37.31	37.26	38.51	38.40
23	39.94	39.91	39.33	39.26	36.91	36.82	36.31	36.24	37.43	37.31	38.34	38.25
24	39.94	39.88	39.26	39.24	36.82	36.72	36.42	36.31	37.49	37.43	38.37	38.32
25	39.88	39.80	39.26	39.23	36.72	36.59	36.48	36.42	37.45	37.43	38.32	38.29
26 27 28 29 30 31	39.80 39.83 39.81 39.74 39.79	39.75 39.79 39.73 39.71 39.73	39.23 39.21 39.10 39.02 39.00 38.97	39.16 39.10 39.02 38.97 38.96 38.84	36.59 36.46 36.46 36.40 36.33	36.46 36.42 36.39 36.33 36.26	36.50 36.44 36.47 36.58 36.64 36.65	36.44 36.38 36.39 36.47 36.58 36.62	37.48 37.59 37.68 37.70 37.80 37.84	37.45 37.46 37.59 37.66 37.70 37.80	38.33 38.32 38.35 38.44 38.45	38.31 38.27 38.27 38.35 38.41
MONTH YEAR	40.95 45.90	39.71 35.96	39.73	38.84	39.01	36.26	36.65	35.96	37.84	36.61	38.51	37.76

Daily Low Water Levels

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

BALTIMORE COUNTY—Continued

WELL NUMBER .-- BA Ea 18. SITE ID .-- 392045076512501. PERMIT NUMBER .-- BA-01-8151.

LOCATION.--Lat 39°20'45", long 76°51'25", Hydrologic Unit 02060003, at Granite. Owner: Maryland National Guard (U.S. Army).

AQUIFER .-- Woodstock Granite of Silurian age. Aquifer code: 350WDCK.

WELL CHARACTERISTICS.--Drilled, unused, water-table well, depth 250 ft; casing diameter 10 in., to 50.7 ft; casing diameter 6 in., with depth to 71.3 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with water-level digital recorder--60 minute recorder interval from September 1999 to current Year.

DATUM.--Elevation of land surface is 491 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of shelter platform, 1.60 ft above land surface.

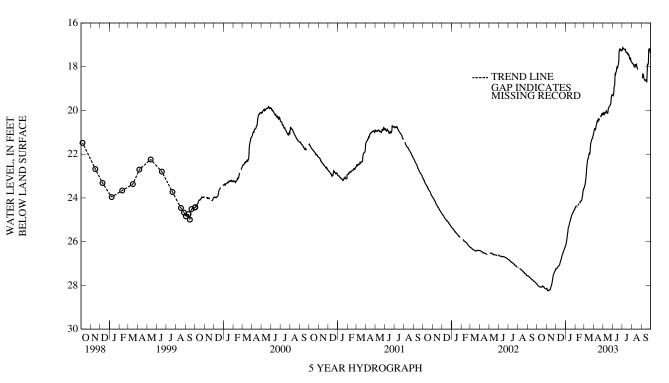
REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. U.S. Geological Survey water-level telemeter at well (See MD-DE-DC District WEB page, Real-Time, Ground-Water, Maryland).

PERIOD OF RECORD .-- November 1956 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.94 ft below land surface, June 24, 1972; lowest measured, 28.24 ft below land surface, November 4, 5, 7, and 8, 2002 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002	28.06	NOV 25, 2002	27.39	FEB 27, 2003	23.57	JUL 22, 2003	17.43
30	28.13	DEC 19	26.65	MAY 20	19.83	AUG 27	18.29
NOV 07	28.20	JAN 28, 2003	24.50	JUN 16	18.04	SEP 02	18.50
15	28.02	FEB 13	24.20	27	17.14	30	17.37


HIGHEST 17.14 JUN 27, 2003 LOWEST 28.20 NOV 07, 2002

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTOBER		NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAF	RCH
1 2 3 4 5	27.95 27.96 27.99 28.01 28.02	27.93 27.95 27.96 27.99 28.01	28.15 28.14 28.21 28.24 28.24	28.13 28.12 28.11 28.17 28.20	27.24 27.24 27.22 27.22 27.22 27.20	27.23 27.20 27.20 27.18 27.13	26.18 26.11 26.06 25.95 25.86	26.09 26.06 25.94 25.85 25.73	24.43 24.40 24.40 24.36 24.36	24.38 24.38 24.34 24.28 24.36	23.56 23.49 23.42 23.41 23.28	23.49 23.41 23.28 23.20
6 7 8 9 10	28.03 28.04 28.05 28.06 28.07	28.02 28.03 28.04 28.05 28.06	28.23 28.24 28.24 28.21 28.21	28.19 28.21 28.19 28.19 28.19 28.19	27.17 27.16 27.13 27.12 27.11	27.14 27.11 27.11 27.11 27.08	25.73 25.63 25.54 25.38 25.34	25.63 25.54 25.38 25.34 25.30	24.42 24.35	24.36 24.28	23.20 23.06 22.87 22.67 22.51	23.06 22.87 22.67 22.51 22.39
11 12 13 14 15	28.07 28.08 28.07 28.08 28.08	28.07 28.07 28.06 28.06 28.07	28.21 28.18 28.15 28.10 28.05	28.18 28.15 28.10 28.05 28.02	27.08 27.06 27.04 26.95 26.93	27.04 27.04 26.95 26.93 26.86	25.30 25.24 25.18 25.12 25.06	25.24 25.18 25.10 25.06 25.02	24.28 24.28 24.22 24.22 24.23	24.24 24.18 24.19 24.16	22.39 22.28 22.22 22.21 22.13	22.28 22.22 22.13 22.13 22.03
16 17 18 19 20	28.08 28.07 28.04 28.02 28.04	28.06 28.04 28.02 28.01 28.01	28.02 27.96 27.90 27.82 27.72	27.96 27.90 27.82 27.71 27.63	26.86 26.83 26.77 26.71 26.64	26.83 26.77 26.71 26.64 26.59	25.03 24.93 24.92 24.85 24.80	24.93 24.88 24.85 24.80 24.76	24.23 24.15 24.15 24.15 24.15 24.13	24.15 24.11 24.12 24.11 24.10	22.05 21.97 21.95 21.98 21.93	21.96 21.90 21.89 21.92 21.70
21 22 23 24 25	28.05 28.07 28.07 28.10 28.11	28.03 28.05 28.07 28.07 28.10	27.63 27.55 27.50 27.47 27.43	27.54 27.50 27.46 27.42 27.39	26.60 26.57 26.53 26.49 26.43	26.57 26.51 26.49 26.43 26.37	24.78 24.74 24.70 24.67 24.66	24.73 24.70 24.65 24.65 24.60	24.10 24.06 23.94 23.91 23.75	24.06 23.94 23.88 23.75 23.67	21.70 21.51 21.46 21.40 21.36	21.51 21.46 21.40 21.36 21.27
26 27 28 29 30 31	28.13 28.14 28.14 28.15 28.16 28.17	28.11 28.13 28.14 28.14 28.14 28.14 28.14	27.39 27.35 27.34 27.30 27.24	27.35 27.34 27.30 27.24 27.22	26.41 26.37 26.32 26.27 26.25 26.21	26.37 26.32 26.27 26.25 26.21 26.17	24.60 24.58 24.57 24.52 24.52 24.52 24.48	24.55 24.56 24.50 24.47 24.47 24.42	23.67 23.60 23.56 	23.60 23.55 23.53 	21.30 21.29 21.26 21.18 21.15 21.05	21.23 21.25 21.18 21.10 21.04 20.98
MONTH	28.17	27.93	28.24	27.22	27.24	26.17	26.18	24.42	24.43	23.53	23.56	20.98

BALTIMORE COUNTY—Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	ΥY	JU	NE	JI	ULY	AUC	JUST	SEPTE	MBER
1 2 3 4 5	21.01 20.91 20.87 20.83 20.83	20.86 20.84 20.81 20.79 20.75	20.16 20.12 20.18 20.20 20.16	20.08 20.05 20.12 20.16 20.09	19.32 19.33 19.28 19.20 18.95	19.19 19.28 19.20 18.95 18.85	17.25 17.20 17.13 17.16 17.16	17.19 17.13 17.10 17.12 17.14	17.79 17.84 17.85 17.87 17.88	17.74 17.79 17.84 17.85 17.84	18.53 18.48 18.31	 18.48 18.27 18.27
6 7 8 9 10	20.88 20.86 20.73 20.67 20.62	20.83 20.73 20.67 20.62 20.52	20.10 20.09 20.12 20.12 20.08	20.07 20.07 20.07 20.06 20.01	18.86 18.84 18.41 18.28 18.32	18.84 18.41 18.28 18.25 18.25	17.19 17.19 17.21 17.21 17.23	17.15 17.15 17.17 17.16 17.13	17.88 17.92 17.98 18.01 18.02	17.85 17.88 17.92 17.96 17.97	18.35 18.37 18.47 18.55 18.58	18.31 18.33 18.37 18.47 18.54
11 12 13 14 15	20.52 20.48 20.52 20.51 20.43	20.41 20.39 20.47 20.43 20.32	20.02 20.05 20.09 20.11 20.13	19.92 19.98 20.02 20.06 20.09	18.25 18.22 18.14 18.01 18.01	18.20 18.14 17.99 17.96 17.97	17.21 17.27 17.34 17.35 17.34	17.12 17.21 17.27 17.30 17.27	18.02 17.88 17.94 17.96 17.95	17.86 17.83 17.88 17.93 17.90	18.61 18.63 18.60 18.60 18.60	18.55 18.59 18.55 18.57 18.55
16 17 18 19 20	20.36 20.45 20.43 20.37	20.30 20.35 20.37 20.32	20.11 19.98 19.89 19.86 19.84	19.98 19.88 19.85 19.84 19.79	18.05 18.02 17.92 17.85 17.77	17.99 17.92 17.85 17.77 17.35	17.35 17.39 17.38 17.43 17.45	17.26 17.35 17.36 17.37 17.43	17.91 17.98 18.06 18.09 18.11	17.88 17.91 17.98 18.06 18.08	18.66 18.69 18.69 18.29 17.87	18.60 18.66 18.29 17.84 17.84
21 22 23 24 25	20.24 20.27 20.28 20.23	20.18 20.23 20.23 20.17	19.82 19.80 19.78 19.72 19.71	19.78 19.78 19.72 19.70 19.63	17.35 17.24 17.21 17.25 17.24	17.24 17.18 17.18 17.21 17.18	17.43 17.47 17.47 17.58 17.64	17.38 17.42 17.44 17.47 17.58	18.12 	18.08 	17.92 17.90 17.80 17.21 17.19	17.87 17.80 17.15 17.15 17.15
26 27 28 29 30 31	20.17 20.20 20.18 20.15 20.21	20.13 20.15 20.10 20.10 20.14	19.63 19.41 19.34 19.29 19.29 19.28	19.41 19.34 19.28 19.24 19.25 19.18	17.20 17.22 17.27 17.27 17.25	17.14 17.14 17.22 17.23 17.21	17.66 17.60 17.62 17.72 17.77 17.78	17.59 17.53 17.55 17.62 17.72 17.75	 	 	17.19 17.18 17.24 17.36 17.37	17.16 17.12 17.15 17.24 17.34
MONTH YEAR	21.01 28.24	20.10 17.10	20.20	19.18	19.33	17.14	17.78	17.10	18.12	17.74	18.69	17.12

Daily Low Water Levels

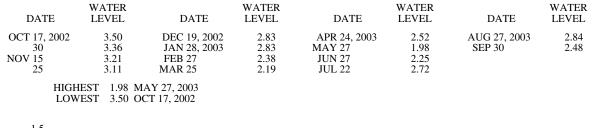
BALTIMORE COUNTY—Continued

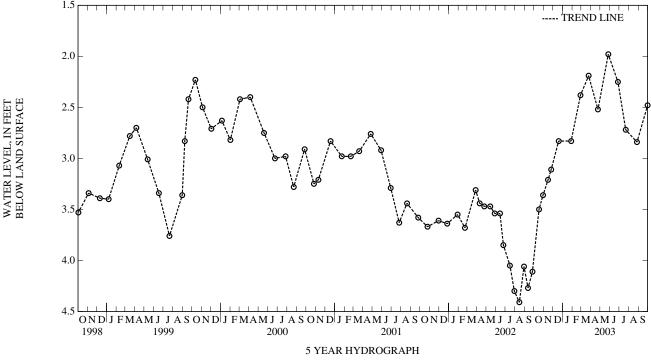
WELL NUMBER .-- BA Ec 43. SITE ID .-- 392305076432001.

LOCATION.--Lat 39°23'05", long 76°43'20", Hydrologic Unit 02060003, near Pikesville, at Druid Ridge Cemetery. Owner: Druid Ridge Cemetery.

AQUIFER .-- Baltimore Gneiss of Precambrian age. Aquifer code: 400BLMR.

WELL CHARACTERISTICS .-- Drilled, unused, water-table well, depth 111 ft; casing diameter 6 in., to 40 ft; open hole.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 500 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--March 1956 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.27 ft below land surface, June 24, 1972; lowest measured, 4.69 ft below land surface, November 11, 1964.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

BALTIMORE COUNTY—Continued

WELL NUMBER .-- BA Ee 145. SITE ID .-- 392436076332201. PERMIT NUMBER :-- BA-94-5859.

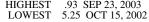
LOCATION.--Lat 39°24'36", long 76°33'22", Hydrologic Unit 02060003, at Cromwell Valley Park. Owner: U.S. Environmental Protection Agency.

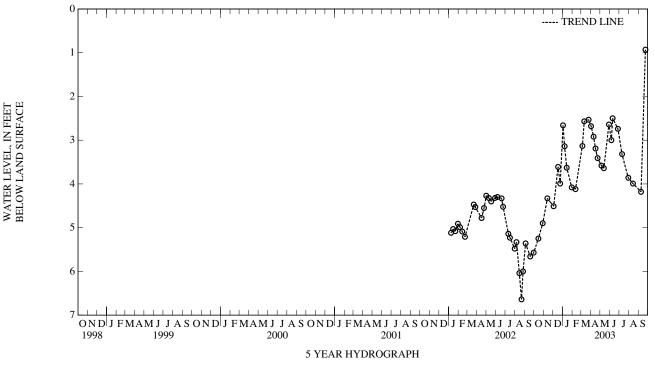
AQUIFER .-- Colluvium of Quaternary age. Aquifer code: 110CLVM.

WELL CHARACTERISTICS.--Cored, observation, water-table well, depth 14.15 ft; casing diameter 2 in., to 8.65 ft., and 13.65 to 14.15 ft; screen diameter 2 in., from 8.65 to 13.65 ft.

INSTRUMENTATION .-- Weekly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 223.72 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.85 ft above land surface.


REMARKS.---Minebank Run Project observation well.


PERIOD OF RECORD .-- January 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.93 ft below land surface, September 23, 2003; lowest measured, 6.64 ft below land surface, August 22, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15, 2002	5.25	JAN 14, 2003	3.63	APR 16, 2003	3.19	JUL 10, 2003	3.32
29	4.90	30	4.08	23	3.41	30	3.86
NOV 13	4.33	FEB 11	4.12	MAY 05	3.58	AUG 14	3.99
DEC 03	4.51	MAR 05	3.13	13	3.64	SEP 09	4.18
17	3.61	11	2.57	29	2.64	23	.93
24	3.99	25	2.53	JUN 06	3.00		
JAN 02, 2003	2.66	APR 02	2.68	10	2.50		
07	3.14	10	2.92	27	2.74		
шси	EST 02 SE	D 22 2002					

BALTIMORE COUNTY—Continued

WELL NUMBER.--BA Ee 161. SITE ID.--392437076332301. PERMIT NUMBER.--BA-94-5863.

LOCATION.--Lat 39°24'37", long 76°33'23", Hydrologic Unit 02060003, at Cromwell Valley Park. Owner: U.S. Environmental Protection Agency.

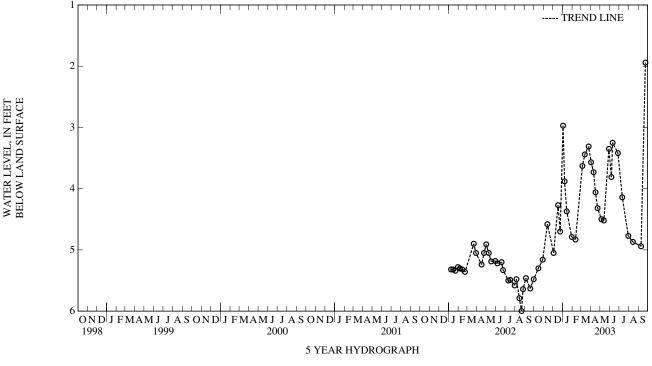
AQUIFER .-- Alluvium of Quaternary age. Aquifer code: 110ALVM.

WELL CHARACTERISTICS.--Cored, observation, water-table well, depth 10.80 ft; casing diameter 2 in., to 5.30 ft, and 10.30 to 10.80 ft; screen diameter 2 in., from 5.30 to 10.30 ft.

INSTRUMENTATION .-- Weekly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 224.72 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.90 ft above land surface.

REMARKS.-Minebank Run Project observation well.


PERIOD OF RECORD.--January 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.94 ft below land surface, September 23, 2003; lowest measured, 6.00 ft below land surface, August 22, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15, 2002	5.30	JAN 14, 2003	4.37	APR 16, 2003	4.06	JUL 11, 2003	4.14
29	5.16	30	4.79	23	4.32	30	4.77
NOV 13	4.58	FEB 11	4.83	MAY 05	4.50	AUG 14	4.87
DEC 03	5.05	MAR 05	3.63	13	4.52	SEP 09	4.94
17	4.27	13	3.44	29	3.35	23	1.94
24	4.70	25	3.31	JUN 06	3.81		
JAN 02, 2003	2.97	APR 02	3.57	10	3.25		
07	3.88	10	3.73	27	3.42		
HIGH	EST 194 SE	EP 23 2003					

LOWEST 5.30 OCT 15, 2002

BALTIMORE COUNTY—Continued

WELL NUMBER.--BA Ee 170. SITE ID.--392438076332201. PERMIT NUMBER.--BA-94-5876.

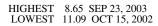
LOCATION.--Lat 39°24'38", long 76°33'22", Hydrologic Unit 02060003, at Cromwell Valley Park. Owner: U.S. Environmental Protection Agency.

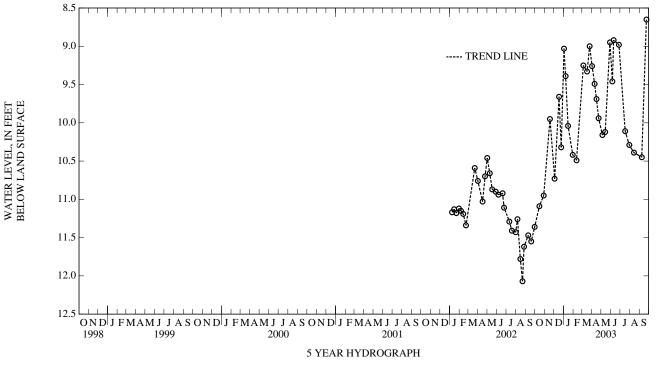
AQUIFER .-- Alluvium of Quaternary age. Aquifer code: 110ALVM.

WELL CHARACTERISTICS.--Cored, observation, water-table well, depth 15 ft; casing diameter 2 in., to 9.50 ft, and 14.50 to 15.00 ft; screen diameter 2 in., from 9.50 to 14.50 ft.

INSTRUMENTATION .-- Weekly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 228.37 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.22 ft above land surface.


REMARKS.-- Minebank Run Project observation well.


PERIOD OF RECORD .-- January 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.65 ft below land surface, September 23, 2003; lowest measured, 12.07 ft below land surface, August 22, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15, 2002	11.09	JAN 15, 2003	10.04	APR 16, 2003	9.69	JUL 17, 2003	10.11
29	10.95	30	10.42	23	9.94	30	10.29
NOV 18	9.95	FEB 11	10.49	MAY 05	10.16	AUG 14	10.39
DEC 03	10.73	MAR 05	9.25	14	10.12	SEP 08	10.45
17	9.66	17	9.33	29	8.95	23	8.65
24	10.32	25	9.00	JUN 06	9.46		
JAN 02, 2003	9.03	APR 02	9.26	10	8.92		
07	9.39	10	9.49	27	8.98		

BALTIMORE COUNTY—Continued

WELL NUMBER.--BA Ee 183. SITE ID.--392440076332002. PERMIT NUMBER.--BA-94-5897.

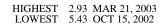
LOCATION.--Lat 39°24'40", long 76°33'20", Hydrologic Unit 02060003, at Cromwell Valley Park. Owner: U.S. Environmental Protection Agency.

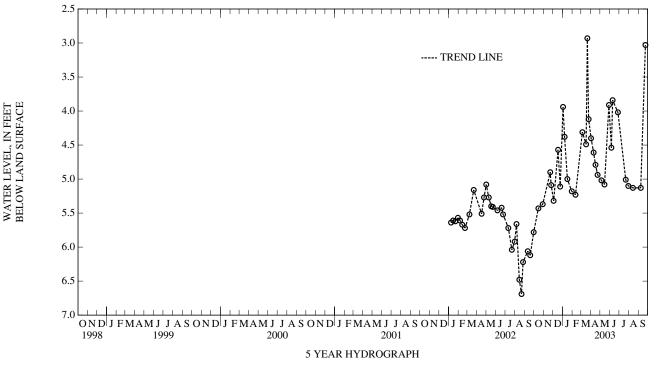
AQUIFER .-- Alluvium of Quaternary age. Aquifer code: 110ALVM.

WELL CHARACTERISTICS.--Cored, observation, water-table well, depth 7.50 ft; casing diameter 2 in., to 2.00 ft, and 7.00 to 7.50 ft; screen diameter 2 in., from 2.00 to 7.00 ft.

INSTRUMENTATION .-- Weekly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 221.99 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.80 ft above land surface.


REMARKS .-- Minebank Run Project observation well.


PERIOD OF RECORD.--January 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.93 ft below land surface, March 21, 2003; lowest measured, 6.69 ft below land surface, August 22, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15, 2002	5.43	JAN 07, 2003	4.38	APR 02, 2003	4.40	JUN 10, 2003	3.84
29	5.37	16	5.00	10	4.61	27	4.02
NOV 22	4.90	30	5.18	16	4.79	JUL 22	5.01
25	5.09	FEB 11	5.23	23	4.94	30	5.10
DEC 03	5.32	MAR 05	4.31	MAY 05	5.02	AUG 14	5.13
17	4.57	17	4.49	15	5.08	SEP 08	5.13
24	5.11	21	2.93	29	3.91	23	3.03
JAN 02, 2003	3.94	25	4.12	JUN 06	4.54		

BALTIMORE COUNTY—Continued

WELL NUMBER.--BA Ee 189. SITE ID.--392436076331901. PERMIT NUMBER.--BA-94-5882.

LOCATION.--Lat 39°24'36, long 76°33'19", Hydrologic Unit 02060003, at Cromwell Valley Park. Owner: U.S. Environmental Protection Agency.

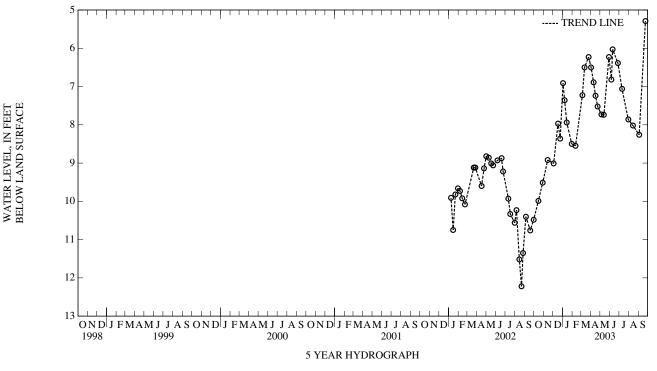
AQUIFER .-- Colluvium of Quaternary Age. Aquifer code: 110CLVM.

WELL CHARACTERISTICS.--Cored, observation, water-table well, depth 24.50 ft; casing diameter 2 in., to 19.00 ft, and 24.00 to 24.50 ft; screen diameter 2 in., from 19.00 to 24.00 ft.

INSTRUMENTATION .-- Weekly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 223.98 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.99 ft above land surface.

REMARKS .-- Minebank Run Project observation well.


PERIOD OF RECORD.--January 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.29 ft below land surface, September 23, 2003; lowest measured, 12.22 ft below land surface, August 22, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15, 2002	9.99	JAN 14, 2003	7.94	APR 16, 2003	7.24	JUL 10, 2003	7.06
29	9.51	30	8.50	23	7.52	30	7.86
NOV 14	8.92	FEB 11	8.55	MAY 05	7.73	AUG 14	8.02
DEC 03	9.01	MAR 05	7.23	13	7.74	SEP 03	8.26
17	7.97	12	6.50	29	6.23	23	5.29
24	8.36	25	6.23	JUN 06	6.82		
JAN 02, 2003	6.91	APR 02	6.50	10	6.03		
07	7.36	10	6.89	27	6.39		
нісн	EST 5 20 SE	FP 23 2003					

LOWEST 9.99 OCT 15, 2002

BALTIMORE COUNTY—Continued

WELL NUMBER.--BA Ee 192. SITE ID.--392438076331803. PERMIT NUMBER.--BA-94-5894.

LOCATION.--Lat 39°24'38", long 76°33'18", Hydrologic Unit 02060003, at Cromwell Valley Park. Owner: U.S. Environmental Protection Agency.

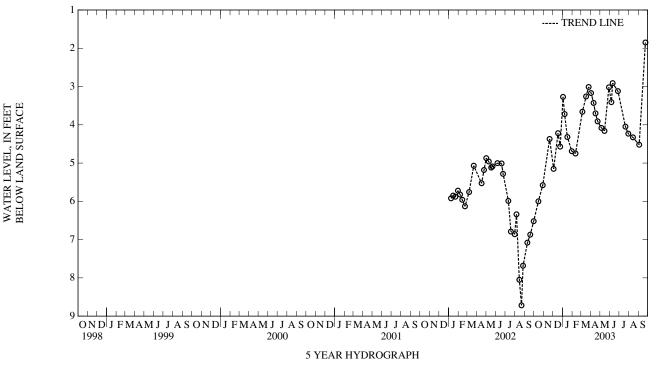
AQUIFER.--Colluvium of Quaternary age. Aquifer code: 110CLVM.

WELL CHARACTERISTICS.-Drilled, observation, water-table well, depth 24.70 ft; casing diameter 2 in., to 19.20 ft, and 24.20 to 24.70 ft; screen diameter 2 in., from 19.20 to 24.20 ft.

INSTRUMENTATION .-- Weekly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 219.43 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.85 ft above land surface.

REMARKS.--Minebank Run Project observation well.


PERIOD OF RECORD.--January 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.85 ft below land surface, September 23, 2003; lowest measured, 8.72 ft below land surface, August 22, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15, 2002	6.00	JAN 16, 2003	4.32	APR 16, 2003	3.70	JUL 21, 2003	4.05
29	5.58	30	4.69	23	3.91	30	4.23
NOV 20	4.37	FEB 11	4.75	MAY 05	4.08	AUG 14	4.33
DEC 03	5.15	MAR 05	3.66	15	4.16	SEP 03	4.52
17	4.22	17	3.26	29	3.02	23	1.85
24	4.57	25	3.01	JUN 06	3.41		
JAN 02, 2003	3.27	APR 02	3.17	10	2.91		
07	3.72	10	3.43	27	3.12		
нісн	FST 185 SF	FP 23 2003					

HIGHEST 1.85 SEP 23, 2003 LOWEST 6.00 OCT 15, 2002

BALTIMORE COUNTY—Continued

WELL NUMBER.--BA Ee 198. SITE ID.--392458076330301. PERMIT NUMBER.--BA-94-0454.

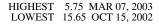
LOCATION.--Lat 39°24'58", long 76°33'03", Hydrologic Unit 02060003, at Cromwell Valley Park. Owner: Baltimore County.

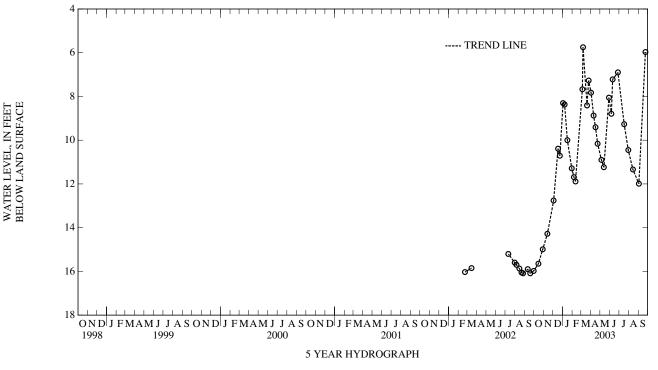
AQUIFER.--Cockeysville Marble of Cambrian age. Aquifer code: 300CCKV.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 27.00 ft; casing diameter 4 in., to 6.00 ft, and 26.00 to 27.00 ft; screen diameter 4 in., from 6.00 to 26.00 ft.

INSTRUMENTATION .-- Weekly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 237.66 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.22 ft above land surface.


REMARKS.--Minebank Run Project observation well.


PERIOD OF RECORD.--January 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.75 ft below land surface, March 5, 2003; lowest measured, 16.09 ft below land surface, August 27, 2002 and September 19, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15, 2002	15.65	JAN 16, 2003	10.00	APR 02, 2003	7.83	JUN 10, 2003	7.22
29	14.99	30	11.29	10	8.87	27	6.90
NOV 13	14.28	FEB 06	11.69	16	9.41	JUL 17	9.27
DEC 03	12.76	11	11.89	23	10.16	30	10.45
17	10.39	MAR 05	7.67	MAY 05	10.90	AUG 14	11.34
23	10.71	07	5.75	13	11.24	SEP 02	11.99
JAN 02, 2003	8.30	20	8.41	29	8.05	23	5.97
07	8.37	25	7.27	JUN 06	8.79		

BALTIMORE COUNTY—Continued

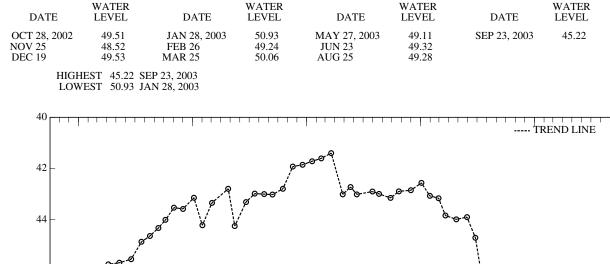
WELL NUMBER .-- BA Fe 19. SITE ID .-- 391607076312901.

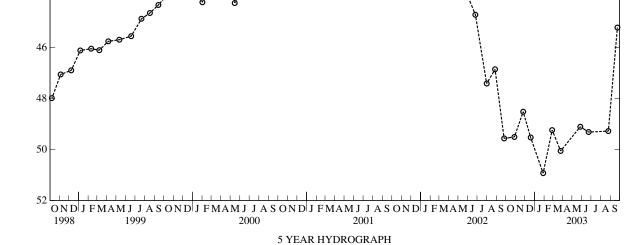
WATER LEVEL, IN FEET BELOW LAND SURFACE

LOCATION.--Lat 39°16'07", long 76°31'29", Hydrologic Unit 02060003, 0.2 mi east of Willow Spring Road, at Seagrams warehouse facility, Dundalk. Owner: Montebello Brands.

AQUIFER.--Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS .-- Drilled, unused, artesian well, depth 402 ft; casing diameter 8 in., to unknown depth; screen length 35 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 30 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.5 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--January 1952 to March 1954, January 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 41.40 ft below land surface, March 20, 2001; lowest measured, 95.88 ft below land surface, October 6, 1952.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

BALTIMORE COUNTY-Continued

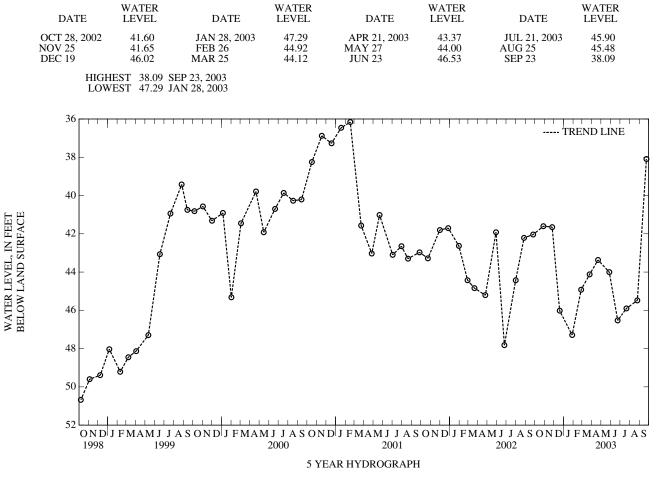
WELL NUMBER .-- BA Gf 11. SITE ID .-- 391356076293501.

LOCATION.--Lat 39°13'56", long 76°29'35", Hydrologic Unit 02060003, near Tin Mill Rd., Sparrows Point. Owner: Bethlehem Steel Co.

AQUIFER.-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS .-- Drilled, unused, artesian well, depth 645 ft; casing diameter 14 in., to 422.70 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 13.57 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.58 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--September 1981, March 1982, September 1982, January 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 31.25 ft below land surface, June 3, 1983; lowest measured, 62.27 ft below land surface, October 20, 1997.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

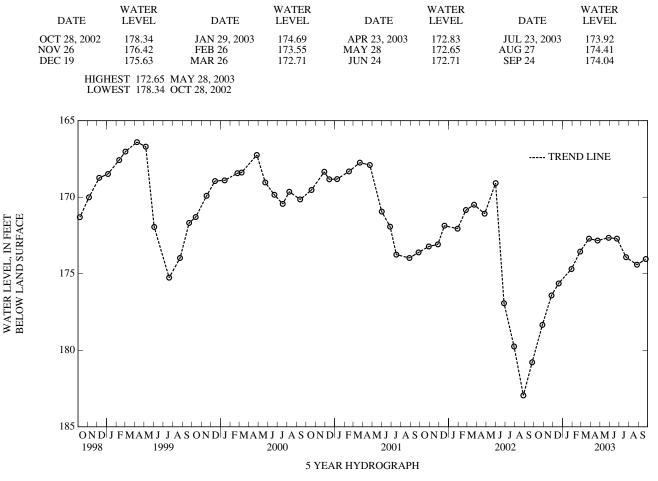
CALVERT COUNTY

WELL NUMBER .-- CA Bb 27. SITE ID .-- 384333076394701. PERMIT NUMBER .-- CA-73-3303.

LOCATION.--Lat 38°43'33", long 76°39'47", Hydrologic Unit 02060006, at Dunkirk Regional Park, Dunkirk. Owner: U.S. Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 320 ft; casing diameter 4 in., to 250 ft; casing diameter 2 in., from 250 to 310 ft; screen diameter 2 in., from 310 to 320 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 137.87 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.80 ft above land surface.

REMARKS .-- Calvert County Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- August 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 133.82 ft below land surface, May 6, 1980; lowest measured, 182.95 ft below land surface, August 28, 2002.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CALVERT COUNTY—Continued

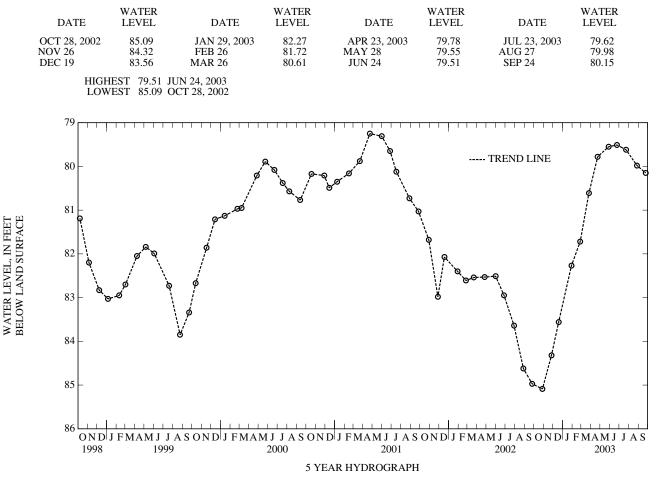
WELL NUMBER .-- CA Bb 28. SITE ID .-- 384333076394702. PERMIT NUMBER .-- CA-73-3721.

LOCATION.--Lat 38°43'33", long 76°39'47", Hydrologic Unit 02060006, at Dunkirk Regional Park, Dunkirk. Owner: U.S. Geological Survey.

AQUIFER .-- Nanjemoy Formation of Lower Eocene age. Aquifer code: 124NNJM.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 170 ft; casing diameter 4 in., to 147 ft; casing diameter 2 in., from 147 to 160 ft; screen diameter 2 in., from 160 to 170 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 138.67 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.60 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- July 1980 to current year.

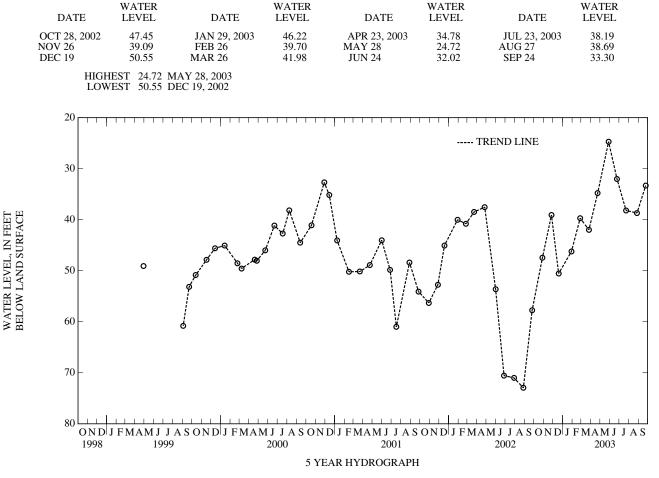
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 76.55 ft below land surface, May 4, 1998; lowest measured, 85.09 ft below land surface, October 28, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CALVERT COUNTY—Continued

WELL NUMBER .-- CA Bc 25. SITE ID .-- 384114076320301. PERMIT NUMBER .-- CA-67-0011.

LOCATION.--Lat 38°41'14", long 76°32'03", Hydrologic Unit 02060004, at Chesapeake Beach Park, Chesepeake Beach. Owner: Chesapeake Beach Park, Inc. AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.


WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 365 ft; casing diameter 8 in., to 333.4 ft; screen diameter 8 in., from 333.4 to 365 ft.
 INSTRUMENTATION.--Monthly water level measurements from September 1999 to current year. Twice yearly water level measurements from June 1993 to September 1999 with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 17.77 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of reducer, 3.50 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--June 1993 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.00 ft below land surface, July 23, 1966; lowest measured, 72.95 ft below land surface, August 28, 2002.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CALVERT COUNTY-Continued

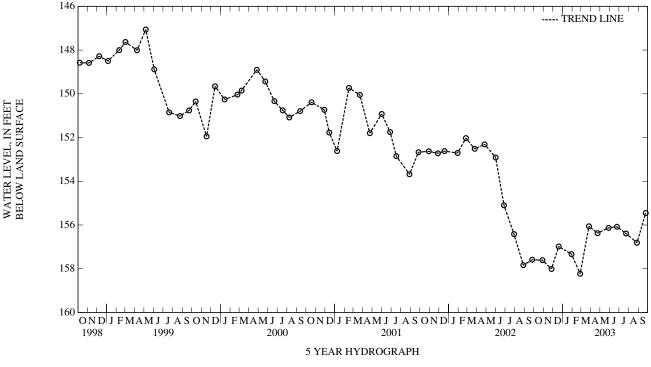
WELL NUMBER .-- CA Cc 18. SITE ID .-- 383940076314801.

LOCATION.--Lat 38°39'40", long 76°31'48", Hydrologic Unit 02060004, at Naval Research Laboratory, Randle Cliff. Owner: U.S.Navy.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 476 ft; casing diameter 6 in., to 462 ft; screened from 462 to 476 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with water-level recorder September 1958 to December 1962.


DATUM.--Elevation of land surface is 111.31 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.30 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. A water level measurement of 76.68 ft below land surface, was made on September 10, 1952. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--September 1958 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 103.63 ft below land surface, May 14, 1961; lowest measured, 158.23 ft below land surface, February 26, 2003.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 26 DEC 19	157.61 158.01 156.98	JAN 29, 2003 FEB 26 MAR 26	157.33 158.23 156.06	APR 23, 2003 MAY 28 JUN 24	156.37 156.13 156.08	JUL 23, 2003 AUG 27 SEP 24	156.39 156.81 155.45
		SEP 24, 2003 FEB 26, 2003					

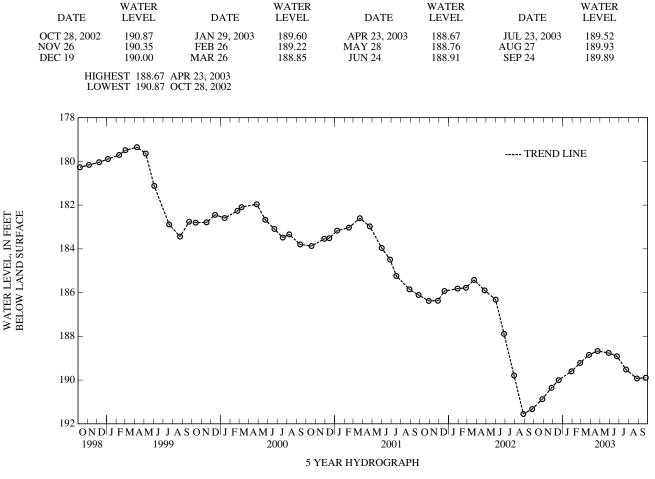
OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CALVERT COUNTY—Continued

WELL NUMBER .-- CA Cc 57. SITE ID .-- 383605076344601. PERMIT NUMBER .-- CA-73-2893.

LOCATION .-- Lat 38°36'05", long 76°34'46", Hydrologic Unit 02060006, Cox Rd. near MD Rt. 263, Huntingtown. Owner: U.S. Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.


WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 579 ft; casing diameter 4 in., to 211 ft; casing diameter 2 in., from 211 to 511 ft, and 521 to 579 ft; screen diameter 3 in., from 511 to 521 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 138.60 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.66 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--December 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 140.00 ft below land surface, March 7, 1979; lowest measured, 191.55 ft below land surface, August 28, 2002.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CALVERT COUNTY—Continued

WELL NUMBER .-- CA Db 47. SITE ID .-- 383239076354201. PERMIT NUMBER .-- CA-73-3304.

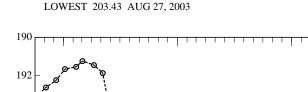
LOCATION.--Lat 38°32'39", long 76°35'42", Hydrologic Unit 02060006, Prince Frederick. Owner: U.S. Geological Survey.

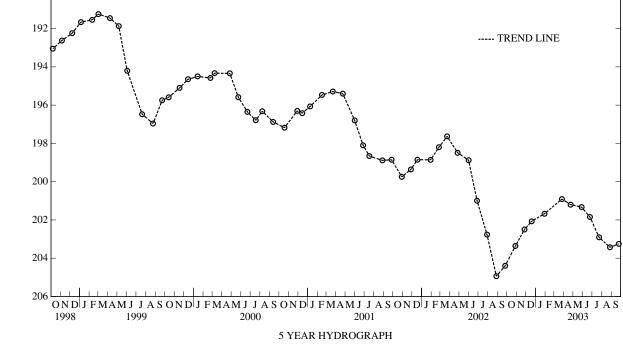
AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 570 ft; casing diameter 4 in., to 483 ft; casing diameter 2 in., from 483 to 560 ft; screen diameter 2 in., from 560 to 570 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 140 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.20 ft above land surface.


REMARKS .-- Calvert County Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.


PERIOD OF RECORD .-- July 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 148.54 ft below land surface, July 31, 1979; lowest measured, 204.94 ft below land surface, August 28, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 26 DEC 19	203.36 202.50 202.07	JAN 29, 2003 MAR 26 APR 23	201.68 200.91 201.20	MAY 28, 2003 JUN 24 JUL 23	201.33 201.85 202.91	AUG 27, 2003 SEP 24	203.43 203.25
HIGH	EST 200.91 N	MAR 26, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

CALVERT COUNTY—Continued

WELL NUMBER .-- CA Db 65. SITE ID .-- 383216076351401. PERMIT NUMBER .-- CA-81-2415.

LOCATION.--Lat 38°32'16", long 76°35'14", Hydrologic Unit 02060006, at St. Paul's Episcopal Church parking lot, Prince Frederick. Owner: U.S. Geological Survey.

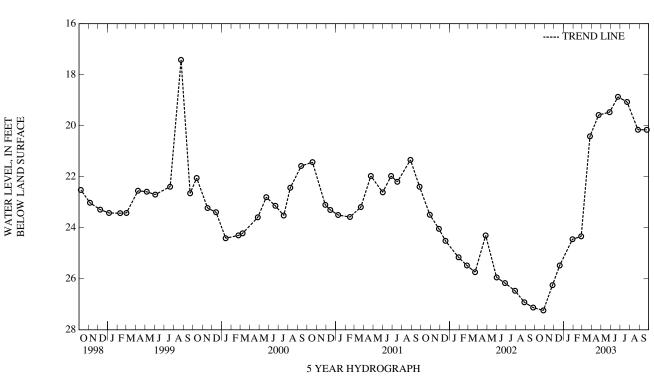
AQUIFER.--Brandywine Formation of Pliocene age. Aquifer code: 112UPLD.

WELL CHARACTERISTICS.--Drilled, water-table, observation well, depth 49 ft; casing diameter 3 in., to 22 ft, and 32 to 49 ft; screen diameter 3 in., from 22 to 32 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 159.33 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of PVC casing, 2.38 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. The water level measurement of 17.42 ft below land surface, on August 24, 1999, was made after a heavy rain shower earlier in the day.


PERIOD OF RECORD .-- July and August 1986, October 1988 to current year.

LOWEST 27.24 OCT 28, 2002

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.64 ft below land surface, May 9, 1990; lowest measured, 27.24 ft below land surface, October 28, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 26 DEC 19	27.24 26.25 25.48	JAN 29, 2003 FEB 26 MAR 26	24.45 24.34 20.42	APR 23, 2003 MAY 28 JUN 24	19.58 19.47 18.87	JUL 23, 2003 AUG 27 SEP 24	19.07 20.16 20.16
HIGH	EST 18.87 JU	UN 24, 2003					

CALVERT COUNTY-Continued

WELL NUMBER .-- CA Db 96. SITE ID .-- 383244076354201. PERMIT NUMBER .-- CA-94-4191.

LOCATION.--Lat 38°32'44", long 76°35'42", Hydrologic Unit 02060006. Owner: Maryland Geological Survey.

AQUIFER.--Upper Patapsco Aquifer Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS .-- Drilled, confined observation well, depth 970 ft; casing diameter 4 in., to 970 ft. depth.

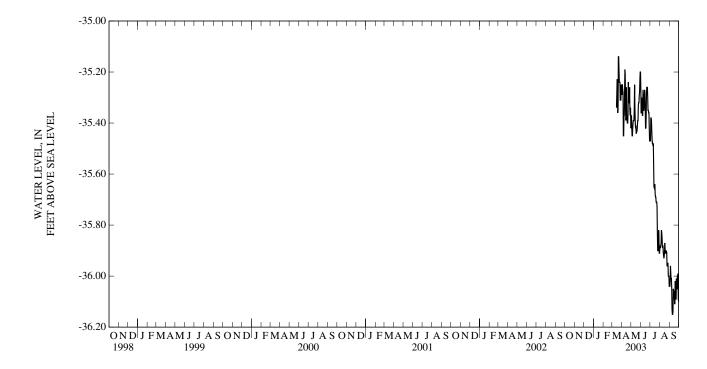
INSTRUMENTATION.--Monthly measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60minute recording interval, March 2003 to current year.

DATUM.--Elevation of land surface is 151.56 ft above North American Vertical Datum of 1988. Measuring point: Top of shelter platform, 3.00 ft above land surface.

REMARKS .-- Southern Maryland Patapsco Aquifer Well Drilling Project observation well. Water levels affected by nearby pumping.

PERIOD OF RECORD .-- March 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.08 ft below sea level, April 12, 2003 (recorder); lowest measured, 36.16 ft below land surface, Sept. 24, 2003 (recorder).


WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
APR 23, 2003 MAY 28	-35.27 -35.23	JUN 24, 2003 JUL 23	-35.35 -35.72	AUG 27, 2003 SEP 24	-35.94 -36.05		
	EST -36.05 SI EST -35.23 M						

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBR	UARY	MAF	RCH
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15											-35.29	-35.34
16											-35.23	-35.29
17											-35.18	-35.23
18											-35.18	-35.23
19											-35.23	-35.36
20											-35.14	-35.35
21											-35.12	-35.14
22											-35.12	-35.14
23											-35.14	-35.19
24											-35.19	-35.24
25											-35.24	-35.24
26											-35.19	-35.24
27											-35.24	-35.31
28											-35.31	-35.31
29											-35.25	-35.31
30											-35.23	-35.25
31											-35.23	-35.28
MONTH											-35.12	-35.36

CALVERT COUNTY—Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JUI	NE	JU	LY	AUG	UST	SEPTE	MBER
1	-35.24	-35.29	-35.37	-35.41	-35.12	-35.27	-35.47	-35.47	-35.88	-35.89	-36.04	-36.04
2	-35.24	-35.25	-35.32	-35.37	-35.27	-35.36	-35.38	-35.47	-35.88	-35.88	-36.01	-36.04
3	-35.25	-35.25	-35.33	-35.42	-35.31	-35.36	-35.36	-35.38	-35.88	-35.89	-35.96	-36.02
4	-35.24	-35.27	-35.42	-35.45	-35.29	-35.31	-35.36	-35.38	-35.87	-35.88	-35.90	-35.96
5	-35.24	-35.28	-35.42	-35.45	-35.30	-35.30	-35.38	-35.39	-35.81	-35.87	-35.90	-35.99
6	-35.28	-35.45	-35.40	-35.42	-35.30	-35.37	-35.39	-35.43	-35.81	-35.82	-35.99	-36.01
7	-35.37	-35.45	-35.36	-35.40	-35.25	-35.37	-35.43	-35.46	-35.82	-35.83	-36.01	-36.01
8	-35.36	-35.37	-35.36	-35.39	-35.25	-35.27	-35.45	-35.48	-35.82	-35.85	-36.01	-36.05
9	-35.27	-35.37	-35.35	-35.39	-35.26	-35.29	-35.45	-35.48	-35.85	-35.88	-36.05	-36.13
10	-35.19	-35.27	-35.34	-35.39	-35.29	-35.35	-35.45	-35.49	-35.86	-35.89	-36.13	-36.15
11	-35.13	-35.19	-35.20	-35.34	-35.32	-35.35	-35.42	-35.48	-35.87	-35.88	-36.14	-36.15
12	-35.09	-35.21	-35.20	-35.25	-35.26	-35.32	-35.48	-35.56	-35.88	-35.91	-36.04	-36.14
13	-35.21	-35.35	-35.25	-35.34	-35.26	-35.27	-35.56	-35.65	-35.91	-35.92	-36.03	-36.05
14	-35.34	-35.39	-35.34	-35.39	-35.26	-35.28	-35.63	-35.65	-35.92	-35.93	-36.05	-36.06
15	-35.26	-35.37	-35.39	-35.42	-35.28	-35.33	-35.64	-35.66	-35.90	-35.92	-36.04	-36.06
16	-35.23	-35.26	-35.39	-35.41	-35.33	-35.42	-35.61	-35.64	-35.86	-35.90	-36.05	-36.08
17	-35.23	-35.38	-35.41	-35.44	-35.38	-35.42	-35.63	-35.68	-35.85	-35.87	-36.08	-36.10
18	-35.38	-35.39	-35.43	-35.44	-35.29	-35.38	-35.68	-35.69	-35.87	-35.90	-35.82	-36.11
19	-35.39	-35.40	-35.43	-35.43	-35.26	-35.29	-35.69	-35.69	-35.90	-35.91	-35.82	-36.02
20	-35.36	-35.40	-35.41	-35.43	-35.26	-35.26	-35.69	-35.71	-35.90	-35.91	-36.02	-36.06
21	-35.24	-35.36	-35.39	-35.41	-35.26	-35.26	-35.70	-35.71	-35.90	-35.91	-36.06	-36.09
22	-35.22	-35.24	-35.39	-35.39	-35.26	-35.26	-35.70	-35.71	-35.89	-35.90	-36.01	-36.09
23	-35.24	-35.29	-35.33	-35.39	-35.26	-35.30	-35.70	-35.73	-35.89	-35.91	-35.95	-36.01
24	-35.29	-35.32	-35.32	-35.33	-35.30	-35.35	-35.73	-35.83	-35.91	-35.96	-35.99	-36.05
25	-35.26	-35.32	-35.32	-35.32	-35.35	-35.35	-35.83	-35.90	-35.94	-35.96	-36.00	-36.05
26 27 28 29 30 31	-35.20 -35.24 -35.34 -35.33 -35.34	-35.26 -35.35 -35.37 -35.34 -35.42	-35.23 -35.25 -35.23 -35.19 -35.19 -35.12	-35.32 -35.29 -35.28 -35.23 -35.20 -35.20	-35.35 -35.35 -35.36 -35.42 -35.46	-35.36 -35.36 -35.42 -35.47 -35.47	-35.89 -35.82 -35.81 -35.81 -35.85 -35.89	-35.90 -35.90 -35.82 -35.85 -35.91 -35.91	-35.94 -35.94 -35.95 -35.99 -35.99 -36.00	-35.95 -35.95 -36.00 -36.00 -36.00 -36.04	-36.00 -35.99 -35.93 -35.97 -36.09	-36.00 -36.00 -35.99 -36.09 -36.10
MONTH YEAR	-35.09 -35.09	-35.45 -36.15	-35.12	-35.45	-35.12	-35.47	-35.36	-35.91	-35.81	-36.04	-35.82	-36.15

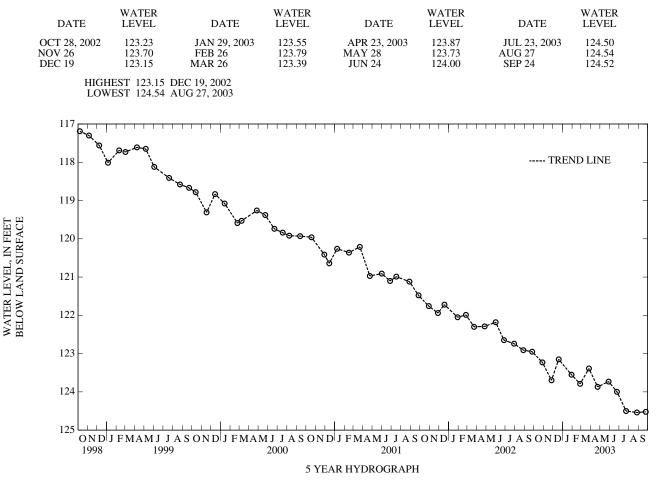
CALVERT COUNTY-Continued

WELL NUMBER .-- CA Dc 35. SITE ID .-- 383050076305501. PERMIT NUMBER .-- CA-73-0718.

LOCATION.--Lat 38°30'50", long 76°30'55", Hydrologic Unit 02060004, 5.1 mi. southeast of Prince Frederick, at Scientist Cliff community. Owner: U.S. Geological Survey.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 760 ft; casing diameter 4 in., to 750 ft; screen diameter 2 in., from 750 to 760 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel from November 1991 to current year. Twice yearly water level measurements from April 1975 to September 1978, and April 1983 to September 1990. Equipped with water-level recorder from February 1976 to January 1980.

DATUM .-- Elevation of land surface is 91.60 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.90 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD .-- October 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 82.30 ft below land surface, September 12, 1975. lowest measured, 124.54 ft below land surface, August 27, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CALVERT COUNTY—Continued

WELL NUMBER .-- CA Ed 52. SITE ID .-- 382549076260101. PERMIT NUMBER .-- CA-92-0081.

LOCATION.--Lat 38°25'49", long 76°26'01", Hydrologic Unit 020600004, at Calvert Cliffs Nuclear Power Plant, 4.3 mi. southeast of St. Leonard. Owner: Baltimore Gas and Electric Co.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 590 ft; casing diameter 4.5 in., to 460 ft; casing diameter 2 in., from 455 to 565 ft, and 580 to 590 ft; screen diameter 2 in., from 565 to 580 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recorder interval from April 1995 to curent year.
- DATUM.--Elevation of land surface is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of shelter platform, 1.40 ft above land surface.

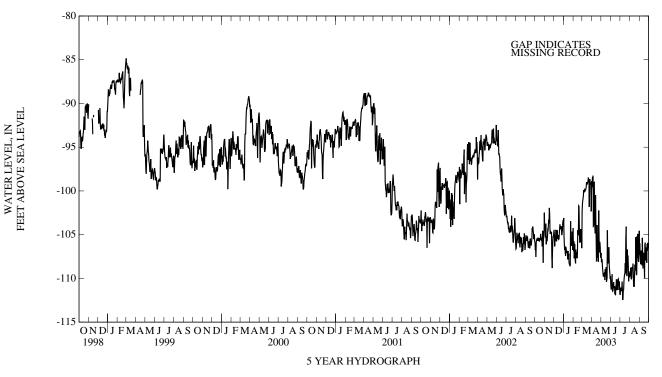
REMARKS.--Southern Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- April 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 70.66 ft below sea level, May 21, 1995 (recorder); lowest measured, 112.47 ft below sea level, July 9, 2003 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 JAN 15, 2003	-99.21 -106.84	MAR 31, 2003 MAY 19	-99.99 -106.56	JUL 30, 2003	-105.55		


LOWEST -106.84 JAN 15, 2003 HIGHEST -99.21 OCT 31, 2002

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAH	RCH
1	-104.5	-105.9	-101.6	-104.3	-104.0	-104.5	-102.0	-103.1	-101.5	-106.3	-100.8	-102.4
2	-104.8	-106.8	-102.8	-103.9	-103.8	-104.9	-102.3	-105.2	-102.3	-106.9	-99.8	-101.5
3	-105.0	-106.6	-103.0	-104.4	-103.8	-106.3	-104.7	-106.0	-102.0	-105.8	-99.8	-101.1
4	-105.2	-107.5	-103.4	-105.3	-104.3	-105.8	-105.3	-106.8	-102.3	-107.7	-99.8	-100.9
5	-104.8	-105.8	-101.6	-103.7	-103.8	-105.6	-104.8	-106.3	-102.6	-106.0	-98.9	-100.5
6	-104.6	-105.6	-101.8	-106.1	-103.7	-105.2	-105.0	-107.1	-101.9	-107.1	-98.7	-99.9
7	-104.2	-105.5	-103.3	-105.2	-103.4	-104.5	-105.9	-107.4	-103.7	-108.0	-99.2	-100.2
8	-104.5	-105.7	-104.2	-105.7	-103.5	-105.3	-104.7	-106.4	-103.4	-108.3	-99.0	-100
9	-104.1	-105.5	-104.3	-105.7	-103.8	-105.8	-104.9	-106.6	-102.9	-106.7	-98.7	-99.9
10	-104.4	-105.5	-102.3	-105.2	-103.7	-105.5	-105.4	-107.1	-103.2	-107.6	-99.0	-100.1
11	-104.0	-105.3	-102.9	-104.4	-103.4	-104.5	-105.7	-107.0	-103.0	-107.5	-98.8	-99.9
12	-103.8	-105.7	-102.4	-104.5	-103.5	-105.3	-106.0	-107.2	-103.2	-107.0	-98.8	-99.9
13	-103.7	-105.4	-101.7	-103.9	-103.5	-105.5	-105.6	-106.9	-103.0	-107.7	-98.7	-99.8
14	-104.0	-105.5	-100.6	-103.3	-103.7	-105.0	-106.0	-107.8	-103.5	-107.1	-98.4	-99.6
15	-103.8	-105.7	-100.5	-103.7	-104.5	-105.4	-105.7	-106.9	-102.2	-104.5	-98.2	-99.0
16	-103.6	-105.7	-100.8	-101.9	-104.5	-105.5	-106.3	-107.6	-101.2	-105.1	-98.0	-99.1
17	-104.1	-105.4	-100.6	-102.6	-104.3	-105.5	-105.8	-107.2	-101.2	-105.0	-98.0	-99.1
18	-104.4	-105.6	-101.3	-104.4	-102.9	-104.8	-105.7	-108.2	-100.6	-101.7	-97.8	-99.2
19	-104.0	-104.9	-102.4	-104.9	-103.3	-104.2	-106.6	-108.3	-100.4	-101.8	-97.9	-99.0
20	-104.5	-105.4	-103.2	-104.7	-103.0	-103.8	-106.7	-108.3	-101.6	-104.1	-97.6	-98.8
21	-104.2	-105.4	-102.5	-104.8	-103.1	-104.3	-107.0	-108.6	-101.2	-105.6	-97.1	-98.5
22	-104.5	-105.5	-102.9	-104.8	-103.2	-104.1	-101.6	-108.5	-101.3	-105.9	-97.5	-98.7
23	-104.4	-105.5	-103.2	-104.7	-103.2	-104.4	-99.8	-103.4	-100.9	-105.1	-97.6	-98.9
24	-104.4	-106.3	-102.6	-107.5	-103.1	-104.0	-103.4	-105.8	-101.6	-104.4	-97.9	-101.8
25	-103.9	-105.4	-105.3	-108.8	-103.0	-104.6	-104.6	-105.5	-101.8	-105.8	-97.6	-99.0
26 27 28 29 30 31	-103.7 -103.8 -104.5 -104.1 -101.3 -99.0	-104.6 -108.2 -105.5 -105.3 -105.1 -102.5	-104.9 -103.9 -104.3 -103.6 -103.6	-107.0 -105.9 -105.2 -105.3 -104.8	-103.3 -103.5 -102.8 -102.7 -102.5 -102.4	-105.0 -104.8 -104.5 -103.6 -103.3 -103.6	-104.6 -102.5 -101.6 -101.6 -101.5 -101.5	-106.2 -106.3 -104.7 -105.2 -106.8 -104.2	-101.5 -101.5 -102.2 	-105.3 -104.4 -106.5 	-97.4 -97.4 -98.0 -98.1 -98.2 -98.8	-98.6 -99.2 -99.0 -99.3 -102.3 -100
MONTH	-99.0	-108.2	-100.5	-108.8	-102.4	-106.3	-99.8	-108.6	-100.4	-108.3	-97.1	-102.4

CALVERT COUNTY—Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JUI	NE	JU	LY	AUG	UST	SEPTE	MBER
1	-97.1	-98.9	-102.0	-107.1	-109.0	-110.8	-107.9	-111.9	-106.0	-109.4	-102.8	-107.3
2	-97.9	-99.6	-104.0	-108.2	-107.4	-111.3	-107.3	-111.3	-105.5	-109.4	-103.2	-106.0
3	-96.8	-98.5	-103.9	-107.8	-106.2	-111.1	-106.6	-111.1	-105.1	-109.8	-102.9	-107.5
4	-96.9	-98.5	-104.2	-107.9	-105.7	-110.5	-108.2	-111.5	-105.0	-108.8	-102.5	-108.2
5	-97.1	-98.3	-103.8	-108.6	-104.9	-109.5	-106.9	-111.1	-105.6	-110.0	-104.7	-108.4
6	-97.3	-104.0	-104.5	-109.1	-109.5	-111.4	-106.9	-111.3	-104.8	-110.0	-104.0	-106.8
7	-98.2	-104.0	-104.7	-109.5	-106.9	-111.5	-106.5	-110.4	-105.6	-109.9	-104.8	-108.2
8	-98.1	-99.0	-105.5	-109.8	-106.6	-111.3	-108.0	-111.3	-105.0	-108.7	-103.8	-107.1
9	-97.8	-99.0	-105.4	-109.8	-106.1	-110.8	-108.0	-112.5	-104.9	-108.8	-102.2	-108.5
10	-98.0	-101.6	-104.6	-109.5	-106.1	-110.4	-107.5	-112.3	-104.8	-108.8	-101.9	-105.4
11	-101.1	-104.3	-104.9	-109.4	-106.2	-111.1	-107.3	-111.3	-105.2	-108.3	-101.8	-107.3
12	-100.4	-104.8	-104.8	-109.3	-107.1	-110.9	-107.8	-111.3	-105.7	-109.5	-104.2	-108.9
13	-99.4	-100.5	-105.2	-110.2	-106.5	-111.1	-106.4	-110.3	-106.4	-110.9	-103.2	-107.1
14	-99.4	-103.5	-105.4	-109.0	-110.2	-111.8	-106.1	-109.8	-105.6	-110.7	-103.2	-107.1
15	-100.8	-105.5	-104.5	-109.6	-107.5	-111.0	-106.2	-109.5	-105.9	-110.9	-104.3	-108.2
16	-105.2	-108.1	-105.4	-109.1	-107.6	-111.9	-105.5	-109.5	-106.0	-109.5	-104.0	-108.4
17	-103.2	-107.2	-106.2	-108.7	-106.8	-110.9	-104.7	-108.3	-104.6	-108.4	-106.0	-110.0
18	-101.3	-103.9	-104.8	-110.4	-104.4	-110.8	-104.8	-109.4	-105.1	-108.8	-102.6	-106.2
19	-102.4	-105.9	-106.2	-110.2	-104.5	-110.1	-103.6	-105.5	-104.8	-109.1	-103.3	-105.9
20	-104.7	-107.6	-101.7	-109.9	-107.2	-111.3	-102.9	-104.1	-103.8	-105.3	-103.3	-107.7
21	-103.9	-107.6	-100.3	-104.5	-106.8	-110.1	-102.6	-108.5	-103.5	-108.7	-103.7	-108.0
22	-102.2	-108.1	-104.5	-107.9	-105.9	-111.3	-104.8	-109.7	-105.2	-109.6	-104.0	-107.8
23	-101.1	-102.2	-104.3	-108.3	-105.6	-110.5	-102.3	-109.7	-104.6	-109.5	-103.2	-106.5
24	-100.8	-104.3	-103.3	-107.2	-105.9	-110.1	-100.8	-106.7	-103.4	-105.2	-103.1	-108.2
25	-102.8	-107.0	-103.3	-106.9	-106.3	-110.0	-103.9	-108.6	-103.2	-107.7	-103.5	-106.1
26 27 28 29 30 31	-102.0 -101.1 -103.3 -103.6 -102.6	-105.9 -105.9 -106.4 -107.5 -107.5	-102.7 -104.7 -105.8 -105.4 -106.0 -105.9	-106.4 -108.6 -109.0 -109.5 -110.1 -109.8	-106.0 -107.8 -107.0 -107.1 -107.3	-110.5 -111.3 -110.3 -111.0 -111.8	-103.7 -104.8 -105.4 -105.4 -105.2 -105.1	-107.4 -108.6 -110.3 -109.2 -109.9 -109.6	-103.5 -103.0 -104.7 -104.3 -103.7 -103.0	-104.9 -107.0 -108.0 -108.1 -106.9 -104.6	-102.8 -102.7 -103.2 -102.7 -103.1	-106.9 -105.9 -106.6 -106.5 -106.4
MONTH YEAR	-96.8 -96.8	-108.1 -112.5	-100.3	-110.4	-104.4	-111.9	-100.8	-112.5	-103.0	-110.9	-101.8	-110.0

Daily Low Water Levels

CALVERT COUNTY-Continued

WELL NUMBER .-- CA Fc 13. SITE ID .-- 382343076302901. PERMIT NUMBER .-- CA-81-2391.

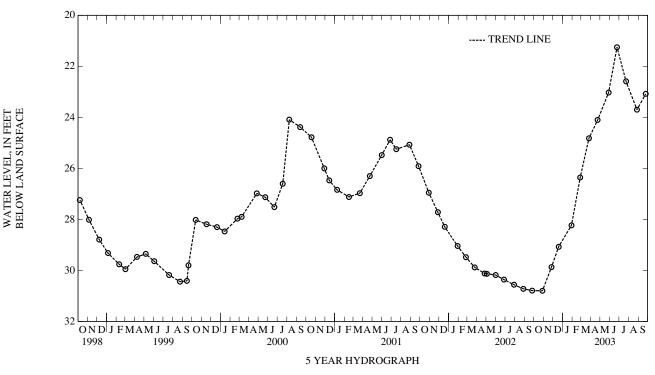
LOCATION.--Lat 38°23'41", long 76°30'29", Hydrologic Unit 02060006, Jefferson Patterson State Park and Museum. Owner: U.S. Geological Survey.

AQUIFER.--Choptank-St. Mary's undivided, Chesapeake Group of Miocene age. Aquifer code: 122CSPK.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 34 ft; casing diameter 3.5 in., to 29 ft; screen diameter 3.5 in., from 29 to 34 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from October 1986 to April 1996.

DATUM .-- Elevation of land surface is 47.44 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.00 ft above land surface.


REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well, and Maryland Water Quality Network observation well. Water levels respond to natural climatic affects.

PERIOD OF RECORD.--October 1986 to November 1995, September 1996 to current year.

LOWEST 30.80 OCT 28, 2002

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.25 ft below land surface, June 24, 2003; lowest measured, 30.80 ft below land surface, October 28, 2002.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 26 DEC 19	30.80 29.87 29.07	JAN 29, 2003 FEB 26 MAR 26	28.23 26.36 24.82	APR 23, 2003 MAY 28 JUN 24	24.10 23.03 21.25	JUL 23, 2003 AUG 27 SEP 24	22.59 23.70 23.08
HIGH	EST 21.25 J	UN 24. 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

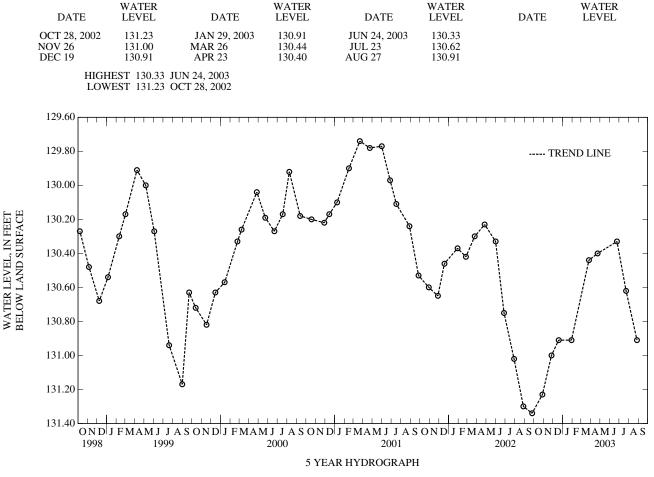
CALVERT COUNTY—Continued

WELL NUMBER .-- CA Fd 51. SITE ID .-- 382408076260401. PERMIT NUMBER .-- CA-73-1449.

LOCATION.--Lat 38°24'08", long 76°26'04", Hydrologic Unit 02060004, at Calvert Cliffs State Park. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 352 ft; casing diameter 6 in., to 140 ft; casing diameter 2 in., from 140 to 342 ft; screen diameter 2 in., from 342 to 352 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 129.40 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of protective casing, 3.63 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- February 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 116.36 ft below land surface, January 8, 1980; lowest measured, 131.34 ft below land surface, September 25, 2002.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CALVERT COUNTY—Continued

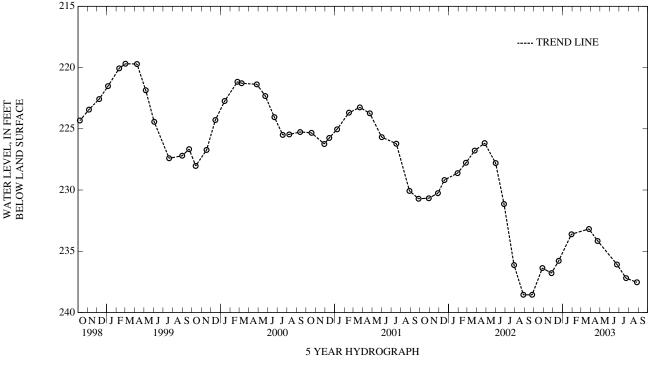
WELL NUMBER .-- CA Fd 54. SITE ID .-- 382407076260301. PERMIT NUMBER .-- CA-73-2892.

LOCATION.--Lat 38°24'07", long 76°26'03", Hydrologic Unit 02060004, at Calvert Cliffs State Park. Owner: U.S. Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 698 ft; casing diameter 4 in., to 234 ft; casing diameter 2 in., from 234 to 641 ft, and 651 to 698 ft; screen diameter 3 in., from 641 to 651 ft.

INSTRUMENTATION .-- Monthly measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 129.4 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.92 ft above land surface.

REMARKS.--Calvert County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- October 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 142.69 ft below land surface, April 21, 1980; lowest measured, 238.56 ft below land surface, August 28 and September 25, 2002.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CALVERT COUNTY—Continued

WELL NUMBER .-- CA Fd 85. SITE ID .-- 382236076255401. PERMIT NUMBER .-- CA-94-3305.

LOCATION.--Lat 38°22'36", long 76°25'54", Hydrologic Unit 02060004, at Chesapeake Ranch Water Company facility. Owner: Maryland Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.-Drilled, artesian well, depth 1,643 ft; casing diameter 12 in., to 54 ft, casing diameter 4 in., from +2.0 to 1,535 ft, 1,545 to 1,560 ft, 1,570 to 1,623 ft, and 1,633 to 1,643 ft; screen diameter 4 in., from 1,535 to 1,545 ft, 1,560 to 1,570 ft, and 1,623 to 1,633 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S.Geological Survey personnel. Equipped with digital water-level recorder--60-minute recording interval, January 2002 to current year.

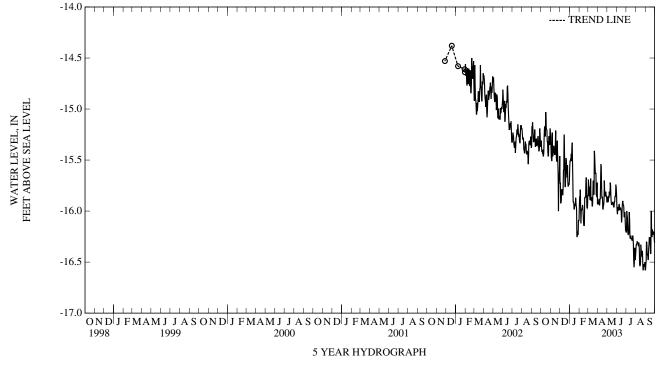
DATUM .-- Elevation of land surface is 105.98 ft above North American Vertical Datum of 1988. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS.--Southern Maryland Patapsco Aquifer Well Drilling Project observation well. Water levels are affected by regional ground-water withdrawal. PERIOD OF RECORD.--November 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.34 ft below sea level, February 1, 2002 (recorder); lowest measured, 16.58 ft below sea level, August 24, 31, 2003 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 26 DEC 19	-15.30 -15.77 -15.64	JAN 29, 2003 FEB 26 MAR 26	-15.97 -15.95 -15.53	APR 23, 2003 MAY 28 JUN 24	-15.72 -15.67 -16.01	JUL 24, 2003 AUG 28 SEP 25	-16.30 -16.53 -16.21


LOWEST -16.53 AUG 28, 2003 HIGHEST -15.30 OCT 28, 2002

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	
	OCTOBER		NOVEMBER		DECE	DECEMBER		JANUARY		FEBRUARY		MARCH	
1	-15.30	-15.36	-15.24	-15.26	-15.46	-15.73	-15.29	-15.58	-15.81	-15.94	-15.69	-15.85	
2	-15.30	-15.31	-15.26	-15.37	-15.60	-15.72	-15.35	-15.51	-15.76	-15.86	-15.41	-15.69	
3	-15.31	-15.39	-15.37	-15.47	-15.62	-15.92	-15.29	-15.51	-15.78	-15.86	-15.50	-15.75	
4	-15.35	-15.42	-15.42	-15.50	-15.90	-15.92	-15.31	-15.49	-15.60	-15.79	-15.75	-15.85	
5	-15.28	-15.40	-15.23	-15.51	-15.60	-15.90	-15.43	-15.49	-15.79	-15.98	-15.59	-15.76	
6	-15.38	-15.44	-15.11	-15.23	-15.71	-15.79	-15.36	-15.44	-15.98	-16.12	-15.56	-15.84	
7	-15.29	-15.40	-15.23	-15.46	-15.65	-15.79	-15.36	-15.51	-15.93	-16.00	-15.84	-15.89	
8	-15.36	-15.46	-15.39	-15.46	-15.61	-15.79	-15.26	-15.36	-15.94	-15.99	-15.67	-15.87	
9	-15.42	-15.46	-15.38	-15.44	-15.79	-15.84	-15.23	-15.33	-15.97	-15.98	-15.60	-15.68	
10	-15.28	-15.42	-15.33	-15.41	-15.76	-15.84	-15.33	-15.52	-15.87	-15.97	-15.68	-15.87	
11	-15.20	-15.28	-15.28	-15.36	-15.48	-15.76	-15.52	-15.70	-15.89	-15.94	-15.87	-15.90	
12	-15.16	-15.20	-15.29	-15.39	-15.50	-15.60	-15.70	-15.91	-15.89	-15.96	-15.84	-15.87	
13	-15.17	-15.17	-15.33	-15.42	-15.20	-15.59	-15.76	-15.91	-15.96	-16.02	-15.84	-15.87	
14	-15.17	-15.27	-15.41	-15.45	-15.15	-15.25	-15.87	-15.92	-16.02	-16.09	-15.87	-15.95	
15	-15.03	-15.26	-15.34	-15.41	-15.25	-15.37	-15.92	-15.98	-16.04	-16.14	-15.86	-15.95	
16	-14.81	-15.03	-15.21	-15.35	-15.31	-15.56	-15.91	-15.98	-16.14	-16.14	-15.72	-15.86	
17	-14.90	-15.05	-15.12	-15.21	-15.56	-15.76	-15.86	-15.93	-15.73	-16.14	-15.62	-15.72	
18	-15.05	-15.20	-15.17	-15.42	-15.67	-15.76	-15.93	-15.95	-15.75	-15.87	-15.60	-15.70	
19	-15.10	-15.20	-15.40	-15.46	-15.48	-15.67	-15.87	-15.94	-15.77	-15.87	-15.70	-15.84	
20	-15.10	-15.21	-15.46	-15.51	-15.28	-15.48	-15.69	-15.87	-15.78	-15.86	-15.41	-15.83	
21	-15.21	-15.32	-15.31	-15.51	-15.38	-15.49	-15.86	-15.92	-15.70	-15.86	-15.29	-15.41	
22	-15.31	-15.32	-15.18	-15.31	-15.45	-15.56	-15.92	-15.95	-15.37	-15.70	-15.30	-15.46	
23	-15.31	-15.42	-15.22	-15.41	-15.56	-15.63	-15.94	-15.98	-15.26	-15.67	-15.46	-15.55	
24	-15.42	-15.46	-15.41	-15.53	-15.55	-15.67	-15.98	-16.25	-15.67	-15.81	-15.55	-15.63	
25	-15.27	-15.46	-15.53	-15.64	-15.23	-15.55	-16.20	-16.25	-15.81	-15.96	-15.62	-15.63	
26 27 28 29 30 31	-15.18 -15.25 -15.26 -15.19 -15.16 -15.16	-15.27 -15.27 -15.27 -15.35 -15.19 -15.24	-15.64 -15.59 -15.62 -15.34 -15.25	-16.00 -15.67 -15.70 -15.62 -15.46	-15.41 -15.72 -15.65 -15.62 -15.70 -15.57	-15.72 -15.76 -15.73 -15.74 -15.74 -15.70	-15.99 -16.01 -16.09 -15.97 -16.05 -15.94	-16.20 -16.23 -16.23 -16.09 -16.10 -16.08	-15.96 -15.82 -15.72 	-15.97 -15.96 -15.85 	-15.54 -15.63 -15.84 -15.66 -15.65 -15.72	-15.63 -15.84 -15.85 -15.84 -15.72 -15.93	
MONTH	-14.81	-15.46	-15.11	-16.00	-15.15	-15.92	-15.23	-16.25	-15.26	-16.14	-15.29	-15.95	

CALVERT COUNTY—Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	AΥ	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1	-15.88	-15.93	-15.86	-15.91	-15.63	-15.94	-16.15	-16.21	-16.32	-16.39	-16.49	-16.57
2	-15.89	-15.93	-15.82	-15.86	-15.94	-16.00	-16.00	-16.20	-16.32	-16.33	-16.47	-16.52
3	-15.90	-15.92	-15.83	-15.91	-15.97	-16.03	-15.96	-16.00	-16.32	-16.33	-16.30	-16.49
4	-15.88	-15.90	-15.90	-15.91	-15.94	-15.97	-15.96	-16.04	-16.30	-16.32	-16.25	-16.30
5	-15.75	-15.88	-15.85	-15.90	-15.94	-15.96	-16.04	-16.07	-16.29	-16.30	-16.25	-16.31
6	-15.85	-15.94	-15.82	-15.85	-15.96	-15.99	-16.06	-16.20	-16.29	-16.30	-16.31	-16.40
7	-15.88	-15.94	-15.69	-15.87	-15.91	-15.99	-16.19	-16.23	-16.29	-16.31	-16.32	-16.43
8	-15.88	-15.89	-15.69	-15.81	-15.91	-15.93	-16.19	-16.23	-16.29	-16.32	-16.32	-16.43
9	-15.71	-15.88	-15.81	-15.84	-15.92	-15.94	-16.05	-16.22	-16.32	-16.34	-16.36	-16.48
10	-15.54	-15.71	-15.72	-15.84	-15.94	-15.99	-16.01	-16.12	-16.30	-16.34	-16.37	-16.47
11	-15.36	-15.54	-15.60	-15.72	-15.93	-15.96	-15.99	-16.01	-16.30	-16.31	-16.31	-16.37
12	-15.36	-15.56	-15.60	-15.75	-15.94	-15.98	-16.01	-16.09	-16.31	-16.37	-16.25	-16.33
13	-15.56	-15.73	-15.74	-15.86	-15.95	-15.97	-16.09	-16.25	-16.37	-16.52	-16.23	-16.26
14	-15.73	-15.87	-15.86	-15.91	-15.95	-15.99	-16.24	-16.27	-16.52	-16.54	-16.25	-16.26
15	-15.82	-15.87	-15.91	-15.94	-15.96	-16.00	-16.24	-16.26	-16.50	-16.53	-16.23	-16.26
16	-15.79	-15.86	-15.88	-15.92	-15.99	-16.11	-16.19	-16.24	-16.32	-16.50	-16.25	-16.32
17	-15.86	-15.98	-15.91	-15.93	-15.97	-16.08	-16.23	-16.27	-16.32	-16.33	-16.32	-16.42
18	-15.95	-15.98	-15.89	-15.92	-15.92	-15.97	-16.26	-16.27	-16.33	-16.38	-15.98	-16.41
19	-15.93	-15.95	-15.89	-15.91	-15.90	-15.92	-16.27	-16.28	-16.38	-16.43	-15.97	-16.00
20	-15.89	-15.93	-15.91	-15.93	-15.90	-15.90	-16.27	-16.29	-16.43	-16.43	-15.97	-16.12
21	-15.70	-15.89	-15.92	-15.93	-15.90	-15.93	-16.21	-16.27	-16.39	-16.45	-16.12	-16.25
22	-15.66	-15.70	-15.92	-15.96	-15.92	-15.94	-16.20	-16.24	-16.35	-16.39	-16.18	-16.25
23	-15.68	-15.81	-15.91	-15.96	-15.93	-15.95	-16.20	-16.27	-16.35	-16.50	-16.02	-16.18
24	-15.81	-15.85	-15.89	-15.91	-15.95	-16.02	-16.24	-16.32	-16.50	-16.58	-16.07	-16.22
25	-15.81	-15.85	-15.86	-15.91	-15.99	-16.06	-16.32	-16.48	-16.48	-16.56	-16.17	-16.23
26 27 28 29 30 31	-15.66 -15.67 -15.82 -15.82 -15.85	-15.81 -15.82 -15.86 -15.85 -15.91	-15.68 -15.83 -15.67 -15.73 -15.73 -15.64	-15.86 -15.86 -15.84 -15.74 -15.77 -15.83	-15.97 -15.95 -16.00 -16.11 -16.14	-16.01 -16.02 -16.11 -16.19 -16.19	-16.48 -16.35 -16.34 -16.35 -16.44 -16.39	-16.55 -16.51 -16.36 -16.45 -16.48 -16.44	-16.48 -16.42 -16.51 -16.49 -16.45 -16.50	-16.54 -16.52 -16.54 -16.54 -16.50 -16.58	-16.18 -16.11 -16.07 -16.20 -16.28	-16.21 -16.21 -16.20 -16.28 -16.31
MONTH YEAR	-15.36 -14.81	-15.98 -16.58	-15.60	-15.96	-15.63	-16.19	-15.96	-16.55	-16.29	-16.58	-15.97	-16.57

Daily Low Water Levels

CALVERT COUNTY—Continued

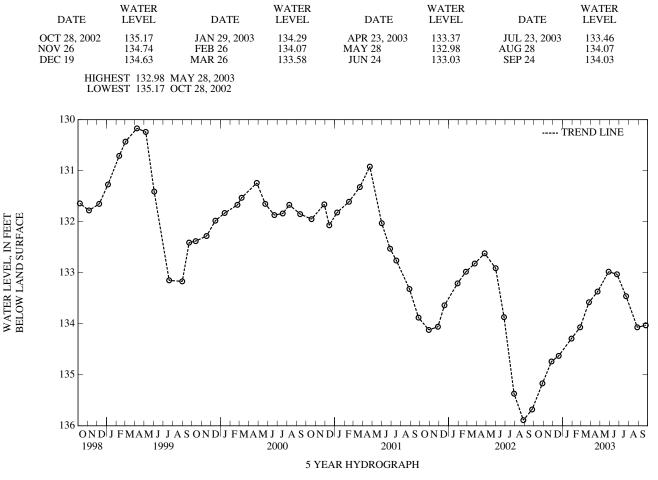
WELL NUMBER .-- CA Fe 22. SITE ID .-- 382318076242401. PERMIT NUMBER .-- CA-73-1386.

LOCATION.--Lat 38°23'18", long 76°24'24", Hydrologic Unit 02060004, at Williams LNG Plant, Cove Point. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 350 ft; casing diameter 6 in., to 10 ft; casing diameter 2 in., from 10 to 340 ft; screen diameter 2 in., from 340 to 350 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 113.90 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.82 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--June 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 111.50 ft below land surface, October 5, 1976; lowest measured, 135.89 ft below land surface, August 28, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

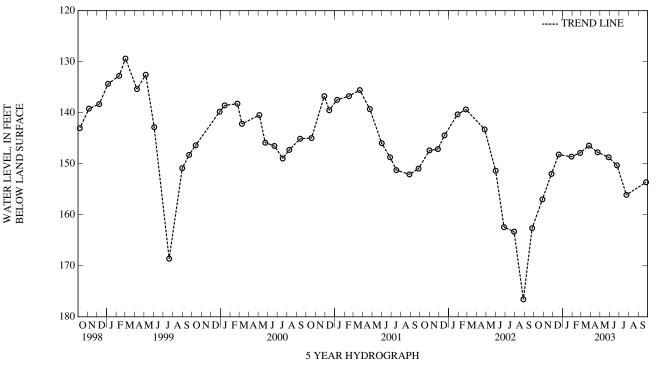
CALVERT COUNTY—Continued

WELL NUMBER .-- CA Gd 6. SITE ID .-- 381952076270901.

LOCATION.--Lat 38°19'52", long 76°27'09", Hydrologic Unit 02060006, at the Lord Calvert Yacht Club, 0.5 mi northeast of Solomons. Owner: Calvert Marina.

AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 493 ft; casing diameter 8 in., to 272 ft; casing diameter 6 in., from 272 to 472 ft; screened from 472 to 493 ft.
- INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with a graphic waterlevel recorder from October 1949 to February 1960.
- DATUM.--Elevation of land surface is 12.73 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of sanitary seal, 1.59 ft above land surface.
- REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water level reported at land surface 1942, and the water level measured 58.90 ft below land surface on January 13, 1944. The well was not measured from April through July 1988 during building construction at well site. On July 18, 1991 the water-level measured 119.93 ft below land surface due to an extended period of pumping. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD .-- October 1949 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.15 ft below land surface, May 18, 1950; lowest measured, 176.59 ft below land surface, August 28, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 26	156.98 151.98	JAN 29, 2003 FEB 26	148.62 147.88	APR 23, 2003 MAY 28	147.76 148.74	JUL 24, 2003 SEP 25	156.09 153.63
DEC 19	148.21	MAR 26	146.45	JUN 24	150.32		
нісн	IEST 146.45 M	MAR 26 2003					

LOWEST 156.98 OCT 28, 2002

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CAROLINE COUNTY

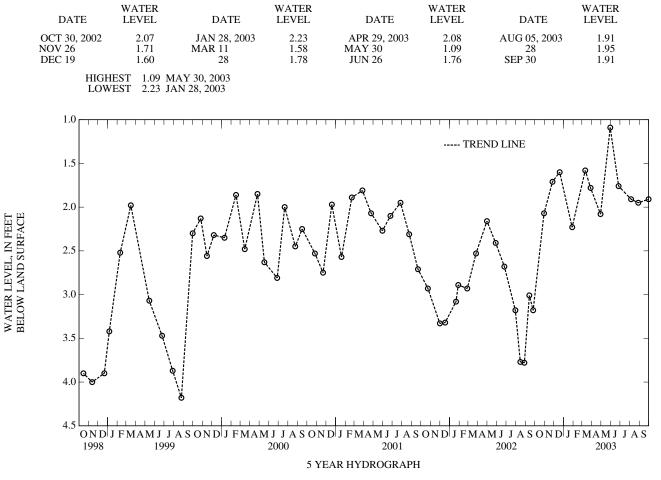
WELL NUMBER .-- CO Bc 1. SITE ID .-- 390333075504501.

LOCATION.--Lat 39°03'33", long 75°50'45", Hydrologic Unit 02060005, at Baltimore Corner. Owner: Maryland State Highway Administration.

AQUIFER .-- Pensauken Formation (fluvial facies) of Upper Miocene age. Aquifer code: 122PNSK.

WELL CHARACTERISTICS .-- Driven, observation, water-table well, depth 20.5 ft; well point diameter 1.25 in., to 20.5 ft.

INSTRUMENTATION--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 54 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.10 ft below land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--August 1949 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.25 ft above land surface, November 27, 1951; lowest measured, 4.37 ft below land surface, October 11, 1957.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

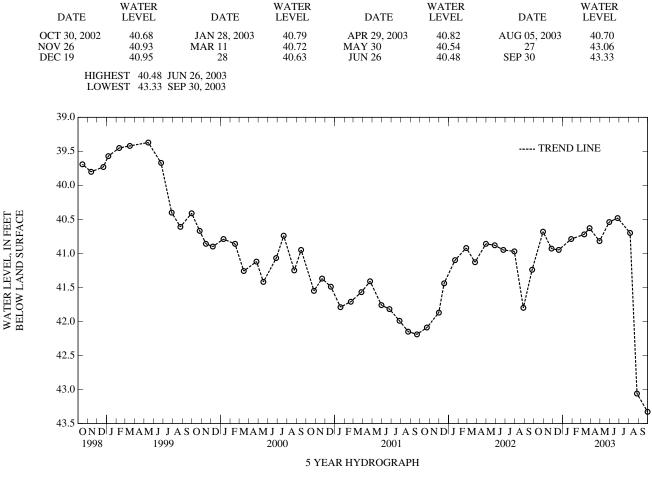
CAROLINE COUNTY—Continued

WELL NUMBER .-- CO Bd 53. SITE ID .-- 390227075470201. PERMIT NUMBER .-- CO-73-0541.

LOCATION.--Lat 39°02'27", long 75°47'02", Hydrologic Unit 02060005, near MD Rt. 311, Goldsboro. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 312 ft; casing diameter 6 in., to 70 ft; casing diameter 2 in., from 70 to 300 ft; screen diameter 2 in., from 300 to 312 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM.--Elevation of land surface is 60 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.45 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- February 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.64 ft below land surface, December 10, 1976; lowest measured, 43.33 ft below land surface, September 30, 2003.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CARROLL COUNTY

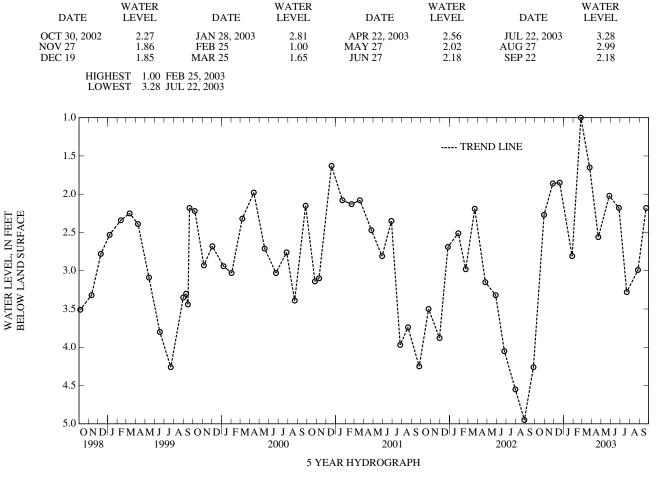
WELL NUMBER .-- CL Ad 47. SITE ID .-- 394008077005601. PERMIT NUMBER .-- CL-73-3178.

LOCATION.--Lat 39°40'08", long 77°00'56", Hydrologic Unit 02070009, at Union Mills Homestead Park. Owner: U.S. Geological Survey.

AQUIFER.--Marburg Formation of Paleozoic age. Aquifer code: 300MRBG.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 310 ft; casing diameter 6 in., to 35 ft.; open hole.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 540 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.97 ft above land surface.

REMARKS .-- Collection of Basic Records (CBR) observation well.

PERIOD OF RECORD.--August 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.00 ft below land surface, February 25, 2003; lowest measured, 4.95 ft below land surface, August 28, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CARROLL COUNTY—Continued

WELL NUMBER .-- CL Bf 1. SITE ID.-- 393638076510001.

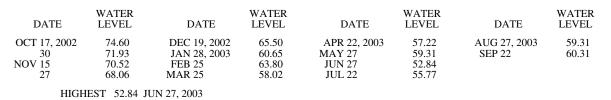
LOCATION .-- Lat 39°36'38", long 76°51'00", Hydrologic Unit 02060003, on Hillcrest St., Hampstead. Owner: Town of Hampstead.

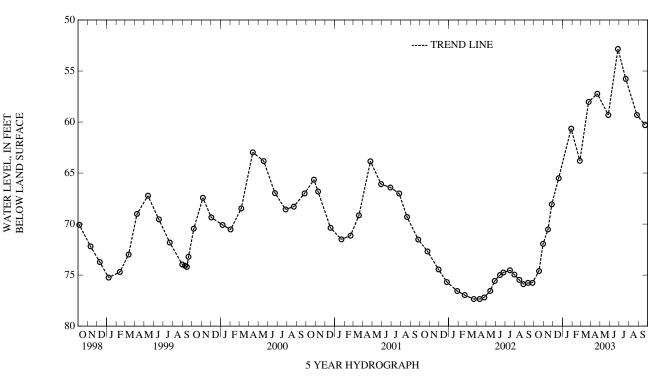
AQUIFER .-- Prettyboy Schist of Paleozoic age. Aquifer code: 300PRTB.

WELL CHARACTERISTICS .- Drilled, unused, water-table well, depth 407 ft; casing diameter 8 in., to approximately 65 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with water-level recorder from July 1952 to November 1962.

DATUM.--Elevation of land surface is 933 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 2 in. casing extension, 2.35 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


LOWEST 74.60 OCT 17, 2002

PERIOD OF RECORD.--September 1946 and December 1946, April 1947 and September 1947, February 1949 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 49.10 ft below land surface, June 13, 1989; lowest measured, 77.35 ft below land surface, March 22, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CARROLL COUNTY—Continued

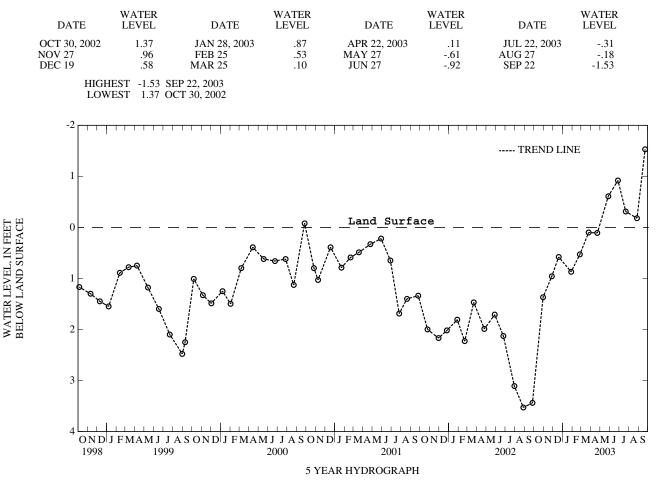
WELL NUMBER .-- CL Bf 184. SITE ID .-- 393754076512401. PERMIT NUMBER .-- CL-73-6466.

LOCATION.--Lat 39°37'54", long 76°51'24", Hydrologic Unit 02060003, near Utz Rd., Greenmount. Owner: U.S. Geological Survey.

AQUIFER.--Prettyboy Schist (calcareous zone) of Paleozoic age. Aquifer code: 300PRTB.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 339 ft; casing diameter 6 in., to 50 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 785 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.81 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--August 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.81 ft above land surface, December 3, 1996, and January 2, 1997; lowest measured, 3.53 ft below land surface, August 28, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 (READINGS ABOVE LAND SURFACE INDICATED BY "-")

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CARROLL COUNTY—Continued

WELL NUMBER .-- CL Ec 75. SITE ID .-- 392259077052401. PERMIT NUMBER .-- CL-73-2722.

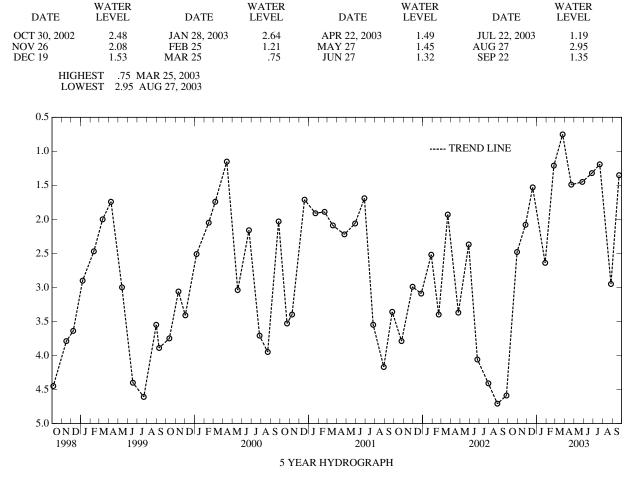
LOCATION.--Lat 39°22'59", long 77°05'24", Hydrologic Unit 02060003, 2.3 mi northwest of Woodbine, at Gillis Falls Park. Owner: U.S. Geological Survey.

AQUIFER .-- Gillis Group of Ordovician age. Aquifer code: 300GLLS.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 248 ft; casing diameter 6 in., to 21 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from October 1990 to April 1998. Equipped with graphic recorder December 1974 to July 1980.

DATUM.--Elevation of land surface is 550 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.31 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- March 1980 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.75 ft below land surface, March 25, 2003; lowest measured, 5.23 ft below land surface, August 7, 1985.

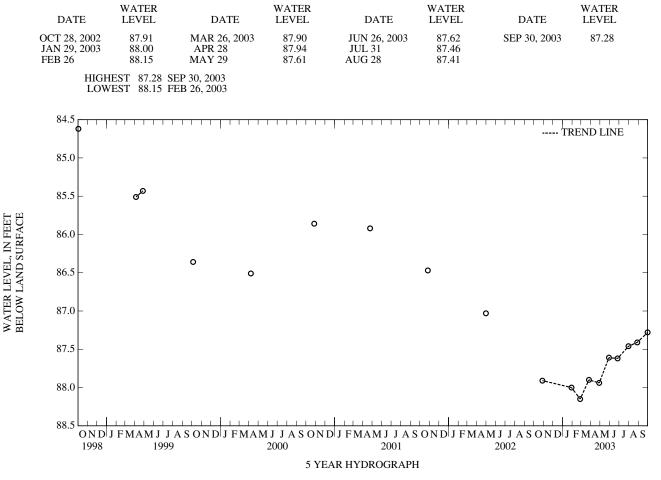
WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CECIL COUNTY

WELL NUMBER .-- CE Be 73. SITE ID .-- 393637075535001. PERMIT NUMBER .-- CE-81-0464.

LOCATION.--Lat 39°36'37", long 75°53'50", Hydrologic Unit 02060002, 2 mi west of Elkton near US Rt. 40. Owner: U.S. Geological Survey.

AQUIFER .-- Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.


WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 152 ft; casing diameter 2 in., to 147 ft; screen diameter 2 in., from 147 to 152 ft. INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 162 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.95 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD.--November 1982 to November 1984, April 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 82.06 ft below land surface, July 31, 1984; lowest measured, 88.15 ft below land surface, February 26, 2003.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

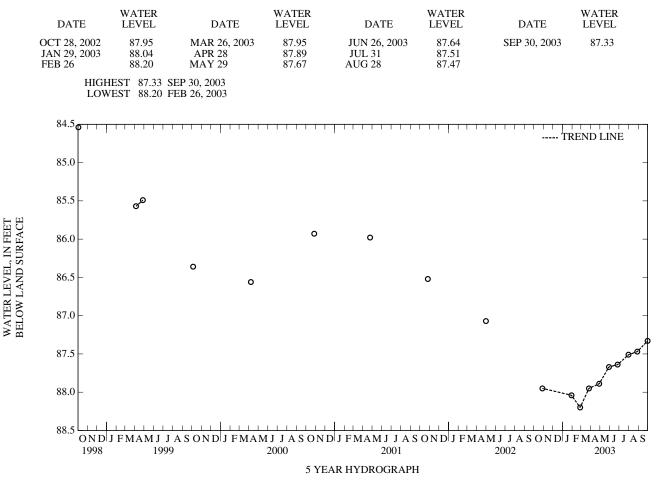
CECIL COUNTY—Continued

WELL NUMBER .-- CE Be 74. SITE ID .-- 393637075535002. PERMIT NUMBER .-- CE-81-0464.

LOCATION.--Lat 39°36'37", long 75°53'50", Hydrologic Unit 02060002, 2 mi west of Elkton near US Rt. 40. Owner: U.S. Geological Survey.

AQUIFER .-- Lower Patapsco aquifer in the Patapsco Formation. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 115 ft; casing diameter 2 in., to 110 ft; screen diameter 2 in., from 110 to 115 ft.


INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from April 1988 to January 2003.

DATUM.--Elevation of land surface is 162 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD.--November 1982 to November 1984, April 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 82.12 ft below land surface, July 31, 1984; lowest measured, 88.20 ft below land surface, February 26, 2003.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

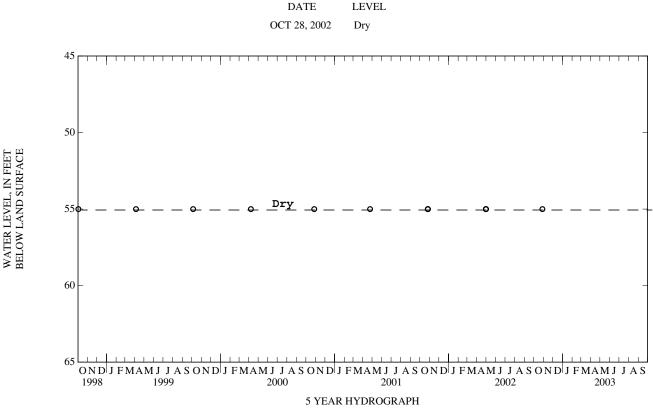
CECIL COUNTY—Continued

WELL NUMBER.--CE Bf 81. SITE ID.--393615075475901. PERMIT NUMBER.--CE-81-0537.

LOCATION.--Lat 39°36'15", long 75°47'59", Hydrologic Unit 02060002, at Thompson Estates Elementary School, Elkton. Owner: U.S. Geological Survey.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 55.5 ft; casing diameter 4 in., to 50 ft; screen diameter 2 in., from 50 to 55 ft. INSTRUMENTATION.--Twice yearly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 90 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. PERIOD OF RECORD.--March 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 31.26 ft below land surface, July 9, 1983; lowest measured, dry on many days throughout period of record.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WATER

CECIL COUNTY—Continued

WELL NUMBER.--CE Bf 82. SITE ID.--393537075492001. PERMIT NUMBER.--CE-81-0470.

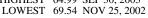
LOCATION.--Lat 39°35'37", long 75°49'20", Hydrologic Unit 02060002, at Holly Hall Elementary School, Elkton. Owner: U.S. Geological Survey.

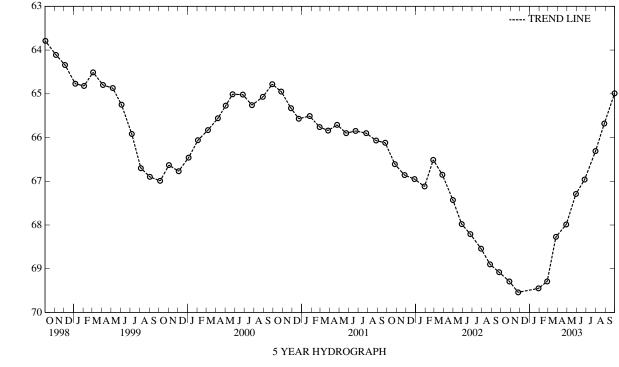
AQUIFER .-- Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 125 ft; casing diameter 4 in., to 120 ft; screen diameter 2 in., from 120 to 125 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with water-level recorder July 1983 to November 1984.

DATUM.--Elevation of land surface is 70 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.60 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD .-- February 1983 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 53.13 ft below land surface, July 1, 1983; lowest measured, 69.54 ft below land surface, November 25, 2002.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 25 JAN 29, 2003	69.29 69.54 69.45	FEB 26, 2003 MAR 26 APR 28	69.29 68.27 67.99	MAY 29, 2003 JUN 26 JUL 31	67.29 66.96 66.31	AUG 28, 2003 SEP 30	65.68 64.99
HIGH	EST 64.99 S	SEP 30, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

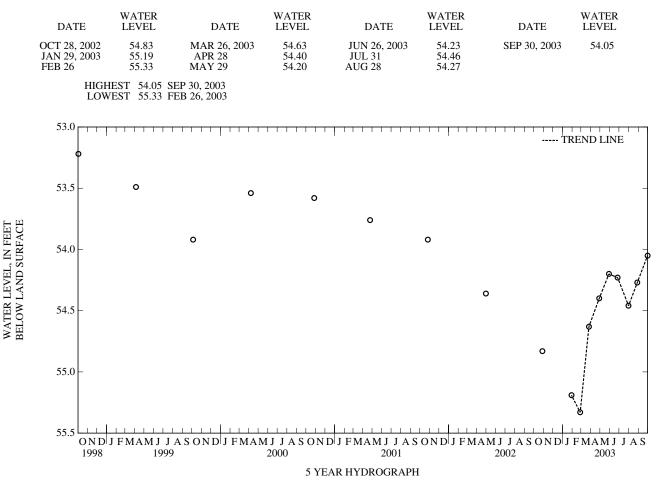
CECIL COUNTY—Continued

WELL NUMBER .-- CE Cd 51. SITE ID .-- 393432075593601. PERMIT NUMBER .-- CE-81-0440.

LOCATION.--Lat 39°34'32", long 75°59'36", Hydrologic Unit 02060002, near intersection of MD Rts. 7 and 267, 1 mi west of Charlestown. Owner: U.S. Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 125 ft; casing diameter 4 in., to 120 ft; screen diameter 2 in., from 120 to 125 ft.


INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly measurements from April 1988 to January 2003.

DATUM.--Elevation of land surface is 70 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.12 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--November 1982 to November 1984, April 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 50.80 ft below land surface, April 6, 1984; lowest measured, 55.33 ft below land surface, February 26, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

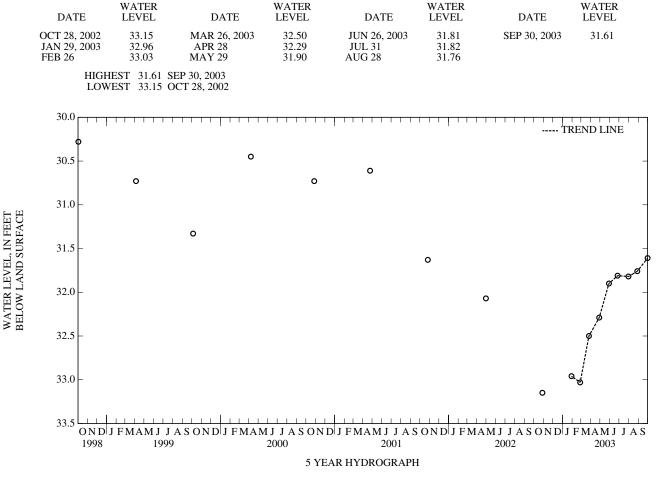
CECIL COUNTY—Continued

WELL NUMBER .-- CE Cd 52. SITE ID .-- 393432075593602. PERMIT NUMBER .-- CE-81-0440.

LOCATION.--Lat 39°34'32", long 75°59'36", Hydrologic Unit 02060002, near intersection of MD Rts. 7 and 267, 1 mi west of Charlestown. Owner: U.S. Geological Survey.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 48 ft; casing diameter 4 in., to 43 ft; screen diameter 2 in., from 43 to 48 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 70 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.18 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--November 1982 to November 1984, April 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 27.75 ft below land surface, July 5, 1983; lowest measured, 33.15 ft below land surface, October 28, 2002.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

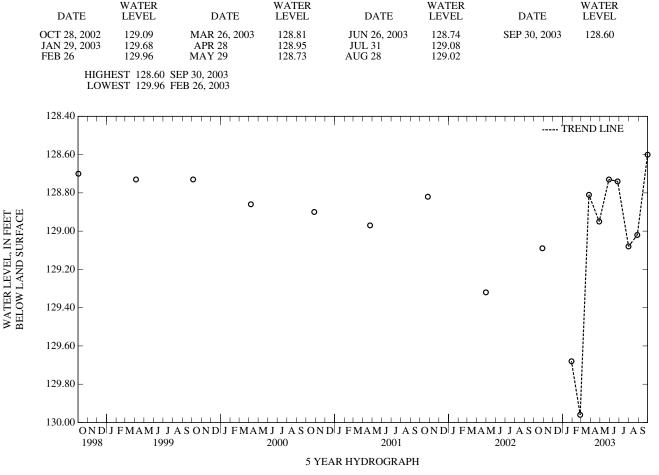
CECIL COUNTY—Continued

WELL NUMBER.--CE Cd 53. SITE ID.--393216075564201. PERMIT NUMBER.--CE-81-0463.

LOCATION.--Lat 39°32'16", long 75°56'42", Hydrologic Unit 02060002, Elk Neck State Forest, 0.5 mi north of Black Hill Lookout Tower. Owner: U.S. Geological Survey.

AQUIFER .-- Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 350 ft; casing diameter 4 in., to 345 ft; screen diameter 2 in., from 345 to 350 ft.


INSTRUMENTATION.-Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from July 1983 to October 1984.

DATUM .-- Elevation of land surface is 135 ft above , from topographic map. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--March 1983 to October 1984, October 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 126.65 ft below land surface, April 6, 1984; lowest measured, 129.96 ft below land surface, February 26, 2003.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

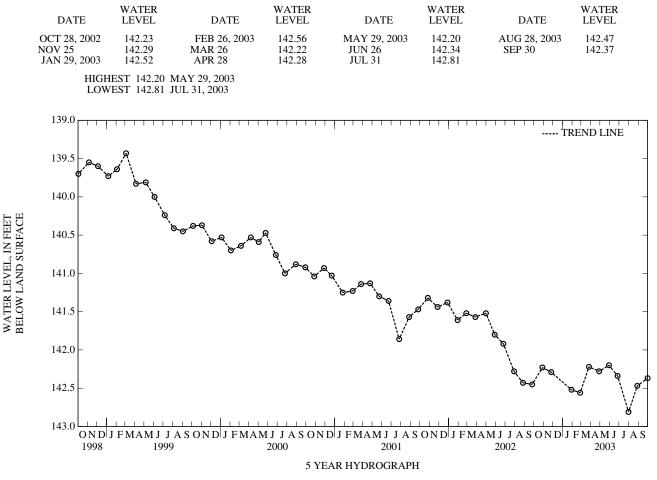
CECIL COUNTY—Continued

WELL NUMBER.--CE Ce 54. SITE ID.--393433075544901. PERMIT NUMBER.--CE-81-0461.

LOCATION.--Lat 39°34'33", long 75°54'49", Hydrologic Unit 02060002, Elk Neck State Forest near Irishtown Road. Owner: U.S. Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 250 ft; casing diameter 4 in., to 245 ft; screen diameter 2 in., from 245 to 250 ft.


INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder July 1983 to November 1984.

DATUM.--Elevation of land surface is 180 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--March 1983 to November 1984, July 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 136.10 ft below land surface, March 29, 1984, April 6, 1984, and November 6, 1984; lowest measured, 142.81 ft below land surface, July 31, 2003.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CECIL COUNTY—Continued

WELL NUMBER .-- CE Ce 55. SITE ID .-- 393241075500201. PERMIT NUMBER .-- CE-81-0465.

LOCATION.--Lat 39°32'41", long 75°50'02", Hydrologic Unit 02060002, Canal National Wildlife Refuge near Elk Forest Rd. Owner: U.S. Geological Survey.

AQUIFER .-- Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 375 ft; casing diameter 4 in., to 370 ft; screen diameter 2 in., from 370 to 375 ft. INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level

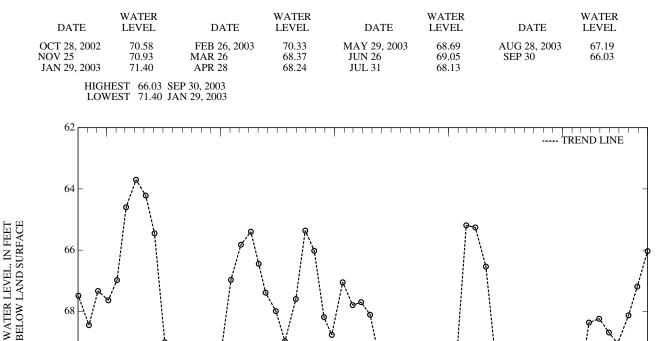
recorder from July 1983 to November 1984.

DATUM .-- Elevation of land surface is 55 ft above , from topographic map. Measuring point: Top of casing, 2.40 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

70

72


1998

1999

PERIOD OF RECORD.--March 1983 to November 1984, July 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 50.56 ft below land surface, April 17, 1984; lowest measured, 71.95 ft below land surface, August 4, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

5 YEAR HYDROGRAPH OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

OND J FMAMJ J A S OND J FMAMJ J A S

2001

2002

2003

2000

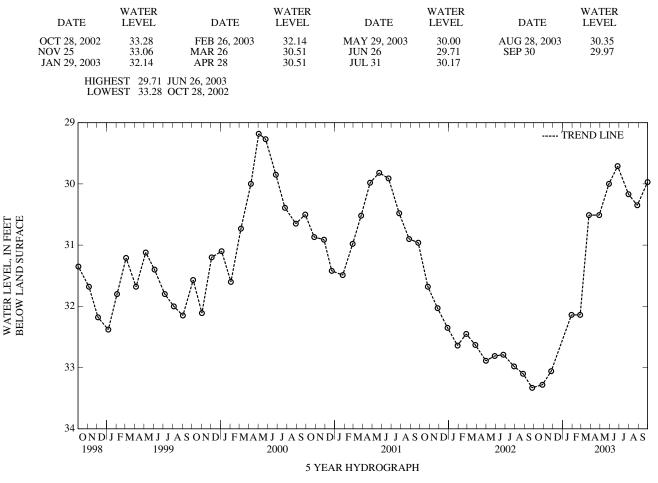
CECIL COUNTY—Continued

WELL NUMBER .-- CE Ce 56. SITE ID .-- 393026075523101. PERMIT NUMBER .-- CE-81-0466.

LOCATION.--Lat 39°30'26", long 75°52'31", Hydrologic Unit 02060002, 1.2 mi east of Courthouse Point. Owner: U.S. Geological Survey.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 121 ft; casing diameter 4 in., to 116 ft; screen diameter 2 in., from 116 to 121 ft.


INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from April 1988 to April 1994.

DATUM .-- Elevation of land surface is 38 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--April 1983 to September 1984, April 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 27.42 ft below land surface, April 4, 1997; lowest measured, 34.48 ft below land surface, November 19, 1983.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CECIL COUNTY—Continued

WELL NUMBER.--CE Ce 82. SITE ID.--393209075541301. PERMIT NUMBER.--CE-94-1417.

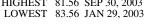
LOCATION.--Lat 39°32'09", long 75°54'13", Hydrologic Unit 02060002, 4.0 mi southeast of North East, at Village of Elk Neck, 0.1 mi north of Racine-School Rd. Owner: Stuart Associates.

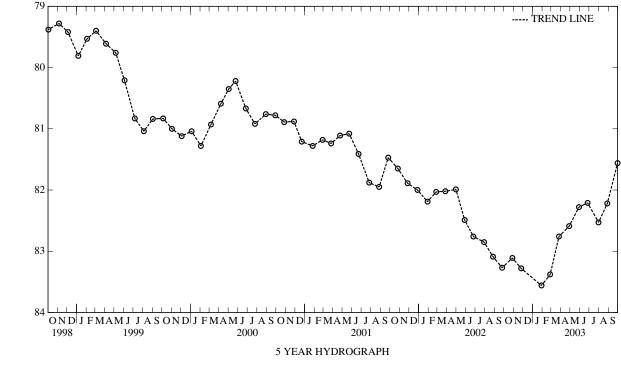
AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 210 ft; casing diameter 4 in., to 205 ft; screen diameter 4 in., from 205 to 210 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 120 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD .-- August 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 78.01 ft below land surface, May 4, 1998; lowest measured, 83.56 ft below land surface, January 29, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 25 JAN 29, 2003	83.11 83.28 83.56	FEB 26, 2003 MAR 26 APR 28	83.38 82.76 82.59	MAY 29, 2003 JUN 26 JUL 31	82.28 82.21 82.53	AUG 28, 2003 SEP 30	82.22 81.56
HIGH	EST 81 56 S	EP 30 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

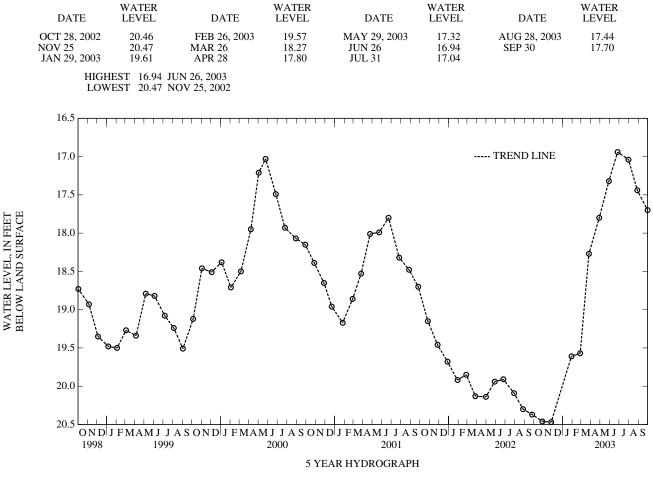
CECIL COUNTY—Continued

WELL NUMBER .-- CE Dd 81. SITE ID .-- 392536075593201. PERMIT NUMBER .-- CE-81-0469.

LOCATION.--Lat 39°25'36", long 75°59'32", Hydrologic Unit 02060002, at dredge spoil site, off Pond Neck Road, near West View Shores. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 115 ft; casing diameter 4 in., to 110 ft; screen diameter 2 in., from 110 to 115 ft.


INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly measurements from April 1988 to April 1994.

DATUM .-- Elevation of land surface is 24 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.80 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--March 1983 to October 1983, April 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.25 ft below land surface, July 1, 1983; lowest measured, 20.47 ft below land surface, November 25, 2002.

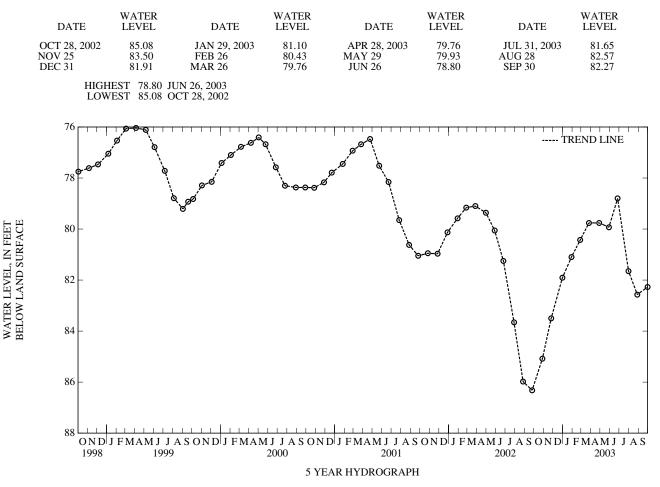
OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CECIL COUNTY—Continued

WELL NUMBER .-- CE Ee 29. SITE ID .-- 392403075521801. PERMIT NUMBER .-- CE-73-2266.

LOCATION.--Lat 39°24'03", long 75°52'18", Hydrologic Unit 02060002, 0.3 mi southwest of MD Rts. 213 and 282, Cecilton. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.


- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 547 ft; casing diameter 10 in., to 158 ft; casing diameter 4 in., to 515 ft and 525 to 547 ft; screen diameter 4 in., from 515 to 525 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with a digital water-level recorder from August 1979 to December 1979.
- DATUM.--Elevation of land surface is 75 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.35 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- August 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 67.99 ft below land surface, March 25, 1979; lowest measured, 86.32 ft below land surface, September 25, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

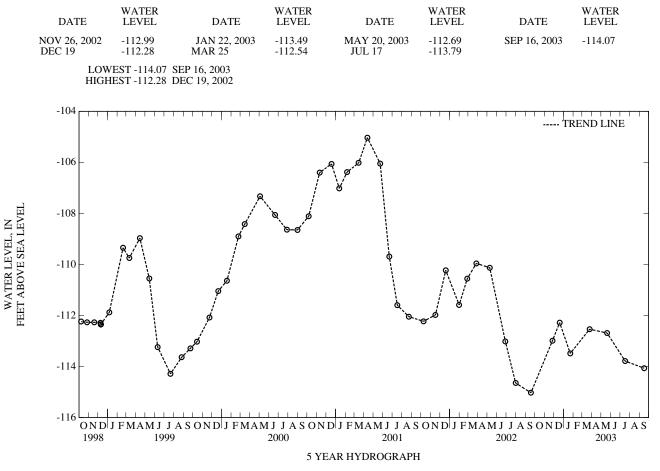
CHARLES COUNTY—Continued

WELL NUMBER .-- CH Bc 24. SITE ID .-- 383633077083001. PERMIT NUMBER .-- CH-02-0874.

LOCATION.--Lat 38°36'33", long 77°08'30", Hydrologic Unit 0207001, at Cedar Lane, Potomac Heights. Owner: Potomac Heights Mutual Home Owners Association.

AQUIFER .-- Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 435 ft; casing diameter 10 in., to 383.5 ft, and 398.5 to 415 ft; screen diameter 10 in., from 383.5 to 398.5 ft, and 415 to 435 ft.
- INSTRUMENTATION.--Periodic water level measurements with electric tape by Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval, April 1988 to November 1997.


DATUM .-- Elevation of land surface is 72 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.55 ft above land surface.

REMARKS.--Charles County Ground-Water-Level Monitoring Network observation. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--May 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 70.26 ft below sea level, April 30, 1988; lowest measured, 115.03 ft below sea level, September 18, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CHARLES COUNTY—Continued

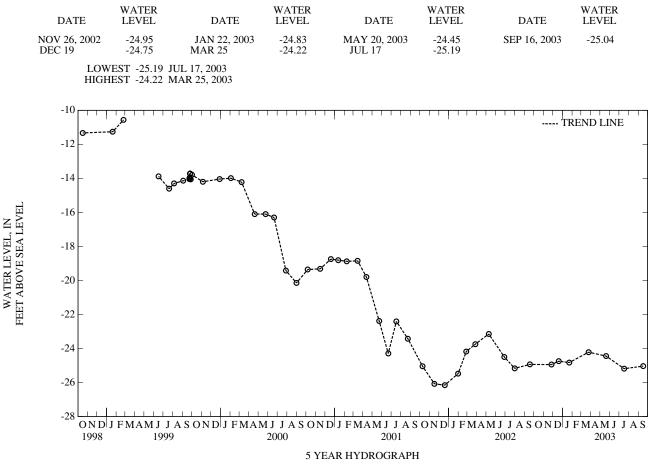
WELL NUMBER.--CH Bc 75. SITE ID.--383645077062401. PERMIT NUMBER.--CH-92-0500.

LOCATION.--Lat 38°36'45", long 77°06'24", Hydrologic Unit 02070011, Chapmans Landing. Owner: Maryland Department of Natural Resources.

AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 940 ft; casing diameter 8 in., to 820 ft, 825 to 860 ft, 880 to 898 ft, and 923 to 940 ft; screen diameter 8 in., from 820 to 825 ft, 860 to 880 ft, and 898 to 923 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 124.59 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.98 ft above land surface.

REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal. A 48-hour pump test occurred on November 18-20, 1996. The lowest water level measured during this period was 82.53 ft below sea level on November 20, 1996. The land surface was graded on October 16, 1998, and is 12.45 ft below the original land surface.

PERIOD OF RECORD .-- June 1993 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.64 ft above sea level, September 26, 1994; lowest measured, 26.16 ft below sea level, December 19, 2001 (See REMARKS).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CHARLES COUNTY—Continued

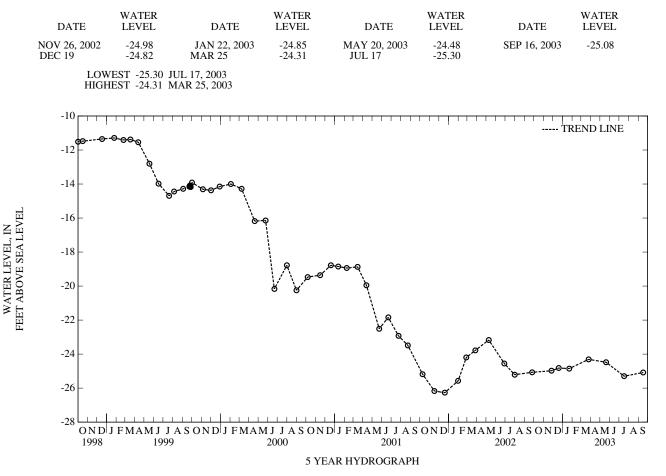
WELL NUMBER .-- CH Bc 77. SITE ID .-- 383644077055501. PERMIT NUMBER .-- CH-88-1028.

LOCATION.--Lat 38°36'44", long 77°05'55", Hydrologic Unit 02070011, 2.75 mi southwest of intersection with MD Rts. 210 and 227, 0.25 mi south of MD Rt. 210. Owner: The Arden Group.

AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 955 ft; casing diameter 16 in., to 60 ft; casing diameter 8 in., from 0 to 845 ft; and casing diameter 6 in., from 845 to 925 ft; screen diameter 6 in., from 925 to 955 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 96.64 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 3.38 ft above land surface.

REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal. A 48-hour pump test occured in a nearby well on November 22 and 23, 1996. The lowest water level measured during this period was 15.54 ft below sea level.

PERIOD OF RECORD .-- August 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.76 ft above sea level, August 29, 1995; lowest measured, 27.16 ft below sea level, January 2, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CHARLES COUNTY—Continued

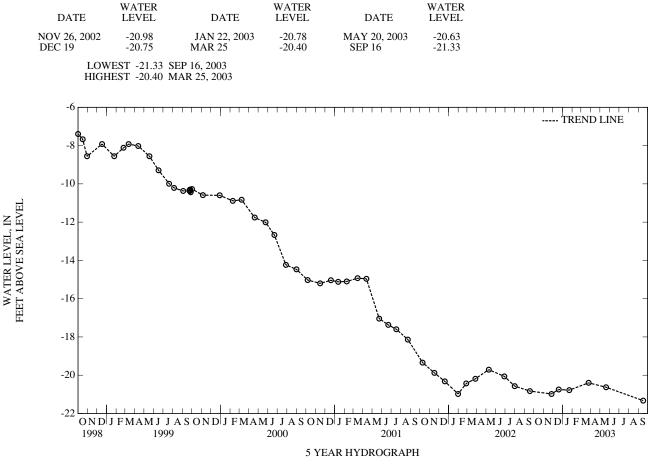
WELL NUMBER .-- CH Bc 80. SITE ID .-- 383645077062402. PERMIT NUMBER .-- CH-94-0898.

LOCATION.--Lat 38°36'45", long 77°06'24", Hydrologic Unit 02070011, 2.0 mi southwest of intersection with MD Rts. 210 and 227, 100 ft south of MD Rt. 210. Owner: Maryland Geological Survey.

AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 1,120 ft; casing diameter 4 in., to 1,085 ft, and 1,095 to 1,105 ft; screen diameter 4 in., from 1,085 to 1,095 ft, and 1,105 to 1,115 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 123.10 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 2.5 ft above land surface (land graded to 13.6 ft below original elevation).

REMARKS .-- Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- October 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.90 ft above sea level, October 30, 1996 (recorder); lowest measured, 21.36 ft below sea level, September 16, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CHARLES COUNTY-Continued

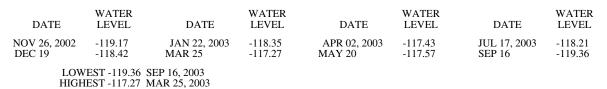
WELL NUMBER .-- CH Bc 81. SITE ID .-- 383709077061002. PERMIT NUMBER .-- CH-88-0482.

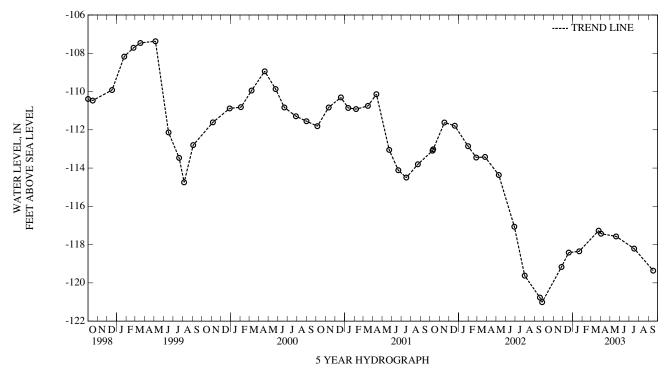
LOCATION.--Lat 38°37'09", long 77°06'10", Hydrologic Unit 02070010, 1.7 mi southwest of intersection with MD Rts. 210 and 227, on northwest side of Chapmans Landing Rd. Owner: Montrose Farms.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 656 ft; casing diameter 6 in., to 541 ft, casing diameter 4 in., from 531 to 556 ft, 588 to 642 ft, and 646 to 656 ft; screen diameter 4 in., from 556 to 588 ft, and 642 to 646 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 156.46 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.07 ft above land surface.


REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- August 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 97.97 ft below sea level, July 3 and 4, 1997 (recorder); lowest measured, 121.76 ft below sea level, September 12, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CHARLES COUNTY—Continued

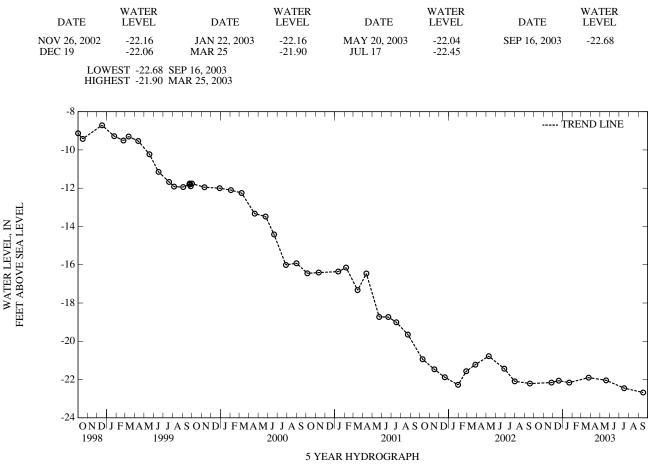
WELL NUMBER .-- CH Bd 52. SITE ID .-- 383553077032401. PERMIT NUMBER .-- CH-94-0899.

LOCATION.--Lat 38°35'53", long 77°03'24", Hydrologic Unit 02070011, 2.5 mi southeast of Pomonkey, on east side of MD Rt. 227. Owner: Maryland Geological Survey.

AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 1,105 ft; casing diameter 4 in., to 1,040 ft, 1,050 to 1,085 ft, and 1,095 to 1,105 ft; screen diameter 4 in., from 1,040 to 1,050 ft, and 1,085 to 1,095 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 47.50 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 3.00 ft above land surface.

REMARKS .-- Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- October 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.03 ft above sea level, November 9, 1996; lowest measured, 22.68 ft below sea level, September 16, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CHARLES COUNTY—Continued

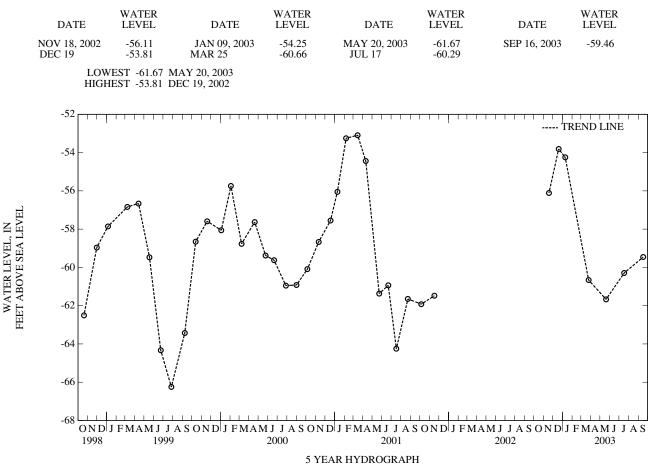
WELL NUMBER .-- CH Be 43. SITE ID .-- 383819076555501. PERMIT NUMBER .-- CH-71-0066.

LOCATION.--Lat 38°38'19", long 76°55'55", Hydrologic Unit 02070011, at northeast end of Joy Lane, 0.2 mi east of Sun Valley Drive, Waldorf. Owner: Private Residence.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 459 ft; casing diameter 6 in., to 428 ft; screen diameter 5 in., from 433 to 459 ft.

INSTRUMENTATION.--Periodic water level measurements with electric tape by Maryland Geological Survey personnel. Equipped with graphic water-level recorder from February 1977 to January 1978.


DATUM .-- Elevation of land surface is 216.79 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.0 ft above land surface.

REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. Water levels were discontinued from December 2001 to November 2002, when another means of access to the well was established.

PERIOD OF RECORD .-- February 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.05 ft above sea level, February 22, 1977 (recorder); lowest measured, 66.69 ft below sea level.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CHARLES COUNTY—Continued

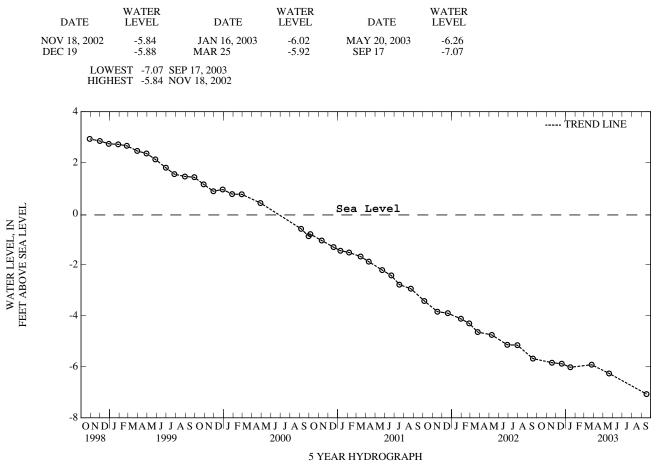
WELL NUMBER .-- CH Be 57. SITE ID .-- 383706076575601. PERMIT NUMBER .-- CH-81-1194.

LOCATION.--Lat 38°37'06", long 76°57'56", Hydrologic Unit 02070011, St. John's pumping station, St. Charles. Owner: Charles County Department of Public Works.

AQUIFER.--Patuxant Formation of Lower Cretaceous age. Aquifer code: 217PTXNU.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 1,696 ft; casing diameter 6 in., to 400 ft; casing diameter 4 in., from 400 to 1,660 ft, screen diameter 4 in., from 1,660 to 1,696 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 212.26 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 2.00 ft above land surface.

REMARKS .-- Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- April 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 17.16 ft above sea level, April 3, 1986; lowest measured, 7.07 ft below sea level, September 17, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CHARLES COUNTY-Continued

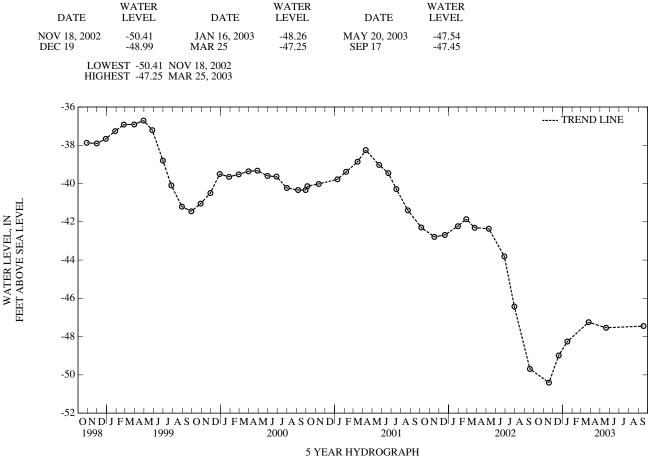
WELL NUMBER .-- CH Be 60. SITE ID .-- 383706076575604. PERMIT NUMBER .-- CH-81-1468.

LOCATION.--Lat 38°37'06", long 76°57'56", Hydrologic Unit 02070011, St. John's pumping station, St. Charles. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 625 ft; casing diameter 6 in., to 401 ft; casing diameter 4 in., from 401 ft to 610 ft, and 625 to 635 ft; screen diameter 4 in., from 610 to 625 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 212.80 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 2.20 ft above land surface.

REMARKS .-- Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- November 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.30 ft below sea level, April 10, 1987; lowest measured, 50.41 ft below sea level, November 18, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

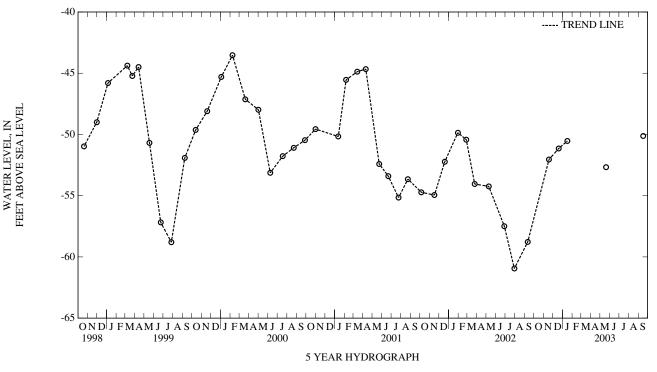
CHARLES COUNTY—Continued

WELL NUMBER.--CH Bf 101. SITE ID.--383853076532601. PERMIT NUMBER.--CH-01-1882.

LOCATION.--Lat 38°38'53", long 76°53'26", Hydrologic Unit 02070011, at Sam's Club, 1.7 mi. northwest of Waldorf. Owner: Sam's Club.

AQUIFER .-- Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

- WELL CHARACTERISTICS.--Drilled, artesian well, depth 475 ft; casing diameter 6 in., to 423 ft, and 438 to 449 ft; screen diameter 6 in., from 423 to 438 ft, and 449 to 475 ft.
- INSTRUMENTATION.--Periodic water level measurements with electric tape by Maryland Geological Survey personnel. Equipped with graphic water-level recorder from November 1976 to February 1978. Equipped with digital water-level recorder--60-minute recorder interval from February 1978 to May 1991.
- DATUM.--Elevation of land surface is 216.45 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 1.18 ft above land surface.
- REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD .-- November 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.60 ft above sea level, January 16, 1977 (recorder); lowest measured, 61.25 ft below sea level, June 14, 1999 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 18, 2002 DEC 19	-52.05 -51.15	JAN 16, 2003 MAY 20	-50.53 -52.67	SEP 16, 2003	-50.12

LOWEST -52.67 MAY 20, 2003 HIGHEST -50.12 SEP 16, 2003

CHARLES COUNTY—Continued

WELL NUMBER .-- CH Bf 133. SITE ID .-- 383640076545901. PERMIT NUMBER .-- CH-70-0069.

LOCATION.--Lat 38°36'40", long 76°54'59", Hydrologic Unit 02070011, at St. Charles, Copely Rd. pumping station. Owner: Charles County Department of Public Works.

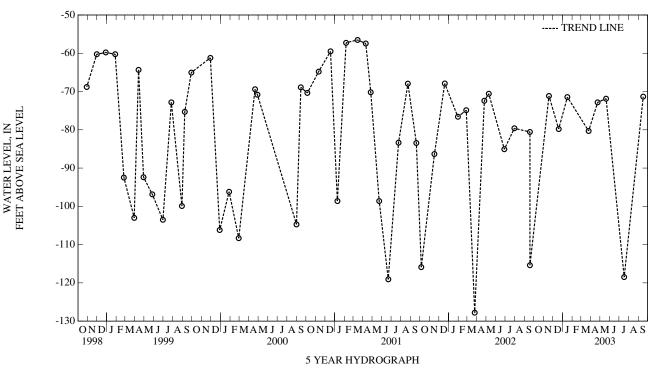
AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 510 ft; casing diameter 10 in., to 77 ft; casing diameter 6 in., from -2 to 420 ft, casing diameter 4 in., from 420 to 436 ft, and 506 to 510 ft; screen diameter 4 in., from 436 to 506 ft.

INSTRUMENTATION.--Periodic water level measurements with electric tape by Maryland Geological Survey personnel from April 1992 to current year. Twice yearly measurements from April 1974 to April 1992.


DATUM .-- Elevation of land surface is 223.50 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.82 ft above land surface.

REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD .-- April 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.82 ft above sea level, April 26, 1974; lowest measured, 127.79 ft below sea level, March 25, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

HIGHEST -71.16 NOV 18, 2002

CHARLES COUNTY—Continued

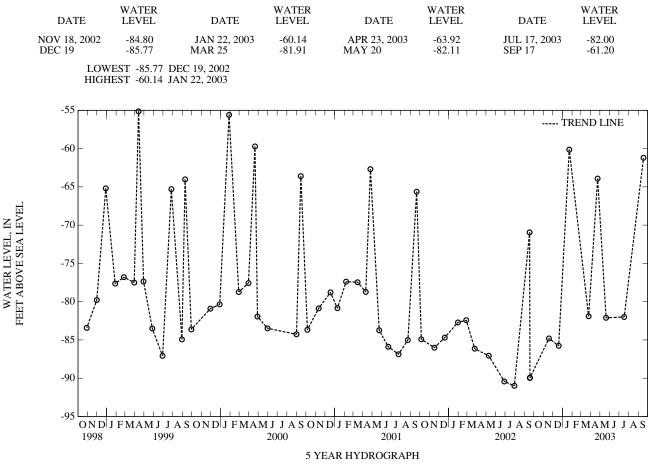
WELL NUMBER .-- CH Bf 134. SITE ID .-- 383728076531701. PERMIT NUMBER .-- CH-70-0067.

LOCATION.--Lat 38°37'28", long 76°53'17", Hydrologic Unit 02070011, at John Hansen Middle School parking lot, at Waldorf. Owner: Charles County Department of Public Works.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 546 ft; casing diameter 6 in., to 402 ft; casing diameter 4 in., from 422 to 485 ft; screen diameter 4 in., from 402 to 422 ft, and 485 to 546 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 202.09 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.52 ft above land surface.

REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- April 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.22 ft above sea level, April 26, 1974; lowest measured, 91.00 ft below sea level, July 30, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CHARLES COUNTY-Continued

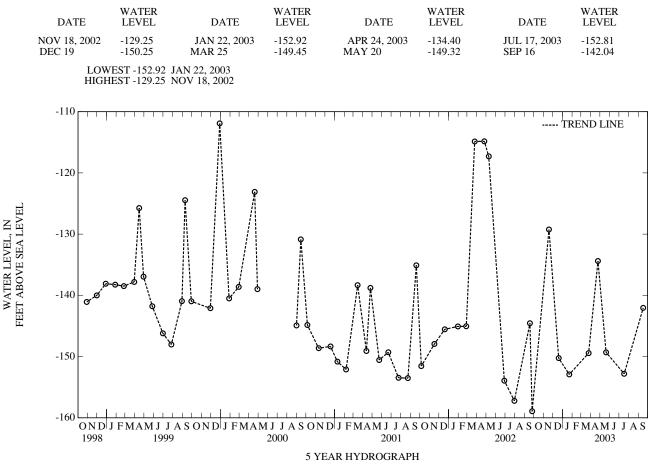
WELL NUMBER .-- CH Bf 146. SITE ID .-- 383508076540701. PERMIT NUMBER .-- CH-81-0593.

LOCATION.--Lat 38°35'08", long 76°54'07", Hydrologic Unit 02070011, 0.3 mi south of the intersection of St. Pauls Dr. and Piney Church Rd., St. Charles. Owner: Charles County Department of Public Works.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 1,427 ft; casing diameter 6 in., to 1,059 ft, 1,069 to 1,073 ft, 1,083 to 1,161 ft, 1,166 to 1,170 ft, 1,180 to 1,184 ft, 1,189 to 1,195 ft, 1,205 to 1,244 ft, 1,249 to 1,252 ft, 1,262 to 1,298 ft, 1,328 to 1,342 ft, and 1,417 to 1,427 ft; screen diameter 10 in. from 1,059 to 1,069 ft, 1,073 to 1,083 ft, 1,161 to 1,166 ft, 1,170 to 1,180 ft, 1,184 to 1,189 ft, 1,195 to 1,205 ft, 1,244 to 1,252 ft, 1,262 to 1,298 to 1,328 ft, and 1,342 to 1,249 ft, 1,252 to 1,262 ft, 1,298 to 1,328 ft, and 1,342 to 1,417 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 192.80 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.50 ft above land surface.

REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- April 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.02 ft below sea level, April 4, 1985; lowest measured, 158.94 ft below sea level, September 25, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

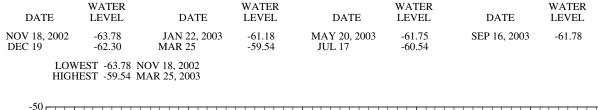
CHARLES COUNTY—Continued

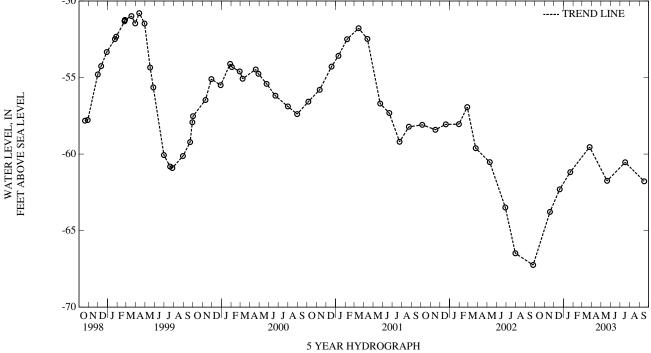
WELL NUMBER .-- CH Bf 151. SITE ID .-- 383508076540703. PERMIT NUMBER .-- CH-81-1265.

LOCATION.--Lat 38°35'08", long 76°54'07", Hydrologic Unit 02070011, 0.3 mi south of the intersection of St. Pauls Dr. and Piney Church Rd., St. Charles. Owner: U.S. Geological Survey.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 660 ft; casing diameter 6 in., to 399 ft; casing diameter 4 in., from 399 to 645 ft; screen diameter 4 in., from 645 to 660 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from August 1987 to current year.


DATUM .-- Elevation of land surface is 192.8 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.20 ft above land surface.


REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD.--November 1985 to December 1986, and April 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.39 ft below sea level, March 27, 1988 (recorder); lowest measured, 69.64 ft below sea level, August 21, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CHARLES COUNTY-Continued

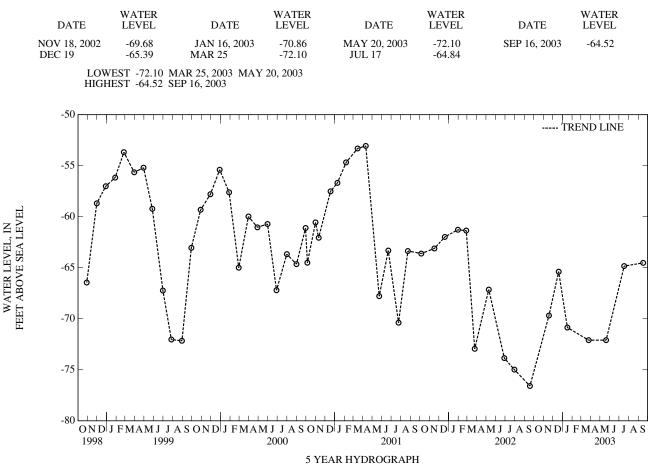
WELL NUMBER .-- CH Bf 157. SITE ID .-- 383637076545803. PERMIT NUMBER .-- CH-81-1846.

LOCATION.--Lat 38°36'40", long 76°54'59", Hydrologic Unit 02070011, at St. Charles, Copely Rd. pumping station. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 623 ft; casing diameter 6 in., to 396 ft; casing diameter 4 in., from 396 to 608 ft; screen diameter 4 in., from 608 to 623 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 225.00 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.70 ft above land surface.

REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- November 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 37.27 ft below sea level, April 5, 1988; lowest measured, 76.59 ft below sea level, September 18, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CHARLES COUNTY—Continued

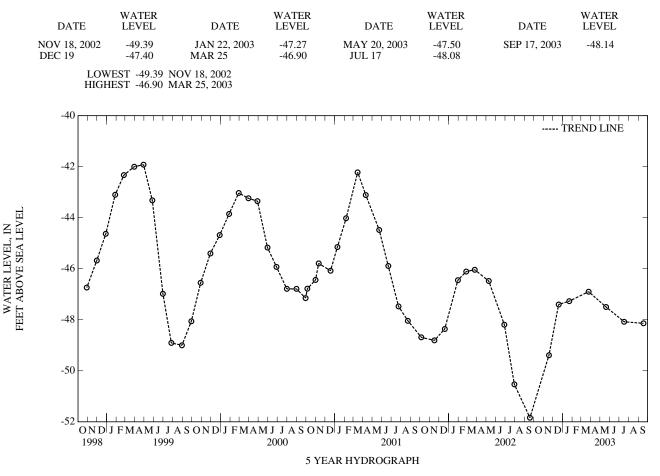
WELL NUMBER.--CH Bf 158. SITE ID.--383732076531902. PERMIT NUMBER.--CH-81-1847.

LOCATION.--Lat 38°37'32", long 76°53'19", Hydrologic Unit 02070011, at John Hansen Middle School pumping station, Waldorf. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 645 ft; casing diameter 6 in., to 398 ft; casing diameter 4 in., from 398 to 630 ft; screen diameter 4 in., from 630 to 645 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 193 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.0 ft above land surface.

REMARKS .-- Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- April 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 23.70 ft below sea level, April 10, 1987; lowest measured, 51.84 ft below sea level, September 18, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CHARLES COUNTY-Continued

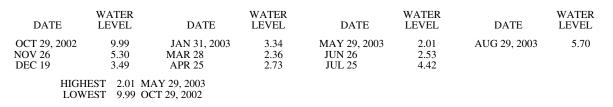
WELL NUMBER .-- CH Bg 12. SITE ID .-- 383746076482901. PERMIT NUMBER .-- CH-81-0600.

