Water Resources Data Texas Water Year 2001 **Volume 4. Colorado River Basin, Lavaca River Basin, and Intervening Coastal Basins** By S.C. Gandara Water-Data Report TX-01-4 ### UNITED STATES DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary GEOLOGICAL SURVEY Charles G. Groat, Director For additional information write to: District Chief, Water Resources Division U.S. Geological Survey 8027 Exchange Dr. Austin, Texas 78754-4733 ### **PREFACE** This edition of the annual hydrologic data report of Texas is one of a series of annual reports that document hydrologic data collected from the U.S. Geological Survey's collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by Federal, State, local agencies, and the private sector for developing and managing land and water resources in Texas which are contained in 6 volumes: | Volume 1. | Arkansas River Basin, Red River Basin, Sabine River Basin, Neches River Basin, and | |-----------|--| | | Intervening Coastal Basins | Volume 2. Trinity River Basin Volume 3. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening Coastal Basins Volume 4. Colorado River Basin, Lavaca River Basin, and Intervening Coastal Basins Volume 5. Guadalupe River Basin, Nueces River Basin, Rio Grande Basin, and Intervening Coastal Basins Volume 6. Ground-Water Data This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had the primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to U.S. Geological Survey policy and established guidelines, most of the data were collected, computed, and processed from Subdistrict and Field Offices. The following supervised the collection, processing, and tabulation of the data: > David S. Brown Timothy H. Raines Mike E. Dorsey Debra A. Sneck-Fahrer Addis M. Miller III John W. Unruh Jimmy G. Pond Ken VanZandt The following individuals contributed to the collection, processing and preparation of the data: ### **Houston Subdistrict Office** ### San Antonio Subdistrict Office San Angelo Field Office | Chris Angel | Jimmy E. Hopkins | James M. Briers | Vidal A. Mendoza | |--------------------|---------------------|---------------------|---------------------| | Cindy Billington | Scott E. Jennings | Amy R. Clark | Robert T. Meyer | | Dexter W. Brown | Mark C. Kasmarek | Eric B. Cooper | Michael B. Nyman | | J. Pat Bruchmiller | Patrick O. Keefe | Shawn M. French | Cassi L. Otero | | Mike R. Burnich | Dale Melton | Allen L. Furlow | Diana E. Pedraza | | Al Campodonico | Russell Neill | Jon R. Gilhousen | Jorge O. Pena | | Laura S. Coplin | Edna M. Paul | Ken C. Grimm | Brian L. Petri | | Jeff W. East | Cervando S. Ramirez | C.A. Hartmann, Jr. | Richard N. Slattery | | Lee B. Goldstein | Jasper D. Schaer | Chiquita S. Lopez | Douglas E. Thomas | | | | Stephanie L. Marr | Mark A. Warzecha | | Fort Worth Fie | <u>ld Office</u> | Cecilio R. Martinez | John F. Wojcik | | Patrick B. Allen | Jennifer L. Pickard | Austin Field Office | | |----------------------|---------------------|-----------------------|--------------------| | Jack D. Benton | Darryl G. Pinion | | | | Dana A. Blanchette | Clyde T. Schoultz | Jose D. Cruz | Randy A. Samuelson | | Wendell L. Bradford | Jeffrey T. Sandlin | Michael L. Greenslate | Keith R. Snider | | Martin J. Danz | Roger K. Trader | William E. Harris | Peter A. Spatz | | Judith H. Donohue | David V. Tudor | Searcy M. Jacobs | K. Craig Weiss | | Bradley L. Mansfield | | Venezia Muniz | | ### Wichita Falls Field Office | Randal S. Alexander | Jackie D. Kelly | Joe G. Beauchamp | Lawanna M. Kiser | |---------------------|---------------------|--------------------|-------------------| | Stanley Baldys | Michael T. Pettibon | Jeremy K. Crosby | James B. Schiller | | Benjamin J. Carr | Jeanne C. Place | Hector H. Garza | Tim E. Teagarden | | Laith P. Hairell | Anita M. Ross | Henry Jacques, Jr. | | This report was prepared in cooperation with the State of Texas and other agencies under the supervision of Jayne E. May, District Data Chief. ### REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503- | | , | 0 , 1 | , (| ,, | | |--|---|---|--|--|--| | AGENCY USE ONLY (Leave blank) | 2. REPORT DATE
March 2002 | | 3. REPORT TYPE AND DATES COVERED AnnualOct. 1, 2000, to Sept. 30, 2001 | | | | 4. TITLE AND SUBTITLE | | | | NDING NUMBERS | | | Water Resources DataTexas
Colorado River, Lavaca Rive | | | | | | | 6. AUTHOR(S) S.C. Gandara | | | | | | | 7. PERFORMING ORGANIZATION NAME | (S) AND ADDRESS(ES) | | 8. PEF | REFORMING ORGANIZATION | | | U.S. Geological Survey, Water Texas District | er Resources Division | | | PORT NUMBER
GS-WDR-TX-01-4 | | | 8027 Exchange Dr.
Austin, TX 78754-4733 | | | | | | | 9. SPONSORING / MONITORING AGENCE U.S. Geological Survey, Water | | | | PONSORING / MONITORING
BENCY REPORT NUMBER | | | Texas District
8027 Exchange Dr. | | | US | GS-WDR-TX-01-4 | | | Austin, TX 78754-4733 | | | | | | | 11. SUPPLEMENTARY NOTES Prepared in cooperation with | Federal, State, and local ago | encies. | | | | | 12a. DISTRIBUTION / AVAILABILITY STA | | | 12b. [| DISTRIBUTION CODE | | | No restriction on distribution. This report may be purchased National Technical Information Springfield, VA 22161 | from | | | | | | Water-resources data for the 2 discharge, and water quality water levels and water quality stations; stage and contents a record stations comprised of cluded are lists of discontinue ity stations. Additional water and are published as miscellar operated by the U.S. Geologic few pertinent stations in the b | of streams and canals; stage
y of ground-water wells. Vo
t 14 lakes and reservoirs; w
3 flood-hydrograph, 6 low-
d surface-water discharge o
data were collected at various
neous measurements. These
cal Survey and cooperating | e, contents, and water-
plume 4 contains record
rater quality at 41 gagin
flow, 1 crest-stage, and
r stage-only stations ar
as sites, not part of the
data represent that part
Federal, State, and local | quality of
ds for wing station
of 2 miscond disconsystema
to of the N | of lakes and reservoirs; and vater discharge at 66 gaging ons; and data for 12 partial-tellaneous stations. Also inntinued surface-water-qualtic data-collection program, National Water Data System | | | 14. SUBJECT TERMS | | | | 15. NUMBER OF PAGES | | | *Texas, *hydrologic data, *s lakes, reservoirs, chemical an | | | | 355 | | | Takes, reservoirs, encimedial | • | | | 16. PRICE CODE | | | 17. SECURITY CLASSIFICATION OF REPORT Unclassified | 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified | 19. SECURITY CLASSIFICA
OF ABSTRACT
Unclassified | TION | 20. LIMITATION OF ABSTRACT | | ### CONTENTS | | | Page | |-----------|---|----------------------| | Preface - | | ii | | | gaging stations, in downstream order, for which records are published | | | List of d | discontinued surface-water discharge or stage-only stations | vii | | | liscontinued surface-water-quality stations | | | | ctionation | | | Uvdrolo | adon | <u>1</u>
<u>1</u> | | пушою | Streamflow | | | | Water quality | | | Special r | networks and programs | (| | Explanat | ation of the records | 7 | | | Station identification numbers | ′ | | | Downstream order numbering | <i>′</i> | | | Records of stage and water discharge | ·- | | | Data collection and computation | | | | Data presentationStation manuscript | 9 | | | Data table of daily mean values | . <u>.</u> 9 | | | Statistics of monthly mean data | | | | Summary statistics | 10
10 | | | Identifying estimated daily discharge | 1 | |
 Accuracy of the records | 1 | | | Other records available | 13 | | | Records of surface-water quality | 13 | | | Classification of records | 13 | | | Arrangement of records | | | | On-site measurements and sample collection | | | | Water temperature | | | | Laboratory measurements | | | | Data presentation | | | | Remark codes | | | | Water-Quality-Control Data | | | | Blank samples | 1: | | | Reference samples | | | | Replicate samples | | | | Spike samples | | | Access to | to USGS water data | | | | on of terms | | | Publicati | tions of techniques of water-resources investigations | 2 | | Gaging-s | station records | 3 | | Miscella | aneous water-quality data | 31 | | Discharg | ge at partial-record stations and miscellaneous sites | 32 | | | Low-flow partial-record stations | 32 | | | Discharge measurements at miscellaneous sites | 32:
32: | | Index | Discharge measurements at miscentaneous sites | | | | ILLUSTRATIONS | | | | | | | Figure | Area of Texas covered by volume 4 and location of selected streamflow and water-quality stations in volume 4 | : | | | 2. Monthly mean discharges at four long-term hydrologic index stations during 2001 water year | | | | and median of the monthly mean discharges for 1961-90 water years | 2 | | | Map showing location of gaging stations in the first section of the Colorado River Basin Map showing location of gaging stations in the second section of the Colorado River Basin | 3:
6 | | | 5. Map showing location of gaging stations in the third section of the Colorado River Basin | 13 | | | 6. Map showing location of gaging stations in the fourth section of the Colorado River Basin | 16 | | | 7. Map showing location of gaging stations in the Austin inset of the Colorado River Basin | 16 | | | 8. Map showing location of gaging stations in the fifth section of the Colorado River Basin | 25 | | | 9. Map showing location of gaging stations in the Lavaca and Coastal River Basins | 27 | | | - • • • • | | | | TABLES | | | | | | | | | | | Table | 1 Streamflow at six selected stations | 1 | ## GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME [Type of data collected: (d) discharge; (c) chemical; (b) biological; (t) water temperature; (s) sediment; (e) elevation, gage heights, or contents.] | | Station | | |---|----------|------| | | number | Page | | WESTERN GULF OF MEXICO BASINS | | 8- | | COLORADO RIVER BASIN | | | | Colorado River near Gail (d) | 08117995 | 34 | | Lake J.B. Thomas near Vincent (e) | | 36 | | Big Sulphur Creek: | | | | Deep Creek near Dunn (d) | 08120500 | 38 | | Colorado River near Cuthbert (d) (c) (t) | 08120700 | 40 | | Colorado River at Colorado City (d) (c) (t) | 08121000 | 48 | | Morgan Creek: | | | | Lake Colorado City near Colorado City (e) | 08123000 | 54 | | Champion Creek Reservoir near Colorado City (e) | 08123600 | 56 | | Beals Creek: | | | | Moss Creek: | | | | Moss Creek Lake near Coahoma (e) | 08123755 | 58 | | Beals Creek near Westbrook (d) (c) (t) | | 60 | | Colorado River above Silver (d) (c) (t) | 08123850 | 70 | | E.V. Spence Reservoir near Robert Lee (e) | | 78 | | Colorado River at Robert Lee (d) | | 80 | | Oak Creek Reservoir near Blackwell (e) | | 82 | | Colorado River near Ballinger (d) (c) (t) | | 84 | | Elm Creek at Ballinger (d) (c) (t) | | 92 | | South Concho River (head of Concho River): | | | | South Concho River at Christoval (d) | 08128000 | 100 | | Middle Concho River above Tankersley (d) | | 102 | | Spring Creek above Tankersley (d) | 08129300 | 104 | | Dove Creek at Knickerbocker (d) | | 106 | | Twin Buttes Reservoir near San Angelo (e) | | 108 | | Pecan Creek near San Angelo (d) | 08131400 | 110 | | Lake Nasworthy near San Angelo (e) | | 112 | | North Concho River above Sterling City (d) | | 114 | | North Concho River at Sterling City (d) | 08133500 | 116 | | North Concho River near Carlsbad (d) | | 118 | | North Concho River near Grape Creek (d) | 08134250 | 120 | | O.C. Fisher Lake at San Angelo (e) | 08134500 | 122 | | Concho River at San Angelo (d) | 08136000 | 124 | | Concho River at Paint Rock (d) (c) (t) | | 126 | | O.H. Ivie Reservoir near Voss (e) | | 136 | | Colorado River near Stacy (d) | 08136700 | 138 | | Colorado River at Winchell (d) | | 140 | | Pecan Bayou: | | | | Jim Ned Creek: | | | | Lake Coleman near Novice (e) | 08140770 | 142 | | Hords Creek: | | | | Hords Creek Lake near Valera (e) | 08141000 | 144 | | Lake Brownwood near Brownwood (e) | | 146 | | Pecan Bayou near Mullin (d) | 08143600 | 148 | | San Saba River at Menard (d) | | 150 | | San Saba River near Brady (d) | 08144600 | 152 | | Brady Creek Reservoir near Brady (e) | 08144900 | 154 | | Brady Creek at Brady (d) | 08145000 | 156 | | San Saba River at San Saba (d) | 08146000 | 158 | | Colorado River near San Saba (d) | 08147000 | 164 | | North Llano River near Junction (d) | | 166 | | Llano River near Junction (d) | | 168 | | Llano River near Mason (d) | | 170 | | Beaver Creek near Mason (d) | 08150800 | 172 | | Llano River at Llano (d) | 09151500 | 174 | | Sandy Creek near Kingsland (d) | | 1/4 | ## GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME | | Station | | |---|------------|------| | | number | Page | | WESTERN GULF OF MEXICO BASINSContinued | | | | COLORADO RIVER BASINContinued | 00150000 | 170 | | Pedernales River near Fredericksburg (d) | 08152900 | 178 | | Pedernales River near Johnson City (d) | 08153500 | 180 | | Bull Creek at Loop 360 near Austin (d) (c) (t) (b) | 08154700 | 182 | | Lake Austin at Austin (c) (t) (b) (s) | | 186 | | Barton Creek at State Highway 71 near Oak Hill (d) (c) (t) (b) | 08155200 | 192 | | Barton Creek at Lost Creek Boulevard, Austin (d) (c) (t) (b) | 08155240 | 196 | | Barton Creek at Loop 360, Austin (d) (c) (t) (b) | 08155300 | 200 | | Barton Creek above Barton Springs, Austin (c) (t) (b) | 08155400 | 204 | | Barton Springs at Austin (d) (c) (t) (b) | 08155500 | 210 | | Shoal Creek at 12th Street, Austin (d) (c) (t) (b) | 08156800 | 214 | | East Bouldin Creek at South 1st Street, Austin (d) | 08157600 | 218 | | Blunn Creek near Little Stacy Park, Austin (d) (c) (t) (b) | 08157700 | 220 | | Town Lake at Austin (c) (t) (b) (s) | | 224 | | Colorado River at Austin (d) | | 232 | | Boggy Creek at U.S. Highway 183, Austin (d) (c) (t) (b) | 08158050 | 234 | | Walnut Creek at Webberville Road, Austin (d) (c) (t) (b) | 08158600 | 238 | | Onion Creek near Driftwood (d) (c) (t) (b) | | 242 | | Bear Creek below Farm to Market Road 1826 near Driftwood (d) | | 246 | | Slaughter Creek at Farm to Market Road 1826 near Austin (c) (t) (b) | 08158840 | 248 | | Williamson Creek at Brush Country Blvd., Oak Hill (d) (c) (t) (b) | | 250 | | Williamson Creek at Manchaca Road, Austin (d) | | 254 | | Onion Creek at U.S. Highway 183, Austin (d) | | 256 | | Colorado River at Bastrop (d) | | 260 | | Colorado River at Smithville (d) | | 262 | | Colorado River above LaGrange (d) | 08160400 | 264 | | Cummins Creek: | 001 (0000 | 266 | | Redgate Creek near Columbus (d) | | 266 | | Colorado River at Columbus (d) | | 268 | | Colorado River at Wharton (d) | | 270 | | Colorado River near Bay City (d) | 08162500 | 272 | | TRES PALACIOS RIVER BASIN | 004 50 500 | | | Tres Palacios River near Midfield (d) | 08162600 | 276 | | LAVACA RIVER BASIN | 004.54000 | 2=0 | | Lavaca River near Edna (d) | | 278 | | Navidad River near Hallettsville (d) | 08164300 | 280 | | Navidad River at Strane Park near Edna (d) (c) (t) | | 282 | | Sandy Creek near Ganado (d) (c) (t) | 08164450 | 286 | | Mustang Creek: | | | | West Mustang Creek near Ganado (d) (c) (t) | 08164503 | 290 | | East Mustang Creek near Louise (d) (c) (t) | | 294 | | Lake Texana near Edna (e) (c) (t) | 08164525 | 298 | | GARCITAS CREEK BASIN | | | | Garcitas Creek near Inez (d) | 08164600 | 314 | | PLACEDO CREEK BASIN | 00:-: | | | Dlacado Craek near Dlacado (d) | 08164800 | 316 | The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Texas have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as partial-record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the title page of this report. [Letters after station name designate the type of data collected: (d) discharge, (e) elevation (stage only).] | Station name | Station
number | Drainage
area
(mi ²) | Period
of record
(water years) | |---|-------------------|--|--------------------------------------| | | | | | | Punta De Agua Creek near Channing (d) | 07227448 | 3,568 | 1968-73 | | East Chyenne Creek Tributary near Channing (e) | 07227460 | 0.86 | 1965-74 | | Canadian River at Tascosa (d) | 07227470 | 18,536 | 1969-77 | | Tecovas Creek Tributary near Bushland (e) | 07227480 | 2.5 | 1966-74 | | Dixon Creek near Borger (d) | 07227920 | 134 | 1974-89 | | Palo Duro Creek near Canyon (e) | 07229700 | 982 | 1942-54 | | White Woman Creek Tributary near Darrouzett (e) | 07234150 | 4.03 | 1966-74 | | Tierra Blanca Creek above Buffalo Lake near Umbarger (d) | 07295500 | 1,968 | 1939-54, | | | | | 1967-73 | | Buffalo Lake near Umbarger (e) | 07296000 | 2,075 | 1938-54 | | Tierra Blanca Creek below Buffalo Lake near Umbarger (d) | 07296100 | 2,075 | 1967-73 | | Prairie Dog Town Fork Red River near Canyon (d) | 07297500 | 3,369 | 1924-26, | | | | | 1938-49 | | Middle Tule Draw near Tulia (e) | 07297920 | 313 | 1967-74 | | North Tule Draw
at Reservoir near Tulia (d) | 07298000 | 189 | 1939-40, | | | | | 1941-73 | | Rock Creek Tributary near Silverton (d) | 07298150 | 13.7 | 1966-74 | | Tule Creek near Silverton (d) | 07298200 | 1,150 | 1964-86 | | Prairie Dog Town Fork Red River near Brice (d) | 07298500 | 6,082 | 1939-44, | | | | | 1949-51, | | | | | 1960-63 | | Mulberry Creek near Brice (d) | 07299000 | 534 | 1949-51 | | Prairie Dog Town Fork Red River near Lakeview (d) | 07299200 | 6,792 | 1963-80 | | Little Red River near Turkey (d) | 07299300 | 139 | 1968-81 | | Prairie Dog Town Fork Red River near Estelline (d) | 07299500 | 7,293 | 1924-25, | | | | | 1938-47 | | Prairie Dog Town Fork Red River below Mountain Creek near Estelline (e) | 07299505 | 7,341 | 1974-77 | | Prairie Dog Town Fork Red River above Jonah Creek near Estelline (e) | 07299510 | 7,533 | 1974-77 | | Jonah Creek at Weir near Estelline (d) | 07299512 | 65.50 | 1974-82 | | Jonah Creek below Weir near Estelline (d) | 07299514 | 66.60 | 1974-76 | | Jonah Creek at mouth near Estelline (d) | 07299516 | 76 | 1974-76 | | Salt Creek near Estelline (d) | 07299530 | 142 | 1974-79 | | Buck Creek near Wellington (e) | 07299550 | 210 | 1951-64 | | Red River near Quanah (d) | 07299570 | 8,321 | 1960-82 | | North Groesbeck Creek Tributary near Kirkland (d) | 07299575 | 0.16 | 1966-74 | | Wanders Creek at Odell (e) | 07299750 | 199 | 1949-50, | | | | | 1952-89 | | Salt Fork Red River near Clarendon (d) | 07299850 | 457 | 1960-64 | | Lelia Lake Creek near Hedley (e) | 07299900 | 86 | 1951-70 | | Salt Fork Red River near Hedley (e) | 07299930 | 744 | 1951, | | | | | 1956-62 | | Oklahoma Draw Tributary near Hedley (e) | 07299940 | 1.1 | 1965-74 | | Sweetwater Creek near Wheeler (e) | 07301400 | 164 | 1951-64 | | Doodlebug Creek near Wheeler (e) | 07301405 | 0.19 | 1967-73 | | Elm Creek near Shamrock (e) | 07303300 | N/A | 1947-89 | | Quitaque Creek near Quitaque (d) | 07307500 | 293 | 1945-59 | | North Pease River near Childress (d) | 07307600 | 1,434 | 1973-79 | | North Pease River near Kirkland (e) | 07307660 | N/A | 1973-79 | | Roaring Springs near Roaring Springs (e) | 07307700 | N/A | 1937, | | | | | 1943-95 | | Cottonwood Creek Tributary near Afton (e) | 07307720 | 0.68 | 1967-74 | | · · · · · · · · · · · · · · · · · · · | 07307750 | 1,086 | 1973-79 | | Middle Pease River near Paducah (d) | 0/30//30 | 1,000 | 17/3-/7 | Drainage Period Station name Station area of record number (mi²)(water years) ______ Middle Pease River near Kirkland (e) 07307780 1.250 1973-79 Canal Creek near Crowell (e) 07307950 49.0 1968-70, 1978-79 Pease River near Crowell (d) 07308000 3,037 1924-47 Plum Creek near Vernon (e) 07308220 4.99 1967-74 China Creek near Electra (e) 07308400 37 1967-76 North Fork Wichita River near Crowell (d) 07311622 591 1971-76 Middle Fork Wichita River near Truscott (d) 1971-76 07311648 161 South Fork Wichita River near Guthrie (d) 07311780 239 1952-54. 1956-57 1971-76 1971-79 South Fork Wichita River at Ross Ranch near Benjamin (d) 07311790 499 Beaver Creek near Electra (d) 07312200* 652 1960-99 Beaver Creek Tributary near Crowell (e) 07312140 3.43 1966-74 Wolf Creek near Iowa Park (e) 07312300 8.5 1966-74 North Fork Little Wichita River Tributary near Archer City (e) 07314200 0.10 1966-74 Little Wichita River near Henrietta (d) 1.037 1953-79 07315000 Little Wichita River near Ringgold (d) 07315400 1,350 1959-65 Farmers Creek near Saint Jo (e) 07315550 0.82 1966-74 1968-77 Mineral Creek near Sadler (d) 07316200 26 Sandy Creek near Sadler (e) 07316230 1968-74 24 Lake Texoma near Denison (e) 07331500 39,719 1942-93. 2000 Red River at Denison Dam near Denison (d) 07331600 39,720 1924-89 Bois D'Arc Creek near Randolph (d) 1963-85 07332600 72 Cooper Creek near Bonham (e) 07332602 6.21 1966-74 Sanders Creek near Chicota (d) 07335400 175 1968-86 Little Pine Creek near Kanawha (d) 07336750 75.40 1969-80 Pecan Bayou near Clarksville (d) 07336800 100 1962-77 Red River near DeKalb (d) 07336820 47.348 1967-98 McKinney Bayou near Leary (e) 07336940 3.33 1966-73 Barkman Creek near Leary (e) 07336950 1958-64 31.5 Nelson Branch near Leonard (e) 07342450 0.22 1966-74 South Sulphur River near Commerce (d) 07342470 189 1980-91 1964-74 Cuthand Creek near Bogata (d) 07343300 69 Dial Branch near Bagwell (e) 07343350 1.00 1966-74 White Oak Creek near Mt. Vernon (e) 07343480 434 1966, 1969-75 White Oak Creek below Talco (d) 07343800 579 1938-50 Buck Creek near Cookville (e) 1966-74 07343900 0.78 Sulphur River near Darden (d) 07344000 2,774 1924-56 Sulphur River near Texarkana (d) 07344210 1980-85 3,443 Big Cypress Creek near Winnsboro (d) 07344482 27.2 1974-92 Dragoo Creek near Mt. Pleasant (e) 07344490 4.27 1967-74 Williamson Creek near Pittsburg (e) 07344600 7.11 1967-74 Boggy Creek near Daingerfield (d) 07345000 72 1943-77 Ellison Creek Reservoir near Lone Star (e) 07345500 37 1943-62. 1974-89 Cypress Creek Tributary near Jefferson (e) 07346010 0.51 1966-74 Taylor Branch near Smithland (e) 07346072 1966-74 0.73 Big Cypress Creek near Karnack (e) 07346085 2.174 1980-85 Frazier Creek near Linden (d) 07346140 48.0 1965-91 Sabine River near Emory (d) 08017500 888 1952-73 Burnett Branch near Canton (e) 08017700 0.33 1966-74 1968-73 Grand Saline Creek near Grand Saline (d) 08018200 91.4 Burke Creek near Yantis (d) 08018730 33.10 1979-89 Dry Creek near Quitman (e) 08018950 63.6 1968-75 Lake Winnsboro near Winnsboro (d) 08019300 27.1 1962-86 Big Sandy Creek near Hawkins (e) 08019430 196 1980-82 Prairie Creek near Gladewater (d) 08020200 48.90 1968-77 | Station name | Station | Drainage
area | Period of record | |---|----------------------|--------------------|--------------------| | Sanoname | number | (mi ²) | (water years) | | Sabine River near Longview (d) | 08020500 | 2,947 | 1904-07, | | | | | 1924-33 | | Rabbit Creek at Kilgore (d) | 08020700 | 75.80 | 1964-77 | | Grace Creek Tributary at Longview (e) | 08020800 | 5.05 | 1967-74 | | Mill Creek near Henderson (d) | 08020960 | 20.30 | 1979-81 | | Mill Creek near Longview (d) | 08020980 | 47.90 | 1979-81 | | Tiawichi Creek near Longview (d) Charaksa Payan near Eldamida (d) | 08020990 | 62.70
120 | 1978-81 | | Cherokee Bayou near Elderville (d) Lake Cherokee near Longview (e) | 08021000
08021500 | 158 | 1940-49
1951-83 | | Sabine River near Tatum (d) | 08022000 | 3,493 | 1931-83 | | " " " (e) | 08022000 | 3,493 | 1979-82 | | Redmon Branch near Hallesville (e) | 08022010 | 0.46 | 1966-74 | | Eight Mile Creek near Tatum (e) | 08022050 | 106 | 1962-71 | | Martin Creek near Tatum (d) | 08022070 | 148 | 1974-96 | | Martin Creek near Beckville (e) | 08022080 | 192 | 1962-71 | | Murvaul Bayou near Gary (d) | 08022300 | 134 | 1958-83 | | Socagee Creek near Carthage (d) | 08022400 | 82.60 | 1962-73 | | Tenaha Creek near Shelbyville (d) | 08023200 | 97.80 | 1952-81 | | Dorsey Branch near Milam (e) | 08024290 | 0.70 | 1967-74 | | Patroon Bayou near Milam (e) | 08024300 | 130 | 1952-54, | | • | | | 1959-63 | | Sabine River near Milam (d) | 08024400 | 6,508 | 1924-25, | | | | | 1939-68 | | Palo Gaucho Bayou near Hemphill (d) | 08024500 | 123 | 1952-65 | | Housen Bayou near Yellowpine (e) | 08025250 | 92.1 | 1952-54, | | | | | 1957, | | | | | 1959-63 | | Sandy Creek near Yellowpine (e) | 08025300 | 135 | 1952-54, | | | | | 1957, | | | | | 1959-63 | | Mill Creek near Burkeville (d) | 08025307 | 17.6 | 1974-79 | | Little Cow Creek below McGraw Creek near Burkeville (e) | 08026500 | 112 | 1952-58 | | Moore Branch near Newton (e) | 08028505 | 3.77 | 1967-74 | | Nichols Creek near Buna (e) | 08029750 | 54.4 | 1959-64 | | Cypress Creek near Buna (d) | 08030000 | 69.20 | 1952-83 | | Adams Bayou Tributary near Deweyville (e) | 08030700 | 12.4 | 1966-74 | | Cow Bayou near Mauriceville (d) | 08031000 | 83.30 | 1952-86 | | Bethlehem Branch near Van (e) | 08031100 | 1.09 | 1966-74 | | Kickapoo Creek near Brownsboro (d)
Neches River near Reese (d) | 08031200 | 232
851 | 1962-89 | | Hurricane Creek Tributary near Palestine (e) | 08031500
08032100 | 0.39 | 1924-27
1966-74 | | One Arm Creek near Maydelle (e) | 08032100 | 6.01 | 1967-74 | | Squirrel Creek near Elkhart (e) | 08032300 | 1.57 | 1967-74 | | Neches River near Alto (d) | 08032500 | 1,945 | 1944-79 | | Piney Creek Tributary near Pennington (e) | 08033250 | 1.17 | 1967-74 | | Piney Creek near Groveton (d) | 08033300 | 79 | 1962-89 | | Shawnee Creek Tributary near Huntington (e) | 08033450 | 0.52 | 1966-74 | | Greenwood Creek Tributary near Colmesneil (e) | 08033480 | 0.15 | 1966-74 | | Bowles Creek near Selman City (e) | 08033600 | 14.5 | 1968-85 | | Striker Creek near Summerfield (d) | 08033700 | 146 | 1941-49 | | Striker Creek Reservoir near New Salem (e) | 08033800 | 148 | 1941-49 | | East Fork Angelina River near Cushing (d) | 08033900 | 158 | 1964-89 | | Mud Creek near Jacksonville (d) | 08034500 | 376 | 1939-79 | | Mud Creek at Ponta (d) | 08035000 | 475 | 1924-27 | | Angelina River near Lufkin (d) | 08037000 | 1,600 | 1924-34, | | | | | 1939-79 | | Bayou Lanana at Nacogdoches (d) | 08037050 | 31.3 | 1965-86, | | | | | 1988-93 | | | 08037300 | 0.90 | 1967-74 | | | 08037500 | 75.30 | 1938-40 | | Angelina River near Zavalla (d) | 08038500 | 2,892 | 1952-65 | | Gingham Branch near Mt. Enterprise (e) Arenoso Creek near San Augustine (d) Angelina River near Zavalla (d) | 08037300 | 0.90 | 19
19
19 | | | | Period | | |--|----------------------|--------------------|--------------------| | Station name | Station | Drainage
area | of record | | | number | (mi ²) | (water years) | | Ayish Bayou at San Augustine (d) | 08039000 | 15.80 | 1924-25 | | Angelina River at Horger (d) | 08039500 | 3,486 | 1928-51, | | 1 mgomu 111 of ut 110 gor (u) | 00027200 | 2,.00 | 1967-73 | | Little Sandy Creek Tributary near Jasper (e) | 08039900 |
0.46 | 1967-74 | | Drakes Branch near Spurger (e) | 08041400 | 5.03 | 1967-74 | | Hillebrandt Bayou near Lovell Lake (d) | 08042500 | 128 | 1954-84 | | West Fork Double Bayou near Anahuac (e) | 08042550 | 4.43 | 1967-74 | | North Creek SWS No. 28-A near Jermyn (e) | 08042650 | 6.82 | 1972-80 | | North Creek near Jacksboro (d) | 08042700 | 21.60 | 1956-80 | | Beans Creek at Wizard Wells (e) | 08042900 | 29.60 | 1993-95 | | West Fork Trinity River at Bridgeport (d) | 08043100 | 1,113 | 1984-89 | | West Fork Trinity River at Bridgeport (d) | 08043500 | 1,147 | 1908-30 | | Big Sandy Creek near Bridgeport (d) | 08044000 | 333 | 1937-95 | | Garrett Creek near Paradise (e) | 08044135 | 52.5 | 1992-95 | | Salt Creek near Paradise (e) | 08044140 | 52.7 | 1992-95 | | Walker Creek near Boyd (e) | 08044200 | 2.95 | 1965-74 | | West Fork Trinity River at Lake Worth, Fort Worth (d) | 08045500 | 2,069 | 1924-34 | | Clear Fork Trinity River near Aledo (d) | 08046000 | 251 | 1947-75 | | Marine Creek at Fort Worth (d) | 08048500 | 16.80 | 1950-58 | | Sycamore Creek at I.H. 35W, Fort Worth (d) | 08048520 | 17.70 | 1970-76 | | Sycamore Creek Trib. above Seminary South, Fort Worth (d) | 08048530 | 0.97 | 1970-76 | | Sycamore Creek Trib. at I.H. 35W, Fort Worth (d) | 08048540 | 1.35 | 1970-76 | | Dry Branch at Fain Street at Fort Worth (d) | 08048600 | 2.15 | 1969-76 | | Big Fossil Creek at Haltom City (d) | 08048800* | 52.8 | 1959-73 | | Little Fossil Creek at I.H. 820, Fort Worth (e) | 08048820 | 5.64 | 1969-73 | | Little Fossil Creek at Mesquite Street, Fort Worth (d) | 08048850
08048900 | 12.30
5.86 | 1969-76
1967-74 | | Deer Creek Tributary near Crowley (e) Village Creek at Kennedale (d) | 08048980 | 100 | 1986-89 | | Village Creek near Handley (d) | 08049900 | 126 | 1925-30 | | Big Bear Creek near Grapevine (d) | 08049000 | 29.6 | 1967-79 | | Trigg Branch at DFW Airport near Euless (d) | 08049565 | 1.73 | 1983-87 | | Mountain Creek near Cedar Hill (d) | 08049600 | 119 | 1961-84 | | Mountain Creek above Duncanville (e) | 08049850 | 224 | 1986-87 | | Mountain Creek near Duncanville (e) | 08049900 | 225 | 1971-90 | | Mountain Creek near Grand Prairie (d) | 08050000 | 273 | 1925-33 | | Elm Fork Trinity River SWS 6-O near Muenster (e) | 08050200 | 0.77 | 1957-73 | | Elm Fork Trinity River near Muenster (d) | 08050300 | 46 | 1957-73 | | Elm Fork Trinity River near Sanger (d) | 08050500 | 381 | 1949-85 | | Isle Du Bois Creek near Pilot Point (d) | 08051000 | 266 | 1949-85 | | Elm Fork Trinity River near Pilot Point (d) | 08051130 | 692 | 1985-92 | | Elm Fork Trinity River above Aubrey (e) | 08051190 | 684 | 1981-89 | | Elm Fork Trinity River near Denton (d) | 08052000 | 1,084 | 1924-27 | | Lake Dallas near Lake Dallas (e) | 08052500 | 1,165 | 1929-57 | | Little Elm Creek SWS #10 near Gunter (e) | 08052630 | 2.10 | 1966-72 | | Little Elm Creek near Celina (d) | 08052650 | 46.70 | 1966-76 | | Hickory Creek at Denton (d) | 08052780 | 129 | 1985-87 | | Indian Creek at Hebron Parkway at Carrollton (d) | 08053010 | 15.0 | 1987-90 | | Furneaux Creek at Josey Lane at Carrollton (d) | 08053030 | 4.10 | 1987-90 | | Hutton Branch at Broadway at Carrollton (e) | 08053090 | 9.10 | 1987-90 | | Jones Valley Creek Tributary near Forestburg (e) | 08053100 | 1.70 | 1966-74 | | Denton Creek near Roanoke (d) | 08054000 | 621 | 1924-28, | | Camble Branch near Argula (a) | 00054200 | 0.50 | 1939-55 | | Gamble Branch near Argyle (e) Denton Creek near Grapevine (d) | 08054200 | 0.50
705 | 1965-74 | | * ' ' | 08055000 | 705 | 1948-91 | | Joe's Creek at Royal Lane, Dallas (e)
Joes Creek near Dallas (e) | 08055580
08055600 | 1.94
7.4 | 1973-78
1964-79 | | Bachman Branch at Dallas (d) | 08055700 | 10 | 1964-79 | | Turtle Creek at Dallas (d) | 08056500 | 7.98 | 1952-80, | | Tartio Crock at Danus (a) | 00030300 | 7.70 | 1984-91 | | Coombs Creek at Sylvan Avenue, Dallas (e) | 08057020 | 4.75 | 1965-78 | | Coomos Crock at Dyrvan Avenue, Danas (c) | 00037020 | 7.75 | 1705-10 | | | | Drainage | Period | |--|----------------------|--------------------|--------------------| | Stationname | Station | area | of record | | | number | (mi ²) | (water years) | | Cedar Creek at Bonnie View Road, Dallas (e) | 08057050 | 9.42 | 1965-78 | | White Rock Creek at Keller Springs Road, Dallas (d) | 08057100 | 29.40 | 1961-79 | | Spanky Branch at McCallum Lane at Dallas (e) | 08057120 | 6.77 | 1962-78 | | Rush Branch at Arapaho Road, Dallas (e) | 08057130 | 1.22 | 1973-78 | | Newton Creek at Interstate Highway 635, Dallas (e) | 08057135 | 5.91 | 1974-78 | | Cottonwood Creek at Forest Lane, Dallas (e) | 08057140
08057160 | 8.50
4.17 | 1962-78
1962-78 | | Floyd Branch at Forrest Lane, Dallas (e) White Rock Creek at White Rock Lake, Dallas (d) | 08057300 | 100 | 1962-78 | | Ash Creek at Highland Road, Dallas (e) | 08057320 | 6.92 | 1963-78 | | Forney Creek at Lawnview Avenue, Dallas (e) | 08057340 | 1.84 | 1963-72 | | White Rock Creek at Scyene Road, Dallas (d) | 08057400 | 122 | 1963-79 | | Trinity River below Dallas (d) | 08057410 | 6,278 | 1956-98 | | Elm Creek at Seco Boulevard, Dallas (e) | 08057415 | 1.25 | 1973-78 | | Fivemile Creek at Kiest Boulevard, Dallas (e) | 08057418 | 7.65 | 1974-78 | | Fivemile Creek at US Highway 77 West, Dallas (e) | 08057420 | 14.30 | 1965-78 | | Woody Branch at US Highway 77 West, Dallas (e)
Fivemile Creek at Lancaster Road, Dallas (e) | 08057425
08057430 | 10.30
37.90 | 1965-78
1965-78 | | White Branch at Interstate Highway 635, Dallas (e) | 08057440 | 2.53 | 1903-78 | | Tenmile Creek at State Highway 342 at Lancaster (d) | 08057450 | 52.80 | 1970-79 | | Honey Creek SWS #11 near McKinney (e) | 08057500 | 2.14 | 1952-73 | | Honey Creek SWS #12 near McKinney (e) | 08058000 | 1.26 | 1952-77 | | Honey Creek near McKinney (d) | 08058500 | 39 | 1951-73 | | East Fork Trinity River near McKinney (d) | 08059000 | 190 | 1949-75 | | Arls Branch near Westminster (e) | 08059200 | 0.52 | 1965-74 | | Sister Grove Creek near Princeton (d) | 08059500 | 113 | 1949-75 | | East Fork Trinity River above Pilot Grove near Lavon (d) | 08060000 | 324 | 1949-53 | | East Fork Trinity River near Lavon (d) East Fork Trinity River near Rockwall (d) | 08061000
08061500 | 773
840 | 1954-89
1924-54 | | Duck Creek at Buckingham Road, Garland (e) | 08061620 | 8.05 | 1969-76 | | Duck Creek near Garland (d) | 08061700 | 31.6 | 1958-93 | | South Mesquite Creek at State Highway 352, Mesquite (e) | 08061920 | 13.40 | 1969-76 | | South Mesquite Creek at Mercury Road near Mesquite (d) | 08061950 | 23 | 1969-79 | | Cedar Creek Reservoir Spillway Outflow near Trinidad (d) | 08062650 | 1,007 | 1966-82 | | Cedar Creek near Kemp (d) | 08062800 | 189 | 1963-87 | | Bachelor Creek near Terrell (e) | 08062850 | 13.0 | 1967-74 | | Kings Creek near Kaufman (d) | 08062900 | 233 | 1963-87 | | Lacey Fork near Mabank (d) Cedar Creek near Mabank (d) | 08062980
08063000 | 118
733 | 1983-84
1939-66 | | South Twin Creek near Eustace (d) | 08063003 | 27.40 | 1983-84 | | Red Oak Branch near Eustace (e) | 08063005 | 0.90 | 1966-74 | | Cedar Creek at Trinidad (d) | 08063020 | 1,011 | 1965-71 | | Briar Creek Tributary near Corsicana (e) | 08063180 | 0.72 | 1966-74 | | Pin Oak Creek near Hubbard (d) | 08063200 | 17.60 | 1956-72 | | Richland Creek near Richland (d) | 08063500 | 734 | 1939-88 | | Alvarado Branch near Alvarado (e) | 08063550 | 0.84 | 1966-74 | | Kings Branch near Reagor Springs (e) | 08063620 | 0.62 | 1966-74 | | Chambers Creek near Corsicana (d) | 08064500 | 963 | 1939-84 | | Richland Creek near Fairfield (d) Saline Branch Tributary near Bethel (e) | 08064600
08064630 | 1,957
0.22 | 1972-83
1967-74 | | Catfish Creek near Tennessee Colony (d) | 08064800 | 207 | 1962-89 | | Mayes Branch near Latexo (e) | 08065320 | 4.26 | 1967-74 | | Trinity River near Midway (d) | 08065500 | 14,450 | 1939-71 | | Caney Creek near Madisonville (d) | 08065700 | 112 | 1963-77 | | Nelson Creek near Riverside (e) | 08065950 | 86.4 | 1949, | | | | | 1965, | | | ^~~ | 00.7 | 1970-74 | | Harmon Creek near Huntsville (e) | 08065975 | 89.2 | 1973-81 | | West Carolina Creek near Oakhurst (e) | 08066050 | 15.2 | 1949,
1966-73 | | White Rock Creek near Trinity (e) | 08066100 | 222 | 1974-85 | | White Rock Creek near Trinity (e) | 08066130 | 228 | 1966-74 | | ··· - ·· · · · · · · · · · · · · · · · | 55555125 | | | | | | Drainage | Period | |---|------------------------|--------------|--------------------| | Station name | Station | area | of record | | | number | (mi^2) | (water years) | | Tantaboque Creek near Trinity (e) | 08066140 | 61.3 | 1966-73 | | Caney Creek near Groveton (e) | 08066145 | 41.4 | 1966-73 | | Brushy Creek near Onalaska (d) | 08066150 | 29.1 | 1966-70 | | Rocky Creek near Onalaska (e) | 08066180 | 40.6 | 1966-73 | | Livingston Reservoir outflow weir near Goodrich (d) | 08066191 | 16,583 | 1969-94 | | Long King Creek near Goodrich (d) | 08066210 | 220 | 1972-81 | | Bluff Creek Tributary near Livingston (e) | 08066280 | 0.62 | 1965-74 | | Big Creek near Shepherd(e) | 08066400 | 38.80 | 1966-89 | | Gaylor Creek near Moss Hill (e) | 08066800 | 32.3 | 1966-73 | | Devers Canal near Liberty (d) | 08067080 | N/A | 1972-82 | | Cedar Bayou at Crosby (d) | 08067500* | 65.0 | 1972-91 | | Goose Creek near McNair (e) | 08067520 | 6.7 | 1963-65, | | Welch Branch near Huntsville (e) | 08067550 | 2.35 | 1965-74 | | Lake Conroe near Montgomery (e) | 08067580 | 445 | 1973-76 | | Lake Conroe at Outflow Weir near Conroe (d) | 08067610 | 445 | 1974,
1977-89 | | Caney Creek near Dobbin (d) | 08067700 | 40.40 | 1963-65 | | Landrum Creek Tributary near Montgomery (e) | 08067750 | 0.13 | 1965-74 | | Lake Creek near Conroe (e) | 08067900 | 291 | 1969-89 | | West Fork San
Jacinto River near Porter (e) | 08068100 | 970 | 1970-76 | | Mill Creek Tributary near Dobbin (e) | 08068300 | 4.07 | 1967-73 | | Swale No. 8 at Woodlands (e) | 08068438 | 0.55 | 1975-76, | | | | | 1980-88 | | Spring Creek at Spring (d) | 08068520 | 419 | 1975-95 | | Spring Creek near Humble (e) | 08068600 | 435 | 1971-76 | | Cypress Creek at Sharp Road near Hockley (d) | 08068700 | 80.7 | 1975-85 | | Cypress Creek near Cypress (e) | 08068750* | 138 | 1971-76 | | Little Cypress Creek near Cypress (d) | 08068780* | 41.0 | 1983-92 | | Cypress Creek at Grant Road near Houston (d) | 08068800* | 214 | 1983-92 | | Cypress Creek at Stuebner-Airline Road near Westfield (d) | 08068900* | 248
319 | 1982-87
1971-76 | | Cypress Creek near Humble (e) West Fork San Jacinto River near Humble (d) | 08069200
08069500 | 1,741 | 1971-76 | | Bear Creek near Cleveland (e) | 08069850 | 1,741 | 1929-34 | | Caney Creek near New Caney (e) | 08070600 | 178 | 1970-76 | | Peach Creek near New Caney (e) | 08071100 | 155 | 1970-76 | | Tarkington Bayou near Dayton (e) | 08071200 | 142 | 1964-76 | | Luce Bayou near Huffman (e) | 08071300 | 226 | 1971-76 | | San Jacinto River near Huffman (d) | 08071500 | 2,800 | 1937-53 | | Buffalo Bayou at Clodine (e) | 08072400 | 84.2 | 1974-85 | | Langham Creek at West Little York Road, Addicks (d) | 08072760* | 25.0 | 1977-85 | | Bettina Street Ditch at Houston (e) | 08073630 | 1.37 | 1979-85 | | Stony Brook Street Ditch at Houston (e) | 08073750 | 0.50 | 1967-72 | | Bering Ditch at Woodway Drive, Houston (e) | 08073800 | 2.77 | 1965-73 | | Cole Creek at Guhn Road at Houston (e) | 08074100 | 7.05 | 1964-72 | | Bingle Road Storm Sewer at Houston (e) | 08074145 | 0.21 | 1980-88 | | Cole Creek at Deihl Road at Houston (d) | 08074150* | 7.50 | 1964-86 | | Brickhouse Gully at Clarblak Street at Houston (e) | 08074200 | 2.56 | 1965-83 | | Brickhouse Gully at Costa Rica Street at Houston (d) | 08074250* | 11.4 | 1964-81 | | Lazybrook Street Storm Sewer, Houston (e) | 08074400 | 0.13 | 1978-88 | | Little White Oak Bayou at Houston (e) | 08074550 | 20.9 | 1971-79 | | Buffalo Bayou at Main St., Houston (d) | 08074600* | 469
460 | 1962-94 | | Buffalo Bayou at McKee Street, Houston (d) Buffalo Bayou at 60th Street, Houston (a) | 08074610 | 469
476 | 1992-2000 | | Buffalo Bayou at 69th Street, Houston (e) Brays Bayou at Addicks-Clodine Rd., Houston (e) | 08074700 | 476 | 1961-86 | | Brays Bayou at Alief Road, Alief (e) | 08074750
08074760* | 0.87
12.9 | 1974-77
1977-85 | | Keegans Bayou at Keegans Road near Houston (e) | 08074760*
08074780* | 7.47 | 1977-85
1964-71 | | Keegans Bayou at Roark Road near Houston (d) | 08074800* | 13.0 | 1964-71 | | Bintliff Ditch at Bissonnet Street, Houston (e) | 0007-000 | | 1704-03 | | | 08074850 | 4.38 | 1968-82 | | Willow Waterhole Bayou at Landsdowne Street, Houston (e) | 08074850
08074900 | 4.38
3.81 | 1968-82
1965-72 | | Station name | Station | Drainage
area | Period
of record | |---|-----------|--------------------|---------------------| | | number | (mi ²) | (water years) | | Brays Bayou at Scott Street, Houston (e) | 08075100 | 106 | 1971-81 | | Sims Bayou at Carlsbad Street, Houston (e) | 08075300 | 3.81 | 1964-72 | | Sims Bayou at MLK Blvd., Houston (e) | 08075470 | 48.4 | 1978-89 | | Berry Bayou at Gilpin Street, Houston (e) | 08075550 | 2.87 | 1965-84 | | Berry Bayou Tributary at Globe Street, Houston (e) | 08075600 | 1.58 | 1965-72 | | Berry Bayou at Forest Oaks Street, Houston (e) | 08075650* | 10.7 | 1968-82 | | Berry Bayou at Galveston Road, Houston (e) | 08075700 | 4.86 | 1965-72 | | Huntington Bayou Tributary at Cavalcade Street, Houston (e) | 08075750 | 1.20 | 1965-72 | | Huntington Bayou at Falls Street, Houston (e) | 08075760 | 2.75 | 1964-84 | | Halls Bayou at Deertrail Street at Houston (e) | 08076200 | 8.69 | 1965-84 | | Carpenters Bayou at Cloverleaf (e) | 08076900 | 25.8 | 1964, | | | | | 1971-93 | | Clear Creek near Pearland (d) | 08077000 | 38.8 | 1944-45, | | | | | 1946-60, | | | | | 1963-94 | | Clear Creek Tributary at Hall Road, Houston (e) | 08077100 | 1.31 | 1965-86 | | Clear Creek at Friendswood (d) | 08077540 | 99.6 | 1994-97 | | Cowart Creek near Friendswood (e) | 08077550 | 18 | 1965-74 | | Clear Creek near Friendswood (e) | 08077600 | 126 | 1966-94 | | Armand Bayou near Genoa (e) | 08077620 | 18.2 | 1968, | | W. 11 . 1D | 00077700 | 1.7. | 1971-73 | | Highland Bayou at Hitchcock (e) | 08077700 | 15.6 | 1963-82 | | Highland Bayou Tributary near Texas City (e) | 08077750 | 1.97 | 1966-73 | | Highland Bayou near Texas City (e) | 08077780 | 20.8 | 1965-88 | | Flores Bayou near Danbury (e) | 08078700 | 23.3 | 1967-72 | | Oyster Creek near Angleton (d) | 08079000 | 171 | 1945-80 | | North Fork Double Mountain Fork Brazos River at Lubbock (d) | 08079500 | 5,300 | 1940-49, | | North Fork Double Mountain Fork Brazos River above | 08079530 | 29.3 | 1952-54, | | Buffalo Springs nr Lubbock (e) | | | 1957, | | | | | 1962,
1967-76 | | Buffalo Springs Lake near Lubbock (e) | 08079550 | 236 | 1967-76 | | Barnum Springs Draw near Post (e) | 08079570 | 4.99 | 1965-73 | | North Fork Double Mountain Fork Brazos River near Post (d) | 08079575 | 438 | 1984-93 | | Rattlesnake Creek near Post (e) | 08079580 | 2.75 | 1966-74 | | Double Mountain Fork Brazos River near Rotan (d) | 08080000 | 8,536 | 1950-51 | | Guest-Flowers Draw near Aspermont (e) | 08080510 | 3.02 | 1965-74 | | McDonald Creek near Post (d) | 08080540 | 103 | 1966-78 | | Running Water Draw at Plainview (d) | 08080700 | 1,291 | 1939-53, | | running water Braw at Family (a) | 00000700 | 1,271 | 1957-78 | | Callahan Draw near Lockney (e) | 08080750 | 37.5 | 1966-77 | | White River near Crosbytown (e) | 08080800 | 529 | 1951-64 | | White River below falls near Crosbytown (e) | 08080900 | 529 | 1951-64 | | Salt Fork Brazos River at Farm Road 1081 near Clairemont (e) | 08080916 | 1,135 | 1968-77 | | Red Mud Creek near Spur (e) | 08080918 | 65.1 | 1967-74 | | Salt Fork Brazos River at State Highway 208 near Clairemont (e) | 08080940 | 1,357 | 1968-77 | | Duck Creek near Girard (d) | 08080950 | 431 | 1965-89 | | Salt Fork Brazos River at U.S. Highway 380 near Jayton (e) | 08080959 | 1,797 | 1968-77 | | Salt Fork Brazos River near Peacock (d) | 08081000 | 4,619 | 1950-51, | | | | | 1965-86 | | Short Croton Creek at mouth near Jayton (e) | 08081050 | 18.1 | 1959-82 | | Croton Creek below Short Croton Creek near Jayton (e) | 08081100 | 250 | 1959-82 | | Croton Creek near Jayton (d) | 08081200 | 290 | 1959-86 | | Salt Croton Creek at Weir D near Aspermont (e) | 08081400 | 55.5 | 1957-76 | | Haystack Creek at Weir E near Aspermont (e) | 08081450 | 15.1 | 1957-77 | | Salt Croton Creek near Aspermont (d) | 08081500 | 64.30 | 1957-77 | | Stinking Creek near Aspermont (d) | 08082100 | 88.80 | 1966-83 | | North Croton Creek near Knox City (d) | 08082180 | 251 | 1965-86 | | North Elm Creek near Throckmorton (e) | 08082900 | 3.58 | 1965-77 | | Elm Creek near Profitt (e) | 08082950 | 275 | 1969-85 | | Brazos River near Graham (d) | 08083000 | 16,830 | 1916-20 | | Stationname | Station | Drainage
area | Period
of record | |--|----------------------|------------------|---------------------| | | number | (mi^2) | (water years) | | Clear Fork Brazos River at Hawley (d) | 08083240 | 1,416 | 1968-89 | | Mulberry Creek near Hawley (d) | 08083245 | 205 | 1968-89 | | Elm Creek near Abilene (d) | 08083300 | 133 | 1964-79 | | Little Elm Creek near Abilene (d) | 08083400 | 39.10 | 1964-79 | | Elm Creek at Abilene (d) | 08083430 | 422 | 1980-83 | | Cedar Creek at Abilene (d) | 08083470 | 119 | 1971-84 | | Paint Creek near Haskell (d) | 08085000 | 914 | 1950-51 | | Humphries Draw near Haskell (e) | 08085300 | 3.51 | 1965-77 | | Clear Fork Brazos River at Crystall Falls (d) | 08086000 | 4,323 | 1922-29 | | Hubbard Creek near Sedwick (d) Living Creek at History 280 near March (e) | 08086015 | 128
152 | 1964-66 | | Hubbard Creek at Highway 380 near Moran (e) | 08086020
08086030 | 33.8 | 1963-76
1963-66 | | Deep Creek near Putnam (e) Brushy Creek near Putnam (e) | 08086040 | 27.6 | 1963-66 | | Mexia Creek near Putnam (e) | 08086045 | 67.0 | 1963-66 | | Deep Creek at Moran (d) | 08086050 | 228 | 1963-75 | | Hubbard Creek near Albany (d) | 08086100 | 454 | 1962-75 | | Salt Prong Hubbard Creek below Lake McCarty near Albany (e) | 08086110 | 45.5 | 1963-66 | | Salt Prong Hubbard Creek at U.S. 380 near Albany (d) | 08086120 | 61 | 1964-68 | | Cook Creek near Albany (e) | 08086130 | 11.3 | 1963-76 | | North Fork Hubbard Creek near Albany (d) | 08086150 | 39.3 | 1963-90 | | Salt Prong Hubbard Creek near Albany (d) | 08086200 | 115 | 1962-63 | | Snailum Creek near Albany (d) | 08086210 | 22.90 | 1964-66 | | Big Sandy Creek near Eolian (e) | 08086220 | 91.4 | 1963-76 | | Battle Creek near Putnam (e) | 08086230 | 32.0 | 1963-66 | | Battle Creek near Moran (d) | 08086235 | 108 | 1967-68 | | Battle Creek near Eolian (e) | 08086240 | 137 | 1963-66 | | Pecan Creek at FM 1853 near Eolian (e) | 08086250 | 6.95 | 1963-66 | | Pecan Creek near Eolian (d) | 08086260 | 26.40 | 1967-75 | | Big Sandy Creek near Breckenridge (e) | 08086300 | 288 | 1962-75 | | Hubbard Creek near Breckenridge (d) | 08086500 | 1,089 | 1955-86 | | Clear Fork Brazos River near Crystal Falls (e) | 08087000 | 5,658 | 1916-20, | | | | | 1928-51 | | Clear Fork Brazos River near Eliasville (d) | 08087300 | 5,697 | 1916-20, | | | | | 1924-25, | | | | | 1928-51, | | | | | 1962-82 | | Salt Creek at Olney (d) | 08088100 | 11.80 | 1958-77 | | Salt Creek near Newcastle (d) | 08088200 | 120 | 1958-60 | | Briar Creek near Graham (d) | 08088300 | 24.20 | 1958-89 | | Brazos River at Farm Road 1287 near Graham (e) | 08088420 | 13,432 | 1970-77 | | Big Cedar Creek near Ivan (d) | 08088450 | 97 | 1965-89
 | Brazos River at Morris Sheppard Dam near Graford (d) | 08088600 | 14,030 | 1990-94 | | Elm Creek Tributary near Graford (e) | 08089100 | 1.10 | 1965-74 | | Lake Palo Pinto near Santo (e) | 08090300 | 461 | 1964-82 | | Palo Pinto Creek near Santo (d) | 08090500 | 573 | 1925,
1951-76 | | Cidwell Branch near Granbury (e) | 08090850 | 3.37 | 1966-73 | | Morris Branch near Glanbury (e) | 08091200 | 0.06 | 1965-73 | | Panther Branch near Tolar (e) | 08091700 | 7.82 | 1966-74 | | Lake Pat Cleburne near Cleburne (d) | 08091700 | 100 | 1965-85 | | Nolan River at Blum (d) | 08092000* | 282.0 | 1924-87 | | Brazos River near Whitney (d) | 08093000 | 17,648 | 1939-74 | | Bond Branch near Hillsboro (e) | 08093200 | 0.36 | 1965-74 | | Hackberry Creek at Hillsboro (d) | 08093250 | 57.9 | 1980-92 | | Hackberry Creek below Hillsboro (e) | 08093260 | 86.8 | 1980-92 | | Aquilla Creek above Aquilla (d) | 08093360* | 255.0 | 1980-92 | | Cobb Creek near Abbott (d) | 08093400 | 12.40 | 1967-79 | | Aquilla Creek at RR bridge near Aquilla (e) | 08093530 | 345 | 1976-85 | | Aquilla Creek at Farm Road 2114 near Aquilla (e) | 08093540 | 351 | 1976-85 | | Aquilla Creek at Farm Road and 1858 near Ross (e) | 08093560 | 392 | 1976-85 | | Aquilla Creek at Farm Road 933 near Ross (e) | 08093580 | 397 | 1976-85 | Drainage Period Station name Station area of record number (mi²)(water years) ______ North Bosque River at Stephenville (d) 08093700 95.90 1958-79 Green Creek SWS #1 near Dublin (d) 08094000 1955-77 4.19 Green Creek near Alexander (d) 08094500 45.40 1958-73 South Bosque River near McGregor (e) 08095220 15.9 1967-73 Willow Branch at McGregor (e) 08095250 2.52 1966-73 Middle Bosque River near McGregor (d) 08095300* 182.0 1959-86 Hog Creek near Crawford (d) 08095400* 78.0 1959-86 South Bosque River near Speegleville (d) 08095500 1924-30 386 Bosque River near Waco (d) 08095600 1,656 1960-82 Box Branch at Robinson (e) 08096550 0.34 1965-73 Cow Bayou SWS No. 4 (inflow) near Bruceville (e) 5.04 1958-75 08096800 Cow Bayou at Mooreville (d) 08097000 83.50 1958-75 1939-51 Brazos River near Marlin (d) 08097500 30.211 Deer Creek at Chilton (d) 08098000 84.50 1934-36 Little Pond Creek at Burlington (d) 08098300 23 1963-82 Leon River near De Leon (d) 08099100* 479.0 1960-87 Sabana River near De Leon (d) 08099300* 264.0 1960-87 08099350 0.48 1966-74 Sabana River Tributary near De Leon (e) Leon River near Hasse (d) 08099500 1,261 1939-91 Eidson Creek near Hamilton (e) 08100100 2.91 1965-73 Bermuda Branch near Gatesville (e) 08100400 0.50 1966-73 Hoffman Branch near Hamilton (e) 08100800 1966-74 5.56 Cowhouse Creek near Killeen (d) 08101500 667 1925, 1939-42 Nolan Creek at Belton (d) 08102600 112 1974-82 08102900 0.90 1966-73 School Branch near Lampasas (e) Fleece Branch near Lampasas (e) 08103450 1.08 1965-74 Lampasas River at Youngsport (d) 08104000 1.240 1924-80 Lampasas River near Belton (d) 08104100* 1,321 1963-89 Salado Creek above Salado (e) 08104290* 134 1985-88 Salado Creek below Salado Springs (d) 08104310* 136 1985-87 N. Fork San Gabriel River upstream from State Highway 418 at Georgetown (e) 08104795* 271 1985-88 North Fork San Gabriel River at Georgetown (d) 1964-68 08104800 268 South Fork San Gabriel River near Bertram (e) 08104850 8.9 1967-74 San Gabriel River at Georgetown (d) 08105000* 405 1924-25, 1934-73. 1984-87 Berry Creek at State Hwy. 971 near Georgetown (d) 08105200* 117 1985-87 San Gabriel River near Weir (d) 08105300* 563 1977-90 San Gabriel River near Circleville (d) 08105400 599 1924-34, 1967-77 Avery Branch near Taylor (e) 08105900 3.52 1966-73 Brushy Creek at Coupland (d) 1924-26 08106000 205.0 Brushy Creek near Rockdale (d) 08106300 505 1967-80 San Gabriel River near Rockdale (d) 08106310 1,359 1975-92 Big Elm Creek near Temple (d) 08107000 74.70 1934-36 Big Elm Creek near Buckholts (d) 08107500 171 1934-36 North Elm Creek near Ben Arnold (d) 08108000 32.20 1935-36 North Elm Creek near Cameron (d) 08108200 44.80 1963-73 Little Branch near Bryan (e) 08108800 0.14 1966-73 1899-1903, Brazos River near Bryan (d) 08109000 39,515 1918-92 Brazos River near College Station (d) 08109500 30,033 1899-1902, 1918-25 Yegua Creek near Somerville (d) 08110000 1,009 1924-92 1966-95 Brazos River at Washington (e) 08110200 41.192 Plummers Creek at Mexia (e) 08110350 4.42 1965-73 1965-79 Navasota River near Groesbeck (d) 08110400 311 Navasota River near Bryan (d) 08111000 1,454 1951-94, 1994-97 Navasota River near College Station (d) 08111010 1.809 1977-85 | Station name | Station | Drainage
area
(mi ²) | Period
of record | |---|-----------------------|--|---------------------| | | number | (m1²) | (water years) | | Burton Creek at Villa Maria Road, Bryan (d) | 08111025 | 1.33 | 1968-70 | | Hudson Creek near Bryan (d) | 08111050 | 1.94 | 1968-70 | | Winkleman Creek near Brenham (e) | 08111100 | 0.75 | 1965-73 | | Piney Creek near Bellville (e) | 08111600 | 30.7 | 1948, | | | | | 1955, | | | | | 1958, | | TT - T - 1 200 G - 1 | 00444.550 | 4.7.0 | 1964-89 | | West Fork Mill Creek near Industry (e) | 08111650 | 15.3 | 1964-89 | | Mill Creek near Bellville (d) | 08111700 | 376 | 1963-93 | | Brazos River near San Felipe (d) | 08112000 | 35,100 | 1939-57 | | Brazos River near Wallis (e) | 08112200 | 44,700
N/A | 1974-75 | | Brazos River Authority Canal A near Fulshear (d) | 08112500 | N/A | 1932-54,
1958-73 | | Richmond Irrigation Co. Canal near Richmond (d) | 08113500 | N/A | 1938-73 | | Richmond Irrigation Co. Canar near Richmond (d) | 08113300 | IN/A | 1952-34,
1956-78 | | Brazos River near Juliff (d) | 08114500 | 45,084 | 1949-69 | | Seabourne Creek near Rosenberg (e) | 08114900 | 5.78 | 1968-74 | | Fairchild Creek near Needville (d) | 08115500 | 26.20 | 1947-55 | | Big Creek near Guy (d) | 08116000 | 116 | 1947-50 | | Dry Creek near Rosenberg (d) | 08116400 | 8.65 | 1959-79 | | Dry Creek near Richmond (d) | 08116500 | 12.20 | 1947-50, | | Dry Creek hear Richmond (d) | 00110300 | 12.20 | 1957-58 | | San Bernard River near West Columbia (e) | 08117700 | 766 | 1949, | | | | | 1971-77 | | Mound Creek Tributary at Guy (e) | 08117800 | 1.48 | 1966-73 | | Big Boggy Creek near Wadsworth (d) | 08117900 | 10.30 | 1970-77 | | Bull Creek near Ira (d) | 08118500 | 26.30 | 1948-54, | | | | | 1959-62 | | Colorado River below Bull Creek near Ira (e) | 08118600 | 3,524 | 1975-78 | | Bluff Creek near Ira (d) | 08119000 | 42.60 | 1948-65 | | Bluff Creek at mouth near Ira (e) | 08119100 | 44.1 | 1975-78 | | Colorado River near Ira (d) | 08119500 | 3,483 | 1948-52,
1959-89 | | Morgan Creek near Westbrook (d) | 08121500 | 273 | 1954-63 | | Graze Creek near Westbrook (d) | 08122000 | 21.70 | 1954-59 | | Morgan Creek near Colorado City (d) | 08122500 | 313 | 1947-49 | | Champlin Creek near Colorado City (d) | 08123500 | 198 | 1948-59 | | Sulphur Springs Draw near Wellman (e) | 08123620 | 41.80 | 1966-74 | | Beals Creek above Big Spring (d) | 08123650 | 9,319 | 1959-79 | | Beals Creek at Big Spring (d) | 08123700 | 9,341 | 1957-59 | | Beals Creek near Coahoma (d) | 08123720 | 9,383 | 1983-88 | | Coahoma Draw Tributary near Big Spring (e) | 08123750 | 2.38 | 1966-74 | | Bull Creek Tributary near Forsan (e) | 08123760 | 0.4 | 1966-74 | | Colorado River near Silver (d) | 08123900 | 14,997 | 1957-70 | | Bitter Creek near Silver (e) | 08123920 | 4.3 | 1967-74 | | Salt Creek Tributary near Hylton (e) | 08125450 | 0.25 | 1966-74 | | Oak Creek Reservoir near Blackwell (e) | 08125500 | 238 | 1953-83 | | Fish Creek Tributary near Hylton (e) | 08126300 | 0.25 | 1966-71 | | Colorado River at Ballinger (d) | 08126500 | 16,413 | 1907-79 | | Dry Creek near Christoval (e) South Conche Imigation Co. Conclut Christoval (d) | 08127100 | 0.79 | 1965-73 | | South Concho Irrigation Co. Canal at Christoval (d) | 08127500 | N/A | 1940-83 | | Middle Concho River near Tankersley (d) | 08128500 | 2,653 | 1930-61 | | Spring Creek above Tankersley (d) Doug Creek Springs peer Kniekerheeker (d) | 08129300* | 424.7 | 1961-95 | | Dove Creek springs near Knickerbocker (d) | 08129500* | N/A
226.43 | 1944-58 | | Dove Creek at Knickerbocker (d)
Spring Creek near Tankersley (d) | 08130500*
08131000 | 226.43
699 | 1961-95
1930-60 | | South Concho River above Gardner Dam near San Angelo (e) | 08131000
08131190 | 434 | 1930-60
1966-74, | | South Concho River above Guidner Dain field Ball Aligero (c) | 00131170 | 7.57 | 2000 | | South Concho River above Pecan Creek near San Angelo (e) | 08131300 | 470 | 1963-84 | | Tom Green Co. WCID No. 1 Canal near San Angelo (d) | 08131600 | N/A | 1963-81 | | Tom Green Co. WCID 110. I Canal near San Angelo (a) | 00131000 | 11/11 | 1703-01 | | Station name | | Drainage | Period | |--|----------------------|--------------------|-----------------------| | | Station | area | of record | | | number
 | (mi ²) | (water years) | | South Concho River at San Angelo (d) | 08132500 | 3,866 | 1932-53 | | Quarry Creek near Sterling City (e) | 08133300 | 3.25 | 1965-73 | | North Concho River at Sterling City (d) | 08133500* | 588.0 | 1939-87 | | Broome Creek near Broome (e) | 08133800 | 0.29 | 1965-73 | | Nolke Station Creek near San Angelo (e) | 08134300 | 0.59 | 1965-73 | | Gravel Pit Creek near San Angelo (e) | 08134400 | 0.19 | 1965-74 | | North Concho River at San Angelo (d) | 08135000 | 1,525 | 1916-31,
1947-90 | | Concho River near Veribest (e) | 08136150 | 5,610 | 1970-74,
1998-2000 | | Puddle Creek near Veribest (e) | 08136200 | 12.0 | 1966-73 | | Frog Pond Creek near Eden (e) | 08136300 | 1.96 | 1967-73 | | Mukewater Creek SWS No. 10A near Trickham (e) | 08136900 | 15.3 | 1965-72 | | Mukewater Creek SWS No. 9 near Trickham (e) | 08137000 | 4.02 | 1961-72 | | Mukewater Creek at Trickham (d) | 08137500 | 70 |
1951-73 | | Deep Creek SWS No. 3 near Placid (e) | 08139000 | 3.42 | 1954-60 | | Deep Creek near Mercury (d) | 08139500 | 43.90 | 1954-73 | | Deep Creek SWS No. 8 near Mercury (e) | 08140000 | 5.14 | 1952-71 | | Dry Prong Deep Creek near Mercury (d) | 08140500 | 8.31 | 1951-71 | | Lake Clyde near Clyde (e) | 08140600 | 36.9 | 1970-85 | | Pecan Bayou near Cross Cut (d) | 08140700 | 532 | 1968-79 | | Jim Ned Creek near Coleman (d) | 08140800 | 333 | 1965-80 | | McCall Branch near Coleman (e) | 08141100 | 2.17 | 1966-73 | | Hords Creek near Valera (d) | 08141500 | 54.20 | 1947-91 | | Hords Creek at Coleman (d) | 08142000 | 107 | 1941-70 | | Brown County WID No. 1 Canal near Brownwood (d) | 08142500 | N/A | 1950-83 | | Pecan Bayou at Brownwood (d) | 08143500 | 1,660 | 1917-18,
1924-83 | | Brown Creek Tributary near Goldthwaite (e) | 08143700 | 2.48 | 1966-73 | | Noyes Canal at Menard (d) | 08144000 | N/A | 1924-83 | | Brady Creek near Eden (d) | 08144800 | 101 | 1962-85 | | Brady Creek Tributary near Brady (e) | 08145100 | 4.05 | 1967-73 | | Lake Buchanan near Burnet (e) | 08148000 | 31,910 | 1937-90 | | Llano River Tributary near London (e) | 08150200 | 0.58 | 1966-73 | | Stone Creek Tributary near Art (e) | 08150900 | 0.40 | 1966-73 | | Llano River near Castell (d) | 08151000 | 3,747 | 1924-39 | | Johnson Creek near Valley Spring (e) | 08151300 | 5.66 | 1967-73 | | Sandy Creek near Kingsland (d) | 08152000 | 327 | 1967-93 | | Little Flatrock Creek near Marble Falls (e) | 08152700 | 3.20 | 1966-74 | | Spring Creek near Fredericksburg (e) | 08152800 | 15.20 | 1967-73 | | Pedernales River at Stonewall (d) | 08153000 | 647 | 1924-34 | | Cane Branch at Stonewall (e) | 08153100 | 1.37 | 1965-71 | | Pedernales River near Spicewood (d) | 08154000 | 1,294 | 1924-39 | | Lake Travis near Austin (d) | 08154500 | 38,755 | 1940-90 | | Colorado River below Mansfield Dam, Austin (d)
West Bull Creek at Loop 360 near Austin (e) | 08154510 | 38,755 | 1975-90 | | * | 08154750 | 6.77 | 1976-82 | | Bull Creek at FM 2222, Austin (e) Rea Creek at West Lake Drive mean Avetin (c) | 08154760 | 30.4 | 1975-78 | | Bee Creek at West Lake Drive near Austin (e) Barton Creek near Camp Craft Road near Austin (d) | 08154950 | 3.28
109 | 1980-82 | | Skunk Hollow Creek below Pond 1 at Austin (e) | 08155260 | | 1982-89 | | West Bouldin Creek at Riverside Drive, Austin (e) | 08155400 | 0.12 | 1982-84 | | Shoal Creek at Steck Avenue, Austin (e) | 08155550
08156650 | 3.12
2.79 | 1976-82
1975-82 | | Shoal Creek at Northwest Park at Austin (d) | 08156700 | 6.52 | 1975-84 | | Shoal Creek at White Rick Drive, Austin (d) | 08156750 | 12.30 | 1975-84 | | Waller Creek at 38th Street, Austin (d) | 08157000 | 2.31 | 1955-80 | | Waller Creek at 35th Street, Austin (d) Waller Creek at 23rd Street, Austin (d) | 08157500 | 4.13 | 1955-80 | | Walnut Creek at Farm-Market 1325 near Austin (e) | 08158100 | 12.60 | 1975-88 | | Walnut Creek at Paini-Market 1929 hear Austin (e) Walnut Creek at Dessau Road, Austin (e) | 08158200 | 26.20 | 1975-88 | | Ferguson Branch at Springdale Road, Austin (e) | 08158300 | 1.63 | 1978-82 | | Little Walnut Creek at Georgian Drive, Austin (e) | 08158380 | 5.22 | 1975-88 | | Little Walnut Creek at IH 35, Austin (e) | 08158400 | 5.57 | 1975-82 | | | | Drainage | Period | |--|------------|--------------------|---------------| | Station name | Station | area | of record | | | number | (mi ²) | (water years) | | Little Walnut Creek at Manor Road, Austin (e) | 08158500 | 12.1 | 1975-82 | | Walnut Creek at Southern Pacific Railroad bridge, Austin (e) | 08158640 | 53.5 | 1975-86 | | Onion Creek at Buda (e) | 08158800 | 166 | 1961-78, | | " " (d) | | | 1979-83, | | | | | 1992-95 | | Bear Creek at Farm-Market Road 1626 near Manchaca (e) | 08158820 | 24.0 | 1979-83 | | Little Bear Creek at Farm-Market Road 1626 near Manchaca (d) | 08158825 | 21.0 | 1979 | | Slaughter Creek at FM 2304 near Austin (e) | 08158860 | 23.1 | 1978-83 | | Boggy Creek (South) at Circle S Road, Austin (e) | 08158880 | 3.58 | 1976-88 | | Fox Branch near Oak Hill (e) | 08158900 | 0.12 | 1965-73 | | Williamson Creek at Oak Hill (d) | 08158920 | 6.30 | 1978-93 | | Williamson Creek at Jimmy Clay Road, Austin (d) | 08158970 | 27.60 | 1975-85 | | Onion Creek below Del Valle (e) | 08159100 | 339 | 1962-75 | | Wilbarger Creek near Pflugerville (d) | 08159150 | 4.6 | 1963-80 | | Big Sandy Creek near McDade (d) | 08159165 | 38.70 | 1979-85 | | Big Sandy Creek near Elgin (d) | 08159170 | 63.80 | 1979-85 | | Dogwood Creek near McDade (e) | 08159180 | 0.53 | 1980-85 | | Dogwood Creek at Highway 95 near McDade (e) | 08159185 | 5.03 | 1980-85 | | Reeds Creek near Bastrop (e) | 08159450 | 5.22 | 1967-73 | | Dry Creek at Buescher Lake near Smithville (d) | 08160000 | 1.48 | 1940-66 | | Colorado River at La Grange (d) | 08160500 | 40,430 | 1939-55 | | Colorado River above Columbus (d) | 08160700 | 41,403 | 1983-85 | | Dry Branch Tributary near Altair (e) | 08161580 | 0.68 | 1966-73 | | Little Robin Slough near Matagorda (e) | 08162530 | 3.4 | 1969 | | Cashs Creek near Blessing (e) | 08162650 | 14.8 | 1969-77 | | East Carancahua Creek near Blessing (e) | 08162700 | 81.2 | 1968, | | | | | 1970-83 | | West Carancahua Creek near Laward (e) | 08162800 | 57.1 | 1970-76 | | Navidad River near Speaks (d) | 08164350 | 437 | 1982-89, | | N. 11 171 | 004 540 70 | 7.10 | 1995-2000 | | Navidad River at Morales (d) | 08164370 | 549 | 1995-2000 | | Navidad River near Ganado (d) | 08164500 | 826 | 1939-80 | | Guadalupe River above Kerrville (e) | 08166150 | 488 | 1976-79 | | Turtle Creek Tributary near Kerrville (e) | 08166300 | 0.46 | 1966-74 | | Guadalupe River near Comfort (d) | 08166500 | 762 | 1918-32 | | Rebecca Creek near Spring Branch (d) | 08167600 | 10.90 | 1960-79 | | Blieders Creek at New Braunfels (e) | 08168600 | 16.0 | 1962-89 | | Panther Canyon at New Braunfels (e) | 08168700 | 0.73 | 1962-89 | | Trough Creek near New Braunfels (e) | 08168720 | 0.48 | 1966-74 | | W.P. Dry Comal Creek Tributary near New Braunfels (e) | 08168750 | 0.32 | 1966-74 | | Dry Comal Creek at New Braunfels (e) | 08168800 | N/A | 1962-74 | | Walnut Branch near Seguin (e) | 08169750 | 5.46 | 1967-74 | | East Pecan Branch near Gonzales (e) | 08169850 | 0.24 | 1965-74 | | San Marcos River at San Marcos (d) | 08169950 | 83.7 | 1915-21 | | West Elm Creek near Niederwald (e) | 08172100 | 0.44 | 1965-74 | | Plum Creek near Lockhart (d) | 08172500 | 184 | 1925-30 | | San Marcos River at Ottine (d) | 08173500 | 1,249 | 1915-43 | | Guadalupe River below Cuero (d) | 08176000 | 4,923 | 1903-07, | | | | | 1916-19, | | | 0045400 | | 1921-36 | | Irish Creek near Cuero (e) | 08176200 | 15.5 | 1967-74 | | Three Mile Creek near Cuero (e) | 08176600 | 0.48 | 1966-74 | | Coleto Creek Reservoir inflow (Guadalupe diversion) near Schroeder (d) | 08176990 | 357 | 1980-94 | | Coleto Creek near Schroeder (d) | 08177000 | 369 | 1930-34, | | OL OLIMINA AMAZZA OLIMINA | 004== | A | 1953-79 | | Olmos Creek Tributary at FM 1535 at Savano Park (e) | 08177600 | 0.33 | 1969-81 | | Olmos Reservoir at San Antonio (e) | 08177800 | 32.4 | 1968-71, | | | | | 1976-89. | | | 004=== | | 1992-95 | | San Antonio River at Woodlawn Avenue, San Antonio (e) | 08177860 | 36.4 | 1989-95 | | Station name | Station
number | Drainage
area
(mi ²) | Period
of record
(water years) | |--|----------------------|--|--| | San Antonio River at Dolorosa, San Antonio (d)
San Antonio River at San Antonio (d) | 08177920
08178000 | N/A
41.8 | 1980-86
1895-
1906,
1915-29,
1939-97 | | Alazan Creek at St. Cloud Street, San Antonio (e) | 08178300 | 3.26 | 1969-79 | | San Pedro Creek at Furnish St., San Antonio (d) | 08178500* | 2.60 | 1916-29 | | Harlandale Creek at W. Harding Street, San Antonio (e) | 08178555 | 2.43 | 1977-81 | | Panther Springs Creek at FM 2696 near San Antonio (e) | 08178600 | 9.54 | 1969-77 | | Lorence Creek at Thousand Oaks Blvd., San Antonio (e) | 08178620 | 4.05 | 1980-84 | | West Elm Creek at San Antonio (e) | 08178640 | 2.45 | 1976-88 | | East Elm Creek at San Antonio (e) | 08178645 | 2.33 | 1976-81 | | Salado Creek Tributary at Bitters Road, San Antonio (e)
Salado Creek at Rittman Road, San Antonio (e) | 08178690
08178720 | 0.26
137.1 | 1969-81
1968-81 | | Salado Creek Tributary at Bee Street, San Antonio (e) | 08178736 | 0.45 | 1970-77 | | Salado Creek at E. Houston Street, San Antonio (e) | 08178740 | 181 | 1968-81 | | Salado Creek at U.S. Highway 87, San Antonio (e) | 08178760 | 186 | 1968-81 | | Salado Creek at Southcross Blvd., San Antonio (e) | 08178780 | 188 | 1968-81 | | Bandera Creek Tributary near Bandera (e) | 08178900 | 0.27 | 1966-74 | | Medina River near Pipe Creek (d) | 08179000 | 474 | 1923-35, | | Ded Dloff Condenses Bios Conde (d) | 00170100 | 56.20 | 1953-82 | | Red Bluff Creek near Pipe Creek (d) Medina River Tributary near Pipe Creek (e) | 08179100
08179200 | 56.30
0.30 | 1956-81
1966-74 | | Medina River at La Coste (d) | 08180640 | 805 | 1987-2000 | | Medio Creek at Pearsall Road, San Antonio (e) | 08180750 | 47.9 | 1987-95 | | Leon Creek Tributary at FM 1604, San Antonio (e) | 08181000 | 5.57 | 1968-80 | | French Creek Tributary near Helotes (e) | 08181200 | 1.08 | 1966-74 | | Ranch Creek near Helotes (d) | 08181410 | | 1978 | | Leon Creek Tributary at Kelly Air Force Base (d) | 08181450 | 1.19 | 1969-79 | | Calaveras Creek SWS No. 6 (inflow) near Elmendorf (e) | 08182400 | 7.01 | 1957-77 | | Calaveras Creek near Elmendorf (d)
San Antonio River at Calaveras (d) | 08182500
08183000 | 77.20
1,786 | 1954-71
1918-25 | | Cibolo Creek near Boerne (d) |
08183900 | 68.4 | 1963-95 | | Cibolo Creek near Bulverde (d) | 08184000 | 198 | 1946-66 | | Cibolo Creek above Bracken (d) | 08184500 | 250 | 1946-51 | | Cibolo Creek at Sutherland Springs (d) | 08185500 | 665 | 1924-29 | | Ecleto Creek near Runge (d) | 08186500 | 239 | 1962-89 | | Escondido Creek SWS No. 1 (inflow) near Kenedy (e) | 08187000 | 3.29 | 1955-73 | | Escondido Creek at Kenedy (d) | 08187500 | 72.40 | 1954-73 | | Escondido Creek SWS No. 11 (inflow) near Kenedy (e) Dry Escondido Creek near Kenedy (d) | 08187900
08188000 | 8.45
9.43 | 1959-77
1954-59 | | Baugh Creek at Goliad (e) | 08188400 | 3.02 | 1966-74 | | Guadalupe-Blanco River Authority Calhoun Canal-Flume No. 2 | 08188750 | N/A | 1972-86 | | near Long Mott (d) | | | | | Guadalupe River at State Highway 35 near Tivoli (e) | 08188810 | 10,280 | 1975-82 | | Medio Creek near Beeville (d) | 08189300 | 204 | 1962-77 | | Olmos Creek Tributary near Skidmore (e) | 08189600 | 0.58 | 1966-73 | | Chiltipin Creek at Sinton (d) | 08189800 | 128 | 1970-91 | | Nueces River near Uvalde (d)
Nueces River near Cinonia (d) | 08191500
08192500 | 1,930
2,150 | 1928-39
1915-25 | | Plant Creek near Tilden (e) | 08192500 | 0.36 | 1965-74 | | Nueces River at Simmons (d) | 08194600 | 8,561 | 1965-77 | | Frio River at Knippa (d) | 08195700 | N/A | 1953 | | Dry Frio River at Knippa (d) | 08196500 | 179 | 1953 | | East Elm Creek near Sabinal (e) | 08198900 | 10.6 | 1967-74 | | Frio River near Frio Town (d) | 08199700 | 1,460 | 1924-27 | | Hondo Creek near Hondo (d) | 08200500 | 132 | 1953-64 | | Bone Creek near Hondo (e) | 08200900 | 0.19 | 1965-74
1952-61 | | Seco Creek near Utopia (d) Seco Creek Reservoir inflow near Utopia (d) | 08202000
08202450 | 53.20
59.5 | 1952-61
1991-98 | | | | | | | | | Drainage | Period | | |---|----------------------|--------------------|----------------------|--| | Station name | Station | area | of record | | | | number | (mi ²) | (water years) | | | Parkers Creek Reservoir (d) | 08202800 | 10.0 | 1991-99 | | | Leona River Tributary near Uvalde (e) | 08203500 | 1.21 | 1966-74 | | | Leona River Spring Flow near Uvalde (d) | 08204000* | 1.21 | 1939-77 | | | Leona River near Divot (d) | 08204500 | 565 | 1924-29 | | | Frio River at Calliham (d) | 08207000 | 5,491 | 1925-26,
1932-81 | | | Rutledge Hollow Creek near Poteet (e) | 08207200 | 9.33 | 1966-74 | | | Rutledge Hollow at 7th Street, Poteet (d) | 08207220 | N/A | 1979-2000 | | | Atascoas River at U.S. Highway 281, Pleasanton (d) | 08207300 | N/A | 1973-2000 | | | Atascosa River near McCoy (d)
Lucas Creek near Pleasanton (e) | 08207500
08207700 | 530
32.80 | 1951-57
1966-73 | | | Ramirena Creek near George West (d) | 08210300 | 84.40 | 1968-72 | | | Lagarto Creek near George West (d) | 08210400 | 155 | 1972-89 | | | Nueces River below Mathis (d) | 08211100 | 16,726 | 1966-67 | | | Rincon Bayou Channel near Calallen (d) | 08211503 | N/A | 1996-2000 | | | Pintas Creek Tributary near Banquete (e) | 08211550 | 3.28 | 1966-74 | | | Hamon Creek near Freer (e) | 08211600 | 0.73 | 1965-73 | | | San Diego Creek at Alice (d) | 08211800 | 319 | 1964-89 | | | Lake Alice at Alice (e) | 08211850 | 150 | 1965-86 | | | San Fernando Creek near Alice (d) | 08212000 | 518 | 1962-63 | | | North Las Animas Creek Tributary near Freer (e) | 08212320 | 0.07 | 1969-74 | | | Rio Grande at Vinton Bridge near Anthony (d) | 08363840 | 28,680
6.89 | 1969-74 | | | Northgate Reservoir at El Paso (e)
Range Reservoir at El Paso (e) | 08365540
08365545 | 11.89 | 1973-75
1973-75 | | | Franklin Canal at El Paso (d) | 08365550 | N/A | 1969-72 | | | McKelligon Canyon at El Paso (d) | 08365600 | 2.30 | 1958-77 | | | Government Ditch at El Paso (d) | 08365800 | 6.40 | 1958-77 | | | Rio Grande at Jaurez, MX (d) | 08366000 | 29,350 | 1938-56 | | | Riverside Canal near Socorro (d) | 08366400 | 37,830 | 1969-72 | | | Rio Grande at Island Station near El Paso (d) | 08366500 | 29,743 | 1938-60 | | | Rio Grande at Tornillo Branch near Fabens (d) | 08367000 | N/A | 1924-38 | | | Tornillo Drain at mouth near Tornillo (d) | 08368000 | N/A | 1969-72 | | | Tornillo Canal near Tornillo (d) | 08368300 | N/A | 1969-72 | | | Hudspeth Feeder Canal near Tornillo (d) | 08368900 | N/A | 1969-72 | | | Rio Grande at County Line Station near El Paso (d) Camo Rice Arroyo Tributary near Fort Hancock (e) | 08369500
08370200 | 30,610
2.35 | 1938-60
1966-74 | | | Wild Horse Creek Tributary near Van Horn (e) | 08370200 | 0.74 | 1966-73 | | | Cibolo Creek near Presidio (d) | 08373200 | 276 | 1971-77 | | | Rio Grande above Presidio (lower Station) (d) | 08373500 | N/A | 1901-13, | | | | | | 1924-54 | | | Rio Grande at Langtry (d) | 08377500 | 84,795 | 1900-14, | | | | | | 1920, | | | | | | 1924-60 | | | Rio Grande Tributary near Langtry (e) | 08377600 | 0.32 | 1966-74 | | | Delaware River Tributary near Orla (e) | 08407800 | 1.6 | 1966-74 | | | Pecos River near Angeles (d)
Salt Screwbean Draw near Orla (d) | 08409500 | 20,540
464 | 1914-37
1939-41, | | | Sait Sciewbean Diaw near Offa (d) | 08411500 | 404 | 1939-41,
1944-57 | | | Pecos River near Mentone (d) | 08414000 | 21,650 | 1922-26, | | | recos rever near mentone (a) | 00111000 | 21,030 | 1969-73 | | | Reeves County WID No. 2 Canal near Mentone (d) | 08414500 | N/A | 1922-25, | | | • | | | 1939-57, | | | | | | 1964-90 | | | Ward County WID No. 3 Canal near Barstow (d) | 08415000 | N/A | 1939-57, | | | | | | 1964-90 | | | Pecos River above Barstow (d) | 08416500 | 21,800 | 1916-21 | | | Ward County Irrigation District No. 1 Canal near Barstow (d) | 08418000 | N/A | 1922-25, | | | | | | 1939-57, | | | Pages Divige et Pages (d) | 00420500 | 22 100 | 1964-90 | | | Pecos River at Pecos (d) | 08420500 | 22,100 | 1898-1907, | | | | | | 1914-15,
1922-26, | | | | | | 10// /h | | | | | Drainage | Period | |--|------------|--------------|--------------------| | Stationname | Station | area | of record | | | number | (mi^2) | (water years) | | Madera Canyon near Toyahvale (d) | 08424500 | 53.80 | 1932-49 | | Phantom Lake Spring near Toyahvale (d) | 08425500* | N/A | 1932-34, | | Thankom Bake Spring near Toyan valo (a) | 00123300 | 14/11 | 1942-66 | | Giffin Springs at Toyahvale (d) | 08427000* | N/A | 1932-33 | | San Solomon Springs at Toyahvale (d) | 08427500* | N/A | 1932-34, | | | | | 1941-65 | | West Sandia Spring at Balmorhea (d) | 08429000 | N/A | 1932-33 | | East Sandia Spring at Balmorhea (d) | 08430000 | N/A | 1932-33 | | Toyah Creek near Pecos (d) | 08431000 | 1,024 | 1940-41, | | | | | 1944-45 | | Salt Draw near Pecos (d) | 08431500 | 1,882 | 1939-41, | | | | | 1944-45 | | Limpia Creek below Fort Davis (d) | 08431800 | 227 | 1962-77 | | Limpia Creek near Fort Davis (d) | 08432000 | 303 | 1925-32 | | Barrilla Draw near Saragosa (d) | 08433000 | 612 | 1925-26, | | | | | 1932, | | Toyoh Crook holow Toyoh Laka noor Dooos (d) | 08434000 | 3,709 | 1976-83
1939-51 | | Toyah Creek below Toyah Lake near Pecos (d) Grandfalls-Big Valley Canal near Barstow (d) | 08435000 | 3,709
N/A | 1922-26, | | Grandians-Dig valley Canal hear Barstow (d) | 08433000 | IV/A | 1939-57, | | | | | 1964-76 | | Pecos River below Barstow (d) | 08435500 | 25,980 | 1939-41 | | Toronto Creek near Alpine (d) | 08435600 | 27.90 | 1971-76 | | Alpine Creek at Alpine (d) | 08435620 | 18.10 | 1971-76 | | Moss Creek near Alpine (d) | 08435660 | 11.30 | 1971-76 | | Sunny Glen Canyon near Alpine (d) | 08435700 | 29.70 | 1968-77 | | Coyanosa Draw near Fort Stockton (d) | 08435800 | 1,182 | 1964-77 | | Pecos County WID No. 2 (Upper Div.) Canal near Grandfalls (d) | 08436500 | N/A | 1922-25, | | - | | | 1939-57, | | | | | 1964-90 | | Courtney Creek Tributary near Fort Stockton (e) | 08436800 | 0.44 | 1966-74 | | Pecos County WID No. 2 Canal near Imperial (d) | 08437500 | N/A | 1940-57, | | | | | 1964-90 | | Lake Leon Tributary near Fort Stockton (e) | 08437550 | 1.59 | 1966-74 | | Pecos County WID No. 3 Canal near Imperial (d) | 08437600 | N/A | 1940-57, | | M (D TII) (D (/) | 00.127.550 | 170 | 1964-90 | | Monument Draw Tributary at Pyote (e) | 08437650 | 178 | 1966-74 | | Ward County WID No. 2 Canal near Grand Falls (d) | 08437700 | N/A | 1939-57, | | Pecos River near Grand Falls (d) | 08438100 | 27,810 | 1964-90
1916-26 | | Pecos River below Grand Falls (d) | 08441500 | 27,810 | 1921-26, | | 1 ccos rever below Grand I ans (d) | 00441300 | 27,020 | 1939-56 | | Three Mile Mesa Creek near Fort Stockton (e) | 08444400 | 1.04 | 1966-74 | | Comanche Springs at Fort Stockton (d) | 08444500 | N/A | 1936-64 | | Pecos River near Sheffield (d) | 08447000 | 31,600 | 1922-25, | | | | , | 1940-49 | | Independence Creek near Sheffield (d) | 08447020 | 763 | 1974-85 | | Howards Creek Tributary near Ozona (e) | 08447200 | 7.53 | 1967-73 | | Pecos River near Shumla (d) | 08447400 | 35,162 | 1955-60 | | Pecos River near Comstock (d) | 08447500 | 35,298 | 1900-54 | | Goodenough Springs near Comstock (e) | 08448500 | N/A | 1929-60 | | Sonora Field Creek at Sonora (e) | 08448800 | 2.60 | 1965-71 | | Devils River near Juno (d) | 08449000 | 2,730 | 1925-49, | | | | | 1964-73 | | Devils River near Comstock (d) | 08449300 | 3,903 | 1955-58 | | Rough Canyon Tributary near Del Rio (e) | 08449470 | 7.90 | 1967-73 | | Devils River near Del Rio (d) | 08449500 | 4,185 | 1900-14, | | Evans Crack Tributary near Dal Dia (a) | 00440400 | 0.20 | 1924-57 | | Evans Creek Tributary near Del Rio (e) Devile Piver near mouth, Del Rio (d) | 08449600 | 0.39 | 1966-73 | | Devils River near mouth, Del Rio (d) | 08450500 | 4,305 | 1954-60 | | Station name | Station
number | Drainage
area
(mi ²) | Period
of record
(water years) | |--|-------------------
--|--------------------------------------| | Rio Grande near Del Rio (d) | 08452500 | 123.303 | 1900-15. | | | | -, | 1920, | | | | | 1924-54 | | San Felipe Creek near Del Rio (e) | 08453000 | 46.0 | 1931-60 | | Zorro Creek near Del Rio (e) | 08453100 | 10.0 | 1966-74 | | East Perdido Creek near Brackettville (e) | 08454900 | 3.39 | 1965-74 | | Pinto Creek near Del Rio (d) | 08455000 | 249 | 1929-69, | | | | | 1971-72 | | Rio Grande at San Antonio Crossing (d) | 08458700 | 129,226 | 1952-60 | | Arroyo San Bartolo at Zapata (e) | 08459600 | 0.61 | 1966-74 | | Rio Grande near Zapata (d) | 08460500 | 163,344 | 1932-53 | | International Falcon Reservoir near Falcon Heights (d) | 08461200 | N/A | 1953-60 | | Rio Grande at Roma (d) | 08462500 | 166,464 | 1900-13, | | | | | 1923-54 | | Rio Grande near Rio Grande City (d) | 08465500 | 180,941 | 1932-54 | | Rio Grande Tributary near Rio Grande City (e) | 08466100 | 1.20 | 1966-74 | | Rio Grande Tributary near Sullivan City (e) | 08466200 | 0.40 | 1966-74 | | North Floodway South of McAllen (d) | 08468000 | N/A | 1928-60 | | South Floodway South of McAllen (d) | 08470000 | N/A | 1929-60 | | Rio Grande at Hildalgo (d) | 08471500 | 176,100 | 1928-32, | | | | | 1935, | | | | | 1939, | | | | | 1941-51 | | Rio Grande near Progreso Bridge (d) | 08473300 | 176,228 | 1953-60 | | Rio Grande near San Beniot (d) | 08473700 | 176,304 | 1953-60 | | Rio Grande at Matamoros, MX (d) | 08474500 | 182,211 | 1900-13, | | | | | 1923-54 | | Rio Grande near Brownsville (d) | 08475000 | 176,333 | 1935-50 | The following stations were discontinued as continuous-record surface-water-quality stations prior to the 2000 water year. Daily records of specific conductance, temperature, sediment, color, pH, dissolved oxygen, or chloride were collected and published for the record shown for each station. [SC, specific conductance; T, temperature; S, sediment; C, color; pH, pH; DO, dissolved oxygen; Cl, chloride.] | | | Drainage | | | |---|----------|--------------------|---------------|---------------| | Stationname | Station | area | Type of | of record | | | number | (mi ²) | record | (water years) | | Canadian River at Tascosa | 07227470 | 19,200 | SC, T, Cl | 1948-53, | | Canadian River at Tascosa | 0/22/4/0 | 18,536 | SC, T, pH, Cl | 1969-77 | | Canadian River near Canadian | 07228000 | 22,866 | SC, T | 1974-81 | | Prairie Dog Town Fork Red River near Wayside | 07297910 | 4,221 | SC, T | 1969-81 | | Tule Creek near Silverton | 07298200 | 1,150 | SC, T, pH, Cl | 1968-69 | | Prairie Dog Town Fork Red River near Brice | 07298500 | 6,082 | SC, pH, Cl, S | 1949-51, | | | *** | -, | T | 1950-51 | | Mulberry Creek near Brice | 07299000 | 534 | SC, pH, Cl, S | 1949-51 | | Prairie Dog Town Fork Red River near Lakeview | 07299200 | 6,792 | SC, T | 1968-80, | | č | | • | S | 1979-80 | | Little Red River near Turkey | 07299300 | 139 | SC, T | 1968-81, | | • | | | S | 1979-81 | | Jonah Creek at Weir near Estelline | 07299512 | 65.50 | SC | 1974-82 | | Jonah Creek below Weir near Estelline | 07299514 | 66.60 | SC | 1974-76 | | Salt Creek near Estelline | 07299530 | 142 | SC | 1974-79 | | Prairie Dog Town Fork Red River near Childress | 07299540 | 7,725 | SC, T | 1968-82, | | • | | | | 1994-97 | | Salt Fork Red River near Hedley | 07299930 | 868 | SC, T, pH, Cl | 1956-61 | | Salt Fork Red River near Wellington | 07300000 | 1,222 | SC, T, pH, Cl | 1952-54, | | | | | SC, T | 1968-91 | | North Pease River near Childress | 07307600 | 1,434 | SC, T | 1973-79 | | Middle Pease River near Paducah | 07307750 | 1,086 | SC | 1973-79, | | | | | T | 1973-79, | | | | | S | 1994-97 | | Middle Pease River near Paducah | 07307760 | 1,128 | SC | 1980-82, | | | | | T | 1980 | | Pease River near Childress | 07307800 | 2,754 | SC, T | 1968-82, | | | | | | 1994-97 | | Pease River near Crowell | 07308000 | 3,037 | SC | 1942-43 | | Pease River near Vernon | 07308200 | 3,488 | SC,T | 1999 | | Red River near Burkburnett | 07308500 | 20,570 | SC, T | 1968-81 | | North Fork Wichita River near Paducah | 07311600 | 540 | SC, T | 1968-76 | | North Fork Wichita River near Crowell | 07311622 | 591 | SC | 1971-76 | | Middle Fork Wichita River near Truscott | 07311648 | 161 | SC | 1970-76 | | Truscott Brine Lake near Truscott | 07311669 | 26.2 | SC, T | 1985-90 | | North Fork Wichita River near Truscott | 07311700 | 937 | SC, T | 1969-92 | | South Fork Wichita River near Guthrie | 07311780 | 239 | SC | 1970-76 | | South Wichita River below Low-Flow Dam near Guthrie | 07311783 | 223 | SC, T | 1987-89 | | South Fork Wichita River at Ross Ranch near Guthrie | 07311790 | 499 | SC | 1971-79, | | | | | Cl | 1988-97, | | | | | S | 1978-79 | | Wichita River near Seymour | 07311900 | 1,874 | SC, T | 1968-79 | | Beaver Creek near Electra | 07312200 | 652 | SC,T | 1969-70 | | | | | | 1996-99 | | Little Wichita River near Archer City | 07314500 | 481 | SC | 1953-55, | | | 0 | 4.0== | T | 1953-54 | | Little Wichita River near Henrietta | 07314900 | 1,037 | SC, DO | 1999 | | Little Wichita River near Henrietta | 07315000 | 1,037 | SC, T, pH, Cl | 1953-56, | | | | | S, T | 1959-66, | | East Fork Little Wichita River near Henrietta | 07315200 | 178 | T | 1954 | | Little Wichita River near Ringgold | 07315400 | 1,350 | SC, pH, Cl | 1959-62 | | Red River near Gainesville | 07316000 | 30,872 | SC, Cl | 1944-46, | | | | | SC, T, pH, Cl | 1953-63, | | | | | SC, T | 1967-89, | | Station name | Ctation | Drainage | Type of | Period
of record | |--|---|----------------------------|------------------------|---------------------| | Stationname | Station
number | area
(mi ²) | Type of record | (water years) | | | | | | | | Red River at Denison Dam near Denison | 07331600 | 39,720 | SC | 1944-89, | | | | | T | 1945-89 | | Little Pine Creek near Kanawha | 07336750 | 75.40 | T | 1980 | | Red River near De Kalb | 07336820 | 47,348 | SC, T | 1968-91 | | South Sulphur River near Cooper | 07342500 | 527 | SC, T, pH, Cl | 1959-66, | | | | | | 1968-72, | | | | | SC, T | 1973-89 | | Sulphur River near Talco | 07343200 | 1,365 | SC, T, pH, Cl | 1966-72, | | WW. 0.10 1 W. | 05040500 | 40.4 | SC, T | 1973-91 | | White Oak Creek near Talco | 07343500 | 494 | SC, T, pH, Cl | 1966-72, | | C-1-1 D' D1 | 07244000 | 2.774 | SC, T | 1973-91 | | Sulphur River near Darden | 07344000 | 2,774 | SC, T, pH, Cl | 1947-50 | | Big Cypress Creek near Pittsburg | 07344500 | 366 | SC, T, pH, Cl | 1968-72, | | Little Cypress Creek near Jefferson | 07346070 | 675 | SC, T
SC, T, pH, Cl | 1973-89
1968-72, | | Little Cypiess Creek hear Jerrerson | 0/3400/0 | 073 | SC, T, pH, CI | 1908-72, | | Sabine River near Emory | 08017500 | 888 | SC, T, pH, Cl | 1973-91 | | Grand Saline Creek near Grand Saline | 08017300 | 91.40 | SC, T, pH, Cl | 1968-73 | | Sabine River near Mineola | 08018500 | 1,357 | SC, T, pH, Cl | 1968-72, | | Subme 14761 near 141meoid | 00010300 | 1,557 | SC, T | 1973-92 | | Lake Fork Creek near Quitman | 08019000 | 585 | SC, T, pH, Cl | 1968-72, | | | *************************************** | | SC, T | 1973-89 | | Big Sandy Creek near Big Sandy | 08019500 | 231 | SC, T, S | 1985-86 | | Sabine River near Beckville | 08022040 | 3,589 | SC, T | 1952-98 | | Sabine River below Toledo Bend near Burkeville | 08026000 | 7,482 | SC, T | 1969-86, | | | | | C | 1969-75 | | Sabine River near Bon Wier | 08028500 | 8,229 | SC, T, C | 1969-84 | | Sabine River near Ruliff | 08030500 | 9,329 | SC | 1945, | | | | | | 1947-98 | | | | | T | 1947-98 | | | | | pH, DO | 1968-75, | | | | | C | 1970-76, | | | | | Cl | 1968 | | Cow Bayou near Mauriceville | 08031000 | 83.30 | SC, T, pH, Cl | 1952-54, | | | | | SC, T | 1954-56 | | Neches River near Neches | 08032000 | 1,145 | SC, T | 1974-91 | | Neches River near Alto | 08032500 | 1,945 | SC, T | 1950-69 | | Neches River near Diboll | 08033000 | 2,724 | SC, T | 1970-81 | | Neches River near Rockland | 08033500 | 3,636 | SC | 1941-42, | | A 1' D' I (1' | 00027000 | 1 (00 | | 1946-47 | | Angelina River near Lufkin | 08037000 | 1,600 | SC, T, pH, Cl | 1955-78, | | Attorios Doving many Chinana | 00020000 | 502 | SC, T | 1955- | | Attoyac Bayou near Chireno | 08038000 | 503 | SC, T | 1984-99 | | Sam Rayburn Reservoir near Jasper | 08039300 | 3,449 | SC, T | 1964-84,
1993-99 | | Angelina River below Sam Rayburn Dam near Jasper | 08039400 | 3,449 | SC, T | 1964-79 | | Angelina River at SH 63 near Ebenezer | 08039500 | 3,435 | SC, T | 1994-79 | | Village Creek near Kountze | 08033300 | 860 | SC, T | 1968-70 | | Pine Island Bayou near Sour Lake | 08041700 | 336 | SC, T, pH, Cl | 1968-72, | | I ino Island Dayou near bour bake | 03041700 | 550 | SC, T, pH, CI
SC, T | 1908-72, | | Big Sandy Creek near Bridgeport | 08044000 | 333 | SC, T, S | 1968-77, | | Lake Worth above Fort Worth | 08045400 | 2,064 | pH, Cl | 1,00 11, | | Clear Fork Trinity River at Fort Worth | 08047500 | 518 | SC, pH, Cl | 1949-52, | | | 55017500 | 210 | T | | | | | | 1 | 1940-02 | | Village Creek at Everman | 08048970 | 84.5 | SC, pH, T, DO | 1948-62
1990 | | Station name | Station | Drainage
area | Type of | Period
of record | | |--|------------|--------------------|---------------|-----------------------|--| | Station Haine | number | (mi ²) | record | (water years) | | | Elm Fork Trinity River near Muenster | 08050300 | 46 | SC | 1967-68, | | | | | | T | 1957-58, | | | | | | | 1966-68, | | | | | | S | 1957-68 | | | Clear Creek near Sanger | 08051500 | 295 | SC, T, S | 1968-77 | | | Little Elm Creek near Celina | 08052650 | 46.70 | SC | 1967-75, | | | | | | T, S | 1966-75 | | | Little Elm Creek near Aubrey | 08052700 | 75.50 | SC | 1967-75, | | | | 000.72000 | 4 | T, S | 1967-75 | | | Elm Fork Trinity River near Lewisville | 08053000 | 1,673 | SC | 1982-86, | |
| White Deels Court at Coursells Assessed Dellas | 00057200 | 66.4 | T
SCH T DO | 1976-86 | | | White Rock Creek at Greenville Avenue, Dallas | 08057200 | 66.4 | SC, pH, T, DO | 1997-2000 | | | Trinity River below Dallas | 08057410 | 6,278 | SC, T
S | 1968-2000, | | | | | | S | 1972-75,
1998-2000 | | | | | | Cl | 1970-81, | | | | | | CI | 1970-81, | | | Lavon Lake near Lavon | 08060500 | 770 | SC,T,CL | 1969-74, | | | Eavon Earc near Eavon | 00000300 | 770 | BC, I,CL | 1975,82, | | | | | | | 1995-99 | | | Duck Creek near Garland | 08061700 | 31.6 | SC, pH, T, DO | 1988-89 | | | East Fork Trinity River above Seagoville | 08061970 | 1,183 | SC, T, pH, DO | 1987-93 | | | East Fork Trinity River at Seagoville | 08061980 | 1,224 | SC, pH, T, DO | 1987-96 | | | East Fork Trinity River near Crandall | 08062000 | 1,256 | SC, T | 1968-1981, | | | • | | | | 1987-2000 | | | | | | pH, DO | 1977, | | | | | | • | 1986-2000 | | | | | | Cl | 1964-81, | | | | | | | 1986-2000 | | | Trinity River at Trinidad | 08062700 | 8,538 | SC, T | 1967-81 | | | | | | | 1986-2000 | | | | | | pH, DO | 1967-81, | | | | | | | 1986-2000 | | | | | | Cl | 1966-94 | | | | 000 < 2000 | 700 | S | 1978-94 | | | Cedar Creek near Mabank | 08063000 | 733 | SC, T, pH, Cl | 1956-57 | | | Pin Oak Creek near Hubbard | 08063200 | 17.60 | SC | 1967-72, | | | | | | T | 1957-60,
1965-72, | | | | | | S | 1903-72, | | | | | | 3 | 1962-72 | | | Richland Creek near Richland | 08063500 | 734 | SC, T, pH, Cl | 1968-69, | | | Richard Crock four Richard | 00003300 | 751 | SC, T | 1983-89 | | | Chambers Creek near Corsicana | 08064500 | 963 | SC, T, pH, Cl | 1961-70 | | | Richland Creek near Fairfield | 08064600 | 1,957 | SC, T, pH, Cl | 1956-66, | | | | | • | 1 | 1972, | | | | | | SC, T | 1973-83 | | | Trinity River near Oakwood | 08065000 | 12,833 | SC, T, pH, Cl | 1948-54, | | | | | | SC, T, S | 1977-81 | | | Bedias Creek near Madisonville | 08065800 | 321 | SC, T | 1985-87, | | | | | | S | 1986 | | | Long King Creek at Livingston | 08066200 | 141 | SC, T, pH, Cl | 1963-72 | | | Trinity River near Goodrich | 08066250 | 16,844 | SC, T | 1970-73 | | | Trinity River near Moss Bluff | 08067100 | 17,738 | SC, pH, Cl | 1950-65 | | | Old River near Cove | 08067200 | 19.0 | SC, pH, Cl | 1950-65, | | | | | | T | 1965 | | | Trinity River at Anahuac | 08067300 | 17,912 | SC, pH, Cl | 1950-65 | | | Station name | Drainage
Station area Type of | | | Period
of record | | |---|----------------------------------|----------------------------|------------------------|----------------------|--| | Station name | number | area
(mi ²) | Type of record | (water years) | | | | | | | | | | West Fork San Jacinto River near Conroe | 08068000 | 828 | SC, T | 1962-90, | | | | | | DO | 1979-81 | | | Panther Branch near Spring | 08068450 | 34.50 | S | 1975-76 | | | West Fork San Jacinto River near Humble | 08069500 | 1,741 | SC, Cl | 1945-46 | | | East Fork San Jacinto River near New Caney | 08070200 | 388 | SC,T | 1984-99 | | | San Jacinto River near Huffman | 08071500 | 2,800 | SC | 1945-54, | | | D 00 1 D | 000=2<00 | 205 | T | 1949-54 | | | Buffalo Bayou at West Belt Drive at Houston | 08073600 | 307 | SC, T | 1979-81 | | | Buffalo Bayou at Houston | 08074000 | 358 | SC, pH, T, DO
Cl | 1986-2000
1969-81 | | | Whiteoak Bayou at Main Street, Houston | 08074598 | 127 | SC, T, DO | 1909-81 | | | Buffalo Bayou at Main Street, Houston | 08074598 | 469 | SC, T, DO | 1986-92 | | | Buffalo Bayou at McKee Street, Houston | 08074610 | 469 | SC, T, DO | 1992-2000 | | | Bullato Bayou at McKee Street, Houston | 08074010 | 409 | pH | 1998-2000 | | | Sims Bayou at Houston | 08075500 | 63.0 | SC, T, DO | 1994-97 | | | Chocolate Bayou near Alvin | 08078000 | 87.70 | SC, T | 1978-81 | | | North Fork Double Mountain Fork Brazos River near Post | 08079575 | 438 | SC, T | 1984-93 | | | Double Mountain Fork Brazos River near Rotan | 08080000 | 8,536 | SC, T | 1950-51 | | | Double Mountain Fork Brazos River near Aspermont | 08080500 | 8,796 | SC, T, S | 1949-51 | | | | | -, | SC, T | 1957-95 | | | McDonald Creek near Post | 08080540 | 103 | SC, T | 1964-78 | | | Salt Fork Brazos River near Peacock | 08081000 | 4,619 | SC, T | 1950-51, | | | | | | | 1965-86 | | | Croton Creek near Jayton | 08081200 | 290 | SC, T | 1961-80 | | | Salt Croton Creek near Aspermont | 08081500 | 64.30 | SC | 1969-77, | | | | | | T | 1972-73 | | | Salt Fork Brazos River near Aspermont | 08082000 | 5,130 | SC, T, pH, Cl | 1949-51, | | | | | | SC, T | 1957-82 | | | Stinking Creek near Aspermont | 08082100 | 88.80 | T | 1950, | | | | | | SC, T | 1966-69 | | | North Croton Creek near Knox City | 08082180 | 251 | SC, T | 1966-86 | | | Brazos River at Seymour | 08082500 | 15,538 | SC, T | 1960-95 | | | Medina River near Somerset | 08082800 | 967 | SC, T, Cl | 1998-2000 | | | Clear Fork Brazos River at Hawley | 08083240 | 1,416 | SC, T | 1968-79, | | | Class Fouls Brogges Bivon at Nagant | 00004000 | 2 100 | CC T all Cl | 1982-84 | | | Clear Fork Brazos River at Nugent
California Creek near Stamford | 08084000 | 2,199 | SC, T, pH, Cl
SC, T | 1948-53 | | | | 08084800
08085000 | 478 | | 1963-79 | | | Paint Creek near Haskell
Clear Fork Brazos River at Fort Griffin | 08085500 | 914
3,988 | SC, T
SC, T, S | 1950-5
1950-51, | | | Clear Fork Brazos River at Fort Griffin | 08083300 | 3,900 | SC, T, S
SC, T | 1950-51, | | | | | | 50, 1 | 1982-84 | | | Hubbard Creek near Sedwick | 08086015 | 128 | SC, T | 1964-66 | | | Deep Creek at Moran | 08086050 | 228 | SC, T | 1963-75 | | | Hubbard Creek near Albany | 08086100 | 454 | SC, T | 1962-75 | | | Salt Prong Hubbard Creek at U.S. Highway 380 near Albany | 08086120 | 61 | SC, T | 1964-68 | | | North Fork Hubbard Creek near Albany | 08086150 | 39.30 | SC, T | 1964-90 | | | Salt Prong Hubbard Creek near Albany | 08086200 | 115 | SC, T | 1962-63 | | | Snailum Creek near Albany | 08086210 | 22.90 | SC, T | 1964-66 | | | Battle Creek near Moran | 08086235 | 108 | SC, T | 1967-68 | | | Pecan Creek near Eolian | 08086260 | 26.40 | SC, T | 1967-75 | | | Big Sandy Creek near Breckenridge | 08086300 | 288 | SC, T | 1962-77 | | | Hubbard Creek near Breckenridge | 08086500 | 1,089 | SC, T | 1955-75 | | | Clear Fork Brazos River at Eliasville | 08087300 | 5,697 | SC, T | 1962-82 | | | Brazos River near South Bend | 08088000 | 22,673 | SC, Cl | 1942-48, | | | | | | SC, T | 1978-81 | | | Salt Creek at Olney | 08088100 | 11.80 | SC, T | 1958-60 | | | Salt Creek near Newcastle | 08088200 | 120 | SC, T | 1958-60 | | | | | Drainage | | Period | | |--|----------------------|--------------------|----------------|---------------------|--| | Stationname | Station | area | Type of | of record | | | | number | (mi ²) | record | (water years) | | | Brazos River at Morris Sheppard Dam near Graford | 08088600 | 23,596 | SC | 1942-91, | | | | | | T | 1950-55, | | | | | | | 1966-91 | | | Brazos River near Dennis | 08090800 | 25,237 | SC, T | 1971-95 | | | Brazos River at Whitney Dam near Whitney | 08092600 | 27,189 | SC, T | 1947-97 | | | Aquilla Creek above Aquilla | 08093360 | 255 | SC, T | 1980-83 | | | Aquilla Creek near Aquilla | 08093500 | 308 | SC, T | 1966, | | | D D' II' II I | 00000200 | 20.426 | TT. | 1968-82 | | | Brazos River near Highbank
Leon River near Eastland | 08098290 | 30,436 | T | 1968-84 | | | Leon River near Hasse | 08098500
08099500 | 235
1,261 | SC, T
SC, T | 1950-53
1980-82, | | | Leon River hear riasse | 08099300 | 1,201 | SC, 1 | 1980-82,
1990-97 | | | Leon River near Belton | 08102500 | 3,542 | T | 1957-72 | | | South Fork Rocky Creek near Briggs | 08103900 | 33.30 | S | 1963-65 | | | Lampasas River at Youngsport | 08104000 | 1,240 | SC, T | 1961-64 | | | Little River near Little River | 08104500 | 5,228 | SC, T | 1965-73, | | | | | -, - | , | 1980-82 | | | Little River near Cameron | 08106500 | 7,065 | SC, T | 1959-97 | | | San Gabriel River near Weir | 08105300 | 563 | T | 1977-82 | | | San Gabriel River at Laneport | 08105700 | 738 | T | 1977-82 | | | Brazos River at State Highway 21 near Bryan | 08108700 | 39,049 | SC, T | 1961-65 | | | Brazos River near Bryan | 08109000 | 39,515 | SC, T | 1966 | | | Brazos River near College Station | 08109500 | 39,599 | SC, T | 1961-84 | | | Yegua Creek near Somerville | 08110000 | 1,009 | SC, T | 1961-67 | | | Navasota River above Groesbeck | 08110325 | 239 | SC, T | 1968-89 | | | Navasota River near Groesbeck | 08110400 | 311 | SC, T | 1968-78 | | | Navasota River near Easterly | 08110500 | 968 | SC | 1942-43, | | | | | | | 1947 | | | Navasota River near Bryan | 08111000 | 1,454 | SC, T | 1959-81, | | | | | | S | 1976-81 | | | Brazos River near Richmond | 08114000 | 45,007 | S | 1966-86, | | | | | | SC | 1942-95, | | | | 0044 5570 | 4.5.000 | T | 1951-95 | | | Brazos River near Rosharon | 08116650 | 45,399 | SC, T | 1969-80 | | | Brazos River at Harris Reservoir near Angleton | 08116700 | 44,000 | SC | 1962-77, | | | Daniel Branchis Daniel Branchis | 00117200 | 44.000 | T | 1967-77 | | | Brazos River at Brazoria Reservoir near Brazoria | 08117200 | 44,000 | SC
T | 1962-77, | | | San Bernard River near Boling | 08117500 | 727 | SC, T | 1967-77
1978-81 | | | San Bernard River near Bonnig | 08117300 | 121 | SC, 1 | 1976-61 | | | Colorado River above Bull Creek near Knapp | 08118200 | N/A | SC, T, Cl | 1950-52 | | | Bull Creek near Ira | 08118500 | 26.30 | SC, T, pH, Cl | 1950-51 | | | Bluff Creek near Ira | 08119000 | 42.60 | SC, T, pH, Cl | 1950 | | | Colorado River near Ira | 08119500 | 3,483 | SC, T | 1950-52, | | | | 00117500 | 2,.02 | 20, 1 | 1959-70, | | | | | | | 1975-82, | | | | | | Cl | 1951-52 | | | Deep Creek near Dunn | 08120500 | 198 | SC, T | 1953-54 | | | Morgan Creek near Westbrook | 08121500 | 273 | T | 1954-55 | | | Graze Creek near Westbrook | 08122000 |
21.70 | T | 1954-55 | | | Morgan Creek near Colorado City | 08122500 | 313 | T | 1947-49 | | | Lake Colorado City near Colorado City | 08123000 | 340 | T | 1954-55 | | | Beals Creek above Big Spring | 08123650 | 9,319 | SC, T | 1973-78 | | | Beals Creek near Big Spring | 08123700 | 9,341 | SC, T | 1956-57 | | | Beals Creek near Coahoma | 08123720 | 9,383 | SC, T | 1983-88 | | | Colorado River near Silver | 08123900 | 14,997 | SC, T | 1957-68 | | | Colorado River at Robert Lee | 08124000 | 15,307 | SC, T, pH, Cl | 1948-51, | | | | | | S | 1949-51 | | | | | Drainage | | Period | | |--|----------|--------------------|--------------------------------|----------------------|--| | Stationname | Station | area Type of | | of record | | | | number | (mi ²) | record | (water years) | | | Oak Creek near Blackwell | 08126000 | 209 | SC, T | 1950 | | | Colorado River at Ballinger | 08126500 | 16,413 | SC, T | 1961-79, | | | | | | S | 1978-79 | | | Pecan Bayou at Brownwood | 08143500 | 1,660 | SC, T | 1948-49 | | | Pecan Bayou near Mullin | 08143600 | 2,073 | SC, T | 1968-91 | | | San Saba River near San Saba | 08145500 | N/A | SC, T | 1962-65 | | | San Saba River at San Saba | 08146000 | 3,046 | SC | 1962-69, | | | Colorado River near San Saba | 08147000 | 37,217 | T
SC, T | 1963-70
1947-92, | | | Colorado River near San Saba | 08147000 | 37,217 | SC, 1 | 1947-92, | | | Llano River at Llano | 08151500 | 4,197 | SC, T | 1979-81 | | | Lake Austin at Austin | 08154900 | 38,240 | SC, T | 1965-80 | | | Barton Creek below Barton Springs at Austin | 08155505 | 125 | SC, T, | 1965, | | | 3 | | | , , | 1975-83, | | | | | | | 1989-91, | | | | | | | 1994-97 | | | Waller Creek at 23rd Street at Austin | 08157500 | 4.13 | T | 1955-60 | | | East Bouldin Creek at South 1st Street, Austin | 08157600 | 2.4 | Cl | 1997-2000 | | | Colorado River at Austin | 08158000 | 39,009 | SC, T | 1948-91 | | | Colorado River above Columbus | 08160700 | 41,403 | SC, T | 1983-86 | | | Colorado River at Columbus | 08161000 | 41,640 | SC | 1967-73, | | | | | | T | 1957-59, | | | | | | | 1961-68 | | | | | | S | 1957-73 | | | Colorado River at Wharton | 08162000 | 42,003 | SC | 1945-92, | | | | | | T | 1946-48, | | | Lavaca River near Edna | 08164000 | 817 | SC, T | 1978-81 | | | Navidad River near Speaks | 08164350 | 437 | SC, T, pH, Cl | 1996-97 | | | Navidad River near Ganado | 08164500 | 826 | SC, T | 1960-80 | | | Guadalupe River near Spring Branch | 08167500 | 1,315 | SC | 1942-45 | | | Guadalupe River at Sattler | 08167800 | 1,436 | T | 1984-87 | | | Blanco River at Wimberley | 08171000 | 355 | T | 1977-78 | | | Plum Creek near Luling | 08173000 | 309 | SC, T | 1968-86 | | | Sandies Creek near Westhoff | 08175000 | 549 | S | 1966 | | | | | | Cl | 1962-99 | | | Guadalupe River at Victoria | 08176500 | 5,198 | SC | 1946-81, | | | | | | T | 1951-81 | | | Coleto Creek Reservoir (Condenser No. 1) near Fannin | 08177360 | 414 | T | 1980-94 | | | Coleto Creek Reservoir (outflow) near Victoria | 08177410 | 494 | T | 1980-94 | | | Olmos Creek at Dresden Drive, San Antonio | 08177700 | 21.2 | SC, pH, T, DO | 1969-99 | | | | 004=0000 | 44.0 | S | 1973 | | | San Antonio River at San Antonio | 08178000 | 41.8 | SC, T | 1991-92, | | | G A . ' D' . AM': 1 HG G A . ' | 00170050 | 12.1 | | 1996-97 | | | San Antonio River at Mitchell Street, San Antonio | 08178050 | 42.4 | SC, pH, T, DO | 1992-99 | | | San Antonio River at Loop 410 at San Antonio | 08178565 | 125 | SC, pH, T, DO | 1987-2000 | | | Medina River near Macdona | 08180700 | 885 | SC, pH, T, DO | 1998-2000 | | | Medina River at La Coste | 08180640 | 805 | SC, pH, T, DO | 1987-95 | | | Medio Creek at Pearsall Rd. at San Antonio | 08180750 | 47.9 | SC, pH, T, DO | 1987-95 | | | Ingram Road Outfall at Leon Creek Tributary at San Antonio
Leon Creek at Interstate Highway 35 at San Antonio | 08181410 | 0.02 | SC, pH, T, DO
SC, pH, T, DO | 1994-2000 | | | Medina River at San Antonio | 08181480 | 219
1,317 | SC, pH, T, DO
SC, pH, T, DO | 1985-2000 | | | INICUINA INIVEL AL SAIL AMOUNO | 08181500 | 1,31/ | SC, pH, 1, DO | 1987-2000 | | | San Antonio River near Falls City | 08183500 | 2,113 | SC, pH, T, DO | 1965-2000
1987-96 | | | Cibolo Creek near Falls City | 08186000 | 2,113
827 | SC, ph, 1, DO
SC, T | 1987-96
1969-91 | | | Escondido Creek SWS #1 near Kenedy | 08187000 | 3.29 | SC, 1 | 1955-65 | | | Guadalupe River at Tivoli | 08188800 | 10,128 | SC, T | 1966-82 | | | Mission River at Refugio | 08189500 | 690 | SC, T | 1961-81 | | | | 0010/300 | 0,0 | JU, 1 | 1,01 01 | | | Station name | Station | Drainage
area | Type of | Period
of record | | |--|----------|--------------------|----------------|---------------------|--| | | number | (mi ²) | record | (water years) | | | Nueces River at Cotulla | 08194000 | 5,171 | SC | 1942 | | | Nueces River near Tilden | 08194500 | 8,093 | SC, T, S | 1950 | | | Frio River at Calliham | 08207000 | 5,491 | SC, T | 1968-81 | | | Nueces River near Three Rivers | 08210000 | 15,427 | SC | 1945-47, | | | | | | SC, T, pH, Cl, | S 1951-52, | | | | | | SC, T | 1975-81 | | | Nueces River at Bluntzer | 08211000 | 16,772 | SC, T | 1948-91 | | | Los Olmos Creek near Falfurrias | 08212400 | 480 | SC, T | 1975-81 | | | Rio Grande at El Paso | 08364000 | 29,267 | SC, pH, T, DO | 1930-2000 | | | Rio Grande at Fort Quitman | 08370500 | 31,944 | SC, T | 1975-78. | | | Rio Grande at Foster Ranch near Langtry | 08377200 | 80,742 | SC, T | 1975-81 | | | Pecos River below Red Bluff Dam near Orla | 08410100 | 20,720 | SC | 1937-69, | | | | | | T | 1953-69 | | | Salt Draw near Orla | 08411500 | 464 | SC, T | 1943-48 | | | Pecos River near Mentone | 08414000 | 21,650 | SC | 1939 | | | Pecos River at Pecos | 08420500 | 22,100 | SC | 1939-41 | | | Toyah Creek near Pecos | 08431000 | 1,024 | SC | 1940, | | | | | | | 1944 | | | Salt Draw near Pecos | 08431500 | 1,882 | SC | 1940, | | | | | | | 1944 | | | Toyah Creek below Toyah Lake near Pecos | 08434000 | 3,709 | SC | 1940-50, | | | | | | Cl | 1940 | | | Pecos River below Grand Falls | 08441500 | 27,820 | SC | 1939-42, | | | | | | | 1947-56 | | | Pecos River near Girvin | 08446500 | 29,560 | SC | 1940-41, | | | | | | | 1947, | | | | | | | 1954-82 | | | | | | T | 1954-59, | | | | | | | 1964-82 | | | Pecos River near Sheffield | 08447000 | 31,600 | SC | 1940-41, | | | | | | | 1947 | | | Pecos River near Langtry | 08447410 | 35,179 | SC, T | 1971-76, | | | | | | | 1981-85 | | | Devils River at Pafford Crossing near Comstock | 08449400 | 3,961 | SC, T | 1978-85 | | | Rio Grande at Laredo | 08459000 | 132,578 | SC | 1975-86, | | | | | | T | 1974-76 | | | Rio Grande at Roma | 08462500 | 166,464 | SC | 1942-43 | | | Rio Grande at Fort Ringgold, Rio Grande City | 08464700 | 174,362 | SC, pH, T | 1959-2000 | | | Rio Grande near Los Ebanos | 08466300 | N/A | SC, pH, T | 1977-2000 | | | Rio Grande at Mission Pumping Plant | 08468000 | 171,800 | SC | 1945-50 | | | Rio Grande below Anzalduas Dam | 08469200 | 176,112 | SC, pH, T | 1967-72, | | | | | | | 1959-2000 | | | Rio Grande at Cameron Co. WID #2 near San Benito | 08473800 | N/A | SC | 1942-43 | | | Rio Grande at Los Fresnos Pumping Plant near Brownsville | 08474130 | N/A | SC | 1945-46 | | | Rio Grande near Brownsville | 08475000 | 176,333 | SC | 1943-44, | | | | | | SC, T | 1967-83 | | | | | | S | 1966-83 | | ### WATER RESOURCES DATA—TEXAS, 2001 ### **VOLUME 4** # COLORADO RIVER BASIN, LAVACA RIVER BASIN AND INTERVENING COASTAL BASINS ### INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and City agencies, obtains a large amount of data pertaining to the water resources of Texas each water year. Such data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in six volumes of this report series entitled "Water Resources Data - Texas." This report series includes records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs and water levels and water quality of ground water wells. Volume 4 contains records for water discharge at 66 gaging stations; stage and contents at 14 lakes and reservoirs; and water quality at 41 gaging stations. Also included are data for 12 partial-record stations comprised of 3 flood-hydrograph, 6 low-flow, 1 crest-stage, and 2 miscellaneous measurement stations. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating Federal, State, and City agencies in Texas. This series of annual reports for Texas began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to its present format, with data on quantities and quality of surface water contained in each of three volumes, and expanding to five volumes beginning with the 1999 water year. Ground-water levels and water quality have been published in a separate volume beginning with the 1991 water year. Prior to introduction of this series and for several water years concurrent with it, water resources data for Texas were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 7 and 8." For the 1961 through 1970 water
years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from U.S. Geological Survey, Books and Open-File Reports, Federal Center, Bldg. 41, Box 25425 Denver, CO 80225. Publications similar to this report are published annually by the U.S. Geological Survey for all States. These official U.S. Geological Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water Data Report TX-01-4." For archiving and general distribution, the reports for the 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or may be purchased on microfiche from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161 (703)) 605-6000. Additional information, including the current prices, for ordering specific reports may be obtained from the Texas District Chief at the address given on the back of the title page or by telephone (512) 927-3500. ### COOPERATION Federal agencies that assisted the U.S. Geological Survey in the collection of data in this report in the form of funds or services in water year 2001 are: Corps of Engineers, U.S. Army. International Boundary and Water Commission United States and Mexico, U.S. Section. National Park Service U.S. Bureau of Reclamation. Organizations that assisted in the collection of data in this report through joint funding agreements through the Texas Water Development Board or through direct joint funding agreements with the U.S. Geological Survey are: Texas Water Development Board, G.E. Kretzschmar, Executive Administrator; the cities of Abilene, Arlington, Austin, Corpus Christi, Fort Worth, Gainesville, Garland, Georgetown, Graham, Houston, Lubbock, Nacogdoches, San Angelo, and Wichita Falls; Bexar, Medina, and Atascosa Counties Water Improvement District No. 1; Barton Springs/Edwards Aquifer Conservation District; Brazos River Authority; Canadian Municipal Water Authority; Coastal Water Authority; Colorado River Municipal Water District; Dallas Public Works Department; Dallas Water Utilities; Edwards Underground Aquifer Authority; Fort Bend Subsidence District; Franklin County Water District; Galveston County; Greenbelt Municipal and Industrial Water Authority; Guadalupe-Blanco River Authority; Harris-Galveston Coastal Subsidence District; Harris County Office of Emergency Management; Harris County Flood Control District: Houston-Galveston Area Council; Lavaca-Navidad River Authority; Lower Colorado River Authority; Lower Neches Valley Authority; North Central Texas Municipal Water Authority; Northeast Texas Municipal Water District; North Texas Municipal Water District; Orange County; Pecos River Commission; Red Bluff Water Power Control District; Red River Authority of Texas; Sabine River Authority of Texas; Sabine River Compact Administration; San Antonio City Public Service Board; San Antonio River Authority; San Antonio Water System; San Jacinto River Authority; Somervell County Water District; Tarrant Regional Water District; Texas Soil & Water Conservation Board; Texas State Department of Highways & Public Transportations; Texas Natural Resources Conservation Commission; Titus County Fresh Water Supply District No. 1; Trinity River Authority; Upper Colorado River Authority; Upper Guadalupe River Authority; Upper Neches River Municipal Water Authority; West Central Texas Municipal Water District; and Wichita County Water Improvement District No. 2. ### HYDROLOGIC CONDITIONS Large variations in precipitation, runoff, and streamflow characterize the usual hydrologic conditions in Texas. In the eastern part of the State, streams typically are deep with wide alluvial flood plains, and streamflow is perennial. In the western part of the State, most streams flow through arroyos, and streamflow usually is ephemeral. Streamflow across the State averaged above normal during water year 2001. Conservation storage in 77 selected reservoirs throughout the State, with a combined conservation capacity of 34,481,000 acre-feet, increased from 67 percent at the end of September 2000 to 76 percent at the end of September 2001. Records from these reservoirs indicate that storage increased in 54, decreased in 20, and remained the same in 3. The area for which water resources data are presented in volume 4 includes the Colorado River Basin, Lavaca River Basin, and Intervening Costal Basins. The area described in volume 4 and the location of selected streamflow and water-quality stations in the area are shown in figure 1. ### Streamflow In the area covered in volume 4, streamflow averaged above normal during water year 2001. Streamflow for water year 2001 and for the period of record at two selected stations (fig. 1) for which data are included in volume 4 is presented in table 1. At the four long-term hydrologic index stations in the State, monthly mean streamflow during water year 2001 averaged above normal. Monthly mean discharges for water year 2000 and the median of the long-term monthly means for water years 1961–90 for the four long-term hydrologic index stations in the State are shown in figure 2. Streamflow at the hydrologic index station North Concho River near Carlsbad had above normal streamflow for October and November, below normal streamflow for May, and normal streamflow for the remaining 9 months. Streamflow for the station Guadalupe River near Spring Branch was above normal for November through April and September, and normal for the remaining 5 months. Streamflow at the station Neches River near Rockland was above normal during November through March, June, and September and normal for the remaining 5 months. The station North Bosque River near Clifton had above normal streamflow during November, January, February and March, below normal streamflow during June and August, and normal streamflow for the remaining 6 months of water year 2001 Conservation storage in 12 selected reservoirs in this area of the State, with a total combined conservation capacity of **Figure 1.** Area of Texas covered by volume 4 (shaded) and location of selected streamflow and water-quality stations in volume 4. **Figure 2.** Monthly mean discharges at four long-term hydrologic index stations during 2001 water year and median of the monthly mean discharges for 1961–90 water years. 3,962,000 acre-feet, increased from 42 percent of capacity at the end of September 2000 to 60 percent of capacity at the end of September 2001. Records from these reservoirs indicate that storage increased in 5 and decreased in 7. ### **Water Quality** Dissolved-solids concentrations in most streams in the State are inversely related to streamflow discharges. During years when precipitation and runoff are less than normal, streamflow commonly is more mineralized than during years when precipitation and runoff are normal or greater than normal. However, for streams where discharge is controlled by reservoirs, the dissolved-solids concentrations may remain relatively constant despite substantial fluctuations in precipitation and runoff. | Station no. and name | | Discharge during 2001 water year (cubic feet per second) | | Discharge during period of record (cubic feet per second) | | | | |----------------------|--|--|-----------------------|---|-----------------------|----------------------|----------------------| | | | Maximum instantaneous | Minimum
daily mean | Mean | Maximum instantaneous | Minimun
daily mea | | | Colorado R | iver Basin | | | | | | | | 08134000 | North Concho River
near Carlsbad, TX 1/ | 7,030 | 0 | 9.2 | 94,600 | 0 | 28.4
(1924-2001) | | 08147000 | Colorado River
near San Saba, TX | 58,300 | 21 | 649 | 224,000 | 0 | 1,023
(1931-2001) | ### SPECIAL NETWORKS AND PROGRAMS Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative of undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the effects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/. National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of
carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of the constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN program can be found at http://water.usgs.gov/nasqan/. Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation-chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Data from the network, as well as information about individual sites, are available through the World Wide Web at: http://nadp.sws.uiuc.edu/. National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies. Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. The USGS National Water-Quality Laboratory collects quality-control data on a continuing basis to evaluate selected analytical methods to determine long-term method detection levels (LT-MDL's) and laboratory reporting levels (LRL's). These values are re-evaluated each year on the basis of the most recent quality-control data and, consequently, may change from year to year. This reporting procedure limits the occurrence of false positive error. The chance of falsely reporting a concentration greater than the LT-MDL for a sample in which the analyte is not present is 1 percent or less. Application of the LRL limits the occurrence of false negative error. The chance of falsely reporting a non-detection for a sample in which the analyte is present at a concentration equal to or greater than the LRL is 1 percent or less. Accordingly, concentrations are reported as <LRL for samples in which the analyte was either not detected or did not pass identification. Analytes that are detected at concentrations between LT-MDL and LRL and that pass identification criteria are estimated. Estimated concentrations will be noted with a remark code of "E." These data should be used with the understanding that their uncertainty is greater than that of data reported without the "E" remark code. Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. There are currently three NAWQA Programs operating in Texas; the Trinity NAWQA, the South Central Texas NAWQA, and the southern portion of the High Plains Ground-Water NAWQA. Additional information about the NAWQA Programs are available through the world wide web at: <u>Radiochemical Program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. <u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. #### EXPLANATION OF THE RECORDS The surface-water records published in this report are for the 2001 water year that began October 1, 2000, and ended September 30, 2001. A calendar of the water year is provided on the inside of the front cover. The records contain stage and streamflow data, stage and content data for lakes and reservoirs, and water-quality data for surface water. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. #### **Station Identification Numbers** Each data station in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitudelongitude" system is used for wells. ### **Downstream Order Numbering** Since October 1, 1950, the order of listing hydrologic-station records in U.S. Geological Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station, such as 08057000, which appears just to the left of the station name, includes the 2-digit Part number "08" plus the 6-digit downstream-order number "057000." The Part number designates the major river basin; for example, Part "08" is the Western Gulf of Mexico basin. ### **Records of Stage and Water Discharge** Records of stage and streamflow may be complete or partial. Complete records of discharge are those obtained using a stage-recording device through which either instantaneous or daily mean discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated for any time, or period of time. They may be obtained using a stage-recording device, but need not be. Because daily-mean discharges and daily-mean reservoir contents commonly are published for such stations, they are referred to as "daily stations." By contrast, partial records are obtained through discrete measurements and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Flood-hydrograph partial records, "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow channel gain and loss studies, may be considered as partial records, but they are presented separately in this report. Instantaneous peak discharges are presented for all but the low-flow partial-record stations. #### **Data Collection and Computation** The data obtained at a complete record gaging station on a stream or canal consist of records of stage (that is recorded every 5, 15, 30, or 60 minutes), measurements of discharge throughout a range of stages, and notations regarding
factors that may affect the relation between stage and discharge. These data, together with supplemental information such as weather records, are used to compute daily mean discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relation between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute lake storage. Records of stage are obtained with recorders at selected time intervals. Measurements of discharge are made with current meters and indirect procedures using methods adopted by the U.S. Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, TWRI, Chapter A6. In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves then are constructed. From these curves, rating tables indicating the discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves can be extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques. Stage-discharge ratings at gaging stations are described in TWRI, Book 3, Chapter A10. Instantaneous discharges are computed by applying each individual recorded stage (gage height) to the stage-discharge table. The daily mean discharge is computed as the mean of the instantaneous discharges. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the rating tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations, that the daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods. At some stream-gaging stations, the stage-discharge relation is affected by backwater from reservoirs, tributary streams, bays, or other sources. This necessitates the use of the slope method in which the slope (fall) in a reach of the stream is a factor in computing discharge. The slope is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge. In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relation of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes are determined. If the stage-content relation changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relation. Even when this is done, the contents computed may increase in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relations much as other stream discharges are computed. For some streamflow gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the stage sensor or recorder fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily mean discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily-mean contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge." #### **Data Presentation** Streamflow data in this report are presented in a format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences. The records published for each continuous-record surface-water discharge station (gaging station) now consists of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly-mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7- day low-flow minimums, and flow duration. #### Station Manuscript The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description. LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers. DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that records from it can reasonably be considered equivalent with records from the present station. REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years which the revisions apply to. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. GAGE.--The type of gage in current use, the datum of the current gage referred to sea level, and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir. COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here. EXTREMES OUTSIDE PERIOD OF RECORD.-- Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made in the U.S. Geological Survey's distributed data system, NWIS, and
subsequently to its web-based National data system, NWISWeb [http://water.usgs.gov/nwis/nwis]. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure the most recent updates. Updates to NWISWeb are currently made on an annual basis. Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents. #### Data table of daily mean values The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acrefeet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. #### Statistics of monthly mean data A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the daily mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period, expressed as "FOR WATER YEARS _____, BY WATER YEAR (WY)," will list the first and last water years of the range selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. #### Summary statistics A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line head- ings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS _____," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. However, data for partial water years, if any, will only be used in the statistical calculations, if appropriate. For example, all of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINI-MUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years. The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the column heading. When this occurs, it should be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data is omitted if there is extensive regulation or diversion of flow in the drainage basin. The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table. ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period. LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period. HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period. LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period. ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information. INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period. ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data: Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area. Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it. - 10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period. - 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period. - 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period. Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. #### **Identifying Estimated Daily Discharge** Estimated daily discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description. #### **Accuracy of the Records** The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records. The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may
be attributed to different parts of a given record. Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft 3 /s; to the nearest tenth between 1.0 and 10 ft 3 /s; to whole numbers between 10 and 1,000 ft 3 /s; and to 3 significant figures for more than 1,000 ft 3 /s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge. #### Other Records Available Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables, is on file in the Texas District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report. #### **Records of Surface-Water Quality** Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. #### Classification of Records Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values obtained by data logger. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. #### Arrangement of Records Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surfacewater daily record station is not available or where the water quality differs significantly from that at the nearby surfacewater station, the continuing water-quality record is published with its own station number and name in the regular downstream order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. #### **On-Site Measurements and Sample Collection** In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Records of surface-water quality at some National Water Quality Accounting (NAWQA) Sites include data collected by different government agencies as identified in the water-quality data tables under AGENCY COLLECTING SAMPLE (CODE NUMBER). Values for this code are given below: 1028 - U.S. Geological Survey 84823 - International Boundary & Water Commission Procedures for on-site measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. A1, A3, and A4; Book 9, Chap. A1-A9. All of these references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" which appears at the end of the introductory text. Detailed information on collecting, treating, and shipping samples may be obtained from the Texas Office of the Central Region Office. One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (NASQAN) (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors which must be evaluated by the collector. Information on the method used to collect the sample at National Stream Quality Accounting Network sites is given in the water-quality data tables under SAMPLING METHOD. Values for this code are given below: 10 - Equal Width Increment (EWI) 20 - Equal Discharge Increment (EDI) 25 - Timed Sampling Interval 30 - Single Vertical 40 - Multiple Verticals 50 - Point Sample 60 - Weighted Bottle 70 - Grab Sample (DIP) 90 - Discharge Integrated, Centroid 120 - Velocity Integrated 8010 - Other Detailed information on sampling methods may be found in the following publications: OFR-90-127 "Guidelines for Collection and Analysis of Water-Quality Samples from Streams in Texas", OFR-94-455 "Field Guide for Collecting and Processing Stream-Water Samples for the National Water-Quality Assessment Program", and OFR-94-539 "U.S. Geological Survey protocol for the collection and processing of surfacewater samples for the subsequent determination of inorganic constituents in filtered water". Specific questions pertaining to water-quality sample collection may be directed to the District Water-Quality Specialist in Austin, Texas, or the Regional Water-Quality Specialist in Denver, Colorado. Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. For chemical-quality stations equipped with water-quality monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly readings beginning at 0100 hours and ending at 2400 hours for the day of record. #### Water Temperature Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the Texas District Office. #### **Sediment** Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge-weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were
collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream. In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations. #### **Laboratory Measurements** Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the U.S. Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the U.S. Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. Historical and current (2001) dissolved trace-element concentrations are reported herein for water that was collected, processed, and analyzed by using either ultraclean or other than ultraclean techniques. If ultraclean techniques were used, then those concentrations are reported in nanograms per liter. If other than ultraclean techniques were used, then those concentrations are reported in micrograms per liter and could reflect contamination introduced during some phase of the procedure. #### **Data Presentation** For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radio-chemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence. In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuousrecord station. Comments that follow clarify information presented under the various headings of the station description. LOCATION.--See Data Presentation under "Records of Stage and Water Discharge" same comments apply. DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge" same comments apply. PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. These periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually. INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station. REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records. COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here. EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made in the U.S. Geological Survey's distributed data system, NWIS, and subsequently to its web-based National data system, NWISWeb [http://water.usgs.gov/nwis/nwis]. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure the most recent updates. Updates to NWISWeb are currently made on an annual basis. The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence. #### **Remarks Codes** The following remark codes may appear with the water-quality data in this report: #### PRINTED OUTPUT REMARK | e or E | Estimated value. | |--------|---| | > | Actual value is known to be greater than the value shown. | | < | Actual value is known to be less than the value shown. | | L | Biological organism count less than 0.5 percent (organism may be observed rather than counted). | | D | Biological organism count equal to or greater than 15 percent (dominant). | | V | Analyte was detected in both the environmental sample and the associated blanks. | | & | Biological organism estimated as dominant. | | M | Presence of material verified but not quantified. | #### Dissolved Trace-Element Concentrations *NOTE:--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (µg/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the µg/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. Change in National Trends Network Procedures *NOTE:--Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP Program Office, Illinois State Water Survey, 2204 Griffith Drive, Champaign, IL 61820-7495 (217-333-7873). #### **Water-Quality Control Data** Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. #### **Blank Samples** Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are: Source solution blank – a blank solution that is transferred to a sample bottle in an area of the office laboratory with an atmosphere that is relatively clean and protected with respect to target analytes. Ambient blank – a blank solution that is put in the same type of bottle used for an environmental sample, kept with the set of sample bottles before sample collection, and opened at the site and exposed to the ambient conditions. Field blank – a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample. Trip blank – a blank solution that is put in the same type of bottle used for an environmental sample, and kept with the set of sample bottles before and after sample collection. Equipment blank – a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to field blank but normally done in the more controlled conditions of the office). Sampler blank – a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample. Pump blank – a blank solution that is processed through the same pump-and-tubing system used for
an environmental sample. Standpipe blank – a blank solution that is poured from the containment vessel (stand-pipe) before the pump is inserted to obtain the pump blank. Filter blank – a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample. Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample. Preservation blank – a blank solution that is treated with the sample preservatives used for an environmental sample. Canister blank – a blank solution that is taken directly from a stainless steel canister just before the VOC sampler is submerged to obtain a field blank sample. #### **Reference Samples** Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties. #### **Replicate Samples** Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this District are: Concurrent sample – a type of replicate sample in which the samples are collected simultaneoulsy with two or more samplers or by using one sampler and alternating collection of samples into two or more compositing containers. Sequential sample – a type of replicate sample in which the samples collected one after the other, typically over a short time. Split sample – a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space. #### **Spike Samples** Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis. Concurrent sample – a type of spike sample that is collected at the same time with the same sampling and compositing devices then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes. Split sample – a type of spike sample in which a sample is split into subsamples contemporaneous in time and space then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes. ## ACCESS TO USGS WATER DATA The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (www). These data may be accessed at http://tx.usgs.gov Some water-quality and ground-water data also are available through the www. In addition, data can be provided in various machine-readable formats on magnetic tape, 3-1/2 inch floppy disk or CD-ROM. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.) #### **DEFINITION OF TERMS** Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units on the inside of the back cover. Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity). **Acre-foot** (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff") Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter. Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. **Alkalinity** is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample. **Annual runoff** is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 to September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type and the last two digits represent the weight percent of the hydrogen substituted chlorine. Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate") **Ash mass** is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass") **Bacteria** are microscopic unicellular organisims, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peaks per year will be published. **Base flow** is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge. **Bedload** is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 ft) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler may also contain a component of the suspended load. Bedload discharge (tons per day) is rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload" and "Sediment") **Bed material** is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment") **Benthic organisms** are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and
crayfish. They are useful as indicators of water quality. **Biochemical oxygen demand** (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria. **Biomass** is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat. **Biomass pigment ratio** is an indicator of the total proportion of periphyton which are autotrophic (plants). This is also called the Autotrophic Index. **Blue-green algae** (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") Bottom material See "Bed material". Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L). Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μm³) is determined by obtaining critical cell measurements on cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows: sphere $4/3 \pi r^3$ cone $1/3 \pi r^3 h$ cylinder $\pi r^3 h$. pi is the ratio of the circumference to the diameter of a circle; pi = 3.14159... From cell volume, total algal biomass expressed as biovolume ($\mu m^3/mL$) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes over all species. Cfs-day (See "Cubic foot per second-day") Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"] Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warm-blooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria") **Coliphages** are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of waters and of the survival and transport of viruses in the environment. **Color unit** is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well. (See also "Aquifer") **Contents** is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. **Continuous-record station** is a site where data are collected with sufficient frequency to define daily mean values and variations within a day. Control designates a feature in the channel downstream from a gaging station that physically influences the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel. **Control structure** as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater. Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-feet" sometimes is used synonymously with "cubic feet per second" but is now obsolete. Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily-mean discharges reported in the daily-value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days. Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff") **Daily mean suspended-sediment concentration** is the timeweighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Daily mean suspended-sediment concentration," "Sediment," and "Suspended-sediment concentration") **Daily-record station** is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis. **Data Collection Platform** (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry. **Data logger** is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems. **Datum** is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitudelongitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988") **Diatoms** are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") **Diel** is of or pertaining to a 24-hour period of time; a regular daily cycle. Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediments or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents such as suspended sediment, bedload, and dissolved or suspended chemical constituents, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day). **Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered. **Dissolved oxygen** (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams. Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60. **Diversity index** (H) (Shannon Index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is: $$\bar{d} = -\sum_{i \approx
1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$ where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different. **Drainage area** of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified. **Drainage basin** is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area") **Dry mass** refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass") **Dry weight** refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight") Enterococcus bacteria are commonly found in the feces of humans and other warm-blooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium*, and their variants. (See also "Bacteria") **EPT Index** is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive, the index usually decreases with pollution. Escherichia coli (E. coli) are bacteria present in the intestine and feces of warm-blooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium. Their concentra- tions are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") Estimated (E) value of a concentration is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). **Euglenoids** (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton") Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semi-volatile and extractable by ethyl acetate from air-dried streambed sediments. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediments. **Fecal coliform bacteria** are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") Fecal streptococcal bacteria are present in the intestine of warm-blooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Fire algae** (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton") **Flow-duration percentiles** are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates. **Gage datum** is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly larger than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any National geodetic datum. However, if the elevation of the gage datum relative to the National datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the National datum by adding the elevation of the gage datum to the gage reading. Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage. **Gage values** are values that are recorded, transmitted and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals. **Gaging station** is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is computed. **Gas chromatography/flame ionization detector** (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride. Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") **Habitat quality index** is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams. **Hardness** of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃). **High tide** is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html **Hilsenhoff's Biotic Index** (HBI) is an indicator of organic pollution which uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows: $$HBI = sum \frac{(n)(a)}{N}$$ where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample. Horizontal datum (See "Datum") Hydrologic benchmark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a benchmark station may be used to separate effects of natural from human-induced changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped benchmark basin. **Hydrologic index stations** referred to in this report are four continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps. **Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by
an 8-digit number. Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff") **Instantaneous discharge** is the discharge at a particular instant of time. (See also "Discharge") Laboratory Reporting Level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a non-detection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually based on the most current quality-control data and may, therefore, change. [Note: In several previous NWQL documents (Connor and others, 1998; NWQL Technical Memorandum 98.07, 1998), the LRL was called the non-detection value or NDV—a term that is no longer used.) **Land-surface datum** (lsd) is a datum plane that is approximately at land surface at each ground-water observation well. **Light-attenuation coefficient,** also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation $$I = I_{o}e^{-\lambda L}$$, where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light attenuation coefficient is defined as $$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} .$$ **Lipid** is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic. Long-Term Method Detection Level (LT–MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT–MDL data are collected on a continuous basis to assess year-to-year variations in the LT–MDL. The LT–MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT–MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent. Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that are usually arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline. Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration") **Mean discharge** (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge") **Mean high or low tide** is the average of all high or low tides, respectively, over a specific period. Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum") **Measuring point** (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level. **Membrane filter** is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water. Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymphadult. **Method Detection Limit** (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent. **Methylene blue active substances** (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds. **Micrograms per gram** (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed. Micrograms per kilogram (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion. Micrograms per liter (UG/L, μg/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion. Microsiemens per centimeter (US/CM, μS/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms. **Milligrams per liter** (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture. **Minimum Reporting Level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method (Timme, 1995). **Miscellaneous site**, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin. Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes. **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt. Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter. National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988") **Natural substrate** refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate.") **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility. **Nephelometric turbidity unit** (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of Formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample. North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the U.S. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and U.S. first-order terrestrial leveling networks. **Open or screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface. **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediments. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total
organic carbon (TOC). Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass") **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms. Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms. **Organochlorine compounds** are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds. Parameter Code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property. Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, Sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling). Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classification | Size | (n | nm) | Method of analysis | |----------------|---------|----|-------|---------------------| | Clay | 0.00024 | _ | 0.004 | Sedimentation | | Silt | 0.004 | - | 0.062 | Sedimentation | | Sand | 0.062 | - | 2.0 | Sedimentation/sieve | | Gravel | 2.0 | _ | 64.0 | Sieve | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis. Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation to the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak. **Percent composition** or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume. **Percent shading** is determined by using a clinometer to estimate left and right bank shading. The values are added together and divided by 180 to determine percent shading relative to a horizontal surface. **Periodic-record station** is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year, but at a frequency insufficient to develop a daily record. **Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality. **Pesticides** are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. **pH** of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7 are termed "acidic," and solutions with a pH greater than 7 are termed "basic." Solutions with a pH of 7 are neutral. The presence and concentration of many dissolved chemical constituents found in water are, in part, influenced by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms are also influenced, in part, by the hydrogen-ion activity of water. Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae. (See also "Plankton") **Picocurie** (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute). **Plankton** is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL of sample). **Polychlorinated biphenyls** (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides. **Polychlorinated naphthalenes** (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations. Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants. **Primary productivity (carbon method)** is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. Carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. Oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") Radioisotopes are isotopic forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes. Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material") Recurrence interval, also referred to as return period, is the average
time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or non-exceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day 10-year low flow (7Q₁₀) is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the non-exceedances of the 7Q10 occur less than 10 years after the previous non-exceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous non-exceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the 7Q₁₀. **Replicate samples** are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition. **Return period** (See "Recurrence interval") **River mileage** is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council, and typically used to denote location along a river. **Runoff** is the quantity of water that is discharged ("runs off") from a drainage basin in a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff") Sea level, as used in this report, refers to one of the two commonly used national vertical datums, (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums. See conversion of units page (inside back cover) for identification of the datum used in this report. Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation. Seven-day 10-year low flow (7Q10) is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-run average. The recurrence interval of the 7Q10 is 10 years; the chance that the annual 7-day minimum flow will be less than the 7Q10 is 10 percent in any given year. (See also "Recurrence interval" and "Annual 7-day minimum") **Sodium adsorption ratio** (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops. Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. Stable isotope ratio (per MILL/MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific waters, to evaluate mixing of different waters, as an aid in determining reaction rates, and other chemical or hydrologic processes. Stage (See "Gage height") **Stage-discharge relation** is the relation between the watersurface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time. Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation Substrate is the physical surface upon which an organism **Substrate Embeddedness Class** is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as percent covered by fine sediment: 0 < no gravel or larger substrate 1 > 75% 2 51-75% 4 5-25% 3 26-50% 5 < 5% Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained. **Surficial bed material** is the upper surface (0.1 to 0.2 ft) of the bed material such as that material which is sampled using U.S. Series Bed-Material Samplers. **Suspended** (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is operationally defined as the material retained on a 0.45-micrometer filter. Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended") **Suspended sediment** is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment") Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment") **Suspended-sediment discharge** (tons/day) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration") Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment") Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended") Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter
of water (mg/L). An aliquot of the sample is used for this analysis. Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources. **Taxa richness** is the total number of distinct species or groups and usually decreases with pollution. (See also "Percent Shading") **Taxonomy** is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following: Kingdom: Animal Phylum: Arthropoda Class: Insecta Order: Ephemeroptera Family: Ephemeridae Genus: Hexagenia Species: Hexagenia limbata #### **Temperature preferences:** Cold – preferred water temperature for the species is less than 20 °C or spawning temperature preference less than 16 °C and native distribution is considered to be predominantly north of 45° N. latitude. Warm – preferred water temperatures for the species is greater than 20 °C or spawning temperature preference greater than 16 °C and native distribution is considered to be predominantly south of 45° N. latitude. Cool – intermediate between cold and warm water temperature preferences. **Thermograph** is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium. **Time-weighted average** is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration. **Tons per acre-foot** (**T/acre-ft**) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. **Tons per day** (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day. Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.) **Total coliform bacteria** are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are char- acterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Total discharge** is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on. Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material." **Total length** (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together. **Total load** refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load. **Total organism count** is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume.") Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results. #### Total sediment discharge is the mass of suspended- sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Sediment," "Suspended sediment," "Suspended-Sediment Concentration," "Bed-load," and "Bedload discharge") Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-Sediment Load," and "Total load") #### **Trophic group:** Filter feeder – diet composed of suspended plant and/or animal material. **Herbivore** – diet composed predominantly of plant material. Invertivore – diet composed predominantly of invertebrates. **Omnivore** – diet composed of at least 25-percent plant and 25-percent animal material. Piscivore – diet composed predominantly of fish. **Turbidity** is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values. Consequently, the method of measurement and type of instrument used to derive turbidity records should be included in the "REMARKS" column of the Annual Data Report. **Ultraviolet (UV) absorbance (absorption)** at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample. Vertical datum (See "Datum") **Volatile organic compounds** (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens (U.S. Environmental Protection Agency, 1996). **Water table** is the level in the saturated zone at which the pressure is equal to the atmospheric pressure. Water-table aquifer is an unconfined aquifer within which is found the water table. Water year in USGS reports
dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2001, is called the "2001 water year." **WDR** is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.) Weighted average is used in this report to indicate dischargeweighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass") Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight") **WSP** is used as an acronym for "Water-Supply Paper" in reference to previously published reports. Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton") ## PUBLICATIONS OF TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations." # **Book 1. Collection of Water Data by Direct Measurement** *Section D. Water Quality* - 1-D1. Water temperature-influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. - 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS-TWRI Book 1, Chapter D2. 1976. 24 pages. #### **Book 2. Collection of Environmental Data** #### Section D. Surface Geophysical Methods - 2-D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS-TWRI Book 2, Chapter D1. 1974. 116 pages. - 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI Book 2, Chapter D2. 1988. 86 pages. #### Section E. Subsurface Geophysical Methods - 2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS-TWRI 11.0 - 2-E2. Borehole geophysics applied to ground-water investigations, by W.S. Scott Keys: USGS-TWRI Book 2, Chapter E2. 1990. 150 pages. ### Section F. Drilling and Sampling Methods 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and Warren E. Teasdale: USGS-TWRI Book 2, Chapter F1. 1989. 97 pages. #### **Book 3. Applications of Hydraulics** #### Section A. Surface-Water Techniques - 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS-TWRI Book 3, Chapter A1. 1967. 30 pages. - 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS—TWRI Book 3, Chapter A2. 1967. 12 pages. - 3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS-TWRI Book 3, Chapter A3. 1968. 60 pages. - 3-A4. *Measurement of peak discharge at width contractions* by indirect methods, by H.F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages. - 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS-TWRI Book 3, Chapter A5. 1967. 29 pages. - 3-A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS-TWRI Book 3, Chapter A6. 1968. 13 pages. - 3-A7. *Stage measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS-TWRI Book 3, Chapter A7. 1968. 28 pages. - 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI Book 3, Chapter A8. 1969. 65 pages. - 3-A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick, and J.F. Wilson, Jr.: USGS—TWRI Book 3, Chapter A9. 1989. 27 pages. - 3-A10. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A10. 1984. 59 pages. - 3-A11. *Measurement of discharge by moving-boat method,* by G.F. Smoot and C.E. Novak: USGS-TWRI Book 3, Chapter A11. 1969. 22 pages. - 3-A12. Fluorometric procedures for dye tracing, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI Book 3, Chapter A12, 1986. 41 pages. - 3-A13. Computations of continuous records of streamflow, by E.J. Kennedy: USGS- TWRI Book 3, Chapter A13, 1983. 53 pages. - 3-A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI Book 3, Chapter A14. 1983. 46 pages. - 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI Book 3, Chapter A15. 1984. 48 pages. - 3-A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS-TWRI Book 3, Chapter A16. 1985. 52 pages. - 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI Book 3, Chapter A17. 1985. 38 pages. - 3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, N. Yotsukura, G.W. Parker, and L.L. DeLong: USGS-TWRI Book 3, Chapter A18. 1989. 52 pages. - 3-A19. Levels of streamflow gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A19. 1990. 27 pages. - 3-A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS-TWRI Book 3, Chapter A20. 1993. 38 pages. - 3-A21. *Stream-gaging cableways*, by C. Russell Wagner: USGS–TWRI Book 3, Chapter A21. 1995. 56 pages. #### Section B. Ground-Water Techniques - 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI Book 3, Chapter B1. 1971. 26 pages. - 3-B2. Introduction to ground-water hydraulics, a programmed text for self instruction, by G.D. Bennett: USGS-TWRI Book 3, Chapter B2. 1976. 172 pages. - 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS–TWRI Book 3, Chapter B3. 1980. 106 pages. - 3-B4. Regression modeling of ground-water flow, by Richard L. Cooley and Richard L. Naff: USGS-TWRI Book 3, Chapter B4. 1990. 232 pages. - 3-B4. Supplement 1. Regression modeling of ground-water flow-Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley. USGS-TWRI Book 3, Chapter B4. 1993. 8 pages. - 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS—TWRI Book 3, Chapter B5. 1987. 15 pages. - 3-B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI Book 3, Chapter B6. 1987. 28 pages. - 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS-TWRI Book 3, Chapter B7. 1992. 190 pages. - 3-B8. System and boundary conceptualization in ground-water flow simulation, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, Chapter B8. 2001. 29 pages. #### Section C. Sedimentation and Erosion Techniques - 3-C1. *Fluvial sediment concepts*, by H.P. Guy: USGS–TWRI Book 3, Chapter C1. 1970. 55 pages. - 3-C2. Field methods for measurement of fluvial sediment, by H.P. Guy and V.W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 pages. - 3-C3. *Computation of fluvial-sediment discharge*, by George Porterfield: USGS-TWRI Book 3, Chapter C3. 1972. 66 pages. ## **Book 4. Hydrologic Analysis and Interpretation** #### Section A. Statistical Analysis 4-A1. *Some statistical tools in hydrology*, by H.C. Riggs: USGS–TWRI Book 4, Chapter A1. 1968. 39 pages. 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI Book 4, Chapter A2. 1968. 15 pages. #### Section B. Surface Water - 4-B1. *Low-flow investigations*, by H.C. Riggs: USGS-TWRI Book 4, Chapter B1. 1972. 18 pages. - 4-B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS-TWRI Book 4, Chapter B2. 1973. 20 pages. - 4-B3. Regional analyses of streamflow characteristics, by
H.C. Riggs: USGS-TWRI Book 4, Chapter B3. 1973. 15 pages. #### Section D. Interrelated Phases of the Hydrologic Cycle 4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages. #### **Book 5. Laboratory Analysis** #### Section A. Water Analysis - 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman: USGS-TWRI Book 5, Chapter A1. 1989. 545 pages. - 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages. - 5-A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS—TWRI Book 5, Chapter A3. 1987. 80 pages. - 5-A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI Book 5, Chapter A4. 1989. 363 pages. - 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS-TWRI Book 5, Chapter A5. 1977. 95 pages. - 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS–TWRI Book 5, Chapter A6. 1982. 181 pages. #### Section A. Sediment Analysis 5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS–TWRI Book 5, Chapter C1. 1969. 58 pages. #### **Book 6. Modeling Techniques** #### Section A. Ground Water - 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS-TWRI Book 6, Chapter A1. 1988. 586 pages. - 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS-TWRI Book 6, Chapter A2. 1991. 68 pages. - 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS-TWRI Book 6, Chapter A3. 1993. 136 pages. - 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS—TWRI Book 6, Chapter A4. 1992. 108 pages. - 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak. USGS-TWRI Book 6, Chapter A5. 1993. 243 pages. - 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler. 1995. 125 pages. #### **Book 7. Automated Data Processing and Computations** #### Section C. Computer Programs - 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by pages.C. Trescott, G.F. Pinder, and S.P. Larson: USGS-TWRI Book 7, Chapter C1. 1976. 116 pages. - 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages. - 7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffrannek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI Book 7, Chapter C3. 1983. 110 pages. #### **Book 8. Instrumentation** #### Section A. Instruments for Measurement of Water Level - 8-A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS–TWRI Book 8, Chapter A1. 1968. 23 pages. - 8-A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS-TWRI Book 8, Chapter A2. 1983. 57 pages. #### Section B. Instruments for Measurement of Discharge 8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS—TWRI Book 8, Chapter B2. 1968. 15 pages. #### Book 9. Handbooks for Water-Resources Investigations ## Section A. National Field Manual for the Collection of Water-Quality Data - 9-A1. National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI Book 9, Chapter A1. 1998. 47 pages. - 9-A2. National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI Book 9, Chapter A2. 1998. 94 pages. - 9-A3. National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS—TWRI Book 9, Chapter A3. 1998. 75 pages. - 9-A4. National Field Manual for the Collection of Water-Quality Data: Collection of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI Book 9, Chapter A5. 1999. 156 pages. - 9-A5. National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI Book 9, Chapter A5. 1999. 149 pages. - 9-A6. National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F.D. Wilde and D.B. Radtke: USGS-TWRI Book 9, Chapter A6. 1998. Variously paginated. - 9-A7. National Field Manual for the Collection of Water-Quality Data: Biological Indicators, edited by D.N. Myers and F.D. Wilde: USGS-TWRI Book 9, Chapter A7. 1997 and 1999. Variously paginated. - 9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom Material Samples, by D.B. Radtke: USGS-TWRI Book 9, Chapter A8. 1998. 48 pages. - 9-A9. National Field Manual for the Collection of Water-Quality Data: Saafety in Field Activities, by S.L. Lane and R.G. Fay: USGS-TWRI Book 9, Chapter A9. 1998. 60 pages. Figure 3.--Map showing location of gaging stations in the first section of the Colorado River Basin | 08117995 | Colorado River near Gail, TX | 34 | |----------|---|----| | 08118000 | Lake J.B. Thomas near Vincent, TX | 36 | | 08120500 | Deep Creek near Dunn, TX | 38 | | 08120700 | Colorado River near Cuthbert, TX | 40 | | 08121000 | Colorado River at Colorado City, Tx | 48 | | 08123000 | Lake Colorado City near Colorado City, TX | 54 | | 08123600 | Champion Creek Reservoir near Colorado City, TX | 56 | | 08123755 | Moss Creek Lake near Coahoma, TX | 58 | | 08123800 | Beals Creek near Westbrook, TX | 60 | | | | | #### 08117995 Colorado River near Gail, TX LOCATION.--Lat 32°37'43", long 101°17'06", Borden County, Hydrologic Unit 12080002, near right downstream end of bridge on FM 1205, 5.0 mi north of junction with FM 1785, 13 mi southeast of Gail, 14 mi northwest of Vincent, and 25 mi west of Ira. DRAINAGE AREA. -- 498 mi². PERIOD OF RECORD. -- Mar. 1988 to current year. GAGE.--Water-stage recorder. Elevation of gage is 2,240 ft above sea level, from topographic map. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges and Aug. 30 to Sept. 30, which are poor. No known regulation or diversions. No flow at times. REVISIONS.—Revised maximum discharges for water years 1988-91 and revised daily mean discharges, in ft³/s, for high-water period in July 1988 are given below. These figures supersede those published in the "Water Resources Data--Texas" reports for 1988-91. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | Water
year | Date | Discharge
(ft ³ /s) | Gage height
(ft) | |---------------|----------------|-----------------------------------|---------------------| | 1988 | July 3, 1988 | 2,120 | 15.88 | | 1989 | Sept. 14, 1989 | 1,310 | 13.19 | | 1990 | Apr. 19, 1990 | 1,490 | 13.97 | | 1991 | May 3, 1991 | 1,750 | 14.81 | Daily mean discharges: July 2, 1988....788 July 3, 1988....925 TOTAL MEAN MAX MIN ANNUAL-RUNOFF (AC-FT) July 1988 2,358.36 76.1 925 .41 4,680 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR MAY JUN JUL AUG SEP JAN 7.3 5.6 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 e.00 2 .07 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 3 .00 4.5 .00 .00 .00 .00 .00 .17 .00 .00 .00 .00 3.4 1.3 4 1 4 0.0 00 0.0 0.0 27 0.0 07 00 0.0 0.0 5 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 e1.5 6 7 0.0 0.0 0.0 0.0 0.0 0.0 1 2 0.0 0.0 e2 0 44 0.0 .10 .00 . 28 .00 .00 .00 .00 .00 .00 .00 .00 e10 8 .00 5.7 .00 .00 .00 .35 .00 .00 .00 .00 .00 e.02 3.6 3.0 .00 .00 .00 .00 .00 .00 .00 .00 .00 e.00 10 .88 .00 .00 .00 .00 .00 .00 11 .00 .00 .00 .00 .00 .00 .26 .00 3.9 .00 .00 .00 12 .00 .11 .00 .00 .00 .78 .00 .00 .00 .00 .00 .00 13 .00 .04 .00 .00 .00 .14 . 00 .00 .00 .00 .00 .00 14 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 15 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 16 17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 18 .00 . 00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 19 .00 .00 .00 .00 .00 .00 20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .17 21 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 348 22 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 352 .00 23 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 147 24 24 .00 .00 .00 e5.0 .00 .00 .00 .00 .00 .00 .00 25 184 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 e.02 26 996 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 e.00 27 1000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 e.00 28 188 .00 .00 .00 1.1 .00 .00 .00 .00 .00 .00 e.0029 28 .00 .00 .00 .00 .00 .00 .00 .00 .00 e.00 30 16 .00 .00 .00 ---.00 .00 .00 .00 .00 2.1 e.00 ---31 10 ---.00 .00 .00 ---.00 ---.00 e1.5 ---TOTAL 2446.00 33.41 0 00 0 00 1 10 23.76 0 00 1 54 0.00 0 00 3.60 869.81 .77 MEAN 78.9 1.11 7.3 .000 .000 .039 .000 .050 .000 .000 .12 29.0 1000 15 MAX .00 .00 1.1 .00 1.2 .00 .00 352 .00 MTN 0.0 00 .00 0.0 0.0 0.0 0.0 0.0 .00 0.0 00 4850
1730 AC-FT 66 .00 .00 2.2 47 .00 3.1 .00 .00 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1988 - 2001, BY WATER YEAR (WY) 7.31 MEAN 5.43 48.2 11.3 4.47 15.8 4.71 1992 51.5 1990 MAX 78.9 15.6 8.42 23 8 51.2 263 166 107 22.6 49 1 1992 1992 2001 1992 1992 1992 1988 1996 1989 (WY) 2000 000 .000 .000 000 .000 .000 000 .000 .000 1990 1995 1991 1991 1993 1997 (WY) 1990 1990 1991 1990 1994 1994 ### 08117995 Colorado River near Gail, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1988 - 2001 | |---|--|--|--| | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS | FOR 2000 CALENDAR YEAR 8497.28 23.2 1080 Jun 3 .00 Jan 1 .00 Jan 1 | FOR 2001 WATER YEAR 3379.22 9.26 1000 Oct 27 .00 Oct 1 .00 Oct 1 1260 Oct 26 13.11 Oct 26 6700 .26 | 11.0
46.2
.48 1998
2060 May 25 1992
.00 Jun 7 1988
.00 Jun 7 1988
4010 Jul 3 1988
ml6.43 May 26 1992
8000