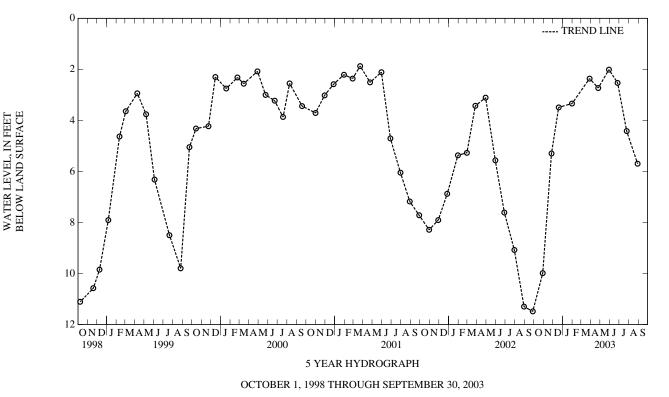
LOCATION.--Lat 38°37'46", long 76°48'29", Hydrologic Unit 02070011, Cedarville State Forest, near Forest Rd. Owner: U.S. Geological Survey.

AQUIFER.--Calvert Formation of Lower middle Miocene age. Aquifer code: 122CLVR.

WELL CHARACTERISTICS.-Drilled, observation, water-table well, depth 24.5 ft; casing diameter 4 in., to 13.5 ft; casing diameter 2 in., from 18.5 to 24.5 ft; screen diameter 2 in., from 13.5 to 18.5 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 149.69 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.00 ft above land surface.


REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by natural climatic response. The high water levels from December 1999 through May 2001 is the result of beavers damming nearby Zekiah Swamp Run.

PERIOD OF RECORD .-- August 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.87 ft below land surface, March 23, 2001; lowest measured, 11.49 ft below land surface, September 27, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CHARLES COUNTY—Continued

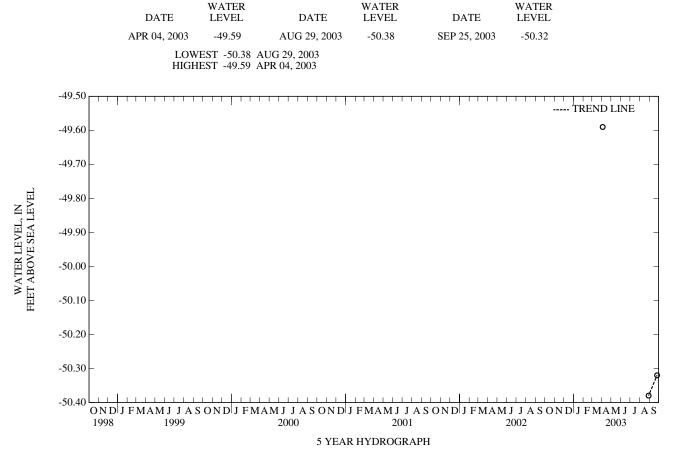
WELL NUMBER.--CH Bg 17. SITE ID.--383706076475401. PERMIT NUMBER.--CH-94-5325.

LOCATION .-- Lat 38°37'06", long 76°47'54", Hydrologic Unit 02070011. Owner: U.S. Geological Survey.

AQUIFER .-- Lower Patapsco Aquifer Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .-- Drilled, artesian well, depth 1,353 ft; casing diameter 4 in., to 1,353 ft depth.

INSTRUMENTATION .-- Monthly measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 199.16 ft above North American Vertical Datum of 1988. Measuring point: Top of shelter platform, 3.50 ft above land surface.

REMARKS .-- Southern Maryland Patapsco Aquifer Well Drilling Project observation well. Water levels affected by nearby pumping.

PERIOD OF RECORD.--April 2003 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.09 ft below land surface, April 6, 2003; lowest measured, 52.38 ft below land surface, August 29, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CHARLES COUNTY-Continued

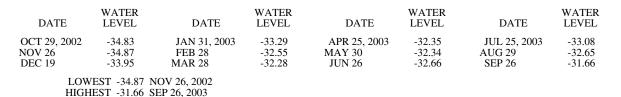
WELL NUMBER .-- CH Cb 7. SITE ID .-- 383422077114601. PERMIT NUMBER .-- CH-01-1908.

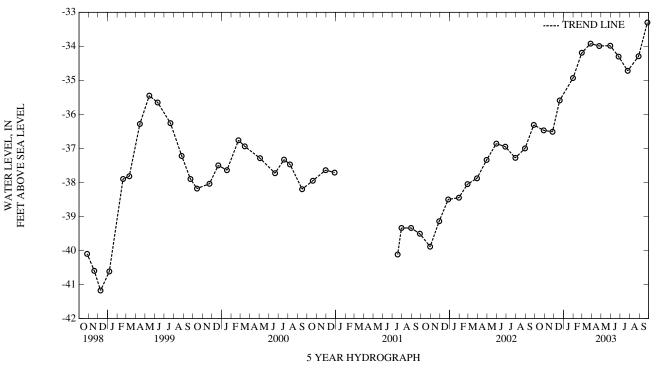
LOCATION.--Lat 38°34'22", long 77°11'46", Hydrologic Unit 02070011, at Caffee and Greenslade Rds., U.S. Naval Ordnance Station, about 2.5 mi southwest of Indian Head. Owner: U.S. Navy.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 167 ft; casing diameter 8 in., to 144 ft; screen diameter 6 in., from 144 to 167 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder September 1953 to July 1965.


DATUM .-- Elevation of land surface is 36.0 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.08 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--March and April 1952, August 1953 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.35 ft below sea level, April 18, 1952; lowest measured, 53.33 ft below sea level, August 12, 14, 1989 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CHARLES COUNTY—Continued

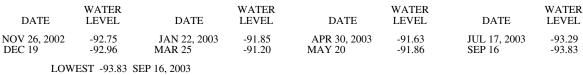
WELL NUMBER.--CH Cc 31. SITE ID.--383455077074401. PERMIT NUMBER.--CH-73-1416.

LOCATION.--Lat 38°34'55", long 77°07'44", Hydrologic Unit 02070011, at Mattawoman Natural Environment Area, approximately 2,000 ft west of the intersection of MD Rts. 224 and 425. Owner: Maryland Department of Natural Resources.

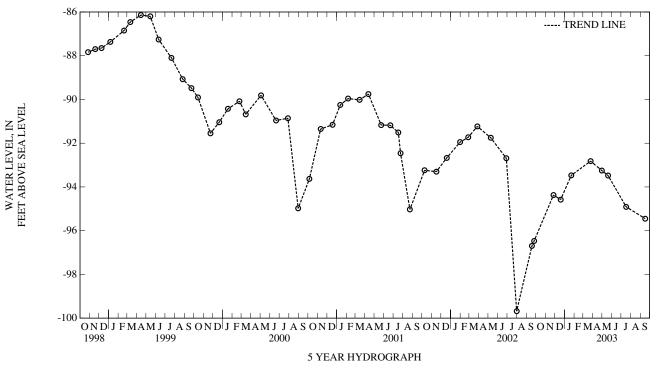
AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 559 ft; casing diameter 6 in., to 200 ft; casing diameter 4 in., from 200 to 438 ft., 453 to 480 ft, 505 to 540 ft, and 554 to 559 ft; screen diameter 4 in., from 438 to 453 ft, 480 to 505 ft, and 540 to 554 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 35.00 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 3.75 ft above land surface.

REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD .-- July 1998 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 84.23 ft below sea level, July 14, 1998; lowest measured, 98.87 ft below sea level, August 9, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

HIGHEST -91.20 MAR 25, 2003

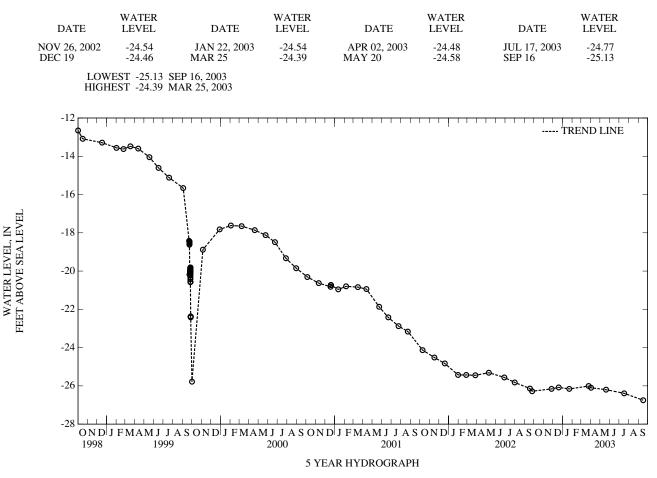
CHARLES COUNTY—Continued

WELL NUMBER .-- CH Cc 34. SITE ID .-- 383441077063901. PERMIT NUMBER .-- CH-94-0897.

LOCATION.--Lat 38°34'41", long 77°06'39", Hydrologic Unit 02070011, at Mattawoman Water Treatment Plant. Owner: Maryland Geological Survey.

AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 975 ft; casing diameter 4 in., to 874 ft, 884 to 945 ft, and 965 to 975 ft; screen diameter 4 in., from 874 to 884 ft, and 945 to 955 ft.


INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.

- DATUM.--Elevation of land surface is 41.82 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 3.0 ft above land surface.
- REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal. A ground-water pumping test began on September 21, 1999, at a nearby production well with the deepest drawdown recorded as 24.16 ft below sea level on October 1, 1999.

PERIOD OF RECORD .-- August 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.80 ft below sea level, October 8, 1996; lowest measured, 25.13 ft below sea level, September 16, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CHARLES COUNTY—Continued

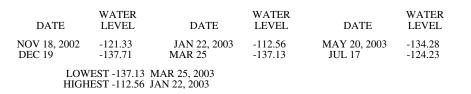
WELL NUMBER .-- CH Ce 37. SITE ID .-- 383236076563901. PERMIT NUMBER .-- CH-73-0219.

LOCATION.--Lat 38°32'36", long 76°56'39", Hydrologic Unit 02070011, at La Plata Water Treatment Plant, 2.0 mi. northeast of La Plata. Owner: U.S. Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 1,340 ft; casing diameter 6 in., to 300 ft; casing diameter 4 in., from 300 to 1,174 ft, 1,184 to 1,250 ft, and 1,260 to 1,330 ft; screen diameter 4 in., from 1,174 to 1,184 ft, 1,250 to 1,260 ft, and 1,330 to 1,340 ft.

INSTRUMENTATION.--Periodic water level measurements with electric tape by Maryland Geological Survey personnel. Equipped with graphic water-level recorder from November 1973 to December 1975. Equipped with digital water-level recorder--15-minute recorder interval from July 1976 to October 1998.


DATUM .-- Elevation of land surface is 184.95 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.62 ft above land surface.

REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- November 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.19 ft below sea level, November 5, 1973; lowest measured, 147.94 ft below sea level, August 17, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CHARLES COUNTY—Continued

WELL NUMBER .-- CH Ce 56. SITE ID.-- 383251076583901. PERMIT NUMBER .-- CH-94-1111

LOCATION.--Lat 38°32"51", long 76°58"39", Hydrologic Unit 02070011, Heritage Green, LaPlata. Owner: Town of La Plata.

AQUIFER .-- Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 1,268 ft; casing diameter 6 in., to 475 ft; 4 in., from 475 to 896 ft, 906 to 945 ft, 950 to 957 ft, 962 to 993 ft, 1,008 to 1,024 ft, 1,029 to 1,037 ft, 1,042 to 1,094 ft, 1,134 to 1,166 ft, 1,186 to 1,204 ft, 1,214 to 1,248 ft and 1,258 to 1,268 ft; Screen diameter 4 in. from 896 to 906 ft, 945 to 950 ft, 957 to 962 ft, 993 to 1,008 ft, 1,024 to 1,029 ft, 1,037 to 1,042 ft, 1,094 to 1,134 ft, 1,166 to 1,186 ft, 1,204 to 1,214 ft and 1,248 to 1,258 ft.

INSTRUMENTATION.--Periodic water level measurements with electric tape by Maryland Geological Survey personnel. Equipped with digital water-level recorder--15-minute recorder interval, August 1997 to current year.

DATUM.--Elevation of land surface is 196.48 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform 2.85 ft above land surface.

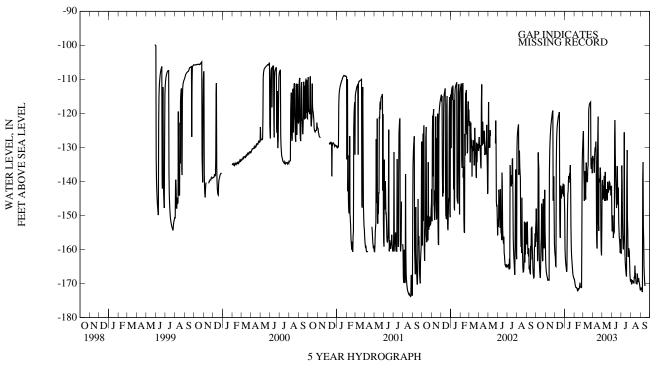
REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--March 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 87.67 ft below sea level, July 15, 1997; lowest measured, 174.15 ft below sea level, August 25, 2001 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 18, 2002 DEC 19	-123.08 -130.14	JAN 22, 2003 MAR 25	-154.50 -116.73	MAY 20, 2003 JUL 17	-137.01 -167.17	SEP 16, 2003	-171.40


LOWEST -171.40 SEP 16, 2003 HIGHEST -116.73 MAR 25, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBR	UARY	MAR	RCH
1	-129.7	-151.8	-139.3	-163.1	-143.7	-161.6	-122.9	-149.5	-152.2	-168.7	-125.2	-126.8
2	-128.2	-148.0	-148.3	-165.3	-140.7	-162.3	-137.5	-159.8	-155.7	-169.4	-123.8	-125.2
3	-128.2	-154.2	-149.6	-166.5	-145.9	-164.9	-143.9	-162.3	-169.2	-170.0	-123.4	-136.4
4	-128.7	-157.8	-147.2	-167.2	-135.3	-165.0	-146.1	-163.9	-169.7	-170.5	-123.9	-139.8
5	-129.3	-155.9	-149.3	-167.7	-127.8	-135.3	-147.2	-164.7	-170.2	-171.0	-124.4	-145.7
6	-140.8	-163.4	-149.5	-168.1	-125.4	-127.8	-146.3	-165.5	-170.7	-171.2	-124.5	-141.1
7	-131.5	-161.2	-149.6	-168.6	-123.8	-125.4	-152.7	-166.6	-170.7	-171.2	-124.4	-137.0
8	-127.8	-131.5	-151.0	-169.1	-122.8	-123.8	-148.1	-166.1	-158.3	-171.2	-123.1	-142.9
9	-126.4	-134.0	-146.6	-169.1	-122.0	-122.8	-133.1	-156.3	-160.9	-171.4	-122.9	-145.3
10	-125.8	-136.3	-147.7	-168.9	-121.4	-122.0	-128.3	-147.7	-161.0	-171.5	-124.1	-138.9
11	-126.5	-158.5	-147.7	-169.0	-120.8	-121.4	-127.7	-143.7	-171.3	-172.2	-122.2	-134.4
12	-143.2	-164.4	-137.3	-169.0	-120.4	-120.8	-126.6	-142.8	-171.6	-172.1	-121.7	-138.3
13	-147.7	-166.5	-131.1	-137.3	-119.8	-120.4	-125.0	-139.7	-159.9	-172.0	-121.8	-139.7
14	-149.8	-167.8	-128.3	-131.1	-119.6	-119.8	-124.5	-138.4	-157.7	-171.5	-123.1	-140.1
15	-148.1	-168.3	-126.3	-128.3	-119.4	-119.6	-124.2	-140.3	-155.2	-171.6	-121.9	-140.0
16	-137.6	-164.4	-124.6	-126.3	-119.3	-149.5	-123.2	-138.3	-156.6	-171.6	-121.6	-136.0
17	-133.8	-158.7	-123.3	-124.6	-136.9	-156.1	-121.7	-137.5	-152.5	-171.4	-121.1	-135.4
18	-132.6	-156.4	-122.5	-123.3	-130.1	-156.6	-121.6	-139.2	-150.7	-170.6	-119.0	-129.1
19	-130.3	-146.5	-121.6	-122.5	-124.9	-141.9	-121.0	-135.2	-154.2	-169.8	-118.2	-119.0
20	-128.7	-148.3	-120.9	-121.6	-123.4	-141.2	-120.6	-141.8	-156.1	-171.0	-117.4	-118.2
21	-129.2	-160.7	-120.1	-120.9	-125.0	-145.0	-122.5	-153.3	-155.5	-171.0	-117.1	-117.4
22	-133.2	-163.4	-119.5	-120.1	-124.3	-142.4	-139.4	-159.1	-154.0	-171.1	-116.9	-117.1
23	-135.7	-163.1	-119.2	-119.5	-124.1	-143.3	-146.0	-161.7	-152.9	-171.2	-116.8	-116.9
24	-131.8	-145.4	-118.8	-119.2	-126.3	-142.5	-144.6	-163.2	-143.5	-171.2	-116.7	-116.8
25	-129.8	-145.2	-118.5	-145.7	-124.3	-141.4	-147.3	-164.5	-135.3	-153.6	-116.5	-116.7
26 27 28 29 30 31	-127.5 -127.3 -130.6 -127.7 -126.9 -126.5	-151.2 -159.7 -149.2 -142.5 -153.9 -158.1	-127.5 -122.5 -122.3 -137.7 -139.1	-142.8 -138.5 -148.4 -158.2 -160.3	-124.0 -123.9 -124.0 -123.8 -123.7 -123.7	-143.7 -140.7 -144.4 -141.8 -141.0 -145.2	-164.5 -165.9 -166.9 -154.7 -154.1 -153.8	-165.9 -167.1 -167.7 -168.0 -168.4 -168.7	-131.1 -128.6 -126.8 	-135.3 -131.1 -128.6 	-116.4 -119.7 -119.5 -118.9 -120.2 -120.8	-135.1 -136.3 -133.1 -134.9 -137.6 -133.6
MONTH	-125.8	-168.3	-118.5	-169.1	-119.3	-165.0	-120.6	-168.7	-126.8	-172.2	-116.4	-145.7

CHARLES COUNTY—Continued

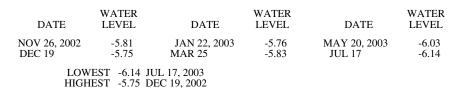
					CHARLES		-continued					
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	-119.4 -118.8 -120.0 -120.0 -119.9	-132.5 -133.1 -133.6 -133.9 -136.3	-126.7 -126.9 -129.0 -126.4 -130.4	-141.0 -139.6 -145.4 -143.0 -144.9	-127.2 -127.5 -131.1 -134.5 -130.3	-150.2 -154.7 -153.7 -150.0 -152.3	-130.1 -125.9 -123.6 -122.3 -125.0	-161.3 -148.3 -135.3 -140.5 -151.1	-142.3 -144.6 -168.8 -146.0 -145.7	-169.4 -168.8 -170.1 -170.1 -169.7	-148.1 -146.7 -148.9 -147.7 -147.4	-171.9 -171.3 -171.3 -171.4 -171.7
6 7 8 9 10	-120.5 -119.7 -118.8 -118.3 -118.1	-137.4 -132.0 -130.3 -130.0 -131.0	-126.9 -123.6 -122.8 -124.8 -123.8	-141.5 -140.9 -138.4 -145.7 -142.6	-129.1 -137.0 -137.2 -126.5 -122.0	-156.6 -154.9 -155.2 -154.7 -126.5	-127.6 -131.6 -129.0 -128.2 -125.6	-156.3 -158.8 -160.0 -156.2 -156.2	-147.6 -147.6 -143.4 -144.8 -146.9	-169.0 -169.4 -169.5 -169.5 -169.9	-154.2 -139.2 -134.4 -131.8 -131.0	-172.4 -172.4 -139.2 -134.4 -153.4
11 12 13 14 15	-117.9 -117.4 -124.1 -155.1 -132.9	-128.3 -134.1 -155.1 -159.4 -159.7	-122.6 -124.8 -123.9 -124.3 -123.3	-137.2 -145.7 -144.1 -144.6 -142.3	-119.9 -119.1 -120.2 -122.5 -122.2	-122.0 -131.7 -137.5 -141.6 -145.1	-122.8 -122.0 -155.0 -161.2 -163.8	-125.6 -155.0 -161.2 -163.8 -165.3	-145.9 -145.7 -142.1 -139.2 -143.7	-169.9 -168.0 -168.5 -164.8 -167.2	-134.9 -139.3 -141.5 -151.2 -169.3	-156.9 -164.9 -167.4 -169.3 -170.8
16 17 18 19 20	-123.2 -120.9 -119.6 -119.2 -125.3	-132.9 -127.2 -120.9 -152.4 -154.5	-125.7 -129.5 -124.8 -122.8 -122.7	-142.9 -145.6 -144.1 -140.1 -143.2	-123.4 -122.3 -119.9 -119.0 -122.3	-147.8 -145.9 -135.5 -138.2 -146.8	-165.3 -166.4 -140.6 -130.7 -127.4	-166.5 -167.4 -168.0 -140.6 -130.8	-142.9 -144.7 -146.8 -147.0 -147.9	-166.9 -169.2 -170.0 -170.1 -170.1	 	
21 22 23 24 25	-124.9 -126.4 -125.4 -125.0 -124.0	-139.2 -139.5 -140.3 -138.3 -135.9	-123.8 -127.6 -124.8 -122.2 -122.2	-143.1 -142.7 -141.6 -140.1 -140.3	-121.0 -120.8 -120.8 -125.5 -127.7	-142.2 -142.1 -151.7 -154.6 -156.6	-126.0 -128.9 -133.7 -138.3 -135.8	-151.1 -154.3 -161.1 -162.2 -159.7	-145.4 -142.9 -144.9 -145.2 -145.9	-170.1 -167.1 -168.9 -169.2 -168.8	 	
26 27 28 29 30 31	-123.3 -122.4 -155.0 -141.0 -131.0	-138.4 -155.0 -160.6 -161.8 -152.4	-123.6 -125.0 -122.6 -122.4 -123.2 -124.1	-140.7 -142.5 -141.3 -144.2 -142.0 -141.3	-127.8 -134.9 -131.5 -129.2 -131.6	-157.5 -159.0 -161.0 -157.0 -159.6	-136.7 -135.9 -134.9 -163.8 -167.3 -168.7	-159.9 -160.7 -163.8 -167.3 -168.8 -169.4	-143.9 -145.6 -149.3 -150.9 -147.8 -153.4	-168.4 -169.3 -169.7 -170.4 -171.1 -171.9	 	
MONTH YEAR	-117.4 -116.4	-161.8 -172.4	-122.2	-145.7	-119.0	-161.0	-122.0	-169.4	-139.2	-171.9	-131.0	-172.4

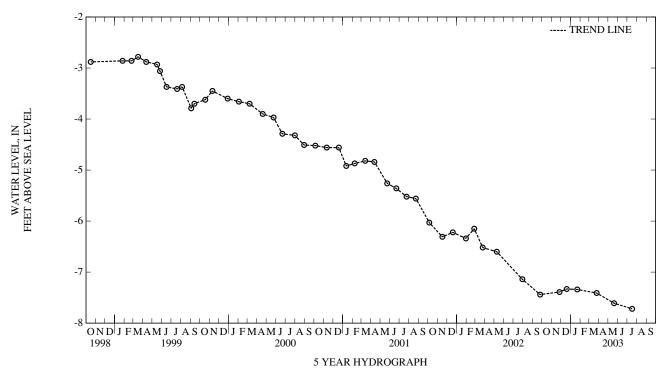
Daily Low Water Levels

CHARLES COUNTY—Continued

WELL NUMBER .-- CH Ce 57. SITE ID .-- 383250076584001. PERMIT NUMBER .-- CH-94-1112

LOCATION .-- Lat 38°32'50", long 76°58'40", Hydrologic Unit 02070011, Heritage Green, LaPlata. Owner: Town of La Plata.


AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.


- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 1,703 ft; casing diameter 6 in., to 400 ft; 4 in., from 400 to 1,406 ft, 1,421 to 1,500 ft, 1,515 to 1,668 ft, and 1,698 to 1,703 ft. Screen diameter 4 in., from 1,406 to 1,421 ft, 1,500 to 1,515 ft, and 1,668 ft.
- INSTRUMENTATION.--Periodic water level measurements with electric tape by Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval, March 1997 to July 1998.
- DATUM.--Elevation of land surface is 193.47 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder platform, 5.0 ft above land surface.
- REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- March 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.13 ft above sea level, May 1, 1997 (recorder); lowest measured, 6.14 ft below sea level, July 17, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CHARLES COUNTY-Continued

WELL NUMBER.--CH Cg 24. SITE ID.--383254076481401. PERMIT NUMBER.--CH-94-4194.

LOCATION.--Lat 38°32'54", long 76°48'14", Hydrologic Unit 02070011, at Hughesville Pond. Owner: Maryland Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.-Drilled, artesian well, depth 835 ft; casing diameter 12 in., to 41 ft, casing diameter 4 in., from +3.7 to 795 ft, and 825 to 835 ft; screen diameter 4 in., from 795 to 825 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recording interval, April 2002 to current year.

DATUM.--Elevation of land surface is 171.04 ft above North American Vertical Datum of 1988. Measuring point: Top of 4 in. coupling, 3.75 ft above land surface.

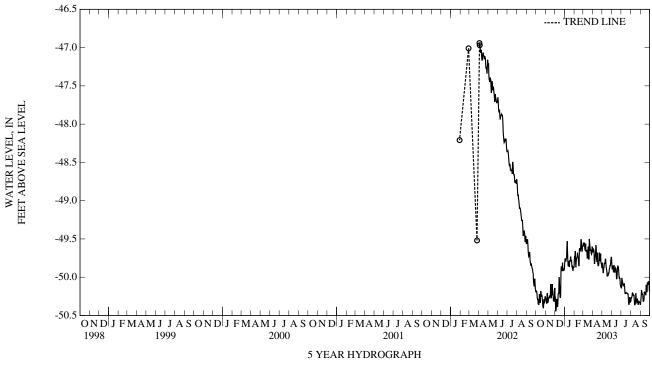
REMARKS.--Southern Maryland Patapsco Aquifer Well Drilling Project observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- January 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.80 ft below sea level, April 3, 2002 (recorder); lowest measured, 50.19 ft below sea level, September 30, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002	-50.29	JAN 30, 2003	-49.87	APR 24, 2003	-49.77	JUL 24, 2003	-50.26
NOV 25	-50.21	FEB 27	-49.55	MAY 29	-49.76	AUG 29	-50.29
DEC 19	-50.00	MAR 27	-49.67	JUN 25	-50.01	SEP 25	-50.04


LOWEST -50.29 OCT 29, 2002 AUG 29, 2003 HIGHEST -49.55 FEB 27, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBR	UARY	MAF	RCH
1	-50.16	-50.19	-50.24	-50.27	-50.14	-50.26	-49.57	-49.81	-49.66	-49.76	-49.55	-49.59
2	-50.16	-50.18	-50.25	-50.28	-50.19	-50.26	-49.65	-49.76	-49.68	-49.72	-49.34	-49.55
3	-50.16	-50.18	-50.28	-50.32	-50.21	-50.44	-49.63	-49.76	-49.66	-49.74	-49.41	-49.59
4	-50.17	-50.21	-50.32	-50.34	-50.40	-50.44	-49.65	-49.79	-49.50	-49.66	-49.54	-49.59
5	-50.16	-50.27	-50.19	-50.34	-50.15	-50.40	-49.76	-49.79	-49.66	-49.82	-49.44	-49.55
6	-50.27	-50.29	-50.08	-50.21	-50.21	-50.29	-49.71	-49.76	-49.79	-49.87	-49.41	-49.60
7	-50.25	-50.29	-50.21	-50.33	-50.25	-50.29	-49.60	-49.75	-49.65	-49.79	-49.60	-49.65
8	-50.28	-50.35	-50.32	-50.33	-50.25	-50.31	-49.47	-49.60	-49.68	-49.75	-49.51	-49.62
9	-50.35	-50.35	-50.29	-50.32	-50.31	-50.39	-49.46	-49.53	-49.73	-49.74	-49.48	-49.56
10	-50.29	-50.36	-50.21	-50.29	-50.22	-50.35	-49.53	-49.67	-49.55	-49.73	-49.56	-49.66
11	-50.22	-50.29	-50.20	-50.26	-50.07	-50.22	-49.67	-49.78	-49.60	-49.68	-49.65	-49.66
12	-50.22	-50.22	-50.21	-50.27	-50.09	-50.21	-49.78	-49.85	-49.59	-49.72	-49.61	-49.65
13	-50.22	-50.27	-50.21	-50.24	-49.93	-50.21	-49.71	-49.85	-49.68	-49.75	-49.55	-49.65
14	-50.27	-50.33	-50.24	-50.26	-49.88	-50.00	-49.76	-49.79	-49.75	-49.78	-49.65	-49.75
15	-50.19	-50.33	-50.24	-50.25	-50.00	-50.07	-49.79	-49.86	-49.69	-49.85	-49.68	-49.75
16	-50.00	-50.19	-50.09	-50.24	-49.98	-50.15	-49.78	-49.86	-49.64	-49.85	-49.60	-49.69
17	-50.07	-50.18	-50.04	-50.09	-50.15	-50.25	-49.68	-49.78	-49.52	-49.64	-49.54	-49.60
18	-50.18	-50.25	-50.08	-50.27	-50.24	-50.27	-49.78	-49.80	-49.54	-49.62	-49.54	-49.65
19	-50.18	-50.25	-50.22	-50.27	-49.93	-50.24	-49.72	-49.78	-49.61	-49.64	-49.65	-49.77
20	-50.18	-50.23	-50.23	-50.23	-49.71	-49.93	-49.65	-49.73	-49.61	-49.65	-49.49	-49.76
21	-50.23	-50.28	-50.09	-50.23	-49.80	-49.86	-49.73	-49.78	-49.51	-49.63	-49.48	-49.50
22	-50.28	-50.32	-50.01	-50.09	-49.81	-49.87	-49.77	-49.78	-49.23	-49.51	-49.50	-49.56
23	-50.32	-50.38	-50.06	-50.17	-49.85	-49.88	-49.74	-49.78	-49.19	-49.51	-49.56	-49.60
24	-50.38	-50.40	-50.17	-50.18	-49.81	-49.92	-49.74	-49.86	-49.51	-49.57	-49.60	-49.65
25	-50.29	-50.40	-50.18	-50.24	-49.57	-49.81	-49.85	-49.87	-49.57	-49.66	-49.61	-49.65
26 27 28 29 30 31	-50.24 -50.27 -50.30 -50.25 -50.18 -50.19	-50.29 -50.31 -50.33 -50.32 -50.25 -50.26	-50.24 -50.25 -50.27 -50.09 -50.02	-50.31 -50.30 -50.32 -50.27 -50.14	-49.70 -49.89 -49.83 -49.82 -49.89 -49.80	-49.89 -49.92 -49.90 -49.91 -49.91 -49.89	-49.75 -49.79 -49.83 -49.77 -49.86 -49.76	-49.85 -49.91 -49.86 -49.87 -49.87	-49.60 -49.53 -49.50 	-49.66 -49.60 -49.59 	-49.55 -49.64 -49.68 -49.58 -49.56 -49.57	-49.64 -49.69 -49.70 -49.68 -49.60 -49.67
MONTH	-50.00	-50.40	-50.01	-50.34	-49.57	-50.44	-49.46	-49.91	-49.19	-49.87	-49.34	-49.77

CHARLES COUNTY—Continued

					01111111111	0001111	commutu					
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	ΑY	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1	-49.57	-49.67	-49.81	-49.87	-49.64	-49.83	-50.12	-50.14	-50.27	-50.31	-50.30	-50.35
2	-49.58	-49.63	-49.76	-49.81	-49.83	-49.89	-50.01	-50.14	-50.27	-50.27	-50.24	-50.30
3	-49.59	-49.63	-49.78	-49.89	-49.85	-49.89	-49.98	-50.01	-50.26	-50.27	-50.17	-50.25
4	-49.59	-49.64	-49.89	-49.94	-49.84	-49.85	-49.99	-50.03	-50.24	-50.26	-50.10	-50.17
5	-49.60	-49.67	-49.88	-49.94	-49.84	-49.87	-50.03	-50.05	-50.18	-50.24	-50.11	-50.19
5	47.00	47.07	47.00	47.74	47.04	47.07	50.05	50.05	50.10	50.24	50.11	50.17
6	-49.67	-49.82	-49.86	-49.88	-49.87	-49.93	-50.05	-50.08	-50.18	-50.20	-50.19	-50.23
7	-49.75	-49.82	-49.78	-49.87	-49.80	-49.93	-50.08	-50.11	-50.18	-50.21	-50.20	-50.22
8	-49.73	-49.76	-49.78	-49.82	-49.81	-49.84	-50.08	-50.11	-50.18	-50.22	-50.20	-50.23
9	-49.65	-49.73	-49.77	-49.82	-49.82	-49.88	-50.07	-50.11	-50.21	-50.24	-50.23	-50.29
10	-49.58	-49.66	-49.77	-49.82	-49.88	-49.94	-50.05	-50.12	-50.22	-50.24	-50.28	-50.32
11	-49.51	-49.58	-49.67	-49.77	-49.88	-49.92	-50.03	-50.08	-50.21	-50.23	-50.27	-50.31
12	-49.49	-49.62	-49.67	-49.76	-49.83	-49.90	-50.08	-50.13	-50.23	-50.30	-50.18	-50.30
13	-49.62	-49.76	-49.75	-49.82	-49.84	-49.88	-50.13	-50.20	-50.30	-50.36	-50.16	-50.19
14	-49.76	-49.80	-49.82	-49.87	-49.85	-49.89	-50.18	-50.22	-50.35	-50.36	-50.19	-50.20
15	-49.68	-49.78	-49.87	-49.90	-49.87	-49.93	-50.20	-50.20	-50.30	-50.35	-50.14	-50.20
	10.50	10.00	10.07	10.00	10.00		50.00		50.10	50.00	50.15	50.00
16	-49.63	-49.68	-49.86	-49.92	-49.92	-50.02	-50.20	-50.20	-50.19	-50.30	-50.15	-50.20
17	-49.66	-49.82	-49.92	-49.99	-49.97	-50.02	-50.20	-50.20	-50.19	-50.21	-50.20	-50.23
18	-49.81	-49.85	-49.95	-49.98	-49.89	-49.97	-50.20	-50.21	-50.21	-50.28	-49.87	-50.23
19	-49.83	-49.85	-49.95	-49.98	-49.83	-49.89	-50.21	-50.21	-50.28	-50.31	-49.87	-50.10
20	-49.78	-49.84	-49.94	-49.98	-49.83	-49.85	-50.21	-50.21	-50.31	-50.33	-50.10	-50.15
21	-49.65	-49.78	-49.92	-49.94	-49.85	-49.86	-50.21	-50.21	-50.28	-50.32	-50.15	-50.19
22	-49.63	-49.68	-49.92	-49.95	-49.86	-49.87	-50.21	-50.22	-50.24	-50.28	-50.07	-50.19
23	-49.68	-49.76	-49.89	-49.94	-49.87	-49.92	-50.21	-50.22	-50.24	-50.30	-49.94	-50.07
23	-49.76	-49.79	-49.86	-49.89	-49.92	-49.99	-50.22	-50.22	-50.30	-50.36	-50.03	-50.10
24	-49.70	-49.79	-49.80	-49.89	-49.92	-49.99	-50.22	-50.28	-50.30	-50.30	-50.03	-50.06
23	-49.09	-49.77	-49.65	-49.00	-49.99	-30.02	-30.28	-30.35	-30.32	-30.35	-30.03	-30.00
26	-49.64	-49.69	-49.76	-49.85	-49.98	-50.01	-50.33	-50.36	-50.26	-50.33	-50.06	-50.07
27	-49.69	-49.80	-49.82	-49.85	-49.97	-50.02	-50.26	-50.33	-50.25	-50.31	-50.01	-50.07
28	-49.78	-49.82	-49.77	-49.83	-50.02	-50.09	-50.23	-50.26	-50.28	-50.33	-50.00	-50.05
29	-49.77	-49.81	-49.73	-49.77	-50.09	-50.12	-50.23	-50.28	-50.28	-50.33	-50.05	-50.17
30	-49.81	-49.88	-49.73	-49.74	-50.11	-50.12	-50.28	-50.33	-50.28	-50.33	-50.17	-50.19
31			-49.64	-49.74			-50.31	-50.32	-50.33	-50.36		
MONTH	-49.49	-49.88	-49.64	-49.99	-49.64	-50.12	-49.98	-50.36	-50.18	-50.36	-49.87	-50.35
VEAD	10.10	50.44										
YEAR	-49.19	-50.44										

Daily Low Water Levels

CHARLES COUNTY-Continued

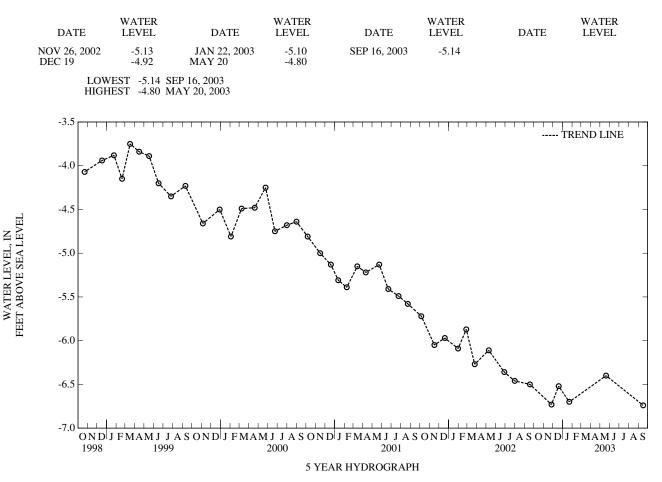
WELL NUMBER .-- CH Da 18. SITE ID .-- 382654077152501.

LOCATION.--Lat 38°26'54", long 77°15'25", Hydrologic Unit 02070011, near Douglas Point. Owner: U.S. Bureau of Land Management.

AQUIFER .-- Upper Patuxent aquifer in the Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS.-Drilled observation, artesian well, depth 740 ft; casing diameter 8 in., to 684 ft; and 694 to 730 ft; screen diameter 8 in., from 684 to 694 ft, and 730 to 740 ft.

INSTRUMENTATION.--Periodic water level measurements with electric tape by Maryland Geological Survey personnel. Twice yearly water level measurements from September 1976 to April 1996. Equipped with digital water-level recorder--60-minute recorder interval from April 1996 to June 1998.


DATUM.--Elevation of land surface is 89.90 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of recorder shelf, 3.10 ft above land surface.

REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- September 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.79 ft above sea level, September 21, 1976; lowest measured, 5.14 ft below sea level, September 16, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CHARLES COUNTY—Continued

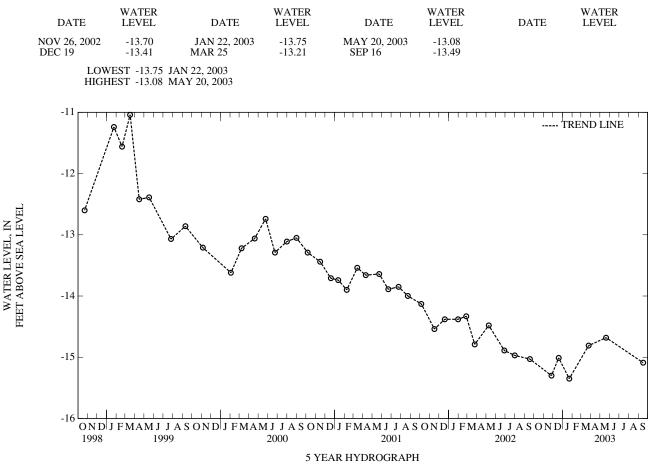
WELL NUMBER .-- CH Da 20. SITE ID .-- 382654077152701. PERMIT NUMBER .-- CH-73-0590.

LOCATION.--Lat 38°26'54", long 77°15'27", Hydrologic Unit 02070011, near Douglas Point. Owner: U.S. Bureau of Land Management.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 522 ft; casing diameter 6 in., to 420 ft; 425 to 444 ft; 449 to 481 ft, and 486 to 517 ft; screen diameter 6 in., from 420 to 425 ft, 444 to 449 ft, 481 to 486 ft, and 517 to 522 ft.

INSTRUMENTATION .-- Periodic water level measurements with electric tape by Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 90 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--September 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured 0.86 ft below sea level, March 22, 1979 and March 25, 1980; lowest measured, 13.75 ft below sea level, January 22, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CHARLES COUNTY—Continued

WELL NUMBER .-- CH Dd 33. SITE ID .-- 382607077002601. PERMIT NUMBER .-- CH-02-6769.

LOCATION.--Lat 38°25'09", long 77°00'00", Hydrologic Unit 02070011, 1.8 mi southwest of Faulkner off Popes Creek Rd. Owner: Jesuit Order (Loyola Retreat House).

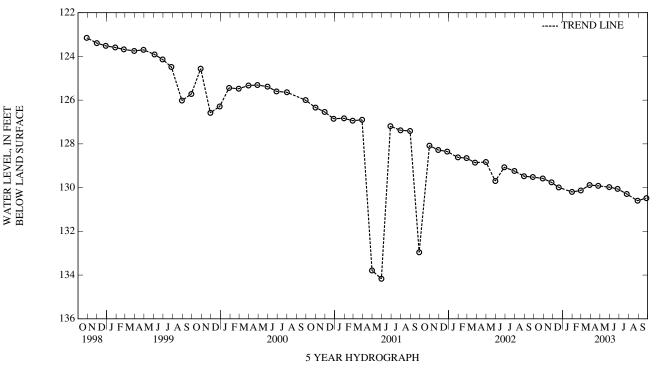
AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.-Drilled, institution, artesian well, depth 694 ft; casing diameter 6 in., to 564 ft; casing diameter 4 in., from 532 to 688 ft; screen diameter 4 in., from 687 to 694 ft.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 99.8 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.00 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation and production well. Water level reported 104 ft below land surface, June 27, 1957. Water levels are affected by local and regional ground-water withdrawal. The May 30, 2001, water level of 134.17 ft below land surface resulted from an extended period of ground-water withdrawal from this well.


PERIOD OF RECORD.--March 1962 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 88.28 ft below land surface, March 14, 1962; lowest measured, 130.60 ft below land surface, August 29, 2003 (See REMARKS).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002	129.58	JAN 31, 2003	130.20	APR 25, 2003	129.92	JUL 25, 2003	130.29
NOV 26	129.76	FEB 28	130.13	MAY 30	129.98	AUG 29	130.60
DEC 19	129.99	MAR 28	129.88	JUN 26	130.06	SEP 26	130.48

HIGHEST 129.58 OCT 29, 2002 LOWEST 130.60 AUG 29, 2003

CHARLES COUNTY—Continued

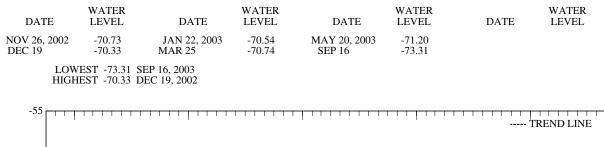
WELL NUMBER .-- CH Dd 38. SITE ID .-- 382925077010101. PERMIT NUMBER .-- CH-81-0358.

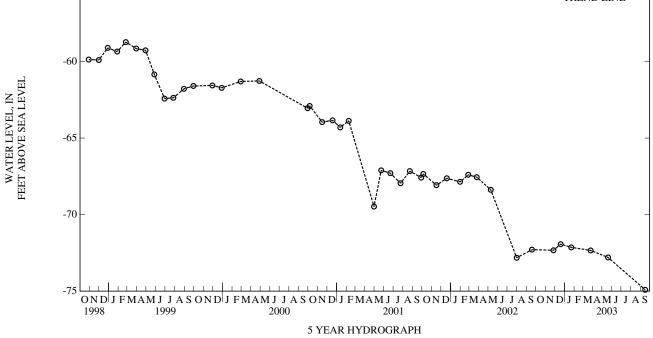
LOCATION.--Lat 38°29'25", long 77°01'01", Hydrologic Unit 02070011, 0.8 mi south of Port Tobacco. Owner: Private Residence.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.--Drilled, domestic, artesian well, depth 597 ft; casing diameter 4 in., to 297 ft; casing diameter 2 in., from 297 to 429 ft, 434 to 575 ft, 580 to 585 ft, and 590 to 597 ft; screen diameter 2 in., from 429 to 434 ft, 575 to 580 ft, and 585 to 590 ft.

INSTRUMENTATION.--Periodic water level measurements with chalked steel tape from April 1993 to December 1999, and October 2000 to current year by U.S. Geological Survey and Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 60 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land surface.


REMARKS.--Charles County Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground water withdrawal.

PERIOD OF RECORD .-- April 1993 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.97 ft below sea level, May 5, 1993; lowest measured, 73.31 ft below sea level, September 16, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

CHARLES COUNTY-Continued

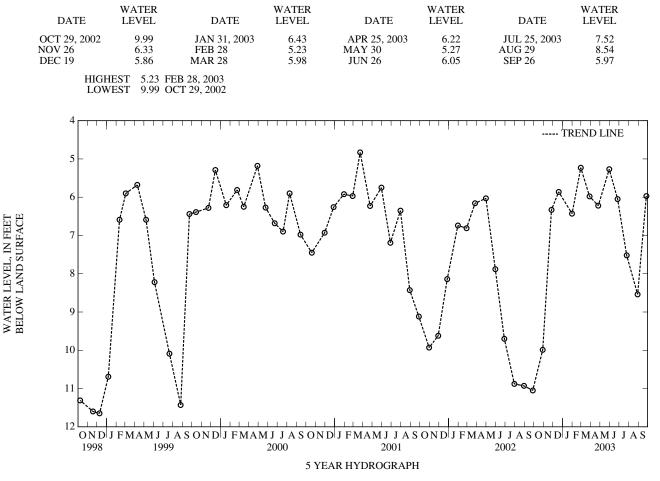
WELL NUMBER .-- CH De 45. SITE ID .-- 382927076552301. PERMIT NUMBER .-- CH-81-0604.

LOCATION.--Lat 38°29'27", long 76°55'23", Hydrologic Unit 02070011, north side of MD Rt. 6, 4.1 mi southeast of La Plata. Owner: U.S. Geological Survey.

AQUIFER .-- Alluvium of Pleistocene age and Nanjemoy Formation of Lower Eocene age. Aquifer code: 110ALVM.

WELL CHARACTERISTICS.-Drilled, observation, water-table well; depth 25.5 ft; casing diameter 4 in., to 15.5 ft, casing diameter 2 in., from 20.5 to 25.5 ft; screen diameter 2 in., from 15.5 to 20.5 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 44.77 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.35 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- August 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.83 ft below land surface, May 30, 1990 and March 23, 2001; lowest measured, 11.65 ft below land surface, December 9, 1998.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CHARLES COUNTY—Continued

WELL NUMBER .-- CH Ee 16. SITE ID .-- 382103076560201.

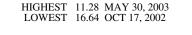
LOCATION .-- Lat 38°21'03", long 76°56'02", Hydrologic Unit 02070010, near Wayside. Owner: Private Residence.

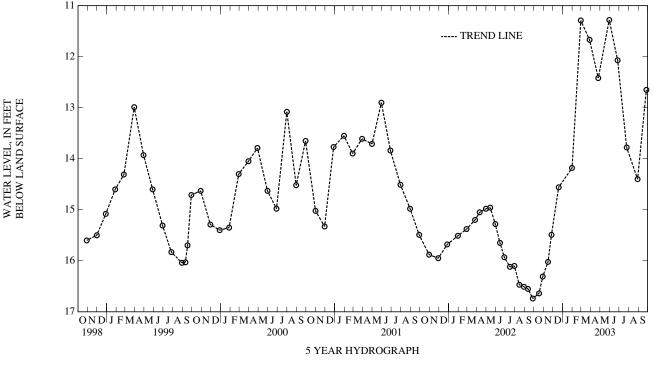
AQUIFER.--Ravens Crest Formation of Upper Pliocene age. Aquifer code: 112TLBT.

WELL CHARACTERISTICS .- Dug, unused, water-table well, measured depth 20.7 ft; casing diameter 42 in.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with water-level recorder from March 1966 to October 1967.

DATUM.--Elevation of land surface is 40 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.80 ft above land surface.


REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well and Maryland Ground-Water-Quality Network observation well. Water levels respond to natural climatic affects.


PERIOD OF RECORD.--May 1946, January 1947 to November 1947, March 1949 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.41 ft below land surface, March 30, 1994; lowest measured, 20.65 ft below land surface, December 20, 1949.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 29 NOV 15 26	16.64 16.31 16.02 15.49	DEC 19, 2002 JAN 31, 2003 FEB 28 MAR 28	14.56 14.18 11.29 11.67	APR 25, 2003 MAY 30 JUN 26 JUL 25	12.42 11.28 12.07 13.78	AUG 29, 2003 SEP 26	14.40 12.65

CHARLES COUNTY—Continued

WELL NUMBER.--CH Ee 70. SITE ID.--382154076574801. PERMIT NUMBER.--CH-67-0081.

LOCATION.--Lat 38°21'54", long 76°57'48", Hydrologic Unit 02070011, at the Morgantown Power Plant, 1.5 mi. north of Morgantown. Owner: Mirant.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 1,132 ft; casing diameter 2 in., to 1,090 ft, 1,100 to 1,105 ft, and 1,115 to 1,132 ft; screen diameter 2 in., from 1,090 to 1,100 ft, and 1,105 to 1,115 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Twice yearly water level measurements from April 1993 to May 1995. Equipped with graphic water-level recorder from May 1982 to January 1983. Equipped with digital water-level recorder--15 and 30-minute recorder intervals from June 1978 to October 1986. Equipped with electronic water level recorder (transducer)--15-minute recorder interval from October 1986 to October 1992, and from May 1995 to current year.

DATUM .-- Elevation of land surface is 22.83 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.43 ft above land surface.

REMARKS.--Southern Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--October 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 49.74 ft below sea level, April 14, 1981; lowest measured, 131.69 ft below sea level, December 12, 2002.

WATER LEVELS IN FEET ABOVE SEA LEVEL WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 04, 2002 DEC 12	-98.52 -108.86	MAR 04, 2003 APR 14	-94.92 -92.45	JUL 02, 2003 AUG 11	-89.98 -98.10
JAN 22, 2003	-97.01	MAY 22	-97.30	SEP 16	-100.50

LOWEST -108.86 DEC 12, 2002 HIGHEST -89.98 JUL 02, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCT	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAI	RCH
1	-88.82	-102.45	-89.20	-103.69	-98.31	-111.51	-94.37	-108.43	-91.32	-106.76	-94.37	-109.29
2	-88.77	-102.02	-91.67	-105.70	-97.19	-110.13	-96.27	-110.47	-90.63	-104.49	-92.19	-106.52
3	-88.45	-105.30	-89.37	-103.77	-97.99	-114.15	-97.45	-110.96	-92.22	-105.50	-92.65	-106.79
4	-92.79	-104.43	-93.65	-105.96	-99.43	-113.60	-97.71	-112.05	-92.36	-105.99	-91.50	-106.22
5	-87.39	-104.03	-93.85	-104.86	-98.02	-114.38	-94.52	-107.74	-96.01	-108.75	-92.93	-106.71
6	-87.61	-97.16	-93.97	-107.28	-100.01	-116.14	-92.36	-103.74	-93.77	-106.93	-90.72	-109.26
7	-84.77	-95.21	-95.58	-108.86	-100.96	-113.72	-90.72	-102.31	-91.32	-105.12	-98.45	-111.36
8	-83.30	-97.07	-96.27	-109.78	-100.29	-114.04	-92.22	-105.21	-89.06	-100.50	-93.31	-105.58
9	-87.47	-99.37	-92.91	-107.34	-102.08	-116.22	-92.30	-105.18	-86.67	-100.50	-92.01	-105.44
10	-84.83	-94.23	-94.86	-109.29	-101.56	-115.88	-88.94	-104.95	-91.32	-101.65	-92.85	-104.46
11	-85.06	-85.89	-95.29	-110.50	-102.51	-115.50	-91.47	-103.60	-86.78	-102.04	-90.23	-107.68
12	-84.85	-86.35	-97.99	-116.38	-100.58	-113.09	-90.63	-105.99	-89.10	-102.91	-97.59	-109.61
13	-83.85	-85.37	-105.93	-120.13	-99.11	-115.50	-91.38	-105.81	-87.79	-104.20	-96.27	-109.15
14	-85.37	-86.21	-108.89	-124.13	-98.68	-115.48	-92.13	-105.79	-92.62	-105.53	-92.13	-106.19
15	-83.27	-85.66	-107.48	-121.11	-99.49	-113.12	-94.83	-108.03	-90.60	-106.10	-93.68	-106.65
16	-82.21	-84.71	-105.93	-119.13	-99.72	-113.82	-92.33	-107.94	-92.70	-108.95	-90.89	-104.72
17	-81.95	-83.85	-104.92	-119.18	-102.51	-116.48	-92.13	-106.71	-91.67	-104.98	-92.50	-105.76
18	-81.26	-82.96	-105.35	-124.07	-99.86	-115.53	-92.93	-108.32	-90.37	-103.20	-91.47	-102.97
19	-80.40	-82.90	-105.37	-126.34	-106.71	-118.89	-92.22	-107.91	-89.80	-104.55	-90.52	-103.46
20	-80.00	-94.75	-98.58	-105.37	-105.96	-117.80	-92.65	-109.92	-92.44	-106.27	-92.45	-105.30
21	-81.98	-100.21	-97.07	-116.25	-106.91	-120.45	-93.74	-109.28	-90.75	-108.17	-90.52	-105.07
22	-84.45	-97.99	-101.13	-114.61	-102.42	-117.31	-92.04	-107.20	-91.38	-106.02	-91.73	-106.93
23	-84.42	-101.24	-99.49	-112.94	-102.28	-116.65	-89.45	-102.39	-92.45	-105.35	-87.61	-102.42
24	-87.33	-102.02	-100.06	-113.63	-101.16	-114.38	-89.74	-101.76	-96.12	-107.31	-89.92	-105.07
25	-86.35	-101.90	-97.94	-109.61	-98.20	-112.22	-91.04	-102.10	-94.17	-109.12	-92.96	-103.97
26 27 28 29 30 31	-86.21 -86.38 -87.50 -88.16 -86.98 -90.17	-97.76 -99.69 -100.27 -101.82 -102.08 -102.91	-97.68 -97.16 -98.22 -96.44 -96.21	-110.30 -112.98 -113.95 -112.02 -112.86	-97.16 -94.66 -93.08 -94.40 -93.48 -95.32	-104.23 -99.86 -97.70 -97.85 -108.40 -108.37	-89.97 -91.30 -90.92 -90.20 -91.64 -91.84	-105.32 -107.97 -106.71 -97.62 -103.77 -103.34	-91.93 -93.51 -96.30 	-106.16 -105.04 -108.26 	-95.95 -93.48 -92.70 -95.35 -93.91 -92.62	-107.19 -109.03 -107.19 -108.60 -107.83 -105.79
MONTH	-80.00	-105.30	-89.20	-126.34	-93.08	-120.45	-88.94	-112.05	-86.67	-109.12	-87.61	-111.36

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JU	NE	JU	LY	AUC	GUST	SEPTE	MBER
1	-90.81	-103.86	-95.29	-108.52	-91.93	-107.19	-89.77	-92.99	-94.57	-104.69	-95.29	-109.67
2	-93.08	-106.73	-92.99	-105.12	-92.99	-106.02	-88.91	-92.16	-87.87	-99.37	-100.55	-112.00
3	-89.83	-104.23	-90.81	-106.53	-93.54	-106.27	-88.25	-92.39	-86.24	-98.68	-97.25	-113.15
4	-89.28	-106.16	-90.40	-101.56	-94.63	-107.51	-90.75	-94.46	-85.20	-97.62	-102.02	-115.82
5	-93.54	-105.55	-90.20	-103.17	-94.31	-105.99	-89.02	-94.43	-86.81	-97.36	-96.96	-114.64
6	-94.34	-105.84	-87.07	-105.87	-92.13	-105.67	-89.14	-92.39	-86.67	-98.22	-97.05	-108.52
7	-88.65	-102.36	-88.88	-103.11	-90.06	-103.25	-89.11	-93.31	-84.14	-97.65	-95.49	-109.49
8	-87.82	-103.08	-88.85	-101.01	-88.97	-102.13	-89.83	-93.42	-87.01	-102.42	-100.61	-112.17
9	-87.70	-102.45	-87.30	-101.16	-88.19	-101.27	-89.63	-93.05	-88.22	-101.53	-97.33	-111.71
10	-89.86	-102.97	-87.01	-100.15	-89.40	-103.34	-88.71	-93.28	-90.63	-102.71	-98.17	-111.56
11	-90.17	-100.04	-85.11	-99.09	-91.73	-104.92	-87.87	-105.47	-88.51	-102.34	-98.45	-111.36
12	-91.27	-103.34	-86.06	-103.02	-91.61	-106.96	-90.63	-95.18	-91.61	-103.23	-97.68	-110.61
13	-87.30	-99.60	-94.03	-107.80	-96.59	-108.95	-91.55	-105.70	-89.92	-97.88	-96.27	-110.21
14	-86.38	-102.59	-93.14	-106.85	-92.45	-106.96	-91.41	-104.35	-89.89	-95.84	-96.01	-110.39
15	-91.96	-103.83	-89.77	-104.66	-91.18	-106.10	-92.88	-105.35	-88.77	-107.91	-96.96	-109.70
16	-86.35	-101.18	-89.97	-105.70	-90.86	-107.11	-93.60	-105.01	-96.47	-110.24	-96.76	-109.81
17	-85.34	-98.28	-90.09	-101.93	-92.01	-107.51	-94.54	-106.33	-94.97	-111.13	-96.70	-110.13
18	-85.23	-95.15	-87.18	-103.17	-92.82	-107.77	-94.97	-107.60	-93.82	-110.44	-95.55	-107.54
19	-90.00	-101.50	-86.32	-99.43	-93.77	-106.33	-95.00	-106.22	-95.75	-110.53	-93.65	-103.80
20	-85.40	-97.71	-85.66	-103.20	-95.03	-106.53	-92.22	-104.66	-97.68	-111.16	-92.13	-95.52
21	-86.41	-101.99	-94.14	-106.39	-97.97	-109.64	-91.30	-105.50	-96.15	-108.66	-93.60	-105.70
22	-92.07	-104.43	-93.14	-106.68	-93.16	-105.84	-94.52	-106.50	-96.84	-105.12	-95.61	-106.39
23	-92.88	-106.73	-96.01	-108.60	-92.62	-107.28	-94.52	-107.37	-94.54	-107.91	-95.90	-108.23
24	-90.69	-106.82	-97.36	-110.04	-93.05	-105.90	-92.76	-104.41	-95.49	-108.83	-95.78	-109.64
25	-92.67	-106.02	-95.09	-108.92	-91.52	-98.91	-91.84	-105.21	-97.65	-110.67	-100.32	-112.51
26 27 28 29 30 31	-91.98 -89.94 -89.89 -94.20 -92.59	-104.32 -106.07 -104.26 -107.91 -106.73	-96.90 -94.43 -93.57 -95.87 -95.32 -94.11	-108.34 -107.16 -109.47 -109.41 -108.72 -108.23	-91.24 -90.69 -88.10 -88.10 -88.94	-94.77 -93.77 -93.48 -92.22 -99.43	-91.01 -92.76 -95.64 -92.79 -93.39 -92.04	-104.52 -106.16 -107.08 -105.70 -106.45 -104.66	-95.23 -99.95 -94.75 -97.27 -95.49 -96.64	-109.75 -111.33 -110.85 -108.29 -109.98 -109.49	-98.86 -97.82 -97.73 -97.05 -96.70	-112.80 -110.39 -109.15 -111.02 -111.25
MONTH YEAR	-85.23 -80.00	-107.91 -126.34	-85.11	-110.04	-88.10	-109.64	-87.87	-107.60	-84.14	-111.33	-92.13	-115.82

5 YEAR HYDROGRAPH

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

CHARLES COUNTY—Continued

WELL NUMBER .-- CH Ee 78. SITE ID .-- 382240076582801. PERMIT NUMBER .-- CH-73-1965.

LOCATION.--Lat 38°22'40", long 76°58'28", Hydrologic Unit 02070011, at Clifton on the Potomac, on the east side of Ingleside Road, 0.3 mi north of Clifton Drive. Owner: Charles County Department of Public Works.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.--Drilled, used, artesian well, depth 1,220 ft; casing diameter 7 in., to 1,148 ft, and 1,168 to 1,189 ft, and 1,199 to 1,220 ft; screen diameter 7 in., from 1,148 to 1,168 ft, and 1,189 to 1,199 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from August 1993 to current year.

DATUM.--Elevation of land surface is 75 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of recorder platform, 2.60 ft above land surface.

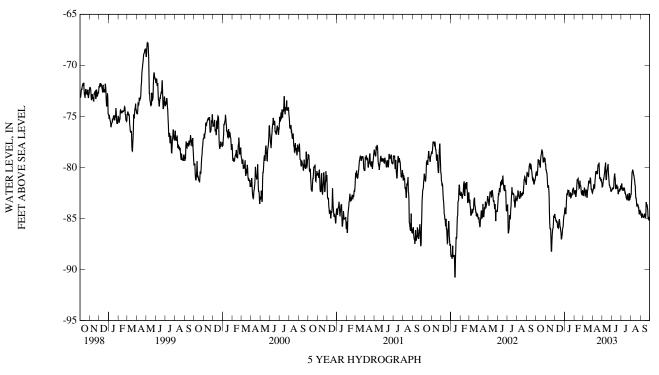
REMARKS.--Southern Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- August 5, 1993 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 43.87 ft below sea level, April 3, 1986; lowest measured, 90.74 ft below sea level, January 14 and 15, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 04, 2002	-80.46	MAR 04, 2003	-82.07	JUL 02, 2003	-81.72
DEC 12	-85.63	APR 14	-80.17	AUG 11	-80.71
JAN 22, 2003	-82.91	MAY 22	-80.86	SEP 16	-84.55


LOWEST -85.63 DEC 12, 2002 HIGHEST -80.17 APR 14, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	NOVEMBER		MBER	JANU	ARY	FEBR	UARY	MAR	RCH
1	-80.35	-80.56	-79.39	-79.68	-84.56	-84.88	-83.45	-84.16	-82.16	-82.40	-82.44	-82.80
2	-80.21	-80.44	-79.68	-80.25	-84.46	-84.92	-83.65	-83.99	-82.06	-82.44	-81.90	-82.72
3	-80.21	-80.49	-79.92	-80.25	-84.56	-85.04	-83.79	-84.02	-82.16	-82.34	-82.01	-82.36
4	-80.49	-80.79	-80.00	-80.52	-85.04	-85.30	-83.97	-84.53	-81.98	-82.24	-81.78	-82.30
5	-80.41	-80.78	-80.36	-80.54	-84.55	-85.16	-83.61	-84.53	-82.20	-82.81	-81.86	-82.04
6	-79.84	-80.41	-80.32	-80.98	-84.94	-85.41	-83.01	-83.71	-82.57	-82.90	-81.60	-82.08
7	-79.15	-79.92	-80.98	-81.62	-84.94	-85.26	-82.53	-83.02	-82.31	-82.58	-82.08	-82.78
8	-78.62	-79.21	-81.62	-81.99	-85.04	-85.39	-82.36	-82.54	-81.68	-82.31	-82.26	-82.80
9	-78.98	-79.51	-81.51	-81.89	-85.39	-85.78	-82.38	-82.72	-80.88	-81.68	-82.26	-82.39
10	-78.92	-79.51	-81.61	-81.76	-85.64	-85.94	-81.94	-82.55	-81.01	-81.21	-82.17	-82.34
11	-78.99	-79.29	-81.74	-82.17	-85.65	-85.85	-82.01	-82.27	-80.62	-81.21	-81.65	-82.17
12	-79.29	-79.69	-82.17	-82.70	-85.40	-85.91	-82.13	-82.31	-80.63	-81.16	-81.83	-82.58
13	-79.29	-79.69	-82.70	-84.31	-85.07	-85.40	-82.13	-82.43	-80.63	-81.10	-82.58	-82.93
14	-79.42	-79.97	-84.31	-85.50	-85.07	-85.19	-82.13	-82.21	-80.93	-81.58	-82.32	-82.93
15	-79.12	-79.97	-85.50	-86.00	-85.07	-85.08	-82.17	-82.81	-81.24	-81.65	-82.16	-82.34
16	-78.71	-79.12	-85.80	-85.99	-85.07	-85.38	-82.23	-82.81	-81.65	-82.05	-81.70	-82.20
17	-78.59	-78.86	-85.74	-86.06	-85.38	-85.86	-82.41	-82.73	-81.38	-81.99	-81.64	-81.90
18	-78.43	-78.72	-86.06	-87.01	-85.33	-85.86	-82.43	-82.79	-81.19	-81.54	-81.28	-81.68
19	-77.98	-78.43	-87.01	-88.21	-85.61	-86.20	-82.21	-82.45	-80.96	-81.30	-81.02	-81.32
20	-77.92	-78.24	-87.24	-88.21	-86.09	-86.37	-82.31	-82.71	-81.22	-81.85	-81.11	-81.50
21	-77.77	-78.43	-86.45	-87.24	-86.37	-87.01	-82.69	-82.96	-81.34	-81.76	-80.96	-81.31
22	-78.33	-78.47	-86.08	-86.61	-86.48	-87.01	-82.62	-82.91	-81.55	-81.98	-81.31	-81.56
23	-78.47	-78.97	-85.84	-86.21	-86.40	-86.77	-82.19	-82.62	-81.75	-82.45	-80.76	-81.39
24	-78.97	-79.47	-85.84	-85.98	-86.07	-86.57	-82.36	-82.59	-82.45	-82.58	-80.78	-81.00
25	-79.06	-79.47	-85.32	-85.92	-85.32	-86.07	-82.24	-82.73	-82.45	-82.67	-81.00	-81.13
26 27 28 29 30 31	-79.08 -78.85 -78.85 -79.02 -78.78 -79.11	-79.27 -79.11 -79.02 -79.44 -79.11 -79.67	-84.73 -84.45 -84.46 -84.44 -84.05	-85.32 -84.73 -84.95 -84.80 -84.56	-85.49 -85.18 -84.57 -84.66 -84.37 -84.16	-85.90 -85.82 -85.18 -84.86 -84.69 -84.54	-81.68 -81.72 -81.81 -81.71 -81.96 -82.36	-82.24 -82.15 -82.14 -81.99 -82.38 -82.66	-82.22 -81.90 -82.00 	-82.65 -82.22 -82.44 	-81.09 -81.75 -81.88 -82.02 -82.25 -82.36	-81.75 -82.18 -82.10 -82.34 -82.46 -82.52
MONTH	-77.77	-80.79	-79.39	-88.21	-84.16	-87.01	-81.68	-84.53	-80.62	-82.90	-80.76	-82.93

CHARLES COUNTY—Continued

					011111111111	000111	commutu					
DAY	MAX	MIN										
	API	RIL	MA	ΑY	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
$\frac{1}{2}$	-81.62 -81.72	-82.36 -82.14	-81.44 -81.44	-81.92 -81.90	-81.66 -81.90	-82.19 -82.19	-81.78 -81.57	-82.04 -81.99	-82.50 -81.68	-82.64 -82.64	-83.91 -84.02	-84.27 -84.68
3 4	-81.62 -81.22	-82.14 -81.67	-81.47 -80.94	-81.83 -81.47	-81.87 -81.88	-81.98 -82.06	-81.27 -81.53	-81.57 -82.14	-81.06 -80.20	-81.69 -81.06	-84.20 -84.20	-84.68 -84.62
5	-81.53	-81.74	-80.94	-81.16	-82.00	-82.00	-82.02	-82.14	-80.20	-80.40	-84.62	-84.96
6 7	-81.73 -81.02	-82.04 -82.05	-80.49 -80.58	-81.16 -80.92	-81.87 -81.23	-82.09 -81.94	-81.83 -81.85	-82.02 -82.02	-80.17 -79.74	-80.51 -80.23	-84.43 -84.06	-84.74 -84.53
8	-81.06	-81.35	-80.39	-80.68	-80.88	-81.28	-82.02	-82.24	-79.94	-80.37	-84.10	-84.80
9 10	-80.42 -80.36	-81.06 -80.61	-79.90 -79.83	-80.46 -80.01	-80.42 -80.50	-80.88 -80.60	-82.02 -81.99	-82.24 -82.22	-80.28 -80.50	-80.53 -80.76	-84.59 -84.58	-84.80 -84.80
11 12	-80.11 -80.16	-80.36 -80.61	-79.22 -79.27	-79.83 -79.52	-80.57 -80.93	-80.93 -81.16	-81.42 -81.60	-81.99 -82.15	-80.60 -80.81	-80.81 -81.15	-84.64 -84.46	-84.90 -84.90
13	-80.22	-80.61	-79.52	-80.87	-81.15	-82.07	-82.06	-82.49	-81.08	-81.22	-84.46	-84.63
14 15	-79.76 -79.90	-80.34 -80.55	-80.86 -80.41	-81.24 -81.10	-81.60 -81.70	-82.06 -81.95	-81.97 -82.18	-82.46 -82.66	-81.22 -81.37	-81.68 -81.76	-84.21 -84.50	-84.54 -84.72
16	-80.05	-80.58	-80.24	-80.42	-81.39	-81.79	-82.50	-82.76	-81.76	-82.58	-84.58	-84.82
17 18	-79.62 -79.18	-80.05 -79.70	-79.94 -79.85	-80.27 -80.14	-81.43	-81.70 -82.02	-82.76 -82.97	-82.97 -83.06	-82.58 -82.72	-83.02 -83.03	-84.58 -83.40	-84.93 -84.62
19	-79.18	-79.70 -79.83	-79.85 -79.52	-80.14 -79.85	-81.57 -81.60	-82.02 -81.98	-82.97 -82.97	-83.00	-82.72 -82.88	-83.03	-83.40	-84.62 -83.40
20	-79.41	-79.85	-79.27	-79.67	-81.76	-81.88	-82.61	-83.04	-83.37	-83.80	-83.25	-83.57
21 22	-79.23 -79.49	-79.52 -80.34	-79.67 -80.53	-80.53 -80.90	-81.88 -82.28	-82.58 -82.58	-82.26 -82.46	-82.61 -82.75	-83.51 -83.51	-83.80 -83.64	-83.40 -83.43	-83.74 -83.70
22	-80.34	-80.54	-80.33	-80.90	-82.28	-82.38	-82.40	-82.75	-83.49	-83.69	-83.45	-83.92
24	-80.72	-81.03	-81.33	-81.74	-82.16	-82.31	-82.90	-83.10	-83.50	-83.68	-83.92	-84.17
25	-80.88	-81.15	-81.60	-81.75	-82.00	-82.22	-82.70	-83.16	-83.52	-83.94	-84.17	-84.89
26 27	-80.76 -80.76	-81.01 -81.35	-81.66 -81.81	-81.94 -81.95	-82.12 -82.15	-82.36 -82.22	-82.51 -82.33	-82.83 -82.51	-83.66 -83.81	-83.93 -84.37	-84.87 -84.65	-85.04 -84.96
28	-80.65	-81.16	-81.60	-82.09	-81.87	-82.18	-82.42	-83.16	-84.24	-84.60	-84.60	-84.86
29	-80.76	-81.44	-82.09	-82.34	-81.38	-81.87	-82.53	-83.13	-83.70	-84.24	-84.86	-85.14
30 31	-81.23	-81.48	-82.19 -81.89	-82.36 -82.30	-81.60	-81.78	-82.58 -82.43	-82.88 -82.88	-83.82 -84.20	-84.21 -84.43	-84.96	-85.24
MONTH	-79.18	-82.36	-79.22	-82.36	-80.42	-82.58	-81.27	-83.23	-79.74	-84.60	-83.23	-85.24
YEAR	-77.77	-88.21										

Daily Low Water Levels

DORCHESTER COUNTY

WELL NUMBER .-- DO Bg 59. SITE ID .-- 383708075503801. PERMIT NUMBER .-- DO-73-0612.

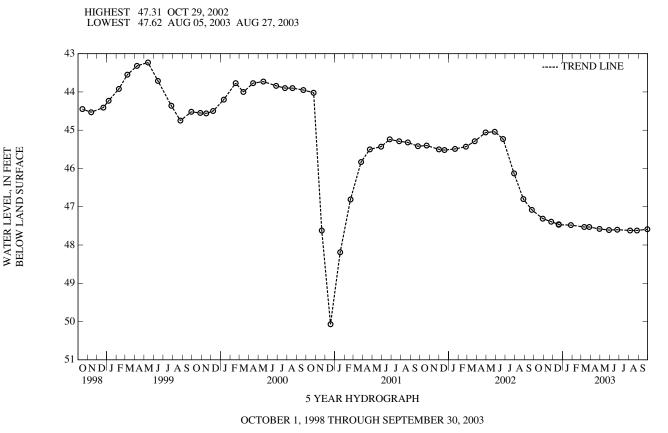
LOCATION.--Lat 38°37'08" long 75°50'38", Hydrologic Unit 02060008, at Hurlock Sewage Treatment Plant. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 537 ft; casing diameter 6 in., to 65 ft; casing diameter 2 in., from 65 to 527 ft; screen diameter 2 in., from 527 to 537 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM.--Elevation of land surface is 25 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.60 ft above land surface.


REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Prior to the November 20, 2000 water-level measurement, the Hurlock Water Municipality increased their ground-water withdrawal for a 3 month period. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 31.79 ft below land surface, August 2, 1978; lowest measured, 47.62 ft below land surface, August 5, and 27, 2003 (See REMARKS).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25	47.31 47.39	JAN 27, 2003 MAR 11	47.48 47.53	MAY 29, 2003 JUN 25	47.61 47.60	SEP 29, 2003	47.59
DEC 19 19	47.46 47.47	27 APR 29	47.53 47.58	AUG 05 27	47.62 47.62		

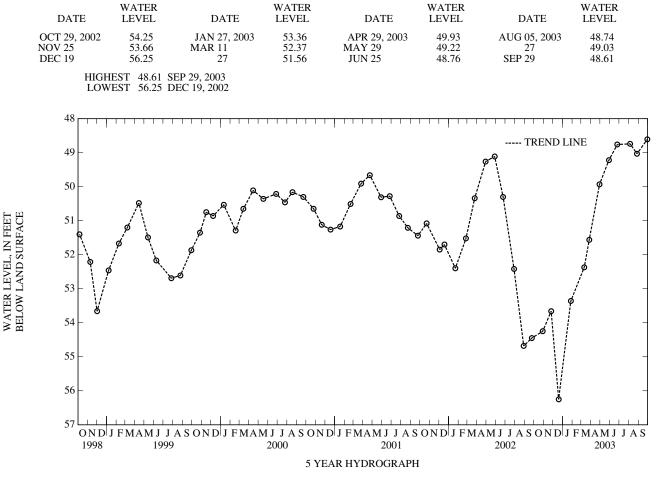
DORCHESTER COUNTY-Continued

WELL NUMBER .-- DO Cd 1. SITE ID .-- 383151076080801.

LOCATION.--Lat 38°31'51", long 76°08'08", Hydrologic Unit 02060005, near Christs Rock, off Pigs Neck Rd. Owner: Private Residence.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 390 ft; casing diameter 2 in., to unknown depth.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM.--Elevation of land surface is 4 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.35 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--October 1966 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.07 ft below land surface, October 2, 1990; lowest measured, 80.32 ft below land surface, October 16, 1970.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DORCHESTER COUNTY—Continued

WELL NUMBER .-- DO Ce 5. SITE ID .-- 383340076041601.

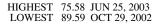
LOCATION.--Lat 38°33'40", long 76°04'16", Hydrologic Unit 02060005, at Cambridge Pumping Station, off Lake St. Owner: Municipal Utilities Commission.

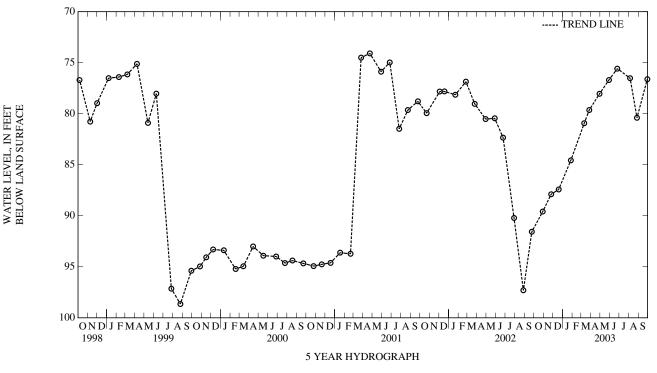
AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS.--Drilled, unused, artesian well, depth 405 ft; casing diameter 2 in., to land surface; casing diameter 12 in., from 0 to 385 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM.--Elevation of land surface is 18 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 4.00 ft above land surface.


REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. The drop in water levels in July of 1999 is the result of using the municipal production well at Lake Street, just prior to March of 2001. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD .-- October 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured 66.23 ft below land surface, May 1, 1990; lowest measured, 115.06 ft below land surface, August 29, 1978.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002	89.59	JAN 27, 2003	84.57	APR 29, 2003	78.05	AUG 05, 2003	76.52
NOV 25	87.89	MAR 11	80.93	MAY 29	76.70	27	80.40
DEC 19	87.43	27	79.64	JUN 25	75.58	SEP 29	76.62

DORCHESTER COUNTY—Continued

WELL LOCATION .-- DO Ce 15. SITE ID .-- 383408076042402. PERMIT NUMBER .-- DO-00-1220.

LOCATION.--Lat 38°34'08", long 76°04'23", Hydrologic Unit 02060005, near Cambridge Creek, near Trenton St., Cambridge. Owner: Carroll W. Thomas & Sons., Inc.

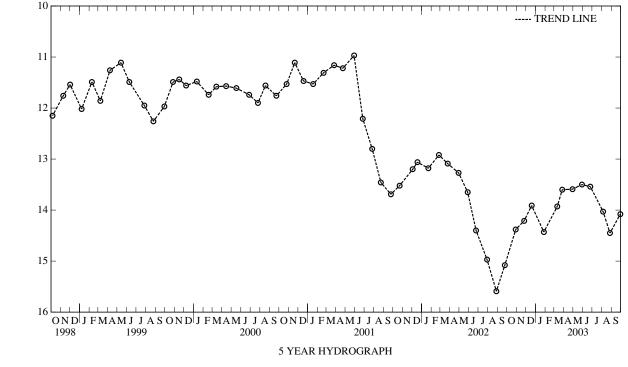
AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 970.5 ft; casing diameter 10 in., to 25 ft.; casing diameter 8 in., from +1.5 to 236.5 ft; casing diameter 6 in., from 230 to 513.5 ft; casing diameter 4 in., from 468 to 911.5 ft; casing diameter 3 in., from 902.3 to 950.5 ft; screen diameter 3 in., from 950.5 to 970.5 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

- DATUM.--Elevation of land surface is 6 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.50 ft above land surface.
- REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water level reported 68 ft below land surface Aug. 30, 1947. The drop in water level in June 2001 is the result of increased ground-water withdrawal by Municipal Utilities. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- June 1958 to current year.


WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.41 ft below land surface, March 1, 1960; lowest measured, 41.12 ft below land surface, August 7, 1959.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002	14.38	JAN 27, 2003	14.43	APR 29, 2003	13.59	AUG 05, 2003	14.03
NOV 25	14.21	MAR 11	13.93	MAY 29	13.50	27	14.45
DEC 19	13.91	27	13.60	JUN 25	13.54	SEP 29	14.08

HIGHEST 13.50 MAY 29, 2003 LOWEST 14.43 JAN 27, 2003

DORCHESTER COUNTY-Continued

WELL NUMBER .-- DO Ce 85. SITE ID .-- 383256076035301. PERMIT NUMBER .-- DO-73-0281.

LOCATION.--Lat 38°32'56", long 76°03'53", Hydrologic Unit 02060005, at Woods Rd. water tower, Cambridge. Owner: U.S. Geological Survey.

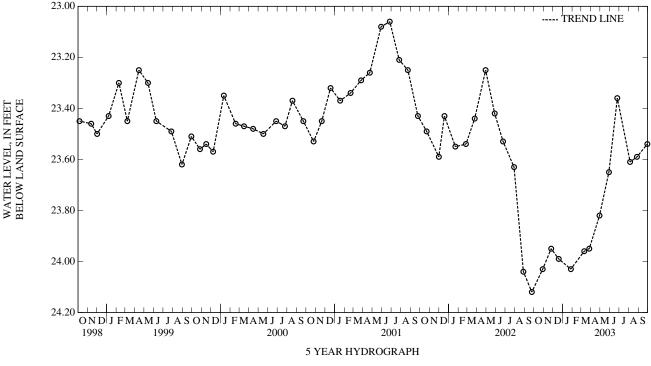
AQUIFER .-- Cheswold aquifer in the Calvert Formation of lower middle Miocene age. Aquifer code: 122CSLD.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 230 ft; casing diameter 4 in., to 220 ft; screen diameter 4 in., from 220 to 230 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM.--Elevation of land surface is 15 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.10 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Reported incorrectly as DO Ce 78 in this series of reports, prior to the 1997 Water Year, Water Resources Data report. Water levels are affected by local ground-water withdrawal.


PERIOD OF RECORD .-- October 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.74 ft below land surface, June 3, 1993; lowest measured, 26.76 ft below land surface, September 10, 1974.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002	24.03	JAN 27, 2003	24.03	APR 29, 2003	23.82	AUG 05, 2003	23.61
NOV 25	23.95	MAR 11	23.96	MAY 29	23.65	27	23.59
DEC 19	23.99	27	23.95	JUN 25	23.36	SEP 29	23.54

HIGHEST 23.36 JUN 25, 2003 LOWEST 24.03 OCT 29, 2002 JAN 27, 2003

DORCHESTER COUNTY—Continued

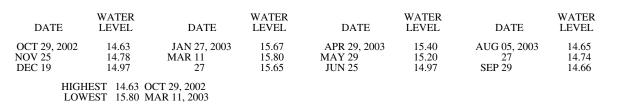
WELL NUMBER .-- DO Db 17. SITE ID .-- 382800076180701. PERMIT NUMBER .-- DO-73-0557.

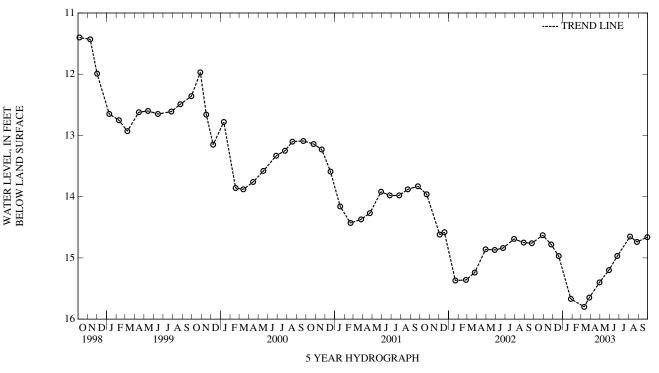
LOCATION.--Lat 38°28'00", long 76°18'07", Hydrologic Unit 02060005, off MD Rt. 16, near Old Taylors Island School, Taylor Island. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 320 ft; casing diameter 6 in., to 55 ft; casing diameter 2 in., from 55 to 270 ft; screen diameter 2 in., from 270 to 280 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 4 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.65 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- April 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.77 ft below land surface, October 4, 1979; lowest measured, 15.80 ft below land surface, March 11, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DORCHESTER COUNTY-Continued

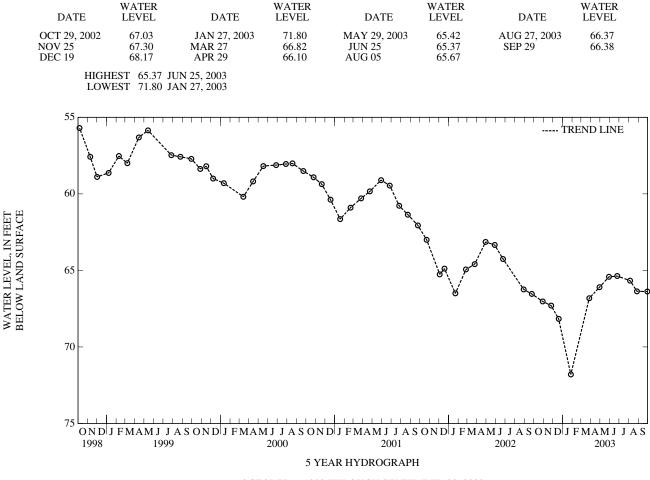
WELL NUMBER .-- DO Db 19. SITE ID .-- 382847076190901. PERMIT NUMBER .-- DO-81-1164.

LOCATION.--Lat 38°28'47", long 76°19'09", Hydrologic Unit 02060005, Taylors Island, off Bay Shore Road. Owner: Private Residence.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.-Drilled, domestic, artesian well, depth 540 ft; casing diameter 4 in., to 140 ft; casing diameter 2 in., from 140 to 520 ft; screen diameter 2 in., from 520 to 540 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 4 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.50 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water-levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- March 1989 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 31.50 ft below land surface, August 2, 1989; lowest measured, 71.80 ft below land surface, January 27, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DORCHESTER COUNTY-Continued

WELL NUMBER .-- DO Dh 27. SITE ID .-- 382916075491702. PERMIT NUMBER .-- DO-71-0001.

LOCATION.--Lat 38°29'16", long 75°49'17", Hydrologic Unit 02060008, Vienna power plant. Owner: Vienna Power LLC.

AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS.-Drilled, observation, water-table well, depth 63 ft; casing diameter 12 in., to 20 ft; casing diameter 8 in., to 33 ft; screen diameter 6 in., from 33 to 63 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by Maryland Geological Survey personnel. Equipped with digital water-level recorder--30-minute recorder interval from May 1990 to current year.

DATUM.--Elevation of land surface is 9.10 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 2.69 ft above land surface.

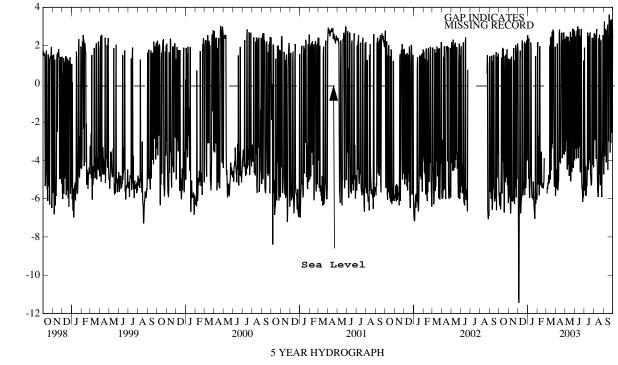
REMARKS.-- Southern Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal at the Vienna power plant. The April 1, 1997 low water level is due to an extended period of pumping to fill the storage tank, which was drained for maintenance. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- April 1990 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.34 ft above sea level, February 7, 1998 (recorder) (See REMARKS); lowest measured, 11.11 ft below sea level, April 1, 1997 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 19 JAN 27, 2003	1.63 -5.11 -5.34 -5.74	MAR 03, 2003 11 27 APR 15	-2.00 -4.72 -4.11 .12	APR 29, 2003 MAY 29 JUN 25 AUG 05	2.70 3.01 -4.41 2.85	AUG 27, 2003 SEP 29	-4.01 -2.52


LOWEST -5.74 JAN 27, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBR	UARY	MAF	RCH
1 2 3 4 5	2.00 1.68 1.54 1.44 1.95	-5.82 -5.92 -6.36 -6.29 -5.68	1.59 1.78 1.82 1.84 2.11	-5.71 1.26 1.24 -5.92 1.28	2.38 2.11 2.02 0.40 1.22	1.67 -5.41 -11.16 -11.45 -6.41	3.15 3.13 3.30 3.26 3.09	2.54 -2.90 -3.10 -4.97 2.38	2.54 2.73 2.61 2.29 2.04	1.29 2.19 -5.25 -4.87 -2.70	 2.49 2.57	 -5.73 -5.36
6 7 8 9 10	1.60 1.77 1.70 2.09 2.08	-6.56 -6.26 -4.61 1.36 -3.95	2.34 1.46 1.51 1.87 2.14	-5.98 -6.78 -6.50 1.30 1.43	1.59 2.28 2.20 1.90 1.28	-6.44 1.20 1.73 -6.77 -6.68	3.07 2.42 2.36 2.61 2.41	-5.28 -5.96 -5.44 -4.88 -4.74	1.95 1.78 2.23 2.36 2.18	-4.35 -5.83 1.49 1.98 -5.30	2.75 2.35 2.79 3.08 2.06	-5.49 -5.16 -5.27 -4.77 -5.19
11 12 13 14 15	2.20 2.26 2.48 2.47 2.35	-5.73 1.78 1.88 -4.07 1.82	2.13 1.67 1.40 1.48 1.82	-5.87 -6.13 -5.90 -6.14 -6.00	1.72 1.77 1.92 2.88 2.74	-6.18 -6.06 -5.78 1.87 2.27	2.55 2.54 2.10 2.03 1.74	2.16 1.79 -4.69 -5.74 -5.96	1.96 2.11 1.85 1.78 2.01	-5.21 -4.38 -4.67 -3.55 -5.42	2.27 2.24 2.56 2.48 3.01	-5.18 -4.57 1.99 -5.00 2.39
16 17 18 19 20	2.57 2.29 2.16 2.21 2.23	-4.37 -5.16 -6.73 0.58 1.45	1.87 2.54 2.72 1.88 1.53	1.23 1.87 -5.52 -6.15 -6.28	2.67 1.75 1.99 2.22 2.52	-5.55 -5.84 -5.48 -5.46 -5.03	1.55 1.84 1.71 2.23 2.58	-5.92 -5.90 -6.04 -5.11 -5.63	1.68 2.15 2.47 2.59 2.51	-5.36 -5.24 -5.22 -5.27 -5.46	2.96 3.08 3.18 3.27 3.71	2.44 -4.52 2.48 -3.38 2.73
21 22 23 24 25	1.87 2.12 2.10 1.86 1.88	-5.14 1.52 -4.89 1.28 -4.89	2.48 2.67 2.40 2.14 1.99	1.24 -5.44 2.02 1.67 -5.94	2.85 2.68 2.43 2.44 3.13	2.08 2.19 -5.81 1.61 2.10	1.85 1.61 1.29 0.82 1.45	-6.32 -6.58 -6.85 -7.06 -5.89	2.31 2.49 2.85	-5.28 -5.07 -3.88 	3.93 3.48 3.29 3.28 3.26	-3.14 -0.19 2.80 2.78 2.71
26 27 28 29 30 31	2.25 2.30 2.12 1.99 1.99 1.78	1.71 1.82 -5.28 1.33 -5.42 -6.22	2.12 2.19 2.49 2.77 2.86	1.36 -4.98 1.72 2.07 2.08	3.06 2.18 2.67 2.77 2.70 2.96	-5.44 -5.04 1.95 2.27 -4.00 2.37	2.15 2.15 1.36 1.75 1.73 1.83	1.45 -6.26 -5.98 -5.70 -6.05 -5.97	 	 	3.48 2.85 2.38 2.39 2.55 2.41	-3.07 -5.31 -5.39 -5.29 1.94 -5.85
MONTH	2.57	-6.73	2.86	-6.78	3.13	-11.45	3.30	-7.06	2.85	-5.83	3.93	-5.85

DORCHESTER COUNTY-Continued

				2	0110112012		commue					
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	2.15 2.26 2.52 2.40 2.48	-5.42 -4.47 -5.47 -5.40 -5.14	2.93 3.12 2.83 2.96 2.93	2.11 -3.53 2.31 2.46 -2.98	3.59 3.02 3.01 3.18 3.00	2.49 -3.40 2.47 -2.68 -3.92	2.56 2.92 3.18 3.06 2.88	-5.58 1.90 -3.51 -4.45 -5.82	2.99 3.05 3.11 3.05 3.07	-2.25 2.61 2.62 -2.94 2.52	3.18 3.11 3.37 3.57 3.56	2.47 -4.73 2.37 3.25 -3.78
6 7 8 9 10	2.72 2.56 2.07 2.23 2.42	2.11 -5.51 -5.56 -5.16 -5.04	3.00 2.75 2.53 2.69 2.84	2.48 -4.20 -4.48 -4.16 2.41	2.77 3.36 3.36 3.37 3.45	-3.75 2.47 2.79 -3.38 2.97	2.61 2.14 2.24 2.41 2.61	-4.31 -5.85 -5.47 -5.36 -5.32	3.07 3.03 3.13 3.04 3.35	-2.44 2.56 -3.91 2.59 2.86	3.04 3.24 3.37 3.12 3.21	2.57 2.86 -3.01 2.67 -4.11
11 12 13 14 15	2.80 3.30 3.43 3.26 2.93	-3.51 2.70 2.83 -4.08 -2.10	2.94 3.06 2.84 2.76 2.76	2.45 -4.21 2.22 -4.81 2.13	3.50 3.49 3.31 3.44 3.43	2.98 -3.88 -0.07 2.87 2.78	2.84 3.19 3.23 3.22 3.10	-4.48 2.68 2.60 -4.49 2.36	3.37 3.13 2.97 2.67 2.45	-3.71 -4.35 -5.49 -5.75 -5.91	3.33 3.15 3.65 3.57 3.26	2.79 2.71 2.90 3.09 -4.50
16 17 18 19 20	3.13 2.67 3.01 3.20 3.19	-4.15 -3.26 1.91 2.63 2.65	2.95 3.06 3.33 3.06 2.84	-3.12 2.26 2.72 -5.09 2.11	3.33 3.19 3.28 2.85 3.08	-3.29 2.51 -4.41 -4.63 -3.13	3.31 2.98 2.95 3.06 3.17	-4.12 2.49 -3.97 2.64 2.66	2.47 2.97 2.88 3.11 3.10	-5.37 2.38 -4.75 2.57 -3.86	3.01 2.92 3.62 4.94 4.39	2.55 -3.00 2.51 3.62 3.13
21 22 23 24 25	3.30 3.18 2.67 2.74 2.77	2.68 -3.88 -3.15 2.27 -3.66	3.01 2.81 2.84 3.08 3.21	2.45 -4.61 -3.79 2.61 2.85	3.34 3.35 3.38 2.55 2.60	2.79 2.87 -5.07 -5.44 -5.41	3.17 2.98 2.74 2.68 2.33	-4.73 -4.83 -5.23 -5.31 -5.13	2.80 2.59 2.57 2.71 2.95	-5.05 -5.29 2.19 2.30 -5.21	3.59 3.58 3.82 3.64 3.65	3.08 -3.59 3.33 -3.08 -0.78
26 27 28 29 30 31	3.14 3.14 3.09 2.88 2.83	2.66 2.66 -3.70 2.33 -2.99	3.36 3.25 3.28 3.26 3.33 3.43	2.88 -4.40 -3.79 2.83 -4.01 2.75	2.63 2.19 2.37 2.67 2.95	-6.17 -5.62 -5.93 1.21 -5.47	2.63 2.89 2.95 2.77 2.98 2.92	2.15 2.41 -4.23 2.10 2.38 -4.36	2.58 2.45 2.72 2.81 3.09 2.86	-5.91 -4.90 -3.99 -3.25 2.55 2.22	3.77 3.86 3.86 3.62 3.36	3.31 3.31 3.38 -2.56 2.83
MONTH	3.43	-5.56	3.43	-5.09	3.59	-6.17	3.31	-5.85	3.37	-5.91	4.94	-4.73
YEAR	4.94	-11.45										

Daily Low Water Levels

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

268

WATER LEVEL, IN FEET ABOVE SEA LEVEL

FREDERICK COUNTY

WELL NUMBER .-- FR Af 27. SITE ID .-- 394200077190701. PERMIT NUMBER .-- FR-73-7155.

LOCATION.--Lat 39 42'00", long 77 19'07", Hydrologic Unit 02070009, 0.3 mi southwest of U.S. Rt. 15 and MD Rt. 140, Emmitsburg. Owner: City of Emmitsburg.

AQUIFER.--Gettysburg Shale of Upper Triassic age. Aquifer code: 231GBRG.

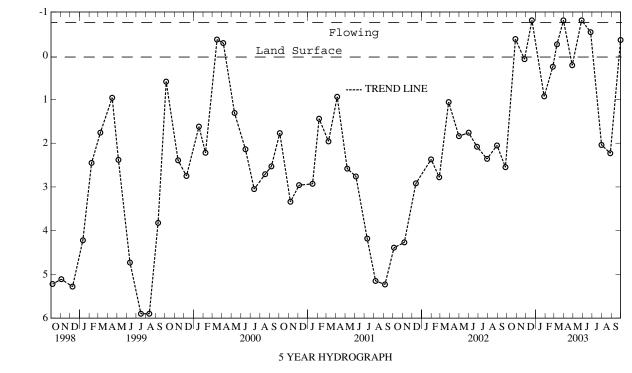
WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 365 ft; casing diameter 6 in., to 41 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 385 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.81 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- April 1982 to current year.


WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level, flowing on Dec. 20, 2002, March 31, May, 28, 2003; lowest measured, 5.90 ft below land surface, July 16, 1999, and August 12, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 (READINGS ABOVE LAND SURFACE INDICATED BY "-")

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002	38	FEB 25, 2003	.25	MAY 28, 2003	Flowing	SEP 30, 2003	36
NOV 26	.08	MAR 10	26	JUN 26	54		
DEC 20	Flowing	31	Flowing	JUL 31	2.04		
JAN 28, 2003	.93	APR 28	.22	AUG 28	2.23		

HIGHEST Flowing DEC 20, 2002, MAR 31, MAY 28, 2003 LOWEST 2.23 AUG 28, 2003

FREDERICK COUNTY—Continued

WELL NUMBER .-- FR Bd 96. SITE ID .-- 393733077274801.

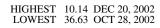
LOCATION.--Lat 39 37'33", long 77 27'48", Hydrologic Unit 02070009, 0.4 mi west of Hunting Creek Lake, Cunningham Falls State Park. Owner: State of Maryland.

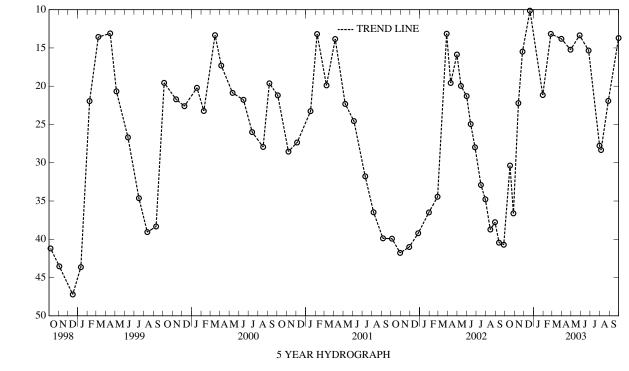
AQUIFER .-- Catoctin Metabasalt of Precambrian age. Aquifer code: 400CTCN.

WELL CHARACTERISTICS .-- Drilled, unused, water-table well, depth 189 ft; casing diameter 6 in., to 22 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with water-level recorder April 1982 to February 1984. Equipped with a digital water-level recorder--15-minute recorder interval from June 1991 to May 1993.

DATUM--Elevation of land surface is 1,150 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land surface previous to July 2003, when the casing was extended for an instrumentation shelter. Current measuring point is 3.00 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- April 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.54 ft below land surface, May 11, 1989; lowest measured, 47.21 ft below land surface, December 16, 1998.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 28 NOV 13 26	30.37 36.63 22.22 15.48	DEC 20, 2002 JAN 30, 2003 FEB 25 MAR 31	10.14 21.16 13.17 13.81	APR 29, 2003 MAY 28 JUN 26 JUL 31	15.23 13.36 15.33 27.77	AUG 05, 2003 28 SEP 30	28.35 21.93 13.70

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

FREDERICK COUNTY-Continued

WELL NUMBER.--FR Cg 1. SITE ID.--393156077135701.

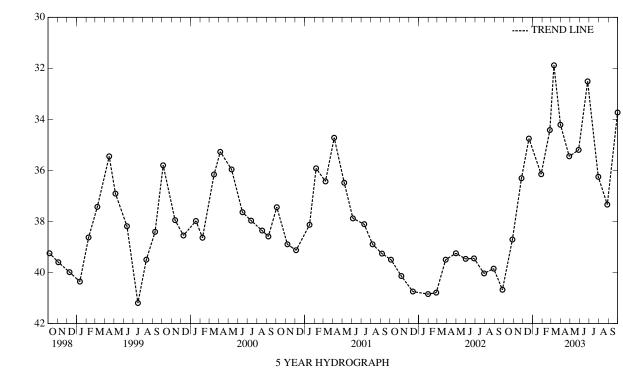
LOCATION .-- Lat 39 31'56", long 77 13'57", Hydrologic Unit 02070009, at Johnsville. Owner: Private Residence.

AQUIFER.--Ijamsville Formation (saprolite) of Paleozoic age. Aquifer code: 300IJMV.

WELL CHARACTERISTICS.--Dug, stone-lined, domestic, water-table well, depth 42.5 ft; diameter 36 in.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 600 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of wooden well cover, 0.60 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Well drilled nearby in 2002, for domestic water use.

PERIOD OF RECORD.--July 1946 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.63 ft below land surface, September 29, 1975; lowest measured, 42.02 ft below land surface, October 5, 1982.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 26 DEC 20 JAN 28, 2003	38.71 36.31 34.75 36.15	FEB 25, 2003 MAR 10 31 APR 28	34.42 31.88 34.21 35.45	MAY 28, 2003 JUN 26 JUL 30 AUG 28	35.20 32.51 36.25 37.34	SEP 30, 2003	33.73
		MAR 10, 2003 DCT 28, 2002					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

FREDERICK COUNTY-Continued

WELL NUMBER.--FR Df 35. SITE ID.--392517077190401. PERMIT NUMBER.--FR-73-0852.

LOCATION.--Lat 39 25'17", long 77 19'04", Hydrologic Unit 02070009, north of Eaglehead Drive, near Lake Linganore. Owner: Lake Linganore Association.

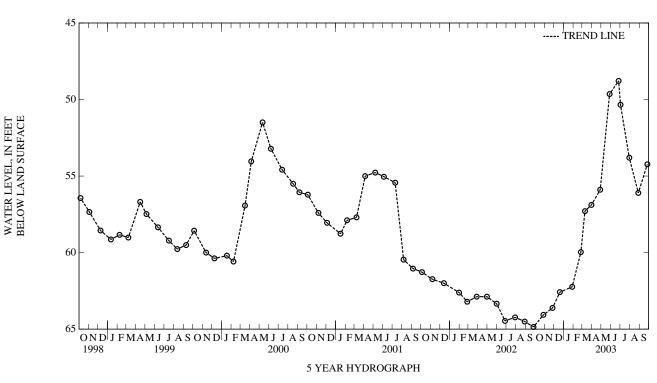
AQUIFER.--Urbana Formation of Paleozoic age. Aquifer code: 300URBN.

WELL CHARACTERISTICS .-- Drilled, unused, water-table well, depth 302 ft, casing diameter 6 in., to 26 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 570 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land surface previous to July 2003, when the casing was extended for an instrumentation shelter. Current measuring point is 3.25 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


HIGHEST 48.78 JUN 26, 2003 LOWEST 64.07 OCT 28, 2002

PERIOD OF RECORD .-- May 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 44.09 ft below land surface, May 14, 1998; lowest measured, 64.86 ft below land surface, September 26, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 26 DEC 20 JAN 28, 2003	64.07 63.62 62.58 62.24	FEB 25, 2003 MAR 10 31 APR 28	59.97 57.29 56.88 55.89	MAY 28, 2003 JUN 26 JUL 02 30	49.64 48.78 50.34 53.80	AUG 28, 2003 SEP 26	56.10 54.23

GARRETT COUNTY

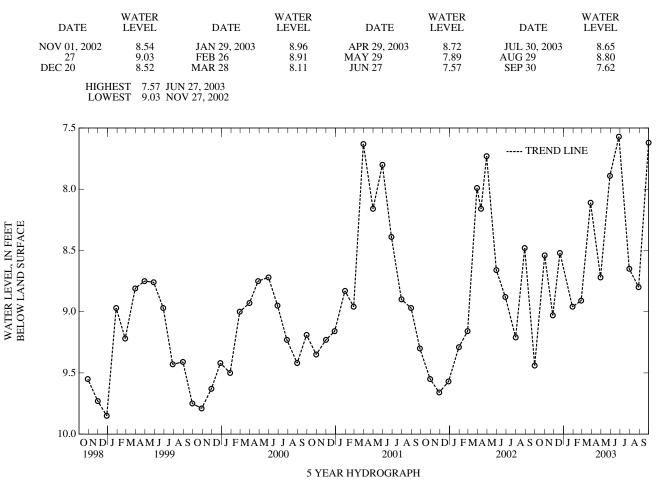
WELL NUMBER .-- GA Ag 1. SITE ID .-- 394017078581701.

LOCATION.--Lat 39°40'17", long 78°58'17", Hydrologic Unit 02070002, in the Savage River Valley, 2.5 mi northwest of Frostburg. Owner: Town of Frostburg.

AQUIFER.--Greenbrier Formation of Upper Mississippian age. Aquifer code: 331GRBR.

WELL CHARACTERISTICS.--Drilled, unused, water-table well, Reported depth 30 ft, measured depth 14 ft; casing diameter 8 in., to unknown depth; open hole.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 2,530 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by nearby ground-water withdrawal.

PERIOD OF RECORD.--October 1946 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.71 ft below land surface, January 14, 1950; lowest measured, 14.59 ft below land surface, January 28, 1985.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

GROUND-WATER LEVELS IN MARYLAND--Continued

GARRETT COUNTY-Continued

WELL NUMBER.--GA Bc 1. SITE ID.--393749079190301.

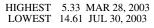
LOCATION.--Lat 39°37'49", long 79°19'03", Hydrologic Unit 05020006, at Accident. Owner: Private Residence.

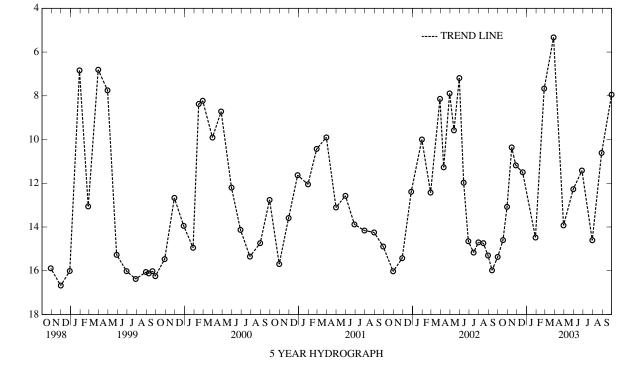
AQUIFER.--Hampshire Formation of Upper Devonian age. Aquifer code: 341HMPR.

WELL CHARACTERISTICS.--Dug, stone-lined, domestic, water-table well, depth 20 ft; diameter 36 in.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 2,415 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 1 in. board cover, 2.30 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- August 1949 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.25 ft below land surface, March 6, 1979; lowest measured, 19.65 ft below land surface, December 9, 1953.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 30 NOV 14 27	14.60 13.08 10.36 11.18	DEC 19, 2002 JAN 29, 2003 FEB 26 MAR 28	11.50 14.48 7.67 5.33	APR 29, 2003 MAY 30 JUN 27 JUL 30	13.93 12.27 11.42 14.61	AUG 29, 2003 SEP 30	10.61 7.95

GARRETT COUNTY-Continued

WELL NUMBER.--GA Eb 78. SITE ID.--392439079231801. PERMIT NUMBER.--GA-88-0611.

LOCATION.--Lat 39°24'39", long 79°23'18", Hydrologic Unit 05020006, at Southern Pines, near Broadford Road, and Southern Pines Drive, Mountain Lake Park. Owner: Private Residence.

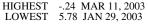
AQUIFER.--Foreknobs Formation of Upper Devonian age. Aquifer code: (code in review).

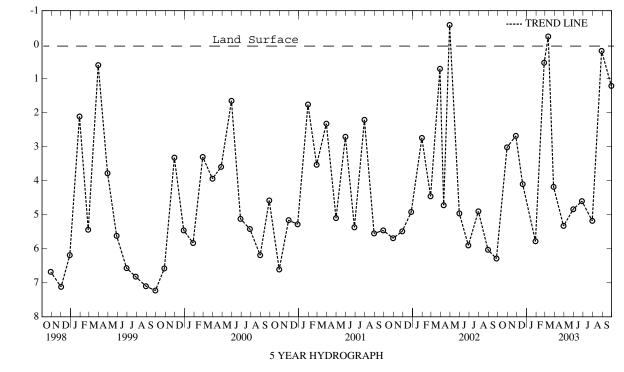
WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 307 ft; casing diameter 6 in., to 40 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 2,500 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- March 1992 to current year.


WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, flowing on March 29, 1993, and March 30, 1994; lowest measured, 9.12 ft below land surface, August 30, 1993.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 (READINGS ABOVE LAND SURFACE INDICATED BY "-")

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 27 DEC 19 JAN 29, 2003	3.02 2.68 4.10 5.78	FEB 26, 2003 MAR 11 28 APR 29	.53 24 4.18 5.33	MAY 30, 2003 JUN 27 JUL 30 AUG 29	4.84 4.60 5.18 .18	SEP 29, 2003	1.21

GARRETT COUNTY-Continued

WELL NUMBER.--GA Fa 28. SITE ID.--391512079270901. PERMIT NUMBER.--GA-73-1697.

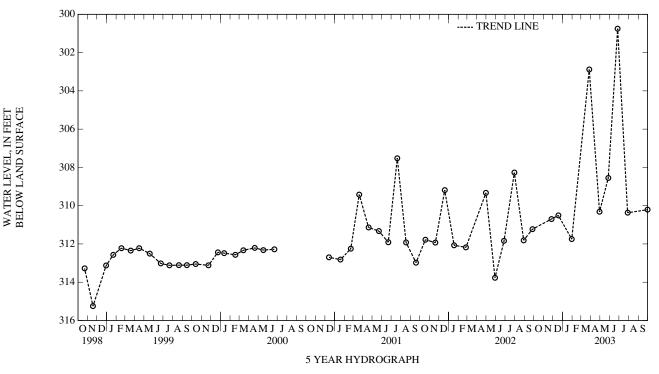
LOCATION.--Lat 39°15'12", long 79°27'09", Hydrologic Unit 02070002, on south side of Red Oak Road, 0.6 mi west from the intersection with Kempton Road, 2.6 mi west of Wilson. Owner: Mettiki Coal Corp.

AQUIFER.--Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 341 ft; casing diameter 6 in., to 317 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.


- DATUM.--Elevation of land surface is 2,890 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.50 ft above land surface.
- REMARKS.--Hydrologic Effects of Mining, Phase III Project observation well. Water levels are affected by coal mining operations. Water level measurements could not be measured from July 2000 through November 2000, and March 27, 2002 because of an obstruction in the well. A well depth of 337.35 ft below land surface was measured on April 30, 2002.


PERIOD OF RECORD.--June 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 100.60 ft below land surface, December 14, 1978; lowest measured dry at 341.00 ft below land surface, May 16, 1985.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 26, 2002	310.70	MAR 27, 2003	302.88	JUN 26, 2003	300.75
DEC 18	310.51	APR 29	310.32	JUL 28	310.37
JAN 30, 2003	311.75	MAY 27	308.55	SEP 30	310.21

GARRETT COUNTY-Continued

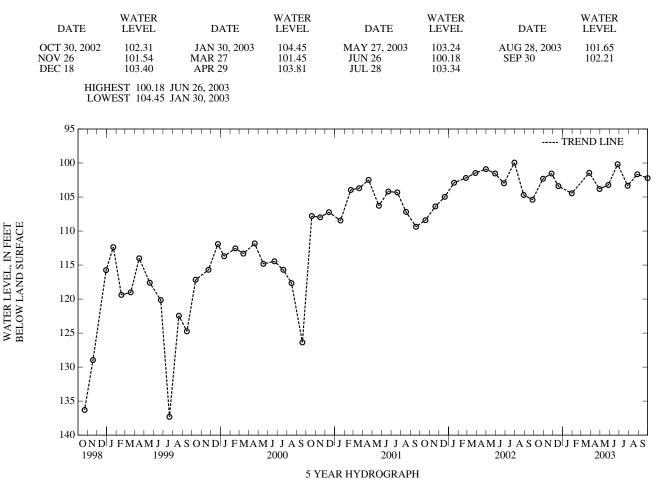
WELL NUMBER .-- GA Fa 29. SITE ID .-- 391512079270902. PERMIT NUMBER .-- GA-73-1698.

LOCATION.--Lat 39°15'12", long 79°27'09", Hydrologic Unit 02070002, on south side of Red Oak Road, 0.9 mi west from intersection with Kempton Road, 2.6 mi west of Wilson. Owner: Mettiki Coal Corp.

AQUIFER.--Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 226 ft; casing diameter 6 in., to 203 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 2,890 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS.--Hydrologic Effects of Mining, Phase III Project observation well. Water levels are affected by coal mining operations. A well depth of 211.0 ft below land surface was measured on April 30, 2002.

PERIOD OF RECORD .-- June 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 99.95 ft below land surface, July 30, 2002; lowest water level measured, dry on November 17, 18, 1982, December 28, 1982, February 18, 1983.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

GARRETT COUNTY—Continued

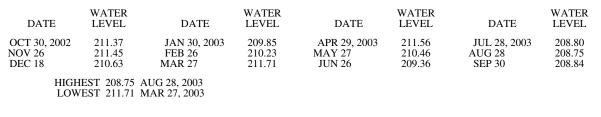
WELL NUMBER.--GA Fa 31. SITE ID.--391539079254601. PERMIT NUMBER.--GA-73-2142.

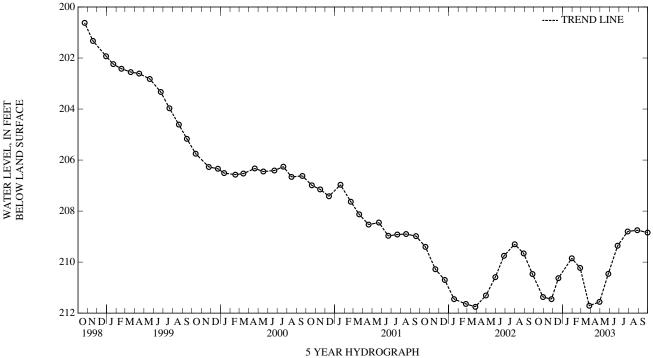
LOCATION.--Lat 39°15'37", long 79°25'45", Hydrologic Unit 02070002, on north side of coal conveyor belt, 450 ft west of Table Rock Road, 1.7 mi west of Wilson. Owner: U.S. Geological Survey.

AQUIFER.--Allegheny Formation of Middle Pennsylvanian age. Aquifer code: 324ALGN.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 606 ft; casing diameter 8 in., to 25.5 ft; casing diameter 4 in., to 470 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval.


DATUM.--Elevation of land surface is 2,618 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.60 ft above land surface.


REMARKS .-- Hydrologic Effects of Mining, Phase III Project observation well. Water levels are affected by coal mining operations.

PERIOD OF RECORD .-- April 1980 to to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.31 ft below land surface, April 8, 1980; lowest measured, 211.75 ft below land surface, March 27, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

GARRETT COUNTY-Continued

WELL NUMBER.--GA Fa 32. SITE ID.--391539079254602. PERMIT NUMBER.--GA-73-2143.

LOCATION.--Lat 39°15'39", long 79°25'46", Hydrologic Unit 02070002, on north side of coal conveyor belt, 450 ft west of Table Rock Road, 1.7 mi west of Wilson. Owner: U.S. Geological Survey.

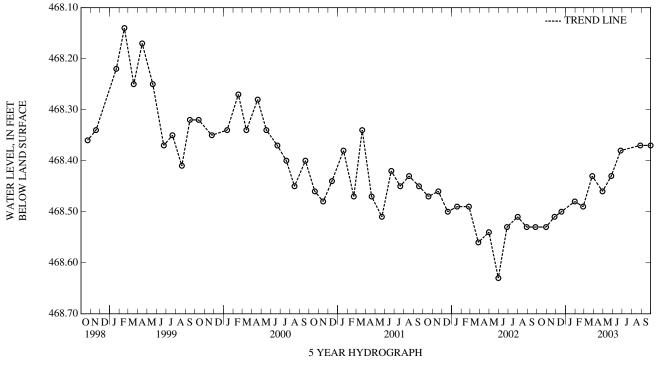
AQUIFER.--Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 473 ft; casing diameter 8 in., to 23 ft; casing diameter 4 in., to 430 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from July 1980 to April 1981.

DATUM.--Elevation of land surface is 2,618 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.15 ft above land surface.

REMARKS.--Hydrologic Effects of Mining, Phase III Project observation well. Water levels are affected by coal mining operations. A well depth of 470.35 ft below land surface was measured on April 30, 2002.


PERIOD OF RECORD .-- February 1980 to to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.55 ft below land surface, February 27, 1980; lowest measured, 474.80 ft below land surface, July 16, 1992.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 26 DEC 18	468.53 468.51 468.50	JAN 30, 2003 FEB 26 MAR 27	468.48 468.49 468.43	APR 29, 2003 MAY 27 JUN 26	468.46 468.43 468.38	AUG 28, 2003 SEP 30	468.37 468.37

HIGHEST 468.37 AUG 28, 2003 SEP 30, 2003 LOWEST 468.53 OCT 30, 2002

GARRETT COUNTY-Continued

WELL NUMBER .-- GA Fa 33. SITE ID .-- 391539079254603. PERMIT NUMBER .-- GA-73-2144.

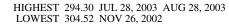
LOCATION.--Lat 39°15'39", long 79°25'46", Hydrologic Unit 02070002, on north side of coal conveyor belt, 450 ft west of Table Rock Road, 1.7 mi west of Wilson. Owner: U.S. Geological Survey.

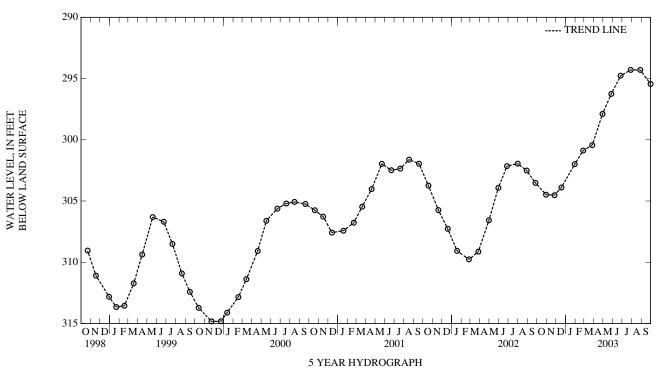
AQUIFER.--Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 391 ft; measured depth, 324 ft on December 15, 1995, (see REMARKS); casing diameter 8 in., to 23 ft; casing diameter 4 in., to 318 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with digital recorder-60-minute recorder interval from July 1980 to October 1982.

DATUM.--Elevation of land surface is 2,618 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land surface.


REMARKS.--Hydrologic Effects of Mining, Phase III Project observation well. Water levels are affected by coal mining operations. Prior to December 15, 1995, the well was undermined and collapsed, the depth of the well is now 324 ft.


PERIOD OF RECORD .-- February 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.31 ft below land surface, February 27, 1978; lowest measured, dry at 324 ft below land surface on December 15, 1995, January 18 and June 13, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002	304.48	JAN 30, 2003	301.99	APR 29, 2003	297.89	JUL 28, 2003	294.30
NOV 26	304.52	FEB 26	300.88	MAY 27	296.25	AUG 28	294.30
DEC 18	303.90	MAR 27	300.43	JUN 26	294.77	SEP 30	295.45

GARRETT COUNTY-Continued

WELL NUMBER.--GA Fa 34. SITE ID.--391539079254604. PERMIT NUMBER.--GA-73-2145.

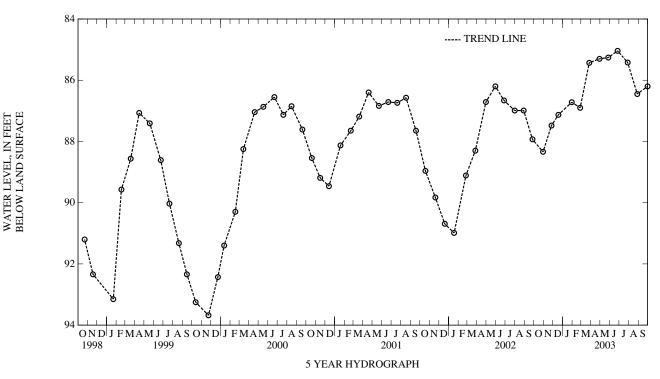
LOCATION.--Lat 39°15'39", long 79°25'46", Hydrologic Unit 02070002, on north side of coal conveyor belt, 450 ft west of Table Rock Road, 1.7 mi west of Wilson. Owner: U.S. Geological Survey.

AQUIFER.--Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 115 ft; casing diameter 8 in., to 23.5 ft; casing diameter 4 in., to 96 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval, from July 1980 to October 1990.

DATUM.--Elevation of land surface is 2,618 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land surface.


REMARKS .-- Hydrologic Effects of Mining, Phase III Project observation well.

PERIOD OF RECORD .-- February 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.05 ft below land surface, February 26, 1980; lowest measured, 95.25 ft below land surface, December 11, 1991.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 26 DEC 18	88.34 87.48 87.13	JAN 30, 2003 FEB 26 MAR 27	86.72 86.90 85.43	APR 29, 2003 MAY 27 JUN 26	85.30 85.26 85.04	JUL 28, 2003 AUG 28 SEP 30	85.42 86.45 86.20
	EST 85.04 J EST 88.34 C						

GARRETT COUNTY-Continued

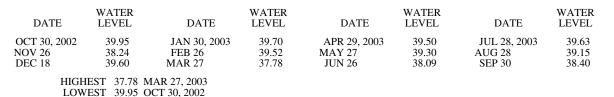
WELL NUMBER.--GA Fa 38. SITE ID.--391501079260001. PERMIT NUMBER.--GA-73-2125.

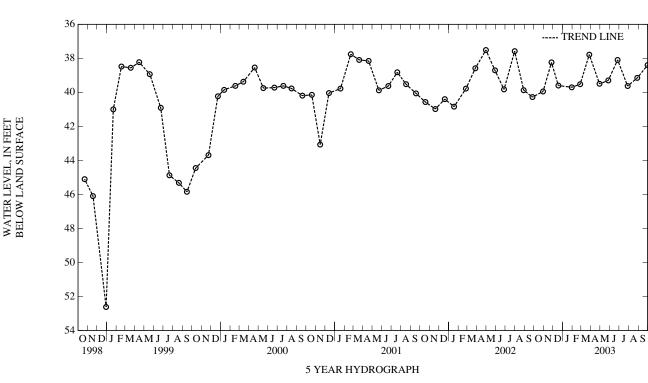
LOCATION.--Lat 39°15'01", long 79°26'00", Hydrologic Unit 02070002, at intersection of Kempton Road and Dobbin Road, 3.6 mi south of Table Rock. Owner: Private Residence.

AQUIFER.--Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS .-- Drilled, domestic, water-table well, depth 118 ft, casing diameter 6 in., to 39 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 2,680 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land surface.


REMARKS .-- Hydrologic Effects of Mining, Phase III Project observation well. Water levels are affected by nearby coal mining operations.

PERIOD OF RECORD .-- February 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.46 ft below land surface, March 30, 1993; lowest measured, 59.72 ft below land surface, October 14, 1992.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

GARRETT COUNTY-Continued

WELL NUMBER .-- GA Fb 22. SITE ID .-- 391530079244401. PERMIT NUMBER .-- GA-73-2146.

LOCATION.--Lat 39°15'30", long 79°24'44", Hydrologic Unit 02070002, south side of Wilson Road, 500 ft west of the intersection with Wilson-Coronna Road, 0.4 mi northwest of Wilson. Owner: U.S. Geological Survey.

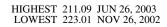
AQUIFER.--Allegheny Formation of Middle Pennsylvanian age. Aquifer code: 324ALGN.

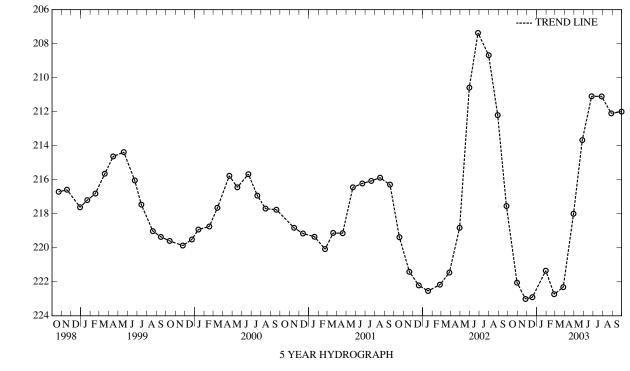
WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 640 ft; casing diameter 4 in., to 517 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval, from May 1980 to October 1990.

DATUM.--Elevation of land surface is 2,530 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.0 ft above land surface.

REMARKS.--Hydrologic Effects of Mining, Phase III Project observation well. Water levels are affected by coal mining operations. A well depth of 530 ft below land surface was measured on April 30, 2002.


PERIOD OF RECORD .-- April 1980 to current year.


WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 63.59 ft below land surface, April 8, 1980; lowest measured, 253.17 ft below land surface, October 16. 1995.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002	222.05	JAN 30, 2003	221.35	APR 29, 2003	218.00	JUL 28, 2003	211.10
NOV 26	223.01	FEB 26	222.73	MAY 27	213.67	AUG 28	212.10
DEC 18	222.91	MAR 27	222.32	JUN 26	211.09	SEP 30	212.00

GARRETT COUNTY-Continued

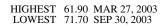
WELL NUMBER .-- GA Fb 24. SITE ID .-- 391530079244403. PERMIT NUMBER .-- GA-73-2177.

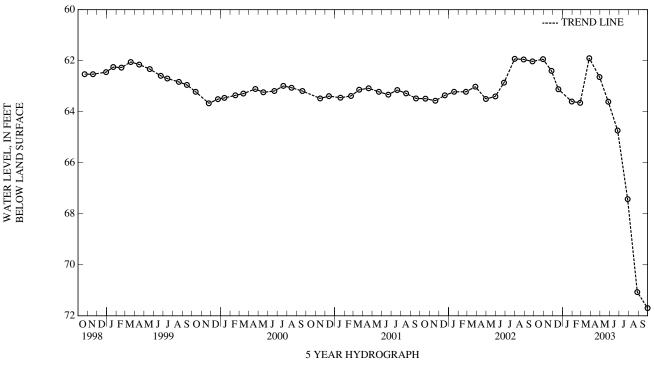
LOCATION.--Lat 39°15'30", long 79°24'44", Hydrologic Unit 02070002, south side of Wilson Road, 500 ft west of the intersection with Wilson-Coronna Road, 0.4 mi northwest of Wilson. Owner: U.S. Geological Survey.

AQUIFER.--Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 400 ft; casing diameter 4 in., to 340 ft; open hole.

- INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval, from May 1980 to October 1990.
- DATUM.--Elevation of land surface is 2,530 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land surface.


REMARKS.--Hydrologic Effects of Mining, Phase III Project observation well. Water levels are affected by coal mining operations. A well depth of 394 ft below land surface was measured on April 30, 2002.


PERIOD OF RECORD .-- April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.08 ft below land surface, January 12, 1981; lowest measured, 92.29 ft below land surface, April 28, 1981.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002	61.94	JAN 30, 2003	63.60	APR 29, 2003	62.64	JUL 28, 2003	67.43
NOV 26	62.40	FEB 26	63.65	MAY 27	63.61	AUG 28	71.07
DEC 18	63.12	MAR 27	61.90	JUN 26	64.74	SEP 30	71.70

GARRETT COUNTY-Continued

WELL NUMBER .-- GA Fb 25. SITE ID .-- 391530079244404. PERMIT NUMBER .-- GA-73-2178.

LOCATION.--Lat 39°15'30", long 79°24'44", Hydrologic Unit 02070002, south side of Wilson Road, 500 ft west of the intersection with Wilson-Coronna Road, 0.4 mi northwest of Wilson. Owner: U.S. Geological Survey.

AQUIFER.--Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

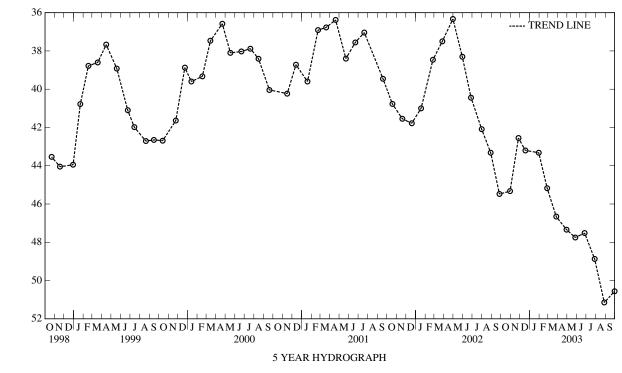
WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 180 ft; casing diameter 4 in., to 120 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from June 1980 to October 1990.

DATUM.--Elevation of land surface is 2,530 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land surface.

REMARKS.--Hydrologic Effects of Mining, Phase III Project observation well. Water levels are affected by coal mining operations. A well depth of 121 ft below land surface was measured on April 30, 2002.

PERIOD OF RECORD .-- April 1980 to current year.


WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 27.89 ft below land surface, May 11, 1981; lowest measured, 54.18 ft below land surface, May 14, 1985.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002	45.33	JAN 30, 2003	43.32	APR 29, 2003	47.34	JUL 28, 2003	48.87
NOV 26	42.55	FEB 26	45.18	MAY 27	47.75	AUG 28	51.15
DEC 18	43.20	MAR 27	46.66	JUN 26	47.52	SEP 30	50.56

HIGHEST 42.55 NOV 26, 2002 LOWEST 51.15 AUG 28, 2003

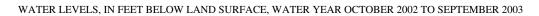
GARRETT COUNTY-Continued

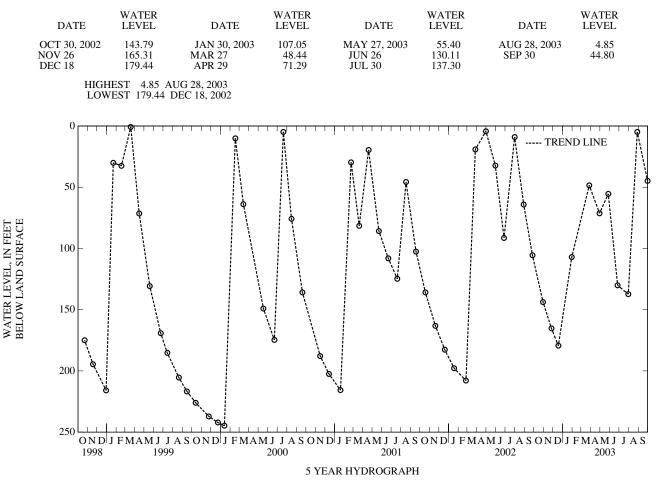
WELL NUMBER.--GA Fb 27. SITE ID.--391513079243602. PERMIT NUMBER.--GA-73-2182.

LOCATION.--Lat 39°15'13", long 79°24'36", Hydrologic Unit 02070002, 0.6 mi west of Wilson. Owner: U.S. Geological Survey.

AQUIFER .-- Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 656 ft; casing diameter 4 in., to 590 ft; open hole.


INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval, from June 1980 to July 1990.


DATUM.--Elevation of land surface is 2,755 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land surface.

REMARKS.--Hydrologic Effects of Mining, Phase III Project observation well. Water levels are affected by coal mining operations. A well depth of 610 ft below land surface was measured on April 30, 2002.

PERIOD OF RECORD .-- June 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.27 ft below land surface, February 9, 1994; lowest measured, 274.12 ft below land surface, December 1, 1993.

GARRETT COUNTY—Continued

WELL NUMBER.--GA Fb 30. SITE ID.--391513079243605. PERMIT NUMBER.--GA-73-2185.

LOCATION.--Lat 39°15'13", long 79°24'36", Hydrologic Unit 02070002, 0.6 mi west of Wilson. Owner: U.S. Geological Survey.

AQUIFER.--Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

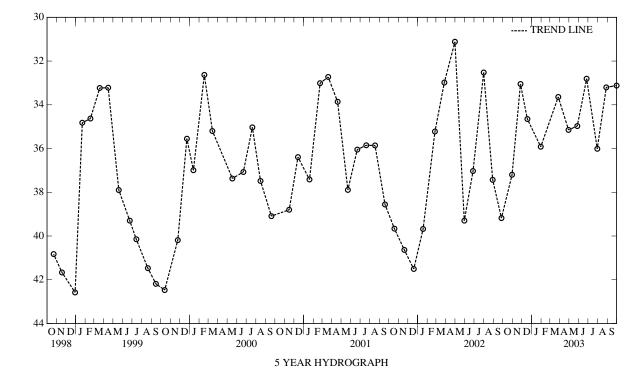
LOWEST 37.20 OCT 30, 2002

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 85 ft; casing diameter 4 in., to 82 ft, casing perferated from 77 to 82 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from June 1980 to October 1980.

DATUM.--Elevation of land surface is 2,755 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS .-- Hydrologic Effects of Mining, Phase III Project observation well. Water levels are affected by coal mining operations.


PERIOD OF RECORD .-- June 1980 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.58 ft below land surface, April 16, 1981 (recorder); lowest measured, 45.00 ft below land surface, November 6, 1991.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 26 DEC 18	37.20 33.05 34.65	JAN 30, 2003 MAR 27 APR 29	35.92 33.64 35.15	MAY 27, 2003 JUN 26 JUL 30	34.97 32.81 36.01	AUG 28, 2003 SEP 30	33.20 33.12
HIGH	EST 32.81 J	UN 26, 2003					

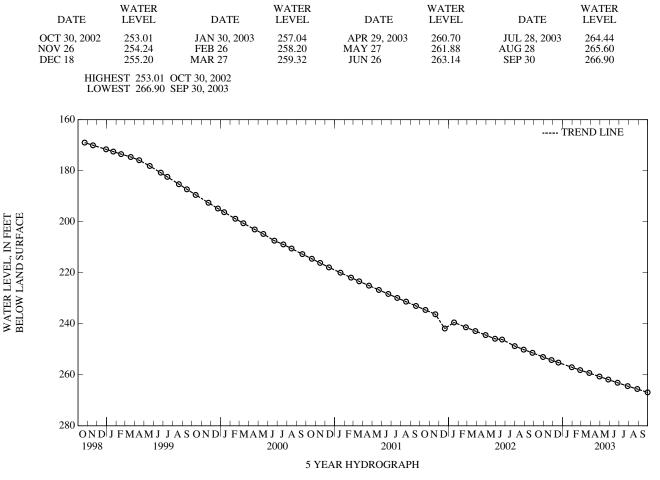
GARRETT COUNTY—Continued

WELL NUMBER.--GA Fb 36. SITE ID.--391715079223102. PERMIT NUMBER.--GA-81-1342.

LOCATION .-- Lat 39°17'15", long 79°22'31", Hydrologic Unit 02070002. Owner: Mettiki Coal Co.

AQUIFER.--Conemaugh Formation Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS .-- Drilled, confined aquifer well, depth 631 ft; casing diameter 6 in., to 620 ft depth; open hole.


INSTRUMENTATION .-- Monthly measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 2,565 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.60 ft above land surface.

REMARKS .-- Hydrologic Effects of Mining, Phase III Project observation well. Water levels affected by nearby pumping.

PERIOD OF RECORD.--April 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 17.95 ft below land surface, June 3, 1988; lowest measured, 266.90 ft below land surface, September 30, 2003.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

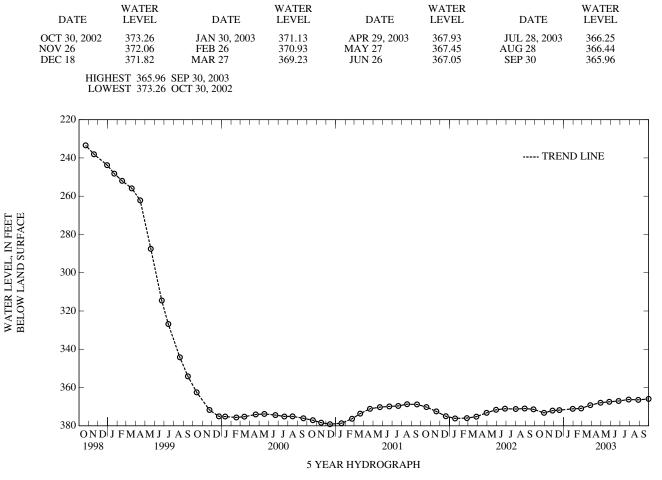
GARRETT COUNTY—Continued

WELL NUMBER.--GA Fb 37. SITE ID.--391715079223103. PERMIT NUMBER.--GA-81-1341.

LOCATION .-- Lat 39°17'15", long 79°22'31", Hydrologic Unit 02070002. Owner: Mettiki Coal Co.

AQUIFER.--Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS .-- Drilled, confined aquifer well, depth 470 ft; casing diameter 6 in., to 430 ft; open hole.


INSTRUMENTATION .-- Monthly measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 2,565 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.20 ft above land surface.

REMARKS .-- Hydrologic Effects of Mining, Phase III Project observation well. Water levels affected by nearby pumping.

PERIOD OF RECORD.--April 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 132.70 ft below land surface, November 7, 1989; lowest measured, 379.15 ft below land surface, December 13, 2000.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

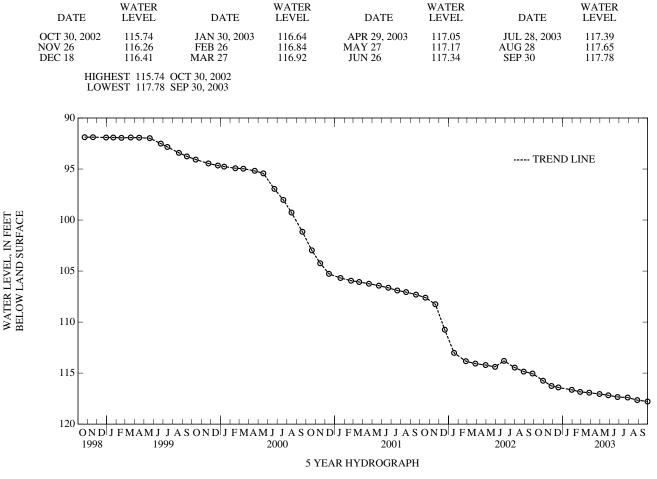
GARRETT COUNTY—Continued

WELL NUMBER.--GA Fb 38. SITE ID.--391715079223104. PERMIT NUMBER.--GA-81-1340.

LOCATION .-- Lat 39°17'15", long 79°22'31", Hydrologic Unit 02070002. Owner: Mettiki Coal Co.

AQUIFER.--Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS .-- Drilled, confined aquifer well, depth 230 ft., casing diameter 6 in., to 215 ft; open hole.


INSTRUMENTATION .-- Monthly measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 2,565 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.20 ft above land surface.

REMARKS.--Hydrologic Effects of Mining, Phase III Project observation well. Water levels affected by nearby pumping.

PERIOD OF RECORD .-- April 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 91.79 ft below land surface, March 19, 1997; lowest measured, 117.78 ft below land surface, September 30, 2003.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

GARRETT COUNTY—Continued

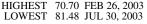
WELL NUMBER.--GA Ga 16. SITE ID.--391420079264901. PERMIT NUMBER.--GA-81-0953.

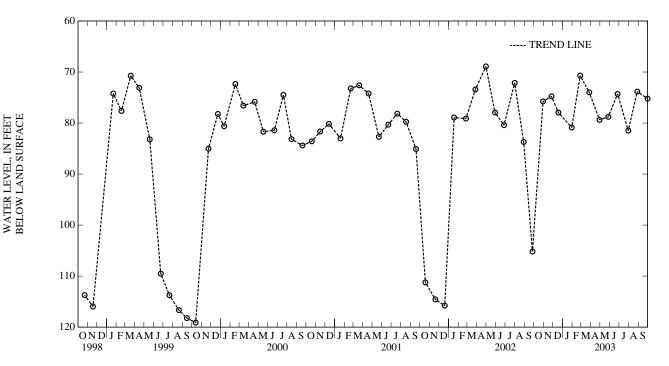
LOCATION.--Lat 39°14'20", long 79°26'49", Hydrologic Unit 02070002, east of Kempton Road, 100 ft north of Laurel Run, 2.8 mi southwest of Wilson. Owner: Mettiki Coal Corp.

AQUIFER.--Conemaugh Formation of Upper Pennsylvanian age. Aquifer code: 321CNMG.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 147 ft; casing diameter 6 in., to 110 ft, open hole.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from March 1988 to current year.


DATUM.--Elevation of land surface is 2,690 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of shelter floor, 3.20 ft above land surface.


REMARKS .-- Hydrologic Effects of Mining, Phase III Project observation well. Water levels are affected by coal mining operations.

PERIOD OF RECORD.--November 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 68.90 ft below land surface, April 30, 2002; lowest measured, 145.05 ft below land surface, September 22, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 26 DEC 18	75.77 74.76 77.93	JAN 30, 2003 FEB 26 MAR 27	80.88 70.70 73.99	APR 29, 2003 MAY 27 JUN 26	79.38 78.77 74.29	JUL 30, 2003 AUG 28 SEP 30	81.48 73.82 75.22

HARFORD COUNTY

WELL NUMBER .-- HA Bd 31. SITE ID .-- 393902076160001.

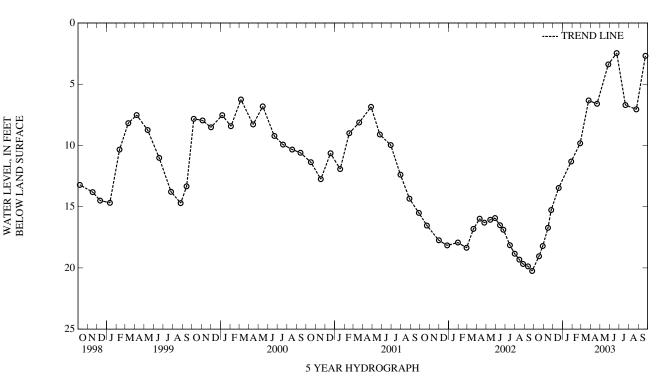
LOCATION .-- Lat 39°39'02", long 76°16'00", Hydrologic Unit 02050306, at Dublin. Owner: Private Residence.

AQUIFER.--Baltimore Gabbro Complex of Paleozoic age. Aquifer code: 300BLMR.

WELL CHARACTERISTICS .-- Dug, stone-lined, water-table well, measured depth 25.9 ft; approximate diameter 36 in.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with water-level recorder from July 1954 to August 1958.

DATUM.--Elevation of land surface is 460 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of wood floor, 0.10 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- May 1954 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.00 ft below land surface, May 7, 1958; lowest measured, 20.25 ft below land surface, September 25, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 29 NOV 15 25	19.05 18.22 16.72 15.27	DEC 19, 2002 JAN 28, 2003 FEB 26 MAR 25	13.47 11.32 9.82 6.33	APR 21, 2003 MAY 27 JUN 23 JUL 21	6.60 3.39 2.45 6.70	AUG 25, 2003 SEP 23	7.05 2.68
HIGH LOW	EST 2.45 JU EST 19.05 C	JN 23, 2003 DCT 17, 2002					

HARFORD COUNTY-Continued

WELL NUMBER .-- HA Ca 23. SITE ID .-- 393158076302601. PERMIT NUMBER .-- HA-73-1630.

LOCATION.--Lat 39°31'58", long 76°30'26", Hydrologic Unit 02060003, at Gunpowder State Park, Hess. Owner: U.S. Geological Survey.

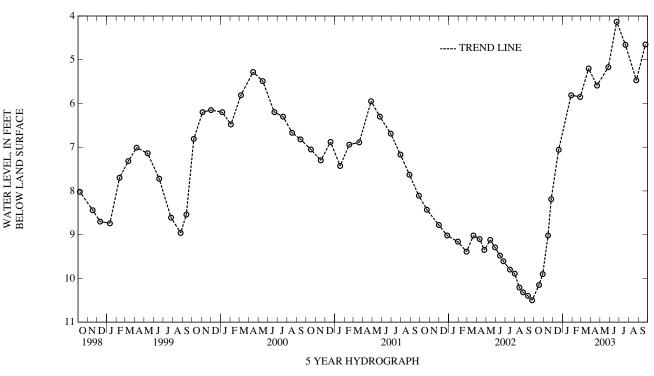
AQUIFER .-- Loch Raven Formation of Cambrian age. Aquifer code: 370LCRV.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 200 ft; casing diameter 6 in., to 24 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from July 1974 to September 1976.

DATUM.--Elevation of land surface is 470 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.60 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


HIGHEST 4.13 JUN 23, 2003 LOWEST 10.15 OCT 17, 2002

PERIOD OF RECORD .-- July 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.59 ft below land surface, September 27, 1975; lowest measured, 10.50 ft below land surface, September 25, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 29 NOV 15 25	10.15 9.90 9.02 8.19	DEC 19, 2002 JAN 28, 2003 FEB 26 MAR 25	7.06 5.81 5.85 5.20	APR 21, 2003 MAY 27 JUN 23 JUL 21	5.59 5.17 4.13 4.66	AUG 25, 2003 SEP 23	5.47 4.65

HARFORD COUNTY-Continued

WELL NUMBER .-- HA Dd 89. SITE ID.-- 392529076180901. PERMIT NUMBER .-- HA-81-4130.

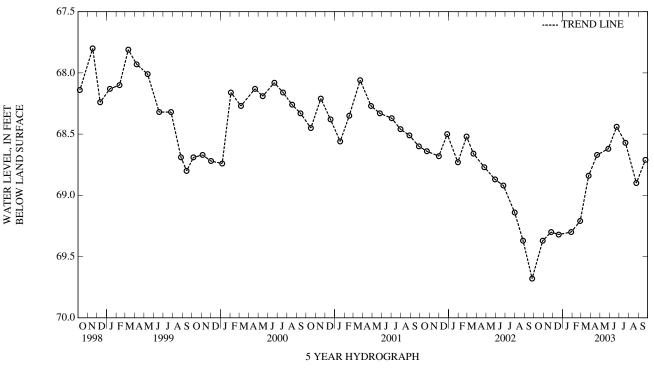
LOCATION.--Lat 39°25'29", long 76°18'09", Hydrologic Unit 02060003, at Edgewood Elementary School on Cedar Drive, Edgewood. Owner: Maryland Geological Survey.

AQUIFER .-- Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSC.

- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 140 ft; casing diameter 4 in., to 96 ft, and 130 to 140 ft; screen diameter 4 in., from 96 to 106 ft, and 120 to 130 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements with chalked steel tape from October 1990 to January 1996 by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recorder interval from January 1988 to July 1989.

DATUM .-- Elevation of land surface is 99.05 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.80 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.


PERIOD OF RECORD .-- January 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 67.28 ft below land surface, April 9, 1998; lowest measured, 69.68 ft below land surface, September 25, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002	69.37	JAN 28, 2003	69.30	APR 21, 2003	68.67	JUL 21, 2003	68.57
NOV 25	69.30	FEB 26	69.21	MAY 27	68.62	AUG 25	68.90
DEC 19	69.32	MAR 25	68.84	JUN 23	68.44	SEP 23	68.71

HIGHEST 68.57 JUL 21, 2003 LOWEST 69.37 OCT 29, 2002

HARFORD COUNTY-Continued

WELL NUMBER .-- HA Dd 91. SITE ID .-- 392721076150301. PERMIT NUMBER .-- HA-81-4136.

LOCATION.--Lat 39°27'21", long 76°15'03", Hydrologic Unit 02060003, at William Longley Park, near intersection of Long Bar Harbor and Longley Roads, Long Bar Harbor. Owner: Maryland Geological Survey.

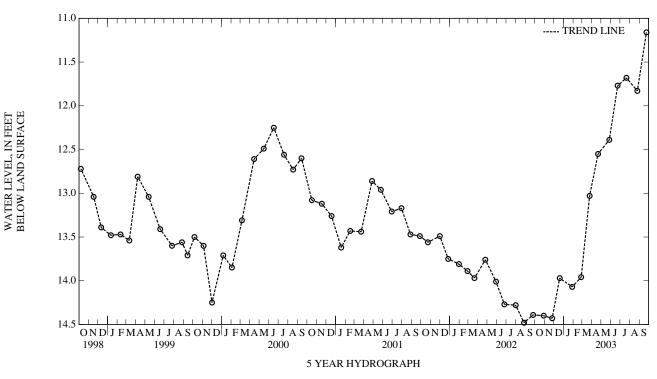
AQUIFER .-- Talbot Formation of Pleistocene age. Aquifer code: 112TLBT.

WELL CHARACTERISTICS.--Drilled, observation, water-table well (semi-confined), depth 78 ft; casing diameter 4 in., to 58 ft, and 68 to 78 ft; screen diameter 4 in., from 58 to 68 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 19.73 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.90 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


LOWEST 14.43 NOV 25, 2002

PERIOD OF RECORD .-- May 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.34 ft below land surface, May 6, 1997; lowest measured, 14.48 ft below land surface, August 27, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 19	14.40 14.43 13.97	JAN 28, 2003 FEB 26 MAR 25	14.07 13.96 13.03	APR 21, 2003 MAY 27 JUN 23	12.55 12.39 11.77	JUL 21, 2003 AUG 25 SEP 23	11.68 11.83 11.16
HIGH	EST 11.16 S	EP 23, 2003					

HARFORD COUNTY-Continued

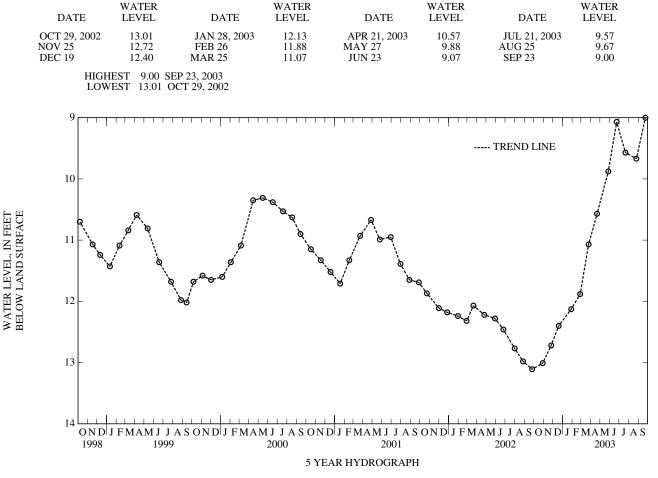
WELL NUMBER .-- HA Dd 92. SITE ID.-- 392721076150302. PERMIT NUMBER .-- HA-81-4137.

LOCATION.--Lat 39°27'21", long 76°15'03", Hydrologic Unit 02060003, at William Longley Park, near intersection of Long Bar Harbor and Longley Roads, Long Bar Harbor. Owner: Maryland Geological Survey.

AQUIFER.--Talbot Formation of Pleistocene age. Aquifer code: 112TLBT.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 38 ft; casing diameter 4 in., to 28 ft; screen diameter 4 in., from 28 to 38 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 20.06 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.12 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- May 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.35 ft below land surface, April 8, 1997. lowest measured, 13.11 ft below land surface, September 25, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

HARFORD COUNTY-Continued

WELL NUMBER .-- HA De 66. SITE ID .-- 392921076100401. PERMIT NUMBER .-- HA-69-0394.

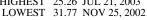
LOCATION.--Lat 39°29'21", long 76°10'04", Hydrologic Unit 02060003, at Short Lane, near Aberdeen. Owner: Harford County Department of Public Works.