6.5 | | 50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | .00 | .00 | .00 | Estimated Result of earthen dam. #### 08118000 Lake J.B. Thomas near Vincent, TX LOCATION.--Lat 32°35'35", long 101°08'16", Scurry County, Hydrologic Unit 12080002, on upstream edge of dam 500 feet right of valve tower for Snyder pump station near center of dam on Colorado River, 8.5 mi west of Ira, 9.2 mi northeast of Vincent, and at mile 837.0. DRAINAGE AREA.--3,389 mi^2 , of which 2,371 mi^2 probably is noncontributing. Drainage area includes 455 mi^2 above Bull Creek diversion dam, of which 38 mi^2 probably is noncontributing. PERIOD OF RECORD.--Oct. 1953 to Sept. 1986, Feb. 1999 to current year. Water-quality records.--Chemical data: Feb. 1970 to May 1984. REVISED RECORDS. -- WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is sea level. Water-stage recorder and nonrecording gage read once daily from Oct. 1953 to Sept. 1986 at site 4.0 mi upstream at same datum. Nov. 4, 1953, to Feb. 7, 1955, Colorado River Municipal Water District nonrecording gage at present site and datum. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records fair. The lake is formed by a rolled earthfill dam, 14,500 ft long. Storage began in July 1952 and the dam was completed in Sept. 1952. There was no appreciable storage prior to July 1953. There are two uncontrolled emergency spillways, both cut through natural ground and located as follows: the first is a 500 ft wide cut located at the left end of dam, and the second cut is 1,600 ft wide located at the right end of dam. These spillways are designed to discharge 161,000 ft³/s (elevation, 2,275.0 ft). An uncontrolled rectangular concrete drop inlet, 38.0 by 53.0 ft at the crest, discharges into two 10.0 ft concrete conduits. In addition, there is an outlet that can release water through a 24-inch gate into a 30-inch concrete pipe. The dam was built by the Colorado River Municipal Water District to impound water for municipal and industrial supply for the cities of Big Spring, Odessa, and Snyder. A diversion dam on Bull Creek diverts water through a 13,000 ft long gravity canal into Lake J.B. Thomas. These diversions began in Nov. 1953. Conservation pool storage is 199,931 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |---------------------------------|-----------| | | (feet) | | Top of dam | 2,280.0 | | Crest of right spillway (south) | 2,267.0 | | Crest of left spillway (north) | 2,264.0 | | Crest of drop inlet | 2,258.0 | | Lowest gated outlet (invert) | 2,200.0 | COOPERATION.--The capacity table dated July 1, 1953 was derived from area and capacity curves furnished by Colorado River Municipal Water District and is based on surveys made by Freese and Nichols in 1948 and 1950. A volumetric survey by the Texas Water Development Board in Nov. 1999 has not received final approval from the Colorado River Municipal Water District. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 218,600 acre-ft, Sept. 8, 1962, elevation, 2,259.85 ft; minimum contents, 4,960 acre-ft, May 28, 1971, elevation, 2,206.43 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 30,200 acre-ft, Nov. 1, elevation, 2,221.52 ft; minimum contents, 15,390 acre-ft, Sept. 20, elevation, 2,214.35 ft. RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|--|--|---|--|---|--|--|---| | 1 | 26800 | 30120 | 28600 | 27030 | 26180 | 25470 | 24880 | 23100 | 21210 | 19020 | 17090 | 16120 | | 2 | 26710 | 30050 | 28560 | 26990 | 26150 | 25470 | 24840 | 23040 | 21200 | 18940 | 17040 | 16100 | | 3 | 26630 | 29990 | 28480 | 26970 | 26110 | 25460 | 24780 | 22910 | 21180 | 18970 | 16990 | 16050 | | 4 | 26550 | 29970 | 28440 | 26770 | 26060 | 25460 | 24700 | 22900 | 21020 | 18950 | 16940 | 16040 | | 5 | 26460 | 29980 | 28380 | 26710 | 26030 | 25440 | 24640 | 22950 | 20860 | 18910 | 16870 | 16030 | | 6 | 26320 | 29890 | 28310 | 26690 | 25990 | 25370 | 24520 | 22910 | 20780 | 18850 | 16820 | 16010 | | 7 | 26200 | 29820 | 28280 | 26650 | 25960 | 25340 | 24490 | 22800 | 20690 | 18780 | 16750 | 16030 | | 8 | 26120 | 29820 | 28240 | 26650 | 25960 | 25370 | 24420 | 22750 | 20620 | 18710 | 16650 | 16000 | | 9 | 26020 | 29810 | 28190 | 26560 | 25950 | 25370 | 24320 | 22700 | 20590 | 18640 | 16550 | 15930 | | 10 | 25950 | 29750 | 28130 | 26560 | 25850 | 25370 | 24280 | 22660 | 20540 | 18590 | 16520 | 15910 | | 11
12
13
14
15 | 25890
25870
25850
25800
25770 | 29700
29620
29540
29460
29390 | 28100
28090
27970
27860
27840 | 26550
26540
26540
26540
26520 | 25810
25780
25780
25780
25780
25810 | 25280
25280
25190
25190
25190 | 24350
24130
24050
24000
23940 | 22580
22510
22500
22600
22560 | 20460
20360
20270
20190
20110 | 18530
18440
18360
18270
18200 | 16490
16450
16360
16290
16260 | 15860
15820
15800
15750
15710 | | 16 | 25740 | 29320 | 27780 | 26420 | 25760 | 25050 | 23880 | 22520 | 20040 | 18130 | 16240 | 15650 | | 17 | 25780 | 29220 | 27690 | 26380 | 25710 | 25010 | 23770 | 22450 | 19990 | 18020 | 16200 | 15610 | | 18 | 25820 | 29140 | 27650 | 26400 | 25660 | 25010 | 23740 | 22360 | 19880 | 17950 | 16270 | 15580 | | 19 | 25780 | 29110 | 27610 | 26420 | 25640 | 25010 | 23690 | 22260 | 19730 | 17870 | 16530 | 15520 | | 20 | 25750 | 29050 | 27470 | 26470 | 25610 | 24940 | 23640 | 22170 | 19670 | 17810 | 16500 | 15480 | | 21 | 25700 | 29000 | 27440 | 26410 | 25550 | 24910 | 23570 | 22000 | 19610 | 17760 | 16440 | 15840 | | 22 | 25680 | 28960 | 27440 | 26320 | 25470 | 24910 | 23610 | 21950 | 19540 | 17710 | 16370 | 16590 | | 23 | 25640 | 28940 | 27280 | 26280 | 25450 | 24860 | 23460 | 21880 | 19460 | 17640 | 16350 | 17270 | | 24 | 25730 | 29000 | 27190 | 26270 | 25650 | 24860 | 23390 | 21730 | 19390 | 17550 | 16330 | 17510 | | 25 | 25710 | 28940 | 27190 | 26270 | 25330 | 24840 | 23330 | 21640 | 19340 | 17480 | 16260 | 17550 | | 26
27
28
29
30
31 | 25820
27240
29170
29950
30040
30060 | 28890
28820
28780
28680
28640 | 27390
27290
27230
27160
27120
27050 | 26270
26270
26310
26490
26320
26220 | 25270
25280
25460
 | 24770
24760
24730
24810
24910
24930 | 23270
23190
23110
23030
22980 | 21530
21490
21420
21340
21270
21280 | 19280
19230
19170
19100
19060 | 17410
17340
17290
17260
17240
17180 | 16220
16240
16250
16210
16170
16130 | 17540
17500
17450
17400
17360 | 08118000 Lake J.B. Thomas near Vincent, TX--Continued | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | MEAN | 26530 | 29380 | 27790 | 26510 | 25750 | 25110 | 23930 | 22280 | 20090 | 18120 | 16480 | 16300 | | MAX | 30060 | 30120 | 28600 | 27030 | 26180 | 25470 | 24880 | 23100 | 21210 | 19020 | 17090 | 17550 | | MIN | 25640 | 28640 | 27050 | 26220 | 25270 | 24730 | 22980 | 21270 | 19060 | 17180 | 16130 | 15480 | | (+) | 2221.46 | 2220.87 | 2220.18 | 2219.81 | 2219.47 | 2219.23 | 2218.32 | 2217.50 | 2216.38 | 2215.36 | 2214.78 | 2215.46 | | (@) | +3190 | -1420 | -1590 | -830 | -760 | -530 | -1950 | -1700 | -2220 | -1880 | -1050 | +1230 | CAL YR 2000 MAX 37020 MIN 25640 (@) -2620 WTR YR 2001 MAX 30120 MIN 15480 (@) -9510 - (+) Elevation, in feet, at end of month.(@) Change in contents, in acre-feet. #### 08120500 Deep Creek near Dunn, TX LOCATION.--Lat $32^{\circ}34'25$ ",
long $100^{\circ}54'27$ ", Scurry County, Hydrologic Unit 12080002, at right end of downstream side of bridge on Farm Road 1606, 1.5 mi northwest of Dunn, 2.7 mi upstream from Sulphur Draw, and 9.6 mi upstream from mouth. DRAINAGE AREA.--198 mi², of which 10 mi² probably is noncontributing. PERIOD OF RECORD.--Apr. 1953 to Sept. 1986, July 2001 to current year. Water-quality records.--Specific conductance: Mar. 1953 to Sept. 1954. Water temperature: Mar. 1953 to Sept. 1954. REVISED RECORDS. -- WSP 1922: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 2,172.17 ft above sea level (Texas Department of Transportation bridge plans). Prior to Apr. 21, 1955, nonrecording gage at site 128 ft left at same datum. Water-stage recorder 128 ft left at same datum from Apr. 1953 to Sept. 1986. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. No known regulation or diversions. No flow many days each year. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1881, 36,400 ft³/s June 19, 1939, by slope-area measurement at site 8.0 mi upstream from gage. Flood in 1892 reached about same stage as that of June 19, 1939, from information by local residents. | | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTOBER
VALUES | 2000 TO | SEPTEMBER | 2001 | | | |--|--------------------------------|------------|---------|-----------|-----------|--------------------------------|---------------------------------|----------|-----------|--|--|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | | | .00 | .00 | | 2 | | | | | | | | | | | .00 | .00 | | 3 | | | | | | | | | | | .00 | .15 | | 4 | | | | | | | | | | | .00 | .00 | | 5 | | | | | | | | | | | .00 | 60 | | | | | | | | | | | | | | | | 6 | | | | | | | | | | | .00 | 4.5 | | 7 | | | | | | | | | | | .00 | 1.1 | | 8 | | | | | | | | | | | .00 | .46 | | 9 | | | | | | | | | | | .00 | .14 | | 10 | | | | | | | | | | | .00 | .05 | | 11 | | | | | | | | | | | .00 | .14 | | 12 | | | | | | | | | | | .00 | .25 | | 13 | | | | | | | | | | | .00 | .29 | | 14 | | | | | | | | | | | .00 | .15 | | 15 | | | | | | | | | | | .00 | .04 | | | | | | | | | | | | | | | | 16 | | | | | | | | | | | .00 | .01 | | 17 | | | | | | | | | | | .00 | .00 | | 18 | | | | | | | | | | | .00 | .00 | | 19 | | | | | | | | | | | .00 | .00 | | 20 | | | | | | | | | | | .00 | .00 | | 21 | | | | | | | | | | | 00 | 1 4 | | 22 | | | | | | | | | | | .00 | 1.4
.58 | | 23 | | | | | | | | | | | .00 | 1.6 | | 24 | | | | | | | | | | .00 | .00 | .67 | | 25 | | | | | | | | | | .00 | .00 | .37 | | | | | | | | | | | | | | | | 26 | | | | | | | | | | .00 | .00 | .35 | | 27 | | | | | | | | | | .00 | .00 | .43 | | 28 | | | | | | | | | | .00 | .00 | .44 | | 29 | | | | | | | | | | .00 | .00 | .38 | | 30 | | | | | | | | | | .00 | .00 | .33 | | 31 | | | | | | | | | | .00 | .00 | | | TOTAL | | | | | | | | | | | 0.00 | 73.83 | | MEAN | | | | | | | | | | | .000 | 2.46 | | MAX | | | | | | | | | | | .00 | 60 | | MTN | | | | | | | | | | | .00 | .00 | | AC-FT | | | | | | | | | | | .00 | 146 | | | | | | | | | | | | | | | | STATIST | ICS OF MO | NTHLY MEAN | DATA FO | R WATER Y | EARS 1953 | - 200 | lh, BY WATER | YEAR (WY | () | | | | | MEAN | 9.09 | | 1.47 | 1.39 | 3.30 | 2.29 | | 39.7 | 26.1 | 7.01 | 22.0 | 15.2 | | MAX | 96.9 | | 5.92 | 5.55 | 58.3 | 20.5 | | 253 | 252 | 66.0 | 316 | 214 | | (WY) | 1956 | | 1985 | 1983 | 1957 | 1973 | | 1957 | 1967 | 1959 | 1972 | 1980 | | MIN | .000 | | .000 | .000 | .000 | .000 | | .005 | .000 | .000 | .000 | .000 | | (WY) | 1955 | 1955 | 1954 | 1955 | 1965 | 1954 | 1955 | 1967 | 1953 | 1954 | 1956 | 1954 | | SUMMARY | STATISTI | CS | | | FOR 20 | 01 WAT | ER YEAR | | | WATER YEA | RS 1953 | - 2001h | | | MEAN
ANNUAL M
ANNUAL ME. | | | | | | | | | 11.9
38.5
1.14 | | 1957
1970 | | HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE | | | | | cc27 | .00
.00
.00
9
5.98 | Sep 5 Jul 24 Jul 24 Sep 5 Sep 5 | | | 6990
.00
.00
c20700
a31.28 | Aug 14 1972
Apr 1 1953
Apr 1 1953
Aug 14 1972 | | | | RUNOFF (A | | | | | | - | | | 8630 | | | | | ENT EXCEE | | | | | .58 | | | | 3.9 | | | | | ENT EXCEE | | | | | .00 | | | | . 57 | | | | 90 PERC | ENT EXCEE | DS | | | | .00 | | | | .00 | | | | | | | | | | | | | | | | | h See PERIOD OF RECORD paragraph. c From rating curve extended above $94 \text{ ft}^3/\text{s}$. c From rating curve extended above $12,300 \text{ ft}^3/\text{s}$ on basis of velocity area study. a From floodmark. ### 08120500 Deep Creek near Dunn, TX--Continued #### 08120700 Colorado River near Cuthbert, TX LOCATION.--Lat 32°28'38", long 100°56'58", Mitchell County, Hydrologic Unit 12080002, on left bank at downstream side of bridge on Farm Road 1808, 4.0 mi downstream from Deep Creek, 4.8 mi east of Cuthbert, 8.0 mi northwest of Colorado City, and at mile 810.0. DRAINAGE AREA.--3,912 mi^2 , of which 2,381 mi^2 probably is noncontributing. WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Mar. 1965 to current year. REVISED RECORDS. -- WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 2,073.49 ft above sea level. Oct. 29, 1987 to Oct. 23, 1989, water-stage recorder at site on right bank 300 ft downstream at same datum. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Since installation of gage in Mar. 1965, at least 10% of contributing drainage area has been regulated. There are numerous diversions from Lake J.B. Thomas for municipal use and for oil field operations. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Floods in 1941 and 1946 reached a stage of 36.1 ft, from Texas Department of Transportation bridge plans. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | DAILY MEAN VALUES | | | | | | | | | | | | |--|--|---|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|------------------------------------|--|-------------------------------------|---|---------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | 2.0
.88
2.9
2.8
1.6 | 2.8
1.9
1.3
1.4
2.2 | 4.0
3.3
3.1
3.1
2.9 | 3.6
2.9
2.8
3.0
3.0 | 11
20
16
10 | 5.0
5.1
5.0
5.1
5.4 | 2.3
23
9.4
14
30 | .93
4.0
1.2
.61
.49 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
1.1
7.3
26 | | 6
7
8
9
10 | .00
.00
.00
.00 | .96
.70
2.0
5.2
9.5 | 2.6
2.2
2.0
2.0
2.0 | 3.1
3.6
3.5
3.1
3.9 | 3.2
3.3
3.6
3.7
6.5 | 9.0
5.9
5.9
6.6
9.3 | 5.8
5.5
5.5
5.6 | 33
12
6.9
5.3
4.3 | .32
.14
.05
.02 | .00
.00
.00
.00 | .00
.00
.00
.00 | 18
4.9
2.7
.69
.19 | | 11
12
13
14
15 | .00
.00
.00
.00 | 2.8
1.2
.80 | 1.6
1.2
1.8
2.1
2.6 | 6.5
9.5
6.7
4.6
3.6 | 6.3
4.4
3.8
5.4 | 7.0
5.6
5.1
5.2
5.1 | 5.5
5.2
5.1
5.0
6.1 | 3.7
3.0
2.6
3.1
4.6 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .06
.02
.00
.00 | | 16
17
18
19
20 | .00
12
18
5.3
.88 | .87
.87
.93
1.1
1.2 | | | 16
11
7.0
5.3
4.8 | | | | .00
.00
.00
.00 | .00
.00
.00
.00 | .85
.00
.00
.00 | .00
.00
.00
.00 | | 21
22
23
24
25 | .37
.29
.20
14
23 | 15 | | | | | | .34
.19
.12
.06 | | .00 | .17
.62
.11
.01 | 13
30
28
5.4
1.3 | | 26
27
28
29
30
31 | 155
24
11
18
11
5.0 | 10
5.9
3.9
3.0
2.9 | | | 3.5
3.6
4.8
 | | | | | | 5.2
4.2
.60
.05
1.7 | .46
.21
.12
.09 | | | 298.04
9.61
155
.00
591 | 100.02
3.33
15
.70
198 | 66.38
2.14
4.4
.88
132 | 119.7
3.86
9.5
2.7
237 | 142.8
5.10
16
2.8
283 | 255.5
8.24
23
4.6
507 | 154.8
5.16
6.8
2.6
307 | 165.37
5.33
33
.01
328 | 7.76
.26
4.0
.00 | 0.00
.000
.00
.00 | 20.17
.65
6.6
.00
40 | 139.59
4.65
30
.00
277 | | STATIS | TICS OF M | MEA | N DATA F | OR WATER Y | EARS 1965 | - 2001, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 26.9
304
1987
.000
1969 | 7.80
37.1
1985
.092
1971 | 7.70
51.5
1992
.53
1971 | 7.05
30.2
1992
.68
1971 | 10.8
86.5
1992
.82
1971 | 21.3
420
2000
.20
1971 | 27.1
204
1981
.39
1971 | 69.3
403
1965
.044
1967 | 80.8
592
1982
.000
1984 | 17.3
131
1988
.000
1970 | 52.7
771
1971
.000
1970 | 47.0
810
1980
.000
1983 | | SUMMAR | Y STATIST | CICS | FOR | 2000 CALEN | IDAR YEAR | F | OR 2001 W | ATER YEAR | | WATER YE | EARS 1965 | - 2001 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
ANNUAL
10 PER
50 PER | MEAN T ANNUAL M T DAILY M DAILY ME SEVEN-DA M PEAK FI RUNOFF (CENT EXCE | MEAN
MEAN MEAN MEAN MEAN MEAN MEAN MEAN | | 2.0 | Mar 23
) Aug 3
) Aug 3 | | 2.3 | Oct 26
0 Oct 1
0 Oct 1
0 Oct 26
0 Oct 26 | | 30.8
104
2.59
8770
.00
c15100
p29.55
22310
24 | Sep
) Apr
) Apr
Mar
5 Mar | 1980
1998
29 1980
13 1965
13 1965
23 2000
23 2000 | | 90 PER | CENT EXCE | FUS | | .00 | J | | .00 | U | | .00 | J | | c From rating curve extended above $14,800 \text{ ft}^3/\text{s}$. p Observed. ### 08120700 Colorado River near Cuthbert, TX--Continued #### 08120700 Colorado River near Cuthbert, TX--Continued #### WATER-OUALITY RECORDS #### PERIOD OF RECORD . -- CHEMICAL DATA: Mar. 1965 to Sept. 1999, Feb. 2001 to current year. #### PERIOD OF DAILY RECORD . - SPECIFIC CONDUCTANCE: Mar. 1965 to May 1980 (local observer), June 1980 to Oct. 1987, Nov. 1987 to Sept. 1989 (local observer), Oct. 1989 to Sept. 1999, Feb. 2001 to current year. WATER TEMPERATURE: Mar. 1965 to May 1980 (local observer), Apr. 1983 to Oct. 1987, Nov. 1987 to Sept. 1989 (local observer), Oct. 1989 to Sept. 1999, Feb. 2001 to current year. INSTRUMENTATION.--Specific conductance recorder from Mar. 1965 to Oct. 1987, Oct. 1989 to Sept. 1999, Feb. 2001 to current year. Water temperature recorder from Apr. 1983 to Oct. 1987, Oct. 1989 to Sept. 1999, Feb. 2001 to current year. REMARKS.--Records good. Interruptions in the record were due to no flow. No flow June 10 to Aug. 14, Aug. 17-20, 25, Sept. 1, 2, 13-20. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous years using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request. #### EXTREMES FOR PERIOD OF DAILY RECORD. - EXPECTS FOR PARTON OF DATH RECORD. SPECIFIC CONDUCTANCE: Maximum, 70,000 microsiemens/cm, Nov. 17, 1968; minimum, 102 microsiemens/cm, Sept. 28, 1980. WATER TEMPERATURE: Maximum, 36.0°C, Aug. 7, 1985; minimum, 0.0°C, on many days during winter months. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 14,100 microsiemens/cm, May 2; minimum, 232 microsiemens/cm, Aug. 15. WATER TEMPERATURE: Maximum, 33.2°C, June 6; minimum, 3.2°C, Feb. 2. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | |-----------|------|---|--|---|--|---|---|---|--|--|--|--|---| | FEB 21 | 1530 | 4.4 | 3620 | 12.4 | 563 | 144 | 49.7 | 525 | 9.63 | 7.89 | 413 | 832 | .6 | | MAR
29 | 1215 | 5.5 | 3030 | 11.4 | 509 | 133 | 42.8 | 412 | 7.96 | 7.18 | 350 | 662 | .6 | STLTCA. DIS-SOLVED (MG/L DATE SIO2) (00955) FEB 21... 2.5 MAR 29... 1.1 43 08120700 Colorado River near Cuthbert, TX--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------|----------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------| | | | OCTOBER | R | N | OVEMBER | | DI | ECEMBER | | | JANUARY | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7
8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12
13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | 18
19 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | 21
22 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | 26
27 | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30
31 | MONTH | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | 7 | | MARCH | | | APRIL | | | MAY | | | 1 | 4790 | 4440 | 4570 | 5890 | 4840 | 5360 | 5010 | 4340 | 4650 | 4080 | 3930 | 4030 | | 2
3 | 5230
5540 | 4790
5230 | 5010
5450 | 5040
7480 | 3380
5040 | 4310
6070 | 5070
4800 | 4790
4630 | 4950
4700 | 14100
13600 | 3830
5200 | 8380
8520 | | 4 | 5540 | 5460 | 5500 | 8250 | 7480 | 7940 | 4870 | 4720 | 4790 | 5200 | 2330 | 3830 | | 5 | 5690 | 5530 | 5620 | 8440 | 6410 | 8100 | 4900 | 4730 | 4820 | 5480 | 1680 | 3350 | | 6 | 5750 | 5670 | 5720 | 6410 | 4930 | 5120 | 4790 | 4720 | 4760 | 5480 | 3170 | 3730 | | 7 | 5770 | 5640 | 5700 | 5530 | 4980 | 5170 | 4820 | 4700 | 4760 | 4460 | 3580 | 4250 | | 8
9 | 5670
5550 | 5510
5430 | 5640
5500 | 5950
6190 | 5530
5910 | 5820
6060 | 4780
4840 | 4720
4780 | 4750
4810 | 4400
4140 | 4130
3950 | 4230
4040 | | 10 | 5590 | 5360 | 5440 | 6290 | 4280 | 5390 | 4830 | 4670 | 4750 | 4030 | 3970 | 4000 | | 11 | 5600 | 3820 | 4270 | 5120 | 4360 | 4810 | 4740 | 4570 | 4660 | 4100 | 4020 | 4060 | | 12 | 4390 | 3870 | 4090 | 5560 | 5120 | 5360 | 4750 | 4600 | 4680 | 4190 | 4060 | 4130 | | 13 | 5360 | 4390 | 4880 | 5860 | 5560 | 5690 | 4740 | 4650 | 4700 | 4220 | 4130 | 4180 | | 14
15 | 5720 | 3920
3310 | 5510
4600 | 5990
6010 | 5860
5770 | 5910
5890 | 4790
4790 | 4700
4720 | 4740
4750 | 4270
4190 | 4170 | 4230
4130 | | | | | | | | | | | | | | | | 16
17 | 11400
11700 | 5260
8950 | 8070
10000 | 5910
5740 | 5570
5590 | 5730
5660 | 4870
4790 | 4730
4530 | 4800
4690 | 4030
3830 | 3830
3380 | 3940
3620 | | 18 | 9090 | 6580 | 8160 | 5600 | 5300 | 5410 | 4530 | 4260 | 4380 | 3400 | 3110 | 3220 | | 19 | 6580 | 4940 | 5670 | 5330 | 4950 | 5150 | 4290 | 3990 | 4180 | 3160 | 3100 | 3130 | | 20 | 4940 | 3990 | 4410 | 5190 | 5080 | 5140 | 4100 | 3970 | 4040 | 3300 | 3160 | 3220 | | 21 | 3990 | 3630 | 3720 | 5190 | 4610 | 4910 | 4150 | 4070 | 4110 | 3520 | 3300 | 3400 | | 22
23 | 3650
3780 | 3510
3550 | 3560
3640 | 4910
5120 | 4610
3430 | 4690
4990 | 4180
4250 | 4070
4130 | 4130
4200 | 3700
3840 | 3500
3690 | 3570
3760 | | 24 | 4220 | 3780 | 4010 | 8600 | 1890 | 4200 | 4230 | 3950 | 4020 | 4080 | 3830 | 3950 | | 25 | 4490 | 4220 | 4350 | 8590 | 3480 | 5740 | 3970 | 3860 | 3920 | 4400 | 4060 | 4180 | | 26 | 4890 | 4490 | 4720 | 6090 | 5480 | 5980 | 3990 | 3920 | 3960 | 4720 | 4340 | 4460 | | 27 | 4980 | 4880 | 4920 | 5890 | 3750 | 4720 | 4160 | 3990 | 4070 | 4940 | 4620 | 4770 | | 28
29 | 5160 | 4800 | 5010 | 3750
3000 | 3000
2900 | 3280
2940 | 4390
4410 | 4160
4290 | 4280
4360 | 5070
5300 | 4870
5040 | 4970
5160 | | 30 | | | | 3330 | 2930 | 3050 | 4290 | 3900 | 4190 | 5320 | 5100 | 5180 | | 31 | | | | 4340 | 3330 | 3780 | | | | 5500 | 5250 | 5380 | | MONTH | 11700 | 3310 | 5280 | 8600 | 1890 | 5240 | 5070 | 3860 | 4490 | 14100 | 1680 | 4350 | 08120700 Colorado River near Cuthbert, TX--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |-------|------|------|------|-----|------|------|------|--------|------|------|----------|------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | lR. | | 1 | 5620 | 4040 | 5430 | | | | | | | | | | | 2 | 7440 | 3380 | 5440 | | | | | | | | | | | 3 | 3380 | 2460 | 2690 | | | | | | | 3460 | 2140 | 2560 | | 4 | 2480 | 2400 | 2450 | | | | | | | 6070 | 2650 | 4550 | | 5 | 2460 | 2400 | 2440 | | | | | | | 4400 | 1260 | 2650 | | 6 | 2470 | 2410 | 2450 | | | | | | | 1900 | 1330 | 1810 | | 7 | 2570 | 2460 | 2500 | | | | | | | 2080 | 1880 | 1980 | | 8 | 2730 | 2570 | 2650 | | | | | | | 3240 | 2080 | 3020 | | 9 | 2850 | 2720 | 2780 | | | | | | | 3200 | 2850 | 2980 | | 10 | | | | | | | | | | 2860 | 2680 | 2780 | | 11 | | | | | | | | | | 2740 | 2690 | 2710 | | 12 | | | | | | | | | | 2800 | 2720 | 2760 | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | 360 | 232 | 263 | | | | | 16 | | | | | | | 388 | 345 | 367 | | | | | 17 | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 21 | | | | | | | 1670 | 750 | 799 | 6930 | 705 | 3700 | | 22 | | | | | | | 4520 | 1670 | 3600 | 6930 | 1040 | 2700 | | 23 | |
| | | | | 3620 | 2950 | 3240 | 4690 | 1920 | 3590 | | 24 | | | | | | | 3830 | 3130 | 3340 | 4100 | 3860 | 3920 | | 25 | | | | | | | | | | 4490 | 4050 | 4290 | | 26 | | | | | | | 3530 | 399 | 2670 | 4700 | 4490 | 4630 | | 27 | | | | | | | 4320 | 738 | 2510 | 4840 | 4700 | 4760 | | 28 | | | | | | | 3600 | 2810 | 3190 | 4940 | 4840 | 4880 | | 29 | | | | | | | 2960 | 2680 | 2830 | 5070 | 4940 | 5010 | | 30 | | | | | | | 3100 | 369 | 2420 | 5240 | 5070 | 5130 | | 31 | | | | | | | | | | | | | | MONTH | WATER YEAR > 08120700 Colorado River near Cuthbert, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |--|---|--|---|--|---|---|--|--|--|---|--|--| | | | OCTOBER | | | NOVEMBER | | Γ | DECEMBER | | | JANUARY | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3
4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8
9 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 11
12 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | 18
19 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 0.1 | | | | | | | | | | | | | | 21
22 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | 28
29 | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | | | | | | | | | | | | | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | 6 1 | 10.0 | | 7 0 | 20.6 | | 16 5 | 26.4 | | 22.8 | | 1 2 | 8.6
8.7 | FEBRUARY 3.6 3.2 | 6.1
6.0 | 10.0
10.0 | MARCH
4.7
8.7 | 7.0
9.4 | 20.6
24.5 | APRIL
12.9
17.1 | 16.5
20.4 | 26.4
26.4 | MAY
19.7
22.2 | 22.8
24.0 | | 2 3 | 8.6
8.7
9.0 | 3.6
3.2
3.5 | 6.0
6.4 | 10.0
13.1 | 4.7
8.7
9.2 | 9.4
10.9 | 24.5
24.0 | 12.9
17.1
19.2 | 20.4
21.4 | 26.4
24.3 | 19.7
22.2
22.2 | 24.0
23.3 | | 2
3
4 | 8.6
8.7
9.0
10.3 | 3.6
3.2
3.5
5.3 | 6.0
6.4
7.7 | 10.0
13.1
16.3 | 4.7
8.7
9.2
10.6 | 9.4
10.9
13.1 | 24.5
24.0
25.4 | 12.9
17.1
19.2
18.3 | 20.4
21.4
21.8 | 26.4
24.3
22.9 | 19.7
22.2
22.2
20.2 | 24.0
23.3
21.3 | | 2
3
4
5 | 8.6
8.7
9.0 | 3.6
3.2
3.5
5.3
4.8 | 6.0
6.4
7.7
8.1 | 10.0
13.1 | 4.7
8.7
9.2 | 9.4
10.9 | 24.5
24.0
25.4
25.7 | 12.9
17.1
19.2
18.3
21.4 | 20.4
21.4
21.8
23.5 | 26.4
24.3 | 19.7
22.2
22.2 | 24.0
23.3
21.3
21.6 | | 2
3
4
5 | 8.6
8.7
9.0
10.3
11.1 | 3.6
3.2
3.5
5.3
4.8 | 6.0
6.4
7.7
8.1
9.9 | 10.0
13.1
16.3
16.0 | 4.7
8.7
9.2
10.6
10.4 | 9.4
10.9
13.1
12.9 | 24.5
24.0
25.4
25.7 | 12.9
17.1
19.2
18.3
21.4 | 20.4
21.4
21.8
23.5 | 26.4
24.3
22.9
24.2 | 19.7
22.2
22.2
20.2
19.2 | 24.0
23.3
21.3
21.6 | | 2
3
4
5
6
7 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9 | 6.0
6.4
7.7
8.1
9.9 | 10.0
13.1
16.3
16.0
16.2
17.6 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2 | 9.4
10.9
13.1
12.9
13.4
14.2 | 24.5
24.0
25.4
25.7
24.2
23.2 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5 | 20.4
21.4
21.8
23.5
21.9
20.2 | 26.4
24.3
22.9
24.2
25.9
23.8 | 19.7
22.2
22.2
20.2
19.2 | 24.0
23.3
21.3
21.6
22.8
21.9 | | 2
3
4
5 | 8.6
8.7
9.0
10.3
11.1 | 3.6
3.2
3.5
5.3
4.8 | 6.0
6.4
7.7
8.1
9.9 | 10.0
13.1
16.3
16.0 | 4.7
8.7
9.2
10.6
10.4 | 9.4
10.9
13.1
12.9 | 24.5
24.0
25.4
25.7 | 12.9
17.1
19.2
18.3
21.4 | 20.4
21.4
21.8
23.5 | 26.4
24.3
22.9
24.2 | 19.7
22.2
22.2
20.2
19.2 | 24.0
23.3
21.3
21.6 | | 2
3
4
5
6
7
8 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0 | 6.0
6.4
7.7
8.1
9.9
10.9 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7 | 19.7
22.2
22.2
20.2
19.2
19.9
20.8
19.7 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3 | | 2
3
4
5
6
7
8
9 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9
22.7 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6 | 19.7
22.2
22.2
20.2
19.2
19.9
20.8
19.7
21.0
22.3 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8 | | 2
3
4
5
6
7
8
9 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3 | 19.7
22.2
22.2
20.2
19.2
19.9
20.8
19.7
21.0 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
| | 2
3
4
5
6
7
8
9
10
11
12
13 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.8 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9
22.7
19.1
17.9
19.3 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0 | 19.7
22.2
22.2
20.2
19.2
19.9
20.8
19.7
21.0
22.3
22.6
22.9
21.4 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.8 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
14.4 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.8 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3
13.3
13.4
12.1 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5
16.4
14.9
17.5
20.3 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0
27.4 | 19.7
22.2
22.2
20.2
19.2
19.9
20.8
19.7
21.0
22.3
22.6
22.9
21.4
22.1 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.8
24.6 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.6
15.3
14.4 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
14.4
11.5 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.2
16.2 | 4.7
8.7
9.2
10.6
10.4
11.2
14.5
13.1
11.3
13.3
13.3
12.1
13.0
11.1 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5
16.4
14.9
17.5
20.3
20.3 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0
27.4
28.3 | 19.7
22.2
22.2
20.2
19.2
19.9
20.8
19.7
21.0
22.3
22.6
22.9
21.4
22.1
22.5 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.8
24.6
25.4 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.3
14.4 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
14.4
11.5 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.2
16.2 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3
13.3
13.4
12.1
13.0
11.1 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
15.9
14.8
14.9
13.7 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
20.5
21.5
16.4
14.9
17.5
20.3
20.3 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0
27.4
28.3 | 19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.0
24.6
25.4
25.7 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.3
14.4 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
14.4
11.5
8.9
8.5 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.8
17.8
17.2
16.2 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3
13.3
13.4
12.1
13.0
11.1 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6
24.1
21.2 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
20.5
21.5
16.4
14.9
17.5
20.3
20.3 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0
27.4
28.3 | 19.7 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.8
24.6
25.4 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.3
14.4
9.9
11.0
11.7
14.0 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3
8.0
6.2
6.9
7.7 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
14.4
11.5
8.9
8.5
1.0.6 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.2
16.2 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3
13.3
13.4
12.1
13.0
11.1
8.8
10.3
9.6
8.9 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7
12.2
11.6
10.3
11.1 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6
24.1
21.2 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5
16.4
14.9
17.5
20.3
20.3
20.3 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7
14.9 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0
27.4
28.3
28.0
29.6
30.8
27.4 | 19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.3 23.6 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.6
25.4
25.7
26.3
26.3
26.5
25.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.6
15.3
14.4 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
4.1.0
13.5
9.3 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
14.4
11.5
8.9
8.5
9.1 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.2
16.2 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3
13.3
13.4
12.1
13.0
11.1 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6
24.1
21.2 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5
21.5
20.3
20.3
20.3
19.0
14.3
13.0 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7
14.9 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0
27.4
28.3
28.0
29.6
30.8 | 19.7
22.2
22.2
20.2
19.9
20.8
19.7
21.0
22.3
22.6
22.9
21.4
22.1
22.5 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.8
24.6
25.4
25.7
26.3
26.9 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.3
14.4
9.9
11.0
11.7
14.0 |
3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3
8.0
6.2
6.9
7.7 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
14.4
11.5
8.9
8.5
1.0.6 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.2
16.2 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3
13.3
13.4
12.1
13.0
11.1
8.8
10.3
9.6
8.9 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7
12.2
11.6
10.3
11.1 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6
24.1
21.2 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5
16.4
14.9
17.5
20.3
20.3
20.3 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7
14.9 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0
27.4
28.3
28.0
29.6
30.8
27.4 | 19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.3 23.6 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.6
25.4
25.7
26.3
26.3
26.5
25.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.3
14.4
9.9
11.0
11.7
11.7 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3
8.0
6.2
6.9
7.7
9.1 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
11.5
8.9
8.5
9.1
10.3
11.9
9.6 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.8
17.8
17.8
17.8
17.8
17.8
17.7
16.2 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3
13.3
13.4
12.1
13.0
11.1
8.8
10.3
9.6
8.9
8.8 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7
12.2
11.6
10.3
11.1
12.9 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6
24.1
21.2
17.6
20.7
23.1 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
20.5
21.5
16.4
14.9
17.5
20.3
20.3
19.0
14.3
13.0
15.0
18.4
20.8
20.5 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7
14.9
17.5
20.6 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.6
27.0
26.8
27.0
27.4
28.3
28.0
29.6
30.8
27.4
27.3 | 19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.3 23.6 21.3 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.0
25.4
25.4
25.7
26.3
26.9
25.5
23.8 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.6
15.3
14.4
9.9
11.0
11.7
14.0
15.8 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3
8.0
6.2
6.9
7.7
9.1 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
14.4
11.5
8.9
8.5
9.1
10.6
12.3
11.9
10.9 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.2
16.2
15.3
13.4
11.5
13.9
17.4 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3
13.3
13.4
12.1
13.0
11.1
8.8
8.9
8.9
8.8 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7
12.2
11.6
10.3
11.1
12.9 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6
24.1
21.2
17.6
20.7
23.1 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5
20.3
20.3
20.3
20.3
19.0
14.3
13.0
15.0
18.4
20.8
20.8
20.5 | 20.4
21.4
21.8
23.5
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7
14.9
17.5
20.6 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.6
27.0
26.8
27.0
27.4
28.3
28.0
29.6
30.8
27.4
27.3
27.4 | 19.7
22.2
22.2
20.2
19.2
19.9
20.8
19.7
21.0
22.3
22.6
22.9
21.4
22.1
22.5
23.3
23.3
23.6
21.3 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.0
24.6
25.4
25.7
26.3
26.9
25.5
23.8
20.3
21.1 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.3
14.4
9.9
11.0
11.7
11.7 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3
8.0
6.2
6.9
7.7
9.1 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
11.5
8.9
8.5
9.1
10.3
11.9
9.6 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.8
17.8
17.8
17.8
17.8
17.8
17.7
16.2 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3
13.3
13.4
12.1
13.0
11.1
8.8
10.3
9.6
8.9
8.8 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7
12.2
11.6
10.3
11.1
12.9 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6
24.1
21.2
17.6
20.7
23.1 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
20.5
21.5
16.4
14.9
17.5
20.3
20.3
19.0
14.3
13.0
15.0
18.4
20.8
20.5 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7
14.9
17.5
20.6 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.6
27.0
26.8
27.0
27.4
28.3
28.0
29.6
30.8
27.4
27.3 | 19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.3 23.6 21.3 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.0
25.4
25.4
25.7
26.3
26.9
25.5
23.8 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.6
15.3
14.4
9.9
11.0
11.7
14.0
15.8 | 3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3 8.0 6.2 6.9 7.7 9.1 11.0 8.9 9.1 11.4 8.8 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
14.4
11.5
8.9
8.5
9.1
10.6
12.3
11.9
9.6
10.7
12.7
11.8 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.2
16.2
15.3
13.4
11.5
13.9
17.4 | 4.7
8.7
9.2
10.6
10.4
11.2
14.5
13.1
11.3
13.3
13.4
12.1
13.0
11.1
8.8
8.9
8.8
8.9
8.8 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7
12.2
11.6
10.3
11.1
12.9
15.5
16.8
18.2
13.9 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6
24.1
21.2
17.6
20.7
23.1 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5
20.3
20.3
19.0
14.3
13.0
15.0
18.4
20.8
20.5
17.0
15.6
15.8 | 20.4
21.4
21.8
23.5
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7
14.9
17.5
20.6
22.8
21.8
21.8
21.8 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0
27.4
28.3
28.0
29.6
30.8
27.4
27.3
24.4
27.3 | 19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3 17.4 14.8 15.7 18.2 17.3 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.0
24.6
25.4
25.7
26.3
26.9
25.5
23.8
20.3
21.1
22.1
21.7 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.6
15.3
14.4
9.9
11.0
11.7
14.0
15.8 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3
8.0
6.9
7.7
9.1
11.0
8.9
11.4
8.8 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
14.4
11.5
8.9
9.1
10.6
12.3
11.9
9.6
10.7
11.8 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.2
16.2
15.3
13.4
11.5
13.9
17.4
19.6
20.4
22.1
17.5
14.1 |
4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3
13.3
13.4
12.1
13.0
11.1
8.8
10.3
9.6
8.9
8.8
11.8
13.4
14.2
12.0
11.0 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
15.9
14.8
14.9
13.7
12.2
11.6
10.3
11.1
12.9
15.5
16.8
18.2
13.9
12.5 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6
24.1
21.2
17.6
20.7
23.1
25.7
23.2 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5
16.4
14.9
17.5
20.3
20.3
19.0
14.3
13.0
15.0
18.4
20.8
20.5
17.0
15.6
15.6
15.8 | 20.4
21.4
21.8
23.5
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7
14.9
17.5
20.6
22.8
21.8
21.8
21.9
21.9
22.9
22.1
22.9
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0
27.4
28.3
28.0
29.6
30.8
27.4
27.3
24.4
26.7
26.8
27.4
27.3 | 19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3 17.4 14.8 15.7 18.2 17.3 19.8 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.0
24.6
25.4
25.7
26.9
25.5
23.8
20.8
20.3
21.1
21.7 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.6
15.3
14.4
9.9
11.0
11.7
14.0
15.8
13.7
14.0
15.1 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3
8.0
6.2
6.9
7.7
9.1
11.0
8.9
9.1
11.4
8.8 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
17.7
7.8
10.0
13.1
14.4
11.5
8.9
8.5
9.1
10.6
12.7
11.8
13.6
14.7
12.7
11.8 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.2
16.2
15.3
13.4
11.5
13.9
17.4
19.6
20.4
22.1
17.5
14.1 | 4.7
8.7
9.2
10.6
10.4
11.2
14.5
13.1
11.3
13.3
13.4
12.1
13.0
11.1
8.8
10.3
9.6
8.9
8.8
11.8
14.2
12.0
11.0 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7
12.2
11.6
10.3
11.1
12.9
15.5
16.8
18.2
13.9
12.5 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6
24.1
21.2
17.6
20.7
23.1
25.7
23.1
25.4
24.7
24.7
24.7
24.6
24.1
21.2
21.2
21.2
22.1
22.3
22.3
22.3
22 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5
20.3
20.3
19.0
14.3
13.0
15.0
18.4
20.8
20.5
17.0
15.6
15.8 | 20.4
21.4
21.8
23.5
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7
14.9
17.5
20.6
22.8
21.8
19.5
18.7
19.0 | 26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4 28.3 28.0 29.6 30.8 27.4 27.3 24.4 27.3 24.4 26.5 26.4 | 19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3 17.4 14.8 15.7 18.2 17.3 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.0
24.6
25.4
25.7
26.3
26.9
25.5
23.8
20.3
21.1
22.1
21.7 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.6
15.3
14.4
9.9
11.0
11.7
14.0
15.8 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3
8.0
6.2
6.9
7.7
9.1
11.0
8.9
9.1
11.4
8.8 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
14.4
11.5
8.9
9.1
10.6
12.3
11.9
9.6
10.7
11.8
13.6
14.2
6.1 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.2
16.2
15.3
13.4
11.5
13.9
17.4
19.6
20.4
22.1
17.5
14.1 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3
13.3
13.3
12.1
13.0
11.1
8.8
10.3
9.6
8.9
8.8
11.8
13.4
14.2
12.0
11.0 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7
12.2
11.6
10.3
11.1
12.9
15.5
16.8
18.2
13.9
12.5 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6
24.1
21.2
17.6
20.7
23.1
25.7
23.2
25.4
24.7
24.6 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5
16.4
14.9
17.5
20.3
20.3
19.0
14.3
13.0
15.0
18.4
20.8
20.5
17.0
15.6
15.8 | 20.4
21.4
21.8
23.5
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7
14.9
17.5
20.6
22.8
21.8
21.8
21.9
20.2
22.1
22.1
22.9
20.2
20.7
20.2
20.7
20.2
20.2
20.2
20.2 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0
27.4
28.3
28.0
29.6
30.8
27.4
27.3
24.4
26.7
26.8
26.5
26.8
27.0
29.6
30.8
27.4
27.3 | 19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3 17.4 14.8 15.7 18.2 17.3 19.8 20.7 22.3 23.1 | 24.0
23.3
21.6
22.8
21.9
22.3
24.1
24.8
24.0
24.6
25.4
25.7
26.3
26.9
25.5
23.8
20.8
20.3
21.1
21.7
23.8
24.8
24.8 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.3
14.4
9.9
11.0
11.7
14.0
15.8
13.7
11.0
15.8 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3
8.0
6.2
6.9
7.7
9.1
11.0
8.9
9.1
11.4
8.8 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
11.5
8.9
8.5
9.1
10.6
10.7
11.8
13.6
14.2
6.1 | 10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.8
17.2
16.2
15.3
13.4
11.5
13.9
17.4
19.6
20.4
22.1
17.5
14.1 | 4.7
8.7
9.2
10.6
10.4
11.4
11.3
13.3
13.4
12.1
13.0
11.1
8.8
10.3
9.6
8.9
8.8
11.8
13.4
14.2
12.0
11.0 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7
12.2
11.6
10.3
11.1
12.9
15.5
16.8
18.2
13.9
12.5 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.6
24.1
21.2
17.6
20.7
23.1
25.7
23.2
22.1
22.5
22.1
23.2
22.1
24.7
24.6 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5
16.4
14.9
17.5
20.3
20.3
19.0
14.3
13.0
15.0
18.4
20.5
17.6
17.6
18.4
19.6 | 20.4
21.4
21.8
23.5
21.9
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7
14.9
17.5
20.6
22.8
21.8
19.5
19.7
19.0 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0
26.8
27.0
29.6
30.8
27.4
28.3
28.0
29.6
30.8
27.4
27.3
28.0
29.6
30.8
27.4
27.3
28.0
29.6
30.8
27.4
27.3
28.0
29.6
30.8
27.4
27.3
28.0
29.6
30.8
27.4
27.3
27.4
28.3
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
29.6
30.8
20.8
20.8
20.8
20.8
20.8
20.8
20.8
2 | 19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3 17.4 14.8 15.7 18.2 17.3 19.8 20.7 22.3 23.1 23.1 | 24.0
23.3
21.3
21.6
22.8
21.9
22.3
24.1
24.8
24.8
24.0
25.4
25.7
26.3
26.9
25.5
23.8
20.3
21.1
22.1
21.7
23.8
24.8
24.8
24.1
25.4
25.4
25.7
26.3
26.9
27.1 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 8.6
8.7
9.0
10.3
11.1
12.5
13.9
15.0
13.7
9.7
10.3
11.6
15.6
15.3
14.4
9.9
11.0
11.7
14.0
15.8 | 3.6
3.2
3.5
5.3
4.8
7.2
7.9
12.0
9.5
5.8
5.6
8.4
11.0
13.5
9.3
8.0
6.2
6.9
7.7
9.1
11.0
8.9
9.1
11.4
8.8 | 6.0
6.4
7.7
8.1
9.9
10.9
13.4
11.3
7.7
7.8
10.0
13.1
14.4
11.5
8.9
9.1
10.6
12.3
11.9
9.6
10.7
11.8
13.6
14.2
6.1 |
10.0
13.1
16.3
16.0
16.2
17.6
18.9
14.8
15.0
19.4
18.8
17.2
16.2
15.3
13.4
11.5
13.9
17.4
19.6
20.4
22.1
17.5
14.1 | 4.7
8.7
9.2
10.6
10.4
11.4
11.2
14.5
13.1
11.3
13.3
13.3
12.1
13.0
11.1
8.8
10.3
9.6
8.9
8.8
11.8
13.4
14.2
12.0
11.0 | 9.4
10.9
13.1
12.9
13.4
14.2
16.0
13.9
12.9
15.9
14.8
14.9
13.7
12.2
11.6
10.3
11.1
12.9
15.5
16.8
18.2
13.9
12.5 | 24.5
24.0
25.4
25.7
24.2
23.2
25.4
24.7
23.7
22.0
20.7
21.1
24.7
24.6
24.1
21.2
17.6
20.7
23.1
25.7
23.2
25.4
24.7
24.6 | 12.9
17.1
19.2
18.3
21.4
20.3
17.5
19.3
20.5
21.5
16.4
14.9
17.5
20.3
20.3
19.0
14.3
13.0
15.0
18.4
20.8
20.5
17.0
15.6
15.8 | 20.4
21.4
21.8
23.5
20.2
22.1
22.9
22.7
19.1
17.9
19.3
22.2
22.4
21.3
16.7
14.9
17.5
20.6
22.8
21.8
21.8
21.9
20.2
22.1
22.1
22.9
20.2
20.7
20.2
20.7
20.2
20.2
20.2
20.2 | 26.4
24.3
22.9
24.2
25.9
23.8
25.7
27.3
27.6
27.0
26.8
27.0
27.4
28.3
28.0
29.6
30.8
27.4
27.3
24.4
26.7
26.8
26.5
26.8
27.0
29.6
30.8
27.4
27.3 | 19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3 17.4 14.8 15.7 18.2 17.3 19.8 20.7 22.3 23.1 | 24.0
23.3
21.6
22.8
21.9
22.3
24.1
24.8
24.0
24.6
25.4
25.5
23.8
20.8
20.3
21.1
21.7
23.8
24.8
24.8 | DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE 08120700 Colorado River near Cuthbert, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |-------|--------------|--------------|--------------|-----|------|------|------|--------|------|------|----------|------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBI | ER | | 1 2 | 25.5
30.5 | 21.9
21.8 | 23.6
25.7 | | | | | | | | | | | 3 | 30.5 | 21.8 | 25.7 | | | | | | | 27.3 | 24.3 | 26.2 | | 4 | 31.4 | 25.0 | 27.8 | | | | | | | 27.3 | 23.7 | 25.3 | | 5 | 32.3 | 25.0 | 28.1 | | | | | | | 28.2 | 24.2 | 25.3 | | 5 | 32.3 | 23.1 | 20.1 | | | | | | | 20.2 | 24.2 | 23.7 | | 6 | 33.2 | 25.1 | 28.5 | | | | | | | 29.1 | 23.7 | 26.0 | | 7 | 31.7 | 24.2 | 27.3 | | | | | | | 30.3 | 25.3 | 27.4 | | 8 | 30.8 | 22.9 | 26.5 | | | | | | | 30.4 | 23.9 | 26.7 | | 9 | 32.2 | 22.6 | 27.2 | | | | | | | 26.7 | 21.5 | 24.1 | | 10 | | | | | | | | | | 29.2 | 21.7 | 24.6 | | | | | | | | | | | | | | | | 11 | | | | | | | | | | 28.0 | 22.3 | 24.7 | | 12 | | | | | | | | | | 31.0 | 22.3 | 26.1 | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | 23.2 | 22.3 | 23.1 | | | | | 16 | | | | | | | 30.4 | 22.7 | 26.1 | | | | | 17 | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 21 | | | | | | | 30.5 | 29.6 | 30.3 | 28.1 | 19.2 | 23.8 | | 22 | | | | | | | 30.2 | 26.6 | 28.4 | 26.6 | 23.1 | 24.5 | | 23 | | | | | | | 32.3 | 25.6 | 28.4 | 26.5 | 22.3 | 24.3 | | 24 | | | | | | | 29.8 | 25.0 | 27.9 | 24.6 | 20.3 | 22.6 | | 25 | | | | | | | | | | 24.5 | 17.8 | 20.8 | | 26 | | | | | | | 27.2 | 23.5 | 25.9 | 23.4 | 17.8 | 20.5 | | 27 | | | | | | | 29.6 | 23.5 | 26.2 | 23.9 | 18.3 | 20.9 | | 28 | | | | | | | 29.1 | 24.9 | 26.7 | 24.7 | 18.5 | 21.2 | | 29 | | | | | | | 27.2 | 24.3 | 25.5 | 26.4 | 19.2 | 21.9 | | 30 | | | | | | | 28.2 | 23.8 | 25.7 | 26.0 | 18.7 | 21.5 | | 31 | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | THIS PAGE IS INTENTIONALLY LEFT BLANK. ## 08121000 Colorado River at Colorado City, TX LOCATION.--Lat 32°23'33", long 100°52'42", Mitchell County, Hydrologic Unit 12080002, on right bank at Colorado City, 3,517 ft upstream from bridge on State Highway 377, 4,100 ft upstream from the Texas and Pacific Railroad Company bridge, 1.3 mi downstream from bridge on Interstate Highway 20 and U.S. Highway 80, 1.6 mi upstream from Lone Wolf Creek, and at mile 796.3. DRAINAGE AREA.--3,966 mi^2 , of which 2,381 mi^2 probably is noncontributing. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Nov. 1923 to Aug. 1925 (published as "at Colorado"), May 1946 to current year. REVISED RECORDS.--WSP 1512: 1946(M). WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,030.16 ft above sea level. Nov. 28, 1923, to Aug. 31, 1925, nonrecording gage at site 1.4 mi downstream at different datum. May 9 to Aug. 5, 1946, nonrecording gage at site 185 ft upstream at present datum. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Since water year 1952 at least 10% of contributing drainage area has been regulated. The Colorado River Municipal Water District diverts low flow into an off channel reservoir 3 mi upstream for brine disposal. There are numerous diversions from Lake J.B. Thomas for municipal use and for oil field operations. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--5 years (water years 1947-51) prior to completion of Lake J.B. Thomas, 102 ft³/s (73,660 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1947-51).--Maximum discharge, 24,900 ft³/s July 6, 1948 (gage height, 22.37 ft, from floodmark); no flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1910, 35.9 ft June 20, 1939, present site and datum, based on floodmarks 1,000 ft upstream and 3,740 ft downstream from gage; discharge, 66,000 ft³/s, by slope-area measurement of peak flow at site 2.5 mi upstream from gage. | | | DISCHA | RGE, CUBI | C FEET PI | | WATER YE
Y MEAN VA | | R 2000 TO | SEPTEMBER | R 2001 | | | |--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .02
.02
.01
.01 | 9.4
5.6
1.3
.83 | .24
.17
.21
.24 | .25
.39
.41
.46 | .15
.15
.15
.15 | .80
.33
.98
.27 | .14
.09
.09
.10 | 1.1
.10
.05
2.4 | .02
.02
.01
.01 | .00
.00
.00
.01 | .00
.00
.00
.00 | .06
.06
1.8
6.1
2.0 | | 6
7
8
9
10 | .02
.02
.02
.02
.02 | .21
.25
1.7
1.0 | .40
.26
.24
.24 | .41
.38
.24
.24 | .15
.20
.20
.37
.15 | .16
.15
.22
.24
.20 | .09
.09
.11
.10 | 1.1
18
.98
.03
.02 | .00
.00
.01
.00 | .01
.01
.00
.00 | .00
.00
.00
.00 | 13
2.3
.15
.09 | | 11
12
13
14
15 | .02
.04
.04
.05 | .48
.23
.15
.15 | .26
.23
.32
.39 | 6.2
1.3
.59
5.3
6.4 | .18
.15
.15
2.1 | .24
.18
.15
.15 | 6.5
1.5
.15
.09 | .02
.02
.02
.02
.02 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 2.8
.53
.14
.09 | | 16
17
18
19
20 | .15
18
2.8
.22
1.1 | .20
.17
.19
.24 | .25
.24
.24
.24
.24 | 1.1
.34
.23
.17 | 16
19
14
8.9
1.4 | .15
.15
.23
.22 | .09
.07
.09
.08 | .01
.01
.01
.01 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .09
.09
.09
.09 | | 21
22
23
24
25 | .08
.04
.02
3.7
.78 | .18
.21
.28
2.8
.63 | .24
.24
.24
.24 | .16
.15
.16
.19 | .56
.41
.31
.27 | .11
.09
.09
16
1.1 | .09
.08
.06
.06 | .00
.00
.00
.00 | .01
.01
.34
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 20
45
30
26
13 | | 26
27
28
29
30
31 | 66
94
36
25
8.1 | .37
.24
.24
.24
.24 | .59
.57
.41
.41
.32 | .23
.17
.31
1.1
.61 | .15
.15
.49
 | .29
10
11
8.1
.79
.16 | .06
.06
.05
.05 | .01
.47
.02
.02
.01 | .01
.00
.00
.00 | .00
.00
.00
.00
.00 | 2.1
5.3
.28
.09
.09 | 7.6
5.2
3.9
3.1
2.7 | | TOTAL
MEAN
MAX
MIN
AC-FT | 268.37
8.66
94
.01
532 | 30.15
1.00
9.4
.15
60 | 9.23
.30
.59
.17
18 | 29.62
.96
6.4
.15 | 76.19
2.72
19
.15
151 | 53.06
1.71
16
.09
105 | 10.71
.36
6.5
.05
21 | 37.48
1.21
18
.00
74 | 0.47
.016
.34
.00 | 0.04
.001
.01
.00 | 7.94
.26
5.3
.00
16 | 186.47
6.22
45
.06
370 | | | | MONTHLY MEA | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 34.9
339
1987
.000
1969 | 7.10
61.1
1985
.000
1956 | 5.35
49.6
1992
.026
1955 | 4.19
33.6
1992
.051
1971 | 9.63
99.0
1957
.061
1971 | 19.0
595
2000
.000
1956 | 34.5
332
1957
.010
1955 | 92.4
1048
1957
.001
1970 | 79.0
745
1982
.000
1953 | 20.3
197
1961
.000
1974 | 38.0
684
1971
.000
1954 | 54.2
817
1962
.000
1954 | ## 08121000 Colorado River at Colorado City, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1952 - 2001z |
--|--------------------------|-------------------------|--------------------------------------| | ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN | 20547.34
56.1 | 709.73
1.94 | 33.3
143 1957 | | LOWEST ANNUAL MEAN | | | .34 1998 | | HIGHEST DAILY MEAN
LOWEST DAILY MEAN | 9220 Mar 24
.01 Sep 9 | 94 Oct 27
.00 May 21 | 9560 May 25 1957
.00 Oct 1 1951 | | ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW | .02 Sep 5 | .00 Jun 9
183 Oct 26 | .00 Oct 1 1951
c17700 Mar 24 2000 | | MAXIMUM PEAK STAGE
ANNUAL RUNOFF (AC-FT) | 40760 | 5.14 Oct 26
1410 | 28.58 Mar 24 2000
24110 | | 10 PERCENT EXCEEDS
50 PERCENT EXCEEDS | 8.5
.29 | 3.3
.15 | 23 | | 90 PERCENT EXCEEDS | .03 | .00 | .00 | Period of regulated streamflow. From rating curve extended above $9,550~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of $66,000~{\rm ft}^3/{\rm s}$. z c ## 08121000 Colorado River at Colorado City, TX--Continued WATER-OUALITY RECORDS PERIOD OF RECORD .-- CHEMICAL DATA: May 1946 to Sept. 1954, Nov. 1956 to current year. #### PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: May 1946 to Sept. 1954 and Nov. 1956 to current year (local observer). WATER TEMPERATURE: Nov. 1952 to Sept. 1954 and Nov. 1956 to current year (local observer). REMARKS.--Records good except those for estimated daily equivalent mean specific conductance, which are poor. Interruptions in the record are due to no flow except for Dec. 1-4, 26, Mar. 31, Apr. 1-3, and Aug. 28 when specific conductance and water temperature were not determined. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. New regression equations were developed based on data from water years 1992 to 2001. The standard error of estimate for dissolved solids is 6%, chloride is 75%, sulfate is 30% and for hardness is 33%. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request. #### EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum daily, 76,000 microsiemens/cm, Sept. 21, 1998; minimum daily, 240 microsiemens/cm, Sept. 29, 1980. WATER TEMPERATURE: Maximum daily, 39.0°C, July 21, 1995; minimum daily, 0.0°C, on many days during winter months. #### EXTREMES FOR CURRENT YEAR . -- SPECIFIC CONDUCTANCE: Maximum daily, 42,400 microsiemens/cm, Sept. 3; minimum daily, 1,750 microsiemens/cm, Oct. 27. WATER TEMPERATURE: Maximum daily, 37.0°C, June 25; minimum daily, 3.0°C, Dec. 12. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DIS- | | | | | | | | | | | | |------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | CHARGE, | SPE- | | HARD- | | MAGNE- | | SODIUM | POTAS- | | CHLO- | FLUO- | | | | INST. | CIFIC | | NESS | CALCIUM | SIUM, | SODIUM, | AD- | SIUM, | SULFATE | RIDE, | RIDE, | | | | CUBIC | CON- | TEMPER- | TOTAL | DIS- | DIS- | DIS- | SORP- | DIS- | DIS- | DIS- | DIS- | | | | FEET | DUCT- | ATURE | (MG/L | SOLVED | SOLVED | SOLVED | TION | SOLVED | SOLVED | SOLVED | SOLVED | | DATE | TIME | PER | ANCE | WATER | AS | (MG/L | (MG/L | (MG/L | RATIO | (MG/L | (MG/L | (MG/L | (MG/L | | | | SECOND | (US/CM) | (DEG C) | CACO3) | AS CA) | AS MG) | AS NA) | | AS K) | AS SO4) | AS CL) | AS F) | | | | (00061) | (00095) | (00010) | (00900) | (00915) | (00925) | (00930) | (00931) | (00935) | (00945) | (00940) | (00950) | | OCT | | | | | | | | | | | | | | | OCT | 1.400 | 0.0 | 6010 | 00.0 | 1000 | 010 | 100 | 1100 | 16.0 | 11 0 | 1610 | 1160 | | | 13 | 1400 | .08 | 6810 | 22.3 | 1060 | 213 | 128 | 1190 | 16.0 | 11.0 | 1610 | 1160 | .8 | | 18 | 1420 | 2.1 | 15300 | 19.9 | 1010 | 253 | 90.8 | 3060 | 42.0 | 12.9 | 844 | 4740 | .3 | | NOV | | | | | | | | | | | | | | | 30 | 1515 | .31 | 12300 | 10.9 | 1110 | 259 | 114 | 2340 | 30.5 | 8.87 | 1270 | 3450 | .5 | | FEB | | | | | | | | | | | | | | | 22 | 0945 | .45 | 6180 | 8.4 | 743 | 178 | 72.1 | 996 | 15.9 | 7.53 | 730 | 1560 | .5 | | MAR | | | | | | | | | | | | | | | 30 | 0735 | .88 | 6980 | 12.0 | 871 | 212 | 82.7 | 1140 | 16.7 | 7.76 | 673 | 1800 | .6 | | MAY | | | | | | | | | | | | | | | 24 | 1245 | E.01 | 9800 | 23.8 | 1340 | 265 | 164 | 1730 | 20.6 | 9.24 | 1810 | 2240 | .7 | | DATE | SOLVED
(MG/L
AS | CONSTI-
TUENTS,
DIS-
SOLVEI
(MG/L) | |-----------|-----------------------|--| | 18 | 13.8
4.2 | | | 30 | 1.0 | 7560 | | FEB 22 | 1.1 | 3650 | | MAR
30 | 1.9 | 4020 | | MAY
24 | 4.1 | 6310 | | | | | ## 08121000 Colorado River at Colorado City, TX--Continued MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 2000 TO SEPTEMBER 2001 | MONTH Y | /EAR | DISCHARGE
(CFS-DAYS) | SPECIFIC
CONDUCT-
ANCE
(MICRO-
SIEMENS) | DIS-
SOLVED
SOLIDS
(MG/L) | DIS-
SOLVED
SOLIDS
(TONS) | DIS-
SOLVED
CHLORIDE
(MG/L) | DIS-
SOLVED
CHLORIDE
(TONS) | DIS-
SOLVED
SULFATE
(MG/L) | DIS-
SOLVED
SULFATE
(TONS) | HARDNESS
(CA,MG)
(MG/L) | |-------------|----------------------|-------------------------------------|---|------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------| | OCT. 2 | 2000 | 268.37 | 4810 | 2900 | 2100 | 1400 | 988 | 480 | 348 | 430 | | NOV. 2 | 2000 | 30.15 | 5890 | 3550 | 289 | 1700 | 135 | 590 | 48.2 | 530 | | DEC. 2 | 2000 | 9.23 | 18730 | 11910 | 297 | 5700 | 142 | 1800 | 43.9 | 1600 | | JAN. 2 | 2001 | 29.62 | 18770 | 12020 | 962 | 5800 | 463 | 1700 | 140 | 1600 | | FEB. 2 | 2001 | 76.19 | 6980 | 4230 | 870 | 2000 | 408 | 700 | 143 | 620 | | MAR. 2 | 2001 | 53.06 | 8360 | 5080 | 727 | 2400 | 342 | 830 | 119 | 740 | | APR. 2 | 2001 | 10.71 | 15770 | 9910 | 287 | 4700 | 137 | 1500 | 43.5 | 1400 | | MAY 2 | 2001 | 37.48 | 8410 | 5110 | 517 | 2400 | 243 | 840 | 84.6 | 750 | | JUNE 2 | 2001 | 0.47 | 7750 | 4680 | 5.9 | 2200 | 2.8 | 770 | 0.98 | 690 | | JULY 2 | 2001 | 0.04 | 10040 | 6130 | 0.66 | 2900 | 0.31 | 990 | 0.11 | 890 | | AUG. 2 | 2001 | 7.94 | 21170 | 13580 | 291 | 6500 | 140 | 2000 | 42.2 | 1800 | | SEPT 2 | 2001 | 186.47 | 9770 | 6120 | 3080 | 2900 | 1470 | 940 | 472 | 850 | | TOTAL | | 709.73 | ** | ** | 9430 | ** | 4470 | ** | 1490 | ** | | WTD.AVG | ₹. | 1.9 | 7960 | 4920 | ** | 2300 | ** | 780 | ** | 700 | | | SPECIFIC | C CONDUCTANCE | (MICROSIEME | | 5 DEG. C),
IVALENT MEA | | OCTOBER 20 | 000 TO SEPT | TEMBER 2001 | | | DAY | OCT | NOV I | DEC JAN | FEB | MAR | APR | MAY | JUN 3 | JUL AUG | G SEP | | 1
2
3 | 5800
6210
6030 | 4240 e125
4300 e130
4790 e140 | 23900 | 14000 | 7400
7640
8000 | e7000 | 12800 | 100 - | | - 42200 | | DAILY EQUIVALENT MEAN VALUES | | | | | | | | | | | | | |------------------------------|-------|-------|--------|-------|-------|-------|-------|-------|------|-------|--------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 5800 | 4240 | e12500 | 23200 | 13900 | 7400 | e7000 | 13300 | 6660 | | | 30000 | | 2 | 6210 | 4300 | e13000 | 23900 | 14000 | 7640 | e7000 | 12800 | 7100 | | | 42200 | | 3 | 6030 | 4790 | e14000 | 23300 | 14000 | 8000 | e7000 | 12000 | 7160 | | | 42400 | | 4 | 6570 | 4290 | e14500 | 22900 | 14000 | 8120 | 7130 | 6000 | 7240 | 9810 | | 29700 | | 5 | 6470 | 5940 | 14800 | 23300 | 14200 | 8400 | 7560 | 10000 | 7790 | 9930 | | 18500 | | 6 | 6460 | 5920 | 14800 | 24000 | 14800 | 9200 | 7710 | 12000 | | 10000 | | 23900 | | 7 | 6750 | 3810 | 14800 | 24100 | 15300 | 9180 | 8110 | 7000 | | 10400 | | 19500 | | 8 | 6780 | 3850 | 15500 | 24300 | 16500 | 10000 | 8000 | 8760 | 7200 | | | 19800 | | 9 | 7000 | 6400 | 16500 | 24900 | 17900 | 10000 | 8220 | 8880 | | | | 20100 | | 10 | 7060 | 8130 | 16400 | 26300 | 18300 | 11200 | 8200 | 8940 | | | | 21000 | | 11 | 7050 | 8150 | 16900 | 26300 | 19400 | 12000 | 18000 | 9080 | | | | 18300 | | 12 | 8000 | 8000 | 17300 | 25000 | 19400 | 12400 | 16400 | 8970 | | | | 17600 | | 13 | 7500 | 8180 | 18000 | 23700 | 19800 | 12400 | 14400 | 8900 | | | | 18200 | | 14 | 10700 | 9010 | 18000 | 19400 | 17000 | 12900 | 13300 | 9130 | | | | 17900 | | 15 | 10700 | 8980 | 18500 | 11700 | 8360 | 14000 | 13000 | 9110 | | | | 17900 | | 16 | 15000 | 9630 | 18600 | 10500 | 8380 | 14000 | 12700 | 9310 | | | | 18000 | | 17 | 12000 | 9980 | 18200 | 10900 | 5180 | 14700 | 12000 | 9460 | | | | 17700 | | 18 | 15200 | 10300 | 18600 | 10700 | 4720 | 14700 | 11700 | 9000 | | | | 18000 | | 19 | 15200 | 10400 | 19000 | 10300 | 5770 | 15400 | 11700 | 9430 | | | | 17600 | | 20 | 14700 | 10300 | 19900 | 10300 | 6000 | 16100 | 11500 | 9630 | 8820 | | | 19900 | | 21 | 14800 | 10800 | 19800 | 10500 | 6200 | 16000 | 11600 | | 8820 | | | 14400 | | 22 | 15200 | 11300 | 20500 | 10600 | 6370 | 16100 | 11600 | | 8160 | | | 7680 | | 23 | 15400 | 10000 | 21100 | 11100 | 6410 | 16000 | 12200 | | 7770 | | | 4430 | | 24 | 16700 | 8000 | 21000 | 11200 | 6870 | 9410 | 12000 | | | | | 4420 | | 25 | 16000 | 10200 | 21800 | 11300 | 6910 | 11200 | 11700 | | 8180 | | | 5840 | | 26 | 8000 | 10200 | e22000 | 11800 | 7000 | 9350 | 12000 | 8560 | 9000 | | 23700 | 5300 | | 27 | 1750 | 11000 | 21800 | 11400 | 7230 | 8270 | 12200 | 8560 | | | 20000 | 5060 | | 28 | 2400 | 12200 | 20000 | 11600 | 6990 | 6000 | 12200 | 8010 | | | e22000 | 5820 | | 29 | 2970 | 12300 | 22300 | 11800 | | 8000 | 12200 | 8030 | | | 23600 | 5830 | | 30 | 3160 | 12400 | 22400 | 12900 | | 6890 | 12200 | 7990 | | |
23800 | 6420 | | 31 | 4260 | | 23600 | 12900 | | | | 7360 | | | 23600 | | | MEAN | 9090 | 8430 | 18300 | 17000 | 11500 | | 11000 | | | | | 17100 | | MAX | 16700 | 12400 | 23600 | 26300 | 19800 | | 18000 | | | | | 42400 | | MIN | 1750 | 3810 | 12500 | 10300 | 4720 | | 7000 | | | | | 4420 | | | | | | | | | | | | | | | e Estimated 08121000 Colorado River at Colorado City, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY INSTANTANEOUS VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 26.0 20.0 5.0 11.0 14.0 31.0 27.0 34.0 ------27.0 25.0 18.0 17.0 ---4.0 11.0 15.0 10.0 32.0 30.0 33.0 ---3 8.0 18.0 25.0 35.0 32.0 29.0 27.0 18.0 18.0 7.0 14.0 15.0 4 5 18.0 25.8 20.0 36.0 36.0 28.0 30.0 10.0 25.0 10.0 19.0 25.0 35.0 36.0 6 7 15.0 25.0 18.0 17.0 10.0 11.0 12.0 10.0 10.0 8.0 12.0 18.0 19.0 20.0 26.0 28.0 28.0 27.0 24.0 30.0 36.0 36.0 31.0 ---8 8.0 12.0 16.0 29.0 35.0 34.0 9 20.0 13.0 13.0 10.0 14.0 12.0 18.0 28.0 32.0 ---28.0 10 22.0 14.0 14.0 18.0 26.0 33.0 28.0 21.0 25.0 25.0 18.0 22.0 22.0 16.0 12.0 8.0 9.0 14.0 14.0 20.0 28.0 22.0 11 33.0 32.0 32.0 12 9.0 13 10.0 4.0 9.0 18.0 18.0 ___ ___ 28.0 14 15 22.0 25.0 ---------12.0 16.0 11.0 18.0 15.0 33.0 22.0 24.0 10.0 10.0 12.0 29.0 30.0 8.0 15.0 32.0 12.0 32.0 16 17 10.0 11.0 15.0 30.0 24.0 9.0 28.0 ---10.0 7.0 10.0 16.0 10.0 5.0 10.0 14.0 20.0 30.0 31.0 18 14.0 9.0 5.0 7.0 8.0 15.0 10.0 22.0 26.0 26.0 ___ ------34.0 ------18.0 26.0 31.0 19 18.0 20 20.0 10.0 10.0 8.0 20.0 20.0 24.0 29.0 36.0 32.0 10.0 10.0 7.0 10.0 12.0 21 8.0 12.0 24.0 28.0 33.0 27.0 24.0 26.0 28.0 22 25.0 12.0 10.0 14.0 15.0 25.0 34.0 22.0 10.0 16.0 18.0 8.0 15.0 10.0 23 ---32.0 ___ ---26.0 ---------30.0 24 25.0 25 22.0 10.0 9.0 12.0 19.0 8.0 28.0 37.0 24.0 26 22.0 11.0 15.0 18.0 10.0 28.0 32.0 36.0 33.0 24.0 22.0 9.0 12.0 15.0 27 14.0 10.0 9.0 18.0 28.0 34.0 ------29.0 24.0 12.0 9.0 29.0 33.0 35.0 28 ___ 26.0 25.0 8.0 29 20.0 ------29.0 ---8.0 ---------30 22.0 10.0 15.0 31.0 31.0 24.0 21.0 31 10.0 27.0 24.0 MEAN 21.8 12.6 8.8 14.3 28.4 MAX MIN 29.0 14.0 20.0 ---15.0 4.0 20.0 ------------------34.0 22.0 08121000 Colorado River at Colorado City, TX--Continued #### 08123000 Lake Colorado City near Colorado City, TX LOCATION.--Lat 32°20'41", long 100°55'10", Mitchell County, Hydrologic Unit 12080002, on left bank at municipal water-intake structure, 1.7 mi upstream from Colorado City Dam on Morgan Creek, 2.2 mi downstream from the Texas and Pacific Railway Co. bridge, 2.5 mi upstream from mouth, and 4.0 mi southwest of Colorado City. DRAINAGE AREA.--345 mi², of which 42.7 mi² probably is noncontributing PERIOD OF RECORD.--Apr. 1949 to current year. Water-quality records.--Chemical data: Dec. 1969 to May 1984. REVISED RECORDS. -- WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to Aug. 23, 1950, nonrecording gages at or near powerplant about 0.7 mi downstream at same datum. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by a rolled earthfill dam 4,800 ft long. Storage began in Apr. 1949, and the dam was completed in Sept. 1949. The dam and lake are owned by the Texas Electric Service Co. to operate their thermal electric powerplant. The uncontrolled spillway is an excavated cut channel through natural ground 1,200 ft wide located 600 ft upstream and to the left of left end of dam. The spillway is designed to discharge 150,000 ft³/s at the maximum design flood elevation. The service spillway is an uncontrolled rectangular drop inlet located 100 ft upstream from dam with two uncontrolled openings of 10.0 by 12.0 ft. The spillway is designed for a maximum discharge of 5,000 ft³/s. A service outlet is provided for small releases downstream through a 30-inch valve-controlled concrete pipe. Record of pumpage from Champion Creek Reservoir (station 08123600, conservation pool storage 41,600 acre-ft), into Lake Colorado City can be obtained from the Texas Electric Service Co. Conservation pool storage is 30,800 acre-ft. Data regarding the dam are given in the following table: | | Elevation (feet) | |------------------------------|------------------| | Top of dam | 2,090.0 | | Design flood | 2,086.7 | | Crest of spillway | 2,073.7 | | Crest of service spillway | 2,069.6 | | Lowest gated outlet (invert) | 2,024.3 | COOPERATION.--Capacity curve dated Oct. 1, 1964 was furnished by the Texas Utilities Electric Co. Record of diversions for municipal use can be obtained from the city of Colorado City. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 40,280 acre-ft, Sept. 7, 1962, elevation, 2,075.10 ft; minimum contents after initial filling, 9,740 acre-ft, Aug. 30, 31, and Sept. 1, 1953, elevation, 2,051.30 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 22,040 acre-ft, Oct. 1, elevation, 2,063.39 ft; minimum contents, 17,360 acre-ft, Sept. 30, elevation, 2,059.44 ft. RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY DEC FEB SEP OCT NOV JAN MAR APR MAY JUN JUL AUG 21750 e19100 2.2 2.7 ---MEAN MTN 2063.19 2062.92 2062.55 2062.40 2062.47 2062.29 2062.51 2061.82 2060.71 2059.85 2059.65 2059.46 +80 +270 (@) -250 -350 -450 -190 -220 -840 -1300 -970 -220 -210 CAL YR 2000 MAX 29320 MIN 13520 (@) +6560 WTR YR 2001 MAX 22020 MIN 17390 (@) -4650 - (+) Elevation, in feet, at end of month. - (@) Change in contents, in acre-feet. 08123000 Lake Colorado City near Colorado City, TX--Continued #### 08123600 Champion Creek Reservoir near Colorado City, TX LOCATION.--Lat 32°16'53", long 100°51'30", Mitchell County, Hydrologic Unit 12080002, 50 ft downstream from service outlet structure at Champion Creek Dam on Champion Creek, 1.0 mi upstream from mouth, 4.8 mi downstream from State Highway 208, and 7.2 mi south of Colorado City. DRAINAGE AREA. -- 207 mi², of which 20.8 mi² probably is noncontributing. PERIOD OF RECORD.--Oct. 1959 to Sept. 1987 and May 1997 to current year. Water-quality records.--Chemical data: Aug. 1967 to May 1984. REVISED RECORDS. -- WRD TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to Sept. 29, 1959, nonrecording gage at same site and datum. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records good except those for May 1-24, which are fair. The reservoir is formed by a rolled earthfill dam about 6,800 ft long. The dam was completed on Apr. 30, 1959. Closure and storage began in Feb. 1959. The capacity curve is based on U.S. Geological Survey topographic map surveyed in 1950: excavation for borrow, estimated not to exceed 1,200 acre-ft, is not included. The dam and reservoir are owned and operated by the Texas Electric Service Company. Water may be pumped from the reservoir through a 24-inch pipeline to Lake Colorado City (station 08123000, conservation pool storage 30,800 acre-ft) for municipal use and for cooling operations of a steam generating powerplant. There are two spillways. The uncontrolled emergency spillway, 450 ft wide and 800 ft long, is located at the right end of dam. The controlled service spillway is a cut channel 50 ft wide, about 1,800 ft long and 8 ft deep, and cut into the emergency spillway at the extreme right end. There is a controlled drop-inlet structure, 4.0 by 5.0 ft, with a side opening of 1.5 by 3.0 ft. Conservation pool storage is 41,600 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |------------------------------|-----------| | | (feet) | | Top of dam | 2,109.0 | | Design flood | 2,104.0 | | Crest of emergency spillway | 2,091.0 | | Crest of service spillway | | | Lowest gated outlet (invert) | 2,020.0 | COOPERATION.--The capacity table dated Apr. 14, 1959, was prepared from curve furnished by Freese and Nichols, Consulting Engineers, Fort Worth, Texas. Record of diversions into Lake Colorado City may be obtained from Texas Utilities Electric Co. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 47,060 acre-ft, June 29, 1982, elevation, 2,085.79 ft; minimum contents, 1,720 acre-ft, Apr. 11-15, 1971, elevation, 2,026.75 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 4,490 acre-ft, Mar. 24, elevation, 2,038.22 ft; minimum contents, 2,140 acre-ft, Sept. 21, elevation, 2,029.07 ft. | | | RESE | RVOIR STO | RAGE (ACR | | WATER YEA
LY MEAN V | | 2000 TO | SEPTEMBER | 2001 | | | |--------|---------|---------|-----------|-----------|---------|------------------------|--------------|---------|-----------|---------|---------|---------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 4360 | 4430 | 4430 | 4380 | 4410 | 4450 | 4270 | 2820 | 2690 | 2530 | 2340 | 2230 | | 2 | 4350 | 4420 | 4420 | 4380 | 4410 | 4460 | 4230 | 2810 | 2680 | 2530 | 2330 | 2220 | | 3 | 4340 | 4430 | 4420 | 4370 | 4410 | 4460 | 4180 | 2810 | 2680 | 2520 | 2330 | 2220 | | 4 | 4340 | 4430 | 4420 | 4380 | 4410 | 4470 | 4140 | 2830 | 2670 | 2510 | 2320 | 2210 | | 5 | 4330 | 4430 | 4420 | 4380 | 4410 | 4470 | 4090 | 2840 | 2660 | 2510 | 2320 | 2210 | | J | 4330 | 4430 | 1120 | 4300 | 4410 | 4470 | 4090 | 2040 | 2000 | 2310 | 2320 | 2210 | | 6 | 4330 | 4430 | 4420 | 4380 | 4410 | 4470 | 4050 | 2830 | 2670 | 2500 | 2320 | 2210 | | 7 | 4310 | 4440 | 4410 | 4380 | 4410 | 4470 | 4000 | 2820 | 2670 | 2490 | 2310 | 2210 | | 8 | 4300 | 4440 | 4410 | 4370 | 4410 | 4470 | 3950 | 2810 | 2660 | 2490 | 2300 | 2210 | | 9 | 4290 | 4440 | 4410 | 4370 | 4420 | 4470 | 3900 | 2810 | 2660 | 2480 | 2300 | 2200 | | 10 | 4290 | 4440 | 4410 | 4380 | 4420 | 4470 | 3850 | 2810 | 2650 | 2470 | 2300 | 2190 | | | | | | | | | | | | | | | | 11 | 4280 | 4440 | 4410 | 4390 | 4420 | 4470 | 3850 | 2800 | 2640 | 2470 | 2300 | 2190 | | 12 | 4280 | 4440 | 4400 | 4390 | 4420 | 4470 | 3800 | 2790 | 2640 | 2460 | 2300 | 2190 | | 13 | 4280 | 4430 | 4400 | 4390 | 4420 | 4470 | 3750 | 2790 | 2640 | 2450 | 2300 | 2180 | | 14 | 4280 | 4430 | 4400 | 4390 | 4430 | 4470 | 3700 | 2770 | 2630 | 2450 | 2290
| 2180 | | 15 | 4280 | 4420 | 4400 | 4390 | 4440 | 4470 | 3660 | 2770 | 2630 | 2440 | 2290 | 2170 | | 16 | 4280 | 4420 | 4400 | 4390 | 4440 | 4460 | 3600 | 2760 | 2620 | 2430 | 2280 | 2170 | | 17 | 4320 | 4420 | 4400 | 4400 | 4440 | 4460 | 3550 | 2760 | 2610 | 2420 | 2290 | 2170 | | 18 | 4320 | 4420 | 4400 | 4390 | 4440 | 4460 | 3490 | 2760 | 2610 | 2420 | 2290 | 2160 | | | 4340 | 4420 | 4390 | 4390 | 4440 | 4460 | 3490
3440 | 2760 | 2600 | 2410 | | | | 19 | | | | | | | | | | | 2280 | 2150 | | 20 | 4350 | 4420 | 4390 | 4390 | 4440 | 4460 | 3390 | 2740 | 2590 | 2400 | 2280 | 2150 | | 21 | 4340 | 4410 | 4380 | 4390 | 4450 | 4460 | 3340 | 2730 | 2580 | 2400 | 2270 | 2190 | | 22 | 4350 | 4410 | 4380 | 4390 | 4440 | 4460 | 3290 | 2720 | 2580 | 2390 | 2270 | 2300 | | 23 | 4350 | 4420 | 4380 | 4390 | 4450 | 4460 | 3240 | 2710 | 2580 | 2380 | 2260 | 2330 | | 24 | 4360 | 4440 | 4380 | 4390 | 4450 | 4480 | 3180 | 2710 | 2580 | 2370 | 2250 | 2330 | | 25 | 4360 | 4440 | 4380 | 4390 | 4450 | 4470 | 3130 | 2720 | 2570 | 2370 | 2250 | 2320 | | | | | | | | | | | | | | | | 26 | 4360 | 4430 | 4380 | 4390 | 4450 | 4470 | 3070 | 2710 | 2560 | 2360 | 2250 | 2320 | | 27 | 4360 | 4430 | 4380 | 4400 | 4450 | 4470 | 3010 | 2710 | 2550 | 2360 | 2240 | 2310 | | 28 | 4360 | 4430 | 4380 | 4400 | 4450 | 4430 | 2960 | 2710 | 2550 | 2360 | 2240 | 2310 | | 29 | 4400 | 4430 | 4380 | 4410 | | 4390 | 2900 | 2700 | 2540 | 2360 | 2230 | 2300 | | 30 | 4420 | 4430 | 4380 | 4410 | | 4350 | 2850 | 2690 | 2540 | 2350 | 2230 | 2300 | | 31 | 4430 | | 4380 | 4410 | | 4310 | | 2700 | | 2340 | 2230 | | | MEAN | 4330 | 4430 | 4400 | 4390 | 4430 | 4450 | 3600 | 2760 | 2620 | 2430 | 2280 | 2230 | | MAX | 4430 | 4440 | 4430 | 4410 | 4450 | 4480 | 4270 | 2840 | 2690 | 2530 | 2340 | 2330 | | MIN | 4280 | 4410 | 4380 | 4370 | 4410 | 4310 | 2850 | 2690 | 2540 | 2340 | 2230 | 2150 | | IAITIA | 4200 | 4410 | 4360 | 43/0 | 4410 | 4310 | 2030 | 2090 | Z34U | 2340 | ∠∠30 | Z130 | | (+) | 2038.02 | 2038.02 | 2037.87 | 2037.97 | 2038.10 | 2037.67 | 2032.50 | 2031.86 | 2031.07 | 2030.12 | 2029.53 | 2029.88 | | (@) | +70 | 0 | -50 | +30 | +40 | -140 | -1460 | -150 | -160 | -200 | -110 | +70 | CAL YR 2000 MAX 5420 MIN 4280 (@) -670 WTR YR 2001 MAX 4480 MIN 2150 (@) -2060 WIR IR 2001 MAX 4460 MIN 2150 (@) -200 ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet. 08123600 Champion Creek Reservoir near Colorado City, TX--Continued ## 08123755 Moss Creek Lake near Coahoma, TX LOCATION.--Lat 32°14'37", long 101°18'41", Howard County, Hydrologic Unit 12080007, 195 ft left of service outlet structure at Moss Creek Dam on Moss Creek, 1.4 mi upstream from mouth, 3.4 mi south of Coahoma, and 7.4 mi east of Big Spring. DRAINAGE AREA. -- 26.0 mi². PERIOD OF RECORD. -- Feb. 1999 to current year. GAGE.--Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by a rolled earthfill dam 2,450 ft long. The dam was completed in 1939. The capacity curve was developed by Freese and Nichols in 1970. The dam and reservoir are owned by the city of Big Spring. The city of Big Spring operates the reservoir for recreational purposes. The Colorado River Municipal Water District owns the water rights for municipal and industrial use. The uncontrolled south emergency spillway is 250 ft wide through natural ground at right end of dam. The uncontrolled north emergency spillway is 400 ft wide with concrete sill at left end of dam. The service spillway is gate operated with a rectangular shaped inlet feeding into a pipe fitted inside the west conduit. Conservation pool storage is 3,522 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |-----------------------------------|-----------| | | (feet) | | Top of dam | 2,343.5 | | Crest of south emergency spillway | 2,338.7 | | Crest of north emergency spillway | 2,337.5 | | Crest of service outlet | 2,330.5 | COOPERATION. -- Capacity table furnished by Colorado River Municipal Water District. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 4,090 acre-ft, Mar. 23, 2000, elevation, 2,340.86 ft; minimum contents, 536 acre-ft, Sept. 21, 2001, elevation, 2,311.65 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 3,070 acre-ft, Apr. 26, elevation, 2,334.64 ft; minimum contents, 536 acre-ft, Sept. 21, elevation, 2,311.65 ft. RESERVOIR STORAGE (ACRE-FEET) WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | RESE | RVOIR STO | RAGE (ACR | | WATER YEA
LY MEAN V | | 2000 TO | SEPTEMBER | 2001 | | | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|---|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2030 | 2230 | 2930 | 2780 | 2730 | 2760 | e2900 | 3030 | 2700 | 2560 | 1780 | 917 | | 2 | 2040 | 2260 | 2950 | 2780 | 2720 | 2750 | e2900 | 3010 | 2710 | 2510 | 1750 | 899 | | 3 | 2020 | 2290 | 2940 | 2820 | 2700 | 2770 | e2900 | 3010 | 2740 | 2480 | 1720 | 894 | | 4 | 2000 | 2330 | 2920 | 2850 | 2690 | 2770 | e2900 | 3010 | 2770 | 2450 | 1690 | e900 | | 5 | 2000 | 2350 | 2900 | 2840 | 2670 | 2770 | 2950 | 3020 | 2750 | 2430 | 1670 | e900 | | 6 | 1980 | 2380 | 2890 | 2820 | 2670 | 2800 | 2950 | 3010 | 2740 | 2400 | 1640 | e800 | | 7 | 1970 | 2410 | 2870 | 2800 | 2690 | 2810 | 2930 | 2990 | 2720 | 2380 | 1610 | e800 | | 8 | 1950 | 2450 | 2870 | 2780 | 2710 | 2810 | 2890 | 2990 | 2700 | 2360 | 1590 | e700 | | 9 | 1930 | 2480 | 2890 | 2770 | 2700 | 2840 | 2880 | 3000 | 2700 | 2340 | 1560 | e700 | | 10 | 1950 | 2510 | 2910 | 2800 | 2680 | 2860 | 2900 | 2980 | 2730 | 2320 | 1540 | e700 | | 11 | 1960 | 2530 | 2900 | 2820 | 2670 | 2850 | 2900 | 2970 | 2750 | 2300 | 1520 | e650 | | 12 | 1960 | 2550 | 2890 | 2800 | 2660 | 2850 | 2870 | 2990 | 2740 | 2290 | 1500 | e650 | | 13 | 1950 | 2580 | 2910 | 2780 | 2660 | 2880 | 2880 | 2970 | 2740 | 2280 | 1480 | 621 | | 14 | 1970 | 2610 | 2930 | 2760 | 2680 | 2890 | 2890 | 2950 | 2750 | 2260 | 1420 | 598 | | 15 | 1990 | 2630 | 2920 | 2740 | 2710 | 2880 | 2880 | 2940 | 2770 | 2250 | 1380 | 587 | | 16 | 1970 | 2660 | 2900 | 2740 | 2700 | 2910 | 2870 | 2940 | 2790 | 2230 | 1350 | 585 | | 17 | 2000 | 2680 | 2880 | 2770 | 2680 | 2910 | 2910 | 2910 | 2800 | 2200 | 1310 | 588 | | 18 | 2020 | 2710 | 2860 | 2790 | 2690 | 2890 | 2900 | 2880 | 2820 | 2170 | 1270 | 566 | | 19 | 2000 | 2740 | 2850 | 2770 | e2700 | 2890 | 2900 | 2880 | 2820 | 2150 | 1250 | 563 | | 20 | 1990 | 2760 | 2870 | 2750 | e2700 | 2920 | 2910 | 2850 | 2830 | 2120 | 1230 | 550 | | 21 | 2010 | 2790 | 2890 | 2730 | 2690 | 2920 | 2940 | 2810 | 2830 | 2100 | 1200 | 543 | | 22 | 2030 | 2810 | 2870 | 2720 | 2690 | 2920 | 2970 | 2780 | 2800 | 2070 | 1170 | 554 | | 23 | 2020 | 2840 | 2850 | 2700 | 2710 | 2940 | 2990 | 2780 | 2770 | 2050 | 1140 | 575 | | 24 | 2050 | 2870 | 2830 | 2690 | 2730 | 2940 | 3010 | 2750 | 2760 | 2020 | 1100 | 591 | | 25 | 2080 | 2890 | 2810 | 2710 | 2720 | 2920 | 3040 | 2740 | 2740 | 1990 | 1070 | 593 | | 26
27
28
29
30
31 | 2110
2130
2150
2160
2190
2210 | 2870
2870
2890
2910
2900 | 2810
2840
2850
2820
2800
2780 | 2730
2710
2700
2690
2690
2710 | 2710
2700
2740
 | 2920
2940
2940
2930
e2900
e2900 | 3060
3060
3040
3030
3020 | 2760
2740
2720
2710
2730
2720 | 2730
2710
2690
2650
2600 | 1960
1940
1910
1890
1860
1820 | 1060
1040
1010
981
956
942 | 583
580
595
592
607 | | MEAN | 2030 | 2630 | 2880 | 2760 | 2700 | 2870 | 2940 | 2890 | 2740 | 2200 | 1350 | 666 | | MAX | 2210 | 2910 | 2950 | 2850 | 2740 | 2940 | 3060 | 3030 | 2830 | 2560 | 1780 | 917 | | MIN | 1930 | 2230 | 2780 | 2690 | 2660 | 2750 | 2870 | 2710 | 2600 | 1820 | 942 | 543 | | (+) | 2328.49 | 2333.50 | 2332.69 | 2332.16 | 2332.35 | 2333.50 | 2334.28 | 2332.21 | 2331.35 | 2325.37 | 2316.88 | 2312.67 | | (@) | +190 | +690 | -120 | -70 | +30 | +160 | +120 | -300 | -120 | -780 | -878 | -335 | CAL YR 2000 MAX 3570 MIN 1930 (@) WTR YR 2001 MAX 3060 MIN 543 (@) -1413 ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet. 08123755 Moss Creek Lake near Coahoma, TX--Continued ## 08123800 Beals Creek near Westbrook, TX LOCATION.--Lat 32°11'57", long 101°00'49", Mitchell County, Hydrologic Unit 12080007, on left bank at downstream side of bridge on State Highway 163, 2.1 mi downstream from Hackberry Creek, 10.8 mi south of Westbrook, 15.7 mi southwest of Colorado City, and 19.1 mi upstream from mouth. DRAINAGE AREA.--9,802 mi^2 , of which 7,814 mi^2 probably is noncontributing. WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Oct. 1958 to current year. REVISED RECORDS.--WRD TX-72-1: 1971. WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 2,048.74 ft above sea level. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. No known regulation. Low flow is affected by diversion upstream from station. No flow at times most years. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1908, about 24.5 ft in 1922, from information by local resident. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, W | | YEAR OCTOBER
VALUES | 2000 TO | SEPTEMBER | 2001 | | |
---|---------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|-------------------------------------|-------------------------------------|--|-------------------------------------|---|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00 | .00
.00
24
.95
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .14
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00
7.4 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .01
.00
.00
.00 | | 6
7
8
9
10 | .00
.00
.00
.00 | .00
.00
2.5
6.9
3.1 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .40
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 11
12
13
14
15 | .00
.00
.00
.00 | .97
.02
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00 | .00
.00
.00
.00 | .00
6.5
2.1
.15
.04 | .00
.00
.00
.00 | .00 | 17
3.9
.37
.02
.00 | .00
.00
.00
.00 | | 16
17
18
19
20 | | .00
.00
.00
.00 | | | | | | .02
.01
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
2.5
.03
.00 | .00
.00
.00
.00 | | 21
22
23
24
25 | 1.9
.05
.04
25 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00 | 1.3
.03
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | | | | 26
27
28
29
30
31 | .03
8.7
17
5.0
.36
.02 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
26
 | .00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
26
22
2.1
.43
.05 | .92
.12
.01
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 120.64
3.89
33
.00
239 | 38.44
1.28
24
.00
76 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 52.54
1.88
26
.00
104 | 0.14
.005
.14
.00 | 4.70
.16
2.7
.00
9.3 | 16.62
.54
7.4
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 86.40
2.79
26
.00
171 | 119.93
4.00
56
.00
238 | | STATIS | | | | | | | 1, BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 38.0
572
1987
.000
1964 | 5.96
29.4
1987
.000
2000 | 5.07
49.2
1992
.000
1999 | 4.81
47.0
1987
.000
1999 | 8.28
94.9
1992
.000
1999 | 19.3
544
2000
.005
2001 | 19.7
256
1966
.012
1998 | 56.1
334
1994
.14
1962 | 40.9
254
1987
.000
2001 | 24.2
258
1961
.000
1964 | 17.7
168
1971
.000
2000 | 60.0
680
1980
.000
1998 | | SUMMAR | Y STATIST | ICS | FOR 2 | 000 CALEN | DAR YEAR | | FOR 2001 WA | TER YEAR | | WATER YE | ARS 1959 | - 2001 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 20889.22
57.1
7340
.00
.00
41430
25
.00 | Mar 23
Jan 1
Jan 1 | | 182 | Sep 22
Oct 1
Oct 1
Feb 28
Feb 28 | | 25.1
107
1.20
7340
.00
c13000
a23.70
18150
23
2.0
.00 | Mar | 1987
2001
23 2000
1 1958
1 1958
23 2000
23 2000 | c From rating curve extended above 5,840 ft³/s. a From floodmark. 08123800 Beals Creek near Westbrook, TX--Continued ## 08123800 Beals Creek near Westbrook, TX--Continued WATER-OUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Nov. 1958 to current year. BIOCHEMICAL DATA: Nov. 1974 to Oct. 1977. SEDIMENT DATA: Oct. 1974 to Oct. 1977. SPECIFIC CONDUCTANCE: Nov. 1958 to Feb. 1981 (local observer) and Mar. 1981 to current year. WATER TEMPERATURE: Nov. 1958 to Feb. 1981 (local observer) and Mar. 1981 to current year. INSTRUMENTATION. -- Water-quality monitor since Mar. 5, 1981. REMARKS.--No estimated daily specific conductance or water temperature. Records good. Interruptions in the specific conductance and water temperature values were due to no flow. No flow for many days. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. The computations of the selected constituent loads might include estimated discharge or specific conductance data. New regression equations were developed based on data from water years 1992 to 2001. The standard error of estimate for dissolved solids is 3%, chloride is 58%, sulfate is 30% and for hardness is 12%. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request District Office upon request. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 24,500 microsiemens/cm, Aug. 9, 1989; minimum, 59 microsiemens/cm, Nov. 1, 1998. WATER TEMPERATURE: Maximum daily, 37.0°C, June 28, 1960, and July 3, 1976; minimum, 0.0°C, on many days during winter months. EXTREMES FOR CURRENT YEAR. -- SPECIFIC CONDUCTANCE: Maximum, 9,850 microsiemens/cm, Apr. 22; minimum, 156 microsiemens/cm, Feb. 15. WATER TEMPERATURE: Maximum, 34.1°C, Aug. 13; minimum, 1.6°C, Feb. 28. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DIS- | | | | | | | | | | | | |------|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | CHARGE, | SPE- | | HARD- | | MAGNE - | | SODIUM | POTAS- | | CHLO- | FLUO- | | | | INST. | CIFIC | | NESS | CALCIUM | SIUM, | SODIUM, | AD- | SIUM, | SULFATE | RIDE, | RIDE, | | | | CUBIC | CON- | TEMPER- | TOTAL | DIS- | DIS- | DIS- | SORP- | DIS- | DIS- | DIS- | DIS- | | | | FEET | DUCT- | ATURE | (MG/L | SOLVED | SOLVED | SOLVED | TION | SOLVED | SOLVED | SOLVED | SOLVED | | DATE | TIME | PER | ANCE | WATER | AS | (MG/L | (MG/L | (MG/L | RATIO | (MG/L | (MG/L | (MG/L | (MG/L | | | | SECOND | (US/CM) | (DEG C) | CACO3) | AS CA) | AS MG) | AS NA) | | AS K) | AS SO4) | AS CL) | AS F) | | | | (00061) | (00095) | (00010) | (00900) | (00915) | (00925) | (00930) | (00931) | (00935) | (00945) | (00940) | (00950) | | OCT | | | | | | | | | | | | | | | 18 | 1215 | 16 | 263 | 16.5 | 88.8 | 27.6 | 4.84 | 14.1 | .649 | 5.72 | 16.2 | 15.6 | 3 | | AUG | 1213 | 10 | 203 | 10.5 | 00.0 | 27.0 | 1.01 | 11.1 | .042 | 3.72 | 10.2 | 13.0 | | | 27 | 1245 | 45 | 530 | 24.6 | 99.4 | 26.5 | 8.05 | 63.5 | 2.77 | 4.96 | 44.9 | 97.7 | . 4 | | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | |-----------|--|--| | OCT
18 | 6.0 | 137 | | AUG
27 | 6.1 | 291 | ## 08123800 Beals Creek near Westbrook, TX--Continued ## MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 2000 TO SEPTEMBER 2001 | MONTH YEAR | DISCHARGE
(CFS-DAYS) | SPECIFIC
CONDUCT-
ANCE
(MICRO-
SIEMENS) | DIS-
SOLVED
SOLIDS
(MG/L) | DIS-
SOLVED
SOLIDS
(TONS) | DIS-
SOLVED
CHLORIDE
(MG/L) | DIS-
SOLVED
CHLORIDE
(TONS) | DIS-
SOLVED
SULFATE
(MG/L) | DIS-
SOLVED
SULFATE
(TONS) | HARDNESS
(CA,MG)
(MG/L) | |------------|-------------------------|---|------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------| | OCT. 2000 | 120.64 | 1910 | 1090 | 354 | 460 | 151 | 200 | 65.9 | 370 | | NOV. 2000 | 38.44 | 1260 | 704 | 73.1 | 300 | 31.3 | 130 | 13.1 | 240 | | DEC. 2000 | 0 | | | | | | | | | | JAN. 2001 | 0 | | | | | | | | | | FEB. 2001 | 52.54 | 2320 | 1330 | 189 | 570 | 80.3 | 250 | 36.0 | 460 | | MAR. 2001 | 0.14 | 212 | 116 | 0.04 | 50 | 0.02 | 20 | 0.01 | 40 | | APR. 2001 | 4.7 | 4830 | 2860 | 36.3 | 1200 | 15.2 | 580 | 7.4 | 970 | | MAY 2001 | 16.62 | 4760 | 2840 | 128 | 1200 | 53.4 | 580 | 26.2 | 960 | | JUNE 2001 | 0 | | | | | | | | | | JULY 2001 | 0 | | | | | | | | | | AUG. 2001 | 86.4 | 785 | 435 | 102 | 190 | 43.6 | 77 | 17.9 | 150 | | SEPT 2001 | 119.93 | 581 | 320 | 104 | 140 | 44.6 | 56 | 18.1 | 110 | | TOTAL | 439.41 | ** | ** | 985 | ** | 419 | ** | 185 | ** | | WTD.AVG. | 1.2 | 1460 | 830 | ** | 350 | ** | 160 | ** | 280 | | | SPECIFIC | CONDUCTA | ANCE (MIC | ROSIEMENS/ | CM AT 25 | DEG. C) | , WATER YEAI | R OCTOB | ER 2000 T | O SEPTEMBER | 2001 | | |-------|----------|----------|-----------|------------|----------|---------|--------------|---------|-----------|-------------|--------|------| | DAY | MAX | MIN | MEAN
 | | | OCTOBER | 2 | N | OVEMBER | | DEG | CEMBER | | Ċ | JANUAR | ď | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | 2080 | 215 | 1360 | | | | | | | | 4 | | | | 424 | 345 | 407 | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8 | | | | 596 | 418 | 473 | | | | | | | | 9 | | | | 1900 | 326 | 848 | | | | | | | | 10 | | | | 2150 | 1900 | 2010 | | | | | | | | 11 | | | | 2230 | 2140 | 2180 | | | | | | | | 12 | | | | 2260 | 2140 | 2210 | | | | | | | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 17 | 4430 | 197 | 2540 | | | | | | | | | | | 18 | 806 | 217 | 359 | | | | | | | | | | | 19 | 5960 | 333 | 1320 | | | | | | | | | | | 20 | 5980 | 994 | 2460 | | | | | | | | | | | 21 | 994 | 894 | 920 | | | | | | | | | | | 22 | 984 | 942 | 962 | | | | | | | | | | | 23 | 845 | 682 | 842 | | | | | | | | | | | 24 | 1500 | 433 | 826 | | | | | | | | | | | 25 | 1400 | 1130 | 1320 | | | | | | | | | | | 26 | 1820 | 1520 | 1650 | | | | | | | | | | | 27 | 3090 | 1120 | 1950 | | | | | | | | | | | 28 | 4540 | 1670 | 3630 | | | | | | | | | | | 29 | 2580 | 1080 | 1310 | | | | | | | | | | | 30 | 1350 | 1140 | 1250 | | | | | | | | | | | 31 | 1730 | 1350 | 1600 | | | | | | | | | | | MONTH | | | | | | | | | | | | | 08123800 Beals Creek near Westbrook, TX--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | 1 2011 10 | | | | | | , miidi id | | | | | | |---|------------------------------|--------------|------------|------------------|--------------|--------------|--|--|--|-----------------------------|---------------------------------|---------------------| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | | | PEDROAKI | | | PIARCII | | | ALKID | | | Inni | | | 1 | | | | 217 | 193 | 212 | | | | | | | | 2 | | | | | | | | | | | | | | 3
4 | | | | | | | | | | | | | | 5 | | | | | | | | | | 9080 | 3820 | 6840 | | | | | | | | | | | | | | | | 6 | | | | | | | | | | 3820 | 2680 | 2940 | | 7
8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | 11
12 | | | | | | | | | | 4150 | 1360 | 3850 | | 13 | | | | | | | | | | 2300 | 686 | 986 | | 14 | | | | | | | | | | 777 | 688 | 738 | | 15 | 6860 | 156 | 4440 | | | | | | | 1000 | 777 | 886 | | 1.0 | 1070 | 165 | C02 | | | | | | | 1000 | 000 | 1000 | | 16
17 | 1970
878 | 165
319 | 683
468 | | | | | | | 1220
1460 | 988
1220 | 1090
1360 | | 18 | 2910 | 668 | 1790 | | | | | | | | | | | 19 | | | | | | | 5250 | 1710 | 3780 | | | | | 20 | | | | | | | 6880 | 5250 | 6380 | | | | | 21 | | | | | | | 8130 | E200 | 6110 | | | | | 22 | | | | | | | 9850 | 5380
8130 | 9530 | | | | | 23 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | 28 | 5340 | 190 | 2440 | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30
31 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | DAV | MAN | MIN | MUANT | 14737 | MIN | MELDAT | MAN | MTN | MELTAN | 14737 | MIN | MEDAN | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | IR. | | 1 | | JUNE | | | JULY | | | AUGUST | | 298 | SEPTEMBE | 289 | | 1
2 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | 289
 | | 1 | | JUNE | | | JULY | | | AUGUST | | 298
 | SEPTEMBE | 289 | | 1
2
3 | | JUNE