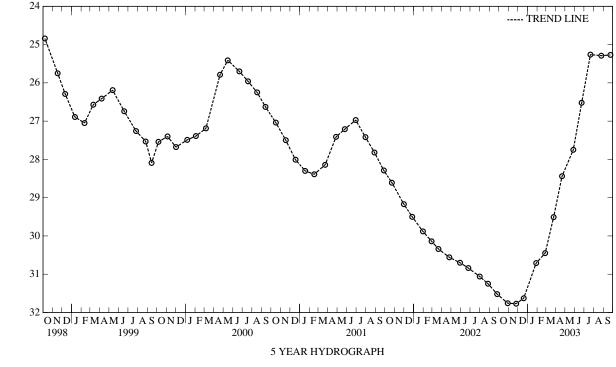
AQUIFER .-- Talbot Formation of Pleistocene age. Aquifer code: 112TLBT.

WELL CHARACTERISTICS.--Drilled, unused, water-table well (semi-confined), depth 66 ft; casing diameter 4 in., to 45 ft; screen diameter 4 in., from 45 to 66 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from December 1986 to July 1989.

DATUM .-- Elevation of land surface is 67.75 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.61 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- October 1973 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.31 ft below land surface, July 28, 1975; lowest measured, 31.77 ft below land surface, November 25, 2002.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 19	31.76 31.77 31.63	JAN 28, 2003 FEB 26 MAR 25	30.71 30.45 29.51	APR 21, 2003 MAY 27 JUN 23	28.44 27.75 26.52	JUL 21, 2003 AUG 25 SEP 23	25.26 25.29 25.27
HIGH	EST 25.26 J	UL 21, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

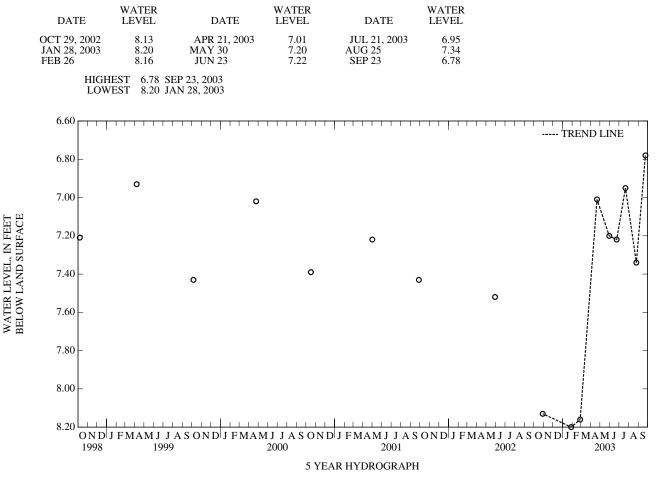
HARFORD COUNTY-Continued

WELL NUMBER.--HA De 181. SITE ID.--392606076145801. PERMIT NUMBER.--HA-81-4134.

LOCATION.--Lat 39°26'06", long 76°14'58", Hydrologic Unit 02060003, northeast end of Kennard Ave., at Willoughby Beach, Crestwood. Owner: Maryland Geological Survey.

AQUIFER .-- Patuxent aquifer in the Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 290 ft; casing diameter 4 in., to 264 ft, 269 to 275 ft, and 280 to 290 ft; screen diameter 4 in., from 264 to 269 ft, and 275 to 280 ft.
- INSTRUMENTATION.--Twice yearly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recorder interval from May 1988 to July 1989.


DATUM .-- Elevation of land surface is 12.22 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.10 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- May 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.42 ft below land surface, April 8, 1997; lowest measured, 8.20 ft below land surface, January 28, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

HARFORD COUNTY-Continued

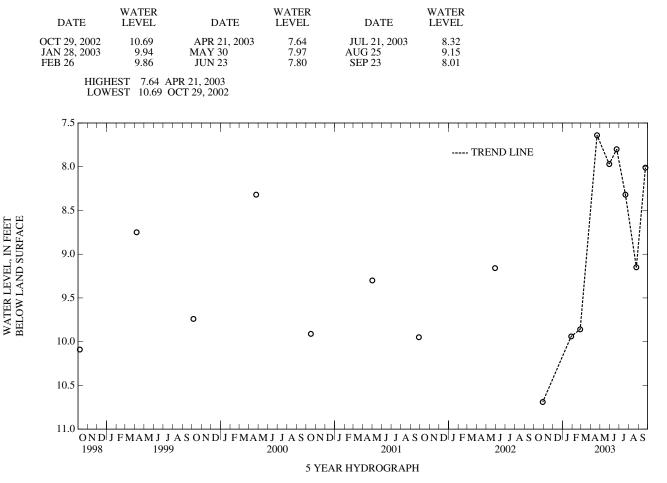
WELL NUMBER.--HA De 182. SITE ID.--392606076145802. PERMIT NUMBER.--HA-81-4135.

LOCATION.--Lat 39°26'06", long 76°14'58", Hydrologic Unit 02060003, northeast end of Kennard Ave., at Willoughby Beach, Crestwood. Owner: Maryland Geological Survey.

AQUIFER.--Talbot Formation of Pleistocene age. Aquifer code: 112TLBT.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 50 ft; casing diameter 4 in., to 30 ft, and 40 to 50 ft; screen diameter 4 in., from 30 to 40 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recorder interval from July 1988 to July 1989. Twice yearly water level measurements from May 1988 to January 2003.


DATUM.--Elevation of land surface is 12.29 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.52 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- May 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.64 ft below land surface, April 21, 2003; lowest measured, 11.04 ft below land surface, October 5, 1993.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

HARFORD COUNTY-Continued

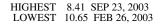
WELL NUMBER.--HA De 183. SITE ID.--392606076145803. PERMIT NUMBER.--HA-81-4577.

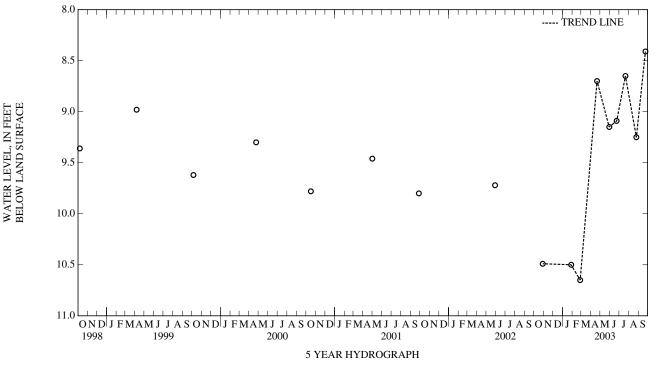
LOCATION.--Lat 39°26'06", long 76°14'58", Hydrologic Unit 02060003, northeast end of Kennard Ave., at Willoughby Beach, Crestwood. Owner: Maryland Geological Survey.

AQUIFER .-- Patuxent aquifer in the Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 175 ft; casing diameter 4 in., to 155 ft, and 165 to 175 ft; screen diameter 4 in., from 155 to 165 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recorder interval from May 1988 to July 1989. Twice yearly water level measurements from May 1988 to July 1989, and April 1990 to January 2003.

DATUM .-- Elevation of land surface is 12.53 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.54 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.


PERIOD OF RECORD .-- May 1988 to July 1989, April 1990 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.41 ft below land surface, September 23, 2003; lowest measured, 10.65 ft below land surface, February 26, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002	10.49	APR 21, 2003	8.70	JUL 21, 2003	8.65
JAN 28, 2003	10.50	MAY 30	9.15	AUG 25	9.25
FEB 26	10.65	JUN 23	9.09	SEP 23	8.41

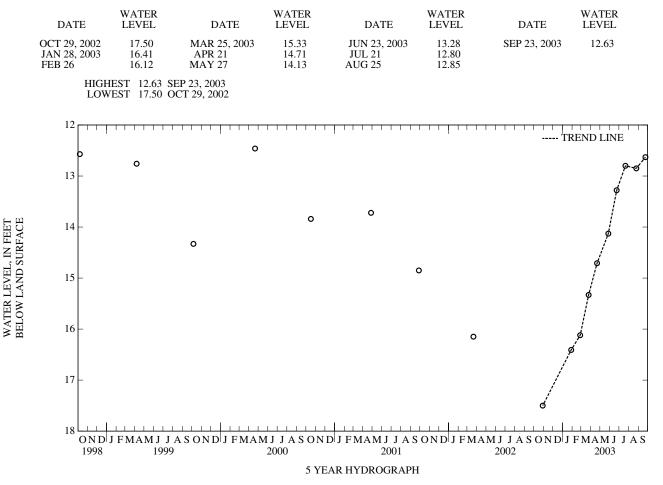
HARFORD COUNTY-Continued

WELL NUMBER .-- HA De 195. SITE ID.-- 392914076110301. PERMIT NUMBER .-- HA-81-4142.

LOCATION.--Lat 39°29'14", long 76°11'03", Hydrologic Unit 02060003, 0.2 mi east on Cranberry Run Dr., near Perryman. Owner: Maryland Geological Survey.

AQUIFER.--Talbot Formation of Pleistocene age. Aquifer code: 112TBLT.

- WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 55 ft; casing diameter 4 in., to 35 ft;, and 45 to 55 ft; screen diameter 4 in., from 35 to 45 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Monthly water level measurements from May 1988 to July 1989. Twice yearly water level measurements from May 1988 to January 2003.


DATUM.--Elevation of land surface is 52.70 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.38 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- May 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.96 ft below land surface, April 8, 1997; lowest measured, 17.50 ft below land surface, October 29, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

HARFORD COUNTY-Continued

WELL NUMBER .-- HA De 198. SITE ID. -- 392819076130902. PERMIT NUMBER .-- HA-81-4141.

LOCATION.--Lat 39°28'19", long 76°13'09", Hydrologic Unit 02060003, northwest end of Fords Lane, Perryman. Owner: Private Residence (formerly Maryland Geological Survey).

AQUIFER .-- Talbot Formation of Pleistocene age. Aquifer code: 112TLBT.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 19 ft; casing diameter 4 in., to 9 ft; screen diameter 4 in. from 9 to 19 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--30-minute recorder interval from January 1989 to July 1989, and from January 1991 to February 2003.

DATUM .-- Elevation of land surface is 18.92 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.50 ft above land surface.

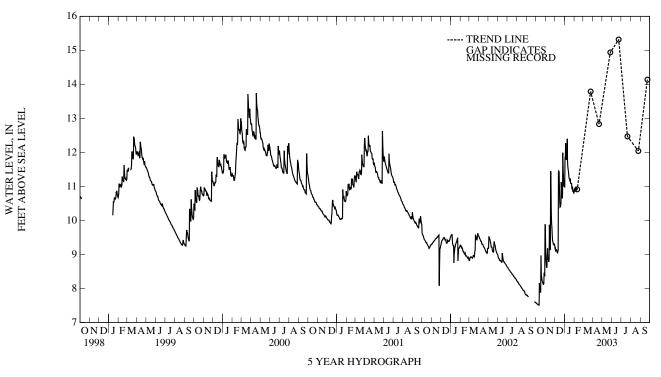
REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--May 1988 to August 1989, July 1991 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.57 ft above sea level, September 16, 1999 (recorder); lowest measured, 7.62 ft above sea level, September 26, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 19 JAN 28, 2003	8.37 9.36 10.45 10.92	FEB 11, 2003 26 MAR 25 APR 21	10.81 13.39 13.79 12.83	MAY 27, 2003 JUN 23 JUL 21 AUG 25	14.94 15.32 12.47 12.04	SEP 23, 2003	14.14


LOWEST 8.37 OCT 29, 2002 HIGHEST 15.32 JUN 23, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAR	RCH
1 2 3 4 5	7.58 7.58 7.57 7.56 7.55	7.58 7.57 7.56 7.55 7.54	9.81 9.08 8.86 8.73 8.97	9.08 8.86 8.72 8.63 8.61	9.26 9.25 9.22 9.16 9.25	9.18 9.19 9.10 9.11 9.15	12.03 12.04 12.47 12.47 12.27	10.97 11.83 11.82 12.27 11.89	10.98 10.95 10.97 11.16 11.07	10.93 10.88 10.85 10.97 10.88	 	
6 7 8 9 10	7.54 7.54 7.53 7.52 7.51	7.54 7.53 7.52 7.51 7.51	10.84 10.11 9.18 8.95 8.87	8.97 9.18 8.95 8.87 8.86	9.18 9.15 9.15 9.08 9.13	9.11 9.11 9.07 9.03 9.08	11.93 11.93 12.59 12.61 12.40	11.82 11.78 11.81 12.40 11.74	11.01 11.13 10.99 10.93 11.11	10.87 10.99 10.89 10.90 10.91	 	
11 12 13 14 15	11.06 10.70 8.16 7.93 7.90	7.51 8.16 7.93 7.90 7.89	8.86 10.89 10.88 9.87 9.41	8.78 8.84 9.87 9.41 9.16	11.51 11.53 12.00 11.99 11.43	9.13 11.41 11.45 11.43 10.98	11.74 11.58 11.64 11.44 11.38	11.58 11.50 11.44 11.33 11.24	 	 	 	
16 17 18 19 20	10.95 10.26 8.97 8.42 8.34	7.89 8.97 8.42 8.34 8.25	11.71 11.71 11.59 11.12 10.22	9.13 11.45 11.07 10.22 9.92	10.99 10.56 10.49 10.50 11.59	10.56 10.39 10.40 10.44 10.50	11.40 11.44 11.27 11.31 11.35	11.22 11.19 11.14 11.23 11.09	 	 	 	
21 22 23 24 25	8.25 8.21 8.19 8.15 8.14	8.21 8.19 8.15 8.13 8.12	9.92 9.79 9.58 9.45 9.38	9.79 9.58 9.41 9.38 9.33	11.62 11.13 10.94 10.74 12.39	11.13 10.94 10.74 10.65 10.73	11.16 11.13 11.18 11.09 11.03	11.09 11.08 11.08 10.93 10.93	 	 	 	
26 27 28 29 30 31	9.77 8.93 8.46 10.31 10.51 10.51	8.14 8.46 8.40 8.36 9.89 9.81	9.35 9.35 9.34 9.42 9.38	9.29 9.28 9.28 9.32 9.26	12.21 11.99 11.51 11.27 11.04 11.06	11.99 11.51 11.27 11.03 11.00 11.00	11.09 10.99 10.99 10.99 10.85 10.93	10.99 10.84 10.86 10.83 10.79 10.85	 	 	 	
MONTH	11.06	7.51	11.71	8.61	12.39	9.03	12.61	10.79	11.16	10.85		

HARFORD COUNTY—Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	Y	JU	NE	JUI	LY	AUG	UST	SEPTE	EMBER
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
21 22												
23												
23												
25												
26												
27												
28												
29												
30												
31												
MONTH												
YEAR	12.61	7.51										

Daily Low Water Levels

HARFORD COUNTY-Continued

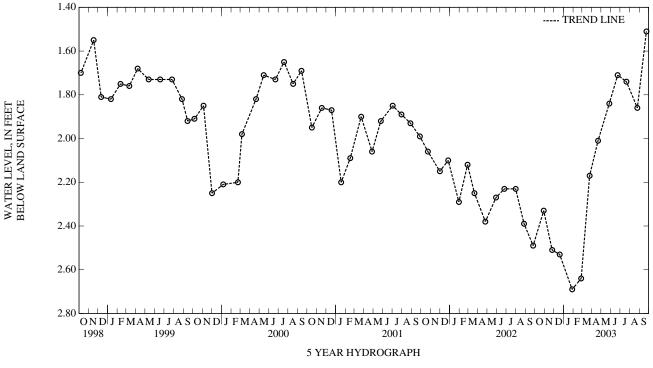
WELL NUMBER .-- HA Ec 11. SITE ID .-- 392435076203301. PERMIT NUMBER .-- HA-04-7211.

LOCATION.--Lat 39°24'35", long 76°20'33", Hydrologic Unit 02060003, off Trimble Road, Joppatowne. Owner: Harford County Department of Public Works.

AQUIFER .-- Patuxent aquifer in the Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 68 ft; diameter of casing 6 in., to 63 ft; screen diameter 2 in., from 63 to 68 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with water-level recorder from May 1962 to December 1983.


DATUM .-- Elevation of land surface is 11.7 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.50 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- May 1962 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.13 ft below land surface, May 24, 1962; lowest measured, 12.80 ft below land surface, May 26, 1972.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 19	2.33 2.51 2.53	JAN 28, 2003 FEB 26 MAR 25	2.69 2.64 2.17	APR 21, 2003 MAY 27 JUN 23	2.01 1.84 1.71	JUL 21, 2003 AUG 25 SEP 23	1.74 1.86 1.51
HIGH LOW	EST 1.51 SI EST 2.69 JA	EP 23, 2003 AN 28, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

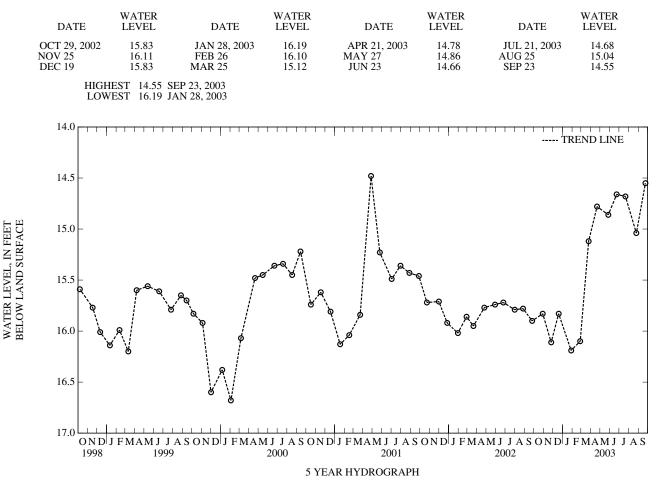
HARFORD COUNTY-Continued

WELL NUMBER .-- HA Ec 46. SITE ID .-- 392408076210101. PERMIT NUMBER .-- HA-81-4124.

LOCATION.--Lat 39°24'08", long 76°21'01", Hydrologic Unit 02060003, at end of Kearney Dr., at Coppenhaven Park, near Joppatowne. Owner: Maryland Geological Survey.

AQUIFER .-- Patuxent aquifer in the Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 85 ft; diameter of casing 4 in., to 65 ft, and 75 to 85 ft; screen diameter 4 in., from 65 to 75 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from October 1989 to October 1995.


DATUM.--Elevation of land surface is 23.16 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.17 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--May 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.48 ft below land surface, April 27, 2001; lowest measured, 16.76 ft below land surface, February 23, 1989.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

HARFORD COUNTY-Continued

WELL NUMBER .-- HA Ed 47. SITE ID .-- 392455076192101. PERMIT NUMBER .-- HA-81-4128.

LOCATION.--Lat 39°24'55", long 76°19'21", Hydrologic Unit 02060003, 0.2 mi east of intersection of MD Rt. 152 and Trimble Road, Edgewood Park. Owner: Maryland Geological Survey.

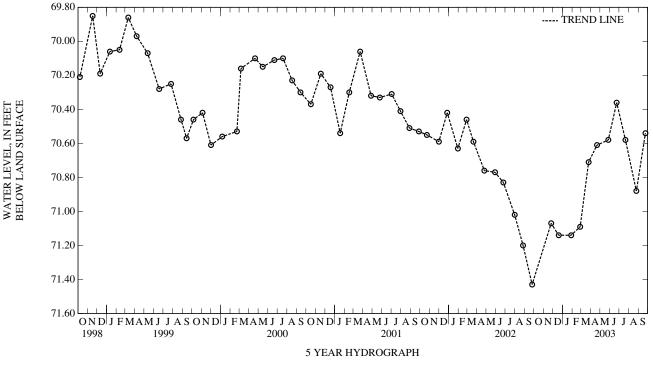
AQUIFER .-- Patuxent aquifer in the Patuxent Formation of Lower Cretacious age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 210 ft; casing diameter 4 in., to 190 ft, and 200 to 210 ft; screen diameter 4 in., from 190 to 200 ft.

INSTRUMENTATION .-- Monthly water level measurement with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 90.50 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.29 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.


PERIOD OF RECORD .-- May 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 69.34 ft below land surface, January 3, 1997; lowest measured, 72.02 ft below land surface, November 9, 1988.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 25, 2002 DEC 19 JAN 28, 2003	71.07 71.14 71.14	FEB 26, 2003 MAR 25 APR 21	71.09 70.71 70.61	MAY 27, 2003 JUN 23 JUL 21	70.58 70.36 70.58	AUG 25, 2003 SEP 23	70.88 70.54

HIGHEST 70.36 JUN 23, 2003 LOWEST 71.14 DEC 19, 2002 JAN 28, 2003

HARFORD COUNTY-Continued

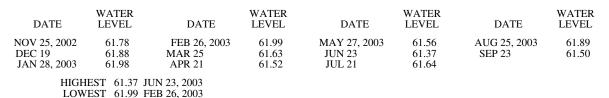
WELL NUMBER.--HA Ed 48. SITE ID.--392455076192102. PERMIT NUMBER.--HA-81-4578.

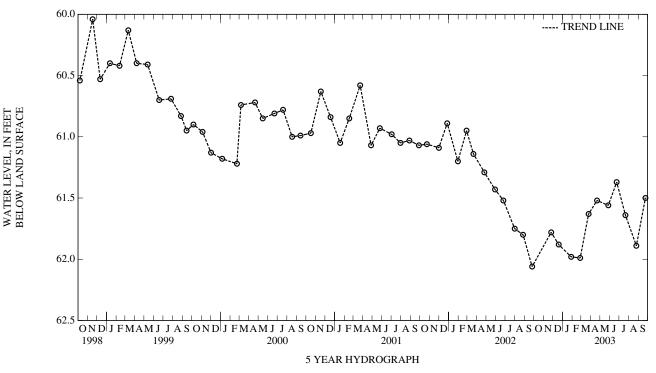
LOCATION.--Lat 39°24'55", long 76°19'21", Hydrologic Unit 02060003, 0.2 mi east of intersection of MD Rt. 152 and Trimble Road, Edgewood Park. Owner: Maryland Geological Survey.

AQUIFER .-- Patuxent aquifer in the Patuxent Formation of Lower Cretacious age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 133 ft; casing diameter 4 in., to 118 ft, and 128 to 133 ft; screen diameter 4 in., from 118 to 128 ft.

INSTRUMENTATION .-- Monthly water level measurement with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 91.20 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.58 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- May 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 59.70 ft below land surface, April 9, 1998; lowest measured, 63.00 ft below land surface, May 12, 1988.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

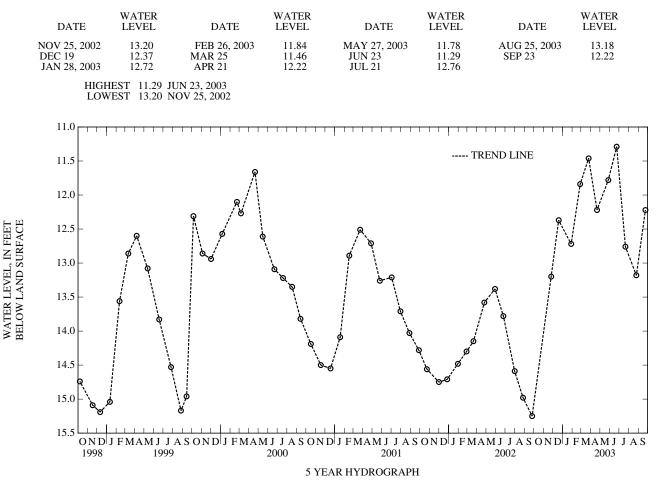
HARFORD COUNTY-Continued

WELL NUMBER.--HA Ed 49. SITE ID.--392455076192103. PERMIT NUMBER.--HA-81-4129.

LOCATION.--Lat 39°24'55", long 76°19'21", Hydrologic Unit 02060003, 0.2 mi east of the intersection of MD Rt. 152 and Trimble Road, Edgewood Park. Owner: Maryland Geological Survey.

AQUIFER.--Talbot Formation of Pleistocene age. Aquifer code: 112TLBT.

- WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 28 ft; casing diameter 4 in., to 13 ft, and 23 to 28 ft; screen diameter 4 in., from 13 to 23 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recorder interval from June 1988 to July 1989.


DATUM.--Elevation of land surface is 91.89 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.19 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--May 1988 to July 1995, January 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.29 ft below land surface, June 23,2003; lowest measured, 15.25 ft below land surface, September 25, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

HOWARD COUNTY

WELL NUMBER .-- HO Bd 1. SITE ID .-- 391910076565701.

LOCATION.--Lat 39°19'10", long 76°56'57", Hydrologic Unit 02060006, Slacks Corner near MD Rt. 32 and MD Rt. 99. Owner: Maryland State Highway Administration.

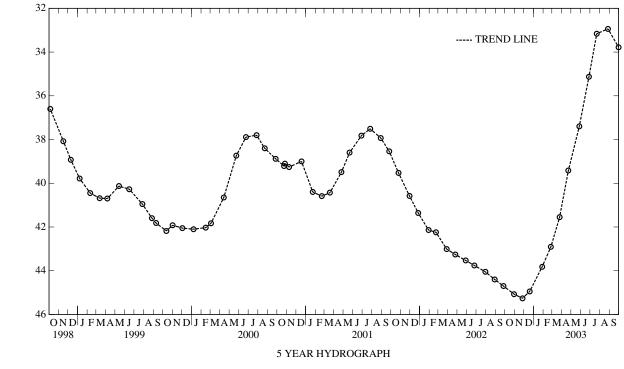
AQUIFER.--Morgan Run Formation of Ordovician age. Aquifer code: 360MRGR.

WELL CHARACTERISTICS .-- Dug, stone-lined, observation, water-table well, measured depth 48 ft; diameter 60 in.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 630 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Hole in center of steel plate well cover, 0.40 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


LOWEST 45.26 NOV 26, 2002

PERIOD OF RECORD.--October 1946 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 27.76 ft below land surface, July 3, 1972; lowest measured, 46.88 ft below land surface, September 10, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 26 DEC 19	45.07 45.26 44.95	JAN 28, 2003 FEB 25 MAR 25	43.82 42.91 41.55	APR 22, 2003 MAY 27 JUN 27	39.42 37.40 35.13	JUL 22, 2003 AUG 27 SEP 30	33.16 32.94 33.78
HIGH	EST 32.94 A	AUG 27, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

HOWARD COUNTY-Continued

WELL NUMBER .-- HO Cd 79. SITE ID .-- 391445076555101. PERMIT NUMBER .-- HO-81-2387.

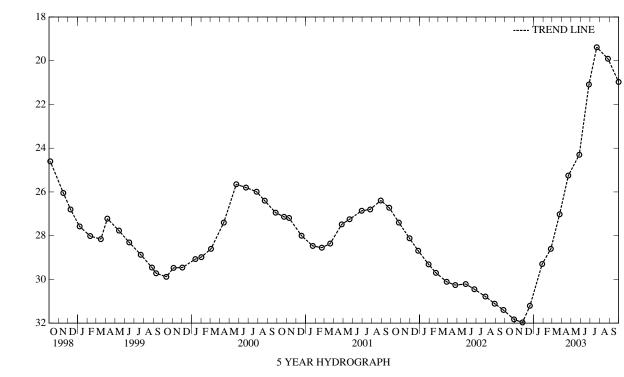
LOCATION.--Lat 39°14'45", long 76°55'51", Hydrologic Unit 02060006, at University of Maryland Central Farm. Owner: U.S. Geological Survey.

AQUIFER.--Loch Raven Formation (saprolite) of Cambrian age. Aquifer code: 370LCRV.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 54 ft; casing diameter 3 in., to 44 ft; screen diameter 3 in., from 44 to 54 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 452.37 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.05 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--January 1988 to May 1993, November 1995, January 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 19.20 ft below land surface, April 10, 1997; lowest measured, 31.97 ft below land surface, November 26, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 26 DEC 20	31.83 31.97 31.21	JAN 28, 2003 FEB 25 MAR 25	29.30 28.60 27.02	APR 22, 2003 MAY 27 JUN 27	25.25 24.30 21.09	JUL 22, 2003 AUG 27 SEP 30	19.38 19.91 20.97
	EST 19.38 J EST 31.97 N	UL 22, 2003 NOV 26, 2002					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

HOWARD COUNTY-Continued

WELL NUMBER .-- HO Ce 38. SITE ID .-- 391001076540001. PERMIT NUMBER .-- HO-01-1827.

LOCATION.--Lat 39°10'01", long 76°54'00", Hydrologic Unit 02060006, at Johns Hopkins University Applied Physics Lab, Scaggsville. Owner: Johns Hopkins University.

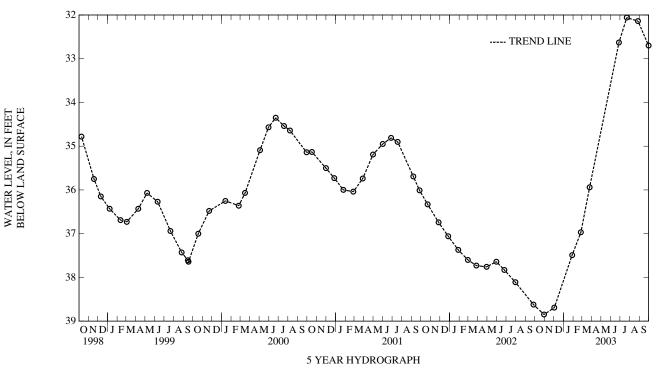
AQUIFER .-- Sykesville Formation (Sykesville Schist Member) of Ordovician age. Aquifer code: 360SKVL.

WELL CHARACTERISTICS .-- Drilled, unused, water-table well, depth 125 ft; casing diameter 6 in., to 51.4 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from December 1987 to April 1990.

DATUM.--Elevation of land surface is 430 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.45 ft below land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- May 1956 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 25.84 ft below land surface, May 5, 1972; lowest measured, 38.85 ft below land surface, October 30, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002	38.85	FEB 25, 2003	36.97	JUL 22, 2003	32.06
DEC 02	38.69	MAR 25	35.94	AUG 27	32.14
JAN 28, 2003	37.49	JUN 27	32.63	SEP 30	32.70

HIGHEST 32.06 JUL 22, 2003 LOWEST 38.85 OCT 30, 2002

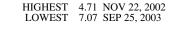
KENT COUNTY

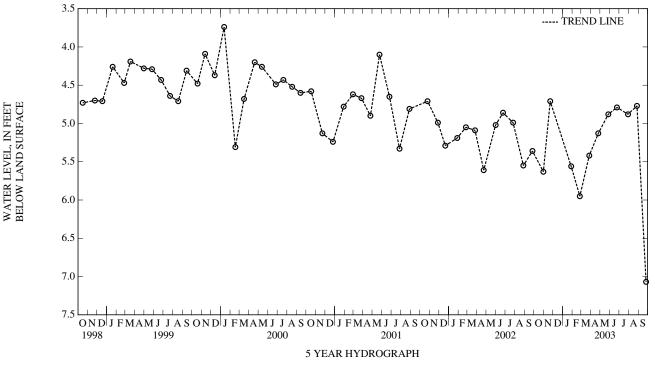
WELL NUMBER .-- KE Ac 20. SITE ID .-- 392007076075501. PERMIT NUMBER .-- KE-73-0658.

LOCATION.--Lat 39°20'07", long 76°07'55", Hydrologic Unit 02060001, at U.S. Coast Guard Station at end of Still Pond Neck Road. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 582 ft; casing diameter 10 in., to 73 ft; casing diameter 4 in., to 550 ft, and 560 to 582 ft; screen diameter 4 in., from 550 to 560 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly measurements from October 1986 to April 1991.
- DATUM.--Elevation of land surface is 7 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.30 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD.--December 1977 to December 1978, December 1985, October 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.50 ft below land surface, April 13, 1978, May 5, 1978, and December 11, 1985; lowest measured, 7.07 ft below land surface, September 25, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 22 JAN 28, 2003	5.63 4.71 5.56	FEB 25, 2003 MAR 27 APR 25	5.95 5.42 5.13	MAY 27, 2003 JUN 24 JUL 29	4.88 4.79 4.88	AUG 27, 2003 SEP 25	4.77 7.07

KENT COUNTY—Continued

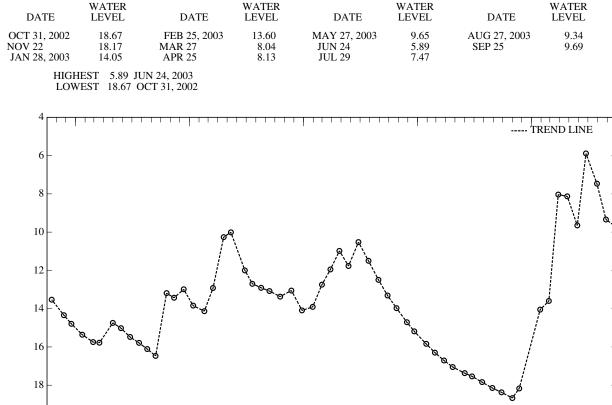
WELL NUMBER .-- KE Bc 185. SITE ID .-- 391650076050402. PERMIT NUMBER .-- KE-88-0255.

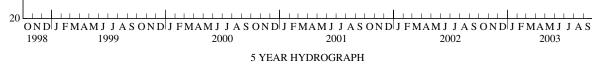
LOCATION.--Lat 39°16'50", long 76°05'04", Hydrologic Unit 02060002, at Worton Regional Park, Worton. Owner: Maryland Geological Survey.

AQUIFER .-- Pensauken Formation (Columbia aquifer) of Upper Miocene age. Aquifer code: 122PNSK.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 55 ft; casing diameter 4 in., to 40 ft, and 50 to 55 ft; screen diameter 4 in., from 40 to 50 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from February 1992 to October 1993.


DATUM .-- Elevation of land surface is 82.09 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.41 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- October 1991 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.89 ft below land surface, June 24, 2003; lowest measured, 20.23 ft below land surface, December 12-14, 1992 (recorder).

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

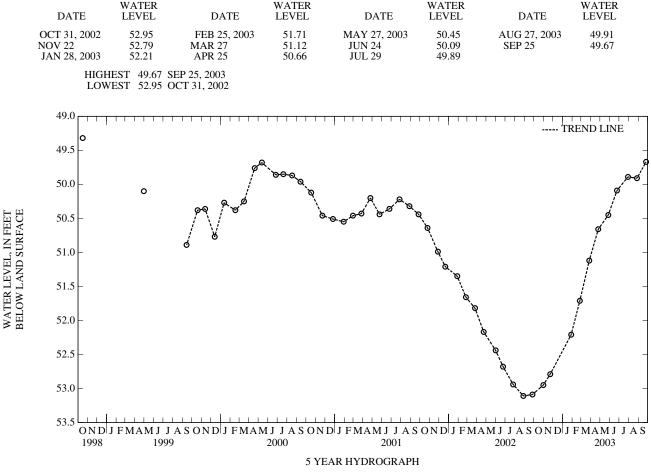
KENT COUNTY—Continued

WELL NUMBER .-- KE Bc 186. SITE ID .-- 391650076050403. PERMIT NUMBER .-- KE-88-0286.

LOCATION.--Lat 39°16'50", long 76°05'04", Hydrologic Unit 02060002, at Worton Regional Park, Worton. Owner: Maryland Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 270 ft; casing diameter 4 in., to 255 ft, and 265 to 270 ft; screen diameter 4 in., from 255 to 265 ft.


INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from October 1993 to September 1999. Equipped with digital water-level recorder--60-minute recorder interval from February 1992 to October 1993.

DATUM .-- Elevation of land surface is 82 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of metal sleeve, 2.76 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- February 1992 to current year.

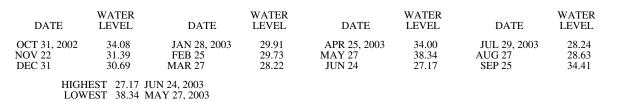
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 47.27 below land surface, April 15, 1997; lowest measured, 53.11 ft below land surface, August 28, 2002.

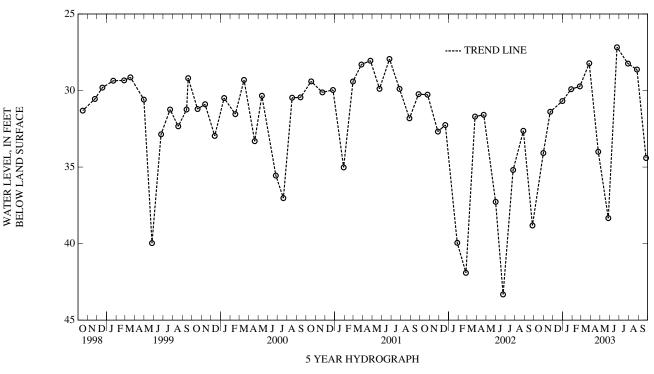
OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

KENT COUNTY—Continued

WELL NUMBER .-- KE Be 43. SITE ID .-- 391823075594701. PERMIT NUMBER .-- KE-73-0659.

LOCATION.--Lat 39°18'23", long 75°59'45", Hydrologic Unit 02060002, at Kennedyville. Owner: U.S. Geological Survey.


AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.


- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 297 ft; casing diameter 10 in., to 171 ft; casing diameter 4 in., to 275 ft, and 285 to 297 ft; screen diameter 4 in., from 275 to 285 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from October 1986 to April 1991.
- DATUM.--Elevation of land surface is 65 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.60 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--February 1979 to July 1979, December 1985, October 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.31 ft below land surface, June 5, 1979; lowest measured, 43.32 ft below land surface, June 24, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY—Continued

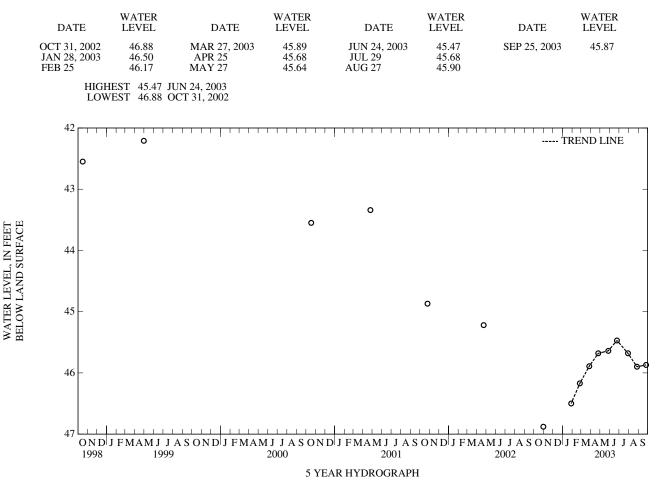
WELL NUMBER .-- KE Be 171. SITE ID .-- 391643075550901. PERMIT NUMBER .-- KE-88-0257.

LOCATION.--Lat 39°16'43", long 75°55'06", Hydrologic Unit 02060002, 0.9 mi south of Chesterville on Rt. 290, at Angelica Nursery. Owner: Maryland Geological Survey.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 440 ft; casing diameter 4 in., to 425 ft; screen diameter 4 in., from 425 to 435 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from April 1992 to October 1993. Twice yearly water level measurements from October 1991 to October 2002. Monthly water level measurements from January 2003 to present.


DATUM .-- Elevation of land surface is 41.41 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.30 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water Levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD.--October 1991 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.76 ft below land surface, April 2, 1992; lowest measured, 46.88 ft below land surface, October 31, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

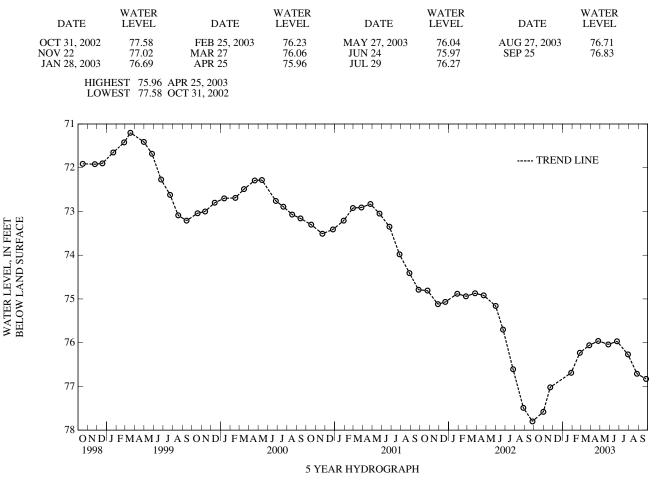
WELL NUMBER .-- KE Bg 33. SITE ID .-- 391815075472101. PERMIT NUMBER .-- KE-73-0670.

LOCATION.--Lat 39°18'15", long 75°47'21", Hydrologic Unit 02060002, 2 mi east of Massey, at Millington Wildlife Management Area. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 705 ft; casing diameter 4 in., to 695 ft; screen diameter 4 in., from 695 to 705 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from October 1986 to April 1994.


DATUM.--Elevation of land surface is 65 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.50 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD.--March 1979 to July 1979, December 1985, October 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 61.62 ft below land surface, June 5, 1979; lowest measured, 77.80 ft below land surface, September 26, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

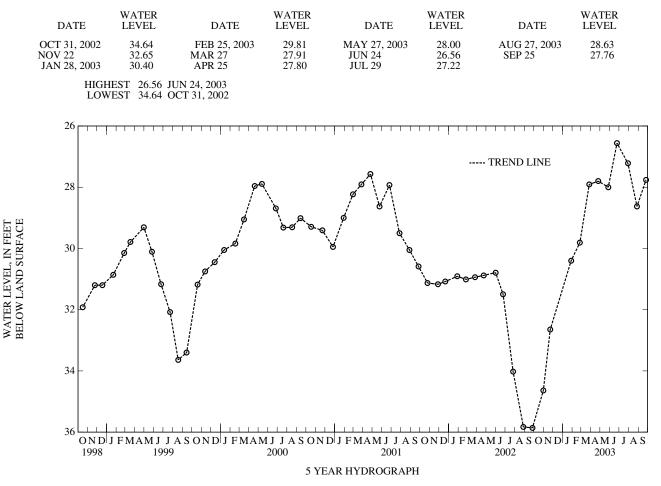
KENT COUNTY—Continued

WELL NUMBER .-- KE Bg 34. SITE ID .-- 391815075472102. PERMIT NUMBER .-- KE-73-0686.

LOCATION.--Lat 39°18'15", long 75°47'22", Hydrologic Unit 02060002, 2 mi east of Massey, at Millington Wildlife Management Area. Owner: U.S. Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 186 ft; casing diameter 6 in., to 124 ft; screen diameter 6 in., from 124 to 186 ft.


INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from October 1986 to October 1994.

DATUM.--Elevation of land surface is 65 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water-levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--April 1979 to July 1979, December 1985, October 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 25.37 ft below land surface, April 11, 1979; lowest measured, 36.23 ft below landsurface, September 2, 1981.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY-Continued

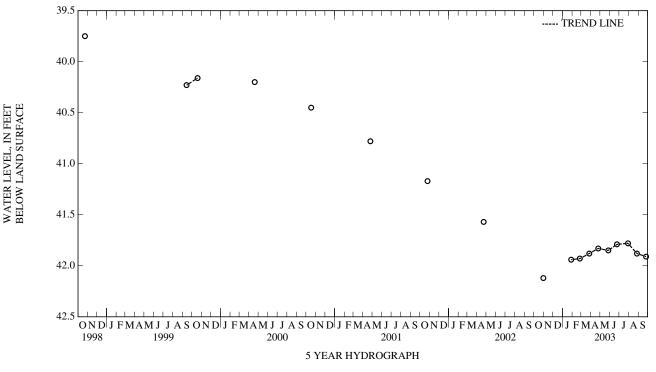
WELL NUMBER .-- KE Cb 36. SITE ID .-- 391400076101401. PERMIT NUMBER .-- KE-73-0660.

LOCATION.--Lat 39°14'00", long 76°10'14", Hydrologic Unit 02060002, 0.75 mi north of Fairlee. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

- WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 650 ft; casing diameter 10 in., to 114 ft; casing diameter 4 in., to 595 ft, and 605 to 650 ft; screen diameter 4 in., from 595 to 605 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Measured twice yearly from October 1986 to April 1991. Equipped with digital water-level recorder--30-minute recorder interval from July 1991 to October 1993. Measured twice yearly from October 1993 to January 2002. Monthly water level measurements from January 2003 to present.
- DATUM.--Elevation of land surface is 40 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 4.38 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.


PERIOD OF RECORD.--June 1978 to July 1979, December 1985, October 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 34.84 ft below land surface, September 15, 1982; lowest measured, 42.12 ft below land surface, October 31, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 JAN 28, 2003 FEB 25	42.12 41.94 41.93	MAR 27, 2003 APR 25 MAY 27	41.88 41.83 41.85	JUN 24, 2003 JUL 29 AUG 27	41.79 41.78 41.88	SEP 25, 2003	41.91

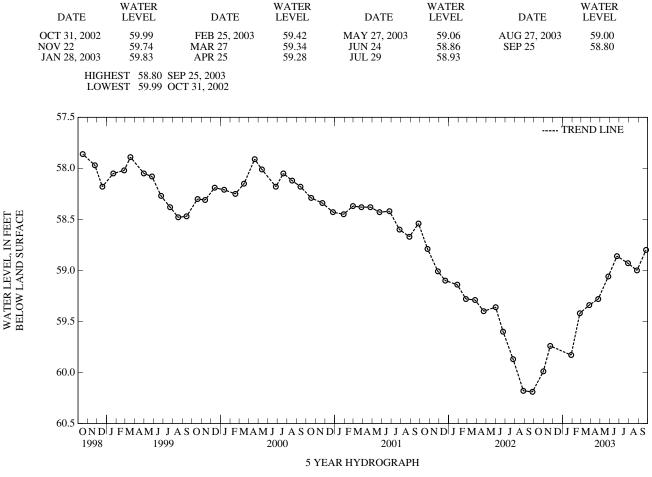
KENT COUNTY—Continued

WELL NUMBER .-- KE Cb 97. SITE ID .-- 391124076101001. PERMIT NUMBER .-- KE-88-0251.

LOCATION.--Lat 39°11'24", long 76°10'10", Hydrologic Unit 02060002, 1.3 mi southeast of McCleans Corner, at Remington Farms. Owner: Maryland Geological Survey.

AQUIFER.--Magothy Formation of the Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 285 ft; casing diameter 4 in., to 270 ft; screen diameter 4 in., from 270 to 280 ft.


INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from February 1992 to October 1993.

DATUM .-- Elevation of land surface is 65.84 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.30 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- October 1991 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 56.40 ft below land surface, October 24, 1991; lowest measured, 60.19 ft below land surface, September 26, 2002.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

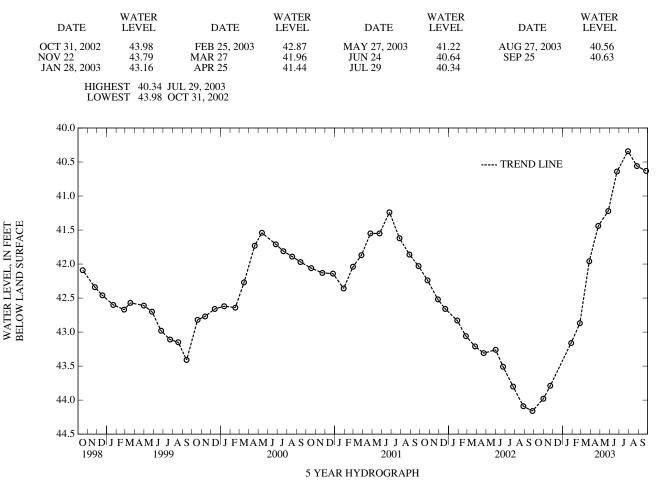
KENT COUNTY—Continued

WELL NUMBER .-- KE Cb 98. SITE ID .-- 391124076101002. PERMIT NUMBER .-- KE-88-0254.

LOCATION.--Lat 39°11'24", long 76°10'10", Hydrologic Unit 02060002, 1.3 mi southeast of McCleans Corner, at Remington Farms. Owner: Maryland Geological Survey.

AQUIFER.--Mount Laurel Formation (Monmouth aquifer) of Upper Cretaceous age. Aquifer code: 211MLRL.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 225 ft; casing diameter 4 in., to 210 ft, and 220 to 225 ft; screen diameter 4 in., from 210 to 220 ft.


INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from February 1992 to October 1993.

DATUM .-- Elevation of land surface is 65.78 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.54 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--October 1991 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.96 ft below land surface, April 15, 1997, and May 15, 1997; lowest measured, 44.23 ft below land surface, September 19, 1995.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY—Continued

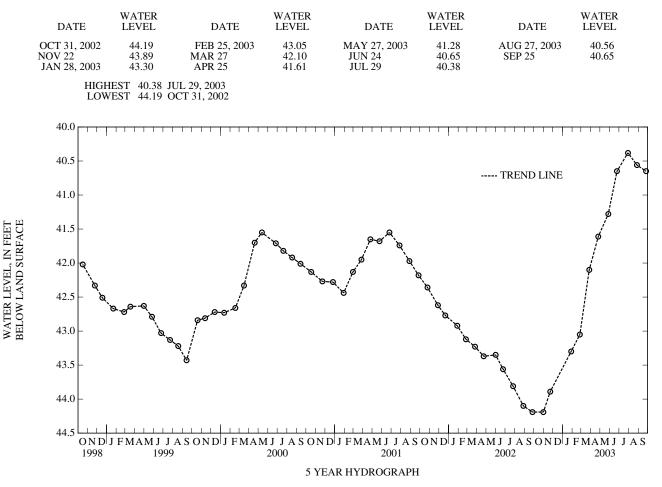
WELL NUMBER .-- KE Cb 99. SITE ID .-- 391124076101003. PERMIT NUMBER .-- KE-88-0252.

LOCATION.--Lat 39°11'24", long 76°10'10", Hydrologic Unit 02060002, 1.3 mi southeast of McCleans Corner, at Remington Farms. Owner: Maryland Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 134 ft; casing diameter 4 in., to 118 ft, and 128 to 134 ft; screen diameter 4 in., from 118 to 128 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from February 1992 to October 1993.


DATUM .-- Elevation of land surface is 65.78 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.53 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- October 1991 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.74 ft below land surface, May 15, 1997; lowest measured, 44.19 ft below land surface, September 26, 2002 and October 31, 2002..

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY—Continued

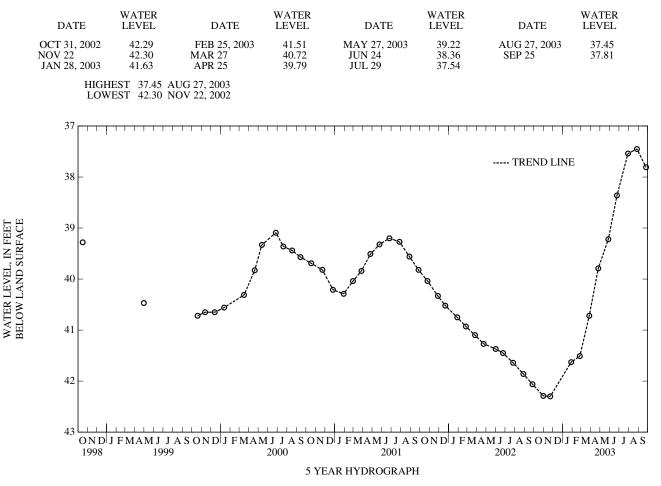
WELL NUMBER .-- KE Cb 100. SITE ID .-- 391124076101004. PERMIT NUMBER .-- KE-88-0253.

LOCATION.--Lat 39°11'24", long 76°10'10", Hydrologic Unit 02060002, 1.3 mi southeast of McCleans Corners, at Remington Farms. Owner: Maryland Geological Survey.

AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 67 ft; casing diameter 4 in., to 52 ft, and 62 to 67 ft; screen diameter 4 in., from 52 to 62 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from October 1993 to October 1999. Equipped with digital water-level recorder--60-minute recorder interval from February 1992 to October 1993.


DATUM .-- Elevation of land surface is 65.69 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.56 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- October 1991 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.63 ft below land surface, April 15, 1997; lowest measured, 42.30 ft below land surface, November 22, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

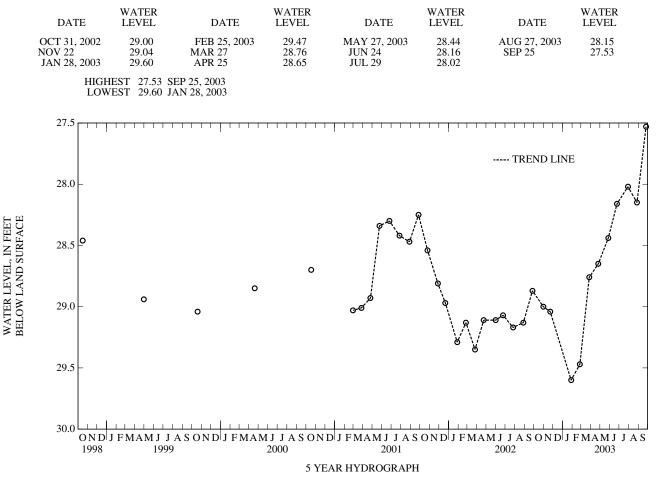
KENT COUNTY—Continued

WELL NUMBER .-- KE Cb 101. SITE ID .-- 391251076142201. PERMIT NUMBER .-- KE-88-0250.

LOCATION.--Lat 39°12'48", long 76°14'22", Hydrologic Unit 02060002, 0.4 mi east of Tolchester Beach, south of MD Rt. 21. Owner: Maryland Geological Survey.

AQUIFER .-- Kent Island Formation (Columbia aquifer) of Pleistocene age. Aquifer code: 112KILD.

- WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 73 ft; casing diameter 4 in., to 58 ft, and 68 to 73 ft; screen diameter 4 in., from 58 to 68 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from October 1995 to February 2001. Equipped with digital water-level recorder--60-minute recorder interval from February 1992 to October 1993.


DATUM.--Elevation of land surface is 31.12 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.60 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- October 1991 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 27.53 ft below land surface, September 25, 2003; lowest measured, 29.60 ft below land surface, January 28, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

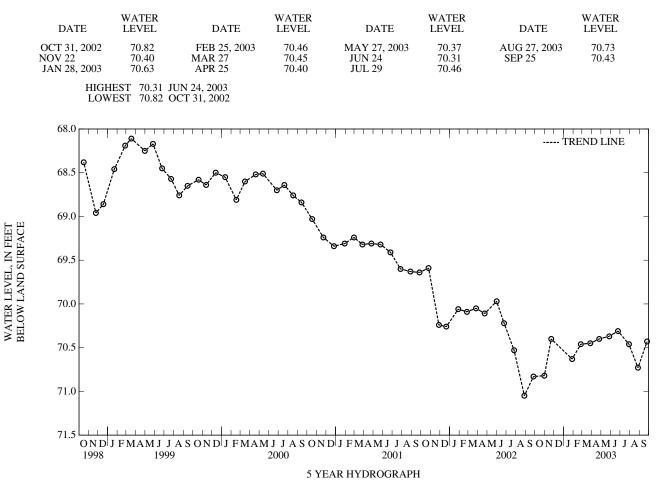
KENT COUNTY—Continued

WELL NUMBER .-- KE Cb 103. SITE ID .-- 391124076101005. PERMIT NUMBER .-- KE-88-0288.

LOCATION.--Lat 39°11'24", long 76°10'10", Hydrologic Unit 02060002, 1.3 mi southeast of McCleans Corner, at Remington Farms. Owner: Maryland Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 404 ft; casing diameter 4 in., to 389 ft, and 399 to 404 ft; screen diameter 4 in., from 389 to 399 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from February 1992 to October 1993.


DATUM .-- Elevation of land surface is 65.60 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.54 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD.--February 1992 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 65.64 ft below land surface, April 2, 1992; lowest measured, 71.05 ft below land surface, August 28, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

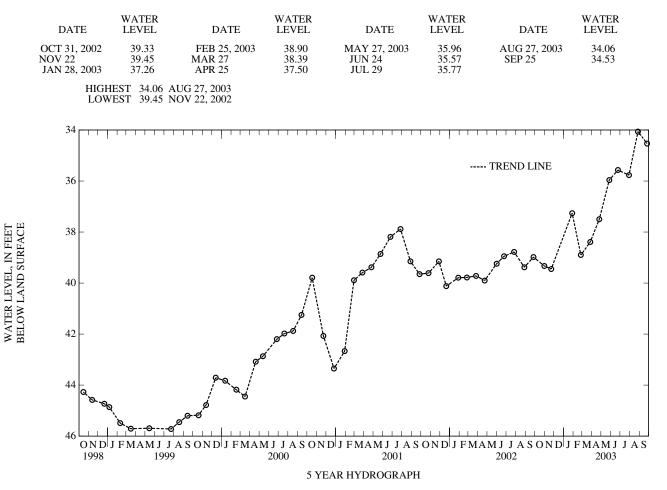
KENT COUNTY—Continued

WELL NUMBER .-- KE Cd 44. SITE ID .-- 391432076015501. PERMIT NUMBER .-- KE-03-6139.

LOCATION.--Lat 39°14'32", long 76°01'55", Hydrologic Unit 02060002, MD Rt. 291, 2.6 mi northeast of Chestertown. Owner: Chestertown Foods.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, unused, artesian well, depth 84 ft; casing diameter 4 in., to 79 ft; screen diameter 5 in., from 79 to 84 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

- DATUM.--Elevation of land surface is 50 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.20 ft above land surface.
- REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels measured by plant personnel with an electric tape, September 18, 1959 to April 18, 1963. Food processing plant closed from August 31, 1995 to September 30, 1996. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- September 1959 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 25.00 ft below land surface, September 18, 1959; lowest measured, 54.46 ft below land surface, August 4, 1966.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY—Continued

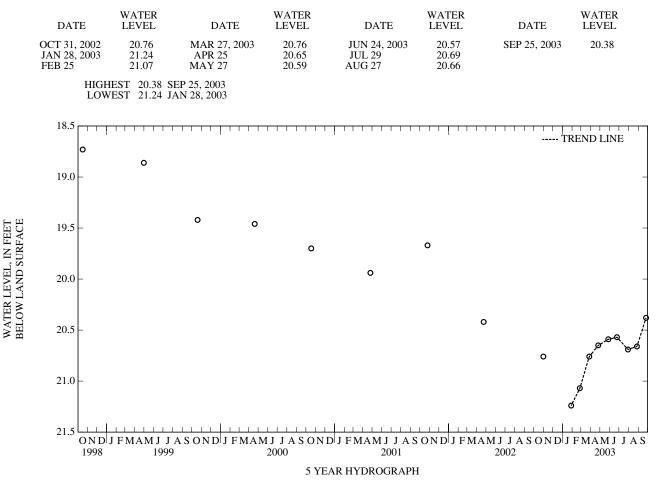
WELL NUMBER .-- KE Db 40. SITE ID .-- 390837076140401. PERMIT NUMBER .-- KE-73-0805.

LOCATION.--Lat 39°08'37", long 76°14'04", Hydrologic Unit 02070002, near Rock Hall. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 1,030 ft; casing diameter 4 in., to 1,019 ft; screen diameter 4 in., from 1,019 to 1,030 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice monthly measurements prior to January 2003.


DATUM.--Elevation of land surface is 15 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.65 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD.--December 1978 to July 1979, October 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.08 ft below land surface, October 30, 1980; lowest measured, 21.24 ft below land surface, January 28, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

KENT COUNTY—Continued

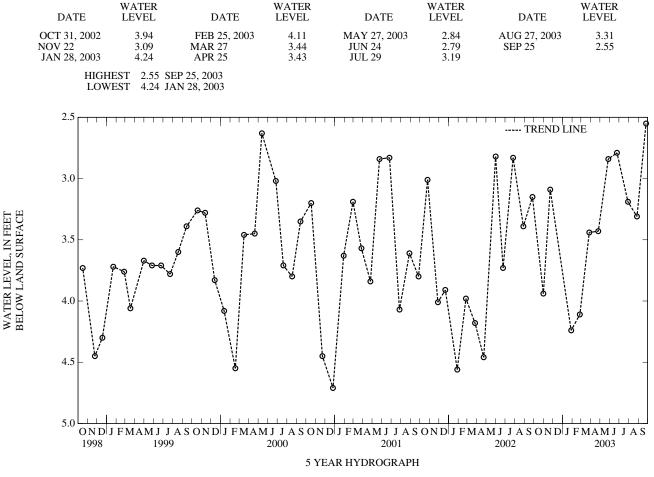
WELL NUMBER .-- KE Dc 89. SITE ID .-- 390626076083301. PERMIT NUMBER .-- KE-88-0246.

LOCATION.--Lat 39°06'26", long 76°08'33", Hydrologic Unit 02060002, at the end of Cliffs City Rd. Owner: Maryland Geological Survey.

AQUIFER .-- Kent Island Formation (Columbia aquifer) of Pleistocene age. Aquifer code: 112KILD.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 29 ft; casing diameter 4 in., to 14 ft, and 24 to 29 ft; screen diameter 4 in., from 14 to 24 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from February 1992 to October 1993.


DATUM .-- Elevation of land surface is 4.52 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.44 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- October 1991 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.40 ft below land surface, October 21, 1996; lowest measured, 5.14 ft below land surface, January 20, 1993.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

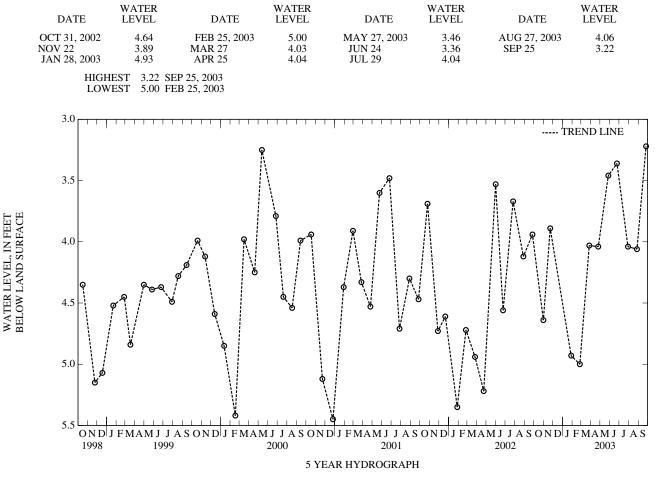
KENT COUNTY—Continued

WELL NUMBER .-- KE Dc 91. SITE ID .-- 390626076083302. PERMIT NUMBER .-- KE-88-0247.

LOCATION.--Lat 39°06'26", long 76°08'33", Hydrologic Unit 02060002, 1.0 mi south of Cliffs City, at Cliffs Wharf. Owner: Maryland Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 155 ft; casing diameter 4 in., to 140 ft, and 150 to 155 ft; screen diameter 4 in., from 140 to 150 ft.


INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from February 1992 to October 1993.

DATUM .-- Elevation of land surface is 4.64 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.46 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- October 1991 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.01 ft below land surface, October 21, 1996; lowest measured, 5.81 ft below land surface, December 13, 1994.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

MONTGOMERY COUNTY

WELL NUMBER .-- MO Cb 26. SITE ID .-- 391142077280601. PERMIT NUMBER .-- MO-72-0191.

LOCATION.--Lat 39°11'42", long 77°28'06", Hydrologic Unit 02070008, 2 mi southwest of Dickerson, at Dickerson Regional Park. Owner: U.S. Geological Survey.

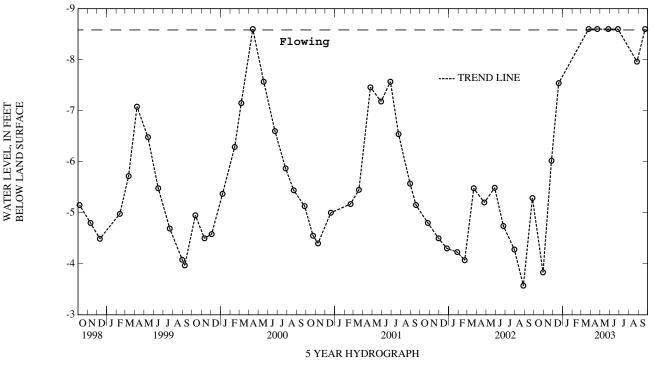
AQUIFER.--Manassas Sandstone, Poolsville Member of Upper Triassic age. Aquifer code: 231MNSS.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 885 ft; casing diameter 6 in., to 38 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 220 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 8.60 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- February 1991 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, flowing on January 3, 1991, April 3, 1991, April 5, 1993, May 3, 1993, March 7, 1994, April 5, 1994, May 10, 1994, January 29, February 15, March 12, April 11, May 6, June 5, July 2, August 1,October 10, November 4,December 3, 1996, January 2, February 3, March 13, April 10, 1997, February 3, March 2, April 2, May 11, 1998, April 13, 2000, March 25, April 22, May 27, June 27, September 22, 2003; lowest measured, 3.57 ft above land surface, August 28, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 (READINGS ABOVE LAND SURFACE INDICATED BY "-")

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002	-3.83	MAR 25, 2003	Flowing	JUN 27, 2003	Flowing
NOV 26	-6.02	APR 22	Flowing	AUG 27	-7.96
DEC 19	-7.54	MAY 27	Flowing	SEP 22	Flowing

HIGHEST -7.96 AUG 27, 2003 LOWEST -3.83 OCT 30, 2002

MONTGOMERY COUNTY-Continued

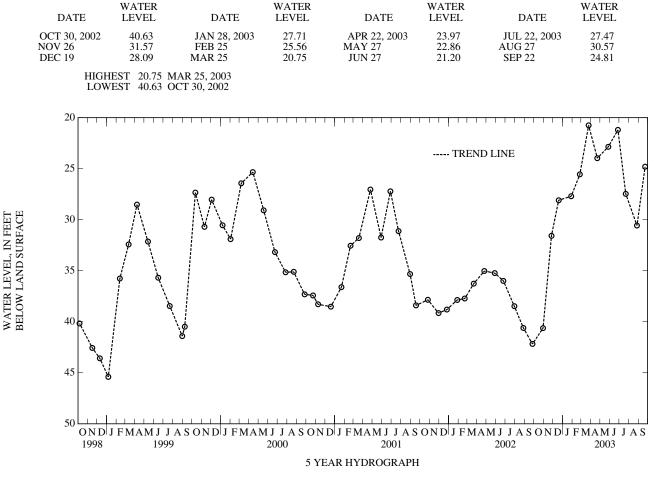
WELL NUMBER .-- MO Cc 14. SITE ID .-- 391314077224201.

LOCATION .-- Lat 39°13'14", long 77°22'42", Hydrologic Unit 02070008, at Barnesville. Owner: Private owner.

AQUIFER.--Ijamsville Formation of Paleozoic age. Aquifer code: 300IJMV.

WELL CHARACTERISTICS .- Dug, stone-lined, unused, water-table well, depth 46 ft; casing diameter 60 in.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 560 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of wooden well cover, 3.00 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- November 1952 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.00 ft below land surface, April 5, 1993; lowest measured, dry, on December 2, 1957, December 7, 1964, December 6, 1965, January 3, 1966, February 2, 1966.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

MONTGOMERY COUNTRY --Continued

WELL NUMBER .-- MO Db 68. SITE ID .-- 390802077283801. PERMIT NUMBER .-- MO-73-1869.

LOCATION.--Lat 39°08'02", long 77°28'38", Hydrologic Unit 0207008, south of Club Hollow Road, at the National Institutes of Health, Animal Center. Owner: U.S. Geological Survey.

AQUIFER.--Balls Bluff Siltstone of Upper Triassic age. Aquifer code: 231BLBF.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 250 ft; casing diameter 6 in., to 40 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recorder interval from December 1998 to current year.

DATUM.--Elevation of land surface is 260 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of shelter platform, 2.02 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD.--May 1978 to August 1980, June 1985 to current year.

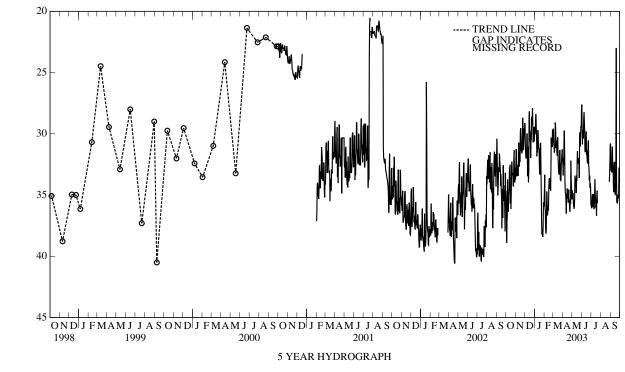
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.12 ft below land surface, May 12, 1989; lowest measured, 41.76 ft below land surface, September 9, 1999.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 26 DEC 19	32.74 25.09 26.61	JAN 28, 2003 FEB 25 MAR 25	37.15 23.47 33.32	APR 22, 2003 MAY 27 JUN 27	34.81 30.40 33.50	JUL 22, 2003 AUG 27 SEP 22	35.50 33.99 33.72

HIGHEST 23.47 FEB 25, 2003 LOWEST 37.15 JAN 28, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAF	RCH
1	34.69	25.48	33.40	23.36	29.19	21.43	29.43	21.32	34.75	25.83	30.30	22.33
2	35.61	24.91	31.96	23.04	30.93	21.61	30.06	20.73	33.35	25.60	29.57	21.97
3	38.92	25.57	31.24	22.61	31.52	21.93	29.70	21.19	36.06	25.99	30.83	21.93
4	37.35	26.12	33.48	22.40	32.02	22.51	28.70	20.73	36.28	27.85	30.93	22.03
5	36.72	25.87	33.32	23.28	31.91	22.83	28.38	20.59	37.76	28.72	31.54	22.22
6	33.72	25.00	33.25	22.92	31.77	22.69	29.47	20.39	38.16	29.85	31.29	22.52
7	35.00	24.59	33.27	23.35	30.06	22.13	30.28	21.02	37.99	28.74	31.01	21.86
8	36.38	25.10	32.54	23.39	29.97	22.16	31.85	21.34	35.76	27.46	29.08	21.45
9	35.79	25.99	33.43	22.92	33.46	22.29	31.07	21.96	34.71	26.83	29.49	21.33
10	34.98	25.35	31.40	22.61	33.09	22.80	31.53	21.98	35.80	26.54	31.16	21.00
11	34.68	25.01	30.72	22.30	31.05	21.45	29.69	21.78	36.66	27.73	30.55	20.05
12	33.10	24.22	32.69	22.30	33.96	21.33	29.78	21.65	36.37	27.36	30.88	21.84
13	32.71	23.87	32.18	22.58	33.05	23.64	31.14	21.52	35.95	26.62	31.45	22.14
14	32.53	23.85	31.48	22.38	28.80	21.55	31.20	22.07	36.26	26.98	31.79	22.53
15	35.69	23.80	32.29	22.27	28.17	20.62	31.24	22.12	34.58	26.10	30.28	22.55
16	34.67	24.95	29.85	21.76	30.61	20.22	32.59	22.36	33.77	26.05	30.39	22.74
17	36.13	24.54	29.55	21.33	29.76	21.01	33.33	22.80	33.63	25.58	32.12	22.81
18	34.57	24.54	30.30	21.05	30.36	20.83	31.54	22.93	33.71	25.47	32.71	23.41
19	32.63	23.68	31.35	21.23	31.96	21.48	30.80	22.67	34.51	25.59	33.18	23.64
20	32.28	23.61	31.46	21.58	30.64	21.29	30.74	22.48	34.02	24.63	33.34	24.00
21	33.40	23.21	31.59	21.88	30.48	21.49	32.75	22.46	34.65	25.74	33.07	23.40
22	33.30	23.88	31.43	21.72	28.62	20.97	34.54	23.22	32.80	23.13	31.42	23.16
23	33.27	23.66	29.42	21.51	29.24	20.89	37.10	26.99	30.31	22.12	31.32	23.30
24	34.24	23.87	28.70	21.36	28.83	20.43	38.21	29.09	30.97	22.25	33.74	23.20
25	34.26	24.00	30.06	21.21	27.90	20.02	37.82	29.96	30.34	21.73	33.65	23.81
26 27 28 29 30 31	32.20 31.34 33.31 33.97 32.78 33.76	23.49 23.20 23.07 23.53 23.37 23.32	31.33 30.75 29.56 30.24 29.12	21.84 22.04 21.81 21.69 21.57	29.44 30.70 29.47 29.56 30.64 30.19	20.13 21.23 21.49 21.68 21.47 21.98	37.99 38.42 37.61 35.60 35.93 35.82	29.06 28.57 27.30 26.40 26.46 26.85	31.08 29.67 30.69 	21.70 21.51 21.06 	33.87 32.49 32.34 31.69 31.27 32.24	23.48 22.40 23.44 23.64 22.33 21.79
MONTH	38.92	23.07	33.48	21.05	33.96	20.02	38.42	20.39	38.16	21.06	33.87	20.05


DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JUI	NE	J	ULY	AUC	GUST	SEPTE	MBER
1 2 3 4 5	31.97 33.41 32.22 32.58 30.09	22.15 23.11 22.69 22.71 21.91	34.60 35.07 35.28 34.84 35.76	23.74 24.77 24.92 25.11 25.17	27.62 29.82 30.86 29.78 29.82	19.94 20.47 21.19 20.76 20.35	35.90 36.01 36.08 35.22 34.93	26.80 28.30 28.82 25.36 25.28	 	 	30.84 32.43 33.02 32.55 33.16	21.80 22.39 22.48 22.15 22.62
6 7 8 9 10	29.74 31.73 33.91 34.78 34.95	21.69 21.55 23.66 24.39 26.34	35.88 36.12 36.03 35.22 33.42	25.97 25.72 26.38 25.77 25.70	30.37 28.86 28.24 28.96 29.59	20.88 20.03 20.03 19.67 20.26	35.15 35.98 34.92 35.93 36.16	26.66 26.53 26.42 26.48 26.80	 	 	31.60 31.04 33.14 32.31 34.02	22.04 22.02 22.38 22.12 23.02
11 12 13 14 15	35.43 36.52 34.98 35.11 34.46	25.70 27.50 25.44 24.55 25.41	33.69 34.32 33.67 34.83 33.43	25.24 25.25 24.70 24.79 24.55	31.38 31.50 31.28 30.08 29.81	20.85 20.87 20.48 20.38 20.73	36.01 34.69 33.72 34.92 35.44	26.26 25.44 25.21 24.90 25.31	 	 	34.77 33.90 32.64 32.29 33.96	23.80 23.44 23.50 23.23 22.26
16 17 18 19 20	35.32 35.10 35.63 34.95 34.55	25.52 25.61 25.88 26.06 25.40	33.84 32.18 31.42 32.42 31.98	24.47 23.30 22.54 22.08 22.05	31.71 31.38 32.17 32.36 32.43	20.56 21.11 21.29 22.42 22.13	36.03 35.55 36.69 35.17 34.64	25.57 26.23 26.67 26.53 25.65	 	 	34.97 34.34 34.08 22.99 32.64	23.62 24.27 22.99 19.54 18.52
21 22 23 24 25	35.47 35.54 36.16 36.37 35.37	26.90 25.83 26.45 27.22 25.01	32.26 32.00 32.97 33.61 30.08	22.28 22.06 22.06 22.79 21.47	30.94 30.54 32.55 32.82 33.79	21.64 21.16 21.07 22.38 23.07	35.67	26.02 	 	 	35.58 35.57 35.62 35.47 34.97	24.00 22.60 25.75 26.38 34.46
26 27 28 29 30 31	35.69 32.19 33.80 34.48 35.36	24.38 23.39 23.24 23.02 23.90	29.87 31.03 30.20 29.43 29.44 27.99	21.40 20.93 20.15 19.83 19.77 20.34	33.43 34.42 34.05 34.28 35.70	23.07 24.58 24.74 24.68 25.36	 	 	33.93 33.34 32.32 30.87	24.39 23.30 22.88 21.98	35.22 35.22 32.77 33.27 33.93	34.97 24.26 22.47 21.92 22.56
MONTH	36.52	21.55	36.12	19.77	35.70	19.67	36.69	24.90	33.93	21.98	35.62	18.52

Daily Low Water Levels

YEAR

WATER LEVEL, IN FEET BELOW LAND SURFACE 38.92

18.52

MONTGOMERY COUNTY-Continued

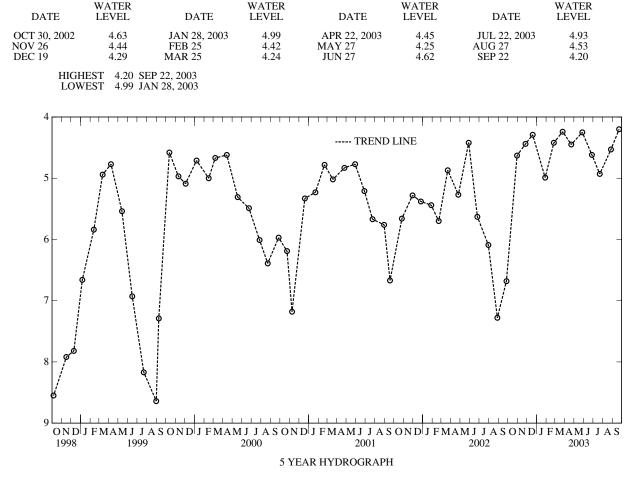
WELL NUMBER.--MO Dc 59. SITE ID.--390917077244401. PERMIT NUMBER.--MO-73-1896.

LOCATION.--Lat 39°09'17", long 77°24'44", Hydrologic Unit 02070008, 1 mi north of Poolesville, near Jerusalem Road. Owner: U.S. Geological Survey.

AQUIFER.--Manasses Sandstone, Poolesville Member of Upper Triassic age. Aquifer code: 231MNSS.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 260 ft; casing diameter 6 in., to 42 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 370 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.94 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--June 1990 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.10 ft below land surface, March 7, 1994; lowest measured, 10.70 ft below land surface, September 8, 1993.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

MONTGOMERY COUNTY-Continued

WELL NUMBER.--MO Ec 10. SITE ID.--390451077245901. PERMIT NUMBER.--MO-73-2833.

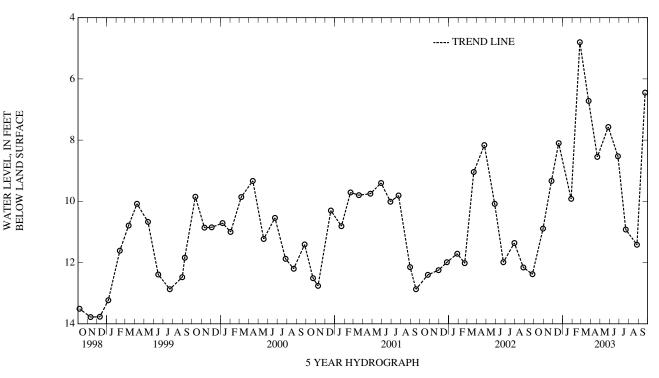
LOCATION.--Lat 39°04'51", long 77°24'59", Hydrologic Unit 02070008, 3 mi southeast of Poolesville near Sycamore Landing Road, at McKee Besher Wildlife Management Area. Owner: U.S. Geological Survey.

AQUIFER.--Balls Bluff Siltstone of Upper Triassic age. Aquifer code: 231BLBF.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 855 ft; casing diameter 8 in., to 26 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 200 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.70 ft above land surface.


REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- August 1990 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.70 ft below land surface, January 29, 1996. lowest measured, 14.52 ft below land surface, July 8, 1992.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 26 DEC 19	10.89 9.33 8.10	JAN 28, 2003 FEB 25 MAR 25	9.92 4.80 6.72	APR 22, 2003 MAY 27 JUN 27	8.55 7.57 8.53	JUL 22, 2003 AUG 27 SEP 22	$10.92 \\ 11.42 \\ 6.45$
HIGH LOW	EST 4.80 FE EST 11.42 A	EB 25, 2003 UG 27, 2003					

MONTGOMERY COUNTY-Continued

WELL NUMBER .-- MO Eh 20. SITE ID .-- 390434076573002.

LOCATION.--Lat 39°04'34", long 76°57'30", Hydrologic Unit 02070010, at MD Rt. 196 and Fairland Rd., Fairland. Owner: Liberty, Fairland Auto Service.

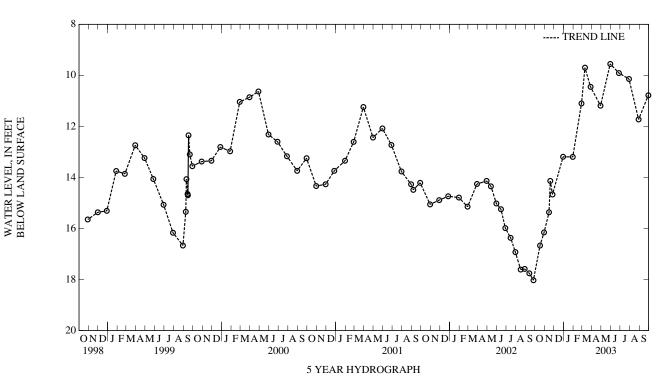
AQUIFER.--Loch Raven Formation of Cambrian age. Aquifer code: 370LCRV.

WELL CHARACTERISTICS .-- Drilled, unused, water-table well, depth 102.9 ft; casing diameter 6 in., to 50 ft; open hole.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 405 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at landsurface datum.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


LOWEST 16.67 OCT 17, 2002

PERIOD OF RECORD.--March 1955 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.39 ft below land surface, June 25, 1972; lowest measured, 18.03 ft below land surface, September 26, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 30 NOV 15 19	16.67 16.16 15.37 14.14	NOV 26, 2002 DEC 30 JAN 30, 2003 FEB 27	14.67 13.19 13.20 11.10	MAR 10, 2003 28 APR 29 MAY 30	9.70 10.45 11.19 9.55	JUN 27, 2003 JUL 29 AUG 29 SEP 29	9.91 10.14 11.73 10.78
HIGH	EST 11.10 F	EB 27, 2003					

336

PRINCE GEORGES COUNTY

WELL NUMBER .-- PG Bc 16. SITE ID .-- 390151076561501.

LOCATION.--Lat 39°01'51", long 76°56'15", Hydrologic Unit 02070010, at National Agricultural Research Center, Beltsville. Owner: U.S. Department of Agriculture.

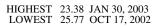
AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

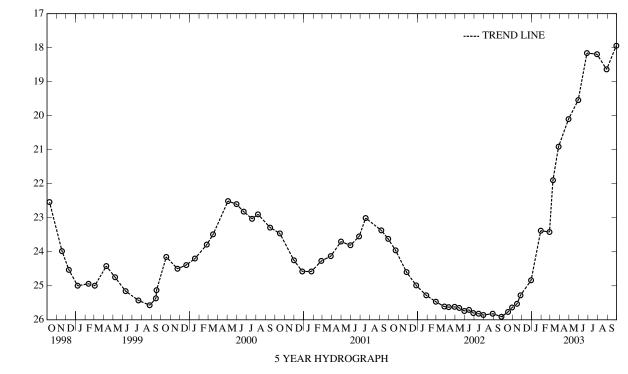
WELL CHARACTERISTICS .-- Dug, brick-lined, unused, water-table well, measured depth 27.4 ft; casing diameter 40 in.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with water-level recorder from October 1962 to February 1965.

DATUM.--Elevation of land surface is 190 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of steel cover, 0.10 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- September 1962 to current year.


WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 17.26 ft below land surface, July 6, 1972; lowest measured, 26.46 ft below land surface, July 8, 1981.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 30 NOV 15 26	25.77 25.64 25.53 25.28	DEC 30, 2002 JAN 30, 2003 FEB 27 MAR 10	24.84 23.38 23.42 21.90	MAR 28, 2003 APR 29 MAY 30 JUN 27	20.91 20.10 19.54 18.16	JUL 29, 2003 AUG 29 SEP 29	18.19 18.64 17.94

PRINCE GEORGES COUNTY-Continued

WELL NUMBER .-- PG De 21. SITE ID .-- 385130076465501. PERMIT NUMBER .-- PG-02-2875.

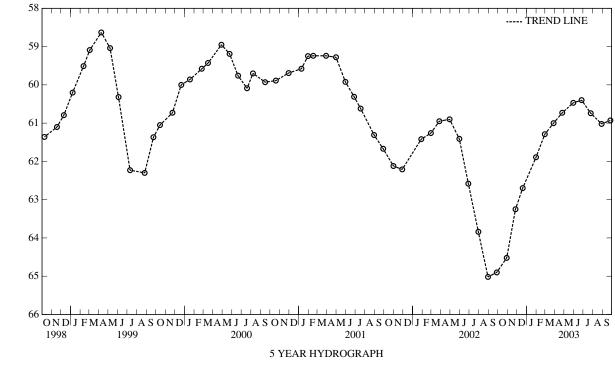
LOCATION.--Lat 38°51'30", long 76°46'55", Hydrologic Unit 02060006, Agricultural Experiment Station, Southern Maryland Research and Educational Facility, at Oak Grove. Owner: University of Maryland.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 155 ft; casing diameter 6 in., to 150 ft; screen diameter 6 in., from 150 to 155 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from May 1958 to January 1965.

DATUM .-- Elevation of land surface is 95.76 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.90 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- May 1958 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.39 ft below land surface, May 26 and 29, 1958; lowest measured, 65.02 ft below land surface, August 30, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 26 DEC 19	64.52 63.25 62.70	JAN 31, 2003 FEB 28 MAR 28	61.89 61.29 61.00	APR 25, 2003 MAY 30 JUN 26	60.73 60.47 60.40	JUL 25, 2003 AUG 29 SEP 26	60.74 61.02 60.93
	EST 60.40 JU EST 64.52 O						

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

PRINCE GEORGES COUNTY-Continued

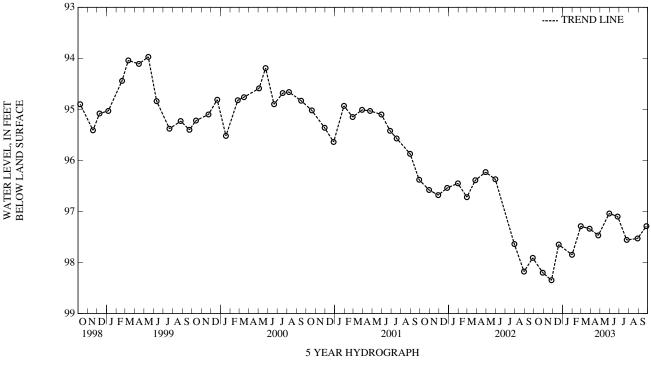
WELL NUMBER .-- PG Fb 36. SITE ID .-- 384423077004501. PERMIT NUMBER .-- PG-02-4834.

LOCATION.--Lat 38°44'23", long 77°00'45", Hydrologic Unit 02070010, at Broadwater Estates. Owner: Broadwater Citizens Association.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS .-- Drilled, unused, artesian well, depth 284 ft; casing diameter 8 in., to 272 ft; screen diameter 8 in., from 272 to 284 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 78 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.46 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. A water level was reported 62 ft below land surface, on May 29, 1957.

PERIOD OF RECORD .-- July 1961, March 1962 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 68.99 ft below land surface, October 3, 1979; lowest measured, 98.35 ft below land surface, November 26, 2002.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 26 DEC 19	98.20 98.35 97.65	JAN 31, 2003 FEB 28 MAR 28	97.85 97.29 97.34	APR 25, 2003 MAY 30 JUN 26	97.47 97.04 97.10	JUL 25, 2003 AUG 29 SEP 26	97.56 97.53 97.29
		MAY 30, 2003 NOV 26, 2002					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

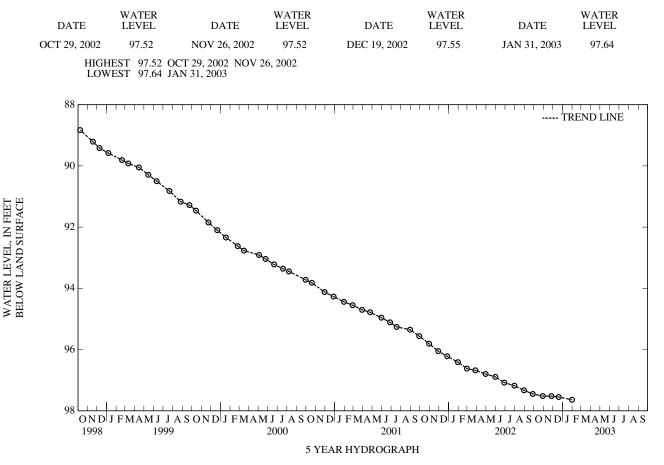
PRINCE GEORGES COUNTY-Continued

WELL NUMBER .-- PG Fc 17. SITE ID .-- 384230076555501.

LOCATION.--Lat 38°42'30", long 76°55'55", Hydrologic Unit 02070010, 75 ft south of Floral Park Rd., 3 mi west of the intersection with MD Rt. 5, Piscataway. Owner: Potomac Edison Power Company, formerly Washington Gas Light Co.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 750 ft; casing diameter 5.6 in.; casing perforated from 712 to 716 ft.


INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with water-level recorder from October 1955 to September 1956.

DATUM .-- Elevation of land surface is 58.6 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.50 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal. This well has failed due to collapse and has been discontinued.

PERIOD OF RECORD .-- October 1955 to February 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.62 ft below land surface, October 27, 1955; lowest measured, 97.64 ft below land surface, January 31, 2003.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

PRINCE GEORGES COUNTY-Continued

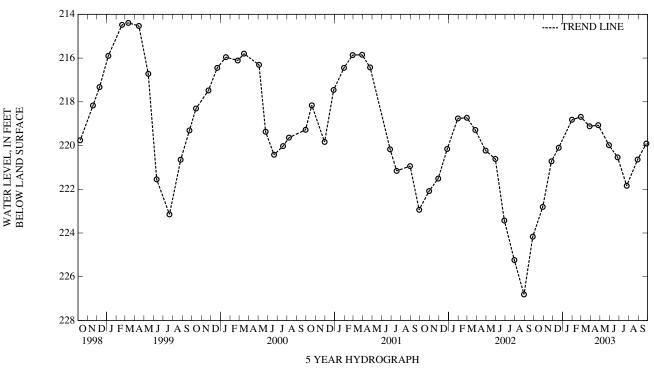
WELL NUMBER .-- PG Fd 41. SITE ID .-- 384131076533301. PERMIT NUMBER .-- PG-01-8058.

LOCATION.--Lat 38°41'31", long. 76°53'33", Hydrologic Unit 02070010, south side of MD Rt. 373, 1.14 mi west of intersection with MD Rt. 5. Owner: Colonial Investment Corp.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 362 ft; casing diameter 4 in., to 352 ft; screen diameter 2.5 in., from 352 to 362 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 196.92 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.80 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. A water level was reported as 146 ft below land surface on March 11, 1955. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- May 1967 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 157.24 ft below land surface, March 4, 1968; lowest measured, 226.81 ft below land surface, August 30, 2002.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 26 DEC 19	222.81 220.72 220.10	JAN 31, 2003 FEB 28 MAR 28	218.82 218.69 219.12	APR 25, 2003 MAY 29 JUN 26	219.07 219.98 220.54	JUL 25, 2003 AUG 29 SEP 26	221.84 220.64 219.91
		FEB 28, 2003 OCT 29, 2002					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

PRINCE GEORGES COUNTY-Continued

WELL NUMBER .-- PG Gd 5. SITE ID .-- 383957076520601. PERMIT NUMBER .-- PG-88-2866.

LOCATION.--Lat 38°39'57", long 76°52'06", Hydrologic Unit 02070011, near northeast corner of intersection with US Rt. 301 and Cedarville Rd., 4 mi northeast of Waldorf. Owner: PANDA Brandywine Power Station.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.--Drilled, production, artesian well, depth 1,360 ft; casing diameter 10 in., to 800 ft; casing diameter 8 in., from 800 to 948 ft, 1,028 to 1,155 ft, 1,170 to 1,188 ft, 1,208 to 1,240 ft, 1,290 to 1,305 ft, and 1350 to 1360 ft; screen diameter 8 in. from 948 to 1,028 ft, 1,155 to 1,170 ft, 1,188 to 1,208 ft, 1,240 to 1,290 ft, and 1,305 to 1,350 ft.

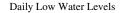
INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--30-minute recorder interval from December 1994 to April 1995, November 1996 to February 1997, and October 1997 to June 2002 (See REMARKS).

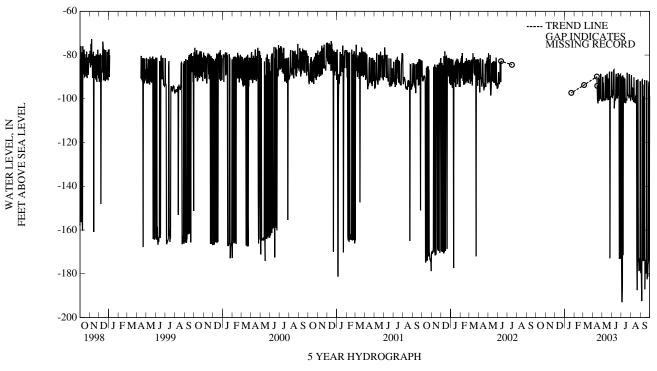
DATUM .-- Elevation of land surface is 216.43 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.65 ft above land surface.

REMARKS.--Southern Maryland Ground-Water Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. Missing data due to recorder malfunction. On June 11, 2002, the pressure transducer line was accidentally cut, while the well was being serviced.

PERIOD OF RECORD.--September 1994 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 63.40 ft below sea level, November 5, 1998 (recorder); lowest measured, 193.30 ft below sea level, September 5, 2003 (recorder).


WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003


DATE	WATER LEVEL			DATE	WATER LEVEL	DATE	WATER LEVEL
JAN 22, 2003 MAR 04	-97.32 -93.72	APR 14, 2003 MAY 22	-89.86 -90.78	JUL 02, 2003 AUG 11	-89.08 -89.91	SEP 17, 2003	-92.52

LOWEST -97.32 JAN 22, 2003 HIGHEST -89.08 JUL 02, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	DBER	NOVE	NOVEMBER		MBER	JANUARY		FEBRUARY		MARCH	
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
MONTH												

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	
	AP	RIL	MAY		JUNE		JU	JULY		AUGUST		SEPTEMBER	
1 2 3 4 5	 	 	-90.1 -89.6 -88.8 -88.8 -89.1	-101.0 -100.9 -90.0 -100.4 -92.6	-87.2 -87.2 -87.8 -86.7 -86.6	-87.6 -96.6 -99.7 -96.1 -98.5	-88.3 -88.6 -88.3 -88.5 -88.5	-89.8 -171.3 -192.8 -192.8 -185.5	-88.7 -89.0 -88.7 -88.7 -88.8	-100.4 -91.2 -89.2 -99.2 -94.7	-90.6 -90.6 -90.9 -90.9 -91.1	-172.3 -179.7 -174.2 -185.8 -192.5	
6 7 8 9 10	 	 	-89.1 -88.9 -89.5 -89.3 -89.5	-100.0 -100.7 -100.5 -100.2 -100.4	-86.4 -86.4 -86.2 -88.6	-96.9 -86.9 -86.7 -104.4 -100.9	-88.3 -88.3 -88.3 -87.8 -88.0	-89.3 -171.5 -100.4 -90.2 -99.7	-88.1 -88.8 -89.3 -89.3 -89.3	-99.9 -100.6 -95.1 -101.1 -101.5	-90.6 -90.4 -90.6 -90.9 -90.8	-91.5 -91.3 -174.2 -98.9 -172.1	
11 12 13 14 15	 -90.5	 -94.1	-88.9 -88.8 -88.6 -87.6 -88.2	-89.6 -89.3 -100.5 -91.9 -99.7	-88.8 -89.0 -88.6 -88.3 -88.1	-100.6 -100.2 -100.7 -89.8 -88.6	-88.8 -89.5 -89.2 -89.3 -90.6	-101.8 -99.9 -90.7 -99.9 -102.0	-89.2 -89.2 -89.9 -90.6 -90.4	-90.2 -100.8 -101.5 -101.7 -101.8	-90.4 -91.1 -91.1 -90.8 -90.6	-174.2 -93.5 -174.2 -91.5 -187.1	
16 17 18 19 20	-90.0 -90.0 -90.5 -89.3 -88.1	-100.4 -101.7 -102.1 -91.0 -90.5	-88.4 -88.1 -87.9 -87.9 -88.6	-89.1 -88.6 -92.6 -100.4 -100.4	-87.8 -88.6 -88.3 -88.3 -88.3	-98.7 -99.7 -90.0 -99.9 -98.7	-90.2 -89.2 -88.7 -87.8 -86.9	-101.6 -99.9 -100.6 -100.6 -88.1	-90.8 -90.4 -90.3 -90.6 -90.4	-98.6 -101.2 -101.0 -91.5 -172.1	-91.3 -91.1 -90.6 -90.6 -90.3	-175.2 -175.7 -173.5 -179.7 -174.5	
21 22 23 24 25	-88.6 -88.6 -88.9 -88.8 -88.2	-101.0 -99.7 -100.0 -90.7 -100.0	-88.8 -88.3 -87.9 -87.4 -87.2	-90.7 -100.5 -99.4 -87.9 -87.6	-88.1 -87.8 -87.8 -88.1 -87.8	-88.6 -88.3 -98.3 -89.1 -173.2	-86.6 -86.6 -86.9 -87.4 -87.8	-97.6 -98.5 -98.5 -98.5 -98.7	-90.6 -91.1 -90.6 -90.3 -90.3	-187.5 -174.0 -91.5 -91.1 -174.5	-90.4 -90.4 -90.9 -91.8 -93.2	-91.6 -182.5 -179.5 -181.3 -175.7	
26 27 28 29 30 31	-88.2 -88.1 -88.2 -89.8 -89.6	-88.6 -89.1 -100.2 -100.7 -100.9	-86.9 -88.6 -86.7 -86.7 -87.4 -87.4	-172.9 -100.6 -99.0 -99.0 -99.0 -89.0	-89.0 -88.5 -88.1 -87.9 -88.1	-172.7 -171.0 -89.0 -88.8 -173.2	-88.1 -88.0 -87.8 -88.0 -88.5 -88.5	-99.7 -88.7 -98.5 -98.7 -99.2 -100.6	-90.1 -90.9 -90.6 -90.9 -90.6 -90.8	-173.3 -178.8 -173.6 -173.0 -178.5 -92.0	-92.0 -92.0 -91.6 -90.9 -91.3	-175.0 -94.8 -92.2 -174.2 -98.6	
MONTH YEAR	-88.1 -86.2	-102.1 -192.8	-86.7	-172.9	-86.2	-173.2	-86.6	-192.8	-88.1	-187.5	-90.3	-192.5	

PRINCE GEORGES COUNTY-Continued

WELL NUMBER .-- PG Hf 40. SITE ID .-- 383348076411301. PERMIT NUMBER .-- PG-73-0298.

LOCATION.--Lat 38°33'48", long 76°41'13", Hydrologic Unit 02060006, at Chalk Point Power Plant, 0.4 mi. south of Eagle Harbor. Owner: Maryland Geological Survey.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 870 ft; casing diameter 6 in., to 150 ft; casing diameter 4 in., from 150 to 860 ft; screen diameter 4 in., from 860 to 870 ft.

INSTRUMENTATION.--Periodic water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from December 1974 to July 1976. Equipped with digital water-level recorder--60-minute recorder interval from July 1976 to current year.

DATUM .-- Elevation of land surface is 27.98 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.59 ft above land surface.

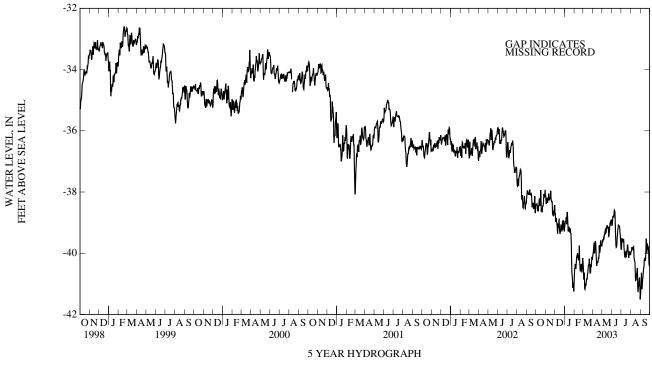
REMARKS.--Southern Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD.--December 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.64 ft below sea level, January 11, 1975 (recorder); lowest measured, 41.51 ft below sea level, August 31, 2003 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 04, 2002	-37.96	MAR 04, 2003	-40.52	JUL 02, 2003	-39.68
DEC 12	-39.17	APR 14	-40.11	AUG 11	-39.84
JAN 22, 2003	-39.59	MAY 27	-38.97	SEP 17	-40.11


LOWEST -40.52 MAR 04, 2003 HIGHEST -37.96 NOV 04, 2002

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN			
	OCTOBER		OCTOBER N		NOVE	NOVEMBER		DECEMBER		JANUARY		FEBRUARY		MARCH	
1 2 3 4 5	-38.19 -38.19 -38.19 -38.10 -37.99	-38.40 -38.40 -38.41 -38.39 -38.45	-37.94 -37.97 -38.12 -37.96 -37.98	-38.12 -38.28 -38.39 -38.24 -38.31	-38.42 -38.34 -38.41 -38.71 -38.35	-38.77 -38.69 -38.96 -38.96 -38.85	-38.73 -38.78 -38.51 -38.67 -38.63	-39.13 -39.06 -38.96 -38.95 -38.93	-40.27 -40.19 -40.03 -40.22	-40.70 -40.50 -40.48 -40.35 -40.45	-39.94 -40.18 -40.39 -40.43 -40.36	-40.35 -40.53 -40.86 -40.83 -40.64			
6 7 8 9 10	-38.23 -38.11 -38.29 -38.20 -38.18	-38.62 -38.45 -38.63 -38.47 -38.46	-37.73 -38.12 -37.97 -38.05 -37.91	-38.18 -38.35 -38.28 -38.23 -38.24	-38.55 -38.75 -38.84 -39.13 -38.92	-38.97 -39.02 -39.15 -39.36 -39.24	-38.57 -38.76 -38.49 -38.42 -38.54	-38.82 -39.05 -38.79 -38.65 -38.77	-40.28 -39.97 -39.97 -39.91 -39.71	-40.51 -40.33 -40.15 -40.09 -40.11	-40.45 -40.99 -40.76 -40.65 -40.81	-41.16 -41.18 -41.09 -40.99 -41.06			
11 12 13 14 15	-37.98 -38.05 -38.08 -38.08 -37.94	-38.28 -38.21 -38.28 -38.45 -38.24	-37.90 -37.99 -38.07 -37.95 -37.91	-38.05 -38.21 -38.24 -38.19 -38.18	-38.88 -38.96 -38.72 -38.69 -38.87	-39.03 -39.17 -39.08 -38.87 -39.16	-38.65 -38.88 -38.83 -38.93 -38.93	-38.99 -39.29 -39.19 -39.15 -39.15	-39.71 -39.71 -39.89 -39.91 -39.78	-40.00 -40.04 -40.11 -40.23 -40.15	-40.68 -40.63 -40.63 -40.55 -40.40	-40.96 -40.84 -40.83 -40.86 -40.67			
16 17 18 19 20	-37.72 -37.88 -38.13 -38.23 -38.32	-37.94 -38.18 -38.64 -38.53 -38.65	-37.93 -37.77 -37.80 -38.07 -38.10	-38.23 -37.96 -38.20 -38.26 -38.33	-38.85 -39.16 -39.01 -38.89 -38.71	-39.30 -39.37 -39.30 -39.21 -39.06	-38.95 -38.78 -39.08 -38.94 -38.90	-39.30 -39.19 -39.33 -39.19 -39.34	-39.65 -39.42 -39.53 -40.15 -40.27	-40.15 -39.75 -40.30 -40.47 -40.59	-40.43 -40.21 -40.17 -40.15 -39.67	-40.66 -40.51 -40.39 -40.39 -40.35			
21 22 23 24 25	-38.29 -38.18 -38.17 -38.19 -38.00	-38.65 -38.48 -38.45 -38.45 -38.34	-38.09 -38.10 -38.33 -38.52 -38.49	-38.29 -38.33 -38.72 -38.74 -38.71	-38.87 -38.97 -38.96 -38.88 -38.51	-39.11 -39.19 -39.29 -39.20 -38.93	-39.17 -39.30 -39.63 -40.19 -40.57	-39.35 -39.63 -40.19 -40.65 -40.74	-40.32 -40.01 -39.71 -40.35 -40.36	-40.56 -40.53 -40.35 -40.51 -40.63	-39.68 -40.01 -40.34 -40.41 -40.26	-40.18 -40.38 -40.61 -40.66 -40.62			
26 27 28 29 30 31	-37.86 -37.93 -38.01 -37.86 -37.86 -37.89	-38.07 -38.14 -38.18 -38.14 -37.93 -38.12	-38.49 -38.40 -38.32 -38.11 -38.11	-38.79 -38.61 -38.69 -38.47 -38.43	-38.77 -38.81 -38.75 -38.73 -38.81 -38.98	-39.23 -39.11 -38.93 -38.95 -39.16 -39.29	-40.65 -40.69 -40.55 -40.55 -40.96 -40.59	-40.89 -41.13 -40.96 -41.08 -41.25 -41.03	-40.27 -39.96 -39.93 	-40.52 -40.27 -40.16 	-40.11 -40.22 -40.07 -39.81 -39.79 -39.93	-40.36 -40.45 -40.30 -40.12 -40.20 -40.20			
MONTH	-37.72	-38.65	-37.73	-38.79	-38.34	-39.37	-38.42	-41.25	-39.42	-40.70	-39.67	-41.18			

PRINCE GEORGES COUNTY—Continued

DAY	MAX	MIN										
	AP	KIL	MA	ΑY	JUI	NE	JUI	LY	AUG	051	SEPTE	MBER
1	-39.70	-40.06	-39.39	-39.69	-38.55	-39.09	-39.57	-39.87	-39.59	-39.99	-40.98	-41.38
2	-39.67	-40.02	-39.32	-39.55	-38.83	-39.09	-39.47	-39.87	-39.60	-39.94	-40.82	-41.19
3	-39.58	-39.93	-39.35	-39.64	-38.74	-39.01	-39.23	-39.51	-39.56	-39.92	-40.51	-41.05
4	-39.52	-39.80	-39.35	-39.57	-38.52	-38.81	-39.39	-39.60	-39.53	-39.80	-40.40	-40.64
5	-39.41	-39.65	-39.34	-39.56	-38.62	-38.82	-39.37	-39.55	-39.54	-39.83	-40.40	-41.17
6	-39.60	-39.99	-39.29	-39.49	-38.65	-38.80	-39.41	-39.64	-39.54	-39.86	-40.80	-41.15
7	-39.59	-39.99	-39.31	-39.51	-38.44	-38.83	-39.35	-39.53	-39.54	-39.80	-40.69	-40.96
8	-39.56	-39.77	-39.27	-39.39	-38.45	-38.70	-39.33	-39.56	-39.53	-39.91	-40.58	-40.84
9	-39.47	-39.60	-39.14	-39.39	-38.39	-38.59	-39.33	-39.56	-39.53	-39.79	-40.47	-40.73
10	-39.35	-39.64	-39.11	-39.31	-38.39	-38.61	-39.35	-39.82	-39.49	-39.78	-40.31	-40.61
11	-39.36	-39.81	-38.98	-39.23	-38.38	-38.66	-39.56	-39.94	-39.53	-40.11	-40.23	-40.47
12	-39.81	-40.12	-38.91	-39.21	-38.43	-39.00	-39.65	-40.10	-39.80	-40.21	-40.14	-40.45
13	-39.96	-40.36	-39.00	-39.33	-38.78	-39.42	-39.70	-40.12	-39.94	-40.25	-39.75	-40.21
14	-40.15	-40.41	-39.05	-39.31	-39.26	-39.73	-39.75	-40.07	-39.99	-40.28	-39.90	-40.19
15	-39.98	-40.31	-38.91	-39.19	-39.47	-39.81	-39.64	-39.97	-40.10	-40.59	-39.78	-40.17
16	-39.93	-40.25	-38.80	-39.10	-39.47	-39.80	-39.57	-39.95	-40.53	-40.89	-39.94	-40.25
17	-39.99	-40.32	-38.83	-39.10	-39.37	-39.72	-39.79	-40.11	-40.59	-40.88	-39.91	-40.17
18	-39.84	-40.26	-38.80	-39.11	-39.21	-39.52	-39.67	-40.09	-40.51	-40.85	-38.79	-39.97
19	-39.76	-40.13	-38.89	-39.17	-39.09	-39.40	-39.71	-39.96	-40.44	-40.68	-38.76	-39.52
20	-39.90	-40.18	-38.92	-39.21	-39.02	-39.23	-39.63	-39.94	-40.40	-40.64	-39.52	-39.97
21	-39.56	-40.07	-38.83	-39.14	-38.94	-39.19	-39.53	-39.73	-40.31	-40.56	-39.70	-39.98
22	-39.50	-39.74	-39.05	-39.45	-38.86	-39.08	-39.53	-39.73	-40.31	-40.48	-39.51	-39.87
23	-39.67	-39.98	-39.15	-39.44	-38.86	-39.09	-39.63	-39.92	-40.35	-41.15	-39.38	-39.68
24	-39.70	-39.95	-39.05	-39.29	-38.89	-39.11	-39.64	-39.97	-41.02	-41.27	-39.53	-39.88
25	-39.48	-39.83	-38.91	-39.18	-38.93	-39.12	-39.85	-40.15	-40.89	-41.12	-39.48	-39.76
26	-39.37	-39.58	-38.86	-39.04	-38.90	-39.13	-39.87	-40.07	-40.83	-41.07	-39.49	-39.81
27	-39.40	-39.71	-38.89	-39.06	-38.94	-39.29	-39.72	-39.97	-40.56	-40.92	-39.51	-39.98
28	-39.51	-39.73	-38.78	-39.00	-39.09	-39.42	-39.67	-39.99	-40.52	-40.82	-39.76	-40.33
29	-39.47	-39.69	-38.74	-38.93	-39.20	-39.57	-39.66	-39.95	-40.43	-40.79	-40.13	-40.41
30	-39.53	-39.78	-38.76	-38.93	-39.46	-39.79	-39.62	-40.05	-40.49	-41.12	-40.14	-40.43
31			-38.57	-38.90			-39.70	-40.05	-41.12	-41.51		
MONTH	-39.35	-40.41	-38.57	-39.69	-38.38	-39.81	-39.23	-40.15	-39.49	-41.51	-38.76	-41.38
YEAR	-37.72	-41.51										

Daily Low Water Levels

PRINCE GEORGES COUNTY-Continued

WELL NUMBER .-- PG Hf 41. SITE ID.--383348076411302. PERMIT NUMBER .-- PG-73-0297.

LOCATION.--Lat 38°33'48", long 76°41'13", Hydrologic Unit 02060006, at Chalk Point Power Plant, 0.4 mi. south of Eagle Harbor. Owner: Maryland Geological Survey.

AQUIFER.--Magothy Formation of Upper Cretaceous age. Aquifer code: 211MGTY.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 654 ft; casing diameter 6 in., to 150 ft; casing diameter 4 in., from 150 to 644 ft, and 654 to 665 ft; screen diameter 4 in., from 644 to 654 ft.

INSTRUMENTATION.--Periodic water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from December 1974 to July 1976. Equipped with digital water-level recorder--60-minute recorder interval from July 1976 to current year.

DATUM.--Elevation of land surface is 28.30 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.65 ft above land surface.

REMARKS.--Southern Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD.--December 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.85 ft below sea level, January 1, 1975 (recorder); lowest measured, 50.99 ft below sea level, May 28, 1999 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 04, 2002	-45.25	MAR 04, 2003	-48.44	JUL 02, 2003	-48.44 -47.89
DEC 12 JAN 22, 2003	-47.60 -47.23	APR 14 MAY 27	-47.19 -46.34	AUG 11 SEP 17	-47.89 -48.06

LOWEST -48.44 MAR 04, 2003 JUL 02, 2003 HIGHEST -45.25 NOV 04, 2002

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	VEMBER DEC		MBER	JANU	ARY	FEBR	UARY	MAR	RCH
1	-45.55	-45.59	-44.78	-44.89	-45.68	-46.04	-47.00	-47.28	-48.41	-48.72	-48.04	-48.13
2	-45.55	-45.69	-44.89	-45.20	-45.90	-46.04	-46.89	-47.00	-48.23	-48.41	-48.02	-48.13
3	-45.69	-45.92	-45.20	-45.38	-45.90	-46.34	-46.72	-46.90	-48.11	-48.24	-48.06	-48.40
4	-45.86	-46.00	-45.22	-45.38	-46.30	-46.35	-46.76	-47.03	-47.79	-48.11	-48.40	-48.45
5	-45.65	-45.86	-45.23	-45.30	-46.19	-46.30	-46.93	-47.04	-47.79	-47.87	-48.19	-48.41
6	-45.80	-46.09	-44.95	-45.25	-46.23	-46.38	-46.71	-46.93	-47.76	-47.92	-48.06	-48.20
7	-46.07	-46.25	-45.06	-45.26	-46.38	-46.52	-46.72	-46.92	-47.26	-47.76	-48.01	-48.15
8	-46.25	-46.49	-44.90	-45.23	-46.52	-46.91	-46.46	-46.80	-47.06	-47.26	-47.88	-48.01
9	-46.37	-46.52	-44.80	-44.91	-46.91	-47.34	-46.35	-46.46	-47.05	-47.15	-47.78	-47.88
10	-46.25	-46.38	-44.63	-44.81	-47.34	-47.43	-46.35	-46.45	-47.15	-47.23	-47.88	-47.98
11	-45.89	-46.25	-44.48	-44.63	-47.42	-47.42	-46.44	-46.63	-47.08	-47.21	-47.78	-47.91
12	-45.82	-45.89	-44.48	-44.59	-47.42	-47.63	-46.63	-46.93	-46.95	-47.08	-47.78	-47.85
13	-45.63	-45.85	-44.58	-44.63	-47.55	-47.64	-46.60	-46.92	-47.05	-47.26	-47.85	-48.12
14	-45.62	-45.74	-44.42	-44.61	-47.37	-47.55	-46.57	-46.63	-47.26	-47.44	-48.12	-48.30
15	-45.31	-45.69	-44.38	-44.51	-47.44	-47.74	-46.45	-46.57	-47.42	-47.63	-48.17	-48.30
16	-44.91	-45.31	-44.51	-44.64	-47.73	-47.98	-46.37	-46.47	-47.63	-47.69	-48.20	-48.23
17	-44.91	-44.95	-44.42	-44.63	-47.98	-48.16	-46.28	-46.55	-47.31	-47.64	-47.97	-48.20
18	-44.95	-45.12	-44.39	-44.64	-48.04	-48.15	-46.55	-46.82	-47.32	-47.42	-47.58	-47.97
19	-44.81	-45.12	-44.64	-44.90	-48.03	-48.09	-46.60	-46.82	-47.42	-47.70	-47.22	-47.58
20	-44.76	-44.88	-44.90	-45.06	-47.94	-48.05	-46.56	-46.66	-47.70	-47.96	-46.72	-47.22
21	-44.80	-44.88	-44.71	-44.99	-48.01	-48.16	-46.66	-46.97	-47.96	-48.10	-46.61	-46.85
22	-44.69	-44.83	-44.53	-44.71	-48.13	-48.17	-46.97	-47.28	-47.92	-48.15	-46.85	-47.27
23	-44.56	-44.70	-44.54	-45.10	-48.17	-48.24	-47.28	-47.73	-47.80	-48.04	-47.27	-47.70
24	-44.58	-44.65	-45.10	-45.54	-48.02	-48.17	-47.73	-48.01	-48.04	-48.37	-47.70	-47.85
25	-44.35	-44.62	-45.54	-45.78	-47.59	-48.02	-47.81	-48.00	-48.37	-48.53	-47.75	-47.87
26	-44.23	-44.38	-45.77	-45.99	-47.59	-47.95	-47.81	-47.92	-48.23	-48.52	-47.60	-47.75
27	-44.38	-44.65	-45.77	-45.90	-47.81	-47.98	-47.92	-48.73	-48.05	-48.23	-47.64	-47.74
28	-44.60	-44.70	-45.72	-45.82	-47.53	-47.81	-48.61	-48.77	-47.97	-48.05	-47.38	-47.65
29	-44.54	-44.66	-45.55	-45.72	-47.41	-47.53	-48.52	-48.62			-47.12	-47.38
30	-44.48	-44.54	-45.52	-45.68	-47.41	-47.50	-48.62	-48.86			-47.00	-47.22
31	-44.52	-44.79			-47.28	-47.41	-48.72	-48.86			-47.17	-47.23
MONTH	-44.23	-46.52	-44.38	-45.99	-45.68	-48.24	-46.28	-48.86	-46.95	-48.72	-46.61	-48.45

PRINCE GEORGES COUNTY-Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	-46.88 -46.70 -46.54 -46.30 -46.24	-47.17 -46.88 -46.71 -46.54 -46.32	-48.03 -47.90 -47.97 -48.20 -48.39	-48.10 -48.03 -48.20 -48.39 -48.44	-46.06 -46.55 -46.43 -46.28 -46.28	-46.55 -46.60 -46.58 -46.43 -46.31	-47.92 -48.31 -48.38 -48.43 -48.54	-48.31 -48.46 -48.47 -48.54 -48.61	-48.88 -48.89 -48.83 -48.66 -48.58	-49.02 -48.96 -48.93 -48.83 -48.68	-48.74 -48.62 -48.37 -48.17 -48.17	-48.97 -48.75 -48.63 -48.37 -48.46
6 7 8 9 10	-46.28 -46.62 -46.54 -46.36 -46.32	-46.65 -46.70 -46.63 -46.54 -46.48	-48.38 -48.49 -48.49 -48.44 -48.44	-48.49 -48.58 -48.55 -48.54 -48.52	-46.23 -45.84 -45.65 -45.34 -45.29	-46.30 -46.24 -45.84 -45.65 -45.34	-48.52 -48.29 -48.23 -48.29 -48.48	-48.62 -48.52 -48.31 -48.49 -48.60	-48.41 -48.23 -48.19 -48.05 -47.97	-48.58 -48.41 -48.23 -48.19 -48.08	-48.43 -48.26 -48.16 -48.05 -47.94	-48.49 -48.43 -48.26 -48.20 -48.07
11 12 13 14 15	-46.22 -46.36 -46.67 -46.95 -47.35	-46.36 -46.69 -46.95 -47.35 -47.69	-48.38 -48.31 -48.27 -48.20 -47.91	-48.51 -48.38 -48.35 -48.33 -48.20	-45.21 -45.28 -45.54 -45.89 -46.31	-45.32 -45.56 -45.89 -46.31 -46.74	-48.31 -48.24 -48.40 -48.35 -48.23	-48.55 -48.42 -48.53 -48.53 -48.36	-47.81 -47.72 -47.78 -47.91 -48.06	-47.99 -47.82 -47.91 -48.06 -48.19	-47.88 -47.93 -47.74 -47.75 -47.88	-47.98 -48.01 -47.94 -47.89 -47.96
16 17 18 19 20	-47.69 -47.98 -48.01 -48.02 -48.00	-47.99 -48.13 -48.13 -48.12 -48.16	-47.71 -47.65 -47.42 -47.37 -47.36	-47.91 -47.80 -47.66 -47.47 -47.44	-46.74 -46.71 -46.61 -46.49 -46.30	-46.91 -46.94 -46.74 -46.63 -46.49	-48.14 -48.16 -48.37 -48.44 -48.44	-48.25 -48.37 -48.46 -48.58 -48.62	-48.19 -48.22 -48.30 -48.32 -48.36	-48.25 -48.30 -48.39 -48.36 -48.48	-47.88 -48.04 -47.23 -46.77 -47.00	-48.05 -48.05 -47.23 -47.58
21 22 23 24 25	-47.72 -47.62 -47.66 -47.78 -47.55	-48.01 -47.73 -47.89 -47.88 -47.78	-47.43 -47.61 -47.44 -47.15 -46.70	-47.61 -47.80 -47.75 -47.44 -47.15	-46.30 -46.22 -46.13 -46.14 -46.30	-46.32 -46.30 -46.22 -46.30 -46.53	-48.22 -48.21 -48.26 -48.44 -48.58	-48.44 -48.26 -48.47 -48.58 -48.93	-48.47 -48.54 -48.52 -48.69 -48.77	-48.60 -48.59 -48.69 -48.84 -48.88	-47.56 -47.31 -47.05 -47.10 -47.11	-47.60 -47.58 -47.31 -47.24 -47.24
26 27 28 29 30 31	-47.43 -47.47 -47.56 -47.63 -47.85	-47.55 -47.60 -47.67 -47.85 -48.10	-46.46 -46.23 -46.08 -46.04 -46.04 -46.04	-46.70 -46.46 -46.23 -46.10 -46.07 -46.07	-46.53 -46.60 -46.87 -47.34 -47.64	-46.62 -46.87 -47.34 -47.64 -47.92	-48.93 -49.00 -48.90 -48.90 -48.84 -48.94	-49.04 -49.04 -49.00 -48.97 -48.94 -48.99	-48.86 -48.85 -48.79 -48.85 -48.86 -48.90	-49.01 -49.01 -48.91 -48.91 -48.91 -49.01	-47.10 -47.10 -47.08 -47.09 -47.22	-47.21 -47.22 -47.15 -47.22 -47.33
MONTH YEAR	-46.22 -44.23	-48.16 -49.04	-46.04	-48.58	-45.21	-47.92	-47.92	-49.04	-47.72	-49.02	-46.77	-48.97

Daily Low Water Levels

PRINCE GEORGES COUNTY-Continued

WELL NUMBER .-- PG Hf 42. SITE ID .-- 383348076411303. PERMIT NUMBER .-- PG-73-0294.

LOCATION.--Lat 38°33'48", long 76°41'13", Hydrologic Unit 02060006, at Chalk Point Power Plant, 0.4 mi. south of Eagle Harbor. Owner: Maryland Geological Survey.

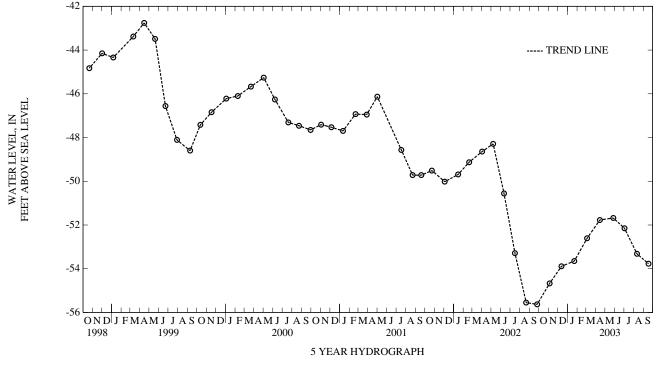
AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 386 ft; casing diameter 6 in., to 150 ft; casing diameter 4 in., from 150 to 366 ft, and 376 to 386 ft; screen diameter 4 in., from 366 to 376 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Periodic water level measurements from January 1975 to October 1999. Equipped with graphic water-level recorder from January 1975 to July 1976. Equipped with digital water-level recorder-60-minute recorder interval from July 1976 to September 1999.

DATUM .-- Elevation of land surface is 27.76 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.71 ft above land surface.

REMARKS.--Southern Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD .-- January 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.84 ft above sea level, April 22, 1975; lowest measured, 55.63 ft below sea level, September 25, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 04, 2002	-54.67	MAR 04, 2003	-52.61	JUL 02, 2003	-52.15
DEC 12	-53.89	APR 14	-51.77	AUG 11	-53.32
JAN 22, 2003	-53.65	MAY 27	-51.68	SEP 17	-53.77

LOWEST -54.67 NOV 04, 2002 HIGHEST -51.68 MAY 27, 2003

PRINCE GEORGES COUNTY-Continued

WELL NUMBER .-- PG Hf 44. SITE ID .-- 383250076405304. PERMIT NUMBER .-- PG-73-0065.

LOCATION.--Lat 38°32'50", long 76°40'53", Hydrologic Unit 02060006, at Chalk Point Power Plant, on east side of canal. Owner: Mirant Corp.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 1,545 ft; casing diameter 3 in., to 1,025 ft; screen diameter 3 in., from 1,025 to 1,030 ft.

INSTRUMENTATION.--Periodic water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recorder interval from June 1995 to current year.

DATUM .-- Elevation of land surface is 10.48 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 5.10 ft above land surface.

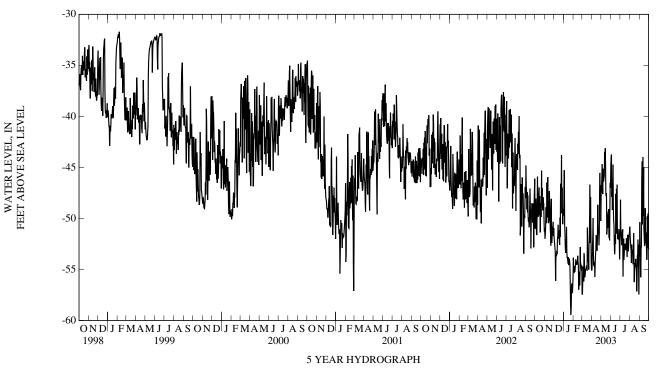
REMARKS.--Southern Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. This well has a 1 in. diameter well inside the 3 in. casing, separated by a packer and screened in the Lower Patapsco Formation as well PG Hf 32.

PERIOD OF RECORD.--June 1973, July 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.85 ft above sea level, June 24, 1973; lowest measured, 59.87 ft below sea level, January 24, 2003 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 04, 2002	-51.27	MAR 04, 2003	-56.43	JUL 02, 2003	-47.14
DEC 12	-51.53	APR 14	-52.61	AUG 11	-54.48
JAN 22, 2003	-57.47	MAY 27	-53.48	SEP 17	-53.52


LOWEST -57.47 JAN 22, 2003 HIGHEST -47.14 JUL 02, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTOBER		NOVE	NOVEMBER		DECEMBER		ARY	FEBR	UARY	MAR	RCH
1	-48.3	-50.9	-49.5	-51.8	-49.8	-52.7	-45.6	-52.6	-51.3	-55.2	-55.6	-58.7
2	-49.0	-51.6	-51.1	-52.5	-50.6	-52.8	-43.5	-50.7	-54.0	-55.8	-55.8	-58.7
3	-46.9	-51.2	-48.3	-52.8	-51.1	-53.4	-42.5	-49.3	-54.1	-55.9	-55.0	-56.9
4	-45.2	-50.1	-47.9	-52.2	-52.2	-53.5	-49.2	-51.9	-54.4	-55.8	-54.8	-56.7
5	-49.5	-51.5	-44.7	-52.2	-51.9	-56.5	-49.3	-52.1	-52.7	-55.6	-51.6	-57.5
6	-50.9	-52.2	-47.9	-50.8	-54.0	-58.2	-52.1	-53.5	-54.3	-55.8	-51.9	-57.6
7	-50.7	-52.3	-49.0	-51.2	-52.9	-54.5	-52.6	-53.8	-53.9	-55.8	-49.2	-57.1
8	-45.1	-52.4	-43.8	-50.4	-52.8	-53.9	-52.3	-53.6	-53.9	-54.8	-52.2	-55.0
9	-43.8	-49.4	-45.2	-51.2	-53.1	-54.2	-52.0	-53.5	-52.5	-54.7	-55.0	-56.0
10	-46.5	-50.6	-45.6	-51.7	-51.1	-55.7	-47.4	-52.9	-53.4	-55.1	-54.8	-56.4
11	-46.5	-51.0	-43.2	-48.9	-50.1	-56.6	-51.9	-53.9	-53.6	-54.9	-54.7	-56.0
12	-44.7	-51.4	-45.6	-50.6	-50.0	-53.4	-53.2	-54.4	-53.6	-54.7	-54.5	-55.7
13	-44.5	-50.1	-48.8	-51.2	-49.1	-52.8	-53.1	-54.2	-54.0	-54.9	-53.9	-56.0
14	-45.1	-49.7	-47.7	-51.8	-48.0	-52.1	-53.5	-54.5	-53.9	-55.1	-53.0	-55.7
15	-47.0	-50.8	-46.9	-51.5	-50.4	-52.9	-53.6	-54.8	-51.5	-54.8	-53.7	-55.4
16	-44.7	-51.1	-43.8	-51.6	-49.7	-52.8	-53.0	-54.4	-53.6	-55.1	-54.1	-55.5
17	-43.8	-53.6	-45.3	-50.0	-49.1	-53.0	-52.9	-56.7	-53.5	-56.5	-51.6	-55.9
18	-48.2	-53.9	-45.4	-51.3	-51.3	-52.8	-53.2	-55.0	-56.0	-57.8	-49.5	-52.9
19	-44.6	-52.1	-49.3	-51.9	-52.0	-53.2	-52.9	-54.6	-54.7	-57.0	-51.6	-54.1
20	-47.8	-51.1	-50.2	-53.6	-46.0	-52.8	-53.1	-54.8	-54.4	-56.4	-53.4	-55.1
21	-46.5	-51.5	-47.9	-55.1	-49.6	-52.9	-53.5	-56.2	-55.4	-57.4	-52.9	-54.2
22	-43.4	-47.6	-45.6	-50.8	-44.5	-52.2	-55.5	-57.6	-54.4	-56.6	-53.4	-56.8
23	-45.5	-50.6	-50.7	-52.4	-44.6	-50.0	-57.2	-59.4	-49.4	-55.1	-48.4	-56.8
24	-44.0	-49.5	-51.8	-52.9	-43.6	-50.5	-58.6	-59.9	-51.8	-55.3	-48.1	-53.8
25	-45.6	-50.5	-49.5	-52.9	-42.0	-48.3	-57.4	-59.4	-52.5	-55.6	-46.8	-54.5
26 27 28 29 30 31	-46.5 -44.5 -44.6 -44.9 -48.1 -49.6	-50.4 -51.0 -50.4 -50.6 -51.2 -52.0	-48.0 -47.7 -46.9 -50.7 -47.3	-52.5 -52.1 -52.4 -52.2 -52.5	-47.2 -43.3 -46.6 -48.8 -47.2 -45.9	-50.9 -51.5 -50.6 -51.5 -50.7 -51.7	-55.7 -55.3 -55.5 -55.2 -55.5 -54.6	-57.8 -56.9 -58.3 -58.9 -57.1 -56.3	-54.1 -54.4 -53.9 	-55.1 -55.5 -55.6 	-45.3 -48.9 -45.6 -45.6 -52.3 -54.1	-48.9 -53.7 -52.8 -52.5 -54.9 -55.3
MONTH	-43.4	-53.9	-43.2	-55.1	-42.0	-58.2	-42.5	-59.9	-49.4	-57.8	-45.3	-58.7

PRINCE GEORGES COUNTY—Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	ΛY	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	-54.5	-55.5	-46.5	-49.2	-44.1	-45.4	-50.5	-52.5	-49.3	-52.6	-50.4	-54.5
	-53.6	-55.4	-45.5	-48.3	-43.1	-45.0	-47.0	-50.5	-50.0	-53.3	-47.1	-53.9
	-49.7	-55.3	-44.8	-47.5	-42.7	-44.6	-49.7	-52.2	-50.3	-53.4	-50.0	-54.2
	-50.1	-53.1	-43.2	-46.9	-43.6	-50.1	-50.5	-51.9	-51.1	-54.1	-53.2	-56.6
	-47.0	-53.3	-45.1	-49.5	-44.6	-50.8	-50.4	-52.7	-51.9	-53.9	-52.2	-58.1
6	-52.1	-54.5	-45.7	-49.6	-44.7	-51.7	-51.5	-53.5	-53.2	-55.0	-48.4	-56.1
7	-53.9	-54.9	-43.5	-47.2	-45.0	-51.7	-51.1	-53.1	-48.8	-54.9	-48.1	-54.7
8	-53.0	-55.0	-44.3	-47.5	-43.8	-46.2	-50.7	-52.1	-52.3	-54.0	-44.6	-48.1
9	-54.1	-55.3	-44.2	-47.9	-46.2	-50.2	-49.4	-53.4	-51.8	-54.1	-43.6	-46.3
10	-53.6	-55.4	-45.3	-46.5	-49.2	-51.4	-53.4	-56.9	-49.2	-55.6	-46.3	-52.3
11	-54.0	-56.9	-44.5	-46.3	-49.5	-52.0	-51.1	-55.2	-53.0	-55.9	-44.3	-49.1
12	-52.1	-55.3	-42.5	-44.8	-51.0	-53.4	-50.2	-53.9	-53.3	-55.2	-43.2	-46.6
13	-53.0	-54.4	-43.4	-46.7	-52.7	-54.3	-52.4	-54.8	-48.9	-54.7	-46.6	-51.7
14	-52.0	-54.2	-42.2	-44.4	-52.4	-53.5	-51.7	-55.0	-52.2	-55.7	-43.5	-47.6
15	-49.5	-52.9	-41.9	-47.4	-48.6	-54.0	-50.9	-53.7	-54.1	-58.0	-47.6	-53.1
16	-49.7	-53.4	-44.7	-50.4	-50.2	-53.5	-51.9	-54.1	-52.6	-58.0	-47.7	-54.0
17	-52.1	-53.2	-45.1	-50.7	-45.9	-52.0	-51.6	-54.0	-53.4	-55.3	-49.9	-53.5
18	-51.9	-54.4	-44.9	-50.9	-48.1	-53.1	-51.9	-53.5	-53.2	-55.3	-50.0	-53.9
19	-48.8	-54.3	-50.9	-52.4	-45.0	-52.9	-51.5	-54.2	-53.2	-55.6	-45.8	-51.9
20	-47.6	-51.0	-49.7	-52.7	-44.9	-50.2	-49.4	-54.6	-50.7	-55.6	-48.0	-52.5
21	-48.5	-52.6	-46.3	-55.7	-44.6	-48.7	-49.9	-53.0	-53.5	-55.4	-49.4	-53.2
22	-48.5	-53.5	-47.3	-55.9	-46.5	-52.2	-51.4	-53.7	-53.8	-56.5	-47.4	-53.4
23	-48.3	-54.1	-46.0	-52.4	-51.0	-52.9	-52.1	-54.7	-56.0	-58.1	-49.9	-53.9
24	-50.3	-53.9	-48.7	-51.3	-51.0	-52.3	-51.4	-54.4	-55.0	-56.8	-53.4	-54.6
25	-48.8	-53.0	-45.8	-51.7	-50.2	-53.4	-50.2	-52.5	-49.2	-56.5	-53.3	-54.6
26 27 28 29 30 31	-45.1 -44.4 -47.2 -44.9 -47.1	-49.9 -48.1 -49.2 -49.1 -52.0	-49.3 -48.1 -49.7 -45.9 -44.6 -44.9	-53.0 -53.4 -53.3 -53.1 -48.9 -49.7	-50.2 -50.4 -51.0 -52.2 -51.9	-53.1 -51.5 -52.7 -55.1 -53.4	-51.2 -52.0 -49.0 -49.4 -49.8 -48.6	-53.9 -54.4 -54.6 -53.5 -52.7 -54.0	-51.1 -48.8 -53.5 -53.6 -56.0 -48.3	-54.7 -53.9 -55.3 -56.0 -58.6 -57.8	-45.9 -46.1 -46.5 -49.7 -50.4	-54.5 -55.8 -52.9 -54.1 -54.5
MONTH YEAR	-44.4 -41.9	-56.9 -59.9	-41.9	-55.9	-42.7	-55.1	-47.0	-56.9	-48.3	-58.6	-43.2	-58.1

Daily Low Water Levels

QUEEN ANNES COUNTY

WELL NUMBER .-- QA Be 15. SITE ID .-- 391203076024301. PERMIT NUMBER .-- QA-70-0130.

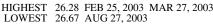
LOCATION.--Lat 39°12'03", long 76°02'43", Hydrologic Unit 02060002, at Kingstown off MD Rt. 213. Owner: U.S. Geological Survey.

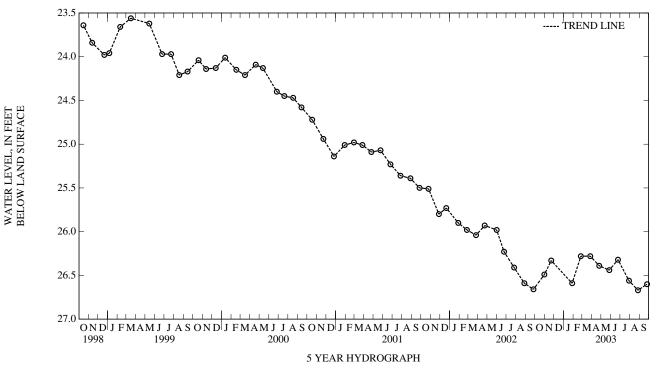
AQUIFER .-- Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 1,171 ft; casing diameter 4 in., to 1,161 ft; screen diameter 4 in., from 1,161 to 1,171 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from February 1988 to April 1991.

DATUM.--Elevation of land surface is 25 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.52 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.


PERIOD OF RECORD.--March 1971 to October 1972, July 1977 to December 1978, March 1981 to September 1982, and October 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.52 ft below land surface, October 10, 1971; lowest measured, 26.67 ft below land surface, August 27, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 22 JAN 28, 2003	26.49 26.33 26.59	FEB 25, 2003 MAR 27 APR 25	26.28 26.28 26.39	MAY 27, 2003 JUN 24 JUL 29	26.44 26.32 26.56	AUG 27, 2003 SEP 25	26.67 26.60

QUEEN ANNES COUNTY-Continued

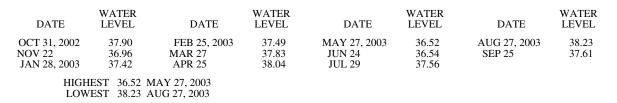
WELL NUMBER .-- QA Be 16. SITE ID .-- 391203076024302. PERMIT NUMBER .-- QA-70-0130.

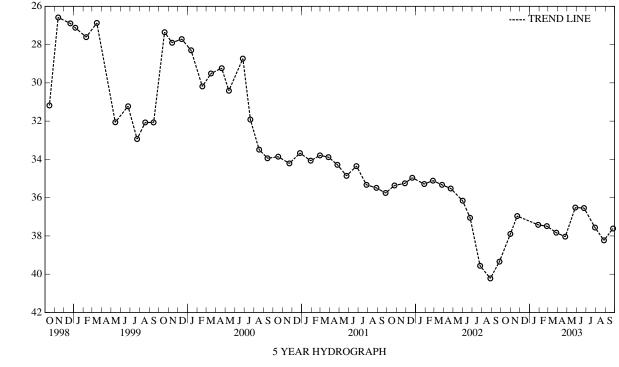
LOCATION.--Lat 39°12'03", long 76°02'43", Hydrologic Unit 02060002, at Kingstown off MD Rt. 213. Owner: U.S. Geological Survey.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 495 ft; casing diameter 6 in., to 475 ft; screen diameter 6 in., from 475 to 495 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from February 1988 to April 1991.


DATUM.--Elevation of land surface is 25 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.70 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well . Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--March 1971 to September 1972, July 1977 to May 1979, January 1981 to September 1982, and October 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.41 ft below land surface, September 11, 1971; lowest measured, 40.22 ft below land surface, August 28, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

QUEEN ANNES COUNTY-Continued

WELL NUMBER .-- QA Be 17. SITE ID .-- 391203076024303.

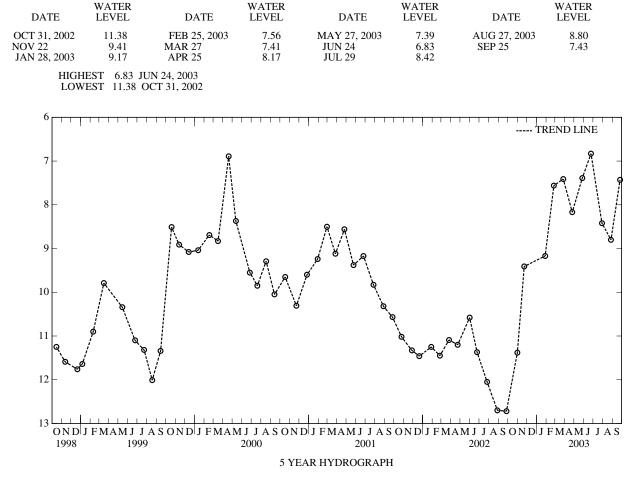
WATER LEVEL, IN FEET BELOW LAND SURFACE

LOCATION.--Lat 39°12'03", long 76°02'43", Hydrologic Unit 02060002, at Kingstown, off MD Rt. 213. Owner: U.S. Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 120 ft; casing diameter 6 in., to 100 ft; screen diameter 6 in., from 100 to 120 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from February 1988 to April 1991.


DATUM.--Elevation of land surface is 25 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.50 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--July 1977 to July 1979, March 1981 to January 1982, and October 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.83 ft below land surface, June 24, 2003; lowest measured, 13.00 ft below land surface, September 30, 1977.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

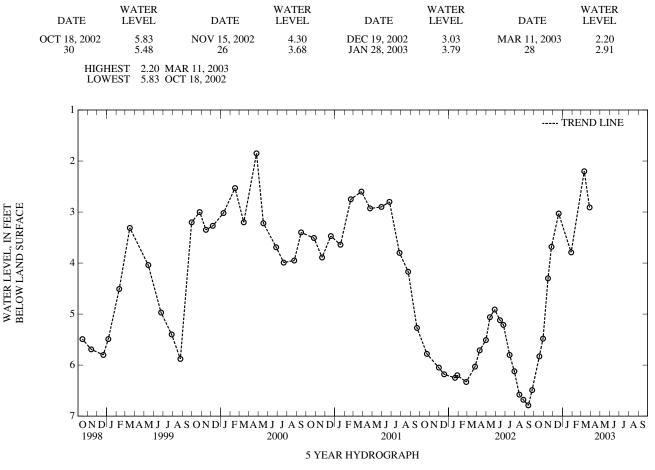
QUEEN ANNES COUNTY-Continued

WELL NUMBER .-- QA Cg 1. SITE ID.-- 390841075515201. PERMIT NUMBER .-- QA-00-3949.

LOCATION .-- Lat 39°08'41", long 75°51'52", Hydrologic Unit 02060002, at Barclay. Owner: Town of Barclay.

AQUIFER .-- Pensauken Formation (Columbia aquifer) of Upper Miocene age. Aquifer code: 122PNSK.

WELL CHARACTERISTICS .- Drilled, unused, water-table well, reported depth 60 ft; casing diameter 4 in., to 50 ft; screened from 50 to 60 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM.--Elevation of land surface is 69 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Lip of hose connector, 1.90 ft above land surface.

REMARKS.--Collection of Basic Records (CBR) observation well. Reported water level 4.0 ft below land surface, June 10, 1949. Well has been destroyed. PERIOD OF RECORD.--July 1953, May 1956 to March 2003.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.30 ft below land surface, March 10, 1998; lowest measured, 6.79 ft below land surface, September 13, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

QUEEN ANNE'S COUNTY-Continued

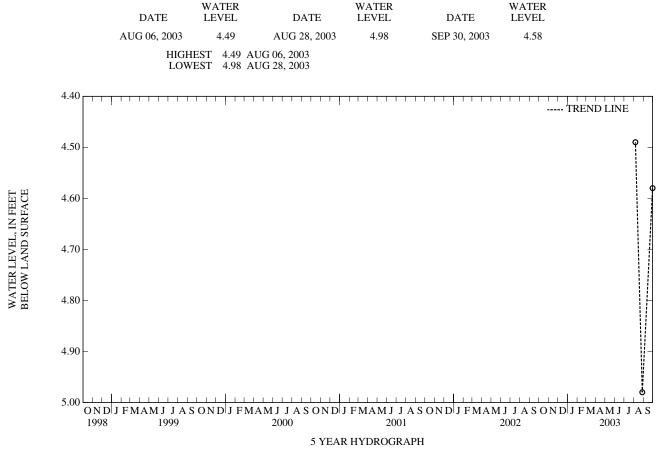
WELL NUMBER .-- QA Cg 69. SITE ID.-- 390839075515001. PERMIT NUMBER .-- QA-94-2072.

LOCATION .-- Lat 39°08'39", long 75°51'50", Hydrologic Unit 02060002. Owner: Town of Barclay.

AQUIFER .-- Pensauken Formation of upper Miocene age. Aquifer code: 122PNSK.

WELL CHARACTERISTICS .-- Drilled, water table well, depth 69 ft; casing diameter 6 in., to 29 ft; screen diameter 4 in., from 29 to 69 ft.

INSTRUMENTATION .-- Monthly measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 65.00 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of elbow pipe, 2.70 ft above land surface.

REMARKS .-- Maryland Water-Level Network observation well.

PERIOD OF RECORD.--August 2003 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.49 ft below land surface, August 6, 2003; lowest measured, 4.98 ft below land surface, August 28, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

QUEEN ANNES COUNTY-Continued

WELL NUMBER .-- QA Db 30. SITE ID .-- 390201076182701. PERMIT NUMBER .-- QA-81-0473.

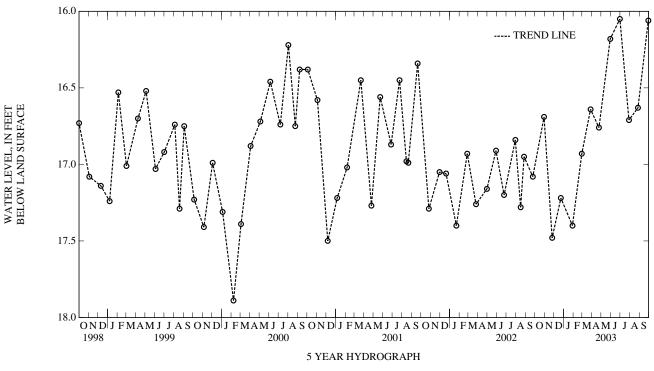
LOCATION.--Lat 39°02'01", long 76°18'27", Hydrologic Unit 02060002, north side of Pier Avenue, 0.5 mi south of Love Point. Owner: Maryland Geological Survey.

AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.--Drilled, observation, water-table well (seni-confined), depth 220 ft; casing diameter 4 in., to 210 ft; screen diameter 4 in., from 210 to 220 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM.--Elevation of land surface is 17.80 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.40 ft above land surface.


REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- April 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.59 ft below land surface, April 9, 1993; lowest measured, 18.37 ft below land surface, March 3, 1995.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002 NOV 25 DEC 23	16.69 17.48 17.22	JAN 29, 2003 FEB 28 MAR 28	17.40 16.93 16.64	APR 24, 2003 MAY 30 JUN 30	16.76 16.18 16.05	JUL 29, 2003 AUG 27 SEP 29	16.71 16.63 16.06
	EST 16.05 J EST 17.48 N	,					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

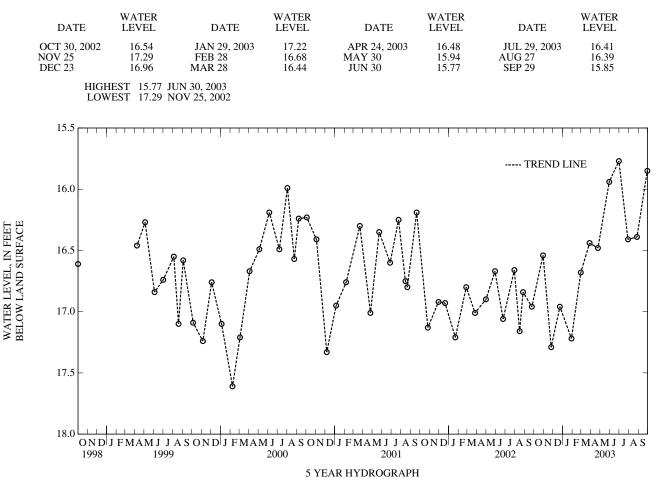
QUEEN ANNES COUNTY-Continued

WELL NUMBER .-- QA Db 32. SITE ID .-- 390201076182703. PERMIT NUMBER .-- QA-81-0473.

LOCATION.--Lat 39°02'01", long 76°18'27", Hydrologic Unit 02060002, north side of Pier Avenue, 0.5 mi south of Love Point. Owner: Maryland Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

- WELL CHARACTERISTICS.--Drilled, observation, water-table well (semi-confined), depth 116 ft; casing diameter 4 in., to 106 ft; screen diameter 4 in., from 106 to 116 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Twice yearly water level measurements from May 1985 to February 1999.


DATUM .-- Elevation of land surface is 18.00 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.10 ft above land surface.

REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--May 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.77 ft below land surface, June 30, 2003; lowest measured, 17.83 ft below land surface, December 8, 1992.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

QUEEN ANNES COUNTY-Continued

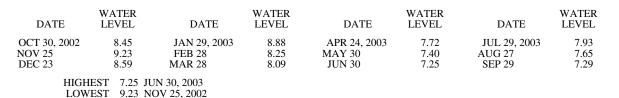
WELL NUMBER .-- QA Db 34. SITE ID .-- 390023076174301. PERMIT NUMBER .-- QA-81-0471.

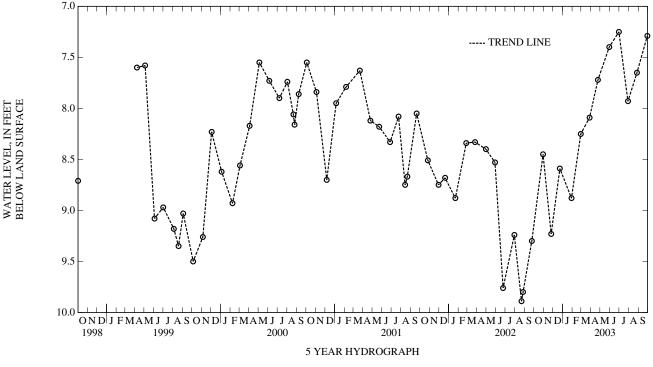
LOCATION.--Lat 39°00'23", long 76°17'43", Hydrologic Unit 02060002, near Cloverfields community park, Kent Island. Owner: Maryland Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 180 ft; casing diameter 4 in., to 170 ft; screen diameter 4 in., from 170 to 180 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Twice yearly water level measurements from April 1985 to February 1999.


DATUM .-- Elevation of land surface is 7.40 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.50 ft above land surface.


REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- April 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.15 ft below land surface, April 7, 1997; lowest measured, 9.89 ft below land surface, August 22, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

QUEEN ANNES COUNTY-Continued

WELL NUMBER .-- QA Db 35. SITE ID .-- 390119076191001. PERMIT NUMBER .-- QA-81-0472.

LOCATION.--Lat 39°01'19", long 76°19'10", Hydrologic Unit 02060002, 0.5 mi west of MD Rt. 18, at Mylander Farms, Kent Island. Owner: Maryland Geological Survey.

AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 200 ft; casing diameter 4 in., to 190 ft; screen diameter 4 in., from 190 to 200 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Twice yearly water level measurements from April 1987 to April 1989.


DATUM .-- Elevation of land surface is 7.50 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.20 ft above land surface.

REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- August 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.93 ft below land surface, December 16, 1996; lowest measured, 7.65 ft below land surface, December 8, 1992.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

QUEEN ANNES COUNTY-Continued

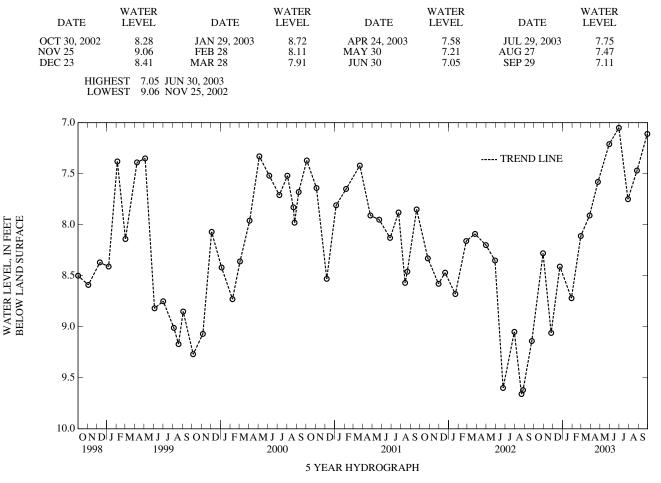
WELL NUMBER .-- QA Db 37. SITE ID .-- 390023076174302. PERMIT NUMBER .-- QA-81-0471.