 | | | JULY

 | |
 | AUGUST |
 | 298

 | 281
 | 289
 | | 1
2
3
4
5 |

 | JUNE |

 |

 | JULY |

 |

 | AUGUST |

 | 298

 | 281

 | 289

 | | 1
2
3
4
5 | | JUNE | |

 | JULY |

 |

 | AUGUST |

 | 298

 | 281

 | 289

 | | 1
2
3
4
5 |

 | JUNE |

 |

 | JULY |

 |

 | AUGUST |

 | 298

 | 281

 | 289

 | | 1
2
3
4
5 |

 | JUNE | |

 | JULY | |

 | AUGUST |

 | 298

 | 281

 | 289

 | | 1
2
3
4
5
6
7
8 |

 | JUNE |

 |

 | JULY |
 |

 | AUGUST |

 | 298

 | 281

 | 289

 | | 1
2
3
4
5
6
7
8
9 |

 | JUNE | |

 | JULY | |

2450 | AUGUST 416 |

1420 | 298

 | 281

 | 289

 | | 1
2
3
4
5
6
7
8
9
10 | ====
====
====
==== | JUNE | |

 | JULY |

 |

2450 | AUGUST 416 916 |

1420 | 298

 | 281

 | 289

 | | 1
2
3
4
5
6
7
8
9
10 | | JUNE | | | JULY | |

2450 | AUGUST 416 |

1420 | 298

 | 281

 | 289

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | JUNE | | | JULY | |

2450
2630
929
853
886 | AUGUST 416 916 741 777 852 |

1420
1160
781
820
871 | 298

 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10 | | JUNE | | | JULY | |

2450
2630
929
853 | AUGUST 416 916 741 |

1420
1160
781
820 | 298 | 281

 | 289

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | JUNE | | | JULY | |

2450
2630
929
853
886 | AUGUST 416 916 741 777 852 |

1420
1160
781
820
871 | 298

 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | JUNE | | | JULY | |

2450
2630
929
853
886 | AUGUST 416 916 741 777 852 |

1420
1160
781
820
871 | 298 | 281

 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | JUNE | | | JULY | |

2450
2630
929
853
886

927
401 | AUGUST 416 916 741 777 852 248 378 |

1420
1160
781
820
871

439
387 | 298 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | JUNE | | | JULY | |

2450
2630
929
853
886

927
401 | AUGUST 416 916 741 777 852 248 378 | 1160
781
820
871

439
387 | 298 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | JUNE | | | JULY | |

2450
2630
929
853
886

927
401 | AUGUST 416 916 741 777 852 248 378 |

1420
1160
781
820
871

439
387 | 298 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | JUNE | | | JULY | |

2450
2630
929
853
886

927
401 | AUGUST 416 916 741 777 852 248 378 | 1160
781
820
871

439
387 | 298 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | JUNE | | | JULY | |

2450
2630
929
853
886

927
401 | AUGUST 416 916 741 777 852 248 378 |

1420
1160
781
820
871

439
387
 | 298 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | JUNE | | | JULY | |

2450
2630
929
853
886

927
401
 | AUGUST 416 916 741 777 852 248 378 |

1420
1160
781
820
871

439
387
 | 298 | 281 | 289 483 561 691 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | JUNE | | | JULY | |

2450
2630
929
853
886

927
401
 | AUGUST 416 916 741 777 852 248 378 | 1160
781
820
871

439
387
 | 298 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | JUNE | | | JULY | |

2450
2630
929
853
886

927
401
 | AUGUST 416 916 741 777 852 248 378 |

1420
1160
781
820
871

439
387
 | 298 | 281 | 289 483 561 691 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | JUNE | | | JULY | |

2450
2630
929
853
886

927
401
 | AUGUST 416 916 741 777 852 248 378 | 1160
781
820
871

439
387
 | 298 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
| | JUNE | | | JULY | | 2450 2630 929 853 886 927 401 931 | AUGUST 416 916 741 777 852 248 378 248 378 402 |

1420
1160
781
820
871

439
387

567 | 298 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | | JUNE | | | JULY | | 2450 2630 929 853 886 927 401 | AUGUST 416 916 741 777 852 248 378 248 378 402 185 |

1420
1160
781
820
871

439
387

567
510 | 298 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | JUNE | | | JULY | |

2450
2630
929
853
886

927
401

 | AUGUST 416 916 741 777 852 248 378 402 185 | 1160
781
820
871

439
387

567
510
222 | 298 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | | JUNE | | | JULY | | 2450 2630 929 853 886 927 401 931 733 245 267 | AUGUST 416 916 741 777 852 248 378 248 378 402 185 199 245 | | 298 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | | JUNE | | | JULY | |

2450
2630
929
853
886

927
401

- | AUGUST 416 916 741 777 852 248 378 248 378 402 185 199 245 264 | 1160
781
820
871

439
387

567
510
222
258
274 | 298 | 281 | 289 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | | JUNE | | | JULY | | 2450 2630 929 853 886 927 401 931 733 245 267 | AUGUST 416 916 741 777 852 248 378 248 378 402 185 199 245 | | 298 | 281 | 289 | 08123800 Beals Creek near Westbrook, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |-------|------|---------|------|------|---------|------|-----|--------|------|-----|---------|------| | | | OCTOBER | ! | N | OVEMBER | | DE | CEMBER | | Ċ | JANUARY | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | 16.0 | 15.3 | 15.8 | | | | | | | | 4 | | | | 15.7 | 15.0 | 15.4 | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8 | | | | 8.7 | 6.1 | 6.9 | | | | | | | | 9 | | | | 8.7 | 5.3 | 7.2 | | | | | | | | 10 | | | | 11.8 | 7.3 | 9.2 | | | | | | | | 11 | | | | 14.3 | 9.8 | 11.7 | | | | | | | | 12 | | | | 12.2 | 10.1 | 11.3 | | | | | | | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 17 | 17.3 | 16.0 | 16.8 | | | | | | | | | | | 18 | 18.4 | 15.0 | 16.5 | | | | | | | | | | | 19 | 18.6 | 16.0 | 17.3 | | | | | | | | | | | 20 | 22.2 | 18.2 | 19.8 | | | | | | | | | | | 21 | 21.1 | 19.9 | 20.4 | | | | | | | | | | | 22 | 22.2 | 18.6 | 20.2 | | | | | | | | | | | 23 | 19.9 | 18.7 | 19.9 | | | | | | | | | | | 24 | 19.9 | 17.9 | 18.9 | | | | | | | | | | | 25 | 19.9 | 19.1 | 19.5 | | | | | | | | | | | 26 | 20.4 | 18.9 | 19.5 | | | | | | | | | | | 27 | 20.2 | 19.2 | 19.7 | | | | | | | | | | | 28 | 20.2 | 17.0 | 19.1 | | | | | | | | | | | 29 | 18.7 | 15.0 | 16.7 | | | | | | | | | | | 30 | 20.5 | 15.4 | 17.7 | | | | | | | | | | | 31 | 20.6 | 18.2 | 19.4 | | | | | | | | | | | MONTH | | | | | | | | | | | | | 08123800 Beals Creek near Westbrook, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | | WIIIII (DEC | | | | | | | | | |---|------------------|------------------|----------|----------------------|--------------|----------|--|--|--|----------------------|--------------------------|---| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | 3.3 | 2.6 | 3.1 | | | | | | | | 2 | | | | | | | | | | | | | | 3
4 | | | | | | | | | | | | | | 5 | | | | | | | | | | 24.6 | 19.6 | 21.6 | | 6 | | | | | | | | | | 28.0 | 20.6 | 24.1 | | 7
8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12
13 | | | | | | | | | | 24.9
27.3 | 22.5
19.8 | 24.1 | | 14 | | | | | | | | | | 27.3 | 20.9 | 23.0
23.8 | | 15 | 11.3 | 2.1 | 8.5 | | | | | | | 28.8 | 21.0 | 24.3 | | 16 | 8.0 | 3.8 | 5.6 | | | | | | | 28.0 | 21.0 | 24.1 | | 17 | 9.1 | 5.0 | 7.0 | | | | | | | 29.7 | 21.4 | 25.8 | | 18
19 | 11.1 | 5.7
 | 8.2 | | | | 21.4 | 14.8 |
17.7 | | | | | 20 | | | | | | | 24.1 | 19.0 | 21.2 | | | | | 21 | | | | | | | 26 1 | 20.0 | 22.0 | | | | | 22 | | | | | | | 26.1
23.1 | 20.8
20.5 | 23.0
22.0 | | | | | 23 | | | | | | | | | | | | | | 24
25 | 26
27 | | | | | | | | | | | | | | 28 | 8.4 | 1.6 | 5.1 | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30
31 | MONTH | DAY | MAX | MIN | MEAN | | DAY | MAX | | MEAN | MAX | | MEAN | | | MEAN | | | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1 | | JUNE | | | JULY | | | AUGUST | | 29.9 | SEPTEMBE | 26.6 | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4 |

 | JUNE

 |

 | | JULY |

 |

 | AUGUST |

 | 29.9

 | SEPTEMBE
22.7

 | 26.6

 | | 1
2
3 | | JUNE

 | |
 | JULY

 |
 |
 | AUGUST | | 29.9
 | SEPTEMBE
22.7
 | 26.6
 | | 1
2
3
4
5 |

 | JUNE | |

 | JULY |

 |

 | AUGUST |

 | 29.9

 | SEPTEMBE
22.7

 | 26.6

 | | 1
2
3
4
5 | | JUNE | |

 | JULY | | ===
===
===
=== | AUGUST | ==== | 29.9

 | 22.7

 | 26.6

 | | 1
2
3
4
5 |

 | JUNE | |

 | JULY |

 |

 | AUGUST |

 | 29.9

 | SEPTEMBE
22.7

 | 26.6

 | | 1
2
3
4
5
6
7
8 |

 | JUNE |

 |

 | JULY | | | AUGUST | | 29.9

 | 22.7

 | 26.6

 | | 1
2
3
4
5
6
7
8
9
10 | | JUNE | | | JULY | |

30.1 | AUGUST 27.8 25.7 |

29.7 | 29.9 | 22.7

 | 26.6

 | | 1
2
3
4
5
6
7
8
9
10 |

 | JUNE | |

 | JULY | |

30.1
30.8
32.6 | AUGUST 27.8 25.7 27.0 |

29.7
28.2
29.7 | 29.9 | 22.7

 | 26.6

 | | 1
2
3
4
5
6
7
8
9
10 | | JUNE | | | JULY | |

30.1 | AUGUST 27.8 25.7 |

29.7 | 29.9 | 22.7

 | 26.6

 | | 1
2
3
4
5
6
7
8
9
10 | | JUNE | |

 | JULY | |

30.1
30.8
32.6
34.1 | AUGUST 27.8 25.7 27.0 26.9 |

29.7
28.2
29.7
29.8 | 29.9 | 22.7

 | 26.6

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | JUNE | | | JULY | |

30.1
30.8
32.6
34.1
31.8 | AUGUST 27.8 25.7 27.0 26.9 26.8 |

29.7
28.2
29.7
29.8
28.4 | 29.9 | SEPTEMBE 22.7 | 26.6

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | JUNE | | | JULY | |

30.1
30.8
32.6
34.1
31.8 | AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 |

29.7
28.2
29.7
29.8
28.4
 | 29.9 | SEPTEMBE 22.7 | 26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | JUNE | | | JULY | |

30.1
30.8
32.6
34.1
31.8 | AUGUST 27.8 25.7 27.0 26.9 26.8 |

29.7
28.2
29.7
29.8
28.4 | 29.9 | SEPTEMBE 22.7 | 26.6

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | JUNE | | | JULY | |

30.1
30.8
32.6
34.1
31.8

29.2
30.7 | AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3 |

29.7
28.2
29.7
29.8
28.4
 | 29.9 | SEPTEMBE 22.7 | 26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | | JUNE | | | JULY | | 30.1
30.8
32.6
34.1
31.8

29.2
30.7 | AUGUST 27.8 25.7 27.0 26.9 26.9 26.8 23.2 24.3 |

29.7
28.2
29.7
29.8
28.4

25.5
26.4 | 29.9 | SEPTEMBE 22.7 | 26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | JUNE | | | JULY | | 30.1
30.8
32.6
34.1
31.8

29.2
30.7 | AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3 |

29.7
28.2
29.7
29.8
28.4

25.5
26.4 | 29.9 | SEPTEMBE 22.7 | 26.6 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | JUNE | | | JULY | | 30.1
30.8
32.6
34.1
31.8

29.2
30.7 | AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3 |

29.7
28.2
29.7
29.8
28.4

25.5
26.4
 | 29.9 | SEPTEMBE 22.7 | 26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | JUNE | | | JULY | | 30.1
30.8
32.6
34.1
31.8

29.2
30.7 | AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3 |

29.7
28.2
29.7
29.8
28.4

25.5
26.4 | 29.9 | SEPTEMBE 22.7 | 26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | JUNE | | | JULY | | 30.1
30.8
32.6
34.1
31.8

29.2
30.7 | AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3 |

29.7
28.2
29.7
29.8
28.4

25.5
26.4
 | 29.9 | SEPTEMBE 22.7 | 26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | | JUNE | | | JULY | |

30.1
30.8
32.6
34.1
31.8

29.2
30.7

29.2 | AUGUST |

29.7
28.2
29.7
29.8
28.4

25.5
26.4

24.9 | 29.9 | SEPTEMBE 22.7 | 26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | | JUNE | | | JULY | |

30.1
30.8
32.6
34.1
31.8

29.2
30.7

29.2
30.7 | AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3 23.1 23.7 | 29.7 28.2 29.7 29.8 28.4 25.5 26.4 24.9 24.9 | 29.9 | SEPTEMBE 22.7 | 26.6 24.8 23.6 22.1 20.7 20.6 21.8 21.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | | JUNE | | | JULY | |

30.1
30.8
32.6
34.1
31.8

29.2
30.7

29.2 | AUGUST |

29.7
28.2
29.7
29.8
28.4

25.5
26.4

24.9 | 29.9 | SEPTEMBE 22.7 | 26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | JUNE | | | JULY | | 30.1
30.8
32.6
34.1
31.8

29.2
30.7

26.3
26.9
25.1 | AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3 23.1 23.7 22.7 |

29.7
28.2
29.7
29.8
28.4

25.5
26.4

24.9
24.7
23.8 | 29.9 | SEPTEMBE 22.7 | 26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | | JUNE | | | JULY | |

30.1
30.8
32.6
34.1
31.8

29.2
30.7

26.3
26.9
25.1
29.0 | AUGUST 27.8 25.7 27.0 26.9 26.9 24.3 23.2 24.3 23.1 23.7 22.7 23.0 |

29.7
28.2
29.7
29.8
28.4

25.5
26.4

24.9
24.7
23.8
25.1 | 29.9 | SEPTEMBE 22.7 | 26.6 | 08123800 Beals Creek near Westbrook, TX--Continued Figure 4.--Map showing location of gaging stations in the second section of the Colorado River Basin | 08123850 | Colorado River above Silver, TX | 70 | |----------|--|-----| | 08123950 | E.V. Spence Reservoir near Robert Lee, TX | 78 | | 08124000 | Colorado River at Robert Lee, TX | 80 | | 08125500 | Oak Creek Reservoir near Blackwell, TX | 82 | | 08126380 | Colorado River near Ballinger, TX | 84 | | 08127000 | Elm Creek at Ballinger, TX | 92 | | 08128000 | South Concho River at Christoval, TX | 100 | | 08128400 | Middle Concho River above Tankersley, TX | 102 | | 08129300 | Spring Creek above Tankersley, TX | 104 | | 08129500 | Dove Creek Spring near Knickerbocker, TX | 321 | | 08130500 | Dove Creek at Knickerbocker, TX | 106 | | 08131200 | Twin Buttes Reservoir near San Angelo, TX | 108 | | 08131400 | Pecan Creek near San Angelo, TX | 110 | | 08132000 | Lake Nasworthy near San Angelo, TX | 112 | | 08133250 | North Concho River above Sterling City, TX | 114 | | 08133500 | North Concho River at Sterling City, TX | 116 | | 08134000 | North Concho River near Carlsbad, TX | 118 | | 08134250 | North Concho River near Grape Creek, TX | 120 | | 08134500 | O.C. Fisher Lake at San Angelo, TX | 122 | | 08136000 | Concho River at San Angelo, TX | 124 | | 08136500 | Concho River at Paint Rock, TX | 126 | ## 08123850 Colorado River above Silver, TX $\label{location.--Lat 32^03'13", long 100°45'42", Coke County, Hydrologic Unit 12080008, on right bank 25 ft downstream from Pan American Oil Co. bridge, 4.7 mi west of Silver, and at mile 756.0.$ DRAINAGE AREA.--14,910 mi², of which 10,260 mi² probably is noncontributing. WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Aug. 1967 to current year. REVISED RECORDS.--WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,907.66 ft above sea level. Prior to Oct. 4, 1972, water-stage recorder at site 0.5 mi downstream at same datum. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. Since installation of gage in Aug. 1967, at least 10% of contributing drainage area has been regulated. The Colorado River Municipal Water District diverts low flow into an off channel reservoir 3 mi above Colorado River at Colorado City (station 08121000) for brine disposal. There are numerous diversions from Lake J.B. Thomas for municipal use and for oil field operations. No flow at times. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DISCHAR | JE, CUBI | C FEET PER | | MEAN V | | ER 2000 10 | SELIEMB! | ER 2001 | | | |--|--|--|--|---|-------------------------------------|------------------------------------|--------------------------------------|--|-------------------------------------|---|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .07
.06
.06
.06 | 23
11
12
30
33 | 1.8
1.6
1.6
1.7 | 2.2
2.4
2.4
2.4
2.2 | 2.2
2.9
2.9
2.2
2.1 | 12
25
12
7.8
5.1 | 15
11
7.3
5.8
4.9 | .25
.18
.12
6.0 | 1.4
.03
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 6
7
8
9
10 | .05
.05
.07
.07 | 16
10
9.3
6.6
7.6 | 1.4
1.4
1.6
1.5 | 2.2
2.2
2.2
2.2
2.9 | 1.7
1.8
1.9
1.8 | 3.9
3.3
3.2
3.1
2.9 | 4.2
3.2
3.1
2.2
2.5 | 5.2
2.3
1.4
6.5
5.2 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .89
.07
.00
.00 | | 11
12
13
14
15 | .10
.12
.13
.11 | 15
8.7
5.8
3.9
2.9 | 1.5
1.4
1.6
1.8
1.8 | 3.0
3.8
3.5
4.0
7.1 | 1.7
1.7
2.0
2.3
2.5 | 2.5
2.3
2.2
2.2
1.6 | 4.4
8.1
8.5
6.0
4.7 | 6.2
4.8
3.5
2.9 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 18
19 | .10
16
40
48
34 | | | 5.6
4.3
3.9
7.0
5.3 | | | 6.2
13
8.1
4.6
3.5 | .52
.22
.10
.08 | .00
.00
.00
.00 |
.00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 22
23
24 | 22
35
20
20
53 | | | | | 2.1
1.9
1.9
2.4
3.3 | 2.8
2.2
.82
.58
.52 | .01
.00
.01
.01 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .04
2.7
58
73
40 | | 27
28 1
29 3 | 22
12
192
302
67
36 | 3.2
6.1
4.5
2.7
2.2 | 2.2
2.4
2.4
2.2
2.2
2.1 | 2.0
2.0
2.2
3.6
3.3
2.5 | 3.5
3.1
2.8
 | 2.5
13
10
8.4
8.2 | . 47
. 44
. 35
. 27
. 23 | .01
.17
.06
.06
.09 | .00
.00
.00
.00 | .00
.00
.00
.00
.00 | .23
1.5
.00
.00 | 33
22
13
7.7
4.8 | | TOTAL 9
MEAN
MAX
MIN
AC-FT | 920.30
29.7
302
.05
1830 | 233.3
7.78
33
1.4
463 | 54.6
1.76
2.4
1.4
108 | 98.9
3.19
7.1
2.0
196 | 187.9
6.71
33
1.7
373 | 168.3
5.43
25
1.6
334 | 134.98
4.50
15
.23
268 | 88.24
2.85
26
.00
175 | 1.43
.048
1.4
.00
2.8 | .00 | 1.73
.056
1.5
.00
3.4 | 268.20
8.94
73
.00
532 | | STATISTI | ICS OF M | ONTHLY MEAI | N DATA F | OR WATER Y | | | | R YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 116
1834
1987
.000
1969 | 18.7
67.5
1973
.000
1971 | 17.6
120
1992
.30
1971 | 16.7
90.7
1987
1.17
1971 | 29.0
256
1992
1.02
1971 | 55.7
999
2000
.36
1971 | 50.5
599
1981
.70
1998 | 145
681
1994
1.91
1984 | 160
1242
1982
.048
2001 | 49.7
313
1988
.000
1970 | 79.6
1122
1971
.010
1984 | 142
1853
1980
.000
1968 | | SUMMARY | STATIST | ICS | FOR | 2000 CALEN | IDAR YEAR | I | FOR 2001 V | WATER YEAR | | WATER YEA | RS 1967 | - 2001 | | MAXIMUM | MEAN ANNUAL MANNUAL MANNUAL MEAILY MEAULY ME | EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS EDS | | 39105.53
107
10500
.05
.06
77570
60
2.7
.08 | Mar 25
5 Sep 18
5 Sep 15 | | 1.7 | Oct 29
00 May 22
00 Jun 3
Oct 28
75 Oct 28 | | 73.7
298
4.69
15900
.00
c18900
22.73
53360
91
8.1
.10 | Sep
Aug
Aug
Sep
Sep | 1987
1998
30 1980
2 1968
2 1968
9 1980
9 1980 | c From rating curve extended above 12,800 ft³/s. ## 08123850 Colorado River above Silver, TX--Continued ## 08123850 Colorado River above Silver, TX--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. -- RIOD OF RECORD.--CHEMICAL DATA: Aug. 1967 to current year. BIOCHEMICAL DATA: Nov. 1977 to current year. PESTICIDE DATA: Oct. 1969 to Aug. 1981. SEDIMENT DATA: Aug. 1977 to Aug. 1994. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Dec. 1967 to current year. WATER TEMPERATURE: Dec. 1967 to May 1981 (local observer) and June 1981 to current year. INSTRUMENTATION. -- Specific conductance recorder since Dec. 1967. Water-temperature recorder since June 1981. REMARKS.--No estimated daily specific conductance or water temperature. Records fair. Interruptions in the record were due to no flow. No flow June 3 to Aug. 25, Aug. 28 to Sept. 4, Sept. 8-20. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. New regression equations were developed based on data from water years 1992 to 2001. The standard error of estimate for dissolved solids is 6%, chloride is 31%, sulfate is 48% and for hardness is 30%. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request. #### EXTREMES FOR PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: Maximum, 19,900 microsiemens/cm, Sept. 10, 1988; minimum, 154 microsiemens/cm, Sept. 21, 1990. WATER TEMPERATURE: Maximum, 35.5°C, Aug. 2, 7, 1985; minimum, 0.0°C, on many days during winter months. #### EXTREMES FOR CURRENT YEAR.- SPECIFIC CONDUCTANCE: Maximum, 12,300 microsiemens/cm, Feb. 18; minimum, 566 microsiemens/cm, Oct. 28. WATER TEMPERATURE: Maximum, 31.0° C, May 17; minimum, 1.6° C, Dec. 27. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | WAIDK | QUALITI D | MIM, WAIL | ik IBAK OC | TODER 200 | O IO DEFI | EMDER 200 | _ | | | | |------------------|--|---|--|--|--|--|---|--|--|--|--|--|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | | OCT
13
JAN | 1200 | .14 | 8560 | 8.3 | 18.0 | 9.1 | 105 | 3000 | | 831 | 225 | 948 | 7.53 | | 11 | 1300 | 2.7 | 5570 | 7.8 | 6.8 | 11.8 | 103 | 1370 | 1250 | 362 | 114 | 673 | 7.90 | | MAR
06
APR | 1330 | 4.2 | 6990 | 8.1 | 14.5 | 9.9 | 106 | 987 | 877 | 250 | 88.0 | 1070 | 14.8 | | 25
SEP | 1200 | .72 | 6900 | 8.1 | 21.4 | 8.9 | 109 | 1430 | 1300 | 357 | 130 | 908 | 10.5 | | 07 | 1200 | .11 | 3610 | | 27.8 | | | 1160 | | 328 | 83.9 | 397 | 5.06 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | | OCT
13 | 2.73 | | | | 2540 | 1780 | .6 | 13.8 | | <.006 | <.047 | .061 | .412 | | JAN
11 | 7.79 | 0 | 150 | 123 | 1230 | 1130 | . 4 | 1.0 | 3600 | <.006 | <.047 | E.021 | | | MAR
06 | 7.86 | 0 | 134 | 110 | 835 | 1770 | .5 | 1.2 | 4090 | <.006 | <.047 | <.041 | | | APR
25
SEP | 9.78 | 0 | 156 | 128 | 1360 | 1500 | .6 | 5.6 | 4350 | <.006 | <.047 | <.041 | | | 07 | 7.65 | | | | 1010 | 709 | . 4 | 9.6 | | | | | | | DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | | OCT
13 | .47 | <.060 | E.009 | 3.9 | 99.8 | <.14 | <.8 | <1.3 | <10 | <2.00 | 4.9 | <.23 | 5.2 | | JAN
11 | .32 | <.060 | <.018 | E1.6 | 61.0 | <.14 | <.8 | <1.3 | <50 | <1.00 | 21.0 | <.23 | 2.6 | | MAR
06
APR | .35 | <.060 | <.018 | E1.4 | 16.6 | <.42 | E.7 | E1.8 | <50 | <3.00 | 37.3 | <.23 | <2.4 | | 25
SEP | .41 | <.060 | <.018 | 2.7 | 106 | <.28 | E.6 | E1.2 | <50 | <2.00 | 20.7 | <.01 | <2.4 | | 07 | | | | | | | | | | | | | | 73 ## 08123850 Colorado River above Silver, TX--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | | |------------------|---|------| | OCT
13 | .5 | <20 | | JAN
11 | <.2 | <100 | | MAR
06
APR | <.5 | <100 | | 25
SEP | <.3 | <100 | | 07 | | | ## MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 2000 TO SEPTEMBER 2001 | MONTH | YEAR | DISCHARGE
(CFS-DAYS) |
SPECIFIC
CONDUCT-
ANCE
(MICRO-
SIEMENS) | DIS-
SOLVED
SOLIDS
(MG/L) | DIS-
SOLVED
SOLIDS
(TONS) | DIS-
SOLVED
CHLORIDE
(MG/L) | DIS-
SOLVED
CHLORIDE
(TONS) | DIS-
SOLVED
SULFATE
(MG/L) | DIS-
SOLVED
SULFATE
(TONS) | HARDNESS
(CA,MG)
(MG/L) | |-------|------|-------------------------|---|------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------| | | | | | | | | | | | | | OCT. | 2000 | 920.3 | 2110 | 1340 | 3330 | 430 | 1080 | 410 | 1020 | 520 | | NOV. | 2000 | 233.3 | 2040 | 1280 | 803 | 410 | 259 | 390 | 245 | 500 | | DEC. | 2000 | 54.6 | 4730 | 3090 | 455 | 1000 | 149 | 970 | 143 | 1200 | | JAN. | 2001 | 98.9 | 6150 | 4110 | 1100 | 1400 | 363 | 1300 | 348 | 1500 | | FEB. | 2001 | 187.9 | 7490 | 5150 | 2610 | 1700 | 874 | 1700 | 841 | 1900 | | MAR. | 2001 | 168.3 | 5860 | 3910 | 1780 | 1300 | 587 | 1200 | 563 | 1500 | | APR. | 2001 | 134.98 | 6010 | 4000 | 1460 | 1300 | 482 | 1300 | 461 | 1500 | | MAY | 2001 | 88.24 | 7100 | 4840 | 1150 | 1600 | 384 | 1500 | 369 | 1800 | | JUNE | 2001 | 1.43 | 4010 | 2590 | 10.0 | 840 | 3.3 | 800 | 3.1 | 990 | | JULY | 2001 | 0 | | | | | | | | | | AUG. | 2001 | 1.73 | 7950 | 5460 | 25.5 | 1800 | 8.5 | 1800 | 8.2 | 2000 | | SEPT | 2001 | 268.2 | 2980 | 1910 | 1390 | 620 | 451 | 590 | 430 | 730 | | TOTAL | | 2157.88 | ** | ** | 14110 | ** | 4640 | ** | 4430 | ** | | WTD.A | VG. | 5.9 | 3680 | 2420 | ** | 800 | ** | 760 | ** | 910 | 08123850 Colorado River above Silver, TX--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |--|--|--|---|---|--|---|--|--|--|--|---|--| | 2.11 | | OCTOBER | | N | | | D | | | 1111 | JANUARY | | | 1 | 7150 | 7030 | | | 1160 | 1100 | | | 3110 | 5460 | 5400 | 5430 | | 2 3 | 7390
7200 | 7030
7090
7120 | 7140
7160 | 1230
1290
1460
1780
1840 | 1230 | 1180
1260
1360
1610
1820 | 3170
3290
3390
3550
3740 | 3160 | 3110
3220
3330
3460 | 5520
5570 | 5450
5490 | 5480
5520 | | 4 | 7220 | 7120
7190 | 7190 | 1780 | 1460
1770 | 1610 | 3550
3740 | 3390 | 3460 | 5570
5600
5600 | 5490 | 5550 | | 5 | 7450 | | | | | | | 3340 | 3040 | 3600 | 5550 | 5570 | | 6
7 | 7400
7500 | 7230
7390 | 7320
7450 | 2000
2210
2430
2810
2930 | 1740
2000 | 1840
2120
2270
2640
2890 | 3930
4070
4240
4390
4570 | 3740
3930 | 3830
4000 | 5640
5650 | 5550
5590 | 5590
5620 | | 8
9 | 7520
7500 | 7390
7470
7450
7430 | 7500
7480 | 2430 | 2210
2430 | 2270
2640 | 4240
4390 | 4070 | 4160
4310 | 5730
5750
5760 | 5590
5640
5670 | 5670
5710 | | 10 | 7490 | 7430 | | | | 2890 | 4570 | 4390 | 4460 | 5760 | 5730 | 5740 | | 11 | 7470 | 7410 | 7440 | 2870
2490
2310
2150
2160 | 2490 | 2650 | 4620 | 4520 | 4550 | 5830 | 5750 | 5780 | | 12
13 | 7410
7470 | 7310
7280
7040 | 7360
7310 | 2490 | 2300 | 2390
2230 | 4710 | 4610
4690 | 4670
4720 | 5940
6040 | 5790
5930 | 5780
5880
5980 | | 14
15 | 7290
7160 | 7040
6980 | 7220
7120 | 2150
2160 | 2070
2080 | 2650
2390
2230
2100
2120 | 4620
4710
4750
4750
4850 | 4720
4700 | 4730
4760 | 6120
6260 | 6020
6110 | 6090
6200 | | 16 | 7140 | | 7070 | 2360 | | | | | | | | 6300 | | 17 | 6990 | 5520 | 7070
6690
5580
4270
5340 | 2360
2590
2800
2950
3040 | 2350 | 2260
2470
2690
2880
3000 | 4890
4970
5040
5120
5160 | 4890 | 4920 | 6320
6400
6430
6420
6310 | 6320 | 6360 | | 18
19 | 6640
5920 | 3150
1520 | 4270 | 2800
2950 | 2590
2790 | 2690
2880 | 5120 | 4960
5030 | 5000
5070 | 6430 | 6250 | 6410
6330 | | 20 | 7590 | 2720 | | | 2950 | | | | 5130 | 6310 | 6190 | 6240 | | 21
22 | 3170
3100 | 2680
1660 | 2960
2200 | 3110
3180
3220
3210
3110 | 3040
3100 | 3070
3140 | 5250
5270
5320
5360
5420 | 5080 | 5190
5240 | 6260 | 6170
6200 | 6220
6280 | | 23 | 2000 | 1830 | 1940 | 3220 | 3170 | 3190 | 5320 | 5210
5260 | 5290 | 6320
6410
6520 | 6280 | 6350 | | 24
25 | 1870
2040 | 1510
1510 | 1650
1760 | 3210
3110 | 3080
3000 | 3070
3140
3190
3150
3040 | 5360
5420 | 5310
5360 | 5330
5380 | 6520
6610 | 6400
6510 | 6480
6570 | | 26 | 2270 | | | | 2900 | | | | 5380 | 6690 | 6580 | 6630 | | 27 | 2260 | 1720
566
1150
1070 | 2050
2010
1380
1520
1160 | 3010
2900
2930
3040
3090 | 2840 | 2950
2870
2880
2990 | 5410
5390
5410
5410
5410
5400 | 5350 | 5370 | 6740
6760
6680
6750 | 6640 | 6690 | | 28
29 | 1720
2130 | 566
1150 | 1520 | 3040 | 2810 | 2880
2990 | 5410
5410 | 5330
5350 | 5390
5370 | 6760
6680 | 6660
6610 | 6740
6650 | | 30 | 1290 | 1070 | 1160 | 3090 | 3030 | 3050 | 5410 | 5330 | 5370 | 6750 | 6650 | 6720 | | 31 | 1100 | 1070 | | | | | | | 5390 | 6800 | 6710 | 6760 | | MONTH | 7590 | 566 | 5100 | 3220 | 1160 | 2470 | 5420 | 3070 | 4660 | 6800 | 5400 | 6110 | | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | 34737 | NATAT | MILANT | MAX | MIN | MEAN | | | | | | 1.11.11.1 | PILLIN | MEAN | MAX | MIN | MEAN | MAA | IVILLIA | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | MEAN | | 1 | 6780 | FEBRUARY | | | MARCH
6070 | 6230 | | APRIL | | | MAY
8260 | 8320 | | 2 | 6780
6890
6840 | FEBRUARY | | | MARCH
6070 | 6230 | | APRIL | | | MAY
8260
8360
8460 | 8320
8430
8550 | | 2
3
4 | 6780
6890
6840
6830 | FEBRUARY
6680
6710
6750
6740 | | | MARCH
6070
6370
6830
8070 | 6230
6760
8030
8510 | 5930
5880
5880
5920 | 5750
5730
5760
5720 | 5870
5820
5830
5870 | 8380
8460
8590
8620 | MAY
8260
8360
8460
8050 | 8320
8430
8550
8380 | | 2
3
4
5 | 6780
6890
6840
6830
6900 | FEBRUARY
6680
6710
6750
6740
6810 | 6730
6760
6800
6800
6850 | 7070
7350
8770
8790
8070 | MARCH
6070
6370
6830
8070
6800 | 6230
6760
8030
8510
7520 | 5930
5880
5880
5920
5890 | 5750
5730
5760
5720
5820 | 5870
5820
5830
5870
5860 | 8380
8460
8590
8620
9800 | MAY
8260
8360
8460
8050
8120 | 8320
8430
8550
8380
9320 | | 2
3
4 | 6780
6890
6840
6830
6900 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 | 6730
6760
6800
6800
6850 | 7070
7350
8770
8790
8070 | MARCH
6070
6370
6830
8070
6800 | 6230
6760
8030
8510
7520 | 5930
5880
5880
5920
5890 | 5750
5730
5760
5720
5820 | 5870
5820
5830
5870
5860 | 8380
8460
8590
8620
9800 | MAY
8260
8360
8460
8050
8120
7890
7830 | 8320
8430
8550
8380
9320
8300
7910 | |
2
3
4
5
6
7
8 | 6780
6890
6840
6830
6900
6940
6900 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 | 6730
6760
6800
6800
6850 | 7070
7350
8770
8790
8070 | MARCH
6070
6370
6830
8070
6800 | 6230
6760
8030
8510
7520 | 5930
5880
5880
5920
5890 | 5750
5730
5760
5720
5820 | 5870
5820
5830
5870
5860 | 8380
8460
8590
8620
9800 | MAY
8260
8360
8460
8050
8120
7890
7830
7930 | 8320
8430
8550
8380
9320
8300
7910
7970 | | 2
3
4
5
6
7 | 6780
6890
6840
6830
6900 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 | 6730
6760
6800
6800
6850 | | MARCH
6070
6370
6830
8070
6800 | 6230
6760
8030
8510
7520 | 5930
5880
5880
5920 | APRIL 5750 5730 5760 5720 5820 5800 5760 5760 5790 5860 | 5870
5820
5830
5870
5860 | 8380
8460
8590
8620
9800
8790
7990
8020 | MAY
8260
8360
8460
8050
8120
7890
7830 | 8320
8430
8550
8380
9320
8300
7910 | | 2
3
4
5
6
7
8
9 | 6780
6890
6840
6830
6900
6940
6900
6870
6930
7010 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6830 6920 | 6730
6760
6800
6850
6850
6860
6850
6860
6960 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160 | MARCH
6070
6370
6830
8070
6800
5570
4790
4470
4150
3970 | 6230
6760
8030
8510
7520
6050
5140
4660
4210
4070 | 5930
5880
5880
5920
5890
5860
5980
5980
5920
5990 | APRIL 5750 5730 5760 5720 5820 5800 5760 5790 5860 5870 | 5870
5820
5830
5870
5860
5850
5850
5900
5950 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500 | MAY
8260
8360
8460
8050
8120
7890
7830
7930
7500
5240 | 8320
8430
8550
8380
9320
8300
7910
7970
7930
6080 | | 2
3
4
5
6
7
8
9 | 6780
6890
6840
6830
6900
6940
6900
6870
6930
7010 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6830 6920 | 6730
6760
6800
6850
6850
6860
6850
6860
6960 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160 | MARCH
6070
6370
6830
8070
6800
5570
4790
4470
4150
3970 | 6230
6760
8030
8510
7520
6050
5140
4660
4210
4070 | 5930
5880
5880
5920
5890
5860
5980
5980
5920
5990 | APRIL 5750 5730 5760 5720 5820 5800 5760 5790 5860 5870 | 5870
5820
5830
5870
5860
5850
5850
5900
5950 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500 | MAY
8260
8360
8460
8050
8120
7890
7830
7930
7500
5240 | 8320
8430
8550
8380
9320
8300
7910
7970
7930
6080 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 6780
6890
6840
6830
6900
6940
6930
7010
7050
6990
6950
6930 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 | 6730
6760
6800
6800
6850
6850
6850
6860
6960
7000
6970
6910 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900 | MARCH 6070 6370 6830 8070 6800 5570 4470 44150 3970 3980 4040 4370 4640 | 6230
6760
8030
8510
7520
6050
5140
4660
4210
4070
4020
4250
4530
4770 | 5930
5880
5880
5920
5890
5860
5980
5980
5990
5950
6150
6200
6070 | 5750
5730
5760
5720
5820
5820
5800
5790
5860
5870
5810
5940
6030
5960 | 5870
5820
5830
5870
5860
5850
5850
5950
5950
5870
6010
6120
6020 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500
5240
5110
5640
6040 | MAY
8260
8360
8460
8050
8120
7890
7830
7930
7500
5240
4710
4720
5110
5630 | 8320
8430
8550
8380
9320
8300
7910
7970
7930
6080
4890
4870
5430
5870 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 6780
6890
6840
6830
6900
6970
6970
6970
6990
6950
6930
7030 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6830 6920 6930 6940 6870 6890 6930 | 6730
6760
6800
6850
6850
6860
6870
6850
6860
6960
7000
6910
6910
6980 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900
5100 | MARCH 6070 6370 6830 8070 6800 5570 4790 4470 4150 3970 3980 4040 4370 4640 4900 | 6230
6760
8030
8510
7520
6050
5140
4660
4210
4070
4020
4250
4530
4770
5000 | 5930
5880
5920
5890
5860
5980
5880
5920
5990
5950
6150
6200
6070
6050 | 5750
5730
5730
5720
5820
5820
5860
5760
5790
5860
5870
5810
5940
6030
5960
5970 | 5870
5820
5830
5870
5860
5850
5950
5950
5970
6010
6120
6020
6010 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500
5240
5110
5640
6040
6220 | MAY 8260 8360 8460 8050 8120 7890 7830 7930 7500 5240 4710 4720 5110 5630 6020 | 8320
8430
8550
8380
9320
8300
7910
7970
7930
6080
4890
4870
5430
5870
6130 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 6780
6890
6840
6830
6900
6940
6970
6930
7010
7050
6990
6950
6930
7030 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 | 6730
6760
6800
6800
6850
6860
6870
6850
6860
6960
7000
6970
6910
6980 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900
5100 | MARCH 6070 6370 6830 8070 6800 5570 4470 44150 3970 3980 4040 4370 4640 4900 5090 | 6230
6760
8030
8510
7520
6050
5140
4210
4070
4220
4250
4530
4770
5000 | 5930
5880
5880
5920
5890
5860
5980
5980
5920
5990
5950
6150
6200
6070
6050 | 5750
5730
5760
5720
5820
5820
5800
5760
5790
5860
5870
5810
5940
6030
5960
5970 | 5870
5820
5830
5870
5860
5850
5850
5950
5950
5870
6010
6120
6020
6010 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500
5240
5110
5640
6040
6220 | MAY
8260
8360
8460
8050
8120
7890
7830
7930
7500
5240
4710
4720
5110
5630
6020 | 8320
8430
8550
8380
9320
8300
7910
7970
7930
6080
4890
4870
5430
5430
6130 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 6780
6890
6840
6830
6900
6940
6900
6930
7010
7050
6990
6950
6950
7030
7030
7030
7030 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6830 6920 6930 6940 6870 6890 6930 6930 6930 6930 | 6730
6760
6800
6800
6850
6860
6870
6860
6960
7000
6910
6910
6980 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900
5100
5230
5360
5380 | MARCH 6070 6370 6830 8070 6800 5570 4790 4150 3970 3980 4040 4370 4640 4900 5090 5220 5310 | 6230
6760
8030
8510
7520
6050
5140
4660
4210
4070
4020
4250
4530
4770
5000
5170
5300
5340 | 5930
5880
5920
5890
5860
5980
5980
5920
5990
5950
6150
6200
6070
6050 | 5750
5730
5730
5720
5820
5820
5800
5760
5760
5870
5810
5940
6030
5940
6030
5970
6010
6000
5920 | 5870
5820
5830
5870
5860
5850
5950
5950
5950
6010
6120
6020
6010
6060
5970 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500
5240
6040
6220
6380
6510
6630 | MAY 8260 8360 8460 8050 8120 7890 7830 7930 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 | 8320
8430
8550
8380
9320
8380
9320
8300
7910
7930
6080
4890
4870
5430
5430
6130
6310
6430
6570 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 6780
6890
6840
6830
6900
6940
6900
6970
7050
6990
6930
7030
7000
7820 | FEBRUARY 6680 6710 6750 6740 6810 6820 6830 6820 6930 6940 6870 6890 6930 6930 6930 | 6730
6760
6800
6800
6850
6850
6860
6960
7000
6910
6910
6980
6960
7210 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900
5100
5230
5360 | MARCH 6070 6370 6830 8070 6800 5570 4790 4150 3970 3980 4040 4370 4640 4900 5090 5220 | 6230
6760
8030
8510
7520
6050
5140
4660
4210
4070
4020
4250
4530
4770
5000 | 5930
5880
5880
5920
5890
5860
5980
5980
5990
5950
6150
6200
6070
6050 | 5750
5730
5760
5720
5820
5820
5860
5760
5870
5860
5870
5810
5940
6030
5960
5970
6010
6000 | 5870
5830
5830
5870
5860
5850
5860
5950
5950
5950
6010
6020
6020
6020
6060 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500
5240
5110
5640
6040
6220 | MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 |
8320
8430
8550
8380
9320
8300
7910
7970
6080
4870
5430
5870
6130 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 6780
6890
6840
6830
6900
6940
6930
7010
7050
6930
7030
7000
7820
12300
12100
7900 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 6940 7820 7900 5490 4860 | 6730
6760
6800
6800
6850
6860
6870
6860
6960
7000
6910
6910
6910
6980
6960
7210
10600
9890
6680 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900
5100
5230
5360
5380
5380
5430 | MARCH 6070 6370 6830 8070 6800 5570 4470 44150 3970 3980 4040 4370 4640 4900 5090 5220 5310 5300 5260 | 6230
6760
8030
8510
7520
6050
5140
4210
4070
4220
4250
4530
4770
5000
5170
5340
5340
5350 | 5930
5880
5880
5920
5890
5860
5980
5980
5920
5990
6150
6200
6070
6050
6110
6110
6110
6130
6200 | 5750
5730
5760
5720
5820
5820
5800
5790
5860
5870
5810
5940
6030
5960
5970
6010
6000
6130
6180 | 5870
5820
5830
5870
5860
5850
5850
5950
5950
6120
6020
6010
6060
6060
6060
6060
6160 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500
5240
5110
6040
6220
6380
6510
6630
6720
6840 | MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6700 6830 | 8320
8430
8550
8380
9320
8300
7910
7970
7930
6080
4890
4870
5430
6310
6430
6570
6660
6760 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 6780
6890
6840
6830
6900
6940
6900
6970
6930
7010
7050
6990
6930
7030
7000
7820
12300
7900
5500
5300 | FEBRUARY 6680 6710 6750 6740 6810 6820 6830 6820 6930 6940 6870 6870 6890 6930 6940 7820 7900 5490 4860 5100 | 6730
6760
6800
6800
6850
6860
6870
6860
6960
7000
6910
6910
6910
10600
9890
6680
5010
5240 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900
5100
5230
5360
5380
5380
5430 | MARCH 6070 6370 6830 8070 6800 5570 4790 4470 4450 3970 3980 4040 4370 5090 5220 5310 5300 5260 5290 5330 | 6230
6760
8030
8510
7520
6050
5140
4660
4210
4070
4020
4250
4530
4570
5000
5170
5340
5340
5350 | 5930
5880
5880
5920
5890
5860
5980
5980
5920
5990
6150
6200
6070
6010
6110
6010
6130
6200 | APRIL 5750 5730 5760 5720 5820 5820 5800 5760 5870 5860 5870 5810 5940 6030 6010 6000 6000 6130 6180 6340 | 5870
5820
5830
5870
5860
5850
5860
5950
5950
5950
6010
6020
6010
6060
5970
6060
6060
6060
6060
6060
6060
6060
6 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500
5240
5110
5640
6040
6220
6380
6710
6630
6720
6840 | MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6610 6700 | 8320
8430
8550
8380
9320
8300
7910
7930
6080
4870
5430
66130
6430
6570
6660
6760 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 6780
6890
6840
6830
6900
6940
6930
7010
7050
6930
7030
7000
7220
12300
12100
7900
5550
5550 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 6960 7820 7900 5490 4860 5100 5270 5300 | 6730
6760
6800
6800
6850
6860
6870
6860
6960
7000
6910
6910
6910
10600
9890
6680
5010
5240
5290
5390 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900
5100
5230
5360
5380
5430
5430
5440
5440
5480 | MARCH 6070 6370 6830 8070 6800 5570 4470 44150 3970 3980 4040 4370 4640 4900 5090 5220 5310 5300 5260 5290 5330 5320 | 6230
6760
8030
8510
7520
6050
5140
4070
4020
4250
4250
4250
4530
4770
5300
5340
5340
5350
5360
5360 | 5930
5880
5880
5920
5890
5860
5980
5980
5990
5950
6150
6200
6070
6050
6110
6110
6110
6130
6200
6350
6600
6900
7230 | 5750
5730
5760
5720
5820
5820
5800
5790
5860
5870
5810
5940
6030
5960
5970
6010
6000
6130
6180
6340
66340
66880 | 5870
5820
5830
5870
5860
5850
5850
5950
5950
6120
6020
6010
6060
6060
6060
6160
6260
6480
6730
7040 | 8380
8460
8590
8620
9800
8790
7990
8130
7500
5240
5110
6640
6220
6380
6510
6630
6720
6840 | MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6700 6830 7080 7160 | 8320
8430
8550
8380
9320
8300
7910
7970
7930
6080
4890
4870
5430
6570
66130
6570
6660
6760 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 6780
6890
6840
6830
6900
6940
6900
6970
6930
7010
7050
6990
6950
6930
7030
7220
12300
12100
7900
5500
5310
5550
5770 | FEBRUARY 6680 6710 6750 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 6930 6930 4860 7820 7900 5490 4860 5100 5270 5300 5550 | 6730
6760
6800
6800
6850
6850
6860
6960
7000
6910
6910
6980
6960
7210
10600
9890
6880
5010
5240
5390
5390
5630 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900
5100
5230
5360
5380
5380
5430
5440
5440
5480
5510 | MARCH 6070 6370 6830 8070 6800 5570 4790 44750 3970 3980 4040 4370 4640 4900 5090 5220 5310 5300 5260 5290 5320 5320 5340 | 6230
6760
8030
8510
7520
6050
5140
4660
4210
4070
4250
4530
4770
5000
5170
5340
5340
5340
5350
5360
5380
5360
5420 | 5930
5880
5880
5920
5890
5890
5880
5980
5990
5950
6150
6200
6070
6010
6110
6010
6130
6200
6600
6600
66900
7230
7430 | 5750
5730
5760
5720
5820
5820
5860
5760
5760
5870
5860
5870
5810
5940
6030
5920
6000
6130
6180
6340
6680
6880
7130 | 5870
5830
5830
5870
5860
5850
5860
5950
5950
6010
6020
6010
6060
6060
5970
6060
6160
6260
6480
6730
7040
7280 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500
5240
6310
6630
6720
6840
6970

7150
7250 | MAY 8260 8360 8460 8050 8120 7890 7830 7930 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6610 6700 6830 7080 7160 | 8320
8430
8550
8380
9320
8300
7910
7970
6080
4870
5430
5870
6630
6670
6660
6760
6720
6720
7210 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 6780
6890
6840
6830
6900
6940
6930
7010
7050
6930
7030
7000
7820
12300
12100
7900
5550
5310
5770 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 6940 7820 7900 5490 4860 5100 5270 5300 5550 | 6730
6760
6800
6800
6850
6860
6870
6860
6960
7000
6910
6910
6980
6960
7210
10600
9890
6680
5010
5240
5290
5390
5630 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900
5100
5230
5360
5380
5430
5410
5410
5480
5510 | MARCH 6070 6370 6830 8070 6800 5570 44790 44150 3970 3980 4040 4370 4640 4900 5090 5310 5300 5260 5290 5330 5320 5340 | 6230
6760
8030
8510
7520
6050
5140
4070
4020
4250
4530
4770
5000
5170
5340
5340
5350
5360
5360
5360
5420 | 5930
5880
5880
5920
5890
5890
5860
5980
5980
5920
5990
6150
6200
6070
6050
6110
6110
6110
6110
6130
6200
6350
6600
6900
7230
7430
7640 | 5750
5730
5760
5720
5820
5820
5800
5790
5860
5870
5810
5940
6030
5960
5970
6010
6000
6130
6180
6340
6600
6880
7130 | 5870
5820
5830
5870
5860
5850
5850
5950
5950
6120
6020
6010
6060
6060
6060
6160
6260
6480
6730
7040
7280 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500
5240
5110
6640
6040
6220
6380
6510
6630
6720
6840 | MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6610 6700 6830 7080 7160 7340 | 8320
8430
8550
8380
9320
8300
7910
7970
7930
6080
4890
4870
5430
6570
66130
6570
6660
6760 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 |
6780
6890
6840
6830
6900
6940
6900
6970
7050
6990
6930
7030
7000
7820
12300
12300
7900
5550
5770
5790
5920
6080 | FEBRUARY 6680 6710 6750 6740 6810 6820 6830 6920 6930 6940 6870 6890 6930 6930 4860 7820 7900 5490 4860 5100 5270 5300 5550 | 6730
6760
6800
6800
6850
6850
6860
6960
7000
6910
6910
6980
6960
7210
10600
9890
6680
5010
5240
5290
5390
5630
5750
5840
6000 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900
5100
5230
5360
5380
5430
5440
5440
5480
5510 | MARCH 6070 6370 6830 8070 6800 5570 4790 4150 3970 3980 4040 4370 4640 4900 5220 5310 5320 5320 5320 5340 5480 4830 | 6230
6760
8030
8510
7520
6050
5140
4660
4210
4070
4250
4530
4770
5000
5170
5340
5340
5340
5350
5360
5360
5420
5580
5580
5580
55210 | 5930
5880
5880
5920
5890
5890
5880
5980
5990
5950
6150
6200
6070
6010
6110
6110
6110
6110
6130
6200
6350
6600
6900
7230
7430
7640
7830
8030 | 5750
5730
5760
5720
5820
5820
5860
5760
5760
5870
5810
5940
6030
5960
5970
6010
6000
5920
6000
6130
6180
6340
6680
6880
7130 | 5870
5830
5830
5870
5860
5850
5860
5990
5950
6010
6020
6020
6020
6060
5970
6060
6160
6260
6480
6730
7040
7280
7730
77940 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500
5240
5110
5640
6040
6220
6380
6510
6630
6720
6840
6970

7150
7250

7430
7340
7310 | MAY 8260 8360 8460 8460 870 88050 88120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6610 6700 6830 7080 7160 7340 7190 7210 | 8320
8430
8550
8380
9320
8300
7910
7930
6080
4870
5430
5870
6130
6570
6660
6760
6720
7210
7270
7270 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 6780
6890
6840
6830
6900
6940
6970
6930
7010
7050
6990
6930
7030
7000
7820
12300
12100
7900
5500
5310
55770 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 6940 7820 7900 5490 4860 5100 5270 5300 5550 | 6730
6760
6800
6800
6850
6860
6870
6850
6960
7000
6910
6910
6910
10600
9890
6680
5010
5240
5290
5390
5630
5750
5840 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900
5100
5230
5360
5380
5380
5430
5410
5440
5440
5510 | MARCH 6070 6370 6830 8070 6800 5570 4790 4470 4450 3970 3980 4040 4370 5090 5220 5310 5320 5320 5320 5340 5510 5480 | 6230
6760
8030
8510
7520
6050
5140
4660
4210
4070
4250
4250
4530
4570
5340
5340
5340
5350
5340
5360
5380
5360
5380
5360
5420 | 5930
5880
5880
5920
5890
5890
5980
5980
5920
5990
6150
6200
6070
6010
6110
6110
6110
6130
6200
6350
6600
6900
7230
7430 | 5750
5730
5730
5760
5720
5820
5800
5760
5870
5860
5870
5810
5940
6030
5960
5970
6010
6000
6130
6180
6340
6680
7130
7400
7640 | 5870
5820
5830
5870
5860
5850
5850
5950
5950
5950
6010
6020
6010
6060
6060
6060
6160
6260
6480
6730
7040
7280 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500
5240
5110
6640
6630
6630
6630
6630
6630
6720
6840 | MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6610 6700 6830 7080 7160 7340 7190 | 8320
8430
8550
8380
9320
8300
7910
7970
7930
6080
4870
5430
6130
6310
6430
6570
6660
6760
6930

7120
7210
7390
7270 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
21
22
22
23
24
24
25
26
27
27
28
27
28
27
28
28
28
28
28
28
28
28
28
28
28
28
28 | 6780
6890
6840
6830
6900
6940
6930
7010
7050
6930
7030
7000
7200
12300
12100
7900
5310
5550
5770
5790
5920
6080 | FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 6960 7820 7900 5490 4860 5100 5270 5300 5550 5680 5790 5900 | 6730
6760
6800
6800
6850
6860
6870
6860
6960
7000
6910
6910
6910
10600
9890
6680
5010
5240
5290
5390
5630
5750
5840
6000 | 7070
7350
8770
8790
8070
6800
5590
4840
4470
4160
4060
4380
4640
4900
5100
5230
5360
5380
5430
5410
5410
5410
5410
5410
5410
5410
541 | MARCH 6070 6370 6830 8070 6800 5570 4470 44150 3970 3980 4040 4370 4640 4900 5090 5310 5300 5260 5290 5330 5320 5340 5510 5480 4830 4830 4830 4858 | 6230
6760
8030
8510
7520
6050
5140
4070
4020
4250
4250
4530
4770
5000
5170
5340
5340
5350
5360
5360
5420
5580
5640
5210
4670 | 5930
5880
5880
5920
5890
5890
5860
5980
5980
5920
5990
6150
6200
6070
6050
6110
6110
6110
6110
6130
6200
6350
6600
6900
7230
7430
7830
8030
8030
8030
8030
8030
8030
80 | 5750
5730
5760
5720
5820
5820
5800
5790
5860
5870
5810
5940
6030
5960
5970
6010
6000
6130
6180
6340
6600
6880
7130
7400
7640
7830
8030 | 5870
5820
5830
5870
5860
5850
5850
5950
5950
6120
6020
6010
6060
6060
6060
6160
6260
6480
6730
7040
7280
7490
7730
7940
7730
7940
7730
7940
7730 | 8380
8460
8590
8620
9800
8790
7990
8020
8130
7500
5240
5110
6640
6040
6220
6380
6510
6630
6720
6840
6970

7150
7250

7150
7340
7310
7350 | MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6610 6700 6830 7080 7160 7340 7190 7210 7280 | 8320
8430
8450
8380
9320
8300
7910
7970
7930
6680
4890
4870
5430
6570
66130
6570
6660
6760
6930