LOCATION.--Lat 39°00'23", long 76°17'43", Hydrologic Unit 02060002, near Cloverfield community park, Kent Island. Owner: Maryland Geological Survey.

AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 250 ft; casing diameter 4 in., to 240 ft; screen diameter 4 in., from 240 to 250 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 7.10 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.50 ft above land surface.

REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- April 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.28 ft below land surface, April 9, 1993, and December 16, 1996; lowest measured, 9.74 ft below land surface, January 11, 1994.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

QUEEN ANNES COUNTY-Continued

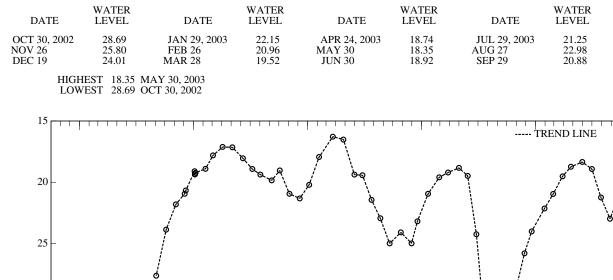
WELL NUMBER .-- QA De 27. SITE ID .-- 390251076034401. PERMIT NUMBER .-- QA-94-1853.

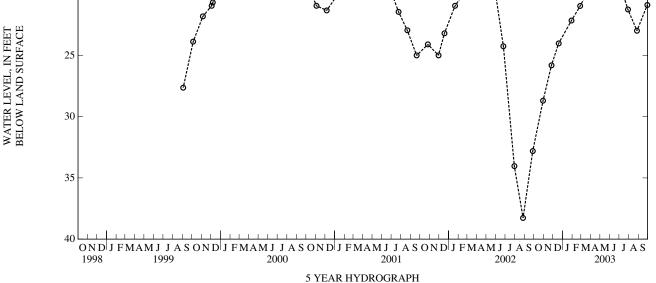
LOCATION .-- Lat 39°02'51", long 76°03'44", Hydrologic Unit 02060002, at Sheriff's Office, Centreville. Owner: Town of Centreville.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.--Drilled, artesian well, drilled depth 665 ft, measured depth 370 ft; casing diameter 4 in., to 315 ft; screen diameter 4 in., from 315 to 365 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with digital water-level recorder--15-minute recording interval, September 1999 to July 2000.


DATUM.--Elevation of land surface is 10.19 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of concrete base, 1.49 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--September 1999 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.28 ft below land surface, March 22, 2001; lowest measured, 38.27 ft below land surface, August 27, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

QUEEN ANNES COUNTY-Continued

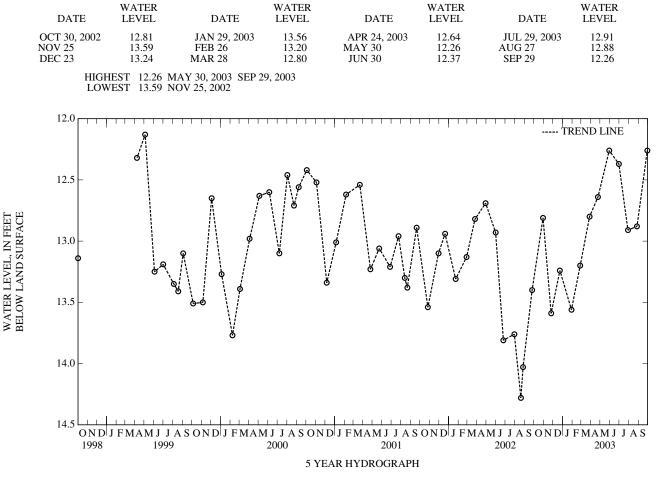
WELL NUMBER .-- QA Ea 77. SITE ID .-- 385718076211501. PERMIT NUMBER .-- QA-81-0474.

LOCATION.--Lat 38°57'18", long 76°21'15", Hydrologic Unit 02060002, at Matapeake State Park. Owner: Maryland Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 205 ft; casing diameter 4 in., to 195 ft; screen diameter 4 in., from 195 to 205 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Twice yearly water level measurements from April 1985 to February 1999.


DATUM .-- Elevation of land surface is 10.80 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.24 ft above land surface.

REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- April 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.07 ft below land surface, December 2, 1985; lowest measured, 14.28 ft below land surface, August 20, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

QUEEN ANNES COUNTY-Continued

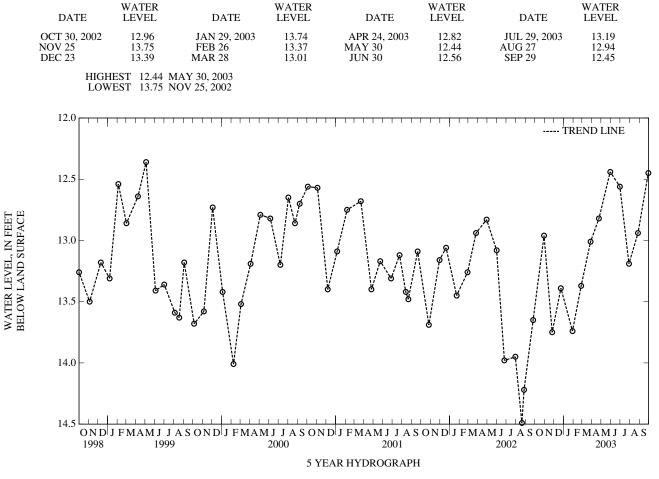
WELL NUMBER .-- QA Ea 78. SITE ID .-- 385718076211502 . PERMIT NUMBER .-- QA-81-0474.

LOCATION.--Lat 38°57'18", long 76°21'15", Hydrologic Unit 02060002, at Matapeake State Park. Owner: Maryland Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 135 ft; casing diameter 4 in., to 125 ft; screen diameter 4 in., from 125 to 135 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 11.80 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.91 ft above land surface.

REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- April 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.45 ft below land surface, June 4, 1992; lowest measured, 14.49 ft below land surface, August 20, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

QUEEN ANNES COUNTY-Continued

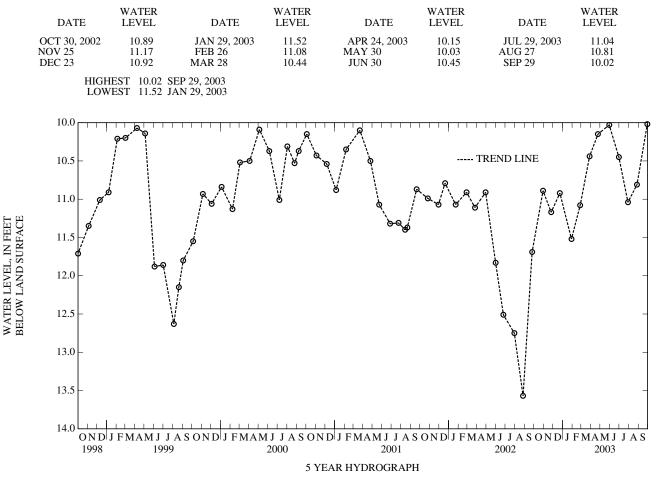
WELL NUMBER .-- QA Ea 79. SITE ID .-- 385757076200101. PERMIT NUMBER .-- QA-81-0469.

LOCATION.--Lat 38°57'57", long 76°20'01", Hydrologic Unit 02060002, at Mowbray Park, Kent Island. Owner: Maryland Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 298 ft; casing diameter 4 in., to 288 ft; screen diameter 4 in., from 288 to 298 ft.

INSTRUMENTATION.--Monthly measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Measured twice yearly from October 1986 to April 1989.


DATUM .-- Elevation of land surface is 8.30 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.30 ft above land surface.

REMARKS .-- Kent Island ground-water monitoring network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- April 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.30 ft below land surface, December 2, 1985; lowest measured, 13.57 ft below land surface, August 27, 2002.

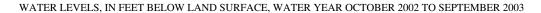
QUEEN ANNES COUNTY-Continued

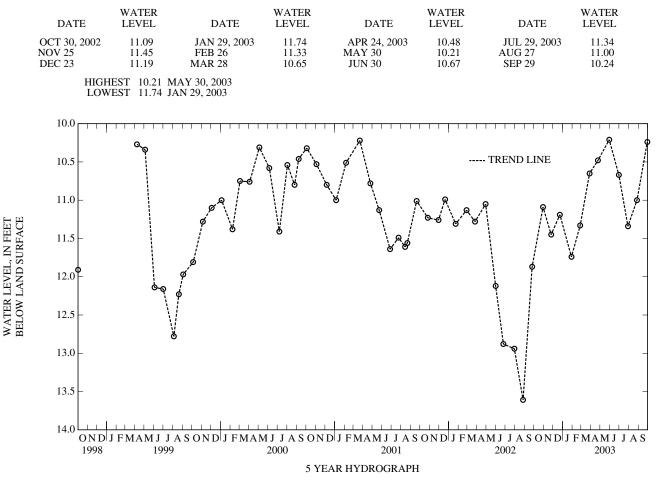
WELL NUMBER .-- QA Ea 80. SITE ID .-- 385757076200102. PERMIT NUMBER .-- QA-81-0469.

LOCATION.--Lat 38°57'57", long 76°20'01", Hydrologic Unit 02060002, at Mowbray Park, Kent Island. Owner: Maryland Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 130 ft; casing diameter 4 in., to 120 ft; screen diameter 4 in., from 120 to 130 ft.


INSTRUMENTATION.--Monthly measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Measured twice yearly from October 1986 to February 1999.


DATUM .-- Elevation of land surface is 8.50 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.51 ft above land surface.

REMARKS .-- Kent Island ground-water monitoring network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- April 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.45 ft below land surface, December 2, 1985; lowest measured, 13.61 ft below land surface, August 27, 2002.

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

QUEEN ANNES COUNTY-Continued

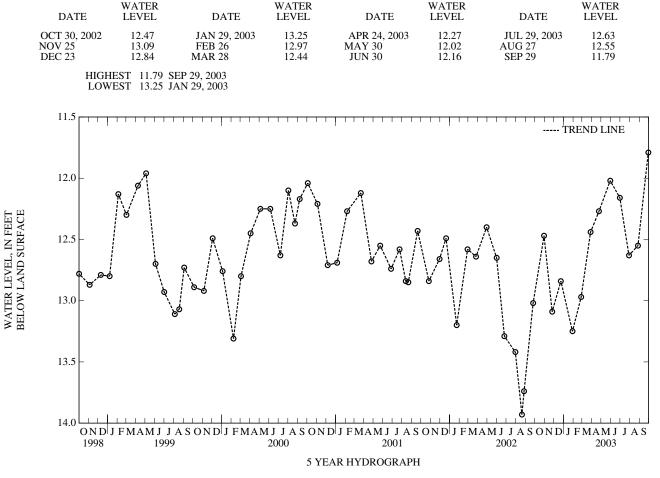
WELL NUMBER .-- QA Ea 81. SITE ID .-- 385718076211503. PERMIT NUMBER .-- QA-81-0474.

LOCATION.--Lat 38°57'18", long 76°21'15", Hydrologic Unit 02060002, at Matapeake State Park. Owner: Maryland Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 310 ft; casing diameter 4 in., to 300 ft; screen diameter 4 in., from 300 to 310 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 12.40 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.16 ft above land surface.

REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- April 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.54 ft below land surface, December 2, 1985; lowest measured, 13.93 ft below land surface, August 20, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

QUEEN ANNES COUNTY-Continued

WELL NUMBER .-- QA Eb 110. SITE ID. -- 385751076171603. PERMIT NUMBER .-- QA-73-2979.

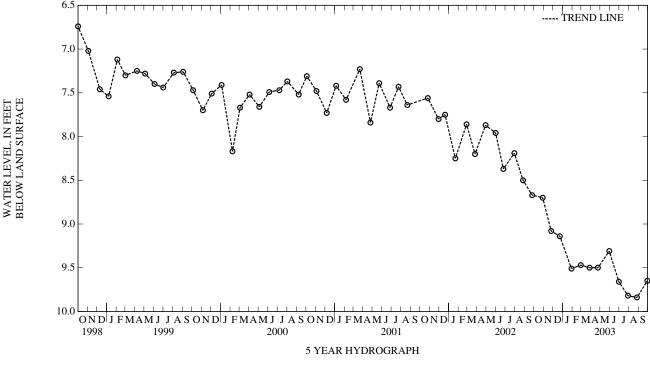
LOCATION.--Lat 38°57'51", long 76°17'16", Hydrologic Unit 02060002, near Chester, Kent Island. Owner: U.S. Geological Survey.

AQUIFER .-- Patuxent Formation of Lower Cretaceous age. Aquifer code: 217PTXN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 2,485 ft; casing diameter 4 in., to 2,413 ft, 2,423 to 2,465 ft, and 2,475 to 2,485 ft; screen diameter 4 in., from 2,413 to 2,423 ft, and 2,465 to 2,475 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Twice yearly water level measurements from January 1980 to October 1989.

DATUM .-- Elevation of land surface is 13.98 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.36 ft above land surface.


REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- January 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.99 ft above land surface, January 21, 1980; lowest measured, 9.84 ft below land surface, August 27, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 23	8.70 9.08 9.14	JAN 29, 2003 FEB 28 MAR 28	9.51 9.47 9.50	APR 24, 2003 MAY 30 JUN 30	9.50 9.31 9.66	JUL 29, 2003 AUG 27 SEP 29	9.82 9.84 9.65
HIGH LOW	EST 8.70 O EST 9.84 A	CT 29, 2002 UG 27, 2003					

QUEEN ANNES COUNTY-Continued

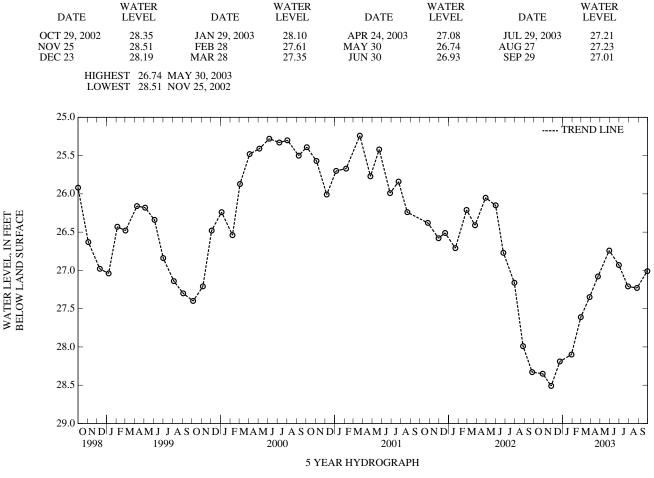
WELL NUMBER .-- QA Eb 111. SITE ID .-- 385751076171601. PERMIT NUMBER .-- QA-73-3122.

LOCATION.--Lat 38°57'51", long 76°17'16", Hydrologic Unit 02060002, near Chester, Kent Island. Owner: U.S. Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 985 ft; casing diameter 4 in., to 955 ft, and 965 to 975 ft; screen diameter 4 in., from 955 to 965 ft, and 975 to 985 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Twice yearly water level measurements from April 1984 to September 1989.


DATUM .-- Elevation of land surface is 14.03 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.41 ft above land surface.

REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--December 1979 to April 1984, March 1985 to April 1989, and September 1989 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.02 ft below land surface, January 21, 1980; lowest measured, 28.51 ft below land surface, November 25, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

QUEEN ANNES COUNTY-Continued

WELL NUMBER .-- QA Eb 112. SITE ID .-- 385751076171602. PERMIT NUMBER .-- QA-73-3123.

LOCATION.--Lat 38°57'51", long 76°17'16", Hydrologic Unit 02060002, near Chester, Kent Island. Owner: U.S. Geological Survey.

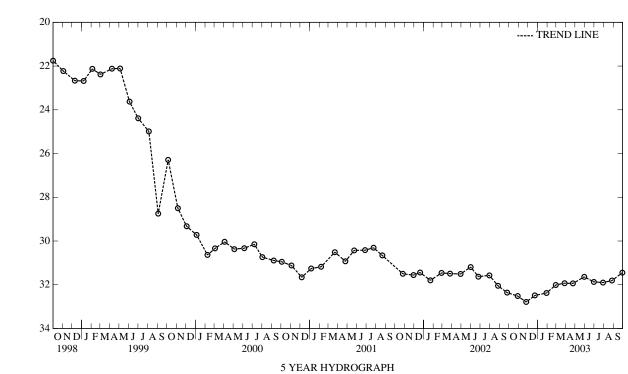
AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 1,679 ft; casing diameter 4 in., to 1,652 ft, and 1,662 to 1,669 ft; screen diameter 4 in., from 1,652 to 1,662 ft, and 1,669 to 1,679 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Twice yearly water level measurements from January 1980 to September 1980.

DATUM .-- Elevation of land surface is 13.92 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.36 ft above land surface.

REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawals.


PERIOD OF RECORD .-- January 1980 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.69 ft below land surface, January 21, 1980; lowest measured, 32.79 ft below land surface, November 25, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 23	32.52 32.79 32.49	JAN 29, 2003 FEB 28 MAR 28	32.38 32.01 31.93	APR 24, 2003 MAY 30 JUN 30	31.94 31.64 31.87	JUL 29, 2003 AUG 27 SEP 29	31.90 31.81 31.45
HIGH	EST 31.45 S	EP 29, 2003					

LOWEST 32.79 NOV 25, 2002

QUEEN ANNES COUNTY-Continued

WELL NUMBER .-- QA Eb 113. SITE ID .-- 385748076172001. PERMIT NUMBER .-- QA-73-3172.

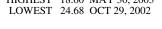
LOCATION.--Lat 38°57'48", long 76°17'20", Hydrologic Unit 02060001, near Chester, Kent Island. Owner: U.S. Geological Survey.

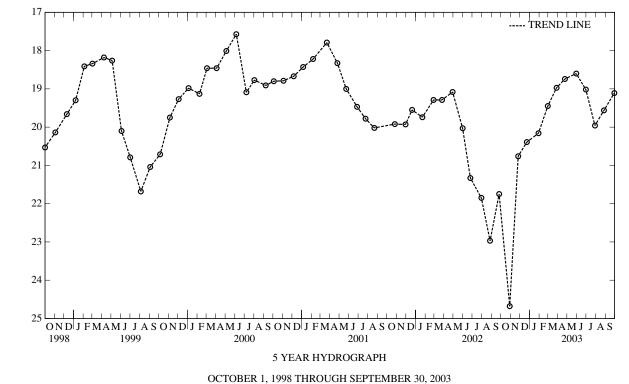
AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 216 ft; casing diameter 6 in., to 176 ft; screen diameter 6 in., from 176 to 216 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Equipped with graphic water-level recorder from June 1986 to October 1994.

DATUM.--Elevation of land surface is 11.34 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 1.65 ft above land surface.


REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.


PERIOD OF RECORD.--October 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.28 ft below land surface, April 1, 1983; lowest measured, 24.68 ft below land surface, October 29, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 23	24.68 20.76 20.39	JAN 29, 2003 FEB 28 MAR 28	20.16 19.45 18.97	APR 24, 2003 MAY 30 JUN 30	18.74 18.60 19.02	JUL 29, 2003 AUG 27 SEP 29	19.96 19.56 19.11
HIGH	EST 18.60 N	IAY 30 2003					

WATER LEVEL, IN FEET BELOW LAND SURFACE

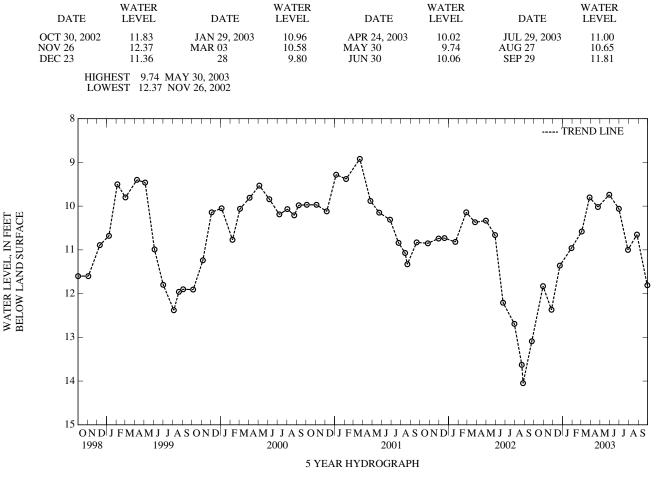
QUEEN ANNES COUNTY-Continued

WELL NUMBER .-- QA Eb 155. SITE ID .-- 385843076155302. PERMIT NUMBER .-- QA-81-0470.

LOCATION.--Lat 38°58'43", long 76°15'53", Hydrologic Unit 02060002, at north end of Piney Creek Rd., Kent Island. Owner: Maryland Geological Survey. AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 245 ft; casing diameter 4 in., to 235 ft; screen diameter 4 in., from 235 to 245 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Twice yearly water level measurements from June 1986 to April 1989.


DATUM .-- Elevation of land surface is 3.90 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.50 ft above land surface.

REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--October 1984, April 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.60 ft below land surface, December 2, 1985; lowest measured, 14.05 ft below land surface, August 27, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

QUEEN ANNES COUNTY-Continued

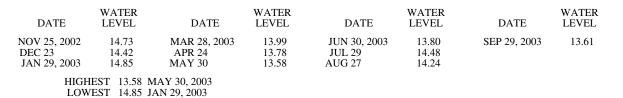
WELL NUMBER .-- QA Eb 156. SITE ID .-- 385852076195201. PERMIT NUMBER .-- QA-81-0475.

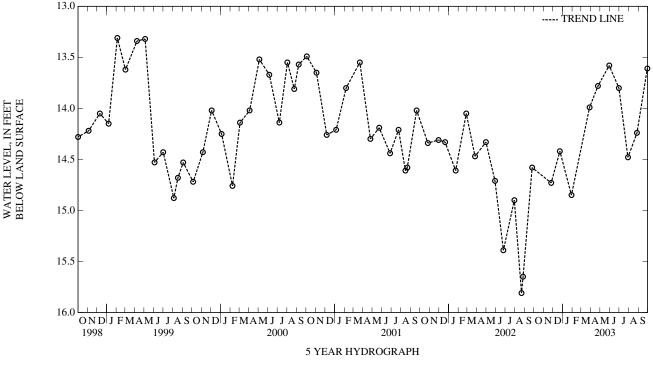
LOCATION.--Lat 38°58'52", long 76°19'52", Hydrologic Unit 02060002, north of US Rt. 50, at Terrapin Beach Park, Kent Island. Owner: Maryland Geological Survey.

AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 220 ft; casing diameter 4 in., to 210 ft; screen diameter 4 in., from 210 to 220 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel. Twice yearly water level measurements from September 1987 to April 1989.


DATUM .-- Elevation of land surface is 12.01 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.20 ft above land surface.


REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--October 1984, April 1985 to June 1986, September 1987 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.97 ft below land surface, August 1, 1990; lowest measured, 15.81 ft below land surface, August 22, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

QUEEN ANNES COUNTY-Continued

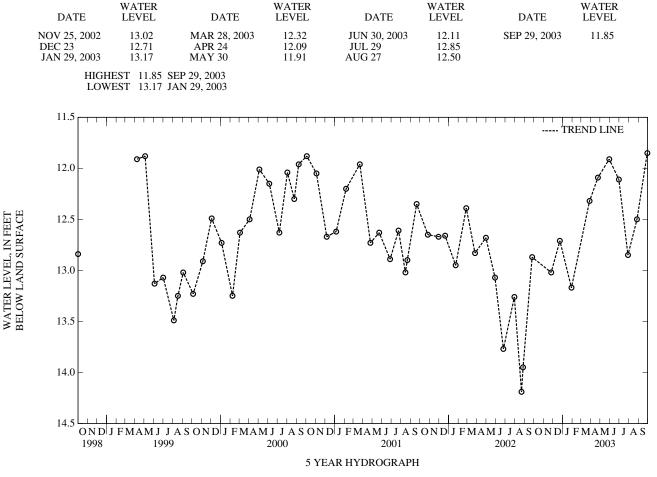
WELL NUMBER .-- QA Eb 157. SITE ID .-- 385852076195202. PERMIT NUMBER .-- QA-81-0475.

LOCATION.--Lat 38°58'52", long 76°19'52", Hydrologic Unit 02060002, north of US Rt. 50, Terrapin Beach Park, Kent Island. Owner: Maryland Geological Survey.

AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 120 ft; casing diameter 4 in., to 110 ft; screen diameter 4 in., from 110 to 120 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel from May 1989 to November 1991, March 1999 to current year. Twice yearly water level measurements from March 1988 to April 1989, April 1992 to February 1999.


DATUM.--Elevation of land surface is 11.92 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.50 ft above land surface.

REMARKS .-- Kent Island Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--October 1984, April 1985 to June 1986, March 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.40 ft below land surface, December 2, 1985; lowest measured, 14.19 ft below land surface, August 22, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

QUEEN ANNES COUNTY-Continued

WELL NUMBER .-- QA Ec 1. SITE ID .-- 385756076105301.

LOCATION.--Lat 38°57'56", long 76°10'53", Hydrologic Unit 02060002, near Grasonville, south side of MD Rt. 18, 0.1 mi. northeast of intersection with Nesbit Rd. Owner: Maryland State Highway Administration.

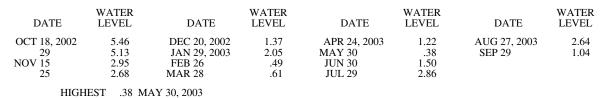
AQUIFER .-- Kent Island Formation (Columbia aquifer) of Pleistocene age. Aquifer code: 112KILD.

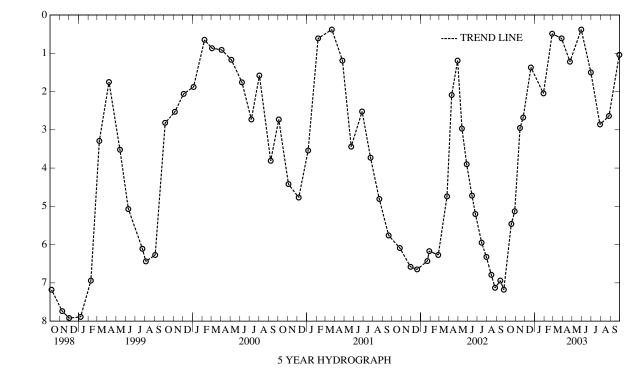
5.46 OCT 18, 2002

WELL CHARACTERISTICS .-- Drilled, unused, water-table driven well, depth 21 ft; casing diameter 1.25 in., to 21 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM.--Elevation of land surface is 20 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 2 in. coupling, 0.27 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by natural climatic response.


PERIOD OF RECORD .-- September 1949 to current year.

LOWEST

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.03 ft below land surface, August 2, 1996; lowest measured, 8.46 ft below land surface, January 7, 1988.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

QUEEN ANNES COUNTY-Continued

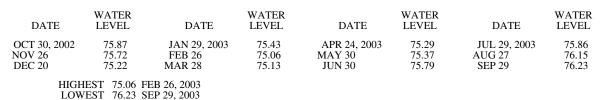
WELL NUMBER .-- QA Ef 29. SITE ID .-- 385534075573601. PERMIT NUMBER .-- QA-81-1593.

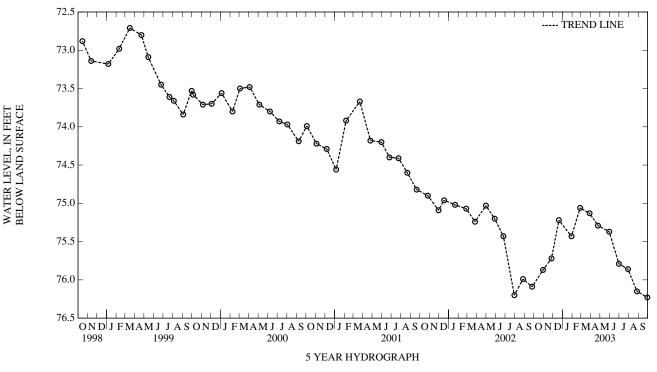
LOCATION.--Lat 38°55'38", long 75°57'40", Hydrologic Unit 02060005, off east side of MD Rt. 309, 0.2 mi. north of intersection with MD Rt. 404, Tuckahoe State Park. Owner: Md. Dept. of Natural Resources, Fisheries Division.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 1,325 ft; casing diameter 14 in., to 500 ft, and 8 in., from 500 to 1,110 ft, 1,120 to 1,135 ft, 1,180 to 1,195 ft, 1,210 to 1,230 ft, 1,270 to 1,285 ft, and 1,315 to 1,325 ft; screen diameter 8 in., from 1,110 to 1,120 ft, 1,135 to 1,180 ft, 1,195 to 1,210 ft, 1,230 to 1,270 ft, and 1,285 to 1,315 ft.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 61.69 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 in. pipe, 3.80 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- June 1986 to December 1986, November 1990 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 62.30 ft below land surface, August 27, 1986; lowest measured, 76.23 ft below land surface, September 29, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

QUEEN ANNES COUNTY-Continued

WELL NUMBER .-- QA Fc 7. SITE ID .-- 385429076120201. PERMIT NUMBER .-- QA-73-2191.

LOCATION .-- Lat 38°54'29", long 76°12'02", Hydrologic Unit 02060002, off Greenwood Shoals, at Prospect Plantation. Owner: Maryland Community Developers Incorporated.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 356 ft; casing diameter 4 in., to 336 ft; screen diameter 2 in., from 336 to 356 ft.

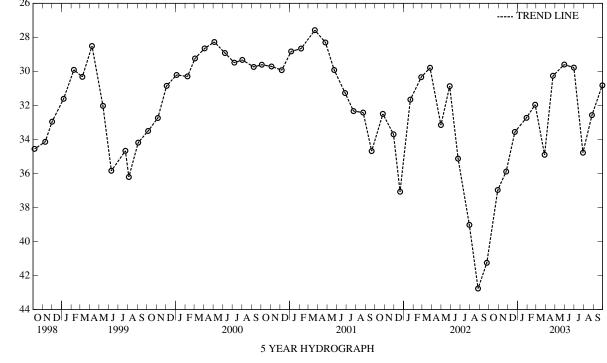
INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM .-- Elevation of land surface is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawals.

PERIOD OF RECORD .-- February 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 19.77 ft below land surface, March 3, 1983; lowest measured, 42.77 ft below land surface, August 27, 2002.


WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

HIGHEST 29.60 MAY 30, 2003 LOWEST 36.98 OCT 29, 2002

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

ST. MARYS COUNTY

WELL NUMBER.--SM Bb 15. SITE ID.--382838076470101. PERMIT NUMBER.--SM-73-3430.

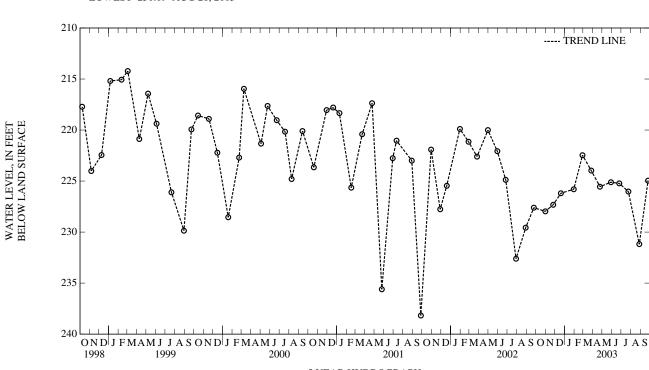
LOCATION.--Lat 38°28'38", long 76°47'01", Hydrologic Unit 02070011, at Charlotte Hall Veterans Home. Owner: U.S. Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 460 ft; casing diameter 4 in., to 441 ft; casing diameter 2 in., from 441 to 450 ft; screen diameter 2 in., from 450 to 460 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 165.40 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.10 ft above land surface.


REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--August 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 159.76 ft below land surface, August 10, 1979, and Aug. 31, 1979; lowest measured, 238.18 ft below land surface, September 27, 2001.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 31, 2002 NOV 25 DEC 20	227.97 227.32 226.19	JAN 30, 2003 FEB 27 MAR 27	225.80 222.46 223.97	APR 24, 2003 MAY 29 JUN 25	225.55 225.11 225.23	JUL 24, 2003 AUG 28 SEP 25	226.03 231.19 224.96
	EST 222.46 I EST 231.19	FEB 27, 2003 AUG 28, 2003					

5 YEAR HYDROGRAPH

ST. MARYS COUNTY-Continued

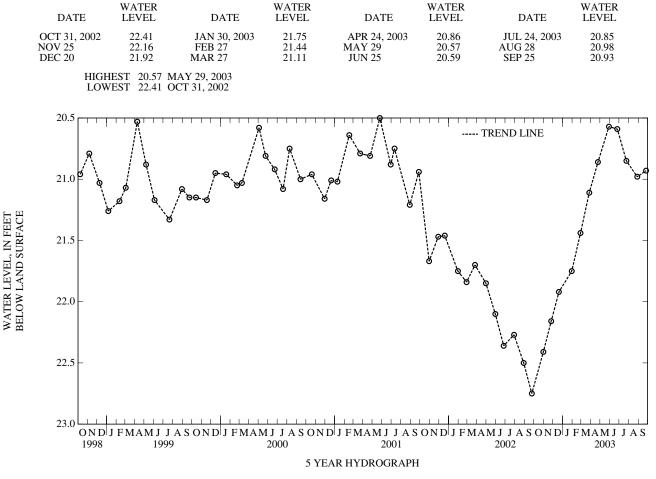
WELL NUMBER.--SM Bb 22. SITE ID.--382838076470102. PERMIT NUMBER.--SM-73-3787.

LOCATION.--Lat 38°28'38", long 76°47'01", Hydrologic Unit 02070011, at Charlotte Hall Veterans Home. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 218 ft; casing diameter 4 in., to 210 ft; screen diameter 2 in., from 210 to 218 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 165.21 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.55 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. On July 12, 1989, the water-level measured 27.95 ft below land surface; this decline was due to a nearby production well pump test.

PERIOD OF RECORD .-- July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.27 ft below land surface, July 9, 1980; lowest measured, 22.75 ft below land surface, September 24, 2002--See REMARKS.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

ST. MARYS COUNTY-Continued

WELL NUMBER.--SM Bc 39. SITE ID.--382605076430201. PERMIT NUMBER.--SM-94-3921.

LOCATION.--Lat 38°26'05", long 76°43'02", Hydrologic Unit 02060006, at Persimmon Hills Estate. Owner: Maryland Geological Survey.

AQUIFER .-- Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

WELL CHARACTERISTICS.--Drilled, artesian well, depth 1,532 ft; casing diameter 12 in., 39 ft, casing diameter 4 in., from +2.5 to 1,492, 1,512 to 1,522 ft, and 1,532 to 1,542 ft; screen diameter 4 in., from 1,492 to 1,512 ft, and 1,522 to 1,532 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recording interval, April 2002 to current year.

DATUM.--Elevation of land surface is 161.54 ft above North American Vertical Datum of 1988. Measuring point: Top of shelter platform, 2.50 ft above land surface.

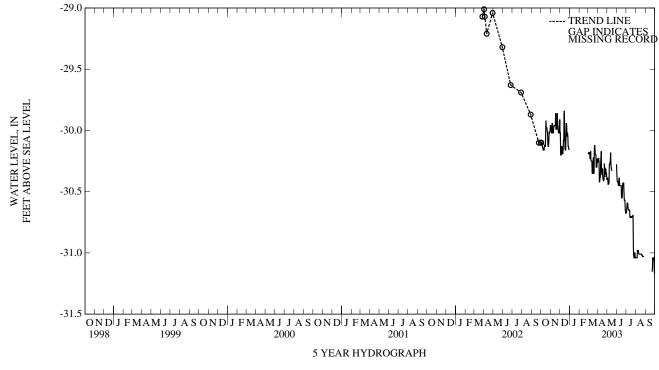
REMARKS.--Southern Maryland Patapsco Aquifer Well Drilling Project observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- March 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.99 ft below sea level, May 2, 2002 (recorder); lowest measured, 30.12 ft below sea level, September 24, 25, and 26, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 25 DEC 20	-29.99 -29.98 -29.84	JAN 30, 2003 FEB 27 MAR 27	-30.40 -30.17 -30.27	APR 24, 2003 MAY 29 JUN 25	-30.34 -30.29 -30.56	JUL 24, 2003 AUG 28 SEP 25	-30.96 -31.18 -31.04
LOW	EST -31.18 A	UG 28, 2003					


HIGHEST -29.84 DEC 20, 2002

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTOBER		NOVE	MBER	DECEMBER		JANU	ARY	FEBRUARY		MARCH	
1 2 3 4 5	-30.10 -30.10 -30.10 -30.10 -30.10	-30.10 -30.10 -30.10 -30.10 -30.12	-29.96 -29.96 -29.97 -30.01 -29.94	-29.96 -29.97 -30.01 -30.02 -30.02	-29.86 -30.00 -30.00 -30.20 -30.03	-30.02 -30.02 -30.20 -30.20 -30.20	 	 	 	 	-30.19 -29.98 -29.98 -30.18 -30.11	-30.19 -30.19 -30.18 -30.18 -30.18
6 7 8 9 10	-30.12 -30.14 -30.14 -30.16 -30.16	-30.14 -30.14 -30.16 -30.16 -30.16	-29.81 -29.88 -30.02 -30.02 -29.96	-29.94 -30.02 -30.02 -30.02 -30.02	-30.03 -30.13 -30.13 -30.14 -30.15	-30.13 -30.13 -30.14 -30.19 -30.19	 	 	 	 	-30.04 -30.18 -30.17 -30.15 -30.16	-30.18 -30.23 -30.23 -30.17 -30.24
11 12 13 14 15	-30.12 -30.12 -30.12 -30.12 -30.02	-30.16 -30.12 -30.12 -30.13 -30.13	-29.95 -29.96 -29.96 -29.96 -29.96	-29.96 -29.97 -29.96 -29.96 -29.96	-30.03 -30.03 -29.83 -29.80 -29.84	-30.15 -30.08 -30.08 -29.84 -29.88	 	 	 	 	-30.24 -30.25 -30.20 -30.23 -30.35	-30.25 -30.25 -30.25 -30.35 -30.35
16 17 18 19 20	-29.79 -29.80 -29.92 -29.98 -29.98	-30.02 -29.92 -29.98 -29.98 -29.98	-29.86 -29.79 -29.79 -29.99 -29.99	-29.96 -29.86 -29.99 -29.99 -29.99	-29.88 -30.02 -30.15 -30.05 -29.83	-30.02 -30.15 -30.16 -30.16 -30.05	 	 	 	 	-30.26 -30.18 -30.18 -30.22 -30.15	-30.35 -30.26 -30.22 -30.35 -30.35
21 22 23 24 25	-29.98 -30.01 -30.02 -30.11 -30.10	-30.01 -30.02 -30.11 -30.13 -30.13	-29.86 -29.80 -29.80 -29.91 -29.96	-29.99 -29.86 -29.91 -29.96 -29.98	-29.88 -29.94 -29.95 -30.01 -29.80	-29.94 -29.95 -30.01 -30.05 -30.02	 	 	 	 	-30.12 -30.12 -30.12 -30.15 -30.20	-30.15 -30.12 -30.15 -30.20 -30.20
26 27 28 29 30 31	-30.01 -30.01 -30.01 -30.00 -29.92 -29.92	-30.10 -30.01 -30.02 -30.02 -30.00 -29.96	-29.98 -30.02 -30.02 -29.91 -29.83	-30.02 -30.02 -30.02 -30.02 -29.91	-29.85 -30.05 -30.13 -30.12 -30.15 -30.13	-30.05 -30.13 -30.13 -30.15 -30.16 -30.16	 	 	 -30.17 	 -30.19 	-30.19 -30.20 -30.30 -30.23 -30.22 -30.21	-30.20 -30.30 -30.30 -30.30 -30.23 -30.23
MONTH	-29.79	-30.16	-29.79	-30.02	-29.80	-30.20			-30.17	-30.19	-29.98	-30.35

ST. MARYS COUNTY—Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	
	APRIL		MAY		JUI	JUNE		JULY		AUGUST		SEPTEMBER	
1 2 3 4 5	-30.23 -30.23 -30.23 -30.23 -30.23	-30.26 -30.23 -30.23 -30.23 -30.23 -30.26	-30.39 -30.34 -30.34 -30.38 -30.43	-30.40 -30.39 -30.39 -30.44 -30.44	-30.20 -30.35 -30.41 -30.42 -30.42	-30.35 -30.41 -30.42 -30.42 -30.42	-30.67 -30.63 -30.60 -30.59 -30.59	-30.67 -30.67 -30.63 -30.60 -30.59	-31.04 -31.04 -31.04 -31.04 -30.98	-31.04 -31.04 -31.04 -31.04 -31.04	-31.20 -31.20 -31.20 -31.20 -31.20	-31.20 -31.20 -31.20 -31.20 -31.20	
6 7 8 9 10	-30.26 -30.39 -30.38 -30.28 -30.22	-30.42 -30.42 -30.39 -30.38 -30.28	-30.43 -30.28 -30.28 -30.24 -30.24	-30.43 -30.43 -30.28 -30.28 -30.26	-30.42 -30.39 -30.39 -30.39 -30.39	-30.45 -30.45 -30.39 -30.39 -30.45	-30.59 -30.60 -30.63 -30.65 -30.65	-30.60 -30.64 -30.65 -30.65 -30.65	-30.98 -30.98 -30.98 -30.98 -30.98	-30.98 -30.98 -30.98 -30.98 -31.00	-31.20 -31.20 -31.20 -31.20 -31.20	-31.20 -31.20 -31.20 -31.20 -31.20	
11 12 13 14 15	-30.14 -30.13 -30.17 -30.32 -30.31	-30.22 -30.17 -30.32 -30.36 -30.36	-30.17 -30.16 -30.18 -30.26 -30.30	-30.26 -30.18 -30.27 -30.30 -30.32	-30.45 -30.45 -30.45 -30.45 -30.45	-30.45 -30.45 -30.45 -30.45 -30.45	-30.63 -30.63 -30.65 -30.71 -30.70	-30.65 -30.65 -30.71 -30.71 -30.71	-31.00 -31.01 -31.01 -31.01 -31.01	-31.01 -31.01 -31.01 -31.01 -31.01	-31.20 -31.20 -31.20 -31.20 -31.20	-31.20 -31.20 -31.20 -31.20 -31.20	
16 17 18 19 20	-30.25 -30.25 -30.38 -30.40 -30.40	-30.31 -30.38 -30.40 -30.41 -30.41	-30.31 -30.33 -30.39 -30.39 -30.39	-30.33 -30.40 -30.40 -30.39 -30.39	-30.45 -30.55 -30.49 -30.43 -30.43	-30.55 -30.55 -30.55 -30.49 -30.43	-30.70 -30.70 -30.71 -30.70 -30.70	-30.70 -30.71 -30.71 -30.71 -30.70	-31.01 -31.01 -31.01 -31.01 -31.01	-31.01 -31.01 -31.01 -31.01 -31.02	-31.20 -31.20 -31.20 -31.20 -31.15	-31.20 -31.20 -31.20 -31.20 -31.20	
21 22 23 24 25	-30.27 -30.26 -30.26 -30.30 -30.31	-30.40 -30.27 -30.30 -30.38 -30.35	-30.38 -30.37 -30.37 -30.31 -30.31	-30.38 -30.38 -30.37 -30.37 -30.31	-30.43 -30.43 -30.43 -30.43 -30.51	-30.43 -30.43 -30.43 -30.51 -30.57	-30.70 -30.69 -30.69 -30.69 -30.96	-30.70 -30.70 -30.69 -30.96 -31.02	-31.01 -31.01 -31.02 -31.03 -31.03	-31.02 -31.02 -31.03 -31.03 -31.03	-31.15 -31.13 -31.03 -31.03 -31.04	-31.15 -31.15 -31.13 -31.04 -31.06	
26 27 28 29 30 31	-30.25 -30.25 -30.33 -30.34 -30.34	-30.31 -30.33 -30.35 -30.35 -30.40	-30.30 -30.30 -30.29 -30.28 -30.28 -30.28	-30.31 -30.30 -30.30 -30.29 -30.28 -30.28	-30.57 -30.56 -30.56 -30.65 -30.67	-30.57 -30.57 -30.65 -30.67 -30.68	-31.02 -31.00 -31.00 -31.00 -31.00 -31.04	-31.04 -31.04 -31.00 -31.00 -31.04 -31.04	-31.02 -31.02 -31.00 -31.18 -31.18 -31.18	-31.03 -31.03 -31.18 -31.18 -31.18 -31.20	-31.04 -31.04 -31.04 -31.04 -31.15	-31.04 -31.04 -31.04 -31.15 -31.17	
MONTH YEAR	-30.13 -29.79	-30.42 -31.20	-30.16	-30.44	-30.20	-30.68	-30.59	-31.04	-30.98	-31.20	-31.03	-31.20	

Daily Low Water Levels

ST. MARYS COUNTY-Continued

WELL NUMBER.--SM Dd 46. SITE ID.--381616076364701. PERMIT NUMBER.--SM-73-1990.

LOCATION.--Lat 38°16'16", long 76°36'47", Hydrologic Unit 02070011, at Leonardtown Senior High School, Redgate. Owner: U.S. Geological Survey.

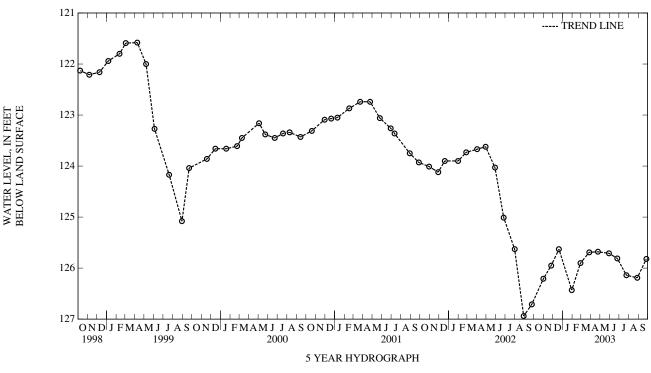
AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

LOWEST 126.43 JAN 30, 2003

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 296 ft; casing diameter 6 in., to 150 ft; casing diameter 2 in., from 150 to 286 ft; screen diameter 2 in., from 286 to 296 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 118.84 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.90 ft above land surface.


REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 109.36 ft below land surface, July 9, 1979; lowest measured, 126.94 ft below land surface, August 29, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 31, 2002	126.21	JAN 30, 2003	126.43	APR 24, 2003	125.68	JUL 24, 2003	126.14
NOV 25	125.95	FEB 27	125.90	MAY 29	125.71	AUG 28	126.19
DEC 20	125.63	MAR 27	125.69	JUN 25	125.81	SEP 26	125.82
HIGH	EST 125.63 I	DEC 20, 2002					

ST. MARYS COUNTY-Continued

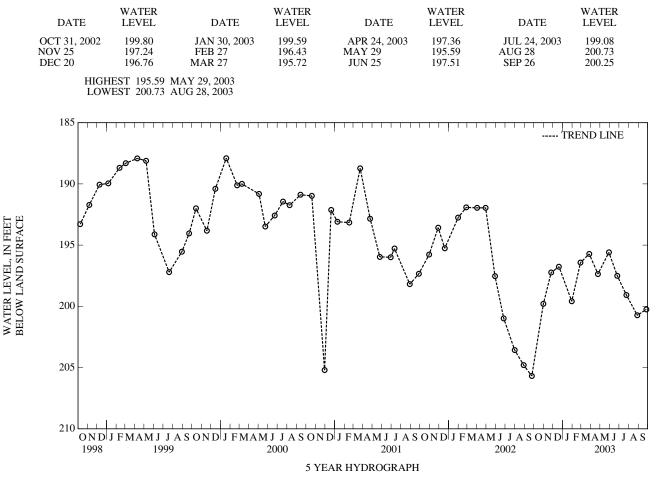
WELL NUMBER.--SM Dd 49. SITE ID.--381616076364702. PERMIT NUMBER.--SM-73-3081.

LOCATION.--Lat 38°16'16", long 76°36'47", Hydrologic Unit 02070011, at Leonardtown Senior High School, Redgate. Owner: U.S. Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 619 ft; casing diameter 6 in., to 46 ft; casing diameter 4 in., to 279 ft; casing diameter 1.5 in., from 279 to 534 ft, and 544 to 619 ft; screen diameter 3 in., from 534 to 544 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 118.94 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.40 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. The November 29, 2000, water level measured at 205.21 ft below land surface was the result of a nearby production well pumping for more than 24 hours.

PERIOD OF RECORD .-- December 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 138.95 ft below land surface, April 5, 1979; lowest measured, 205.69 ft below land surface, September 24, 2002 (See REMARKS).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

ST. MARYS COUNTY-Continued

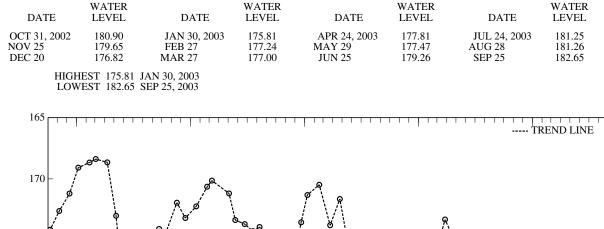
WELL NUMBER.--SM Dd 50. SITE ID.--381807076380001. PERMIT NUMBER.--SM-73-3082.

LOCATION.--Lat 38°18'07", long 76°38'00", Hydrologic Unit 02070011, at Leonard Hall Junior Naval Academy, Leonardtown. Owner: U.S. Geological Survey.

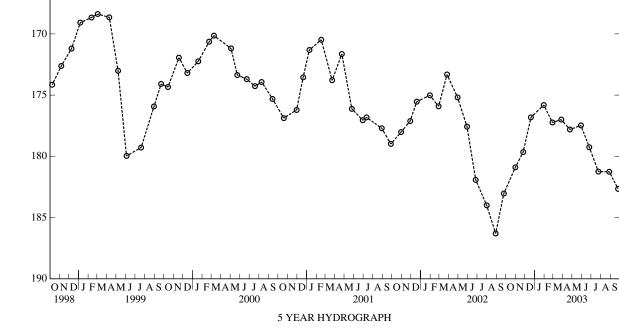
AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 515 ft; casing diameter 4 in., to 270 ft; casing diameter 2 in., from 270 to 505 ft; screen diameter 3 in., from 505 to 515 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM .-- Elevation of land surface is 99.40 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.86 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD.--December 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 119.05 ft below land surface, February 2, 1979; lowest measured, 186.30 ft below land surface, August 29, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

ST. MARYS COUNTY-Continued

WELL NUMBER.--SM Dd 62. SITE ID.--381616076364703. PERMIT NUMBER.--SM-73-3786.

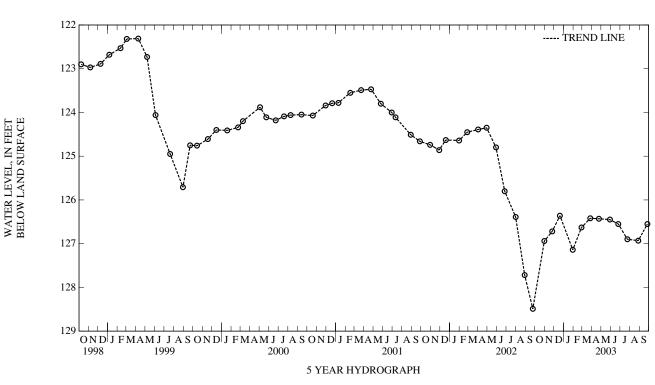
LOCATION.--Lat 38°16'16", 76°36'47", Hydrologic Unit 02070011, at Leonardtown Senior High School, Redgate. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 358 ft; casing diameter 4 in., to 210 ft; casing diameter 2 in., from 210 to 348 ft; screen diameter 2 in., from 348 to 358 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 119.30 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.70 ft above land surface.


REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 111.06 ft below land surface, October 30, 1980; lowest measured, 128.49 ft below land surface, September 24, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 31, 2002 NOV 25 DEC 20	126.94 126.72 126.36	JAN 30, 2003 FEB 27 MAR 27	127.14 126.63 126.42	APR 24, 2003 MAY 29 JUN 25	126.43 126.45 126.55	JUL 24, 2003 AUG 28 SEP 26	126.90 126.93 126.55
	EST 126.36 I						
LOW	EST 127.14 J	IAN 30, 2003					

ST. MARYS COUNTY-Continued

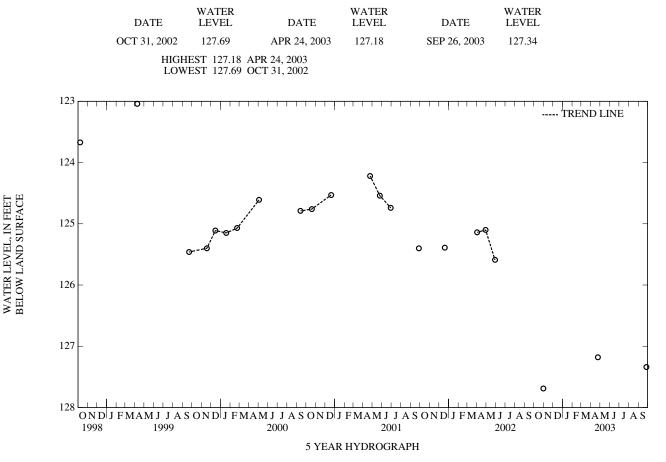
WELL NUMBER.--SM Dd 63. SITE ID.--381615076364701. PERMIT NUMBER.--SM-73-3785.

LOCATION.--Lat 38°16'15", long 76°36'47", Hydrologic Unit 02070011, at Leonardtown Senior High School, Redgate. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS.-Drilled, unused, artesian well, depth 356 ft; casing diameter 4 in., to 327 ft; casing diameter 2 in., from 327 to 346 ft; screen diameter 2 in., from 346 to 356 ft.

INSTRUMENTATION.--Twice yearly water level measurements with electric tape by U.S. Geological Survey personnel. Monthly water level measurements from October 1977 to October 1986.


DATUM .-- Elevation of land surface is 119.72 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.00 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 113.15 ft below land surface, March 2, 1981; lowest measured, 127.69 ft below land surface, October 31, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

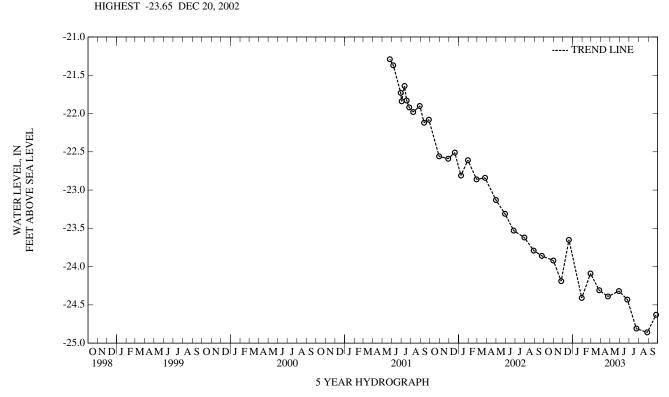
ST. MARYS COUNTY-Continued

WELL NUMBER.--SM Dd 72. SITE ID.--381626076393401. PERMIT NUMBER.--SM-94-3616.

LOCATION.--Lat 38°16'26", long 76°39'34", Hydrologic Unit 02070011, at Paw Paw Hollow Lane, 1.5 mi southwest of Leonardtown. Owner: U.S. Geological Survey.

AQUIFER.--Lower Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCL.

- WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 1,340 ft; casing diameter 8 in., to 60 ft; casing diameter 4 in., from +2.52 to 1,300 ft, and 1,330 to 1,340 ft; screen diameter 4 in., from 1,300 to 1,330 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from July 2001 to current year.
- DATUM.--Elevation of land surface is 109.99 ft above North American Vertical Datum of 1988. Measuring point: Top of shelter platform, 2.69 ft above land surface.


REMARKS.--Southern Maryland Patapsco Aquifer Well Drilling Project observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD .-- May 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 19.43 ft below sea level, May 25, 2001; lowest measured, 23.93 ft below sea level, August 28, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 25 DEC 20	-23.92 -24.19 -23.65	JAN 30, 2003 FEB 27 MAR 27	-24.41 -24.09 -24.31	APR 24, 2003 MAY 29 JUN 25	-24.39 -24.32 -24.43	JUL 24, 2003 AUG 28 SEP 25	-24.81 -24.86 -24.63
LOW	'EST -24.86 A	UG 28, 2003					

ST. MARYS COUNTY-Continued

WELL NUMBER .-- SM Df 61. PERMIT NUMBER .-- SM-05-5823.

LOCATION .-- Hydrologic Unit 02060006, at Patuxent River Naval Air Test Station. Owner: U.S. Navy.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.--Drilled, artesian well, depth 600 ft; casing diameter 8 in., to 559 ft; casing diameter 6 in., from 540 to 580 ft; screen diameter 6 in., from 580 to 600 ft.

INSTRUMENTATION.--Monthly water level measurements with steel tape by U.S. Geological Survey personnel. Periodic water level measurements from September 1984 to September 1999. Equipped with digital water-level recorder--15-minute recording interval, September 1999 to current year.

DATUM.--Elevation of land surface is 108.86 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 1.70 ft above land surface.

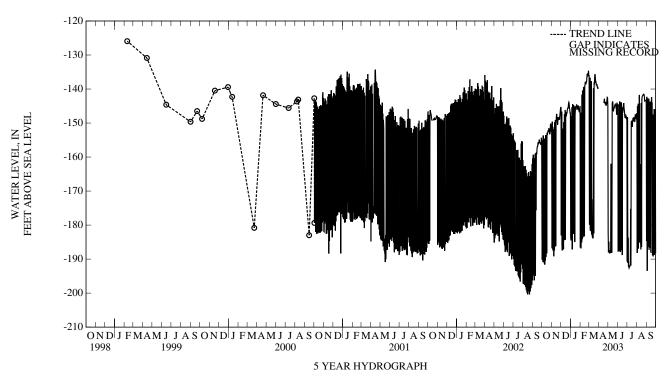
REMARKS.--Naval Air Station Patuxent River Ground Water Hydrogeology project observation/production well. The water-level on March 3, 1964 was reported as 47 ft below sea level. Water levels are affected by well being pumped and regional ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD.--September 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 66.77 ft below sea level, September 21, 1984; lowest measured, 200.40 ft below sea level, August 16 and 22, 2002 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002	-152.47	MAY 28, 2003	-145.24	JUL 24, 2003	-148.05
MAR 31, 2003	-139.76	JUN 24	-147.74	AUG 28	-141.60


LOWEST -152.47 OCT 31, 2002 HIGHEST -139.76 MAR 31, 2003


DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAF	RCH
1 2 3 4 5	-153.47 -154.99 -153.82 -153.64 -152.55	-155.01 -190.82	-148.57	-152.18 -186.78 -149.60 -187.07 -151.17	-144.49 -145.27 -144.09 -146.62 -149.07	-145.41 -183.05 -146.62 -185.78 -187.46	-146.17 -146.15 -145.18 -145.25 -143.90	-183.45 -184.48 -147.99 -183.03 -145.37	-142.39 -142.60 -140.76	-186.62 -146.90 -186.88 -177.76 -185.11	-135.36	-135.94 -179.75 -179.76 -136.69 -181.61
6 7 8 9 10		-191.19 -154.76	-149.95 -150.63 -151.04 -149.71 -149.59	-187.56 -151.77 -189.16 -152.16 -187.42	-148.67 -148.52 -147.73 -149.75 -147.08	-151.63 -186.45 -180.61 -187.10 -149.75		-187.15 -144.40 -182.43 -144.70 -182.58	-139.11	-141.65 -184.15 -140.40 -183.61 -183.02		-137.82 -181.78 -137.68 -182.78 -172.43
11 12 13 14 15	-153.33 -153.43 -151.96 -151.71 -151.51	-189.35	-148.34 -148.40 -148.08 -148.42 -148.05	-149.77 -186.33 -149.10 -186.13 -150.39	-146.78 -146.11 -146.08 -144.79 -145.94	-184.42 -147.37 -183.90 -146.16 -184.30	-143.13 -143.25 -143.46 -145.14 -144.92	-144.83 -182.28 -145.15 -184.98 -147.66	-138.37 -138.43 -138.81	-182.94 -139.38 -183.31 -182.93 -139.20	-140.09 -139.43 -139.41 -139.72 -137.71	-183.22 -183.64 -183.79 -183.74 -139.72
16 17 18 19 20	-151.31 -152.21 -152.27 -151.73 -151.82	-188.30 -152.87 -153.54 -152.95 -152.53	-147.22 -146.29 -146.70 -147.90 -149.02	-148.05 -147.31 -148.48 -149.04 -150.53	-145.86 -146.01 -146.86 -145.98 -146.07		-144.90 -144.02 -144.04 -143.71 -143.32	-146.04 -145.20 -145.19 -144.95 -144.52	-136.62	-138.58 -137.87 -138.50 -138.48 -137.98		-182.43 -138.05 -138.61 -135.99 -135.61
21 22 23 24 25	-151.20 -151.43 -150.82 -150.90 -151.11	-151.53	-147.57 -147.35 -147.41 -147.61 -147.76	-149.26 -148.26 -148.89 -148.90 -148.65	-144.96 -144.91 -144.22 -144.23 -142.77	-146.09 -145.79 -145.53 -145.55 -144.23		-146.13 -145.85 -145.39 -144.83 -145.49	-136.37 -134.89 -134.12 -135.32 -134.34		-134.83 -136.72 -136.69 -137.37 -137.68	-136.75 -138.00 -137.96 -138.82 -138.79
26 27 28 29 30 31	-152.45 -149.43 -149.44 -149.03 -149.21 -150.56	-152.89 -150.51 -150.32 -150.56	-147.73 -146.40 -145.28 -145.13 -144.28	-149.03 -147.96 -147.04 -146.04 -145.40	-142.69 -143.78 -144.22 -145.60 -145.86 -145.71	-143.91 -144.28 -145.77 -146.04 -147.19 -146.89		-145.32 -146.36 -146.37 -146.85 -145.83 -145.00		-135.52 -134.64 -136.23 	-137.73 -138.00 -138.22 -139.09 -137.78	-138.56 -139.35 -139.31 -139.92 -139.53
MONTH -149.03	-191.63	-144.28	-189.16	-142.69	-187.46	-142.87	-187.15	-133.68	-186.88	-132.32	-183.79	

ST. MARYS COUNTY-Continued

					0111111111	000111	commute					
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JU	NE	JU	LY	AUG	UST	SEPTE	MBER
1			-142.90	-182.19	-143.42	-144.62	-148.29	-190.67	-145.71	-147.12	-141.75	-184.65
2			-145.46	-188.06	-144.56	-187.79	-146.90	-148.29	-145.00	-188.16	-141.17	-142.30
3			-144.43	-184.91	-144.46	-171.68		-191.09	-143.21	-145.00	-142.11	-193.44
4				-188.10	-144.39	-187.67		-183.72	-144.08	-186.96		-142.75
5			-142.90	-187.77	-143.02	-144.39		-192.08	-142.25	-144.35		-186.46
6			-144.90	-188.06	-142.97	-187.06	-149.08	-192.24	-143.36	-186.82	-141.36	-168.58
7			-144.43	-187.77	-143.11	-143.63	-150.05	-192.60		-144.45		-185.37
8			-142.90	-188.10	-143.38	-182.11	-149.47		-141.10			-142.82
9			-143.02	-188.06	-145.41	-187.92	-148.51		-139.54	-141.73	-142.77	-187.25
10			-144.43	-161.99	-143.97	-145.41	-148.33	-192.16	-141.72	-185.03	-142.63	-144.29
11			-144.45	-188.10	-143.93	-187.38	-147.72	-190.49	-140.59	-162.11	-143.15	-186.69
12			-144.43	-184.91	-142.76	-143.93		-175.24	-142.54	-184.87	-142.43	-143.71
13			-144.74	-188.10	-142.85	-186.01	-149.58	-191.90	-141.98	-183.56	-142.92	-186.23
14			-142.79	-144.37	-144.30	-145.36	-148.61	-149.65	-144.11	-187.18	-142.81	-144.02
15				-143.63	-145.34	-188.81		-149.51	-142.24	-144.15	-144.02	-188.12
16			-142.37	-144.01	-146.16	-146.65	-148 76	-149.33	-142.29	-186.46	-140.61	-144.52
17	-143.25	-144.09	-144.01	-146.27	-145.49	-146.70	-149.26	-151.15	-141.32	-143.06		-142.35
18	-142.30	-143.66	-145.64	-146.38	-143.87	-145.49	-148.47	-150.26	-141.52	-142.22	-141.01	-144.22
19		-142.88	-144.83	-145.75	-143.78	-144.55		-149.00		-141.97		-144.02
20	-142.85		-144.60	-145.69	-143.08	-144.15	-147.51		-141.29	-141.89	-143.82	
							140.24					
21	-142.88	-144.20	-144.08	-145.29	-144.13	-145.71		-149.21	-139.11	-141.84	-145.79	-148.04
22	-143.81	-144.50	-143.39	-144.86	-145.32	-146.37	-148.71	-149.46	-139.12	-141.53	-146.85	-189.23
23	-141.49	-143.81	-143.04	-144.66	-146.36	-147.70	-147.22	-148.72	-139.83	-141.51	-143.33	-147.50
24	-142.05	-144.79	-142.93	-144.42	-147.21	-148.51		-148.21	-140.79	-141.64	-143.37	-187.41
25	-144.21	-144.77	-143.29	-144.50	-147.17	-148.04	-147.55	-149.61	-140.75	-142.14	-144.56	-145.91
26	-143.35	-144.42	-144.27	-145.38	-147.19	-148.28	-146.77	-148.45	-142.10	-143.52	-145.27	-188.79
27	-141.57	-143.35	-144.41	-145.31	-146.89	-147.84	-146.68	-147.52	-141.55	-143.45	-144.82	-146.93
28	-141.69	-142.45	-144.02	-147.54	-147.32	-148.07	-146.64	-147.57			-144.74	-187.51
29	-141.09	-142.55	-142.36	-144.02	-147.43	-148.76	-147.05	-148.69	-142.25	-143.28	-143.92	-145.88
30	-142.42	-144.83		-144.30	-147.93	-148.75		-148.72		-143.50	-145.62	
31				-144.88				-148.09		-143.18		
MONTH												
-141.09	-144.83	-142.30	-188.10	-142.76	-188.81	-146.64	-192.60	-139.11	-188.16	-139.64	-193.44	
			100.10	112.70	100.01	1 10.04	172.00	159.11	100.10	159.04	175.77	
YEAR	-132.32	-193.44										

Daily Low Water Levels

ST. MARYS COUNTY

WELL NUMBER.--SM Df 66. SITE ID.--381841076284401. PERMIT NUMBER.--SM-73-1990.

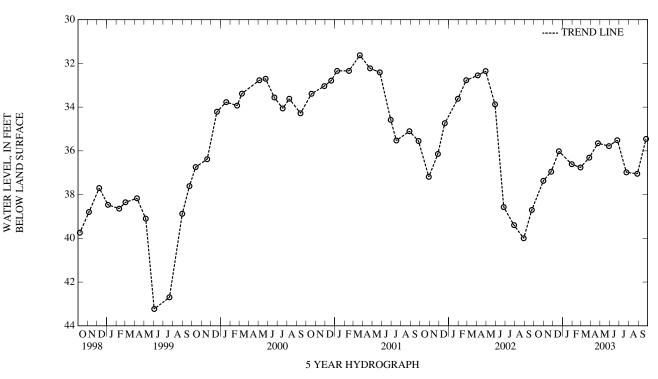
LOCATION.--Lat 38°18'41", long 76°28'44", Hydrologic Unit 02060006, 0.8 mi south of Town Point. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 258 ft; casing diameter 6 in., to 84 ft; casing diameter 2 in., from 84 to 248 ft; screen diameter 2 in., from 248 to 258 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 15 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- July 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.79 ft below land surface, April 5, 1979; lowest measured, 49.66 ft below land surface, July 9, 1986.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 25 DEC 20	37.37 36.95 36.02	JAN 30, 2003 FEB 27 MAR 27	36.61 36.76 36.31	APR 24, 2003 MAY 29 JUN 25	35.65 35.78 35.51	JUL 24, 2003 AUG 28 SEP 25	36.98 37.05 35.45
	EST 35.45 S EST 37.37 C						

ST. MARYS COUNTY-Continued

WELL NUMBER.--SM Df 71. SITE ID.--381527076283101. PERMIT NUMBER.--SM-73-3431.

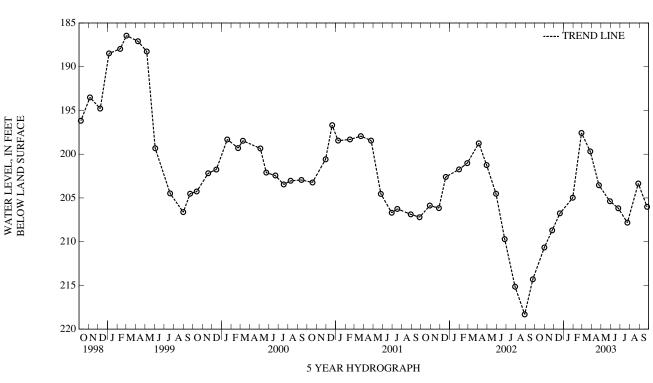
LOCATION.--Lat 38°15'27", long 76°28'31", Hydrologic Unit 02070011, at Cheryl Dr. and Great Mills Rd., Lexington Park. Owner: U.S. Geological Survey.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 560 ft; casing diameter 4 in., to 420 ft; casing diameter 2 in., from 420 to 550 ft; screen diameter 2 in., from 550 to 560 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 69.15 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.80 ft above land surface.


REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--August 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 119.19 ft below land surface, May 1, 1980; lowest measured, 218.32 ft below land surface, August 29, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 31, 2002	210.66	JAN 30, 2003	204.98	APR 24, 2003	203.55	JUL 24, 2003	207.83
NOV 25	208.70	FEB 27	197.56	MAY 29	205.38	AUG 28	203.34
DEC 20	206.76	MAR 27	199.68	JUN 25	206.18	SEP 25	206.02
		FEB 27, 2003					
LOW	EST 210.66	OCT 31, 2002					

ST. MARYS COUNTY-Continued

WELL NUMBER.--SM Df 84. SITE ID.--381548076272102. PERMIT NUMBER.--SM-81-0119.

LOCATION.--Lat 38°15'48", long 76°27'21", Hydrologic Unit 0207011, at Lexington Park. Owner: Maryland Geological Survey.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 912 ft; casing diameter 6 in., to 246 ft; casing diameter 4 in., from 246 ft to 831 ft, 856 to 862 ft, and 867 to 897 ft; screen diameter 4 in., from 831 to 856 ft, 862 to 867 ft, and 897 to 912 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60 minute recorder interval from February 2000 to current year.

DATUM .-- Elevation of land surface is 108.39 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.80 ft above land surface.

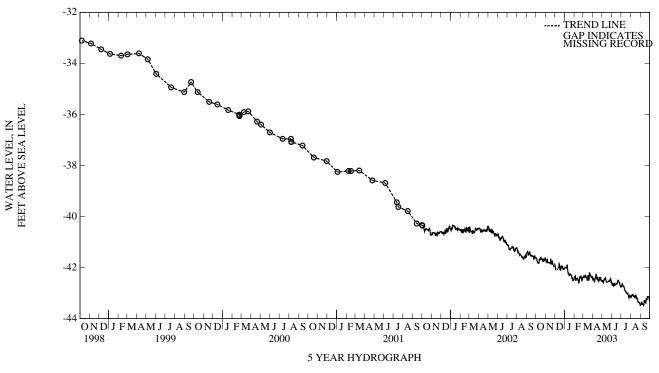
REMARKS.--Maryland Ground-Water-Level Monitoring Network and Naval Air Station Patuxent River Ground Water Hydrology project observation well. Water levels are affected by regional ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- January 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.29 ft below sea level, February 3, 1983; lowest measured, 43.38 ft below sea level, August 28, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 31, 2002	-41.61	JAN 30, 2003	-42.49	MAY 07, 2003	-42.53	AUG 28, 2003	-43.38
NOV 25	-41.84	FEB 27	-42.44	29	-42.36	SEP 25	-43.17
DEC 10	-42.05	MAR 27	-42.34	JUN 25	-42.61		
20	-41.75	APR 22	-42.36	JUL 23	-43.00		
JAN 15, 2003	-42.26	24	-42.44	24	-43.08		


LOWEST -43.38 AUG 28, 2003 HIGHEST -41.61 OCT 31, 2002

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAH	RCH
1 2 3 4 5	-41.62 -41.59 -41.65 -41.65	-41.63 -41.63 -41.65 -41.69 -41.78	-41.58 -41.68 -41.72 -41.72 -41.66	-41.71 -41.74 -41.78 -41.77 -41.83	-41.84 -41.92 -41.92 -41.86	-41.94 -41.96 -42.11 -42.10	-41.86 -41.91 -41.91 -41.92 -42.00	-42.05 -41.99 -41.99 -42.01 -42.01	-42.28 -42.29 -42.33 -42.21 -42.34	-42.39 -42.36 -42.36 -42.34 -42.47	-42.35 -42.17 -42.25 -42.34 -42.22	-42.39 -42.35 -42.37 -42.39 -42.34
6 7 8 9 10	-41.74 -41.72 -41.81 -41.84 -41.76	-41.78 -41.81 -41.84 -41.84 -41.84	-41.53 -41.65 -41.77 -41.79 -41.72	-41.66 -41.81 -41.81 -41.80 -41.80	 -41.98 -42.04	 -42.04 -42.11	-41.97 -41.92 -41.79 -41.79 -41.89	-42.01 -42.04 -41.92 -41.89 -42.03	-42.44 -42.31 -42.37 -42.42 -42.31	-42.53 -42.44 -42.45 -42.44 -42.42	-42.22 -42.33 -42.29 -42.24 -42.32	-42.33 -42.39 -42.35 -42.32 -42.40
11 12 13 14 15	-41.65 -41.64 -41.65 -41.67 -41.60	-41.76 -41.65 -41.68 -41.70 -41.68	-41.73 -41.74 -41.76 -41.80 -41.78	-41.82 -41.82 -41.81 -41.83 -41.83	-41.87 -41.92 -41.77 -41.74 -41.85	-42.00 -42.02 -42.01 -41.85 -41.87	-42.03 -42.16 -42.11 -42.15 -42.21	-42.16 -42.23 -42.22 -42.22 -42.32	-42.36 -42.38 -42.45 -42.51 -42.47	-42.42 -42.47 -42.51 -42.51 -42.61	-42.39 -42.33 -42.28 -42.38 -42.42	-42.40 -42.39 -42.38 -42.50 -42.49
16 17 18 19 20	-41.42 -41.50 -41.60 -41.58 -41.58	-41.60 -41.60 -41.67 -41.66 -41.65	-41.64 -41.56 -41.66 -41.78 -41.82	-41.83 -41.66 -41.87 -41.87 -41.86	-41.83 -42.01 -42.10 -41.95 -41.78	-42.01 -42.10 -42.11 -42.10 -41.95	-42.25 -42.15 -42.27 -42.24 -42.16	-42.32 -42.28 -42.29 -42.27 -42.26	-42.44 -42.32 -42.33 -42.36 -42.37	-42.61 -42.44 -42.39 -42.42 -42.42	-42.30 -42.27 -42.25 -42.34 -42.17	-42.43 -42.30 -42.35 -42.50 -42.49
21 22 23 24 25	-41.64 -41.67 -41.69 -41.76 -41.66	-41.70 -41.70 -41.77 -41.77 -41.77	-41.73 -41.56 -41.71 -41.82 -41.86	-41.86 -41.73 -41.82 -41.86 -41.90	-41.90 -41.89 -41.93 -41.94 -41.76	-41.94 -41.94 -42.01 -42.04 -41.94	-42.25 -42.28 -42.27 -42.29 -42.42	-42.28 -42.32 -42.32 -42.43 -42.43	-42.34 -42.12 -42.08 -42.36 -42.43	-42.40 -42.34 -42.36 -42.43 -42.52	-42.14 -42.16 -42.21 -42.25 -42.29	-42.21 -42.21 -42.26 -42.33 -42.33
26 27 28 29 30 31	-41.59 -41.65 -41.66 -41.63 -41.55 -41.56	-41.66 -41.74 -41.74 -41.71 -41.64 -41.61	-41.90 -41.92 -41.95 -41.74	-41.93 -41.95 -41.99 -41.84	-41.90 -42.05 -41.97 -41.95 -42.04 -42.03	-42.05 -42.08 -42.05 -42.07 -42.07 -42.06	-42.35 -42.36 -42.42 -42.39 -42.45 -42.39	-42.42 -42.52 -42.52 -42.48 -42.49 -42.46	-42.46 -42.34 -42.32 	-42.51 -42.46 -42.39 	-42.26 -42.33 -42.39 -42.28 -42.27 -42.30	-42.34 -42.39 -42.40 -42.39 -42.33 -42.45
MONTH	-41.42	-41.84	-41.53	-41.99	-41.74	-42.11	-41.79	-42.52	-42.08	-42.61	-42.14	-42.50

ST. MARYS COUNTY-Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MA	Х	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	ΑY	JUI	NE		JUI	LY	AU	GUST	SEPTE	MBER
1	-42.32	-42.48	-42.45	-42.55	-42.48	-42.65	-42.		-42.76	-43.08	-43.12	-43.41	-43.49
2	-42.33	-42.41	-42.41	-42.50	-42.65	-42.69	-42.	68	-42.76	-43.08	-43.11	-43.37	-43.43
3	-42.35	-42.42	-42.47	-42.57	-42.65	-42.69	-42.	59	-42.68	-43.06	-43.15	-43.35	-43.43
4	-42.37	-42.43	-42.57	-42.58	-42.63	-42.65	-42.	60	-42.64	-43.04	-43.10	-43.30	-43.41
5	-42.36	-42.46	-42.50	-42.60	-42.63	-42.68	-42.	.63	-42.64	-43.01	-43.07	-43.30	-43.34
6	-42.46	-42.57	-42.47	-42.51	-42.67	-42.73	-42.	64	-42.70	-43.01	-43.07	-43.34	-43.44
7	-42.41	-42.57	-42.40	-42.52	-42.58	-42.73	-42.	69	-42.74	-43.03	-43.09	-43.39	-43.43
8	-42.41	-42.44	-42.38	-42.43	-42.58	-42.62	-42.	70	-42.73	-43.04	-43.07	-43.38	-43.43
9	-42.36	-42.43	-42.40	-42.46	-42.58	-42.62	-42.	73	-42.76	-43.05	-43.13	-43.41	-43.45
10	-42.29	-42.39	-42.40	-42.46	-42.62	-42.68	-42.	73	-42.76	-43.06	-43.14	-43.45	-43.49
11	-42.17	-42.29	-42.30	-42.41	-42.61	-42.66	-42.	72	-42.80	-43.07	-43.13	-43.43	-43.47
12	-42.17	-42.25	-42.32	-42.40	-42.62	-42.68	-42.	80	-42.88	-43.08	-43.12	-43.29	-43.45
13	-42.25	-42.39	-42.40	-42.48	-42.62	-42.66	-42.	84	-42.91	-43.10	-43.18	-43.28	-43.29
14	-42.39	-42.46	-42.47	-42.54	-42.61	-42.67	-42.	88	-42.91	-43.15	-43.18	-43.29	-43.33
15	-42.35	-42.46	-42.52	-42.58	-42.59	-42.64	-42.	89	-42.94	-43.13	-43.19	-43.26	-43.32
16	-42.31	-42.37	-42.52	-42.58	-42.62	-42.66	-42.	92	-42.94	-43.01	-43.14	-43.28	-43.37
17	-42.36	-42.49	-42.55	-42.57	-42.63	-42.66	-42.	94	-42.99	-43.02	-43.07	-43.34	-43.39
18	-42.45	-42.52	-42.57	-42.57	-42.57	-42.63	-42.	97	-42.98	-43.07	-43.13	-43.05	-43.40
19	-42.52	-42.55	-42.55	-42.57	-42.50	-42.57	-42.	98	-43.00	-43.13	-43.19	-43.14	-43.23
20	-42.47	-42.53	-42.55	-42.56	-42.49	-42.51	-42.	99	-43.03	-43.19	-43.23	-43.18	-43.24
21	-42.32	-42.49	-42.51	-42.56	-42.48	-42.52	-42.	95	-43.02	-43.20	-43.24	-43.19	-43.27
22	-42.29	-42.38	-42.50	-42.53	-42.48	-42.51	-42.	.95	-43.01	-43.16	-43.22	-43.12	-43.27
23	-42.38	-42.48	-42.50	-42.53	-42.50	-42.54	-42.	.99	-43.05	-43.17	-43.29	-43.07	-43.13
24	-42.43	-42.50	-42.48	-42.51	-42.51	-42.58	-43.	04	-43.08	-43.25	-43.36	-43.12	-43.17
25	-42.38	-42.47	-42.48	-42.52	-42.58	-42.61	-43.	08	-43.16	-43.31	-43.37	-43.14	-43.17
26	-42.31	-42.38	-42.39	-42.48	-42.60	-42.60	-43.	14	-43.20	-43.31	-43.36	-43.14	-43.15
27	-42.36	-42.48	-42.38	-42.47	-42.60	-42.69	-43.	07	-43.15	-43.32	-43.38	-43.09	-43.15
28	-42.46	-42.49	-42.34	-42.41	-42.69	-42.73	-43.	06	-43.10	-43.36	-43.39	-43.08	-43.15
29	-42.44	-42.50	-42.33	-42.58	-42.71	-42.74	-43.	06	-43.12	-43.37	-43.38	-43.15	-43.27
30	-42.49	-42.55	-42.53	-42.58	-42.72	-42.77	-43	12	-43.16	-43.37	-43.42	-43.27	-43.31
31			-42.47	-42.56			-43.		-43.15	-43.40	-43.49		
MONTH	-42.17	-42.57	-42.30	-42.60	-42.48	-42.77	-42.	.59	-43.20	-43.01	-43.49	-43.05	-43.49
YEAR	-41.42	-43.49											

Daily Low Water Levels

ST. MARYS COUNTY-Continued

WELL NUMBER .-- SM Df 100. PERMIT NUMBER .-- SM-94-3113.

LOCATION .-- Hydrologic Unit 0206006, at Patuxent River Naval Air Test Station. Owner: U.S. Navy.

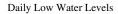
AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

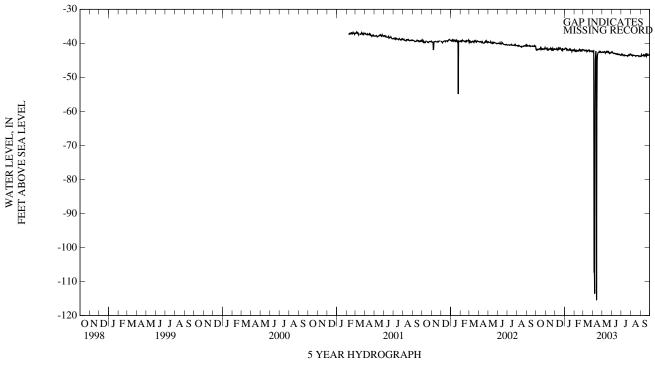
- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 910 ft; casing diameter 10 in., to 706 ft; casing diameter 8 in., from 716 ft to 744 ft, 754 to 835 ft, 860 to 882 ft, 892 to 900 ft, and 905 to 910 ft; screen diameter 8 in., from 706 to 716 ft, 744 to 754 ft, 835 to 860 ft, 882 to 892 ft, and 900 to 905 ft.
- INSTRUMENTATION .-- Monthly water level measurements with steel tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recording interval, February 2001 to current year.
- DATUM .-- Elevation of land surface is 21 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of sanitary cap, 2.05 ft above land surface.
- REMARKS.--Naval Air Station Patuxent River Ground Water Hydrology project observation/production well. Water levels are affected by this well being pumped as a production well, and regional ground-water withdrawal. Missing data due to recorder malfunction. A pump test was performed from April 5, 2003 to April 7, 2003, and on April 13, 2003.

PERIOD OF RECORD.--September 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.10 ft below sea level, March 5, 2001 (recorder); lowest measured, 115.50 ft below sea level, April 13, 2003 (recorder - see REMARKS).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003


DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 JAN 15, 2003	-41.47 -41.88	FEB 21, 2003 APR 21	-42.07 -41.96	MAY 28, 2003 JUN 23	-41.93 -42.28	JUL 24, 2003 AUG 28	-42.40 -43.03
LOW	EST -43.03	AUG 28, 2003					


HIGHEST -41.47 OCT 31, 2002

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	DBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAI	RCH
1 2 3 4 5	-41.2 -41.3 -41.4 -41.2 -41.2	-41.8 -41.9 -42.0 -41.7 -41.7	-41.1 -41.1 -41.2 -41.2 -41.2	-41.6 -41.7 -41.7 -41.5 -41.7	-41.2 -41.2 -41.4 -41.4 -41.0	-41.8 -41.8 -41.7 -41.7	-41.2 -41.2 -41.0 -41.0 -41.1	-41.8 -41.6 -41.4 -41.5 -41.5	-41.4 -41.5 -41.5 -41.6 -41.6	-41.8 -42.1 -42.3 -42.1 -42.3	-41.5 -41.5 -41.4 -41.5 -41.7	-41.9 -41.9 -41.9 -42.1 -42.2
6 7 8 9 10	-41.4 -41.3 -41.3 -41.2 -41.3	-41.9 -41.8 -41.8 -41.8 -41.8	-41.0 -41.4 -41.2 -41.4 -41.4	-41.5 -41.9 -41.8 -42.0 -42.0	-41.1 -40.8 -41.1 -41.4 -41.2	-41.7 -41.7 -42.0 -41.9 -41.6	-41.1 -41.2 -41.1 -41.2 -41.3	-41.5 -41.9 -41.7 -41.9 -41.8	-41.8 -41.6 -41.6 -41.4 -41.7	-42.4 -42.1 -42.3 -42.3 -42.1	-41.5 -41.5 -41.4 -41.6 -41.7	-42.1 -42.0 -42.2 -42.2 -42.1
11 12 13 14 15	-41.1 -41.1 -41.1 -41.3 -41.0	-41.6 -41.6 -41.8 -41.5	-41.4 -41.4 -41.3 -41.2 -41.2	-41.7 -41.8 -41.7 -41.6 -41.7	-41.1 -41.2 -41.0 -41.0 -41.2	-41.4 -41.7 -41.4 -41.3 -41.7	-41.4 -41.5 -41.5 -41.5 -41.5	-41.9 -42.1 -42.0 -41.9 -41.8	-41.6 -41.6 -41.7 -42.0 -41.8	-42.1 -42.1 -42.3 -42.3 -42.2	-41.6 -41.7 -41.9 -41.6 -41.6	-42.0 -42.1 -42.4 -42.1 -42.2
16 17 18 19 20	-40.7 -41.0 -41.1 -41.1 -41.3	-41.2 -41.4 -41.7 -41.5 -41.7	-41.3 -40.9 -40.9 -41.2 -41.5	-41.7 -41.4 -41.6 -41.9 -42.0	-41.2 -41.3 -41.2 -41.2 -41.2	-41.7 -41.6 -41.4 -41.6 -41.6	-41.5 -41.4 -41.3 -41.1 -41.3	-41.9 -41.7 -41.9 -41.7 -42.0	-41.4 -41.3 -41.4 -41.3 -41.6	-41.9 -41.7 -41.8 -42.2 -42.3	-41.8 -41.8 -41.7 -41.5 -41.4	-42.3 -42.2 -42.1 -42.1 -41.9
21 22 23 24 25	-41.3 -41.2 -41.1 -41.3 -41.3	-41.6 -41.6 -41.8 -41.7 -41.6	-41.2 -41.0 -41.1 -41.4 -41.5	-41.6 -41.4 -41.8 -42.1 -42.1	-41.1 -41.4 -41.5 -41.2 -41.0	-41.8 -42.0 -42.1 -41.8 -41.4	-41.4 -41.4 -41.4 -41.8 -41.5	-41.9 -42.0 -42.0 -42.4 -42.1	-41.6 -41.3 -41.4 -41.6 -42.0	-42.2 -41.9 -41.9 -42.3 -42.3	-41.3 -41.6 -41.6 -41.7 -41.8	-42.0 -42.4 -42.3 -42.3 -42.2
26 27 28 29 30 31	-41.0 -41.2 -41.2 -40.9 -40.9 -41.1	-41.6 -41.8 -41.7 -41.5 -41.2 -41.5	-41.4 -41.2 -41.0 -41.1 -41.3	-42.0 -41.6 -41.7 -41.6 -41.7	-41.4 -41.2 -41.1 -41.2 -41.3 -41.4	-42.0 -41.8 -41.8 -41.8 -41.7 -41.8	-41.3 -41.6 -41.5 -41.6 -41.7 -41.7	-42.0 -42.1 -41.9 -42.0 -42.1 -42.0	-41.6 -41.5 -41.5 	-42.1 -41.8 -41.8 	-41.9 -41.9 -41.9 -41.9 -41.8 -41.9	-42.2 -42.4 -42.3 -42.3 -42.2 -42.4
MONTH	-40.7	-42.0	-40.9	-42.1	-40.8	-42.1	-41.0	-42.4	-41.3	-42.4	-41.3	-42.4

ST. MARYS COUNTY-Continued

					51.00000	0001111	continued					
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	-42.1 -42.1 -42.1 -41.8 -41.8	-42.5 -42.6 -42.3 -42.2 -107.4	-42.1 -42.1 -42.2 -42.2 -42.1	-42.6 -42.5 -42.5 -42.7 -42.7	-42.2 -42.2 -42.2 -42.3 -42.3	-42.7 -42.5 -42.7 -42.7 -42.9	-42.9 -42.8 -42.7 -42.8 -42.8	-43.5 -43.2 -43.1 -43.3 -43.4	-42.8 -42.8 -42.9 -43.0	-43.4 -43.3 -43.5 -43.5 -43.6	-43.2 -43.1 -42.9 -43.0 -43.0	-43.8 -43.8 -43.6 -43.3 -43.7
6 7 8 9 10	-44.8 -43.4 -45.0 -43.1 -42.2	-106.2 -113.6 -59.9 -45.0 -43.3	-42.1 -42.0 -42.0 -41.9 -42.1	-42.6 -42.5 -42.4 -42.5 -42.7	-42.3 -42.3 -42.4 -42.3 -42.4	-43.0 -43.0 -42.9 -42.9	-42.8 -42.8 -42.9 -43.0 -43.0	-43.3 -43.5 -43.5 -43.6 -43.7	-43.0 -42.7 -42.7 -43.0 -42.9	-43.7 -43.4 -43.4 -43.5 -43.5	-43.0 -43.0 -43.1 -43.0	-43.6 -43.6 -43.6 -43.6 -43.4
11 12 13 14 15	-41.7 -41.7 -42.1 -45.0 -43.4	-42.3 -43.9 -115.5 -60.9 -45.2	-42.1 -42.2 -42.2 -42.1 -42.1	-42.9 -42.6 -42.6 -42.5 -42.6	-42.4 -42.5 -42.4 -42.4 -42.4	-43.0 -43.1 -43.0 -43.0 -43.1	-42.7 -42.7 -43.0 -42.9 -43.0	-43.4 -43.4 -43.5 -43.5 -43.6	-43.0 -43.1 -43.1 -43.1 -43.0	-43.6 -43.6 -43.6 -43.6 -43.6	-42.8 -42.9 -42.9 -42.9 -43.0	-43.6 -43.4 -43.4 -43.7 -43.5
16 17 18 19 20	-42.3 -42.5 -42.1 -42.2 -42.2	-43.5 -43.0 -42.7 -42.6 -42.6	-42.0 -42.1 -41.9 -42.0 -42.0	-42.4 -42.6 -42.4 -42.5 -42.4	-42.5 -42.6 -42.6 -42.5 -42.8	-43.2 -43.1 -43.2 -43.1 -43.3	-43.1 -43.1 -43.0 -42.9	-43.6 -43.6 -43.6 -43.6 -43.6	-42.9 -43.1 -43.1 -43.0 -43.0	-43.6 -43.8 -43.7 -43.7 -43.6	-43.1 -43.2 -42.2 -42.2 -42.9	-43.7 -43.6 -43.2 -42.9 -43.8
21 22 23 24 25	-42.1 -41.9 -42.3 -42.4 -42.1	-42.6 -42.4 -42.6 -42.7 -42.6	-42.0 -42.0 -42.2 -42.3 -42.3	-42.6 -42.5 -42.8 -43.0 -42.9	-42.7 -42.7 -42.8 -42.7 -42.6	-43.3 -43.2 -43.3 -43.2 -43.2	-43.1 -43.1 -42.8 -42.8 -42.8	-43.8 -43.7 -43.7 -43.4 -43.5	-43.1 -43.1 -43.0 -42.9	-43.6 -43.6 -43.6 -43.6 -43.6	-43.1 -42.8 -42.7 -42.9 -42.9	-43.6 -43.3 -43.2 -43.5 -43.5
26 27 28 29 30 31	-42.1 -42.2 -42.3 -42.3 -42.4	-42.4 -42.5 -42.7 -42.7 -42.7	-42.3 -42.3 -42.2 -42.2 -42.1 -42.2	-42.8 -42.9 -42.8 -42.8 -42.6 -42.7	-42.7 -42.8 -42.8 -42.9 -42.8	-43.2 -43.4 -43.5 -43.4 -43.4	-42.9 -42.8 -42.9 -42.8 -42.7 -42.8	-43.4 -43.4 -43.5 -43.2 -43.1 -43.3	-43.1 -43.1 -43.0 -43.2 -43.2 -43.3	-43.8 -43.7 -43.7 -43.8 -43.9 -43.8	-42.8 -42.9 -42.8 -42.9 	-43.5 -43.5 -43.3 -43.5
MONTH	-41.7	-115.5	-41.9	-43.0	-42.2	-43.5	-42.7	-43.8	-42.7	-43.9	-42.2	-43.8
YEAR	-40.7	-115.5										

ST. MARYS COUNTY-Continued

WELL NUMBER .-- SM Dg 14. PERMIT NUMBER .-- SM-92-0370.

LOCATION .-- Hydrologic Unit 02060006, at Patuxent River Naval Air Test Station. Owner: U.S. Navy.

AQUIFER .-- Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.-Drilled, artesian well, depth 542 ft; casing diameter 8 in., to 490 ft, and casing diameter 6 in., from 540 to 542 ft; screen diameter 6 in., from 490 to 540 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recording interval, September 1999 to current year.

DATUM.--Elevation of land surface is 19.00 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 2.20 ft above land surface.

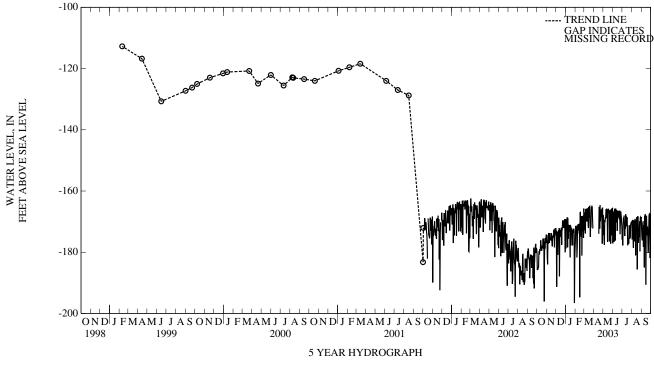
REMARKS.--Naval Air Station Patuxent River Ground Water Hydrogeology project observation/production well. The water-level on April 22, 1994 was reported at 71 ft below sea level. Water levels are affected by this well being pumped as a production well and regional ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD.--September 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 95.30 ft below sea level, April 29, 1996; lowest measured, 196.61 ft below sea level, January 29, 2003 (recorder).

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 10, 2002	-129.50	MAY 28, 2003	-124.56	JUL 24, 2003	-129.72
FEB 21, 2003	-125.98	JUN 24	-124.70	AUG 28	-127.46


LOWEST -129.72 JUL 24, 2003 HIGHEST -124.56 MAY 28, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAH	RCH
1	-136.2	-179.9	-132.9	-176.6	-130.4	-174.7	-127.2	-169.2	-127.2	-176.2	-124.0	-167.8
2	-136.3	-185.8	-132.9	-174.4	-130.2	-172.9	-127.3	-178.7	-127.1	-171.4	-123.8	-172.8
3	-142.2	-185.4	-132.8	-181.6	-130.1	-191.3	-126.8	-170.5	-127.1	-172.1	-123.7	-167.0
4	-143.9	-185.7	-132.6	-184.0	-130.1	-175.1	-127.0	-171.0	-127.2	-171.4	-123.9	-168.6
5	-144.2	-185.0	-132.2	-176.2	-129.3	-173.3	-127.1	-169.7	-127.4	-173.0	-124.0	-173.9
6	-138.9	-184.9	-131.8	-177.2	-129.3	-176.9	-127.0	-168.6	-127.8	-181.7	-123.8	-165.9
7	-137.7	-180.6	-132.3	-173.7	-129.0	-180.8	-127.2	-178.4	-127.6	-178.6	-123.8	-169.8
8	-137.1	-179.6	-131.9	-175.7	-129.0	-173.5	-127.2	-168.8	-127.4	-171.2	-123.7	-165.8
9	-136.6	-180.7	-132.0	-176.3	-129.5	-172.8	-127.1	-175.6	-127.3	-172.9	-123.6	-166.1
10	-136.3	-179.0	-132.3	-177.0	-129.1	-174.6	-127.3	-171.2	-127.4	-170.8	-123.6	-170.0
11	-135.7	-179.6	-132.0	-173.8	-128.8	-172.1	-127.5	-171.3	-127.0	-171.8	-123.5	-166.7
12	-135.4	-178.6	-132.1	-176.0	-129.1	-187.9	-127.6	-171.6	-127.0	-171.4	-123.5	-168.1
13	-135.0	-176.1	-132.0	-175.7	-128.8	-173.3	-127.6	-173.2	-127.1	-173.9	-123.6	-165.6
14	-135.1	-177.8	-131.7	-175.2	-128.5	-172.7	-127.5	-171.2	-126.7	-170.6	-123.2	-171.4
15	-134.6	-177.9	-131.7	-176.2	-128.8	-173.3	-127.5	-181.7	-126.4	-194.7	-123.2	-172.1
16	-134.3	-179.5	-131.6	-173.8	-128.8	-174.5	-127.4	-171.3	-125.5	-167.9	-123.2	-165.2
17	-134.6	-178.9	-131.1	-174.2	-128.8	-175.0	-127.2	-171.4	-125.2	-166.8	-123.2	-168.8
18	-134.8	-178.0	-131.1	-177.0	-128.5	-172.0	-127.3	-177.8	-125.3	-171.3	-123.0	-165.1
19	-134.5	-178.6	-131.5	-178.1	-128.4	-177.6	-126.8	-172.2	-125.3	-174.1	-122.8	-165.0
20	-134.5	-175.6	-131.5	-175.0	-128.1	-172.4	-126.8	-172.2	-125.5	-174.9	-122.7	-170.7
21	-134.4	-177.9	-131.1	-175.1	-128.2	-172.5	-127.3	-172.6	-125.2	-168.2	-122.4	-175.0
22	-134.2	-178.9	-130.5	-174.7	-128.5	-169.6	-127.3	-173.1	-124.9	-181.1	-122.8	-170.3
23	-134.0	-175.5	-130.8	-174.9	-128.5	-171.6	-127.6	-177.8	-124.5	-168.2	-122.9	-171.9
24	-134.2	-196.1	-131.1	-172.6	-128.2	-170.0	-128.1	-172.7	-125.0	-173.2	-122.9	-165.4
25	-133.8	-181.2	-131.0	-174.8	-127.8	-172.0	-127.8	-172.9	-125.3	-169.2	-122.8	-165.3
26 27 28 29 30 31	-133.4 -133.8 -133.8 -133.2 -133.0 -132.9	-176.6 -178.8 -175.3 -177.0 -176.5 -174.2	-130.9 -130.5 -130.2 -130.2 -130.2	-178.4 -173.0 -172.2 -174.0 -172.1	-128.2 -128.2 -128.0 -128.0 -127.9 -127.9	-169.6 -171.4 -172.1 -169.2 -180.0 -177.8	-127.5 -127.8 -127.7 -127.7 -127.8 -127.4	-173.6 -172.3 -173.2 -196.6 -182.7 -179.0	-124.7 -124.2 -124.1 	-168.1 -175.3 -165.7 	-122.7 -122.6 -122.6 -122.5 -122.4	-165.0 -165.2 -169.1 -172.0 -171.9
MONTH	-132.9	-196.1	-130.2	-184.0	-127.8	-191.3	-126.8	-196.6	-124.1	-194.7	-122.4	-175.0

ST. MARYS COUNTY-Continued

DAY	MAX	MIN										
DAT												
	AP	RIL	MA	AΥ	JU	NE	JUI	LY	AUG	UST	SEPTE	MBER
1			-123.4	-167.8	-123.5	-177.1	-131.1	-175.9	-128.2	-170.0	-126.5	-171.9
2			-123.3	-171.4	-124.3	-168.8	-132.9	-174.6	-128.2	-175.8	-132.4	-174.9
3			-126.5	-173.3	-124.0	-166.7	-128.3	-177.8	-128.0	-169.6	-134.2	-176.1
4			-125.9	-175.4	-123.8	-170.2	-127.3	-170.9	-127.8	-169.6	-128.9	-175.6
5			-125.1	-177.6	-123.9	-176.6	-126.8	-168.7	-127.8	-175.4	-128.4	-170.6
6			-124.6	-169.4	-124.0	-166.2	-126.6	-169.9	-127.8	-178.6	-127.8	-169.9
7			-124.5	-170.2	-123.8	-165.8	-126.2	-168.0	-127.7	-169.6	-127.4	-178.2
8			-124.3	-168.6	-123.9	-166.2	-126.2	-171.1	-127.8	-173.0	-127.2	-172.5
9			-124.2	-169.0	-123.6	-176.2	-126.1	-174.7	-127.8	-172.6	-127.0	-171.2
10			-124.1	-166.0	-123.7	-165.7	-126.0	-170.3	-127.7	-176.4	-126.6	-185.0
11			-124.0	-168.8	-123.8	-170.1	-126.0	-172.4	-127.7	-169.1	-126.4	-168.1
12			-124.0	-165.8	-124.9	-170.1	-125.9	-167.6	-127.5	-169.8	-126.3	-173.1
13			-124.2	-168.3	-124.5	-166.6	-126.1	-168.4	-127.5	-181.0	-126.0	-167.6
14			-124.3	-166.2	-124.4	-166.2	-126.3	-168.2	-127.5	-169.6	-126.0	-176.8
15			-124.3	-176.6	-124.2	-173.0	-126.3	-171.5	-127.4	-170.8	-126.1	-190.6
16			-124.2	-167.5	-124.3	-168.7	-126.2	-169.1	-126.8	-172.6	-126.2	-168.4
17	-122.5	-174.0	-124.2	-165.8	-124.2	-168.6	-126.5	-168.6	-126.7	-168.5	-126.3	-168.3
18	-122.5	-165.2	-123.9	-166.1	-124.2	-166.6	-126.8	-174.6	-126.7	-185.6	-124.8	-172.8
19	-122.4	-167.2	-124.2	-166.4	-124.3	-168.6	-133.7	-177.7	-126.7	-170.2	-124.5	-174.5
20	-122.6	-172.3	-124.3	-167.2	-124.3	-168.2	-129.2	-175.8	-126.7	-168.2	-125.5	-171.6
21	-122.4	-164.6	-124.2	-176.5	-124.4	-166.4	-129.1	-175.9	-126.8	-168.6	-126.1	-174.7
22	-122.1	-169.9	-124.3	-168.6	-124.5	-169.3	-130.2	-177.2	-126.8	-176.9	-125.7	-180.2
23	-122.5	-167.2	-124.1	-166.3	-124.5	-166.4	-129.3	-171.6	-126.8	-172.5	-125.4	-178.4
24	-123.1	-166.4	-123.9	-166.3	-124.6	-174.1	-129.1	-171.2	-128.6	-175.0	-125.6	-172.7
25	-122.7	-166.2	-123.6	-177.2	-124.7	-170.9	-129.1	-175.6	-127.7	-171.9	-125.6	-168.0
26	-122.7	-167.9	-123.7	-166.1	-124.7	-166.7	-129.7	-174.9	-127.4	-169.9	-125.4	-167.5
27	-123.0	-169.7	-123.6	-167.5	-124.7	-167.3	-129.6	-175.2	-127.2	-179.7	-125.4	-167.7
28	-123.4	-177.2	-123.6	-165.7	-124.8	-168.3	-129.2	-171.0	-127.0	-168.7	-125.2	-181.9
29	-123.3	-165.4	-123.8	-174.5	-124.9	-170.2	-128.8	-170.6	-127.0	-168.5	-125.3	-167.4
30	-123.5	-174.4	-123.8	-165.8	-125.0	-171.8	-128.5	-170.3	-126.8	-169.1		
31			-123.7	-165.7			-128.5	-170.8	-126.8	-168.5		
MONTH	-122.1	-177.2	-123.3	-177.6	-123.5	-177.1	-125.9	-177.8	-126.7	-185.6	-124.5	-190.6
YEAR	-122.1	-196.6										

Daily Low Water Levels

ST. MARYS COUNTY-Continued

WELL NUMBER .-- SM Dg 21. PERMIT NUMBER .-- SM-94-0074.

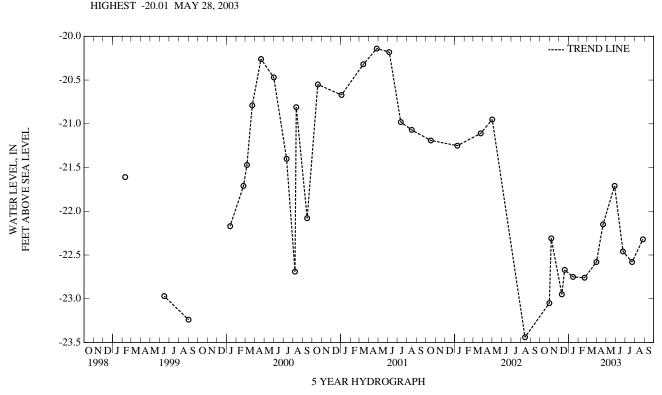
LOCATION .-- Hydrologic Unit 02060006, at Patuxent River Naval Air Test Station. Owner: U.S. Navy.

AQUIFER.--Piney Point Formation of Upper Eocene age and the Nanjemoy Formation of Lower Eocene age. Aquifer code: 124PNPN, 124NNJM.

WELL CHARACTERISTICS .- Drilled, artesian well, depth 315 ft; casing diameter 4 in., to 295 ft; screen diameter 4 in., from 295 to 315 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recording interval, February 2000 to current year.

DATUM.--Elevation of land surface is 3 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 1.70 ft above land surface.


REMARKS.--Naval Air Station Patuxent River Ground Water Hydrogeology project observation/production well. Water levels are affected by this well being used as a production well, and regional ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- February 1998 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 17.14 ft below sea level, March 5, 2001 (recorder); lowest measured, 27.71 ft below sea level, July 28, 2002 (recorder).

WATER LEVELS, II	N FEET ABOVE SEA LEVE	L, WATER YEAR OCTOBE	R 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 06 DEC 10	-21.35 -20.61 -21.25	DEC 19, 2002 JAN 15, 2003 FEB 21	-20.97 -21.05 -21.06	MAR 31, 2003 APR 21 MAY 28	-20.88 -20.45 -20.01	JUN 24, 2003 JUL 23 AUG 27	-20.76 -20.88 -20.62
LOW	EST -21.35 O	CT 31, 2002					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

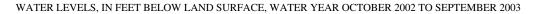
ST. MARYS COUNTY-Continued

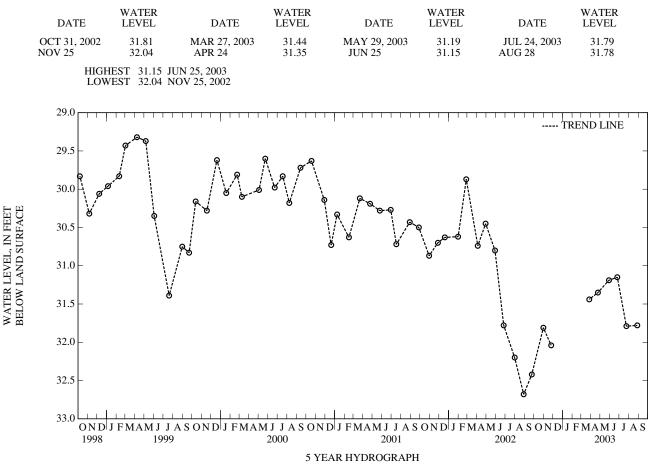
WELL NUMBER.--SM Eg 27. SITE ID.--381213076222801. PERMIT NUMBER.--SM-73-1993.

LOCATION.--Lat 38°12'13", long 76°22'28", Hydrologic Unit 02060004, 1.6 miles east of St. James, at the St. Marys Co. Environmental Studies Area. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 320 ft; casing diameter 6 in., to 70 ft; casing diameter 2 in., from 70 to 310 ft; screen diameter 2 in., from 310 to 320 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.50 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD.--August 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 19.84 ft below land surface, May 12, 1978; lowest measured, 32.68 ft below land surface, August 29, 2002.

ST. MARYS COUNTY-Continued

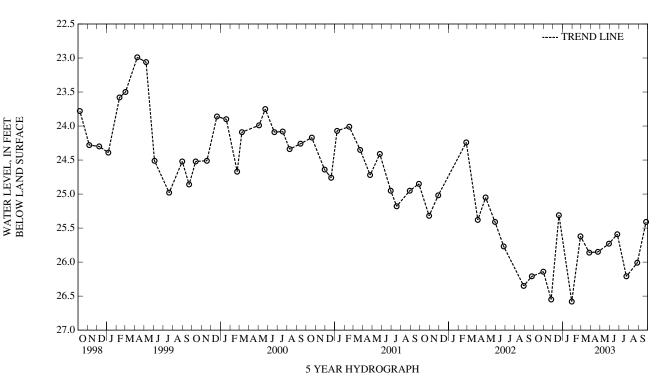
WELL NUMBER.--SM Fe 30. SITE ID.--380834076303401. PERMIT NUMBER.--SM-73-1917.

LOCATION.--Lat 38°08'34", long 76°30'34", Hydrologic Unit 02070011, St. Mary's Co. Metropolitan Commission Facility, Piney Point. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

LOWEST 26.58 JAN 30, 2003

- WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 270 ft; casing diameter 6 in., to 67 ft; casing diameter 2 in., from 67 to 260 ft; screen diameter 2 in., from 260 to 270 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from October 1988 to October 1994.
- DATUM.--Elevation of land surface is 9 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.7 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- August 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.24 ft below land surface, October 6, 1976; lowest measured, 26.58 ft below land surface, January 30, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 25 DEC 20	26.14 26.55 25.31	JAN 30, 2003 FEB 27 MAR 27	26.58 25.62 25.86	APR 24, 2003 MAY 29 JUN 25	25.85 25.73 25.59	JUL 24, 2003 AUG 28 SEP 25	26.21 26.01 25.41
нісн	EST 25 31 F	DEC 20, 2002					

ST. MARYS COUNTY-Continued

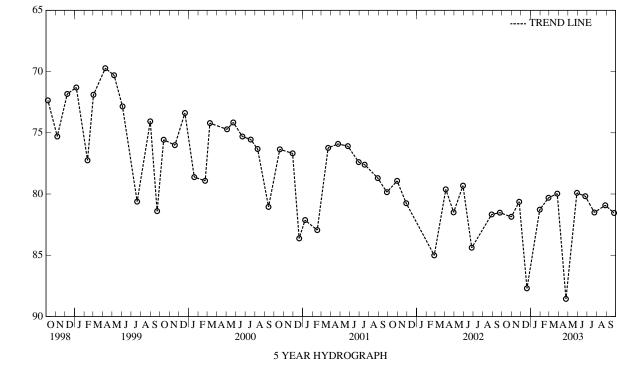
WELL NUMBER.--SM Fe 31. SITE ID.--380834076303402. PERMIT NUMBER.--SM-73-3088.

LOCATION.--Lat 38°08'34", long 76°30'34", Hydrologic Unit 02070011, St. Mary's Co. Metropolitan Commission Facility, Piney Point. Owner: U.S. Geological Survey.

AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 639 ft; casing diameter 4 in., to 171 ft; casing diameter 2 in., from 171 to 451 ft; screen diameter 3 in., from 451 to 461 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 8 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.60 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--October 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 29.77 ft below land surface, December 5, 1978; lowest measured, 88.57 ft below land surface, April 24, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 25 DEC 20	81.87 80.63 87.71	JAN 30, 2003 FEB 27 MAR 27	81.28 80.31 79.97	APR 24, 2003 MAY 29 JUN 25	88.57 79.91 80.18	JUL 24, 2003 AUG 28 SEP 25	81.51 80.92 81.55
	EST 79.91 N EST 88.57 A	-)					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

ST. MARYS COUNTY-Continued

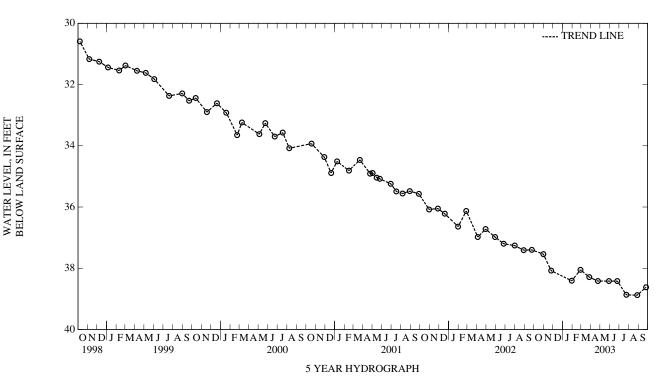
WELL NUMBER .-- SM Ff 36. SITE ID .-- 380724076251901. PERMIT NUMBER .-- SM-73-1478.

LOCATION .-- Lat 38°07'23", long 76°25'20", Hydrologic Unit 02070011, near Kitts Point. Owner: Jesuit Order.

AQUIFER .-- Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

- WELL CHARACTERISTICS.--Drilled, irragation, artesian well, depth 618 ft; casing diameter 8 in., to 545 ft, and casing diameter 6 in., from 545 to 594 ft; screen diameter 6 in., from 594 to 618 ft.
- INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Twice yearly water level measurements from September 1982 to September 1996.
- DATUM.--Elevation of land surface is 5.50 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.5 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.


PERIOD OF RECORD .-- November 1978, September 1982 to current year.

LOWEST 38.88 AUG 28, 2003

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.80 ft below land surface, November 14, 1978; lowest measured, 38.88 ft below land surface, August 28, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 25 JAN 30, 2003	37.54 38.08 38.41	FEB 27, 2003 MAR 27 APR 24	38.05 38.29 38.42	MAY 29, 2003 JUN 25 JUL 24	38.42 38.42 38.87	AUG 28, 2003 SEP 25	38.88 38.62
HIGH	EST 37.54 O	OCT 31, 2002					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

ST. MARYS COUNTY-Continued

WELL NUMBER .-- SM Ff 64.

LOCATION .-- Hydrologic Unit 02070007, at Webster Field. Owner: U.S. Navy.

AQUIFER.--Aquia Formation of Upper Paleocene age. Aquifer code: 125AQUI.

WELL CHARACTERISTICS .-- Drilled, artesian well, depth 534 ft; casing depth unknown.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--30-minute recording interval, September 1999 to current year.

DATUM.--Elevation of land surface is 10 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 3.00 ft above land surface.

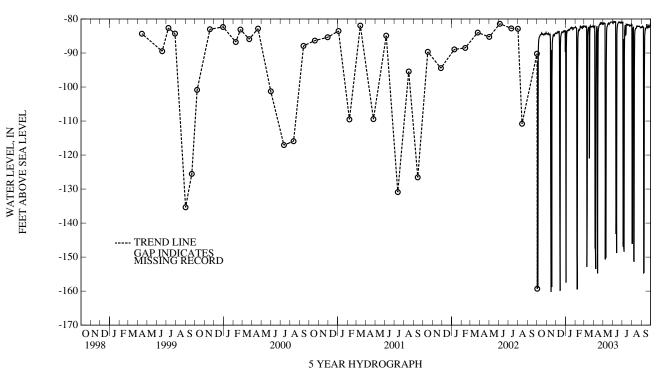
REMARKS.--Naval Air Station Patuxent River Ground Water Hydrogeology project observation well. Water levels are affected by nearby production well and regional ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD.--September 1998 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 76.64 ft below sea level, September 3, 1998; lowest measured, 160.20 ft below sea level, November 15, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 DEC 10 JAN 15, 2003	-83.74 -83.62 -82.75	MAR 31, 2003 APR 21 MAY 28	-81.75 -81.29 -80.86	JUN 23, 2003 JUL 23 AUG 27	-80.83 -81.41 -81.76
LOW	EST -83.74 (OCT 31, 2002			


HIGHEST -80.83 JUN 23, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCT	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAI	RCH
1	-86.2	-90.2	-83.6	-84.3	-83.8	-84.2	-82.9	-83.5	-81.9	-82.3	-81.8	-82.1
2	-86.0	-159.3	-83.8	-84.4	-83.8	-84.3	-82.8	-157.5	-82.0	-82.5	-81.6	-82.1
3	-87.1	-92.6	-84.0	-84.5	-83.9	-84.2	-84.6	-88.7	-82.0	-82.6	-81.7	-82.1
4	-86.9	-159.0	-83.9	-84.4	-83.7	-84.2	-83.8	-84.6	-82.0	-82.6	-81.5	-82.3
5	-86.7	-89.8	-84.0	-84.4	-83.3	-83.9	-83.2	-83.9	-81.9	-82.8	-81.8	-82.4
6	-85.8	-86.8	-83.5	-84.2	-83.3	-84.0	-83.0	-83.4	-82.4	-149.2	-81.7	-82.2
7	-85.3	-85.9	-84.0	-84.5	-83.1	-83.8	-83.0	-83.4	-84.5	-159.5	-81.7	-82.1
8	-85.0	-85.4	-83.9	-84.6	-83.3	-84.0	-82.8	-83.3	-85.6	-95.8	-81.5	-82.4
9	-84.7	-85.2	-83.9	-84.7	-83.5	-84.0	-82.4	-83.4	-84.1	-85.7	-81.7	-82.4
10	-84.6	-85.1	-84.2	-84.6	-83.4	-83.8	-82.6	-83.2	-83.4	-84.3	-81.8	-152.9
11	-84.3	-84.8	-84.0	-84.4	-83.0	-83.5	-82.5	-83.1	-83.0	-83.5	-85.1	-132.9
12	-84.2	-84.6	-83.8	-84.4	-83.2	-87.4	-82.6	-83.3	-82.7	-83.2	-83.2	-85.1
13	-84.1	-84.6	-84.1	-86.1	-83.5	-131.8	-82.7	-83.2	-82.5	-83.4	-82.8	-83.5
14	-84.2	-84.6	-84.0	-128.4	-88.1	-159.9	-82.6	-83.0	-82.8	-83.3	-82.3	-82.9
15	-83.8	-84.4	-86.7	-160.2	-85.3	-88.1	-82.4	-82.9	-82.5	-83.1	-81.9	-82.6
16	-83.5	-84.1	-86.0	-89.1	-84.7	-85.3	-82.3	-82.9	-82.0	-82.7	-82.1	-82.6
17	-83.6	-84.3	-85.0	-158.8	-84.2	-84.8	-82.1	-82.6	-81.8	-82.1	-82.0	-82.3
18	-83.9	-84.5	-87.2	-97.3	-83.6	-84.2	-82.0	-82.6	-81.7	-82.2	-81.9	-121.0
19	-84.1	-84.4	-85.8	-87.2	-83.7	-84.0	-82.0	-82.5	-81.8	-82.5	-82.3	-84.5
20	-84.1	-84.5	-85.2	-86.0	-83.2	-83.8	-82.1	-82.7	-82.0	-82.6	-81.7	-82.3
21	-84.1	-84.5	-84.6	-85.2	-83.3	-83.9	-82.2	-82.5	-82.1	-82.6	-81.5	-82.0
22	-84.1	-84.5	-84.0	-84.7	-83.5	-83.9	-82.0	-82.6	-81.8	-82.3	-81.7	-82.3
23	-84.0	-84.7	-84.1	-84.6	-83.5	-84.0	-82.1	-82.6	-81.8	-82.2	-81.7	-82.4
24	-84.2	-84.5	-84.4	-85.0	-83.2	-83.8	-82.4	-83.1	-82.0	-82.7	-81.7	-82.2
25	-84.0	-84.4	-84.2	-85.0	-82.8	-83.4	-82.3	-83.0	-82.2	-82.6	-81.7	-82.2
26 27 28 29 30 31	-83.8 -83.9 -83.8 -83.7 -83.5 -83.7	-84.3 -84.5 -84.3 -84.3 -84.0 -84.3	-84.2 -83.9 -83.7 -83.5 -83.8	-84.8 -84.4 -84.3 -84.2 -84.1	-83.1 -83.0 -82.9 -82.8 -82.8 -83.0	-83.7 -83.7 -83.5 -83.5 -83.3 -89.7	-82.0 -82.1 -82.2 -82.0 -82.0 -82.1	-82.6 -82.6 -82.6 -82.6 -82.6 -82.5	-82.0 -81.8 -81.6 	-82.5 -82.2 -82.0 	-81.7 -81.8 -81.5 -81.7 -81.5 -81.6	-82.2 -82.3 -82.2 -82.1 -81.9 -82.2
MONTH	-83.5	-159.3	-83.5	-160.2	-82.8	-159.9	-82.0	-157.5	-81.6	-159.5	-81.5	-152.9

ST. MARYS COUNTY-Continued

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	M	AY	JU	NE	JU	LY	AUC	JUST	SEPTE	MBER
1	-82.0	-82.5	-81.0	-81.3	-80.0	-80.9	-80.6	-81.1	-81.3	-81.8	-81.9	-82.5
2	-81.8	-82.4	-80.9	-81.2	-80.6	-81.2	-80.5	-81.0	-81.5	-146.1	-81.7	-82.5
3	-82.0	-82.2	-80.9	-81.4	-80.5	-81.0	-80.2	-80.8	-83.3	-86.3	-81.7	-82.4
4	-81.7	-82.1	-80.9	-81.2	-80.2	-80.8	-80.5	-146.9	-82.4	-83.3	-81.6	-82.0
5	-81.6	-147.5	-80.9	-81.2	-80.4	-81.0	-82.5	-85.9	-82.1	-82.6	-81.8	-82.4
6	-84.7	-146.3	-80.6	-81.3	-80.4	-80.9	-82.5	-147.3	-81.9	-82.5	-81.9	-82.4
7	-83.2	-153.5	-80.9	-81.3	-80.2	-80.8	-83.5	-148.4	-81.9	-150.9	-81.8	-82.4
8	-84.8	-99.7	-80.9	-150.7	-80.4	-80.9	-83.5	-90.2	-85.0	-151.4	-81.9	-154.6
9	-83.0	-84.8	-83.9	-116.3	-80.2	-80.8	-82.0	-83.5	-84.7	-94.9	-85.2	-154.5
10	-82.0	-83.1	-82.7	-150.2	-80.3	-80.8	-81.6	-82.3	-83.2	-84.7	-85.0	-97.0
11	-81.6	-82.1	-83.7	-93.5	-80.4	-143.2	-81.2	-81.8	-82.6	-83.3	-83.7	-85.0
12	-81.7	-83.9	-82.3	-83.7	-82.7	-124.9	-81.1	-84.7	-82.3	-83.0	-82.8	-83.8
13	-82.1	-154.8	-81.8	-82.4	-84.4	-148.8	-81.1	-84.6	-82.1	-82.8	-82.5	-82.9
14	-84.1	-100.2	-81.5	-82.2	-82.3	-84.4	-81.2	-81.6	-82.2	-82.8	-82.3	-83.0
15	-82.5	-84.1	-81.1	-81.9	-81.7	-82.4	-81.1	-81.7	-81.8	-82.7	-82.1	-82.6
16	-81.5	-82.6	-81.1	-81.5	-81.2	-81.9	-81.0	-81.6	-81.6	-82.3	-82.1	-82.6
17	-81.7	-82.4	-80.7	-81.3	-80.9	-81.4	-81.1	-81.7	-81.4	-82.1	-81.4	-82.5
18	-81.5	-81.9	-80.8	-81.2	-80.6	-81.2	-81.1	-81.8	-81.7	-82.2	-81.0	-81.5
19	-81.2	-81.7	-80.9	-81.5	-80.5	-81.1	-81.1	-81.6	-81.6	-82.1	-81.4	-82.2
20	-81.1	-81.6	-80.9	-81.6	-80.4	-80.9	-81.1	-81.7	-81.6	-82.2	-81.8	-82.4
21	-81.1	-81.6	-80.9	-81.4	-80.5	-81.0	-81.1	-81.7	-81.4	-82.2	-82.0	-82.6
22	-80.6	-81.2	-80.9	-81.3	-80.4	-80.9	-81.1	-81.8	-81.6	-82.2	-81.7	-82.2
23	-80.8	-81.4	-80.5	-81.1	-80.5	-81.0	-81.1	-81.7	-81.5	-82.1	-81.4	-82.0
24	-81.1	-81.5	-80.7	-81.1	-80.4	-81.1	-81.3	-81.9	-81.5	-82.1	-81.6	-82.4
25	-81.0	-81.4	-80.5	-81.0	-80.5	-81.2	-81.4	-82.1	-81.5	-82.1	-81.6	-82.3
26 27 28 29 30 31	-80.7 -80.9 -80.8 -81.0 -81.1	-81.1 -81.2 -81.4 -81.3 -81.5	-80.5 -80.3 -80.2 -80.3 -80.4 -80.1	-80.9 -80.9 -80.9 -80.9 -80.9 -80.9	-80.3 -80.3 -80.5 -80.5 -80.4	-81.1 -80.9 -81.0 -81.1 -81.1	-81.5 -81.5 -81.5 -81.4 -81.1 -81.3	-82.0 -82.0 -81.8 -81.6 -81.9	-81.6 -81.8 -81.8 -81.9 -81.9 -82.0	-82.3 -82.3 -82.4 -82.6 -82.6 -82.4	-81.7 -81.6 -81.4 -81.5 	-82.4 -82.1 -81.8 -82.1
MONTH YEAR	-80.6 -80.0	-154.8 -160.2	-80.1	-150.7	-80.0	-148.8	-80.2	-148.4	-81.3	-151.4	-81.0	-154.6

Daily Low Water Levels

ST. MARYS COUNTY-Continued

WELL NUMBER.--SM Fg 45. SITE ID.--380711076222201. PERMIT NUMBER.--SM-04-5190.

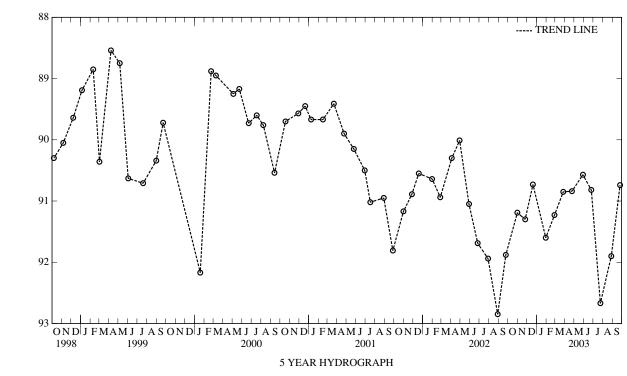
LOCATION.--Lat 38°07'11", long 76°22'22", Hydrologic Unit 02070011, in Ridge Volunteer Fire Department pumphouse, at Ridge. Owner: Ridge Volunteer Fire Department.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

LOWEST 92.67 JUL 24, 2003

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 436 ft; casing diameter 6 in., to 386 ft; casing diameter 4 in., from 415 to 436 ft; screen diameter 5 in., from 386 to 415 ft.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 65 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Hole in sanitary seal, 0.55 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--May 1966 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 74.83 ft below land surface, May 16, 1967; lowest measured, 92.85 ft below land surface, August 29, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31, 2002 NOV 25 DEC 20	91.19 91.30 90.73	JAN 30, 2003 FEB 27 MAR 27	91.60 91.23 90.85	APR 24, 2003 MAY 29 JUN 25	90.84 90.57 90.82	JUL 24, 2003 AUG 28 SEP 25	92.67 91.90 90.74
HIGH	EST 90.57 N	AAY 29 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

SOMERSET COUNTY

WELL NUMBER .-- SO Be 42. SITE ID .-- 381156075412501.

LOCATION.--Lat 38°11'56", long 75°41'25", Hydrologic Unit 02060009, 0.1 mi northeast of US Rt. 13 and Hampton Ave., Princess Anne. Owner: Private Residence.

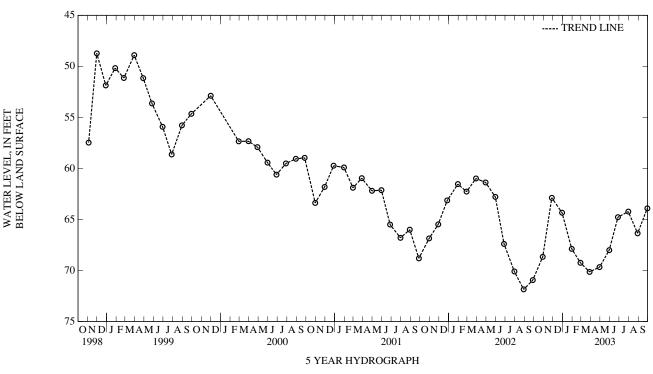
AQUIFER.--Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS .-- Drilled, unused, artesian well, measured depth 184 ft; casing diameter 2 in., to unknown depth.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 17 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.28 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.


PERIOD OF RECORD .-- August 1952 to current year.

LOWEST 70.14 MAR 28, 2003

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.15 ft below land surface, May 1, 1953; lowest measured, 71.86 ft below land surface, August 29, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 27 DEC 30	68.67 62.88 64.35	JAN 30, 2003 FEB 27 MAR 28	67.89 69.25 70.14	APR 29, 2003 MAY 30 JUN 27	69.68 68.01 64.78	JUL 30, 2003 AUG 29 SEP 29	64.23 66.36 63.92
HIGH	EST 62.88 N	IOV 27, 2002					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

SOMERSET COUNTY-Continued

WELL NUMBER .-- SO Ce 42. SITE ID .-- 380927075423701. PERMIT NUMBER .-- SO-81-0394.

LOCATION.--Lat 38°09'30", long 75°41'56", Hydrologic Unit 02060009, at Eastern Shore Correctional Institution. Owner: Maryland Department of Correction.

AQUIFER.--Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 215 ft; casing diameter 4 in., to 185 ft; screen diameter 4 in., from 185 to 215 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recording interval, from January 1986 to current year.

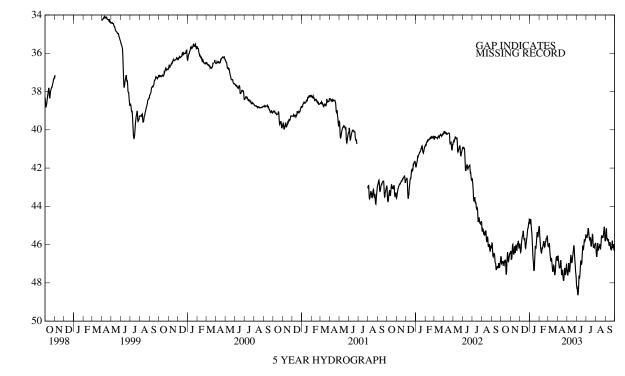
DATUM.--Elevation of land surface is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of recorder shelf, 2.10 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- January 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 20.32 ft below land surface, August 27, 1984; lowest measured, 51.90 ft below land surface, August 7, 1991 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003


DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002	46.43	JAN 30, 2003	45.15	APR 29, 2003	46.87	JUL 30, 2003	45.97
NOV 27	45.94	FEB 27	45.49	MAY 30	47.59	AUG 29	45.18
DEC 30	44.67	MAR 28	46.57	JUN 27	45.75	SEP 29	46.29

HIGHEST 44.67 DEC 30, 2002 LOWEST 47.59 MAY 30, 2003

DAY	MAX	MIN										
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBR	UARY	MAF	RCH
1	46.61	46.44	46.33	46.15	46.10	45.82	44.75	44.55	45.08	44.81	46.10	45.94
2	46.71	46.44	46.37	46.16	46.29	46.08	44.93	44.71	45.46	45.03	46.03	45.78
3	47.00	46.68	46.77	46.35	46.40	46.27	44.89	44.52	45.72	45.44	46.11	45.90
4	47.03	46.81	46.76	46.58	46.36	46.14	44.67	44.49	45.95	45.70	46.10	45.89
5	46.86	46.69	46.68	46.27	46.14	45.74	44.83	44.60	46.19	45.95	45.92	45.74
6	46.95	46.76	46.27	45.86	45.84	45.63	45.04	44.77	46.31	46.18	46.21	45.83
7	46.94	46.71	46.02	45.89	45.73	45.47	45.27	45.04	46.42	46.30	46.45	46.20
8	46.91	46.70	45.99	45.80	45.59	45.47	45.43	45.25	46.44	46.32	46.62	46.39
9	46.97	46.67	46.29	45.99	45.55	45.44	45.76	45.43	46.32	46.14	46.83	46.52
10	47.09	46.78	46.48	46.29	45.45	45.26	46.13	45.76	46.15	46.07	46.85	46.72
11	47.10	46.77	46.50	46.37	45.28	45.08	46.54	46.13	46.22	46.10	46.72	46.55
12	46.84	46.65	46.44	46.17	45.40	45.13	46.81	46.54	46.10	45.98	46.73	46.57
13	46.94	46.69	46.18	45.98	45.64	45.40	46.96	46.76	46.03	45.88	46.90	46.73
14	46.81	46.68	46.09	45.95	45.71	45.51	47.33	46.96	45.88	45.69	47.11	46.90
15	46.81	46.63	46.39	46.01	45.78	45.62	47.38	47.25	45.82	45.64	47.30	47.06
16	46.89	46.59	46.43	46.16	45.67	45.54	47.25	46.76	45.92	45.80	47.42	47.27
17	47.40	46.89	46.16	45.89	45.88	45.64	46.76	46.42	46.09	45.83	47.36	47.16
18	47.57	47.36	46.01	45.82	46.16	45.87	46.42	46.07	46.13	45.91	47.18	46.92
19	47.42	46.86	46.07	45.92	46.19	46.01	46.07	45.85	46.08	45.82	47.09	46.86
20	46.86	46.65	46.28	46.06	46.05	45.73	46.15	45.88	45.91	45.72	47.13	46.91
21	46.65	46.38	46.29	46.09	45.88	45.67	46.17	46.01	45.83	45.68	47.39	46.94
22	46.40	46.18	46.10	45.80	45.75	45.57	46.02	45.76	45.83	45.62	47.57	47.29
23	46.58	46.26	45.96	45.86	45.62	45.43	45.77	45.50	45.67	45.45	47.57	47.39
24	46.87	46.58	45.96	45.81	45.47	45.26	45.51	45.35	45.72	45.60	47.42	47.12
25	46.89	46.76	45.84	45.67	45.27	44.87	45.35	45.26	45.63	45.53	47.15	46.82
26	46.80	46.54	45.83	45.71	45.14	44.97	45.51	45.33	45.53	45.44	46.82	46.58
27	46.67	46.42	46.12	45.83	45.13	44.94	45.61	45.51	45.66	45.44	46.68	46.59
28	46.54	46.37	46.20	46.06	44.98	44.79	45.55	45.29	46.01	45.63	46.68	46.52
29	46.46	46.36	46.13	45.81	44.85	44.75	45.29	45.15			46.61	46.44
30	46.47	46.34	45.95	45.81	44.81	44.59	45.19	45.04			46.82	46.51
31	46.46	46.24			44.64	44.48	45.04	44.87			46.82	46.73
MONTH	47.57	46.18	46.77	45.67	46.40	44.48	47.38	44.49	46.44	44.81	47.57	45.74

DAY	MAX	MIN										
	AP	RIL	MA	ΑY	JUI	NE	JUI	LY	AUG	UST	SEPTE	MBER
1	46.73	46.50	47.40	47.13	48.25	47.97	45.50	45.26	46.01	45.67	45.71	45.37
2	46.58	46.42	47.56	47.28	48.23	48.13	45.62	45.40	46.38	45.98	45.47	45.14
3	46.82	46.52	47.61	47.45	48.43	48.13	45.64	45.44	46.60	46.38	45.23	44.89
4	46.95	46.73	47.48	47.23	48.62	48.37	45.63	45.46	46.64	46.38	45.15	44.91
5	47.13	46.83	47.23	46.94	48.62	48.40	45.52	45.30	46.45	46.10	45.67	45.15
6	47.22	47.06	46.96	46.74	48.42	48.06	45.36	45.15	46.13	45.82	45.77	45.58
7	47.22	47.12	47.13	46.91	48.06	47.51	45.20	44.97	45.93	45.82	45.66	45.48
8	47.20	47.08	47.39	47.12	47.62	47.52	45.14	44.99	46.26	45.84	45.77	45.45
9	47.10	46.82	47.41	47.19	47.72	47.53	45.33	45.04	46.31	46.10	45.83	45.68
10	46.84	46.69	47.25	46.97	47.74	47.49	45.54	45.23	46.12	45.95	45.72	45.55
11	46.84	46.57	47.01	46.62	47.55	47.21	45.65	45.34	46.12	45.87	45.87	45.45
12	47.17	46.84	46.70	46.45	47.27	46.98	45.74	45.50	46.13	45.99	46.04	45.81
13	47.55	47.10	46.54	46.38	46.98	46.77	45.70	45.54	46.05	45.83	46.04	45.86
14	47.59	47.40	46.67	46.40	46.83	46.61	45.62	45.37	45.98	45.74	46.03	45.77
15	47.40	47.19	46.94	46.58	47.03	46.69	45.69	45.34	46.23	45.94	45.87	45.55
16	47.32	47.09	46.94	46.78	47.03	46.87	46.03	45.63	46.23	45.94	45.91	45.62
17	47.58	47.24	46.90	46.66	46.95	46.59	46.10	45.99	46.03	45.76	46.20	45.91
18	47.73	47.45	46.72	46.48	46.63	46.29	46.04	45.75	45.82	45.47	46.23	45.80
19	47.87	47.61	46.58	46.38	46.34	45.96	45.81	45.60	45.52	45.30	46.10	45.61
20	47.87	47.64	46.43	46.23	46.06	45.90	45.65	45.40	45.56	45.35	46.29	46.10
21	47.69	47.29	46.27	46.05	46.24	46.03	45.44	45.20	45.66	45.54	46.18	45.87
22	47.32	47.03	46.09	45.94	46.29	46.09	45.51	45.22	45.57	45.36	45.91	45.55
23	47.22	47.04	46.04	45.90	46.15	45.87	45.92	45.51	45.56	45.36	45.80	45.50
24 25	47.42	47.22	46.33	46.02	45.95	45.69	46.12	45.89	45.64	45.48	46.15	45.73
25	47.59	47.42	46.65	46.30	45.75	45.54	46.10	45.94	45.51	45.35	46.16	45.97
26	47.54	47.33	46.89	46.57	45.76	45.53	46.15	45.94	45.35	45.19	46.03	45.79
27	47.40	47.13	47.08	46.85	45.81	45.65	46.17	46.04	45.19	45.04	45.99	45.74
28	47.17	46.89	47.41	46.99	45.76	45.61	46.04	45.87	45.07	44.94	46.28	45.89
29	46.99	46.81	47.55	47.35	45.61	45.49	45.97	45.79	45.36	44.97	46.29	46.09
30	47.24	46.93	47.75	47.41	45.49	45.34	45.97	45.84	45.73	45.31	46.23	45.89
31			48.11	47.70			45.91	45.70	45.82	45.66		
MONTH	47.87	46.42	48.11	45.90	48.62	45.34	46.17	44.97	46.64	44.94	46.29	44.89
YEAR	48.62	44.48										

Daily Low Water Levels

WATER LEVEL, IN FEET BELOW LAND SURFACE

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

SOMERSET COUNTY-Continued

WELL NUMBER .-- SO Cf 2. SITE ID .-- 380616075380701.

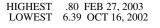
LOCATION.--Lat 38°06'16", long 75°38'07", Hydrologic Unit 02060009, on U.S. Rt. 13, 4.5 mi west of intersection of U.S. Rt. 13, and MD Rt. 364, near Costen. Owner: Maryland State Highway Administration.

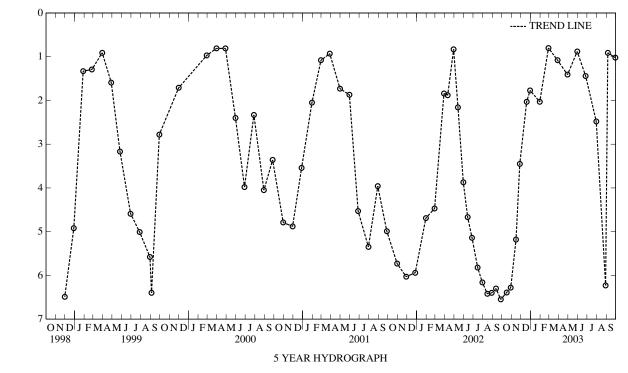
AQUIFER .-- Kent Island Formation (Columbia aquifer) of Pleistocene age. Aquifer code: 112KILD.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 15 ft; casing diameter 1.25 in., to unknown depth.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 20 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by natural climatic response.


PERIOD OF RECORD .-- August 1949 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.28 ft below land surface, May 9, 1958; lowest measured, 6.55 ft below land surface, September 27, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 16, 2002 29 NOV 15	6.39 6.28 5.18	DEC 19, 2002 30 JAN 30, 2003	2.03 1.77 2.03	MAR 28, 2003 APR 29 MAY 30	1.08 1.41 .88	JUL 30, 2003 AUG 29 SEP 05	2.48 6.23 .91
27	3.45	FEB 27	.80	JUN 26	1.44	29	1.02

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

TALBOT COUNTY

WELL NUMBER .-- TA Bf 73. SITE ID .-- 385242075593101. PERMIT NUMBER .-- TA-02-1641.

LOCATION .-- Lat 38°52'42", long 75°59'31", Hydrologic Unit 02060005, in Cordova. Owner: Allen Foods.

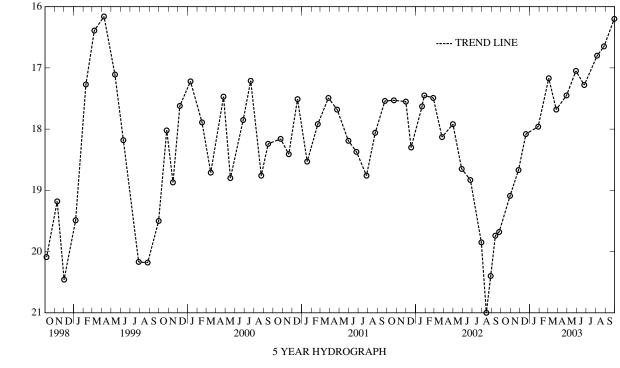
AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS.--Drilled, unused, artesian well, depth 288 ft; casing diameter 4 in., to 276 ft; casing diameter 2 in., from 276 to 283 ft; screen diameter 3 in., from 283 to 288 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

- DATUM.--Elevation of land surface is 42 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.50 ft above land surface.
- REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. A water level was reported by the driller as 26 ft below land surface on December 16, 1955. A water level was measured at 26.64 ft below land surface on March 10, 1956. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--March 1956, December 1960 to current year.


EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.29 ft below land surface, May 4, 1961; lowest measured, 76.57 ft below land surface, December 6, 1974.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 30, 2002	19.09	JAN 28, 2003	17.96	APR 29, 2003	17.45	AUG 05, 2003	16.80
NOV 26	18.67	MAR 03	17.17	MAY 29	17.05	27	16.65
DEC 20	18.08	27	17.68	JUN 25	17.28	SEP 29	16.20

HIGHEST 16.20 SEP 29, 2003 LOWEST 19.09 OCT 30, 2002

WATER LEVEL, IN FEET BELOW LAND SURFACE

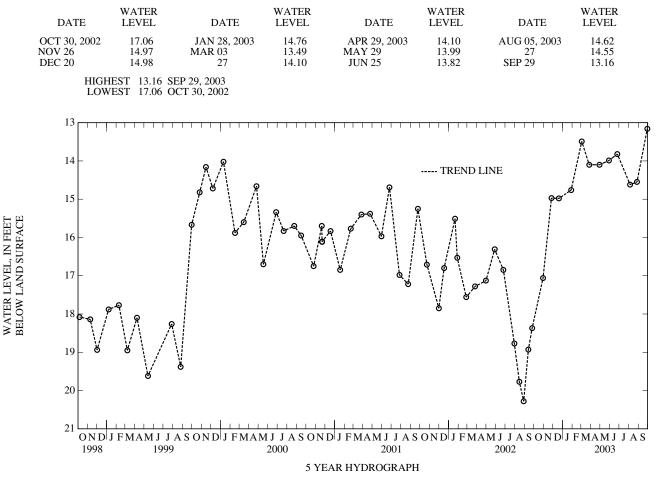
TALBOT COUNTY—Continued

WELL NUMBER .-- TA Bf 74. SITE ID .-- 385242075593102. PERMIT NUMBER .-- TA-02-1805.

LOCATION .-- Lat 38°52'42", long 75°59'31", Hydrologic Unit 02060005, in Cordova. Owner: Allen Foods.

AQUIFER .-- Pensauken Formation (Columbia aquifer) of Upper Miocene age. Aquifer code: 122PNSK.

WELL CHARACTERISTICS .- Drilled, unused, water-table well, depth 48.4 ft; casing diameter 4 in., to 42.5 ft; screen diameter 3 in., from 43.2 to 48.4 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM.--Elevation of land surface is 42 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.96 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. PERIOD OF RECORD.--April 1956 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.48 ft below land surface, December 14, 1971; lowest measured, 21.36 ft below land surface, November 2, 1993.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

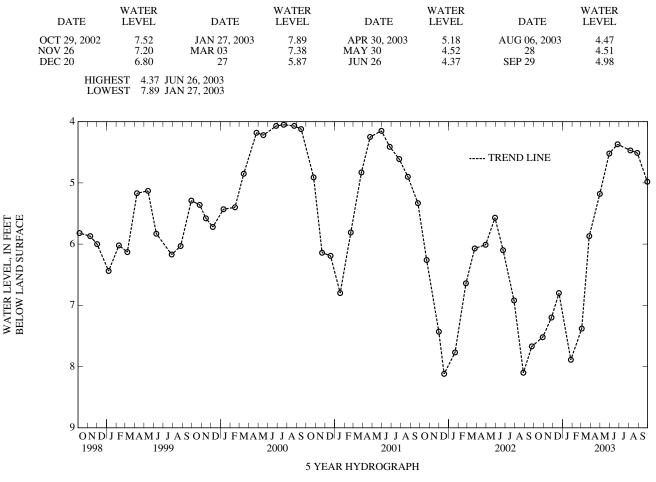
TALBOT COUNTY—Continued

WELL NUMBER .-- TA Cc 35. SITE ID.-- 384923076100601. PERMIT NUMBER .-- TA-73-0767.

LOCATION.--Lat 38°49'23", long 76°10'06", Hydrologic Unit 02060002, in Tunis Mills. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 180 ft; casing diameter 6 to 2 in.; screened from 170 to 180 ft.


INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM.--Elevation of land surface is 5 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.28 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Moitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--August 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.97 ft below land surface, April 2, 1980; lowest measured, 8.12 ft below land surface, December 17, 2001.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

TALBOT COUNTY—Continued

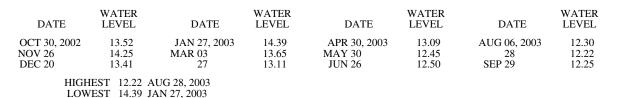
WELL NUMBER .-- TA Cc 36. SITE ID .-- 384514076103701. PERMIT NUMBER .-- TA-73-0751.

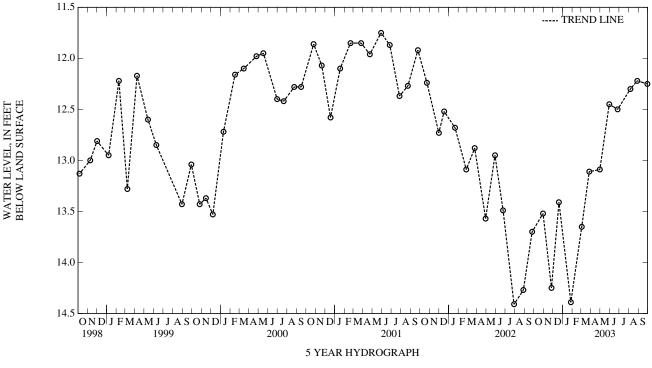
LOCATION .-- Lat 38°45'14", long 76°10'37", Hydrologic Unit 02060002, in Newcomb. Owner: U.S. Geological Survey.

AQUIFER .-- Piney Point Formation of Middle Eocene age. Aquifer code: 124PNPN.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 241 ft; casing diameter 6 in., to 51 ft; casing diameter 2 in., from 51 to 231 ft; screen diameter 2 in., from 231 to 241 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 7 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 4.40 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.89 ft below land surface, April 2, 1980; lowest measured, 14.41 ft below land surface, July 29, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

TALBOT COUNTY—Continued

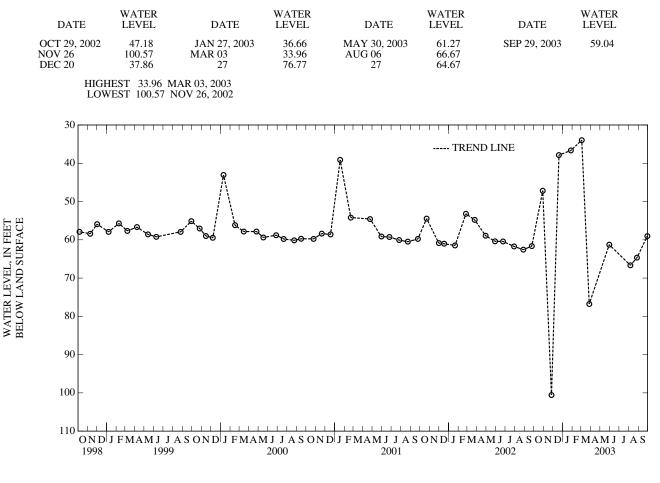
WELL NUMBER .-- TA Cd 57. SITE ID .-- 384709076050301. PERMIT NUMBER .-- TA-88-1328.

LOCATION.--Lat 38°47'09", long 076°05'03", Hydrologic Unit 02060005, in Easton, 0.3 mi southwest of the intersection with Glebe Rd and Commerce Drive. Owner: Easton Utilities Commission.

AQUIFER.--Upper Patapsco aquifer in the Patapsco Formation of Lower Cretaceous age. Aquifer code: 217PPSCU.

WELL CHARACTERISTICS.--Drilled, unused, artesian well, depth 1,198 ft; casing diameter 4 in., to 295 ft; casing diameter 2 in., from 260 to 1,137 ft, and 1,158 to 1,198 ft; screen diameter 2 in., from 1,137 to 1,158 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.


DATUM.--Elevation of land surface is 12 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.78 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. Drawdown in June 2003 is due to a pump operating next to well during construction of new well near site.

PERIOD OF RECORD.--October 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.42 ft below land surface, March 4, 1996; lowest measured, 179.62 ft below land surface, June 26, 2003 (see REMARKS).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

5 YEAR HYDROGRAPH

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

TALBOT COUNTY-Continued

WELL NUMBER .-- TA Ce 7. SITE ID .-- 384643076043801.

LOCATION.--Lat 38°46'43", long 76°04'38", Hydrologic Unit 02060005, off Washington St., in Easton. Owner: Easton Utilities Commission.

AQUIFER .-- Cheswold aquifer in the Calvert Formation of Lower Miocene age. Aquifer code: 122CSLD.