7120
7270
7270
7270
7270
73320 | MAX MIN MEAN MAX MIN MEAN 08123850 Colorado River above Silver, TX--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 MEAN MIN MAX DAY DAILY MEAN SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER MAX MIN N 2000 MEAN | | | JUNE JULY | | | | | AUGUST SEPTEMBER | | | | | | |------------------------------|--------------|--------------|--------------|-----|--|----------|------------------|------------|--------------|--------------|--------------|--| | 1 2 | 6100
3480 | 2900
3000 | 4030
3280 | | |
 | | | | | | | | 3 | | | | | |
 | | | | | | | | 4
5 | | | | | |
 | | | 6560 | 3790 | 4780 | | | 6 | | | | | |
 | | | 3890 | 3700 | 3780 | | | 7
8 | | | | | |
 | | | 3820 | 3710 | 3750 | | | 9 | | | | | |
 | | | | | | | | 10 | | | | | |
 | | | | | | | | 11
12 | | | | | |
 | | | | | | | | 13 | | | | | |
 | | | | | | | | 14
15 | | | | | |
 | | | | | | | | 16 | | | | | |
 | | | | | | | | 17 | | | | | |
 | | | | | | | | 18
19 | | | | | |
 | | | | | | | | 20 | | | | | |
 | | | | | | | | 21 | | | | | |
 | | | 4520 | 4070 | 4450 | | | 22
23 | | | | | |
 | | | 4250 | 3620 | 3910 | | | 23 | | | | | |
 | | | 6310
3380 | 2240
1130 | 4400
1970 | | | 25 | | | | | |
 | | | 1440 | 1180 | 1370 | | | 26 | | | | | |
8080 | 7790 | 7800 | 1610 | 1110 | 1230 | | | 27
28 | | | | | |
8210 | 7750
 | 7970
 | 5030
6210 | 1610
5020 | 3310
5740 | | | 29 | | | | | |
 | | | 6520 | 6210 | 6390 | | | 30
31 | | | | | |
 | | | 6590
 | 6480 | 6550
 | | | MONTH | | | | | |
 | 10,000 -
8000 -
4000 - | - | | | \\\ | | 1 | | , <u> </u> | | | , | | | | | V | | | | | | | | | | | WATER YEAR М 2001 08123850 Colorado River above Silver, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | NAME MAN MEAN M | | | TEMPER | ATURE, | WATER (DEG | . C), W | ATER YEAR | OCTOBER | 2000 TO | SEPTEMBER | 2001 | | |
--|----------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------| | 1 | DAY | MAX | MIN | MEAN | | 6 24.1 17.7 20.7 17.0 14.4 15.8 9.2 7.4 8.3 8.9 6.1 7.5 8.3 8.8 7.5 7.5 8.3 8.8 12.8 11.9 12.2 10.4 7.5 8.4 9.7 8.0 9.0 8.3 6.0 7.5 7.5 7.6 9.1 9. | | | OCTOBER | | | | | | | | | | | | 6 24.1 17.7 20.7 17.0 14.4 15.8 9.2 7.4 8.3 8.9 6.1 7.5 8.3 8.8 7.5 7.5 8.3 8.8 12.8 11.9 12.2 10.4 7.5 8.4 9.7 8.0 9.0 8.3 6.0 7.5 7.5 7.6 9.1 9. | 2
3
4 | 26.0
25.6
26.1 | 19.8
20.9
21.8 | 22.0
23.0
23.8 | 20.3
18.2
17.8
17.4
17.5 | 17.5
15.0
17.0
16.4
16.7 | 18.9
16.6
17.4
16.9
17.0 | 12.5
11.4
8.9
7.4
7.9 | 10.9
8.4
6.5
6.3
7.2 | 11.8
9.4
7.5
6.7
7.5 | 4.2
3.7
5.1
7.5
7.6 | 3.7
2.8
2.6
3.6
4.8 | 3.9
3.1
3.6
5.2
6.2 | | 16 | 7
8
9 | 17.7
12.8 | 12.8
11.9 | 15.0
12.2 | 17.0
15.9
10.4
11.3
13.6 | 14.4
10.4
7.5
7.0
9.1 | | | | | 8.9
8.8
8.3
7.6
7.5 | 6.1
7.5
6.0
5.7
7.0 | 8.3 | | 16 22.0 19.5 20.5 11.6 8.9 10.2 9.9 8.1 9.1 8.5 7.7 8.0 | 12
13
14 | 16.7
19.9 | 12.3
14.2
16.7
18.9
20.4 | 13.2
15.2
18.0
20.2
20.7 | | | | | | | 7.4
8.2
10.8
9.7
9.3 | 5.6
5.8
8.2
6.9
6.8 | 9.3
8.5 | | 21 20.7 19.5 20.0 10.8 7.6 9.3 7.4 5.6 6.5 7.5 4.0 5.8 | 17
18
19 | 22.0
20.5 | 17.6
16.3
16.5
18.6 | 19.8
17.7
18.2
20.1 | 11.6
11.2
9.7
9.6
10.3 | 8.9
9.3
8.0
6.6
6.6 | 10.2
9.9
8.6
8.1
8.4 | 9.9
8.8
8.3
7.4
7.5 | 8.1
6.9
6.7
5.5
5.5 | 9.1
8.0
7.7
6.6
6.5 | 8.5
7.9
5.4
6.5
6.8 | 7.7
5.4
4.3
3.0
3.8 | 8.0
6.6
4.6
4.6
5.2 | | 26 20.7 19.8 20.2 11.8 8.1 10.0 5.3 2.1 3.4 10.8 8.4 9.4 27 20.8 19.4 20.1 11.2 8.4 9.7 2.6 1.6 2.0 10.5 7.6 9.4 28 20.2 16.0 19.0 12.4 9.1 10.5 4.6 2.0 3.0 7.6 5.4 6.6 29 18.1 15.4 17.0 12.0 9.7 10.8 5.7 3.9 4.8 8.3 4.5 6.6 30 19.8 16.7 18.1 12.6 9.1 10.8 6.1 4.1 5.3 9.5 5.7 7.7 31 20.2 18.3 19.0 5.9 4.2 4.8 9.5 6.0 7.7 7.7 31 20.2 18.3 19.0 5.9 4.2 4.8 9.5 6.0 7.7 7.7 31 20.2 18.3 19.0 5.9 4.2 4.8 9.5 6.0 7.7 7.7 7.7 MONTH 26.2 10.7 18.8 20.3 6.6 11.5 12.5 1.6 6.9 10.8 2.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | 22
23
24 | 21.4
21.5
20.7 | 19.0 | 20.3 | 10.8
10.7
11.8
11.4
11.4 | 7.6
9.5
10.2
9.8
8.3 | 9.3
9.9
11.0
10.6
9.8 | 7.4
6.4
8.0
7.5
6.8 | 5.6
4.6
5.4
6.8
5.2 | 6.5
5.7
6.6
7.2
6.1 | 7.5
8.4
9.9
10.4
10.0 | 4.0
4.4
7.1
7.3
8.1 | 5.8
6.6
8.5
9.1
8.7 | | MAX | 27
28
29
30 | 20.8
20.2
18.1
19.8 | 19.4
16.0
15.4
16.7 | 20.1
19.0
17.0
18.1 | 11.8
11.2
12.4
12.0
12.6 | 8.1
8.4
9.1
9.7
9.1 | | | | | | | | | The property | MONTH | 26.2 | 10.7 | 18.8 | 20.3 | 6.6 | 11.5 | 12.5 | 1.6 | 6.9 | 10.8 | 2.6 | 6.9 | | 1 9,2 6.0 7.9 12.1 6.3 8.4 21.2 14.3 17.5 26.2 20.9 23.3 2 10.8 6.5 8.5 11.5 10.0 10.7 25.0 18.6 21.2 25.0 21.6 23.4 3 11.1 6.8 9.0 12.8 10.3 11.3 23.4 20.8 21.8 23.8 21.8 22.7 4 11.4 7.9 9.8 15.9 11.1 13.3 25.9 20.2 22.8 22.6 20.7 21.6 5 12.0 7.7 10.0 17.3 11.9 14.2 25.0 22.0 23.6 26.0 19.7 22.3 6 14.4 10.0 11.7 16.3 12.9 14.6 24.3 20.7 22.0 27.0 22.1 22.3 8 15.7 14.4 15.0 16.0 13.6 14.5 15.2 21.6 23.5 22.1 </td <td>DAY</td> <td>MAX</td> <td>MIN</td> <td>MEAN</td> <td>MAX</td> <td>MIN</td> <td>MEAN</td> <td>MAX</td> <td>MIN</td> <td>MEAN</td> <td>MAX</td> <td>MIN</td> <td>MEAN</td> | DAY | MAX | MIN | MEAN | | 2 10.8 6.5 8.5 11.5 10.0 10.7 25.0 18.6 21.2 25.0 21.6 23.4 3 11.1 6.8 9.0 12.8 10.3 11.3 23.4 20.8 21.8 22.6 20.7 21.6 5 12.0 7.7 10.0 17.3 11.9 14.2 25.0 22.0 23.6 26.0 19.7 22.3 6 14.4 10.0 11.7 16.3 12.9 14.6 24.3 20.7 22.0 27.0 21.5 23.5 7 14.5 11.3 13.0 17.7 12.4 15.2 24.4 18.8 20.8 26.5 22.1 24.6 8 15.7 14.4 15.0 17.8 14.3 15.9 25.2 20.6 22.8 27.6 23.5 25.1 9 15.2 11.6 13.0 16.0 13.6 14.4 24.6 22.2 23.5 27.9 22.7 25.4 10 11.7 8.3 9.5 14.3 | | |
FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 11 10.4 6.9 8.4 16.8 13.3 14.8 21.5 17.1 19.4 27.7 21.7 24.8 12 12.1 10.4 11.1 18.0 14.5 16.3 22.1 16.4 18.4 26.9 23.0 24.8 13 15.2 12.0 13.4 16.9 13.4 15.6 21.6 18.4 19.8 26.7 21.9 24.1 14 15.9 14.0 15.0 16.1 13.7 15.0 25.4 20.6 22.7 26.4 22.8 24.7 15 15.9 10.8 13.4 15.1 12.3 13.7 25.4 21.3 23.6 28.6 22.7 25.4 16 10.9 9.1 9.9 14.8 10.7 12.8 25.3 20.1 22.8 28.6 22.7 25.4 16 10.9 9.1 9.9 14.8 10.7 12.8 25.3 20.1 22.8 28.1 22.5 25.1 17 12.0 7.0 9.3 13.3 </td <td>2
3
4</td> <td>10.8
11.1
11.4</td> <td>6.5
6.8
7.9</td> <td>8.5
9.0
9.8</td> <td>12.1
11.5
12.8
15.9
17.3</td> <td>6.3
10.0
10.3
11.1
11.9</td> <td>10.7
11.3
13.3
14.2</td> <td>25.0
23.4
25.9
25.0</td> <td>18.6
20.8
20.2
22.0</td> <td>21.2
21.8
22.8
23.6</td> <td>25.0
23.8
22.6
26.0</td> <td>21.6
21.8
20.7
19.7</td> <td>23.4
22.7
21.6</td> | 2
3
4 | 10.8
11.1
11.4 | 6.5
6.8
7.9 | 8.5
9.0
9.8 | 12.1
11.5
12.8
15.9
17.3 | 6.3
10.0
10.3
11.1
11.9 | 10.7
11.3
13.3
14.2 | 25.0
23.4
25.9
25.0 | 18.6
20.8
20.2
22.0 | 21.2
21.8
22.8
23.6 | 25.0
23.8
22.6
26.0 | 21.6
21.8
20.7
19.7 | 23.4
22.7
21.6 | | 13 15.2 12.0 13.4 16.9 13.4 15.6 21.6 18.4 19.8 26.7 21.9 24.1 14 15.9 14.0 15.0 16.1 13.7 15.0 25.4 20.6 22.7 26.4 22.8 24.7 15 15.9 10.8 13.4 15.1 12.3 13.7 25.4 20.6 22.7 26.4 22.8 24.7 16 10.9 9.1 9.9 14.8 10.7 12.8 25.3 20.1 22.8 28.1 22.5 25.1 17 12.0 7.0 9.3 13.3 10.6 11.7 24.1 16.4 18.9 31.0 22.8 25.8 18 11.9 7.8 9.8 10.6 9.6 10.0 18.7 15.0 16.6 29.9 24.3 26.0 19 13.8 9.1 11.2 12.8 9.3 10.8 21.4 16.1 18.6 28.3 24.3 25.8 20 16.1 10.8 13.0 16.9 <td>7
8
9</td> <td>14.5
15.7
15.2</td> <td>11.3
14.4
11.6</td> <td>13.0
15.0
13.0</td> <td>16.3
17.7
17.8
16.0
14.3</td> <td>12.9
12.4
14.3
13.6
11.5</td> <td>14.6
15.2
15.9
14.4
12.9</td> <td>24.3
24.4
25.2
24.6
23.7</td> <td>20.7
18.8
20.6
22.2
21.5</td> <td>22.0
20.8
22.8
23.5
22.3</td> <td>27.0
26.5
27.6
27.9
27.0</td> <td>21.5
22.1
23.5
22.7
22.1</td> <td>24.6
25.1
25.4</td> | 7
8
9 | 14.5
15.7
15.2 | 11.3
14.4
11.6 | 13.0
15.0
13.0 | 16.3
17.7
17.8
16.0
14.3 | 12.9
12.4
14.3
13.6
11.5 | 14.6
15.2
15.9
14.4
12.9 | 24.3
24.4
25.2
24.6
23.7 | 20.7
18.8
20.6
22.2
21.5 | 22.0
20.8
22.8
23.5
22.3 | 27.0
26.5
27.6
27.9
27.0 | 21.5
22.1
23.5
22.7
22.1 | 24.6
25.1
25.4 | | 17 12.0 7.0 9.3 13.3 10.6 11.7 24.1 16.4 18.9 31.0 22.8 25.8 18 11.9 7.8 9.8 10.6 9.6 10.0 18.7 15.0 16.6 29.9 24.3 26.0 19 13.8 9.1 11.2 12.8 9.3 10.8 21.4 16.1 18.6 28.3 24.3 25.9 20 16.1 10.8 13.0 16.9 10.6 12.8 22.5 19.7 21.0 26.7 22.7 24.4 21 14.9 12.4 13.3 18.3 13.2 16.0 23.5 21.1 22.2 24.3 20.1 21.5 22 12.4 10.6 11.3 20.0 14.9 17.5 23.7 20.5 21.9 23 13.0 9.9 11.2 21.9 16.3 19.1 23.1 19.3 21.1 26.7 19.5 22.8 24 14.5 12.4 13.4 20.9 | 12
13
14 | 12.1
15.2
15.9 | 10.4
12.0
14.0 | 11.1
13.4
15.0 | 16.9
16.1 | 14.5
13.4
13.7 | 16.3
15.6
15.0 | 22.1
21.6
25.4 | 18.4
20.6 | 19.8
22.7 | 26.7
26.4 | 21.9
22.8 | 24.8
24.1
24.7 | | 22 12.4 10.6 11.3 20.0 14.9 17.5 23.7 20.5 21.9 23 13.0 9.9 11.2 21.9 16.3 19.1 23.1 19.3 21.1 26.7 19.5 22.8 24 14.5 12.4 13.4 20.9 13.3 16.4 23.5 17.8 20.1 26.9 22.1 23.8 25 16.0 10.8 12.5 15.6 11.5 13.4 23.3 17.5 20.2 26 15.4 12.3 13.9 14.3 10.2 11.7 23.2 18.4 20.9 27.9 22.1 24.1 27 15.8 14.0 14.6 10.2 8.9 9.4 23.8 19.0 21.3 29.5 23.3 26.1 28 14.0 7.4 9.8 12.0 8.7 9.8 23.3 19.5 21.3 30.3 24.5 26.9 29 13.4 | 17
18
19 | 12.0
11.9
13.8 | 7.0
7.8
9.1 | 9.3
9.8
11.2 | 13.3
10.6
12.8 | 10.6
9.6
9.3 | 11.7
10.0
10.8 | 24.1
18.7
21.4 | 16.4
15.0
16.1 | 18.9
16.6
18.6 | 31.0
29.9
28.3 | 22.8
24.3
24.3 | 25.8
26.0
25.8 | | 26 15.4 12.3 13.9 14.3 10.2 11.7 23.2 18.4 20.9 27.9 22.1 24.1 27 15.8 14.0 14.6 10.2 8.9 9.4 23.8 19.0 21.3 29.5 23.3 26.1 28 14.0 7.4 9.8 12.0 8.7 9.8 23.3 19.5 21.3 30.3 24.5 26.9 29 13.4 10.7 11.8 23.7 19.3 21.4 28.3 24.9 26.7 30 16.5 12.4 14.2 23.4 19.8 21.6 30.4 24.9 26.5 31 18.1 14.0 15.8 26.3 22.3 22.9 MONTH 16.1 6.0 11.5 21.9 6.3 13.5 25.9 14.3 21.1 | 22
23
24 | 12.4
13.0
14.5 | 10.6
9.9
12.4 | 11.3
11.2
13.4 | 20.0
21.9
20.9 | 14.9
16.3
13.3 | 17.5
19.1
16.4 | 23.7
23.1
23.5 | 20.5
19.3
17.8 | 21.9
21.1
20.1 | 26.7
26.9 |
19.5
22.1 | 22.8
23.8 | | MONTH 16.1 6.0 11.5 21.9 6.3 13.5 25.9 14.3 21.1 | 27
28
29
30 | 15.8
14.0
 | 14.0
7.4
 | 14.6
9.8
 | 10.2
12.0
13.4
16.5 | 8.9
8.7
10.7
12.4 | 9.4
9.8
11.8
14.2 | 23.8
23.3
23.7
23.4 | 19.0
19.5
19.3
19.8 | 20.9
21.3
21.3
21.4
21.6 | 27.9
29.5
30.3
28.3
30.4 | 22.1
23.3
24.5
24.9
24.9 | 26.1
26.9
26.7
26.5 | | | | | | | | | | | | 21.1 | | | | ## 08123850 Colorado River above Silver, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------|------|--------------|--------------|-----|------|------|------|--------|------|------|----------|------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | IR. | | 1 | 24.0 | 22.5
21.5 | 23.1
25.1 | | | | | | | | | | | 2 | 29.1 | | 25.1 | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | 29.0 | 24.4 | 26.2 | | 6 | | | | | | | | | | 28.8 | 25.2 | 27.0 | | 7 | | | | | | | | | | 30.4 | 25.5 | 27.3 | | 8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | 16 | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 21 | | | | | | | | | | 27.2 | 23.3 | 24.6 | | 22 | | | | | | | | | | 25.0 | 23.9 | 24.7 | | 23 | | | | | | | | | | 25.6 | 21.8 | 23.8 | | 24 | | | | | | | | | | 24.2 | 21.4 | 22.8 | | 25 | | | | | | | | | | 24.1 | 19.2 | 21.5 | | 26 | | | | | | | 26.3 | 25.9 | 25.9 | 24.0 | 18.8 | 21.3 | | 27 | | | | | | | 26.8 | 26.1 | 26.4 | 24.0 | 19.3 | 21.3 | | 28 | | | | | | | 20.8 | 20.1 | 20.4 | 24.3 | 19.5 | 22.2 | | 28
29 | | | | | | | | | | 24.8 | 19.5 | 22.2 | | 29
30 | | | | | | | | | | 24.5 | 19.7 | | | 30
31 | | | | | | | | | | 23.2 | 19.9 | 21.5 | | 31 | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE ## 08123950 E.V. Spence Reservoir near Robert Lee, TX LOCATION.--Lat 31°52′46", long 100°31′01", Coke County, Hydrologic Unit 12080008, in outlet works of Robert Lee Dam on the Colorado River, 2.2 mi west of Robert Lee, and at mile 716.0. DRAINAGE AREA. -- 15,278 mi², approximately, of which 10,260 mi² probably is noncontributing. PERIOD OF RECORD.--Dec. 1968 to current year. Water-quality records.--Chemical data: Nov. 1969 to Aug. 1988. Biochemical data: Jan. 1978 to Aug. 1988. REVISED RECORDS. -- WDR TX-81-3: Drainage area. GAGE. -- Water-stage recorder. Datum of gage is sea level. Prior to June 24, 1969, nonrecording gage at same site and datum. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records good. The reservoir is formed by a rolled earthfill dam 21,500 ft long. Closure was made Dec. 30, 1968, and dam was completed in June 1969. The dam is the property of the Colorado River Municipal Water District, which has a permit to divert 50,000 acre-ft annually for municipal, mining, and industrial uses. Inflow into the reservoir is partially regulated by Lake J.B. Thomas (station 08118000, conservation pool storage 199,931 acre-ft), Lake Colorado City (station 08123000, conservation pool storage 30,800 acre-ft), and Champion Creek Reservoir (station 08123600, conservation pool storage 41,600 acre-ft). There are two spillways: The controlled service spillway is a morning-glory type that is partially controlled by 12 lift gates, 14.48 by 22.0 ft, and discharges through a 28.0 ft diameter concrete conduit. The uncontrolled spillway is a 3,200 ft wide cut through natural ground near the right end of dam. Conservation pool storage is 517,272 acre-ft. Data regarding the dam are given in the following table: | | Elevation (feet) | |------------------------------|------------------| | Top of dam | 1,928.0 | | Crest of spillway | 1,908.0 | | Top of gates | 1,900.0 | | Crest of spillway | 1,878.0 | | Lowest gated outlet (invert) | 1,815.85 | COOPERATION. -- Capacity table dated Mar. 1972 was furnished by the Colorado River Municipal Water District. Records of diversions can be obtained from the city of San Angelo and from the Colorado River Municipal Water District. A volumetric survey by the Texas Water Development Board in July 1999 has not received final approval from the Colorado River Municipal Water District. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 355,300 acre-ft, June 16, 1987, elevation, 1,887.03 ft; minimum contents after initial filling, 53,950 acre-ft, Mar. 23, 2000, elevation, 1,841.81 ft. EXTREMES FOR CURRENT YEAR. -- Maximum contents, 89,330 acre-ft, Nov. 8, elevation, 1,851.54 ft; minimum contents, 60,270 acre-ft, Sept. 30, elevation, 1,843.82 ft. > RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------
--|---|--|--|-----------------------------|--|---|--|---|--|--|---| | 1 | 83810 | 88730 | 87170 | 85360 | 84220 | 83500 | 81880 | 79370 | 76270 | 71730 | 66750 | 62730 | | 2 | 83680 | 88590 | 87020 | 85330 | 84190 | 83470 | 81880 | 79290 | 76150 | 71630 | 66590 | 62610 | | 3 | 83520 | 88530 | 86980 | 85270 | 84160 | 83430 | 81830 | 79160 | 75980 | 71620 | 66410 | 62480 | | 4 | 83370 | 88510 | 87000 | 85220 | 84120 | 83420 | 81780 | 79210 | 75760 | 71420 | 66240 | 62510 | | 5 | 83250 | 88730 | 86970 | 85180 | 84070 | 83370 | 81750 | 79250 | 75580 | 71310 | 66070 | 62950 | | 6 | 83110 | 89100 | 86970 | 85150 | 84050 | 83280 | 81690 | 79230 | 75440 | 71160 | 65900 | 63050 | | 7 | 82890 | 89000 | 86870 | 85130 | 83970 | 83230 | 81650 | 79150 | 75340 | 71000 | 65710 | 62940 | | 8 | 82700 | 89200 | 86840 | 85070 | 83940 | 83300 | 81570 | 79050 | 75210 | 70820 | 65530 | 62820 | | 9 | 82530 | 89100 | 86740 | 85000 | 83960 | 83240 | 81520 | 78930 | 75050 | 70660 | 65370 | 62640 | | 10 | 82360 | 88980 | 86670 | 85030 | 83820 | 83160 | 81430 | 78820 | 74870 | 70520 | 65200 | 62480 | | 11 | 82210 | 88900 | 86640 | 85060 | 83770 | 83190 | 81570 | 78700 | 74690 | 70360 | 65040 | 62340 | | 12 | 82140 | 88830 | 86490 | 84980 | 83770 | 83170 | 81350 | 78620 | 74560 | 70200 | 64860 | 62250 | | 13 | 82110 | 88690 | 86420 | 85050 | 83750 | 83030 | 81250 | 78590 | 74410 | 70040 | 64720 | 62120 | | 14 | 82050 | 88530 | 86340 | 84950 | 83720 | 83020 | 81200 | 78480 | 74250 | 69860 | 64620 | 61980 | | 15 | 81990 | 88420 | 86340 | 84880 | 83800 | 82990 | 81180 | 78380 | 74070 | 69670 | 64490 | 61820 | | 16 | 81980 | 88370 | 86320 | 84850 | 83960 | 82690 | 81080 | 78270 | 73910 | 69480 | 64350 | 61670 | | 17 | 82060 | 88190 | 86170 | 84850 | 83880 | 82560 | 80970 | 78120 | 73750 | 69300 | 64380 | 61490 | | 18 | 82120 | 88090 | 86180 | 84790 | 83800 | 82560 | 80830 | 78010 | 73600 | 69130 | 64320 | 61380 | | 19 | 82100 | 88010 | 86050 | 84750 | 83810 | 82560 | 80730 | 77870 | 73430 | 68970 | 64200 | 61270 | | 20 | 82130 | 87880 | 85970 | 84670 | 83840 | 82440 | 80650 | 77800 | 73260 | 68820 | 64040 | 61140 | | 21 | 82060 | 87760 | 85840 | 84680 | 83840 | 82360 | 80550 | 77590 | 73120 | 68670 | 63850 | 61260 | | 22 | 82130 | 87680 | 85740 | 84590 | 83800 | 82320 | 80490 | 77370 | 72970 | 68510 | 63730 | 61310 | | 23 | 82120 | 87710 | 85740 | 84570 | 83740 | 82240 | 80380 | 77210 | 72840 | 68330 | 63500 | 61400 | | 24 | 85710 | 87750 | 85690 | 84550 | 83840 | 82290 | 80200 | 77100 | 72710 | 68150 | 63340 | 61220 | | 25 | 86280 | 87580 | 85660 | 84440 | 83650 | 82190 | 80060 | 76960 | 72580 | 67960 | 63170 | 61060 | | 26
27
28
29
30
31 | 86250
86180
86410
88180
88660
88670 | 87530
87470
87390
87290
87220 | 85760
85690
85580
85530
85460
85420 | 84430
84390
84480
84620
84480
84300 | 83600
83620
83580
 | 82080
81970
81950
81950
81940
81920 | 79920
79810
79690
79580
79480 | 76780
76790
76630
76470
76340
76420 | 72450
72320
72130
71990
71870 | 67780
67630
67480
67320
67130
66930 | 63180
63170
63160
63040
62950
62840 | 60920
60780
60640
60500
60360 | | MEAN | 83700 | 88260 | 86270 | 84840 | 83870 | 82740 | 80930 | 78060 | 74020 | 69470 | 64540 | 61800 | | MAX | 88670 | 89200 | 87170 | 85360 | 84220 | 83500 | 81880 | 79370 | 76270 | 71730 | 66750 | 63050 | | MIN | 81980 | 87220 | 85420 | 84300 | 83580 | 81920 | 79480 | 76340 | 71870 | 66930 | 62840 | 60360 | | (+) | 1851.39 | 1851.07 | 1850.63 | 1850.35 | 1850.17 | 1849.76 | 1849.15 | 1848.38 | 1847.13 | 1845.72 | 1844.55 | 1843.85 | | (@) | +4770 | -1450 | -1800 | -1120 | -720 | -1660 | -2440 | -3060 | -4550 | -4940 | -4090 | -2480 | CAL YR 2000 MAX 102900 MIN 54040 (@) +27000 WTR YR 2001 MAX 89200 MIN 60360 (@) -23540 ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in contents, in acre-feet. # 08123950 E.V. Spence Reservoir near Robert Lee, TX--Continued ### 08124000 Colorado River at Robert Lee, TX LOCATION.--Lat 31°53′07", long 100°28′49", Coke County, Hydrologic Unit 12080008, on left bank 190 ft upstream from bridge on State Highway 208 in Robert Lee, 0.4 mi upstream from Mountain Creek, 2.7 mi downstream from Messbox Creek, 3.6 mi downstream from Robert Lee Dam, and at mile 712.4. DRAINAGE AREA.--15,307 mi^2 , of which 10,260 mi^2 probably is noncontributing. PERIOD OF RECORD.--Oct. 1923 to Dec. 1927, Apr. 1939 to May 1956, Oct. 1968 to current year. Prior to Dec. 1927, published as "near Robert Lee". Water-quality records.--Chemical data: Oct. 1947 to Sept. 1957. REVISED RECORDS.--WSP 1723: 1925(M). WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,771.70 ft above sea level. Prior to Dec. 31, 1927, nonrecording gage at site 9 mi downstream at different datum. Apr. 18 to Sept. 26, 1939, nonrecording gage, and Sept. 27, 1939 to May 9, 1956, water-stage recorder at site 200 ft downstream at same datum. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily discharges, which are poor. Since July 1952, at least 10% of contributing drainage area has been regulated. There are many diversions above station for municipal, mining, agricultural, and industrial uses. No flow at times. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--16 years (water years 1924-27, 1940-51) prior to completion of Lake J.B. Thomas, 234 ft³/s (169,400 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS, 1924-27, 1940-51).--Maximum discharge, 32,500 ft³/s Sept. 6, 1926 (gage height, 20.20 ft, site and datum then in use), from rating curve extended above 15,000 ft³/s; no flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1907, 26.7 ft Oct. 13, 1957, from floodmarks. Flood in Apr. 1922 reached a stage of 25.5 ft, present datum, from information by local resident. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES OCT DEC FEB SEP DAY NOV JAN MAR APR MAY JUN JUL AUG e10 9.2 e10 9.8 9.7 e10 e15 9.7 9.6 9.5 e35 e10 7 e15 e10 9 9 9 5 9 5 9.8 e10 e10 9.5 9.3 9.5 9.3 e15 9.7 e10 9 5 9 2 9.4 9.5 e10 e10 9 3 9 5 9 6 9 9 9.6 9.9 e10 3.5 e10 9.4 9.4 9.5 1.4 e10 9.3 9.6 9.5 4.8 6.3 9.8 e10 9.4 9.5 6.4 e10 9.3 e10 9.4 9.8 6.9 9.9 e10 9.4 9.6 6.9 7.2 9.5 e10 9.3 9.6 8.2 e10 9.8 9.2 9.4 e10 9.9 9.8 9.3 9.6 7.3 9.9 9.8 9.3 e10 e10 9.2 9.9 7.5 e10 9.3 8.2 9.8 e10 9.2 9.9 8.3 9.7 e10 9.1 7.9 e350 9.1 e10 7.8 e15 e10 ___ 9.6 9.1 8.0 ------тотат. 1441 6 323 9 304 1 286 2 298 8 333 8 290 6 12.2 9.64 MEAN 46.5 11.8 12.2 11.1 10.9 10.8 9.81 9.54 10.8 9.69 MAX MTN 9 8 1.0 9 9 9 1 9 1 9 2 9 9 1 4 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1952 - 2001hz, BY WATER YEAR (WY) MEAN 10.2 3.04 28.1 38.2 40.6 50.3 33.9 MAX 16.9 12.2 (WY) .000 (WY) # 08124000 Colorado River at Robert Lee, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1952 - 2001hz | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 4631.37 | 5036.0 | | | ANNUAL MEAN | 12.7 | 13.8 | 28.8 | | HIGHEST ANNUAL MEAN | | | 237 1954 | | LOWEST ANNUAL MEAN | | | 1.04 1969 | | HIGHEST DAILY MEAN | 444 Oct 24 | 444 Oct 24 | 13400 May 12 1954 | | LOWEST DAILY MEAN | .79 Mar 20 | 1.4 Sep 13 | .00 Oct 1 1951 | | ANNUAL SEVEN-DAY MINIMUM | .94 Mar 15 | 5.1 Sep 12 | .00 Oct 1 1951 | | MAXIMUM PEAK FLOW | | 2700 Oct 24 | c24500 Sep 9 1980 | | MAXIMUM PEAK STAGE | | 9.36 Oct 24 | 20.63 Sep 9 1980 | | ANNUAL RUNOFF (AC-FT) | 9190 | 9990 | 20860 | | 10 PERCENT EXCEEDS | 14 | 13 | 15 | | 50 PERCENT EXCEEDS | 10 | 11 | .77 | | 90 PERCENT EXCEEDS | 1.5 | 9.3 | .00 | - e h z c - Estimated See PERIOD OF RECORD paragraph. Period of regulated streamflow. From rating curve extended above 19,200 ft³/s. ### 08125500 Oak Creek Reservoir near Blackwell, TX LOCATION.--Lat $32^{\circ}03'25$ ", long $100^{\circ}17'37$ ", Coke County, Hydrologic Unit 12080008, on left bank at municipal pump station, 1.9 mi upstream from dam on Oak Creek, 2.5 mi southeast of Blackwell, 14.0 mi north of Bronte, and 20.0 mi upstream from mouth. DRAINAGE AREA. -- 238 mi². PERIOD OF RECORD.--May 1953 to Sept. 1983, Mar. 1999 to current year. Water-quality records.--Chemical data: Apr. 1964 to Jan. 1967 and Nov. 1970 to Apr. 1983. REVISED RECORDS. -- WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is sea level. May 1953 to Sept. 1983, nonrecording gage at same site and datum. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records good. The reservoir is formed by a rolled earthfill dam 3,800 ft long. The dam was completed in May 1952, and deliberate impoundment began May 12, 1953. The uncontrolled emergency spillway is an 800-foot-wide cut through natural ground, located 1,200 ft from right end of dam. The service spillway is an uncontrolled cut channel through natural ground 300 ft wide, located 2,000 ft from right end of dam. The reservoir and dam are the property of city of Sweetwater. The dam was built to impound water for municipal and industrial uses by the cities of Sweetwater, Blackwell, and Bronte. Since Apr. 1962, West Texas Utilities Company has operated a steam generating power plant located on the reservoir. There is a gated outlet at the service spillway that can release water downstream to Oak Creek through a
24-inch concrete pipe. The capacity curve is based on a 1950 topographic survey. Conservation pool storage is 39,360 acre-ft. Data regarding the dam are given in the following table: | | Elevation (feet) | |--|------------------| | Top of dam | | | Crest of spillway | 2,005.0 | | Crest of spillway (top of conservation pool) | 2,000.0 | | Lowest gated outlet (invert) | 1,951.0 | COOPERATION.--Capacity table dated Nov. 9, 1953, prepared from curve furnished by city of Sweetwater. EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 49,100 acre-ft, Oct. 13, 1957, elevation, 2,003.80 ft; minimum contents, 4,690 acre-ft, Sept. 30, 2001, elevation, 1,971.81 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,180 acre-ft, Nov. 8, elevation, 1,977.86 ft; minimum contents, 4,690 acre-ft, Sept. 30, elevation, 1,971.81 ft. RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR APR JUN JUL AUG SEP JAN MAY ___ ---MEAN MAX MIN 1975.75 1977.69 1977.54 1977.01 1976.62 1976.20 1975.28 1975.00 1974.02 1972.81 1972.00 1971.84 (@) +950 -100 -370 -250 -280 -280 CAL YR 2000 MAX 13640 MIN 6800 (@) -6070 WTR YR 2001 MAX 8170 MIN 4700 (@) -2410 ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in contents, in acre-feet. 08125500 Oak Creek Reservoir near Blackwell, TX--Continued ### 08126380 Colorado River near Ballinger, TX LOCATION.--Lat $31^{\circ}42'55$ ", long $100^{\circ}01'34$ ", Runnels County, Hydrologic Unit 12090101, at right downstream end of bridge on Farm Road 2111, 0.4 mi upstream from Rocky Creek, 5.0 mi northwest of Ballinger, and at mile 665.8. DRAINAGE AREA. --16,358 mi², approximately, of which 10,260 mi² probably is noncontributing. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1907 to Sept. 1979 (published as "at Ballinger", station 08126500) and Oct. 1979 to current year. Monthly discharge only for some periods published in WSP 1312. Gage-height records collected in this vicinity from 1903-29 are contained in reports of the National Weather Service. REVISED RECORDS.--WSP 1118: Drainage area. WSP 1512: 1916-17, 1919-20, 1921(M), 1922-25, 1928(M), 1930(M). WSP 1712: 1935, 1954-55(M). WDR TX-78-3: 1975-77. GAGE.--Water-stage recorder. Datum of gage is 1,606.51 ft above sea level. Prior to Nov. 29, 1930, nonrecording gages at several sites and at various datums near site 5.4 mi downstream. Nov. 29, 1930, to May 1, 1975, water-stage recorder at site 6.2 mi downstream and May 1, 1975, to Sept. 30, 1979, water-stage recorder at site 5.4 mi downstream, both at datum 12.77 ft lower. Oct. 1, 1979 to June 20, 2001, water-stage recorder at site 300 ft left at same datum. Satellite telemeter at station. REMARKS.--Records good except those for May 14 to June 21, which are fair and those for estimated daily discharges, which are poor. Since water year 1968 at least 10% of contributing drainage area has been regulated. Many diversions upstream from station for irrigation, municipal supplies, and for oil field operations. Flow is also affected by Oak Creek Reservoir (station 08125500, conservation pool storage 39,360 acre-ft), and at times by discharge from the floodwater-retarding structures in the Kickapoo and Valley Creeks drainage basins. No flow at times. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--61 years (water years 1908-68) prior to completion of E.V. Spence Reservoir, 336 ft³/s (243,400 acre-ft/vr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1908-68).--Maximum discharge, 75,400 ft³/s Sept. 18, 1936 (gage height, 28.6 ft, at former site and datum); no flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, about 36 ft sometime in 1884, at former site and datum, from information by local residents. Flood of Aug. 6, 1906, reached a stage of about 32.0 ft, at former site and datum, from floodmarks (backwater from Elm Creek). DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT DEC JAN FEB APR JUL SEP NOV MAR MAY JUN AUG 5 2 8 8 3.5 1 8 1.7 9.6 5.1 8.7 .85 4.9 9.5 7.3 7 9 4 9 4.8 8.2 .68 6 6 4 6 6 5 5.7 4.4 6.3 .90 4.8 9.7 5.5 5.9 .80 5.4 9.4 6.5 4.1 .86 6.3 6.0 1.7 5.8 e13 2.0 6.9 e12 4.3 2.0 1.7 7.2 e12 5.4 2.0 1.8 2.0 7.6 3.6 1.9 2.7 2.1 8.8 2.3 2.0 8.6 2.2 2.0 7.0 2.2 2.0 2.7 5.7 9.6 2.0 2.1 9.8 3.3 2.0 5.3 9.1 8.3 5.1 1 9 8.6 4.9 1.9 5.4 9.4 8.9 5.1 1.8 3.9 9.3 8.8 2.8 3.1 9.3 2.0 1.9 3.6 8.4 8.3 9.3 2.1 8.4 8.9 2.1 1.9 5.5 9.1 2.2 7.9 8.4 9.8 1.9 8.6 8.9 9.1 1.9 7.3 9.7 ---8.5 7.8 3.1 1.8 7.4 ---------1.8 9.7 ---TOTAL. 2332 0 321 7 470.6 148 3 112 0 227 12 1486 6 14.7 MEAN 75.2 53.5 13.2 20.2 12.3 10.7 15.2 4.94 3.61 7.33 49.6 7.8 7 3 MTN 4 4 2 0 1 8 5 1 AC-FT 2.22 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 2001z, BY WATER YEAR (WY) 27.2 MEAN 96.2 40.3 54.3 46.2 48.4 91.4 MAX (WY) 2.48 1.07 (WY) # 08126380 Colorado River near Ballinger, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1969 - 2001z | |-----------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL
ANNUAL MEAN | 15678.26
42.8 | 8513.32
23.3 | 67.9 | | HIGHEST ANNUAL MEAN | 42.0 | 23.3 | 405 1987 | | LOWEST ANNUAL MEAN | | | 7.18 1984 | | HIGHEST DAILY MEAN | 5890 Jun 4 | 794 Sep 6 | 9220 Aug 28 1986 | | LOWEST DAILY MEAN | .31 Mar 9 | .66 Aug 4 | .00 Mar 20 1971 | | ANNUAL SEVEN-DAY MINIMUM | .36 Mar 4 | .79 Aug 3 | .00 Mar 20 1971 | | MAXIMUM PEAK FLOW | | 1130 Sep 6 | g16600 Aug 3 1978 | | MAXIMUM PEAK STAGE | | 9.02 Sep 6 | 27.50 Sep 21 1990 | | ANNUAL RUNOFF (AC-FT) | 31100 | 16890 | 49160 | | 10 PERCENT EXCEEDS | 23 | 28 | 113 | | 50 PERCENT EXCEEDS | 3.0 | 12 | 13 | | 90 PERCENT EXCEEDS | .63 | 2.1 | 1.1 | e z g Estimated Period of regulated streamflow. At site and datum then in use. ## 08126380 Colorado River near Ballinger, TX--Continued ## WATER-OUALITY RECORDS PERIOD OF RECORD . -- CHEMICAL DATA: Sept. 1961 to current year. ### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Oct. 1961 to Sept. 1997 (local observer), Feb. 2001 to current year. WATER TEMPERATURE: Oct. 1961 to Sept. 1997 (local observer), Feb. 2001 to current year. SUSPENDED SEDIMENT DISCHARGE: Jan. 1978 to Sept. 1981 (local observer). INSTRUMENTATION. -- Water-quality monitor since Feb. 9, 2001. REMARKS.--Records good except those for specific conductance from Apr. 8 to June 21 and water temperature from May 2 to June 21, which are fair. Interruptions in the specific conductance and water temperature values were due to malfunction of the instrument. Interruptions in the daily mean specific conductance values Apr. 10, 24-29, May 10-13, 17-23, 31, and June 4-20 were due to malfunction of the instrument. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous years using daily (or continuous) records of specific conductance and regression relations between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request. ## EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum daily, 13,500 microsiemens/cm, May 3, 1963; minimum daily, 244 microsiemens/cm, Sept. 9, 1980. WATER TEMPERATURE: Maximum daily, 39.0°C, July 3, 1977; minimum daily, 0.0°C, Jan. 9-11, 1973. SEDIMENT CONCENTRATION: Maximum daily mean, 3,740 mg/L, Sept. 9 1980; minimum daily mean, 4 mg/L, Feb. 2, 1980. SEDIMENT LOADS: Maximum daily, 94,100 tons Aug. 3, 1978; minimum daily, 0 tons on many days during 1978 and 1980-81. ## EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: Maximum recorded, 6,970 microsiemens/cm, Aug. 15; minimum recorded, 325 microsiemens/cm, Sept. 6. WATER TEMPERATURE: Maximum recorded, 37.9°C, July 13; minimum, 8.5°C, Feb. 18. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DIS- | | | | | | | | | | | | |------|------|-------------|---------------|------------------|-------------|-----------------|-----------------|-----------------|---------|-----------------|-----------------|-----------------|-----------------| | | | CHARGE, | SPE- | | HARD- | | MAGNE- | | SODIUM | POTAS- | | CHLO- | FLUO- | | | | INST. | CIFIC | | NESS | CALCIUM | SIUM, | SODIUM, | AD- | SIUM, | SULFATE | RIDE, | RIDE, | | | | CUBIC | CON- | TEMPER- | TOTAL | DIS- | DIS- | DIS- | SORP- | DIS- | DIS- | DIS- | DIS- | | DATE | TIME | FEET
PER | DUCT-
ANCE | ATURE | (MG/L
AS | SOLVED
(MG/L | SOLVED
(MG/L | SOLVED
(MG/L | TION | SOLVED
(MG/L | SOLVED
(MG/L | SOLVED | SOLVED
(MG/L | | DAIL | TIME | SECOND | (US/CM) | WATER
(DEG C) | CACO3) | AS CA) | AS MG) | AS NA) | RATIO | AS K) | AS SO4) | (MG/L
AS CL) | AS F) | | | | (00061) | (00095) | (00010) | (00900) | (00915) | (00925) | (00930) | (00931) | (00935) | (00945) | (00940) | (00950) | | | | (00001) | (00055) | (00010) | (00500) | (00)13) | (00525) | (00)30) | (00)31) | (00)33) | (00)15) | (00510) | (00330) | | OCT | | | | | | | | | | | | | | | 06 | 1100 | 4.4 | 4690 | 21.1 | 1190 | 262 | 131 | 598 | 7.54 | 18.5 | 974 | 959 | .6 | | 19 | 1015 | 37 | 2480 | 18.9 | 503 | 114 | 53.2 | 280 | 5.43 | 10.8 | 423 | 478 | . 4 | | DEC | | | | | | | | | | | | | | | 01 | 0930 | 13 | 4130 | 12.8 | 1020 | 235 | 105 | 500 | 6.81 | 11.6 | 786 | 816 | . 4 | | JAN | | | | | | | | | | | | | _ | | 25 | 1545 | 14 | 4260 | 9.4 | 951 | 227 | 93.0 | 496 | 7.00 | 14.3 | 806 | 837 | .5 | | MAR | 1000 | 1.0 | 4400 | 10 5 | 1000 | 0.40 | 100 | F 2 1 | | 14.0 | 0.77 | 001 | _ | | 30 | 1200 | 13 | 4400 | 12.7 | 1030 | 249 | 100 | 531 | 7.19 | 14.2 | 876 | 881 | .5 | | SEP | 1200 | 1.40 | 670 | 05.4 | 150 | 20.0 | 10.4 | 70.3 | 0.40 | F 00 | 00.0 | 110 | n 1 | | 07 | 1300 | 149 | 678 | 25.4 | 152 | 38.8 | 13.4 |
70.3 | 2.48 | 5.29 | 89.9 | 117 | E.1 | | DATE | (MG/L
AS | CONSTI-
TUENTS,
DIS-
SOLVEI
(MG/L) | |------------------------|-------------|--| | OCT
06
19
DEC | 7.8
2.5 | 3010
1400 | | 01 | 4.0 | 2550 | | JAN
25 | 1.3 | 2560 | | MAR
30 | 1.7 | 2750 | | 07 | 3.7 | 376 | | | | | 87 08126380 Colorado River near Ballinger, TX--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---|--|---|--|--|--|--|--|---|--|---|---|--| | | | OCTOBER | | 1 | NOVEMBER | | D | ECEMBER | | | JANUARY | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3
4 | | | | | | | | | | | | | | 4
5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9
10 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12
13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | 24
25 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | 27
28 | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | DAY | MAX | MIN | MEAN | | DAY | MAX | | | MAX | | MEAN | MAX | | MEAN | MAX | | MEAN | | DAY | MAX | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1 | | FEBRUARY | | 2250 | MARCH
2090 | 2170 | 4570 | APRIL
4500 | 4530 | | MAY | 4280 | | 1
2 | | FEBRUARY | | 2250
2210 | MARCH
2090
2090 | 2170
2160 | 4570
4540 | APRIL
4500
4440 | 4530
4490 | | MAY
 | 4280
4180 | | 1
2
3 | | FEBRUARY | | 2250
2210
2390 | MARCH
2090
2090
2170 | 2170
2160
2270 | 4570
4540
4490 | APRIL
4500
4440
4420 | 4530
4490
4460 |

4210 | MAY

4100 | 4280
4180
4140 | | 1
2 |
 | FEBRUARY | | 2250
2210 | MARCH
2090
2090 | 2170
2160 | 4570
4540 | APRIL
4500
4440 | 4530
4490 | | MAY
 | 4280
4180 | | 1
2
3
4
5 |

 | FEBRUARY |

 | 2250
2210
2390
2800
3320 | MARCH
2090
2090
2170
2380
2690 | 2170
2160
2270
2630
3050 | 4570
4540
4490
4470
4460 | APRIL
4500
4440
4420
4410
4420 | 4530
4490
4460
4440
4450 |
4210
4340
2900 | MAY 4100 1680 1770 | 4280
4180
4140
3600
2300 | | 1
2
3
4
5 | | FEBRUARY | | 2250
2210
2390
2800
3320 | MARCH 2090 2090 2170 2380 2690 3290 | 2170
2160
2270
2630
3050
3440 | 4570
4540
4490
4470
4460 | APRIL
4500
4440
4420
4410
4420
4430 | 4530
4490
4460
4440
4450 |
4210
4340
2900 | MAY 4100 1680 1770 2440 | 4280
4180
4140
3600
2300 | | 1
2
3
4
5 |

 | FEBRUARY |

 | 2250
2210
2390
2800
3320
3570
3730 | MARCH 2090 2090 2170 2380 2690 3290 3380 | 2170
2160
2270
2630
3050
3440
3600 | 4570
4540
4490
4470
4460 | APRIL
4500
4440
4420
4410
4420 | 4530
4490
4460
4440
4450 |
4210
4340
2900 | MAY 4100 1680 1770 | 4280
4180
4140
3600
2300
2860
3600 | | 1
2
3
4
5
6
7
8
9 |

3960 | FEBRUARY 3830 |

3890 | 2250
2210
2390
2800
3320
3570
3730
3690
3820 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 | 2170
2160
2270
2630
3050
3440
3600
3630
3710 | 4570
4540
4490
4470
4460
4480
4470 | APRIL
4500
4440
4420
4410
4420
4430
4280 | 4530
4490
4460
4440
4450
4450 |
4210
4340
2900
3300
3830 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300 | | 1
2
3
4
5 |

 | FEBRUARY | | 2250
2210
2390
2800
3320
3570
3730
3690 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 | 2170
2160
2270
2630
3050
3440
3600
3630 | 4570
4540
4490
4470
4460
4480
4470
4440 | 4500
4440
4420
4410
4420
4430
4280
4240 | 4530
4490
4460
4440
4450
4450
4410
4370 | 4210
4340
2900
3300
3830
3970 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910 | | 1
2
3
4
5
6
7
8
9 |

3960 | FEBRUARY 3830 |

3890 | 2250
2210
2390
2800
3320
3570
3730
3690
3820 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 | 2170
2160
2270
2630
3050
3440
3600
3630
3710 | 4570
4540
4490
4470
4460
4480
4470
4440
4460 | APRIL 4500 4440 4420 4410 4420 4430 4280 4240 4400 | 4530
4490
4460
4440
4450
4450
4410
4370
4440 | 4210
4340
2900
3300
3830
3970 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910
3900 | | 1
2
3
4
5
6
7
8
9
10 |

3960
4050
4120 | FEBRUARY 3830 3840 3910 3960 |

3890
3950
3990
4040 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 3880 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810 | 4570
4540
4490
4470
4460
4480
4470
4440
4460

4320
4400 | APRIL 4500 4440 4420 4410 4420 4430 4280 4240 4400 3840 4320 | 4530
4490
4460
4440
4450
4450
4410
4370
4440

4170
4350 | 4210
4340
2900
3300
3830
3970
 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910
3900 | | 1
2
3
4
5
6
7
8
9
10 |

3960
4050
4120
4120
4150 | FEBRUARY 3830 3840 3910 3960 4030 |

3890
3950
3990
4040
4090 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
3980
4200
4320 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3880 4050 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810
3920
4050
4190 | 4570
4540
4490
4470
4460
4480
4470
4440
4460

4320
4400
4450 | 4500
4440
4440
4420
4410
4420
4430
4240
4240
4400

3840
4320
4400 | 4530
4490
4440
4440
4450
4410
4370
4440

4170
4350
4420 |
4210
4340
2900
3300
3830
3970
 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910
3900 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 |

3960
4050
4120
4150
4140 | FEBRUARY 3830 3840 3910 3960 4030 4030 |

3890
3950
3990
4040
4090
4090 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
3980
4200
4320
4380 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 3880 4050 4150 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810
3920
4050
4190
4260 | 4570
4540
4490
4470
4460
4480
4470
4440
4460

4320
4400
4450
4450 |
4500
4440
4420
4410
4420
4430
4240
4240
4400

3840
4320
4400
4410 | 4530
4490
4460
4440
4450
4450
4470
4370
4440

4170
4350
4420
4430 | 4210
4340
2900
3300
3830
3970
 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910
3900

4050 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

3960
4050
4120
4150
4140
4090 | FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3800 |

3890
3950
3990
4040
4090
3970 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
3980
4200
4320
4380
4410 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810
3920
4050
4190
4260
4300 | 4570
4540
4490
4470
4460
4480
4470
4440
4460

4320
4400
4450
4450
4440 | 4500
4440
4420
4410
4420
4430
4240
4240
4240
4400
4320
4400
4410
4370 | 4530
4490
4440
4440
4450
4410
4370
4410

4170
4350
4420
4430
4410 | 4210
4340
2900
3300
3830
3970
 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910
3900

4050
4050 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

3960
4050
4120
4150
4140
4090 | FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 |

3890
3950
3950
3990
4040
4090
4090
3970 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
3980
4200
4320
4380
4410 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 3880 4050 4150 4210 | 2170
2160
2270
2630
3050
3440
3630
3710
3810
3920
4050
4190
4260
4300 | 4570
4540
4490
4470
4460
4480
4470
4440
4460

4320
4400
4450
4450
4450
4440 | 4500
4440
4420
4410
4420
4430
4240
4240
4400

3840
4370
4390 | 4530
4490
4460
4440
4450
4450
4410
4370
4440

4170
4350
4420
4430
4410 | 4210
4340
2900
3300
3830
3970
 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910
3900

4050
4050 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

3960
4050
4120
4120
4140
4140
4090
4110
3930 | FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3800 3580 2660 |

3890
3950
3950
4040
4090
3970
3870
3130 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
3980
4200
4320
4310
4310
4250 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 3880 4050 4150 4210 4220 4130 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810
3920
4050
4190
4260
4300 | 4570
4540
4490
4470
4460
4470
4440
4460

4320
4400
4450
4450
4450
4440
4440
4450 | 4500
4440
4420
4410
4420
4430
4280
4280
4400

3840
4320
4400
4370
4390
4410
4390
4410 | 4530
4490
4460
4440
4450
4410
4370
4440

4170
4350
4420
4430
4410
4420
4460 | 4210
4340
2900
3300
3830
3970
 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910

4050
4050 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

3960
4050
4120
4150
4140
4090
4110
3930
3180 | FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3800 3580 2660 2860 |

3890
3950
3950
4040
4090
4090
3970
3870
3130
3030 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
3980
4200
4320
4380
4410 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810
3920
4050
4190
4260
4300
4270
4200
4060 | 4570
4540
4490
4470
4460
4480
4470
4440
4460

4320
4400
4450
4450
4440
4440
4510
4510
451 | 4500
4440
4420
4410
4420
4430
4280
4240
4240
4400
4320
4400
4370
4370
4390
4410
4460 | 4530
4490
4440
4440
4450
4410
4370
4440

4170
4350
4420
4430
4410
4420
4460
4490 | 4210
4340
2900
3300
3830
3970
 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910
3900

4050
4050 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

3960
4050
4120
4120
4140
4140
4090
4110
3930 | FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3800 3580 2660 |

3890
3950
3950
4040
4090
3970
3870
3130 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
3980
4200
4320
4310
4310
4250 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 3880 4050 4150 4210 4220 4130 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810
3920
4050
4190
4260
4300 | 4570
4540
4490
4470
4460
4470
4440
4460

4320
4400
4450
4450
4450
4440
4440
4450 | 4500
4440
4420
4410
4420
4430
4280
4280
4400

3840
4320
4400
4370
4390
4410
4390
4410 | 4530
4490
4460
4440
4450
4410
4370
4440

4170
4350
4420
4430
4410
4420
4460 | 4210
4340
2900
3300
3830
3970
 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910
3900

4050
4050
4020 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 |

3960
4050
4120
4150
4140
4090
4110
3930
3180
3220
2770 | FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2730 2360 |

3890
3950
3950
4040
4090
4090
4090
3970
3870
3130
3030
3040
2610 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
4200
4320
4310
4250
4150
4040
4300 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810
3920
4050
4190
4260
4300
4270
4060
4000
4150 | 4570
4540
4490
4470
4460
4480
4470
4440
4460

4320
4400
4450
4450
4440
4510
4510
4480
4320 | 4500
4440
4420
4410
4420
4430
4280
4240
4400

3840
4320
4400
4370
4370
4390
4410
4460
4320
4220 | 4530
4490
4440
4440
4450
4410
4370
4440

4170
4350
4420
4430
4410
4420
4490
4390
4270 | 4210
4340
2900
3300
3830
3970
 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910
3900

4050
4050 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 |

3960
4050
4120
4150
4140
4090
4110
3930
3180
3220
2770
2390 | FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2860 2730 2360 |

3890
3950
3950
3990
4040
4090
4090
3970
3870
3130
3030
3040
2610 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
3980
4200
4320
4380
4410
4310
4250
4150
4040
4300 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 | 2170
2160
2270
2630
3050
3440
3630
3710
3810
3920
4050
4190
4260
4300
4270
4200
4060
4000 | 4570
4540
4490
4470
4460
4480
4470
4440
4460

4320
4400
4450
4450
4450
4450
4450
4450
44 | 4500
4440
4420
4420
4420
4430
4240
4240
4400
427
4400
4370
4370
4390
4410
4360
4420
4220
4200 | 4530
4490
4460
4440
4450
4450
4410
4370
4440

4170
4350
4420
4430
4410
4420
4460
4490
4390 | 4210
4340
2900
3300
3830
3970
 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910
3900

4050
4050
4020
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 |

3960
4050
4120
4150
4150
4110
3930
3180
3220
2770
2390
2020
2120 | FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310 |

3890
3950
3950
4040
4090
4090
4090
3970
3870
3130
3030
3040
2610 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
3980
4200
4320
4310
4250
4150
4040
4300 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810
3920
4050
4190
4260
4300
4270
4200
4060
4000
4150
4330
4440
4440 |
4570
4540
4490
4470
4460
4480
4470
4440
4460

4320
4400
4450
4450
4440
4510
4510
4480
4320 | 4500
4440
4420
4420
4420
4420
4430
4280
4240
4400

3840
4320
4400
4370
4390
4410
4460
4320
4220
4220
4230
4310 | 4530
4490
4460
4440
4450
4450
4450
4470
4440

4170
4350
4420
4430
4410
4420
4460
4490
4270
4220 |
4210
4340
2900
3300
3830
3970

 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3910
3900

4050
4050
4020
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 |

3960
4050
4120
4150
4140
4090
4110
3930
3180
3220
2770
2390
2020
2120
21560 | FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310 1250 |

3890
3950
3950
3990
4040
4090
4090
3970
3870
3130
3030
3040
2610
2030
1930
1800
1930 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
3980
4200
4320
4380
4410
4310
4250
4150
4040
4300
4480
4560
4580
4551 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 4320 | 2170
2160
2270
2630
3050
3440
3630
3710
3810
3920
4050
4190
4260
4300
4270
4200
4000
4150
4330
4440
4490
4490 | 4570
4540
4490
4470
4460
4480
4470
4440
4460

4320
4400
4450
4450
4450
4450
4450
4450
44 | 4500
4440
4420
4410
4420
4430
4240
44400
4400
4410
4370
4390
4410
4460
4320
420
420
420
420
420
420
420
420
420
4 | 4530
4490
4460
4440
4450
4450
4450
4470
4370
4440

4170
4350
4420
4460
4490
4490
4270
4280
4280
4380
4380
4380
4380
4380
4380
4380
43 | 4210
4340
2900
3300
3830
3970
 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3600
3910
3900

4050
4050
4050
4020

3800 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 |

3960
4050
4120
4150
4150
4110
3930
3180
3220
2770
2390
2020
2120 | FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310 |

3890
3950
3950
3990
4040
4090
4090
3970
3870
3130
3030
3040
2610
2030
1930
1800 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
3980
4200
4320
4310
4250
4150
4040
4300 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810
3920
4050
4190
4260
4300
4270
4200
4060
4000
4150
4330
4440
4440 | 4570
4540
4490
4470
4460
4480
4470
4440
4460

4320
4400
4450
4450
4450
4450
4450
4450
44 | 4500
4440
4420
4420
4420
4420
4430
4280
4240
4400

3840
4320
4400
4370
4390
4410
4460
4320
4220
4220
4230
4310 | 4530
4490
4460
4440
4450
4410
4370
4410
4350
4420
4420
4410
4420
4490
4390
4270
4220
4280
4380 |
4210
4340
2900
3300
3830
3970

 | MAY 4100 1680 1770 2440 3300 3830 | 4280
4180
4140
3600
2300
2860
3910
3900

4050
4050
4020
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 |

3960
4050
4120
4150
4140
4090
4110
3930
3180
3220
2770
2390
2020
2120
21560
1590 | FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310 1250 1270 |

3890
3950
3950
3990
4040
4090
4090
3970
3870
3130
3030
3040
2610
2030
1930
1840
1420 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
4200
4310
4250
4150
4150
4410
4310
4250
4150
4560
4560
4580
4510
4590 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 4320 4440 | 2170
2160
2270
2630
3050
3440
3630
3710
3810
3920
4050
4190
4260
4300
4270
4260
4300
4400
4440
4490
4460
4490 | 4570
4540
4490
4470
4460
4470
4440
4460

4320
4400
4450
4450
4450
4450
4450
4450
44 | 4500
4440
4420
4410
4420
4430
4240
4240
4400
427
4410
4370
4370
4390
4410
4460
4320
4220
420
4230
4210
4210
4210
4210
4210
4210
4210
421 | 4530
4490
4460
4440
4450
4450
4410
4370
4440

4170
4350
4420
4460
4490
4490
4270
4280
4390
4270 | 4210
4340
2900
3300
3830
3970

- | MAY 4100 1680 1770 2440 3300 3830 3700 | 4280
4180
4140
3600
2300
2860
3600
3910
3900

4050
4050
4050
4020

3800
3760 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 |

3960
4050
4120
4120
4120
4140
4090
4110
3930
3180
22770
2390
2020
2120
21560
1590
1970
2170 | FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310 1250 1270 1530 1950 |

3890
3950
3950
4040
4090
3970
3870
3130
3030
2610
2030
1930
1840
2402
1840
2070 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
4200
4310
4250
4150
4150
4560
4580
4580
4590
4580 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 4370 4320 4440 4400 4460 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810
3920
4050
4190
4260
4300
4270
4260
4300
4060
4000
4150
4440
4440
4490
4460
4490
4460
4490
4460 | 4570
4540
4490
4470
4460
4480
4470
4460

4320
4400
4450
4450
4450
4450
4450
4450
44 | 4500
4440
4420
4410
4420
4430
4240
4440
4400

3840
4320
4410
4370
4320
4410
4320
4220
4200
4220 | 4530
4490
4440
4440
4450
4410
4370
4440

4170
4350
4420
4460
4490
4390
4270
4280
4380
 | 4210
4340
2900
3300
3830
3970

- | MAY 4100 1680 1770 2440 3300 3830 3700 | 4280
4180
4140
3600
2300
2860
3600
3910

4050
4050
4050
4020

3800
3760
3780
3920 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 3960 4050 4120 4120 4120 4140 4090 4110 3930 3180 3220 2770 2390 2020 2120 1560 1590 1970 2170 2250 | FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3580 2660 2860 2730 2360 1880 1850 1310 1250 1270 1530 1950 2130 |

3890
3950
3950
3990
4040
4090
3970
3870
3130
3030
3030
3030
2610
2030
1340
1420
2070
2190 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
4200
4320
4150
4150
4150
4150
4560
4580
4510
4590
4590
4610 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 4320 4440 4400 4460 4470 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810
3920
4050
4190
4260
4300
4060
4000
4050
4150
4340
4490
4400
4460
4490
4460
4530
4540 | 4570
4540
4490
4470
4460
4470
4440
4440
4460

4320
4400
4450
4450
4450
4450
4450
4450
44 | 4500 4440 4420 4410 4420 4430 4280 4240 4400 3840 4320 4400 4410 4370 4390 4410 4460 4320 4200 4200 4210 | 4530
4490
4460
4440
4450
4410
4370
4440

4170
4350
4420
4430
4410
4420
4490
4270
4280
4380
 |
4210
4340
2900
3300
3830
3970

3790 | MAY 4100 1680 1770 2440 3300 3830 3700 3690 | 4280
4180
4140
3600
2300
2860
3910
3900

4050
4050
4020

3800
3760
3780
3920
4280 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 |

3960
4050
4120
4120
4120
4140
4090
4110
3930
3180
22770
2390
2020
2120
21560
1590
1970
2170 | FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310 1250 1270 1530 1950 |

3890
3950
3950
4040
4090
3970
3870
3130
3030
2610
2030
1930
1840
2402
1840
2070 |
2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
4200
4310
4250
4150
4150
4410
4300
4450
4560
4560
4560
4560
4580
4510
4580
4580
4610
4680 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4210 4220 4130 3980 3970 3980 4140 4290 4370 4440 4460 4470 44520 | 2170
2160
2270
2630
3050
3440
3630
3710
3810
3920
4050
4190
4260
4300
4270
4260
4300
4400
4440
4490
4440
4490
4450
4530
4540
4590 | 4570
4540
4490
4470
4460
4480
4470
4460

4320
4400
4450
4450
4450
4450
4450
4450
44 | 4500
4440
4420
4410
4420
4430
4240
4440
4400

3840
4320
4410
4370
4320
4410
4320
4220
4200
4220 | 4530
4490
4440
4440
4450
4410
4370
4440

4170
4350
4420
4460
4490
4390
4270
4280
4380
 | 4210
4340
2900
3300
3830
3970

- | MAY 4100 1680 1770 2440 3300 3830 3700 | 4280
4180
4140
3600
2300
2860
3910
3910
3900

4050
4050
4050
4020

3800
3760
3780
3920
4289
4890 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 3960 4050 4120 4150 4140 4090 4110 3930 3180 3220 2770 2390 2020 2120 11560 1590 1970 2170 2250 | FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310 1250 1270 1530 1950 2130 |

3890
3950
3950
3990
4040
4090
4090
3970
3870
3130
3040
2610
2030
1930
1840
1420 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
4200
4320
4150
4150
4150
4150
4560
4580
4510
4590
4590
4610 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 4320 4440 4400 4460 4470 | 2170
2160
2270
2630
3050
3440
3600
3630
3710
3810
3920
4050
4190
4260
4300
4060
4000
4050
4150
4340
4490
4400
4460
4490
4460
4530
4540 | 4570
4540
4490
4470
4460
4480
4470
4440
4460

4320
4400
4450
4450
4450
4450
4450
4450
44 | 4500 4440 4420 4410 4420 4430 4240 4400 3840 4370 4410 4370 4390 4410 4460 4320 4220 420 420 4210 4210 4210 4210 4210 | 4530
4490
4460
4440
4450
4450
4410
4370
4440

4170
4350
4420
4460
4490
4270
4220
4280
4390
4270 | 4210
4340
2900
3300
3830
3970

3790 | MAY 4100 1680 1770 2440 3300 3830 3700 3690 | 4280
4180
4140
3600
2300
2860
3910
3900

4050
4050
4050
4020

3800
3760
3780
3920
4280 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |

3960
4050
4120
4120
4120
4140
4090
4110
3930
3180
2770
2390
2020
2120
2120
2170
2250
 | FEBRUARY 3830 3840 3910 3960 4030 4030 4030 2360 2860 2730 2360 1880 1850 1310 1250 1270 1530 1950 2130 |

3890
3950
3950
3990
4040
4090
3970
3870
3130
3030
2610
2030
1930
1840
1420
1840
2070
2190
 | 2250
2210
2390
2800
3320
3570
3730
3690
3820
3910
4200
4320
4310
4250
4150
4150
4560
4560
4580
4510
4590
4580
4610
4680
4680 | MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 4320 4370 4320 4440 4400 4460 4470 4520 4510 | 2170
2160
2270
2630
3050
3440
3630
3710
3810
3920
4050
4190
4260
4300
4270
4260
4300
4490
4490
4490
4490
4460
4490
4530
4540
4590
4550 | 4570
4540
4490
4470
4460
4480
4470
4460

4320
4400
4450
4450
4450
4450
4450
4450
44 | 4500 4440 4420 4410 4420 4430 4240 4400 3840 4320 4410 4370 4390 4410 4320 4220 4200 4210 4210 4210 4210 4210 42 | 4530
4490
4460
4440
4450
4410
4370
4440

4170
4350
4420
4460
4490
4270
4220
4280
4380

4220
4480
4490
4490
4490
4490
4490
4490
449 | 4210
4340
2900
3300
3830
3970

3790 | MAY 4100 1680 1770 2440 3300 3830 3700 3690 | 4280
4180
4140
3600
2300
2860
3600
3910
3900

4050
4050
4050
4020

3800
3760
3780
3920
4289
4890
3670 | 08126380 Colorado River near Ballinger, TX--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 6360

 | 5380

 | 6250
6500
6500
 | 4910
5160
5620
5650
5580 | 4710
4400
5160
5530
5480 | 4780
4810
5510
5590
5530 | 4670
4680
4700
4720
4730 | 4490
4480
4450
4590
4580 | 4620
4600
4620
4660
4660 | 3280
3130
3120
3030
3390 | 2830
2980
2900
2360
1880 | 3090
3050
3060
2730
2270 | | 6
7
8
9
10 | | |

 | 5530
5540
5580
5570
5610 | 5440
5480
5500
5470
5470 | 5500
5510
5540
5520
5540 | 4710
4620
4680
4680
4720 | 4530
4420
4570
4540
4600 | 4650
4520
4630
4640
4650 | 3480
882
954
1030
1100 | 325
327
882
938
1030 | 1340
647
932
992
1060 | | 11
12
13
14
15 |

 |

 |

 | 5600
5580
5560
5500
5420 | 5440
5430
5400
5350
5230 | 5510
5500
5480
5430
5330 | 4670
4660
4660
4650
6970 | 4530
4500
4540
4520
4550 | 4600
4580
4610
4590
5970 | 1160
1200
1240
1270
1320 | 1100
1160
1200
1210
1220 | 1130
1180
1220
1250
1270 | | 16
17
18
19
20 |

 |

 |

 | 5340
5260
5150
5010
4890 | 5160
5060
4930
4800
4710 | 5240
5150
5030
4900
4800 | 6960
6710
6500
5520
3640 | 6650
6370
5520
3510
3350 | 6800
6540
6280
4300
3470 | 1360
1480
1500
1600
1800 | 1290
1360
1360
1500
1590 | 1340
1400
1480
1550
1670 | | 21
22
23
24
25 | 5280
5360
5370
5380 | 4800
5270
5260
5250 | 4600
5060
5320
5320
5320 | 4800
4730
4680
4660
4640 | 4630
4480
4480
4520
4530 | 4720
4640
4610
4590
4590 | 4300
4340
4460
4480
4490 | 3640
4140
4180
4220
4260 | 3970
4290
4360
4420
4420 | 1910
1750
2430
2920
3000 | 1290
1490
1750
2430
2870 | 1760
1570
2080
2610
2930 | | 26
27
28
29
30
31 | 5370
5360
5370
5340
5050 | 5240
5240
5220
5000
4730 | 5310
5310
5300
5180
4890 | 4650
4640
4660
4660
4660
4660 | 4500
4400
4490
4460
4530
4530 | 4590
4590
4600
4590
4600
4610 | 4500
4480
4510
4520
4380
3980 | 4100
4120
4240
4180
3940
3100 | 4360
4430
4400
4370
4170
3510 | 2940
2980
3120
3400
3610 | 2830
2860
2970
3110
3380 | 2880
2920
3030
3250
3510 | | MONTH | | | | 5650 | 4400 | 5060 | 6970 | 3100 | 4670 | 3610 | 325 | 1970 | > 08126380 Colorado River near Ballinger, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |---|--|---|--|--|--|--
--|--|--|--|--|--| | | | OCTOBER | | 1 | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9
10 | 11 | | | | | | | | | | | | | | 12
13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | 16 | | | | | | | | | | | | | | 17
18 | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | 20 | 21 | | | | | | | | | | | | | | 22
23 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | 25 | 26 | | | | | | | | | | | | | | 27
28 | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | FEBRUARY | | 13.3 | MARCH
8.7 | 10.9 | 19.1 | APRIL | 16.5 | 26.8 | MAY
20.9 | 23.5 | | 1
2 | | FEBRUARY | | 13.3
13.0 | MARCH
8.7
11.4 | 10.9
12.2 | 19.1
23.3 | APRIL
14.2
16.7 | 16.5
19.5 | 26.8 | MAY
20.9 | 23.5
24.3 | | 1 | | FEBRUARY | | 13.3 | MARCH
8.7 | 10.9 | 19.1 | APRIL | 16.5 | 26.8 | MAY
20.9 | 23.5 | | 1
2
3 | | FEBRUARY |
 | 13.3
13.0
13.4 | MARCH
8.7
11.4
11.4 | 10.9
12.2
12.2 | 19.1
23.3
23.8 | APRIL
14.2
16.7
18.9 | 16.5
19.5
21.2 | 26.8

23.5 | MAY
20.9

21.8 | 23.5
24.3
22.7 | | 1
2
3
4
5 |

 | FEBRUARY |

 | 13.3
13.0
13.4
16.8
17.2 | 8.7
11.4
11.4
11.0
11.3 | 10.9
12.2
12.2
13.5
14.3 | 19.1
23.3
23.8
24.3
23.1 | APRIL
14.2
16.7
18.9
20.0
21.2 | 16.5
19.5
21.2
22.0
22.1 | 26.8

23.5
23.7
21.1 | MAY 20.9 21.8 19.7 19.1 | 23.5
24.3
22.7
21.6
19.9 | | 1
2
3
4
5 |

 | FEBRUARY | | 13.3
13.0
13.4
16.8
17.2 | MARCH
8.7
11.4
11.4
11.0
11.3 | 10.9
12.2
12.2
13.5
14.3 | 19.1
23.3
23.8
24.3
23.1 | APRIL
14.2
16.7
18.9
20.0
21.2 | 16.5
19.5
21.2
22.0
22.1 | 26.8

23.5
23.7
21.1 | MAY 20.9 21.8 19.7 19.1 | 23.5
24.3
22.7
21.6
19.9 | | 1
2
3
4
5 |

 | FEBRUARY |

 | 13.3
13.0
13.4
16.8
17.2 | 8.7
11.4
11.4
11.0
11.3 | 10.9
12.2
12.2
13.5
14.3 | 19.1
23.3
23.8
24.3
23.1 | APRIL
14.2
16.7
18.9
20.0
21.2 | 16.5
19.5
21.2
22.0
22.1 | 26.8

23.5
23.7
21.1 | MAY 20.9 21.8 19.7 19.1 | 23.5
24.3
22.7
21.6
19.9 | | 1
2
3
4
5
6
7
8
9 |

14.5 | FEBRUARY 11.3 |

13.1 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6 | MARCH
8.7
11.4
11.4
11.0
11.3
12.5
12.7 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
15.0 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6 | 26.8

23.5
23.7
21.1
26.3
26.4
27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6 | | 1
2
3
4
5 |

 | FEBRUARY | | 13.3
13.0
13.4
16.8
17.2 | MARCH
8.7
11.4
11.0
11.3
12.5
12.7
14.3 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5 | 26.8

23.5
23.7
21.1
26.3
26.4
27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6 | | 1
2
3
4
5
6
7
8
9 |

14.5
11.9 | FEBRUARY 11.3 8.6 |

13.1
10.5 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6
14.9 | MARCH
8.7
11.4
11.0
11.3
12.5
12.7
14.3
13.6
12.6 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
15.0
13.8 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9 | 26.8

23.5
23.7
21.1
26.3
26.4
27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6 | | 1
2
3
4
5
6
7
8
9 |

14.5 | FEBRUARY 11.3 |

13.1 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6 | MARCH
8.7
11.4
11.0
11.3
12.5
12.7
14.3
13.6 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
15.0 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6 | 26.8

23.5
23.7
21.1
26.3
26.4
27.9
 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6 | | 1
2
3
4
5
6
7
8
9
10 |

14.5
11.9
13.2
12.9
16.7 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 |

13.1
10.5
11.1
12.3
14.5 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
14.9
19.9
20.4
17.1 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
15.8
15.0
13.8 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0 | 26.8

23.5
23.7
21.1
26.3
26.4
27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 |

14.5
11.9
13.2
12.9
16.7
17.9 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 |

13.1
10.5
11.1
12.3
14.5
16.1 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6
14.9
19.9
20.4
17.1
17.9 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 | 10.9
12.2
12.2
13.5
14.3
14.5
15.8
15.0
13.8
16.6
17.4
15.9 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8 | 26.8

23.5
23.7
21.1
26.3
26.4
27.9
 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2 | | 1
2
3
4
5
6
7
8
9
10 |

14.5
11.9
13.2
12.9
16.7 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 |

13.1
10.5
11.1
12.3
14.5 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
14.9
19.9
20.4
17.1 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
15.8
15.0
13.8 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 |
16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0 | 26.8

23.5
23.7
21.1
26.3
26.4
27.9
 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

14.5
11.9
13.2
12.9
16.7
17.9 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 |

13.1
10.5
11.1
12.3
14.5
16.1
14.3 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
14.9
19.9
20.4
17.1
17.9
17.1 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
15.0
13.8
16.6
17.4
15.9
15.9 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8
23.8 | 26.8

23.5
23.7
21.1
26.3
26.4
27.9
 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 |

14.5
11.9
13.2
12.9
16.7
17.9 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 |

13.1
10.5
11.1
12.3
14.5
16.1 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6
14.9
19.9
20.4
17.1
17.9 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 | 10.9
12.2
12.2
13.5
14.3
14.5
15.8
15.0
13.8
16.6
17.4
15.9 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8 | 26.8

23.5
23.7
21.1
26.3
26.4
27.9
 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |

14.5
11.9
13.2
12.9
16.7
17.9
17.9
13.0
12.2
12.8 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 |

13.1
10.5
11.1
12.3
14.5
16.1
14.3 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
14.9
19.9
20.4
17.1
17.9
17.1 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 13.1 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
15.0
13.8
16.6
17.4
15.9
15.9
15.9 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
26.9 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8
23.8
23.8 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 14.5
11.9
13.2
12.9
16.7
17.0
13.0
12.2
12.8
13.0 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 |

13.1
10.5
11.1
12.3
14.5
16.1
14.3
11.9
10.6
10.5 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6
14.9
19.9
20.4
17.1
17.9
17.1 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 13.1 | 10.9
12.2
12.2
13.5
14.3
14.5
15.8
15.0
13.8
16.6
17.4
15.9
15.9
15.2
14.4
13.3
12.0
12.5 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
23.9
25.5
23.9 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8
23.8
23.8 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |

14.5
11.9
13.2
12.9
16.7
17.9
17.9
13.0
12.2
12.8 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 |

13.1
10.5
11.1
12.3
14.5
16.1
14.3 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
14.9
19.9
20.4
17.1
17.9
17.1 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 13.1 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
15.0
13.8
16.6
17.4
15.9
15.9
15.9 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
26.9 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8
23.8
23.8 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 |

14.5
11.9
13.2
12.9
16.7
17.0
13.0
12.2
12.8
13.9
16.6 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 |

13.1
10.5
11.1
12.3
14.5
16.1
11.9
10.6
10.5
11.6
13.7 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
19.9
20.4
17.1
17.9
17.1
16.8
14.6
12.5
14.5 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 13.1 11.7 12.2 11.5 10.9 10.3 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
15.0
13.8
16.6
17.4
15.9
15.9
15.9
14.4
13.3
12.0
12.5
14.1 | 19.1
23.3
24.3
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
26.9
21.5
23.9
24.2 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8
23.8
23.8
23.8
23.8
23.9 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 14.5
11.9
13.2
12.9
16.7
17.0
13.0
12.2
12.8
13.0 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 |

13.1
10.5
11.1
12.3
14.5
16.1
14.3
11.9
10.6
10.5 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6
14.9
19.9
20.4
17.1
17.9
17.1 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 13.1 | 10.9
12.2
12.2
13.5
14.3
14.5
15.8
15.0
13.8
16.6
17.4
15.9
15.9
15.2
14.4
13.3
12.0
12.5 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
23.9
25.5
23.9 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8
23.8
23.8 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 |

14.5
11.9
13.2
12.9
16.7
17.0
13.0
12.2
12.8
13.9
16.6 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 |

13.1
10.5
11.1
12.3
14.5
16.1
14.3
11.9
10.6
10.5
11.6
13.7 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
19.9
20.4
17.1
17.9
17.1
16.8
14.6
12.5
14.5
18.0 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.1 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
15.0
13.8
16.6
17.4
15.9
15.9
15.2
14.4
13.3
12.0
12.5
14.1 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
26.9
21.5
23.9
24.2
22.4
23.6 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8
23.8
23.8
23.8
23.3
19.3
19.3
20.9
22.3 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 |
14.5
11.9
13.2
12.9
16.7
17.0
13.0
12.2
12.8
13.9
16.6 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 |

13.1
10.5
11.1
12.3
14.5
16.1
14.3
11.9
10.6
10.5
11.6
13.7 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6
14.9
19.9
20.4
17.1
17.9
17.1
16.8
14.6
12.5
18.0 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.0
13.8
16.6
17.4
15.9
15.9
15.2
14.4
13.3
12.0
12.5
14.1 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
23.9
21.5
23.9
24.2
22.4
23.4
23.9 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 18.2 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8
23.8
23.8
23.8
23.3
19.3
18.3
20.9
22.3 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 |

14.5
11.9
13.2
12.9
16.7
17.0
13.0
12.2
12.8
13.9
16.6 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 |

13.1
10.5
11.1
12.3
14.5
16.1
14.3
11.9
10.6
10.5
11.6
13.7 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
19.9
20.4
17.1
17.9
17.1
16.8
14.6
12.5
14.5
18.0 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.1 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
15.0
13.8
16.6
17.4
15.9
15.9
15.2
14.4
13.3
12.0
12.5
14.1 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
26.9
21.5
23.9
24.2
22.4
23.6 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8
23.8
23.8
23.8
23.3
19.3
19.3
20.9
22.3 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 13.2
12.9
16.7
17.0
13.0
12.2
12.8
13.9
16.6
15.1
13.0
12.9
15.2
16.8 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 12.9 11.1 11.0 12.3 11.3 |

13.1
10.5
11.1
12.3
14.5
16.1
14.3
11.9
10.6
10.5
11.6
13.7 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
19.9
20.4
17.1
17.9
17.1
16.8
14.6
12.5
14.5
18.0 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.1 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8 13.0 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.0
13.8
16.6
17.4
15.9
15.9
15.2
14.4
13.3
12.0
12.5
14.1 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
23.9
21.5
23.9
24.2
22.4
23.6
24.3
24.3
23.1 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 18.2 17.8 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8
23.8
23.8
23.8
23.8
23.8
23.8
23.8 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 14.5
11.9
13.2
12.9
16.7
17.0
13.0
12.2
12.8
13.9
16.6 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 |

13.1
10.5
11.1
12.3
14.5
16.1
14.3
11.9
10.6
10.5
11.6
13.7 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6
14.9
19.9
20.4
17.1
17.9
17.1
16.8
14.6
12.5
18.0 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.0
13.8
16.6
17.4
15.9
15.9
15.2
14.4
13.3
12.0
12.5
14.1 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
23.9
21.5
23.9
24.2
22.4
23.4
23.9 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 18.2 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8
23.8
23.8
23.8
23.3
19.3
18.3
20.9
22.3 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 13.2
12.9
16.7
17.0
13.0
12.2
12.8
13.0
15.1
13.0
12.9
15.2
16.8
15.1
16.6
13.4 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 12.9 11.1 11.0 12.3 11.3 12.1 13.4 8.9 |

13.1
10.5
11.1
12.3
14.5
16.1
14.3
11.9
10.6
10.5
11.6
13.7
13.6
11.8
11.9
13.3
13.8
14.8
10.3 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
19.9
20.4
17.1
17.9
17.1
16.8
14.6
12.5
14.5
14.5
12.5
14.5
14.5
14.5
14.5
14.6
12.5
14.5
14.6
15.6
16.9
17.1
17.1
17.1
18.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 13.0 11.8 13.0 11.8 10.6 10.2 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.0
13.8
16.6
17.4
15.9
15.9
15.2
14.4
13.3
12.0
12.5
14.1
16.3
17.5
19.0
16.4
14.4 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
23.9
21.5
23.9
24.2
22.8
25.3
23.9
24.2
22.3
23.1 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 18.2 17.8 18.6 18.9 19.3 | 16.5
19.5
21.2
22.0
22.1
21.6
22.3
23.5
23.6
22.9
21.3
20.5
21.0
22.8
23.8
23.8
23.8
23.8
22.9
22.7
22.6
20.7
20.6 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6

26.6
25.4
24.9
26.4
27.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 14.5
11.9
13.2
12.9
17.0
13.0
12.2
12.8
13.9
16.6
15.1
13.0
12.2
16.8 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 12.9 11.1 11.0 12.3 11.3 12.1 13.4 8.9 | 13.1
10.5
11.1
12.3
14.3
14.3
11.9
10.6
10.5
11.6
13.7
13.6
11.8
11.9
13.3
13.8
14.8
10.3 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6
14.9
19.9
20.4
17.1
17.9
17.1
16.8
14.6
12.5
14.5
18.0
19.9
21.2
22.0
20.1
15.9 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8 13.0 11.8 10.6 10.2 11.4 | 10.9
12.2
12.2
13.5
14.3
14.5
15.8
15.0
13.8
16.6
17.4
15.9
15.9
15.2
14.4
13.3
12.0
12.5
14.1
16.3
17.5
19.0
10.1
10.1
10.1
10.1
10.1
10.1
10.1 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
23.9
24.2
22.4
23.9
24.2
22.4
23.9
24.2
22.4
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2
18.7 20.9 20.8 20.7 16.9 18.4 20.9 21.6 20.5 20.4 18.2 17.8 18.6 18.9 19.3 19.4 | 16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.3 19.3 18.3 20.9 22.3 20.5 21.0 21.0 21.0 21.2 21.5 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6
25.4
24.9
26.4
27.3
26.1 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 14.5
11.9
13.2
12.9
16.7
17.0
13.0
12.2
12.8
16.6
15.1
13.0
12.9
16.8 | FEBRUARY 11.3 8.6 8.8 11.4 11.9 11.1 9.3 8.5 9.0 10.5 12.9 11.1 11.0 12.3 11.3 12.1 13.4 8.9 | 13.1
10.5
11.1
12.3
14.5
16.1
14.3
11.9
10.6
10.5
11.6
13.7 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6
14.9
19.9
20.4
17.1
17.9
17.1
16.8
14.6
12.5
14.5
18.0
19.9
21.2
22.0
20.1
15.9 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8 13.0 11.8 10.6 10.2 11.8 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
16.6
17.4
15.9
15.9
15.2
14.4
13.3
12.0
14.1
16.3
17.5
19.0
16.4
11.1
11.4
12.6
11.1
11.3
13.9 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
23.9
24.2
22.8
23.9
24.2
22.8
23.6
24.2
23.6
24.3 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 18.2 17.8 18.6 18.9 19.3 19.4 20.0 | 16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8 23.3 19.3 18.3 20.9 22.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6