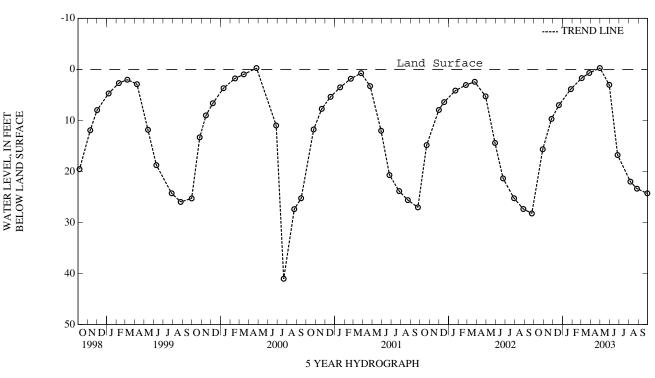
WELL CHARACTERISTICS .- Drilled, unused, artesian well, measured depth 104 ft; casing diameter 4 in., to 95 ft; screen diameter 4 in., from 95 to 102 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey or Maryland Geological Survey personnel.

DATUM.--Elevation of land surface is 13 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.40 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. A water level was reported as 43.43 ft below land surface on October 7, 1948. Water levels are occasionally affected by local ground-water withdrawal.

PERIOD OF RECORDS .-- April 1956 to current year.


LOWEST

24.30 SEP 29, 2003

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, +.27 ft above land surface, April 30, 2003; lowest measured 75.36 ft below land surface, August 2, 1966.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 (READINGS ABOVE LAND SURFACE INDICATED BY "-")

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 26 DEC 20	15.68 9.71 7.02	JAN 27, 2003 MAR 03 27	3.87 1.71 .71	APR 30, 2003 MAY 30 JUN 26	27 3.02 16.81	AUG 06, 2003 27 SEP 29	22.02 23.38 24.30
HIGH	EST +.27 A	PRIL 30, 2003					

WASHINGTON COUNTY

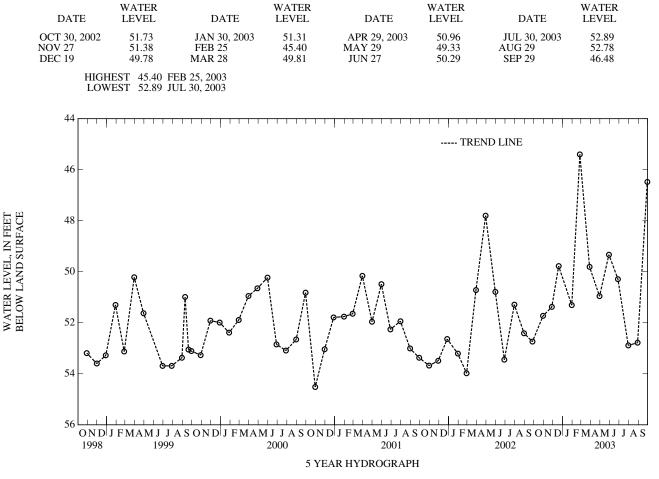
WELL NUMBER .-- WA Ac 1. SITE ID .-- 394154078103501.

LOCATION .-- Lat 39°41'54", long 78°10'35", Hydrologic Unit 02070004, in Hancock. Owner: Private Residence.

AQUIFER .-- Mahantango Formation of Middle-Lower Devonian age. Aquifer code: 344MNNG.

WELL CHARACTERISTICS .-- Drilled, unused, water-table well, depth 83 ft; casing diameter 4 in., to unknown depth; open hole.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land-surface is 440 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Removeable plug in base of hand pump, 0.60 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD.--October 1946 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.65 ft below land surface, January 2, 1976; lowest measured, 58.18 ft below land surface, November 23, 1992.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WASHINGTON COUNTY-Continued

WELL NUMBER .-- WA Be 2. SITE ID .-- 393638078001301.

LOCATION.--Lat 39°36'38", long 78°00'13", Hydrologic Unit 02070004, about 1.2 mi southeast of Big Pool, at Fort Frederick State Park. Owner: State of Maryland.

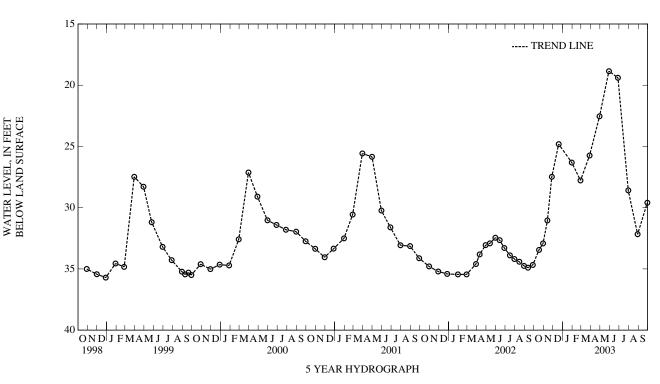
AQUIFER .-- Marcelles-Needmore Shale of Middle Devonian age. Aquifer code: 344MRCL and 344NDMR.

WELL CHARACTERISTICS .-- Dug, stone-lined, unused, water-table well, depth 41 ft; casing diameter 42 in.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 470 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of inside edge of wooden access hatch, 0.90 ft above land surface.

REMARKS .-- Collection of Basic Records (CBR) observation well.


HIGHEST 18.85 MAY 29, 2003 LOWEST 33.45 OCT 17, 2002

PERIOD OF RECORD .-- December 1949 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.72 ft below land surface, April 28, 1993; lowest measured, 36.92 ft below land surface, January 11, 1965.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 30 NOV 13 27	33.45 32.92 31.05 27.48	DEC 19, 2002 JAN 30, 2003 FEB 27 MAR 28	24.81 26.31 27.78 25.74	APR 29, 2003 MAY 29 JUN 27 JUL 30	22.54 18.85 19.30 28.59	AUG 29, 2003 SEP 29	32.17 29.60

WASHINGTON COUNTY-Continued

WELL NUMBER .-- WA Bk 25. SITE ID. -- 393851077343001. PERMIT NUMBER .-- WA-70-0235.

LOCATION.--Lat 39°38'51", long 77°34'30", Hydrologic Unit 02070004, 0.5 mi south of Smithsburg, at William M. Breichner Water Treatment Plant. Owner: U.S. Geological Survey.

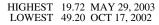
AQUIFER.--Tomstown Formation of Lower Cambrian age. Aquifer code: 377TMSN.

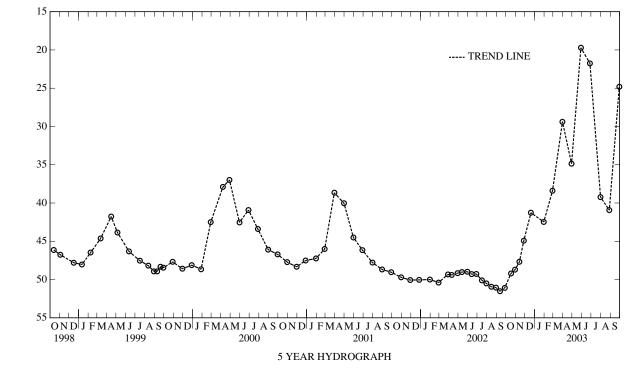
WELL CHARACTERISTICS .-- Drilled, unused, water-table well, depth 200 ft; casing diameter 6 in., to 128 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from April 27, 1970 to current year.

DATUM.--Elevation of land surface is 790 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of shelter platform, 3.50 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


PERIOD OF RECORD .-- April 1970 to current year.


WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.74 ft below land surface, April 6, 1993; lowest measured, 51.53 ft below land surface September 12, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 30 NOV 13 27	49.20 48.71 47.68 44.93	DEC 20, 2002 JAN 30, 2003 FEB 27 MAR 31	41.27 42.48 38.40 29.38	APR 29, 2003 MAY 29 JUN 27 JUL 31	34.86 19.72 21.76 39.24	AUG 28, 2003 SEP 29	40.93 24.82

WASHINGTON COUNTY-Continued

WELL NUMBER .-- WA Ch 106. SITE ID .-- 393414077461801. PERMIT NUMBER .-- WA-73-2095.

LOCATION.--Lat 39°34'14", long 77°46'18", Hydrologic Unit 02070004, at Fountain Rock School. Owner: U.S. Geological Survey.

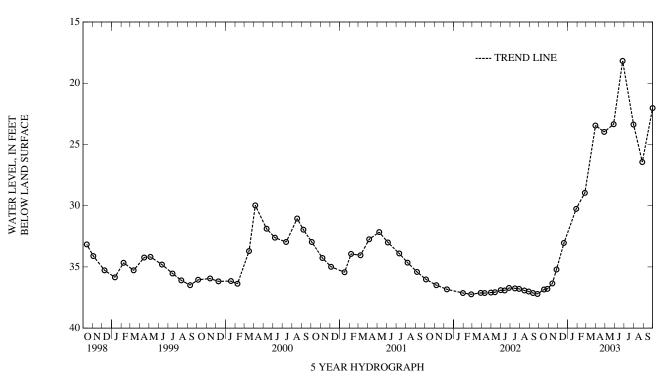
AQUIFER.--Conococheague Limestone (middle member) of Upper Cambrian age. Aquifer code: 371CCCG.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 69 ft; casing diameter 6 in., to 41 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from March 1978 to June 1981, November 1985 to May 1987, and July 1987 to June 1994.

DATUM.--Elevation of land surface is 520 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.45 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


PERIOD OF RECORD.--February 1978 to June 1981, April 1984 to current year.

HIGHEST 18.18 JUN 26, 2003 LOWEST 36.85 OCT 17, 2002

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.12 ft below land surface, May 4, 1993; lowest measured, 37.24 ft below land surface, February 26, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17, 2002 28 NOV 13 26	36.85 36.80 36.35 35.21	DEC 20, 2002 JAN 28, 2003 FEB 25 MAR 31	33.05 30.26 28.95 23.45	APR 28, 2003 MAY 28 JUN 26 JUL 31	23.98 23.35 18.18 23.37	AUG 28, 2003 SEP 30	26.44 22.03

WASHINGTON COUNTY-Continued

WELL NUMBER .-- WA Ci 82. SITE ID .-- 393402077434201. PERMIT NUMBER .-- WA-73-2101.

LOCATION.--Lat 39°34'02", long 77°43'42", Hydrologic Unit 02070004, at Maryland Correction Institution, near Lappans. Owner: U.S. Geological Survey.

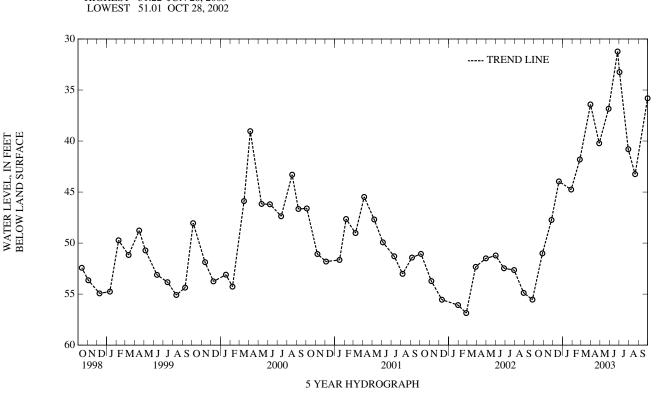
AQUIFER.--Conococheague Limestone (middle member) of Upper Cambrian age. Aquifer code: 371CCCG.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 84 ft; casing diameter 6 in., to 32 ft; open hole.

INSTRUMENTATION.--Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recorder interval from April 1978 to June 1981.

DATUM.--Elevation of land surface is 500 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.30 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.


HIGHEST 31.22 JUN 26, 2003

PERIOD OF RECORD .-- February 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 27.95 ft below land surface, April 6, 1993; lowest measured, 59.28 ft below land surface, February 1, 1981.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 26 DEC 20 JAN 28, 2003	51.01 47.73 43.95 44.76	FEB 25, 2003 MAR 31 APR 28 MAY 28	41.81 36.41 40.22 36.84	JUN 26, 2003 JUL 02 30 AUG 21	31.22 33.25 40.81 43.25	SEP 30, 2003	35.81

WASHINGTON COUNTY-Continued

WELL NUMBER.--WA Dj 2. SITE ID.--392904077371501.

LOCATION.--Lat 39°29'04", long 77°37'15", Hydrologic Unit 02070004, at Turner's Gap on Alt. U.S. 40. Owner: Russell Schwartz.

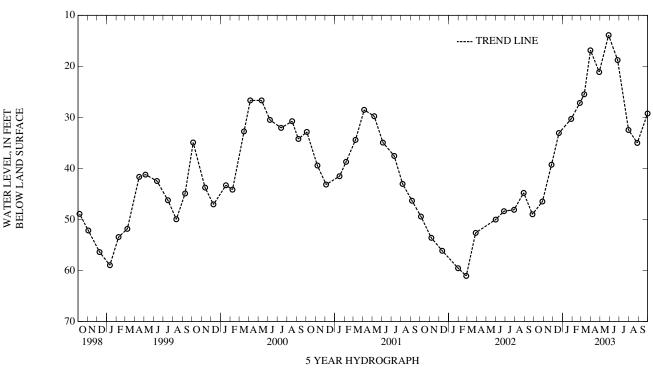
AQUIFER .-- Weverton Formation (Buzzard Knob member) of Lower Cambrian age. Aquifer code: 377WVRN.

WELL CHARACTERISTICS .-- Dug, stone-lined, observation, water-table well, depth 61.3 ft; casing diameter 48 in.

INSTRUMENTATION .-- Monthly water level measurements with chalked steel tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 1,070 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of concrete cover, 0.25 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well.


LOWEST 46.50 OCT 28, 2002

PERIOD OF RECORD.--December 1956 to current year.

EXTREMES FOR PERIOD FOR RECORD.--Highest water level measured, 11.92 ft below land surface, May 14, 1998; lowest measured, 61.06 ft below land surface, February 26, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28, 2002 NOV 26 DEC 20 JAN 28, 2003	46.50 39.29 33.08 30.31	FEB 25, 2003 MAR 11 31 APR 28	27.16 25.48 16.85 21.11	MAY 28, 2003 JUN 26 JUL 31 AUG 28	13.89 18.78 32.46 35.01	SEP 30, 2003	29.23
HIGH	EST 13.89 N	MAY 28, 2003					

WICOMICO COUNTY

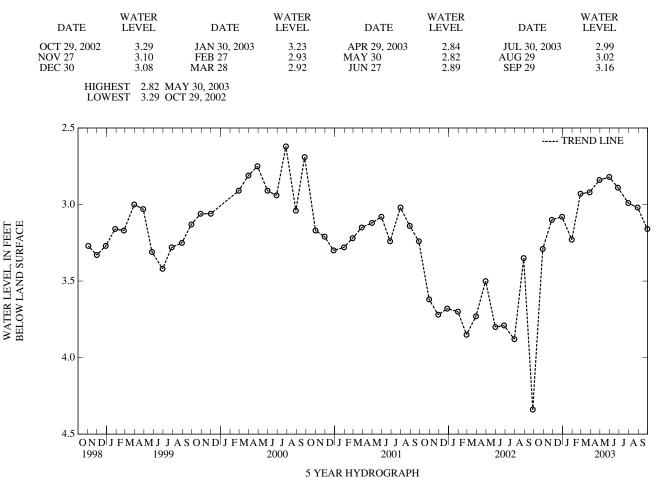
WELL NUMBER .-- WI Ce 13. SITE ID.-- 382150075352101.

LOCATION.--Lat 38°21'50", long 75°35'21", Hydrologic Unit 02060007, at Municipal Zoo Park, Salisbury. Owner: City of Salisbury.

AQUIFER .-- Pensauken Formation (Salisbury aquifer) of Upper Miocene age. Aquifer code: 122PNSK.

WELL CHARACTERISTICS.-Drilled, unused, water-table well, reported depth 65 ft, measured depth 51.7 ft; casing diameter 16 to 10 in., to unknown depth; screen diameter and interval unknown; screen length 20 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with water-level recorder from July 1947 to January 1955, and August 1962 to August 1968.


DATUM.--Elevation of land surface is 7 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.22 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- July 1947 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.25 ft below land surface, August 30, 1979; lowest measured, 10.72 ft below land surface, August 30, 1947.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WICOMICO COUNTY-Continued

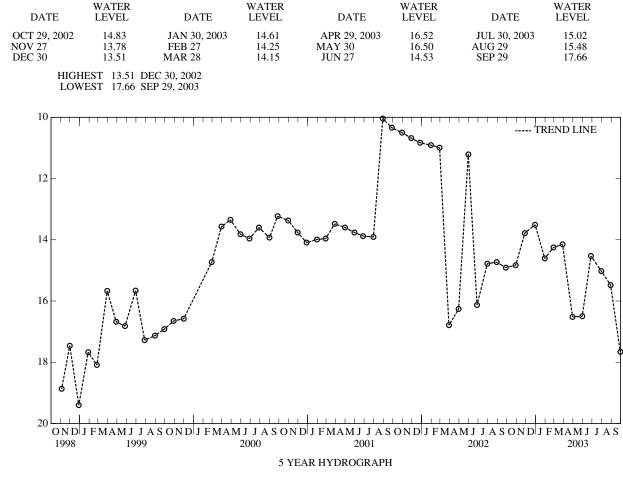
WELL NUMBER.--WI Ce 204. SITE ID.--382404075355401 PERMIT NUMBER.--WI-67-0191.

LOCATION.--Lat 38°24'04", long 75°35'54", Hydrologic Unit 02060007, north side of Naylor Mill Rd., Salisbury. Owner: City of Salisbury.

AQUIFER .-- Pensauken Formation (Salisbury aquifer) of Upper Miocene age. Aquifer code: 122PNSK.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 113 ft; casing diameter 8 in., to 109 ft; screen diameter 3 in., from 109 to 113 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 28 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of shelter floor on cross-brace, 3.14 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal. The nearby production well was not in use from approximately September 2001 through February 2002, and for some period in May 2002.

PERIOD OF RECORD .-- April 1967 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.35 ft below land surface, April 27, 1967; lowest measured, 19.40 ft below land surface, December 29, 1998.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

WICOMICO COUNTY—Continued

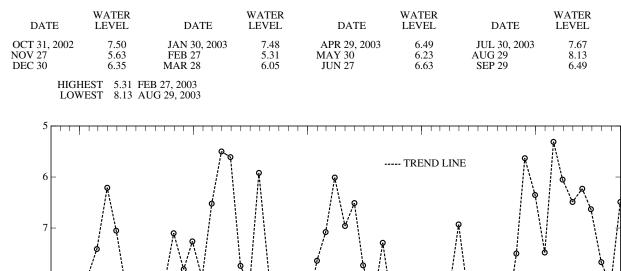
WELL NUMBER .-- WI Cf 3. SITE ID.-- 382037075310801.

LOCATION.--Lat 38°20'37", long 75°31'08", Hydrologic Unit 02060007, on Airport Rd., at Salisbury-Wicomico County Regional Airport, Mt. Hermon. Owner: Salisbury-Wicomico County Regional Airport.

AQUIFER.--Beaverdam Sand (Salisbury aquifer) of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .- Drilled, unused, water-table well, depth 110 ft; casing diameter 16 in., to 90 ft; screened from 90 to 110 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with graphic water-level recorder from March 1948 to July 1948, August 1949 to April 1960, and August 1963 to August 1968.


DATUM .-- Elevation of land surface is 44.79 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.00 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. A water level was reported as 7.2 ft below land surface on October 26, 1942. Water levels are affected by local and regional ground-water withdrawal.

PERIOD OF RECORD .-- September 1947 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.18 ft below land surface, May 8, 1958; lowest measured, 13.44 ft below land surface, September 18, 1947.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Ж

2000

WATER LEVEL, IN FEET BELOW LAND SURFACE

8

9

10

11

Q

1998

1999

አ

2003

ö

2002

5 YEAR HYDROGRAPH OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

OND^IJFMAMJ JASOND^IJFMAMJ JASOND^IJFMAMJ JASOND^IJFMAMJ JASOND^IJFMAMJ JAS

2001

ž

WATER LEVEL, IN FEET BELOW LAND SURFACE

GROUND-WATER LEVELS IN MARYLAND--Continued

WICOMICO COUNTY-Continued

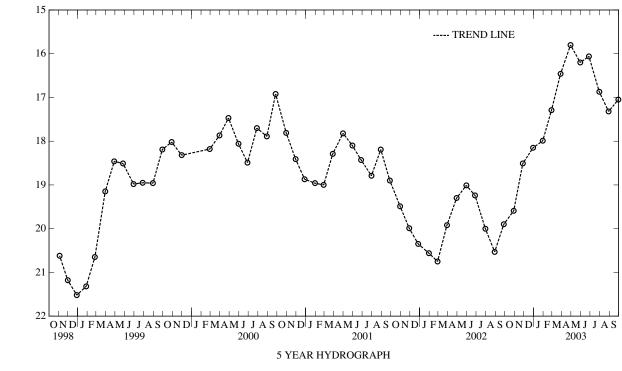
WELL NUMBER .-- WI Cf 147. SITE ID .-- 382429075344501.

LOCATION.--Lat 38°24'29", long 75°34'45", Hydrologic Unit 02060007, south side of Naylor Mill Rd., Salisbury. Owner: A.S. Abell Co.

AQUIFER .-- Pensauken Formation (Salisbury aquifer) of Upper Miocene age. Aquifer code: 122PNSK.

WELL CHARACTERISTICS .- Drilled, unused, water-table well, depth 80 ft; casing diameter 2 in., to 80 ft; perforated casing from 60 to 80 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 41.83 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing at land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--November 1964; March 1966 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.78 ft below land surface, June 18, 1979; lowest measured, 21.52 ft below land surface, December 29, 1998.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 27 DEC 30	19.59 18.51 18.15	JAN 30, 2003 FEB 27 MAR 28	17.99 17.29 16.46	APR 29, 2003 MAY 30 JUN 27	15.80 16.20 16.06	JUL 30, 2003 AUG 29 SEP 29	16.87 17.32 17.05
	EST 15.80 A EST 19.59 C						

WICOMICO COUNTY-Continued

WELL NUMBER .-- WI Cg 20. SITE ID .-- 382329075263701.

LOCATION.--Lat 38°23'29", long 75°26'37", Hydrologic Unit 02060009, 1.45 mi east of Parsonsburg, south of MD Rt. 346. Owner: Maryland State Highway Administration.

AQUIFER .-- Parsonsburg Sand (Columbia aquifer) of Pleistocene age. Aquifer code: 112PRBG.

WELL CHARACTERISTICS .-- Driven, unused, water-table well, depth 25 ft, casing diameter 1.25 in., to unknown depth.

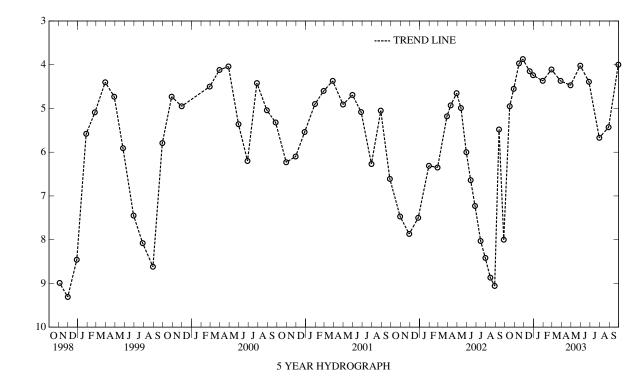
INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 68 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 2 in. sleeve, 0.17 ft above land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

HIGHEST 3.87 NOV 27, 2002 5.67 JUL 30, 2003

PERIOD OF RECORD .-- August 1949 to current year.


LOWEST

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.84 ft below land surface, January 31, 1950; lowest measured, 9.31 ft below land surface, November 30, 1998.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 16, 2002 29 NOV 15 27	4.95 4.55 3.97 3.87	DEC 19, 2002 30 JAN 30, 2003 FEB 27	4.15 4.24 4.37 4.11	MAR 28, 2003 APR 29 MAY 30 JUN 27	4.37 4.47 4.02 4.39	JUL 30, 2003 AUG 29 SEP 29	5.67 5.43 4.00

WORCESTER COUNTY

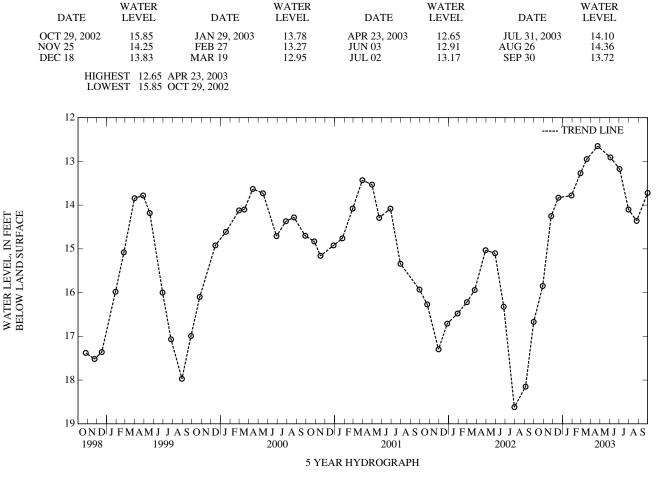
WELL NUMBER .-- WO Ae 23. SITE ID .-- 382621075174201. PERMIT NUMBER .-- WO-73-0513.

LOCATION.--Lat 38°26'21", long 75°17'42", Hydrologic Unit 02060009, 2.75 mi north of Whaleyville. Owner: U.S. Geological Survey.

AQUIFER .-- Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 280 ft; casing diameter 4 in., to 270 ft; screen diameter 2 in., from 270 to 280 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 40 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 4 in. casing, 3.52 ft above land surface.

REMARKS .-- Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal.

PERIOD OF RECORD.--October 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.85 ft below land surface, December 16, 1975; lowest measured, 20.18 ft below land surface, September 28, 1995.

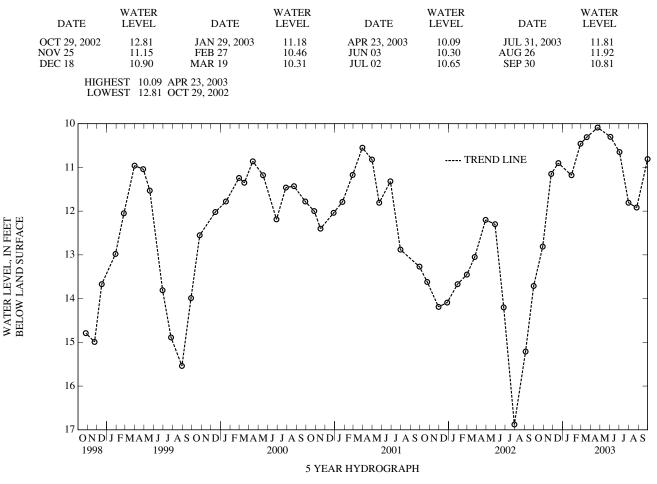
WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Ae 24. SITE ID .-- 382621075174202. PERMIT NUMBER .-- WO-73-0512.

LOCATION.--Lat 38°26'21", long 75°17'42", Hydrologic Unit 02060009, 2.75 mi north of Whaleyville. Owner: U.S. Geological Survey.

AQUIFER .-- Ocean City aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122OCNC.


WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 200 ft; casing diameter 4 in., to 190 ft; screen diameter 2 in., from 190 to 200 ft. INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 40 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 4 in. casing, 4.00 ft above land surface.

REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local and regional ground-water withdrawal. PERIOD OF RECORD.--October 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.49 ft below land surface, May 31, 1978; lowest measured, 16.88 ft below land surface, July 30, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WORCESTER COUNTY-Continued

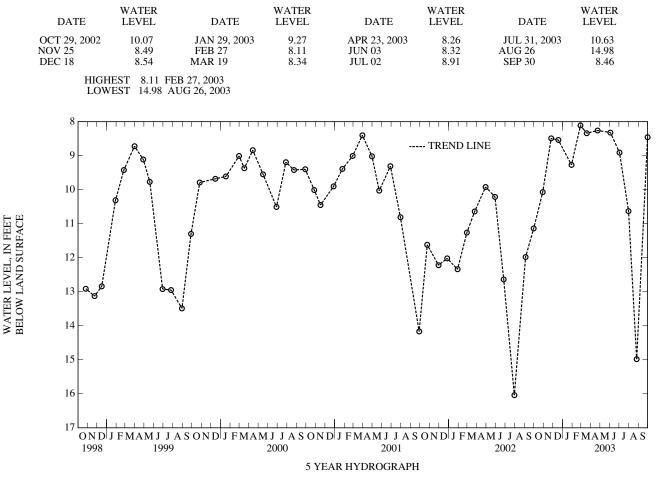
WELL NUMBER .-- WO Ae 25. SITE ID .-- 382621075174203. PERMIT NUMBER .-- WO-73-0514.

LOCATION.--Lat 38°26'21", long 75°17'42", Hydrologic Unit 02060009, 2.75 mi north of Whaleyville. Owner: U.S. Geological Survey.

AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 118 ft; casing diameter 4 in., to 108 ft; screened diameter 2 in., from 108 to 118 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 40 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.20 ft above land surface.

REMARKS .-- Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--October 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.78 ft below land surface, February 20, 1998; lowest measured, 16.04 ft below land surface, July 30, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

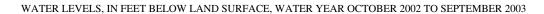
WORCESTER COUNTY-Continued

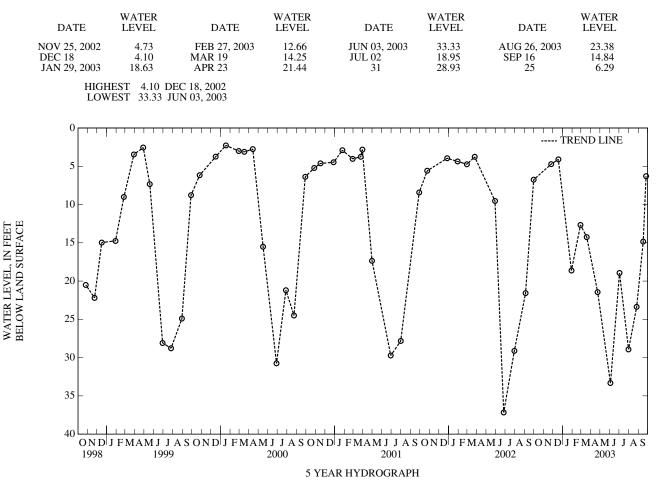
WELL NUMBER .-- WO Ah 6. SITE ID .-- 382632075031801. PERMIT NUMBER .-- WO-70-0009.

LOCATION.--Lat 38°26'32", long 75°03'18", Hydrologic Unit 02060010, at east end of 137th St., Ocean City. Owner: U.S. Geological Survey.

AQUIFER .-- Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 357 ft; casing diameter 6 in., to 347 ft; casing diameter 4 in., from 327 to 347 ft; screen diameter 4 in., from 347 to 357 ft.


INSTRUMENTATION.--Monthly water level measurements with an electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--15-minute recording interval, March 1985 to February 1994.


DATUM .-- Elevation of land surface is 6.35 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.27 ft above land surface.

REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal, especially during summer peak demands.

PERIOD OF RECORD.--September 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.48 ft above land surface, March 27, 1973; lowest measured, 52.46 ft below land surface, July 24, 1989 (recorder).

WORCESTER COUNTY-Continued

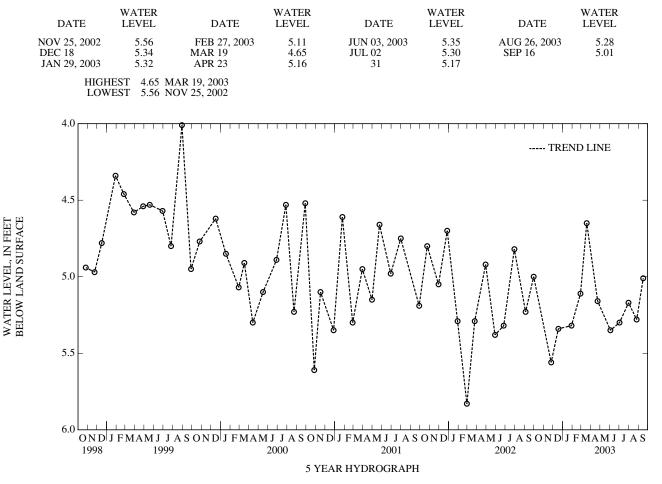
WELL NUMBER .-- WO Ah 35. SITE ID. -- 382635075030601. PERMIT NUMBER .-- WO-73-0516.

LOCATION.--Lat 38°26'35", long 75°03'06", Hydrologic Unit 02060010, at east end of 137th St., Ocean City. Owner: U.S. Geological Survey.

AQUIFER.--St. Marys Formation of Middle-Upper Miocene age. Aquifer code: 122SMRS.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 726 ft; casing diameter 4 in., to 716 ft; screen diameter 2 in., from 716 to 726 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 13.99 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 in. casing, 3.30 ft above land surface.

REMARKS .-- Ocean City Ground-Water Monitoring Network observation well.

PERIOD OF RECORD.--October 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.90 ft below land surface, March 10, 1976; lowest measured, 10.26 ft below land surface, October 28, 1975.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

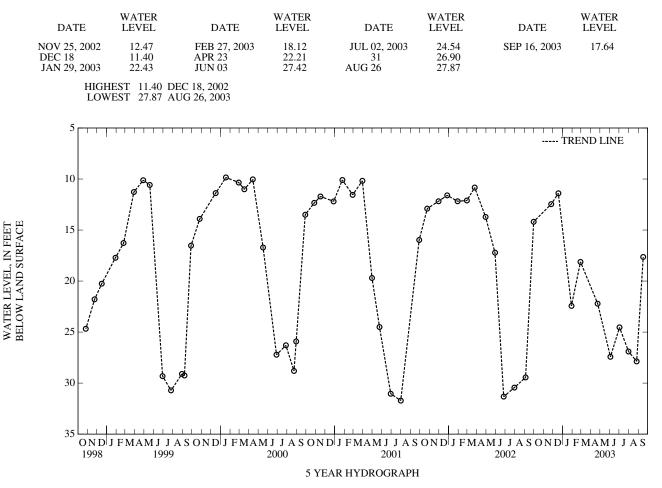
WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Ah 36. SITE ID .-- 382635075030602. PERMIT NUMBER .-- WO-73-0518.

LOCATION.--Lat 38°26'35", long 75°03'06", Hydrologic Unit 02060010, at east end of 137th St., Ocean City. Owner: U.S. Geological Survey.

AQUIFER .-- Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

- WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 430 ft; casing diameter 4 in., to 420 ft; screen diameter 2 in., from 420 to 430 ft.
- INSTRUMENTATION.--Monthly water level measurements with an electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recording interval from May 1994 to May 1997.


DATUM.--Elevation of land surface is 14.32 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 in. casing, 4.09 ft above land surface.

REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal, especially during summer peak demands.

PERIOD OF RECORD .-- October 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.23 ft below land surface, February 9, 1997; lowest measured, 38.75 ft below land surface, August 30, 1989.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Ah 37. SITE ID .-- 382635075030603. PERMIT NUMBER .-- WO-73-0517.

LOCATION.--Lat 38°26'35", long 75°03'06", Hydrologic Unit 02060010, at east end of 137th St., Ocean City. Owner: U.S. Geological Survey.

AQUIFER.--Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 478 ft; casing diameter 4 in., to 468 ft; screen diameter 2 in., from 468 to 478 ft.

INSTRUMENTATION.--Monthly water level measurements with an electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recording interval from May 1997 to current year.

DATUM.--Elevation of land surface is 13.89 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 in. casing, 3.10 ft above land surface.

REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal, especially during summer peak demands. Missing data due to recorder malfunction.

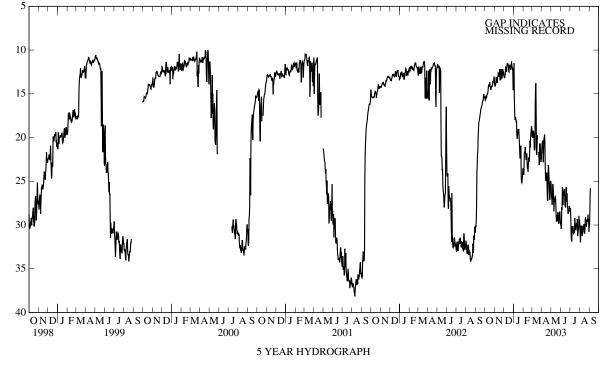
PERIOD OF RECORD .-- December 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.58 ft below land surface, February 10, 1977; lowest measured, 41.42 ft below land surface, August 30, 1989.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 25, 2002 DEC 18 JAN 29, 2003	12.45 11.54 22.81	FEB 27, 2003 MAR 21 APR 23	18.25 18.26 22.57	JUN 03, 2003 JUL 02 31	27.77 24.86 27.15	AUG 26, 2003 SEP 16 30	28.11 18.87 12.87
,	22.01		22.57	51	27.15	50	12.07

HIGHEST 11.54 DEC 18, 2002 LOWEST 28.11 AUG 26, 2003


DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	JARY	FEBR	UARY	MAI	RCH
1 2 3 4 5	15.52 15.73 15.65 15.21 15.46	14.33 14.33 13.97 13.37 13.63	13.92 14.12 14.09 13.88 13.77	12.24 12.47 12.29 11.89 11.62	13.00 13.14 13.16 12.89 12.76	11.26 11.33 11.13 10.86 10.24	12.65 11.48 15.40 17.01 17.99	10.36 9.48 9.08 12.72 15.13	23.66 24.26 23.58 21.78 21.70	21.63 20.98 20.54 19.05 19.16	19.80 19.76 20.05 19.22 19.31	17.28 17.69 17.27 17.21 16.74
6 7 8 9 10	15.46 15.22 15.01 15.01 14.87	13.48 13.17 13.10 13.18 13.20	13.11 13.37 13.43 13.74 13.36	11.12 11.60 11.76 12.29 11.97	11.90 12.18 12.45 12.44 12.01	10.10 10.60 11.07 11.09 10.93	17.78 17.66 17.93 18.16 18.07	14.45 14.45 14.98 15.05 15.05	21.53 21.11 21.88 22.20 22.55	19.85 19.87 20.13 20.98 19.87	19.36 19.81 21.35 21.46 21.14	16.73 17.05 18.91 20.50 16.29
11 12 13 14 15	14.60 14.15 13.94 14.18 14.02	13.03 12.76 12.69 13.06 12.76	13.01 12.91 12.55 12.77 13.05	11.92 11.69 11.42 11.65 11.93	11.61 11.64 11.55 11.59 11.85	10.36 10.56 10.44 9.96 10.67	19.66 20.09 20.08 19.53 19.02	15.37 17.64 17.02 16.83 17.10	22.19 21.81 22.86 23.52 23.52	19.87 17.94 19.27 21.39 21.24	16.29 14.38 13.78 17.60 21.93	14.25 13.62 12.81 11.83 17.28
16 17 18 19 20	13.66 14.05 14.19 14.51 14.51	12.34 12.80 12.96 13.12 13.19	12.90 12.17 13.41 13.41 13.20	11.38 10.64 11.27 12.17 11.63	12.46 12.51 11.85 11.84 11.73	10.62 10.45 10.27 10.35 10.08	19.45 19.05 19.72 20.40 21.38	16.85 16.92 17.76 18.08 19.30	23.91 23.00 22.28 22.71 22.73	21.47 19.89 20.31 19.86 17.39	21.93 20.85 19.72	19.56 17.45 16.42
21 22 23 24 25	14.31 14.06 14.17 14.14 14.03	12.92 12.75 12.85 12.86 12.71	12.67 12.20 12.99 13.23 13.16	11.13 10.64 11.46 12.02 11.86	11.82 12.25 11.99 12.07 11.29	10.12 10.50 10.45 10.43 9.33	22.31 22.39 21.74 20.93 24.28	20.56 20.49 19.77 19.55 19.70	21.77 20.35 21.14 20.18 19.49	16.79 17.12 19.24 18.12 17.84	21.66 22.37 23.16 20.69	18.47 20.01 19.85 19.80
26 27 28 29 30 31	13.52 13.69 13.66 13.54 13.02 13.29	12.26 12.51 12.53 12.29 11.84 11.93	12.63 12.18 12.37 12.72 12.66	11.21 10.98 11.09 11.25 11.13	11.85 11.87 12.35 12.07 14.58 14.36	10.37 10.69 10.57 10.41 10.35 10.59	25.08 25.16 24.89 24.55 23.69 23.49	23.38 23.62 22.96 22.55 20.57 20.17	19.21 18.72 18.90 	17.70 17.23 16.72 	20.79 20.77 22.13 22.79 22.62 22.12	19.21 19.14 19.21 20.21 20.22 19.73
MONTH	15.73	11.84	14.12	10.64	14.58	9.33	25.16	9.08	24.26	16.72	23.16	11.83

WORCESTER COUNTY—Continued

					"ORCEDTE		i commuee	•				
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΑY	JU	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	21.34 20.60 20.55 20.34 21.80	18.99 18.99 19.12 18.82 19.08	25.45 26.75 26.93 27.70 26.96	23.13 23.82 25.41 25.84 23.47	29.97 30.43 30.11 27.99 28.29	28.05 27.63 27.37 25.66 23.99	28.15 28.05 29.34 31.17 31.71	25.37 24.72 25.35 27.06 27.80	30.13 30.98 31.97 30.59 30.07	26.51 28.16 28.37 28.64 27.96	29.97 28.42 26.37 25.79	28.42 26.01 24.43 21.36
6 7 8 9 10	22.82 21.16 20.07 19.95 19.65	20.58 18.05 17.92 18.33 18.73	25.37 25.37 26.14 27.31 28.43	22.42 22.38 22.86 22.96 24.58	25.68 25.89 27.71 26.44 26.15	22.79 23.37 24.08 24.34 23.38	31.90 30.12 30.47 30.58 30.11	28.41 27.00 26.11 26.36 26.77	30.91 30.10 31.27 31.02 30.92	28.14 27.89 28.43 29.07 28.81	 	
11 12 13 14 15	20.75 23.27 24.58 24.91 24.89	18.79 19.38 21.91 22.22 21.28	27.23 27.40 26.86 26.76 26.90	24.33 23.58 24.56 23.68 24.31	26.65 26.02 25.88 27.75 27.78	23.48 23.39 23.47 24.20 25.48	30.95 31.05 30.57 30.89 30.40	26.01 28.73 27.10 27.85 27.69	30.76 30.09 30.28 29.91 30.43	28.51 28.18 28.17 28.39 28.67	 	
16 17 18 19 20	24.65 24.01 25.91 27.09 27.23	20.97 20.79 21.99 23.80 23.10	27.65 28.88 29.62 28.88 29.22	25.00 26.63 27.51 26.17 27.13	28.01 26.71 25.65 26.07 27.36	25.15 24.50 23.22 23.22 24.56	29.21 29.98 30.12 30.61 30.41	26.01 27.48 28.49 27.60 28.07	30.99 30.76 29.54 29.11 30.10	29.03 28.50 27.22 27.11 28.04	 	
21 22 23 24 25	24.97 23.15 23.65 24.46 25.60	21.74 21.54 21.27 21.32 22.59	29.56 28.55 29.12 29.17 29.85	27.25 27.09 26.48 28.02 27.38	26.39 27.91 28.07 28.72 28.59	25.04 24.90 24.99 25.15 26.59	29.85 29.87 30.28 29.32 31.23	26.58 26.65 27.43 26.83 27.08	29.39 30.21 29.78 29.46 29.38	27.91 28.27 28.07 27.85 27.79	 	
26 27 28 29 30 31	26.81 27.13 25.82 25.01 25.01	23.77 23.28 22.12 22.22 22.07	29.68 28.57 28.84 28.45 29.41 29.84	27.46 25.17 25.94 25.84 26.71 27.70	28.49 28.36 27.82 28.39 28.37	26.11 26.03 25.47 24.63 25.57	30.97 30.52 30.52 28.96 29.73 29.40	28.33 27.25 28.24 26.63 26.41 26.21	29.38 28.80 29.64 29.33 30.79 30.21	27.31 26.93 27.11 27.25 27.33 27.26	 	
MONTH YEAR	27.23 31.97	17.92 9.08	29.85	22.38	30.43	22.79	31.90	24.72	31.97	26.51	29.97	21.36

Daily Low Water Levels

WATER LEVEL, IN FEET BELOW LAND SURFACE

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Bg 1. SITE ID .-- 382022075072401.

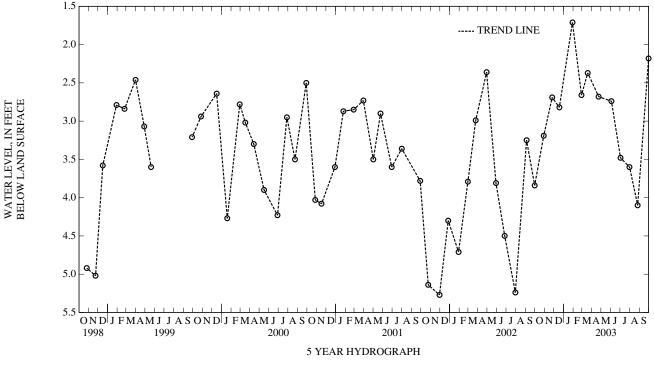
LOCATION.--Lat 38°20'22", long 75°07'24", Hydrologic Unit 02060010, 0.4 mi east of Herring Creek on U.S. Rt. 50. Owner: MD State Highway Administration.

AQUIFER.--Sinepuxent Formation (Columbia aquifer) of Pleistocene age. Aquifer code: 112SNPX.

WELL CHARACTERISTICS .-- Driven, water-table well, depth 14 ft; casing diameter 1.25 in., to 14 ft.

INSTRUMENTATION .-- Monthly water level measurements with electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.25 ft above land surface.


REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- August 1949 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.41 ft below land surface, March 8, 1962; lowest measured, 8.61 ft below land surface, May 14, 1986.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Bg 15. SITE ID. -- 382359075094501. PERMIT NUMBER .-- WO-68-0066.

LOCATION.--Lat 38°23'59", long 75°09'45", Hydrologic Unit 02060010, south side of Beauchamp Rd. at Ocean Pines. Owner: Ocean Pines.

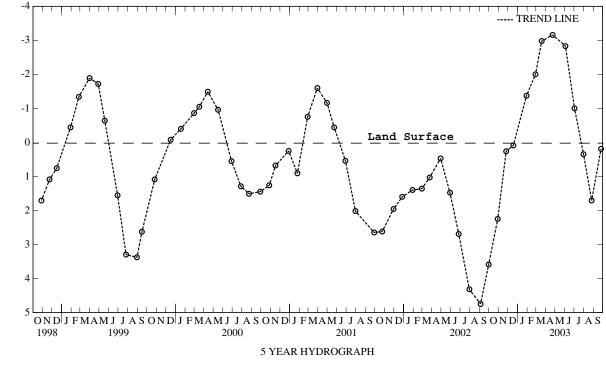
AQUIFER .-- Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 318 ft; casing diameter 6 in., to 288 ft; screen diameter 6 in., from 288 to 318 ft.

INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 7 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 6 in. casing, 5.50 ft above land surface.

REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal, especially during summer peak demands.


PERIOD OF RECORD .-- September 1970 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.13 ft above land surface, February 29, 1972; lowest measured, 4.75 ft below land surface, September 4, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 (READINGS ABOVE LAND-SURFACE INDICATED BY "-")

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 18	2.25 .26 .09	JAN 29, 2003 FEB 27 MAR 19	-1.37 -2.00 -2.98	APR 23, 2003 JUN 03 JUL 02	-3.16 -2.83 -1.00	JUL 31, 2003 AUG 26 SEP 25	.35 1.71 .19
	EST -3.16 Al						

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WORCESTER COUNTY-Continued

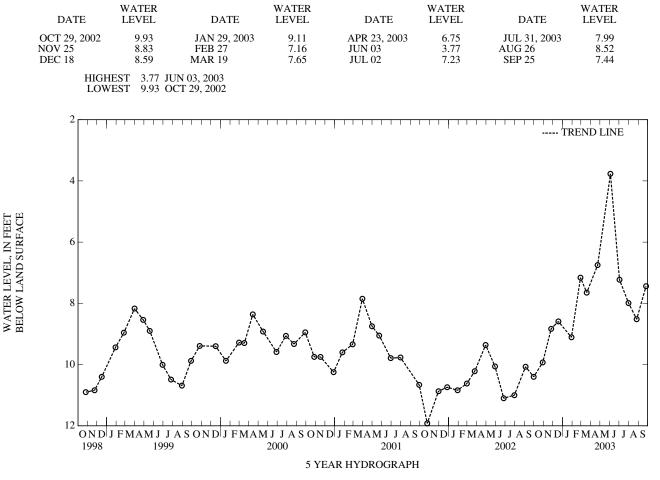
WELL NUMBER .-- WO Bg 45. SITE ID .-- 382358075094501. PERMIT NUMBER .-- WO-68-0066.

LOCATION.--Lat 38°23'58", long 75°09'45", Hydrologic Unit 02060010, south side of Beauchamp Rd. at Ocean Pines. Owner: Ocean Pines.

AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 77 ft; casing diameter 2 in., to 56 ft; screen diameter 3 in., from 56 to 77 ft.

INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 2 in. casing, 1.60 ft above land surface. Measuring point changed to top of casing, 0.69 on June 3, 2003, when the casing was cut lower.

REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels may be affected by local ground-water withdrawal.

PERIOD OF RECORD.--October 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.77 ft below land surface, June 3, 2003; lowest measured, 11.92 ft below land surface, October 24, 2001.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Bg 46. SITE ID .-- 382358075094502 PERMIT NUMBER .-- WO-68-0066

LOCATION.--Lat 38°23'58", long 75°09'45", Hydrologic Unit 02060010, south side of Beauchamp Rd. at Ocean Pines. Owner: Ocean Pines

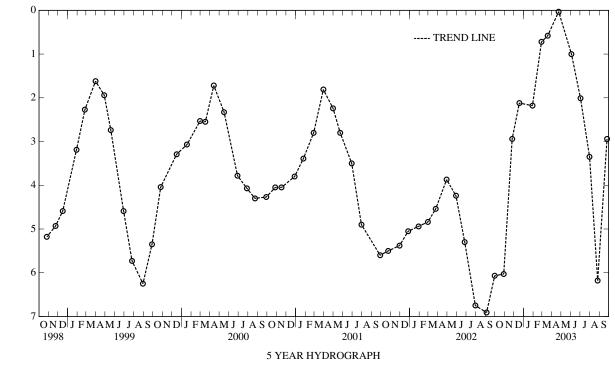
AQUIFER .-- Pocomoke aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122PCMK.

WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 199.5 ft; casing diameter 6 in., to 53.7 ft; casing diameter 4 in., from 53.7 to 164.2 ft, and 194.5 to 199.5 ft; screen diameter 6 in., from 164.2 to 194.5 ft.

INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 2 in. coupling, 2.50 ft above land surface.

REMARKS .-- Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.


PERIOD OF RECORD .-- October 1970 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE LOWEST 6.18 AUG 26, 2003

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.03 ft above land surface, April 23, 2003; lowest measured, 6.91 ft below land surface, September 4, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 18	6.03 2.94 2.12	JAN 29, 2003 FEB 27 MAR 19	2.18 .72 .58	APR 23, 2003 JUN 03 JUL 02	.03 1.00 2.01	JUL 31, 2003 AUG 26 SEP 25	3.35 6.18 2.94
HIGH	EST 03 AF	PR 23, 2003					

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Bg 47. SITE ID .-- 382325075063301. PERMIT NUMBER .-- WO-73-0522.

LOCATION.--Lat 38°23'25", long 75°06'33", Hydrologic Unit 02060010, at intersection of MD Rt. 90 and Isle of Wight Rd., Isle of Wight. Owner: U.S. Geological Survey.

AQUIFER.--Ocean City aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122OCNC.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 268 ft; casing diameter 4 in., to 258 ft; screen diameter 2 in., from 258 to 268 ft.

INSTRUMENTATION.--Monthly water level measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recording interval from July 1985 to current year.

DATUM.--Elevation of land surface is 5 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of recorder shelf, 4.07 ft above land surface.

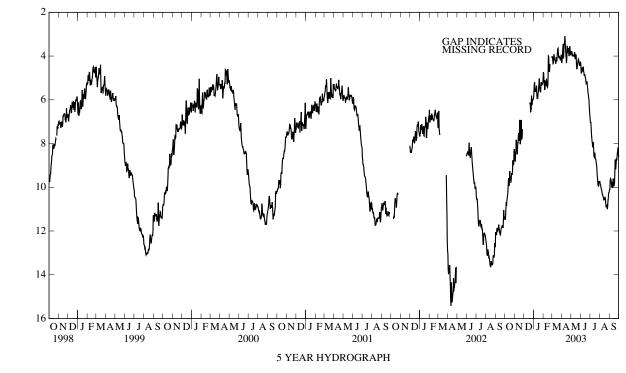
REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal, especially during summer peak demands.

PERIOD OF RECORD.--September 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.71 ft below land surface, February 5, 1998 (recorder); lowest measured, 15.42 ft below land surface, April 11, 2002 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002	8.88	JAN 29, 2003	4.70	APR 23, 2003	3.63	JUL 31, 2003	9.30
NOV 25	7.53	FEB 27	3.94	JUN 03	4.52	AUG 26	10.60
DEC 18	5.45	MAR 21	3.51	JUL 02	6.69	SEP 30	8.45


HIGHEST 3.51 MAR 21, 2003 LOWEST 10.60 AUG 26, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBRU	UARY	MAF	RCH
1 2 3 4 5	11.41 11.49 11.32 10.95 10.69	10.81 10.89 10.58 9.88 10.01	8.47 8.79 8.80 8.47 8.36	8.04 8.37 8.15 7.80 7.53	 	 	5.86 5.51 5.28 5.20 5.63	5.08 4.61 4.31 4.42 5.00	4.73 4.79 5.21 5.10 5.51	3.92 4.14 4.66 4.40 4.72	$\begin{array}{r} 4.01 \\ 4.06 \\ 4.18 \\ 4.38 \\ 4.26 \end{array}$	3.46 3.31 3.47 3.90 3.64
6 7 8 9 10	10.85 10.61 10.52 10.36 10.28	10.12 9.82 9.71 9.61 9.48	7.83 8.11 8.13 8.49 8.29	7.08 7.48 7.48 7.98 7.56	 	 	5.52 5.64 5.52 5.47 5.35	4.93 5.09 5.12 5.09 4.86	5.55 5.16 5.15 5.34 5.34	5.16 4.58 4.64 4.81 4.75	$\begin{array}{c} 4.05 \\ 3.91 \\ 4.06 \\ 4.17 \\ 4.19 \end{array}$	3.35 3.30 3.41 3.59 3.70
11 12 13 14 15	10.00 9.69 9.58 9.94 9.83	9.21 9.02 8.93 9.40 9.03	7.95 7.96 7.59 7.52 7.83	7.43 7.24 7.05 7.17 7.42	 	 	5.76 5.94 5.93 5.71	5.02 5.51 5.38 5.44 5.00	5.04 5.22 5.40 5.43 5.36	4.57 4.58 5.00 4.81 4.51	4.24 4.33 4.33 4.05 4.10	3.78 3.77 3.78 3.32 3.57
16 17 18 19 20	9.26 9.49 9.59 9.64 9.79	8.51 8.92 9.18 9.20 9.29	7.88 6.92 7.69 8.03 7.91	6.87 6.14 6.45 7.69 7.12	6.20 6.17	 5.53 5.34	5.63 5.38 5.25 5.02 5.43	5.02 4.66 4.50 4.29 4.72	4.95 3.99 4.01 4.48 4.72	3.81 2.89 3.24 3.75 4.04	4.24 4.03 3.83 3.66 3.64	3.59 3.27 3.05 2.99 2.97
21 22 23 24 25	9.62 9.35 9.39 9.43 9.27	9.01 8.80 8.92 8.87 8.66	7.36 6.92 7.51 7.81 7.70	6.61 6.12 6.51 7.38 7.15	6.12 6.57 6.40 6.45 5.81	5.45 5.93 5.78 5.75 4.77	5.55 5.52 5.66 5.35 5.19	4.91 4.97 5.19 4.74 4.59	4.67 4.36 	4.24 3.83 	3.83 4.05 4.08 4.07 4.04	2.96 3.25 3.41 3.44 3.42
26 27 28 29 30 31	8.77 8.90 9.00 8.90 8.31 8.25	8.22 8.36 8.38 8.10 7.64 7.76	7.34 	6.51 	6.22 6.22 6.03 5.97 6.02 5.91	5.63 5.60 5.59 5.45 5.42 5.17	5.33 5.33 5.27 5.26 5.30 5.02	4.67 4.72 4.56 4.65 4.51 4.27	 4.08 	 3.33 	4.08 4.16 4.20 4.08 3.94 4.04	3.40 3.52 3.60 3.48 3.35 3.43
MONTH	11.49	7.64	8.80	6.12	6.57	4.77	5.94	4.27	5.55	2.89	4.38	2.96

WORCESTER COUNTY—Continued

					ORCEDIE	i coom	continued					
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	ΑY	JU	NE	JUI	LY	AUG	UST	SEPTE	MBER
1	4.32	3.71	3.80	3.24	4.39	3.48	6.91	6.18	9.74	9.14	10.10	9.52
2	4.20	3.53	3.79	3.16	4.74	3.73	7.06	6.32	9.85	9.24	10.09	9.44
3	3.99	3.21	3.79	3.16	4.80	4.20	7.02	6.28	9.90	9.41	9.72	9.03
4	3.74	3.06	3.86	3.23	4.53	4.08	7.24	6.46	9.94	9.48	9.60	8.85
5	3.46	3.02	3.97	3.29	4.58	3.89	7.55	6.81	10.04	9.50	9.62	8.95
6	4.11	3.00	3.95	3.34	4.71	4.04	7.74	7.19	10.12	9.53	9.68	9.03
7	4.02	3.27	4.01	3.38	4.59	4.23	7.89	7.39	10.14	9.48	9.85	9.24
8	3.54	3.09	3.94	3.37	4.54	4.08	8.01	7.53	10.26	9.65	10.01	9.30
9	3.42	2.93	3.99	3.35	4.49	3.98	8.17	7.54	10.32	9.64	9.76	9.08
10	3.33	2.86	4.01	3.49	4.71	4.15	8.03	7.31	10.36	9.77	9.83	9.09
11	3.09	2.43	4.01	3.44	4.77	4.21	7.93	7.29	10.41	9.77	10.03	9.33
12	3.39	2.53	3.82	3.26	4.90	4.21	8.22	7.50	10.46	9.77	9.80	8.87
13	3.69	3.11	4.03	3.46	4.85	4.07	8.57	7.65	10.54	9.92	9.60	8.87
14	3.91	3.38	4.12	3.47	4.85	4.11	8.62	7.93	10.60	10.01	9.88	9.32
15	4.09	3.55	4.11	3.35	4.97	4.16	8.58	7.93	10.54	10.12	9.95	9.43
16	4.32	3.66	3.94	2.94	4.98	4.30	8.42	7.91	10.49	10.04	9.90	9.38
17	4.12	2.76	3.95	2.94	5.16	4.30	8.66	8.10	10.52	10.08	9.80	9.15
18	3.53	2.76	4.38	3.30	5.25	4.58	8.71	8.24	10.49	10.00	9.28	7.70
19	3.80	2.89	4.60	3.74	5.22	4.72	8.72	8.31	10.57	10.16	8.73	7.66
20	3.82	3.06	4.57	3.97	5.19	4.74	8.86	8.41	10.77	10.42	9.18	8.64
21	3.75	3.11	4.43	3.95	5.16	4.77	8.94	8.64	10.92	10.38	9.15	8.47
22	3.63	2.98	4.30	3.78	5.36	4.79	9.07	8.68	10.84	10.27	8.94	8.25
23	3.81	3.07	4.25	3.72	5.48	5.13	9.33	8.86	10.84	10.23	8.68	8.17
24	3.98	3.31	4.14	3.59	5.67	5.24	9.50	9.06	10.82	10.28	8.77	8.20
25	3.98	3.34	4.17	3.69	5.77	5.28	9.72	9.20	11.00	10.44	8.61	8.04
26 27 28 29 30 31	3.60 3.55 3.84 3.90 3.97	3.01 2.99 3.38 3.43 3.36	4.26 4.39 4.43 4.43 4.36 4.26	3.81 3.95 3.85 3.79 3.75 3.48	5.89 6.00 6.28 6.55 6.74	5.34 5.46 5.56 5.71 5.94	9.87 9.95 9.95 9.71 9.80 9.74	9.29 9.36 9.17 9.01 9.01 9.14	10.88 10.61 10.51 10.27 10.24 10.21	10.12 9.92 9.83 9.66 9.66 9.59	8.43 8.36 8.18 8.33 8.62	7.90 7.72 7.59 7.70 8.07
MONTH YEAR	4.32 11.49	2.43 2.43	4.60	2.94	6.74	3.48	9.95	6.18	11.00	9.14	10.10	7.59

Daily Low Water Levels

WATER LEVEL, IN FEET BELOW LAND SURFACE

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Bg 48. SITE ID. -- 382325075063302. PERMIT NUMBER .-- WO-73-0521.

LOCATION.--Lat 38°23'25", long 75°06'33", Hydrologic Unit 02060010, at intersection of MD Rt. 90 and Isle of Wight Rd., Isle of Wight. Owner: U.S. Geological Survey.

AQUIFER.--Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 420 ft; casing diameter 4 in., to 410 ft; screen diameter 2 in., from 410 to 420 ft.

INSTRUMENTATION.--Monthly water level measurements with an electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recording interval from July 1985 to current year.

DATUM.--Elevation of land surface is 5 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of recorder shelf, 3.87 ft above land surface.

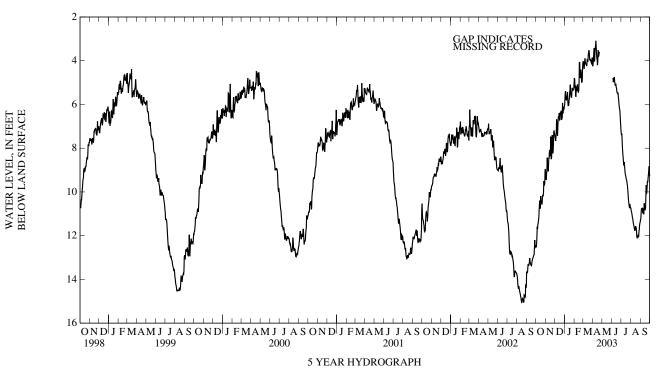
REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal, especially during summer peak demands.

PERIOD OF RECORD.--September 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.54 ft below land surface, February 24, 1998 (recorder); lowest measured, 15.06 ft below land surface, August 16, 2002 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002	9.53	JAN 29, 2003	4.84	APR 23, 2003	3.62	JUL 31, 2003	10.30
NOV 25	7.94	FEB 27	4.04	JUN 03	4.73	AUG 26	11.79
DEC 18	5.73	MAR 21	3.41	JUL 02	7.05	SEP 30	8.99


HIGHEST 3.41 MAR 21, 2003 LOWEST 11.79 AUG 26, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBR	UARY	MAH	RCH
1	12.47	11.91	9.20	8.68	7.48	7.00	5.99	5.23	4.79	4.04	4.04	3.55
2	12.53	11.97	9.42	8.99	7.59	7.11	5.65	4.84	4.85	4.24	4.05	3.38
3	12.36	11.70	9.45	8.78	7.67	7.10	5.44	4.53	5.25	4.76	4.18	3.57
4	12.02	10.98	9.16	8.45	7.48	6.81	5.39	4.65	5.13	4.50	4.38	3.96
5	11.59	11.01	8.98	8.16	7.30	6.26	5.80	5.23	5.58	4.81	4.24	3.69
6	11.70	11.03	8.43	7.71	6.68	6.00	5.73	5.11	5.65	5.21	4.03	3.40
7	11.47	10.78	8.69	8.08	6.91	6.36	5.76	5.26	5.21	4.68	3.89	3.37
8	11.44	10.73	8.72	8.09	7.23	6.76	5.63	5.27	5.19	4.74	4.03	3.45
9	11.29	10.62	9.06	8.53	7.43	6.84	5.58	5.24	5.37	4.88	4.13	3.59
10	11.19	10.46	8.83	8.12	7.03	6.44	5.43	5.03	5.37	4.81	4.16	3.71
11	10.90	10.19	8.46	7.96	6.69	5.90	5.86	5.18	5.08	4.67	4.17	3.78
12	10.57	9.92	8.46	7.78	6.54	6.00	6.05	5.64	5.26	4.64	4.22	3.74
13	10.40	9.81	8.13	7.58	6.61	5.94	6.05	5.53	5.41	5.04	4.21	3.72
14	10.77	10.28	8.08	7.68	6.40	5.51	6.01	5.56	5.46	4.89	3.94	3.27
15	10.69	9.96	8.33	7.90	6.66	6.20	5.79	5.14	5.35	4.58	3.94	3.46
16	$10.19 \\ 10.34 \\ 10.48 \\ 10.46 \\ 10.58$	9.42	8.37	7.39	6.71	6.21	5.70	5.16	4.98	3.92	4.06	3.46
17		9.85	7.47	6.70	6.68	5.96	5.44	4.77	4.08	3.04	3.84	3.17
18		10.09	8.22	7.04	6.35	5.73	5.33	4.67	4.08	3.36	3.66	3.00
19		10.10	8.50	8.15	6.38	5.78	5.09	4.45	4.55	3.84	3.57	2.97
20		10.12	8.42	7.62	6.32	5.56	5.46	4.84	4.79	4.14	3.52	2.93
21	10.44	9.84	7.85	7.13	6.29	5.69	5.60	5.04	4.75	4.32	3.69	2.93
22	10.16	9.64	7.40	6.65	6.71	6.13	5.57	5.08	4.41	3.90	3.94	3.20
23	10.16	9.71	7.96	6.98	6.57	5.99	5.69	5.27	4.57	3.45	3.98	3.39
24	10.20	9.66	8.24	7.81	6.61	5.93	5.42	4.88	4.98	4.37	3.99	3.42
25	10.04	9.32	8.13	7.57	5.93	5.01	5.24	4.73	4.98	4.54	3.96	3.41
26 27 28 29 30 31	9.51 9.62 9.71 9.60 9.09 8.95	8.96 9.07 9.10 8.80 8.33 8.42	7.74 7.22 7.21 7.31 7.36	6.97 6.71 6.74 6.86 6.90	6.40 6.38 6.22 6.15 6.18 6.07	5.76 5.81 5.76 5.63 5.63 5.37	5.36 5.36 5.35 5.32 5.31 5.04	4.77 4.85 4.71 4.77 4.60 4.37	4.95 4.44 4.12 	4.18 3.73 3.43 	4.00 4.09 4.12 3.99 3.85 3.97	3.37 3.52 3.59 3.47 3.33 3.41
MONTH	12.53	8.33	9.45	6.65	7.67	5.01	6.05	4.37	5.65	3.04	4.38	2.93

WORCESTER COUNTY—Continued

					onedo i d		commute	•				
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	ΑY	JU	NE	JU	LY	AUG	UST	SEPTE	MBER
1	4.25	3.72					7.30	6.55	10.74	10.17	11.26	10.74
2	4.13	3.53					7.40	6.68	10.86	10.17	11.20	10.66
$\frac{2}{3}$	3.93	3.23					7.34	6.66	10.00	10.27	10.92	10.00
4	3.93	3.25			4.80	4.33	7.66	6.85	10.91	10.43	10.92	10.28
4 5	3.08	3.00			4.80	4.55	7.00	7.24	10.97	10.52	10.77	10.07
5	5.42	5.02			4.65	4.19	7.98	7.24	11.07	10.50	10.77	10.12
6	4.04	3.00			4.98	4.34	8.21	7.61	11.18	10.62	10.75	10.14
7	3.98	3.26			4.84	4.49	8.38	7.85	11.22	10.59	10.83	10.28
8	3.54	3.11			4.78	4.36	8.57	8.07	11.35	10.77	10.97	10.34
9	3.41	2.95			4.75	4.26	8.74	8.16	11.44	10.78	10.75	10.12
10	3.29	2.88			4.95	4.41	8.71	8.01	11.51	10.93	10.81	10.18
11	3.09	2.47			5.03	4.46	8.63	7.99	11.57	10.95	11.02	10.38
12	3.40	2.56			5.14	4.48	8.85	8.16	11.66	10.97	10.81	9.89
13	3.70	3.13			5.09	4.36	9.05	8.31	11.72	11.11	10.52	9.89
14	3.86	3.41			5.08	4.42	9.18	8.45	11.78	11.21	10.77	10.26
15	3.98	3.51			5.21	4.46	9.24	8.57	11.70	11.25	10.82	10.35
16	4.20	3.66			5.26	4.55	9.30	8.62	11.56	11.17	10.82	10.36
17	4.05	2.82			5.39	4.56	9.40	8.82	11.61	11.17	10.76	10.16
18	3.52	2.82			5.47	4.81	9.46	8.96	11.64	11.23	10.25	8.73
19	3.74	2.92			5.47	4.95	9.49	9.04	11.78	11.40	9.69	8.65
20	3.77	3.10			5.50	4.99	9.63	9.15	12.03	11.40	10.10	9.55
	5.11				5.50	ч.))	2.05	2.15	12.05	11.05	10.10).55
21	3.70	3.13			5.49	5.06	9.71	9.33	12.12	11.63	10.02	9.37
22	3.59	3.00			5.68	5.09	9.88	9.50	12.03	11.50	9.78	9.10
23					5.80	5.40	10.09	9.68	12.03	11.47	9.51	9.00
24					6.00	5.57	10.30	9.90	11.96	11.44	9.56	9.00
24 25					6.14	5.62	10.48	10.00	12.08	11.59	9.40	8.81
26					6.21	5.69	10.58	10.06	12.04	11.38	9.25	8.64
20					6.33	5.81	10.58	10.00	11.81	11.38	9.08	8.40
28					6.60	5.99	10.08	10.17	11.81	11.22	8.83	8.23
20									11.72		8.96	
29					6.87	6.15	10.55	9.97		10.94		8.34
30					7.11	6.35	10.68	9.97	11.42	10.94	9.28	8.73
31							10.73	10.12	11.37	10.82		
MONTH	4.25	2.47			7.11	4.19	10.74	6.55	12.12	10.17	11.26	8.23
YEAR	12.53	2.47										

Daily Low Water Levels

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Bg 49. SITE ID .-- 382038075065901. PERMIT NUMBER .-- WO-73-0520.

LOCATION.--Lat 38°20'38", long 75°06'59", Hydrologic Unit 020060010, near Keyser Point Rd., West Ocean City. Owner: U.S. Geological Survey.

AQUIFER .-- Ocean City aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122OCNC.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 243 ft; casing diameter 4 in., to 233 ft; screen diameter 2 in., from 233 to 243 ft.

INSTRUMENTATION.--Monthly water level measurements with an electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recording interval, May 1985 to current year. Periodic water level measurements with chalked steel tape October 1975 to May 1985.

DATUM.--Elevation of land surface is 10 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of recorder shelf, 2.13 ft above land surface.

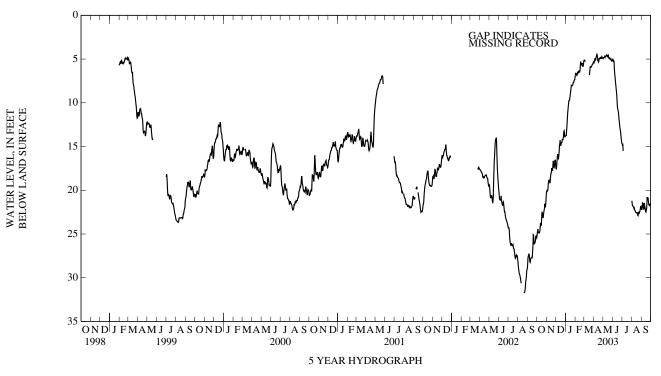
REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal, especially during summer peak demands. Missing data due to recorder malfunction.

PERIOD OF RECORD.--October 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.42 ft below land surface, March 12, 1993 (recorder); lowest measured, 31.69 ft below land surface, August 21, 2002 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002	21.31	JAN 29, 2003	7.24	APR 23, 2003	4.74	JUL 31, 2003	20.85
NOV 25	17.27	FEB 27	5.27	JUN 03	5.22	AUG 26	22.40
DEC 18	14.41	MAR 21	5.77	JUL 02	14.76	SEP 30	21.29


HIGHEST 4.74 APR 23, 2003 LOWEST 22.40 AUG 26, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECE	MBER	JANU	ARY	FEBRU	UARY	MAF	RCH
1 2 3 4 5	25.24 24.85 24.68 24.43 24.74	24.83 24.66 24.43 24.27 24.32	20.11 20.03 20.10 20.02 19.94	19.80 19.87 20.02 19.88 19.38	17.54 17.56 17.30 16.72 16.27	17.18 17.30 16.71 16.27 15.77	13.78 13.76 13.74 13.09 12.64	13.59 13.54 13.09 12.63 12.01	6.81 6.58 6.71 6.70 6.84	6.50 6.48 6.58 6.55 6.62	5.12 5.12 5.17 5.23 5.17	5.07 4.94 4.95 5.16 5.02
6 7 8 9 10	24.86 24.88 24.90 24.81 24.70	24.74 24.74 24.67 24.64 24.36	19.38 18.95 18.86 18.84 18.97	18.86 18.84 18.53 18.62 18.79	15.86 15.99 16.30 16.37 16.02	15.66 15.75 15.99 16.02 15.58	12.01 11.33 10.88 10.52 10.13	11.33 10.88 10.52 10.13 9.77	6.88 6.78 6.54 6.60 6.60	6.78 6.49 6.47 6.47 6.42	 	
11 12 13 14 15	24.36 23.80 23.78 24.02 23.97	23.80 23.62 23.61 23.78 23.15	19.15 19.13 18.67 18.24 18.03	18.97 18.66 18.23 18.01 17.92	15.58 14.92 14.70 14.29 14.83	14.89 14.68 14.29 14.02 14.29	9.77 9.75 9.73 9.50 9.27	9.71 9.69 9.49 9.25 8.89	6.46 6.39 6.50 6.51 6.44	6.37 6.23 6.36 6.39 6.19	 	
16 17 18 19 20	23.15 22.52 22.54 22.80 23.12	22.46 22.44 22.44 22.49 22.80	18.01 17.47 17.59 17.72 17.72	17.47 16.99 17.00 17.59 17.15	14.87 14.80 14.55 14.55 14.52	14.75 14.42 14.43 14.32 14.17	8.92 8.67 8.35 8.02 8.07	8.67 8.32 8.02 7.87 7.87	6.22 5.67 5.30 5.57 5.68	5.67 5.15 5.16 5.30 5.51	6.83 6.45 6.05	 6.45 6.05 5.79
21 22 23 24 25	23.12 22.74 22.45 22.28 21.99	22.74 22.44 22.28 21.99 21.55	17.15 16.64 16.95 17.38 17.41	16.64 16.33 16.33 16.95 17.17	14.22 14.25 14.23 14.06 13.81	14.03 14.12 14.01 13.81 13.09	8.08 8.02 8.00 7.92 7.67	7.95 7.91 7.90 7.67 7.52	5.67 5.58 5.46 5.81 5.83	5.58 5.34 5.16 5.46 5.74	5.82 5.92 5.91 5.92 5.84	5.75 5.82 5.80 5.75 5.68
26 27 28 29 30 31	21.55 21.79 21.85 21.61 20.93 20.38	21.26 21.31 21.61 20.93 20.38 20.08	17.17 16.58 16.56 16.56 17.19	16.51 16.38 16.34 16.34 16.56	13.28 13.20 13.42 13.89 13.89 13.80	13.16 12.90 13.01 13.42 13.72 13.53	7.65 7.65 7.46 7.35 7.34 7.08	7.43 7.43 7.33 7.20 7.06 6.77	5.83 5.55 5.23 	5.55 5.23 5.07 	5.70 5.62 5.62 5.57 5.38 5.33	5.52 5.50 5.53 5.38 5.18 5.17
MONTH	25.24	20.08	20.11	16.33	17.56	12.90	13.78	6.77	6.88	5.07	6.83	4.94

WORCESTER COUNTY—Continued

				•	· oncedo i di		commute					
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	ΑY	JU	NE	JUI	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	5.52 5.41 5.30 5.08 4.90	5.33 5.28 5.08 4.90 4.79	4.95 4.82 4.81 4.81 4.78	4.79 4.71 4.71 4.71 4.68	5.03 5.17 5.26 5.21 5.35	4.87 4.92 5.14 5.10 5.05	14.70 14.82 14.78 15.50	14.62 14.61 14.67 14.78	21.20 21.52 21.75 21.81 21.83	20.86 21.19 21.50 21.66 21.68	22.20 22.20 21.96 21.45 21.49	22.07 21.95 21.45 21.00 21.10
6 7 8 9 10	5.13 5.12 4.84 4.73 4.60	4.78 4.81 4.73 4.56 4.37	4.70 4.82 4.72 4.67 4.63	4.62 4.58 4.59 4.54 4.53	6.13 6.68 7.03 7.41 7.80	5.35 6.13 6.68 6.99 7.41	 	 	21.91 22.02 21.89 22.11 22.28	21.79 21.70 21.73 21.87 22.04	21.55 21.96 22.21 22.05 21.45	21.47 21.55 21.96 21.45 21.33
11 12 13 14 15	4.37 4.55 4.85 5.18 5.22	4.19 4.20 4.55 4.85 5.18	4.63 4.54 4.59 4.70 4.74	4.52 4.43 4.46 4.59 4.59	8.13 8.53 8.92 9.41 10.11	7.80 8.13 8.53 8.92 9.41	 	 	22.32 22.36 22.48 22.55 22.58	22.19 22.19 22.27 22.41 22.41	21.81 21.96 22.12 22.48 22.50	21.45 21.81 21.93 22.12 22.21
16 17 18 19 20	5.35 5.28 4.87 4.97 4.98	5.22 4.87 4.78 4.78 4.86	4.64 4.47 4.70 4.89 4.93	4.31 4.30 4.41 4.62 4.78	10.56 10.77 10.93 11.10 11.54	10.11 10.50 10.73 10.93 11.10	 	 	22.60 22.56 22.57 22.58 22.87	22.45 22.37 22.39 22.46 22.56	22.32 22.14 21.66 20.78 21.12	22.14 21.66 20.33 20.29 20.78
21 22 23 24 25	4.91 4.81 4.84 4.93 4.93	4.79 4.69 4.67 4.77 4.83	4.92 4.87 5.05 5.04 4.97	4.82 4.75 4.75 4.87 4.85	11.95 12.25 12.64 12.91 13.14	11.54 11.95 12.25 12.64 12.91	 	 	22.91 22.71 22.46 22.56 22.60	22.67 22.46 22.35 22.40 22.43	20.81 20.91 21.25 21.61 21.68	20.62 20.64 20.91 21.25 21.54
26 27 28 29 30 31	4.84 4.73 4.81 4.91 4.93	4.59 4.57 4.73 4.79 4.83	4.97 5.15 5.23 5.24 5.12 5.11	4.83 4.97 5.15 5.10 5.05 4.88	13.38 13.79 14.11 14.43 14.66	13.14 13.38 13.79 14.10 14.42	 	 	22.46 22.34 22.14 21.86 21.83 22.07	22.32 22.14 21.84 21.66 21.65 21.83	21.76 21.71 21.62 21.62 21.45	21.61 21.61 21.50 21.45 21.15
MONTH YEAR	5.52 25.24	4.19 4.19	5.24	4.30	14.66	4.87	15.50	14.61	22.91	20.86	22.50	20.29

Daily Low Water Levels

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Bh 31. SITE ID .-- 382215075041801. PERMIT NUMBER .-- WO-04-9586.

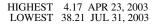
LOCATION.--Lat 38°22'15", long 75°04'18", Hydrologic Unit 020060010, at 44th St, Ocean City. Owner: Town of Ocean City.

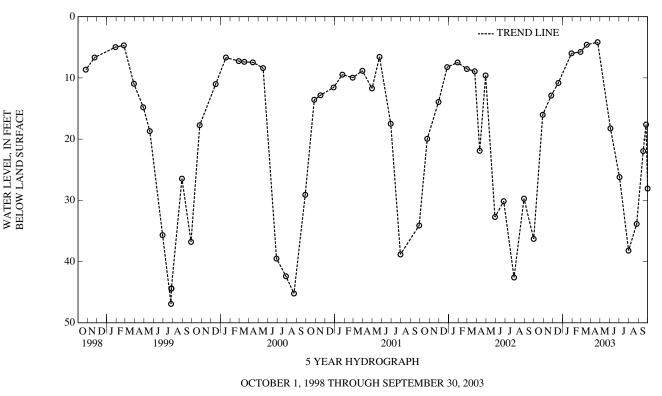
AQUIFER .-- Ocean City aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122OCNC.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 278 ft; casing diameter 4 in., to 263 ft; screen diameter 3 in., from 263 to 278 ft.

INSTRUMENTATION.--Monthly water level measurements with an electric tape by U.S. Geological Survey personnel. Periodic water level measurements with chalked steel tape September 1970 to May 1985. Equipped with digital water-level recorder--60-minute recording interval, May 1985 to current year.

DATUM.--Elevation of land surface is 5.59 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of shelter platform, 2.49 ft above land surface.


REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal, especially during summer peak demands. Missing data due to recorder malfunction.


PERIOD OF RECORD .-- September 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.55 ft below land surface, March 13, 1993; lowest measured, 51.44 ft below land surface, August 16, 1998 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 18 JAN 29, 2003	16.02 12.90 10.82 6.00	FEB 27, 2003 MAR 19 APR 23 JUN 03	5.76 4.58 4.17 18.25	JUL 02, 2003 31 AUG 26 SEP 16	26.22 38.21 33.86 21.97	SEP 25, 2003 30	17.62 28.07

Daily Low Water Levels

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Bh 34. SITE ID.382443075033501. PERMIT NUMBER .-- WO-04-9588.

LOCATION.--Lat 38°24'43", long 75°03'35", Hydrologic Unit 02060010, north side of 100th St., 0.2 mi west of MD Rt. 528, Ocean City. Owner: Town of Ocean City.

AQUIFER.--Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

- WELL CHARACTERISTICS.-Drilled, observation, artesian well, depth 353 ft; casing diameter 4 in., to 316.2 ft, casing diameter 2.5 in., from 316.2 to 337 ft; screen diameter 3 in., from 337 to 353 ft.
- INSTRUMENTATION.--Monthly water level measurements with an electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recording interval April 1985 to current year. Prior to April 1985, periodic water level measurements with chalked steel tape were collected.
- DATUM.--Elevation of land surface is 4 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of recorder shelf, 2.86 ft above land surface.

REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal, especially during summer peak demands. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- December 1972 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.54 ft above land surface, March 27, 1973; lowest measured, 19.04 ft below land surface, September 5, 1995 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

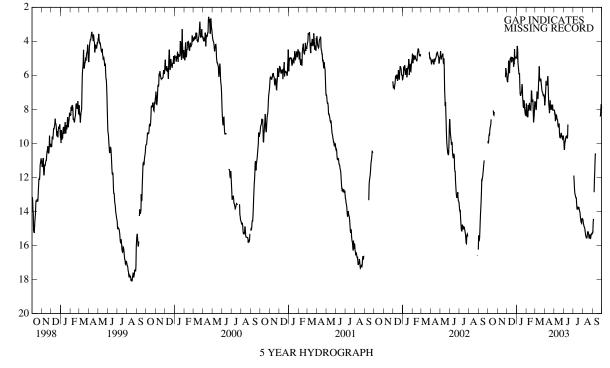
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 25, 2002 DEC 18 JAN 29, 2003 FEB 27	5.84 4.84 7.77 7.60	MAR 21, 2003 APR 23 JUN 03 JUL 02	5.73 7.66 9.65 11.22	JUL 31, 2003 AUG 26 SEP 05 16	13.68 15.21 13.58 9.03	SEP 25, 2003	7.86

HIGHEST 4.84 DEC 18, 2002 LOWEST 15.21 AUG 26, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECEN	MBER	JANU	ARY	FEBR	UARY	MAH	RCH
1 2 3 4 5 6	9.85 10.00 9.88 9.56 9.47 9.49	8.98 9.05 8.74 8.05 8.23 8.15	 	 	6.25 6.35 6.40 6.13 6.00 5.13	5.07 5.20 5.11 4.80 4.28 3.96	4.97 4.51 4.27 4.49 5.24 5.45	3.74 3.10 2.74 3.08 4.21 4.45	7.65 7.90 8.43 8.09 8.46 8.41	6.45 6.79 7.50 7.00 7.39 7.50	7.58 7.58 7.86 8.04 7.93 7.44	6.58 6.38 6.86 7.13 6.81 6.40
7 8 9 10	9.20 9.06 8.99 8.87	7.80 7.73 7.73 7.68	 	 	5.42 5.76 5.87 5.43	4.41 4.87 4.95 4.65	5.64 5.88 5.95 5.87	4.84 5.15 5.29 5.25	7.74 7.80 8.08 7.86	6.98 7.06 7.30 7.28	6.95 7.12 7.25 7.38	6.14 6.14 6.72 6.66
11 12 13 14 15	8.59 8.11 	7.42 7.35 	 	 	5.03 5.00 5.00 4.91 5.21	4.06 4.17 4.14 3.65 4.37	6.59 7.08 7.18 7.18 7.05	5.53 6.24 6.36 6.47 6.03	7.62 7.83 7.96 8.02 8.04	7.11 6.97 7.28 7.06 6.86	7.06 6.45 6.14 5.47 6.05	6.44 6.07 5.39 4.56 4.72
16 17 18 19 20	8.06 8.31 8.34	7.30 7.37 7.44	 	 	5.21 5.17 4.93 5.05 5.00	4.37 4.13 3.95 4.04 3.84	7.02 6.90 6.51 6.66 7.33	6.11 5.70 5.62 5.48 6.26	7.72 6.92 6.93 7.41 7.57	6.32 5.23 5.58 6.30 6.49	6.25 6.33 6.32 6.20 6.31	5.12 5.15 5.03 4.99 5.10
21 22 23 24 25	8.15 	7.27 	 	 	5.00 5.49 5.28 5.34 4.46	3.90 4.36 4.26 4.19 3.12	7.51 7.83 7.92 7.49 7.50	6.79 6.79 6.95 6.66 6.54	7.51 7.42 8.15 8.76 8.56	6.55 6.49 6.27 7.63 7.70	6.54 6.74 6.91 6.98 7.00	5.20 5.43 5.73 5.98 6.11
26 27 28 29 30 31 MONTH	 10.00	 7.27	6.11 5.57 5.67 5.90 5.90 6.11	5.06 4.77 4.84 5.00 4.97 	5.07 4.95 4.93 4.96 4.95 4.94 6.40	4.08 4.12 4.15 3.98 3.98 3.74 3.12	7.89 8.07 8.23 8.34 8.35 7.98 8.35	6.72 6.95 7.09 7.24 7.15 6.78 2.74	8.38 7.91 7.53 8.76	7.40 6.82 6.38 5.23	7.10 7.18 7.15 7.14 7.20 7.42 8.04	6.13 6.54 6.29 6.24 6.21 6.34 4.56
	10.00		0.11	,	0.10	2.12	0.55		5.70	0.20	0.01	

WORCESTER COUNTY—Continued

					WORCESTEI	COUNT	I-Continued	u .				
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	API	RIL	MA	ΑY	JUI	NE	JU	LY	AUG	UST	SEPTE	MBER
1 2 3 4 5	7.76 7.55 7.20 6.84 6.32	6.71 6.42 6.05 5.79 5.79	8.05 8.05 8.28 8.26 8.69	7.26 7.24 7.41 7.54 7.62	9.77 10.26 10.38 10.04 9.89	8.83 9.04 9.33 8.98 8.98	11.89 12.20 12.63	10.85 10.90 11.47	14.47 14.60 14.73 14.81 14.90	13.43 13.52 13.79 13.95 13.90	15.23 15.23 14.67 14.44	14.24 14.13 13.51 13.26
6 7 8 9 10	6.60 6.38 6.21	5.92 5.79 5.62	8.52 8.44 8.30 8.38 8.58	7.64 7.61 7.55 7.49 7.65	9.86 9.68 9.59 9.57 9.68	9.01 8.98 8.86 8.62 8.67	12.87 13.01 13.05 13.17 13.20	11.92 12.16 12.12 12.09 11.95	14.92 14.99 15.14 15.26 15.42	13.92 13.89 14.00 14.03 14.23	12.87 12.15 11.69 11.05 10.60	11.42 10.87 10.33 9.61 9.58
11 12 13 14 15	6.05 6.71 7.38 7.76 7.94	5.15 5.25 6.06 7.05 6.86	8.58 8.63 8.92 9.01 9.06	7.81 7.62 7.87 7.81 7.68	9.61 9.71 9.60 8.89	8.51 8.40 8.17 8.32	13.20 13.56 13.81 13.89 13.82	11.97 12.29 12.53 12.60 12.62	15.48 15.55 15.54 15.55 15.42	14.25 14.38 14.48 14.57 14.46	10.65 	9.57
16 17 18 19 20	8.22 8.01 7.47 7.87 7.98	6.93 6.14 6.28 6.47 6.71	8.90 8.83 9.39 9.64 9.66	7.22 7.67 7.91 8.27 8.55	 	 	13.88 13.77 13.80 13.74 13.84	12.74 12.82 12.90 13.00 13.10	15.24 15.27 15.22 15.26 15.45	14.46 14.50 14.52 14.62 14.84	 	
21 22 23 24 25	7.97 7.73 7.83 8.03 7.87	6.90 6.84 6.85 7.09 7.20	9.67 9.57 9.43 9.38 9.58	8.72 8.76 8.77 8.65 8.83	 	 	13.94 14.00 14.10 14.33 14.45	13.28 13.31 13.41 13.58 13.57	15.59 15.41 15.43 15.40 15.62	14.80 14.63 14.55 14.55 14.67	 	
26 27 28 29 30 31	7.73 8.05 8.05 8.05 8.05	6.88 6.98 7.53 7.48 7.36	9.58 9.72 9.75 9.60 9.54 9.68	8.86 8.93 8.71 8.60 8.65 8.63	 	 	14.61 14.67 14.70 14.41 14.50 14.44	13.69 13.66 13.54 13.30 13.38 13.36	15.58 15.43 15.37 15.31 15.29 15.31	14.43 14.29 14.22 14.24 14.37 14.26	8.42 8.20 7.89 7.70 7.93	7.19 6.91 6.57 6.48 6.85
MONTH	8.22	5.15	9.75	7.22	10.38	8.17	14.70	10.85	15.62	13.43	15.23	6.48


Daily Low Water Levels

YEAR

15.62

2.74

WORCESTER COUNTY-Continued

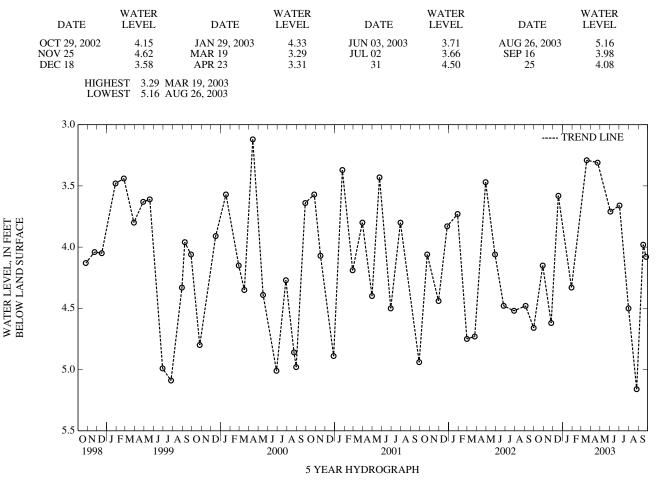
WELL NUMBER .-- WO Bh 84. SITE ID. -- 382215075041901. PERMIT NUMBER .-- WO-73-0095.

LOCATION.--Lat 38°22'15", long 75°04'20", Hydrologic Unit 02060010, west end of 44th St., Ocean City. Owner: U.S. Geological Survey.

AQUIFER.--Beaverdam Sand of Pliocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .-- Drilled, observation, water-table well, depth 89 ft; casing diameter 4 in., to 84 ft; screen diameter 4 in., from 84 to 89 ft.

INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 5 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.55 ft above land surface.

REMARKS .-- Ocean City Ground-Water Monitoring Network observation well.

PERIOD OF RECORD.--April 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.47 ft below land surface, April 29, 2002; lowest measured, 6.34 ft below land surface, September 17, 1991.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WORCESTER COUNTY-Continued

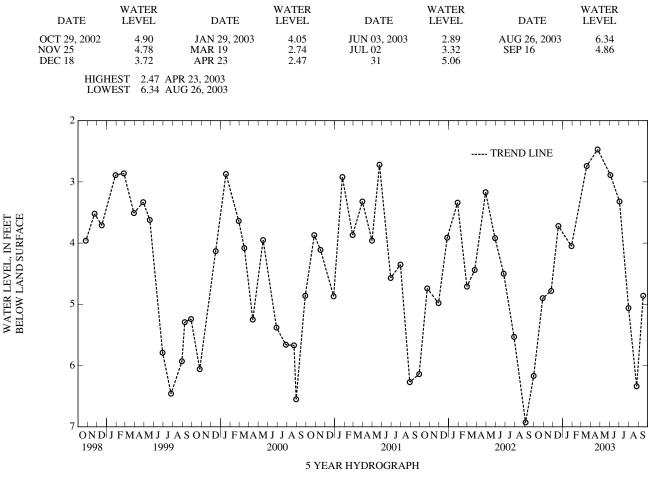
WELL NUMBER .-- WO Bh 85. SITE ID .-- 382215075041902. PERMIT NUMBER .-- WO-73-0094.

LOCATION.--Lat 38°22'15", long 75°04'19", Hydrologic Unit 02060010, west end of 44th St., Ocean City. Owner: U.S. Geological Survey.

AQUIFER .-- Pocomoke aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122PCMK.

WELL CHARACTERISTICS .-- Drilled, observation, artesian well, depth 195 ft; casing diameter 4 in., to 190 ft; screen diameter 4 in., from 190 to 195 ft.

INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 5 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 4 in. casing, 1.78 ft above land surface.

REMARKS .-- Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--April 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.43 ft below land surface, January 11, 1993; lowest measured, 7.53 ft below land surface, August 26, 1997.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Bh 89. SITE ID .-- 382215075041903 PERMIT NUMBER .-- WO-81-1497.

LOCATION.--Lat 38°22'15", long 75°04'19", Hydrologic Unit 020060010, at 44th St, Ocean City. Owner: Town of Ocean City.

AQUIFER .-- Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 510 ft; casing diameter 4 in., to 388 ft, 408 to 413 ft, 423 to 433 ft, 443 to 464 ft, and 474 to 495 ft; screen diameter 4 in., from 388 to 408 ft, 413 to 423 ft, 433 to 443 ft, 464 to 474 ft, and 495 to 510 ft.

INSTRUMENTATION.--Monthly water level measurements with an electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--60-minute recording interval, October 1986 to current year.

DATUM.--Elevation of land surface is 5.59 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.84 ft above land surface.

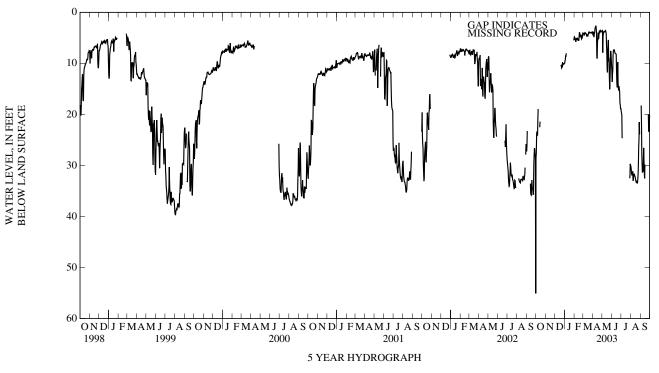
REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal, especially during summer peak demands. Missing data due to recorder malfunction.

PERIOD OF RECORD .-- October 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 0.42 ft below land surface, October 8, 1993 (recorder); lowest recorded, 40.65 ft below land surface, August 17, 1998 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 18 JAN 29, 2003	13.78 11.90 9.66 5.09	FEB 27, 2003 MAR 21 APR 23 JUN 03	4.09 3.17 3.51 9.43	JUL 02, 2003 31 AUG 26 SEP 16	18.18 28.26 25.76 20.72	SEP 25, 2003	16.27


HIGHEST 3.17 MAR 21, 2003 LOWEST 28.26 JUL 31, 2003

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTOBER		NOVE	MBER	DECE	DECEMBER		JANUARY		FEBRUARY		RCH
1	28.47	24.28					9.95	8.69	4.79	3.55	4.06	3.13
2	27.62	23.91					9.49	8.11	4.86	3.76	4.11	2.95
3	23.91	20.71					9.28	7.80	5.36	4.48	4.21	3.23
4	23.36	19.69					8.55	7.32	5.17	4.10	4.49	3.63
5	23.91	19.30					8.58	7.41	5.69	4.53	4.42	3.39
6	24.00	19.24					8.01	6.88	5.71	4.85	4.14	2.95
7	20.75	18.27							5.04	4.30	3.87	2.95
8	18.95	17.49							5.18	4.42	4.07	3.08
9									5.42	4.63	4.12	3.38
10									5.20	4.56	4.18	3.43
11									4.99	4.38	4.31	3.59
12	22.48	19.72							5.29	4.34	4.53	3.66
13	22.44	19.26							5.51	4.79	4.34	3.77
14	21.41	18.62							5.51	4.55	4.41	3.21
15									5.51	4.17	4.65	3.63
16									5.00	3.44	4.67	3.58
17									3.98	2.33	4.43	3.15
18									4.00	2.76	4.15	2.80
19					10.43	9.41			4.54	3.48	3.87	2.67
20					10.41	9.25			4.79	3.65	3.83	2.67
21					10.38	9.28			4.75	3.69	3.95	2.74
22					10.89	9.79			4.38	3.32	4.07	2.86
23					10.75	9.67			4.61	3.02	4.05	3.03
24					10.72	9.53			5.20	4.09	3.99	3.07
25					9.77	8.41			5.07	4.26	3.94	3.03
26					10.35	9.35			5.03	3.95	3.96	3.02
27					10.22	9.37			4.47	3.33	4.06	3.01
28					10.09	9.33			4.04	2.91	4.06	3.14
29					10.12	9.13					3.92	3.01
30					10.12	9.12	5.50	4.25			3.81	2.73
31					9.99	8.79	5.14	3.92			3.85	2.80
MONTH	28.47	17.49			10.89	8.41	9.95	3.92	5.71	2.33	4.67	2.67

WORCESTER COUNTY—Continued

					ORCEDIE		continued						
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	
	APRIL		MAY		JU	JUNE		JULY		AUGUST		SEPTEMBER	
1 2 3 4 5	4.24 4.09 3.82 4.71 4.85	3.26 3.03 2.67 2.77 2.83	3.67 3.60 7.91 4.61 4.10	2.75 2.56 2.78 3.24 3.08	11.37 13.63 12.16 11.46 8.52	7.12 7.61 7.94 6.91 6.57	19.41 19.71 20.11 24.68	16.09 16.05 16.80 17.44	30.18 30.63 31.44 31.88 31.88	23.53 23.99 25.62 25.79 25.70	18.25 21.56 27.57	 16.95 16.87 19.42	
6 7 8 9 10	4.05 3.98 3.20 2.98 2.79	2.85 2.58 2.55 2.39 2.19	3.84 3.86 3.71 3.75 3.80	3.00 2.98 2.93 2.86 2.95	7.45 7.42 7.33 7.36 7.72	6.49 6.66 6.57 6.51 6.76	 	 	31.62 31.16 33.04 32.72 32.11	25.60 24.73 28.48 26.16 25.82	29.79 31.41 31.10 31.29 28.94	22.09 29.79 25.72 28.34 24.98	
11 12 13 14 15	2.61 3.16 4.24 8.95 8.97	1.74 1.84 2.50 4.24 5.22	3.72 3.60 3.81 4.19 6.58	2.94 2.63 2.88 3.03 3.32	7.90 8.07 8.10 8.13 8.24	6.83 6.86 6.76 6.85 7.00	 	 	31.70 31.70 31.91 32.16 32.30	26.36 26.21 25.60 26.38 26.80	26.56 29.11 31.32 32.56 29.86	23.36 22.99 26.80 28.68 22.90	
16 17 18 19 20	5.96 5.08 4.00 5.25 5.12	4.23 2.76 2.76 2.87 3.13	8.30 11.06 11.80 7.45 6.03	3.53 4.65 7.30 5.35 4.80	11.31 13.68 14.71 11.83 9.73	7.20 8.28 9.84 9.32 8.96	 	 	32.76 33.08 33.23 33.01 33.42	28.07 28.03 27.53 28.06 28.08	 	 	
21 22 23 24 25	4.03 3.66 3.73 3.95 3.84	2.95 2.80 2.77 2.95 3.06	5.41 9.65 9.02 12.51 15.10	4.51 4.23 5.23 4.56 9.59	13.84 14.89 15.34 14.46 15.07	8.65 10.90 11.40 10.49 11.05	 	 	33.22 33.55 32.90 31.91 30.24	27.66 27.68 27.88 26.55 24.64	 	 	
26 27 28 29 30 31	3.55 3.62 3.72 3.77 3.82	2.62 2.53 2.96 2.97 2.87	13.59 11.17 7.69 7.57 8.86 10.30	8.94 7.31 5.93 5.46 5.25 5.53	15.49 17.74 18.15 18.86 18.86	11.77 12.58 13.94 15.58 15.98	32.52 32.21 29.70 29.96	27.66 25.75 24.05 23.24	26.40 24.97 21.51 23.92	22.69 21.16 19.33 19.33	19.99 23.28 23.23 21.94 20.14	15.85 16.27 19.65 18.16 17.63	
MONTH YEAR	8.97 33.55	1.74 1.74	15.10	2.56	18.86	6.49	32.52	16.05	33.55	19.33	32.56	15.85	

Daily Low Water Levels

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Bh 98. SITE ID .-- 382127075043802. PERMIT NUMBER .-- WO-81-1822.

LOCATION.--Lat 38°21'27", long 75°04'38", Hydrologic Unit 02060010, at 28th Street Park, Ocean City. Owner: Town of Ocean City.

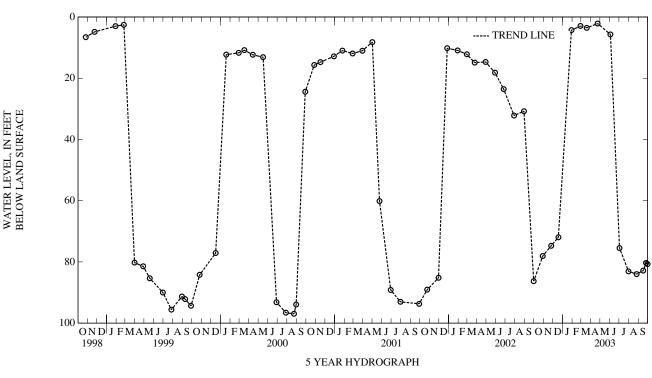
AQUIFER .-- Ocean City aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122OCNC.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 310 ft; casing diameter 4 in., to 255 ft, 275 to 285 ft, and 290 to 305 ft; screen diameter 4 in., from 255 to 275 ft, 285 to 290 ft, and 305 to 310 ft.

INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel.

DATUM .-- Elevation of land surface is 5 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.52 ft above land surface.

REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal, especially during summer peak demand.


PERIOD OF RECORD .-- January 1988 to current year.

HIGHEST 2.14 APR 23, 2003 LOWEST 83.99 AUG 26, 2003

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.89 ft above land surface, April 2, 1993 (recorder); lowest measured, 100.27 ft below land surface, September 16, 2002 (recorder).

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 18 JAN 29, 2003	78.10 74.73 71.96 4.31	FEB 27, 2003 MAR 19 APR 23 JUN 03	2.95 3.54 2.14 5.71	JUL 02, 2003 31 AUG 26 SEP 16	75.49 83.11 83.99 82.85	SEP 25, 2003 30	80.34 80.71

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

Daily Low Water Levels

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Cg 72. SITE ID.--381939075052101. PERMIT NUMBER .-- WO-73-1304.

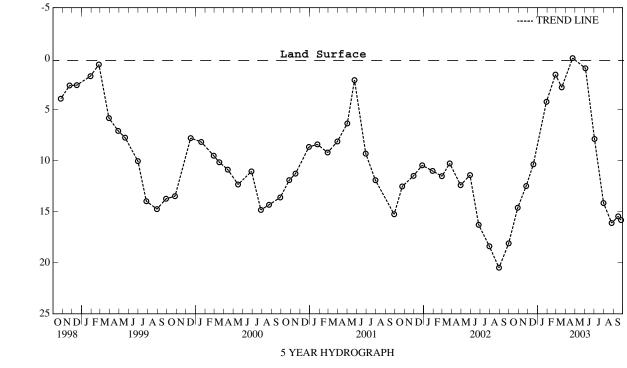
LOCATION.--Lat 38°19'39", long 75°05'21", Hydrologic Unit 02060010, at South Division St., Ocean City. Owner: Town of Ocean City.

AQUIFER .-- Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS.--Drilled, observation, artesian well, depth 450 ft; casing diameter 4 in., to 384 ft, 394 to 404 ft, and 424 to 445 ft; screen diameter 4 in., from 384 to 394 ft, 404 to 424 ft, and 445 to 450 ft.

INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel.

- DATUM.--Elevation of land surface is 5 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land surface.
- REMARKS.--Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal, especially during summer peak demands.


PERIOD OF RECORD .-- January 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.58 ft above land surface, March 30, 1990; lowest measured, 32.49 ft below land surface, September 25, 1996.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 (READINGS ABOVE LAND-SURFACE INDICATED BY "-")

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 18 JAN 29, 2003	14.61 12.48 10.35 4.22	FEB 27, 2003 MAR 19 APR 23 JUN 03	1.56 2.81 06 .94	JUL 02, 2003 31 AUG 26 SEP 16	7.87 14.15 16.11 15.45	SEP 25, 2003	15.82

HIGHEST -.06 APR 23, 2003 LOWEST 16.11 AUG 26, 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WATER LEVEL, IN FEET BELOW LAND SURFACE

WORCESTER COUNTY—Continued

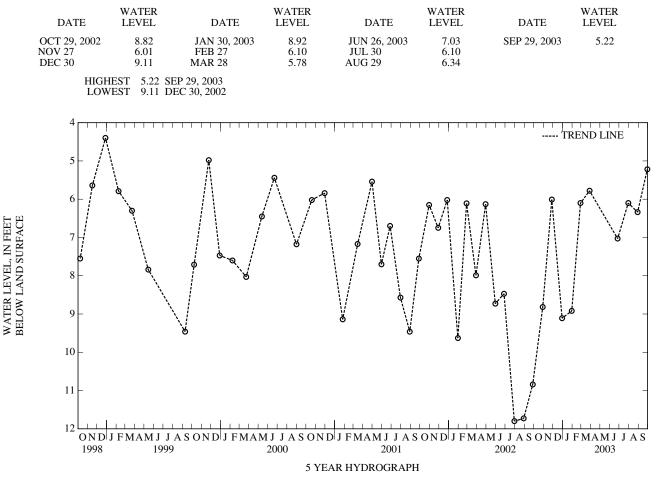
WELL NUMBER .-- WO Dd 7. SITE ID .-- 381037075234301.

LOCATION.--Lat 38°10'37", long 75°23'43", Hydrologic Unit 02060009, near intersection of Green and Commerce Sts., Snow Hill. Owner: City of Snow Hill.

AQUIFER.--Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS.-Drilled, unused, artesian well, depth 290 ft; casing diameter 6 in.; casing length unknown.

INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 13 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of coupling, 0.40 ft below land surface.

REMARKS .-- Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--July 1958 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.63 ft below land surface, March 8, 1962; lowest measured, 38.02 ft below land surface, September 17, 1970.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

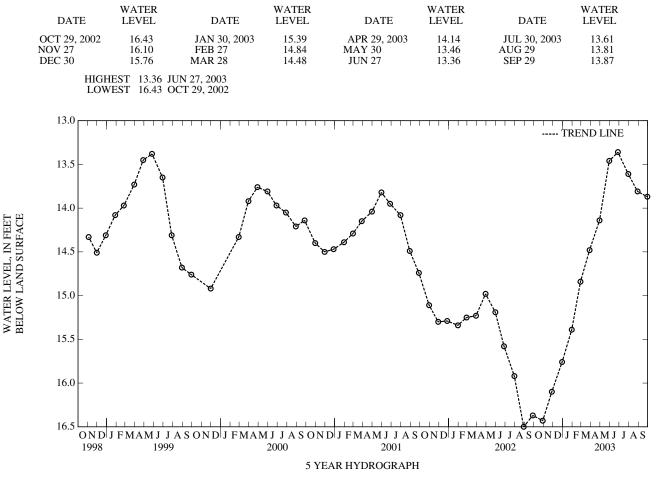
WORCESTER COUNTY-Continued

WELL NUMBER .-- WO De 36. SITE ID .-- 381457075174101. PERMIT NUMBER .-- WO-73-0515.

LOCATION.--Lat 38°14'57", long 75°17'41", Hydrologic Unit 02060010, at Newark. Owner: U.S. Geological Survey.

AQUIFER .-- Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 330 ft; casing diameter 4 in., to 320 ft; screen diameter 2 in., from 320 to 330 ft.


INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land surface is 30 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.84 ft above land surface.

REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. Water levels are affected by regional ground-water withdrawal. PERIOD OF RECORD.--September 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.62 ft below land surface, May 20, 1976, lowest measured, 16.50 ft below land surface, August 29, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Dg 21. SITE ID.-- 381427075081102. PERMIT NUMBER .-- WO-73-0519.

LOCATION.--Lat 38°14'26", long 75°08'11", Hydrologic Unit 020060010, at Assateague Island State Park. Owner: U.S. Geological Survey.

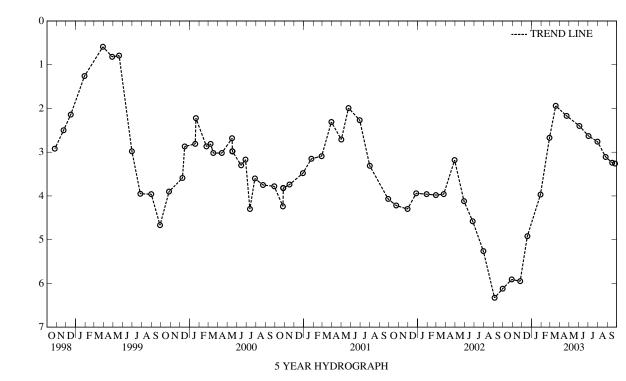
AQUIFER.--Manokin aquifer in the Eastover Formation of Upper Miocene age. Aquifer code: 122MNKN.

WELL CHARACTERISTICS .- Drilled, observation, artesian well, depth 310 ft; casing diameter 4 in., to 300 ft; screen diameter 2 in., from 300 to 310 ft.

INSTRUMENTATION.--Monthly water level measurements with an electric tape by U.S. Geological Survey personnel from November 1990, to current year. Periodic water level measurements with chalked steel tape from October 1975 to April 1985. Equipped with digital water-level recorder--60-minute recording interval from April 1985 to October 1990.

DATUM .-- Elevation of land surface is 5.66 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.98 ft above land surface.

REMARKS .-- Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.


PERIOD OF RECORD .-- October 1975 to current year.

WATER LEVEL, IN FEET BELOW LAND SURFACE LOWEST 5.95 NOV 25, 2002

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 1.37 ft above land surface, April 22, 1991; lowest recorded, 5.95 ft below land surface, November 25, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 25 DEC 18 JAN 29, 2003	5.91 5.95 4.92 3.97	FEB 27, 2003 MAR 19 APR 23 JUN 03	2.67 1.94 2.17 2.40	JUL 02, 2003 31 AUG 26 SEP 16	2.63 2.76 3.11 3.24	SEP 25, 2003	3.26
HIGHI	EST 1.94 M	IAR 19, 2003					

WORCESTER COUNTY-Continued

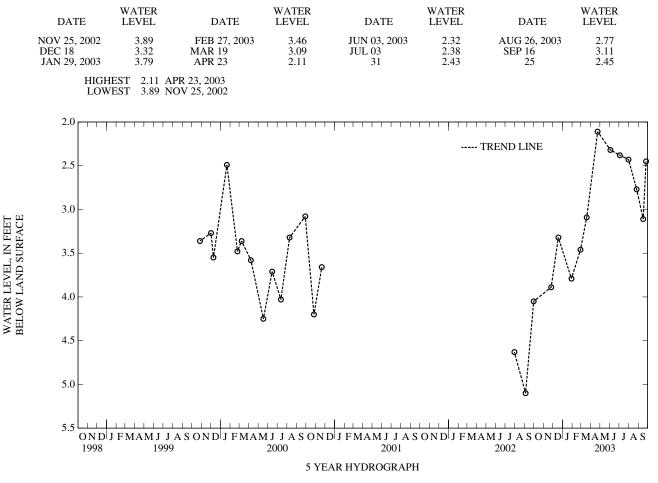
WELL NUMBER .-- WO Dg 23. SITE ID.-- 381428075081401. PERMIT NUMBER .-- WO-94-1412.

LOCATION.--Lat 38°14'28", long 75°08'10", Hydrologic Unit 020060010, at Assateague Island State Park. Owner: U.S. Geological Survey.

AQUIFER.--Beaverdam Sands of Plesitocene age. Aquifer code: 121BVDM.

WELL CHARACTERISTICS .- Drilled, observation, water table well, depth 85 ft; casing diameter 2 in., to 82 ft; screen diameter 2 in., from 82 to 85 ft.

INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel from October 1999, to current year.


DATUM.--Elevation of land surface is 5.18 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.10 ft above land surface.

REMARKS .-- Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- October 1999 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 2.11 ft above land surface, April 23, 2003; lowest recorded, 5.10 ft below land surface, September 4, 2002.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

WORCESTER COUNTY-Continued

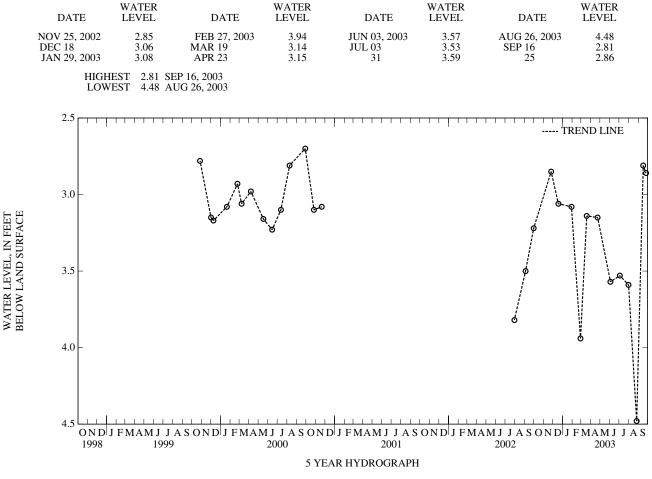
WELL NUMBER .-- WO Dg 24. SITE ID.-- 381428075081402. PERMIT NUMBER .-- WO-94-1411.

LOCATION.--Lat 38°14'28", long 75°08'10", Hydrologic Unit 020060010, at Assateague Island State Park. Owner: U.S. Geological Survey.

AQUIFER.--Sinepuxent Formation of Plesitocene age. Aquifer code: 112SNPX.

WELL CHARACTERISTICS .- Drilled, observation, water table well, depth 35 ft; casing diameter 2 in., to 32 ft; screen diameter 2 in., from 32 to 35 ft.

INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel from October 1999, to current year.


DATUM.--Elevation of land surface is 5.08 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.70 ft above land surface.

REMARKS .-- Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--October 1999 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 2.70 ft above land surface, September 28, 2000; lowest recorded, 4.48 ft below land surface, August 26, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WORCESTER COUNTY-Continued

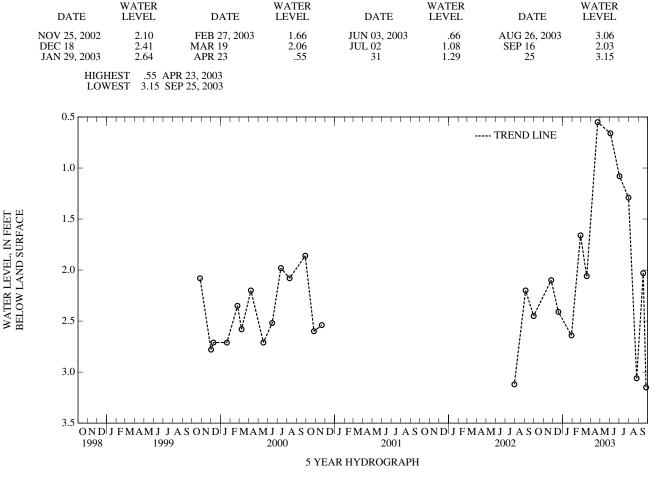
WELL NUMBER .-- WO Dg 25. SITE ID.-- 381428075081403. PERMIT NUMBER .-- WO-94-1410.

LOCATION.--Lat 38°14'28", long 75°08'10", Hydrologic Unit 020060010, at Assateague Island State Park. Owner: U.S. Geological Survey.

AQUIFER .-- Tidal Marsh Deposit of Plesitocene age. Aquifer code: 111BRRR.

WELL CHARACTERISTICS .- Drilled, observation, water table well, depth 15 ft; casing diameter 2 in., to 12 ft; screen diameter 2 in., from 12 to 15 ft.

INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel from October 1999, to current year.


DATUM.--Elevation of land surface is 4.99 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.30 ft above land surface.

REMARKS .-- Ocean City Ground-Water Monitoring Network observation well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD.--October 1999 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 0.55 ft below land surface, March 19, 2003 and April 23, 2003; lowest recorded, 3.15 ft below land surface, September 25, 2003.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

WORCESTER COUNTY-Continued

WELL NUMBER .-- WO Fb 2. SITE ID .-- 380408075335701. PERMIT NUMBER .-- WO-00-1633.

LOCATION.--Lat 38°04'08", long 75°33'57", Hydrologic Unit 02060009, near 7th and Young St., Pocomoke City. Owner: Pocomoke City.

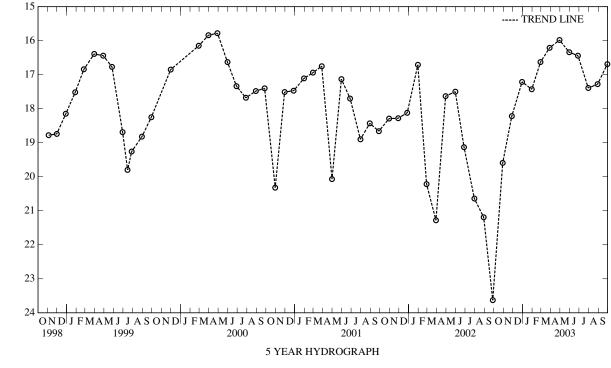
AQUIFER.--Pocomoke aquifer in the Eastover Formation or Yorktown Formation of Upper Miocene-Pliocene age. Aquifer code: 122PCMK.

WELL CHARACTERISTICS.-Drilled, unused, artesian well, depth 130 ft; casing diameter 16 in., to 100 ft; casing diameter 10 in., to 100 ft; screen diameter 9.5 in., from 100 to 130 ft.

INSTRUMENTATION .-- Monthly water level measurements with an electric tape by U.S. Geological Survey personnel.

- DATUM.--Elevation of land surface is 15 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 1.5 in. casing extension, 3.30 ft above land surface.
- REMARKS.--Maryland Ground-Water-Level Monitoring Network observation well. A water level was reported at 30 ft below land surface on October 3, 1947. The well was inaccessible from January 1997 through July 1997 due to construction equipment being parked over the well. Water levels are affected by local ground-water withdrawal.

PERIOD OF RECORD .-- January 1953 to current year.


WATER LEVEL, IN FEET BELOW LAND SURFACE

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.20 ft below land surface, February 25, 1998; lowest measured, 49.70 ft below land surface, July 1, 1954.

WATER LEVELS, IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29, 2002 NOV 27 DEC 30	19.59 18.22 17.21	JAN 30, 2003 FEB 27 MAR 28	17.43 16.63 16.21	APR 29, 2003 MAY 30 JUN 27	15.98 16.34 16.44	JUL 30, 2003 AUG 29 SEP 29	17.39 17.28 16.69
IIICI	TOT 15 00 A	DD 20 2002					

HIGHEST 15.98 APR 29, 2003 LOWEST 19.59 OCT 29, 2002

DISTRICT OF COLUMBIA

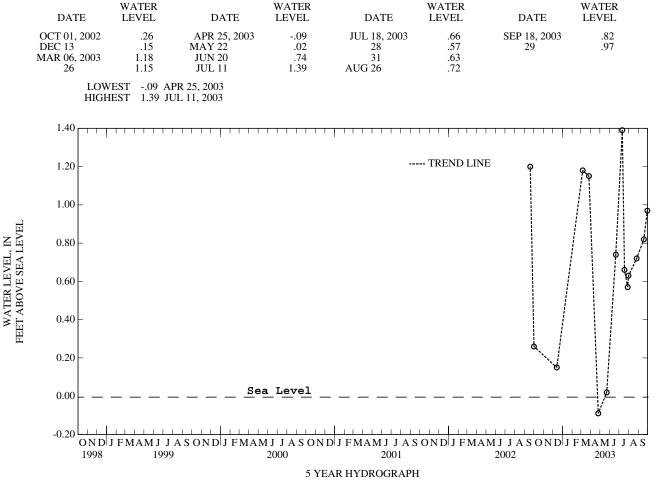
WELL NUMBER .-- WE Bb 3. SITE ID .-- 385504076563801. PERMIT NUMBER .-- DCMW001-02.

LOCATION .-- Lat 38°55'03.6", long 76°56'37.7", Hydrologic Unit 02070010. Owner: District of Columbia Department of Health, Water Quality Division.

AQUIFER.--Quaternary Alluvium Formation of Quaternary age. Aquifer code: 110ALVM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 25 ft; casing diameter 2 in., to 15 ft depth; screen diameter 2 in., from 15 to 25 ft.

INSTRUMENTATION.--Monthly measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--30minute recording interval, June 2003 to current year.


DATUM .-- Elevation of land surface is 12.30 ft above North American Vertical Datum of 1988. Measuring point: Top of PVC casing, 3.60 ft above land surface.

REMARKS .-- Anacostia River Watershed Ground-Water-Level Monitoring Network observation well. Water levels affected by tides.

PERIOD OF RECORD.--September 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.39 ft above sea level, July 11, 2003; lowest measured, 0.09 ft below sea level, April 25, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

DISTRICT OF COLUMBIA—Continued

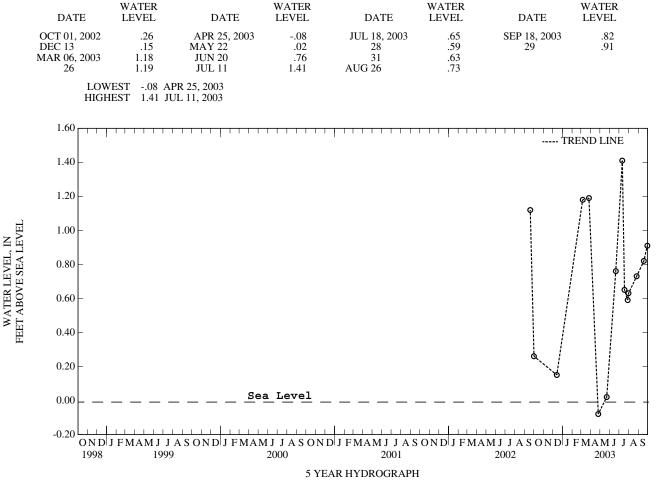
WELL NUMBER .-- WE Bb 4. SITE ID .-- 385504076563802. PERMIT NUMBER .-- DCMW004-02.

LOCATION .-- Lat 38°55'03.6", long 76°56'37.7", Hydrologic Unit 02070010. Owner: District of Columbia Department of Health, Water Quality Division.

AQUIFER.--Quaternary Alluvium Formation of Quaternary age. Aquifer code: 110ALVM.

WELL CHARACTERISTICS .- Drilled, observation, water-table well, depth 32 ft; casing diameter 2 in., to 32 ft depth; screen diameter 2 in., from 22 to 32 ft.

INSTRUMENTATION.--Monthly measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--30minute recording interval, June 2003 to current year.


DATUM .-- Elevation of land surface is 12.37 ft above North American Vertical Datum of 1988. Measuring point: Top of PVC casing, 3.00 ft above land surface.

REMARKS .-- Anacostia River Watershed Ground-Water-Level Monitoring Network observation well. Water levels affected by tides.

PERIOD OF RECORD.--September 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.41 ft above sea level, July 11, 2003; lowest measured, 0.08 ft below sea level, April 25, 2003.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

DISTRICT OF COLUMBIA—Continued

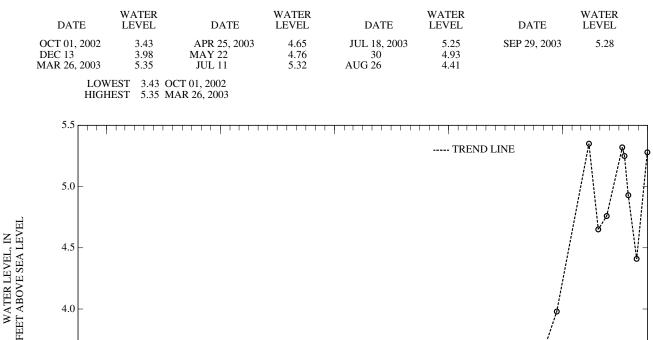
WELL NUMBER .-- WE Ca 29. SITE ID .-- 385238076581501. PERMIT NUMBER .-- DCMW005-02.

LOCATION.--Lat 38°52'38.4", long 76°58'15.3", Hydrologic Unit 02070010. Owner: District of Columbia Department of Health, Water Quality Division.

AQUIFER.--Quaternary Alluvium Formation of Quaternary age. Aquifer code: 110ALVM.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 48.5 ft; casing diameter 2 in., to 38.5 ft depth; screen diameter 2 in., from 38.5 to 48.5 ft.

INSTRUMENTATION .-- Monthly measurements with electric tape by U.S. Geological Survey personnel.


DATUM.--Elevation of land surface is 13.38 ft above North American Vertical Datum of 1988. Measuring point: Top of PVC casing, 0.15 ft below land surface.

REMARKS .-- Anacostia River Watershed Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- September 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.35 ft above sea level, March 26, 2003; lowest measured, 3.43 ft above sea level, October 1, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

5 YEAR HYDROGRAPH

OCTOBER 1, 1998 THROUGH SEPTEMBER 30, 2003

DISTRICT OF COLUMBIA—Continued

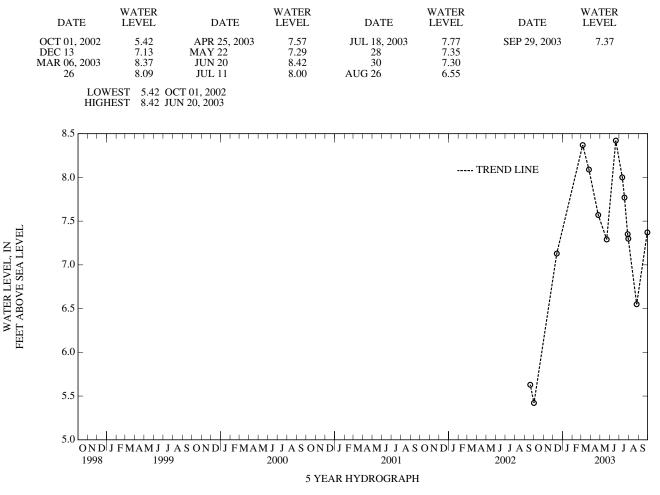
WELL NUMBER .-- WE Cb 5. SITE ID .-- 385443076562801. PERMIT NUMBER .-- DCMW002-02.

LOCATION.--Lat 38°54'43.5", long 76°56'28.4", Hydrologic Unit 00002070010. Owner: District of Columbia Department of Health, Water Quality Division.

AQUIFER .-- Terrace Deposits of Quaternary age. Aquifer code: 110TRRC.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 22.6 ft; casing diameter 2 in., to 12.6 ft depth; screen diameter 2 in., from 12.6 to 22.6 ft.

INSTRUMENTATION.--Monthly measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--30minute recording interval, July 2003 to current year.


DATUM.--Elevation of land surface is 18.53 ft above North American Vertical Datum of 1988. Measuring point: Top of PVC casing, 0.20 ft below land surface.

REMARKS .-- Anacostia River Watershed Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- September 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.42 ft above sea level, June 20, 2003; lowest measured, 5.42 ft above sea level, October 1, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DISTRICT OF COLUMBIA—Continued

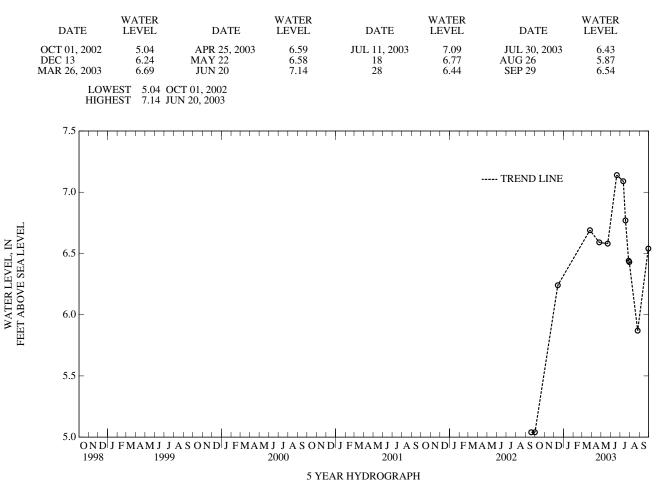
WELL NUMBER .-- WE Cb 6. SITE ID .-- 385443076562802. PERMIT NUMBER .-- DCMW003-02.

LOCATION .-- Lat 38°54'43.5", long 76°56'28.4", Hydrologic Unit 02070010. Owner: District of Columbia Department of Health, Water Quality Division.

AQUIFER.--Terrace Deposits of Quaternary age. Aquifer code: 110TRRC.

WELL CHARACTERISTICS.--Drilled, observation, water-table well, depth 46.3 ft; casing diameter 2 in., to 36.3 ft depth; screen diameter 0.75 in., from 36.3 to 46.3 ft.

INSTRUMENTATION.--Monthly measurements with electric tape by U.S. Geological Survey personnel. Equipped with digital water-level recorder--30minute recording interval, July 2003 to current year.


DATUM.--Elevation of land surface is 18.79 ft above North American Vertical Datum of 1988. Measuring point: Top of PVC casing, 0.20 ft below land surface.

REMARKS .-- Anacostia River Watershed Ground-Water-Level Monitoring Network observation well.

PERIOD OF RECORD .-- September 2002 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.14 ft above sea level, June 20, 2003; lowest measured, 5.04 ft above sea level, October 1, 2002.

WATER LEVELS, IN FEET ABOVE SEA LEVEL, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

GROUND-WATER-QUALITY RECORDS

REMARK CODES

The following remark codes may appear with the water-quality data in this section:

PRINTED OUTPUT	REMARK
E	Estimated value
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
ĸ	Results based on colony count outside the acceptance range (non-ideal colony count).
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted).
D	Biological organism count egual to or greater than 15 percent (dominant).
&	Biological organism estimated as dominant.
v	Analyte was detected in both the environmental sample and the associated blank.

M Presence of material verified but not quantified.

Dissolved Trace-Element Concentrations

NOTE--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (ug/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the ug/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols in water year 1994.

Change in National Trends Network Procedures

NOTE--Sample handling procedures at all national Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (Telephone: 303-491-5643).