26.2
26.6
25.4
24.9
26.4
27.3
26.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 14.5
11.9
13.2
12.9
17.0
13.0
12.2
12.8
13.9
16.6
15.1
13.0
12.2
16.8 | FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 12.9 11.1 11.0 12.3 11.3 12.1 13.4 8.9 | 13.1
10.5
11.1
12.3
14.3
14.3
11.9
10.6
10.5
11.6
13.7
13.6
11.8
11.9
13.3
13.8
14.8
10.3 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6
14.9
19.9
20.4
17.1
17.9
17.1
16.8
14.6
12.5
14.5
18.0
19.9
21.2
22.0
20.1
15.9 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8 13.0 11.8 10.6 10.2 11.4 | 10.9
12.2
12.2
13.5
14.3
14.5
15.8
15.0
13.8
16.6
17.4
15.9
15.9
15.2
14.4
13.3
12.0
12.5
14.1
16.3
17.5
19.0
10.1
10.1
10.1
10.1
10.1
10.1
10.1 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
23.9
24.2
22.4
23.9
24.2
22.4
23.9
24.2
22.4
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
23.9
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 18.4 20.9 21.6 20.5 20.4 18.2 17.8 18.6 18.9 19.3 19.4 | 16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.3 19.3 18.3 20.9 22.3 20.5 21.0 21.0 21.0 21.2 21.5 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6
25.4
24.9
26.4
27.3
26.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 14.5
11.9
13.2
12.9
16.7
17.0
13.0
12.2
12.8
16.6
15.1
13.0
12.9
16.8 | FEBRUARY 11.3 8.6 8.8 11.4 11.9 11.1 9.3 8.5 9.0 10.5 12.9 11.1 11.0 12.3 11.3 12.1 13.4 8.9 | 13.1
10.5
11.1
12.3
14.5
16.1
14.3
11.9
10.6
10.5
11.6
13.7 | 13.3
13.0
13.4
16.8
17.2
16.5
17.6
16.9
16.6
14.9
19.9
20.4
17.1
17.9
17.1
16.8
14.6
12.5
14.5
18.0
19.9
21.2
22.0
20.1
15.9 | MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8 13.0 11.8 10.6 10.2 11.8 | 10.9
12.2
12.2
13.5
14.3
14.5
15.4
15.8
16.6
17.4
15.9
15.9
15.2
14.4
13.3
12.0
14.1
16.3
17.5
19.0
16.4
11.1
11.4
12.6
11.1
11.3
13.9 | 19.1
23.3
23.8
24.3
23.1
22.7
24.9
26.4
25.3
23.9
24.2
22.4
23.6
24.5
26.9
25.5
23.9
24.2
22.8
23.9
24.2
22.8
23.6
24.2
23.6
24.3 | APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 18.2 17.8 18.6 18.9 19.3 19.4 20.0 | 16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8 23.3 19.3 18.3 20.9 22.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 | 26.8 23.5 23.7 21.1 26.3 26.4 27.9 | MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7 | 23.5
24.3
22.7
21.6
19.9
22.4
23.9
24.6

26.2
26.6

26.2
26.6
25.4
24.9
26.4
27.3
26.1 | DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE 08126380 Colorado River near Ballinger, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 27.7

 | 23.3 | 25.3
25.0
 | 33.2
29.2
32.6
34.2
34.1 | 26.8
26.2
25.5
27.3
28.2 | 29.7
27.6
28.6
30.3
31.0 | 34.4
34.5
35.1
33.5
35.1 | 26.6
26.6
24.8
25.0
24.4 | 30.2
30.1
29.5
29.1
29.4 | 28.9
31.2
32.0
30.2
28.7 | 25.5
25.3
26.8
24.5
26.1 | 27.1
28.0
28.5
27.3
27.0 | | 6
7
8
9
10 |

 |

 |

 | 35.0
34.7
34.6
36.2
36.3 | 28.1
28.1
27.7
27.6
26.6 | 31.2
31.0
30.8
31.3
31.3 | 33.5
35.1
34.4
35.8
35.6 | 25.1
24.7
25.5
26.3
25.8 | 29.2
29.2
29.6
30.4
29.9 | 27.3
26.9
29.5
27.8
28.6 | 23.6
23.8
25.8
24.8
23.9 | 24.9
25.2
27.5
26.2
25.9 | | 11
12
13
14
15 |

 |

 |

 | 36.1
37.5
37.9
34.1
36.9 | 26.5
26.7
26.7
27.2
27.2 | 31.2
31.5
31.6
30.4
31.4 | 36.3
36.3
34.8
33.3
31.9 | 26.4
26.5
26.4
26.4
26.5 | 30.7
30.7
29.9
28.8
29.1 | 27.8
29.0
28.6
27.6
26.7 | 23.3
23.8
24.4
24.6
25.2 | 25.7
26.4
26.5
26.2
26.0 | | 16
17
18
19
20 |

 |

 |

 | 37.2
36.8
36.8
36.2
36.0 | 27.4
27.1
27.4
27.4
27.2 | 31.7
31.3
31.4
31.1
31.0 | 30.6
29.2
30.1
32.0
31.8 | 27.3
26.8
26.1
26.3
25.8 | 28.9
27.5
27.8
28.9
28.8 | 28.3
29.1
30.7
30.4
31.3 | 24.1
24.5
24.6
24.8
26.2 | 26.0
26.6
27.1
27.4
28.3 | | 21
22
23
24
25 | 32.9
29.8
33.9
33.4 | 25.8
25.3
25.1
25.0 | 28.6
27.4
28.6
28.7 | 37.0
36.6
36.3
36.1
36.6 | 27.1
26.8
26.4
26.6
27.0 | 31.4
31.3
30.8
30.8
30.9 | 32.5
33.4
33.5
33.9
33.0 | 27.9
27.4
27.3
26.4
26.9 | 29.7
29.8
29.7
29.5
29.4 | 28.2
29.0
28.4
26.2
25.4 | 24.3
24.8
24.7
22.1
20.6 | 26.3
26.7
26.4
24.2
23.0 | | 26
27
28
29
30
31 | 33.7
34.1
34.5
34.1
33.6 | 24.8
25.3
25.0
26.4
26.6 | 28.6
29.1
29.4
29.6
29.7 | 36.4
35.4
36.8
37.2
36.2
36.0 | 26.9
27.4
27.6
28.1
28.0
26.6 | 30.9
30.6
31.4
32.0
31.5
30.6 | 30.6
28.5
27.4
27.1
30.2
29.6 | 25.8
26.1
25.2
24.9
25.0
26.1 | 28.1
27.2
26.2
25.9
26.9
27.5 | 24.6
24.6
24.6
24.3
22.8 |
19.8
20.2
20.7
20.8
20.2 | 22.4
22.4
22.6
22.5
21.6 | | MONTH | | | | 37.9 | 25.5 | 30.9 | 36.3 | 24.4 | 29.0 | 32.0 | 19.8 | 25.7 | THIS PAGE IS INTENTIONALLY LEFT BLANK. ## 08127000 Elm Creek at Ballinger, TX LOCATION.--Lat 31°44′57", long 99°56′51", Runnels County, Hydrologic Unit 12090101, on right bank 1,000 ft upstream from storage dam at Ballinger and 1.9 mi upstream from mouth. DRAINAGE AREA.--450 mi^2 , of which 63.5 mi^2 is above Lake Winters Dam. WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Apr. 1932 to current year. REVISED RECORDS.--WSP 1442: 1935, 1946, 1954. WDR TX-81-3: Drainage area. WDR TX-96-3. GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,617.72 ft above sea level. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good except those below 10 ft³/s, which are fair. The stage-discharge relation during periods of low flow are affected by wind action and by occasional accumulation of drift on dam. Since water year 1983 at least 10% of contributing drainage area has been regulated. Prior to June 1982, capacity of Old Lake Winters (just upstream from new dam) was 3,060 acre-ft. No flow at times many years. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--50 years (water years 1933-82) prior to completion of New Lake Winters, $47.6 \text{ ft}^3/\text{s}$ (34,490 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1933-82).--Maximum discharge, 50,000 ft³/s Oct. 13, 1957 (gage height, 14.20 ft, from floodmark); no flow at times. Highest stage not affected by backwater from the Colorado River since at least 1904, was that of Oct. 13, 1957, from information by local residents. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in Aug. 1906 reached a stage of 14.5 ft, affected by backwater from Colorado River. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DISCHA | RGE, CUE | IC PEEL PI | | Y MEAN VA | | SR 2000 IC | SEPIEMBE. | R 2001 | | | |------------------------------------|--|--|---|---|---|---|--|---|--|--------------------------------------|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | 1.0
.69
510
83
247 | 1.2
.72
.79
.92
.93 | 1.0
.93
.91
.94 | 1.3
.98
.93
.85 | 3.8
3.3
2.6
2.2
1.7 | 1.3
1.2
1.0
1.0 | .09
.08
.38
53 | .01
.02
.01
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 6
7
8
9
10 | .00
.00
.00
.00 | 214
51
42
36
30 | .97
.71
.67
.60 | .93
1.0
1.2
1.4
3.4 | .78
.77
.93
1.6
.98 | 1.6
1.8
3.4
3.3
2.3 | .99
.91
.87
.82 | 46
27
17
10
7.6 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 11
12
13
14
15 | .00
.00
.00
.00 | 24
20
13
10
8.2 | .54
.40
.41
.43 | 5.6
5.3
4.7
2.6
1.6 | .86
.79
.77
.81 | 2.0
1.7
1.4
1.3 | 7.7
4.6
3.0
2.2
1.9 | 5.8
4.9
3.8
2.2
1.9 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 16
17
18
19
20 | .00
18
37
10
7.1 | 7.4
6.5
5.4
4.3
3.1 | .50
.39
.40
.36 | 1.4
1.7
1.7
1.6
1.4 | 11
7.0
4.9
3.0
1.8 | .78
.78
.91
.90
.89 | 1.2
.83
.65
.56 | 1.7
1.6
1.4
1.2 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 21
22
23
24
25 | 2.2
.89
.60
1.1
.58 | 2.2
2.5
3.7
4.7
2.5 | .38
.35
.36
.37 | 1.2
.97
1.2
1.4 | 1.3
1.3
10
21
13 | .90
.96
1.4
1.8 | .57
.60
.58
.43 | .65
.41
.31
.26 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 26
27
28
29
30
31 | .29
.14
.10
2.8
2.4
1.5 | 1.5
1.1
1.2
1.4
1.5 | .81
1.4
2.1
2.1
1.6
1.3 | 1.4
1.4
2.1
3.0
1.6
1.5 | 8.7
7.0
4.8
 | .94
.99
1.3
1.8
1.9 | .26
.21
.16
.13
.10 | .12
.10
.06
.03
.01 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 84.70
2.73
37
.00
168
.01 | 1338.89
44.6
510
.69
2660
.10 | 23.47
.76
2.1
.35
47
.00 | 57.28
1.85
5.6
.91
114
.00 | 109.05
3.89
21
.70
216
.01 | 52.45
1.69
3.8
.78
104
.00 | 36.42
1.21
7.7
.10
72
.00 | 310.77
10.0
122
.01
616
.02
.03 | 0.04
.001
.02
.00
.08
.00 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00 | 0.00
.000
.00
.00
.00
.00 | | STATIST | CICS OF | MONTHLY ME | AN DATA | FOR WATER | YEARS 198 | 3 - 2001z | , BY WATI | ER YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 22.8
165
1987
.000
1984 | 15.2
59.7
1987
.000
1989 | 41.2
576
1992
.000
1999 | 18.5
164
1992
.000
2000 | 65.9
911
1992
.000
2000 | 34.2
268
1992
.000
2000 | 19.0
76.4
1992
.000
2000 | 71.1
655
1994
.000
1984 | 111
770
1997
.001
2001 | 6.87
42.5
1997
.000
1984 | 10.9
90.1
1995
.000
1983 | 56.7
760
1996
.000
1983 | # 08127000 Elm Creek at Ballinger, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEA | AR : | FOR 2001 WAT | ER YEAR | WATER YEAR | S 1983 - 2001z | |--------------------------|-----------------------|------|--------------|---------|------------|----------------| | ANNUAL TOTAL | 4749.22 | | 2013.07 | | | | | ANNUAL MEAN | 13.0 | | 5.52 | | 39.2 | | | HIGHEST ANNUAL MEAN | | | | | 188 | 1992 | | LOWEST ANNUAL MEAN | | | | | .96 | 1984 | | HIGHEST DAILY MEAN | 2790 Jun | 3 | 510 | Nov 3 | 12400 | Sep 15 1996 | | LOWEST DAILY MEAN | .00 Jan | 1 | .00 | Oct 1 | .00 | Jul 20 1983 | | ANNUAL SEVEN-DAY MINIMUM | .00 Jan | 1 | .00 | Oct 1 | .00 | Jul 20 1983 | | MAXIMUM PEAK FLOW | | | 1420 | Nov 3 | 16700 | Jun 23 1997 | | MAXIMUM PEAK STAGE | | | 5.01 | Nov 3 | 9.06 | Jun 23 1997 | | ANNUAL RUNOFF (AC-FT) | 9420 | | 3990 | | 28370 | | | ANNUAL RUNOFF (CFSM) | .029 | | .012 | | .087 | | | ANNUAL RUNOFF (INCHES) | .39 | | .17 | | 1.18 | | | 10 PERCENT EXCEEDS | 2.2 | | 5.5 | | 56 | | | 50 PERCENT EXCEEDS | .00 | | .60 | | 1.8 | | | 90 PERCENT EXCEEDS | .00 | | .00 | | .00 | | z Period of regulated streamflow. ## 08127000 Elm Creek at Ballinger, TX--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- CHEMICAL DATA: Oct. 1957 to Sept. 1991, Mar. 2001. #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Oct. 1967 to Sept. 1991 (local observer), Feb. 2001 to current year. WATER TEMPERATURE: Oct. 1967 to Sept. 1997 (local observer), Feb. 2001 to current year. INSTRUMENTATION. -- Water-quality monitor since Feb. 9, 2001. REMARKS.--Records fair. Interruptions in the record were due to no flow. No flow June 4 to Sept. 30. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous years using daily (or continuous) records of specific conductance and regression relations between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request. ### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 4,220 microsiemens/cm, Sept. 12, 17, 1970; minimum daily, 244 microsiemens/cm, Aug. 4, 1978. WATER TEMPERATURE: Maximum daily, 35.0°C, July 19, 1986; minimum daily, 0.0°C, Jan. 8, 1968, Jan. 10, 13, 1973, and Jan. 11, 14, 1982. ### EXTREMES FOR CURRENT YEAR . -- SPECIFIC CONDUCTANCE: Maximum, 2,690 microsiemens/cm, Mar. 28; minimum, 958 microsiemens/cm, May 8. WATER TEMPERATURE: Maximum, 30.6° C, May 18, June 2; minimum, 9.4° C, Feb. 18. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DIS- | | | | | | | | | | | | |------|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | CHARGE, | SPE- | | HARD- | | MAGNE- | | SODIUM | | POTAS- | | CHLO- | | | | INST. | CIFIC | | NESS | CALCIUM | SIUM, | SODIUM, | AD- | | SIUM, | SULFATE | RIDE, | | | | CUBIC | CON- | TEMPER- | TOTAL | DIS- | DIS- | DIS- | SORP- | | DIS- | DIS- | DIS- | | | | FEET | DUCT- | ATURE | (MG/L | SOLVED | SOLVED | SOLVED | TION | | SOLVED | SOLVED | SOLVED | | DATE | TIME | PER | ANCE | WATER | AS | (MG/L | (MG/L | (MG/L | RATIO | SODIUM | (MG/L | (MG/L | (MG/L | | | | SECOND | (US/CM) | (DEG C) | CACO3) | AS CA) | AS MG) | AS NA) | | PERCENT | AS K) | AS SO4) | AS CL) | | | | (00061) | (00095) | (00010) | (00900) | (00915) | (00925) | (00930) | (00931) | (00932) | (00935) | (00945) | (00940) | | | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 30 | 1450 | 2.0 | 2340 | 13.5 | 773 | 172 | 83.2 | 174 | 2.73 | 32.7 | 5.39 | 511 | 350 | | FLU0- SILICA, | RIDE, | DIS- | DIS- | SOLVED | SOLVED |
(MG/L | AS | AS F) | SIO2) | (00950) | (00955) MAR 30... .5 2.0 SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|-----|--------|------|-----|--------|------|-----|--------|------| | | | OCTOBER | | NO | VEMBER | | DE | CEMBER | | ō | ANUAR? | ď | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | 08127000 Elm Creek at Ballinger, TX--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | | | | | MAN. | | | | | MUDDI | |---|---|----------------|--|--------------------------|--------------|------------------|--------------|---------------|--------------|--|-----------------|------------------| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | | | | 2290
2280 | 2120
2210 | 2260
2260 | 2400
2430 | 2380
2370 | 2390
2380 | 2350
2350 | 2300
2320 | 2340
2340 | | 3 | | | | 2320 | 2240 | 2290 | 2400 | 2360 | 2380 | 2350 | 2280 | 2310 | | 4
5 | | | | 2360
2380 | 2290
2320 | 2330
2350 | 2380
2370 | 2350
2340 | 2370
2370 | 2370
2390 | 2010
2030 | 2260
2170 | | 6 | | | | 2400 | 2360 | 2380 | 2370 | 2340 | 2370 | 2250 | 1030 | 1480 | | 7 | | | | 2430 | 2370 | 2390 | 2370 | 2350 | 2370 | 1040 | 969 | 993 | | 8
9 | 1180 | 1130 |
1160 | 2410
2420 | 2360
2330 | 2390
2410 | 2370
2370 | 2330
2350 | 2360
2360 | 996
1040 | 958
980 | 974
999 | | 10 | 1200 | 1170 | 1190 | 2440 | 2410 | 2430 | 2370 | 2300 | 2360 | 1090 | 1030 | 1050 | | 11 | 1220 | 1200 | 1210 | 2470 | 2410 | 2440 | 2320 | 2240 | 2270 | 1150 | 1090 | 1120 | | 12
13 | 1260
1310 | | 1230
1280 | 2470
2490 | 2420
2420 | 2450
2460 | 2280
2280 | 2250
2240 | 2270
2270 | 1170
1190 | 1150
1170 | 1160
1180 | | 14 | 1340 | 1270 | 1320 | 2500 | 2480 | 2490 | 2280 | 2230 | 2280 | 1200 | 1170 | 1180 | | 15 | 1360 | 1320 | 1340 | 2540 | 2460 | 2520 | 2300 | 2260 | 2290 | 1230 | 1200 | 1210 | | 16
17 | 1350
1380 | 1310
1330 | 1340
1350 | 2550
2560 | 2510
2550 | 2530
2560 | 2300
2330 | 2250
2270 | 2290
2300 | 1220
1240 | 1200
1200 | 1220
1220 | | 18 | 1600 | | 1470 | 2580 | | 2560 | 2330 | | 2320 | 1240 | 1210 | 1220 | | 19
20 | 1650
1690 | 1580
1630 | 1610
1650 | 2590
2620 | 2550
2560 | 2570
2580 | 2340
2330 | 2310
2300 | 2320
2320 | 1220
1230 | 1210
1220 | 1220
1220 | | | | | | | | | | | | | | | | 21
22 | 1730
1740 | 1650
1720 | 1690
1730 | 2620
2630 | 2570
2570 | 2600
2610 | 2330
2330 | 2300
2300 | 2320
2320 | 1250
1270 | 1230
1240 | 1240
1260 | | 23 | 1770 | 1740 | 1750 | 2660 | 2580 | 2620 | 2330 | 2310 | 2320 | 1270 | 1250 | 1260 | | 24
25 | 1970
2020 | 1760
1940 | 1890
1980 | 2640
2650 | 2590
2580 | 2620
2630 | 2350
2350 | 2320
2310 | 2330
2340 | 1260
1260 | 1250
1240 | 1260
1260 | | | | | | | | | | | | | | | | 26
27 | 2150
2200 | 2010
2040 | 2080
2180 | 2670
2670 | 2570
2540 | 2650
2660 | 2360
2350 | 2320
2320 | 2340
2340 | 1270
1290 | 1250
1240 | 1260
1260 | | 28 | 2260 | 2180 | 2240 | 2690 | 2520 | 2660 | 2350 | 2280 | 2340 | 1260 | 1240 | 1260 | | 29
30 | | | | 2680
2680 | 2590
2340 | 2660
2470 | 2350
2350 | 2300
2320 | 2340
2340 | 1270
1280 | 1230
1250 | 1270
1270 | | 31 | | | | 2400 | 2370 | 2390 | | | | 1280 | 1250 | 1270 | | MONTH | | | | 2690 | 2120 | 2490 | 2430 | 2230 | 2330 | 2390 | 958 | 1380 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | 1 | 1280 | JUNE
1240 | 1260 | | JULY | | | AUGUST | | | SEPTEMBE | IR
 | | 1
2
3 | | JUNE
1240 | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4 | 1280
1270
 | JUNE 1240 1250 | 1260
1260
 | | JULY |

 |

 | AUGUST |

 | | SEPTEMBE | ER | | 1
2
3
4
5 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 |

 | JULY |

 |

 | AUGUST |

 |

 | SEPTEMBE | ER | | 1
2
3
4
5 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 | | JULY |

 |

 | AUGUST |

 |

 | SEPTEMBE | ER | | 1
2
3
4
5 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 | ==== | JULY |

 | | AUGUST | |

 | SEPTEMBE |

 | | 1
2
3
4
5 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 | ===
===
===
=== | JULY |

 |

 | AUGUST | |

 | SEPTEMBE |

 | | 1
2
3
4
5
6
7
8
9 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 | | JULY |

 | | AUGUST | |

 | SEPTEMBE |

 | | 1
2
3
4
5
6
7
8
9
10 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 | | JULY | | | AUGUST | | ====================================== | SEPTEMBE | | | 1
2
3
4
5
6
7
8
9
10 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 | | JULY | | | AUGUST | | | SEPTEMBE | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 | | JULY | | | AUGUST | | | SEPTEMBE | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 | | JULY | | | AUGUST | | | SEPTEMBE | PR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 | | JULY | | | AUGUST | | | SEPTEMBE | | | 1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 | | JULY | | | AUGUST | | | SEPTEMBE | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 1280
1270

- | JUNE 1240 1250 | 1260
1260

 | | JULY | | | AUGUST | | | SEPTEMBE | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 1280
1270

 | JUNE 1240 1250 | 1260
1260

 | | JULY | | | AUGUST | | | SEPTEMBE | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 1280
1270

- | JUNE 1240 1250 | 1260
1260

 | | JULY | | | AUGUST | | | SEPTEMBE | | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 1280
1270

- | JUNE 1240 1250 | 1260
1260

- | | JULY | | | AUGUST | | | SEPTEMBE | | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | 1280
1270

- | JUNE 1240 1250 | 1260 1260 | | JULY | | | AUGUST | | | SEPTEMBE | | | 1 2 3 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 1280
1270

- | JUNE 1240 1250 | 1260 1260 | | JULY | | | AUGUST | | | SEPTEMBE | | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 1280
1270

- | JUNE 1240 1250 | 1260 1260 | | JULY | | | AUGUST | | | SEPTEMBE | | | 1 2 3 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 1280
1270

- | JUNE 1240 1250 | 1260 1260 | | JULY | | | AUGUST | | | SEPTEMBE | | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 1280
1270

- | JUNE 1240 1250 | 1260 1260 | | JULY | | | AUGUST | | | SEPTEMBE | | # 08127000 Elm Creek at Ballinger, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|-----
--------|------|-----|--------|------|-----|---------|------| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | i | JANUARY | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | 11 | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | 16 | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | 20 | 21 | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | 25 | 26 | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | 51 | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 08127000 Elm Creek at Ballinger, TX--Continued | DAY | MAX | MIN | MEAN | MAX | MIN | | | MIN | MEAN | MAX | MIN | MEAN | |---|--------------------------|------------------|--------------------------|--|--------------|----------------|----------------------|----------------|--|--------------|-----------------|--------------| | DAI | MAA | | | MAA | | MEAN | MAA | | MEAN | MAA | | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | | | | 13.2
12.3 | 10.8
11.2 | 11.8
11.7 | 17.1
20.4 | 15.2
16.6 | 16.1
17.6 | 25.0
25.8 | 21.6
22.4 | 23.0
23.9 | | 3
4 | | | | 12.1
14.7 | 11.3
11.2 | 11.7
12.7 | 23.0
22.3 | 18.2 | 19.4
20.4 | 24.1 | 22.6 | 23.1 | | 5 | | | | 16.6 | 12.3 | 13.5 | 21.1 | 19.3
20.3 | 20.4 | 23.1
21.9 | 21.6
20.1 | 22.3
20.7 | | 6 | | | | 14.0 | 12.5 | 13.2 | 21.1 | 20.2 | 20.7 | 23.4 | 19.7 | 21.0 | | 7
8 | | | | 15.8
15.4 | 12.7
13.9 | 14.0
14.4 | 23.7
23.7 | 20.3
21.0 | 21.4
21.9 | 23.8
26.2 | 21.4
22.1 | 22.3 | | 9
10 | 13.6
12.2 | 11.9
10.9 | 12.6
11.4 | 15.2
13.9 | 13.9
13.3 | 14.3
13.7 | 23.8
23.0 | 21.7
21.9 | 22.6
22.5 | 25.7
27.2 | 23.9
24.1 | 24.7
25.2 | | | | | | | | | | | | | | | | 11
12 | $12.1 \\ 12.4$ | $10.4 \\ 11.1$ | 11.2
11.5 | 18.9
16.6 | 13.5
14.9 | 15.4
15.8 | 22.4
22.5 | 20.4
20.4 | 21.5
21.2 | 27.3
27.1 | 24.3
24.3 | 25.2
25.1 | | 13
14 | 13.6
15.1 | 11.5
13.4 | 12.3
13.9 | 16.7
15.9 | 15.0 | 15.7
15.2 | 22.9
23.0 | 20.0 | 21.0
22.1 | 27.9
27.4 | 24.1
24.2 | 25.1 | | 15 | 15.0 | 12.8 | 14.1 | 15.0 | 14.7
14.0 | 14.5 | 24.2 | 21.5
21.9 | 23.0 | 27.5 | 24.5 | 25.4
25.7 | | 16 | 12.8 | 11.2 | 12.1 | 15.5 | 13.1 | 14.1 | 24.8 | 22.6 | 23.6 | 28.0 | 25.1 | 26.5 | | 17
18 | 12.8
12.0 | 10.5 | 11.3 | 13.8
13.0 | 13.0 | 13.3 | 23.6 | 20.5 | 21.7 | 29.4 | 25.8 | 26.9
27.9 | | 19 | 12.1 | 9.4
10.4 | 10.7
11.3 | 13.4 | 12.0
11.6 | $12.5 \\ 12.4$ | 21.4
21.9 | $19.4 \\ 19.4$ | 20.4
20.5 | 30.6
28.0 | 26.3
26.9 | 27.3 | | 20 | 15.7 | 10.9 | 12.4 | 16.5 | 11.7 | 13.3 | 22.9 | 20.6 | 21.5 | 28.3 | 26.0 | 27.1 | | 21 | 13.1 | 12.5 | 12.8 | 15.5
20.5 | 12.4 | 13.7 | 22.2
23.8 | 21.5 | 21.8 | 27.2 | 24.5 | 25.6
24.9 | | 22
23 | $12.7 \\ 12.2$ | 12.0
11.8 | 12.2
12.0 | 20.5 | 13.5
16.5 | 16.4
17.8 | 23.8 | 21.1
21.6 | 22.2
22.5 | 27.3
26.1 | 23.3
22.8 | 24.9 | | 24
25 | 13.4
15.9 | 12.1
12.4 | 12.7
13.5 | 17.5
15.2 | 15.0
14.1 | 16.2
14.6 | 22.8
24.0 | 20.9
20.2 | 21.7
21.7 | 25.8
26.2 | 23.6
23.8 | 24.6
24.9 | | | | | | | | | | | | | | | | 26
27 | 14.1
16.5 | 12.8
13.8 | 13.5
14.5 | 14.1
12.6 | 12.6
11.4 | 13.3
12.0 | 23.7
23.3 | 20.5
20.6 | 21.8
21.9 | 27.8
29.8 | 23.8
24.4 | 25.3
26.0 | | 28 | 14.1 | 11.4 | 12.7 | 12.7 | 11.3
11.4 | 11.8 | 23.8
24.0 | 20.8 | 22.1 | 28.3 | 25.5 | 26.2 | | 29
30 | | | | 15.5
15.4 | 12.1 | 13.0
13.3 | 24.0 | 21.1
21.3 | 22.3
22.4 | 28.5
29.8 | 25.1
24.9 | 26.1
26.7 | | 31 | | | | 18.6 | 12.9 | 15.3 | | | | 29.7 | 24.3 | 26.7 | | MONTH | | | | 20.6 | 10.8 | 13.9 | 24.8 | 15.2 | 21.3 | 30.6 | 19.7 | 24.9 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | 1 | 28.2 | JUNE
25.2 | 26.4 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4 | 28.2
30.6
 | JUNE 25.2 24.5 | 26.4
26.1
 |

 | JULY |

 |

 | AUGUST |

 |

 | SEPTEMBE | ER

 | | 1
2
3
4
5 | 28.2
30.6
 | JUNE 25.2 24.5 | 26.4
26.1
 |

 | JULY |

 |

 | AUGUST |

 |

 | SEPTEMBE | ER | | 1
2
3
4
5 | 28.2
30.6
 | JUNE 25.2 24.5 | 26.4
26.1
 |

 | JULY |

 |

 | AUGUST |

 |

 | SEPTEMBE | ER

 | | 1
2
3
4
5
6
7
8 | 28.2
30.6

 | JUNE 25.2 24.5 | 26.4
26.1

 |

 | JULY | |

 | AUGUST | ====
====
==== |

 | SEPTEMBE |

 | | 1
2
3
4
5 | 28.2
30.6

 | JUNE 25.2 24.5 | 26.4
26.1

 |

 | JULY |

 |

 | AUGUST |

 |

 | SEPTEMBE |

 | | 1
2
3
4
5
6
7
8
9 | 28.2
30.6

 | JUNE 25.2 24.5 | 26.4
26.1

 |

 | JULY |

 |

 | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10 | 28.2
30.6

 | JUNE 25.2 24.5 | 26.4
26.1

 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10 | 28.2 | JUNE 25.2 24.5 | 26.4
26.1