NEW CASTLE COUNTY, DELAWARE

Welll Number	Date	Time	Station 1	number	Sample	e type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
Gc14-04	12-09-02 12-09-02	1200 <i>1205</i>	39240307	5362101	Environ <i>Replicat</i>		112CLMB 112CLMB	GW GW	34.00 <i>34.00</i>	34 <i>34</i>	31 31
		Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling method, code (82398)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)
	12-09-02 12-09-02	11.99 <i>11.99</i>	5.00 5.00	0.24 0.24	90 90	4040 <i>4040</i>	781	3.7	33	5.8	196
		Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Bromide water, fltrd, mg/L (71870)
	12-09-02 12-09-02	-1.0	12.0	68 69	15.1 <i>15.3</i>	7.22 7.35	1.99 1.96	5.47 5.61	8	10	0.03 0.03
		Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)
	12-09-02 12-09-02	6.87 6.99	<0.17 <0.17	9.15 9.32	19.9 <i>19.9</i>	120	116 122	E.08 <i>E.07</i>	<0.04 <0.04	11.1 10.8	<0.008 <0.008
		Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Organic carbon, water, fltrd, mg/L (00681)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Barium, water, fltrd, ug/L (01005)	Beryll- ium, water, fltrd, ug/L (01010)	Boron, water, fltrd, ug/L (01020)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)
	12-09-02 12-09-02	<0.02 <0.02	0.3 0.3	17 18	<0.30 <0.30	<0.3 <0.3	71 70	0.07 0.10	13 14	1.09 1.08	0.8 0.8

Geologic Unit (aquifer): 112CLMB - Columbia aquifer

Station Type: GW - Ground Water

Sampling Method: 4040 - Submersible pump

NEW CASTLE COUNTY, DELAWARE—Continued

Welll Number	Date	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)	Iron, water, fltrd, ug/L (01046)	Lead, water, fltrd, ug/L (01049)	Lithium water, fltrd, ug/L (01130)	Mangan- ese, water, fltrd, ug/L (01056)	Molyb- denum, water, fltrd, ug/L (01060)	Nickel, water, fltrd, ug/L (01065)	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)
Gc14-04	12-09-02 12-09-02	0.587 0.592	2.2 1.8	E10 <i>E6</i>	0.23 0.22	0.6 0.6	23.2 22.9	<0.3 <0.3	2.74 2.73	<0.5 <0.5	<0.2 <0.2
		Stront- ium, water, fltrd, ug/L (01080)	Thall- ium, water, fltrd, ug/L (01057)	Vanad- ium, water, fltrd, ug/L (01085)	Zinc, water, fltrd, ug/L (01090)	2,4,5-T surrog, water, fltrd, percent recovry (99958)	2,4-D methyl ester, water, fltrd, ug/L (50470)	2,4-D water, fltrd, ug/L (39732)	2,4-DB water, fltrd 0.7u GF ug/L (38746)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)
	12-09-02 12-09-02	155 <i>153</i>	E.02 E.02	0.6 0.9	5 4	80.9 93.9	<0.009 <0.009	<0.02 <0.02	<0.02 <0.02	<0.006 <0.006	E.270 <i>E.303</i>
		CEAT, water, fltrd, ug/L (04038)	OIET, water, fltrd, ug/L (50355)	3- Hydroxy carbo- furan, wat flt 0.7u GF ug/L (49308)	3-Keto- carbo- furan, water, fltrd, ug/L (50295)	Aceto- chlor, water, fltrd, ug/L (49260)	Aci- fluor- fen, water, fltrd 0.7u GF ug/L (49315)	Ala- chlor, water, fltrd, ug/L (46342)	Aldi- carb sulfone water, fltrd 0.7u GF ug/L (49313)	Aldi- carb sulf- oxide, wat flt 0.7u GF ug/L (49314)	Aldi- carb, water, fltrd 0.7u GF ug/L (49312)
	12-09-02 12-09-02	E.03 <i>E.06</i>	E.042 <i>E.008</i>	<0.006 <0.006	<2 <2	<0.006 <0.006	<0.007 <0.007	<0.004 <0.004	<0.02 <0.02	<0.008 <0.008	<0.04 <0.04
		alpha- HCH, water, fltrd, ug/L (34253)	alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Barban, surrog, Sched. 2060/ 9060, wat flt pct rcv (90640)	Bendio- carb, water, fltrd, ug/L (50299)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Benomyl water, fltrd, ug/L (50300)	Bensul- furon, water, fltrd, ug/L (61693)	Ben- tazon, water, fltrd 0.7u GF ug/L (38711)
	12-09-02 12-09-02		88.5 88.8	0.274 0.281	<0.050 <0.050	123 113	<0.03 <0.03	<0.010 <0.010	<0.004 <0.004	<0.02 <0.02	<0.01 <0.01
		Broma- cil, water, fltrd, ug/L (04029)	Brom- oxynil, water, fltrd 0.7u GF ug/L (49311)	Butyl- ate, water, fltrd, ug/L (04028)	Caf- feine, water, fltrd, ug/L (50305)	Caf- feine- 13C, surrog, wat flt percent recovry (99959)	Car- baryl, water, fltrd 0.7u GF ug/L (49310)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (49309)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Chlor- amben methyl ester, water, fltrd, ug/L (61188)
	12-09-02 12-09-02	<0.03 <0.03	<0.02 <0.02	<0.002 <0.002	<0.010 <0.010	96.3 102	<0.03 <0.03	<0.041 <0.041	<0.006 <0.006	<0.020 <0.020	<0.02 <0.02

NEW CASTLE COUNTY, DELAWARE-Continued

Welll Number	Date	Chlori- muron, water, fltrd, ug/L (50306)	Chloro- di- amino- s-tri- azine, wat flt ug/L (04039)	Chloro- thalo- nil, water, fltrd 0.7u GF ug/L (49306)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Clopyr- alid, water, fltrd 0.7u GF ug/L (49305)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)	Dacthal mono- acid, water, fltrd 0.7u GF ug/L (49304)	DCPA, water fltrd 0.7u GF ug/L (82682)
Gc14-04	12-09-02	<0.010	<0.01	<0.04	<0.005	<0.006	<0.01	<0.018	<0.01	<0.01	<0.003
	12-09-02	<0.010	<0.0036	<0.04	<0.005	<0.006	<0.01	<0.018	<0.01	<0.01	<0.003
		Diazi- non, water, fltrd, ug/L (39572)	Diazi- non-d10 surrog. wat flt 0.7u GF percent recovry (91063)	Di- chlor- prop, water, fltrd 0.7u GF ug/L (49302)	Diel- drin, water, fltrd, ug/L (39381)	Dinoseb water, fltrd 0.7u GF ug/L (49301)	Diphen- amid, water, fltrd, ug/L (04033)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	Diuron, water, fltrd 0.7u GF ug/L (49300)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)
	12-09-02	<0.005	112	<0.01	<0.005	<0.01	<0.03	<0.02	<0.01	<0.002	<0.009
	12-09-02	<0.005	113	<0.01	<0.005	<0.01	<0.03	<0.02	<0.01	<0.002	<0.009
		Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fenuron water, fltrd 0.7u GF ug/L (49297)	Flumet- sulam, water, fltrd, ug/L (61694)	Fluo- meturon water fltrd 0.7u GF ug/L (38811)	Fonofos water, fltrd, ug/L (04095)	Imaza- quin, water, fltrd, ug/L (50356)	Imaze- thapyr, water, fltrd, ug/L (50407)	Imida- cloprid water, fltrd, ug/L (61695)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (38478)
	12-09-02	<0.005	<0.03	<0.01	<0.03	<0.003	<0.02	<0.02	<0.007	<0.004	<0.01
	12-09-02	<0.005	<0.03	<0.01	<0.03	<0.003	<0.02	<0.02	<0.007	<0.004	<0.01
		Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)	MCPA, water, fltrd 0.7u GF ug/L (38482)	MCPB, water, fltrd 0.7u GF ug/L (38487)	Meta- laxyl, water, fltrd, ug/L (50359)	Methio- carb, water, fltrd 0.7u GF ug/L (38501)	Meth- omyl, water, fltrd 0.7u GF ug/L (49296)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)
	12-09-02	<0.035	<0.027	<0.02	<0.01	<0.02	<0.008	<0.004	<0.006	<0.013	<0.006
	12-09-02	<0.035	<0.027	<0.02	<0.01	<0.02	<0.008	<0.004	<0.006	<0.013	<0.006
		Metsul- furon, water, fltrd, ug/L (61697)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	N-(4- Chloro- phenyl) -N-' methyl- urea, ug/L (61692)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	Neburon water, fltrd 0.7u GF ug/L (49294)	Nico- sul- furon, water, fltrd, ug/L (50364)	Norflur azon, water, fltrd 0.7u GF ug/L (49293)	Ory- zalin, water, fltrd 0.7u GF ug/L (49292)	Oxamyl, water, fltrd 0.7u GF ug/L (38866)	p,p-' DDE, water, fltrd, ug/L (34653)
	12-09-02	<0.03	<0.002	<0.02	<0.007	<0.01	<0.01	<0.02	<0.02	<0.01	<0.003
	12-09-02	<0.03	<0.002	<0.02	<0.007	<0.01	<0.01	<0.02	<0.02	<0.01	<0.003

NEW CASTLE COUNTY, DELAWARE—Continued

Welll Number	Date	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)	Pic- loram, water, fltrd 0.7u GF ug/L (49291)	Prome- ton, water, fltrd, ug/L (04037)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)
Gc14-04	12-09-02	<0.010	<0.004	<0.022	<0.011	<0.02	<0.01	<0.004	<0.010	<0.011	<0.02
	12-09-02	<0.010	<0.004	<0.022	<0.011	<0.02	<0.01	<0.004	< <i>0.010</i>	<0.011	<0.02
		Propham water fltrd 0.7u GF ug/L (49236)	Propi- cona- zole, water, fltrd, ug/L (50471)	Pro- poxur, water, fltrd 0.7u GF ug/L (38538)	Siduron water, fltrd, ug/L (38548)	Sima- zine, water, fltrd, ug/L (04035)	Sulfo- met- ruron, water, fltrd, ug/L (50337)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Terba- cil, water, fltrd, ug/L (04032)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)
	12-09-02	<0.010	<0.02	<0.008	<0.02	<0.005	<0.009	<0.02	<0.034	<0.010	<0.02
	12-09-02	<0.010	<0.02	<0.008	<0.02	<0.005	< <i>0.009</i>	<0.02	< <i>0.034</i>	< <i>0.010</i>	<0.02

	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- clopyr, water, fltrd 0.7u GF ug/L (49235)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	Rn-222 2-sigma water unfltrd pCi/L (76002)	Rn-222, water, unfltrd pCi/L (82303)	Uranium natural water, fltrd, ug/L (22703)
12-09-02 <i>12-09-02</i>	<0.005 <0.005	<0.002 <0.002	<0.02 <0.02	<0.009 <0.009	25	510	E.01 <i>E.01</i>

Remark codes used in this table: < -- Less than E -- Estimated value

SUSSEX COUNTY, DELAWARE

N7 11		T.			0 1		Geologic	Station	Depth of well, feet below	Depth to bot sample intrval feet below	Depth to top sample intrval feet below
Welll Number	Date	Time	Station	number	Sampl	e type	unit	type	LSD (72008)	LSD (72016)	LSD (72015)
Ng45-02	12-19-02 12-19-02 12-19-02	1100 1105 1300	38463707	5153201	Environ Replicat Blank		112BVDM 112BVDM	GW GW GW	22.00 22.00	22 22	19 19
Of12-05 Rf24-08	01-22-03 01-16-03	1130 1400	38441807 38283307		Environ Environ		112BVDM 112BVDM	GW GW	13.00 19.00	13 19	10 16
Ri22-10	01-14-03	1400	38282407	5081502	Environ	mental	112CLMB	GW	23.00	23	20
		Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling method, code (82398)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)
Ng45-02	12-19-02 12-19-02	7.10 7.10	16.00 <i>16.00</i>	0.30 0.30	120 120	4040 <i>4040</i>	771	7.7	76	6.3	251
Of12-05 Rf24-08	12-19-02 01-22-03 01-16-03	3.45 1.60	49.13 35.00	0.23 0.36	 60 60	4040 4040 4040	 766 770	4.6 0.1	41 0.0	4.9 5.4	47 130
Ri22-10	01-14-03	9.06	15.00	0.44	60	4040	767	2.3	23	5.0	397
		Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Bromide water, fltrd, mg/L (71870)
Ng45-02 Of12-05	12-19-02 12-19-02 12-19-02 01-22-03	 -5.0	15.7 10.0	94 92 9	27.4 26.9 0.04 1.37	6.21 6.06 <0.008 1.35	1.44 1.49 <0.10 0.55	5.21 5.06 0.11 3.41	4 	5 	0.05 0.04 <0.02 E.01
Rf24-08	01-16-03	2.0	13.0	10	2.60	0.791	2.28	14.8	15	18	0.04
Ri22-10	01-14-03	2.0	15.0	97	19.9	11.3	2.46	29.1	9	11	0.11
		Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)
Ng45-02 Of12-05	12-19-02 12-19-02 12-19-02 01-22-03	22.1 19.6 <0.20 4.53	<0.17 <0.17 <0.17 <0.17	12.3 12.1 0.40 6.93	30.9 30.9 <0.2 7.8	160 	159 161 <10 27	0.13 0.12 <0.10 E.06	<0.04 <0.04 <0.04 <0.04	11.6 11.1 <0.06 <0.06	<0.008 <0.008 <0.008 <0.008
Rf24-08	01-16-03	17.7	< 0.17	25.9	13.7	93	103	0.20	0.06	< 0.06	< 0.008
Ri22-10	01-14-03	36.5	<0.17	35.1	113	263	277	0.17	0.12	<0.06	<0.008
Geologic Unit (aquif			averdam Sa lumbia aqu			Statio	on Type: GV	v - Groun	a Water		

Sampling Method: 4040 - Submersible pump

SUSSEX COUNTY, DELAWARE-Continued

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Welll Number	Date	Organic nitro- gen, water, fltrd, mg/L (00607)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Total nitro- gen, water, fltrd, mg/L (00602)	Organic carbon, water, fltrd, mg/L (00681)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Barium, water, fltrd, ug/L (01005)	Beryll- ium, water, fltrd, ug/L (01010)	Boron, water, fltrd, ug/L (01020)
R122-10 0.1-14-03 0.06 cl.02 - 0.8 10 cl.30 0.3 9.3 0.77 13 Ng45-02 Cl.10-02 Cl.00-02 Cl.00-02 <td< td=""><td>Of12-05</td><td>12-19-02 12-19-02 01-22-03</td><td></td><td><0.02 <0.02 <0.02</td><td>11 </td><td>0.4 <0.3 0.8</td><td>2 E2 155</td><td><0.30 <0.30 <0.30</td><td><0.3 <0.3 <0.3</td><td>22 M 81</td><td>0.12 <0.06 0.20</td><td>39 <7 13</td></td<>	Of12-05	12-19-02 12-19-02 01-22-03		<0.02 <0.02 <0.02	11 	0.4 <0.3 0.8	2 E2 155	<0.30 <0.30 <0.30	<0.3 <0.3 <0.3	22 M 81	0.12 <0.06 0.20	39 <7 13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			water, fltrd, ug/L	ium, water, fltrd, ug/L	water, fltrd, ug/L	water, fltrd, ug/L	water, fltrd, ug/L	water, fltrd, ug/L	water, fltrd, ug/L	ese, water, fltrd, ug/L	denum, water, fltrd, ug/L	water, fltrd, ug/L
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Of12-05	12-19-02 12-19-02 01-22-03	0.09 <0.04 0.05	<i>E.6</i> <0.8 0.8	0.074 <0.015 0.156	34.2 0.5 1.0	<10 <10 E8	2.04 4.34 1.47	E.3 <0.5 E.5	3.3 E.1 7.7	<0.3 <0.3 <0.3	1.12 0.15 1.74
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ium, water, fltrd, ug/L	water, fltrd, ug/L	ium, water, fltrd, ug/L	ium, water, fltrd, ug/L	ium, water, fltrd, ug/L	water, fltrd, ug/L	surrog, water, fltrd, percent recovry	methyl ester, water, fltrd, ug/L	water, fltrd, ug/L	water, fltrd 0.7u GF ug/L
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Of12-05	12-19-02 12-19-02 01-22-03	0.7 <0.5 E.4	<0.2 <0.2 <0.2	145 E.10 41.9	<0.04 <0.04 <0.04	0.2 <0.1 0.2	$\binom{1}{<1}{2}$	92.8 86.3 102	<0.009 <0.009 <0.009	<0.02 <0.02 <0.02	<0.02 <0.02 <0.02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ethyl- aniline water fltrd 0.7u GF ug/L	water, fltrd, ug/L	water, fltrd, ug/L	water, fltrd, ug/L	Hydroxy carbo- furan, wat flt 0.7u GF ug/L	carbo- furan, water, fltrd, ug/L	chlor, water, fltrd, ug/L	fluor- fen, water, fltrd 0.7u GF ug/L	chlor, water, fltrd, ug/L	carb sulfone water, fltrd 0.7u GF ug/L
	Of12-05	12-19-02 12-19-02 01-22-03	<0.006 <0.006 <0.006	<i>E.088</i> <0.006 <0.006	<i>E.03</i> <0.04 <0.04	<i>E.004</i> <0.008 <0.008	<0.006 <0.006 <0.006	<2 <2 <2	<0.006 <0.006 <0.006	<0.007 <0.007 <0.007	<0.004 <0.004 <0.004	<0.02 <0.02 <0.02
1122 10 01 11 05 NO.000 NO.000 NO.000 NO.000 NO.000 NZ NO.000 NO.001 NO.004 NO.02	Ri22-10	01-14-03	<0.006	<0.006	<0.04	<0.008	<0.006	<2	<0.006	<0.007	<0.004	<0.02

SUSSEX COUNTY, DELAWARE-Continued

Welll Number	Date	Aldi- carb sulf- oxide, wat flt 0.7u GF ug/L (49314)	Aldi- carb, water, fltrd 0.7u GF ug/L (49312)	alpha- HCH, water, fltrd, ug/L (34253)	alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Barban, surrog, Sched. 2060/ 9060, wat flt pct rcv (90640)	Bendio- carb, water, fltrd, ug/L (50299)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Benomyl water, fltrd, ug/L (50300)
Ng45-02 Of12-05 Rf24-08	12-19-02 12-19-02 12-19-02 01-22-03 01-16-03	<0.008 <0.008 <0.008 <0.008 <0.008	<0.04 <0.04 <0.04 <0.04 <0.04	<0.005 <0.005 <0.005 <0.005 <0.005	93.6 97.4 99.2 104 87.7	0.057 0.055 <0.007 <0.007 <0.007	<0.050 <0.050 <0.050 <0.050 <0.050	E123 <i>E134</i> 72.7 80.3 137	<0.03 <0.03 <0.03 <0.03 <0.03	<0.010 <0.010 <0.010 <0.010 <0.010	<0.004 <0.004 <0.004 <0.004 <0.004
Ri22-10	01-14-03	< 0.008	< 0.04	< 0.005	107	< 0.007	< 0.050	96.6	< 0.03	<0.010	< 0.004
		Bensul- furon, water, fltrd, ug/L (61693)	Ben- tazon, water, fltrd 0.7u GF ug/L (38711)	Broma- cil, water, fltrd, ug/L (04029)	Brom- oxynil, water, fltrd 0.7u GF ug/L (49311)	Butyl- ate, water, fltrd, ug/L (04028)	Caf- feine, water, fltrd, ug/L (50305)	Caf- feine- 13C, surrog, wat flt percent recovry (99959)	Car- baryl, water, fltrd 0.7u GF ug/L (49310)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (49309)
Ng45-02 Of12-05 Rf24-08	12-19-02 <i>12-19-02</i> <i>12-19-02</i> 01-22-03 01-16-03	<0.02 <0.02 <0.02 <0.02 <0.02	<0.01 <0.01 <0.01 <0.01 <0.01	<0.03 <0.03 <0.03 <0.03 E.03	<0.02 <0.02 <0.02 <0.02 <0.02	<0.002 <0.002 <0.002 <0.002 <0.002	<0.010 <0.010 <0.010 0.028 <0.010	137 <i>140</i> <i>137</i> 96.9 E84.9	<0.03 <0.03 <0.03 <0.03 <0.03	<0.041 <0.041 <0.041 <0.041 <0.041	<0.006 <0.006 <0.006 <0.006 0.012
Ri22-10	01-14-03	< 0.02	<0.01	E2.52	< 0.02	< 0.002	<0.010	60.8	< 0.03	<0.041	< 0.006
		Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Chlor- amben methyl ester, water, fltrd, ug/L (61188)	Chlori- muron, water, fltrd, ug/L (50306)	Chloro- di- amino- s-tri- azine, wat flt ug/L (04039)	Chloro- thalo- nil, water, fltrd 0.7u GF ug/L (49306)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Clopyr- alid, water, fltrd 0.7u GF ug/L (49305)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)
Ng45-02 Of12-05 Rf24-08	12-19-02 12-19-02 12-19-02 01-22-03 01-16-03	<0.020 <0.020 <0.020 <0.020 E.017	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.010 <0.010 <0.010 <0.010 <0.010	E.01 <i>E.01</i> <0.01 <0.01 <0.01	<0.04 <0.04 <0.04 <0.04 <0.04	<0.005 <0.005 <0.005 <0.005 <0.005	<0.006 <0.006 <0.006 <0.006 <0.006	<0.01 <0.01 <0.01 <0.01 <0.01	<0.018 <0.018 <0.018 <0.018 <0.018	<0.01 <0.01 <0.01 <0.01 <0.01
Ri22-10	01-14-03	< 0.020	< 0.02	<0.010	< 0.01	< 0.04	< 0.005	<0.006	< 0.01	<0.018	<0.01
		Dacthal mono- acid, water, fltrd 0.7u GF ug/L (49304)	DCPA, water fltrd 0.7u GF ug/L (82682)	Diazi- non, water, fltrd, ug/L (39572)	Diazi- non-d10 surrog. wat flt 0.7u GF percent recovry (91063)	Dicamba water fltrd 0.7u GF ug/L (38442)	Di- chlor- prop, water, fltrd 0.7u GF ug/L (49302)	Diel- drin, water, fltrd, ug/L (39381)	Dinoseb water, fltrd 0.7u GF ug/L (49301)	Diphen- amid, water, fltrd, ug/L (04033)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)
Ng45-02 Of12-05 Rf24-08	12-19-02 <i>12-19-02</i> <i>12-19-02</i> 01-22-03 01-16-03	<0.01 <0.01 <0.01 <0.01 <0.01	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005	101 <i>104</i> <i>91.8</i> 113 <i>95.5</i>	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	<0.005 <0.005 <0.005 <0.005 <0.005	<0.01 <0.01 <0.01 <0.01 <0.01	<0.03 <0.03 <0.03 <0.03 <0.03	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02
D'00 10	01 14 02	.0.01	.0.002	.0.005	104	.0.01	.0.01	.0.005	.0.01	.0.02	.0.02

01-14-03 <0.01

<0.003 <0.005

104

< 0.01

< 0.01

< 0.005

< 0.01

< 0.03

< 0.02

Ri22-10

SUSSEX COUNTY, DELAWARE-Continued

Welll Number	Date	Diuron, water, fltrd 0.7u GF ug/L (49300)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fenuron water, fltrd 0.7u GF ug/L (49297)	Flumet- sulam, water, fltrd, ug/L (61694)	Fluo- meturon water fltrd 0.7u GF ug/L (38811)	Fonofos water, fltrd, ug/L (04095)	Imaza- quin, water, fltrd, ug/L (50356)	Imaze- thapyr, water, fltrd, ug/L (50407)
Ng45-02 Of12-05 Rf24-08	12-19-02 12-19-02 12-19-02 01-22-03 01-16-03	<0.01 <0.01 <0.01 <0.01 <0.01	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.009 <0.009 <0.009 <0.009 <0.009	<0.005 <0.005 <0.005 <0.005 <0.005	<0.03 <0.03 <0.03 <0.03 <0.03	<0.01 <0.01 <0.01 <0.01 <0.01	<0.03 <0.03 <0.03 <0.03 <0.03	<0.003 <0.003 <0.003 <0.003 <0.003	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02 E.04
Ri22-10	01-14-03	<0.01	< 0.002	< 0.009	< 0.005	< 0.03	< 0.01	< 0.03	< 0.003	<0.02	<0.02
		Imida- cloprid water, fltrd, ug/L (61695)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (38478)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)	MCPA, water, fltrd 0.7u GF ug/L (38482)	MCPB, water, fltrd 0.7u GF ug/L (38487)	Meta- laxyl, water, fltrd, ug/L (50359)	Methio- carb, water, fltrd 0.7u GF ug/L (38501)	Meth- omyl, water, fltrd 0.7u GF ug/L (49296)
Ng45-02 Of12-05 Rf24-08	12-19-02 12-19-02 12-19-02 01-22-03 01-16-03	<0.007 <0.007 <0.007 <0.007 <0.007	<0.004 <0.004 <0.004 <0.004 <0.004	<0.01 <0.01 <0.01 <0.01 <0.01	<0.035 <0.035 <0.035 <0.035 <0.035	<0.027 <0.027 <0.027 <0.027 <0.027 <0.027	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.01 <0.01 <0.01 <0.01 <0.01	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.008 <0.008 <0.008 <0.008 <0.008	<0.004 <0.004 <0.004 <0.004 <0.004
Ri22-10	01-14-03	< 0.007	< 0.004	< 0.01	< 0.035	< 0.027	< 0.02	< 0.01	< 0.02	< 0.008	< 0.004
		Methyl para- thion, water, fltrd	Metola- chlor, water,	Metri- buzin, water,	Metsul- furon,	Moli- nate, water,	N-(4- Chloro- phenyl) -N-'	Naprop- amide, water,	Neburon water,	Nico- sul- furon,	Norflur azon, water, fltrd
		0.7u GF ug/L (82667)	fltrd, ug/L (39415)	fltrd, ug/L (82630)	water, fltrd, ug/L (61697)	fltrd 0.7u GF ug/L (82671)	methyl- urea, ug/L (61692)	fltrd 0.7u GF ug/L (82684)	fltrd 0.7u GF ug/L (49294)	water, fltrd, ug/L (50364)	0.7u GF ug/L (49293)
Ng45-02 Of12-05 Rf24-08	12-19-02 12-19-02 12-19-02 01-22-03 01-16-03	0.7u GF ug/L (82667) <0.006 <0.006 <0.006 <0.006	fltrd, ug/L (39415) E.005 <i>E.001</i> <0.013 <0.013	fltrd, ug/L (82630) <0.006 <0.006 <0.006 <0.006	fltrd, ug/L (61697) <0.03 <0.03 <0.03 <0.03	0.7u GF ug/L (82671) <0.002 <0.002 <0.002 <0.002	urea, ug/L (61692) <0.02 <0.02 <0.02 <0.02 <0.02	0.7u GF ug/L (82684) <0.007 <0.007 <0.007 <0.007	fltrd 0.7u GF ug/L (49294) <0.01 <0.01 <0.01 <0.01	water, fltrd, ug/L (50364) <0.01 <0.01 <0.01 <0.01	0.7u GF ug/L (49293) <0.02 <0.02 <0.02 <0.02 <0.02
C	12-19-02 12-19-02	0.7u GF ug/L (82667) <0.006 <0.006 <0.006 <0.006	fltrd, ug/L (39415) E.005 <i>E.001</i> <0.013	fltrd, ug/L (82630) <0.006 <0.006 <0.006	fltrd, ug/L (61697) <0.03 <0.03 <0.03	0.7u GF ug/L (82671) <0.002 <0.002 <0.002	urea, ug/L (61692) <0.02 <0.02 <0.02 <0.02	0.7u GF ug/L (82684) <0.007 <0.007 <0.007	fltrd 0.7u GF ug/L (49294) <0.01 <0.01 <0.01	water, fltrd, ug/L (50364) <0.01 <0.01 <0.01	0.7u GF ug/L (49293) <0.02 <0.02 <0.02 <0.02
Of12-05 Rf24-08	12-19-02 12-19-02 01-22-03 01-16-03	0.7u GF ug/L (82667) <0.006 <0.006 <0.006 <0.006	fltrd, ug/L (39415) E.005 <i>E.001</i> <0.013 <0.013 <0.013	fltrd, ug/L (82630) <0.006 <0.006 <0.006 <0.006	fltrd, ug/L (61697) <0.03 <0.03 <0.03 <0.03	0.7u GF ug/L (82671) <0.002 <0.002 <0.002 <0.002 <0.002	urea, ug/L (61692) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	0.7u GF ug/L (82684) <0.007 <0.007 <0.007 <0.007 <0.007	fltrd 0.7u GF ug/L (49294) <0.01 <0.01 <0.01 <0.01	water, fltrd, ug/L (50364) <0.01 <0.01 <0.01 <0.01 <0.01	0.7u GF ug/L (49293) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
Of12-05 Rf24-08	12-19-02 12-19-02 01-22-03 01-16-03	0.7u GF ug/L (82667) <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006	fltrd, ug/L (39415) E.005 E.001 <0.013 <0.013 <0.013 <0.013 <0.013 Oxamyl, water, fltrd 0.7u GF ug/L	fltrd, ug/L (82630) <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006	fltrd, ug/L (61697) <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 Para- thion, water, fltrd, ug/L	0.7u GF ug/L (82671) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 Peb- ulate, water, fltrd 0.7u GF ug/L	urea, ug/L (61692) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Pendi- meth- alin, water, fltrd 0.7u GF ug/L	0.7u GF ug/L (82684) <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007	fltrd 0.7u GF ug/L (49294) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Pic- loram, water, fltrd 0.7u GF ug/L	water, fltrd, ug/L (50364) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Prome- ton, water, fltrd, ug/L	0.7u GF ug/L (49293) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Pron- amide, water, fltrd 0.7u GF ug/L
Of12-05 Rf24-08 Ri22-10 Ng45-02 Of12-05	12-19-02 12-19-02 01-22-03 01-16-03 01-14-03 12-19-02 12-19-02 12-19-02 12-19-02 01-22-03	0.7u GF ug/L (82667) <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.002 (49292) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	fltrd, ug/L (39415) E.005 E.001 <0.013 <0.013 <0.013 <0.013 <0.013 Oxamyl, water, fltrd 0.7u GF ug/L (38866) <0.01 <0.01 <0.01 <0.01 <0.01	fltrd, ug/L (82630) <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.	fltrd, ug/L (61697) <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0	0.7u GF ug/L (82671) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004	urea, ug/L (61692) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683) <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022	0.7u GF ug/L (82684) <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0	fltrd 0.7u GF ug/L (49294) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 (49291) <0.02 <0.02 <0.02 <0.02 <0.02	water, fltrd, ug/L (50364) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 (04037) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.7u GF ug/L (49293) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.00 <0.02 <0.00 <0.02 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0

Remark codes used in this table: < -- Less than E -- Estimated value

ANNE ARUNDEL COUNTY, MARYLAND

Well Number	Date	Time	Station n	umber	Sample	type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i> 10-08-02 08-19-03	1500 1500 1100 1100 <i>1155</i> 1400 1400	391032076 390629076 390127076 385844076 385623076 390503076	273601 240301 380301 5274401	Environm Environm Environm Environm Blank Environm Environm	nental nental nental nental	217PPSC 217PPSCU 125AQUI 125AQUI <i>125AQUI</i> 125AQUI 211MGTY	GW GW GW GW GW GW	28.00 142 107.00 80.00 46.00 79	28 107 80 46 79	18 100 73 39 74
		Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Color, water, fltrd, Pt-Co units (00080)	Sam- pling method, code (82398)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i> 10-08-02 08-19-03	8.62 32.60 15.92 26.55 	77.4 52.0 17.3 110 	1.4 0.70 2.4 3.2 1.6 1.0	41 65 68 32 52 127	200 175 E62 25 E8 E15	4040 4040 8030 <i>4040</i> 4040 4040	 767	<1.0 <1.0 7.2 9.1	 92	6.3 5.5 6.2 6.1 5.3 4.4
		Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i> 10-08-02 08-19-03	715 133 129 114 188 95	 24.5	17.4 15.2 14.0 15.3 	91 10 29 29 37 14	27.6 2.02 7.68 7.39 0.06 8.77 2.40	5.37 1.14 2.34 2.57 <0.008 3.72 2.04	4.06 1.44 3.15 3.06 <0.10 2.68 1.37	112 2.35 3.36 1.29 <i>E.06</i> 17.1 8.66	86 10 50 45 15 	105 12 61 54 19

Geologic Unit (aquifer): 125AQUI - Aquia Formation

211MGTY - Magothy Formatiom

217PPSC - Patapsco Formatiom

217PPSCU - Upper Patapsco Aquifer in the Patapsco Formation

Station Type: GW - Ground Water

Sampling Method: 4040 - Submersible pump 8030 - Grab sample at water-supply tap

ANNE ARUNDEL COUNTY, MARYLAND-Continued

Well Number	Date	Bromide water, fltrd, mg/L (71870)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 10-07-02 10-08-02 08-19-03	 0.03	170 7.32 4.96 5.18 <0.20 33.8 14.6	<0.17 <0.17 0.50 0.36 <0.17 <0.17 <0.2	3.5 16.4 24.5 18.7 <0.2 16.6 7.62	9.1 38.4 3.8 2.1 <0.2 7.2 4.2	391 99 95 79 108 	425 90 90 73 <10 116 52	 <0.10	$\begin{array}{c} 1.42 \\ 0.27 \\ 0.05 \\ < 0.04 \\ < 0.04 \\ < 0.04 \\ < 0.04 \end{array}$	<0.06 <0.06 E.05 <0.06 1.95 2.60
		Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L (00660)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, fltrd, mg/L (00666)	Organic carbon, water, fltrd, mg/L (00681)	Organic carbon, water, unfltrd mg/L (00680)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Barium, water, fltrd, ug/L (01005)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i>	10-15-02 10-16-02 10-07-02 10-23-02 10-07-02	<0.008 <0.008 0.010 E.007 <0.008	0.098 0.083 0.466 	0.03 0.03 0.15 E.01 <0.02	E.03 0.05 1.91 0.26 <i>E.02</i>	 	18.1 1.0 <0.4 E.3 <0.4	 	 	1.4 1.8 1.7 0.3 <0.3	
AA Bc 253	<i>10-07-02</i> 10-08-02 08-19-03	<0.008 <0.008	0.110 	0.04 <0.09	E.03	0.5	E.3	 73	 <0.30	0.4 <0.3	 52
		Beryll- ium, water, fltrd, ug/L (01010)	Boron, water, fltrd, ug/L (01020)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Lithium water, fltrd, ug/L (01130)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i> 10-08-02 08-19-03	E.05 0.37 <0.06 <0.06 <0.06 E.04 0.30		 0.14	 <0.8	 14.7	 27.5	5,570 23,400 13,900 11,200 < <i>10</i> <10 13	5,410 22,900 14,400 12,100 <20 100 	<0.08 <0.08 <0.08 <0.08 0.10 0.12 2.33	 0.9
		Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Mercury water, fltrd, ug/L (71890)	Molyb- denum, water, fltrd, ug/L (01060)	Nickel, water, fltrd, ug/L (01065)	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)	Stront- ium, water, fltrd, ug/L (01080)	Thall- ium, water, fltrd, ug/L (01057)	Vanad- ium, water, fltrd, ug/L (01085)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i> 10-08-02 08-19-03	196 217 351 331 <2.0 8.2 53.3	199 212 346 320 <4.4 7.0	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		 10.8	 E.5	 <0.2	 17.6	E.02 E.04 <0.04 <0.04 <0.04 <0.04 E.04	 0.2

Well Number	Date	Zinc, water, fltrd, ug/L (01090)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	alpha- HCH, water, fltrd, ug/L (34253)	alpha- HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)	alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)	Ametryn water, fltrd, ug/L (38401)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i>	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i>	 	<0.006 <0.006 <0.006 <0.006	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	<0.006 <0.006 <0.006 <0.006	<0.004 <0.004 <0.004 <0.004	<0.005 <0.005 <0.005 <0.005	82.3 83.5 79.9 78.9	97.2 96.3 106 91.8	<0.05 <0.05 <0.05 <0.05
AA Bc 253	10-07-02 10-08-02 08-19-03	40	<0.006 <0.006	<0.05 <0.006	<0.05	<0.006 <0.006	<0.004 <0.004	<0.005 <0.005	75.8	100 91.2	<0.05
		Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Broma- cil, water, fltrd, ug/L (04029)	Buta- chlor, water, fltrd, ug/L (04026)	Butyl- ate, water, fltrd, ug/L (04028)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Car- boxin, water, fltrd, ug/L (04027)	Chlor- pyrifos water, fltrd, ug/L (38933)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i>	10-15-02 10-16-02 10-07-02 10-23-02 10-07-02	<0.007 <0.007 <0.007 <0.007	<0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010	<0.20 <0.20 <0.20 <0.05	<0.05 <0.05 <0.05 <0.05	<0.002 <0.002 <0.002 <0.002	<0.041 <0.041 E.004 <0.041	<0.020 <0.020 <0.020 <0.020	<0.05 <0.05 <0.05 <0.05	<0.005 <0.005 <0.005 <0.005
AA Bc 253	10-07-02 10-08-02 08-19-03	<0.007 <0.007	<0.050 <0.050	<0.010 <0.010	<0.20	<0.05	<0.002 <0.002	E.004 <0.041	<0.020 <0.020	<0.05	<0.005 <0.005
		cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)	DCPA, water fltrd 0.7u GF ug/L (82682)	Diazi- non, water, fltrd, ug/L (39572)	Diazi- non-d10 sur Sch 1379, wat flt pet rev (90670)	Diazi- non-d10 surrog. wat flt 0.7u GF percent recovry (91063)	Diel- drin, water, fltrd, ug/L (39381)	Diphen- amid, water, fltrd, ug/L (04033)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54	10-15-02 10-16-02 10-07-02 10-23-02	Per- methrin water fltrd 0.7u GF ug/L (82687) <0.006	zine, water, fltrd, ug/L	ate, water, fltrd, ug/L	water fltrd 0.7u GF ug/L	non, water, fltrd, ug/L	non-d10 sur Sch 1379, wat flt pct rcv	non-d10 surrog. wat flt 0.7u GF percent recovry	drin, water, fltrd, ug/L	amid, water, fltrd, ug/L	foton, water, fltrd 0.7u GF ug/L
AA Ad 110 AA Bf 100 AA Cg 25	10-16-02 10-07-02	Per- methrin water fltrd 0.7u GF ug/L (82687) <0.006 <0.006 <0.006	zine, water, fltrd, ug/L (04041) <0.018 <0.018 <0.018	ate, water, fltrd, ug/L (04031) <0.05 <0.05 <0.05	water fltrd 0.7u GF ug/L (82682) <0.003 <0.003 <0.003	non, water, fltrd, ug/L (39572) <0.005 <0.005 <0.005	non-d10 sur Sch 1379, wat flt pct rcv (90670) 92.5 88.3 73.9	non-d10 surrog. wat flt 0.7u GF percent recovry (91063) 110 102 119	drin, water, fltrd, ug/L (39381) <0.005 <0.005 <0.005	amid, water, fltrd, ug/L (04033) <0.05 <0.05 <0.05	foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i>	10-16-02 10-07-02 10-23-02 <i>10-07-02</i> 10-08-02	Per- methrin water fltrd 0.7u GF ug/L (82687) <0.006 <0.006 <0.006 <0.006 <0.006	zine, water, fltrd, ug/L (04041) <0.018 <0.018 <0.018 	ate, water, fltrd, ug/L (04031) <0.05 <0.05 <0.05 <0.05 <0.05	water fltrd 0.7u GF ug/L (82682) <0.003 <0.003 <0.003 <0.003 <0.003	non, water, fltrd, ug/L (39572) <0.005 <0.005 <0.005 <0.005	non-d10 sur Sch 1379, wat flt pct rcv (90670) 92.5 88.3 73.9 84.1 74.4	non-d10 surrog. wat flt 0.7u GF percent recovry (91063) 110 102 119 97.2 	drin, water, fltrd, ug/L (39381) <0.005 <0.005 <0.005 <0.005	amid, water, fltrd, ug/L (04033) <0.05 <0.05 <0.05 <0.05 <0.05	foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02 <0.02 <0.02
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-16-02 10-07-02 10-23-02 10-07-02 10-08-02 08-19-03	Per- methrin water fltrd 0.7u GF ug/L (82687) <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.00	zine, water, fltrd, ug/L (04041) <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.018 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200	ate, water, fltrd, ug/L (04031) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 Etho- prop, water, fltrd 0.7u GF ug/L	water fltrd 0.7u GF ug/L (82682) <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <fonofos water, fltrd, ug/L</fonofos 	non, water, fltrd, ug/L (39572) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	non-d10 sur Sch 1379, wat flt pet rev (90670) 92.5 88.3 73.9 84.1 74.4 74.4 Lindane water, fltrd, ug/L	non-d10 surrog. wat flt 0.7u GF percent recovry (91063) 110 102 119 97.2 108 117 Linuron water fltrd 0.7u GF ug/L	drin, water, fltrd, ug/L (39381) <0.005 <0.005 <0.005 <0.005 <0.005 0.005 Mala- thion, water, fltrd, ug/L	amid, water, fltrd, ug/L (04033) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 	foton, water, fltrd 0.7u GF ug/L (82677) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

		Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	p,p-' DDE, water, fltrd, ug/L (34653)	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)	Prome- ton, water, fltrd, ug/L (04037)	Prome- tryn, water, fltrd, ug/L (04036)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i>	10-15-02 10-16-02 10-07-02 10-23-02 10-07-02	<0.006 <0.006 <0.006 <0.006	<0.002 <0.002 <0.002 <0.002	<0.007 <0.007 <0.007 <0.007	<0.003 <0.003 <0.003 <0.003	<0.010 <0.010 <0.010 <0.010	<0.004 <0.004 <0.004 <0.004	<0.022 <0.022 <0.022 <0.022	<0.011 <0.011 <0.011 <0.011	0.02 <0.01 <0.01 <0.01	<0.05 <0.05 <0.05 <0.05
AA Bc 253	10-08-02 08-19-03	<0.006 <0.006	<0.002 <0.002	<0.007 <0.007	<0.003 <0.003	<0.010 <0.010	<0.004 <0.004	<0.022 <0.022	<0.011 <0.011	<0.01 <0.01	<0.05
		Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Propa- zine, water, fltrd, ug/L (38535)	Sima- zine, water, fltrd, ug/L (04035)	Sima- tryn, water, fltrd, ug/L (04030)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Terba- cil, water, fltrd, ug/L (04032)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i>	10-15-02 10-16-02 10-07-02 10-23-02 10-07-02	<0.004 <0.004 <0.004 <0.004	<0.010 <0.010 <0.010 <0.010	<0.011 <0.011 <0.011 <0.011	<0.02 <0.02 <0.02 <0.02	<0.05 <0.05 <0.05 <0.05	<0.005 <0.005 <0.005 <0.005	<0.05 <0.05 <0.05 <0.05	<0.02 <0.02 <0.02 <0.02	<0.034 <0.034 <0.034 <0.034	<0.05 <0.05 <0.05 <0.05
AA Bc 253	10-08-02 08-19-03	<0.004 <0.004	<0.010 <0.010	<0.011 <0.011	<0.02 <0.02	<0.05	<0.005	<0.05	<0.02 <0.02	<0.034 <0.034	<0.05
		Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	Tri- flur- alin, water, fltrd, ug/L (04023)	Vernol- ate, water, fltrd, ug/L (04034)	Xylenes water unfltrd ug/L (81551)	1,1,1,2 -Tetra- chloro- ethane, water, unfltrd ug/L (77562)	1,1,1- Tri- chloro- ethane, water, unfltrd ug/L (34506)	1,1,2,2 -Tetra- chloro- ethane, water, unfltrd ug/L (34516)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 10-07-02 10-08-02 08-19-03	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.009 <0.009 <0.009 <0.009 <0.009 <0.009	<0.05 <0.05 <0.05 <0.05 <0.05 	<0.05 <0.05 <0.05 <0.05 <0.05 	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	 <0.03	 E.03	 <0.09
Well Number	Date	CFC-113 water unfltrd ug/L (77652)	1,1,2- Tri- chloro- ethane, water, unfltrd ug/L (34511)	1,1-Di- chloro- ethane, water unfltrd ug/L (34496)	1,1-Di- chloro- ethene, water, unfltrd ug/L (34501)	1,1-Di- chloro- propene water unfltrd ug/L (77168)	1,2,3,4 Tetra- methyl- benzene water unfltrd ug/L (49999)	1,2,3,5 Tetra- methyl- benzene water unfltrd ug/L (50000)	1,2,3- Tri- chloro- benzene water unfltrd ug/L (77613)	1,2,3- Tri- chloro- propane water unfltrd ug/L (77443)	1,2,3- Tri- methyl- benzene water unfltrd ug/L (77221)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i>	10-15-02 10-16-02 10-07-02 10-23-02 10-07-02	 	 	 	 	 	 	 	 	 	
AA Bc 253	<i>10-07-02</i> 10-08-02 08-19-03	 <0.06	 <0.06	 <0.04	 E.01	 <0.05	 <0.2	 <0.2	 <0.3	 <0.16	 <0.1

		1,2,4- Tri- chloro- benzene water unfltrd ug/L (34551)	1,2,4- Tri- methyl- benzene water unfltrd ug/L (77222)	Dibromo chloro- propane water unfltrd ug/L (82625)	1,2-Di- bromo- ethane, water, unfltrd ug/L (77651)	1,2-Di- chloro- benzene water unfltrd ug/L (34536)	1,2-Di- chloro- ethane, water, unfltrd ug/L (32103)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	1,2-Di- chloro- propane water unfltrd ug/L (34541)	1,3,5- Tri- methyl- benzene water unfltrd ug/L (77226)	1,3-Di- chloro- benzene water unfltrd ug/L (34566)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i> 10-08-02 08-19-03	 <0.1	 <0.06	 <0.5	 <0.04	 <0.03	 <0.1	108 105 106 119 <i>109</i> 104 116	 <0.03	 <0.04	 <0.03
		1,3-Di- chloro- propane water unfltrd ug/L (77173)	1,4-Di- chloro- benzene water unfltrd ug/L (34571)	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	2,2-Di- chloro- propane water unfltrd ug/L (77170)	2- Chloro- toluene water unfltrd ug/L (77275)	2- Ethyl- toluene water unfltrd ug/L (77220)	3- Chloro- propene water unfltrd ug/L (78109)	4- Chloro- toluene water unfltrd ug/L (77277)	4-Iso- propyl- toluene water unfltrd ug/L (77356)	Acetone water unfltrd ug/L (81552)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 10-07-02 10-08-02 08-19-03	 <0.1	 <0.05	87.7 100 101 99.1 <i>104</i> 106 78.7	 <0.05	 <0.04	 <0.06	 <0.12	 <0.05	 <0.12	 <7
Well Number	Date	Acrylo- nitrile water unfltrd ug/L (34215)	Benzene water unfltrd ug/L (34030)	Bromo- benzene water unfltrd ug/L (81555)	Bromo- chloro- methane water unfltrd ug/L (77297)	Bromo- di- chloro- methane water unfltrd ug/L (32101)	Bromo- ethene, water, unfltrd ug/L (50002)	Bromo- methane water unfltrd ug/L (34413)	Carbon di- sulfide water unfltrd ug/L (77041)	Chloro- benzene water unfltrd ug/L (34301)	Chloro- ethane, water, unfltrd ug/L (34311)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i> 10-08-02 08-19-03	 <1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.04	 <0.04	 <0.12	 <0.05	 <0.1	 <0.3	 <0.07	 <0.03	 <0.1
		Chloro- methane water unfltrd ug/L (34418)	cis- 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093)	cis- 1,3-Di- chloro- propene water unfltrd ug/L (34704)	Di- bromo- chloro- methane water unfltrd ug/L (32105)	Di- bromo- methane water unfltrd ug/L (30217)	Di- chloro- di- fluoro- methane wat unf ug/L (34668)	Di- chloro- methane water unfltrd ug/L (34423)	Di- ethyl ether, water, unfltrd ug/L (81576)	Diiso- propyl ether, water, unfltrd ug/L (81577)	Ethyl methac- rylate, water, unfltrd ug/L (73570)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i> 10-08-02 08-19-03	 <0.2	 <0.04	 <0.09	 <0.2	 <0.05	 <0.18	 <0.2	 <0.2	 <0.10	 <0.2

		Ethyl methyl ketone, water, unfltrd ug/L (81595)	Ethyl- benzene water unfltrd ug/L (34371)	Hexa- chloro- buta- diene, water, unfltrd ug/L (39702)	Hexa- chloro- ethane, water, unfltrd ug/L (34396)	Iodo- methane water unfltrd ug/L (77424)	Iso- butyl methyl ketone, water, unfltrd ug/L (78133)	Iso- propyl- benzene water unfltrd ug/L (77223)	Methyl acrylo- nitrile water unfltrd ug/L (81593)	Methyl acryl- ate, water, unfltrd ug/L (49991)	Methyl methac- rylate, water, unfltrd ug/L (81597)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i>	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i>	 	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	 	 	 	 		 	 	
AA Bc 253	<i>10-07-02</i> 10-08-02 08-19-03	 <5.0	<0.2 <0.03	 <0.1	<0.2	<0.35	 <0.4	 <0.06	 <0.6	<2.0	 <0.3
Well Number	Date	Methyl tert- pentyl ether, water, unfltrd ug/L (50005)	meta- + para- Xylene, water, unfltrd ug/L (85795)	Naphth- alene, water, unfltrd ug/L (34696)	Methyl n-butyl ketone, water, unfltrd ug/L (77103)	n-Butyl benzene water unfltrd ug/L (77342)	n- propyl- benzene water unfltrd ug/L (77224)	o- Xylene, water, unfltrd ug/L (77135)	sec- Butyl- benzene water unfltrd ug/L (77350)	Styrene water unfltrd ug/L (77128)	t-Butyl ethyl ether, water, unfltrd ug/L (50004)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i> 10-08-02 08-19-03	 <0.08	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.06	 <0.5	 <0.7	 <0.2	 <0.04	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	 <0.06	 <0.04	 <0.05
		Methyl t-butyl ether, water, unfltrd ug/L (78032)	tert- Butyl- benzene water unfltrd ug/L (77353)	Tetra- chloro- ethene, water, unfltrd ug/L (34475)	Tetra- chloro- methane water unfltrd ug/L (32102)	Tetra- hydro- furan, water, unfltrd ug/L (81607)	Toluene water unfltrd ug/L (34010)	Toluene -d8, surrog, Sch2090 wat unf percent recovry (99833)	trans- 1,2-Di- chloro- ethene, water, unfltrd ug/L (34546)	trans- 1,3-Di- chloro- propene water unfltrd ug/L (34699)	trans- 1,4-Di- chloro- 2- butene, wat unf ug/L (73547)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i> 10-08-02 08-19-03	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	 <0.10	 E.07	 <0.06	 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 E.04	94.3 100 96.4 102 97.6 94.9 96.3	 <0.03	 <0.09	 <0.7
		Tri- bromo- methane water unfltrd ug/L (32104)	Tri- chloro- ethene, water, unfltrd ug/L (39180)	Tri- chloro- fluoro- methane water unfltrd ug/L (34488)	Tri- chloro- methane water unfltrd ug/L (32106)	Vinyl chlor- ide, water, unfltrd ug/L (39175)	Alpha radio- activty 2-sigma wat flt Th-230, pCi/L (75987)	Alpha radio- activty water, fltrd, Th-230, pCi/L (04126)	Beta radio- activty 2-sigma wat flt CS-137, pCi/L (75989)	Gross beta radioac water, fltrd, Cs-137, pCi/L (03515)	Ra-228, water, fltrd, pCi/L (81366)
AA Ad 110 AA Bf 100 AA Cg 25 AA Dd 54 <i>AA Df 103</i> AA Bc 253	10-15-02 10-16-02 10-07-02 10-23-02 <i>10-07-02</i> 10-08-02 08-19-03	 <0.10	 E.03	 <0.09	 0.16	 <0.1	3.7 1.1 0.50 0.57 0.25 0.68	6 3 M M M M	4.4 1.4 0.95 1.0 0.62 1.1	12 9 4 <5 <i>M</i> 4 	 6

ANNE ARUNDEL COUNTY, MARYLAND-Continued

Well Number	Date	Rn-222 2-sigma water unfltrd pCi/L (76002)	Rn-222, water, unfltrd pCi/L (82303)	Uranium natural water, fltrd, ug/L (22703)
	10 15 00		50	
AA Ad 110	10-15-02	15	50	
AA Bf 100	10-16-02	20	250	
AA Cg 25	10-07-02	25	510	
AA Dď 54	10-23-02	25	500	
AA Df 103	10-07-02			
J	10-08-02	20	370	
AA Bc 253	08-19-03	19	130	0.09
n				

Remark codes used in this table: < -- Less than E -- Estimated value M-- Presence verified, not quantified

BALTIMORE COUNTY, MARYLAND

Well Number	Date	Time	Station number	Sample type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)
BA Ee 145	11-13-02 01-14-03 03-11-03 05-13-03 07-10-03	1125 1050 1055 0940 0950	392436076332201	Environmental Environmental Environmental Environmental Environmental	110CLVM 110CLVM 110CLVM 110CLVM 110CLVM	GW GW GW GW GW	14.15 14.15 14.15 14.15 14.15	4.33 3.63 2.57 3.64 3.32	224 224 224 224 224 224
BA Ee 146 BA Ee 147	09-09-03 11-08-02 03-12-03 07-08-03 11-08-02	0950 1210 1250 1000 1240	392437076332201 392437076332202	Environmental Environmental Environmental Environmental Environmental	110CLVM 110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW GW	$ \begin{array}{r} 14.15 \\ 6.00 \\ 6.00 \\ 6.00 \\ 4.00 \end{array} $	4.18 -0.02 -0.31 -0.17 0.02	224 219 219 219 219 219
BA Ee 148	03-12-03 04-08-03 07-08-03 11-08-02 03-12-03	1315 1107 1110 1300 1335	392437076332203	Environmental Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW	4.00 4.00 4.00 2.00 2.00	-0.32 -0.14 0.09 -0.24	219 219 219 220 220
BA Ee 149	03-12-03 07-08-03 11-19-02 03-14-03 07-08-03	<i>1336</i> 1135 1030 1332 1230	392438076332101	<i>Replicate</i> Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM 110ALVM	<i>GW</i> GW GW GW GW	2.00 2.00 6.00 6.00 6.00	-0.24 -0.06 -0.53 -0.79 -0.56	220 220 216 216 216
BA Ee 150 BA Ee 151	11-19-02 03-14-03 04-08-03 07-08-03 11-19-02	1050 1405 1016 1300 1110	392438076332102 392438076332103	Environmental Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW	$4.00 \\ 4.00 \\ 4.00 \\ 4.00 \\ 2.00$	-0.23 -0.55 -0.22 0.05	217 217 217 217 217 217
BA Ee 152	03-14-03 <i>03-14-03</i> 07-08-03 11-13-02 01-14-03	1440 <i>1442</i> 1340 1155 1130	392436076332202	Environmental Blank Environmental Environmental Environmental	110ALVM 110ALVM 110CLVM 110CLVM	GW <i>GW</i> GW GW GW	2.00 2.00 19.20 19.20	-0.21 -0.04 4.54 4.10	217 217 223 223
BA Ee 153	03-11-03 05-13-03 07-10-03 09-09-03 11-22-02	1155 1025 1030 1040 1010	392439076331901	Environmental Environmental Environmental Environmental Environmental	110CLVM 110CLVM 110CLVM 110CLVM 110ALVM	GW GW GW GW GW	19.20 19.20 19.20 19.20 6.00	3.38 4.06 3.80 4.40 0.71	223 223 223 223 223 216

Geologic Unit (aquifer):110ALVM - Quaternary Alluvium 110CLVM - Colluvium

Station Type: GW - Ground Water

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)
BA Ee 145	11-13-02 01-14-03 03-11-03	4080 4080 4080	4.8 5.1 5.4	7.2 6.7 7.0	575 534 527	14.5 10.0 8.1	260 	58.0 52.5	28.9	 1.69	16.8 14.6
	05-13-03 07-10-03	4080 4080	4.1 3.8	6.8 6.7	574 584	12.5 16.0	250	53.5	27.7	2.01	15.8
BA Ee 146	09-09-03 11-08-02 03-12-03 07-08-03	4080 4080 4080 4080	3.7 0.9 1.9 0.8	6.6 7.5 6.8 6.6	609 659 773 703	16.4 13.9 8.3 19.0	280 300 330	67.0 69.4 73.7	26.3 30.6 34.6	 2.43 2.72	27.4 40.6 22.7
BA Ee 147	07-08-03 11-08-02 03-12-03	4080 4080	2.4 3.8	7.4 6.8	696 984	12.5 8.5	270 310	64.6 74.7	26.1 30.5	2.72	26.9 84.2
BA Ee 148	04-08-03 07-08-03 11-08-02 03-12-03	4080 4080 4080 4080 4080	1.0 6.0 8.9	 6.8 7.9 7.4	733 702 1,200	20.6 11.9 7.1	330 270 230	76.9 69.4 60.0	32.8 23.6 20.1	2.96	29.2 31.8 136
BA Ee 149	03-12-03 07-08-03 11-19-02 03-14-03	4080 4080 4080 4080	2.8 2.4 4.4	7.2 7.5 7.0	 741 674 1,670	25.1 12.4 7.8	230 320 240 380	60.2 82.2 60.1 93.7	20.3 27.6 21.2 35.4	3.33 3.83 3.41	130 42.6 41.8 181
BA Ee 150	07-08-03 11-19-02 03-14-03	4080 4080 4080	1.3 1.9 3.7	6.8 7.3 6.8	861 660 1,630	22.6 12.2 7.3	270 230 420	67.7 57.1 103	24.1 20.6 40.2	3.74 3.29	75.9 43.9 166
BA Ee 151	04-08-03 07-08-03 11-19-02	4080 4080 4080	0.9	6.8 	950 	22.3	260 230	65.6 58.7	23.8 20.6	3.79	91.0 36.0
BA Ee 152	03-14-03 <i>03-14-03</i> 07-08-03 11-13-02 01-14-03	4080 4080 4080 4080	1.1 2.0 3.7	 7.0 7.1 6.8	 797 776 646	 27.9 15.3 11.6	530 230 290	130 <0.01 59.2 68.5	50.4 <0.008 20.8 29.3	4.07 <0.10 3.81 	266 <0.09 93.3 45.1
	03-11-03 05-13-03 07-10-03 09-09-03	4080 4080 4080 4080	4.1 3.9 3.2 2.6	6.9 6.8 6.7 6.6	587 585 591 617	10.3 11.1 15.1 15.3	250 270	57.1 59.9	26.1	1.88 1.87 	22.2
BA Ee 153	11-22-02	4080	2.8	8.1	555	14.5	270	64.5	25.5		29.7

Sampling Method: 4080 - Peristaltic pump

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)
BA Ee 145	11-13-02 01-14-03 03-11-03 05-13-03 07-10-03	52.3 45.1 53.5	 <0.17 <0.2	11.9 10.4 12.3	12.9 13.3 13.9	 293 313	<0.10 E.05 <0.10 E.05 0.11	<0.04 <0.04 <0.04 <0.04 <0.04	1.70 1.92 1.80 1.60 1.72	<0.008 <0.008 <0.008 <0.008 <0.008	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02
BA Ee 146 BA Ee 147	09-09-03 11-08-02 03-12-03 07-08-03 11-08-02	79.1 91.3 64.4 83.9	<0.17 <0.2	10.2 11.0 12.1 10.3	17.9 18.7 17.3 18.9	 413 379	E.09 	<0.04 	1.58 	<0.008 	<0.18
BA Ee 148	03-12-03 04-08-03 07-08-03 11-08-02 03-12-03	187 77.7 103 222	<0.17 <0.2 <0.17	10.3 12.0 8.9 9.6	22.1 18.5 22.3 25.8	549 398 600	E.05 	<0.04 	1.63 	<0.008 	<0.02
BA Ee 149	03-12-03 07-08-03 11-19-02 03-14-03 07-08-03	210 117 101 432 146	<0.17 <0.2 <0.17 <0.2	9.9 11.7 7.8 6.8 9.6	25.5 21.1 20.2 22.6 21.1	595 432 878 466	 	 	 	 	
BA Ee 150 BA Ee 151	11-19-02 03-14-03 04-08-03 07-08-03 11-19-02	101 423 169 91.0	<0.17	8.1 6.9 9.6 8.5	20.2 22.6 21.9 20.0	 858 499	 E.07 	 <0.04 	 1.27 	 <0.008 	 <0.02
BA Ee 152	03-14-03 03-14-03 07-08-03 11-13-02 01-14-03	687 <0.20 136 112	<0.17 <0.17 <0.2	7.5 <0.2 10.8 11.1	24.7 <0.2 21.5 21.0	1,270 472 	 E.05 <0.10	 <0.04 <0.04	 0.78 1.17	 <0.008 <0.008	 <0.02 <0.02
BA Ee 153	03-11-03 05-13-03 07-10-03 09-09-03 11-22-02	58.8 56.6 87.9	<0.17 <0.2 	9.7 10.1 8.6	14.3 13.7 19.1	347 381 	<0.10 <0.10 <0.10 0.41	<0.04 <0.04 <0.04 <0.04	1.31 1.31 1.40 1.12	<0.008 <0.008 <0.008 <0.008	<0.02 <0.02 <0.02 <0.18

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Total nitro- gen, water, fltrd, mg/L (00602)	Iron, water, fltrd, ug/L (01046)	Mangan- ese, water, fltrd, ug/L (01056)
BA Ee 145	11-13-02 01-14-03 03-11-03 05-13-03 07-10-03	 1.8	<10 <10 <8	E2.0 E.8 0.5
BA Ee 146 BA Ee 147	09-09-03 11-08-02 03-12-03 07-08-03 11-08-02	 	 <10 <10 <8 50	E1.0 E1.1 1.9 18.9
BA Ee 148	03-12-03 04-08-03 07-08-03 11-08-02 03-12-03	 	3,010 301 <10 <10	254 40.8 E.8 3.5
BA Ee 149	03-12-03 07-08-03 11-19-02 03-14-03 07-08-03	 	<10 <8 60 <10 <8	2.4 <0.4 25.3 3.0 9.5
BA Ee 150 BA Ee 151	11-19-02 03-14-03 04-08-03 07-08-03 11-19-02	 	11 38 208 <10	10.2 5.0 49.3 E1.0
BA Ee 152	03-14-03 03-14-03 07-08-03 11-13-02 01-14-03	 	<10 <10 <8 <10	4.8 <2.0 23.8 <2.0
BA Ee 153	03-11-03 05-13-03 07-10-03 09-09-03 11-22-02	 1.5 	<10 <8 1,500	<2.0 8.0 325

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Time	Station number	Sample type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)
BA Ee 153	03-19-03 07-09-03 <i>07-09-03</i>	1100 0950 <i>0951</i>	392439076331901	Environmental Environmental <i>Replicate</i>	110ALVM 110ALVM <i>110ALVM</i>	GW GW <i>GW</i>	6.00 6.00 <i>6.00</i>	0.32 0.46 0.46	216 216 216
BA Ee 154	07-09-03 11-22-02 03-19-03	1045 1145	392439076331902	Environmental Environmental	110ALVM 110ALVM 110ALVM	GW GW	4.00 4.00	0.40 0.80 0.41	216 216 216
BA Ee 155 BA Ee 156	04-08-03 07-09-03 11-22-02 03-19-03 11-13-02	1210 1220 1105 1215 1245	392439076331903 392436076332203	Environmental Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM 110CLVM	GW GW GW GW	4.00 4.00 2.00 2.00 12.00	0.55 0.78 0.43 4.39	216 216 216 216 223
	01-14-03 03-11-03 05-13-03 07-10-03 09-09-03	1200 1230 1050 1055 1110		Environmental Environmental Environmental Environmental Environmental	110CLVM 110CLVM 110CLVM 110CLVM 110CLVM	GW GW GW GW	12.00 12.00 12.00 12.00 12.00	4.04 3.47 3.99 3.80 4.29	223 223 223 223 223 223
BA Ee 157	11-08-02 03-11-03 07-10-03	1018 1335 1140	392437076332204	Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM	GW GW GW	9.96 9.96 9.96	4.07 3.74 3.85	223 223 223
BA Ee 158	11-08-02 03-11-03	1050 1410	392437076332205	Environmental Environmental	110ALVM 110ALVM	GW GW	7.96 7.96	4.03 3.72	223 223
BA Ee 159 BA Ee 160	07-10-03 11-08-02 03-11-03 07-10-03 11-14-02	1235 1120 1440 1315 1020	392437076332206 392438076332301	Environmental Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW	7.96 5.96 5.96 5.96 12.00	3.77 4.22 3.91 4.03 8.73	223 224 224 224 224 229
	01-14-03 01-14-03 01-14-03 03-13-03 05-13-03	1420 <i>1421</i> <i>1422</i> 1125 1330		Environmental <i>Replicate Blank</i> Environmental Environmental	110ALVM <i>110ALVM</i> 110ALVM 110ALVM	GW <i>GW</i> GW GW	12.00 12.00 12.00 12.00	4.15 4.15 6.66 8.12	229 229 229 229
	05-13-03 05-13-03 07-11-03 07-11-03 09-09-03	1331 1332 1100 1101 1330		Replicate Blank Environmental Replicate Environmental	110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW GW	12.00 12.00 12.00 12.00 12.00	8.12 7.61 7.61 8.72	229 229 229 229 229 229

Geologic Unit (aquifer):110ALVM - Quaternary System 110CLVM - Colluvium

Station Type: GW - Ground Water

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)
BA Ee 153	03-19-03 07-09-03 <i>07-09-03</i>	4080 4080 <i>4080</i>	7.9 2.0	6.8 6.5	915 630	8.8 21.1	270 300 <i>300</i>	65.2 70.0 <i>70.1</i>	25.0 31.2 <i>31.3</i>	3.22 2.97 2.98	122 27.0 26.6
BA Ee 154	11-22-02 03-19-03	4080 4080	8.0 9.2	8.1 7.4	486 1,040	11.3 8.5	340 300	90.5 79.8	27.4 24.2	3.84	44.6 93.2
D.4. D. 4.55	04-08-03 07-09-03	4080 4080	3.2	6.6	713	21.6	380	84.4	40.5	2.36	13.2
BA Ee 155	11-22-02 03-19-03	$\begin{array}{c} 4080\\ 4080 \end{array}$	9.1 8.8	8.1 7.5	893 1,020	10.4 8.8	320 300	85.7 80.2	25.7 23.9	3.89	41.7 89.4
BA Ee 156	11-13-02 01-14-03	4080 4080	6.6 5.1	7.5 6.8	744 796	14.9 9.3	270	70.0	23.3		42.2
	03-11-03 05-13-03	4080 4080 4080	6.8 6.9	6.8 6.9	762 645	6.3 10.9	270	67.1	25.5	2.61	43.6
	07-10-03 09-09-03	4080 4080 4080	4.6 5.0	6.9 6.6	621 720	16.9 16.2 17.9	250	60.7	23.6	2.60	25.1
DA D. 157											
BA Ee 157	11-08-02 03-11-03	$\begin{array}{c} 4080\\ 4080 \end{array}$	5.9 6.7	7.8 6.8	686 2,930	14.8 5.2	250 430	64.2 109	21.2 39.8	4.64	32.9 409
BA Ee 158	07-10-03 11-08-02	$4080 \\ 4080$	0.8 5.8	7.1 7.7	764 668	16.7 14.4	240 260	61.1 65.5	21.7 22.3	3.10	57.9 33.6
	03-11-03	4080	6.2	7.0	2,620	4.5	390	96.3	36.2	4.23	374
BA Ee 159	07-10-03 11-08-02 03-11-03 07-10-03	4080 4080 4080 4080	0.8 5.4 5.4 1.1	7.0 7.6 7.2 6.9	756 645 1,450 729	17.3 15.5 4.2 18.1	250 260 200 280	64.1 66.4 50.6 70.7	22.5 22.2 18.6 25.5	3.19 3.00 2.89	50.1 33.2 223 33.4
BA Ee 160	11-14-02	4080	6.1	7.4	891	14.1	430	100	42.7		20.0
	01-14-03 <i>01-14-03</i>	4080 <i>4080</i>	7.0	6.8	779 	8.8					
	<i>01-14-03</i> 03-13-03	4080	8.2	6.3	 674	 8.4	300	 66.0	32.7	0.92	 11.5
	05-13-03	4080	5.6	6.6	875	11.1					
	05-13-03 05-13-03	4080									
	07-11-03 07-11-03	4080 <i>4080</i>	5.4	6.4	810	15.7	360 350	83.0 <i>81.3</i>	36.8 36.5	1.61 1.52	12.1 11.9
	09-09-03	4080	4.2	6.5	908	17.3					

Sampling Method: 4080 - Peristaltic pump

BALTIMORE COUNTY, MARYLAND-Continued

						Residue	Ammonia		Nitrite		o .
Well Number	Date	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	water, fltrd, sum of consti- tuents mg/L (70301)	+ org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	+ nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Organic nitro- gen, water, fltrd, mg/L (00607)
BA Ee 153	03-19-03 07-09-03	243 68.3	0.10 <0.2	9.0 10.7	23.7 17.9	611 384					
BA Ee 154	07-09-03 11-22-02 03-19-03	67.5 134 214	<0.2 0.14	10.8 10.9 7.8	17.4 30.2 26.6	366 561	 				
BA Ee 155 BA Ee 156	04-08-03 07-09-03 11-22-02 03-19-03 11-13-02	58.4 138 211 115	<0.2	11.9 11.0 7.7 9.5	21.4 30.2 26.5 20.7	397 555	0.12 0.20	<0.04 0.10	1.69 0.70	<0.008 E.007	 0.10
	01-14-03 03-11-03 05-13-03 07-10-03 09-09-03	101 57.2	<0.17 <0.2	8.7 10.8	18.7 13.5	395 331	0.46 E.09 0.10 0.15 0.19	<0.04 E.03 E.02 <0.04 E.03	0.58 0.74 0.82 0.75 0.52	<0.008 <0.008 <0.008 <0.008 <0.008	
BA Ee 157	11-08-02 03-11-03 07-10-03	105 791 93.6	<0.17 <0.2	8.3 7.2 10.2	22.3 35.1 18.6	 1,520 409	 	 	 		
BA Ee 158	11-08-02 03-11-03	106 711	<0.17	7.6 7.3	22.3 35.5	1,390					
BA Ee 159	07-10-03 11-08-02 03-11-03 07-10-03	89.8 103 290 84.5	<0.2 <0.17 <0.2	10.7 7.3 8.1 11.3	18.4 22.1 33.7 17.8	402 776 387				 	
BA Ee 160	11-14-02 01-14-03 01-14-03 03-13-03 05-13-03	85.7 38.1 	 <0.17 	12.0 8.7 	26.6 19.9 	 395 	E.08 E.08 <i>E.07</i> <0.10 E.05 E.07	<0.04 <0.04 <0.04 <0.04 <0.04 <0.04	2.89 21.1 20.6 <0.06 29.2 8.17	<0.008 <0.008 <0.008 <0.008 <0.008 <0.008	
	05-13-03 05-13-03 07-11-03 07-11-03 09-09-03	63.6 61.4	<0.2 <0.2	 11.7 11.6 	25.6 26.0	 454 448 	<i>E.07</i> <0.10 E.09 <i>E.09</i> 0.18	<0.04 <0.04 <0.04 <0.04 <0.04	9.91 <0.06 13.1 13.1 5.93	<0.008 <0.008 <0.008 <0.008 <0.008	

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Total nitro- gen, water, fltrd, mg/L (00602)	Iron, water, fltrd, ug/L (01046)	Mangan- ese, water, fltrd, ug/L (01056)
BA Ee 153	03-19-03 07-09-03 <i>07-09-03</i>	 	 	3,360 <8 14	1,610 74.2 76.6
BA Ee 154	11-22-02 03-19-03			<10 E8	E2.2 E1.6
	04-08-03 07-09-03	E.01	1.8	65	10.7
BA Ee 155 BA Ee 156	11-22-02 03-19-03 11-13-02	 <0.02	 0.90	<10 <10 361	E1.1 <2.0 452
	01-14-03 03-11-03 05-13-03 07-10-03 09-09-03	<0.02 <0.02 <0.02 <0.02 <0.02 <0.18	1.0 0.93 0.90 0.71	 101 112 	185 170
BA Ee 157	11-08-02 03-11-03 07-10-03			<10 244 <8	3.2 132 7.1
BA Ee 158	11-08-02 03-11-03			E7 E27	4.3 5.9
BA Ee 159 BA Ee 160	07-10-03 11-08-02 03-11-03 07-10-03 11-14-02	 <0.02	 	<8 <10 <10 <8 <10	2.2 E.9 E1.4 3.9 <2.0
	01-14-03 01-14-03 01-14-03 03-13-03 05-13-03	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	 	 <10 	 E1.1
	05-13-03 05-13-03 07-11-03 07-11-03 09-09-03	<0.02 <0.02 <0.02 <0.02 <0.18	 6.1	 <8 <8 	0.4 <i>E.4</i>

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Time	Station number	Sample type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)
BA Ee 160	09-09-03 09-09-03	1331 1332	392438076332301	Replicate Blank	110ALVM	GW GW	12.00	8.72	229
BA Ee 161	11-13-02 11-13-02 01-14-03	1332 1430 <i>1431</i> 1330	392437076332301	Environmental <i>Replicate</i> Environmental	110ALVM 110ALVM 110ALVM	GW GW GW	10.80 10.80 10.80	4.58 4.58 4.37	225 225 225
	03-13-03 05-13-03 07-11-03 09-09-03	1045 1300 1020 1256		Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW	10.80 10.80 10.80 10.80	3.44 4.52 4.14 4.94	225 225 225 225 225
BA Ee 162	11-08-02	1340	392437076332207	Environmental	110ALVM	GW	9.69	3.44	223
BA Ee 163	03-12-03 07-10-03 11-08-02 03-12-03 07-10-03	1058 1345 1410 1125 1400	392437076332208	Environmental Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW	9.69 9.69 7.69 7.69 7.69	3.27 3.31 3.13 2.94 2.98	223 223 223 223 223 223
BA Ee 164	11-08-02 03-12-03 07-10-03	1435 1150 1420	392437076332209	Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM	GW GW GW	5.69 5.69 5.69	3.61 3.42 3.44	223 223 223
BA Ee 165	11-13-02 01-14-03	1350 1250	392437076332302	Environmental Environmental	110ALVM 110ALVM	GW GW	9.00 9.00	5.12 5.12	225 225
	03-12-03 <i>03-12-03</i>	1435 <i>1437</i>		Environmental Blank	110ALVM 	GW <i>GW</i>	9.00	4.94	225
	05-13-03 07-11-03 09-09-03	1210 0950 1210		Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM	GW GW GW	9.00 9.00 9.00	5.19 5.04 5.32	225 225 225
BA Ee 167	11-19-02 03-17-03 07-17-03	1340 1140 0955	392438076332104	Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM	GW GW GW	11.26 11.26 11.26	4.56 4.62 4.89	222 222 222
BA Ee 168	11-19-02 03-17-03	1400 1210	392438076332105	Environmental Environmental	110ALVM 110ALVM	GW GW	9.26 9.26	4.66 4.68	222 222
BA Ee 169	07-17-03 11-20-02 <i>11-20-02</i> 03-17-03 07-17-03	1025 1250 <i>1252</i> 1230 1335	392438076332106	Environmental Environmental <i>Blank</i> Environmental Environmental	100ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW GW	9.26 7.26 7.26 7.26	5.01 4.12 4.62 5.20	222 222 222 222 222 222

Geologic Unit (aquifer): 110ALVM - Quaternary Alluvium

Station Type: GW - Ground Water

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)
BA Ee 160	09-09-03	4080									
BA Ee 161	<i>09-09-03</i> 11-13-02 <i>11-13-02</i> 01-14-03	4080 4080 4080	3.0 2.9	7.1 6.9	869 894	13.2 8.1	430 430 	100 100 	44.2 44.1	 	15.0 15.5
	03-13-03 05-13-03 07-11-03 09-09-03	4080 4080 4080 4080	2.9 4.0 2.9 3.4	6.6 6.7 6.5 6.6	874 819 856 891	8.9 11.2 16.1 17.3	440 390 	99.2 91.2	45.7 40.3	1.47 1.74 	10.9 14.4
BA Ee 162	11-08-02 03-12-03	4080 4080	2.2 3.2	7.4 6.6	661 675	17.2 12.2	280 310	62.9 67.1	30.2 33.7	2.40	22.0 20.2
BA Ee 163	07-10-03 11-08-02 03-12-03 07-10-03	4080 4080 4080 4080	2.4 1.5 3.2 2.2	6.8 7.4 6.7 6.8	677 665 675 674	16.2 17.8 12.1 16.6	290 270 300 290	61.8 59.8 65.6 62.2	32.1 28.4 33.6 32.4	2.35 2.37 2.39	20.5 22.5 20.1 20.7
BA Ee 164	11-08-02 03-12-03 07-10-03	$4080 \\ 4080 \\ 4080$	1.2 2.0 0.6	7.4 6.7 6.8	708 784 689	18.1 11.3 18.1	290 320 300	68.8 71.7 67.3	28.2 33.1 31.9	2.48 2.40	28.7 36.3 22.5
BA Ee 165	11-13-02 01-14-03	4080 4080	2.2 2.1	7.0 6.6	812 740	12.9 8.6	350	82.7	35.2		30.4
	03-12-03 <i>03-12-03</i> 05-13-03	4080 4080	3.3 2.5	6.7 6.8	712 666	8.3 12.0	330	75.4 0.02	34.4 <0.008	1.75 <0.10	17.3 <0.09
	07-11-03 09-09-03	4080 4080	1.4 1.2	6.5 6.5	656 754	18.0 17.2	310	70.6 	32.4	1.78	14.0
BA Ee 167	11-19-02 03-17-03 07-17-03	$4080 \\ 4080 \\ 4080$	0.8 2.3 2.1	7.4 6.8 6.3	696 686 787	15.2 11.0 19.4	290 290 330	67.3 66.7 75.3	29.3 30.5 33.6	2.70 3.60	27.2 25.3 36.4
BA Ee 168	07-17-03 11-19-02 03-17-03	4080 4080 4080	2.6 4.9	0.3 7.2 6.7	692 640	19.4 14.4 9.8	330 310	73.5 78.5 73.7	32.2 30.8	2.05	14.6 9.36
BA Ee 169	07-17-03 11-20-02 <i>11-20-02</i> 03-17-03 07-17-03	4080 4020 4080 4080	2.6 	6.5 	715 	20.2 24.1	360 990 480 340	83.4 235 <i>E.01</i> 105 80.0	35.9 98.6 <0.008 52.9 34.0	2.96 3.68 4.23	11.8 43.7 <0.09 14.0 15.4

Sampling Method: 4020 - Open-top bailer 4080 - Peristaltic pump

Well Number	Date	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)
BA Ee 160	09-09-03						0.22	< 0.04	5.73	< 0.008	<0.18
BA Ee 161	<i>09-09-03</i> 11-13-02 <i>11-13-02</i> 01-14-03	81.9 83.3	 	10.5 10.8	25.5 25.3	 	<0.10 E.07 E.07 E.07	<0.04 <0.04 <0.04 <0.04	<0.06 1.84 1.83 2.16	<0.008 E.005 <i>E.005</i> <0.008	<0.36 <0.02 <0.02 <0.02
	03-13-03 05-13-03 07-11-03 09-09-03	82.8 69.0	<0.17 <0.2	9.8 11.3	26.9 23.9	459 462 	<0.10 E.08 0.27 0.15	<0.04 <0.04 <0.04 <0.04	2.70 4.85 5.27 5.30	<0.008 <0.008 <0.008 <0.008	<0.02 <0.02 <0.02 <0.18
BA Ee 162	11-08-02 03-12-03	73.4 63.4	 <0.17	11.2 11.6	15.9 16.2	358					
BA Ee 163	07-10-03 11-08-02 03-12-03 07-10-03	64.7 74.5 62.5 64.4	<0.2 <0.17 <0.2	12.0 11.1 11.6 12.1	16.2 16.2 16.2 16.3	353 356 354	 	 		 	
BA Ee 164	11-08-02 03-12-03 07-10-03	87.7 83.2 66.0	<0.17 <0.2	11.2 11.3 12.1	18.5 20.9 17.2	415 372	 				
BA Ee 165	11-13-02 01-14-03	101		10.2	20.5		E.07 <0.10	<0.04 <0.04	0.47 1.04	<0.008 <0.008	<0.02 <0.02
	03-12-03 <i>03-12-03</i> 05-13-03 07-11-03 09-09-03	66.2 <0.20 44.7 	<0.17 <0.17 <0.2	9.0 <0.2 10.4	21.6 <0.2 22.3	384 364 	<0.10 <i>E.05</i> E.07 E.07 0.18	<0.04 <0.04 <0.04 <0.04 <0.04	1.51 <0.06 1.74 1.36 3.09	<0.008 <0.008 <0.008 <0.008 E.005	<0.02 <0.02 <0.02 <0.02 <0.02 <0.36
BA Ee 167	11-19-02 03-17-03	82.9 79.3	<0.17	10.6 9.0	18.5 16.9	360					
BA Ee 168	07-17-03 11-19-02 03-17-03	117 57.3 46.8	<0.2 <0.17	10.4 10.3 8.8	17.9 23.3 20.4	422 328	 				
BA Ee 169	07-17-03 11-20-02 <i>11-20-02</i> 03-17-03 07-17-03	50.4 278 <0.20 38.5 49.1	<0.2 <0.17 <0.2	11.3 9.4 <0.2 6.4 9.0	23.9 150 <0.2 51.9 9.1	375 519 379	 	 	 	 	

Well Number	Date	Total nitro- gen, water, fltrd, mg/L (00602)	Iron, water, fltrd, ug/L (01046)	Mangan- ese, water, fltrd, ug/L (01056)
		6.0		
BA Ee 160	09-09-03 09-09-03	6.0		
BA Ee 161	11-13-02		<10	19.7
	11-13-02		<10	21.0
	01-14-03			
	03-13-03		<10	2.2
	05-13-03 07-11-03	5.5	 <8	 1.7
	09-09-03	5.5		
BA Ee 162	11-08-02		29	12.3
	03-12-03		95	22.5
	07-10-03		31	12.5
BA Ee 163	11-08-02		23 <10	5.1 16.4
	03-12-03 07-10-03		<10 E8	4.5
BA Ee 164	11-08-02		<10	86.4
DA LC 104	03-12-03		12	2.4
	07-10-03		<8	1.2
BA Ee 165	11-13-02		15	23.9
	01-14-03			
	03-12-03		<10	E.8
	<i>03-12-03</i> 05-13-03		<10	<2.0
	07-11-03		<8	1.0
	09-09-03	3.3		
BA Ee 167	11-19-02		46	18.9
	03-17-03		<10	29.2
BA Ee 168	07-17-03 11-19-02		105 E9	24.3 E2.4
DALC 100	03-17-03		<10	E.8
	07-17-03		<8	0.7
BA Ee 169	11-20-02		123	3,500
	<i>11-20-02</i> 03-17-03		<10 <10	<2.0 2,390
	07-17-03		1,250	2,390 2,450

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Time	Station number	Sample type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)
BA Ee 170	11-19-02 01-15-03 <i>01-15-03</i> 03-17-03 <i>03-17-03</i>	1150 1400 <i>1402</i> 1500 <i>1501</i>	392438076332201	Environmental Environmental Blank Environmental Replicate	110ALVM 110ALVM 110ALVM <i>110ALVM</i>	GW GW GW GW	15.00 15.00 15.00 15.00	9.95 10.04 9.33 9.33	228 228 228 228 228
	05-14-03 05-14-03 05-14-03 07-17-03 07-17-03	1055 <i>1056</i> <i>1057</i> 1300 <i>1301</i>		Environmental <i>Replicate Blank</i> Environmental <i>Replicate</i>	110ALVM <i>110ALVM</i> 110ALVM <i>110ALVM</i>	GW <i>GW</i> GW GW	15.00 15.00 15.00 15.00	10.12 10.12 10.11 10.11	228 228 228 228 228
BA Ee 171	09-08-03 09-08-03 09-08-03 11-15-02 03-14-03	1325 <i>1326</i> <i>1327</i> 1312 1044	392437076332101	Environmental <i>Replicate Blank</i> Environmental Environmental	110ALVM <i>110ALVM</i> 110ALVM 110ALVM	GW <i>GW</i> GW GW	15.00 15.00 7.75 7.75	10.45 10.45 1.68 1.32	228 228 219 219
BA Ee 172 BA Ee 173	07-14-03 11-15-02 03-14-03 07-14-03 11-15-02	1150 1335 1115 1220 1435	392437076332102 392437076332103	Environmental Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW	7.75 5.75 5.75 5.75 3.75 3.75	1.59 1.89 1.53 1.92 1.33	219 219 219 219 219 219
BA Ee 174	03-14-03 07-14-03 11-19-02 <i>11-19-02</i> 01-15-03	1245 1315 1220 <i>1221</i> 1305	392438076332107	Environmental Environmental Environmental <i>Replicate</i> Environmental	110ALVM 110ALVM 110ALVM <i>110ALVM</i> 110ALVM	GW GW GW GW	3.75 3.75 28.10 28.10 28.10	1.17 1.31 4.43 4.43 4.77	219 219 222 222 222 222
BA Ee 175	03-17-03 05-14-03 07-17-03 09-08-03 11-19-02	1320 0950 1135 1215 1310	392438076332108	Environmental Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW GW	28.10 28.10 28.10 28.10 15.50	4.25 4.72 4.70 4.96 4.39	222 222 222 222 222 222 222
	01-15-03 01-15-03 03-17-03 05-14-03 07-17-03	1325 <i>1326</i> 1425 1025 1215		Environmental <i>Replicate</i> Environmental Environmental Environmental	110ALVM <i>110ALVM</i> 110ALVM 110ALVM 110ALVM	GW <i>GW</i> GW GW	15.50 <i>15.50</i> 15.50 15.50 15.50	4.92 4.92 4.39 4.70 4.74	222 222 222 222 222 222 222

Geologic Unit (aquifer): 110ALVM - Quaternary Alluvium

Station Type: GW - Ground Water

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)
BA Ee 170	11-19-02 01-15-03 01-15-03 03-17-03 03-17-03	4080 4080 4080 <i>4080</i>	5.2 6.3 7.2	7.1 6.9 6.7	841 790 744	12.9 9.5 10.6	410 360 <i>360</i>	95.7 85.0 85.0	40.9 36.9 <i>37.0</i>	 1.61 1.49	16.4 11.9 11.7
	05-14-03 05-14-03 05-14-03 07-17-03 07-17-03	4080 4080 4080 4080	5.9 4.5	6.7 6.3	840 815 	11.1 16.2 	 420 420	 95.0 94.7	 43.7 43.6	 1.78 1.76	 13.0 12.9
BA Ee 171	09-08-03 09-08-03 09-08-03 11-15-02 03-14-03	4080 4080 4080 4080	4.1 0.5 0.6	6.5 7.4 6.5	880 844	16.5 19.9 6.7	 250 270	 61.8 64.3	 23.9 26.3	 2.25	 57.4 62.2
BA Ee 172	07-14-03 11-15-02 03-14-03 07-14-03	4080 4080 4080 4080	0.4 4.7 2.1 2.7	6.5 7.6 6.4 6.2	803 701 762 753	20.8 19.6 7.2 23.8	270 240 270 280	65.2 60.1 63.8 68.4	24.9 22.5 25.9 25.4	3.28 2.83 3.43	61.9 57.2 64.3 66.9
BA Ee 173 BA Ee 174	11-15-02 03-14-03 07-14-03 11-19-02 11-19-02	4080 4080 4080 4080 4080	1.9 2.8	7.8 6.8 7.3	610 746 689 	14.9 23.7 15.0	290 220 280 320 <i>310</i>	75.3 55.3 74.0 71.0 70.5	25.2 18.9 23.4 33.8 <i>33.6</i>	 3.32 3.61 	34.0 152 48.8 18.3 <i>18.2</i>
BA Ee 175	01-15-03 03-17-03 05-14-03 07-17-03 09-08-03	4080 4080 4080 4080 4080 4080	2.6 2.8 3.2 3.0 2.7	7.0 6.9 6.5 6.8 7.4	698 698 671 661 649 676	11.6 12.6 13.0 15.2 16.5 15.1	320 310 320	 70.8 68.1 71.4	 33.8 33.8 33.3	2.36 2.32	 17.5 17.0 15.3
DA EE 173	11-19-02 01-15-03 03-17-03 05-14-03 07-17-03	4080 4080 4080 4080 4080 4080	3.0 3.9 3.4 3.6 3.0	7.4 7.1 7.0 7.0 6.6	676 729 657 641 640	8.5 11.6 12.3 16.7	320 310 310	 68.0 67.6	33.0 33.9	 2.36 2.27	13.3 14.6 14.4

Sampling Method: 4080 - Peristaltic pump

Well Number	Date	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)
BA Ee 170	11-19-02 01-15-03 01-15-03 03-17-03 03-17-03	74.9 51.3 50.5	 <0.17 <0.17	11.3 10.2 10.3	26.6 22.7 22.9	 428 429	E.08 E.06 <0.10 E.09 <i>E.07</i>	<0.04 <0.04 <0.04 <0.04 <0.04	3.57 6.26 <0.06 11.4 11.7	<0.008 <0.008 <0.008 <0.008 <0.008	<0.02 <0.02 <0.02 <0.02 <0.02
	05-14-03 05-14-03 05-14-03 07-17-03 07-17-03	 59.2 60.7	<0.2 <0.2	 12.0 11.9	 24.9 25.0	 472 473	E.08 <i>E.08</i> <0.10 0.10 0.23	<0.04 <0.04 <0.04 <0.04 <0.04	8.68 8.73 <0.06 9.11 8.95	<0.008 <0.008 <0.008 <0.008 <0.008	<0.02 <0.02 <0.02 <0.09 <0.09
BA Ee 171	09-08-03 09-08-03 09-08-03 11-15-02 03-14-03	 141 175	 <0.17	 9.9 7.8	 21.1 20.6	 449	0.30 0.11 <0.10 	<0.04 <0.41 <0.04 	7.09 7.12 <0.06 	<0.008 <0.080 <0.008 	<0.18 <0.18 <0.18
BA Ee 172 BA Ee 173	07-14-03 11-15-02 03-14-03 07-14-03 11-15-02	171 168 192 225 101	<0.2 <0.17 <0.2	10.9 8.5 7.2 9.9 9.6	20.0 21.6 19.6 21.5 23.5	456 461 483	 	 	 	 	
BA Ee 173	03-14-03 07-14-03 11-19-02 11-19-02 01-15-03	235 126 69.2 70.5	<0.17 <0.2 	9.0 11.4 11.3 <i>11.2</i>	24.8 20.8 16.9 <i>16.9</i>	594 416 	 E.05 <0.10 <0.10	 <0.04 <0.04 <0.04	 1.42 <i>1.44</i> 1.38	 <0.008 <0.008 <0.008	 E.01 <i>E.01</i> <0.02
BA Ee 175	03-17-03 05-14-03 07-17-03 09-08-03 11-19-02	69.5 60.9 64.6	<0.17 <0.2 	10.7 10.6 10.9	17.7 17.7 17.8	383 360 	E.05 <0.10 E.09 E.08 E.06	<0.04 <0.04 <0.04 <0.04 <0.04	1.51 1.65 1.78 1.72 1.60	<0.008 <0.008 <0.008 <0.008 <0.008 <0.008	<0.02 <0.02 <0.02 <0.18 E.01
	01-15-03 01-15-03 03-17-03 05-14-03 07-17-03	 60.4 53.2	<0.17 <0.2	 10.1 11.1	 17.5 19.4	 354 355	<0.10 <0.10 E.08 <0.10 0.38	<0.04 <0.04 <0.04 <0.04 <0.04	1.70 1.70 1.74 1.84 2.30	<0.008 <0.008 <0.008 <0.008 <0.008	<0.02 <0.02 <0.02 <0.02 <0.02

Well Number	Date	Total nitro- gen, water, fltrd, mg/L (00602)	Iron, water, fltrd, ug/L (01046)	Mangan- ese, water, fltrd, ug/L (01056)
BA Ee 170	11-19-02 01-15-03 01-15-03 03-17-03 03-17-03	 	<10 <10 <10	51.9 15.4 21.2
	05-14-03 05-14-03 05-14-03 07-17-03 07-17-03	 9.2 9.2	 9 <8	 5.7 5.4
BA Ee 171	09-08-03 09-08-03 09-08-03 11-15-02 03-14-03	7.4 7.2 	 265 989	 543 586
BA Ee 172 BA Ee 173	07-14-03 11-15-02 03-14-03 07-14-03 11-15-02	 	450 14,200 13,900 14,300 61	493 1,450 1,450 1,780 52.6
BA Ee 174	03-14-03 07-14-03 11-19-02 <i>11-19-02</i> 01-15-03	 	18 278 <10 < <i>10</i>	13.5 39.7 <2.0 <2.0
BA Ee 175	03-17-03 05-14-03 07-17-03 09-08-03 11-19-02	 	<10 <8 <10	<2.0 <0.4 <2.0
	01-15-03 <i>01-15-03</i> 03-17-03 05-14-03 07-17-03	 2.7	 <10 <8	 <2.0 <0.4

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Time	Station number	Sample type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)
BA Ee 175 BA Ee 176	09-08-03 11-25-02 <i>11-25-02</i> 03-21-03 07-23-03	1238 1200 <i>1202</i> 1055 1220	392438076332108 392439076331904	Environmental Environmental <i>Blank</i> Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM	GW GW <i>GW</i> GW GW	15.50 11.85 11.85 11.85	4.93 6.16 5.19 5.76	222 221 221 221 221
BA Ee 177 BA Ee 178	07-23-03 11-25-02 03-21-03 07-23-03 11-25-02	<i>1222</i> 1055 1215 1125 1135	392439076331905 392439076331906	<i>Blank</i> Environmental Environmental Environmental Environmental	 110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW GW	9.85 9.85 9.85 7.85	6.46 4.66 6.07 5.66	221 221 221 221 221
BA Ee 179	03-21-03 03-21-03 07-23-03 11-20-02 03-18-03	1240 <i>1242</i> 1145 1315 1252	392439076331907	Environmental Blank Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM	GW <i>GW</i> GW GW GW	7.85 7.85 9.91 9.91	4.19 5.55 3.98 3.66	221 221 219 219
BA Ee 180	07-21-03 07-21-03 11-20-02 03-18-03 07-22-03	1240 <i>1242</i> 1345 1325 1000	392434076331908	Environmental Blank Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM	GW <i>GW</i> GW GW	9.91 7.91 7.91 7.91	3.86 3.94 3.76 3.77	219 219 219 219 219
BA Ee 181 BA Ee 182	11-20-02 03-18-03 07-22-03 11-25-02 01-16-03	1405 1400 1050 1305 1330	392434076331909 392440076332001	Environmental Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW GW	5.91 5.91 5.91 10.70 10.70	3.99 3.80 3.83 9.68 9.47	219 219 219 227 227
	01-16-03 01-16-03 03-21-03 05-15-03 05-15-03	1331 1332 1035 1155 1157		Replicate Blank Environmental Environmental Blank	110ALVM 110ALVM 110ALVM 	GW GW GW GW	<i>10.70</i> 10.70 10.70	9.47 8.80 9.67	227 227 227 227
BA Ee 183	07-23-03 09-08-03 <i>09-08-03</i> 11-25-02 01-16-03	1000 1100 <i>1101</i> 1235 1300	392440076332002	Environmental Environmental <i>Replicate</i> Environmental Environmental	110ALVM 110ALVM <i>110ALVM</i> 110ALVM 110ALVM	GW GW <i>GW</i> GW GW	10.70 10.70 <i>10.70</i> 7.50 7.50	9.58 9.75 9.75 5.09 5.00	227 227 227 222 222 222

Geologic Unit (aquifer): 110ALVM - Quaternary Alluvium

Station Type: GW - Ground Water

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)
BA Ee 175 BA Ee 176	09-08-03 11-25-02	4080 4020	3.0	6.9	663	16.0	270	 59.7	30.1		22.7
DA LC 170	11-25-02	4020					270	E.01	<0.008		<0.09
	03-21-03	4080					280	59.6	32.5	1.94	23.1
	07-23-03	4080					310	67.0	35.5	2.31	27.7
	07-23-03							0.02	E.004	<0.16	<0.10
BA Ee 177	11-25-02	4080					350	80.2	36.7		11.3
	03-21-03	4080	4.0	6.7	517	13.8	340	76.2	35.3	1.08	7.58
D	07-23-03	4080	3.8	6.4	763	18.7	400	91.7	42.0	1.73	9.02
BA Ee 178	11-25-02	4080					370	84.0	38.9		7.10
	03-21-03	4080	6.6	7.0	577	12.5	330	76.1	34.8	0.74	5.20
	03-21-03							0.01	<0.008	<0.10	<0.09
D	07-23-03	4080					400	92.0	40.5	1.67	7.05
BA Ee 179	11-20-02	4080	0.9	7.7	593	18.5	290	74.6	26.0		47.9
	03-18-03	4080	0.4	6.7	744	11.5	280	67.4	25.9	2.61	35.2
	07-21-03	4080					250	59.8	24.3	2.74	34.6
D. E. 100	07-21-03							0.01	<0.008	E.09	0.13
BA Ee 180	11-20-02	4080	1.3	7.7	464	16.3	270	71.2	23.0	2 (1	33.7
	03-18-03 07-22-03	$4080 \\ 4080$	3.0 0.2	7.1 6.5	1,040 684	11.6 22.1	200 280	54.0 72.8	16.7 23.4	3.64 3.72	122 33.3
	07-22-03							12.0		5.72	
BA Ee 181	11-20-02	4080	2.5	8.0	431	16.7	260	67.5	22.0		31.6
	03-18-03	4080	4.1	7.4	1,030	13.8	230	62.9	16.8	4.06	119
DA E 100	07-22-03	4080	0.4	6.7	747	21.6	300	80.4	24.3	4.18	31.3
BA Ee 182	11-25-02 01-16-03	$4080 \\ 4080$	5.5	 6.8	 828	 7.1	410	92.4	43.1		5.09
			5.5	0.8	020	7.1					
	01-16-03	4080									
	<i>01-16-03</i> 03-21-03	4080	6.2	 6.6	 500	 14.6	320	70.1	34.1	0.70	 3.91
	05-21-05	4080	0.2	0.0			520	/0.1	54.1	0.70	5.91
	05-15-03										
	07-23-03	4080					420	96.4	44.7	1.45	7.20
	09-08-03 09-08-03	4080 <i>4080</i>									
BA Ee 183	11-25-02	4080					380	85.1	39.6		 5.79
Dir LC 105	01-16-03	4080	6.0	6.8	582	7.9					
	01 10 00		0.0	0.0	502	,					

Sampling Method: 4020 - Open-top bailer 4080 - Peristaltic pump

Well Number	Date	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Organic nitro- gen, water, fltrd, mg/L (00607)
BA Ee 175 BA Ee 176	09-08-03 11-25-02 <i>11-25-02</i> 03-21-03 07-23-03	68.3 <0.20 60.7 49.6	 <0.17 <0.2	12.2 <0.2 10.7 12.1	19.3 <0.2 19.4 20.1	 343 368	E.08 	<0.04 	1.83 	<0.008 	
BA Ee 177 BA Ee 178	07-23-03 11-25-02 03-21-03 07-23-03 11-25-02	<0.20 37.6 42.0 55.7 33.4	<0.2 <0.17 <0.2	<0.2 11.1 9.6 12.9 10.5	<0.2 24.9 22.8 24.8 25.6	356 419	 	 	 	 	
BA Ee 179	03-21-03 <i>03-21-03</i> 07-23-03 11-20-02 03-18-03	36.1 <i>E.12</i> 67.8 153 121	<0.17 <0.17 <0.2 0.10	8.9 <0.2 12.0 9.8 8.6	23.2 <0.2 27.6 22.4 18.3	348 408 394	 	 	 	 	
BA Ee 180	07-21-03 07-21-03 11-20-02 03-18-03 07-22-03	125 <0.20 81.6 203 75.1	<0.2 <0.2 0.11 <0.2	8.3 <0.2 9.4 9.2 11.9	17.9 <0.2 30.5 24.6 15.5	522 544 376	 	 	 	 	
BA Ee 181 BA Ee 182	11-20-02 03-18-03 07-22-03 11-25-02 01-16-03	95.4 214 84.3 45.9	0.12 <0.2	9.0 9.3 13.5 11.4	25.9 25.2 16.8 25.7	550 403 	 0.18 <0.10	 E.04 <0.04	 3.56 3.41	 E.004 <0.008	
	01-16-03 01-16-03 03-21-03 05-15-03 05-15-03	 27.4 	 <0.17 	 8.2 	 17.9 	 334 	<i>E.07</i> <0.10 <0.10 0.30 <0.10	<0.04 <0.04 <0.04 <0.04 <0.04	3.40 <0.06 3.14 3.56 <0.06	<0.008 <0.008 <0.008 <0.008 <0.008 <0.008	
BA Ee 183	07-23-03 09-08-03 <i>09-08-03</i> 11-25-02 01-16-03	46.5 36.4 	<0.2 	10.7 12.4 	21.6 25.5 	435 	0.59 0.47 <i>0.45</i> 0.10 E.08	<0.04 <0.04 <0.04 0.05 <0.04	3.35 3.48 3.63 2.75 2.27	<0.008 <0.008 <0.008 E.005 <0.008	 0.05

Well Number	Date	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Total nitro- gen, water, fltrd, mg/L (00602)	Iron, water, fltrd, ug/L (01046)	Mangan- ese, water, fltrd, ug/L (01056)
BA Ee 175 BA Ee 176	09-08-03 11-25-02 11-25-02 03-21-03 07-23-03	<0.18 	 	E10 < <i>10</i> <10 <8	69.5 <2.0 3.7 20.9
BA Ee 177 BA Ee 178	07-23-03 11-25-02 03-21-03 07-23-03 11-25-02	 	 	<8 <10 110 128 <10	<0.4 41.1 20.1 148 20.6
BA Ee 179	03-21-03 <i>03-21-03</i> 07-23-03 11-20-02 03-18-03	 	 	332 <i>E6</i> 2,770 3,240 8,690	37.8 <2.0 194 1,360 1,660
BA Ee 180	07-21-03 07-21-03 11-20-02 03-18-03 07-22-03	 	 	904 <i>E5</i> 75 <10 149	397 <0.4 10.8 <2.0 50.2
BA Ee 181 BA Ee 182	11-20-02 03-18-03 07-22-03 11-25-02 01-16-03	 E.01 <0.02	 3.7	107 47 1,140 <10	11.5 4.0 197 <2.0
	01-16-03 01-16-03 03-21-03 05-15-03 05-15-03	<0.02 <0.02 <0.02 <0.02 <0.02	 3.9	 <10 	 <2.0
BA Ee 183	07-23-03 09-08-03 <i>09-08-03</i> 11-25-02 01-16-03	<0.02 <0.18 <0.18 <0.02 <0.02	3.9 4.0 4.1 2.8	<8 <10 	E.3 141

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Time	Station number	Sample type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)
BA Ee 183	03-21-03 05-15-03 07-22-03 09-08-03	1115 1140 1200 1026	392440076332002	Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW	7.50 7.50 7.50 7.50	4.49 5.08 5.01 5.13	222 222 222 222 222
BA Ee 184 BA Ee 185	11-22-02 03-19-03 07-09-03 11-22-02 03-19-03 07-09-03	1130 1310 1210 1150 1350 1240	392439076331801 392439076331802	Environmental Environmental Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW GW GW	$6.00 \\ 6.00 \\ 6.00 \\ 4.00 \\ 4.00 \\ 4.00 \\ 4.00$	-0.16 -0.36 -0.07 -0.29 -0.43 -0.28	214 214 214 214 214 214 214
BA Ee 186	11-22-02 11-22-02 03-19-03 07-09-03 07-09-03	1225 <i>1226</i> 1420 1310 <i>1312</i>	392439076331803	Environmental <i>Replicate</i> Environmental Environmental <i>Blank</i>	110ALVM <i>110ALVM</i> 110ALVM 110ALVM 	GW <i>GW</i> GW GW	2.00 2.00 2.00 2.00	-0.41 <i>0.41</i> -0.52 -0.46	214 214 214 214
BA Ee 187	11-14-02 01-15-03 03-13-03 05-14-03 07-11-03	1145 1110 1245 0830 1320	392436076332001	Environmental Environmental Environmental Environmental Environmental	110CLVM 110CLVM 110CLVM 110CLVM 110CLVM	GW GW GW GW	20.50 20.50 20.50 20.50 20.50	8.68 7.83 6.46 7.58 7.02	224 224 224 224 224 224
BA Ee 188	07-11-03 09-05-03 11-14-02 01-15-03 03-13-03	<i>1322</i> 1305 1245 1130 1310	392436076332002	<i>Blank</i> Environmental Environmental Environmental Environmental	 110CLVM 110CLVM 110CLVM 110CLVM	GW GW GW GW	20.50 13.50 13.50 13.50	7.89 7.50 6.71 4.64	224 224 224 224 224
BA Ee 189	05-14-03 07-11-03 09-05-03 09-05-03 11-14-02	0850 1230 1330 <i>1332</i> 1430	392436076331901	Environmental Environmental Environmental <i>Blank</i> Environmental	110CLVM 110CLVM 110CLVM 110CLVM	GW GW GW GW	13.50 13.50 13.50 <i>13.50</i> 24.50	6.61 6.21 7.06 8.92	224 224 224 224 224
	11-14-02 01-15-03 03-13-03 05-14-03 07-11-03	<i>1432</i> 1035 1215 0810 1210		<i>Blank</i> Environmental Environmental Environmental Environmental	 110CLVM 110CLVM 110CLVM 110CLVM	GW GW GW GW GW	24.50 24.50 24.50 24.50	7.94 6.50 7.74 7.06	224 224 224 224 224

Geologic Unit (aquifer): 110ALVM - Quaternary System 110CLVM - Colluvium

Station Type: GW - Ground Water

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)
	03-21-03 05-15-03	4080 4080	6.6 4.4	6.5 6.6	502 789	12.6 13.6	160	37.3	17.2	1.69	3.37
	07-22-03 09-08-03	4080 4080 4080	3.5 4.1	6.2 6.6	809 852	17.4 20.6	420	93.6	44.5	2.03	7.41
BA Ee 184	11-22-02	4080	2.2	7.6	683	10.8	230	60.0	19.5		34.9
BA Ee 185	03-19-03 07-09-03 11-22-02 03-19-03	$\begin{array}{c} 4080 \\ 4080 \\ 4080 \\ 4080 \\ 4080 \end{array}$	1.5 2.5 6.2 4.6	7.1 6.8 8.0 7.5	860 766 746 1,610	10.5 25.1 10.8 11.3	250 260 290 270	64.6 63.9 73.5 66.6	21.3 23.8 24.9 24.2	2.95 4.02 3.73	86.8 61.3 35.3 204
	07-09-03	4080	4.3	7.1	870	25.0	320	84.7	26.7	4.46	57.5
	11-22-02 <i>11-22-02</i> 03-19-03	4080 <i>4080</i> 4080	7.4 6.0	8.0 7.6	819 1,570	11.0 10.3	300 <i>320</i> 240	77.5 83.6 62.7	25.9 27.6 21.0	 3.82	37.2 39.6 177
	07-09-03 07-09-03	4080	5.0	7.2	860	27.2	340	88.4 0.02	27.9 <i>E.004</i>	4.47 <0.16	56.5 <0.10
	11-14-02 01-15-03	4080 4080	0.9 1.1	7.4 6.9	590 667	19.9 11.8	300	65.2	32.5		19.8
	03-13-03 05-14-03 07-11-03	$4080 \\ 4080 \\ 4080$	1.4 1.9 1.3	6.8 6.7 6.8	672 679 654	9.9 10.8 16.2	300 	65.8 60.7	32.8 31.3	2.03	19.9 20.4
	07-11-03							0.10	E.005	<0.16	<0.10
	09-05-03	4080	1.1	6.9	606	20.9					
	11-14-02 01-15-03	4080 4080	6.6	6.4	 539	 8.9	280	61.5	30.2		23.9
	03-13-03	4080	5.0	6.1	665	8.2	190	41.6	20.4	2.33	46.5
	05-14-03 07-11-03 09-05-03	4080 4080 4080	5.8 5.3 0.4	6.2 6.5 6.1	567 569 591	11.1 18.8 19.6	130	28.8	14.8	2.32	47.4
	09-05-03										
	11-14-02	4020					340	74.1	38.1		34.1
	<i>11-14-02</i> 01-15-03	4080	3.3	6.9	 795	11.5		<0.01	<0.008		<0.09
	03-13-03 05-14-03	4080 4080	4.6 5.1	7.1 6.9	791 744	7.9 10.0	310	68.6	34.0	2.79	35.7
	07-11-03	4080 4080	3.1 3.4	6.9 7.3	709	18.0	260	56.3	28.9	2.83	36.9

Sampling Method: 4020 - Open-top bailer 4080 - Peristaltic pump

Well Number	Date	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)
05 07 09	3-21-03 5-15-03 7-22-03 9-08-03	19.1 59.9	<0.17 <0.2	5.8 12.6 	18.9 25.4	197 453	<0.10 0.10 0.65 0.27	<0.04 <0.04 <0.04 <0.04	1.50 2.67 2.55 2.59	<0.008 <0.008 <0.008 <0.008	<0.02 <0.02 <0.02 <0.18
		103 202	0.11	9.2 8.6	21.6 22.4	 509					
		137	< 0.2	10.9	22.0	431					
		113		8.3	26.4						
		391	0.13	7.9	25.4	831					
07	7-09-03	143	< 0.2	11.3	23.4	472					
BA Ee 186 11	1-22-02	124		9.5	28.7						
		123		9.5	28.8						
		339	0.13	8.4	26.8	749					
07	7-09-03	144	< 0.2	11.7	23.6	481					
07	7-09-03	<0.20	<0.2	<0.2	<0.2						
BA Ee 187 11	1-14-02	70.4		10.5	13.2		E.08	< 0.04	0.80	< 0.008	E.01
01	1-15-03						E.07	< 0.04	0.67	< 0.008	E.01
	3-13-03	69.5	< 0.17	10.5	14.1	355	< 0.10	< 0.04	0.70	< 0.008	E.01
	5-14-03						E.05	< 0.04	0.82	< 0.008	< 0.02
07	7-11-03	76.9	< 0.2	10.2	13.0	351	E.07	< 0.04	0.78	< 0.008	< 0.02
07	7-11-03	<0.20	<0.2	<0.2	< 0.2		0.16	<0.04	<0.06	<0.008	< 0.02
	9-05-03						E.09	< 0.04	0.75	< 0.008	< 0.02
BA Ee 188 11	1-14-02	80.5		11.6	9.5		0.16	E.04	0.18	E.004	< 0.02
	1-15-03						0.12	< 0.04	0.09	< 0.008	< 0.02
03	3-13-03	145	< 0.17	6.1	11.1	322	E.07	< 0.04	1.54	E.005	< 0.02
05	5-14-03						0.14	< 0.04	E.05	< 0.008	< 0.02
07	7-11-03	85.2	< 0.2	10.5	9.6	292	0.18	< 0.04	< 0.06	< 0.008	< 0.02
09	9-05-03						0.25	< 0.04	< 0.06	< 0.008	< 0.02
	9-05-03						<0.10	<0.04	<0.06	<0.008	< 0.02
BA Ee 189 11	1-14-02	108		8.9	15.9		0.27	E.04	1.25	< 0.008	< 0.02
11	1-14-02	0.20		0.2	0.2		<0.10	<0.04	<0.06	<0.008	<0.02
	1-15-03						E.06	< 0.04	1.35	< 0.008	< 0.02
	3-13-03	98.0	< 0.17	8.4	15.9	411	< 0.10	< 0.04	1.81	< 0.008	< 0.02
	5-14-03						E.07	< 0.04	1.99	< 0.008	< 0.02
07	7-11-03	94.5	< 0.2	8.0	14.6	377	0.14	< 0.04	1.90	< 0.008	< 0.02

Well Numberer	Date	Total nitro- gen, water, fltrd, mg/L (00602)	Iron, water, fltrd, ug/L (01046)	Mangan- ese, water, fltrd, ug/L (01056)
BA Ee 183	03-21-03 05-15-03 07-22-03 09-08-03	2.8 3.2 2.9	<10 19 	14.3 120
BA Ee 184 BA Ee 185	11-22-02 03-19-03 07-09-03 11-22-02	 	<10 <10 <8 <10	225 365 321 E2.2
BA Ee 186	03-19-03 07-09-03 11-22-02 11-22-02	 	<10 11 <10 <10	9.0 2.4 <2.0 <2.0
BA Ee 187	03-19-03 07-09-03 07-09-03 11-14-02		<10 <8 <8 <10	<2.0 0.8 <0.4 104
	01-15-03 03-13-03 05-14-03 07-11-03	 	 <10 <8	 7.9 4.3
BA Ee 188	07-11-03 09-05-03 11-14-02 01-15-03 03-13-03	0.34 0.22	<8 428 17	<0.4 768 82.4
BA Ee 189	05-14-03 07-11-03 09-05-03 09-05-03 11-14-02	 1.5	4,980 <10	2,170
	<i>11-14-02</i> 01-15-03 03-13-03 05-14-03 07-11-03	 2.0	<10 <10 <8	<2.0 <2.0 0.6

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Time	Station number	Sample type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)
BA Ee 189 BA Ee 190	09-05-03 11-20-02 01-16-03 03-18-03 05-15-03	1225 1110 1040 1200 1010	392436076331901 392438076331801	Environmental Environmental Environmental Environmental Environmental	110CLVM 110CLVM 110CLVM 110CLVM 110CLVM	GW GW GW GW GW	24.50 26.00 26.00 26.00 26.00	8.26 4.91 5.12 4.25 4.96	224 220 220 220 220 220
BA Ee 191	05-15-03 07-21-03 09-05-03 11-20-02 01-16-03	<i>1011</i> 1110 1055 1145 1120	392438076331802	<i>Replicate</i> Environmental Environmental Environmental Environmental	110CLVM 110CLVM 110CLVM 110CLVM 110CLVM	GW GW GW GW	26.00 26.00 26.00 14.00 14.00	4.96 4.82 5.34 4.78 5.25	220 220 220 220 220 220
	03-18-03 03-18-03 05-15-03 07-21-03 09-05-03	1125 <i>1126</i> 1035 1150 1135		Environmental <i>Replicate</i> Environmental Environmental Environmental	110CLVM 110CLVM 110CLVM 110CLVM 110CLVM	GW <i>GW</i> GW GW	$\begin{array}{c} 14.00 \\ 14.00 \\ 14.00 \\ 14.00 \\ 14.00 \\ 14.00 \end{array}$	4.52 4.52 5.06 4.42 5.25	220 220 220 220 220 220
BA Ee 192	11-20-02 01-16-03 03-18-03 05-15-03 07-21-03	1040 1205 1050 1105 1025	392438076331803	Environmental Environmental Environmental Environmental Environmental	110CLVM 110CLVM 110CLVM 110CLVM 110CLVM	GW GW GW GW	24.70 24.70 24.70 24.70 24.70	4.37 4.32 3.26 4.16 4.05	219 219 219 219 219 219
BA Ee 193	09-05-03 11-15-02 03-13-03 07-14-03	1005 1025 1335 1005	392437076332104	Environmental Environmental Environmental Environmental	110CLVM 110ALVM 110ALVM 110ALVM	GW GW GW GW	24.70 9.25 9.25 9.25	4.52 2.49 1.86 2.13	219 220 220 220
BA Ee 194 BA Ee 195	11-15-02 03-13-03 07-14-03 11-15-02 03-13-03 07-14-03	1155 1415 1040 1220 1440 1105	392437076332105 392437076332106	Environmental Environmental Environmental Environmental Environmental	110ALVM 110ALVM 110ALVM 110ALVM 110ALVM 110ALVM	GW GW GW GW GW GW	7.25 7.25 7.25 5.25 5.25 5.25 5.25	2.59 2.11 2.38 2.43 1.95 2.19	220 220 220 220 220 220 220

Geologic Unit (aquifer):110ALVM - Quaternary System 110CLVM - Colluvium

Station Type: GW - Ground Water

BALTIMORE COUNTY, MARYLAND-Continued

Well Number	Date	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)
BA Ee 189 BA Ee 190	09-05-03 11-20-02	4080 4080	3.4 2.2	7.2 7.7	693 859	19.4 20.2	280	 69.7	26.6		61.4
	01-16-03 03-18-03 05-15-03	4080 4080 4080	3.3 2.9 2.7	7.2 7.1 7.1	860 822 855	9.3 12.6 16.3	270	67.0	25.5	3.14	55.2
	<i>05-15-03</i> 07-21-03 09-05-03	4080 4080 4080	3.5 3.2	 6.8 7.1	 872 770	18.4 20.6	280	67.3	26.3	3.38	59.2
BA Ee 191	11-20-02 01-16-03	$\begin{array}{c} 4080\\ 4080 \end{array}$	2.3 1.6	7.2 6.8	737 870	22.5 10.3	300	74.7 	28.0		58.7
	03-18-03 <i>03-18-03</i>	4080 <i>4080</i>	4.2	6.7 	991 	11.3	350 350	85.7 85.7	32.1 <i>32.3</i>	2.53 2.56	58.7 57.7
	05-15-03 07-21-03 09-05-03	$4080 \\ 4080 \\ 4080$	$ \begin{array}{c} 1.1 \\ 1.1 \\ 0.4 \end{array} $	6.6 6.4 6.6	868 792 776	13.7 19.2 19.9	260	66.2	24.2	3.00	54.7
BA Ee 192	11-20-02 01-16-03 03-18-03	4080 4080 4080	1.6 2.3 2.8	7.6 7.2 7.1	715 798 934	19.4 11.3 12.6	240 320	60.4 80.8	22.2 29.7	 3.65	60.8 61.1
	05-15-03 07-21-03	4080 4080	3.3 2.9	6.9 6.7	$1,100 \\ 1,020$	13.8 20.1	310	77.3	28.8	3.70	72.0
BA Ee 193	09-05-03 11-15-02 03-13-03	4080 4080 4080	1.8 1.6	6.9 7.8	820 644 	18.5	250 390	63.3 95.7	22.0 36.7	2.89	39.6 89.7
BA Ee 194	07-14-03 11-15-02	4080 4080	2.4 3.6	6.2 7.9	817 629	19.6 17.5	270 250	65.5 64.8	25.5 22.1	3.22	67.8 33.3
BA Ee 195	03-13-03 07-14-03 11-15-02 03-13-03 07-14-03	4080 4080 4080 4080 4080	4.6 0.8 4.2 5.7 1.4	7.0 6.7 7.8 7.2 7.0	$1,790 \\ 940 \\ 490 \\ 2,070 \\ 826$	7.8 21.3 17.1 8.7 23.9	460 260 260 340 260	114 64.4 68.9 85.6 68.5	42.2 23.2 22.6 30.9 22.4	3.53 3.65 3.50 3.80	175 83.7 33.3 247 66.4

Sampling Method: 4080 - Peristaltic pump

Well Number	Date	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)
BA Ee 189 BA Ee 190	09-05-03 11-20-02 01-16-03 03-18-03 05-15-03	134 130	 0.11	10.1 10.2	20.6 19.8 	 436 	0.14 <0.10 E.05 <0.10 E.06	<0.04 <0.04 <0.04 <0.04 <0.04	1.73 0.64 0.71 0.87 1.09	<0.008 <0.008 <0.008 <0.008 <0.008	<0.02 <0.02 <0.02 <0.02 <0.02
BA Ee 191	05-15-03 07-21-03 09-05-03 11-20-02 01-16-03	144 124 	<0.2	10.6 11.3	19.6 23.6	457 	E.06 <0.10 0.12 E.06 E.05	<0.04 <0.04 <0.04 <0.04 <0.04	1.09 1.29 1.36 0.07 0.16	<0.008 <0.008 <0.008 <0.008 <0.008	<0.02 <0.02 <0.02 E.01 E.01
	03-18-03 <i>03-18-03</i> 05-15-03 07-21-03 09-05-03	175 <i>179</i> 107	0.11 0.11 <0.2	8.9 8.9 10.4	21.2 21.2 18.1	516 519 425 	E.09 <i>E.07</i> <0.10 <0.10 0.12	<0.04 <0.04 <0.04 <0.04 <0.04	$\begin{array}{c} 0.72 \\ 0.73 \\ 0.20 \\ 0.33 \\ 0.29 \end{array}$	<0.008 <0.008 <0.008 <0.008 <0.008	<0.02 <0.02 <0.02 E.01 <0.02
BA Ee 192	11-20-02 01-16-03 03-18-03 05-15-03 07-21-03	116 182 191	0.11 <0.2	10.3 9.9 10.3	21.4 19.9 21.1	 505 536	<0.10 <0.10 E.07 <0.10 <0.10	<0.04 <0.04 <0.04 <0.04 <0.04	0.72 0.85 1.07 1.56 1.58	<0.008 <0.008 <0.008 <0.008 <0.008	<0.02 <0.02 <0.02 <0.02 <0.02
BA Ee 193	09-05-03 11-15-02 03-13-03 07-14-03	104 295 177	 <0.17 <0.2	8.6 7.2 8.6	21.1 22.7 22.6	 634 433	0.11	<0.04 	1.26 	<0.008 	<0.02
BA Ee 194	11-15-02	92.2		8.3	21.5						
BA Ee 195	03-13-03 07-14-03 11-15-02 03-13-03 07-14-03	433 170 96.5 488 137	<0.17 <0.2 <0.17 <0.2	7.7 9.9 8.8 8.3 11.2	23.8 22.2 23.0 25.6 21.1	902 484 1,010 445	 	 	 	 	

BALTIMORE COUNTY, MARYLAND-Continued

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Well Number	Date	Total nitro- gen, water, fltrd, mg/L (00602)	Iron, water, fltrd, ug/L (01046)	Mangan- ese, water, fltrd, ug/L (01056)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11-20-02 01-16-03 03-18-03	 	<10 <10	<2.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BA Ee 191	07-21-03 09-05-03 11-20-02	1.5	<8 <10	<0.4 E3.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		<i>03-18-03</i> 05-15-03 07-21-03		<10 E6	<2.0 1.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BA Ee 192	01-16-03 03-18-03 05-15-03	 	 <10	<2.0
BA Ee 195 07-14-03 11-15-02 03-13-03 975 58 43.3 11.3 08		11-15-02 03-13-03 07-14-03		413 134 2,020	142 2,590 959
	BA Ee 195	07-14-03 11-15-02 03-13-03	 	975 58 133	43.3 11.3 10.9

Remark codes used in this table: < -- Less than E -- Estimated value

CALVERT COUNTY, MARYLAND

Well Number	Date	Time	Station n	umber	Sample	type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
CA Db 93 CA Db 96 CA Ed 53	12-02-02 12-11-02 02-04-03 12-02-02	1300 1730 1600 1030	383323076 383244076 382638076	5354201	Environm Environm Environm Environm	ental ental	125AQUI 217PPSCU 217PPSCU 124PNPN		480.00 970.00 970.00 380.00	480 960 960 380	470 930 930 370
CA Fc 13	10-09-02	1400	382343076		Environm		122CSPK	GW	34.00	34	29
CA Fd 87	<i>10-09-02</i> 12-10-02	<i>1405</i> 1000	382032076	6250701	<i>Replicate</i> Environm	ental	<i>122CSPK</i> 125AQUI	<i>GW</i> GW	<i>34</i> 660.00	640	560
		Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Color, water, fltrd, Pt-Co units (00080)	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)
CA Db 93 CA Db 96	12-02-02 12-11-02		100 151.56	4.0 73.2	27	50	8030 4040		7.9 6.6	273 211	 1.3
CA Ed 53 CA Fc 13	02-04-03 12-02-02 10-09-02	 30.85	151.56 110 47.44	4.0 5.0 1.1	300 25 40	125 E10	4040 8030 4040	 5.0	7.0 8.0 6.9	240 246 709	9.0
CA Fd 87	<i>10-09-02</i> 12-10-02		47.44 80.0	40.0		E8 	8030			266	
		Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Bromide water, fltrd, mg/L (71870)	Chlor- ide, water, fltrd, mg/L (00940)
CA Db 93 CA Db 96	12-02-02 12-11-02 02-04-03	16.7 20.6	 74 72	 14.3 12.0	9.35 0.13	10.1	12.5	142 112	173 137		
CA Ed 53 CA Fc 13	02-04-03 12-02-02 10-09-02	18.5 15.5 16.5	370	13.9 138	9.13 7.10	10.4 3.58	12.1 9.32	107 118 329	131 143 401	0.03	0.94 16.5
CA Fd 87	<i>10-09-02</i> 12-10-02	18.5	370 	138 	7.11	3.70 	9.36 	133	162		16.1

Geologic Unit (aquifer): 125AQUI - Aquia Formation

217PPSCU - Upper Aquifer In the Patapsco Formation

124PNPN - Pleistocene-Pliocene Series

122CSPK - Chesapeake Group

Station Type: GW - Ground Water

Sampling Method: 4040 - Submersible pump

8030 - Grab sample at water-supply tap

CALVERT COUNTY, MARYLAND-Continued

Well Number	Date	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L (00660)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)
CA Db 93 CA Db 96	12-02-02 12-11-02 02-04-03	0.39	 9.1	 3.9	 129	 127	 	<0.06 <0.06	 	 	
CA Ed 53 CA Fc 13	12-02-02 10-09-02	0.19	23.8	23.4	442	441	<0.04	5.08	<0.008	0.472	0.15
CA Fd 87	<i>10-09-02</i> 12-10-02	0.18	23.4	23.1		449 	<0.04 	5.11	<0.008 	0.469 	0.15
		Phos- phorus, water, fltrd, mg/L (00666)	Phos- phorus, water, unfltrd mg/L (00665)	Organic carbon, water, unfltrd mg/L (00680)	Arsenic water, fltrd, ug/L (01000)	Beryll- ium, water, fltrd, ug/L (01010)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)
CA Db 93 CA Db 96	12-02-02 12-11-02 02-04-03	 	0.10 0.08	 E.3 E.4	E.2 0.3	 	2,210 4,900	2,110 4,960	 	40.1 89.0	37.3 91.3
CA Ed 53 CA Fc 13	12-02-02 10-09-02	0.14		2.3	0.5	<0.06	 <10	40	 E.06	<2.0	 <4.4
CA Fd 87	<i>10-09-02</i> 12-10-02	0.15		4.4	0.4	<0.06	<10	40	E.06	<2.0	<4.4
		Mercury water, fltrd, ug/L (71890)	Thall- ium, water, fltrd, ug/L (01057)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	alpha- HCH, water, fltrd, ug/L (34253)	alpha- HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)	alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)
CA Db 93 CA Db 96	12-02-02 12-11-02 02-04-03	water, fltrd, ug/L (71890)	ium, water, fltrd, ug/L (01057)	ethyl- aniline water fltrd 0.7u GF ug/L (82660)	water, fltrd, ug/L (04040)	water, fltrd, ug/L (04038)	chlor, water, fltrd, ug/L (49260) 	chlor, water, fltrd, ug/L (46342) 	HCH, water, fltrd, ug/L (34253)	HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)	HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)
		water, fltrd, ug/L (71890)	ium, water, fltrd, ug/L (01057)	ethyl- aniline water fltrd 0.7u GF ug/L (82660)	water, fltrd, ug/L (04040)	water, fltrd, ug/L (04038)	chlor, water, fltrd, ug/L (49260)	chlor, water, fltrd, ug/L (46342)	HCH, water, fltrd, ug/L (34253)	HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)	HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)
CA Db 96 CA Ed 53	12-11-02 02-04-03 12-02-02	water, fltrd, ug/L (71890) 	ium, water, fltrd, ug/L (01057)	ethyl- aniline water fltrd 0.7u GF ug/L (82660) 	water, fltrd, ug/L (04040) 	water, fltrd, ug/L (04038)	chlor, water, fltrd, ug/L (49260)	chlor, water, fltrd, ug/L (46342) 	HCH, water, fltrd, ug/L (34253) 	HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)	HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)
CA Db 96 CA Ed 53 CA Fc 13	12-11-02 02-04-03 12-02-02 10-09-02 <i>10-09-02</i>	water, fltrd, ug/L (71890) <0.02 <0.02	ium, water, fltrd, ug/L (01057) 0.18 0.18	ethyl- aniline water fltrd 0.7u GF ug/L (82660) <0.006 <0.006	water, fltrd, ug/L (04040) 0.11 0.11	water, fltrd, ug/L (04038) < <0.05 <0.05	chlor, water, fltrd, ug/L (49260) <0.006 <0.006	chlor, water, fltrd, ug/L (46342) <0.004 <0.004	HCH, water, fltrd, ug/L (34253) <0.005 <0.005	HCH-d6 surrog, Sch1379 wat flt percent recovry (90505) 81.3 77.9	HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)
CA Db 96 CA Ed 53 CA Fc 13 CA Fd 87 CA Fd 87	12-11-02 02-04-03 12-02-02 10-09-02 12-10-02 12-10-02	water, fltrd, ug/L (71890) <0.02 <0.02 Ametryn water, fltrd, ug/L (38401)	ium, water, fltrd, ug/L (01057) 0.18 0.18 Atra- zine, water, fltrd, ug/L (39632)	ethyl- aniline water fltrd 0.7u GF ug/L (82660) <0.006 Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	water, fltrd, ug/L (04040) 0.11 0.11 Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	water, fltrd, ug/L (04038) <0.05 <0.05 Broma- cil, water, fltrd, ug/L (04029)	chlor, water, fltrd, ug/L (49260) <0.006 <0.006 Buta- chlor, water, fltrd, ug/L (04026)	chlor, water, fltrd, ug/L (46342) <0.004 <0.004 Butyl- ate, water, fltrd, ug/L (04028)	HCH, water, fltrd, ug/L (34253) 	HCH-d6 surrog, Sch1379 wat flt percent recovry (90505) 81.3 77.9 Car- baryl, water, fltrd 0.7u GF ug/L (82680)	HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065) 91.9 &8.0 Carbo- furan, water, fltrd 0.7u GF (82674)
CA Db 96 CA Ed 53 CA Fc 13 CA Fd 87	12-11-02 02-04-03 12-02-02 10-09-02 12-10-02	water, fltrd, ug/L (71890) <0.02 <0.02 Ametryn water, fltrd, ug/L (38401)	ium, water, fltrd, ug/L (01057) 0.18 0.18 Atra- zine, water, fltrd, ug/L (39632)	ethyl- aniline water fltrd 0.7u GF ug/L (82660) <0.006 Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	water, fltrd, ug/L (04040) 0.11 0.11 Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	water, fltrd, ug/L (04038) <0.05 <0.05 Broma- cil, water, fltrd, ug/L (04029)	chlor, water, fltrd, ug/L (49260) <0.006 <0.006 Buta- chlor, water, fltrd, ug/L (04026)	chlor, water, fltrd, ug/L (46342) <0.004 <0.004 Butyl- ate, water, fltrd, ug/L (04028)	HCH, water, fltrd, ug/L (34253) <0.005 Caf- feine- 13C, surrog, wat flt percent recovry (99959)	HCH-d6 surrog, Sch1379 wat flt percent recovry (90505) 81.3 77.9 Car- baryl, water, fltrd 0.7u GF ug/L (82680)	HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065) 91.9 88.0 Carbo- furan, water, fltrd 0.7u GF (82674)
CA Db 96 CA Ed 53 CA Fc 13 CA Fd 87 CA Fd 87 CA Db 93 CA Db 96	12-11-02 02-04-03 12-02-02 10-09-02 12-10-02 12-10-02	water, fltrd, ug/L (71890) <0.02 <0.02 <0.02 <0.02 (38401) 	ium, water, fltrd, ug/L (01057) 0.18 0.18 (.18 0.18 (.18 (.18 	ethyl- aniline water fltrd 0.7u GF ug/L (82660) <0.006 Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686) 	water, fltrd, ug/L (04040) 0.11 0.11 Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673) 	water, fltrd, ug/L (04038) <0.05 <0.05 state, fltrd, ug/L (04029) 	chlor, water, fltrd, ug/L (49260) <0.006 <0.006 Buta- chlor, water, fltrd, ug/L (04026) 	chlor, water, fltrd, ug/L (46342) <0.004 <0.004 Butyl- ate, water, fltrd, ug/L (04028) 	HCH, water, fltrd, ug/L (34253) <0.005 Caf- feine- 13C, surrog, wat flt percent recovry (99959) 1.9	HCH-d6 surrog, Sch1379 wat flt percent recovry (90505) 81.3 77.9 81.3 77.9 Kar- baryl, water, fltrd 0.7u GF ug/L (82680)	HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065) 91.9 <i>88.0</i> Carbo- furan, water, fltrd 0.7u GF ug/L (82674)

CALVERT COUNTY, MARYLAND—Continued

Well Dat Number	Car- boxin, water, fltrd, ug/L (04027)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)	DCPA, water fltrd 0.7u GF ug/L (82682)	Diazi- non, water, fltrd, ug/L (39572)	Diazi- non-d10 sur Sch 1379, wat flt pct rcv (90670)	Diazi- non-d10 surrog. wat flt 0.7u GF percent recovry (91063)	Diel- drin, water, fltrd, ug/L (39381)
CA Db 93 12-02)2									
CA Db 96 12-11)2									
02-04)3									
CA Ed 53 12-02)2									
CA Fc 13 10-09)2 <0.05	< 0.005	< 0.006	< 0.018	< 0.05	< 0.003	< 0.005	81.3	108	< 0.005
CA Fd 87 12-10		<0.005	<0.006	<0.018	<0.05	<0.003	<0.005	80.3	105 	<0.005

	Diphen- amid, water, fltrd, ug/L (04033)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fonofos water, fltrd, ug/L (04095)	Hexa- zinone, water, fltrd, ug/L (04025)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)
CA Db 93 12-02	02									
CA Db 96 12-11	02									
02-04	03									
CA Ed 53 12-02	02									
CA Fc 13 10-09	02 <0.05	< 0.02	< 0.002	< 0.009	< 0.005	< 0.003	< 0.05	< 0.004	< 0.035	< 0.027
10-09	02 <0.05	< 0.02	< 0.002	<0.009	<0.005	<0.003	<0.05	<0.004	<0.035	<0.027
CA Fd 87 12-10										

Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	p,p-' DDE, water, fltrd, ug/L (34653)	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)
< 0.006	0.036	< 0.006	< 0.002	< 0.007	< 0.003	< 0.010	< 0.004	< 0.022	< 0.011
<0.006	0.032	<0.006	<0.002	<0.007	<0.003	<0.010	<0.004	<0.022	<0.011
	para- thion, water, fltrd 0.7u GF ug/L (82667) <0.006 <0.006	para- thion, Metola- water, chlor, fltrd ug/L ug/L (82667) (39415)	para- thion, Metola- Metri- buzin, buzin, fltrd water, water, 0.7u GF fltrd, fltrd, ug/L ug/L ug/L (82630)	para- Moli- thion, Metola- Metri- water, chlor, buzin, water, fltrd water, fltrd, fltrd, 0.7u GF fltrd, fltrd, 0.7u GF ug/L ug/L ug/L ug/L (82667) (39415) (82630) (82671)	para- Moli- Naprop- thion, Metola- Metri- nate, amide, water, chlor, buzin, water, water, water, fltrd water, fltrd, fltrd, 0.7u GF 0.7u GF 0.7u GF fltrd, g/L ug/L ug/L ug/L ug/L (82667) (39415) (82630) (82671) (82684)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

		Prome- ton, water, fltrd, ug/L (04037)	Prome- tryn, water, fltrd, ug/L (04036)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Propa- zine, water, fltrd, ug/L (38535)	Sima- zine, water, fltrd, ug/L (04035)	Sima- tryn, water, fltrd, ug/L (04030)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)
CA Db 93	12-02-02										
CA Db 96	12-11-02										
	02-04-03										
CA Ed 53	12-02-02										
CA Fc 13	10-09-02	М	< 0.05	< 0.004	< 0.010	< 0.011	< 0.02	< 0.05	< 0.005	< 0.05	< 0.02
	10-09-02	М	<0.05	<0.004	<0.010	<0.011	<0.02	<0.05	<0.005	<0.05	<0.02
CA Fd 87	12-10-02										

CALVERT COUNTY, MARYLAND-Continued

Well Number	Date	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Terba- cil, water, fltrd, ug/L (04032)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	Tri- flur- alin, water, fltrd, ug/L (04023)	Vernol- ate, water, fltrd, ug/L (04034)	Xylenes water unfltrd ug/L (81551)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)
CA Db 93	12-02-02										
CA Db 96	12-11-02										
	02-04-03										
CA Ed 53	12-02-02										
CA Fc 13	10-09-02	< 0.034	< 0.05	< 0.02	< 0.005	< 0.002	< 0.009	< 0.05	< 0.05	< 0.2	127
CA Fd 87	<i>10-09-02</i> 12-10-02	<0.034 	<0.05	<0.02	<0.005	<0.002	<0.009	<0.05	<0.05	<0.2	125

		14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	Benzene water unfltrd ug/L (34030)	Ethyl- benzene water unfltrd ug/L (34371)	meta- + para- Xylene, water, unfltrd ug/L (85795)	o- Xylene, water, unfltrd ug/L (77135)	Methyl t-butyl ether, water, unfltrd ug/L (78032)	Toluene water unfltrd ug/L (34010)	Toluene -d8, surrog, Sch2090 wat unf percent recovry (99833)	Alpha radio- activty 2-sigma wat flt Th-230, pCi/L (75987)	Alpha radio- activty water, fltrd, Th-230, pCi/L (04126)
CA Db 93	12-02-02										
CA Db 96	12-11-02									1.8	12
	02-04-03									2.0	7
CA Ed 53	12-02-02										
CA Fc 13	10-09-02	83.6	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	102	4.4	М
	10-09-02	83.7	<0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2	102	3.8	3
CA Fd 87	12-10-02										

		Beta radio- activty 2-sigma wat flt CS-137, pCi/L (75989)	Gross beta radioac water, fltrd, Cs-137, pCi/L (03515)	Rn-222 2-sigma water unfltrd pCi/L (76002)	Rn-222, water, unfltrd pCi/L (82303)
CA Db 93 CA Db 96 CA Ed 53 CA Fc 13	12-02-02 12-11-02 02-04-03 12-02-02 10-09-02	2.2 2.0 3.9	 19 17 <5	17 18 34	 140 150 1,110
CA Fd 87	<i>10-09-02</i> 12-10-02	3.3 	8	34 	1,100

Remark codes used in this table: < -- Less than E -- Estimated value M-- Presence verified, not quantified

CAROLINE COUNTY, MARYLAND

Welll Number	Date	Time	Station	number	Sampl	e type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	1100 1200 1400 1100 1100	39020407 38555707 38502207 38464807 38463107	5481201 5450201 5515201	Environ Environ Environ Environ Environ	mental mental mental	124PNPN 112CLMB 112CLMB 124PNPN 122PNSK	GW GW GW GW	300 55 40 440 22	300 55 40 440 22	285 45 35 420 19
		Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Color, water, fltrd, Pt-Co units (00080)	Sam- pling method, code (82398)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	 6.45	60.0 50.0 55.0 50.0 50.00	4.0 3.2 4.0 4.6 0.33	21 25 17 29 60	<1 2 	8030 8030 8030 8030 4040	 772	 7.5	 73	8.4 5.1 5.2 8.1 5.0

		Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)
CO Bd 57	12-18-02	634		15.3						370	452
CO Cd 54	09-16-03	37		15.0	3	0.62	0.446	1.68	4.31	5	6
CO Dd 75	09-08-03	125		15.7	25	5.24	2.86	3.28	9.94	7	8
CO Ec 34	11-18-02	439		16.7						235	287
CO Ec 36	12-10-02	153	2.0	15.0	50	7.48	7.43	3.09	3.39	1	1

	Bromide water, fltrd, mg/L (71870)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)
CO Bd 57 12-18-0 CO Cd 54 09-16-0 CO Dd 75 09-08-0 CO Ec 34 11-18-0 CO Ec 36 12-10-0	3 3 2	6.35 11.8 12.8	<0.2 <0.2 <0.2 <0.17	11.2 17.2 10.7	<0.2 1.4 3.0	 61 95	25 83 99	 E.06	<0.04 <0.04 <0.04	E.06 1.20

Geologic Unit (aquifer): 112CLMB - Columbia Formation 122PNSK - Pensauken Formation 124PNPN - Piney Point Formation

Station Type: GW - Ground Water

Sampling Method: 4040 - Submersible pump 8030 - Grab sample at water-supply tap

Well Number	Date	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, fltrd, mg/L (00666)	Organic carbon, water, fltrd, mg/L (00681)	Organic carbon, water, unfltrd mg/L (00680)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Barium, water, fltrd, ug/L (01005)	Beryll- ium, water, fltrd, ug/L (01010)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	<0.008 <0.008 <0.008	<0.18 <0.18 <0.02	<0.04 <0.04 	 0.4	2.7 0.7	 73	 <0.30	<0.3 <0.3 <0.3	 491	0.19 0.31 2.05

		Boron, water, fltrd, ug/L (01020)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Lithium water, fltrd, ug/L (01130)	Mangan- ese, water, fltrd, ug/L (01056)
CO Bd 57	12-18-02										
CO Cd 54	09-16-03						E4	Μ	0.47		5.7
CO Dd 75	09-08-03						27	30	0.35		21.7
CO Ec 34	11-18-02										
CO Ec 36	12-10-02	7	1.13	< 0.8	9.47	0.7	E9		2.41	1.5	102

		Mangan-									
		ese, water, unfltrd recover -able, ug/L (01055)	Mercury water, fltrd, ug/L (71890)	Molyb- denum, water, fltrd, ug/L (01060)	Nickel, water, fltrd, ug/L (01065)	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)	Stront- ium, water, fltrd, ug/L (01080)	Thall- ium, water, fltrd, ug/L (01057)	Vanad- ium, water, fltrd, ug/L (01085)	Zinc, water, fltrd, ug/L (01090)
CO Bd 57	12-18-02										
CO Cd 54	09-16-03	5.0	< 0.02						E.04		
CO Dd 75	09-08-03	19.8	< 0.02						E.02		
CO Ec 34	11-18-02										
CO Ec 36	12-10-02			< 0.3	6.10	0.5	< 0.2	80.3	0.10	< 0.1	26

		2,4,5-T surrog, water, fltrd, percent recovry (99958)	2,4-D methyl ester, water, fltrd, ug/L (50470)	2,4-D water, fltrd, ug/L (39732)	2,4-DB water, fltrd 0.7u GF ug/L (38746)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	OIET, water, fltrd, ug/L (50355)	3- Hydroxy carbo- furan, wat flt 0.7u GF ug/L (49308)	3-Keto- carbo- furan, water, fltrd, ug/L (50295)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	 87.8	 <0.009	 <0.02	 <0.02	 <0.006	<0.05 <0.05 E.023	<0.05 <0.05 =- E.01	 <0.008	 <0.006	 -2

Well Number	Date	Aceto- chlor, water, fltrd, ug/L (49260)	Aci- fluor- fen, water, fltrd 0.7u GF ug/L (49315)	Ala- chlor, water, fltrd, ug/L (46342)	Aldi- carb sulfone water, fltrd 0.7u GF ug/L (49313)	Aldi- carb sulf- oxide, wat flt 0.7u GF ug/L (49314)	Aldi- carb, water, fltrd 0.7u GF ug/L (49312)	alpha- HCH, water, fltrd, ug/L (34253)	alpha- HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)	alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)	Ametryn water, fltrd, ug/L (38401)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	<0.05 <0.05 <0.006	 <0.007	<0.05 <0.05 <0.004	 <0.02	 <0.008	 <0.04	 <0.005	67.5 67.1 	 88.6	<0.05 <0.05
		Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Barban, surrog, Sched. 2060/ 9060, wat flt pct rcv (90640)	Bendio- carb, water, fltrd, ug/L (50299)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Benomyl water, fltrd, ug/L (50300)	Bensul- furon, water, fltrd, ug/L (61693)	Ben- tazon, water, fltrd 0.7u GF ug/L (38711)	Broma- cil, water, fltrd, ug/L (04029)	Brom- oxynil, water, fltrd 0.7u GF ug/L (49311)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	<0.05 <0.05 0.038	 <0.050	 104	 <0.03	 <0.010	 <0.004	 <0.02	 <0.01	<1.00 <1.00 	 <0.02
		Buta- chlor, water, fltrd, ug/L (04026)	Butyl- ate, water, fltrd, ug/L (04028)	Caf- feine, water, fltrd, ug/L (50305)	Caf- feine- 13C, surrog, wat flt percent recovry (99959)	Car- baryl, water, fltrd 0.7u GF ug/L (49310)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (49309)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Car- boxin, water, fltrd, ug/L (04027)	Chlor- amben methyl ester, water, fltrd, ug/L (61188)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	<0.05 <0.05 	<0.05 <0.05 	 <0.010	 95.8	 <0.03	 <0.041	 <0.006	 <0.020	<0.05 <0.05 	 <0.02
		Chlori- muron, water, fltrd, ug/L (50306)	Chloro- di- amino- s-tri- azine, wat flt ug/L (04039)	Chloro- thalo- nil, water, fltrd 0.7u GF ug/L (49306)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Clopyr- alid, water, fltrd 0.7u GF ug/L (49305)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)	Dacthal mono- acid, water, fltrd 0.7u GF ug/L (49304)	DCPA, water fltrd 0.7u GF ug/L (82682)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	 <0.010	 <0.01	 <0.04	 <0.005	 <0.006	 <0.01	<0.02 <0.02 <0.018	<0.05 <0.05 	 <0.01	 <0.003

Welll Number	Date	Diazi- non, water, fltrd, ug/L (39572)	Diazi- non-d10 sur Sch 1379, wat flt pct rcv (90670)	Diazi- non-d10 surrog. wat flt 0.7u GF percent recovry (91063)	Di- chlor- prop, water, fltrd 0.7u GF ug/L (49302)	Diel- drin, water, fltrd, ug/L (39381)	Dinoseb water, fltrd 0.7u GF ug/L (49301)	Diphen- amid, water, fltrd, ug/L (04033)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	Diuron, water, fltrd 0.7u GF ug/L (49300)	EPTC, water, fltrd 0.7u GF ug/L (82668)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34	12-18-02 09-16-03 09-08-03 11-18-02	 	82.0 81.3	 	 	 	 	<0.05 <0.05	 	 	
CO Ec 36	12-10-02	< 0.005		117	<0.01	< 0.005	<0.01	<0.03	< 0.02	<0.01	< 0.002

		Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fenuron water, fltrd 0.7u GF ug/L (49297)	Flumet- sulam, water, fltrd, ug/L (61694)	Fluo- meturon water fltrd 0.7u GF ug/L (38811)	Fonofos water, fltrd, ug/L (04095)	Hexa- zinone, water, fltrd, ug/L (04025)	Imaza- quin, water, fltrd, ug/L (50356)	Imaze- thapyr, water, fltrd, ug/L (50407)	Imida- cloprid water, fltrd, ug/L (61695)
CO Bd 57	12-18-02										
CO Cd 54	09-16-03							< 0.05			
CO Dd 75	09-08-03							< 0.05			
CO Ec 34	11-18-02										
CO Ec 36	12-10-02	< 0.009	< 0.005	< 0.03	< 0.01	< 0.03	< 0.003		< 0.02	< 0.02	< 0.007

	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (38478)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)	MCPA, water, fltrd 0.7u GF ug/L (38482)	MCPB, water, fltrd 0.7u GF ug/L (38487)	Meta- laxyl, water, fltrd, ug/L (50359)	Methio- carb, water, fltrd 0.7u GF ug/L (38501)	Meth- omyl, water, fltrd 0.7u GF ug/L (49296)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)
CO Bd 57 12-1	8-02									
CO Cd 54 09-1	6-03									
CO Dd 75 09-0	08-03									
CO Ec 34 11-1	8-02									
CO Ec 36 12-1	0-02 <0.004	< 0.01	< 0.035	< 0.027	< 0.02	< 0.01	< 0.02	< 0.008	< 0.004	< 0.006

		Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Metsul- furon, water, fltrd, ug/L (61697)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	N-(4- Chloro- phenyl) -N-' methyl- urea, ug/L (61692)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	Neburon water, fltrd 0.7u GF ug/L (49294)	Nico- sul- furon, water, fltrd, ug/L (50364)	Norflur azon, water, fltrd 0.7u GF ug/L (49293)	Ory- zalin, water, fltrd 0.7u GF ug/L (49292)
CO Bd 57	12-18-02										
CO Cd 54	09-16-03	< 0.05	< 0.05								
CO Dd 75	09-08-03	< 0.05	< 0.05								
CO Ec 34	11-18-02										
CO Ec 36	12-10-02	E.005	< 0.006	< 0.03	< 0.002	< 0.02	< 0.007	< 0.01	< 0.01	< 0.02	< 0.02

CAROLINE COUNTY, MARYLAND-Continued

Well Number	Date	Oxamyl, water, fltrd 0.7u GF ug/L (38866)	p,p-' DDE, water, fltrd, ug/L (34653)	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)	Pic- loram, water, fltrd 0.7u GF ug/L (49291)	Prome- ton, water, fltrd, ug/L (04037)	Prome- tryn, water, fltrd, ug/L (04036)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	 <0.01	 <0.003	 <0.010	 <0.004	 <0.022	 <0.011	 <0.02	<0.05 <0.05 <0.01	<0.05 <0.05 	 <0.004
		Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Propa- zine, water, fltrd, ug/L (38535)	Propham water fltrd 0.7u GF ug/L (49236)	Propi- cona- zole, water, fltrd, ug/L (50471)	Pro- poxur, water, fltrd 0.7u GF ug/L (38538)	Siduron water, fltrd, ug/L (38548)	Sima- zine, water, fltrd, ug/L (04035)	Sima- tryn, water, fltrd, ug/L (04030)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	<0.05 <0.05 <0.010	 <0.011	 <0.02	<0.05 <0.05 	 <0.010	 <0.02	 <0.008	 <0.02	<0.05 <0.05 <0.005	<0.05 <0.05
		Sulfo- met- ruron, water, fltrd, ug/L (50337)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Terba- cil, water, fltrd, ug/L (04032)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- clopyr, water, fltrd 0.7u GF ug/L (49235)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	Tri- flur- alin, water, fltrd, ug/L (04023)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	 <0.009	 <0.02	 <0.034	<0.05 <0.05 <0.010	 <0.02	 <0.005	 <0.002	 <0.02	 <0.009	<0.05 <0.05
		Vernol- ate, water, fltrd, ug/L (04034)	Xylenes water unfltrd ug/L (81551)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	Benzene water unfltrd ug/L (34030)	Ethyl- benzene water unfltrd ug/L (34371)	meta- + para- Xylene, water, unfltrd ug/L (85795)	o- Xylene, water, unfltrd ug/L (77135)	Methyl t-butyl ether, water, unfltrd ug/L (78032)	Toluene water unfltrd ug/L (34010)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	<0.05 <0.05 	<0.2 <0.2 	137 100 	82.2 79.7 	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2

CAROLINE COUNTY, MARYLAND-Continued

Well Number	Date	Toluene -d8, surrog, Sch2090 wat unf percent recovry (99833)	Alpha radio- activty 2-sigma wat flt Th-230, pCi/L (75987)	Alpha radio- activty water, fltrd, Th-230, pCi/L (04126)	Beta radio- activty 2-sigma wat flt CS-137, pCi/L (75989)	Gross beta radioac water, fltrd, Cs-137, pCi/L (03515)	Rn-222 2-sigma water unfltrd pCi/L (76002)	Rn-222, water, unfltrd pCi/L (82303)	Uranium natural water, fltrd, ug/L (22703)
CO Bd 57 CO Cd 54 CO Dd 75 CO Ec 34 CO Ec 36	12-18-02 09-16-03 09-08-03 11-18-02 12-10-02	102 98.0 	0.53 0.70 	 M M 	0.90 0.99 	23	23 20 24	360 220 420	 0.03

Remark codes used in this table: < -- Less than E -- Estimated value M-- Presence verified, not quantified

CARROLL COUNTY, MARYLAND

Well Number	Date	Time	Station	number	Sampl	le type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
CL Ce 205 CL Bd 179	08-21-03 08-21-03 08-21-03	1330 <i>1331</i> 1030	39352007 39333807		Environ <i>Replicat</i> Environ	te	300SMCK 300SMCK 300SMCK	GW <i>GW</i> GW	241.00 241.00 623.00	241 241	57 57 118
CL Bd 180	08-21-03 08-20-03	<i>1031</i> 1600	39364107		Replicat Environ	te	300SMCK 300WSCK	<i>GW</i> GW	<i>623.00</i> 300.00	300	118 258
	08-20-03	1601			Replica	te	300WSCK	GW	300.00	300	258
		Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling method, code (82398)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)
CL Ce 205	08-21-03	740	38.0	45	4040	766	7.2	70	6.1	678	34.5
CL Bd 179	08-21-03 08-21-03	740 740	63.0	45 40	8010 4040	 766	6.9	68	6.2	687	28.5
CL Bd 180	<i>08-21-03</i> 08-20-03	740 770	65.0	40 55	<i>8010</i> 4040	 766	6.2	61	6.0	418	31.0
	08-20-03	770		55	8010						
		Temper- ature, water, deg C (00010)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Organic carbon, water, fltrd, mg/L (00681)	E coli, MI MF, water, col/ 100 mL (90901)	Total coli- form, MI MF, water, col/ 100 mL (90900)	2,4,5-T surrog, water, fltrd, percent recovry (99958)	2,4-D methyl ester, water, fltrd, ug/L (50470)	2,4-D water, fltrd, ug/L (39732)	2,4-DB water, fltrd 0.7u GF ug/L (38746)
CL Ce 205	08-21-03	14.5	121	147	0.4	<1	<1				
CL Bd 179	<i>08-21-03</i> 08-21-03	15.0	80	 97	E.3	<1 <1	<1 <1				
CL Bd 180	<i>08-21-03</i> 08-20-03	14.5	 59	 71	0.4	<1 <1	<1 <1	94.2	<0.009	< 0.02	< 0.02
	08-20-03					<1	<1				
		2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	OIET, water, fltrd, ug/L (50355)	3- Hydroxy carbo- furan, wat flt 0.7u GF ug/L (49308)	carbo- furan, water, fltrd, ug/L	Aceto- chlor ESA, water, fltrd 0.7u GF ug/L (61029)	Aceto- chlor OA, water, fltrd 0.7u GF ug/L (61030)	Aceto- chlor, water, fltrd, ug/L (49260)	Aci- fluor- fen, water, fltrd 0.7u GF ug/L (49315)
CL Ce 205	08-21-03	< 0.006	E.276					< 0.05	< 0.05	< 0.006	
CL Bd 179	08-21-03 08-21-03	<0.006	E.082					< 0.05	<0.05	<0.006	
CL Bd 180	08-21-03 08-20-03	<0.006	E.006	<0.04	<0.008	<0.006	<2	< 0.05	<0.05	<0.006	< 0.007
	08-20-03										
Geologic Unit (aquifer):	300SMCK	- Sams Ci	eek Metab	alsalt		Station T	ype: GW-0	Ground W	ater		
	300WSCK	- Wissahi	ckon Form	ation		Sampling	g Method:		Submersibl	e pump	
								8010 - (Other		

Well Number	Date	Ala- chlor ESA, water, fltrd 0.7u GF ug/L (50009)	Ala- chlor OA, water, fltrd 0.7u GF ug/L (61031)	Ala- chlor, water, fltrd, ug/L (46342)	Aldi- carb sulfone water, fltrd 0.7u GF ug/L (49313)	Aldi- carb sulf- oxide, wat flt 0.7u GF ug/L (49314)	Aldi- carb, water, fltrd 0.7u GF ug/L (49312)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Barban, surrog, Sched. 2060/ 9060, wat flt pct rcv (90640)	Bendio- carb, water, fltrd, ug/L (50299)
CL Ce 205	08-21-03	< 0.05	< 0.05	< 0.004				0.195	< 0.050		
02 00 200	08-21-03										
CL Bd 179	08-21-03	0.19	< 0.05	< 0.004				0.119	< 0.050		
GT D 1 400	08-21-03										
CL Bd 180	08-20-03	0.64	< 0.05	E.003	< 0.02	< 0.008	< 0.04	< 0.007	< 0.050	96.0	< 0.03
	08-20-03										
		Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Benomyl water, fltrd, ug/L (50300)	Bensul- furon, water, fltrd, ug/L (61693)	Ben- tazon, water, fltrd 0.7u GF ug/L (38711)	Broma- cil, water, fltrd, ug/L (04029)	Brom- oxynil, water, fltrd 0.7u GF ug/L (49311)	Caf- feine, water, fltrd, ug/L (50305)	Caf- feine- 13C, surrog, wat flt percent recovry (99959)	Car- baryl, water, fltrd 0.7u GF ug/L (49310)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)

CL Ce 205	08-21-03	< 0.010						< 0.5			< 0.041
	08-21-03										
CL Bd 179	08-21-03	< 0.010						< 0.5			< 0.041
	08-21-03										
CL Bd 180	08-20-03	< 0.010	< 0.004	< 0.02	< 0.01	< 0.03	< 0.02	< 0.5	96.3	< 0.03	< 0.041
	08-20-03										

		Carbo- furan, water, fltrd 0.7u GF ug/L (49309)	Chlor- amben methyl ester, water, fltrd, ug/L (61188)	Chlori- muron, water, fltrd, ug/L (50306)	Chloro- di- amino- s-tri- azine, wat flt ug/L (04039)	Chloro- thalo- nil, water, fltrd 0.7u GF ug/L (49306)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Clopyr- alid, water, fltrd 0.7u GF ug/L (49305)	Cyclo- ate, water, fltrd, ug/L (04031)	Dacthal mono- acid, water, fltrd 0.7u GF ug/L (49304)
CL Ce 205	08-21-03						< 0.005	< 0.006			
CL Bd 179	08-21-03 08-21-03						< 0.005	<0.006			
CL Du 179	08-21-03						<0.005	<0.000			
CL Bd 180	08-20-03	< 0.006	< 0.02	< 0.010	< 0.01	< 0.04	< 0.005	< 0.006	E.01	< 0.01	< 0.01
	08-20-03										

		DCPA, water fltrd 0.7u GF ug/L (82682)	Diazi- non, water, fltrd, ug/L (39572)	Dicamba water fltrd 0.7u GF ug/L (38442)	Di- chlor- prop, water, fltrd 0.7u GF ug/L (49302)	Diel- drin, water, fltrd, ug/L (39381)	Dimeth- enamid ESA, water, fltrd, ug/L (61951)	Dimeth- enamid OA, water, fltrd, ug/L (62482)	Dinoseb water, fltrd 0.7u GF ug/L (49301)	Diphen- amid, water, fltrd, ug/L (04033)	Diuron, water, fltrd 0.7u GF ug/L (49300)
CL Ce 205 CL Bd 179 CL Bd 180	08-21-03 08-21-03 08-21-03 08-21-03 08-20-03	<0.003 <0.003 <0.003	<0.005 <0.005 <0.005	 <0.01	 <0.01	<0.005 <0.005 <0.005	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	 <0.01	 <0.03	 <0.01
CL Bu 180	08-20-03 08-20-03	<0.003	<0.005	<0.01	<0.01	<0.005	<0.05	<0.05	<0.01	<0.03	<0.01

Well Number	Date	Fenuron water, fltrd 0.7u GF ug/L (49297)	Flufen- acet ESA, water, fltrd, ug/L (61952)	Flufe- nacet OA, water, fltrd, ug/L (62483)	Flumet- sulam, water, fltrd, ug/L (61694)	Fluo- meturon water fltrd 0.7u GF ug/L (38811)	Fonofos water, fltrd, ug/L (04095)	Hexa- zinone, water, fltrd, ug/L (04025)	Imaza- quin, water, fltrd, ug/L (50356)	Imaze- thapyr, water, fltrd, ug/L (50407)	Imida- cloprid water, fltrd, ug/L (61695)
CL Ce 205	08-21-03		< 0.05	< 0.05			< 0.003	< 0.013			
CL Bd 179	08-21-03 08-21-03 08-21-03		<0.05	<0.05			<0.003	<0.013	 		
CL Bd 180	08-20-03	< 0.03	< 0.05	< 0.05	< 0.01	< 0.03	< 0.003	< 0.013	< 0.02	< 0.02	< 0.007
	08-20-03										
		Linuron water fltrd 0.7u GF ug/L (38478)	Mala- thion, water, fltrd, ug/L (39532)	MCPA, water, fltrd 0.7u GF ug/L (38482)	MCPB, water, fltrd 0.7u GF ug/L (38487)	Meta- laxyl, water, fltrd, ug/L (50359)	Methio- carb, water, fltrd 0.7u GF ug/L (38501)	Meth- omyl, water, fltrd 0.7u GF ug/L (49296)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Metola- chlor ESA, water, fltrd 0.7u GF ug/L (61043)	Metola- chlor OA, water, fltrd 0.7u GF ug/L (61044)
CL Ce 205	08-21-03		< 0.027						<0.006	2.72	0.05
CL Bd 179	08-21-03 08-21-03		< 0.027						<0.006	0.76	0.21
CL Bd 180	<i>08-21-03</i> 08-20-03	<0.01	<0.027	<0.02	< 0.01	< 0.02	<0.008	< 0.004	<0.006	0.87	0.29
	08-20-03										
		Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Metsul- furon, water, fltrd, ug/L (61697)	N-(4- Chloro- phenyl) -N-' methyl- urea, ug/L (61692)	Neburon water, fltrd 0.7u GF ug/L (49294)	Nico- sul- furon, water, fltrd, ug/L (50364)	Norflur azon, water, fltrd 0.7u GF ug/L (49293)	Ory- zalin, water, fltrd 0.7u GF ug/L (49292)	Oxamyl, water, fltrd 0.7u GF ug/L (38866)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)
CL Ce 205	08-21-03	chlor, water, fltrd, ug/L (39415) E.006	buzin, water, fltrd, ug/L (82630) <0.006	furon, water, fltrd, ug/L (61697)	Chloro- phenyl) -N-' methyl- urea, ug/L (61692)	water, fltrd 0.7u GF ug/L (49294)	sul- furon, water, fltrd, ug/L (50364)	azon, water, fltrd 0.7u GF ug/L (49293)	zalin, water, fltrd 0.7u GF ug/L (49292)	water, fltrd 0.7u GF ug/L (38866)	meth- alin, water, fltrd 0.7u GF ug/L (82683) <0.022
CL Ce 205 CL Bd 179	<i>08-21-03</i> 08-21-03	chlor, water, fltrd, ug/L (39415) E.006 0.023	buzin, water, fltrd, ug/L (82630) <0.006	furon, water, fltrd, ug/L (61697) 	Chloro- phenyl) -N-' methyl- urea, ug/L (61692)	water, fltrd 0.7u GF ug/L (49294) 	sul- furon, water, fltrd, ug/L (50364)	azon, water, fltrd 0.7u GF ug/L (49293)	zalin, water, fltrd 0.7u GF ug/L (49292)	water, fltrd 0.7u GF ug/L (38866)	meth- alin, water, fltrd 0.7u GF ug/L (82683) <0.022
	08-21-03	chlor, water, fltrd, ug/L (39415) E.006	buzin, water, fltrd, ug/L (82630) <0.006	furon, water, fltrd, ug/L (61697)	Chloro- phenyl) -N-' methyl- urea, ug/L (61692)	water, fltrd 0.7u GF ug/L (49294) 	sul- furon, water, fltrd, ug/L (50364)	azon, water, fltrd 0.7u GF ug/L (49293) 	zalin, water, fltrd 0.7u GF ug/L (49292) 	water, fltrd 0.7u GF ug/L (38866)	meth- alin, water, fltrd 0.7u GF ug/L (82683) <0.022
CL Bd 179	08-21-03 08-21-03 08-21-03	chlor, water, fltrd, ug/L (39415) E.006 0.023 	buzin, water, fltrd, ug/L (82630) <0.006 <0.006	furon, water, fltrd, ug/L (61697) 	Chloro- phenyl) -N-' methyl- urea, ug/L (61692)	water, fltrd 0.7u GF ug/L (49294) 	sul- furon, water, fltrd, ug/L (50364) 	azon, water, fltrd 0.7u GF ug/L (49293)	zalin, water, fltrd 0.7u GF ug/L (49292) 	water, fltrd 0.7u GF ug/L (38866)	meth- alin, water, fltrd 0.7u GF ug/L (82683) <0.022 <0.022
CL Bd 179	08-21-03 08-21-03 08-21-03 08-20-03	chlor, water, fltrd, ug/L (39415) E.006 0.023 	buzin, water, fltrd, ug/L (82630) <0.006 <0.006	furon, water, fltrd, ug/L (61697) 	Chloro- phenyl) -N-' methyl- urea, ug/L (61692)	water, fltrd 0.7u GF ug/L (49294) 	sul- furon, water, fltrd, ug/L (50364) 	azon, water, fltrd 0.7u GF ug/L (49293)	zalin, water, fltrd 0.7u GF ug/L (49292) 	water, fltrd 0.7u GF ug/L (38866)	meth- alin, water, fltrd 0.7u GF ug/L (82683) <0.022 <0.022
CL Bd 179	08-21-03 08-21-03 08-21-03 08-20-03 08-20-03	chlor, water, fltrd, ug/L (39415) E.006 0.023 0.014 Phorate water fltrd 0.7u GF ug/L (82664) <0.011	buzin, water, fltrd, ug/L (82630) <0.006 <0.006 <0.006 loram, water, fltrd 0.7u GF ug/L (49291)	furon, water, fltrd, ug/L (61697) <0.03 vo.03 Prome- ton, water, fltrd, ug/L (04037) E.01	Chloro- phenyl) -N-' methyl- urea, ug/L (61692) <0.02 er <0.02 Prome- tryn, water, fltrd, ug/L (04036) <0.005	water, fltrd 0.7u GF ug/L (49294) <0.01 Pron- amide, water, fltrd 0.7u GF ug/L (82676) <0.004	sul- furon, water, fltrd, ug/L (50364) <0.01 Propham water fltrd 0.7u GF ug/L (49236)	azon, water, fltrd 0.7u GF ug/L (49293) <0.02 Propi- cona- zole, water, fltrd, ug/L (50471)	zalin, water, fltrd 0.7u GF ug/L (49292) <0.02 Pro- poxur, water, fltrd 0.7u GF ug/L (38538)	water, fltrd 0.7u GF ug/L (38866) <0.01 Siduron water, fltrd, ug/L (38548)	meth- alin, water, fltrd 0.7u GF ug/L (82683) <0.022 <0.022 <0.022 <0.022 Sima- zine, water, fltrd, ug/L
CL Bd 179 CL Bd 180	08-21-03 08-21-03 08-21-03 08-20-03 08-20-03 08-20-03 08-21-03 08-21-03 08-21-03	chlor, water, fltrd, ug/L (39415) E.006 0.023 0.014 Phorate water fltrd 0.7u GF ug/L (82664) <0.011 <0.011	buzin, water, fltrd, ug/L (82630) <0.006 <0.006 <0.006 Pic- loram, water, fltrd 0.7u GF ug/L (49291) 	furon, water, fltrd, ug/L (61697) <0.03 <0.03 vater, fltrd, ug/L (04037) E.01 M	Chloro- phenyl) -N-' methyl- urea, ug/L (61692) <0.02 enon tryn, water, fltrd, ug/L (04036) <0.005 <0.005	water, fltrd 0.7u GF ug/L (49294) <0.01 Pron- amide, water, fltrd 0.7u GF ug/L (82676) <0.004 <0.004	sul- furon, water, fltrd, ug/L (50364) <0.01 solution (49236) 	azon, water, fltrd 0.7u GF ug/L (49293) <0.02 Propi- cona- zole, water, fltrd, ug/L (50471) 	zalin, water, fltrd 0.7u GF ug/L (49292) <0.02 Pro- poxur, water, fltrd 0.7u GF ug/L (38538) 	water, fltrd 0.7u GF ug/L (38866) <0.01 siduron water, fltrd, ug/L (38548) 	meth- alin, water, fltrd 0.7u GF ug/L (82683) <0.022 <0.022 <0.022 <0.022 Sima- zine, water, fltrd, ug/L (04035) 0.114 <0.005
CL Bd 179 CL Bd 180 CL Ce 205	08-21-03 08-21-03 08-21-03 08-20-03 08-20-03 08-20-03	chlor, water, fltrd, ug/L (39415) E.006 0.023 0.014 Phorate water fltrd 0.7u GF ug/L (82664) <0.011 	buzin, water, fltrd, ug/L (82630) <0.006 <0.006 <0.006 - v. 0.006 - v. Uoram, water, fltrd 0.7u GF ug/L (49291)	furon, water, fltrd, ug/L (61697) <0.03 Vrome- ton, water, fltrd, ug/L (04037) E.01 	Chloro- phenyl) -N-' methyl- urea, ug/L (61692) <0.02 Prome- tryn, water, fltrd, ug/L (04036) <0.005 	water, fltrd 0.7u GF ug/L (49294) <0.01 Pron- amide, water, fltrd 0.7u GF ug/L (82676) <0.004 	sul- furon, water, fltrd, ug/L (50364) <0.01 Propham water fltrd 0.7u GF ug/L (49236) 	azon, water, fltrd 0.7u GF ug/L (49293) <0.02 Propi- cona- zole, water, fltrd, ug/L (50471)	zalin, water, fltrd 0.7u GF ug/L (49292) <0.02 Pro- poxur, water, fltrd 0.7u GF ug/L (38538) 	water, fltrd 0.7u GF ug/L (38866) <0.01 Siduron water, fltrd, ug/L (38548) 	meth- alin, water, fltrd 0.7u GF ug/L (82683) <0.022 <0.022 <0.022 Sima- zine, water, fltrd, ug/L (04035) 0.114

Well Number	Date	Sulfo- met- ruron, water, fltrd, ug/L (50337)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd, ug/L (04032)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Tri- clopyr, water, fltrd 0.7u GF ug/L (49235)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	1,1,1,2 -Tetra- chloro- ethane, water, unfltrd ug/L (77562)	1,1,1- Tri- chloro- ethane, water, unfltrd ug/L (34506)	1,1,2,2 -Tetra- chloro- ethane, water, unfltrd ug/L (34516)	CFC-113 water unfltrd ug/L (77652)
CL Ce 205	08-21-03		< 0.02		< 0.02		<0.009	< 0.03	< 0.03	< 0.09	< 0.06
CL Bd 179	<i>08-21-03</i> 08-21-03		< 0.02		< 0.02		<0.009	< 0.03	0.12	<0.09	<0.06
CL Bd 180	<i>08-21-03</i> 08-20-03	<0.009	< 0.02	<0.010	< 0.02	< 0.02	<0.009	< 0.03	< 0.03	<0.09	<0.06
	08-20-03										
CL Ce 205 CL Bd 179	08-21-03 08-21-03 08-21-03	1,1,2- Tri- chloro- ethane, water, unfltrd ug/L (34511) <0.06 <0.06	1,1-Di- chloro- ethane, water unfltrd ug/L (34496) <0.04 E.01	1,1-Di- chloro- ethene, water, unfltrd ug/L (34501) <0.04 E.06	1,1-Di- chloro- propene water unfltrd ug/L (77168) <0.05 <0.05	1,2,3,4 Tetra- methyl- benzene water unfltrd ug/L (49999) <0.2 <0.2	1,2,3,5 Tetra- methyl- benzene water unfltrd ug/L (50000) <0.2 <0.2	1,2,3- Tri- chloro- benzene water unfltrd ug/L (77613) <0.3 <0.3	1,2,3- Tri- chloro- propane water unfltrd ug/L (77443) <0.16	1,2,3- Tri- methyl- benzene water unfltrd ug/L (77221) <0.1 <0.1	1,2,4- Tri- chloro- benzene water unfltrd ug/L (34551) <0.1 <0.1
CL Bd 180	08-21-03 08-20-03	<0.06	<0.04	<0.04	< 0.05	<0.2	<0.2	<0.3	<0.16	<0.1	<0.1
	08-20-03										
		1,2,4- Tri- methyl- benzene water unfltrd ug/L (77222)	Dibromo chloro- propane water unfltrd ug/L (82625)	1,2-Di- bromo- ethane, water, unfltrd ug/L (77651)	1,2-Di- chloro- benzene water unfltrd ug/L (34536)	1,2-Di- chloro- ethane, water, unfltrd ug/L (32103)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	1,2-Di- chloro- propane water unfltrd ug/L (34541)	1,3,5- Tri- methyl- benzene water unfltrd ug/L (77226)	1,3-Di- chloro- benzene water unfltrd ug/L (34566)	1,3-Di- chloro- propane water unfltrd ug/L (77173)
CL Ce 205	08-21-03 <i>08-21-03</i>	<0.06	<0.5	<0.04	< 0.03	<0.1	108	< 0.03	<0.04	< 0.03	<0.1
CL Bd 179	08-21-03 08-21-03	<0.06	<0.5	<0.04	<0.03	<0.1	107	<0.03	<0.04	< 0.03	<0.1
CL Bd 180	08-20-03	<0.06	<0.5	< 0.04	< 0.03	<0.1	111	< 0.03	< 0.04	< 0.03	<0.1
	08-20-03										
		1,4-Di- chloro- benzene water unfltrd ug/L (34571)	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	2,2-Di- chloro- propane water unfltrd ug/L (77170)	2- Chloro- toluene water unfltrd ug/L (77275)	2- Ethyl- toluene water unfltrd ug/L (77220)	3- Chloro- propene water unfltrd ug/L (78109)	4- Chloro- toluene water unfltrd ug/L (77277)	4-Iso- propyl- toluene water unfltrd ug/L (77356)	Acetone water unfltrd ug/L (81552)	Acrylo- nitrile water unfltrd ug/L (34215)
CL Ce 205	08-21-03	< 0.05	83.4	< 0.05	< 0.04	< 0.06	<0.12	< 0.05	< 0.12	<7	<1
CL Bd 179	08-21-03 08-21-03	< 0.05	83.0	< 0.05	< 0.04	<0.06	<0.12	< 0.05	<0.12	<7	<1
CL Bd 180	<i>08-21-03</i> 08-20-03	< 0.05	80.6	< 0.05	<0.04	<0.06	<0.12	< 0.05	<0.12	<7	<1
	08-20-03										

Well Number	Date	Benzene water unfltrd ug/L (34030)	Bromo- benzene water unfltrd ug/L (81555)	Bromo- chloro- methane water unfltrd ug/L (77297)	Bromo- di- chloro- methane water unfltrd ug/L (32101)	Bromo- ethene, water, unfltrd ug/L (50002)	Bromo- methane water unfltrd ug/L (34413)	Carbon di- sulfide water unfltrd ug/L (77041)	Chloro- benzene water unfltrd ug/L (34301)	Chloro- ethane, water, unfltrd ug/L (34311)	Chloro- methane water unfltrd ug/L (34418)
CL Ce 205	08-21-03	< 0.04	< 0.04	<0.12	< 0.05	<0.1	< 0.3	< 0.07	< 0.03	<0.1	<0.2
CL Bd 179	08-21-03 08-21-03	<0.04	<0.04	<0.12	E.06	<0.1	<0.3	<0.07	< 0.03	<0.1	<0.2
CL Bd 180	<i>08-21-03</i> 08-20-03	<0.04	< 0.04	<0.12	< 0.05	<0.1	<0.3	<0.07	< 0.03	<0.1	<0.2
	08-20-03										
		cis- 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093)	cis- 1,3-Di- chloro- propene water unfltrd ug/L (34704)	Di- bromo- chloro- methane water unfltrd ug/L (32105)	Di- bromo- methane water unfltrd ug/L (30217)	Di- chloro- di- fluoro- methane wat unf ug/L (34668)	Di- chloro- methane water unfltrd ug/L (34423)	Di- ethyl ether, water, unfltrd ug/L (81576)	Diiso- propyl ether, water, unfltrd ug/L (81577)	Ethyl methac- rylate, water, unfltrd ug/L (73570)	Ethyl methyl ketone, water, unfltrd ug/L (81595)
CL Ce 205	08-21-03	< 0.04	<0.09	< 0.2	< 0.05	<0.18	<0.2	< 0.2	<0.10	< 0.2	<5.0
CL Bd 179	08-21-03 08-21-03	<0.04	<0.09	<0.2	<0.05	<0.18	<0.2	<0.2	<0.10	<0.2	<5.0
CL Bd 180	<i>08-21-03</i> 08-20-03	<0.04	<0.09	<0.2	< 0.05	<0.18	<0.2	<0.2	<0.10	<0.2	<5.0
	08-20-03										
		Ethyl- benzene water unfltrd ug/L (34371)	Hexa- chloro- buta- diene, water, unfltrd ug/L (39702)	Hexa- chloro- ethane, water, unfltrd ug/L (34396)	Iodo- methane water unfltrd ug/L (77424)	Iso- butyl methyl ketone, water, unfltrd ug/L (78133)	Iso- propyl- benzene water unfltrd ug/L (77223)	Methyl acrylo- nitrile water unfltrd ug/L (81593)	Methyl acryl- ate, water, unfltrd ug/L (49991)	Methyl methac- rylate, water, unfltrd ug/L (81597)	Methyl tert- pentyl ether, water, unfltrd ug/L (50005)
CL Ce 205	08-21-03	< 0.03	< 0.1	<0.2	< 0.35	<0.4	< 0.06	<0.6	<2.0	< 0.3	< 0.08
CL Bd 179	<i>08-21-03</i> 08-21-03	<0.03	<0.1	<0.2	<0.35	<0.4	<0.06	<0.6	<2.0	< 0.3	<0.08
CL Bd 180	<i>08-21-03</i> 08-20-03	<0.03	<0.1	<0.2	<0.35	<0.4	<0.06	<0.6	<2.0	<0.3	0.28
	08-20-03										
		meta- + para- Xylene, water, unfltrd	Naphth- alene, water, unfltrd	Methyl n-butyl ketone, water, unfltrd	n-Butyl benzene water unfltrd ug/L	n- propyl- benzene water unfltrd ug/L	o- Xylene, water, unfltrd ug/L	sec- Butyl- benzene water unfltrd ug/L	Styrene water unfltrd ug/L	t-Butyl ethyl ether, water, unfltrd ug/L	Methyl t-butyl ether, water, unfltrd ug/L
		ug/L (85795)	ug/L (34696)	ug/L (77103)	(77342)	(77224)	(77135)	(77350)	(77128)	(50004)	(78032)
CL Ce 205	08-21-03	(85795)	(34696)	(77103)	(77342)	(77224)	<0.07	<0.06	<0.04	(50004)	(78032)
CL Ce 205 CL Bd 179	<i>08-21-03</i> 08-21-03	(85795) <0.06 <0.06	<0.5 <0.5 <0.5	<0.7 <0.7 <0.7	<0.2 <0.2 <0.2	<0.04 <0.04 <0.04	<0.07 <0.07	<0.06	<0.04 <0.04	<0.05 <0.05 <0.05	<0.2
	08-21-03	(85795) <0.06 	(34696) <0.5	(77103) <0.7	<0.2	(77224) <0.04	<0.07	<0.06	<0.04	(50004) <0.05	<0.2

CARROLL COUNTY, MARYLAND-Continued

Well Number	Date	tert- Butyl- benzene water unfltrd ug/L (77353)	Tetra- chloro- ethene, water, unfltrd ug/L (34475)	Tetra- chloro- methane water unfltrd ug/L (32102)	Tetra- hydro- furan, water, unfltrd ug/L (81607)	Toluene water unfltrd ug/L (34010)	Toluene -d8, surrog, Sch2090 wat unf percent recovry (99833)	trans- 1,2-Di- chloro- ethene, water, unfltrd ug/L (34546)	trans- 1,3-Di- chloro- propene water unfltrd ug/L (34699)	trans- 1,4-Di- chloro- 2- butene, wat unf ug/L (73547)	Tri- bromo- methane water unfltrd ug/L (32104)
CL Ce 205	08-21-03 08-21-03	<0.10	<0.03	<0.06	<2	E.01	99.4	<0.03	<0.09	<0.7	<0.10
CL Bd 179	08-21-03 08-21-03 08-21-03	<0.10	E.01	<0.06	<2	E.02	97.0	< 0.03	<0.09	<0.7	<0.10
CL Bd 180	08-20-03	<0.10	<0.03	E.02	<2	< 0.05	95.8	< 0.03	<0.09	<0.7	<0.10
	08-20-03										

		Tri- chloro- ethene, water, unfltrd ug/L (39180)	Tri- chloro- fluoro- methane water unfltrd ug/L (34488)	Tri- chloro- methane water unfltrd ug/L (32106)	Vinyl chlor- ide, water, unfltrd ug/L (39175)
CL Ce 205	08-21-03	< 0.04	<0.09	E.04	<0.1
CL Bd 179	08-21-03 08-21-03	<0.04	E.05	1.32	<0.1
CL Bd 180	<i>08-21-03</i> 08-20-03	<0.04	<0.09	E.08	<0.1
	08-20-03				

Remark codes used in this table: < -- Less than E -- Estimated value M-- Presence verified, not quantified

CECIL COUNTY, MARYLAND

Well Number	Date	Time	Station 1	number	Sample	e type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)
CE Be 124 CE Be 123	09-25-03 09-25-03 09-24-03	1030 <i>1031</i> 1450	39374107 39360007		Environ <i>Replicat</i> Environ	е	211MGTY 211MGTY 211MGTY	GW <i>GW</i> GW	78 78 70	50.20 50.20 36.19	126 126 62.0
CE Cd 90	09-24-03 09-29-03	<i>1451</i> 1345	39344107		<i>Replicat</i> Environ	е	211MGTY 211MGTY	<i>GW</i> GW	70 117	36.19 29.82	62.0 39.0
	09-29-03	1346			Replicat	е	211MGTY	GW	117	29.82	39.0
		Flow rate, instan- taneous gal/min (00059)	Sam- pling method, code (82398)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)
CE Be 124	09-25-03	0.52	4040	759	4.8	47	4.8	134	24.0	14.6	13
CE Be 123	09-25-03 09-24-03 09-24-03	0.65	8010 4040 8010	765	8.3	84 	5.1	48	23.5	16.2	10
CE Cd 90	09-29-03	0.79	4040	762	4.1	42	4.2	17	21.0	16.7	2
	09-29-03		8010								
		Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	linity, wat flu inc tit field mg/L a CaCO3	Bicar- bonate, t wat flt incrm. , titr., as field, 3 mg/L) (00453)	Bromide water, fltrd, mg/L (71870)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
CE Be 124	09-25-03 <i>09-25-03</i>	2.89	1.47	0.38	16.4	3	4	E.05	27.4	<0.2	8.89
CE Be 123	09-24-03 <i>09-24-03</i>	1.63	1.48	0.46	4.72	7	8	0.05	7.18	<0.2	8.45
CE Cd 90	09-29-03	0.37	0.209	0.35	1.31			0.02	1.51	<0.2	7.45
	09-29-03										
		Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + n nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Organic carbon, water, fltrd, mg/L (00681)	E coli, MI MF, water, col/ 100 mL (90901)
CE Be 124	09-25-03	1.1	75	85	E.07	E.03	2.97	< 0.008	< 0.02	0.3	<1
CE Be 123	<i>09-25-03</i> 09-24-03	1.6	32	34	<0.10	<0.04	0.61	<0.008	E.01	0.4	<1 <1
CE Cd 90	<i>09-24-03</i> 09-29-03	1.9		 19	<0.10	<0.04	<0.06	<0.008	<0.02	<0.3	<1 <1
	09-29-03										<1

Sampling Method: 4040 - Submersible pump

Well Number	Date	Total coli- form, MI MF, water, col/ 100 mL (90900)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Barium, water, fltrd, ug/L (01005)	Beryll- ium, water, fltrd, ug/L (01010)	Boron, water, fltrd, ug/L (01020)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)
CE Be 124	09-25-03	E2	100	< 0.30	< 0.3	27	0.48		0.15	E.7	36.6
CE Be 123	09-25-03 09-24-03	E2 <1	 E1	<0.30	<0.3	 7	0.09	<7	0.04	3.1	6.32
CE Cd 90	<i>09-24-03</i> 09-29-03	<1 <1	 14	<0.30	<0.3	6	0.11	<7	E.02	4.1	4.95
	09-29-03	<1									
		Copper, water, fltrd, ug/L (01040)	Iron, water, fltrd, ug/L (01046)	Lead, water, fltrd, ug/L (01049)	Lithium water, fltrd, ug/L (01130)	Mangan- ese, water, fltrd, ug/L (01056)	Molyb- denum, water, fltrd, ug/L (01060)	Nickel, water, fltrd, ug/L (01065)	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)	Stront- ium, water, fltrd, ug/L (01080)
CE Be 124	09-25-03	418	480	7.90	5.2	22.4	< 0.3	72.4	< 0.5	< 0.2	16.4
CE Be 123	<i>09-25-03</i> 09-24-03	83.5	 85	 7.57	 1.5	2.1	0.5	21.0	<0.5	<0.2	5.94
CE Cd 90	<i>09-24-03</i> 09-29-03	140	 <8	13.2	2.8	23.6	<0.3	9.22	<0.5	<0.2	2.42
	09-29-03										
		Thall- ium,	Vanad- ium,	Zinc,	2,6-Di- ethyl- aniline water	CIAT,	Aceto- chlor,	Ala- chlor,	alpha- HCH,	alpha- HCH-d6, surrog, wat flt 0.7u GF	Atra- zine,
		water, fltrd, ug/L (01057)	water, fltrd, ug/L (01085)	water, fltrd, ug/L (01090)	fltrd 0.7u GF ug/L (82660)	water, fltrd, ug/L (04040)	water, fltrd, ug/L (49260)	water, fltrd, ug/L (46342)	water, fltrd, ug/L (34253)	percent recovry (91065)	water, fltrd, ug/L (39632)
CE Be 124	09-25-03	fltrd, ug/L (01057) 0.13	fltrd, ug/L (01085) 0.7	fltrd, ug/L (01090) 45	fltrd 0.7u GF ug/L (82660) <0.006	water, fltrd, ug/L (04040) <0.006	fltrd, ug/L (49260) <0.006	fltrd, ug/L (46342) <0.004	fltrd, ug/L (34253) <0.005	percent recovry (91065) 91.7	fltrd, ug/L (39632) <0.007
CE Be 124 CE Be 123	<i>09-25-03</i> 09-24-03	fltrd, ug/L (01057) 0.13 0.04	fltrd, ug/L (01085) 0.7 E.1	fltrd, ug/L (01090) 45 35	fltrd 0.7u GF ug/L (82660) <0.006	water, fltrd, ug/L (04040)	fltrd, ug/L (49260)	fltrd, ug/L (46342)	fltrd, ug/L (34253)	91.7 99.1	fltrd, ug/L (39632)
	09-25-03	fltrd, ug/L (01057) 0.13	fltrd, ug/L (01085) 0.7	fltrd, ug/L (01090) 45 	fltrd 0.7u GF ug/L (82660) <0.006	water, fltrd, ug/L (04040) <0.006	fltrd, ug/L (49260) <0.006	fltrd, ug/L (46342) <0.004	fltrd, ug/L (34253) <0.005	91.7	fltrd, ug/L (39632) <0.007
CE Be 123	09-25-03 09-24-03 09-24-03	fltrd, ug/L (01057) 0.13 0.04	fltrd, ug/L (01085) 0.7 E.1	fltrd, ug/L (01090) 45 35 	fltrd 0.7u GF ug/L (82660) <0.006 <0.006	water, fltrd, ug/L (04040) <0.006 <0.006	fltrd, ug/L (49260) <0.006 	fltrd, ug/L (46342) <0.004 <0.004	fltrd, ug/L (34253) <0.005 	91.7 99.1	fltrd, ug/L (39632) <0.007
CE Be 123	09-25-03 09-24-03 09-24-03 09-29-03	fltrd, ug/L (01057) 0.13 0.04	fltrd, ug/L (01085) 0.7 E.1	fltrd, ug/L (01090) 45 35 	fltrd 0.7u GF ug/L (82660) <0.006 <0.006	water, fltrd, ug/L (04040) <0.006 <0.006	fltrd, ug/L (49260) <0.006 	fltrd, ug/L (46342) <0.004 <0.004	fltrd, ug/L (34253) <0.005 	91.7 99.1	fltrd, ug/L (39632) <0.007
CE Be 123	09-25-03 09-24-03 09-24-03 09-29-03 09-29-03	fltrd, ug/L (01057) 0.13 0.04 0.07 Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686) <0.050	fltrd, ug/L (01085) 0.7 E.1 E.1 Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673) <0.010	fltrd, ug/L (01090) 45 35 47 Butyl- ate, water, fltrd, ug/L	fltrd 0.7u GF ug/L (82660) <0.006 <0.006 Car- baryl, water, fltrd 0.7u GF ug/L (82680) <0.041	water, fltrd, ug/L (04040) <0.006 <0.006 Carbo- furan, water, fltrd 0.7u GF ug/L (82674) <0.020	fltrd, ug/L (49260) <0.006 <0.006 Chlor- pyrifos water, fltrd, ug/L (38933) <0.005	fltrd, ug/L (46342) <0.004 <0.004 cis- Per- methrin water fltrd 0.7u GF ug/L (82687) <0.006	fltrd, ug/L (34253) <0.005 <0.005 <0.005 Cyana- zine, water, fltrd, ug/L (04041) <0.018	percent recovry (91065) 91.7 99.1 101 DCPA, water fltrd 0.7u GF ug/L (82682) <0.003	fltrd, ug/L (39632) <0.007 <0.007 <0.007 Diazi- non, water, fltrd, ug/L
CE Be 123 CE Cd 90	09-25-03 09-24-03 09-24-03 09-29-03 09-29-03 09-29-03 09-25-03 09-25-03 09-24-03	fltrd, ug/L (01057) 0.13 0.04 0.07 Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686) <0.050 <0.050	fltrd, ug/L (01085) 0.7 E.1 E.1 Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	fltrd, ug/L (01090) 45 35 47 Butyl- ate, water, fltrd, ug/L (04028)	fltrd 0.7u GF ug/L (82660) <0.006 <0.006 <0.006 Car- baryl, water, fltrd 0.7u GF ug/L (82680) <0.041 <0.041	water, fltrd, ug/L (04040) <0.006 <0.006 <0.006 <0.006 (ug/L (82674) <0.020 <0.020	fltrd, ug/L (49260) <0.006 <0.006 - Chlor- pyrifos water, fltrd, ug/L (38933)	fltrd, ug/L (46342) <0.004 <0.004 cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	fltrd, ug/L (34253) <0.005 <0.005 <0.005 Cyana- zine, water, fltrd, ug/L (04041)	percent recovry (91065) 91.7 99.1 101 DCPA, water fltrd 0.7u GF ug/L (82682)	fltrd, ug/L (39632) <0.007 <0.007 Diazi- non, water, fltrd, ug/L (39572)
CE Be 123 CE Cd 90 CE Be 124	09-25-03 09-24-03 09-29-03 09-29-03 09-29-03	fltrd, ug/L (01057) 0.13 0.04 0.07 Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686) <0.050 	fltrd, ug/L (01085) 0.7 E.1 E.1 Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673) <0.010	fltrd, ug/L (01090) 45 35 47 Butyl- ate, water, fltrd, ug/L (04028) <0.002 	fltrd 0.7u GF ug/L (82660) <0.006 <0.006 <0.006 Car- baryl, water, fltrd 0.7u GF ug/L (82680) <0.041 	water, fltrd, ug/L (04040) <0.006 <0.006 <0.006 Carbo- furan, water, fltrd 0.7u GF ug/L (82674) <0.020 	fltrd, ug/L (49260) <0.006 <0.006 c (0.006 pyrifos water, fltrd, ug/L (38933) <0.005 	fltrd, ug/L (46342) <0.004 <0.004 <0.004 cis- Per- methrin water fltrd 0.7u GF ug/L (82687) <0.006 	fltrd, ug/L (34253) <0.005 <0.005 <0.005 Cyana- zine, water, fltrd, ug/L (04041) <0.018 	percent recovry (91065) 91.7 99.1 101 DCPA, water fltrd 0.7u GF ug/L (82682) <0.003 	fltrd, ug/L (39632) <0.007 <0.007 c 0.007 Diazi- non, water, fltrd, ug/L (39572) <0.005

Well Number	Date	Diazi- non-d10 surrog. wat flt 0.7u GF percent recovry (91063)	Diel- drin, water, fltrd, ug/L (39381)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fonofos water, fltrd, ug/L (04095)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)
CE Be 124	09-25-03	89.3	< 0.005	< 0.02	< 0.002	<0.009	< 0.005	< 0.003	< 0.004	< 0.035	< 0.027
CE Be 123	<i>09-25-03</i> 09-24-03	113	< 0.005	<0.02	< 0.002	<0.009	< 0.005	< 0.003	<0.004	< 0.035	< 0.027
CE Cd 90	<i>09-24-03</i> 09-29-03	94.5	< 0.005	< 0.02	< 0.002	<0.009	< 0.005	< 0.003	< 0.004	< 0.035	< 0.027
	09-29-03										
		Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	p,p-' DDE, water, fltrd, ug/L (34653)	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)
CE Be 124	09-25-03	< 0.006	<0.013	<0.006	< 0.002	< 0.007	< 0.003	< 0.010	< 0.004	< 0.022	< 0.011
CE Be 123	09-25-03 09-24-03	<0.006	< 0.013	<0.006	< 0.002	< 0.007	< 0.003	< 0.010	< 0.004	< 0.022	<0.011
CE Cd 90	<i>09-24-03</i> 09-29-03	<0.006	<0.013	<0.006	< 0.002	<0.007	< 0.003	<0.010	<0.004	< 0.022	<0.011
	09-29-03										
		Prome- ton, water, fltrd, ug/L (04037)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Sima- zine, water, fltrd, ug/L (04035)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)
CE Be 124	09-25-03	ton, water, fltrd, ug/L (04037) <0.01	amide, water, fltrd 0.7u GF ug/L (82676) <0.004	chlor, water, fltrd, ug/L (04024) <0.010	panil, water, fltrd 0.7u GF ug/L (82679) <0.011	gite, water, fltrd 0.7u GF ug/L (82685) <0.02	zine, water, fltrd, ug/L (04035) <0.005	thiuron water fltrd 0.7u GF ug/L (82670) <0.02	cil, water, fltrd 0.7u GF ug/L (82665) <0.034	fos, water, fltrd 0.7u GF ug/L (82675) <0.02	bencarb water fltrd 0.7u GF ug/L (82681) <0.005
CE Be 124 CE Be 123	<i>09-25-03</i> 09-24-03	ton, water, fltrd, ug/L (04037) <0.01 <0.01	amide, water, fltrd 0.7u GF ug/L (82676) <0.004	chlor, water, fltrd, ug/L (04024) <0.010 <0.010	panil, water, fltrd 0.7u GF ug/L (82679) <0.011	gite, water, fltrd 0.7u GF ug/L (82685) <0.02	zine, water, fltrd, ug/L (04035) <0.005 <0.005	thiuron water fltrd 0.7u GF ug/L (82670) <0.02 <0.02	cil, water, fltrd 0.7u GF ug/L (82665) <0.034	fos, water, fltrd 0.7u GF ug/L (82675) <0.02	bencarb water fltrd 0.7u GF ug/L (82681) <0.005 <0.005
	09-25-03	ton, water, fltrd, ug/L (04037) <0.01	amide, water, fltrd 0.7u GF ug/L (82676) <0.004	chlor, water, fltrd, ug/L (04024) <0.010	panil, water, fltrd 0.7u GF ug/L (82679) <0.011	gite, water, fltrd 0.7u GF ug/L (82685) <0.02	zine, water, fltrd, ug/L (04035) <0.005	thiuron water fltrd 0.7u GF ug/L (82670) <0.02	cil, water, fltrd 0.7u GF ug/L (82665) <0.034	fos, water, fltrd 0.7u GF ug/L (82675) <0.02	bencarb water fltrd 0.7u GF ug/L (82681) <0.005
CE Be 123	09-25-03 09-24-03 09-24-03	ton, water, fltrd, ug/L (04037) <0.01 <0.01 	amide, water, fltrd 0.7u GF ug/L (82676) <0.004 <0.004	chlor, water, fltrd, ug/L (04024) <0.010 <0.010	panil, water, fltrd 0.7u GF ug/L (82679) <0.011 <0.011	gite, water, fltrd 0.7u GF ug/L (82685) <0.02 <0.02 	zine, water, fltrd, ug/L (04035) <0.005 <0.005 	thiuron water fltrd 0.7u GF ug/L (82670) <0.02 <0.02 	cil, water, fltrd 0.7u GF ug/L (82665) <0.034 	fos, water, fltrd 0.7u GF ug/L (82675) <0.02 <0.02 	bencarb water fltrd 0.7u GF ug/L (82681) <0.005 <0.005
CE Be 123	09-25-03 09-24-03 09-24-03 09-29-03	ton, water, fltrd, ug/L (04037) <0.01 <0.01 	amide, water, fltrd 0.7u GF ug/L (82676) <0.004 <0.004	chlor, water, fltrd, ug/L (04024) <0.010 <0.010	panil, water, fltrd 0.7u GF ug/L (82679) <0.011 <0.011	gite, water, fltrd 0.7u GF ug/L (82685) <0.02 <0.02 	zine, water, fltrd, ug/L (04035) <0.005 <0.005 	thiuron water fltrd 0.7u GF ug/L (82670) <0.02 <0.02 	cil, water, fltrd 0.7u GF ug/L (82665) <0.034 	fos, water, fltrd 0.7u GF ug/L (82675) <0.02 <0.02 	bencarb water fltrd 0.7u GF ug/L (82681) <0.005 <0.005
CE Be 123	09-25-03 09-24-03 09-29-03 09-29-03 09-29-03	ton, water, fltrd, ug/L (04037) <0.01 <0.01 <0.01 Tri- allate, water, fltrd 0.7u GF ug/L (82678) <0.002	amide, water, fltrd 0.7u GF ug/L (82676) <0.004 <0.004 <0.004 Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661) <0.009	chlor, water, fltrd, ug/L (04024) <0.010 <0.010 <0.010 <1,1,1,2 -Tetra- chloro- ethane, water, unfltrd ug/L (77562) <0.03	panil, water, fltrd 0.7u GF ug/L (82679) <0.011 <0.011 <0.011 1,1,1- Tri- chloro- ethane, water, unfltrd ug/L (34506) <0.03	gite, water, fltrd 0.7u GF ug/L (82685) <0.02 <0.02 <0.02 <1,1,2,2 -Tetra- chloro- ethane, water, unfltrd ug/L (34516) <0.09	zine, water, fltrd, ug/L (04035) <0.005 <0.005 <0.005 CFC-113 water unfltrd ug/L (77652) <0.06	thiuron water fltrd 0.7u GF ug/L (82670) <0.02 <0.02 <0.02 1,1,2- Tri- chloro- ethane, water, unfltrd ug/L (34511) <0.06	cil, water, fltrd 0.7u GF ug/L (82665) <0.034 <0.034 <0.034 1,1-Di- chloro- ethane, water unfltrd ug/L (34496) <0.04	fos, water, fltrd 0.7u GF ug/L (82675) <0.02 <0.02 <0.02 <0.02 <1,1-Di- chloro- ethene, water, unfltrd ug/L (34501) <0.04	bencarb water fltrd 0.7u GF ug/L (82681) <0.005 <0.005 <0.005 <1,1-Di- chloro- propene water unfltrd ug/L
CE Be 123 CE Cd 90	09-25-03 09-24-03 09-29-03 09-29-03 09-29-03 09-25-03 09-25-03 09-24-03	ton, water, fltrd, ug/L (04037) <0.01 <0.01 <0.01 <0.01 <0.01 (0.01 (0.01 (0.01 (0.01 (0.01) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0 <0 <0 <0 <0 <0 <0 <0 <0 - - - - - -	amide, water, fltrd 0.7u GF ug/L (82676) <0.004 <0.004 <0.004 - Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661) <0.009 <0.009	chlor, water, fltrd, ug/L (04024) <0.010 <0.010 <0.010 * 1,1,1,2 -Tetra- chloro- ethane, water, unftrd ug/L (77562) <0.03 <0.03	panil, water, fltrd 0.7u GF ug/L (82679) <0.011 <0.011 <0.011 tri- chloro- ethane, water, unfltrd ug/L (34506) <0.03 <0.03	gite, water, fltrd 0.7u GF ug/L (82685) <0.02 <0.02 <0.02 <1,1,2,2 -Tetra- chloro- ethane, water, unfltrd ug/L (34516) <0.09 <0.09	zine, water, fltrd, ug/L (04035) <0.005 <0.005 <0.005 CFC-113 water unfltrd ug/L (77652) <0.06 <0.06	thiuron water fltrd 0.7u GF ug/L (82670) <0.02 <0.02 <0.02 - - - - - - - - - - - - - - - - -	cil, water, fltrd 0.7u GF ug/L (82665) <0.034 <0.034 <0.034 - - - - - - - - - - - - - - - - -	fos, water, fltrd 0.7u GF ug/L (82675) <0.02 <0.02 <0.02 <0.02 <1.1-Di- chloro- ethene, water, unfltrd ug/L (34501) <0.04 <0.04	bencarb water fltrd 0.7u GF ug/L (82681) <0.005 <0.005 <0.005 unfltrd ug/L (77168) <0.05 <0.05
CE Be 123 CE Cd 90 CE Be 124	09-25-03 09-24-03 09-29-03 09-29-03 09-29-03	ton, water, fltrd, ug/L (04037) <0.01 <0.01 <0.01 - Tri- allate, water, fltrd 0.7u GF ug/L (82678) <0.002 	amide, water, fltrd 0.7u GF ug/L (82676) <0.004 <0.004 <0.004 - <0.004 - v0.004 (82661) (82661) <0.009 	chlor, water, fltrd, ug/L (04024) <0.010 <0.010 <0.010 * * * * * * * * * * * * * * * *	panil, water, fltrd 0.7u GF ug/L (82679) <0.011 <0.011 <0.011 thoro- ethane, water, unfltrd ug/L (34506) <0.03 	gite, water, fltrd 0.7u GF ug/L (82685) <0.02 <0.02 <0.02 <1,1,2,2 -Tetra- chloro- ethane, water, unfltrd ug/L (34516) <0.09 	zine, water, fltrd, ug/L (04035) <0.005 <0.005 <0.005 CFC-113 water unfltrd ug/L (77652) <0.06 	thiuron water fltrd 0.7u GF ug/L (82670) <0.02 <0.02 <0.02 thane, water, unfltrd ug/L (34511) <0.06 	cil, water, fltrd 0.7u GF ug/L (82665) <0.034 <0.034 <0.034 - - - - - - - - - - - - - - - - -	fos, water, fltrd 0.7u GF ug/L (82675) <0.02 <0.02 <0.02 <1,1-Di- chloro- ethene, water, unfltrd ug/L (34501) <0.04 	bencarb water fltrd 0.7u GF ug/L (82681) <0.005 <0.005 <0.005 - v0.005 v1,1-Di- chloro- propene water unfltrd ug/L (77168) <0.05

Well Number	Date	1,2,3,4 Tetra- methyl- benzene water unfltrd ug/L (49999)	1,2,3,5 Tetra- methyl- benzene water unfltrd ug/L (50000)	1,2,3- Tri- chloro- benzene water unfltrd ug/L (77613)	1,2,3- Tri- chloro- propane water unfltrd ug/L (77443)	1,2,3- Tri- methyl- benzene water unfltrd ug/L (77221)	1,2,4- Tri- chloro- benzene water unfltrd ug/L (34551)	1,2,4- Tri- methyl- benzene water unfltrd ug/L (77222)	Dibromo chloro- propane water unfltrd ug/L (82625)	1,2-Di- bromo- ethane, water, unfltrd ug/L (77651)	1,2-Di- chloro- benzene water unfltrd ug/L (34536)
CE Be 124	09-25-03	< 0.2	< 0.2	< 0.3	<0.16	<0.1	<0.1	<0.06	< 0.5	< 0.04	< 0.03
CE Be 123	<i>09-25-03</i> 09-24-03	<0.2	< 0.2	<0.3	<0.16	<0.1	<0.1	<0.06	<0.5	< 0.04	< 0.03
CE Cd 90	<i>09-24-03</i> 09-29-03	<0.2	<0.2	<0.3	<0.16	<0.1	<0.1	<0.06	<0.5	<0.04	< 0.03
	09-29-03										
		1,2-Di- chloro- ethane, water, unfltrd ug/L (32103)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	1,2-Di- chloro- propane water unfltrd ug/L (34541)	1,3,5- Tri- methyl- benzene water unfltrd ug/L (77226)	1,3-Di- chloro- benzene water unfltrd ug/L (34566)	1,3-Di- chloro- propane water unfltrd ug/L (77173)	1,4-Di- chloro- benzene water unfltrd ug/L (34571)	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	2,2-Di- chloro- propane water unfltrd ug/L (77170)	2- Chloro- toluene water unfltrd ug/L (77275)
CE Be 124	09-25-03	<0.1	118	< 0.03	< 0.04	< 0.03	<0.1	0.10	82.3	< 0.05	< 0.04
CE Be 123	<i>09-25-03</i> 09-24-03	<0.1	115	<0.03	<0.04	<0.03	<0.1	E.04	84.0	< 0.05	<0.04
CE Cd 90	<i>09-24-03</i> 09-29-03	<0.1	100	<0.03	<0.04	<0.03	<0.1	 E.06	83.8	<0.05	<0.04
	09-29-03										
		2- Ethyl- toluene water unfltrd ug/L (77220)	3- Chloro- propene water unfltrd ug/L (78109)	4- Chloro- toluene water unfltrd ug/L (77277)	4-Iso- propyl- toluene water unfltrd ug/L (77356)	Acetone water unfltrd ug/L (81552)	Acrylo- nitrile water unfltrd ug/L (34215)	Benzene water unfltrd ug/L (34030)	Bromo- benzene water unfltrd ug/L (81555)	Bromo- chloro- methane water unfltrd ug/L (77297)	Bromo- di- chloro- methane water unfltrd ug/L (32101)
CE Be 124	09-25-03	Ethyl- toluene water unfltrd ug/L (77220) <0.06	Chloro- propene water unfltrd ug/L (78109) <0.12	Chloro- toluene water unfltrd ug/L (77277) <0.05	propyl- toluene water unfltrd ug/L (77356) <0.12	water unfltrd ug/L (81552) <7	nitrile water unfltrd ug/L (34215) <1	water unfltrd ug/L (34030) <0.04	benzene water unfltrd ug/L (81555) <0.04	chloro- methane water unfltrd ug/L (77297) <0.12	di- chloro- methane water unfltrd ug/L (32101) <0.05
CE Be 124 CE Be 123	<i>09-25-03</i> 09-24-03	Ethyl- toluene water unfltrd ug/L (77220) <0.06	Chloro- propene water unfltrd ug/L (78109) <0.12 <0.12	Chloro- toluene water unfltrd ug/L (77277) <0.05	vater vater unfltrd ug/L (77356) <0.12	water unfltrd ug/L (81552) <7 <7	nitrile water unfltrd ug/L (34215) <1 <1	water unfltrd ug/L (34030) <0.04 	benzene water unfltrd ug/L (81555) <0.04	chloro- methane water unfltrd ug/L (77297) <0.12	di- chloro- methane water unfltrd ug/L (32101) <0.05
	09-25-03	Ethyl- toluene water unfltrd ug/L (77220) <0.06	Chloro- propene water unfltrd ug/L (78109) <0.12	Chloro- toluene water unfltrd ug/L (77277) <0.05	propyl- toluene water unfltrd ug/L (77356) <0.12	water unfltrd ug/L (81552) <7	nitrile water unfltrd ug/L (34215) <1	water unfltrd ug/L (34030) <0.04	benzene water unfltrd ug/L (81555) <0.04	chloro- methane water unfltrd ug/L (77297) <0.12	di- chloro- methane water unfltrd ug/L (32101) <0.05
CE Be 123	09-25-03 09-24-03 09-24-03	Ethyl- toluene water unfltrd ug/L (77220) <0.06 <0.06	Chloro- propene water unfltrd ug/L (78109) <0.12 <0.12	Chloro- toluene water unfltrd ug/L (77277) <0.05 <0.05	vater vater unfltrd ug/L (77356) <0.12 <0.12	water unfltrd ug/L (81552) <7 <7 <7 	nitrile water unfltrd ug/L (34215) <1 <1 	water unfltrd ug/L (34030) <0.04 <0.04 	benzene water unfltrd ug/L (81555) <0.04 <0.04	chloro- methane water unfltrd ug/L (77297) <0.12 <0.12	di- chloro- methane water unfltrd ug/L (32101) <0.05 <0.05
CE Be 123	09-25-03 09-24-03 09-24-03 09-29-03	Ethyl- toluene water unfltrd ug/L (77220) <0.06 <0.06	Chloro- propene water unfltrd ug/L (78109) <0.12 <0.12 <0.12	Chloro- toluene water unfltrd ug/L (77277) <0.05 <0.05	propyl- toluene water unfltrd ug/L (77356) <0.12 	water unfltrd ug/L (81552) <7 <7 <7 <7	nitrile water unfltrd ug/L (34215) <1 <1 <1	water unfltrd ug/L (34030) <0.04 <0.04 <0.04	benzene water unfltrd ug/L (81555) <0.04 <0.04 <0.04	chloro- methane water unfltrd ug/L (77297) <0.12 <0.12	di- chloro- methane water unfltrd ug/L (32101) <0.05 <0.05 <0.05
CE Be 123	09-25-03 09-24-03 09-29-03 09-29-03 09-29-03	Ethyl- toluene water unfltrd ug/L (77220) <0.06 <0.06 <0.06 sthene, water, unfltrd ug/L (50002) <0.1	Chloro- propene water unfltrd ug/L (78109) <0.12 <0.12 <0.12 Stromo- methane water unfltrd ug/L	Chloro- toluene water unfltrd ug/L (77277) <0.05 <0.05 <0.05 <0.05 <carbon di- sulfide water unfltrd ug/L</carbon 	propyl- toluene water unfltrd ug/L (77356) <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12	water unfltrd ug/L (81552) <7 <7 <7 <7 <7 <7 <7 (34311) <0.1	nitrile water unfltrd ug/L (34215) <1 <1 <1 <1 <1 <1 <1 (1 (1 (1) (34215) Chloro- methane water unfltrd (34215) 	water unfltrd ug/L (34030) <0.04 <0.04 <0.04 clis- 1,2-Di- chloro- ethene, water, unfltrd ug/L	benzene water unfltrd ug/L (81555) <0.04 <0.04 <0.04 <0.04 cloro- propene water unfltrd ug/L	chloro- methane water unfltrd ug/L (77297) <0.12 <0.12 <0.12 Di- bromo- chloro- methane water unfltrd ug/L	di- chloro- methane water unfltrd ug/L (32101) <0.05 <0.05 <0.05 <0.05 superiod bromo- methane water unfltrd ug/L
CE Be 123 CE Cd 90	09-25-03 09-24-03 09-29-03 09-29-03 09-29-03	Ethyl- toluene water unfltrd ug/L (77220) <0.06 <0.06 <0.06 superimediate sup	Chloro- propene water unfltrd ug/L (78109) <0.12 <0.12 <0.12 Stromo- methane water unfltrd ug/L (34413)	Chloro- toluene water unfltrd ug/L (77277) <0.05 <0.05 <0.05 <0.05 <0.05 Carbon di- sulfide water unfltrd ug/L (77041)	propyl- toluene water unfltrd ug/L (77356) <0.12 <0.12 <0.12 Chloro- benzene water unfltrd ug/L (34301)	water unfltrd ug/L (81552) <7 <7 <7 <7 <7 <7 <7 <7 <7 (34311)	nitrile water unfltrd ug/L (34215) <1 <1 <1 <1 <1 <1 <1 (1 (1 (1) (34215)	water unfltrd ug/L (34030) <0.04 <0.04 <0.04 <0.04 chloro- ethene, water, unfltrd ug/L (77093)	benzene water unfltrd ug/L (81555) <0.04 <0.04 <0.04 chloro- propene water unfltrd ug/L (34704)	chloro- methane water unfltrd ug/L (77297) <0.12 <0.12 <0.12 cloro- chloro- methane water unfltrd ug/L (32105)	di- chloro- methane water unfltrd ug/L (32101) <0.05 <0.05 <0.05 Source bromo- methane water unfltrd ug/L (30217)
CE Be 123 CE Cd 90 CE Be 124	09-25-03 09-24-03 09-29-03 09-29-03 09-29-03	Ethyl- toluene water unfltrd ug/L (77220) <0.06 <0.06 <0.06 <0.06 sthene, water, unfltrd ug/L (50002) <0.1	Chloro- propene water unfltrd ug/L (78109) <0.12 <0.12 <0.12 <0.12 state unfltrd ug/L (34413) <0.3 	Chloro- toluene water unfltrd ug/L (77277) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 	propyl- toluene water unfltrd ug/L (77356) <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0 - - - - - - - - - - - - - -	water unfltrd ug/L (81552) <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 -	nitrile water unfltrd ug/L (34215) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 	water unfltrd ug/L (34030) <0.04 <0.04 <0.04 clioro- ethene, water, unfltrd ug/L (77093) <0.04 	benzene water unfltrd ug/L (81555) <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0- <0- <0 <0 <0 <0 <0 <	chloro- methane water unfltrd ug/L (77297) <0.12 <0.12 <0.12 vlothoro- methane water unfltrd ug/L (32105) <0.2	di- chloro- methane water unfltrd ug/L (32101) <0.05 <0.05 <0.05 <0.05 superformo- methane water unfltrd ug/L (30217) <0.05

Well Number	Date	Di- chloro- di- fluoro- methane wat unf ug/L (34668)	Di- chloro- methane water unfltrd ug/L (34423)	Di- ethyl ether, water, unfltrd ug/L (81576)	Diiso- propyl ether, water, unfltrd ug/L (81577)	Ethyl methac- rylate, water, unfltrd ug/L (73570)	Ethyl methyl ketone, water, unfltrd ug/L (81595)	Ethyl- benzene water unfltrd ug/L (34371)	Hexa- chloro- buta- diene, water, unfltrd ug/L (39702)	Hexa- chloro- ethane, water, unfltrd ug/L (34396)	Iodo- methane water unfltrd ug/L (77424)
CE Be 124	09-25-03	<0.18	<0.2	< 0.2	<0.10	< 0.2	<5.0	< 0.03	< 0.1	< 0.2	< 0.35
CE Be 123	<i>09-25-03</i> 09-24-03	<0.18	<0.2	<0.2	<0.10	<0.2	<5.0	<0.03	<0.1	<0.2	<0.35
CE Cd 90	<i>09-24-03</i> 09-29-03	<0.18	<0.2	<0.2	<0.10	<0.2	<5.0	<0.03	<0.1	<0.2	<0.35
	09-29-03										
		Iso- butyl methyl ketone, water, unfltrd ug/L (78133)	Iso- propyl- benzene water unfltrd ug/L (77223)	Methyl acrylo- nitrile water unfltrd ug/L (81593)	Methyl acryl- ate, water, unfltrd ug/L (49991)	Methyl methac- rylate, water, unfltrd ug/L (81597)	Methyl tert- pentyl ether, water, unfltrd ug/L (50005)	meta- + para- Xylene, water, unfltrd ug/L (85795)	Naphth- alene, water, unfltrd ug/L (34696)	Methyl n-butyl ketone, water, unfltrd ug/L (77103)	n-Butyl benzene water unfltrd ug/L (77342)
CE Be 124	09-25-03	<0.4	<0.06	<0.6	<2.0	< 0.3	<0.08	<0.06	< 0.5	<0.7	< 0.2
CE Be 123	09-25-03 09-24-03	<0.4	<0.06	<0.6	<2.0	<0.3	<0.08	<0.06	<0.5	<0.7	<0.2
CE Cd 90	<i>09-24-03</i> 09-29-03	<0.4	<0.06	<0.6	<2.0	<0.3	<0.08	<0.06	<0.5	<0.7	<0.2
	09-29-03										
		n- propyl- benzene water unfltrd ug/L (77224)	o- Xylene, water, unfltrd ug/L (77135)	sec- Butyl- benzene water unfltrd ug/L (77350)	Styrene water unfltrd ug/L (77128)	t-Butyl ethyl ether, water, unfltrd ug/L (50004)	Methyl t-butyl ether, water, unfltrd ug/L (78032)	tert- Butyl- benzene water unfltrd ug/L (77353)	Tetra- chloro- ethene, water, unfltrd ug/L (34475)	Tetra- chloro- methane water unfltrd ug/L (32102)	Tetra- hydro- furan, water, unfltrd ug/L (81607)
CE Be 124	09-25-03 <i>09-25-03</i>	< 0.04	<0.07	<0.06	<0.04	< 0.05	E.1	<0.10	< 0.03	<0.06	<2
CE Be 123	09-23-03 09-24-03 09-24-03	<0.04	<0.07	<0.06	<0.04	<0.05	<0.2	<0.10	<0.03	<0.06	<2
CE Cd 90	09-29-03	< 0.04	< 0.07	<0.06	< 0.04	< 0.05	<0.2	<0.10	< 0.03	<0.06	<2
	09-29-03										
		Toluene water unfltrd ug/L (34010)	Toluene -d8, surrog, Sch2090 wat unf percent recovry (99833)	trans- 1,2-Di- chloro- ethene, water, unfltrd ug/L (34546)	trans- 1,3-Di- chloro- propene water unfltrd ug/L (34699)	trans- 1,4-Di- chloro- 2- butene, wat unf ug/L (73547)	Tri- bromo- methane water unfltrd ug/L (32104)	Tri- chloro- ethene, water, unfltrd ug/L (39180)	Tri- chloro- fluoro- methane water unfltrd ug/L (34488)	Tri- chloro- methane water unfltrd ug/L (32106)	Vinyl chlor- ide, water, unfltrd ug/L (39175)
CE Be 124	09-25-03	< 0.05	97.7	< 0.03	<0.09	<0.7	<0.10	< 0.04	<0.09	E.06	<0.1
CE Be 123	09-25-03 09-24-03	< 0.05	96.3	< 0.03	<0.09	<0.7	<0.10	< 0.04	<0.09	0.90	<0.1
CE Cd 90	<i>09-24-03</i> 09-29-03	E.02	97.7	< 0.03	<0.09	<0.7	<0.10	< 0.04	<0.09	E.05	<0.1
	09-29-03										

CECIL COUNTY, MARYLAND-Continued

Well Number	Date	Ra-228, water, fltrd, pCi/L (81366)	Rn-222 2-sigma water unfltrd pCi/L (76002)	Rn-222, water, unfltrd pCi/L (82303)	Uranium natural water, fltrd, ug/L (22703)
CE Be 124	09-25-03	4	21	270	0.04
	09-25-03				
CE Be 123	09-24-03	1	17	120	0.03
	09-24-03				
CE Cd 90	09-29-03	М	21	90	0.06
	09-29-03				

Remark codes used in this table: < -- Less than E -- Estimated value M-- Presence verified, not quantified

CHARLES COUNTY, MARYLAND

Well Number	Date	Time	Station number		Sample	Sample type		Geologic Station unit type		Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
CH Bg 17 CH Cb 7 CH Ch 19 CH Ee 90	03-04-03 10-21-02 11-25-02 10-09-02	1500 1300 1300 1100	383706076 383422077 383118076 382456076	114601 433501	Environn Environn Environn Environn	nental	217PPSCL 217PPSC 125AQUI 124NNJM	GW GW GW GW	1,353 400 420 21	167 420 16	154 400 11
		Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Color, water, fltrd, Pt-Co units (00080)	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)
CH Bg 17 CH Cb 7 CH Ch 19 CH Ee 90	03-04-03 10-21-02 11-25-02 10-09-02	 6.73	199.16 36.0 120 6.8	60.0 6.7 3.3 	300 114 28 	E15 8 E12	4040 4040 8030 4040	<1.0 <1.0 	8.0 7.5 8.0 5.3	240 322 206	20.6 15.5 17.4 19.2
							Alka-	Bicar-			

		Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Aika- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	blcar- bonate, wat flt incrm. titr., field, mg/L (00453)	Bromide water, fltrd, mg/L (71870)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)
CH Bg 17 CH Cb 7 CH Ch 19 CH Ee 90	03-04-03 10-21-02 11-25-02 10-09-02	5 15 61	1.09 3.03 16.9	0.512 1.81 4.44	3.21 3.01 5.46	54.2 68.2 8.64	115 133 116 12	140 162 141 15	0.02	0.78 19.6 10.7	1.26 0.82 <0.17

		Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as PO4 (00660)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, fltrd, mg/L (00666)
CH Bg 17 CH Cb 7	03-04-03 10-21-02	10.2 32.8	5.8 5.8	146 221	152 216	0.75	<0.06 <0.06	<0.008	4.85	 1.58	 1.49
CH Ch 19 CH Ee 90	11-25-02 10-09-02	13.9	 34.1	131	130	0.05	<0.00 6.59	<0.008 E.004		E.01	<0.04

Geologic Unit (aquifer): 124NNJM - Nanjemoy Formation

125AQUI - Aquia Formation

217PPSC -Patapsco Formation

217PPSCL - Lower Patapsco Aquifer In The Patapsco Formation

Station Type: GW - Ground Water

Sampling Method: 4040 - Submersible pump 8030 - Grab sample at water-supply tap

CHARLES COUNTY, MARYLAND-Continued

Well Number	Date	Phos- phorus, water, unfltrd mg/L (00665)	Organic carbon, water, unfltrd mg/L (00680)	Arsen- ate, water, fltrd, ug/L as As (62453)	Arsenic water, fltrd, ug/L (01000)	Arsen- ite, water, fltrd, ug/L as As (62452)	Beryll- ium, water, fltrd, ug/L (01010)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Mangan- ese, water, fltrd, ug/L (01056)
CH Bg 17 CH Cb 7 CH Ch 19 CH Ee 90	03-04-03 10-21-02 11-25-02 10-09-02	0.18	E.3 1.1 1.7	 2.1	<0.3 <0.3 E.2	3.5	<0.06 E.06	204 740 E6	320 890 1,010	<0.08 0.69	13.9 47.7 17.1
		Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Mercury water, fltrd, ug/L (71890)	Thall- ium, water, fltrd, ug/L (01057)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	alpha- HCH, water, fltrd, ug/L (34253)	alpha- HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)
CH Bg 17 CH Cb 7 CH Ch 19 CH Ee 90	03-04-03 10-21-02 11-25-02 10-09-02	12.0 46.0 27.6	<0.02 <0.02	<0.04 E.03	<0.006	<0.05 <0.05	<0.05 <0.05	<0.006	<0.004 <0.004	<0.005	76.9 81.5
		alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)	Ametryn water, fltrd, ug/L (38401)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Broma- cil, water, fltrd, ug/L (04029)	Buta- chlor, water, fltrd, ug/L (04026)	Butyl- ate, water, fltrd, ug/L (04028)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)
CH Bg 17 CH Cb 7 CH Ch 19 CH Ee 90	03-04-03 10-21-02 11-25-02 10-09-02	58.2 98.1	<0.05 <0.05	<0.007 <0.007	<0.050 <0.050	<0.010 <0.010	<0.05 <0.20	<0.05 <0.05	<0.002 <0.002	<0.041 E.004	<0.020 <0.020
		Car- boxin, water, fltrd, ug/L (04027)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)	DCPA, water fltrd 0.7u GF ug/L (82682)	Diazi- non, water, fltrd, ug/L (39572)	Diazi- non-d10 sur Sch 1379, wat flt pet rev (90670)	Diazi- non-d10 surrog. wat fit 0.7u GF percent recovry (91063)	Diel- drin, water, fltrd, ug/L (39381)

CH Bg 17	03-04-03										
СНСЬ 7	10-21-02	< 0.05	< 0.005	< 0.006	< 0.018	< 0.05	< 0.003	< 0.005	78.8	69.4	< 0.005
CH Ch 19	11-25-02										
CH Ee 90	10-09-02	< 0.05	< 0.005	< 0.006	< 0.018	< 0.05	< 0.003	< 0.005	86.5	115	< 0.005

CHARLES COUNTY, MARYLAND-Continued

Well Number	Date	Di- methyl- arsin- ate, wat flt ug/L as As (62455)	Diphen- amid, water, fltrd, ug/L (04033)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fonofos water, fltrd, ug/L (04095)	Hexa- zinone, water, fltrd, ug/L (04025)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)
CH Bg 17 CH Cb 7 CH Ch 19 CH Ee 90	03-04-03 10-21-02 11-25-02 10-09-02	 <0.1	<0.05 <0.05	<0.02 <0.02	<0.002 <0.002	<0.009 <0.009	<0.005 <0.005	<0.003 <0.003	<0.05 <0.05	<0.004 <0.004	<0.035 <0.035

		Mala- thion, water, fltrd, ug/L (39532)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Mono- methyl- arson- ate, wat flt ug/L as As (62454)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	p,p-' DDE, water, fltrd, ug/L (34653)	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)
CH Bg 17 CH Cb 7 CH Ch 19 CH Ee 90	03-04-03 10-21-02 11-25-02 10-09-02	<0.027 <0.027	<0.006 <0.006	<0.013 <0.013	<0.006 <0.006	<0.002 <0.002	 <0.1 	<0.007 <0.007	<0.003 <0.003	<0.010 <0.010	<0.004 <0.004

		Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)	Prome- ton, water, fltrd, ug/L (04037)	Prome- tryn, water, fltrd, ug/L (04036)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Propa- zine, water, fltrd, ug/L (38535)	Sima- zine, water, fltrd, ug/L (04035)
CH Bg 17 CH Cb 7 CH Ch 19 CH Ee 90	03-04-03 10-21-02 11-25-02 10-09-02	<0.022 <0.022	<0.011 <0.011	<0.01 <0.01	<0.05 <0.05	<0.004 <0.004	<0.010 <0.010	<0.011 <0.011	<0.02 <0.02	<0.05 <0.05	<0.005 <0.005

		Sima- tryn, water, fltrd, ug/L (04030)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Terba- cil, water, fltrd, ug/L (04032)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	Tri- flur- alin, water, fltrd, ug/L (04023)	Vernol- ate, water, fltrd, ug/L (04034)
CH Bg 17 CH Cb 7 CH Ch 19 CH Ee 90	03-04-03 10-21-02 11-25-02 10-09-02	<0.05 <0.05	<0.02 <0.02	<0.034 <0.034	<0.05	<0.02 <0.02	<0.005 <0.005	<0.002 <0.002	<0.009 <0.009	<0.05	<0.05

CHARLES COUNTY, MARYLAND-Continued

Well Number	Date	Xylenes water unfltrd ug/L (81551)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	Benzene water unfltrd ug/L (34030)	Ethyl- benzene water unfltrd ug/L (34371)	meta- + para- Xylene, water, unfltrd ug/L (85795)	o- Xylene, water, unfltrd ug/L (77135)	Methyl t-butyl ether, water, unfltrd ug/L (78032)	Toluene water unfltrd ug/L (34010)	Toluene -d8, surrog, Sch2090 wat unf percent recovry (99833)
CH Bg 17 CH Cb 7 CH Ch 19 CH Ee 90	03-04-03 10-21-02 11-25-02 10-09-02	0.4 <0.2	103 123	100	<0.2	0.1 <0.2	0.2 <0.2	0.2 <0.2	<0.2 <0.2	0.2 <0.2	106 101
				Alpha radio-	Alpha radio-	Beta radio-	Gross beta				

		radio- activty 2-sigma wat flt Th-230, pCi/L (75987)	radio- activty water, fltrd, Th-230, pCi/L (04126)	radio- activty 2-sigma wat flt CS-137, pCi/L (75989)	beta radioac water, fltrd, Cs-137, pCi/L (03515)	Rn-222 2-sigma water unfltrd pCi/L (76002)	Rn-222, water, unfltrd pCi/L (82303)
CH Bg 17 CH Cb 7 CH Ch 19 CH Ee 90	03-04-03 10-21-02 11-25-02 10-09-02	0.88 0.72 1.6	M 1 3	1.0 2.2 1.5	4 3 9	23 20 	330 220

Remark codes used in this table: < -- Less than E -- Estimated value M-- Presence verified, not quantified

DORCHESTER COUNTY, MARYLAND

Well Number	Date	Time	Station	number	Sampl	e type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
DO Cc 54	10-29-02	1300	38344007	6144701	Environ		125AQUI	GW	525	525	505
DO Cf 39	11-21-02 10-30-02 11-21-02	1500 1400 1100	38313307	5580501	Environ Environ Environ	mental	125AQUI 124PNPN 124PNPN	GW GW GW	525 481 481	525 481 481	495 461 461
DO Ch 41	09-09-03	1400	38333807	5472301	Environ		112CLMB	GW	83	83	73
DO Ed 17 DO Ed 18	11-13-02 11-21-02 11-13-02	1230 1200 1130	38205807 38210207		Environ Environ Environ	mental	124PNPN 124PNPN 124PNPN	GW GW GW	480 480 480	480 480 450	460 460 435
DO Fc 27	10-30-02 11-21-02	1000 1230	38155107		Environ	mental	124PNPN 124PNPN	GW GW	440 440	440 440	420 420
		Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Color, water, fltrd, Pt-Co units (00080)	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)
DO Cc 54	10-29-02 11-21-02	5.0 5.0	$4.0 \\ 6.0$	48 20		8030 8030		8.5	310 307	18.6 19.0	
DO Cf 39	10-30-02	15.0	6.0	27		8030		7.9		17.9	
DO Ch 41	11-21-02 09-09-03	15.0 25.0	5.0 3.0	32	2	8030 8030		4.7	329	16.7	100
DO Ed 17	11-13-02	5.0	5.0	33		8030		8.1		18.4	
DO Ed 18	11-21-02 11-13-02	5.0 3.0	3.0	20 1		8030 8030	<1.0	8.1			
DO Fc 27	10-30-02 11-21-02	$\begin{array}{c} 10.0 \\ 10.0 \end{array}$	4.1 4.0	38 22		8030 8030		8.0		18.4	
		Calcium water, fltrd	Magnes- ium, water, fltrd	Potas- sium, water, fltrd	Sodium, water, fltrd	Alka- linity, wat flt inc tit field, mg/L as	Bicar- bonate, wat flt incrm. titr., field	Bromide water, fltrd	Chlor- ide, water, fltrd	Fluor- ide, water, fltrd	Silica, water, fltrd

		Calcium water, fltrd, mg/L (00915)	ium, water, fltrd, mg/L (00925)	sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	wat fit inc tit field, mg/L as CaCO3 (39086)	wat fit incrm. titr., field, mg/L (00453)	Bromide water, fltrd, mg/L (71870)	ide, water, fltrd, mg/L (00940)	fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
DO Cc 54	10-29-02 11-21-02					127	154				
DO Cf 39	10-30-02 11-21-02					608	741				
DO Ch 41	09-09-03	23.8	10.1	3.54	8.36	0.5	0.6		18.7	<0.2	12.4
DO Ed 17	11-13-02					506	617	0.25			
DO Ed 18	11-21-02 11-13-02										
DO Fc 27	10-30-02					456	556				
	11-21-02										

Geologic Unit (aquifer): 112CLMB - Columbia Formation 124PNPN - Piney Point Formation 125AQUI - Aquia Formation

Station Type: GW - Ground Water

Sampling Method: 8030 - Grab sample at water-supply tap

DORCHESTER COUNTY, MARYLAND-Continued

Well Number	Date	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, fltrd, mg/L (00666)	Organic carbon, water, unfltrd mg/L (00680)	Arsen- ate, water, fltrd, ug/L as As (62453)
DO Cc 54	10-29-02										7.1
	11-21-02										4.3
DO Cf 39	10-30-02										0.4
	11-21-02										4.3
DO Ch 41	09-09-03	28.8	205	197	< 0.04	22.5	< 0.008	< 0.02	< 0.04	1.0	
DO Ed 17	11-13-02										6.4
	11-21-02										1.9
DO Ed 18	11-13-02										
DO Fc 27	10-30-02										5.4
	11-21-02										1.7

		Arsenic water, fltrd, ug/L (01000)	Arsen- ite, water, fltrd, ug/L as As (62452)	Beryll- ium, water, fltrd, ug/L (01010)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Mercury water, fltrd, ug/L (71890)	Thall- ium, water, fltrd, ug/L (01057)
DO Cc 54	10-29-02		4.3								
	11-21-02		16.6								
DO Cf 39	10-30-02		3.7								
	11-21-02		7.2								
DO Ch 41	09-09-03	< 0.3		0.51	14	20	1.98	114	115	< 0.02	0.05
DO Ed 17	11-13-02		7.6								
	11-21-02		12.6								
DO Ed 18	11-13-02										
DO Fc 27	10-30-02		15.3								
	11-21-02		6.4								

		CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	alpha- HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)	Ametryn water, fltrd, ug/L (38401)	Atra- zine, water, fltrd, ug/L (39632)	Broma- cil, water, fltrd, ug/L (04029)	Buta- chlor, water, fltrd, ug/L (04026)	Butyl- ate, water, fltrd, ug/L (04028)
DO Cc 54	10-29-02										
	11-21-02										
DO Cf 39	10-30-02										
	11-21-02										
DO Ch 41	09-09-03	< 0.05	< 0.05	< 0.05	< 0.05	72.9	< 0.05	< 0.05	<1.00	< 0.05	< 0.05
DO Ed 17	11-13-02										
	11-21-02										
DO Ed 18	11-13-02										
DO Fc 27	10-30-02										
	11-21-02										

DORCHESTER COUNTY, MARYLAND-Continued

Well Number	Date	Car- boxin, water, fltrd, ug/L (04027)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)	Diazi- non-d10 sur Sch 1379, wat flt pct rcv (90670)	Di- methyl- arsin- ate, wat flt ug/L as As (62455)	Diphen- amid, water, fltrd, ug/L (04033)	Hexa- zinone, water, fltrd, ug/L (04025)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Mono- methyl- arson- ate, wat flt ug/L as As (62454)
DO Cc 54	10-29-02					< 0.1					0.1
0000001	11-21-02					0.2					<0.1
DO Cf 39	10-30-02					< 0.1					0.1
	11-21-02					< 0.1					< 0.1
DO Ch 41	09-09-03	< 0.05	< 0.02	< 0.05	85.6		< 0.05	< 0.05	< 0.05	< 0.05	
DO Ed 17	11-13-02					0.2					< 0.1
	11-21-02					0.2					< 0.1
DO Ed 18	11-13-02										
DO Fc 27	10-30-02					0.1					0.3
	11-21-02					0.1					< 0.1

		Prome- ton, water, fltrd, ug/L (04037)	Prome- tryn, water, fltrd, ug/L (04036)	Propa- chlor, water, fltrd, ug/L (04024)	Propa- zine, water, fltrd, ug/L (38535)	Sima- zine, water, fltrd, ug/L (04035)	Sima- tryn, water, fltrd, ug/L (04030)	Terba- cil, water, fltrd, ug/L (04032)	Tri- flur- alin, water, fltrd, ug/L (04023)	Vernol- ate, water, fltrd, ug/L (04034)	Xylenes water unfltrd ug/L (81551)
DO Cc 54	10-29-02										
	11-21-02										
DO Cf 39	10-30-02										
	11-21-02										
DO Ch 41	09-09-03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2
DO Ed 17	11-13-02										
	11-21-02										
DO Ed 18	11-13-02										
DO Fc 27	10-30-02										
	11-21-02										

		1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	Benzene water unfltrd ug/L (34030)	Ethyl- benzene water unfltrd ug/L (34371)	meta- + para- Xylene, water, unfltrd ug/L (85795)	o- Xylene, water, unfltrd ug/L (77135)	Methyl t-butyl ether, water, unfltrd ug/L (78032)	Toluene water unfltrd ug/L (34010)	Toluene -d8, surrog, Sch2090 wat unf percent recovry (99833)	Alpha radio- activty 2-sigma wat flt Th-230, pCi/L (75987)
DO Cc 54	10-29-02										
	11-21-02										
DO Cf 39	10-30-02										
	11-21-02										
DO Ch 41	09-09-03	105	80.9	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	99.5	1.9
DO Ed 17	11-13-02										
	11-21-02										
DO Ed 18	11-13-02										
DO Fc 27	10-30-02										
	11-21-02										

DORCHESTER COUNTY, MARYLAND-Continued

Well Number	Date	Alpha radio- activty water, fltrd, Th-230, pCi/L (04126)	Beta radio- activty 2-sigma wat flt CS-137, pCi/L (75989)	Gross beta radioac water, fltrd, Cs-137, pCi/L (03515)	Rn-222 2-sigma water unfltrd pCi/L (76002)	Rn-222, water, unfltrd pCi/L (82303)
DO Cc 54	10-29-02					
	11-21-02					
DO Cf 39	10-30-02					
	11-21-02					
DO Ch 41	09-09-03	2	1.5	5	21	220
DO Ed 17	11-13-02					
	11-21-02					
DO Ed 18	11-13-02					
DO Fc 27	10-30-02					
	11-21-02					

Remark codes used in this table: < -- Less than M-- Presence verified, not quantified

FREDERICK COUNTY, MARYLAND

Well Number	Date	Time	Station	umber	Sample	e type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
FR Dc 62	08-27-03 08-27-03	0915	39254507	7303201	Environ		400CTCN	GW	642	642	106
FR Eg 37	09-04-03 <i>09-04-03</i>	0916 0900 0905	39205307		Replicat Environ Replicat	nental e	400CTCN 300MRBG 300MRBG	GW GW GW	642 95 95	642 95 95	106 55 55
FR Eg 36	09-03-03	1100	39215707	7102101	Environ		300MRBG	GW	182	182	43
FR Dc 69	09-03-03 08-26-03 08-26-03	1105 1150 1155	39255407	7320501	Replicate Environ Replicate	nental	300MRBG 400CTCN 400CTCN	GW GW GW	182 500 500	182 500 500	43 58 58
		Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling method, code (82398)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)
FR Dc 62	08-27-03 <i>08-27-03</i>	700 700	17.0	$\begin{array}{c} 40\\ 40\end{array}$	4040 8030	761	7.0	67	6.1	508	20.0
FR Eg 37	09-04-03	760	37.5	50	4040	760	8.4	84	4.7	154	22.0
FR Eg 36	<i>09-04-03</i> 09-03-03	760 700	37.5 269	50 30	<i>4040</i> 4040	762	8.0	75	5.5	303	24.0
FR Dc 69	09-03-03 08-26-03 08-26-03	700 520 520	269 66.0 	30 40 40	4040 4040 8030	762 	1.3	 15 	8.2	292 	28.0
		Temper- ature, water, deg C (00010)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Organic carbon, water, fltrd, mg/L (00681)	E coli, MI MF, water, col/ 100 mL (90901)	Total coli- form, MI MF, water, col/ 100 mL (90900)	2,4,5-T surrog, water, fltrd, percent recovry (99958)	2,4-D methyl ester, water, fltrd, ug/L (50470)	2,4-D water, fltrd, ug/L (39732)	2,4-DB water, fltrd 0.7u GF ug/L (38746)
FR Dc 62	08-27-03	13.5	80	97	0.3	<1	<1	101	< 0.009	< 0.02	< 0.02
FR Eg 37	<i>08-27-03</i> 09-04-03	15.0	10	13	E.2	<1 <1	< <i>l</i> E4	84.0	<0.009	< 0.02	< 0.02
FR Eg 36	<i>09-04-03</i> 09-03-03	12.5	33	 40	0.4	<1 <1	<i>E3</i> <1	<i>103</i> 108	<0.009 <0.009	<0.02 <0.02	<0.02 <0.02
FR Dc 69	09-03-03 08-26-03 08-26-03	23.0	109 	133	1.8 1.8	<1 <1 <1	<1 E8 E16	95.6 	<0.009 	<0.02	<0.02

Geologic Unit (aquifer): 300MRBG - Marburg Formation 400CTCN - Catoctin Metabasalt

Station Type: GW - Ground Water

- Sampling Method: 4040 Submersible pump
 - 8030 Grab sample at water-supply tap

Well Number	Date	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	OIET, water, fltrd, ug/L (50355)	3- Hydroxy carbo- furan, wat flt 0.7u GF ug/L (49308)	3-Keto- carbo- furan, water, fltrd, ug/L (50295)	Aceto- chlor ESA, water, fltrd 0.7u GF ug/L (61029)	Aceto- chlor OA, water, fltrd 0.7u GF ug/L (61030)	Aceto- chlor, water, fltrd, ug/L (49260)	Aci- fluor- fen, water, fltrd 0.7u GF ug/L (49315)
FR Dc 62	08-27-03	< 0.006	E.092	E.02	E.003	< 0.006	<2	< 0.05	< 0.05	< 0.006	< 0.007
FR Eg 37	08-27-03 09-04-03	<0.006	E.055 E.054	E.01	<0.008	<0.006	<2	<0.05	<0.05	<0.006	<0.007
FR Eg 36	<i>09-04-03</i> 09-03-03	<0.006 <0.006	E.034 E.075	<i>E.01</i> E.04	<0.008 <0.008	<0.006 <0.006	<2 <2	<0.05 <0.05	<0.05 <0.05	<0.006 <0.006	<0.007 <0.007
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.006	E.108	<0.04	E.011	<0.006	<2	<0.05	<0.05	<0.006 	<0.007
		Ala- chlor ESA, water, fltrd 0.7u GF ug/L (50009)	Ala- chlor OA, water, fltrd 0.7u GF ug/L (61031)	Ala- chlor, water, fltrd, ug/L (46342)	Aldi- carb sulfone water, fltrd 0.7u GF ug/L (49313)	Aldi- carb sulf- oxide, wat flt 0.7u GF ug/L (49314)	Aldi- carb, water, fltrd 0.7u GF ug/L (49312)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Barban, surrog, Sched. 2060/ 9060, wat flt pct rcv (90640)	Bendio- carb, water, fltrd, ug/L (50299)
FR Dc 62	08-27-03	< 0.05	< 0.05	< 0.004	< 0.02	< 0.008	< 0.04	0.082	< 0.050	126	<0.03
FR Eg 37	08-27-03 09-04-03 09-04-03	<0.05 <0.05	<0.05 <0.05	<0.004 <0.004	<0.02 <0.02	<0.008 <0.008	<0.04 <0.04	0.016 0.015	<0.050 <0.050	107 124	<0.03 <0.03
FR Eg 36	09-03-03	0.30	1.23	0.249	<0.02	<0.008	<0.04	0.083	<0.050	77.8	<0.03
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.05	<0.05	<0.004	<0.02	<0.008	<0.04	0.334	<0.050	41.8	<0.03
		Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Benomyl water, fltrd, ug/L (50300)	Bensul- furon, water, fltrd, ug/L (61693)	Ben- tazon, water, fltrd 0.7u GF ug/L (38711)	Broma- cil, water, fltrd, ug/L (04029)	Brom- oxynil, water, fltrd 0.7u GF ug/L (49311)	Caf- feine, water, fltrd, ug/L (50305)	Caf- feine- 13C, surrog, wat flt percent recovry (99959)	Car- baryl, water, fltrd 0.7u GF ug/L (49310)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)
FR Dc 62	08-27-03	<0.010	< 0.004	< 0.02	< 0.01	< 0.03	< 0.02	<0.5	108	< 0.03	<0.041
FR Eg 37	08-27-03 09-04-03 09-04-03	<0.010 <0.010	<0.004 <0.004	<0.02 <0.02	<0.01 <0.01	<0.03 <0.03	<0.02 <0.02	<0.5 <0.5	93.3 110	<0.03 <0.03	<0.041 <0.041
FR Eg 36	09-03-03	<0.010	<0.004	<0.02	E.01	<0.03	<0.02	<0.5	110	<0.03	<0.041
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.010	<0.004 	<0.02	<0.01	<0.03	<0.02	<0.5	92.6	<0.03	<0.041

Well Number	Date	Carbo- furan, water, fltrd 0.7u GF ug/L (49309)	Chlor- amben methyl ester, water, fltrd, ug/L (61188)	Chlori- muron, water, fltrd, ug/L (50306)	Chloro- di- amino- s-tri- azine, wat flt ug/L (04039)	Chloro- thalo- nil, water, fltrd 0.7u GF ug/L (49306)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Clopyr- alid, water, fltrd 0.7u GF ug/L (49305)	Cyclo- ate, water, fltrd, ug/L (04031)	Dacthal mono- acid, water, fltrd 0.7u GF ug/L (49304)
FR Dc 62	08-27-03 08-27-03	<0.006	<0.02	<0.010	E.02	<0.04	< 0.005	< 0.006	<0.01	<0.01	<0.01
FR Eg 37	09-04-03 09-04-03	<0.006	<0.02 <0.02	<0.010 <0.010	M <i>E.01</i>	<0.04 <0.04	<0.005 <0.005	<0.006 <0.006	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
FR Eg 36	09-03-03	E.004	<0.02	<0.010	<0.01	<0.04	< 0.005	<0.006	<0.01	<0.01	<0.01
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.006	<0.02	<0.010	E.01	<0.04	<0.005	<0.006 	<0.01	<0.01	<0.01

		DCPA, water fltrd 0.7u GF ug/L (82682)	Diazi- non, water, fltrd, ug/L (39572)	Dicamba water fltrd 0.7u GF ug/L (38442)	Di- chlor- prop, water, fltrd 0.7u GF ug/L (49302)	Diel- drin, water, fltrd, ug/L (39381)	Dimeth- enamid ESA, water, fltrd, ug/L (61951)	Dimeth- enamid OA, water, fltrd, ug/L (62482)	Dinoseb water, fltrd 0.7u GF ug/L (49301)	Diphen- amid, water, fltrd, ug/L (04033)	Diuron, water, fltrd 0.7u GF ug/L (49300)
FR Dc 62	08-27-03 08-27-03	< 0.003	< 0.005	< 0.01	<0.01	< 0.005	< 0.05	< 0.05	<0.01	<0.03	< 0.01
FR Eg 37	09-04-03 09-04-03	<0.003 <0.003	<0.005 <0.005	<0.01 <0.01	<0.01 <0.01	<0.005 <0.005	<0.05 <0.05	<0.05 <0.05	<0.01 <0.01	<0.03 <0.03	<0.01 <0.01
FR Eg 36	09-03-03	<0.003	<0.005	<0.01	<0.01	<0.005	<0.05	<0.05	<0.01	<0.03	<0.01
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.003	<0.005	<0.01	<0.01	<0.005	<0.05	<0.05	<0.01	<0.03	<0.01

		Fenuron water, fltrd 0.7u GF ug/L (49297)	Flufen- acet ESA, water, fltrd, ug/L (61952)	Flufe- nacet OA, water, fltrd, ug/L (62483)	Flumet- sulam, water, fltrd, ug/L (61694)	Fluo- meturon water fltrd 0.7u GF ug/L (38811)	Fonofos water, fltrd, ug/L (04095)	Hexa- zinone, water, fltrd, ug/L (04025)	Imaza- quin, water, fltrd, ug/L (50356)	Imaze- thapyr, water, fltrd, ug/L (50407)	Imida- cloprid water, fltrd, ug/L (61695)
FR Dc 62	08-27-03 08-27-03	< 0.03	< 0.05	< 0.05	<0.01	< 0.03	< 0.003	< 0.013	< 0.02	< 0.02	<0.007
FR Eg 37	09-04-03 09-04-03	<0.03 <0.03	<0.05 <0.05	<0.05 <0.05	<0.01 <0.01	<0.03 <0.03	<0.003 <0.003	<0.013 <0.013	<0.02 <0.02	<0.02 <0.02	<0.007 <0.007
FR Eg 36	09-03-03	<0.03	<0.05	<0.05	<0.01	<0.03	<0.003	E.008	<0.02	<0.02	<0.007
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.07	<0.05	<0.05	<0.01	<0.03	<0.003	<0.013	<0.02	<0.02	<0.007

Well Number	Date	Linuron water fltrd 0.7u GF ug/L (38478)	Mala- thion, water, fltrd, ug/L (39532)	MCPA, water, fltrd 0.7u GF ug/L (38482)	MCPB, water, fltrd 0.7u GF ug/L (38487)	Meta- laxyl, water, fltrd, ug/L (50359)	Methio- carb, water, fltrd 0.7u GF ug/L (38501)	Meth- omyl, water, fltrd 0.7u GF ug/L (49296)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Metola- chlor ESA, water, fltrd 0.7u GF ug/L (61043)	Metola- chlor OA, water, fltrd 0.7u GF ug/L (61044)
FR Dc 62	08-27-03 08-27-03	<0.01	<0.027	<0.02	<0.01	<0.02	< 0.008	< 0.004	<0.006	0.15	<0.05
FR Eg 37	09-04-03 09-04-03	<0.01 <0.01	<0.027 <0.027	<0.02 <0.02	<0.01 <0.01	<0.02 <0.02	<0.008 <0.008	<0.004 <0.004	<0.006 <0.006	0.55 0.55	0.10 0.11
FR Eg 36	09-03-03	<0.01	<0.027	<0.02	<0.01	<0.02	<0.008	< 0.004	<0.006	0.76	0.85
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.01	<0.027	<0.02	<0.01	<0.02	<0.008	<0.004	<0.006	0.31	<0.05

		Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Metsul- furon, water, fltrd, ug/L (61697)	N-(4- Chloro- phenyl) -N-' methyl- urea, ug/L (61692)	Neburon water, fltrd 0.7u GF ug/L (49294)	Nico- sul- furon, water, fltrd, ug/L (50364)	Norflur azon, water, fltrd 0.7u GF ug/L (49293)	Ory- zalin, water, fltrd 0.7u GF ug/L (49292)	Oxamyl, water, fltrd 0.7u GF ug/L (38866)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)
FR Dc 62	08-27-03 08-27-03	E.003	<0.006	< 0.03	<0.02	<0.01	<0.01	<0.02	<0.02	<0.01	<0.022
FR Eg 37	09-04-03 09-04-03	E.004	< 0.006	< 0.03	< 0.02	< 0.01	< 0.01	< 0.02	< 0.02	< 0.01	< 0.022
FR Eg 36	09-04-03	<i>E.004</i> 1.58	<0.006 <0.006	<0.03 <0.03	<0.02 <0.02	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02	<0.01 <0.01	<0.022 <0.022
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.013	<0.006	<0.03	<0.02	<0.01	<0.01	<0.02	<0.02	<0.01	<0.022

		Phorate water fltrd 0.7u GF ug/L (82664)	Pic- loram, water, fltrd 0.7u GF ug/L (49291)	Prome- ton, water, fltrd, ug/L (04037)	Prome- tryn, water, fltrd, ug/L (04036)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propham water fltrd 0.7u GF ug/L (49236)	Propi- cona- zole, water, fltrd, ug/L (50471)	Pro- poxur, water, fltrd 0.7u GF ug/L (38538)	Siduron water, fltrd, ug/L (38548)	Sima- zine, water, fltrd, ug/L (04035)
FR Dc 62	08-27-03 08-27-03	< 0.011	< 0.02	< 0.01	<0.005	< 0.004	<0.010	< 0.02	<0.008	< 0.02	E.004
FR Eg 37	09-04-03 09-04-03	<0.011 <0.011	<0.02 <0.02	<0.01 <0.01	<0.005 <0.005	<0.004 <0.004	<0.010 <0.010	<0.02 <0.02	<0.008 <0.008	<0.02 <0.02	<0.005 <0.005
FR Eg 36	09-03-03	< 0.011	0.08	М	< 0.005	< 0.004	<0.010	< 0.02	<0.008	< 0.02	0.009
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.011	<0.02	<0.01	<0.005	<0.004	<0.010	<0.02	<0.008	<0.02	<0.005

Well Number	Date	Sulfo- met- ruron, water, fltrd, ug/L (50337)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd, ug/L (04032)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Tri- clopyr, water, fltrd 0.7u GF ug/L (49235)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	1,1,1,2 -Tetra- chloro- ethane, water, unfltrd ug/L (77562)	1,1,1- Tri- chloro- ethane, water, unfltrd ug/L (34506)	1,1,2,2 -Tetra- chloro- ethane, water, unfltrd ug/L (34516)	CFC-113 water unfltrd ug/L (77652)
FR Dc 62	08-27-03	< 0.009	< 0.02	< 0.010	< 0.02	< 0.02	< 0.009	< 0.03	E.05	< 0.09	<0.06
FR Eg 37	08-27-03 09-04-03	< 0.009	< 0.02	< 0.010	< 0.02	< 0.02	< 0.009	< 0.03	<0.03	<0.09	<0.06
FR Eg 36	<i>09-04-03</i> 09-03-03	<0.009 <0.009	<0.02 E.01	<0.010 E.060	<0.02 <0.02	<0.02 <0.02	<0.009 <0.009	< 0.03	< 0.03	<0.09	<0.06
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.009 	<0.02	<0.010 	<0.02	<0.02	<0.009	<0.03 <0.03	<0.03 <0.03	<0.09 <0.09 	<0.06 <0.06
		1,1,2- Tri- chloro- ethane, water, unfltrd ug/L (34511)	1,1-Di- chloro- ethane, water unfltrd ug/L (34496)	1,1-Di- chloro- ethene, water, unfltrd ug/L (34501)	1,1-Di- chloro- propene water unfltrd ug/L (77168)	1,2,3,4 Tetra- methyl- benzene water unfltrd ug/L (49999)	1,2,3,5 Tetra- methyl- benzene water unfltrd ug/L (50000)	1,2,3- Tri- chloro- benzene water unfltrd ug/L (77613)	1,2,3- Tri- chloro- propane water unfltrd ug/L (77443)	1,2,3- Tri- methyl- benzene water unfltrd ug/L (77221)	1,2,4- Tri- chloro- benzene water unfltrd ug/L (34551)
FR Dc 62	08-27-03	<0.06	< 0.04	< 0.04	< 0.05	<0.2	< 0.2	<0.3	<0.16	<0.1	<0.1
FR Eg 37	08-27-03 09-04-03 09-04-03	<0.06	<0.04	<0.04	<0.05	<0.2	<0.2	<0.3	<0.16	<0.1	<0.1
FR Eg 36	09-03-03	<0.06	<0.04	< 0.04	< 0.05	<0.2	<0.2	<0.3	<0.16	<0.1	<0.1
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.06 <0.06	<0.04 <0.04	<0.04 <0.04	<0.05 <0.05	<0.2 0.9	<0.2 1.5	<0.3 <0.3	<0.16 <0.16	<0.1 1.5 	<0.1 <0.1
		1,2,4- Tri- methyl- benzene water unfltrd ug/L (77222)	Dibromo chloro- propane water unfltrd ug/L (82625)	1,2-Di- bromo- ethane, water, unfltrd ug/L (77651)	1,2-Di- chloro- benzene water unfltrd ug/L (34536)	1,2-Di- chloro- ethane, water, unfltrd ug/L (32103)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	1,2-Di- chloro- propane water unfltrd ug/L (34541)	1,3,5- Tri- methyl- benzene water unfltrd ug/L (77226)	1,3-Di- chloro- benzene water unfltrd ug/L (34566)	1,3-Di- chloro- propane water unfltrd ug/L (77173)
FR Dc 62	08-27-03	<0.06	<0.5	<0.04	< 0.03	<0.1	146	< 0.03	<0.04	<0.03	<0.1
FR Eg 37	08-27-03 09-04-03 09-04-03	<0.06	<0.5	<0.04	<0.03	<0.1	105	< 0.03	<0.04	<0.03	<0.1
FR Eg 36	09-04-03	<0.06	< 0.5	< 0.04	<0.03	<0.1	102	< 0.03	<0.04	<0.03	<0.1
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.06 2.37 	<0.5 <0.5	<0.04 <0.04	<0.03 <0.03	<0.1 E.1	102 105 	<0.03 <0.03	<0.04 0.94 	<0.03 <0.03	<0.1 <0.1

Well Number	Date	1,4-Di- chloro- benzene water unfltrd ug/L (34571)	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	2,2-Di- chloro- propane water unfltrd ug/L (77170)	2- Chloro- toluene water unfltrd ug/L (77275)	2- Ethyl- toluene water unfltrd ug/L (77220)	3- Chloro- propene water unfltrd ug/L (78109)	4- Chloro- toluene water unfltrd ug/L (77277)	4-Iso- propyl- toluene water unfltrd ug/L (77356)	Acetone water unfltrd ug/L (81552)	Acrylo- nitrile water unfltrd ug/L (34215)
FR Dc 62	08-27-03	< 0.05	77.6	< 0.05	< 0.04	<0.06	< 0.12	< 0.05	<0.12	<7	<1
FR Eg 37	08-27-03 09-04-03 09-04-03	< 0.05	88.0	< 0.05	<0.04	<0.06	<0.12	< 0.05	<0.12	<7	<1
FR Eg 36	09-03-03	< 0.05	90.9	< 0.05	< 0.04	<0.06	< 0.12	< 0.05	< 0.12	<7	<1
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.05 <0.05	86.7 97.1	<0.05 <0.05	<0.04 <0.04	<0.06 0.67	<0.12 <0.12	<0.05 <0.05	<0.12 E.06	<7 8 	<1 M

		Benzene water unfltrd ug/L (34030)	Bromo- benzene water unfltrd ug/L (81555)	Bromo- chloro- methane water unfltrd ug/L (77297)	Bromo- di- chloro- methane water unfltrd ug/L (32101)	Bromo- ethene, water, unfltrd ug/L (50002)	Bromo- methane water unfltrd ug/L (34413)	Carbon di- sulfide water unfltrd ug/L (77041)	Chloro- benzene water unfltrd ug/L (34301)	Chloro- ethane, water, unfltrd ug/L (34311)	Chloro- methane water unfltrd ug/L (34418)
FR Dc 62	08-27-03 08-27-03	< 0.04	<0.04	<0.12	< 0.05	<0.1	< 0.3	<0.07	< 0.03	<0.1	<0.2
FR Eg 37	09-04-03 09-04-03	< 0.04	< 0.04	<0.12	E.04	<0.1	< 0.3	< 0.07	< 0.03	<0.1	<0.2
FR Eg 36	09-03-03	< 0.04	< 0.04	< 0.12	< 0.05	<0.1	< 0.3	< 0.07	< 0.03	<0.1	<0.2
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.04 0.63	<0.04 <0.04	<0.12 <0.12	<0.05 <0.05	<0.1 <0.1	<0.3 <0.3	<0.07 12.7	<0.03 <0.03	<0.1 <0.1	<0.2 <0.2

		cis- 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093)	cis- 1,3-Di- chloro- propene water unfltrd ug/L (34704)	Di- bromo- chloro- methane water unfltrd ug/L (32105)	Di- bromo- methane water unfltrd ug/L (30217)	Di- chloro- di- fluoro- methane wat unf ug/L (34668)	Di- chloro- methane water unfltrd ug/L (34423)	Di- ethyl ether, water, unfltrd ug/L (81576)	Diiso- propyl ether, water, unfltrd ug/L (81577)	Ethyl methac- rylate, water, unfltrd ug/L (73570)	Ethyl methyl ketone, water, unfltrd ug/L (81595)
FR Dc 62	08-27-03 08-27-03	<0.04	<0.09	<0.2	< 0.05	<0.18	<0.2	<0.2	<0.10	<0.2	<5.0
FR Eg 37	09-04-03 09-04-03	<0.04	<0.09	<0.2	<0.05	<0.18	<0.2	<0.2	<0.10	<0.2	<5.0
FR Eg 36	09-03-03	< 0.04	< 0.09	< 0.2	< 0.05	< 0.18	< 0.2	< 0.2	< 0.10	< 0.2	<5.0
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.04 <0.04	<0.09 <0.09 	<0.2 <0.2	<0.05 <0.05 	<0.18 <0.18	<0.2 1.0	<0.2 <0.2	<0.10 <0.10	<0.2 <0.2	<5.0 330

Well Number	Date	Ethyl- benzene water unfltrd ug/L (34371)	Hexa- chloro- buta- diene, water, unfltrd ug/L (39702)	Hexa- chloro- ethane, water, unfltrd ug/L (34396)	Iodo- methane water unfltrd ug/L (77424)	Iso- butyl methyl ketone, water, unfltrd ug/L (78133)	Iso- propyl- benzene water unfltrd ug/L (77223)	Methyl acrylo- nitrile water unfltrd ug/L (81593)	Methyl acryl- ate, water, unfltrd ug/L (49991)	Methyl methac- rylate, water, unfltrd ug/L (81597)	Methyl tert- pentyl ether, water, unfltrd ug/L (50005)
FR Dc 62	08-27-03	< 0.03	< 0.1	< 0.2	< 0.35	<0.4	<0.06	<0.6	<2.0	< 0.3	<0.08
FR Eg 37	08-27-03 09-04-03	< 0.03	<0.1	<0.2	< 0.35	<0.4	<0.06	<0.6	<2.0	<0.3	<0.08
FR Eg 36	<i>09-04-03</i> 09-03-03	< 0.03	<0.1	<0.2	< 0.35	<0.4	<0.06	<0.6	<2.0	<0.3	<0.08
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.03 0.52	<0.1 <0.1	<0.2 <0.2	<0.35 <0.35	<0.4 E.8	<0.06 E.07	<0.6 <0.6	<2.0 <2.0	<0.3 <0.3	<0.08 <0.08
		meta- + para- Xylene, water, unfltrd ug/L (85795)	Naphth- alene, water, unfltrd ug/L (34696)	Methyl n-butyl ketone, water, unfltrd ug/L (77103)	n-Butyl benzene water unfltrd ug/L (77342)	n- propyl- benzene water unfltrd ug/L (77224)	o- Xylene, water, unfltrd ug/L (77135)	sec- Butyl- benzene water unfltrd ug/L (77350)	Styrene water unfltrd ug/L (77128)	t-Butyl ethyl ether, water, unfltrd ug/L (50004)	Methyl t-butyl ether, water, unfltrd ug/L (78032)
FR Dc 62	08-27-03	<0.06	<0.5	<0.7	< 0.2	< 0.04	< 0.07	<0.06	< 0.04	< 0.05	E.1
FR Eg 37	08-27-03 09-04-03 09-04-03	<0.06	<0.5	<0.7	<0.2	< 0.04	<0.07	<0.06	< 0.04	< 0.05	E.1
FR Eg 36	09-04-03	<0.06	<0.5	<0.7	<0.2	<0.04	<0.07	<0.06	< 0.04	< 0.05	E.1
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.06 3.28	<0.5 1.0 	<0.7 <0.7	<0.2 E.1	<0.04 0.11	<0.07 2.84 	<0.06 E.06 	<0.04 <0.21	<0.05 <0.05	<i>E.1</i> <0.2
		tert- Butyl- benzene water unfltrd ug/L (77353)	Tetra- chloro- ethene, water, unfltrd ug/L (34475)	Tetra- chloro- methane water unfltrd ug/L (32102)	Tetra- hydro- furan, water, unfltrd ug/L (81607)	Toluene water unfltrd ug/L (34010)	Toluene -d8, surrog, Sch2090 wat unf percent recovry (99833)	trans- 1,2-Di- chloro- ethene, water, unfltrd ug/L (34546)	trans- 1,3-Di- chloro- propene water unfltrd ug/L (34699)	trans- 1,4-Di- chloro- 2- butene, wat unf ug/L (73547)	Tri- bromo- methane water unfltrd ug/L (32104)
FR Dc 62	08-27-03	<0.10	E.05	< 0.06	<2	E.01	101	< 0.03	< 0.09	<0.7	<0.10
FR Eg 37	08-27-03 09-04-03 09-04-03	<0.10	<0.03	<0.06	<2	<0.05	99.7	< 0.03	<0.09	<0.7	<0.10
FR Eg 36	09-04-03	<0.10	<0.03	<0.06	<2	<0.05	99.7	<0.03	<0.09	<0.7	<0.10
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.10 <0.10	<0.03 <0.03	<0.06 <0.06	<2 1,020	<0.05 0.22	98.2 97.5	<0.03 <0.03	<0.09 <0.09	<0.7 <0.7	<0.10 <0.10

FREDERICK COUNTY, MARYLAND-Continued

Well Number	Date	Tri- chloro- ethene, water, unfltrd ug/L (39180)	Tri- chloro- fluoro- methane water unfltrd ug/L (34488)	Tri- chloro- methane water unfltrd ug/L (32106)	Vinyl chlor- ide, water, unfltrd ug/L (39175)
FR Dc 62	08-27-03	< 0.04	E.06	1.42	< 0.1
FR Eg 37	08-27-03 09-04-03	<0.04	<0.09	0.25	<0.1
FR Eg 36	<i>09-04-03</i> 09-03-03	< 0.04	<0.09	E.02	<0.1
FR Dc 69	09-03-03 08-26-03 08-26-03	<0.04 <0.04	<0.09 <0.09	<i>E.02</i> 13.5	<0.1 <0.1

Remark codes used in this table: < -- Less than E -- Estimated value M-- Presence verified, not quantified

HARFORD COUNTY, MARYLAND

Well Number	Date	Time	Station	number	Samp	le type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
HA Cf 169 HA Dd 92 HA Ec 49	09-30-03 <i>09-30-03</i> 10-07-02 09-17-03 <i>09-17-03</i>	1045 1050 1200 1405 1406	3927210	76072701 76150302 76203001	Environ <i>Replica</i> Environ Environ <i>Replica</i>	te mental mental	217PTMC 217PTMC 112TLBT 217PTMC 217PTMC	GW GW GW GW	62 62 38 93 93	62 62 28 93 <i>93</i>	52 52 16 88 88
		Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Color, water, fltrd, Pt-Co units (00080)	Sam- pling method, code (82398)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)
HA Cf 169 HA Dd 92 HA Ec 49	09-30-03 09-30-03 10-07-02 09-17-03 09-17-03	36.90 36.90 13.20 35.50 35.50	43 43 20.1 21.0 21.0	0.75 0.75 1.5 1.2	155 155 70 97 97	 E20 	4040 <i>4040</i> 4040 4040 <i>4040</i>	767 769 	5.8 <1.0 3.1	58 31 	5.4 5.9 4.0

		Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)
HA Cf 169	09-30-03 <i>09-30-03</i>	346	19.5	15.6	110 110	24.4 24.5	12.5 12.5	1.94 1.92	14.2 14.3	17 17	20 21
HA Dd 92	10-07-02	551		17.5	100	18.2	13.2	0.74	67.4	51	62
HA Ec 49	09-17-03	38	25.0	15.8	4	0.83	0.415	0.51	2.39		
	09-17-03										

							Residue	Residue	Ammonia		Nitrite
		Bromide water, fltrd, mg/L (71870)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	water, fltrd, sum of consti- tuents mg/L (70301)	on evap. at 180degC wat flt mg/L (70300)	+ org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	+ nitrate water fltrd, mg/L as N (00631)
HA Cf 169	09-30-03 09-30-03	0.08 0.08	68.1 67.9	<0.2 <0.2	20.3 20.4	E.1 <i>E.1</i>		214 216	<0.10 <0.10	<0.04 <0.04	8.44 8.61
HA Dd 92	10-07-02		101	<0.2	20.4 34.1	55.2	326	333	<0.10	0.14	6.01 E.04
HA Ec 49	09-17-03	E.01	2.64	<0.17	7.82	4.6		32	< 0.10	< 0.04	0.62
	09-17-03										

Geologic Unit (aquifer): 112TLBT - Talbot Formation

217PTMC - Potomac Group

Station Type: GW - Ground Water

Sampling Method: 4040 - Submersible pump

Well Number	Date	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, fltrd, mg/L (00666)	Organic carbon, water, fltrd, mg/L (00681)	Organic carbon, water, unfltrd mg/L (00680)	E coli, MI MF, water, col/ 100 mL (90901)	Total coli- form, MI MF, water, col/ 100 mL (90900)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)
HA Cf 169 HA Dd 92 HA Ec 49	09-30-03 09-30-03 10-07-02 09-17-03 09-17-03	<0.008 <0.008 <0.008 <0.008	<0.02 <0.02 E.01 <0.02	 E.02 	<0.3 <0.3 E.2	 1.1 	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	2 E2 99	<0.30 <0.30 <0.30	<0.3 <0.3 1.8 <0.3

		Barium, water, fltrd, ug/L (01005)	Beryll- ium, water, fltrd, ug/L (01010)	Boron, water, fltrd, ug/L (01020)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)
HA Cf 169	09-30-03 <i>09-30-03</i>	89 90	E.03 <i>E.04</i>	<7 <7	0.06 0.07	1.4 1.3	0.214 0.199	73.3 82.8	E5 <i>E7</i>		9.02 9.45
HA Dd 92	10-07-02	90	<0.04	</td <td>0.07</td> <td>1.5</td> <td>0.199</td> <td>02.0</td> <td>4.890</td> <td>4.440</td> <td>9.45 0.14</td>	0.07	1.5	0.199	02.0	4.890	4.440	9.45 0.14
HA Ec 49	09-17-03	7	0.52	<7	0.04	1.5	11.5	119	-,070		7.84
	09-17-03										

		Lithium water, fltrd, ug/L (01130)	Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Mercury water, fltrd, ug/L (71890)	Molyb- denum, water, fltrd, ug/L (01060)	Nickel, water, fltrd, ug/L (01065)	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)	Stront- ium, water, fltrd, ug/L (01080)	Thall- ium, water, fltrd, ug/L (01057)
HA Cf 169	09-30-03 09-30-03	1.9 1.7	1.8 1.8			<0.3 <0.3	3.09 3.10	<0.5 <0.5	<0.2 <0.2	119 117	<0.04 <0.04
HA Dd 92	10-07-02		246	235	< 0.02						<0.04
HA Ec 49	09-17-03	5.7	30.0			< 0.3	19.7	< 0.5	< 0.2	3.42	0.06
	09-17-03										

		Vanad- ium, water, fltrd, ug/L (01085)	Zinc, water, fltrd, ug/L (01090)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	alpha- HCH, water, fltrd, ug/L (34253)	alpha- HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)	alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)
HA Cf 169	09-30-03 09-30-03	0.3	13	<0.006	< 0.006		< 0.006	< 0.004	< 0.005		98.1 91.8
	.,	0.3	14		<0.006		< 0.006	< 0.004	< 0.005		
HA Dd 92	10-07-02			< 0.006	< 0.05	< 0.05	< 0.006	< 0.004	< 0.005	76.0	85.8
HA Ec 49	09-17-03	< 0.1	41	< 0.006	< 0.006		< 0.006	< 0.004	< 0.005		101
	09-17-03										

Well Number	Date	Ametryn water, fltrd, ug/L (38401)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Broma- cil, water, fltrd, ug/L (04029)	Buta- chlor, water, fltrd, ug/L (04026)	Butyl- ate, water, fltrd, ug/L (04028)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Car- boxin, water, fltrd, ug/L (04027)
HA Cf 169 HA Dd 92 HA Ec 49	09-30-03 09-30-03 10-07-02 09-17-03 09-17-03	 <0.05 	<0.007 <0.007 <0.007 <0.007	<0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010	 <0.20 	 <0.05 	<0.002 <0.002 <0.002 <0.002	<0.041 <0.041 E.004 <0.041	<0.020 <0.020 <0.020 <0.020	 <0.05

			cis- Per-					Diazi-	Diazi- non-d10		
		Chlor- pyrifos water, fltrd, ug/L (38933)	methrin water fltrd 0.7u GF ug/L (82687)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)	DCPA, water fltrd 0.7u GF ug/L (82682)	Diazi- non, water, fltrd, ug/L (39572)	non-d10 sur Sch 1379, wat flt pct rcv (90670)	surrog. wat flt 0.7u GF percent recovry (91063)	Diel- drin, water, fltrd, ug/L (39381)	Diphen- amid, water, fltrd, ug/L (04033)
HA Cf 169	09-30-03 <i>09-30-03</i>	<0.005 <0.005	<0.006 <0.006	<0.018 <0.018		<0.003 <0.003	<0.005 <0.005		104 <i>101</i>	<0.005 <0.005	
HA Dd 92	10-07-02	< 0.005	< 0.006	< 0.018	< 0.05	< 0.003	< 0.005	72.8	106	< 0.005	< 0.05
HA Ec 49	09-17-03	< 0.005	< 0.006	< 0.018		< 0.003	< 0.005		92.1	< 0.005	
	09-17-03										

		Disul- foton, water, fltrd 0.7u GF ug/L (82677)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fonofos water, fltrd, ug/L (04095)	Hexa- zinone, water, fltrd, ug/L (04025)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)
HA Cf 169	09-30-03 09-30-03	<0.02 <0.02	<0.002	<0.009	<0.005	<0.003		<0.004 <0.004	< 0.035	<0.027	< 0.006
			<0.002		<0.005				<0.035	<0.027	< 0.006
HA Dd 92	10-07-02	< 0.02	< 0.002	< 0.009	< 0.005	< 0.003	< 0.05	< 0.004	< 0.035	< 0.027	< 0.006
HA Ec 49	09-17-03	< 0.02	< 0.002	< 0.009	< 0.005	< 0.003		< 0.004	< 0.035	< 0.027	< 0.006
	09-17-03										

		Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	p,p-' DDE, water, fltrd, ug/L (34653)	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)	Prome- ton, water, fltrd, ug/L (04037)
HA Cf 169	09-30-03	< 0.013	< 0.006	< 0.002	< 0.007	< 0.003	< 0.010	< 0.004	< 0.022	<0.011	< 0.01
	09-30-03	<0.013	<0.006	< 0.002	<0.007	<0.003	<0.010	<0.004	<0.022	<0.011	<0.01
HA Dd 92	10-07-02	< 0.013	< 0.006	< 0.002	< 0.007	< 0.003	< 0.010	< 0.004	< 0.022	< 0.011	< 0.01
HA Ec 49	09-17-03	< 0.013	< 0.006	< 0.002	< 0.007	< 0.003	< 0.010	< 0.004	< 0.022	< 0.011	< 0.01
	09-17-03										

Well Number	Date	Prome- tryn, water, fltrd, ug/L (04036)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Propa- zine, water, fltrd, ug/L (38535)	Sima- zine, water, fltrd, ug/L (04035)	Sima- tryn, water, fltrd, ug/L (04030)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)
HA Cf 169 HA Dd 92 HA Ec 49	09-30-03 <i>09-30-03</i> 10-07-02 09-17-03 <i>09-17-03</i>	 <0.05 	<0.004 <0.004 <0.004 <0.004	<0.010 <0.010 <0.010 <0.010	<0.011 <0.011 <0.011 <0.011	<0.02 <0.02 <0.02 <0.02	 <0.05 	<0.005 <0.005 <0.005 <0.005	 <0.05 	<0.02 <0.02 <0.02 <0.02	<0.034 <0.034 <0.034 <0.034
		Terba- cil, water, fltrd, ug/L (04032)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	Tri- flur- alin, water, fltrd, ug/L (04023)	Vernol- ate, water, fltrd, ug/L (04034)	Xylenes water unfltrd ug/L (81551)	1,1,1,2 -Tetra- chloro- ethane, water, unfltrd ug/L (77562)	1,1,1- Tri- chloro- ethane, water, unfltrd ug/L (34506)
HA Cf 169 HA Dd 92 HA Ec 49	09-30-03 <i>09-30-03</i> 10-07-02 09-17-03 <i>09-17-03</i>	 <0.05 	<0.02 <0.02 <0.02 <0.02	<0.005 < <i>0.005</i> <0.005 <0.005	<0.002 <0.002 <0.002 <0.002	<0.009 <0.009 <0.009 <0.009	 <0.05 	 <0.05 	<0.2 	<0.03 <0.03 <0.03	<0.03 <0.03 <0.03
		1,1,2,2 -Tetra- chloro- ethane, water, unfltrd ug/L (34516)	CFC-113 water unfltrd ug/L (77652)	1,1,2- Tri- chloro- ethane, water, unfltrd ug/L (34511)	1,1-Di- chloro- ethane, water unfltrd ug/L (34496)	1,1-Di- chloro- ethene, water, unfltrd ug/L (34501)	1,1-Di- chloro- propene water unfltrd ug/L (77168)	1,2,3,4 Tetra- methyl- benzene water unfltrd ug/L (49999)	1,2,3,5 Tetra- methyl- benzene water unfltrd ug/L (50000)	1,2,3- Tri- chloro- benzene water unfltrd ug/L (77613)	1,2,3- Tri- chloro- propane water unfltrd ug/L (77443)
HA Cf 169 HA Dd 92	09-30-03 <i>09-30-03</i> 10-07-02	<0.09 <0.09	<0.06 <0.06	<0.06 <0.06	<0.04 <0.04	<0.04 <0.04	<0.05 <0.05	<0.2 <0.2	<0.2 <0.2	<0.3 <0.3	<0.16 <0.16
HA Ec 49	09-17-03 09-17-03	<0.09	<0.06	<0.06	<0.04 	<0.04 	<0.05	<0.2	<0.2	<0.3	<0.16
		1,2,3- Tri- methyl- benzene water unfltrd ug/L (77221)	1,2,4- Tri- chloro- benzene water unfltrd ug/L (34551)	1,2,4- Tri- methyl- benzene water unfltrd ug/L (77222)	Dibromo chloro- propane water unfltrd ug/L (82625)	1,2-Di- bromo- ethane, water, unfltrd ug/L (77651)	1,2-Di- chloro- benzene water unfltrd ug/L (34536)	1,2-Di- chloro- ethane, water, unfltrd ug/L (32103)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	1,2-Di- chloro- propane water unfltrd ug/L (34541)	1,3,5- Tri- methyl- benzene water unfltrd ug/L (77226)
HA Cf 169	09-30-03 09-30-03	<0.1 <0.1	<0.1 <0.1	<0.06 <0.06	<0.5 <0.5	<0.04 <0.04	<0.03 <0.03	<0.1 <0.1	108 108	<0.03 <0.03	<0.04 <0.04
HA Dd 92 HA Ec 49	10-07-02 09-17-03 <i>09-17-03</i>	<0.1	<0.1	<0.06	<0.5	<0.04	<0.03	<0.1	106 145 	<0.03	<0.04

Well Number	Date	1,3-Di- chloro- benzene water unfltrd ug/L (34566)	1,3-Di- chloro- propane water unfltrd ug/L (77173)	1,4-Di- chloro- benzene water unfltrd ug/L (34571)	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	2,2-Di- chloro- propane water unfltrd ug/L (77170)	2- Chloro- toluene water unfltrd ug/L (77275)	2- Ethyl- toluene water unfltrd ug/L (77220)	3- Chloro- propene water unfltrd ug/L (78109)	4- Chloro- toluene water unfltrd ug/L (77277)	4-Iso- propyl- toluene water unfltrd ug/L (77356)
HA Cf 169	09-30-03 <i>09-30-03</i>	<0.03 <0.03	<0.1 <0.1	0.11 0.11	94.0 96.5	<0.05 <0.05	<0.04 <0.04	<0.06 <0.06	<0.50 <0.50	<0.05 <0.05	<0.12 <0.12
HA Dd 92 HA Ec 49	10-07-02 09-17-03 <i>09-17-03</i>	<0.03	<0.1	E.01	101 80.4	<0.05	<0.04	<0.06	<0.12	<0.05	<0.12

		Acetone water unfltrd ug/L (81552)	Acrylo- nitrile water unfltrd ug/L (34215)	Benzene water unfltrd ug/L (34030)	Bromo- benzene water unfltrd ug/L (81555)	Bromo- chloro- methane water unfltrd ug/L (77297)	Bromo- di- chloro- methane water unfltrd ug/L (32101)	Bromo- ethene, water, unfltrd ug/L (50002)	Bromo- methane water unfltrd ug/L (34413)	Carbon di- sulfide water unfltrd ug/L (77041)	Chloro- benzene water unfltrd ug/L (34301)
HA Cf 169	09-30-03 <i>09-30-03</i>	<7 <7	<1 <1	<0.04 <0.04	<0.04 <0.04	<0.12 <0.12	<0.05 <0.05	<0.1 <0.1	<0.3 <0.3	<0.07 <0.07	<0.03 <0.03
HA Dd 92 HA Ec 49	10-07-02 09-17-03 <i>09-17-03</i>	<7	 <1 	<0.2 <0.04	<0.04	<0.12	<0.05	<0.1	<0.3	E.03	<0.03

		Chloro- ethane, water, unfltrd ug/L (34311)	Chloro- methane water unfltrd ug/L (34418)	cis- 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093)	cis- 1,3-Di- chloro- propene water unfltrd ug/L (34704)	Di- bromo- chloro- methane water unfltrd ug/L (32105)	Di- bromo- methane water unfltrd ug/L (30217)	Di- chloro- di- fluoro- methane wat unf ug/L (34668)	Di- chloro- methane water unfltrd ug/L (34423)	Di- ethyl ether, water, unfltrd ug/L (81576)	Diiso- propyl ether, water, unfltrd ug/L (81577)
HA Cf 169	09-30-03 <i>09-30-03</i>	<0.1 <0.1	<0.2 <0.2	<0.04 <0.04	<0.09 <0.09	<0.2 <0.2	<0.05 <0.05	<0.18 <0.18	<0.2 <0.2	<0.2 <0.2	<0.10 <0.10
HA Dd 92	10-07-02										
HA Ec 49	09-17-03	< 0.1	< 0.2	< 0.04	< 0.09	< 0.2	< 0.05	< 0.18	< 0.2	< 0.2	< 0.10
	09-17-03										

		Ethyl methac- rylate, water, unfltrd ug/L (73570)	Ethyl methyl ketone, water, unfltrd ug/L (81595)	Ethyl- benzene water unfltrd ug/L (34371)	Hexa- chloro- buta- diene, water, unfltrd ug/L (39702)	Hexa- chloro- ethane, water, unfltrd ug/L (34396)	Iodo- methane water unfltrd ug/L (77424)	Iso- butyl methyl ketone, water, unfltrd ug/L (78133)	Iso- propyl- benzene water unfltrd ug/L (77223)	Methyl acrylo- nitrile water unfltrd ug/L (81593)	Methyl acryl- ate, water, unfltrd ug/L (49991)
HA Cf 169	09-30-03 <i>09-30-03</i>	<0.2 <0.2	<5.0 <5.0	<0.03 <0.03	<0.1 <0.1	<0.2 <0.2	<0.35 <0.35	<0.4 <0.4	<0.06 <0.06	<0.6 <0.6	<2.0 <2.0
HA Dd 92 HA Ec 49	10-07-02 09-17-03 <i>09-17-03</i>	<0.2	<5.0	<0.2 <0.03	<0.1	<0.2	<0.35	<0.4	<0.06	<0.6	<2.0

HARFORD COUNTY, MARYLAND-Continued

Well Number	Date	Methyl methac- rylate, water, unfltrd ug/L (81597)	Methyl tert- pentyl ether, water, unfltrd ug/L (50005)	meta- + para- Xylene, water, unfltrd ug/L (85795)	Naphth- alene, water, unfltrd ug/L (34696)	Methyl n-butyl ketone, water, unfltrd ug/L (77103)	n-Butyl benzene water unfltrd ug/L (77342)	n- propyl- benzene water unfltrd ug/L (77224)	o- Xylene, water, unfltrd ug/L (77135)	sec- Butyl- benzene water unfltrd ug/L (77350)	Styrene water unfltrd ug/L (77128)
HA Cf 169	09-30-03 <i>09-30-03</i>	<0.3 <0.3	<0.08 <0.08	<0.06 <0.06	<0.5 <0.5	<0.7 <0.7	<0.2 <0.2	<0.04 <0.04	<0.07 <0.07	<0.06 <0.06	<0.04 <0.04
HA Dd 92 HA Ec 49	10-07-02 09-17-03 <i>09-17-03</i>	<0.3	<0.08	<0.2 <0.06	<0.5 	<0.7	<0.2	<0.04 	<0.2 <0.07	<0.06 	 <0.04
		t-Butyl ethyl ether, water, unfltrd ug/L (50004)	Methyl t-butyl ether, water, unfltrd ug/L (78032)	tert- Butyl- benzene water unfltrd ug/L (77353)	Tetra- chloro- ethene, water, unfltrd ug/L (34475)	Tetra- chloro- methane water unfltrd ug/L (32102)	Tetra- hydro- furan, water, unfltrd ug/L (81607)	Toluene water unfltrd ug/L (34010)	Toluene -d8, surrog, Sch2090 wat unf percent recovry (99833)	trans- 1,2-Di- chloro- ethene, water, unfltrd ug/L (34546)	trans- 1,3-Di- chloro- propene water unfltrd ug/L (34699)
HA Cf 169	09-30-03 <i>09-30-03</i>	<0.05 <0.05	<0.2 <0.2	<0.10 <0.10	<0.03 <0.03	<0.06 <0.06	<2 <2	E.01 <i>E.01</i>	97.2 98.0	<0.03 <0.03	<0.09 <0.09
HA Dd 92 HA Ec 49	10-07-02 09-17-03 <i>09-17-03</i>	<0.05	<0.2 <0.2	<0.10	<0.03	<0.06 	<2	<0.2 <0.05	95.5 100 	<0.03	<0.09
		trans- 1,4-Di- chloro-	Tri- bromo-	Tri- chloro-	Tri- chloro- fluoro-	Tri- chloro-	Vinyl chlor-	Alpha radio- activty	Alpha radio- activty	Beta radio- activty	Gross beta radioac

	chloro- 2- butene, wat unf ug/L	bromo- methane water unfltrd ug/L	chloro- ethene, water, unfltrd ug/L	fluoro- methane water unfltrd ug/L	chloro- methane water unfltrd ug/L	chlor- ide, water, unfltrd ug/L	activty 2-sigma wat flt Th-230, pCi/L	activty water, fltrd, Th-230, pCi/L	activty 2-sigma wat flt CS-137, pCi/L	radioac water, fltrd, Cs-137, pCi/L	
	(73547)	(32104)	(39180)	(34488)	(32106)	(39175)	(75987)	(04126)	(75989)	(03515)	
	0-03 <0.7 <i>0-03</i> <0.7	<0.10 <0.10	<0.04 <0.04	<0.09 <0.09	0.11 0.11	<0.1 <0.1					
HA Dd 92 10-0	7-02						1.4	1	2.9	1	
	7-03 <0.7 7-03	<0.10	<0.04	<0.09	E.06	<0.1					
09-1	/-05										

		Ra-228, water, fltrd, pCi/L (81366)	Rn-222 2-sigma water unfltrd pCi/L (76002)	Rn-222, water, unfltrd pCi/L (82303)	Uranium natural water, fltrd, ug/L (22703)	
HA Cf 169 HA Dd 92 HA Ec 49	09-30-03 09-30-03 10-07-02 09-17-03 09-17-03	M <i>M</i> 2	28 18 17	660 180 140 	<0.02 <0.02 0.07	

Remark codes used in this table: < -- Less than E -- Estimated value M-- Presence verified, not quantified

HOWARD COUNTY, MARYLAND

Well Number	Date	Time	Station	number	Sampl	e type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
HO Cd 78	10-15-02	1100	3914400	76555402	Environ	mental	370LCRV	GW	19.00	19	9.0
	Date	Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Color, water, fltrd, Pt-Co units (00080)	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)
	10-15-02	11.66	426	1.5	48	2	4040	9.7	5.4	75	14.6
		Date	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	
		10-15-02	23	4.04	3.18	1.66	3.55	7.59	<0.17	13.9	
	Date	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, fltrd, mg/L (00666)	Organic carbon, water, unfltrd mg/L (00680)	Arsenic water, fltrd, ug/L (01000)
	10-15-02	2.6	56	53	<0.04	3.60	<0.008	E.01	E.02	<0.4	E.1
	Date	Beryll- ium, water, fltrd, ug/L (01010)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Mercury water, fltrd, ug/L (71890)	Thall- ium, water, fltrd, ug/L (01057)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)
	10-15-02	0.14	<10	210	0.11	E3.0	6.5	< 0.02	E.04	<0.006	0.97

Geologic Unit (aquifer): 370LCRV-Loch Raven Schist

Station Type: GW - Ground Water

Sampling Method: 4040 - Submersible pump

Well Numberr	Date	CEAT, water, fltrd, ug/L (04038)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	alpha- HCH, water, fltrd, ug/L (34253)	alpha- HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)	alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)	Ametryn water, fltrd, ug/L (38401)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)
HO Cd 78	10-15-02	0.06	<0.006	< 0.004	< 0.005	75.1	89.1	< 0.05	0.110	< 0.050	<0.010
	Date	Broma- cil, water, fltrd, ug/L (04029)	Buta- chlor, water, fltrd, ug/L (04026)	Butyl- ate, water, fltrd, ug/L (04028)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Car- boxin, water, fltrd, ug/L (04027)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)
	10-15-02	< 0.05	< 0.05	< 0.002	<0.041	E.006	< 0.05	< 0.005	<0.006	<0.018	< 0.05
	Date	DCPA, water fltrd 0.7u GF ug/L (82682)	Diazi- non, water, fltrd, ug/L (39572)	Diazi- non-d10 sur Sch 1379, wat flt pct rcv (90670)	Diazi- non-d10 surrog. wat flt 0.7u GF percent recovry (91063)	Diel- drin, water, fltrd, ug/L (39381)	Diphen- amid, water, fltrd, ug/L (04033)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)
	10-15-02	<0.003	< 0.005	77.9	97.1	< 0.005	< 0.05	< 0.02	<0.002	<0.009	< 0.005
	Date	Fonofos water, fltrd, ug/L (04095)	Hexa- zinone, water, fltrd, ug/L (04025)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)
	10-15-02	< 0.003	< 0.05	< 0.004	< 0.035	<0.027	<0.006	0.019	<0.006	< 0.002	<0.007
	Date	p,p-' DDE, water, fltrd, ug/L (34653)	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)	Prome- ton, water, fltrd, ug/L (04037)	Prome- tryn, water, fltrd, ug/L (04036)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)
	10-15-02	<0.003	<0.010	< 0.004	<0.022	<0.011	<0.01	< 0.05	< 0.004	<0.010	<0.011
	Date	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Propa- zine, water, fltrd, ug/L (38535)	Sima- zine, water, fltrd, ug/L (04035)	Sima- tryn, water, fltrd, ug/L (04030)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Terba- cil, water, fltrd, ug/L (04032)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)
	10-15-02	< 0.02	< 0.05	< 0.005	< 0.05	< 0.02	< 0.034	< 0.05	< 0.02	< 0.005	< 0.002

HOWARD COUNTY, MARYLAND-Continued

Well Number	Date	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	Tri- flur- alin, water, fltrd, ug/L (04023)	Vernol- ate, water, fltrd, ug/L (04034)	Xylenes water unfltrd ug/L (81551)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	Benzene water unfltrd ug/L (34030)	Ethyl- benzene water unfltrd ug/L (34371)	meta- + para- Xylene, water, unfltrd ug/L (85795)	o- Xylene, water, unfltrd ug/L (77135)
HO Cd 78	10-15-02	<0.009	<0.05	<0.05	<0.2	104	83.2	<0.2	<0.2	<0.2	<0.2
	Date	Methyl t-butyl ether, water, unfltrd ug/L (78032)	Toluene water unfltrd ug/L (34010)	Toluene -d8, surrog, Sch2090 wat unf percent recovry (99833)	Alpha radio- activty 2-sigma wat flt Th-230, pCi/L (75987)	Alpha radio- activty water, fltrd, Th-230, pCi/L (04126)	Beta radio- activty 2-sigma wat flt CS-137, pCi/L (75989)	Gross beta radioac water, fltrd, Cs-137, pCi/L (03515)	Rn-222 2-sigma water unfltrd pCi/L (76002)	Rn-222, water, unfltrd pCi/L (82303)	County
	10-15-02	<0.2	<0.2	94.9	0.43	М	0.87	3	26	670	027
mark codes used in this	table										

Rema

Contract Contract of the state of the state

KENT COUNTY, MARYLAND

Well Number	Date	Time	Station 1	number	Sampl	e type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Alti- tude of land surface feet (72000)	Color, water, fltrd, Pt-Co units (00080)
KE Be 217	09-15-03	1300	39170607	5551701	Environ	mental	112CLMB	GW	95	60	<1
		Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)
		12	3.78	0.679	1.82	3.28	3.21	<0.2	14.3	0.9	44
		Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, fltrd, mg/L (00666)	Organic carbon, water, unfltrd mg/L (00680)	Arsenic water, fltrd, ug/L (01000)	Beryll- ium, water, fltrd, ug/L (01010)	Iron, water, fltrd, ug/L (01046)
		52	<0.04	2.60	<0.008	<0.18	E.02	<0.4	<0.3	0.10	<8
		Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Mercury water, fltrd, ug/L (71890)	Thall- ium, water, fltrd, ug/L (01057)	CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)
		М	6.00	3.9	3.7	0.02	<0.04	< 0.05	< 0.05	< 0.05	< 0.05
		alpha- HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)	Ametryn water, fltrd, ug/L (38401)	Atra- zine, water, fltrd, ug/L (39632)	Broma- cil, water, fltrd, ug/L (04029)	Buta- chlor, water, fltrd, ug/L (04026)	Butyl- ate, water, fltrd, ug/L (04028)	Car- boxin, water, fltrd, ug/L (04027)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)	Diazi- non-d10 sur Sch 1379, wat flt pct rcv (90670)
		73.4	< 0.05	< 0.05	<1.00	< 0.05	< 0.05	< 0.05	< 0.02	< 0.05	90.3
eologic Unit (aquifer):	112CLMB	- Columbia	Formatio	n							

Geologic Unit (aquifer): 112CLMB - Columbia Formation

Station Type: GW - Ground Water

KENT COUNTY, MARYLAND-Continued

Well Number	Date	Diphen- amid, water, fltrd, ug/L (04033)	Hexa- zinone, water, fltrd, ug/L (04025)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630	to wat flti ug	n, ter, rd, /L	Prome- tryn, water, fltrd, ug/L (04036)	Propa- chlor, water, fltrd, ug/L (04024)	Propa- zine, water, fltrd, ug/L (38535)	Sima- zine, water, fltrd, ug/L (04035)	Sima- tryn, water, fltrd, ug/L (04030)
KE Be 217	09-15-03	<0.05	<0.05	<0.05	<0.05	<0.0)5	<0.05	<0.05	<0.05	< 0.05	<0.05
		Terba- cil, water, fltrd, ug/L (04032) <0.05	Tri- flur- alin, water, fltrd, ug/L (04023) <0.05	Vernol- ate, water, fltrd, ug/L (04034) <0.05	Xylene water unfltrc ug/L (81551	Sch2 1 wat pct	oro- ne- sur 2090 V unf rcv 332) (14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834) 81.0	Benzene water unfltrd ug/L (34030) <0.2	Ethyl- benzene water unfltrd ug/L (34371) <0.2	water, unfltrd ug/L	o- Xylene, water, unfltrd ug/L (77135) <0.2
		t-bi eth wa unf ug	ter, wa ltrd unf /L ug 032) (340	-c sur uene Sch iter wat itrd per (/L rec 010) (99	18, 17, 2090 2 2090 2 1 unf 10 cent 17 ovry 12 833) (1	Alpha radio- ictivty -sigma wat flt 'h-230, pCi/L 75987) 0.52	Alph radio activt water fltrd Th-23 pCi/I (0412	D- rad ty acti rr, 2-sig l, wat 30, CS-1 L pCi	io- l vty ra gma w t flt f 137, Cs i/L p 089) (0	ater, 2- ltrd, v -137, u Ci/L p	vater w nfltrd un OCi/L p 6002) (8	n-222, rater, ifltrd Ci/L 2303) 600
Remark codes		table:										

- - Less than
 E -- Estimated value
 M-- Presence verified, not quantified

MONTGOMERY COUNTY, MARYLAND

Well Number	Date	Time	Station	number	Sampl	le type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	1420 1430 1105 1100 1715	3911190 3909510 3910040	77051001 77134601 77162301 77132601 77125101	Environ Environ Environ Environ Environ	mental mental mental	300BLDR 300UPPC 300UPPC 300UPPC 300UPPC	GW GW GW GW	58.53 44.83 65.38 59.77 49.18	18.78 8.60 23.40 29.55 5.55	455 390 405 374 405
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	1335 1630 1130 <i>0900</i> 1245	3911020 3911140	390606077022201 391102077101901 391114077114201 <i>391138077110101</i>		Environmental Environmental300KNSG 300UPPCEnvironmental Blank300UPPCS00UPPC Environmental300UPPC		GW GW GW GW	45.13 68.83 44.93 57.78	6.03 15.25 22.24 31.60	322 482 420 500
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	1720 1400 1030 0915 1455	3909060 3907430 3905330	77195701 77145601 77160601 77125201 77145401	Environ Environ Environ Environ Environ	mental mental mental	300IJVM 300UPPC 300UPPC 300UPPC 300UPPC	GW GW GW GW	200.29 64.84 76.98 43.23 74.13	$0.00 \\ 41.59 \\ 28.04 \\ 14.05 \\ 18.98$	261 390 393 489 402
		Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling method, code (82398)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	$0.40 \\ 0.70 \\ 0.40 \\ 0.40 \\ 0.86$	180 165 155 150 100	4040 4040 4040 4040 4040	757 754 757 752 758	5.9 5.0 4.4 7.7 4.8	61 51 45 80 46	5.8 6.0 5.9 5.6 5.5	588 309 548 89 327	31.0 31.0 30.5 25.5 17.5	17.0 16.0 16.5 16.5 13.0
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	0.32 0.13 0.50	315 155 95 	4040 4040 4040 <i>4040</i> 4040	761 747 750 760	8.5 6.8 2.9 11.1	91 70 30 114	6.1 6.6 5.7 5.3	310 91 372 69	34.5 24.5 22.5 34.0	18.5 15.5 16.5 16.5
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	$0.25 \\ 0.50 \\ 0.40 \\ 0.40 \\ 0.50$	405 175 180 70 110	4040 4040 4040 4040 4040	761 760 753 752 757	4.4 3.9 8.2 1.2 6.7	49 40 84 13 67	7.8 5.4 5.7 7.2 6.1	167 538 115 832 348	27.5 29.5 30.0 24.5 31.5	20.5 16.0 16.0 16.0 15.0

Geologic Unit (aquifer): 300BLDR - Boulder Gneiss

300IJMV - Ijamsville Formation

300KNSG - Kensington Quartz Diorite

300UPPC - Upper Pelitic Schist Of Wissahickon Formation

Station Type: GW - Ground Water

Sampling Method: 4040 - Submersible pump

MONTGOMERY COUNTY, MARYLAND-Continued

Well Number	Date	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Bromide water, fltrd, mg/L (71870)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	180 110 160 26 98	36.7 21.3 35.7 5.41 21.4	20.7 14.0 17.7 3.12 10.7	3.34 1.48 2.62 0.98 1.82	30.0 8.99 39.4 5.41 20.0	26 73 44 14 24	31 89 54 17 29	$0.04 \\ 0.04 \\ 0.04 \\ 0.02 \\ 0.06$	146 18.9 128 8.97 72.4	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	110 30 110 19	30.2 5.67 26.3 0.02 2.03	7.75 3.90 11.7 <0.008 3.35	4.23 0.61 3.09 <0.16 1.10	11.6 5.43 11.8 <i>E.08</i> 5.22	44 24 52 3	54 30 63 4	0.02 0.05 0.15 <0.02 0.02	40.3 5.72 51.7 <0.20 11.7	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	73 200 36 450 140	24.8 46.5 7.41 15.7 27.7	2.66 21.0 4.31 99.1 18.3	0.83 2.11 0.92 1.49 1.72	6.28 9.26 6.66 18.6 9.61	78 25 19 347 46	95 31 23 423 56	E.01 0.02 0.04 0.10 0.02	1.80 125 11.5 42.8 48.3	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2

		Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrate water, fltrd, mg/L as N (00618)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Organic nitro- gen, water, fltrd, mg/L (00607)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	17.6 27.7 16.4 16.3 14.9	15.9 42.3 7.4 1.8 6.2	294 184 286 61 169	317 199 338 59 203	E.07 E.06 E.06 <0.10 <0.10	<0.04 <0.04 <0.04 <0.04 <0.04	 	1.16 1.20 2.61 2.40 1.50	E.007 <0.008 <0.008 <0.008 <0.008	
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	23.3 25.4 17.7 0.06 7.35	24.8 0.6 6.9 <0.2 <0.2	183 75 221 	194 77 230 <10 52	<0.10 E.09 0.63 <0.10 <0.10	E.03 0.05 0.56 <0.04 <0.04	 9.88 	3.07 2.76 9.91 <0.06 2.59	<0.008 <0.008 0.037 <0.008 <0.008	 0.07
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	13.5 16.9 19.3 47.3 32.6	7.3 24.7 0.2 32.5 28.0	104 261 82 475 216	120 277 82 521 241	<0.10 <0.10 <0.10 0.16 0.24	<0.04 <0.04 <0.04 <0.04 <0.04	 	<0.06 E.05 4.64 2.16 4.85	<0.008 <0.008 <0.008 <0.008 <0.008	

MONTGOMERY COUNTY, MARYLAND-Continued

Well Number	Date	Ortho- phos- phate, water, fltrd, mg/L (00660)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Total nitro- gen, water, fltrd, mg/L (00602)	Organic carbon, water, fltrd, mg/L (00681)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Barium, water, fltrd, ug/L (01005)	Beryll- ium, water, fltrd, ug/L (01010)	Boron, water, fltrd, ug/L (01020)
MO Df 61 MO Ce 25	06-30-03 06-23-03		<0.02 <0.02		E.3 0.7	E1 <2	<0.30 <0.30	<0.3 <0.3	176 18	0.06 <0.06	<7 E4
MO Dd 26	06-23-03		<0.02 E.01		0.7 E.2	<2 </td <td>< 0.30</td> <td><0.3</td> <td>23</td> <td>< 0.06</td> <td>±4 <7</td>	< 0.30	<0.3	23	< 0.06	±4 <7
MO Du 20 MO Ce 26	06-19-03	0.074	0.02		E.3	M	<0.30	<0.3	16	<0.06	<7
MO Ce 21	06-17-03		< 0.02		E.3	E2	<0.30	<0.3	29	E.04	<7
MO Ce 34	06-25-03		< 0.02		0.4	<2	< 0.30	< 0.3	109	< 0.06	E6
MO Ce 24	06-18-03	0.061	0.02		E.2	<2	< 0.30	< 0.3	52	< 0.06	7
MO Ce 22	06-18-03		< 0.02	11	0.5	E1	< 0.30	< 0.3	120	0.08	<7
MO Ce 23	08-13-03		<0.18		<i>E.2</i>	<2	<0.30	<0.3	M	<0.06	<7
	08-13-03		<0.18		E.2	E2	< 0.30	< 0.3	29	0.08	<7
MO Dd 28	07-01-03		< 0.02		< 0.3	2	< 0.30	1.3	30	< 0.06	E4
MO De 51	06-12-03	0.067	0.02		< 0.3	E2	< 0.30	< 0.3	19	E.04	<7
MO Dd 27	06-26-03	0.089	0.03		< 0.3	E2	< 0.30	< 0.3	19	E.05	<7
MO De 52	07-02-03	0.055	0.02	2.3	2.5	<2	< 0.30	0.6	19	< 0.06	15
MO De 50	06-24-03	0.080	0.03	5.1	1.8	<2	< 0.30	< 0.3	30	< 0.06	<7

		Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)	Iron, water, fltrd, ug/L (01046)	Lead, water, fltrd, ug/L (01049)	Lithium water, fltrd, ug/L (01130)	Mangan- ese, water, fltrd, ug/L (01056)	Molyb- denum, water, fltrd, ug/L (01060)	Nickel, water, fltrd, ug/L (01065)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	0.06 0.11 E.02 0.07 0.20	<0.8 <0.8 E.7 E.8 <0.8	$\begin{array}{c} 2.48 \\ 0.820 \\ 0.118 \\ 0.170 \\ 0.640 \end{array}$	$0.4 \\ 5.9 \\ 5.1 \\ 0.4 \\ 0.6$	2,820 17 18 E8 223	0.21 <0.08 <0.08 <0.08 E.05	$1.3 \\ 1.6 \\ 4.0 \\ 1.0 \\ 0.9$	145 31.0 18.7 13.5 13.8	E.2 0.5 E.3 <0.3 <0.3	6.58 15.6 4.92 1.45 2.23
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.04 E.03 0.17 <0.04 <0.04	E.7 E.5 E.5 <0.8 <0.8	0.431 0.069 7.38 <0.015 0.131	0.5 E.2 0.2 <0.2 E.2	126 402 15,600 <i>E5</i> E4	E.06 <0.08 <0.08 <0.08 <0.08	2.2 3.8 3.0 <0.5 1.4	53.9 31.3 535 0.2 2.8	0.4 0.3 <0.3 <0.3 <0.3	1.86 1.08 3.24 <i>0.14</i> 3.04
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	<0.04 1.22 E.03 <0.04 0.05	<0.8 0.9 E.7 1.5 1.2	0.143 0.245 0.280 0.421 0.175	0.3 1.5 0.3 1.1 1.5	E6 <8 16 <8 21	<0.08 E.04 <0.08 E.05 0.10	5.2 2.7 2.1 0.6 3.6	46.7 3.7 8.3 29.3 30.4	2.9 <0.3 <0.3 <0.3 0.5	2.19 2.89 3.78 47.5 10.5

Well Number	Date	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)	Stront- ium, water, fltrd, ug/L (01080)	Thall- ium, water, fltrd, ug/L (01057)	Vanad- ium, water, fltrd, ug/L (01085)	Zinc, water, fltrd, ug/L (01090)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	<0.5 E.3 <0.5 <0.5 <0.5	<0.2 <0.2 <0.2 <0.2 <0.2	281 83.0 247 54.7 173	E.02 <0.04 <0.04 <0.04 <0.04	0.3 2.2 0.7 0.2 0.6	4 3 2 3 4	<0.006 <0.006 <0.006 <0.006 <0.006	<0.006 E.019 <0.006 E.006 E.028	<0.006 <0.006 <0.006 <0.006 <0.006	<0.004 <0.004 <0.004 <0.004 <0.004
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.5 <0.5 <0.5 <0.5 <0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	107 37.1 229 <i>E.14</i> 16.2	<0.04 <0.04 0.06 <0.04 E.03	0.4 1.3 1.4 <0.1 <0.1	M M 8 M 10	<0.006 <0.006 <0.006 <0.006 <0.006	<0.006 E.190 E.008 <0.006 <0.006	<0.006 <0.006 <0.006 <0.006 <0.006	<0.004 0.007 <0.004 <0.004 <0.004
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	<0.5 <0.5 <0.5 E.3 <0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	60.3 375 78.0 49.1 118	E.03 <0.04 <0.04 0.08 <0.04	0.2 0.5 E.1 3.9 2.2	M 4 10 M 2	<0.006 <0.006 <0.006 <0.006 <0.006	<0.006 <0.006 E.005 <0.006 E.129	<0.006 <0.006 <0.006 <0.006 <0.006	<0.004 <0.004 <0.004 <0.004 <0.004
		alpha- HCH, water, fltrd, ug/L (34253)	alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Butyl- ate, water, fltrd, ug/L (04028)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	<0.005 <0.005 <0.005 <0.005 <0.005	96.3 100 94.4 90.3 96.4	<0.007 0.009 0.007 <0.007 0.015	<0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010 <0.010	<0.002 <0.002 <0.002 <0.002 <0.002	<0.041 <0.041 E.091 E.007 <0.041	<0.020 <0.020 <0.020 <0.020 <0.020	<0.005 <0.005 <0.005 <0.005 <0.005	<0.006 <0.006 <0.006 <0.006 <0.006
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.005 <0.005 <0.005 <0.005 <0.005	0.0 88.4 87.2 83.7 84.9	<0.007 0.015 0.009 <0.007 <0.007	<0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010 <0.010	<0.002 <0.002 <0.002 <0.002 <0.002	<0.041 <0.041 <0.041 <0.041 <0.041	<0.020 E.012 <0.020 <0.020 <0.020	<0.005 <0.005 <0.005 <0.005 <0.005	<0.006 <0.006 <0.006 <0.006 <0.006
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	<0.005 <0.005 <0.005 <0.005 <0.005	92.3 86.8 92.5 92.9 97.2	<0.007 <0.007 <0.007 <0.007 0.018	<0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010 <0.010	<0.002 <0.002 <0.002 <0.002 <0.002	<0.041 <0.041 <0.041 <0.041 <0.041	<0.020 <0.020 <0.020 <0.020 <0.020	<0.005 <0.005 <0.005 <0.005 <0.005	<0.006 <0.006 <0.006 <0.006 <0.006

Well Number	Date	Cyana- zine, water, fltrd, ug/L (04041)	DCPA, water fltrd 0.7u GF ug/L (82682)	Diazi- non, water, fltrd, ug/L (39572)	Diazi- non-d10 surrog. wat flt 0.7u GF percent recovry (91063)	Diel- drin, water, fltrd, ug/L (39381)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fonofos water, fltrd, ug/L (04095)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	<0.018 <0.018 <0.018 <0.018 <0.018	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005	119 98.1 94.4 112 111	<0.005 <0.005 <0.005 <0.005 <0.005	<0.02 <0.02 <0.02 <0.02 <0.02	<0.002 <0.002 <0.002 <0.002 <0.002	<0.009 <0.009 <0.009 <0.009 <0.009	<0.005 <0.005 <0.005 <0.005 <0.005	<0.003 <0.003 <0.003 <0.003 <0.003
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.018 <0.018 <0.018 <0.018 <0.018	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005	0.0 112 112 97.2 100	<0.005 <0.005 <0.005 <0.005 <0.005	<0.02 <0.02 <0.02 <0.02 <0.02	<0.002 <0.002 <0.002 <0.002 <0.002	<0.009 <0.009 <0.009 <0.009 <0.009	<0.005 <0.005 <0.005 <0.005 <0.005	<0.003 <0.003 <0.003 <0.003 <0.003
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	<0.018 <0.018 <0.018 <0.018 <0.018	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005	98.1 112 97.2 113 109	<0.005 <0.005 <0.005 <0.005 <0.005	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.002 <0.002 <0.002 <0.002 <0.002	<0.009 <0.009 <0.009 <0.009 <0.009	<0.005 <0.005 <0.005 <0.005 <0.005	<0.003 <0.003 <0.003 <0.003 <0.003
		Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	p,p-' DDE, water, fltrd, ug/L (34653)	Para- thion, water, fltrd, ug/L (39542)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	water, fltrd, ug/L	water fltrd 0.7u GF ug/L	thion, water, fltrd, ug/L	para- thion, water, fltrd 0.7u GF ug/L	chlor, water, fltrd, ug/L	buzin, water, fltrd, ug/L	nate, water, fltrd 0.7u GF ug/L	amide, water, fltrd 0.7u GF ug/L	DDE, water, fltrd, ug/L	thion, water, fltrd, ug/L
MO Ce 25 MO Dd 26 MO Ce 26	06-23-03 06-24-03 06-19-03	water, fltrd, ug/L (39341) <0.004 <0.004 <0.004	water fltrd 0.7u GF ug/L (82666) <0.035 <0.035 <0.035 <0.035	thion, water, fltrd, ug/L (39532) <0.027 <0.027 <0.027 <0.027	para- thion, water, fltrd 0.7u GF ug/L (82667) <0.006 <0.006 <0.006 <0.006	chlor, water, fltrd, ug/L (39415) <0.013 E.001 E.002	buzin, water, fltrd, ug/L (82630) <0.006 <0.006 <0.006 <0.006	nate, water, fltrd 0.7u GF ug/L (82671) <0.002 <0.002 <0.002 <0.002	amide, water, fltrd 0.7u GF ug/L (82684) <0.007 <0.007 <0.007 <0.007	DDE, water, fltrd, ug/L (34653) <0.003 <0.003 <0.003 <0.003	thion, water, fltrd, ug/L (39542) <0.010 <0.010 <0.010 <0.010

Well Number	Date	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)	Prome- ton, water, fltrd, ug/L (04037)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Sima- zine, water, fltrd, ug/L (04035)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	<0.004 <0.004 <0.004 <0.004 <0.004	<0.022 <0.022 <0.022 <0.022 <0.022 <0.022	<0.011 <0.011 <0.011 <0.011 <0.011	<0.01 <0.01 <0.01 <0.01 <0.01	<0.004 <0.004 <0.004 <0.004 <0.004	<0.010 <0.010 <0.010 <0.010 <0.010	<0.011 <0.011 <0.011 <0.011 <0.011	<0.02 <0.02 <0.02 <0.02 <0.02	<0.005 <0.005 <0.005 <0.005 <0.005	<0.02 <0.02 <0.02 <0.02 <0.02
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.004 <0.004 <0.004 <0.004 <0.004	<0.022 <0.022 <0.022 <0.022 <0.022	<0.011 <0.011 <0.011 <0.011 <0.011	<0.01 <0.01 <0.01 <0.01 <0.01	<0.004 <0.004 <0.004 <0.004 <0.004	<0.010 <0.010 <0.010 <0.010 <0.010	<0.011 <0.011 <0.011 <0.011 <0.011	<0.02 <0.02 <0.02 <0.02 <0.02	<0.005 <0.005 0.011 <0.005 <0.005	<0.02 <0.02 <0.02 <0.02 <0.02
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	<0.004 <0.004 <0.004 <0.004 <0.004	<0.022 <0.022 <0.022 <0.022 <0.022 <0.022	<0.011 <0.011 <0.011 <0.011 <0.011	<0.01 <0.01 <0.01 <0.01 <0.01	<0.004 <0.004 <0.004 <0.004 <0.004	<0.010 <0.010 <0.010 <0.010 <0.010	<0.011 <0.011 <0.011 <0.011 <0.011	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.005 <0.005 <0.005 <0.005 <0.005	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02
		Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	1,1,1,2 -Tetra- chloro- ethane, water, unfltrd ug/L (77562)	1,1,1- Tri- chloro- ethane, water, unfltrd ug/L (34506)	1,1,2,2 -Tetra- chloro- ethane, water, unfltrd ug/L (34516)	CFC-113 water unfltrd ug/L (77652)	1,1,2- Tri- chloro- ethane, water, unfltrd ug/L (34511)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	<0.034 <0.034 <0.034 <0.034 <0.034	<0.02 <0.02 <0.02 <0.02 <0.02	<0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002	<0.009 <0.009 <0.009 <0.009 <0.009	<0.03 <0.03 <0.03 <0.03 <0.03	<0.03 <0.03 <0.03 <0.03 0.15	<0.09 <0.09 <0.09 <0.09 <0.09	<0.06 <0.06 <0.06 <0.06 <0.06	<0.06 <0.06 <0.06 <0.06 <0.06
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.034 <0.034 <0.034 <0.034 <0.034	<0.02 <0.02 <0.02 <0.02 <0.02	<0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002	<0.009 <0.009 <0.009 <0.009 <0.009	<0.03 <0.03 <0.03 <0.03 <0.03	<0.03 <0.03 <0.03 <0.03 <0.03	<0.09 <0.09 <0.09 <0.09 <0.09	<0.06 <0.06 <0.06 <0.06 <0.06	<0.06 <0.06 <0.06 <0.06 <0.06
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	<0.034 <0.034 <0.034 <0.034 <0.034	<0.02 <0.02 <0.02 <0.02 <0.02	<0.005 <0.005 <0.005 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002	<0.009 <0.009 <0.009 <0.009 <0.009	<0.03 <0.03 <0.03 <0.03 <0.03	<0.03 <0.03 <0.03 <0.03 <0.03	<0.09 <0.09 <0.09 <0.09 <0.09	<0.06 <0.06 <0.06 <0.06 <0.06	<0.06 <0.06 <0.06 <0.06 <0.06

Well Number	Date	1,1-Di- chloro- ethane, water unfltrd ug/L (34496)	1,1-Di- chloro- ethene, water, unfltrd ug/L (34501)	1,1-Di- chloro- propene water unfltrd ug/L (77168)	1,2,3,4 Tetra- methyl- benzene water unfltrd ug/L (49999)	1,2,3,5 Tetra- methyl- benzene water unfltrd ug/L (50000)	1,2,3- Tri- chloro- benzene water unfltrd ug/L (77613)	1,2,3- Tri- chloro- propane water unfltrd ug/L (77443)	1,2,3- Tri- methyl- benzene water unfltrd ug/L (77221)	1,2,4- Tri- chloro- benzene water unfltrd ug/L (34551)	1,2,4- Tri- methyl- benzene water unfltrd ug/L (77222)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	<0.04 <0.04 <0.04 <0.04 <0.04	<0.04 <0.04 <0.04 <0.04 <0.04	<0.05 <0.05 <0.05 <0.05 <0.05	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	<0.3 <0.3 <0.3 <0.3 <0.3	<0.16 <0.16 <0.16 <0.16 <0.16	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.06 <0.06 <0.06 <0.06 <0.06
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.04 <0.04 <0.04 <0.04 <0.04	<0.04 <0.04 <0.04 <0.04 <0.04	<0.05 <0.05 <0.05 <0.05 <0.05	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.3 <0.3 <0.3 <0.3 <0.3	<0.16 <0.16 <0.16 <0.16 <0.16	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.06 <0.06 <0.06 <0.06 <0.06
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	<0.04 <0.04 <0.04 <0.04 <0.04	<0.04 <0.04 <0.04 <0.04 <0.04	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.3 <0.3 <0.3 <0.3 <0.3	<0.16 <0.16 <0.16 <0.16 <0.16	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.06 <0.06 <0.06 <0.06 <0.06
		Dibromo chloro- propane water unfltrd ug/L (82625)	1,2-Di- bromo- ethane, water, unfltrd ug/L (77651)	1,2-Di- chloro- benzene water unfltrd ug/L (34536)	1,2-Di- chloro- ethane, water, unfltrd ug/L (32103)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	1,2-Di- chloro- propane water unfltrd ug/L (34541)	1,3,5- Tri- methyl- benzene water unfltrd ug/L (77226)	1,3-Di- chloro- benzene water unfltrd ug/L (34566)	1,3-Di- chloro- propane water unfltrd ug/L (77173)	1,4-Di- chloro- benzene water unfltrd ug/L (34571)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	<0.5 <0.5 <0.5 <0.5 <0.5	<0.04 <0.04 <0.04 <0.04 <0.04	<0.03 <0.03 <0.03 <0.03 <0.03	<0.1 <0.1 <0.1 <0.1 <0.1	119 118 119 133 121	<0.03 <0.03 <0.03 <0.03 <0.03	<0.04 <0.04 <0.04 <0.04 <0.04	<0.03 <0.03 <0.03 <0.03 <0.03	<0.1 <0.1 <0.1 <0.1 <0.1	E.04 E.09 0.11 E.05 E.02
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.5 <0.5 <0.5 <0.5 <0.5	<0.04 <0.04 <0.04 <0.04 <0.04	<0.03 <0.03 <0.03 <0.03 <0.03	<0.1 <0.1 <0.1 <0.1 <0.1	137 124 125 <i>126</i> 133	<0.03 <0.03 E.08 <0.03 <0.03	<0.04 <0.04 <0.04 <0.04 <0.04	<0.03 <0.03 <0.03 <0.03 <0.03	<0.1 <0.1 <0.1 <0.1 <0.1	E.02 E.06 E.08 <i>E.07</i> E.03
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	<0.5 <0.5 <0.5 <0.5 <0.5	<0.04 <0.04 <0.04 <0.04 <0.04	<0.03 <0.03 <0.03 <0.03 <0.03	<0.1 <0.1 <0.1 <0.1 <0.1	134 113 135 134 123	<0.03 <0.03 <0.03 <0.03 <0.03	<0.04 <0.04 <0.04 <0.04 <0.04	<0.03 <0.03 <0.03 <0.03 <0.03	<0.1 <0.1 <0.1 <0.1 <0.1	E.08 E.01 E.04 E.04 E.07

Well Number	Date	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	2,2-Di- chloro- propane water unfltrd ug/L (77170)	2- Chloro- toluene water unfltrd ug/L (77275)	2- Ethyl- toluene water unfltrd ug/L (77220)	3- Chloro- propene water unfltrd ug/L (78109)	4- Chloro- toluene water unfltrd ug/L (77277)	4-Iso- propyl- toluene water unfltrd ug/L (77356)	Acetone water unfltrd ug/L (81552)	Acrylo- nitrile water unfltrd ug/L (34215)	Benzene water unfltrd ug/L (34030)
MO Df 61	06-30-03	78.5	< 0.05	< 0.04	< 0.06	< 0.12	< 0.05	< 0.12	<7	<1	< 0.04
MO DI 01 MO Ce 25	06-23-03	109	< 0.05	<0.04	<0.06	<0.12	< 0.05	<0.12	<7	<1	<0.04
MO Dd 26	06-24-03	108	< 0.05	< 0.04	< 0.06	<0.12	< 0.05	<0.12	<7	<1	< 0.04
MO Ce 26	06-19-03	79.8	< 0.05	< 0.04	< 0.06	< 0.12	< 0.05	<0.12	<7	<1	< 0.04
MO Ce 21	06-17-03	91.4	< 0.05	< 0.04	< 0.06	< 0.12	< 0.05	< 0.12	<7	<1	< 0.04
MO Ce 34	06-25-03	74.9	< 0.05	< 0.04	< 0.06	< 0.12	< 0.05	< 0.12	<7	<1	< 0.04
MO Ce 24	06-18-03	84.5	< 0.05	< 0.04	< 0.06	< 0.12	< 0.05	< 0.12	<7	<1	< 0.04
MO Ce 22	06-18-03	84.1	< 0.05	< 0.04	< 0.06	< 0.12	< 0.05	< 0.12	<7	<1	< 0.04
MO Ce 23	08-13-03	79. <i>3</i>	<0.05	<0.04	<0.06	<0.12	<0.05	<0.12	<7	<1	<0.04
	08-13-03	81.1	< 0.05	< 0.04	< 0.06	< 0.12	< 0.05	< 0.12	<7	<1	< 0.04
MO Dd 28	07-01-03	111	< 0.05	< 0.04	< 0.06	< 0.12	< 0.05	< 0.12	<7	<1	E.02
MO De 51	06-12-03	95.9	< 0.05	< 0.04	< 0.06	< 0.12	< 0.05	< 0.12	<7	<1	< 0.04
MO Dd 27	06-26-03	72.6	< 0.05	< 0.04	< 0.06	< 0.12	< 0.05	< 0.12	<7	<1	< 0.04
MO De 52	07-02-03	113	< 0.05	< 0.04	< 0.06	< 0.12	< 0.05	< 0.12	<7	<1	< 0.04
MO De 50	06-24-03	107	< 0.05	< 0.04	< 0.06	< 0.12	< 0.05	< 0.12	<7	<1	< 0.04

		Bromo- benzene water unfltrd ug/L (81555)	Bromo- chloro- methane water unfltrd ug/L (77297)	Bromo- di- chloro- methane water unfltrd ug/L (32101)	Bromo- ethene, water, unfltrd ug/L (50002)	Bromo- methane water unfltrd ug/L (34413)	Carbon di- sulfide water unfltrd ug/L (77041)	Chloro- benzene water unfltrd ug/L (34301)	Chloro- ethane, water, unfltrd ug/L (34311)	Chloro- methane water unfltrd ug/L (34418)	cis- 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	<0.04 <0.04 <0.04 <0.04 <0.04	<0.12 <0.12 <0.12 <0.12 <0.12 <0.12	<0.05 <0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1	<0.3 <0.3 <0.3 <0.3 <0.3	<0.07 <0.07 <0.07 <0.07 <0.07	<0.03 <0.03 <0.03 <0.03 <0.03	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.04 <0.04 <0.04 <0.04 <0.04
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.04 <0.04 <0.04 <0.04 <0.04	<0.12 <0.12 <0.12 <0.12 <0.12 <0.12	<0.05 E.04 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1	<0.3 <0.3 <0.3 <0.3 <0.3	<0.07 <0.07 <0.07 <0.07 <0.07	<0.03 <0.03 <0.03 <0.03 <0.03	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.04 <0.04 <0.04 <0.04 <0.04
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	<0.04 <0.04 <0.04 <0.04 <0.04	<0.12 <0.12 <0.12 <0.12 <0.12 <0.12	<0.05 <0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1	<0.3 <0.3 <0.3 <0.3 <0.3	<0.07 <0.07 <0.07 <0.07 <0.07	<0.03 <0.03 <0.03 <0.03 <0.03	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.04 <0.04 <0.04 <0.04 <0.04

Well Number	Date	cis- 1,3-Di- chloro- propene water unfltrd ug/L (34704)	Di- bromo- chloro- methane water unfltrd ug/L (32105)	Di- bromo- methane water unfltrd ug/L (30217)	Di- chloro- di- fluoro- methane wat unf ug/L (34668)	Di- chloro- methane water unfltrd ug/L (34423)	Di- ethyl ether, water, unfltrd ug/L (81576)	Diiso- propyl ether, water, unfltrd ug/L (81577)	Ethyl methac- rylate, water, unfltrd ug/L (73570)	Ethyl methyl ketone, water, unfltrd ug/L (81595)	Ethyl- benzene water unfltrd ug/L (34371)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	<0.09 <0.09 <0.09 <0.09 <0.09	<0.2 <0.2 <0.2 <0.2 <0.2	<0.05 <0.05 <0.05 <0.05 <0.05	<0.18 <0.18 <0.18 <0.18 <0.18	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	<0.10 <0.10 <0.10 <0.10 <0.10	<0.2 <0.2 <0.2 <0.2 <0.2	<5.0 <5.0 <5.0 <5.0 <5.0	<0.03 <0.03 <0.03 <0.03 <0.03
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.09 <0.09 <0.09 <0.09 <0.09	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.05 <0.05 <0.05 <0.05 <0.05	<0.18 <0.18 E.97 <0.18 E.05	<0.2 M M <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.10 <0.10 <0.10 <0.10 <0.10	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<5.0 <5.0 <5.0 <5.0 <5.0	<0.03 <0.03 <0.03 <0.03 <0.03
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	$\begin{array}{c} 07\text{-}01\text{-}03\\ 06\text{-}12\text{-}03\\ 06\text{-}26\text{-}03\\ 07\text{-}02\text{-}03\\ 06\text{-}24\text{-}03 \end{array}$	<0.09 <0.09 <0.09 <0.09 <0.09	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.18 <0.18 <0.18 <0.18 <0.18	<0.2 <0.2 <0.2 <0.2 M	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.10 <0.10 <0.10 <0.10 <0.10	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<5.0 <5.0 <5.0 <5.0 <5.0	<0.03 <0.03 <0.03 <0.03 <0.03
		Hexa- chloro- buta- diene, water, unfltrd ug/L (39702)	Hexa- chloro- ethane, water, unfltrd ug/L (34396)	Iodo- methane water unfltrd ug/L (77424)	Iso- butyl methyl ketone, water, unfltrd ug/L (78133)	Iso- propyl- benzene water unfltrd ug/L (77223)	Methyl acrylo- nitrile water unfltrd ug/L (81593)	Methyl acryl- ate, water, unfltrd ug/L (49991)	Methyl methac- rylate, water, unfltrd ug/L (81597)	Methyl tert- pentyl ether, water, unfltrd ug/L (50005)	meta- + para- Xylene, water, unfltrd ug/L (85795)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	chloro- buta- diene, water, unfltrd ug/L	chloro- ethane, water, unfltrd ug/L	methane water unfltrd ug/L	butyl methyl ketone, water, unfltrd ug/L	propyl- benzene water unfltrd ug/L	acrylo- nitrile water unfltrd ug/L	acryĺ- ate, water, unfltrd ug/L	methac- rylate, water, unfltrd ug/L	tert- pentyl ether, water, unfltrd ug/L	+ para- Xylene, water, unfltrd ug/L
MO Ce 25 MO Dd 26 MO Ce 26	06-23-03 06-24-03 06-19-03	chloro- buta- diene, water, unfltrd ug/L (39702) <0.1 <0.1 <0.1 <0.1 <0.1	chloro- ethane, water, unfltrd ug/L (34396) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	methane water unfltrd ug/L (77424) <0.35 <0.35 <0.35 <0.35	butyl methyl ketone, unfltrd ug/L (78133) <0.4 <0.4 <0.4 <0.4	propyl- benzene water unfltrd ug/L (77223) <0.06 <0.06 <0.06 <0.06	acrylo- nitrile water unfltrd ug/L (81593) <0.6 <0.6 <0.6 <0.6	acryl- ate, water, unfltrd ug/L (49991) <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	methac- rylate, water, unfltrd ug/L (81597) <0.3 <0.3 <0.3 <0.3 <0.3	tert- pentyl ether, water, unfltrd ug/L (50005) <0.08 <0.08 <0.08 <0.08	+ para- Xylene, water, unfltrd ug/L (85795) <0.06 <0.06 <0.06 <0.06

Well Number	Date	Naphth- alene, water, unfltrd ug/L (34696)	Methyl n-butyl ketone, water, unfltrd ug/L (77103)	n-Butyl benzene water unfltrd ug/L (77342)	n- propyl- benzene water unfltrd ug/L (77224)	o- Xylene, water, unfltrd ug/L (77135)	sec- Butyl- benzene water unfltrd ug/L (77350)	Styrene water unfltrd ug/L (77128)	t-Butyl ethyl ether, water, unfltrd ug/L (50004)	Methyl t-butyl ether, water, unfltrd ug/L (78032)	tert- Butyl- benzene water unfltrd ug/L (77353)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	<0.5 <0.5 <0.5 <0.5 <0.5	<0.7 <0.7 <0.7 <0.7 <0.7	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.04 <0.04 <0.04 <0.04 <0.04	<0.07 <0.07 <0.07 <0.07 <0.07	<0.06 <0.06 <0.06 <0.06 <0.06	<0.04 <0.04 <0.04 <0.04 <0.04	<0.05 <0.05 <0.05 <0.05 <0.05	E.2 E.1 E.1 <0.2 M	<0.10 <0.10 <0.10 <0.10 <0.10
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.5 <0.5 <0.5 <0.5 <0.5	<0.7 <0.7 <0.7 <0.7 <0.7	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.04 <0.04 <0.04 <0.04 <0.04	<0.07 <0.07 <0.07 <0.07 <0.07	<0.06 <0.06 <0.06 <0.06 <0.06	<0.04 <0.04 <0.04 <0.04 <0.04	<0.05 <0.05 <0.05 <0.05 <0.05	M <0.2 E.1 <0.2 <0.2	<0.10 <0.10 <0.10 <0.10 <0.10
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	<0.5 <0.5 <0.5 <0.5 <0.5	<0.7 <0.7 <0.7 <0.7 <0.7	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.04 <0.04 <0.04 <0.04 <0.04	<0.07 <0.07 <0.07 <0.07 <0.07	<0.06 <0.06 <0.06 <0.06 <0.06	<0.04 <0.04 <0.04 <0.04 <0.04	<0.05 <0.05 <0.05 <0.05 <0.05	0.2 <0.2 0.3 <0.2 <0.2	<0.10 <0.10 <0.10 <0.10 <0.10
		Tetra- chloro- ethene, water, unfltrd ug/L (34475)	Tetra- chloro- methane water unfltrd ug/L (32102)	Tetra- hydro- furan, water, unfltrd ug/L (81607)	Toluene water unfltrd ug/L (34010)	Toluene -d8, surrog, Sch2090 wat unf percent recovry (99833)	trans- 1,2-Di- chloro- ethene, water, unfltrd ug/L (34546)	trans- 1,3-Di- chloro- propene water unfltrd ug/L (34699)	trans- 1,4-Di- chloro- 2- butene, wat unf ug/L (73547)	Tri- bromo- methane water unfltrd ug/L (32104)	Tri- chloro- ethene, water, unfltrd ug/L (39180)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03	<0.03 <0.03 E.02 <0.03 <0.03	<0.06 <0.06 <0.06 <0.06 <0.06	<2 <2 <2 <2 <2 <2 <2	E.01 <0.05 <0.05 <0.05 <0.05	98.9 102 101 101 101	<0.03 <0.03 <0.03 <0.03 <0.03	<0.09 <0.09 <0.09 <0.09 <0.09	<0.7 <0.7 <0.7 <0.7 <0.7	<0.10 <0.10 <0.10 <0.10 <0.10	<0.04 <0.04 <0.04 <0.04 <0.04
MO Ce 34 MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-25-03 06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.03 <0.03 E.07 <0.03 E.02	<0.06 <0.06 <0.06 <0.06 <0.06	<2 <2 <2 <2 <2 <2	E.01 <0.05 E.01 <i>E.01</i> <0.05	97.1 99.3 99.5 98.6 101	<0.03 <0.03 <0.03 <0.03 <0.03	<0.09 <0.09 <0.09 <0.09 <0.09	<0.7 <0.7 <0.7 <0.7 <0.7	<0.10 <0.10 <0.10 <0.10 <0.10	<0.04 <0.04 <0.04 <0.04 <0.04
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	<0.03 <0.03 <0.03 <0.03 0.13	<0.06 <0.06 <0.06 <0.06 <0.06	<2 <2 <2 <2 <2 <2	E.07 <0.05 <0.05 <0.05 <0.05	103 97.7 98.7 105 101	<0.03 <0.03 <0.03 <0.03 <0.03	<0.09 <0.09 <0.09 <0.09 <0.09	<0.7 <0.7 <0.7 <0.7 <0.7	<0.10 <0.10 <0.10 <0.10 <0.10	<0.04 <0.04 <0.04 <0.04 <0.04

MONTGOMERY COUNTY, MARYLAND-Continued

Well Number	Date	Tri- chloro- fluoro- methane water unfltrd ug/L (34488)	Tri- chloro- methane water unfltrd ug/L (32106)	Vinyl chlor- ide, water, unfltrd ug/L (39175)	Uranium natural water, fltrd, ug/L (22703)
MO Df 61 MO Ce 25 MO Dd 26 MO Ce 26 MO Ce 21 MO Ce 34 MO Ce 24	06-30-03 06-23-03 06-24-03 06-19-03 06-17-03 06-25-03	<0.09 <0.09 <0.09 <0.09 <0.09 <0.09	E.10 24.7 0.18 1.07 E.08 E.03	<0.1 <0.1 <0.1 <0.1 <0.1	E.01 E.01 0.04 <0.02 E.01 0.17
MO Ce 24 MO Ce 22 <i>MO Ce 23</i>	06-18-03 06-18-03 <i>08-13-03</i> 08-13-03	<0.09 7.17 <0.09 <0.09	3.57 0.43 <0.02 E.05	<0.1 <0.1 <0.1 <0.1	<0.02 <0.02 <0.02 E.01
MO Dd 28 MO De 51 MO Dd 27 MO De 52 MO De 50	07-01-03 06-12-03 06-26-03 07-02-03 06-24-03	<0.09 <0.09 <0.09 <0.09 <0.09	<0.02 <0.02 E.05 E.03 14.8	<0.1 <0.1 <0.1 <0.1 <0.1	1.29 <0.02 E.01 0.16 <0.02

Remark codes used in this table: < -- Less than E -- Estimated value M-- Presence verified, not quantified

PRINCE GEORGES COUNTY, MARYLAND

Well Number	Da	ite Tii	ne St	ation numb	er S	Sample type	Geol ur		ation ype	Depth of well, feet below LSD 72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
PG Ff 23	11-2	5-02 10	00 384	243076445	301 Er	vironmental	125A	QUI G	W	360	360	340
	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling method, code (82398)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bican bonat wat f incrm titr., field mg/I (0045	e, An lt a n. wa fl , u L as	rsen- ater, trd, g/L s As 2453)	
	140	6.0	16	8030	7.8	300	15.7	155	189		1.5	
				Ars		Di- Moi hyl- meth						

Arsen-	methyl-	methyl-
ite,	arsin-	arson-
water,	ate,	ate,
fltrd,	wat flt	wat flt
ug/L	ug/L	ug/L
as As	as As	as As
(62452)	(62455)	(62454)

3.5 <0.1 <0.1

Remark codes used in this table: < -- Less than

Geologic Unit (aquifer): 125AQUI - Aquia Formation

Station Type: GW - Ground Water

Sampling Method: 8030 - Grab sample at water-supply tap

QUEEN ANNES COUNTY, MARYLAND

Well Number	Date	Time	Station number	Sample type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
QA Db 14 QA Db 15 QA Db 17	03-26-03 08-25-03 08-25-03 08-26-03 08-25-03	1000 <i>1025</i> 1030 1000 1200	390055076184501 390022076191801 390059076191801	Environmental Blank Environmental Environmental Environmental	125AQUI <i>125AQUI</i> 125AQUI 125AQUI 125AQUI	GW <i>GW</i> GW GW	165.00 <i>165</i> 165.00 103.00	165 165 103	145 145 96
QA Db 23 QA Db 27	03-24-03 08-27-03 08-27-03 03-19-03 03-19-03	1030 1000 1005 <i>1055</i> 1100	390033076184501 390117076191301	Environmental Environmental Environmental <i>Blank</i> Environmental	125AQUI 125AQUI 125AQUI <i>125AQUI</i> 125AQUI	GW GW GW GW	185.00 185.00 185.00 <i>145</i> 145.00	185 185 165 145	165 165 185 110
QA Db 30	08-22-03 08-22-03 08-20-03 <i>08-20-03</i> 08-20-03	1030 1035 1300 <i>1301</i> 1305	390201076182701	Environmental Environmental Environmental <i>Replicate</i> Environmental	125AQUI 125AQUI 125AQUI 125AQUI 125AQUI	GW GW GW GW	145.00 145.00 220.00 220.00 220.00	145 145 220 220 220	110 110 210 210 210
QA Db 32 QA Db 34 QA Db 35	08-20-03 08-20-03 08-20-03 08-20-03 08-22-03	1100 1105 1530 1535 1100	390201076182703 390023076174301 390119076191001	Environmental Environmental Environmental Environmental Environmental	125AQUI 125AQUI 125AQUI 125AQUI 125AQUI	GW GW GW GW GW	116.00 116.00 180.00 180.00 200.00	116 116 180 180 200	106 106 170 170 190
QA Db 37 QA Dd 33	08-22-03 08-20-03 08-20-03 10-01-02 <i>10-01-02</i>	1105 1430 1435 1000 <i>1001</i>	390023076174302 390138076064801	Environmental Environmental Environmental Environmental <i>Replicate</i>	125AQUI 125AQUI 125AQUI 125AQUI <i>125AQUI</i>	GW GW GW GW	200.00 250.00 250.00 280.00 280.00	200 250 250 280 280	190 240 240 270 270
QA De 30 QA Ea 39 QA Ea 42	11-26-02 12-12-02 03-19-03 08-25-03 03-26-03	1430 1000 1230 1330 1330	390221076031401 385825076202901 385820076202501	Environmental Environmental Environmental Environmental Environmental	125AQUI 125AQUI 125AQUI 125AQUI 125AQUI 125AQUI	GW GW GW GW	280.00 481.00 95.00 95.00 120.00	280 448 95 95 120	270 272 80 80 100
QA Ea 45 QA Ea 48	08-25-03 03-28-03 08-27-03 03-26-03 08-27-03	1430 1500 1130 1215 1300	385554076213801 385825076201201	Environmental Environmental Environmental Environmental Environmental	125AQUI 125AQUI 125AQUI 125AQUI 125AQUI 125AQUI	GW GW GW GW	120.00 210.00 210.00 160.00 160.00	120 210 210 160 160	100 200 200 129 129
QA Ea 59 QA Ea 60	08-27-03 03-19-03 08-26-03 04-02-03 04-02-03	1305 1400 1130 1230 <i>1231</i>	385505076215001 385701076212501	Environmental Environmental Environmental Environmental <i>Blank</i>	125AQUI 125AQUI 125AQUI 125AQUI 125AQUI	GW GW GW GW	160.00 215.00 215.00 185.00 <i>185</i>	160 215 215 185	129 195 195 165
QA Ea 61	04-02-03 08-26-03 04-02-03 04-02-03 08-25-03	1235 1530 1100 <i>1105</i> 1530	385812076202801	Environmental Environmental Environmental <i>Replicate</i> Environmental	125AQUI 125AQUI 125AQUI <i>125AQUI</i> 125AQUI	GW GW GW GW	185 185.00 170.00 <i>170</i> 170.00	185 170 170	165 150 150
QA Ea 77 QA Ea 78 QA Ea 79 QA Ea 80	08-19-03 08-19-03 08-21-03 08-21-03 08-21-03	1300 1500 1200 1205 1100	385718076211501 385718076211502 385757076200101 385757076200102	Environmental Environmental Environmental Environmental Environmental	125AQUI 125AQUI 125AQUI 125AQUI 125AQUI 125AQUI	GW GW GW GW GW	205.00 135.00 298.00 298.00 130.00	205 135 298 298 130	195 125 288 288 120
<i>QA Ea 81</i> QA Ea 82	08-21-03 08-19-03 08-19-03 03-28-03 08-26-03	1105 <i>1229</i> 1230 1000 1430	385718076211503 385705076212002	Environmental Blank Environmental Environmental Environmental	125AQUI <i>125AQUI</i> 125AQUI 125AQUI 125AQUI 125AQUI	GW <i>GW</i> GW GW GW	130.00 <i>310</i> 310.00 170.00 170.00	130 310 170 170	120 300 155 155

Geologic Unit (aquifer): 125AQUI - Aquia Formation

Station Type: GW - Ground Water

QUEEN ANNES COUNTY, MARYLAND-Continued

Well Number D	wa le fo be Date L	epth to Alti- ater tude vel, of eet land low surface SD feet 019) (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)
08- 08-	25-03 25-03	15.0 <i>15</i> 15.0		22 45	8030	 	7.2	439 456	14.4 14.0	
		15.0 20.0	$\begin{array}{c} 8.0 \\ 4.0 \end{array}$	19 20	8030 8030		6.8 6.7	1,090 751	17.1 16.9	
08-	27-03	18.0 18.0 18.0	2.4 4.0	29 25	8030 8030 8030	 	7.3 7.2	427 434	14.7 15.9	
QA Db 27 03-	19-03	<i>15</i> 15.0	4.0	38	8030		7.0	1,260	14.5	
QA Db 30 08- 08- 08-	22-03 20-03 16 20-03 16	15.0 15.0 5.35 17.8 5.35 17.80 5.35 17.8	2.0 5.7 5.7 5.7	23 69 69 69	8030 8030 4040 	 	6.5 6.2 	1,300 18,000 	15.0 16.7 	
		5.14 18.0 5.14 18.0	$\begin{array}{c} 4.0\\ 4.0\end{array}$	74 74	4040 4040		6.5	8,410	16.2	
QA Db 34 08-	20-03	7.4 7.4	60.0 60.0	60 60	4030 4030		7.2	527	15.7	
		5.46 7.5	4.0	90	4030		6.7	18,600	18.5	
QA Db 37 08-	20-03	7.50 7.1 7.1	5.2	 88 	4030 4040 4040		 7.4 	 566 	17.1	
		40.0 40.0	E3.0 <i>E3.0</i>	25 25	8030	<1.0	7.8	320	15.8	174
QA De 30 12- QA Ea 39 03- 08-	12-02 19-03 25-03	40.0 55.0 15.0 15.0 18.0	4.0 500 5.0 4.5 1.8	21 26 30 48 25	8030 8030 8030 8030 8030	<1.0 	8.0 7.5 7.3 7.5	317 306 424 452	15.5 14.8 15.7 14.5	 148
QA Ea 45 03- 08-	28-03 27-03	18.0 15.0 15.0	2.0 2.4 5.5	30 22 21	8030 8030 8030	 	7.5 7.5	557 347 364	17.5 16.7	
		5.0 5.0	8.6 6.0	27 30	8030 8030		7.3 7.2	1,570	15.1 16.1	
QA Ea 59 03- 08- QA Ea 60 04-	19-03 26-03 02-03	5.0 10.0 10.0 7.0 7	4.0 4.0 6.0	22 25 20	8030 8030 8030 8030	 	7.9 7.7 7.5	569 593 1,780	15.3 16.5 15.4	
QA Ea 61 08- 04- 04-	26-03 02-03 02-03	7.0 7.0 18.0 <i>18</i> 18.0	4.0 6.0 5.0	25 23 30	8030 8030 	 	7.5 7.1 	1,840 5,220 5,450	16.8 14.9 14.4	
QA Ea 78 08- QA Ea 79 08- 08-	19-03 12 21-03 10 21-03 10	2.61 10.8 2.89 11.8 0.61 8.3 0.61 8.3 8.5	7.5 3.4 5.0 5.0 24.0	150 93 110 20	4030 4040 4040 4040 4030	 	6.9 7.2 9.0 7.8	17,600 323 358 352	16.6 17.1 17.2 15.3	
QA Ea 81 08- 08- QA Ea 82 03-	<i>19-03</i> 19-03 12 28-03	8.5 <i>12.40</i> 2.41 12.4 10.0 10.0	 4.8 1.6 E4.0	 134 32 35	4030 4040 8030 8030	 	7.9 7.6 7.5	 561 1,140 1,170	 16.9 14.4 7.5	

Sampling Method:4030 - Suction pump 4040 - Submersible pump 8030 - Grab sample at water-supply tap

QUEEN ANNES COUNTY, MARYLAND-Continued

Well Number	Date	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Chlor- ide, water, fltrd, mg/L (00940)	Arsen- ate, water, fltrd, ug/L as As (62453)	Arsenic water unfltrd ug/L (01002)	Arsen- ite, water, fltrd, ug/L as As (62452)	Di- methyl- arsin- ate, wat flt ug/L as As (62455)	Mono- methyl- arson- ate, wat flt ug/L as As (62454)
QA Db 14	03-26-03 08-25-03 08-25-03	 	14.4 <0.20 13.9				 	
QA Db 15 QA Db 17	08-26-03 08-25-03		132 102					
QA Db 23	03-24-03 08-27-03		14.6 16.3					
QA Db 27	08-27-03 <i>03-19-03</i> 03-19-03	 	<0.20 243		<2 		 	
OA Dh 30	08-22-03 08-22-03 08-20-03		259 5,860		12		 	
QA Db 30	08-20-03 08-20-03 08-20-03		5,860 5,860 		 6			
QA Db 32	08-20-03 08-20-03		2,540		2			
QA Db 34 QA Db 35	08-20-03 08-20-03 08-22-03		9.61 6,180		E1			
QA Db 35 QA Db 37	08-22-03 08-20-03		11.3		<4			
QA Dd 33	08-20-03 10-01-02 <i>10-01-02</i>	212		1.9 2.0	E1 	11.2 11.6	<0.1 <0.1	<0.1 <0.1
QA De 30 QA Ea 39 QA Ea 42	11-26-02 12-12-02 03-19-03 08-25-03 03-26-03	180 	 37.9 42.1 29.9	2.4 1.6 		11.5 26.9 	<0.1 0.6 	<0.1 0.2
QA Ea 45	08-25-03 03-28-03		67.6 6.52					
QA Ea 48	08-27-03 03-26-03 08-27-03	 	8.22 340 384					
QA Ea 59	08-27-03 03-19-03 08-26-03		86.1 88.2		9 			
QA Ea 60	04-02-03 <i>04-02-03</i>		361 <0.20					
QA Ea 61	04-02-03 08-26-03 04-02-03 04-02-03 08-25-03	 	492 1,020 <i>1,010</i> 1,690		4 			
QA Ea 77 QA Ea 78 QA Ea 79 QA Ea 80	08-19-03 08-19-03 08-21-03 08-21-03 08-21-03	 	5,920 4.72 1.73 2.52	 	 E2 	 	 	
QA Ea 81 QA Ea 82	08-21-03 08-19-03 08-19-03 03-28-03 08-26-03	 	<0.20 59.3 270 276	 	6 	 	 	

QUEEN ANNES COUNTY, MARYLAND-Continued

Well Number	Date	Time	Station number	Sample type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
QA Eb 144	08-27-03	1100	385847076184801	Environmental	125AQUI	GW	240.00	240	220
QA Eb 155	08-27-03 08-21-03 08-21-03	1105 1300 1305	385843076155302	Environmental Environmental Environmental	125AQUI 125AQUI 125AQUI	GW GW GW	240.00 245.00 245.00	240 245 245	220 235 235
QA Eb 156	08-22-03	1400	385852076195201	Environmental	125AQUI	GW	220.00	243	235
QA Eb 157 QA Ed 53	08-22-03 08-22-03 08-22-03 11-18-02	1405 1300 1305 1500	385852076195202 385853076081801	Environmental Environmental Environmental Environmental	125AQUI 125AQUI 125AQUI 125AQUI 125AQUI	GW GW GW GW	220.00 120.00 120.00 280.00	220 120 120 280	210 110 110 273
QA Ed 54	10-01-02	1400	385633076094701	Environmental	125AQUI	GW	330.00	330	320
QA Ef 34	10-01-02 11-26-02	1200 1330	385925075585701	Environmental Environmental	125AQUI 125AQUI	GW GW	440.00 440.00	440 440	420 420
QA Fa 49 QA Fa 54	08-26-03 03-19-03 03-19-03	1330 1500 1600	385354076212701 385024076222501	Environmental Environmental Environmental	125AQUI 125AQUI 125AQUI	GW GW GW	210.00 260.00 260.00	210 260 260	185 240 240
QA Fa 58	08-28-03 03-24-03 08-28-03	1450 1230 1330	385133076201201	Environmental Environmental Environmental	125AQUI 125AQUI 125AQUI	GW GW GW	260.00 280.00 280.00	260 280 280	240 260 260
QA Fa 60	03-24-03 08-28-03	1330 1330 1050	385254076201901	Environmental Environmental	125AQUI 125AQUI 125AQUI	GW GW	240.00 240.00	240 240	230 230
QA Fa 63	03-28-03 08-29-03	1330 1030	385434076215601	Environmental Environmental	125AQUI 125AQUI	GW GW	235.00 235.00	235 235	$200 \\ 200$
QA Fa 64	03-24-03 08-26-03	1500 1230	385454076214901	Environmental Environmental	125AQUI 125AQUI 125AQUI	GW GW	231.00 231.00	231 231	191 191
QA Fa 66	03-27-03	1100	385236076215201	Environmental	125AQUI	GW	270.00	270	250
QA Fa 67 QA Fa 72	09-08-03 08-28-03 03-28-03 <i>03-28-03</i> 09-08-03	1030 1530 1130 <i>1135</i> 1130	385023076222201 385254076201301	Environmental Environmental Environmental <i>Replicate</i> Environmental	125AQUI 125AQUI 125AQUI <i>125AQUI</i> 125AQUI	GW GW GW GW	270.00 270.00 220.00 220.00 220.00	270 270 220 220 220	250 250 200 200 200
QA Fa 74 QA Fa 75	<i>09-08-03</i> 08-29-03 03-27-03	<i>1135</i> 1150 1245	385227076215401 385155076200401	<i>Replicate</i> Environmental Environmental	<i>125AQUI</i> 125AQUI 125AQUI	GW GW GW	220.00 280.00 200.00	220 200	200
QA Fc 13	08-28-03 11-19-02	1200 1100	385433076105101	Environmental Environmental	125AQUI 125AQUI	GW GW	200.00 350.00	200 350	180 330
	11-19-02	1101		Environmental	125AQUI	GW	350	350	330

Geologic Unit (aquifer): 125AQUI - Aquia Formation

Station Type: GW - Ground Water

QUEEN ANNES COUNTY, MARYLAND-Continued

Well Number	Date	Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)
QA Eb 144	08-27-03		15.0	5.0	20	8030		7.7	420	16.2	
QA Eb 155	08-27-03 08-21-03		15.0 3.9	 7.0	 45	8030 4030		 7.8	327	17.2	
QA E0 155	08-21-03		3.9	7.0	43	4030		/.0			
QA Eb 156	08-22-03	13.81	12.0	6.3	55	4030		6.9	22,000	16.8	
	08-22-03		12.0			8030					
QA Eb 157	08-22-03	12.20	11.9	20.0	25	4030		7.4	338	15.0	
QA Ed 53	08-22-03 11-18-02		11.9 50.0	 4.0	30	4030 8030		 7.7	284	15.0	 144
QA Ed 55 QA Ed 54	10-01-02		10.0	4.6	20	8030	<1.0	<7.9	284	16.6	150
QA Ef 34	10-01-02		70.0	5.0	23	8030	<1.0	8.2	421	16.9	231
0.1 5 10	11-26-02		70.0	6.0	17	8030			410		
QA Fa 49	08-26-03		8.0	5.0	18	8030		7.6	1,000	17.1	
QA Fa 54	03-19-03 03-19-03		$10.0 \\ 10.0$	4.0 E2.0	22	8030 8030		7.7	348	15.6	
	08-28-03		10.0			8030		7.5	351	16.9	
QA Fa 58	03-24-03		7.1	5.5	33	8030		7.9	453	15.5	
2	08-28-03		7.1			8030		7.8	459	17.0	
QA Fa 60	03-24-03		10.1	1.0	21	8030		8.3	413	17.7	
-	08-28-03		10.1			8030		8.1	415		
QA Fa 63	03-28-03		15.0	1.9	21	8030		7.1	452	15.2	
	08-29-03		15.0			8030		7.0	460	16.2	
QA Fa 64	03-24-03		5.0	4.0	27	8030		7.7	1,190	15.6	
QA Fa 66	08-26-03 03-27-03		5.0 13.0	4.0 3.8	20 25	8030 8030		7.6 7.7	1,250 505	16.8 13.7	
QATa 00											
0 A F (7	09-08-03		13.0	4.0	20	8030		7.7	515	17.3	
QA Fa 67	08-28-03		7.3			8030		7.5	346	16.9	
QA Fa 72	03-28-03 <i>03-28-03</i>		12.0 12	4.0	25	8030		7.9	479	15.2	
	09-08-03		12.0	4.0	20	8030		7.9	490	16.5	
	09-08-03		12								
QA Fa 74	09-08-03		10.0			8030		7.4	449	16.5	
QA Fa 75	03-29-03		10.0		22	8030		7.9	510	15.2	
	08-28-03		10.0			8030		8.1	521	25.1	
QA Fc 13	11-19-02		10.0	4.0	23	8030		8.0		15.7	153
	11-19-02		10								

Sampling Method:4030 - Suction pump 8030 - Grab sample at water-supply tap

QUEEN ANNES COUNTY, MARYLAND-Continued

Well Number	Date	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Chlor- ide, water, fltrd, mg/L (00940)	Arsen- ate, water, fltrd, ug/L as As (62453)	Arsenic water unfltrd ug/L (01002)	Arsen- ite, water, fltrd, ug/L as As (62452)	Di- methyl- arsin- ate, wat flt ug/L as As (62455)	Mono- methyl- arson- ate, waf flt ug/L as As (62454)	
QA Eb 144	08-27-03		5.30						
	08-27-03				3				
QA Eb 155	08-21-03		2.13						
0.1 51.454	08-21-03				E1				
QA Eb 156	08-22-03		7,580						
	08-22-03				6				
QA Eb 157	08-22-03		4.08						
QA L0 157	08-22-03				6				
QA Ed 53	11-18-02	176		1.6		9.3	0.2	<0.1	
QA Ed 54	10-01-02	183		4.2		17.2	0.2	<0.1	
QUELLOS	10 01 02	105		1.2		17.2	0.1	50.1	
QA Ef 34	10-01-02	283		3.7		10.2	< 0.1	< 0.1	
	11-26-02			3.0		10.6	0.1	< 0.1	
QA Fa 49	08-26-03		178						
QA Fa 54	03-19-03		13.3						
	03-19-03		12.0						
	00 20 02		11.2						
04 F 59	08-28-03		11.3						
QA Fa 58	03-24-03		7.60						
$OA E_{2} = 60$	08-28-03		9.22						
QA Fa 60	03-24-03		9.42						
	08-28-03		10.0						
QA Fa 63	03-28-03		6.92						
E	08-29-03		8.84						
QA Fa 64	03-24-03		291						
	08-26-03		294						
QA Fa 66	03-27-03		18.2						
-									
	09-08-03		20.7						
QA Fa 67	08-28-03		< 0.20						
QA Fa 72	03-28-03		12.7						
	03-28-03		12.9						
	09-08-03		14.6						
	09-08-03		14.8						
QA Fa 74	08-29-03		11.9						
QA Fa 75	03-27-03		18.6						
X	08-28-03		20.9						
QA Fc 13	11-19-02	187		2.9		33.4	0.5	0.1	
2		107							
	11-19-02			2.8		33.4	0.5	0.1	

Remark codes used in this table: < -- Less than E -- Estimated value

ST. MARYS COUNTY, MARYLAND

Well Number	Date	Time	Station	number	Samp	le type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
SM Ce 47	12-03-02	1200	3822080		Environ		125AQUI	GW	555	555	540
SM Dc 63 SM Dd 70	12-03-02 12-16-02	$1400 \\ 1200$	3818000 [°] 3819210 [°]		Environ Environ		125AQUI 125AQUI	GW GW	370 545	370 545	350 450
	12-16-02	1205			Replica		125AQUI	GW	545		
SM Fe 41	12-16-02	1000	3808330	76303301	Environ	imental	125AQUI	GW	420	420	400
SM Fg 65	12-04-02	1200	3806400	76233901	Environ	imental	124PNPN	GW	364	364	350
		Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling method, code (82398)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)
SM Ce 47	12-03-02	70.0	4.0	23	8030		8.4		15.4	113	138
SM Dc 63 SM Dd 70	12-03-02 12-16-02	45.0 125	4.0 115	31 55	8030 8030	<1.0	8.8 8.6	207	$16.0 \\ 17.1$	117 96	143 116
SM Fe 41	<i>12-16-02</i> 12-16-02	125 8.0	200	 17	8030	<1.0	 8.6	 484	 19.7	248	302
SM Fg 65	12-04-02	10.0	6.7	25	8030		8.6	663	16.6	340	415

		Bromide water, fltrd, mg/L (71870)	Arsen- ate, water, fltrd, ug/L as As (62453)	Arsen- ite, water, fltrd, ug/L as As (62452)	Di- methyl- arsin- ate, wat flt ug/L as As (62455)	Mono- methyl- arson- ate, wat flt ug/L as As (62454)
SM Ce 47 SM Dc 63 SM Dd 70 SM Fe 41	12-03-02 12-03-02 12-16-02 <i>12-16-02</i> 12-16-02	E.01 	1.4 1.7 2.0 0.2 0.8	10.6 6.2 11.5 6.8 9.3	0.3 0.2 0.3 0.2 0.2	0.2 <0.1 0.2 <0.1 0.2
SM Fg 65	12-04-02	0.04	1.1	7.3	0.2	0.1

Remark codes used in this table:

-- Less than
 E -- Estimated value

Geologic Unit (aquifer): 124PNPN - Piney Point Formation 125AQUI - Aquia Formation

Station Type: GW - Ground Water

Sampling Method: 8030 - Grab sample at water-supply tap

SOMMERSET COUNTY, MARYLAND

Well Number	Date	Time	Station	number	Samp	le type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
SO Be 114	<i>01-16-03</i> 01-16-03	<i>1045</i> 1100	3812450	75404002	<i>Blank</i> Environ	imental	<i>112KILD</i> 112KILD	<i>GW</i> GW	19.00	 19	 16
		Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling method, code (82398)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)
SO Be 114	<i>01-16-03</i> 01-16-03	7.09	19.00	0.25	60	<i>4040</i> 4040	 774	 1.9	18	5.1	206
		Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Bromide water, fltrd, mg/L (71870)
SO Be 114	<i>01-16-03</i> 01-16-03	-4.0	14.0	67	8.37	 11.1	 1.16	7.73	9	 11	0.04
		Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)
SO Be 114	<i>01-16-03</i> 01-16-03	12.0	 <0.17	30.7	48.2	137	 146	0.11	<0.04	2.76	<0.008
		Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Total nitro- gen, water, fltrd, mg/L (00602)	Organic carbon, water, fltrd, mg/L (00681)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Barium, water, fltrd, ug/L (01005)	Beryll- ium, water, fltrd, ug/L (01010)	Boron, water, fltrd, ug/L (01020)	Cadmium water, fltrd, ug/L (01025)
SO Be 114	01-16-03 01-16-03	E.01	2.9	<0.3 1.5	 15	<0.30	E.3	133	0.70	 14	0.18

Geologic Unit (aquifer): 112KILD - Kent Island Formation

Station Type: GW - Ground Water

Sampling Method: 4040 - Submersible pump

SOMMERSET COUNTY, MARYLAND-Continued

Well Number	Date	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)	Iron, water, fltrd, ug/L (01046)	Lead, water, fltrd, ug/L (01049)	Lithium water, fltrd, ug/L (01130)	Mangan- ese, water, fltrd, ug/L (01056)	Molyb- denum, water, fltrd, ug/L (01060)	Nickel, water, fltrd, ug/L (01065)	Selen- ium, water, fltrd, ug/L (01145)
SO Be 114	<i>01-16-03</i> 01-16-03	E.6	11.0	2.4	13	0.36	 10.4	83.5	0.4	35.6	0.8
		Silver, water, fltrd, ug/L (01075)	Stront- ium, water, fltrd, ug/L (01080)	Thall- ium, water, fltrd, ug/L (01057)	Vanad- ium, water, fltrd, ug/L (01085)	Zinc, water, fltrd, ug/L (01090)	2,4,5-T surrog, water, fltrd, percent recovry (99958)	2,4-D methyl ester, water, fltrd, ug/L (50470)	2,4-D water, fltrd, ug/L (39732)	2,4-DB water, fltrd 0.7u GF ug/L (38746)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)
SO Be 114	<i>01-16-03</i> 01-16-03	<0.2	 191	E.02	8.1	3	100	<0.009	<0.02	<0.02	<0.006
		CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	OIET, water, fltrd, ug/L (50355)	3- Hydroxy carbo- furan, wat flt 0.7u GF ug/L (49308)	3-Keto- carbo- furan, water, fltrd, ug/L (50295)	Aceto- chlor, water, fltrd, ug/L (49260)	Aci- fluor- fen, water, fltrd 0.7u GF ug/L (49315)	Ala- chlor, water, fltrd, ug/L (46342)	Aldi- carb sulfone water, fltrd 0.7u GF ug/L (49313)	Aldi- carb sulf- oxide, wat flt 0.7u GF ug/L (49314)
SO Be 114	<i>01-16-03</i> 01-16-03	E.005	<0.04	<0.008	<0.006	<2	<0.006	<0.007	<0.004	<0.02	<0.008
		Aldi- carb, water, fltrd 0.7u GF ug/L (49312)	alpha- HCH, water, fltrd, ug/L (34253)	alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Barban, surrog, Sched. 2060/ 9060, wat flt pct rcv (90640)	Bendio- carb, water, fltrd, ug/L (50299)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Benomyl water, fltrd, ug/L (50300)	Bensul- furon, water, fltrd, ug/L (61693)
SO Be 114	<i>01-16-03</i> 01-16-03	<0.04	<0.005	97.3	E.007	<0.050	130	<0.03	<0.010	<0.004	<0.02
		Ben- tazon, water, fltrd 0.7u GF ug/L (38711)	Broma- cil, water, fltrd, ug/L (04029)	Brom- oxynil, water, fltrd 0.7u GF ug/L (49311)	Butyl- ate, water, fltrd, ug/L (04028)	Caf- feine, water, fltrd, ug/L (50305)	Caf- feine- 13C, surrog, wat flt percent recovry (99959)	Car- baryl, water, fltrd 0.7u GF ug/L (49310)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (49309)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)
SO Be 114	<i>01-16-03</i> 01-16-03	<0.01	<0.03	<0.02	<0.002	<0.010	E62.0	<0.03	<0.041	<0.006	<0.020

SOMMERSET COUNTY, MARYLAND—Continued

Well Number	Date	Chlor- amben methyl ester, water, fltrd, ug/L (61188)	Chlori- muron, water, fltrd, ug/L (50306)	Chloro- di- amino- s-tri- azine, wat flt ug/L (04039)	Chloro- thalo- nil, water, fltrd 0.7u GF ug/L (49306)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Clopyr- alid, water, fltrd 0.7u GF ug/L (49305)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)	Dacthal mono- acid, water, fltrd 0.7u GF ug/L (49304)
SO Be 114	<i>01-16-03</i> 01-16-03	<0.02	<0.010	<0.01	<0.04	<0.005	<0.006	<0.01	<0.018	<0.01	<0.01
		DCPA, water fltrd 0.7u GF ug/L (82682)	Diazi- non, water, fltrd, ug/L (39572)	Diazi- non-d10 surrog. wat flt 0.7u GF percent recovry (91063)	Dicamba water fltrd 0.7u GF ug/L (38442)	Di- chlor- prop, water, fltrd 0.7u GF ug/L (49302)	Diel- drin, water, fltrd, ug/L (39381)	Dinoseb water, fltrd 0.7u GF ug/L (49301)	Diphen- amid, water, fltrd, ug/L (04033)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	Diuron, water, fltrd 0.7u GF ug/L (49300)
SO Be 114	<i>01-16-03</i> 01-16-03	<0.003	<0.005	97.3	<0.01	<0.01	<0.005	 <0.01	<0.03	<0.02	<0.01
		EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fenuron water, fltrd 0.7u GF ug/L (49297)	Flumet- sulam, water, fltrd, ug/L (61694)	Fluo- meturon water fltrd 0.7u GF ug/L (38811)	Fonofos water, fltrd, ug/L (04095)	Imaza- quin, water, fltrd, ug/L (50356)	Imaze- thapyr, water, fltrd, ug/L (50407)	Imida- cloprid water, fltrd, ug/L (61695)
SO Be 114	<i>01-16-03</i> 01-16-03	<0.002	<0.009	<0.005	<0.03	<0.01	<0.03	<0.003	<0.02	<0.02	0.224
		Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (38478)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)	MCPA, water, fltrd 0.7u GF ug/L (38482)	MCPB, water, fltrd 0.7u GF ug/L (38487)	Meta- laxyl, water, fltrd, ug/L (50359)	Methio- carb, water, fltrd 0.7u GF ug/L (38501)	Meth- omyl, water, fltrd 0.7u GF ug/L (49296)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)
SO Be 114	<i>01-16-03</i> 01-16-03	<0.004	<0.01	<0.035	<0.027	<0.02	<0.01	<0.02	<0.008	<0.004	<0.006
		Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Metsul- furon, water, fltrd, ug/L (61697)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	N-(4- Chloro- phenyl) -N-' methyl- urea, ug/L (61692)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	Neburon water, fltrd 0.7u GF ug/L (49294)	Nico- sul- furon, water, fltrd, ug/L (50364)	Norflur azon, water, fltrd 0.7u GF ug/L (49293)	Ory- zalin, water, fltrd 0.7u GF ug/L (49292)
SO Be 114	<i>01-16-03</i> 01-16-03	E.005	<0.006	<0.03	<0.002	<0.02	<0.007	<0.01	<0.01	<0.02	<0.02

SOMMERSET COUNTY, MARYLAND-Continued

Well Number	Date	Oxamyl, water, fltrd 0.7u GF ug/L (38866)	p,p-' DDE, water, fltrd, ug/L (34653)	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)	Pic- loram, water, fltrd 0.7u GF ug/L (49291)	Prome- ton, water, fltrd, ug/L (04037)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)
SO Be 114	<i>01-16-03</i> 01-16-03	<0.01	<0.003	<0.010	<0.004	<0.022	<0.011	<0.02	<0.01	<0.004	<0.010
		Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Propham water fltrd 0.7u GF ug/L (49236)	Propi- cona- zole, water, fltrd, ug/L (50471)	Pro- poxur, water, fltrd 0.7u GF ug/L (38538)	Siduron water, fltrd, ug/L (38548)	Sima- zine, water, fltrd, ug/L (04035)	Sulfo- met- ruron, water, fltrd, ug/L (50337)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)
SO Be 114	<i>01-16-03</i> 01-16-03	<0.011	<0.02	<0.010	<0.02	<0.008	<0.02	<0.005	<0.009	<0.02	<0.034
		Terba- cil, water, fltrd, ug/L (04032)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- clopyr, water, fltrd 0.7u GF ug/L (49235)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	Rn-222 2-sigma water unfltrd pCi/L (76002)	Rn-222, water, unfltrd pCi/L (82303)	Uranium natural water, fltrd, ug/L (22703)	County
SO Be 114	<i>01-16-03</i> 01-16-03	<0.010	<0.02	<0.005	<0.002	<0.02	<0.009	26	600	0.24	<i>039</i> 039

Remark codes used in this table: < -- Less than E -- Estimated value

TALBOT COUNTY, MARYLAND

Well Number	Date	Time	Station	number	Sampl	e type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
TA Be 91 TA Be 92 TA Cb 99	09-15-03 11-06-02 11-21-02 11-04-02 11-26-02	1500 1600 1700 1200 1200	38515407 38540807 38460207	6024701	Environ Environ Environ Environ Environ	mental mental mental	112CLMB 124PNPN 124PNPN 125AQUI 125AQUI	GW GW GW GW	31.00 280.00 280.00 379.00 379.00	31 280 280 379 379	26 260 260 349 349
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50	11-06-02 12-10-02 11-04-02 11-19-02 11-26-02	1200 1400 1400 1500 1130	38490107 38494607 38481507 38464907 38431207	76002201 76064701 76054801	Environ Environ Environ Environ Environ	mental mental mental	125AQUI 122PNSK 124PNPN 125AQUI 125AQUI	GW GW GW GW	420.00 26.50 360.00 595.00 380.00	420 26 360 595 380	400 24 320 585 360
TA Dc 57 TA Dc 58	11-20-02 11-20-02	1200 1000	38444007 38401007		Environ Environ		125AQUI 125AQUI	GW GW	528.00 575.00	528 575	508 555
		Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Color, water, fltrd, Pt-Co units (00080)	Sam- pling method, code (82398)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)
TA Be 91 TA Be 92 TA Cb 99	09-15-03 11-06-02 11-21-02 11-04-02	 	70.0 60.0 60.0 5.0	3.0 3.8 4.0	24 19 13 30	2 	8030 8030 8030 8030 8030	 	 	 	4.9 7.8 7.9
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50	11-26-02 11-06-02 12-10-02 11-04-02 11-19-02 11-26-02	 9.85 	$5.0 \\10.0 \\74.00 \\10.0 \\15.0 \\5.0 \\$	6.0 5.4 0.32 3.5 4.0 5.0	15 24 40 26 45 18	 	8030 8030 4040 8030 8030 8030	 772 	3.9	 38 	7.9 6.0 8.1 8.3
TA Dc 57 TA Dc 58	11-20-02 11-20-02		5.0 5.0	6.0 4.6	28 55		8030 8030				8.5 8.0
		Specif. conduc- tance,	Temper-	Temper-	Hard- ness, water,	Calcium	Magnes- ium,	Potas- sium,	Sodium,	Alka- linity, wat flt inc tit	Bicar- bonate, wat flt incrm.

		conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	wat flt inc tit field, mg/L as CaCO3 (39086)	wat flt incrm. titr., field, mg/L (00453)
TA Be 91	09-15-03	202		15.8	62	11.5	8.01	2.02	7.86	4	5
TA Be 92	11-06-02	277		15.3						140	171
	11-21-02										
TA Cb 99	11-04-02	297		16.1						141	172
	11-26-02	300									
TA Cc 52	11-06-02	710		16.5						221	270
TA Cc 53	12-10-02	179	1.0	15.0	36	5.30	5.60	23.1	4.34	26	32
TA Cd 64	11-04-02	457		16.7						232	283
TA Cd 65	11-19-02	М		18.6						427	521
TA Da 50	11-26-02	283									
TA Dc 57	11-20-02			17.5						277	338
TA Dc 58	11-20-02	657		18.9						320	390

Geologic Unit (aquifer): 112CLMB - Columbia Formation

122PNSK - Pensauken Formation 124PNPN - Piney Point Formation 125AQUI - Aquia Formation Station Type: GW - Ground Water

Well Number	Date	Bromide water, fltrd, mg/L (71870)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)
TA Be 91 TA Be 92	09-15-03 11-06-02		15.9	<0.2	19.9	0.4	130	136		<0.04	14.1
TA Cb 99	11-21-02 11-04-02 11-26-02	 		 	 			 	 		
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50	11-06-02 12-10-02 11-04-02 11-19-02 11-26-02	0.03	11.6 	<0.17 	13.1 	17.6 	112 	119 	<0.10 	<0.04 	3.58
TA Dc 57 TA Dc 58	11-20-02 11-20-02	0.15									
		Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, fltrd, mg/L (00666)	Organic carbon, water, fltrd, mg/L (00681)	Organic carbon, water, unfltrd mg/L (00680)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsen- ate, water, fltrd, ug/L as As (62453)	Arsenic water, fltrd, ug/L (01000)	Arsen- ite, water, fltrd, ug/L as As (62452)
TA Be 91 TA Be 92	09-15-03 11-06-02	<0.008	<0.18	<0.04		0.9			9.3	<0.3	6.3
TA Cb 99	11-21-02 11-04-02 11-26-02								10.0 5.3 1.7		5.9 16.8 20.9
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50	11-06-02 12-10-02 11-04-02 11-19-02 11-26-02	<0.008 	<0.02 	 	0.5	 	M 	<0.30 	5.9 6.3 0.2 2.3	<0.3	31.6 14.9 8.6 11.0
TA Dc 57 TA Dc 58	11-20-02 11-20-02								3.8 1.4		8.6 18.4

		Barium, water, fltrd, ug/L (01005)	Beryll- ium, water, fltrd, ug/L (01010)	Boron, water, fltrd, ug/L (01020)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)
	09-15-03		0.33						10	20	0.82
	11-06-02										
	11-21-02										
	11-04-02										
	11-26-02										
TA Cc 52	11-06-02										
TA Cc 53	12-10-02	105	E.04	E6	0.13	E.4	0.435	0.9	<10		0.47
TA Cd 64	11-04-02										
TA Cd 65	11-19-02										
TA Da 50	11-26-02										
TA Dc 57	11-20-02										
	11-20-02										

Well Number	Date	Lithium water, fltrd, ug/L (01130)	Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Mercury water, fltrd, ug/L (71890)	Molyb- denum, water, fltrd, ug/L (01060)	Nickel, water, fltrd, ug/L (01065)	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)	Stront- ium, water, fltrd, ug/L (01080)	Thall- ium, water, fltrd, ug/L (01057)
TA Be 91 TA Be 92	09-15-03 11-06-02		26.9	25.0	<0.02						E.03
TA Cb 99	11-21-02 11-04-02 11-26-02										
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50	11-06-02 12-10-02 11-04-02 11-19-02 11-26-02	E.5 	42.8 	 	 	<0.3 	0.89 	1.3 	<0.2 	97.9 	0.05
TA Dc 57 TA Dc 58	11-20-02 11-20-02										
		Vanad- ium, water, fltrd, ug/L (01085)	Zinc, water, fltrd, ug/L (01090)	2,4,5-T surrog, water, fltrd, percent recovry (99958)	2,4-D methyl ester, water, fltrd, ug/L (50470)	2,4-D water, fltrd, ug/L (39732)	2,4-DB water, fltrd 0.7u GF ug/L (38746)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	OIET, water, fltrd, ug/L (50355)
TA Be 91 TA Be 92	09-15-03 11-06-02								0.06	< 0.05	
TA Cb 99	11-21-02 11-04-02 11-26-02										
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50	11-06-02 12-10-02 11-04-02 11-19-02 11-26-02	0.5	M 	84.3 	<0.009 	<0.02 	<0.02 	<0.006 	E.006 	<0.04 	<0.008
TA Dc 57 TA Dc 58	11-20-02 11-20-02										
		3- Hydroxy carbo- furan, wat flt 0.7u GF ug/L (49308)	3-Keto- carbo- furan, water, fltrd, ug/L (50295)	Aceto- chlor, water, fltrd, ug/L (49260)	Aci- fluor- fen, water, fltrd 0.7u GF ug/L (49315)	Ala- chlor, water, fltrd, ug/L (46342)	Aldi- carb sulfone water, fltrd 0.7u GF ug/L (49313)	Aldi- carb sulf- oxide, wat flt 0.7u GF ug/L (49314)	Aldi- carb, water, fltrd 0.7u GF ug/L (49312)	alpha- HCH, water, fltrd, ug/L (34253)	alpha- HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)
TA Be 91 TA Be 92	09-15-03 11-06-02			<0.05		<0.05					68.9
TA Cb 99	11-21-02 11-04-02 11-26-02									 	
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50	11-06-02 12-10-02 11-04-02 11-19-02 11-26-02	<0.006 	<2 	<0.006 	<0.007 	<0.004 	<0.02 	<0.008 	<0.04 	<0.005 	
TA Dc 57 TA Dc 58	11-20-02 11-20-02										

Well Number	Date	alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)	Ametryn water, fltrd, ug/L (38401)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Barban, surrog, Sched. 2060/ 9060, wat flt pct rcv (90640)	Bendio- carb, water, fltrd, ug/L (50299)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Benomyl water, fltrd, ug/L (50300)	Bensul- furon, water, fltrd, ug/L (61693)	Ben- tazon, water, fltrd 0.7u GF ug/L (38711)
TA Be 91	09-15-03		< 0.05	0.06							
TA Be 92	11-06-02										
TA Cb 99	11-21-02 11-04-02										
	11-26-02										
TA Cc 52	11-06-02										
TA Cc 53	12-10-02	99.0		E.004	< 0.050	115	< 0.03	< 0.010	< 0.004	< 0.02	< 0.01
TA Cd 64 TA Cd 65	11-04-02 11-19-02										
TA Da 50	11-19-02										
TA Dc 57	11-20-02										
TA Dc 58	11-20-02										
		Broma- cil, water, fltrd, ug/L (04029)	Brom- oxynil, water, fltrd 0.7u GF ug/L (49311)	Buta- chlor, water, fltrd, ug/L (04026)	Butyl- ate, water, fltrd, ug/L (04028)	Caf- feine, water, fltrd, ug/L (50305)	Caf- feine- 13C, surrog, wat flt percent recovry (99959)	Car- baryl, water, fltrd 0.7u GF ug/L (49310)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (49309)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)
TA Be 91	09-15-03	<1.00		< 0.05	< 0.05						
TA Be 92	11-06-02										
TA Cb 99	11-21-02 11-04-02										
	11-26-02										
TA Cc 52 TA Cc 53 TA Cd 64	11-06-02 12-10-02 11-04-02	<0.03	<0.02		<0.002	<0.010	92.3	<0.03	<0.041	<0.006	<0.020
TA Cd 65	11-19-02										
TA Da 50	11-26-02										
TA Dc 57 TA Dc 58	11-20-02 11-20-02										
		Car-	Chlor- amben methyl	Chlori-	Chloro- di- amino-	Chloro- thalo- nil.	Chlor-	cis- Per- methrin	Clopyr- alid.	Cvana-	Cvclo-

		Car- boxin, water, fltrd, ug/L (04027)	amben methyl ester, water, fltrd, ug/L (61188)	Chlori- muron, water, fltrd, ug/L (50306)	di- amino- s-tri- azine, wat flt ug/L (04039)	thalo- nil, water, fltrd 0.7u GF ug/L (49306)	Chlor- pyrifos water, fltrd, ug/L (38933)	Per- methrin water fltrd 0.7u GF ug/L (82687)	Clopyr- alid, water, fltrd 0.7u GF ug/L (49305)	Cyana- zine, water, fltrd, ug/L (04041)	Cyclo- ate, water, fltrd, ug/L (04031)
TA Be 91	09-15-03	< 0.05								< 0.02	< 0.05
TA Be 92	11-06-02										
	11-21-02										
TA Cb 99	11-04-02										
	11-26-02										
TA Cc 52	11-06-02										
TA Cc 53	12-10-02		< 0.02	< 0.010	< 0.01	< 0.04	< 0.005	< 0.006	< 0.01	< 0.018	< 0.01
TA Cd 64	11-04-02										
TA Cd 65	11-19-02										
TA Da 50	11-26-02										
TA Dc 57	11-20-02										
TA Dc 58	11-20-02										

Well Number	Date	Dacthal mono- acid, water, fltrd 0.7u GF ug/L (49304)	DCPA, water fltrd 0.7u GF ug/L (82682)	Diazi- non, water, fltrd, ug/L (39572)	Diazi- non-d10 sur Sch 1379, wat flt pct rcv (90670)	Diazi- non-d10 surrog. wat flt 0.7u GF percent recovry (91063)	Di- chlor- prop, water, fltrd 0.7u GF ug/L (49302)	Diel- drin, water, fltrd, ug/L (39381)	Di- methyl- arsin- ate, wat flt ug/L as As (62455)	Dinoseb water, fltrd 0.7u GF ug/L (49301)	Diphen- amid, water, fltrd, ug/L (04033)
TA Be 91	09-15-03				83.3						< 0.05
TA Be 92 TA Cb 99	11-06-02 11-21-02 11-04-02				 		 		0.3 <0.1 0.4		
IA CU 33	11-04-02								0.4		
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65	11-06-02 12-10-02 11-04-02 11-19-02	<0.01 	<0.003	<0.005	 	 114 	<0.01	<0.005	0.7 0.4 0.2	<0.01 	<0.03
TA Da 50	11-26-02								0.1		
TA Dc 57 TA Dc 58	11-20-02 11-20-02								0.2 0.3		
		Disul- foton, water, fltrd 0.7u GF ug/L (82677)	Diuron, water, fltrd 0.7u GF ug/L (49300)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fenuron water, fltrd 0.7u GF ug/L (49297)	Flumet- sulam, water, fltrd, ug/L (61694)	Fluo- meturon water fltrd 0.7u GF ug/L (38811)	Fonofos water, fltrd, ug/L (04095)	Hexa- zinone, water, fltrd, ug/L (04025)
TA Be 91 TA Be 92	09-15-03 11-06-02										<0.05
TA Cb 99	11-21-02 11-04-02										
11100 77	11-26-02										
TA Cc 52 TA Cc 53	11-06-02 12-10-02	<0.02	< 0.01	< 0.002	<0.009	<0.005	< 0.03	<0.01	< 0.03	< 0.003	
TA Cd 64 TA Cd 65	11-04-02 11-19-02										
TA Da 50	11-26-02										
TA Dc 57 TA Dc 58	11-20-02 11-20-02										
		Imaza- quin, water, fltrd, ug/L (50356)	Imaze- thapyr, water, fltrd, ug/L (50407)	Imida- cloprid water, fltrd, ug/L (61695)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (38478)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)	MCPA, water, fltrd 0.7u GF ug/L (38482)	MCPB, water, fltrd 0.7u GF ug/L (38487)	Meta- laxyl, water, fltrd, ug/L (50359)
TA Be 91 TA Be 92	09-15-03 11-06-02										
TA Cb 99	11-00-02 11-21-02 11-04-02										
	11-04-02										
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50	11-06-02 12-10-02 11-04-02 11-19-02 11-26-02	<0.02 	<0.02 	<0.007 	<0.004 	<0.01 	<0.035 	<0.027 	<0.02 	<0.01 	<0.02
TA Dc 57 TA Dc 58	11-20-02 11-20-02										
	20 02										

TALBOT COUNTY, MARYLAND-Continued

Well Number	Date	Methio- carb, water, fltrd 0.7u GF ug/L (38501)	Meth- omyl, water, fltrd 0.7u GF ug/L (49296)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Metsul- furon, water, fltrd, ug/L (61697)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Mono- methyl- arson- ate, wat flt ug/L as As (62454)	N-(4- Chloro- phenyl) -N-' methyl- urea, ug/L (61692)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)
TA Be 91 TA Be 92 TA Cb 99	09-15-03 11-06-02 11-21-02 11-04-02 11-26-02	 	 	 	<0.05 	<0.05 	 	 	0.2 <0.1 0.1 <0.1	 	
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50	11-06-02 12-10-02 11-04-02 11-19-02 11-26-02	<0.008 	<0.004 	<0.006 	<0.013 	<0.006 	<0.03	<0.002 	0.2 <0.1 <0.1 <0.1	<0.02 	<0.007
TA Dc 57 TA Dc 58	11-20-02 11-20-02								<0.1 <0.1		
		Neburon water, fltrd 0.7u GF ug/L (49294)	Nico- sul- furon, water, fltrd, ug/L (50364)	Norflur azon, water, fltrd 0.7u GF ug/L (49293)	Ory- zalin, water, fltrd 0.7u GF ug/L (49292)	Oxamyl, water, fltrd 0.7u GF ug/L (38866)	p,p-' DDE, water, fltrd, ug/L (34653)	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)
TA Be 91 TA Be 92 TA Cb 99	09-15-03 11-06-02 11-21-02 11-04-02 11-26-02	 	 	 	 	 	 	 	 	 	
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50	11-06-02 12-10-02 11-04-02 11-19-02 11-26-02	<0.01 	<0.01 	<0.02 	<0.02 	<0.01 	<0.003 	<0.010 	<0.004 	<0.022 	<0.011
TA Dc 57 TA Dc 58	11-20-02 11-20-02										
		Pic- loram, water, fltrd 0.7u GF ug/L (49291)	Prome- ton, water, fltrd, ug/L (04037)	Prome- tryn, water, fltrd, ug/L (04036)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Propa- zine, water, fltrd, ug/L (38535)	Propham water fltrd 0.7u GF ug/L (49236)	Propi- cona- zole, water, fltrd, ug/L (50471)
TA Be 91 TA Be 92	09-15-03 11-06-02		<0.05	<0.05		<0.05			<0.05		
TA Cb 99	11-21-02 11-04-02 11-26-02	 	 	 	 	 	 	 		 	
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50	11-06-02 12-10-02 11-04-02 11-19-02 11-26-02	<0.02 	<0.01 	 	<0.004 	<0.010 	<0.011 	<0.02 	 	<0.010 	<0.02

11-20-02 -- -- -- -- -- -- -- -- -- -- -- --11-20-02 -- -- -- -- -- -- -- -- -- -- --

TA Dc 57 TA Dc 58

Well Number	Date	Pro- poxur, water, fltrd 0.7u GF ug/L (38538)	Siduron water, fltrd, ug/L (38548)	Sima- zine, water, fltrd, ug/L (04035)	Sima- tryn, water, fltrd, ug/L (04030)	Sulfo- met- ruron, water, fltrd, ug/L (50337)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Terba- cil, water, fltrd, ug/L (04032)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)
TA Be 91 TA Be 92	09-15-03 11-06-02			< 0.05	<0.05				< 0.05		
TA Cb 99	11-00-02 11-21-02 11-04-02 11-26-02			 	 			 			
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50	11-06-02 12-10-02 11-04-02 11-19-02 11-26-02	<0.008 	<0.02 	<0.005 	 	<0.009 	<0.02 	<0.034 	<0.010 	<0.02 	<0.005
TA Dc 57 TA Dc 58	11-20-02 11-20-02										
		Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- clopyr, water, fltrd 0.7u GF ug/L (49235)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	Tri- flur- alin, water, fltrd, ug/L (04023)	Vernol- ate, water, fltrd, ug/L (04034)	Xylenes water unfltrd ug/L (81551)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	Benzene water unfltrd ug/L (34030)	Ethyl- benzene water unfltrd ug/L (34371)
TA Be 91 TA Be 92	09-15-03 11-06-02				<0.05	< 0.05	<0.2	98.3	78.0	<0.2	<0.2
TA Cb 99	11-00-02 11-21-02 11-04-02 11-26-02							 			
TA Cc 52 TA Cc 53 TA Cd 64 TA Cd 65 TA Da 50 TA Dc 57 TA Dc 58	11-06-02 12-10-02 11-04-02 11-19-02 11-26-02 11-20-02 11-20-02	<0.002 	<0.02 	<0.009 	 	 	 	 	 	 	
		meta-		Methyl		Toluene	Alpha	Alpha radio-	Beta	Gross	

		meta- + para- Xylene, water, unfltrd ug/L (85795)	O- Xylene, water, unfltrd ug/L (77135)	Methyl t-butyl ether, water, unfltrd ug/L (78032)	Toluene water unfltrd ug/L (34010)	-d8, surrog, Sch2090 wat unf percent recovry (99833)	Alpha radio- activty 2-sigma wat flt Th-230, pCi/L (75987)	Alpha radio- activty water, fltrd, Th-230, pCi/L (04126)	radio- activty 2-sigma wat flt CS-137, pCi/L (75989)	beta radioac water, fltrd, Cs-137, pCi/L (03515)	Rn-222 2-sigma water unfltrd pCi/L (76002)	
TA Be 91	09-15-03	< 0.2	< 0.2	<0.2	<0.2	94.4	0.89	М	1.4	3	21	
TA Be 92	11-06-02											
	11-21-02											
TA Cb 99	11-04-02											
	11-26-02											
TA Cc 52	11-06-02											
TA Cc 53	12-10-02										21	
TA Cd 64	11-04-02											
TA Cd 65	11-19-02											
TA Da 50	11-26-02											
TA Dc 57	11-20-02											
TA Dc 58	11-20-02											

TALBOT COUNTY, MARYLAND-Continued

Well Number	Date	Rn-222, water, unfltrd pCi/L (82303)	Uranium natural water, fltrd, ug/L (22703)
TA Be 91	09-15-03	230	
TA Be 92	11-06-02	250	
111 DC 72	11-21-02		
TA Cb 99	11-04-02		
	11-26-02		
TA Cc 52	11-06-02		
TA Cc 53	12-10-02	220	< 0.02
TA Cd 64	11-04-02		
TA Cd 65	11-19-02		
TA Da 50	11-26-02		
TA Dc 57	11-20-02		
TA Dc 58	11-20-02		

Remark codes used in this table: < -- Less than E -- Estimated value M-- Presence verified, not quantified

WICOMICO COUNTY, MARYLAND

Well Number	Da	ıte Tim	ne Sta	ation number	r S	ample type	Geol ur	.0	tation b type I	epth to of sa vell, ir feet elow b _SD l	Depth o bot ample atrval feet elow LSD 2016)	Depth to top sample intrval feet below LSD (72015)
WI Cd 72	09-1	6-03 150	00 382.	3280754113	01 En	vironmental	112C	LMB (GW 5	5	55	50
	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Color, water, fltrd, Pt-Co units (00080)	Sam- pling method, code (82398)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	unfltrd mg/L as CaCO3	Calcium water, fltrd, mg/L (00915)		
	35.0	5.0	23	5	8030	5.7	66	13.7	11	3.37		
	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)		
	0.572	1.30	7.73	17	21	6.34	<0.2	24.4	0.4	59		
	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, fltrd, mg/L (00666)	Organic carbon, water, unfltrd mg/L (00680)	Arsenic water, fltrd, ug/L (01000)	water, fltrd, ug/L	Iron, water, fltrd, ug/L (01046)		
	56	<0.04	0.99	<0.008	<0.18	<0.04	E.2	<0.3	0.23	<8		
	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Mercury water, fltrd, ug/L (71890)	Thall- ium, water, fltrd, ug/L (01057)	CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)		
	М	0.34	1.4	1.3	< 0.02	<0.04	< 0.05	< 0.05	< 0.05	< 0.05		
Geologic Unit (aqui	ifer): 112CI	MB - Colu	mbia aqui	fer								

Station Type: GW - Ground Water

Sampling Method: 8030 - Grab sample at water-supply tap

WICOMICO COUNTY, MARYLAND-Continued

Well Number	Da	HCI sur Sch wa per te reco	ha- rog, 1379 Ame t flt wa cent flti ovry ug 505) (384	etryn zi ter, wa rd, flt /L ug	ne, c ater, wa trd, flt g/L ug	il, chi ater, wa trd, flt g/L ug	lor, a iter, wa ird, flt g/L ug	ttyl- Car- te, boxin tter, wate rd, fltrd g/L ug/I 028) (0402	n, zine, r, water, , fltrd, _ ug/L	ate, , water, fltrd, ug/L	Diazi- non-d10 sur Sch 1379, wat flt pct rcv (90670)
WI Cd 72	09-10	6-03 70	0.2 <0.0	05 <0.	.05 <1.	.00 <0.	05 <0.	05 <0.05	ō <0.02	< 0.05	86.1
	Diphen- amid, water, fltrd, ug/L (04033)	Hexa- zinone, water, fltrd, ug/L (04025)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Prome- ton, water, fltrd, ug/L (04037)	Prome- tryn, water, fltrd, ug/L (04036)	Propa- chlor, water, fltrd, ug/L (04024)	Propa- zine, water, fltrd, ug/L (38535)	zine, water, fltrd, ug/L	Sima- tryn, water, fltrd, ug/L (04030)	
	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	
	Terba- cil, water, fltrd, ug/L (04032)	Tri- flur- alin, water, fltrd, ug/L (04023)	Vernol- ate, water, fltrd, ug/L (04034)	Xylenes water unfltrd ug/L (81551)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	Benzene water unfltrd ug/L (34030)	water unfltrd ug/L	water, unfltrd ug/L	o- Xylene, water, unfltrd ug/L (77135)	
	<0.05	<0.05	< 0.05	<0.2	140	79.6	<0.2	<0.2	<0.2	<0.2	
	Met t-bu eth wat unf (780	ıtyl er, Tol ter, wa ltrd un /L uş	-d sur uene Sch ater wat fltrd per g/L reco	l8, rat rog, act 2090 2-s unf wa cent Th- ovry p0	dio- ra tivty act igma wa at flt fl -230, Th- Ci/L pC	dio- rac tivty act ater, 2-si trd, wa -230, CS- Ci/L pC	dio- b ivty rad igma wa ut flt fl -137, Cs- Ci/L pC	ross eta lioac Rn-2 ater, 2-sign trd, wate 137, unflt Ci/L pCi/ 515) (7600	ma Rn-22 er water rd unfltr L pCi/L	d	
	<		sed in this		.72	1 0.	.93	2 23	360		

E -- Essimated value M-- Presence verified, not quantified

WORCESTER COUNTY, MARYLAND

Well Number	Date	Time	Station	number	Sample	e type	Geologic unit	Station type	Depth of well, feet below LSD (72008)	Depth to bot sample intrval feet below LSD (72016)	Depth to top sample intrval feet below LSD (72015)
WO Ah 36 WO Ah 38 WO Bf 88 WO Bh 34 WO Bh 84	09-04-03 09-03-03 09-10-03 09-05-03 09-02-03	1030 0830 1000 1000 1330	38263507 38263807 38230507 38244307 38221507	75033001 75150001 75033501	Environ Environ Environ Environ Environ	mental mental mental	122MNKN 122MNKN 112CLMB 122MNKN 121BVDM	GW GW GW GW	440 69 353 89	440 69 353 89	430 64 337 84
WO Bh 85 WO Bh 89 WO Bh 98 WO Bh 101	09-02-03 09-02-03 09-02-03 09-05-03 09-03-03	<i>1335</i> 1230 1130 1130 1030	382215075041901 382215075041902 382215075041903 382127075043802 382127075043804 <i>381541075271401</i> 381938075052001 381953075051401		<i>Replicat</i> Environ Environ Environ Environ	mental mental mental	121BVDM 122PCMK 122MNKN 122OCNC 122OCNC	GW GW GW GW GW	89 195 500 275 312	89 195 500 275 239	84 191 388 255 237
WO Cc 4 WO Cg 33 WO Cg 87	09-09-03 09-10-03 09-03-03 09-03-03 09-03-03	1405 1200 1130 1230 1235	38193807	5052001	Blank Environi Environi Environi Replicat	mental mental	112CLMB 112CLMB 112RDGV 122OCNC 122OCNC	GW GW GW GW GW	70 290 310 <i>310</i>	70	60 250
WO Fe 1	01-15-03 <i>01-15-03</i>	1100 <i>1105</i>	38035807	5292901	Environ <i>Replicat</i>		112OMAR 112OMAR	GW <i>GW</i>	24 24	24 24	21 21
		Depth to water level, feet below LSD (72019)	Alti- tude of land surface feet (72000)	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Color, water, fltrd, Pt-Co units (00080)	Sam- pling method, code (82398)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)
WO Ah 36 WO Ah 38 WO Bf 88 WO Bh 34 WO Bh 84	09-04-03 09-03-03 09-10-03 09-05-03 09-02-03	25.70 13.59 4.37	$14.3 \\ 4 \\ 40.0 \\ 4.0 \\ 5.0$	9.0 4.0 10.0 10.0	91 19 70 30	 5 	4040 8010 8030 4040 4040	760 770 767 766	0.1 5.3 0.3 0.3	256 3 3	6.4 6.3 5.5 6.5 6.7
WO Bh 85 WO Bh 89 WO Bh 98 WO Bh 101	09-02-03 09-02-03 09-02-03 09-05-03 09-03-03	4.37 5.70 19.72 32.30	5.0 5.0 5.6 5.0 5	10.0 10.0 10.0 15.0	30 40 95 480 	 	4040 4040 4040 4040 4045	766 766 766 767 770	0.3 0.2 <1.0 0.2 6.5	3 2 2 67	6.7 6.6 6.8 6.3 7.0
WO Cc 4 WO Cg 33 WO Cg 87	09-09-03 09-10-03 09-03-03 09-03-03 09-03-03	 	40.0 6.00 10 10	4.0 	20 	<1 10 	8030 4045 4045 <i>4045</i>	 770 770 770	3.4 3.5 3.5	 35 38 38	5.6 7.3 7.2 7.2
WO Fe 1	01-15-03 <i>01-15-03</i>	8.40 <i>8.40</i>	32.00 <i>32.00</i>	0.33 <i>0.33</i>	70 70		4040 <i>4040</i>	769 	0.2	2	5.1

Sampling Method: 4040 - Submersible pump

8010 - Other

4045 - Submersible multiple impeller (turbine) pump

8030 - Grab sample at water-supply tap

Geologic Unit (aquifer): 112CLMB - Columbia Frmation 112OMAR - Omar Formatio 112RDGV - Red Gravelly Facies 121BVDM - Beaverdam Sand 122MNKN - Manokin aquifer

122OCNC - Ocean City aquifer

122PCMK - Pocomoke aquifer

Station Type: GW - Ground Water

Well Number	Date	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	ANC, wat unf incrm. titr., field, mg/L as CaCO3 (00419)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)
WO Ah 36	09-04-03	835	24.0	16.8	89	24.7	6.73	5.62	113		
WO Ah 38	09-03-03	770		18.1	76	22.1	5.08	4.21	55.5		
WO Bf 88	09-10-03	540		16.0	160	31.7	18.9	2.28	24.8		13
WO Bh 34	09-05-03	235	24.0	17.1	62	15.1	5.84	4.73	10.2		
WO Bh 84	09-02-03	409		17.7	100	20.2	12.1	11.7	30.5		
	09-02-03	409		17.7	100	20.3	12.3	11.9	30.8		
WO Bh 85	09-02-03	420		17.0	100	17.1	14.8	11.8	36.3		
WO Bh 89	09-02-03			18.1	250	29.1	42.5	17.3	261		
WO Bh 98	09-05-03	449	24.0	17.6	170	39.2	16.8	11.6	19.4		
WO Bh 101	09-03-03	418		17.3	150	37.0	14.3	10.4	22.4		
WO Cc 4	09-09-03					0.04	E.008	<0.16	<0.10		
	09-10-03	69		16.0	8	1.97	0.722	1.04	8.18		14
WO Cg 33	09-03-03	432		17.4	130	34.0	11.9	8.75	33.7		
WO Cg 87	09-03-03	468		19.2	120	30.8	11.6	9.15	42.4		
-	09-03-03	468		19.2	130	31.1	11.6	9.12	42.6		
WO Fe 1	01-15-03	113	2.0	14.0	25	5.29	2.81	2.08	6.53	5	
	01-15-03										

		Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Bicar- bonate, wat unf incrm. titr., field, mg/L (00450)	Bromide water, fltrd, mg/L (71870)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia + org-N, water, fltrd, mg/L as N (00623)
WO Ah 36	09-04-03			0.61	168	< 0.2	34.0	< 0.2		451	
WO Ah 38 WO Bf 88	09-03-03 09-10-03	16		1.09	84.1 30.4	<0.2 <0.2	35.7	E.1 213	387	288 350	
WO BI 88 WO Bh 34	09-10-03			0.14	30.4 13.7	<0.2	32.1 36.9	<0.2		143	
WO Bh 84	09-02-03			0.14	53.3	<0.2	38.2	<0.2		227	
NO DE OI											
	09-02-03			0.33	53.2	<0.2	37.9	<0.2		242	
WO Bh 85	09-02-03			0.34	48.5	< 0.2	35.2	< 0.2		239	
WO Bh 89	09-02-03			1.80	513	0.2	35.0	4.0		1,050	
WO Bh 98	09-05-03			0.08	30.7	< 0.2	30.9	E.1		258	
WO Bh 101	09-03-03			0.07	25.7	0.2	30.0	E.1		244	
WO Cc 4	09-09-03				<0.20	<0.2	< 0.2	<0.2		<10	
	09-10-03	17			8.81	< 0.2	22.3	4.4	57	55	
WO Cg 33	09-03-03			0.10	33.0	0.2	26.7	E.1		251	
WO Cg 87	09-03-03			0.16	53.7	< 0.2	29.4	E.1		270	
	09-03-03			0.16	53.3	<0.2	29.5	E.1		269	
WO Fe 1	01-15-03		6	< 0.02	< 0.20	< 0.17	16.7	< 0.2		<10	E.06
	01-15-03										

Well Number	Date	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L (00660)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, fltrd, mg/L (00666)	Organic carbon, water, fltrd, mg/L (00681)	Organic carbon, water, unfltrd mg/L (00680)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03	0.13	< 0.06	< 0.008	0.098	0.03	E.03		2.3		
WO Bh 34	09-05-03										
WO Bh 84	09-02-03										
	00.02.02										
WO D1 05	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
WO Cc 4	09-09-03	<0.04	< 0.06	<0.008		< 0.02	<0.04		0.4		
	09-10-03	< 0.04	< 0.06	< 0.008		< 0.02	< 0.04		1.8		
WO Cg 33	09-03-03										
WO Cg 87	09-03-03										
0	09-03-03										
WO Fe 1	01-15-03	E.04	< 0.06	< 0.008		< 0.02		0.6		7	< 0.30
wore I	01-15-03	E.04									
	01-15-05										

		Arsenic water, fltrd, ug/L (01000)	Barium, water, fltrd, ug/L (01005)	Beryll- ium, water, fltrd, ug/L (01010)	Boron, water, fltrd, ug/L (01020)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)
WO Ah 36	09-04-03									12,000	
WO Ah 38	09-03-03									12,000	
WO Bf 88	09-10-03	< 0.3		0.06						24,400	22,500
WO Bh 34	09-05-03									15,200	
WO Bh 84	09-02-03									6,420	
	09-02-03									6,460	
WO Bh 85	09-02-03									5,250	
WO Bh 89	09-02-03									7,140	
WO Bh 98	09-05-03									1,410	
WO Bh 101	09-03-03									1,560	
WO Cc 4	09-09-03	<0.3		<0.06						<8	<6
WUCC 4	09-10-03	0.4		0.38						1,210	1,800
WO Cg 33	09-03-03			0.58						1,210	1,800
WO Cg 55	09-03-03									1,900	
WO Cg 87											
	09-03-03									1,730	
WO Fe 1	01-15-03	< 0.3	32	0.14	18	< 0.04	< 0.8	0.040	0.8	1,250	
	01-15-03										

					Mangan-							
Well Number	Date	Lead, water, fltrd, ug/L (01049)	Lithium water, fltrd, ug/L (01130)	Mangan- ese, water, fltrd, ug/L (01056)	ese, water, unfltrd recover -able, ug/L (01055)	Mercury water, fltrd, ug/L (71890)	Molyb- denum, water, fltrd, ug/L (01060)	Nickel, water, fltrd, ug/L (01065)	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)	Stront- ium, water, fltrd, ug/L (01080)	
WO Ah 36	09-04-03			127								
WO Ah 38	09-03-03			130								
WO Bf 88	09-10-03	< 0.08		446	433	< 0.02						
WO Bh 34	09-05-03			121								
WO Bh 84	09-02-03			92.7								
	09-02-03			93.0								
WO Bh 85	09-02-03			112								
WO Bh 89	09-02-03			139								
WO Bh 98	09-05-03			29.1								
WO Bh 101	09-03-03			45.8								
WO Cc 4	09-09-03	<0.08		< 0.4	<0.6	< 0.02						
	09-10-03	0.75		20.5	25.1	< 0.02						
WO Cg 33	09-03-03			70.3								
WO Cg 87	09-03-03			57.5								
	09-03-03			57.6								
WO E- 1	01 15 02	E 05	2.0	47.2			-0.2	0.59	E 4	-0.2	741	
WO Fe 1	01-15-03	E.05	3.0	47.3			< 0.3	0.58	E.4	< 0.2	74.1	
	01-15-03											

		Thall- ium, water, fltrd, ug/L (01057)	Vanad- ium, water, fltrd, ug/L (01085)	Zinc, water, fltrd, ug/L (01090)	2,4,5-T surrog, water, fltrd, percent recovry (99958)	2,4-D methyl ester, water, fltrd, ug/L (50470)	2,4-D water, fltrd, ug/L (39732)	2,4-DB water, fltrd 0.7u GF ug/L (38746)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)	CEAT, water, fltrd, ug/L (04038)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03	< 0.04								< 0.05	< 0.05
WO Bh 34	09-05-03	<0.04									<0.05
WO Bh 84	09-02-03										
	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
WO Cc 4	09-09-03	< 0.04								<0.05	<0.05
WOCC 4	09-10-03	<0.04								< 0.05	< 0.05
WO Cg 33	09-03-03	<0.04								<0.05	<0.05
WO Cg 87	09-03-03										
	09-03-03										
WO Fe 1	01-15-03	< 0.04	E.1	2	98.5	< 0.009	< 0.02	< 0.02	< 0.006	< 0.006	< 0.04
	01-15-03										

Well Number	Date	OIET, water, fltrd, ug/L (50355)	3- Hydroxy carbo- furan, wat flt 0.7u GF ug/L (49308)	3-Keto- carbo- furan, water, fltrd, ug/L (50295)	Aceto- chlor, water, fltrd, ug/L (49260)	Aci- fluor- fen, water, fltrd 0.7u GF ug/L (49315)	Ala- chlor, water, fltrd, ug/L (46342)	Aldi- carb sulfone water, fltrd 0.7u GF ug/L (49313)	Aldi- carb sulf- oxide, wat flt 0.7u GF ug/L (49314)	Aldi- carb, water, fltrd 0.7u GF ug/L (49312)	alpha- HCH, water, fltrd, ug/L (34253)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03				< 0.05		< 0.05				
WO Bh 34	09-05-03										
WO Bh 84	09-02-03										
W 0 D1 07	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
WO Cc 4	09-09-03				<0.05		< 0.05				
	09-10-03				< 0.05		< 0.05				
WO Cg 33	09-03-03										
WO Cg 87	09-03-03										
-	09-03-03										
WO Fe 1	01-15-03 <i>01-15-03</i>	<0.008	<0.006	<2	<0.006	<0.007	<0.004	<0.02	<0.008	<0.04	<0.005

		alpha- HCH-d6 surrog, Sch1379 wat flt percent recovry (90505)	alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)	Ametryn water, fltrd, ug/L (38401)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Barban, surrog, Sched. 2060/ 9060, wat flt pct rcv (90640)	Bendio- carb, water, fltrd, ug/L (50299)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Benomyl water, fltrd, ug/L (50300)	Bensul- furon, water, fltrd, ug/L (61693)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03	71.7		< 0.05	< 0.05						
WO Bh 34	09-05-03										
WO Bh 84	09-02-03										
	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
WO Cc 4	09-09-03	68.2		<0.05	<0.05						
	09-10-03	76.7		< 0.05	< 0.05						
WO Cg 33	09-03-03										
WO Cg 87	09-03-03										
	09-03-03										
WO Fe 1	01-15-03		96.2		< 0.007	< 0.050	98.9	< 0.03	< 0.010	< 0.004	< 0.02
	01-15-03										

Well Number	Date	Ben- tazon, water, fltrd 0.7u GF ug/L (38711)	Broma- cil, water, fltrd, ug/L (04029)	Brom- oxynil, water, fltrd 0.7u GF ug/L (49311)	Buta- chlor, water, fltrd, ug/L (04026)	Butyl- ate, water, fltrd, ug/L (04028)	Caf- feine, water, fltrd, ug/L (50305)	Caf- feine- 13C, surrog, wat flt percent recovry (99959)	Car- baryl, water, fltrd 0.7u GF ug/L (49310)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (49309)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03		<1.00		< 0.05	< 0.05					
WO Bh 34	09-05-03										
WO Bh 84	09-02-03										
	00.02.03										
NIC DI 05	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
WO Cc 4	09-09-03		<1.00		< 0.05	<0.05					
	09-10-03		<1.00		< 0.05	< 0.05					
WO Cg 33	09-03-03										
WO Cg 87	09-03-03										
	09-03-03										
WO Fe 1	01-15-03	< 0.01	< 0.03	< 0.02		< 0.002	< 0.010	E4.4	< 0.03	< 0.041	< 0.006
	01-15-03	~	<0.05 	<0.02		<0.002	<0.010		<0.05 	<0.041	<0.000
	01-15-05										

		Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Car- boxin, water, fltrd, ug/L (04027)	Chlor- amben methyl ester, water, fltrd, ug/L (61188)	Chlori- muron, water, fltrd, ug/L (50306)	Chloro- di- amino- s-tri- azine, wat flt ug/L (04039)	Chloro- thalo- nil, water, fltrd 0.7u GF ug/L (49306)	Chlor- pyrifos water, fltrd, ug/L (38933)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)	Clopyr- alid, water, fltrd 0.7u GF ug/L (49305)	Cyana- zine, water, fltrd, ug/L (04041)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03		< 0.05								< 0.02
WO Bh 34	09-05-03										
WO Bh 84	09-02-03										
	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
WO Cc 4	09-09-03		<0.05								< 0.02
	09-10-03		< 0.05								< 0.02
WO Cg 33	09-03-03										
WO Cg 87	09-03-03										
	09-03-03										
WO Fe 1	01-15-03	< 0.020		< 0.02	< 0.010	< 0.01	< 0.04	< 0.005	< 0.006	< 0.01	< 0.018
	01-15-03	<0.020		<0.02	<0.010	<0.01	<0.04	<0.005	<0.000	<0.01	<0.018
	01-15-05										

Well Number	Date	Cyclo- ate, water, fltrd, ug/L (04031)	Dacthal mono- acid, water, fltrd 0.7u GF ug/L (49304)	DCPA, water fltrd 0.7u GF ug/L (82682)	Diazi- non, water, fltrd, ug/L (39572)	Diazi- non-d10 sur Sch 1379, wat flt pct rcv (90670)	Diazi- non-d10 surrog. wat flt 0.7u GF percent recovry (91063)	Dicamba water fltrd 0.7u GF ug/L (38442)	Di- chlor- prop, water, fltrd 0.7u GF ug/L (49302)	Diel- drin, water, fltrd, ug/L (39381)	Dinoseb water, fltrd 0.7u GF ug/L (49301)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03	< 0.05				90.2					
WO Bh 34	09-05-03										
WO Bh 84	09-02-03										
	00.02.02										
WO D1 05	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
WO Cc 4	09-09-03	<0.05				81.6					
	09-10-03	< 0.05				92.2					
WO Cg 33	09-03-03										
WO Cg 87	09-03-03										
C	09-03-03										
WO Fe 1	01-15-03 <i>01-15-03</i>	<0.01	<0.01	<0.003	<0.005		103	<0.01	<0.01	<0.005	<0.01

		Diphen- amid, water, fltrd, ug/L (04033)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	Diuron, water, fltrd 0.7u GF ug/L (49300)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Fenuron water, fltrd 0.7u GF ug/L (49297)	Flumet- sulam, water, fltrd, ug/L (61694)	Fluo- meturon water fltrd 0.7u GF ug/L (38811)	Fonofos water, fltrd, ug/L (04095)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03	< 0.05									
WO BI 38 WO Bh 34	09-05-03	<0.05									
WO Bh 84	09-02-03										
WO BII 04	07-02-05										
	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
$WO \ Cc \ 4$	09-09-03	<0.05									
	09-10-03	< 0.05									
WO Cg 33	09-03-03										
WO Cg 87	09-03-03										
	09-03-03										
WO Fe 1	01-15-03	< 0.03	< 0.02	< 0.01	< 0.002	< 0.009	< 0.005	< 0.03	< 0.01	< 0.03	< 0.003
	01-15-03	<0.05 	<0.02	<0.01	<0.002	<0.007	<0.005	<0.05	~	<0.05	<0.005
	01 15-05										

Well Number	Date	Hexa- zinone, water, fltrd, ug/L (04025)	Imaza- quin, water, fltrd, ug/L (50356)	Imaze- thapyr, water, fltrd, ug/L (50407)	Imida- cloprid water, fltrd, ug/L (61695)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (38478)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)	MCPA, water, fltrd 0.7u GF ug/L (38482)	MCPB, water, fltrd 0.7u GF ug/L (38487)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03	< 0.05									
WO Bh 34	09-05-03										
WO Bh 84	09-02-03										
	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
WO Cc 4	09-09-03	<0.05									
1000 4	09-10-03	<0.05									
WO Cg 33	09-03-03	<0.05									
WO Cg 87	09-03-03										
	09-03-03										
	07 05 05										
WO Fe 1	01-15-03		< 0.02	< 0.02	< 0.007	< 0.004	< 0.01	< 0.035	< 0.027	< 0.02	< 0.01
	01-15-03										

		Meta- laxyl, water, fltrd, ug/L (50359)	Methio- carb, water, fltrd 0.7u GF ug/L (38501)	Meth- omyl, water, fltrd 0.7u GF ug/L (49296)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Metsul- furon, water, fltrd, ug/L (61697)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	N-(4- Chloro- phenyl) -N-' methyl- urea, ug/L (61692)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)
WO Ah 36	09-04-03										
WO Ah 38	09-04-03										
WO Bf 88	09-10-03					< 0.05	< 0.05				
WO BI 33 WO Bh 34	09-05-03					<0.05	<0.05				
WO Bh 34 WO Bh 84	09-02-03										
WO BII 84	09-02-03										
	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
$WO \ Cc \ 4$	09-09-03					<0.05	<0.05				
	09-10-03					< 0.05	< 0.05				
WO Cg 33	09-03-03										
WO Cg 87	09-03-03										
	09-03-03										
WO Fe 1	01-15-03 <i>01-15-03</i>	<0.02	<0.008	<0.004	<0.006	<0.013	<0.006	<0.03	<0.002	<0.02	<0.007

Well Number	Date	Neburon water, fltrd 0.7u GF ug/L (49294)	Nico- sul- furon, water, fltrd, ug/L (50364)	Norflur azon, water, fltrd 0.7u GF ug/L (49293)	Ory- zalin, water, fltrd 0.7u GF ug/L (49292)	Oxamyl, water, fltrd 0.7u GF ug/L (38866)	p,p-' DDE, water, fltrd, ug/L (34653)	Para- thion, water, fltrd, ug/L (39542)	Peb- ulate, water, fltrd 0.7u GF ug/L (82669)	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Phorate water fltrd 0.7u GF ug/L (82664)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03										
WO Bh 34	09-05-03										
WO Bh 84	09-02-03										
	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
WO Cc 4	09-09-03										
10000 4	09-10-03										
WO Cg 33	09-03-03										
WO Cg 87	09-03-03										
100501	09-03-03										
WO Fe 1	01-15-03	< 0.01	< 0.01	< 0.02	< 0.02	< 0.01	< 0.003	< 0.010	< 0.004	< 0.022	< 0.011
	01-15-03										

		Pic- loram, water, fltrd 0.7u GF ug/L (49291)	Prome- ton, water, fltrd, ug/L (04037)	Prome- tryn, water, fltrd, ug/L (04036)	Pron- amide, water, fltrd 0.7u GF ug/L (82676)	Propa- chlor, water, fltrd, ug/L (04024)	Pro- panil, water, fltrd 0.7u GF ug/L (82679)	Propar- gite, water, fltrd 0.7u GF ug/L (82685)	Propa- zine, water, fltrd, ug/L (38535)	Propham water fltrd 0.7u GF ug/L (49236)	Propi- cona- zole, water, fltrd, ug/L (50471)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03		< 0.05	< 0.05		< 0.05			< 0.05		
WO Bh 34	09-05-03										
WO Bh 84	09-02-03										
	00.02.02										
W10 D1 05	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
WO Cc 4	09-09-03		< 0.05	< 0.05		< 0.05			< 0.05		
	09-10-03		< 0.05	< 0.05		< 0.05			< 0.05		
WO Cg 33	09-03-03										
WO Cg 87	09-03-03										
	09-03-03										
WO F (0.01		0.004	0.010	0.011			0.010	
WO Fe 1	01-15-03	< 0.02	< 0.01		< 0.004	< 0.010	< 0.011	< 0.02		< 0.010	< 0.02
	01-15-03										

Well Number	Date	Pro- poxur, water, fltrd 0.7u GF ug/L (38538)	Siduron water, fltrd, ug/L (38548)	Sima- zine, water, fltrd, ug/L (04035)	Sima- tryn, water, fltrd, ug/L (04030)	Sulfo- met- ruron, water, fltrd, ug/L (50337)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Terba- cil, water, fltrd, ug/L (04032)	Terbu- fos, water, fltrd 0.7u GF ug/L (82675)	Thio- bencarb water fltrd 0.7u GF ug/L (82681)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03			< 0.05	< 0.05				< 0.05		
WO Bh 34	09-05-03										
WO Bh 84	09-02-03										
	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-05-03										
WO Bh 101	09-03-03										
WO Cc 4	09-09-03			< 0.05	< 0.05				<0.05		
	09-10-03			< 0.05	< 0.05				< 0.05		
WO Cg 33	09-03-03										
WO Cg 87	09-03-03										
	09-03-03										
WO Fe 1	01-15-03	< 0.008	< 0.02	< 0.005		< 0.009	< 0.02	< 0.034	< 0.010	< 0.02	< 0.005
	01-15-03	<0.000									
	51 15 05										

	Tri- allate, water, fltrd 0.7u GF ug/L (82678)	Tri- clopyr, water, fltrd 0.7u GF ug/L (49235)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	Tri- flur- alin, water, fltrd, ug/L (04023)	Vernol- ate, water, fltrd, ug/L (04034)	Xylenes water unfltrd ug/L (81551)	1,2-Di- chloro- ethane- d4, sur Sch2090 wat unf pct rcv (99832)	14Bromo fluoro- benzene surrog. VOC Sch wat unf pct rcv (99834)	Benzene water unfltrd ug/L (34030)	Ethyl- benzene water unfltrd ug/L (34371)
WO Ah 36 09-04-0	3									
WO Ah 38 09-03-0										
WO Bf 88 09-10-0				< 0.05	< 0.05	< 0.2	98.5	81.5	< 0.2	< 0.2
WO Bh 34 09-05-0										
WO Bh 84 09-02-0										
09-02-0										
WO Bh 85 09-02-0										
WO Bh 89 09-02-0										
WO Bh 98 09-05-0										
WO Bh 101 09-03-0	3									
WO Cc 4 09-09-0	3			<0.05	<0.05	<0.2	99.6	81.0	<0.2	< 0.2
09-10-0				< 0.05	< 0.05	<0.2	98.2	77.4	<0.2	<0.2
WO Cg 33 09-03-0										
WO Cg 87 09-03-0										
09-03-0										
WO Fe 1 01-15-0		< 0.02	< 0.009							
01-15-0	3									

WORCESTER COUNTY, MARYLAND-Continued

Well Number	Date	meta- + para- Xylene, water, unfltrd ug/L (85795)	o- Xylene, water, unfltrd ug/L (77135)	Methyl t-butyl ether, water, unfltrd ug/L (78032)	Toluene water unfltrd ug/L (34010)	Toluene -d8, surrog, Sch2090 wat unf percent recovry (99833)	Alpha radio- activty 2-sigma wat flt Th-230, pCi/L (75987)	Alpha radio- activty water, fltrd, Th-230, pCi/L (04126)	Beta radio- activty 2-sigma wat flt CS-137, pCi/L (75989)	Gross beta radioac water, fltrd, Cs-137, pCi/L (03515)	Rn-222 2-sigma water unfltrd pCi/L (76002)
WO Ah 36	09-04-03										
WO Ah 38	09-03-03										
WO Bf 88	09-10-03	< 0.2	< 0.2	< 0.2	< 0.2	96.2	2.1	Μ	2.1	4	21
WO Bh 34	09-05-03										
WO Bh 84	09-02-03										
	09-02-03										
WO Bh 85	09-02-03										
WO Bh 89	09-02-03										
WO Bh 98	09-02-03										
WO Bh 101	09-03-03										
WO Cc 4	09-09-03	<0.2	<0.2	<0.2	<0.2	98.4	0.35	M	0.82	M	
	09-10-03	< 0.2	< 0.2	< 0.2	< 0.2	95.2	0.56	1	0.97	1	22
WO Cg 33	09-03-03										
WO Cg 87	09-03-03										
	09-03-03										
WO Fe 1	01-15-03										23
	01-15-03										23
	01 15 05										25

Rn-222.	Uranium natural
water, unfltrd	water,
pCi/L	fltrd, ug/L
(82303)	(22703)

WO Ah 36	09-04-03		
WO Ah 38	09-03-03		
WO Bf 88	09-10-03	280	
WO Bh 34	09-05-03		
WO Bh 84	09-02-03		
	09-02-03		
WO Bh 85	09-02-03		
WO Bh 89	09-02-03		
WO Bh 98	09-05-03		
WO Bh 101	09-03-03		
WO Cc 4	09-09-03		
	09-10-03	310	
WO Cg 33	09-03-03		
WO Cg 87	09-03-03		
-	09-03-03		
WO Fe 1	01-15-03	350	< 0.02
	01-15-03	310	

Remark codes used in this table: < -- Less than E -- Estimated value M-- Presence verified, not quantified

Photo by C.J. Strain Well 392517077190401 Local number FR Df 35

INDEX

Page

	Page
Access to USGS data Acid neutralizing capacity (ANC), definition of Adenosine triphosphate (ATP), definition of Algal growth potential (AGP), definition of Alkalinity, definition of Allegany County, MD, ground-water levels in Anne Arundel County, MD, ground-water levels in ground-water quality record in Aquifer, definition of Aroclor, definition of Artesian, definition of	118-164 474-480 15 11 15 15
Bacteria, definition of Baltimore City, MD, ground-water levels in Baltimore County, MD, ground-water levels in ground-water quality records in Bibliographic Data Sheet Biochemical oxygen demand (BOD), definition of Biomass, definition of	169-184
Calvert County, MD, ground-water levels in ground-water quality record in Caroline County, MD, ground-water levels in ground-water quality record in Carroll County, MD, ground-water levels in ground-water quality records in Cecil County, MD, ground-water levels in ground-water quality record in ground-water spring discharge Cells/volume, definition of Charles County, MD, ground-water levels in ground-water quality record in charles County, MD, ground-water levels in ground-water quality record in chemical oxygen demand (COD), definition of clastic divergence (County and the second	509-512 204-205 513-518 206-209 519-524 210-212 525-530 30 15 223-259
Clostridium perfringens (C. perfringens), definition of Coliphages, definition of Collection and computation of	15 15
ground-water levels ground-water quality Color unit, definition of Confined aquifer, definition of Contents Continuous-record station, definition of Control data, water-quality	10 12 15 15 v-vi 15 12-13
Conversion factors, English units to International System (SI) unitsInside ba Cooperation, explanation of	
Daily-record station, definition of Data, collection and computation of ground-water levels	15 10
collection and computation of ground-water quality presentation, ground-water levels	10 12 10
presentation, ground-water quality Data logger, definition of Datum, definition of Datum of ground-water levels, explanation of Definition of terms Delaware and Maryland, 2003, water	12 15 15 11 15-20
Dissolved, definition of Dissolved, definition of Dissolved oxygen (DO), definition of Dissolved-solids concentration, definition of Documention, Report Page Dorchester County, MD, ground-water levels in ground-water quality records in	260-268
Enterococcus bacteria, definition of Escherichia coli (E. coli), definition of Estimated (E) value, definition of Explanation of ground-water level records Extrable organic halides (EOX), definition of Extremes for period of record, explanation of	16 16 16 5-10 16 11
Factors for converting English units to International System (SI) unitsInside ba Fecal coliform bacteria, definition of Fecal streptococcal bacteria, definition of Frederick County, MD, ground-water levels in	16 16

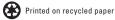
	Page
ground-water quality records in ground-water spring discharges in	
Garrett County, MD, ground-water levels in Gas chromatography/flame ionization detector	273-291
(GC/FID), definition of	16
Ground-water level records	36-481
explanation of Ground-water levels at key observation wells	5-10 4
Ground-water levels at key observation wells	4
confined Coastal Plain aquifers in Maryland	6
Ground-water levels for Collection of Basic Records	
(CBR) network wells in Maryland and Delaware	7
Ground-water quality records:	
Delaware, New Castle County	466-469
Sussex County	
Maryland,	
Anne Arundel County	
Baltimore County	
Calvert County	
Caroline County Carroll County	
Cecil County	525-530
Charles County	531-534
Dorchester County	535-538
Frederick County	539-546
Harford County Howard County	547-552 553-555
Kent County	556-557
Montgomery County	558-568
Prince Georges	569
Queen Annes County	570-575
St. Marys County	576
Somerset County Talbot County	577-580 581-588
Wicomico County	589-590
Worchester County	591-601
Ground-water quality remark codes	12,465
Ground-water records	30-601
Hardness of water, definition of Harford County, MD, ground-water levels in	16 292-308
ground-water quality record in	E 4 B E E O
Howard County MD ground water levels in	547-552
Howard County, MD, ground-water levels in	309-351
ground-water quality record in	309-351 553-555
ground-water quality record in	309-351
ground-water quality record in	309-351 553-555 11
ground-water quality record in Hydrographs, explanation of Hydrologic Bench-Mark Station, definition of	309-351 553-555 11 16
ground-water quality record in Hydrographs, explanation of Hydrologic Bench-Mark Station, definition of Hydrologic conditions, summary of Hydrologic unit, definition of	309-351 553-555 11 16 2-3 16
ground-water quality record in Hydrographs, explanation of Hydrologic Bench-Mark Station, definition of Hydrologic conditions, summary of Hydrologic unit, definition of Instrumentation, explanation of	309-351 553-555 11 16 2-3 16 11
ground-water quality record in Hydrographs, explanation of Hydrologic Bench-Mark Station, definition of Hydrologic conditions, summary of Hydrologic unit, definition of	309-351 553-555 11 16 2-3 16
ground-water quality record in Hydrographs, explanation of Hydrologic Bench-Mark Station, definition of Hydrologic conditions, summary of Hydrologic unit, definition of Instrumentation, explanation of Introduction.	309-351 553-555 11 16 2-3 16 11 1 1
ground-water quality record in Hydrographs, explanation of Hydrologic Bench-Mark Station, definition of Hydrologic conditions, summary of Hydrologic unit, definition of Instrumentation, explanation of	309-351 553-555 11 16 2-3 16 11 1 1 34-68
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16 16 8
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16 16 8 10 17
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16 16 8 10
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16 16 8 10 17
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16 16 8 10 17
<pre>ground-water quality record in</pre>	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16 16 16 16 8 10 17 17 17
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16 16 16 8 10 17 17 17
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16 16 16 16 8 10 17 17 17
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16 16 16 8 10 17 17 17 17
ground-water quality record in	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16 16 16 8 10 17 17 17
<pre>ground-water quality record in</pre>	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16 16 8 10 17 17 17 17 17 17 17
<pre>ground-water quality record in</pre>	309-351 553-555 11 6 2-3 16 11 1 34-68 312-329 556-557 16 16 16 16 16 8 10 17 17 17 17 17 17 17
<pre>ground-water quality record in</pre>	309-351 553-555 11 6 2-3 16 11 1 34-68 312-329 556-557 16 16 16 16 8 10 17 17 17 17 17 17
<pre>ground-water quality record in</pre>	309-351 553-555 11 16 2-3 16 11 1 34-68 312-329 556-557 16 16 16 16 16 8 10 17 17 17 17 17 17 17 17
<pre>ground-water quality record in</pre>	309-351 553-555 11 6 2-3 16 11 1 34-68 312-329 556-557 16 16 16 16 8 10 17 17 17 17 17 17
<pre>ground-water quality record in</pre>	309-351 553-555 11 6 2-3 16 11 1 34-68 312-329 556-557 16 16 16 8 10 17 17 17 17 17 17 17 17

Page

Montgomery County, MD, ground-water levels in ground-water quality records in Monthly ground-water levels at key	
observation wells Most propbable number (MPN), definition of	4 17
Nanograms per liter (NG/L, mg/L), definition of National Geodetic Vertical Datum of 1929 (NGVD),	17
definition of	17 1
National Water-Quality Assessment (NAWQA) Program, definition ofexplanation of	17 5
New Castle County, DE, ground-water levels in ground-water quality record in	
North American Vertical Datum of 1988 (NAVD 1988), definition of	17
Numbering system for wells Numbers, station identification	8-9 5
Open or screened interval, definition of Organic carbon (OC), definition of	17 17
Organism count/area, definition of	18
Organism count/volume, definition of Organochlorine compounds, definition of	18 18
Parameter code, definition of	18
Partial-record station, definition of Particle-size classification, definition of	18 18
Particle size, definition of Percent composition/ percent of total,	18
definition of Period of record, explanation of	18 11
Periphyton, definition of	18
Permit number, explanation of Pesticides, definition of	10 18
pH, definition of	18
Picocurie, definition of Polychlorinated biphenyls, definition of	18 18
Polychlorinated naphthalenes (PCNs), definition of	18
Preface	iii
Prince Georges County, MD, ground-water	
Prince Georges County, MD, ground-water levels in	337-350
	337-350 . 569
levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations	337-350 . 569
levels in ground-water quality records in Publications on Techniques of Water-Resources	337-350 . 569 21-25 351-376
levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of	337-350 . 569 21-25 351-376 570-575 18
levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels	337-350 . 569 21-25 351-376 570-575 18 34-464
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water quality Remark codes</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of. Records of ground-water levels Records of ground-water levels Remarks, explanation of Remarks, explanation of</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water quality Remark codes</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water quality Remark codes Remarks, explanation of Replicate samples, definition of Report Documentation Page</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 iv
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of. Records of ground-water levels Remarks odes Remarks, explanation of Replicate samples, definition of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 iv 377-404 576
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water levels Remark codes Remarks, explanation of Replicate samples, definition of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in Sea level, definition of</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 iv 377-404
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water quality Remarks odes Remarks, explanation of Replicate samples, definition of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in Sea level, definition of Selected ground-water references: Delaware</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 iv 377-404 576 18
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water quality Remark codes Remarks, explanation of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in Sea level, definition of Selected ground-water references:</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 iv 377-404 576
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water quality Remark codes Remarks, explanation of Replicate samples, definition of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in Sea level, definition of Selected ground-water references: Delaware Delaware U.S. Geological Survey Maryland</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 iv 377-404 576 18 26 26
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water quality Remark codes Remarks, explanation of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in Sea level, definition of Selected ground-water references: Delaware Delaware Geological Survey Maryland Maryland Geological Survey</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 iv 377-404 576 18 26
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water levels Remarks, explanation of Replicate samples, definition of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in Sea level, definition of Selected ground-water references: Delaware Delaware Geological Survey U.S. Geological Survey U.S. Geological Survey U.S. Geological Survey Sodium-adsorption-ratio, definition of Somerset County, MD, ground water levels in</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 iv 377-404 576 18 26 26 26 26 26 26 26 18 405-408
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water quality Remarks codes Remarks, explanation of Replicate samples, definition of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in Sea level, definition of Selected ground-water references: Delaware Delaware Delaware U.S. Geological Survey Maryland Maryland Geological Survey U.S. Geological Survey Sodium-adsorption-ratio, definition of Somerset County, MD, ground water levels in ground-water quality record in Somerset County, MD, ground water levels in Somerset County, MD, ground water levels in ground-water quality record in Somerset County, MD, ground water levels in ground-water quality record in Somerset County, MD, ground water levels in ground-water quality record in Specific electrical conductance (conductivity),</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 iv 377-404 576 18 26 26 26 26 26 26 18 405-408 577-580
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water quality Remarks, explanation of Replicate samples, definition of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in Sea level, definition of Selected ground-water references: Delaware Delaware Delaware Geological Survey Maryland Maryland Maryland Geological Survey U.S. Geological Survey Sodium-adsorption-ratio, definition of Somerset County, MD, ground water levels in ground-water quality record in Somerset County, MD, ground water levels in ground-water quality record in Somerset County, MD, ground water levels in ground-water quality record in Somerset County, MD, ground water levels in ground-water quality record in</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 iv 377-404 576 18 26 26 26 26 26 26 26 18 405-408
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water quality Remarks, explanation of Remarks, explanation of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in Sea level, definition of Selected ground-water references: Delaware Delaware Delaware Geological Survey U.S. Geological Survey Sodium-adsorption-ratio, definition of Somerset County, MD, ground water levels in Sodium-adsorption-ratio, definition of Somerset County, MD, ground water levels in Somerset County, MD, ground water levels in Sodium-adsorption-ratio, definition of Somerset County, MD, ground water levels in ground-water quality record in Specific electrical conductance (conductivity), definition of Spring Discharge Tables, explanation of Spring descriptions and discharge measurements:</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 iv 377-404 576 18 26 26 26 26 26 26 26 26 26 26 26 26 26
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of. Records of ground-water levels Records of ground-water levels Remarks, explanation of Remarks, explanation of Replicate samples, definition of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in. Sea level, definition of. Selected ground-water references: Delaware Delaware Geological Survey U.S. Geological Survey U.S. Geological Survey Sodium-adsorption-ratio, definition of. Somerset County, MD, ground water levels in ground-water quality record in. Somerset County, MD, ground water levels in Specific electrical conductance (conductivity), definition of Spring Discharge Tables, explanation of</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 377-404 576 18 26 26 26 26 26 26 26 26 26 26 26 26 26
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water quality Remarks, explanation of Replicate samples, definition of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in. Sea level, definition of Selected ground-water references: Delaware Delaware Geological Survey Maryland Maryland Geological Survey Sodium-adsorption-ratio, definition of. Specific electrical conductance (conductivity), definition of Spring Discharge Tables, explanation of Spring descriptions and discharge measurements: Maryland, Cecil County Frederick County Frederick County Frederick County Frederick County Frederick County Frederick County</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 iv 377-404 576 18 26 26 26 26 26 26 26 26 26 26 26 26 26
<pre>levels in ground-water quality records in Publications on Techniques of Water-Resources Investigations Quality of ground water Queen Annes County, MD, ground-water levels in ground-water quality records in Radioisotopes, definition of Records of ground-water levels Records of ground-water quality Remarks codes Remarks, explanation of Replicate samples, definition of Report Documentation Page St. Marys County, MD, ground-water levels in ground-water quality record in Sea level, definition of Belaware Delaware Delaware Delaware Delaware Softim-adsorption-ratio, definition of Somerset County, MD, ground water levels in ground-water quality record in Softim-adsorption-ratio, definition of Somerset County, MD, ground water levels in ground-water quality record in Somerset County, MD, ground water levels in ground-water quality record in Somerset County, MD, ground water levels in Somerset County, MD, ground water levels in ground-water quality record in Specific electrical conductance (conductivity), definition of Spring Discharge Tables, explanation of Spring descriptions and discharge measurements: Maryland, Cecil County</pre>	337-350 . 569 21-25 351-376 570-575 18 34-464 466-601 12, 465 11 18 377-404 576 18 26 26 26 26 26 26 26 26 26 26 26 26 26

straptococal bacteria, facal		
Streptococcal bacteria, fecal	Station Identification numbers, explanation of	5
Summary of hydrologic conditions. 2 Suspended, definition of. 19 Suspended, total, definition of. 19 System for numbering wells. 69 Talbot County, ND, ground-water levels in. 409-414 ground-water quality record in. 581-583 Tachonowy, definition of. 15-20 Time weighted average, definition of. 19 Total coliforn bacteria, definition of. 19 Total, definition of. 19 Total, definition of. 19 Volatile organic compounds (VOC), definition of. 20 Washington, D.C., ground-water levels in. 416-426 Water-level records, explanation of. 11-13 Water-quality cortol data 12-21 Water-quality cortol data 12-23 Water-quality cortol data 21-25 Water-quality cortol, explanation of. 12-13 Water-quality cortol data 12-21 Water-quality records in.		
suspended, definition of		
Suspended recoverable, definition of. 19 Suspended, total, definition of. 19 Sussex County, DE, ground-water levels in. 81-114 ground-water quality records in. 470-473 Syntem for numbering wells. 8-9 Talbot County, ND, ground-water levels in. 409-414 ground-water quality record in. 581-588 Taxonow, definition of. 19 Texmiques of Mater-Besources Investigations, 11-20 publications on. 19 Total. (form bacteria, definition of. 19 Total, definition of. 19 Total, definition of. 19 Volatile organic compounds (VOC), definition of. 20 ground-water spring discharge. 35 Washington County, MD, ground-water levels in. 460-464 Water-level records, explanation of. 12-13 Water-level records, explanation of. 12-13 Water-quality codes for ground water. 12, 465 Water-quality corts, explanation of. 12-13 Water-quality corts, explanation of. 12-13 Water-quality county. 20		
Suspex County, DE, ground-water levels in. 114 ground-water quality records in. 470-473 System for numbering wells. 8-9 Talbot County, MD, ground-water levels in. 409-414 ground-water quality record in. 581-588 Takonow, definition of. 19 publications on. 21-25 Terms and abbreviations, definition of. 19 Total, definition of. 19 Total, coliform bacteria, definition of. 19 Total, coliform bacteria, definition of. 19 Total, definition of. 19 Volatile organic compounds (VOC), definition of. 20 Vashington County, MD, ground-water levels in. .415-420 ground-water spring discharge. 31 Water-quality coords, explanation of. 12-13 Water-quality coords, explanation of. 12-10 Water-quality coords, explanation of. 200 water-quality records, explanation of. 20 Water-quality coords, explanation of. 20 Water-reaveres data for Maryland and Delaware, 200 2001, explanation of. 20 <		
Sussex County, DE, ground-water levels in. 81-114 ground-water quality records in. 470-473 Synoptic studies short-term, definition of. 19 System for numbering wells. 8-9 Talbot County, MD, ground-water levels in. 408-414 ground-water quality record in. 581-588 Taxonomy, definition of. 19 Techniques of Water-Resources Investigations, 19 publications on. 21-25 Terms and abbreviations, definition of. 19 Total, definition of. 19 Total, recoverable, definition of. 19 Volatile organic compounds (VOC), definition of. 20 Washington D.C., ground-water levels in. 440-464 Water-quality control data. 12-13 Water-quality control data. 12-13 Water resources data for Maryland and Delaware, 20 Water resources investigations, publications 1-20 Water table, definition of. 20 Water table, definition of. 20 Water table, definition of. 20 Water resources investigations, publications 1-13 <td></td> <td></td>		
ground-water quality records in. 470-473 Synoptic studies short-term, definition of. 19 System for numbering wells. 8-9 Talbot County, MD, ground-water levels in. 409-414 ground-water quality record in. 581-588 Takmomy, definition of. 19 Techniques of Nater-Resources Investigations, 21-25 Terms and abbreviations, definition of. 19 Total coliform bacteria, definition of. 19 Total, definition of. 19 Total, definition of. 19 Volatile organic compounds (VOC), definition of. 20 Washington County, ND, ground-water levels in. 461-464 Water-level records, explanation of. 12, 465 Water-quality control data. 12, 465 Water-quality control data. 1200 Water-resources of acypland and Delaware, 20 Water resources of acypland and pelaware, 20 Water resources of acyplantion of. 20 Washington, D.C. ground-water Water acyplantion of. 20 Water-quality control data. 11-13		
Synoptic studies short-term, definition of. 19 System for numbering wells. 8-9 Talbot County, MD, ground-water levels in. 409-414 ground-water quality record in. 581-588 Taxnonwy, definition of. 19 Techniques of Water-Resources Investigations, publications on. 21-25 Terms and abbreviations, definition of. 19 Total coliform bacteria, definition of. 19 Total, definition of. 19 Total, recoverable, definition of. 19 Volatile organic compounds (VOC), definition of. 20 Washington County, MD, ground-water levels in. 415-420 ground-water spring discharge 35 Waster-quality control data. 12-13 Water-quality control data. 12-13 Water-quality control data. 12-13 Water resources investigations, publications 1-13 on techniques of. 210 Water table, definition of. 20 Water quality records, explanation of. 12-13 Water resources investigations, publications 12-25 Water table, definition of. 20		
System for numbering wells. 8-9 Talbot County, MD, ground-water levels in. 409-414 ground-water quality record in. 581-588 Taxonomy, definition of. 19 Techniques of Mater-Resources Investigations, pubblcations on. 21-25 Terms and abbreviations, definition of. 19 Total coliform bacteria, definition of. 19 Total coliform bacteria, definition of. 19 Total, definition of. 19 Total, definition of. 19 Volatile organic compounds (VOC), definition of. 20 Washington County, MD, ground-water levels in. 445-420 ground-water spring discharge. 35 Water-level records, explanation of. 1-13 Water-quality cocds for ground water 12, 465 Water-quality cocds, explanation of. 1-20 Water-resources data for Maryland and Delaware, 20 2003, explanation of. 20 Water reable, definition of. 20 Water table aquifer, definition of. 20 Water table aquifer, definition of. 20 Watere quality contry. 69-80		
Talbot County, MD, ground-water levels in		
ground-water quality record in 581-588 Taxonomy, definition of 19 Techniques of Mater-Resources Investigations, publications on 21-25 Terms and abbreviations, definition of 19 Total coliform bacteria, definition of 19 Total, definition of 19 Total, recoverable, definition of 19 Vertical datum, definition of 19 Volatile organic compounds (VOC), definition of 20 Washington County, MD, ground-water levels in 440-464 Water-level records, explanation of 5-10 Water-quality control data 12, 465 Water quality control data 12, 465 Water quality control data 12, 465 Water resources data for Maryland and Delaware, 20 Water resources data for Maryland and Delaware, 20 Water resources data for Maryland, 12 Water resources data for Maryland, 20 Water resources data for Maryland, 20 Water resources data for Maryland, 20 Water resources and weter-level measurements: 20 Water resources and a torno, <t< td=""><td>-1</td><td></td></t<>	-1	
ground-water quality record in 581-588 Taxonomy, definition of 19 Techniques of Mater-Resources Investigations, publications on 21-25 Terms and abbreviations, definition of 19 Total coliform bacteria, definition of 19 Total, definition of 19 Total, recoverable, definition of 19 Vertical datum, definition of 19 Volatile organic compounds (VOC), definition of 20 Washington County, MD, ground-water levels in 440-464 Water-level records, explanation of 5-10 Water-quality control data 12, 465 Water quality control data 12, 465 Water quality control data 12, 465 Water resources data for Maryland and Delaware, 20 Water resources data for Maryland and Delaware, 20 Water resources data for Maryland, 12 Water resources data for Maryland, 20 Water resources data for Maryland, 20 Water resources data for Maryland, 20 Water resources and weter-level measurements: 20 Water resources and a torno, <t< td=""><td>Talbot County, MD, ground-water levels in</td><td>409-414</td></t<>	Talbot County, MD, ground-water levels in	409-414
Taxonomy, definition of. 19 Techniques of Mater Resources Investigations, publications on. 21-25 Terms and abbreviations, definition of. 19 Total coliform bacteria, definition of. 19 Total coliform bacteria, definition of. 19 Total, definition of. 19 Total, definition of. 19 Votal, access to. 14 Vertical datum, definition of. 19 Volatile organic compounds (VOC), definition of. 20 Washington, D.C., ground-water levels in. 415-420 ground-water spring discharge. 35 Water-level records, explanation of. 12. Water-quality cords, explanation of. 12-10 Water-quality cords, explanation of. 12-10 Water-resources investigations, publications on techniques of. 200 Water table, definition of. 200 Wate		
Techniques of Nater-Resources Investigations, 21-25 Terms and abbreviations, definition of. 15-20 Time-weighted average, definition of. 19 Total coliform bacteria, definition of. 19 Total, definition of. 19 Total, recoverable, definition of. 19 USGS data, access to. 14 Vertical datum, definition of. 19 Volatile organic compounds (VOC), definition of 20 Washington County, MD, ground-water levels in. 446-464 Water-level records, explanation of. 12, 465 Water-quality control data. 12-13 Water-quality control data. 12-26 Water-quality records, explanation of. 20 Water-quality records, explanation of. 20 Water-reutores data for Maryland and Delaware, 20 Water-table, definition of. 20 Water table, d		
publications on. 21-25 Terms and abbreviations, definition of. 15-20 Time-weighted average, definition of. 19 Total, definition of. 19 Total, definition of. 19 Total, addinition of. 19 Total, addinition of. 19 USGS data, access to. 14 Vertical datum, definition of. 19 Volatile organic compounds (VOC), definition of. 20 ground-water spring discharge. 35 Washington, D.C., ground-water levels in. 460-464 Water-quality codes for ground water. 12, 465 Water-quality contol data. 12-13 Water-quality contol data. 12-13 Water resources investigations, publications 1-20 Water table, definition of. 20 Water table, definition of. 20 Water table aquifer, definition of. 20		
Terms and abbreviations, definition of	-	21-25
Time-weighted average, definition of. 19 Total coliform bacteria, definition of. 19 Total, definition of. 19 Total, recoverable, definition of. 19 Volatile organic compounds (VOC), definition of. 20 Washington County, MD, ground-water levels in. 415-420 ground-water spring discharge. 35 Washington, D.C., ground-water levels in. 460-464 Water-level records, explanation of. 11-13 Water-quality codes for ground water. 12, 465 Water-quality cords, explanation of. 11-13 Water resources investigations, publications 11-20 water table, definition of. 20 Water versources investigations, publications 20 water equifer, definition of. 20 Water versources and water-level measurements: 20 Water bata Report), definition of. 20 Water Marce, explanation of. 21 Well charceristics, explanation of. 21 Well charceristics, explanation of. 21 Water definition of. 20 WDR (Water Data Report), definition of. 20 Sussex County. 31-114 </td <td></td> <td></td>		
Total coliform bacteria, definition of		19
Total, definition of. 19 Total, recoverable, definition of. 19 USGS data, access to. 14 Vertical datum, definition of. 19 Volatile organic compounds (VOC), definition of. 20 Washington County, MD, ground-water levels in. 415-420 ground-water spring discharge. 35 Washington, D.C., ground-water levels in. 460-464 Water-level records, explanation of. 12-13 Water-quality control data. 12-13 Water resources data for Maryland and Delaware, 2003, explanation of. 2003, explanation of. 11-13 Water resources investigations, publications 20 Water table, definition of. 20 Water year, explanation of. 21 Well characteristics, explanation of. 21		
Total, recoverable, definition of. 19 USGS data, access to. 14 Vertical datum, definition of. 19 Volatile organic compounds (VOC), definition of. 20 Washington County, MD, ground-water levels in. 415-420 ground-water spring discharge. 35 Washington, D.C., ground-water levels in. 460-464 Water-level records, explanation of. 5-10 Water-quality control data. 12-13 Water-quality cords, explanation of. 11-13 Water-quality cords, explanation of. 11-13 Water-quality records, explanation of. 21-25 Water resources data for Maryland and Delaware, 200 water resources of urestigations, publications 21-25 Water table deginifer, definition of. 20 WDR (Water Data Report), definition of. 20 WDR (Water Data Report), definition of. 20 WDR (Water Dounty. 69-80 Sussex County. 69-80 Sussex County. 69-80 Sussex County. 105-168 Baltimore County. 105-168 Baltimore Coun		19
USGS data, access to		19
Vertical datum, definition of		
Volatile organic compounds (VOC), definition of	USGS data, access to	14
Volatile organic compounds (VOC), definition of		
Volatile organic compounds (VOC), definition of	Vertical datum, definition of	19
Washington County, MD, ground-water levels in		20
ground-water spring discharge 35 Washington, D.C., ground-water levels in		
ground-water spring discharge 35 Washington, D.C., ground-water levels in	Washington County, MD, ground-water levels in	.415-420
Washington, D.C., ground-water levels in		
Water-level records, explanation of. 5-10 Water-quality control data. 12,465 Water-quality records, explanation of. 11-13 Water resources data for Maryland and Delaware, 2003, explanation of. 1-20 Water resources investigations, publications 0 1-20 On techniques of. 21-25 Water table, definition of. 20 Water year, explanation of. 20 Water year, explanation of. 20 Water year, explanation of. 20 Water Water Data Report), definition of. 20 Water Water Data Report), definition of. 20 Well descriptions and water-level measurements: Delaware, Kent County. 69-80 Sussex County. 81-114 Maryland, 118-164 Baltimore County. 165-168 Baltimore County. 169-184 Calvert County. 204-205 Caroll County. 204-205 Caroll County. 204-205 Caroll County. 204-205 Caroll County. 204-205		460-464
Water-quality codes for ground water. 12, 465 Water-quality records, explanation of. 11-13 Water resources data for Maryland and Delaware, 12-13 Water resources investigations, publications 1-20 Water-resources investigations, publications 1-20 Water-resources investigations, publications 21-25 Water version techniques of. 20 Water year, explanation of. 20 WDR (Water Data Report), definition of. 20 WDR (Water Data Report), definition of. 20 WDR (Water Data Report), definition of. 20 Well characteristics, explanation of. 11 Well descriptions and water-level measurements: 20 Delaware, 81-114 Maryland, Allegany County. 115-117 Anne Arundel County. 169-184 Calvert County. 169-184 Calvert County. 206-209 Cacil County. 206-209 Cacil County. 209-206 Caroll County. 209-208 Frederick County. 209-208 Frederick County. 209-202 Carell County. 209-202	Water-level records, explanation of	
Water-quality control data. 12-13 Water resources data for Maryland and Delaware, 2003, explanation of. 11-13 Water resources investigations, publications 1-20 Water resources investigations, publications 21-25 Water table, definition of. 20 Water table, adgift, definition of. 20 Water table, adgift, definition of. 20 Water data Report), definition of. 20 Well characteristics, explanation of. 11 Well descriptions and water-level measurements: 20 Delaware, Kent County. 69-80 Sussex County. 81-114 Maryland, 115-117 Anne Arundel County. 165-168 Baltimore, City of. 165-168 Baltimore County. 204-205 Carroll County. 204-205 Carroll County. 209-212 Charles County. 209-212 Charles County. 209-212 Charles County. 209-212 Caroll County. 209-223 Garrett County. 209-223 Marford County. 312-329 Montgomery Count		12, 465
Water-quality records, explanation of. 11-13 Water resources data for Maryland and Delaware, 2003, explanation of. 1-20 Water resources investigations, publications 0 1-20 Water-table, definition of. 20 Water year, explanation of. 20 Water Data Report), definition of. 20 Well characteristics, explanation of. 20 Well descriptions and water-level measurements: 11 Delaware, 34-68 New Castle County. 81-114 Maryland, Allegany County. 115-117 Anne Arundel County. 165-168 Baltimore, City of. 165-168 Baltimore County. 20-212 Carvent County. 20-212 Charles County. 20-212 Carvert County. 20-212 Carvert County. 20-212 Garrett County. 20-212 <td></td> <td></td>		
Water resources data for Maryland and Delaware, 2003, explanation of		
Water-resources investigations, publications on techniques of. 21-25 Water table, definition of. 20 Water year, explanation of. 20 WBR (Water Data Report), definition of. 20 Well characteristics, explanation of. 11 Well descriptions and water-level measurements: Delaware, 34-68 New Castle County. 69-80 Sussex County. 81-114 Maryland, 115-117 Allegany County. 165-168 Baltimore, City of. 165-168 Baltimore County. 204-205 Carroll County. 204-205 Carroll County. 206-209 Cecil County. 209-212 Charles County. 209-212 Charles County. 209-212 Charles County. 209-212 Garrett County. 209-212 Matford County. 209-212 Matford County. 30-336 <td></td> <td></td>		
Water-resources investigations, publications on techniques of. 21-25 Water table, definition of. 20 Water year, explanation of. 20 WBR (Water Data Report), definition of. 20 Well characteristics, explanation of. 11 Well descriptions and water-level measurements: Delaware, 34-68 New Castle County. 69-80 Sussex County. 81-114 Maryland, 115-117 Allegany County. 165-168 Baltimore, City of. 165-168 Baltimore County. 204-205 Carroll County. 204-205 Carroll County. 206-209 Cecil County. 209-212 Charles County. 209-212 Charles County. 209-212 Charles County. 209-212 Garrett County. 209-212 Matford County. 209-212 Matford County. 30-336 <td>2003, explanation of</td> <td>1-20</td>	2003, explanation of	1-20
on techniques of. 21-25 Water table, definition of. 20 Water year, explanation of. 20 Water year, explanation of. 20 Well characteristics, explanation of. 20 Well characteristics, explanation of. 11 Well descriptions and water-level measurements: 11 Delaware, Kent County. 69-80 Sussex County. 69-80 115-117 Anlegany County. 115-117 Anne Arundel County. 165-168 Baltimore, City of. 165-168 Baltimore County. 206-208 Caroline County. 204-205 Caroline County. 206-209 Cecil County. 210-212 Charles County. 209-212 Charles County. 209-212 Garrett County. 209-212 Garrett County. 209-212 Garrett County. 229-308 Howard County. 300-336 Prince Georges County. 312-329 Montgomery County. 312-376 Queen Annes County.		
Water table, definition of. 20 Water-table aquifer, definition of. 20 Water year, explanation of. 20 WDR (Water Data Report), definition of. 20 Well characteristics, explanation of. 11 Well descriptions and water-level measurements: 11 Delaware, 69-80 Kent County. 81-114 Maryland, Allegany County. 115-117 Anne Arundel County. 118-164 Baltimore, City of. 165-168 Baltimore County. 165-203 Caroline County. 206-205 Caroline County. 210-212 Charles County. 213-259 Dorchester County. 269-272 Garrett County. 269-272 Garrett County. 292-308 Howard County. 309-311 Kent County. 312-329 Montgomery County. 312-376		21-25
Water-table aquifer, definition of. 20 Water year, explanation of. 20 WDR (Water Data Report), definition of. 20 Well characteristics, explanation of. 11 Well descriptions and water-level measurements: 11 Delaware, 69-80 Sussex County. 81-114 Maryland, 115-117 Anne Arundel County. 1165-168 Baltimore City of. 165-168 Baltimore County. 165-164 Baltimore County. 204-205 Caroline County. 204-205 Caroll County. 206-209 Cecil County. 206-209 Cecil County. 206-228 Dorchester County. 206-229 Charles County. 209-212 Garrett County. 209-213 Harford County. 209-214 Howard County. 309-311 Kent County.		
Water year, explanation of		
WDR (Water Data Report), definition of. 20 Well characteristics, explanation of. 11 Well descriptions and water-level measurements: 11 Delaware, 34-68 New Castle County. 69-80 Sussex County. 81-114 Maryland, 115-117 Anne Arundel County. 1165-168 Baltimore, City of. 165-168 Baltimore County. 206-209 Caroline County. 206-209 Cecil County. 210-212 Charles County. 210-212 Charles County. 206-209 Cecil County. 206-209 Cecil County. 213-259 Dorchester County. 206-2272 Garrett County. 209-212 Garrett County. 209-311 Kent County. 309-311 Kent County. 309-311 Kent County. 312-329 Montgomery County. 312-329 Montgomery County. 312-329 Montgomery County. 312-329 Montgomery County. 312		20
Well characteristics, explanation of.11Well descriptions and water-level measurements:Delaware,Delaware,34-68New Castle County.69-80Sussex County.81-114Maryland,115-117Anne Arundel County.118-164Baltimore, City of.165-168Baltimore County.169-184Calvert County.204-205Caroline County.206-209Cecil County.210-212Charles County.210-212Charles County.260-268Frederick County.269-272Garrett County.292-308Howard County.309-311Kent County.309-311Kent County.312-329Montgomery County.30-336Prince Georges County.351-376St Marys County.405-408Talbot County.405-408Talbot County.409-414Washington County.421-425Worchester County.426-459Washington, D.C.460-464Wells, numbering system for.8-9Wicomico County, MD, ground-water214-255ground-water quality record in.591-601		20
Well descriptions and water-level measurements: Delaware, Kent County. 34-68 New Castle County. 69-80 Sussex County. 81-114 Maryland, 115-117 Anne Arundel County. 115-117 Anne Arundel County. 116-114 Baltimore, City of. 165-168 Baltimore County. 165-203 Caroline County. 204-205 Carroll County. 210-212 Charles County. 210-212 Charles County. 260-269 Dorchester County. 260-268 Frederick County. 260-268 Frederick County. 292-308 Howard County. 292-308 Howard County. 309-311 Kent County. 309-311 Kent County. 309-336 Prince Georges County. 307-350 Queen Annes County. 307-350 Queen Annes County. 405-408 Talbot County. 405-408 Talbot County. 405-408 Talbot County. 407-414 Washington Oncounty. 406-459		
Kent County. 34-68 New Castle County. 69-80 Sussex County. 81-114 Maryland, 115-117 Anne Arundel County. 115-117 Anne Arundel County. 118-164 Baltimore, City of. 165-168 Baltimore County. 165-168 Baltimore County. 204-205 Carroll County. 204-205 Carroll County. 210-212 Charles County. 210-212 Charles County. 260-268 Frederick County. 209-272 Garrett County. 292-308 Howard County. 309-311 Kent County. 312-329 Montgomery	Well characteristics, explanation of	11
New Castle County. 69-80 Sussex County. 81-114 Maryland, 115-117 Anne Arundel County. 118-164 Baltimore, City of. 165-168 Baltimore County. 169-184 Calvert County. 204-205 Carroll County. 204-205 Carroll County. 206-209 Cecil County. 210-212 Charles County. 269-272 Garrett County. 269-272 Garrett County. 209-308 Howard County. 309-311 Kent County. 312-329 Montgomery County. </td <td></td> <td>11</td>		11
New Castle County. 69-80 Sussex County. 81-114 Maryland, 115-117 Anne Arundel County. 118-164 Baltimore, City of. 165-168 Baltimore County. 169-184 Calvert County. 204-205 Carroll County. 204-205 Carroll County. 206-209 Cecil County. 210-212 Charles County. 269-272 Garrett County. 269-272 Garrett County. 209-308 Howard County. 309-311 Kent County. 312-329 Montgomery County. </td <td>Well descriptions and water-level measurements:</td> <td>11</td>	Well descriptions and water-level measurements:	11
Maryland, 115-117 Anne Arundel County. 118-164 Baltimore, City of. 165-168 Baltimore County. 169-184 Calvert County. 185-203 Caroline County. 204-205 Carroll County. 210-212 Charles County. 210-212 Charles County. 260-268 Frederick County. 292-308 Howard County. 292-308 Howard County. 309-311 Kent County. 30-336 Price Georges County. 312-329 Montgomery County. 312-320 Montgomery County. 312-329 Montgomery County. 312-329 Montgomery County. 312-326 Wicomico County. 405-408 Talbot County. 405-408 Talbot County. 409-414 Washing	Well descriptions and water-level measurements: Delaware,	
Allegany County. 115-117 Anne Arundel County. 118-164 Baltimore, City of. 165-168 Baltimore County. 169-184 Calvert County. 185-203 Caroline County. 204-205 Carroll County. 210-212 Charles County. 210-212 Charles County. 260-268 Frederick County. 269-272 Garrett County. 292-308 Howard County. 309-311 Kent County. 312-329 Montgomery County. 313-376 Queen Annes County. 314-376 St Marys County. 314-376	Well descriptions and water-level measurements: Delaware, Kent County	34-68
Anne Arundel County. 118-164 Baltimore, City of. 165-168 Baltimore County. 169-184 Calvert County. 165-203 Caroline County. 204-205 Carroll County. 206-209 Cecil County. 210-212 Charles County. 260-268 Frederick County. 269-272 Garrett County. 209-311 Harford County. 209-318 Howard County. 309-311 Kent County. 309-311 Kent County. 312-329 Montgomery County. 314-325	Well descriptions and water-level measurements: Delaware, Kent County New Castle County	34-68 69-80
Baltimore, City of. 165-168 Baltimore County. 169-184 Calvert County. 185-203 Carcoline County. 204-205 Carroll County. 206-209 Cecil County. 210-212 Charles County. 210-212 Charles County. 213-259 Dorchester County. 269-272 Garrett County. 273-291 Harford County. 292-308 Howard County. 309-311 Kent County. 312-329 Montgomery County. 312-329 Workester County. 405-408 Talbot County. 405-408 Ta	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Sussex County	34-68 69-80
Baltimore County. 169-184 Calvert County. 185-203 Caroline County. 204-205 Carroll County. 206-209 Cecil County. 210-212 Charles County. 213-259 Dorchester County. 260-268 Frederick County. 269-272 Garrett County. 269-272 Garrett County. 292-308 Howard County. 309-311 Kent County. 309-311 Kent County. 312-329 Montgomery County. 330-336 Prince Georges County. 337-350 Queen Annes County. 351-376 St Marys County. 351-376 St Marys County. 405-408 Talbot County. 405-414 Washington County. 415-420 Wicomico County. 415-420 Wicomico County. 421-425 Worchester County. 426-459 Washington, D.C. 460-464 Wells, numbering system for. 8-9 Wicomico County, MD, ground-water 1evels in. levels in. 421-425	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Sussex County Maryland,	34-68 69-80 81-114
Calvert County. 185-203 Caroline County. 204-205 Carroll County. 206-209 Cecil County. 210-212 Charles County. 213-259 Dorchester County. 260-268 Frederick County. 269-272 Garrett County. 273-291 Harford County. 309-311 Kent County. 312-329 Montgomery County. 312-320 Montgomery County. 312-320 Morea 30-336 Prince Georges County. 317-350 Queen Annes County. 313-7404 Somerset County. 405-408 Talbot County. 415-420 Wicomico County. 415-420 Wicomico	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Sussex County Maryland, Allegany County	34-68 69-80 81-114 115-117
Caroline County. 204-205 Carroll County. 206-209 Cecil County. 210-212 Charles County. 213-259 Dorchester County. 260-268 Frederick County. 269-272 Garrett County. 292-308 Howard County. 309-311 Kent County. 312-329 Montgomery County. 312-320 Wicomice County. 405-408	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Sussex County Maryland, Allegany County Anne Arundel County	34-68 69-80 81-114 115-117 118-164
Carroll County	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Maryland, Allegany County Baltimore, City of	34-68 69-80 81-114 115-117 118-164 165-168
Cecil County. 210-212 Charles County. 213-259 Dorchester County. 260-268 Frederick County. 269-272 Garrett County. 273-291 Harford County. 292-308 Howard County. 309-311 Kent County. 312-329 Montgomery County. 330-336 Prince Georges County. 337-350 Queen Annes County. 351-376 St Marys County. 351-376 St Marys County. 405-408 Talbot County. 409-414 Washington County. 415-420 Wicomico County. 421-425 Worchester County. 426-459 Washington, D.C. 460-464 Wells, numbering system for. 8-9 Wicomico County, MD, ground-water 1evels in. levels in. 421-425 ground-water quality record in. 589-590 Worchester County, MD, ground-water levels in. 426-459 ground-water quality record in. 591-601	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Maryland, Allegany County Anne Arundel County Baltimore, City of Baltimore County	34-68 69-80 81-114 115-117 118-164 165-168 169-184
Charles County.213-259Dorchester County.260-268Frederick County.269-272Garrett County.273-291Harford County.292-308Howard County.309-311Kent County.312-329Montgomery County.310-336Prince Georges County.351-376St Marys County.351-376St Marys County.405-408Talbot County.415-420Wicomico County.415-420Wicomico County.421-425Worchester County.426-459Washington, D.C.460-464Wells, numbering system for.8-9Wicomico County, MD, ground-water289-590Worchester County, MD, ground-water levels in.421-425ground-water quality record in.589-590Worchester County, spi-601591-601	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Sussex County Maryland, Allegany County Baltimore, City of Baltimore County Calvert County	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203
Dorchester County.260-268Frederick County.269-272Garrett County.273-291Harford County.309-311Kent County.312-329Montgomery County.310-336Prince Georges County.351-376Queen Annes County.351-376St Marys County.405-408Talbot County.415-420Wicomico County.415-420Wicomico County.421-425Worchester County.426-459Washington, D.C.460-464Wells, numbering system for.8-9Wicomico County, MD, ground-water289-590Worchester County, MD, ground-water levels in.426-459ground-water quality records in.589-590Worchester County, Ford in.589-590	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Sussex County Maryland, Allegany County Baltimore, City of Baltimore County Calvert County Caroline County	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205
Frederick County.269-272Garrett County.273-291Harford County.292-308Howard County.309-311Kent County.312-329Montgomery County.312-329Montgomery County.330-336Prince Georges County.351-376Queen Annes County.351-376St Marys County.377-404Somerset County.405-408Talbot County.415-420Wicomico County.421-425Worchester County.426-459Washington, D.C.460-464Wells, numbering system for.8-9Wicomico County, MD, ground-water1evels in.1evels in.421-425ground-water quality record in.589-590Worchester County, MD, ground-water levels in.426-459ground-water quality records in.591-601	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Sussex County Maryland, Allegany County Baltimore, City of Baltimore, City of Baltimore County Calvert County Carroll County Carroll County Cecil County	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212
Garrett County. 273-291 Harford County. 292-308 Howard County. 309-311 Kent County. 312-329 Montgomery County. 312-329 Montgomery County. 312-329 Queen Annes County. 337-350 Queen Annes County. 351-376 St Marys County. 351-376 St Marys County. 405-408 Talbot County. 409-414 Washington County. 415-420 Wicomico County. 421-425 Worchester County. 426-459 Washington, D.C. 460-464 Wells, numbering system for. 8-9 Wicomico County, MD, ground-water 1evels in. levels in. 421-425 ground-water quality record in. 589-590 Worchester County, MD, ground-water levels in. 426-459 ground-water quality record in. 591-601	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Sussex County Maryland, Allegany County Baltimore, City of Baltimore County Calvert County Caroline County Carroll County Cecil County Charles County	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 206-209 210-212 213-259
Harford County. 292-308 Howard County. 309-311 Kent County. 312-329 Montgomery County. 310-336 Prince Georges County. 337-350 Queen Annes County. 351-376 St Marys County. 351-376 St Marys County. 405-408 Talbot County. 409-414 Washington County. 415-420 Wicomico County. 421-425 Worchester County. 426-459 Washington, D.C. 460-464 Wells, numbering system for. 8-9 Wicomico County, MD, ground-water 1evels in. levels in. 421-425 ground-water quality record in. 589-590 Worchester County, MD, ground-water levels in. 426-459 ground-water quality record in. 591-601	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Sussex County Maryland, Allegany County Baltimore, City of Baltimore County Calvert County Caroline County Carroll County Cecil County Charles County	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 206-209 210-212 213-259
Howard County.309-311Kent County.312-329Montgomery County.330-336Prince Georges County.337-350Queen Annes County.351-376St Marys County.377-404Somerset County.405-408Talbot County.415-420Wicomico County.415-420Wicomico County.421-425Worchester County.426-459Washington, D.C.460-464Wells, numbering system for.8-9Wicomico County, MD, ground-water1evels in.1evels in.421-425ground-water quality record in.589-590Worchester County, MD, ground-water levels in.426-459ground-water quality records in.591-601	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Sussex County Maryland, Allegany County Baltimore, City of. Baltimore County Calvert County Caroline County Caroline County Caroline County Charles County Dorchester County	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268
Kent County.312-329Montgomery County.330-336Prince Georges County.337-350Queen Annes County.351-376St Marys County.377-404Somerset County.405-408Talbot County.409-414Washington County.415-420Wicomico County.421-425Worchester County.460-464Wells, numbering system for.8-9Wicomico County, MD, ground-water1evels in.1evels in.421-425ground-water quality record in.589-590Worchester County, mD, ground-water levels in.426-459ground-water quality records in.591-601	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Sussex County Maryland, Allegany County Baltimore, City of Baltimore County Calvert County Caroline County Carroll County Charles County Dorchester County Frederick County	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272
Montgomery County.330-336Prince Georges County.337-350Queen Annes County.351-376St Marys County.377-404Somerset County.405-408Talbot County.409-414Washington County.415-420Wicomico County.421-425Worchester County.460-464Wells, numbering system for.8-9Wicomico County, MD, ground-water421-425ground-water quality record in.589-590Worchester County and y system for.589-590Worchester County y For System for.589-590Wordester County y For System for.589-590Wordester County y RD, ground-water levels in.426-459Wordester County y RD, ground-water levels in.589-590Wordester County y RD, ground-water levels in.591-601	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Maryland, Allegany County Anne Arundel County Baltimore, City of Baltimore County Calvert County Carroll County Carroll County Charles County Dorchester County Frederick County Garrett County	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291
Prince Georges County.337-350Queen Annes County.351-376St Marys County.377-404Somerset County.405-408Talbot County.409-414Washington County.415-420Wicomico County.421-425Worchester County.460-464Wells, numbering system for.8-9Wicomico County, MD, ground-water421-425ground-water quality record in.589-590Worchester County and in the system for.591-601	<pre>Well descriptions and water-level measurements: Delaware, Kent County New Castle County Maryland, Allegany County Baltimore, City of Baltimore County Calvert County Carroll County Carroll County Carroll County Charles County Charles County Frederick County Garrett County Harford County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308
Queen Annes County.351-376St Marys County.377-404Somerset County.405-408Talbot County.409-414Washington County.415-420Wicomico County.421-425Worchester County.426-459Washington, D.C.460-464Wells, numbering system for.8-9Wicomico County, MD, ground-water421-425Ievels in.421-425ground-water quality record in.589-590Worchester County, MD, ground-water levels in.426-459ground-water quality records in.591-601	Well descriptions and water-level measurements: Delaware, Kent County	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311
St Marys County	Well descriptions and water-level measurements: Delaware, Kent County New Castle County Maryland, Allegany County Baltimore, City of. Baltimore County Calvert County Carroll County Carroll County Charles County Dorchester County Frederick County Harford County Harford County Kent County Kent County Kent County	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329
Somerset County	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350
Talbot County.409-414Washington County.415-420Wicomico County.421-425Worchester County.426-459Washington, D.C.460-464Wells, numbering system for.8-9Wicomico County, MD, ground-water421-425ground-water quality record in.589-590Worchester County, MD, ground-water levels in.426-459ground-water quality record in.589-590Worchester County, MD, ground-water levels in.426-459ground-water quality records in.591-601	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350
Washington County.415-420Wicomico County.421-425Worchester County.426-459Washington, D.C.460-464Wells, numbering system for.8-9Wicomico County, MD, ground-water421-425levels in.421-425ground-water quality record in.589-590Worchester County, MD, ground-water levels in.426-459ground-water quality records in.591-601	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 337-350 351-376
Wicomico County	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350 351-376 377-404
Worchester County	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350 351-376 377-404 405-408
Washington, D.C	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 269-272 273-291 292-308 309-311 312-329 330-336 337-350 351-376 377-404 405-408 409-414
<pre>Wells, numbering system for</pre>	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 30-336 337-350 351-376 377-404 405-408 409-414 415-420
<pre>Wicomico County, MD, ground-water</pre>	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350 351-376 377-404 405-408 409-414 415-420
<pre>Wicomico County, MD, ground-water</pre>	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350 351-376 377-404 405-408 409-414 415-420 421-425 426-459
<pre>Wicomico County, MD, ground-water</pre>	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350 351-376 377-404 405-408 409-414 415-420 421-425 426-459
levels in	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 300-336 337-350 351-376 377-404 405-408 409-414 415-420 421-425 426-459 460-464
Worchester County, MD, ground-water levels in 426-459 ground-water quality records in 591-601	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350 351-376 377-404 405-408 409-414 415-420 421-425 426-459 460-464
Worchester County, MD, ground-water levels in 426-459 ground-water quality records in 591-601	<pre>Well descriptions and water-level measurements: Delaware, Kent County New Castle County Maryland, Allegany County Baltimore, City of Baltimore, City of Baltimore County Carvell County Caroline County Carroll County Carroll County Carroll County Charles County Dorchester County Frederick County Harford County Howard County Kent County Prince Georges County Prince Georges County St Marys County Talbot County Wicomico County Washington, D.C Wells, numbering system for Wicomico County, MD, ground-water levels in</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350 351-376 377-404 405-408 409-414 415-420 421-425
	<pre>Well descriptions and water-level measurements: Delaware, Kent County New Castle County Maryland, Allegany County Baltimore, City of Baltimore, City of Baltimore County Carvell County Caroline County Carroll County Carroll County Carroll County Charles County Dorchester County Frederick County Harford County Howard County Kent County Prince Georges County Prince Georges County St Marys County Talbot County Wicomico County Washington, D.C Wells, numbering system for Wicomico County, MD, ground-water levels in</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 204-205 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350 351-376 377-404 405-408 409-414 415-420 421-425
WSP (Water-Supply Paper), definition of	<pre>Well descriptions and water-level measurements: Delaware, Kent County New Castle County. Maryland, Allegany County. Baltimore, City of. Baltimore, City of. Baltimore County. Caroline County. Caroline County. Caroline County. Carroll County. Carroll County. Charles County. Dorchester County. Frederick County. Harford County. Harford County. Kent County. Prince Georges County. Queen Annes County. Somerset County. Somerset County. Wicomico County. Washington, D.C. Wells, numbering system for. Worchester County. Worchester County. Worchester County. Worchester County. Worchester County. Worchester County. Worchester County. Worchester County. Worchester County. Wicomico County. Washington, D.C. Wells in. Ground-water quality record in. Worchester County. Worchester County. MD, ground-water levels in. Worchester County. MD, ground-water levels in.</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350 351-376 377-404 405-408 409-414 415-420 421-425 426-459 460-464
	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350 351-376 377-404 405-408 409-414 415-420 421-425 426-459 460-464
	<pre>Well descriptions and water-level measurements: Delaware, Kent County</pre>	34-68 69-80 81-114 115-117 118-164 165-168 169-184 185-203 206-209 210-212 213-259 260-268 269-272 273-291 292-308 309-311 312-329 330-336 337-350 351-376 377-404 405-408 409-414 415-420 421-425 426-459 460-464 8-9 421-425 589-590 426-459 591-601

Page


Conversion Factors

Multiply	Ву	To obtain
	Length	
inch (in)	2.54×10^{1}	millimator (mm)
inch (in.)	2.54×10^{-2}	millimeter (mm)
£4 (£4)	3.048×10^{-1}	meter
foot (ft) mile (mi)	1.609×10^{0}	meter (m) kilometer (km)
line (iiii)	1.009x10*	knometer (km)
	Area	
acre	4.047×10^3	square meter (m ²)
	4.047×10^{-1}	square hectometer (hm^2)
	4.047×10^{-3}	square kilometer (km ²)
square mile (mi ²)	2.590×10^{0}	square kilometer (km ²)
	Volume	
gallon (gal)	3.785×10^{0}	liter (L)
	3.785x10 ⁻³	cubic meter (m ³)
	3.785×10^{0}	cubic decimeter (dm ³)
million gallons (Mgal)	3.785×10^3	cubic meter (m ³)
	3.785x10 ⁻³	cubic hectometer (hm ³)
cubic foot (ft ³)	2.832×10^{-2}	cubic meter (m ³)
	2.832×10^{1}	cubic decimeter (dm ³)
cubic-foot-per-second-per-day	2	2
[(ft ³ /s/d]	2.447×10^3	cubic meter (m ³)
	2.447x10 ⁻³	cubic hectometer (hm^3)
acre-foot (acre-ft)	1.223×10^3	cubic meter (m ³)
	1.223x10 ⁻³	cubic hectometer (hm^3)
	1.223×10^{-6}	cubic kilometer (km ³)
	Flow rate	
cubic foot per second (ft ³ /s)	2.832×10^{1}	liter (L/s)
r	2.832×10^{-2}	cubic meter per second (m^3/s)
	2.832×10^{1}	cubic decimeter per second $(dm^{3/s})$
gallon per minute (gal/min)	6.309×10^{-2}	liter per second (L/s)
	6.309x10 ⁻⁵	cubic meter per second (m^3/s)
	6.309x10 ⁻²	cubic decimeter per second $(dm^{3/s})$
million gallons per day (Mgal/d)	4.381×10^{-2}	cubic meter per second
6	4.381×10^{1}	cubic decimeter per second (dm^3/s)
	Mass	

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