 | ====================================== | JULY | | | AUGUST | ====
====
====
====
====
==== | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 28.2 | JUNE 25.2 24.5 | 26.4 26.1 | | JULY | | | AUGUST | | | SEPTEMBE | ER | THIS PAGE IS INTENTIONALLY LEFT BLANK. ## 08128000 South Concho River at Christoval, TX LOCATION.--Lat 31°11'13", long 100°30'06", Tom Green County, Hydrologic Unit 12090102, on left upstream side of U.S. Highway 277 bridge, 9.5 mi upstream from Twin Buttes Dam, and 23.7 mi upstream from mouth. DRAINAGE AREA.--413 mi², of which 58.6 mi² probably is noncontributing. PERIOD OF RECORD.--Feb. 1930 to Sept. 1995, Oct. 1995 to Apr. 2001 (peak discharges greater than base discharge), May 2001 to current year. REVISED RECORDS.--WSP 1118: 1943(M). WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,010.22 ft above sea level. Prior to July 17, 1930, nonrecording gage at same site and datum. Water-stage recorder at same site and datum from July
17, 1930, to Nov. 15, 1977, at site 160 ft downstream at same datum from Nov. 16, 1977, to May 5, 1987. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. No known regulation. Low flow is affected by diversions to the South Concho Irrigation Company canal 800 ft upstream from station. No flow Feb. 28 and Mar. 1, 1955. EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since 1882, about 23 ft Aug. 6, 1906 (discharge, 115,000 ft^3/s), from rating curve extended above 15,100 ft^3/s on basis of slope-area measurement of 80,100 ft^3/s , from information by local residents. | | | DISCHARG | E, CUBIC | FEET PER | | | YEAR OCTOBE
VALUES | R 2000 TO | SEPTEMBE | ER 2001 | | | |--|---|---|-------------|-------------|--------------|--------------|--|---------------------------------|-------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | 6.7 | 9.5 | 5.0 | 2.1 | 11 | | 2 | | | | | | | | 6.3 | 10 | 4.8 | 2.4 | 9.7 | | 3 | | | | | | | | 6.2 | 9.4 | 4.7 | 2.6 | 10 | | 4 | | | | | | | | 11 | 9.3 | 4.4 | 2.2 | 9.0 | | 5 | | | | | | | | 11 | 10 | 4.4 | 2.3 | 9.0 | | 6 | | | | | | | | 8.9 | 10 | 3.9 | 2.3 | 10 | | 7 | | | | | | | | 8.9 | 9.6 | 3.9 | 2.3 | 11 | | 8 | | | | | | | | 8.8 | 9.8 | 3.2 | 3.2 | 11 | | 9
10 | | | | | | | | 8.7
9.4 | 8.5
3.7 | 3.6
3.8 | 5.5
5.3 | 9.8
10 | | 10 | | | | | | | | 9.4 | 3.1 | 3.0 | 5.5 | 10 | | 11 | | | | | | | | 9.3 | 3.8 | 3.9 | 3.7 | 10 | | 12 | | | | | | | | 10 | 4.1 | 3.8 | 2.2 | 12 | | 13 | | | | | | | | 9.7 | 4.2 | 3.8 | 2.4 | 12 | | 14
15 | | | | | | | | 9.8
9.6 | 4.0
4.0 | 3.0
2.8 | 2.7
2.5 | 13
9.1 | | 13 | | | | | | | | 9.0 | 4.0 | 2.0 | 2.3 | 9.1 | | 16 | | | | | | | | 9.5 | 4.4 | 2.6 | 5.5 | 5.9 | | 17 | | | | | | | | 9.7 | 4.4 | 2.5 | 5.1 | 5.9 | | 18 | | | | | | | | 10 | 4.4 | 2.7 | 3.2 | 6.6 | | 19
20 | | | | | | | | 9.9
10 | 4.4
5.0 | 2.6
2.3 | 3.6
3.6 | 7.4
7.5 | | 20 | | | | | | | | 10 | 5.0 | 2.3 | 3.0 | 7.5 | | 21 | | | | | | | | 10 | 4.8 | 2.9 | 3.5 | 6.9 | | 22 | | | | | | | | 10 | 4.4 | 3.2 | 3.4 | 7.6 | | 23 | | | | | | | | 9.8 | 4.8 | 2.6 | 3.4 | 7.0 | | 24
25 | | | | | | | | 10
11 | 4.9
4.5 | 2.8
2.7 | 3.2
3.1 | 7.3
7.9 | | 23 | | | | | | | | 11 | 1.5 | 2., | 3.1 | ,., | | 26 | | | | | | | | 10 | 4.0 | 3.8 | 5.6 | 8.1 | | 27 | | | | | | | | 9.5 | 3.8 | 2.5 | 4.3 | 7.5 | | 28
29 | | | | | | | | 8.8
8.9 | 4.6
4.9 | 2.3 | 1480
42 | 6.7
6.6 | | 30 | | | | | | | | 9.1 | 5.1 | 2.3 | 12 | 6.6 | | 31 | | | | | | | | 8.8 | | 2.0 | 12 | | | | | | | | | | | | | | | | | TOTAL | | | | | | | | 289.3 | 178.3 | 101.0 | 1637.2 | 262.1 | | MEAN
MAX | | | | | | | | 9.33
11 | 5.94
10 | 3.26
5.0 | 52.8
1480 | 8.74
13 | | MTN | | | | | | | | 6.2 | 3.7 | 2.0 | 2.1 | 5.9 | | AC-FT | | | | | | | | 574 | 354 | 200 | 3250 | 520 | | | | | | | | | | | | | | | | STATIST | | NTHLY MEAN | DATA FO | | EARS 1930 | - 200 | lh, BY WATE | CR YEAR (WY | (1) | | | | | MEAN | 47.7 | 21.8 | 21.4 | 20.0 | 20.7 | 20.3 | | 41.9 | 27.1 | 40.4 | 20.3 | 64.8 | | MAX
(WY) | 851
1931 | 146
1975 | 126
1975 | 100
1975 | 91.5
1975 | 88.4
1992 | | 1116
1957 | 189
1958 | 1445
1938 | 162
1971 | 2352
1936 | | MIN | .54 | .51 | .57 | .40 | .35 | .39 | | 2.83 | 1.08 | 1.08 | 1.08 | .85 | | (WY) | 1955 | 1955 | 1955 | 1955 | 1955 | 1955 | | 1954 | 1954 | 1952 | 1952 | 1954 | | SUMMARY | STATISTIC | CS | FOR 2 | 000 CALEN | DAR YEAR | | FOR 2001 W | ATER YEAR | | WATER Y | EARS 1930 |) - 2001h | | A NITHITAT I | MEAN | | | | | | | | | 21 / | | | | LOWEST A HIGHEST LOWEST I ANNUAL S MAXIMUM MAXIMUM ANNUAL I 10 PERCS | MEAN ANNUAL M ANNUAL M DAILY ME DAILY MEA SEVEN-DAY PEAK FLOI PEAK STA RUNOFF (AI ENT EXCEE ENT EXCEE ENT EXCEE | AN
AN
N
MINIMUM
GE
C-FT)
DS | | 2.4 | Feb 26 | | 1480
2.0
2.3
10400
a10.5
10
5.5
2.5 | 3 Jul 27
Aug 28
64 Aug 28 | | 31.4
207
3.2
29500
.1
.1
c100000
a21.9
22770
40
14
3.6 | Jul
0 Feb
9 Feb
Jul
95 Jul | 1936
1952
23 1938
27 1955
25 1955
23 1938
23 1938 | | | | | | | | | | | | | | | h See PERIOD OF RECORD paragraph. c From rating curve extended above 15,100 ${\rm ft^3/s}$ on basis of slope-area measurement of 80,100 ${\rm ft^3/s}$. a From floodmark. 08128000 South Concho River at Christoval, TX--Continued ## 08128400 Middle Concho River above Tankersley, TX LOCATION.--Lat 31°25'38", long 100°42'39", Irion County, Hydrologic Unit 12090103, on left bank 0.3 mi upstream from East Rocky Creek, 0.5 mi southwest of Tullos Ranch Headquarters, 6.7 mi northwest of Tankersley, and 20.9 mi upstream from mouth. DRAINAGE AREA.--2,084 mi², of which 968 mi² probably is noncontributing. PERIOD OF RECORD.--Mar. 1961 to Sept. 1995, Oct. 1995 to Mar. 2001 (peak discharges greater than base discharge), Apr. 2001 to current year. Water-quality records.--Chemical data: Aug. 1964 to Apr. 1965. REVISED RECORDS. -- WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,986.47 ft above sea level. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. No known regulation or diversions. No flow at times most years. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since 1900, 29.5 ft Sept. 26, 1936. A flood in 1900 reached the same stage, from information by local resident. | | | DISCHARG | E, CUBIC | FEET PER | | | YEAR OCTOBER
VALUES | 2000 TO | SEPTEMBER | 2001 | | | |---|---|---|----------|------------|-----------|-------|--|-----------------|-----------|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | 6.6 | 1.1 | .03 | .00 | .00 | 57 | | 2 | | | | | | | 6.7 | 1.0 | .03 | .00 | .00 | 5.1 | | 3 | | | | | | | 0.0 | 1.0 | .02 | .00 | .00 | 2.0 | | 4 | | | | | | | 5.5 | 1.5 | .02 | .00 | .00 | 1.9 | | 5 | | | | | | | 5.0 | 1.6 | .01 | .00 | .00 | 80 | | 6 | | | | | | | 4.8 | 1.0 | .01 | .00 | .00 | 14 | | 7 | | | | | | | 1.5 | .65 | .01 | .00 | .00 | 2.4 | | 8 | | | | | | | 1.0 | .52 | .00 | .00 | .00 | .80 | | 9 | | | | | | | 3.0 | .45 | .00 | .00 | .00 | .48 | | 10 | | | | | | | 5.4 | .44 | .00 | .00 | .00 | .36 | | 11 | | | | | | | 6.2 | .48 | .00 | .00 | .00 | .32 | | 12 | | | | | | | | .56 | .00 | .00 | .00 | . 29 | | 13 | | | | | | | 5.0 | .55 | .00 | .00 | .00 | .26 | | 14 | | | | | | | 5.7 | .53 | .00 | .00 | .00 | .22 | | 15 | | | | | | | 6.0 | .49 | .00 | .00 | .00 | .18 | | 16 | | | | | | | 5.9 | .54 | .00 | .00 | .00 | .18 | | 17 | | | | | | | | .55 | .00 | .00 | .00 | .18 | | 18 | | | | | | | 2 - 2 | .63 | .00 | .00 | .00 | .16 | | 19 | | | | | | | | .66 | .00 | .00 | .00 | .18 | | 20 | | | | | | | 25 | .57 | .00 | .00 | .00 | .16 | | 21 | | | | | | | 11 | .43 | .00 | .00 | .00 | .13 | | 22 | | | | | | | | .38 | .00 | .00 | .00 | 14 | | 23 | | | | | | | 4.3 | .31 | .00 | .00 | .00 | 7.6 | | 24 | | | | | | | 2.8 | .17 | .00 | .00 | .00 | .67 | | 25 | | | | | | | 2.1 | .08 | .00 | .00 | .00 | .33 | | 26 | | | | | | | 1.7 | .06 | .00 | .00 | .00 | . 26 | | 27 | | | | | | | | .07 | .00 | .00 | .00 | .21 | | 28 | | | | | | | 1.4 | .06 | .00 | .00 | 932 | .19 | | 29 | | | | | | | 1.1 | .05 | .00 | .00 | 159 | .18 | | 30 | | | | | | | | .04 | .00 | .00 | 10 | .18 | | 31 | | | | | | | | .04 | | .00 | 18 | | | TOTAL | | | | | | | 1416.2 | 16.51 | 0.13 | 0.00 | 1119.00 | 189.92 | | MEAN | | | | | | | 47.2 | .53 | .004 | .000 | 36.1 | 6.33 | | MAX | | | | | | | | 1.6 | .03 | .00 | 932 | 80 | | MIN | | | | | | | | .04 | .00 | .00 | .00 | .13 | | AC-FT | | | | | | | 2810 | 33 | .3 | .00 | 2220 | 377 | | STATIST | ICS OF MOI | NTHLY MEAN | DATA FO | R WATER Y | EARS 1961 | - 200 | 1h, BY WATER | YEAR (WY | .) | | | | | MEAN | 26.5 | 8.82 | 8.17 | 8.33 | 13.7 | 11.6 | 16.0 | 19.0 | 19.0 | 3.19 | 9.34 | 55.0 | | MAX | 363 | 107 | 59.4 | 44.3 | 169 | 86.7 | | 134 | 375 | 27.2 | 115 | 1181 | | (WY) | 1975 | 1975 | 1975 | 1975 | 1992 | 1987 | 1992 | 1965 | 1986 | 1992 | 1974 | 1974 | | MIN | .000 | .000 | .000 | .000 | .000 | .000 | | .000 | .000 | .000 | .000 | .000 | | (WY) | 1962 | 1962 | 1962 | 1962 | 1962 | 1962 | 1961 | 1961 | 1962 | 1961 | 1961 | 1962 | | SUMMARY | STATISTIC | CS | FOR 2 | 000 CALENI | DAR YEAR | | FOR 2001 WAS | TER YEAR | | WATER | YEARS 196 | 1 - 2001h | | LOWEST A HIGHEST LOWEST I ANNUAL S MAXIMUM MAXIMUM ANNUAL F 10 PERCE 50 PERCE | MEAN ANNUAL MEA ANNUAL MEA DAILY MEA SEVEN-DAY PEAK FLOV PEAK STAC RUNOFF (AG ENT EXCEE ENT EXCEE | AN
AN
N
MINIMUM
SE
C-FT)
OS | | .01 | Mar 11 | | 932
.00
.00
10200
a21.15
6.1
.06 | Jun 8
Oct 24 | | 12900
c15500
24.
12060
20
1. | 000
Sep
00 Apr
00 Apr
Sep
98 Sep | 1974
1962
21 1974
1 1961
1 1961
21 1974
21 1974 | h See PERIOD OF RECORD paragraph. c From rating curve extended above 12,400 ${\rm ft}^3/{\rm s}.$ From floodmark. 08128400 Middle Concho River above Tankersley, TX--Continued #
08129300 Spring Creek above Tankersley, TX (Flood-hydrograph partial-record station) - LOCATION.--Lat 31°19'48", long 100°38'24", Tom Green County, Hydrologic Unit 12090102, on right bank at downstream side of bridge on Farm Road 2335, 1.4 mi south of Tankersley, 2.5 mi upstream from Dove Creek, and 10.4 mi upstream from mouth. - DRAINAGE AREA.--425 mi^2 , of which 19.7 mi^2 probably is noncontributing. - PERIOD OF RECORD.--Oct. 1960 to Sept. 1995 (daily mean discharge), Oct. 1995 to current year (peak discharges greater than base discharge). Water-quality records.--Chemical data: Sept. 1964 to May 1967. - REVISED RECORDS. -- WDR TX-81-3: Drainage area. - GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,964.72 ft above sea level. Prior to Nov. 10, 1960, nonrecording gage at same site and datum. Satellite telemeter at station. - REMARKS.--Records good except those for Dec. 1 to May 30, which are fair. No known regulation. There are many small diversions above station for irrigation. - AVERAGE DISCHARGE.--35 years (water years 1961-95), 13.1 ft³/s (9,490 acre-ft/year). - EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 30,400 ft³/s Aug. 12, 1971 (gage height, 16.57 ft); prior to Oct. 1, 1995, no flow at times most years. - EXTREMES OUTSIDE PERIOD OF RECORD.--Notable floods since at least 1853 occurred in 1882 and 1884. Flood of Oct. 3, 1959, reached a stage of 18.4 ft, from floodmarks. At former gage near Tankersley 8.0 mi downstream, the flood of Oct. 3, 1959, had a discharge of 82,100 ft³/s and was found to be about 3.0 ft lower than the 1882 flood, the greatest at that location since at least 1853. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $250~\mathrm{ft}^3/\mathrm{s}$: | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|---------------------|------------|------------|-----------------------------------|---------------------| | Aug. 28 | 1215 | 8,770 | a10.52 | No other p | eak greate | er than base disc | harge. | a From floodmark. THIS PAGE IS INTENTIONALLY LEFT BLANK. 08130500 Dove Creek at Knickerbocker, TX (Flood-hydrograph partial-record station) LOCATION.--Lat 31°16′26", long 100°37′50", Tom Green County, Hydrologic Unit 12090102, on left downstream end of bridge on Farm Road 2335, 0.5 mi west of Knickerbocker, and 5.7 mi upstream from mouth. DRAINAGE AREA.--226 mi^2 , of which 8.4 mi^2 probably is noncontributing. PERIOD OF RECORD.--Oct. 1960 to Sept. 1995 (daily mean discharge), Oct. 1995 to current year (peak discharges greater than base discharge). REVISED RECORDS.--WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 2,001.45 ft above sea level. Prior to Nov. 10, 1960, nonrecording gage, Nov. 10, 1960, to Mar. 17, 1986, water-stage recorder, both at site 278 ft to the right at present datum. Satellite telemeter at station. REMARKS.--Records good except those for Nov. 14 to Dec. 1, Aug. 28, which are fair. No known regulation. Flow is affected by diversions from two small upstream channel dams, and by small upstream diversions (for irrigation). Flow is sustained by springflow from Dove Creek Spring about 9.0 mi upstream. AVERAGE DISCHARGE.--35 years (water years 1961-95), $16.2~{\rm ft}^3/{\rm s}$ ($11,740~{\rm acre-ft/year}$). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $17,500 \text{ ft}^3/\text{s}$ Aug. 12, 1971 (gage height, 20.66 ft); prior to Oct. 1, 1995, no flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, 30.4 ft in 1906 and Oct. 3, 1959; floods in 1882 and 1884 reached about the same stage, from information by local resident. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 100 ft³/s: | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|-----------------------------------|------------------|------------|------------|-----------------------------------|---------------------| | Aug. 28 | 1330 | 1,050 | a8.78 | No other p | eak greate | er than base disc | harge. | a From floodmark. THIS PAGE IS INTENTIONALLY LEFT BLANK. ### 08131200 Twin Buttes Reservoir near San Angelo, TX LOCATION.--Lat 31°22′55", long 100°32′17", Tom Green County, Hydrologic Unit 12090102, in outlet control tower at Twin Buttes Dam on Middle Concho River, Spring Creek, and South Concho River, 3.8 mi upstream from Lake Nasworthy Dam, 8.1 mi southwest of San Angelo, and 75.0 mi upstream from mouth. DRAINAGE AREA. -- 3,868 mi², of which 1,055 mi² probably is noncontributing. PERIOD OF RECORD. -- Oct. 1962 to current year. Water-quality records.--Chemical data: May 1965 to Nov. 1966 and July 1970 to Apr. 1984. REVISED RECORDS. -- WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder and nonrecording gage on Middle Concho-Spring Creek pool and nonrecording gage on South Concho pool. Datum of gage is sea level. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records good except those for Oct. 1-24 and July 9 to Aug. 29, which are fair. Records good except those for Oct. 1-24 and July 9 to Aug. 29, which are fair when water-stage recorder was isolated at an elevation of 1,888.08 ft. The reservoir is formed by a rolled earthfill dam 8.1 mi long, including a 200-foot-wide uncontrolled off-channel concrete gravity spillway with ogee weir section. Outlet works consist of three 15.5-foot concrete conduits, each controlled by a 12.0- by 15.0-foot fixed-wheel gate and a 12.0- by 15.0-foot radial gate, located in the Middle Concho-Spring Creek pool. Low-flow releases are made through 2.0- by 2.0-foot gates located in the center of three fixed- wheel gates. The South Concho and Middle Concho-Spring Creek pools are connected by a 3.22-mile equalizing channel. The South Concho and Middle Concho-Spring Creek pools were not equalized at an elevation of 1,926.5 ft during the year. Daily contents were obtained from capacity tables for South Concho and Middle Concho-Spring Creek pools and summed to obtain combined daily contents. Lake level elevations below 1,926.5 ft represent Middle Concho-Spring Creek pool only. Deliberate impoundment of water began on Dec. 1, 1962; dam was completed Feb. 13, 1963. In June 1999, construction of a cutoff wall to stop seepage was completed. Capacity curve is based on a survey made in 1958. Reservoir was built for flood control, irrigation, and municipal uses. Conservation pool storage is 177,800 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |--|------------| | | (feet) | | Top of dam | | | Crest of spillway | | | Bottom of equalizing channel (Middle Concho-Spring Creek pool | L) 1,926.5 | | Dead storage in South Concho pool | | | Lowest gated outlet (invert at Middle Concho-Spring Creek poor | 1,885.0 | | | | COOPERATION. -- Capacity curve dated Mar. 1964 furnished by the U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 205,200 acre-ft, May 12, 1975, elevation, 1,942.20 ft; minimum since first appreciable storage, 2,120 acre-ft, Apr. 15, 1971. EXTREMES FOR CURRENT YEAR.--Maximum combined daily mean contents, 17,330 acre-ft, Apr. 21, 22; minimum combined daily mean contents, 6,200 acre-ft, Aug. 27. RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|-----------------------------|--|---|--|---|--|---|---| | 1 | 7630 | 11550 | 12650 | 12850 | 13420 | 14490 | 15000 | 16710 | 15370 | 11120 | 8060 | 14140 | | 2 | 7600 | 11390 | 12580 | 12870 | 13440 | 14530 | 15010 | 16650 | 15340 | 11030 | 7960 | 14110 | | 3 | 7570 | 11360 | 12570 | 12900 | 13480 | 14560 | 15020 | 16570 | 15320 | 10930 | 7880 | 14120 | | 4 | 7540 | 11390 | 12540 | 12930 | 13490 | 14580 | 15050 | 16630 | 15250 | 10840 | 7820 | 14090 | | 5 | 7500 | 11530 | 12500 | 12950 | 13530 | 14600 | 15080 | 16680 | 15130 | 10730 | 7740 | 14310 | | 6 | 7440 | 11620 | 12470 | 12980 | 13540 | 14630 | 15130 | 16710 | 14970 | 10640 | 7680 | 14640 | | 7 | 7390 | 11920 | 12470 | 12980 | 13580 | 14660 | 15140 | 16710 | 14790 | 10540 | 7590 | 14750 | | 8 | 7350 | 12230 | 12450 | 13010 | 13620 | 14710 | 15170 | 16740 | 14580 | 10430 | 7520 | 14740 | | 9 | 7310 | 12350 | 12460 | 13040 | 13610 | 14780 | 15180 | 16750 | 14400 | 10340 | 7460 | 14710 | | 10 | 7290 | 12390 | 12460 | 13080 | 13630 | 14820 | 15200 | 16750 | 14220 | 10210 | 7390 | 14690 | | 11 | 7260 | 12430 | 12460 | 13150 | 13650 | 14850 | 15270 | 16750 | 14040 | 10140 | 7280 | 14680 | | 12 | 7240 | 12440 | 12440 | 13180 | 13670 | 14880 | 15260 | 16740 | 13880 | 10040 | 7180 | 14640 | | 13 | 7210 | 12460 | 12460 | 13220 | 13700 | 14900 | 15270 | 16750 | 13710 | 9940 | 7100 | 14610 | | 14 | 7200 | 12470 | 12490 | 13230 | 13720 | 14960 | 15290 | 16750 | 13530 | 9840 | 7030 | 14570 | | 15 | 7200 | 12470 | 12510 | 13250 | 13750 | 14930 | 15290 | 16730 | 13360 | 9730 | 6970 | 14530 | | 16 | 7210 | 12490 | 12520 | 13270 | 13860 | 14950 | 15300 | 16700 | 13200 | 9620 | 6930 | 14470 | | 17 | 7230 | 12500 | 12550 | 13280 | 13900 | 14970 | 15270 | 16670 | 13050 | 9480 | 6890 | 14410 | | 18 | 7220 | 12530
| 12540 | 13310 | 13940 | 15000 | 16350 | 16620 | 12900 | 9360 | 6860 | 14350 | | 19 | 7200 | 12550 | 12560 | 13340 | 13970 | 15030 | 17190 | 16610 | 12730 | 9250 | 6820 | 14280 | | 20 | 7180 | 12580 | 12590 | 13340 | 14000 | 15060 | 17300 | 16580 | 12540 | 9160 | 6800 | 14230 | | 21 | 7130 | 12600 | 12570 | 13330 | 14030 | 15090 | 17330 | 16520 | 12360 | 9050 | 6710 | 14140 | | 22 | 7090 | 12610 | 12590 | 13320 | 14060 | 15120 | 17330 | 16480 | 12190 | 8940 | 6600 | 14100 | | 23 | 7060 | 12640 | 12610 | 13310 | 14130 | 15130 | 17260 | 16400 | 12060 | 8850 | 6540 | 14080 | | 24 | 8710 | 12650 | 12610 | 13290 | 14280 | 15110 | 17170 | 16290 | 11950 | 8790 | 6480 | 14010 | | 25 | 11760 | 12680 | 12650 | 13300 | 14310 | 15090 | 17100 | 16160 | 11830 | 8710 | 6380 | 13930 | | 26
27
28
29
30
31 | 11830
11720
11600
11730
11810
11700 | 12700
12710
12720
12730
12710 | 12690
12720
12760
12780
12810
12830 | 13280
13270
13290
13350
13360
13390 | 14360
14410
14440
 | 15070
15060
15040
15020
15020
14990 | 17040
16970
16900
16830
16760 | 15990
15830
15650
15520
15460
15400 | 11710
11590
11460
11340
11230 | 8630
8570
8460
8370
8270
8160 | 6280
6200
6870
13460
14070
14110 | 13840
13760
13670
13590
13500 | | MEAN | 8350 | 12310 | 12580 | 13180 | 13840 | 14890 | 15980 | 16440 | 13330 | 9620 | 7760 | 14260 | | MAX | 11830 | 12730 | 12830 | 13390 | 14440 | 15130 | 17330 | 16750 | 15370 | 11120 | 14110 | 14750 | | MIN | 7060 | 11360 | 12440 | 12850 | 13420 | 14490 | 15000 | 15400 | 11230 | 8160 | 6200 | 13500 | | (+) | 1890.33 | 1890.60 | 1890.31 | 1890.86 | 1891.96 | 1892.66 | 1894.58 | 1893.26 | 1889.02 | 1886.02 | 1890.62 | 1891.20 | | (@) | +4050 | +1010 | +120 | +560 | +1050 | +550 | +1770 | -1360 | -4170 | -3070 | +5950 | -610 | CAL YR 2000 MAX 16720 MIN 7060 (@) -2300 WTR YR 2001 MAX 17330 MIN 6200 (@) +5850 ⁽⁺⁾ Elevation, in feet, at end of month of Middle Concho and Spring Creek pool. ^(@) Change in combined contents, in acre-feet. 08131200 Twin Buttes Reservoir near San Angelo, TX--Continued ## 08131400 Pecan Creek near San Angelo, TX LOCATION.--Lat 31°18'32", long 100°26'44", Tom Green County, Hydrologic Unit 12090102, on left bank 200 ft upstream from U.S. Highway 277, 3.7 mi upstream from mouth, and 10.5 mi south of San Angelo. DRAINAGE AREA. -- 81.1 mi². PERIOD OF RECORD.--June 1961 to Sept. 1986, July 2001 to current year. REVISED RECORDS.--WDR TX-75-3: 1971, 1972(M). WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,930.72 ft above sea level. Prior to Apr. 30, 1968, at site 1.2 mi downstream at datum 20.21 ft lower. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair except those for daily discharges below $5.0~{\rm ft}^3/{\rm s}$, which are poor. No known regulation or diversions. No flow many days each year. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1908, 14.36 ft, Sept. 15, 1936, former site and datum, (discharge, 30,500 ${\rm ft}^3/{\rm s}$) by slope-area measurement. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEA | AR OCTOBER
LUES | 2000 TO | SEPTEMBE | R 2001 | | | |---|--|---------------------------------------|--------------|--------------|--------------|----------------------------|--|--------------|----------|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | | | .00 | .00 | | 2 | | | | | | | | | | | .00 | .00 | | 3 | | | | | | | | | | | .00 | .00 | | 4 | | | | | | | | | | | .00 | .00 | | 5 | | | | | | | | | | | .00 | .00 | | 6 | | | | | | | | | | | .00 | .00 | | 7 | | | | | | | | | | | .00 | .00 | | 8 | | | | | | | | | | | .00 | .00 | | 9 | | | | | | | | | | | .00 | .00 | | 10 | | | | | | | | | | | .00 | .00 | | 11 | | | | | | | | | | | .00 | .00 | | 12 | | | | | | | | | | | .00 | .00 | | 13 | | | | | | | | | | | .00 | .00 | | 14
15 | | | | | | | | | | | .00 | .00 | | 15 | | | | | | | | | | | .00 | .00 | | 16 | | | | | | | | | | | .00 | .00 | | 17 | | | | | | | | | | | .00 | .00 | | 18 | | | | | | | | | | | .00 | .00 | | 19 | | | | | | | | | | .00 | .00 | .00 | | 20 | | | | | | | | | | .00 | .00 | .00 | | 21 | | | | | | | | | | .00 | .00 | .00 | | 22 | | | | | | | | | | .00 | .00 | .00 | | 23 | | | | | | | | | | .00 | .00 | .00 | | 24 | | | | | | | | | | .00 | .00 | .00 | | 25 | | | | | | | | | | .00 | .00 | .00 | | 26 | | | | | | | | | | .00 | .00 | .00 | | 27 | | | | | | | | | | .00 | .00 | .00 | | 28 | | | | | | | | | | .00 | 1450 | .00 | | 29 | | | | | | | | | | .00 | 21 | .00 | | 30
31 | | | | | | | | | | .00 | 2.0 | .00 | | 31 | | | | | | | | | | .00 | .00 | | | TOTAL | | | | | | | | | | | 1473.00 | 0.00 | | MEAN | | | | | | | | | | | 47.5 | .000 | | MAX | | | | | | | | | | | 1450 | .00 | | MIN
AC-FT | | | | | | | | | | | .00
2920 | .00 | | AC-FI | | | | | | | | | | | 2920 | .00 | | STATIST | ICS OF MC | NTHLY MEA | N DATA FO | R WATER Y | EARS 1961 | - 2001h | , BY WATER | YEAR (WY | ") | | | | | MEAN | 2.61 | 1.66 | 1.68 | 1.21 | .94 | .75 | 1.87 | 1.52 | .91 | .50 | 2.73 | 9.75 | | MAX | 37.7 | 24.9 | 16.0 | 12.6 | 9.25 | 7.84 | 29.8 | 12.5 | 6.57 | 3.46 | 47.5 | 189 | | (WY) | 1975 | 1975 | 1975 | 1975 | 1975 | 1975 | 1977 | 1975 | 1986 | 1971 | 2001 | 1980 | | MIN | .000
1963 | .000
1962 .000 | .000
1961 | .000
1961 | .000
1962 | | (WY) | STATISTI | | 1902 | 1902 | | 1902
001 WATER | | 1902 | 1962 | | 1901
YEARS 1961 | | | DUMMINI | SIMILSII | .03 | | | FOR ZO | OI WAIEK | ILAK | | | WAIER. | IEARS 1901 | - 200111 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY PEAK FLC PEAK STA RUNOFF (A ENT EXCEE | CAN CAN CAN MINIMUM OW CGE CC-FT) CDS | | | 1410
6 | .00 Ji
.00 Ji
.00 Ai | ug 28
ul 19
ul 19
ul 19
ug 28
ug 28 | | | 3940
.(
c25600
10.6
1510
2.7 | 7
0000
Sep
00 Jul
00 Jul
Sep
53 Sep | 1980
1969
8 1980
1 1961
1 1961
8 1980
8 1980 | | | ENT EXCEE | | | | | .00 | | | | | 00 | | h See PERIOD OF RECORD paragraph. c From rating curve extended above $17,300~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of $30,500~{\rm ft}^3/{\rm s}$. From floodmark. # 08131400 Pecan Creek near San Angelo, TX--Continued ## 08132000 Lake Nasworthy near San Angelo, TX LOCATION.--Lat 31°23′19", long 100°28′41", Tom Green County, Hydrologic Unit 12090102, on left bank 250 ft upstream from Nasworthy Dam on South Concho River, 3.8 mi downstream from Twin Buttes Dam, 6.0 mi southwest of San Angelo, and 68.9 mi upstream from mouth. DRAINAGE AREA.--3,975 mi², of which 3,868 mi² is above Twin Buttes Reservoir and 1,055 mi² probably is noncontributing. PERIOD OF RECORD.--Mar. 1930 to Sept. 2001 (discontinued). Prior to Oct. 1969, end of month contents only. Water-quality records.--Chemical data: Mar. 1964 to May 1965 and Nov. 1969 to Apr. 1984. REVISED RECORDS. -- WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to Oct. 1, 1996, datum was 1,840.00 ft. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records good. The lake is formed by a 6,090-foot dam with a 5,590-foot earthen section that has an earthen spillway 300 ft long, a concrete spillway 475 ft long with a bank of fifteen 25.0- by 18.0-foot tainter gates, and a 25.0- by 3.0-foot collapsible floodgate. The dam was completed and storage began Mar. 28, 1930. Since July 1966, West Texas Utilities Co. has operated a steam generating powerplant on the lake. Since Sept. 1962, the lake has been almost totally controlled by releases or pumpage from Twin Buttes Reservoir (station 08131200). Siltation surveys in Dec. 1938 and May 1953 by the Natural Resources Conservation Service (formerly the Soil Conservation Service) show that 1,191 acre-ft of silt was deposited from Mar. 1930 to Dec. 1938 and an additional 1,023 acre-ft was deposited from Dec. 1938 to May 1953, totaling 2,214 acre-ft. The dam is owned by the city of San Angelo. Water is used for part of San Angelo municipal supply and for irrigation east of San Angelo. The capacity curve is based on a survey by the Texas Water Development Board in Aug. and Sept. 1993 and has been used since Oct. 1995. The city of San Angelo began dredging Lake Nasworthy July 11, 2000, and was approximately 67% complete on Sept. 30, 2001. Conservation pool storage is 9,615 acre-ft. Data regarding the dam are given in the following table: | | Elevation (feet) | |--|------------------| | Top of dam | 1,883.5 | | Crest of spillway (300 ft) | 1,879.1 | | Top of gates | | | Top of collapsible floodgate | 1,872.2 | | Lowest outlet to canal (invert) | 1,867.5 | | Crest of spillway (tainter gates sill) | 1,855.3 | | Lowest gated outlet (invert) | 1,836.0 | COOPERATION.--Capacity curve dated Dec. 2, 1993, furnished by city of San Angelo. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 26,900 acre-ft, Sept. 15, 1936, elevation, 1,878.36 ft; minimum contents, 209 acre-ft, Aug. 22, 1964, elevation, 1,853.21 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 9,670 acre-ft, Aug. 29, elevation, 1,871.97 ft; minimum contents, 6,800 acre-ft, Oct. 11, 12, elevation, 1,869.58 ft. PESERVOIR STORAGE (ACRE-FEET) WATER YEAR OCTORER 2000 TO SERTEMBER 2001 | RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES | | | | | | | | | | | | |
---|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 7250 | 8380 | 8660 | 8730 | 8800 | 8770 | 8900 | 8700 | 8630 | 8740 | 8130 | 9590 | | 2 | 7220 | 8440 | 8670 | 8720 | 8800 | 8760 | 8930 | 8720 | 8560 | 8820 | 8100 | 9550 | | 3 | 7170 | 8570 | 8740 | 8730 | 8810 | 8770 | 8920 | 8710 | 8500 | 8880 | 8060 | 9520 | | 4 | 7110 | 8600 | 8810 | 8730 | 8770 | 8780 | 8910 | 8870 | 8450 | 8900 | 8030 | 9490 | | 5 | 7060 | 8650 | 8850 | 8720 | 8800 | 8790 | 8910 | 8910 | 8420 | 8930 | 8020 | 9490 | | 6 | 6990 | 8760 | 8870 | 8720 | 8770 | 8780 | 8920 | 8920 | 8420 | 8910 | 8030 | 9350 | | 7 | 6920 | 8730 | 8880 | 8710 | 8770 | 8750 | 8870 | 8890 | 8470 | 8880 | 7980 | 9270 | | 8 | 6880 | 8780 | 8850 | 8710 | 8750 | 8760 | 8880 | 8860 | 8510 | 8870 | 7950 | 9190 | | 9 | 6870 | 8810 | 8860 | 8700 | 8710 | 8750 | 8860 | 8840 | 8540 | 8880 | 7910 | 9130 | | 10 | 6840 | 8830 | 8870 | 8720 | 8670 | 8760 | 8850 | 8830 | 8580 | 8870 | 7870 | 9090 | | 11 | 6810 | 8860 | 8890 | 8750 | 8670 | 8800 | 8920 | 8790 | 8660 | 8840 | 7860 | 9040 | | 12 | 6800 | 8820 | 8850 | 8740 | 8690 | 8810 | 8860 | 8780 | 8690 | 8810 | 7850 | 8990 | | 13 | 6830 | 8800 | 8830 | 8780 | 8710 | 8750 | 8850 | 8780 | 8770 | 8790 | 7850 | 8920 | | 14 | 6840 | 8770 | 8810 | 8730 | 8690 | 8750 | 8860 | 8790 | 8800 | 8760 | 7860 | 8870 | | 15 | 6870 | 8740 | 8830 | 8720 | 8700 | 8680 | 8830 | 8770 | 8810 | 8750 | 7890 | 8830 | | 16 | 6920 | 8700 | 8790 | 8670 | 8760 | 8670 | 8810 | 8730 | 8830 | 8750 | 7960 | 8800 | | 17 | 6930 | 8680 | 8830 | 8630 | 8760 | 8670 | 8750 | 8690 | 8850 | 8710 | 8060 | 8790 | | 18 | 6930 | 8680 | 8820 | 8610 | 8760 | 8680 | 8730 | 8650 | 8910 | 8670 | 8110 | 8740 | | 19 | 6930 | 8710 | 8780 | 8600 | 8770 | 8680 | 8730 | 8630 | 8910 | 8630 | 8180 | 8710 | | 20 | 6960 | 8730 | 8770 | 8620 | 8760 | 8670 | 8670 | 8600 | 8920 | 8580 | 8150 | 8680 | | 21 | 7000 | 8730 | 8680 | 8630 | 8760 | 8620 | 8650 | 8530 | 8940 | 8540 | 8130 | 8670 | | 22 | 7030 | 8730 | 8670 | 8670 | 8710 | 8610 | 8650 | 8500 | 8960 | 8500 | 8110 | 8710 | | 23 | 7080 | 8740 | 8710 | 8680 | 8750 | 8600 | 8610 | 8520 | 8950 | 8480 | 8090 | 8780 | | 24 | 7190 | 8760 | 8700 | 8690 | 8900 | 8650 | 8600 | 8520 | 8950 | 8420 | 8080 | 8810 | | 25 | 7370 | 8750 | 8700 | 8720 | 8830 | 8640 | 8620 | 8560 | 8950 | 8360 | 8080 | 8810 | | 26
27
28
29
30
31 | 7560
7660
7780
8120
8250
8310 | 8740
8720
8680
8630
8650 | 8740
8740
8740
8730
8730
8730 | 8760
8760
8800
8970
8890
8820 | 8830
8810
8780
 | 8630
8650
8670
8710
8790
8840 | 8630
8650
8660
8670
8680 | 8660
8760
8860
8910
8820
8710 | 8920
8890
8850
8810
8760 | 8320
8290
8270
8230
8230
8190 | 8130
8210
8820
9660
9650
9610 | 8800
8790
8780
8780
8780 | ## 08132000 Lake Nasworthy near San Angelo, TX--Continued | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | MEAN | 7180 | 8710 | 8780 | 8720 | 8760 | 8720 | 8780 | 8740 | 8740 | 8640 | 8210 | 8990 | | MAX | 8310 | 8860 | 8890 | 8970 | 8900 | 8840 | 8930 | 8920 | 8960 | 8930 | 9660 | 9590 | | MIN | 6800 | 8380 | 8660 | 8600 | 8670 | 8600 | 8600 | 8500 | 8420 | 8190 | 7850 | 8670 | | (+) | 1870.88 | 1871.16 | 1871.22 | 1871.30 | 1871.27 | 1871.31 | 1871.18 | 1871.21 | 1871.25 | 1870.78 | 1871.92 | 1871.26 | | (@) | +1050 | +340 | +80 | +90 | -40 | +60 | -160 | +30 | +50 | -570 | +1420 | -830 | CAL YR 2000 WTR YR 2001 MAX 9140 MAX 9660 MIN 6800 (@) 0 MIN 6800 (@) +1520 - (+) Elevation, in feet, at end of month.(@) Change in contents, in acre-feet. ___ ___ 2.1 # 08133250 North Concho River above Sterling City, TX (Partial-record station) LOCATION.--Lat 31°53′50", long 101°06′17", Sterling County, Hydrologic Unit 12090104, on left bank 0.2 mi southwest of U.S. Highway 87, 2.1 mi upstream from Willow Creek, 3.3 mi upstream from Chalk Creek, 5.0 mi above State Highway 158, 5.5 mi downstream from Sand Bluff Draw, and 8.0 mi northwest of Sterling City. DRAINAGE AREA. -- 201 mi². AC-FT PERIOD OF RECORD.--Feb. 2000 to current year (daily mean discharges less than 10 ft³/s). GAGE.--Water-stage recorder and concrete dam. Datum of gage is 2,353.99 ft above sea level (Texas Department of Transportation benchmark). Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. No flow many days. EXTREMES FOR WATER YEAR 2000.--Maximum gage height, 13.88 ft, Mar. 23, 2000, from floodmark (maximum discharge not determined); minimum, no flow many days. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 0.13 ft³/s, Apr. 10, gage height, 3.55 ft; minimum, no flow many days. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY NUL JUL AUG SEP .08 .17 .00 .00 .00 .00 2 ___ ___ ___ ___ ___ .07 1.1 .16 .00 .00 .00 .00 ---___ ---------.44 .06 .14 .00 .00 .00 .00 .32 .06 .12 .00 .00 .00 .00 5 ___ ___ ---___ ___ .06 .33 .12 .00 .00 .00 .00 6 7 .10 .00 .00 .06 .32 .00 .00 .07 .32 .00 ___ ___ ___ ___ ___ .10 .00 .00 .00 8 ------___ .08 .00 .00 .00 .06 .33 .00 .00 .00 10 ___ ___ ___ ___ ___ .06 .32 .09 .00 .00 .00 .00 11 .06 .37 .06 .00 .00 .00 .36 12 ___ ___ ___ ___ ___ .06 .04 .00 0.0 .00 .00 13 .06 .02 .00 .00 .00 .00 .06 .31 .02 .00 .00 15 ___ ___ ___ ___ ___ .06 .31 03 .00 .00 .00 .00 16 .06 .30 .02 .00 .00 .00 .00 .00 ___ .08 .30 17 ___ ___ ___ 0.5 .01 0.0 0.0 0.0 18 .09 .04 .01 .00 .00 .00 .00 19 ---------.07 .04 .22 .06 .00 .00 .00 .00 ___ 20 ___ ___ ___ 0.7 0.4 19 06 .00 0.0 0.0 .00 21 .09 .04 .21 .04 .00 .00 .00 .00 ___ ___ ___ ___ 22 .11 .04 .26 .02 .00 .00 .00 .00 23 ---___ ___ ___ .07 .24 .01 .00 .00 .00 .00 24 ---------.11 ---.24 .00 .00 .00 .00 .00 25 ------------.21 .07 ---.00 .00 .00 .00 .00 26 .06 1.6 .20 .00 .00 .00 .00 .00 ------------.54 27 .07 .19 .00 .00 .00 .00 .00 28 ------------.08 .35 .20 .00 .00 .00 .00 .00 ---------29 ---.07 .29 .20 .00 .00 .00 .00 . 00 30 .17 .00 .28 .00 .00 .00 .00 31 ---.29 .00 .00 .00 TOTAL 1.04 4.59 8.87 1.56 0.00 0.00 0.00 0.00 ------MEAN ------.080 .16 .31 .050 .000 .000 .000 .000 MAX ------.11 1.6 1.1 .17 .00 .00 .00 .00 .17 MIN .06 .04 .00 .00 .00 .00 9.1 18 3.1 .00 .00 .00 .00 # 08133250 North Concho River above Sterling City, TX--Continued (Partial-record station) DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------------------------------|-----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | 1
2
3
4
5 | .00
.00
.00
.00 | 6
7
8
9
10 | .00
.00
.00
.00 | 11
12
13
14
15 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .01
.00
.00
.01 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 16
17
18
19
20 | .00
.00
.00
.00 | 21
22
23
24
25 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.01
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 26
27
28
29
30
31 | .00
.00
e.00
e.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00 | .00 | .00
.00
.00
.00 | .00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 0.04
.001
.01
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | e Estimated # 08133500 North Concho River at Sterling City, TX (Flood-hydrograph partial-record station) - LOCATION.--Lat 31°49'48", long 100°59'36", Sterling County, Hydrologic Unit 12090104, on right bank 100 ft upstream from bridge on State Highway 163, 0.5 mi south of Sterling City, 4.0 mi upstream from Sterling Creek, 5.1 mi downstream from Lacy Creek, and at mile 57.2. - DRAINAGE AREA.--588 mi^2 , of which 19.6 mi^2 probably is noncontributing. - PERIOD OF RECORD.--Sept. 1939 to Sept. 1985, Oct. 1985 to Sept. 1995 (daily discharges greater than 100 $\rm ft^3/s$), Oct. 1995 to current year (peak discharges greater than base discharge). - REVISED RECORDS.--WSP 1512: 1945, 1948. WDR TX-81-3:
Drainage area. - GAGE.--Water-stage recorder. Datum of gage is 2,242.36 ft above sea level. Prior to Dec. 6, 1939, nonrecording gage at same site and datum. Satellite telemeter at station. - AVERAGE DISCHARGE.--46 years (water years 1940-85), 7.80 ft³/s (5,650 acre-ft/year). - REMARKS. -- Records good. No known regulation. There are several small diversions above station for irrigation. - EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,300 ft³/s July 6, 1948 (gage height, 23.70 ft); prior to Oct. 1, 1985, no flow at times each year. Maximum stage since at least 1891, that of July 6, 1948. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ${\rm ft}^3/{\rm s}$: Discharge Gage height Date Time (ft^3/s) (ft) Date Time (ft^3/s) (ft) Date Time (ft^3/s) (ft) No peak greater than base discharge. THIS PAGE IS INTENTIONALLY LEFT BLANK. # 08134000 North Concho River near Carlsbad, TX (Hydrologic index station) LOCATION.--Lat 31°35′33", long 100°38′12", Tom Green County, Hydrologic Unit 12090104, near left bank at downstream side of bridge on county road, 0.6 mi southeast of Carlsbad, 1.5 mi upstream from Mule Creek, 2.5 mi upstream from Grape Creek, 16.2 mi upstream from O.C. Fisher Dam, and 21.3 mi upstream from mouth. DRAINAGE AREA.--1,266 mi^2 , of which 75.1 mi^2 probably is noncontributing. PERIOD OF RECORD. -- Mar. 1924 to current year. Water-quality records.--Chemical data: Apr. 1980 to July 1982. Biochemical data: Apr. 1980 to July 1982. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 REVISED RECORDS.--WSP 1512: 1924(M), 1925, 1926(M), 1928, 1930, 1932(M), 1935, 1937-38(M), 1941(M), 1945(M), 1947-49(M). WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,968.02 ft above sea level. Prior to Feb. 4, 1925, and Sept. 27, 1936, to Feb. 7, 1937, nonrecording gage; Feb. 4, 1925, to Sept. 26, 1936, and Feb. 8, 1937, to Nov. 6, 1955, water-stage recorder, all at site 2.5 mi upstream at datum 32.76 ft higher. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. No known regulation. There are several diversions (by pumping) upstream from station. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since June 1853, that of Sept. 26, 1936. | | | DISCHAI | KGE, CUBI | C FEEL PE | DAILY | MEAN VA | | C 2000 10 i | DE LI EMDI | 5R 2001 | | | |---|--------------------------------------|---|--------------------------------------|--|--------------------------------------|--|--|--|-------------------------------------|---|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | 6.5
3.1
1.6
1.2 | | | | | | | | .00
.00
.00
.00 | | .00
.00
.00
.00 | | 6
7
8
9
10 | | 78
31
15
8.8
5.4 | | | | | | | | | | 6.9
.84
.04
.00 | | 11
12
13
14
15 | .00
.00
.00
.00 | 3.2
2.3
1.4
.75
.42 | .05
.04
.05
.10 | 2.1
1.8
1.4
1.2 | .50
.51
.66
.81 | 1.7
1.6
1.3
1.4 | 3.6
4.6
4.1
3.3
2.8 | .31
.12
.08
.07 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 16
17
18
19
20 | | | .08
.07
.06
.06 | .85
1.0
.80
.76
1.0 | 3.0
3.1
2.7
1.9 | 1.2
1.5
1.7
1.8 | 2.4
1.9
1.7
2.0
2.0 | .04
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 21
22
23
24
25 | .00
.00
.00
2150
103 | .05
.05
.05
.05 | .05
.05
.07
.19 | .78
.88
1.4
1.8
1.5 | 1.6
1.5
1.6
1.7
2.7 | 1.8
1.6
1.6
1.9
2.1 | 1.9
2.4
2.1
1.4
.99 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 26
27
28
29
30
31 | 24
7.6
109
272
45
16 | .05
.04
.04
.04 | .38
.69
.72
.64
1.6 | 1.5
1.6
1.4
1.8
2.0 | 1.3
1.1
1.1
 | 1.8
1.9
2.4
2.9
3.4
3.3 | .86
.81
.91
.82
.68 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | | | | | | | | | | | 0.00
.000
.00
.00 | | | | STATI | | MONTHLY ME | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 36.2
1463
1958
.000
1934 | 3.99
65.2
1935
.000
1934 | 4.04
20.1
1931
.000
1953 | 3.87
16.0
1937
.000
1953 | 6.59
85.0
1935
.000
1953 | 12.1
307
1926
.000
1953 | 34.4
631
1925
.000
1963 | 76.6
1355
1925
.000
1967 | 26.1
252
1937
.000
1934 | 38.6
1195
1948
.000
1924 | 16.0
255
1953
.000
1929 | 80.4
4019
1936
.000
1930 | | SUMMA | RY STATIS | TICS | FOR | 2000 CALE | NDAR YEAR | F | OR 2001 WA | ATER YEAR | | WATER YE | ARS 1924 | - 2001 | | ANNUA
HIGHE
LOWES'
HIGHE
LOWES'
ANNUA
MAXIM
MAXIM
ANNUA
10 PE
50 PE | UM PEAK F
UM PEAK S' | MEAN
MEAN
EAN
AY MINIMUM
LOW
TAGE
(AC-FT)
EEDS | | 8215.6
22.4
4540
.0
.0
16300
4.5
.0 | Mar 24
0 Jan 1
0 Jan 1 | | 3345.74
9.17
2150
.00
7030
p16.60
6640
2.5
.05 | Oct 24 Oct 1 Oct 1 Oct 1 Oct 24 Oct 24 | | 28.4
336
.000
62900
.00
.00
c94600
a29.10
20600
12
1.4
.00 | | 1936
1970
17 1936
20 1924
20 1924
26 1936
26 1936 | c From rating curve extended above $15,000 \text{ ft}^3/\text{s}$ on basis of slope-area measurements of $55,200 \text{ and } 94,600 \text{ ft}^3/\text{s}$ at former site. D Observed. a From floodmark at present site. # 08134000 North Concho River near Carlsbad, TX--Continued (Hydrologic index station) ## 08134250 North Concho River near Grape Creek, TX LOCATION.--Lat 31°32′33", long 100°33′17", Tom Green County, Hydrologic Unit 12090104, on left bank at downstream side of bridge on FM 2288, 1.2 mi upstream from Bald Eagle Creek, 1.3 mi south of U.S. Hwy 87 at community of Grape Creek, 2.8 mi downstream from Grape Creek, and 6.0 mi upstream from O.C. Fisher Dam. DRAINAGE AREA.--1,400 mi^2 , of which 75.1 mi^2 probably is noncontributing. PERIOD OF RECORD. -- Feb. 2000 to current year. MIN AC-FT .00 5090 .00 237 .00 .00 .00 .00 .00 .00 GAGE.--Water-stage recorder. Datum of gage is 1,895.83 ft above sea level (Texas Department of Transportation benchmark). Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. No known regulation. There are several diversions (by pumping) upstream from station EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,400 ft³/s Mar. 24, 2000 (gage height, 24.50 ft, observed); no flow at times. $\hbox{\it EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,660 ft}^3/s \hbox{\it Oct. 24 (gage height, 21.20 ft, observed); no flow at times. } \\$ DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY NUTL JUL AUG SEP .00 8.1 .00 .00 .00 .00 .68 .00 .00 .00 .00 .00 2.6 .00 .00 2 .00 .00 .00 .00 .60 .00 .00 .00 .00 .00 .00 .00 .00 .40 .00 .00 .00 .00 .00 . 25 .00 .00 .00 .00 .30 .00 .00 .00 .00 .00 5 .00 .71 .00 .00 .00 .00 .16 .00 .00 .00 .00 72 6 7 .00 .00 .00 .00 .00 .00 44 .00 .15 .00 .00 8.3 .00 34 15 .00 .00 .00 .00 .00 .13 .00 .00 .00 1.1 8 .00 .11 .00 .00 .01 .00 .04 .00 .00 .00 .00 .18 10 .00 3.6 .00 .00 .00 .06 .04 .00 .00 .00 .00 .00 11 .00 .00 .00 .00 .21 .00 .00 .00 .00 1.4 .00 .00 .38 .16 12 .00 .00 0.0 .16 .00 .00 0.0 .00 13 .00 .00 .00 .00 .05 .00 .00 .00 .00 .00 .00 .00 15 .00 .02 0.0 .00 .04 .87 .00 .00 0.0 .00 .00 16 .00 .00 .00 .00 .00 .00 .76 .00 .00 .00 .00 .00 .00 17 0.0 0.0 00 0.0 .00 0.0 44 0.0 0.0 .00 00 18 .00 .00 .00 .00 .00 .13 .00 .00 .00 .00 .00 .00 19 .00 .00 .00 .00 .00 .00 .04 .00 .00 .00 .00 .00 20 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 .00 0.0 0.0 .00 21 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 22 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 23 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 24 1990 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 25 149 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 26 30 .00 .00 .00 .00 .00 . 00 .00 .00 .00 .00 .00 27 12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 28 6.5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 29 304 .00 .00 .03 nn .00 .00 .00 .00 . 00 30 55 .00 .00 .00 .00 .20 .00 .00 .00 .00 .00 18 .00 .00 .56 .00 .00 .00 TOTAL 2564.50 119.55 0.00 0.00 0.00 1.59 5.76 0.00 0.00 0.00 0.00 81.41 3.99 .19 MEAN 82.7 .000 .000 .000 .051 .000 .000 .000 .000 2.71 .00 MAX 1990 44 .00 .00 .56 . 87 .00 .00 .00 .00 72 .00 3.2 .00 11 .00 .00 .00 .00 .00 .00 .00 .00 .00 161 08134250 North Concho River near Grape Creek, TX--Continued ## 08134500 O.C. Fisher Lake at San Angelo, TX LOCATION.--Lat 31°29'04", long 100°28'53", Tom Green County, Hydrologic Unit 12090104, at intake structure of O.C. Fisher Dam on North Concho River, 0.1 mi west of Glenna Drive, 3.1 mi northwest of center of San Angelo, and 6.6 mi upstream from mouth. DRAINAGE AREA. -- 1,488 mi², of which 105 mi² probably is noncontributing. PERIOD OF RECORD.--Feb. 1952 to Sept. 2000 (U.S.
Army Corps of Engineers furnished contents), Oct. 2000 to current year. Published as "San Angelo Reservoir" prior to Oct. 1970, and as "San Angelo Lake", Oct. 1970 to Sept. 1974. REVISED RECORDS. -- WSP 1922: Drainage area. GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to May 12, 1953, nonrecording gage at same site and datum. Prior to Aug. 16, 2001, water-stage recorder inside intake structure at same datum. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records fair. The lake is formed by a rolled earthfill dam 40,885 ft long, including spillway. Closure was completed Mar. 7, 1951, and the dam was completed May 3, 1951. Deliberate impoundment began Feb. 1, 1952. The dam is owned by the U.S. Army Corps of Engineers. The lake is operated for flood control and recreation with part as municipal supply for the city of San Angelo. The spillway is an uncontrolled off-channel concrete gravity dam with ogee weir section 1,150 ft wide located to the right and upstream from the right end of dam. The spillway is designed to discharge 356,000 ft³/s at maximum design flood level. The control outlet works consist of six gate-controlled outlets, 7.5 by 14.5 ft, opening into two 18.0-foot-diameter concrete conduits, and two 2.5-foot gate-controlled outlets for water-supply outlets. Since Feb. 1973, the capacity is based on a survey made in 1962. Prior to 1973, the capacity was based on a survey made in 1944. Conservation pool storage is 115,743 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |------------------------------|-----------| | | (feet) | | Top of dam | 1,964.0 | | Design flood | 1,958.0 | | Crest of spillway | | | Top of conservation pool | | | Lowest gated outlet (invert) | 1,840.0 | COOPERATION. -- The capacity table dated 1972 was furnished by the U.S. Army Corps of Engineers and is based on a resurvey of the lake in 1962. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 174,100 acre-ft, Oct. 14, 1957, elevation, 1,916.47 ft; minimum since first appreciable storage, lake dry July 16, 1970, to Apr. 15, 1971. EXTREMES FOR CURRENT YEAR.--Maximum contents, 10,880 acre-ft, Nov. 8, 9, elevation, 1,870.67 ft; minimum contents, 4,380 acre-ft, Sept. 30, elevation, 1,861.43 ft. RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|----------------|----------------|----------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | 1
2 | 6710
6690 | 10640
10620 | 10350
10320 | 10050
10030 | 9910
9900 | 9820
9810 | 8950
8920 | 7820
7790 | 6810
6860 | 5990
5970 | 5000
4960 | 4580
4570 | | 3 | 6670 | 10610 | 10310 | 10010 | 9900 | 9800 | 8890 | 7740 | 6840 | 5960 | 4920 | 4550 | | 4 | 6650 | 10620 | 10310 | 10020 | 9890 | 9790 | 8860 | 7760 | 6810 | 5950 | 4890 | 4540 | | 5 | 6620 | 10620 | 10300 | 10020 | 9880 | 9760 | 8820 | 7770 | 6770 | 5940 | 4850 | 4560 | | 6 | 6580 | 10700 | 10300 | 10030 | 9870 | 9740 | 8790 | 7740 | 6740 | 5920 | 4820 | 4560 | | 7
8 | 6530
6490 | 10760
10840 | 10300
10290 | 10030
10010 | 9870
9860 | 9720
9720 | 8760
8720 | 7710
7670 | 6710
6680 | 5910
5890 | 4780
4750 | 4570
4560 | | 9 | 6460 | 10880 | 10280 | 10010 | 9860 | 9710 | 8680 | 7630 | 6640 | 5870 | 4720 | 4540 | | 10 | 6450 | 10860 | 10280 | 10000 | 9830 | 9690 | 8640 | 7590 | 6620 | 5840 | 4690 | 4530 | | 11 | 6450 | 10840 | 10270 | 10010 | 9820 | 9670 | 8640 | 7550 | 6590 | 5810 | 4680 | 4510 | | 12 | 6430 | 10820 | 10230 | 10010 | 9820 | 9650 | 8590 | 7510 | 6570 | 5770 | 4670 | 4500 | | 13 | 6400 | 10760 | 10220 | 10020 | 9820 | 9620 | 8560 | 7470 | 6520 | 5730 | 4670 | 4490 | | 14 | 6390 | 10720 | 10210 | 10020 | 9810 | 9590 | 8530 | 7430 | 6480 | 5690 | 4660 | 4480 | | 15 | 6380 | 10690 | 10200 | 10010 | 9820 | 9540 | 8500 | 7390 | 6450 | 5660 | 4660 | 4460 | | 16 | 6370 | 10660 | 10200 | 10010 | 9900 | 9470 | 8460 | 7340 | 6410 | 5620 | 4660 | 4450 | | 17 | 6350 | 10610 | 10180 | 10000 | 9910 | 9420 | 8420 | 7290 | 6400 | 5580 | 4680 | 4440 | | 18 | 6340 | 10580 | 10180 | 10000 | 9900 | 9370 | 8370 | 7240 | 6380 | 5540 | 4690 | 4430 | | 19 | 6320 | 10540 | 10150 | 9980 | 9890 | 9340 | 8330 | 7210 | 6350 | 5500 | 4710 | 4480 | | 20 | 6320 | 10510 | 10150 | 9970 | 9890 | 9300 | 8280 | 7180 | 6270 | 5460 | 4690 | 4470 | | 21 | 6320 | 10480 | 10130 | 9960 | 9880 | 9270 | 8250 | 7140 | 6240 | 5420 | 4670 | 4450 | | 22 | 6310 | 10470 | 10110 | 9950 | 9870 | 9230 | 8210 | 7100 | 6220 | 5380 | 4650 | 4460 | | 23 | 6290 | 10470 | 10100 | 9940 | 9870 | 9200 | 8160 | 7070 | 6210 | 5350 | 4620 | 4490 | | 24 | 6610 | 10470 | 10090 | 9940 | 9890 | 9170 | 8110 | 7040 | 6200 | 5310 | 4600 | 4470 | | 25 | 8710 | 10450 | 10080 | 9940 | 9860 | 9130 | 8060 | 7010 | 6150 | 5270 | 4580 | 4460 | | 26 | 9570 | 10430 | 10080 | 9940 | 9850 | 9090 | 8030 | 6970 | 6100 | 5240 | 4570 | 4450 | | 27 | 9760 | 10410 | 10080 | 9940 | 9840 | 9060 | 7980 | 6930 | 6080 | 5200 | 4560 | 4430 | | 28 | 9770 | 10410 | 10080 | 9940 | 9840 | 9040 | 7940 | 6900 | 6050 | 5160 | 4580 | 4420 | | 29 | 10010 | 10380 | 10070 | 9970 | | 9010 | 7900 | 6870 | 6030 | 5120 | 4590 | 4410 | | 30
31 | 10460
10610 | 10360 | 10060
10060 | 9950
9930 | | 9000
8970 | 7860 | 6840
6810 | 6010 | 5090
5050 | 4580
4580 | 4390 | | 31 | | | | | | | | | | | | | | MEAN | 7230 | 10610 | 10190 | 9990 | 9870 | 9440 | 8440 | 7340 | 6440 | 5590 | 4700 | 4490 | | MAX | 10610 | 10880 | 10350 | 10050 | 9910 | 9820 | 8950 | 7820 | 6860 | 5990 | 5000 | 4580 | | MIN | 6290 | 10360 | 10060 | 9930 | 9810 | 8970 | 7860 | 6810 | 6010 | 5050 | 4560 | 4390 | | (+) | 1870.39 | 1870.12 | 1869.78 | 1869.63 | 1869.53 | 1868.50 | 1867.07 | 1865.55 | 1864.29 | 1862.65 | 1861.82 | 1861.45 | | (@) | +3790 | -250 | -300 | -130 | -90 | -870 | -1110 | -1050 | -800 | -960 | -470 | -190 | CAL YR 2000 MAX 14720 MIN 6290 (@) +2040 WTR YR 2001 MAX 10880 MIN 4390 (@) -2430 ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet. # 08134500 O.C. Fisher Lake at San Angelo, TX--Continued ## 08136000 Concho River at San Angelo, TX LOCATION.--Lat 31°27′16", long 100°24′37", Tom Green County, Hydrologic Unit 12090105, on left bank 0.4 mi downstream from confluence of North and South Concho Rivers, 1.8 mi southeast of Tom Green County Courthouse, in San Angelo at Rio Concho Sports Complex on Rio Concho Dr. below Bell St. bridge, and 61.9 mi upstream from mouth. DRAINAGE AREA.--5,542 mi², of which 1,131 mi² probably is noncontributing. PERIOD OF RECORD. -- Sept. 1915 to current year. Prior to Oct. 1969, published as "near San Angelo". REVISED RECORDS.--WSP 568: 1915-16, 1919-22. WSP 1148: 1916-22(M), 1924(M), 1925-26, 1929(M), 1930-32, 1935-37. WSP 1512: 1917-18. WSP 1712: 1936. WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,776.79 ft above sea level. Prior to Aug. 11, 1917, nonrecording gage at same site and datum. Aug. 11, 1917, to May 15, 1963, water-stage recorder on right bank at same datum. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges and those above 500 ft³/s, which are poor. Since water year 1931 at least 10% of contributing drainage area has been regulated. There are many diversions upstream from station for irrigation, industrial, and municipal supply. No flow at times. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--15 years (water years 1916-30) prior to completion of Lake Nasworthy, $142 \text{ ft}^3/\text{s}$ (102,600 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS, 1916-30).--Maximum discharge, 92,000 ft³/s Apr. 26, 1922 (gage height, 36.8 ft, from floodmarks), on basis of slope-area measurements of 167,000 and 230,000 ft³/s in 1936; no flow at times in 1921 EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1853, 47.5 ft Aug. 6, 1906 (discharge, about 246,000 ft³/s), from information by local resident. Other large floods are known to have occurred in June 1853, Aug. 1882, and Apr. 1900. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | 2100111 | 102, 0021 | 0 1221 12 | DAIL | Y MEAN V | ALUES | 2000 1 | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 2001 | | | |--------------------------------------|--------------------------------------|-------------------------------------|--|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|---|-------------------------------------|-------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .10
.08
.11
.16
.08 | 6.5
6.4
43
24
110 | 10
17
16
15
13 | 2.7
2.7
2.6
2.3
2.2 | 6.6
2.8
2.9
4.1
3.1 | 16
10
8.4
9.7 | .10
.09
.05
.05 | .01
.02
.03
84
46 | 37
51
18
.53
.27 | .23
.28
.10
.08 | .06
.06
.06
.06 | 75
8.8
5.8
17
167 | | 6
7
8
9
10 | .10
.11
.11
.11 | 48
20
76
34
17 | 11
9.8
8.3
6.8
6.0 | 2.1
2.4
2.2
2.0
2.5 | 2.8
2.6
2.4
2.2
1.9 | 11
5.3
.12
.07
.02 | .02
.02
.01
.02 | 23
16
23
13
4.2 | .10
.09
.09
.11
.10 | .05
.04
.04
.04 | .04
.03
.03
.03 | 14
4.4
3.0
2.3
2.4 | | 11
12
13
14
15 | .07
.07
.07
.08 | 10
.13
.09
8.8 | 5.4
5.2
4.5
3.7
3.5 | 2.4
2.0
1.8
1.6
3.9 |
2.1
1.9
1.8
2.2
7.0 | .03
.03
.02
.02 | 35
24
17
16
14 | .31
2.0
10
28
8.4 | .09
.07
.15
.09 | .04
.04
.04
.04 | .05
.05
.05
.05 | .44
.02
.02
.12
.18 | | 16
17
18
19
20 | .10
.07
.09
.11 | 9.8
9.6
9.1
7.7
3.8 | 3.5
3.4
3.3
3.3 | 9.0
9.6
7.5
6.8
6.4 | 60
56
34
5.5
4.4 | .01
.01
2.1
4.0
.05 | 5.4
.03
.02
.02 | .51
1.9
.34
1.5 | .11
.12
.15
.16 | .17
.10
.04
.04 | .07
6.6
23
57
9.3 | .05
.03
1.5
211
18 | | 21
22
23
24
25 | .08
.10
.29
55 | .26
.10
.09
.16 | 2.9
2.6
2.4
2.4
3.0 | 2.9
2.2
2.2
2.2
2.1 | 4.0
e5.0
15
35
50 | 3.4
.03
.81
.17 | .04
.03
.02
.02 | .19
.13
.38
.44 | .37
.72
.26
.19
.20 | .04
.03
.03
.04 | 2.5
.19
.57
.81 | 7.7
18
28
6.9
1.3 | | 26
27
28
29
30
31 | 7.4
6.7
76
212
16
7.7 | .12
.06
.06
.05
.05 | 3.5
3.5
3.2
2.9
2.7
2.7 | 2.6
2.1
4.6
26
21
14 | 40
37
24
 | .01
.02
.02
.02
.04 | .03
.03
.02
.02
.02 | .14
.11
.10
.09
.07 | . 20
. 23
. 20
. 34
. 40 | .04
.08
.08
.07
.06 | 1.6
1.2
82
23
6.1 | .08
.05
.05
.05 | | TOTAL
MEAN
MAX
MIN
AC-FT | 395.44
12.8
212
.07
784 | 455.98
15.2
110
.05
904 | 183.8
5.93
17
2.4
365 | 156.6
5.05
26
1.6
311 | 416.3
14.9
60
1.8
826 | 81.48
2.63
16
.01
162 | 112.16
3.74
35
.01
222 | 265.11
8.55
84
.01
526 | 111.58
3.72
51
.07
221 | 2.24
.072
.28
.03
4.4 | 281.61
9.08
82
.03
559 | 593.24
19.8
211
.02
1180 | | STATIS | TICS OF I | MONTHLY ME | AN DATA F | OR WATER | YEARS 193 | 1 - 20012 | z, BY WATI | ER YEAR (| WY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 119
2659
1960
.051
2000 | 32.4
434
1975
.047
2000 | 33.2
274
1975
.095
1974 | 29.7
205
1938
.055
1974 | 35.1
213
1975
.034
2000 | 28.3
242
1941
.050
1971 | 92.4
1604
1949
.042
2000 | 185
3984
1957
.083
1971 | 84.2
1132
1941
.090
1971 | 102
2137
1938
.069
1969 | 39.6
900
1942
.040
1999 | 252
13190
1936
.034
1999 | # 08136000 Concho River at San Angelo, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1931 - 2001z | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 1570.40 | 3055.54 | | | ANNUAL MEAN | 4.29 | 8.37 | 86.1 | | HIGHEST ANNUAL MEAN | | | 1132 1936 | | LOWEST ANNUAL MEAN | | | 1.55 2000 | | HIGHEST DAILY MEAN | 212 Oct 29 | 212 Oct 29 | 128000 Sep 17 1936 | | LOWEST DAILY MEAN | .00 May 26 | .01 Mar 15 | .00 Sep 14 1952 | | ANNUAL SEVEN-DAY MINIMUM | .00 May 26 | .02 Mar 11 | .00 Sep 16 1952 | | MAXIMUM PEAK FLOW | | 1070 Sep 19 | c230000 Sep 17 1936 | | MAXIMUM PEAK STAGE | | 4.47 Sep 19 | a46.60 Sep 17 1936 | | ANNUAL RUNOFF (AC-FT) | 3110 | 6060 | 62410 | | 10 PERCENT EXCEEDS | 9.7 | 22 | 67 | | 50 PERCENT EXCEEDS | .05 | .57 | 6.9 | | 90 PERCENT EXCEEDS | .02 | .03 | .10 | - Estimated Period of regulated streamflow. From floodmark. From rating curve extended above 105,000 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurements of 167,000 and 230,000 ${\rm ft}^3/{\rm s}$. e z a c #### 08136500 Concho River at Paint Rock, TX LOCATION.--Lat 31°30′57", long 99°55′09", Concho County, Hydrologic Unit 12090105, near left bank at downstream end of pier of bridge on U.S. Highway 83, 0.5 mi north of Concho County Courthouse in Paint Rock, 2.7 mi downstream from Kickapoo Creek, and 20.0 mi upstream from mouth. DRAINAGE AREA.--6,574 mi², of which 1,131 mi² probably is noncontributing. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Sept. 1915 to current year. Prior to Oct. 1970, published as "near Paint Rock". REVISED RECORDS.--WSP 458: 1915-16. WSP 568: 1919-20. WSP 1712: 1922(M). WSP 1732: 1918(M), 1923(M). WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,574.36 ft above sea level. See WSP 1922 for history of changes prior to Jan. 15, 1940. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Since water year 1931 at least 10% of contributing drainage area has been regulated. Flow affected at times by discharge from the flood-detention pools of two floodwater-retarding structures. These structures control runoff from 16.5 mi² in the Willow Creek drainage basin. No flow at times. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--15 years (water years 1916-30) prior to construction of Lake Nasworthy, 186 ft³/s (134,700 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1916-30).--Maximum discharge, 76,500 ft³/s Apr. 27, 1922 (gage height, 27.50 ft); no flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in Aug. 1882 reached a stage of about 39.9 ft, and flood in Aug. 1906 reached a stage of 39.5 ft, from information by local resident. Maximum stage since at least 1853, 43.4 ft Sept. 17, 1936. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY TITIN JUL AUG SEP 5.2 .00 34 3.6 11 43 .00 18 2.3 5.2 4.9 .40 2 0.0 19 2.2 26 37 469 00 .00 19 3 537 2.5 22 28 .00 47 .00 .00 11 4.5 2.7 .00 330 23 20 5 .00 277 2 2 3.8 12 18 5.2 11 .00 0.0 7.5 6 .00 1120 2.6 12 103 10 .00 .00 9.1 0.0 268 17 3.4 8.9 6.7 14 2.5 79 11 7.7 00 0.0 10 9.3 21 4.8 15 .00 8 .00 99 43 .00 .00 57 22 22 . 00 10 0.0 85 25 9 1 1.6 16 1 5 13 4 2 00 0.0 7 2 11 .00 45 21 10 15 2.4 9.7 1.5 .00 .00 7.0 8 0 1.8 1.5 1.2 12 0.0 24 15 12 9 6 .93 00 0.0 5 5 13 .00 15 14 9.0 10 8.8 .45 .00 .00 4.8 14 .00 10 10 3.2 .20 .00 .00 4.5 6.6 8.5 15 .00 15 5.1 1.2 1.8 5.2 .06 .00 .00 4.2 6.4 7.3 16 .00 12 4.6 2.2 1.2 2.6 .04 .00 .00 3.4 6.0 5.2 5.4 6.9 17 .00 1.9 6.2 1.1 1.1 .02 .00 .00 1.8 18 .04 4.4 5.8 2.7 6.6 1.2 .65 .00 .00 .00 2.1 19 .33 4.5 8.7 7.1 8.0 38 1.2 .36 .00 .00 . 00 104 20 .33 6.8 7.1 30 6.3 1.1 .23 .00 .00 .00 93 8.5 21 .13 8.1 11 19 6.2 1.2 .07 ΛN . 00 .00 106 8.9 22 .10 18 5.5 .02 .00 .00 6.5 3.1 .00 79 23 .58 8.5 5.7 14 7.6 4.0 2.3 .01 .00 .00 .00 386 3.4 24 . 77 12 11 15 2.8 1.2 .01 .00 . 00 .00 92 1.2 25 6.8 8.5 12 2.4 .35 .00 .00 .00 .00 43 26 .23 6.2 4.1 5.9 28 4.1 1.1 .00 .00 . 00 .00 39 5.3 4.9 27 .10 4.6 40 5.0 .94 .00 29 .00 .00 .00 28 6.5 5.5 3.9 5.9 55 5.8 .64 .00 .00 .00 .00 19 29 32 5.0 2.2 10 ---6.2 .46 .00 .00 . 00 188 14 2.2 30 179 4.5 4.9 .00 .00 40 .50 .00 10 31 2.3 4.5 ___ 5.7 .00 .00 22 88 TOTAL 308.46 3026.1 262.9 211.9 385.9 367.4 64.64 314.91 623.40 0.00 250.00 1153.1 9.95 8.48 MEAN 101 6.84 13.8 11 9 2.15 10.2 20.8 .000 8.06 38 4 MAX 179 1120 25 18 55 43 5.2 103 469 .00 188 386 .00 4.4 .00 .00 .00 MIN 46 .00 AC-FT 612 6000 521 420 765 729 128 625 1240 .00 496 2290 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 2001z, BY WATER YEAR (WY) MEAN 52.2 195 56.3 52.3 65.4 134 292 134 148 57.1 367 17220 3805 615 367 274 318 2131 4756 MAX (WY) 1931 1975 1975 1975 1992 1992 1949 1957 1941 1938 1942 1936 .000 .000 .000 .000 .000 .000 .000 .000 .000 MTN .000 .000 .000 1935 1955 (WY) 2000 ## 08136500 Concho River at Paint Rock, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1931 - 2001z | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 6365.45 | 6968.71 | | | ANNUAL MEAN | 17.4 | 19.1 | 134 | | HIGHEST ANNUAL MEAN | | | 1470 1936 | | LOWEST ANNUAL MEAN | | | 7.56 2000 | | HIGHEST DAILY MEAN | 1120 Nov 6 | 1120 Nov 6 | 134000 Sep 17 1936 | | LOWEST DAILY MEAN | .00 Jan 1 | .00 Oct 1 | .00 Sep 28 1931 | | ANNUAL SEVEN-DAY MINIMUM | .00 Jan 1 | .00 Oct 1 | .00 Sep 28 1931 | | MAXIMUM PEAK FLOW | | 2100 Nov 6 | c301000 Sep 17 1936 | | MAXIMUM PEAK STAGE | | 14.81 Nov 6 | a43.40 Sep 17 1936 | | ANNUAL RUNOFF (AC-FT) | 12630 | 13820 | 97420 | | 10 PERCENT EXCEEDS | 14 | 28 | 126 | | 50 PERCENT EXCEEDS | .00 | 3.8 | 24 | | 90 PERCENT EXCEEDS | .00 | .00 | .10 | - Period of regulated streamflow. From floodmark. From rating curve extended above $98,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurements of $144,000~{\rm and}~301,000~{\rm ft}^3/{\rm s}$. ## 08136500 Concho River at Paint Rock, TX--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. -- CHOW OF RECORD.-CHEMICAL DATA: Apr. 1946 to Oct. 1949, Mar. 1964 to current year. BIOCHEMICAL DATA: Mar. 1964 to current year. PESTICIDE DATA: Apr. 1968 to Oct. 1981. SEDIMENT DATA: Feb. 1978 to Sept. 1981. INSTRUMENTATION. -- Water-quality monitor since Feb. 6, 2001. REMARKS.--Records fair. Interruptions in the record was due to no flow. No flow May 25-31, June 19 to Aug. 28. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous years using daily (or continuous) records of specific conductance and regression relations between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request. #### PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: Apr. 1946 to Oct. 1949, Oct. 1967 to Sept. 1990 (local observer), Feb. 2001 to current year. WATER TEMPERATURE: Apr. 1946 to Oct. 1949, Oct. 1967 to Sept. 1990 (local observer), Feb. 2001 to current year. SUSPENDED SEDIMENT DISCHARGE: Feb. 1978 to Sept. 1981 (local observer). ### EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE:
Maximum daily, 3,690 microsiemens/cm, June 28, Aug. 12, 1984; minimum daily, 268 microsiemens/cm, Sept. 9, 1980. WATER TEMPERATURE: Maximum daily, 35.0°C, on several days during summer months; minimum daily, 0.0°C, on many days during winter months. SEDIMENT CONCENTRATION: Maximum daily mean, 4,190 mg/L, Sept. 9, 1980; minimum daily mean, 3 mg/L, Feb. 2, 1979. SEDIMENT LOADS: Maximum daily, 269,000 tons Sept. 9, 1980; minimum daily, 0.0 tons on several days during Sept. 1980. ### EXTREMES FOR CURRENT YEAR.- SPECIFIC CONDUCTANCE: Maximum, 3,150 microsiemens/cm, Sept. 21; minimum, 391 microsiemens/cm, June 2. WATER TEMPERATURE: Maximum, 33.2° C, Sept. 2; minimum, 9.7° C, Mar. 1. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |------------------|-------------------------------------|---|--|--|--|--|---|--|--|--|--|--|--| | NOV | 1230 | 896 | 349 | 8.1 | 16.8 | 9.1 | 101 | 3.1 | 110 | 43 | 30.2 | 8.35 | 21.3 | | 06
JAN | 1230 | 896 | 349 | 8.1 | 10.8 | 9.1 | 101 | 3.1 | 110 | 43 | 30.2 | 8.35 | 21.3 | | 12 | 1200 | 6.7 | 1750 | 7.7 | 8.0 | 10.7 | 94.0 | 2.3 | 620 | 466 | 147 | 60.3 | 127 | | MAR
07
APR | 1330 | 15 | 2440 | 8.1 | 15.4 | 9.3 | 99.1 | 3.9 | 698 | 517 | 156 | 74.8 | 215 | | 26 | 1120 | .62 | 2390 | 8.2 | 21.3 | 10.7 | 128 | 2.8 | 674 | 536 | 143 | 76.9 | 230 | | JUN
07 | 1600 | 11 | 542 | 9.0 | 32.5 | 11.0 | 163 | | 170 | 86 | 46.7 | 12.8 | 37.9 | | AUG
30 | 1440 | 33 | 349 | 8.1 | 27.5 | 6.6 | 89.5 | 4.5 | 125 | 51 | 34.6 | 9.21 | 22.4 | | DATE | SODIUM AD- SORP- TION RATIO (00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | ALKA-
LINITY
WAT DIS
FIX END
FIELD
CAC03
(MG/L)
(39036) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | NOV
06
JAN | .886 | 5.51 | | 67 | 29.6 | 41.8 | .2 | 7.7 | 187 | .336 | .016 | .352 | .047 | | 12 | 2.22 | 6.02 | 154 | | 311 | 299 | .4 | 6.8 | 1070 | 3.08 | .037 | 3.12 | <.041 | | MAR
07
APR | 3.54 | 6.77 | 181 | | 327 | 496 | .5 | 5.8 | 1400 | 1.40 | .034 | 1.43 | E.032 | | 26 | 3.86 | 7.13 | 138 | | 329 | 491 | .4 | 2.7 | 1360 | .124 | .010 | .134 | <.041 | | JUN
07 | 1.27 | 6.64 | 84 | | 57.1 | 81.2 | .3 | 9.4 | 304 | .237 | .033 | .270 | <.040 | | AUG
30 | | | | | | | | | | | | | | # 08136500 Concho River at Paint Rock, TX--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | |-------------------------------------|--|--|--|--|--|--|--|---|--|---|---|--|---| | NOV | | | | | | | | | | | | | | | 06
JAN | .298 | .34 | E.059 | .053 | .163 | 2 | .24 | 6.5 | 64.3 | <.06 | <.04 | <.8 | .22 | | 12 | | .51 | E.031 | <.018 | | <1 | .31 | 3.0 | 163 | <.06 | <.04 | <.8 | .46 | | MAR
07 | | .54 | <.060 | <.018 | | | | | | | | | | | APR
26 | | .54 | <.060 | <.018 | | | | 3.2 | 175 | | <.14 | <.8 | | | JUN | | | | | | | | | 175 | | <.14 | <.0 | | | 07
AUG | | .41 | <.060 | <.020 | | | | 17.3 | | | | | | | 30 | | .72 | E.030 | E.029 | | | | 3.8 | | | | | | | DATE | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | NOV | _ | | | | | | | | | | 06
JAN | .9 | <10 | E.05 | 11.4 | .8 | <.23 | 1.2 | .61 | <2.4 | <1.0 | 343 | 15.0 | <1 | | JAN
12 | .9
2.2 | <10
<10 | E.05 | 11.4
39.1 | .8
2.7 | <.23
<.23 | 1.2 | .61
1.72 | <2.4 | <1.0
<1.0 | 343
2580 | 15.0
E6.2 | <1
2 | | JAN
12
MAR
07 | | | | | | | | | | | | | | | JAN
12
MAR
07
APR
26 | 2.2 | <10 | <.08 | 39.1 | 2.7 | <.23 | 4.3 | 1.72 | 3.0 | <1.0 | 2580 | E6.2 | 2 | | JAN
12
MAR
07
APR | 2.2 | <10 | <.08 | 39.1 | 2.7 | <.23 | 4.3 | 1.72 | 3.0 | <1.0 | 2580 | E6.2 | 2 | | DATE | URANIUI
NATURAI
DIS-
SOLVEI
(UG/L
AS U)
(22703 | |------|--| | NOV | | | 06 | .54 | | JAN | | | 12 | 3.74 | | MAR | | | 07 | | | APR | | | 26 | | | JUN | | | 07 | | | AUG | | | 30 | | 08136500 Concho River at Paint Rock, TX--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | MAY | MIN | | | MIN | | MAX | | MEAN | |---|--|--|---|--|--
--|--|--|--|--|--|--| | DAI | MAA | | MEAN | MAX | | MEAN | MAX | | MEAN | MAA | MIN | MEAN | | | | OCTOBER | | | OVEMBER | | Di | ECEMBER | | | JANUARY | | | 1
2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4
5 | 6
7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9
10 | 11
12 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 14
15 | 16
17 | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | 22
23 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | 27
28 | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30
31 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | | | | | | | | 2 | | | | 2500 | 2550 | 2570 | 2200 | 2250 | 2270 | 2200 | 2270 | 2200 | | | | | | 2590
2550 | 2550
2510 | 2570
2520 | 2280
2270 | 2250
2220 | 2270
2250 | 2390
2380 | 2370
2340 | 2380
2370 | | 3 | | | | 2550
2520 | 2510
2500 | 2520
2510 | 2270
2240 | 2220
2220 | 2250
2240 | 2380
2370 | 2340
2350 | 2370
2360 | | | | | | 2550 | 2510 | 2520 | 2270 | 2220 | 2250 | 2380 | 2340 | 2370 | | 3
4
5 |

 |

 |

 | 2550
2520
2520
2470 | 2510
2500
2460
2430 | 2520
2510
2480
2450 | 2270
2240
2230
2180 | 2220
2220
2160
2150 | 2250
2240
2210
2170 | 2380
2370
2380
2320 | 2340
2350
2300
2250 | 2370
2360
2350
2280 | | 3
4 | | | | 2550
2520
2520 | 2510
2500
2460 | 2520
2510
2480 | 2270
2240
2230 | 2220
2220
2160 | 2250
2240
2210 | 2380
2370
2380 | 2340
2350
2300 | 2370
2360
2350 | | 3
4
5
6
7
8 |

2290
2290 |

2260
2280 |

2280
2280 | 2550
2520
2520
2470
2430
2390
2360 | 2510
2500
2460
2430
2380
2340
2270 | 2520
2510
2480
2450
2410
2360
2300 | 2270
2240
2230
2180
2170
2170
2180 | 2220
2220
2160
2150
2120
2120
2130 | 2250
2240
2210
2170
2150
2150
2170 | 2380
2370
2380
2320
2340
2600
1340 | 2340
2350
2300
2250
2220
1340
1020 | 2370
2360
2350
2280
2270
2070
1130 | | 3
4
5
6
7 |

2290 |

2260 |

2280 | 2550
2520
2520
2470
2430
2390 | 2510
2500
2460
2430
2380
2340 | 2520
2510
2480
2450
2410
2360 | 2270
2240
2230
2180
2170
2170 | 2220
2220
2160
2150
2120
2120 | 2250
2240
2210
2170
2150
2150 | 2380
2370
2380
2320
2340
2600 | 2340
2350
2300
2250
2220
1340 | 2370
2360
2350
2280
2270
2070 | | 3
4
5
6
7
8
9 |

2290
2290
2300
2310 |

2260
2280
2280
2280 |

2280
2280
2290
2300 | 2550
2520
2520
2470
2430
2390
2360
2280
2240 | 2510
2500
2460
2430
2380
2340
2270
2230
2230 | 2520
2510
2480
2450
2410
2360
2300
2260
2230 | 2270
2240
2230
2180
2170
2170
2180
2190
2200 | 2220
2220
2160
2150
2120
2120
2130
2150
2170 | 2250
2240
2210
2170
2150
2150
2170
2170
2190 | 2380
2370
2380
2320
2340
2600
1340
1150
1240 | 2340
2350
2300
2250
2220
1340
1020
1040
1150 | 2370
2360
2350
2280
2270
2070
1130
1090
1180 | | 3
4
5
6
7
8
9 |

2290
2290
2310
2330 |

2260
2280
2280
2280 |

2280
2280
2290
2300 | 2550
2520
2520
2470
2430
2390
2360
2280 | 2510
2500
2460
2430
2380
2340
2270
2230 | 2520
2510
2480
2450
2410
2360
2300
2260
2230 | 2270
2240
2230
2180
2170
2170
2180
2190 | 2220
2220
2160
2150
2120
2120
2130
2150
2170 | 2250
2240
2210
2170
2150
2150
2170
2170 | 2380
2370
2380
2320
2340
2600
1340
1150
1240 | 2340
2350
2300
2250
2220
1340
1020
1040 | 2370
2360
2350
2280
2270
2070
1130
1090
1180 | | 3
4
5
6
7
8
9
10
11
12
13 |

2290
2290
2300
2310
2330
2320
2320 |

2260
2280
2280
2280
2280
2310
2300
2290 |

2280
2280
2290
2300
2320
2320
2310 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2240
2230
2250 | 2510
2500
2460
2430
2380
2340
2270
2230
2230
2210
2220
2230 | 2520
2510
2480
2450
2410
2360
2300
2260
2230
2230
2220
2240 | 2270
2240
2230
2180
2170
2170
2180
2190
2200
2210
2240
2250 | 2220
2220
2160
2150
2120
2120
2130
2150
2170
2160
2210
2210 | 2250
2240
2210
2170
2150
2150
2170
2170
2190
2190
2220
2230 | 2380
2370
2380
2320
2340
2600
1340
1150
1240
1280
1300
1310 | 2340
2350
2300
2250
2250
2220
1340
1020
1040
1150
1240
1280
1300 | 2370
2360
2350
2280
2270
2070
1130
1090
1180
1260
1290
1310 | | 3
4
5
6
7
8
9
10
11
12
13
14 |

2290
2290
2300
2310
2330
2320
2320
2320
2320 |

2260
2280
2280
2280
2310
2300
2300
2300 |

2280
2280
2290
2300
2320
2320
2310
2310 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2240
2230
2250
2250 | 2510
2500
2460
2430
2380
2340
2270
2230
2230
2210
2220
2230
2200 | 2520
2510
2480
2450
2410
2360
2300
2260
2230
2220
2240
2230 | 2270
2240
2230
2180
2170
2170
2180
2190
2200
2210
2240
2250
2250 | 2220
2220
2160
2150
2120
2120
2130
2150
2170
2160
2210
2210
2230 | 2250
2240
2210
2170
2150
2150
2170
2170
2190
2190
2220
2230
2240 | 2380
2370
2380
2320
2340
2600
1340
1150
1240
1280
1300
1310 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1240
1280
1300 | 2370
2360
2350
2280
2270
2070
1130
1090
1180
1260
1290
1310
1300 | | 3
4
5
6
7
8
9
10
11
12
13
14
15 |

2290
2300
2310
2320
2320
2320
2320
2310 |

2260
2280
2280
2280
2280
2310
2300
2290
2300
2290 |

2280
2280
2290
2300
2320
2320
2310
2310
2300 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2240
2250
2250
2250
2260 | 2510
2500
2460
2430
2380
2270
2230
2230
2210
2220
2230
2200
2200 | 2520
2510
2480
2450
2410
2360
2300
2260
2230
2230
2230
2240
2230
2240 | 2270
2240
2230
2180
2170
2170
2180
2190
2200
2210
2240
2250
2250
2250 | 2220
2220
2150
2150
2120
2130
2150
2170
2160
2210
2210
2230
2220 | 2250
2240
22170
2170
2150
2150
2170
2170
2190
2220
2230
2240
2240 | 2380
2370
2380
2320
2340
2600
1340
1150
1240
1300
1310
1310 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1240
1280
1300
1300
1290 | 2370
2360
2350
2280
2270
2070
1130
1090
1180
1260
1290
1310
1300
1300 | | 3
4
5
6
7
8
9
10
11
12
13
14
15 | 2290
2290
2300
2310
2320
2320
2320
2320
2320
232 |

2260
2280
2280
2280
2280
2310
2300
2290
2300
2290 |

2280
2280
2290
2300
2320
2310
2310
2300
2290 |
2550
2520
2520
2470
2430
2390
2360
2280
2240
2240
2230
2250
2250
2260 | 2510
2500
2460
2430
2380
2340
2270
2230
2230
2210
2220
2230
2200
2200 | 2520
2510
2480
2450
2410
2360
2300
2260
2230
2230
2220
2240
2230
2240
2250 | 2270
2240
2230
2180
2170
2170
2180
2190
2200
2210
2240
2250
2250
2260 | 2220
2220
2160
2150
2120
2130
2150
2170
2160
2210
2230
2220
2240 | 2250
2240
2210
2170
2150
2150
2170
2170
2190
2220
2230
2240
2240
2250 | 2380
2370
2380
2320
2340
2600
1340
1150
1240
1280
1300
1310
1310
1300 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1240
1280
1300
1300
1290 | 2370
2360
2350
2280
2270
2070
1130
1090
1180
1260
1290
1310
1300
1300 | | 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 2290
2290
2310
2310
2320
2320
2320
2320
2320
232 |

2260
2280
2280
2280
2280
2310
2300
2290
2300
2290
2280
2280
2280
2280 | 2280
2280
2280
2300
2310
2310
2310
2310
2310
2300
230 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2250
2250
2250
2260
2260
2270
2280 | 2510
2500
2460
2430
2380
2340
2270
2230
2230
2220
2230
2200
2200
2240
2210 | 2520
2510
2480
2450
2410
2360
2300
2260
2230
2230
2240
2240
2240
2250
2260
2270 | 2270
2240
2230
2180
2170
2170
2180
2190
2200
2210
2240
2250
2250
2260
2260
2290
2300 | 2220
2220
2160
2150
2120
2130
2170
2170
2210
2210
2230
2220
2240
2260
2290 | 2250
2240
2210
2170
2150
2170
2170
2190
2290
2230
2240
2240
2250
2270
2270
2290 | 2380
2370
2380
2320
2340
2600
1340
1150
1240
1300
1310
1310
1300
1300
1300
1300 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1240
1300
1300
1290 | 2370
2360
2350
2280
2270
2070
1130
1090
1180
1290
1310
1300
1300
1290
1280 | | 3
4
5
6
7
8
9
10
11
12
13
14
15 | 2290
2290
2300
2310
2320
2320
2320
2320
2320
232 |

2260
2280
2280
2280
2280
2310
2300
2290
2300
2290
2280
2280
2280
2280 | 2280
2280
2290
2300
2310
2310
2310
2300
2290
2310
2310
2300
2300
2300 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2250
2250
2250
2260
2270
2280
2280
2290 | 2510
2500
2460
2430
2380
2340
2270
2230
2230
2220
2230
2200
2200
220 | 2520
2510
2480
2450
2410
2360
2300
2230
2230
2230
2220
2240
2230
2240
2250
2260 | 2270
2240
2230
2180
2170
2170
2180
2190
2200
2210
2240
2250
2250
2260
2290
2300
2300 | 2220
2220
2160
2150
2120
2120
2130
2170
2170
2160
2210
2210
2220
2220
2240
2260 | 2250
2240
2210
2170
2150
2150
2170
2170
2190
2220
2230
2240
2240
2250
2270 | 2380
2370
2380
2320
2340
2600
1340
1150
1240
1300
1310
1310
1300
1300
1300
1300
13 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1240
1280
1300
1300
1290 | 2370
2360
2350
2280
2270
2070
1130
1090
1180
1290
1310
1300
1290
1280
1280
1290 | | 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 2290
2290
2310
2310
2320
2320
2320
2320
2320
232 |

2260
2280
2280
2280
2310
2300
2290
2300
2290
2280
2280
2280
2280
2280 | 2280
2280
2280
2300
2310
2310
2310
2310
2310
2300
2310
2300
2310
2300
2310 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2230
2250
2250
2260
2260
2270
2280
2290 | 2510
2500
2460
2430
2380
2340
2270
2230
2230
2200
2200
2200
2200
220 | 2520
2510
2480
2450
2410
2360
2300
2260
2230
2240
2240
2240
2250
2240
2250
2260
2270
2280
2280 | 2270
2240
2230
2180
2170
2170
2180
2190
2200
2210
2240
2250
2250
2260
2260
2300
2300
2300 | 2220
2220
2160
2150
2120
2130
2170
2170
2210
2210
2230
2240
2260
2290
2280
2280 | 2250
2240
2210
2170
2150
2170
2170
2190
2290
2220
2230
2240
2240
2250
2270
2290
2300
2300
2300 | 2380
2370
2380
2320
2340
2600
1340
1150
1240
1300
1310
1310
1300
1300
1300
1390
1300
1310 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1240
1300
1300
1290
1270
1270
1270
1290
1300 | 2370
2360
2350
2280
2270
2070
1130
1090
1180
1290
1310
1300
1290
1280
1290
1310 | | 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 2290
2290
2300
2310
2320
2320
2320
2320
2320
232 |

2260
2280
2280
2280
2280
2310
2300
2290
2300
2290
2280
2280
2280
2280
2280 | 2280
2280
2290
2300
2310
2310
2310
2310
2300
2310
2300
2310
2300
2310
2300
2310 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2250
2250
2250
2260
2270
2280
2290
2290 | 2510
2500
2460
2430
2380
2340
2270
2230
2230
2210
2220
2240
2240
2260
2240
2230 | 2520
2510
2480
2450
2410
2360
2300
2260
2230
2220
2240
2230
2240
2250
2260
2270
2280
2280
2280 | 2270
2240
2230
2180
2170
2170
2180
2190
2200
2210
2250
2250
2250
2260
2290
2300
2300
2300 | 2220
2220
2160
2150
2150
2120
2130
2170
2170
2210
2210
2230
2220
2240
2260
2280
2280 | 2250
2240
2210
2170
2150
2170
2170
2190
2220
2230
2240
2240
2250
2270
2290
2300
2300
2300 | 2380
2370
2380
2320
2340
2600
1340
1150
1240
1300
1310
1310
1300
1300
1300
1300
13 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1280
1300
1300
1290
1270
1270
1270
1270
1290
1300 | 2370
2360
2350
2280
2270
2070
1130
1090
1180
1290
1310
1300
1290
1280
1290
1310 | | 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 2290
2290
2300
2310
2320
2320
2320
2320
2320
232 | 2260 2280 2280 2280 2280 2310 2300 2290 2300 2290 2380 2280 2280 2380 2280 2380 2280 2360 2400 | 2280
2280
2280
2300
2310
2310
2310
2310
2310
2310
2300
2310
2300
2310
2390
2340
2340 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2250
2250
2250
2260
2270
2280
2290
2290 | 2510
2500
2460
2430
2380
2340
2270
2230
2230
2220
2230
2200
2200
2240
2210
2260
2240
2240
2250 | 2520
2510
2480
2450
2410
2360
2300
2260
2230
2240
2230
2240
2230
2240
2250
2260
2270
2280
2280
2280 | 2270
2240
2230
2180
2170
2170
2180
2190
2200
2210
2240
2250
2250
2260
2260
2300
2300
2300
2310
2310 | 2220
2220
2160
2150
2120
2130
2170
2170
2210
2210
2220
2240
2290
2280
2280
2280
2290
2290
2290
2300 | 2250
2240
2210
2170
2150
2170
2170
2190
2290
2230
2240
2240
2250
2270
2290
2300
2300
2300
2300
2300
2310 | 2380
2370
2380
2320
2320
2340
2600
1340
1150
1240
1300
1310
1310
1300
1300
1300
1300
13 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1240
1300
1300
1270
1270
1270
1270
1300
1310
1310
1330 | 2370
2360
2350
2280
2270
2070
1130
1090
1180
1260
1310
1300
1300
1280
1290
1310 | | 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 2290
2290
2300
2310
2320
2320
2320
2320
2320
232 |

2260
2280
2280
2280
2280
2310
2300
2290
2300
2290
2300
2280
2280
2280
2280
2280
2280
228 | 2280
2280
2290
2300
2310
2310
2310
2310
2300
2310
2300
2310
2300
2310
2300
2310
2300
2310
2300
2310
2300
2310 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2250
2250
2250
2270
2280
2290
2290
2290
2290
2290 | 2510
2500
2460
2430
2380
2270
2230
2230
2200
2200
2200
2240
2210
2260
2240
2250
2250
2260
2250
2260 |
2520
2510
2480
2450
2410
2360
2300
2260
2230
2240
2240
2240
2250
2260
2270
2280
2280
2280
2280
2280
2280
228 | 2270 2240 2230 2180 2170 2180 2170 2180 2190 2200 2210 2240 2250 2250 2260 2260 2300 2300 2310 2310 2330 | 2220
2220
2160
2150
2120
2130
2170
2170
2210
2210
2230
2220
2240
2260
2290
2280
2290
2280
2290
2300
2300 | 2250
2240
2210
2170
2150
2170
2170
2190
2290
2230
2240
2240
2250
2270
2300
2300
2300
2300
2300
2310
2320 | 2380
2370
2380
2320
2340
2600
1340
1150
1240
1300
1310
1310
1300
1300
1300
1300
13 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1280
1300
1290
1270
1270
1270
1270
1270
1270
1270
1300 | 2370
2350
2250
2280
2270
2070
1130
1090
1180
1290
1310
1300
1280
1280
1280
1290
1310 | | 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 2290
2290
2300
2310
2320
2320
2320
2320
2320
232 |

2260
2280
2280
2280
2280
2300
2290
2300
2290
2280
2280
2280
2280
2280
2280
22 | 2280
2280
2280
2300
2320
2310
2310
2310
2310
2300
2310
2300
2310
2300
2310
2300
2310
2300
2310
2300
2310
2300
2310 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2250
2250
2260
2270
2280
2290
2290
2290
2290
2290
2290 | 2510
2500
2460
2430
2380
2340
2270
2230
2230
2200
2200
2200
2240
2210
2260
2240
2250
2260
2250
2250
2250 | 2520
2510
2480
2450
2410
2360
2300
2260
2230
2240
2220
2240
2230
2240
2250
2260
2270
2280
2280
2280
2280
2280
2290 | 2270
2240
2230
2180
2170
2170
2180
2190
2200
2210
2240
2250
2250
2260
2260
2300
2300
2310
2310
2330
2340 | 2220
2220
2160
2150
2120
2130
2170
2170
2210
2210
2220
2240
2290
2280
2280
2280
2280
2280
2300
2300
2310 | 2250
2240
2210
2170
2150
2170
2170
2190
2190
2220
2230
2240
2240
2250
2270
2290
2300
2300
2300
2300
2310
2320
2330 | 2380
2370
2380
2320
2320
2340
2600
1340
1150
1240
1300
1310
1310
1300
1300
1300
1310
1300
1310
1300
1310
1300
1300
1300
1310 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1240
1280
1300
1270
1270
1270
1270
1290
1310
1330
1330
1330
1330 | 2370
2350
2250
2280
2270
2070
1130
1090
1180
1290
1310
1300
1280
1290
1310
1280
1290
1310 | | 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 2290
2290
2300
2310
2320
2320
2320
2320
2320
232 | 2260 2280 2280 2280 2280 2310 2300 2290 2300 2290 2380 2280 2380 2280 2360 2440 2560 | 2280
2280
2290
2300
2310
2310
2310
2310
2310
2300
2310
2300
2310
2300
2310
2300
2310
2300
2310
2357
2360
2370
2370
2380
2380
2380
2380
2380
2380
2380
238 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2250
2250
2250
2260
2270
2280
2290
2290
2290
2290
2290
2300 | 2510
2500
2460
2430
2380
2270
2230
2230
2230
2200
2200
2240
2210
2260
2240
2250
2260
2250
2250
2260
2270 | 2520
2510
2480
2450
2410
2360
2300
2260
2230
2240
2240
2250
2240
2250
2260
2270
2280
2280
2280
2280
2280
2280
2290
2280
2290 | 2270 2240 2230 2180 2170 2180 2170 2180 2190 2200 2210 2240 2250 2250 2260 2260 2300 2300 2300 2310 2310 2310 2330 2340 2360 | 2220
2220
2160
2150
2120
2130
2170
2170
2210
2210
2230
2220
2240
2260
2290
2280
2280
2290
2300
2310
2310 | 2250
2240
2210
2170
2150
2170
2170
2190
2290
2230
2240
2240
2250
2270
2290
2300
2300
2300
2300
2300
2300
230 | 2380
2370
2380
2320
2340
2600
1340
1150
1240
1300
1310
1310
1300
1300
1300
1300
13 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1280
1300
1290
1270
1270
1270
1290
1310
1330
1330
1330 | 2370
2360
2350
2280
2270
2070
1130
1090
1180
1290
1310
1300
1280
1280
1290
1310 | | 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 2290
2290
2300
2310
2320
2320
2320
2320
2320
232 | 2260 2280 2280 2280 2310 2300 2290 2300 2290 2380 2380 2380 2380 2380 2380 2400 2440 2560 2570 2560 | 2280
2280
2280
2300
2320
2310
2310
2310
2310
2310
231 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2250
2250
2260
2270
2280
2290
2290
2290
2290
2290
2300
2310
2320
2320
2320 | 2510
2500
2460
2430
2380
2340
2270
2230
2230
2220
2230
2200
2240
2210
2260
2240
2250
2260
2270
2280
2250
2250
2250
2250
2250
2260
2270 | 2520
2510
2480
2450
2410
2360
2300
2260
2230
2240
2240
2250
2240
2250
2260
2270
2280
2280
2280
2280
2280
2290
2310
2310 | 2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2260 2260 2300 2300 2310 2310 2330 2340 2360 2360 2360 2380 2380 | 2220
2220
2160
2150
2120
2130
2170
2170
2210
2210
2210
2220
2240
2290
2280
2280
2280
2300
2310
2300
2310
2300
2300
2360
2360
2360 | 2250
2240
2210
2170
2150
2150
2170
2190
2190
2220
2230
2240
2250
2270
2290
2300
2300
2300
2310
2320
2330
2320
2330
2370
2370
2370 | 2380
2370
2380
2320
2320
2340
2600
1340
1150
1240
1300
1310
1310
1300
1310
1300
1310
1300
1310
1340
134 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1240
1280
1300
1270
1270
1270
1270
1270
1290
1300
1330
1330
1330 | 2370 2360 2350 2280 2270 2070 1130 1090 1180 1260 1290 1310 1300 1280 1280 1290 1310 1340 1340 | | 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 2290
2290
2300
2310
2320
2320
2320
2320
2320
232 |

2260
2280
2280
2280
2280
2300
2290
2300
2290
2300
2280
2280
2300
2280
2300
2400
2440
2560
2570
2560 | 2280
2280
2290
2320
2310
2310
2310
2310
2310
2310
2300
2310
2300
2310
2300
2310
2300
2310
23570
2570
2570 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2250
2250
2250
2260
2270
2280
2290
2290
2290
2290
2290
2300
2310
2320
2320
2330
2320
2330 | 2510
2500
2460
2430
2380
2270
2230
2230
2200
2200
2200
2240
2210
2260
2240
2250
2260
2250
2260
2270
2280
2300
2290 | 2520
2510
2480
2450
2410
2360
2300
2260
2230
2240
2240
2250
2240
2250
2260
2270
2280
2280
2280
2280
2280
2280
228 | 2270 2240 2230 2180 2170 2180 2170 2180 2190 2200 2210 2240 2250 2250 2260 2300 2300 2310 2310 2310 2310 2330 2340 2360 2380 2380 2380 2380 2380 | 2220
2220
2160
2150
2120
2130
2170
2170
2210
2210
2230
2220
2240
2280
2280
2280
2300
2300
2310
2300
2300
2300
2300
230 | 2250
2240
2210
2170
2150
2170
2170
2190
2290
2230
2240
2240
2250
2270
2290
2300
2300
2300
2300
2300
2300
230 | 2380
2370
2380
2320
2340
2600
1340
1150
1240
1300
1310
1310
1300
1310
1300
1310
1300
1310 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1280
1300
1290
1270
1270
1270
1270
1300
1310
1330
1330
1330
 | 2370 2360 2350 2280 2270 2070 1130 1090 1180 1290 1310 1300 1290 1280 1290 1310 1340 1340 | | 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 2290
2290
2300
2310
2320
2320
2320
2320
2320
232 | 2260 2280 2280 2280 2310 2300 2290 2300 2290 2380 2380 2380 2380 2380 2380 2400 2440 2560 2570 2560 | 2280
2280
2280
2300
2320
2310
2310
2310
2310
2310
231 | 2550
2520
2520
2470
2430
2390
2360
2280
2240
2250
2250
2260
2270
2280
2290
2290
2290
2290
2290
2300
2310
2320
2320
2320 | 2510
2500
2460
2430
2380
2340
2270
2230
2230
2220
2230
2200
2240
2210
2260
2240
2250
2260
2270
2280
2250
2250
2250
2250
2250
2260
2270 |
2520
2510
2480
2450
2410
2360
2300
2260
2230
2240
2240
2250
2240
2250
2260
2270
2280
2280
2280
2280
2280
2290
2310
2310 | 2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2260 2260 2300 2300 2310 2310 2330 2340 2360 2360 2360 2380 2380 | 2220
2220
2160
2150
2120
2130
2170
2170
2210
2210
2210
2220
2240
2290
2280
2280
2280
2300
2310
2300
2310
2300
2300
2360
2360
2360 | 2250
2240
2210
2170
2150
2150
2170
2190
2190
2220
2230
2240
2250
2270
2290
2300
2300
2300
2310
2320
2330
2320
2330
2370
2370
2370 | 2380
2370
2380
2320
2320
2340
2600
1340
1150
1240
1300
1310
1310
1300
1310
1300
1310
1300
1310
1340
134 | 2340
2350
2300
2250
2220
1340
1020
1040
1150
1240
1280
1300
1270
1270
1270
1270
1270
1290
1300
1330
1330
1330 | 2370 2350 2280 2270 2070 1130 1090 1180 1260 1290 1310 1300 1280 1290 1310 1340 1340 | | 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 2300
2310
2320
2320
2320
2320
2320
2320 |

2260
2280
2280
2280
2310
2300
2290
2300
2290
2380
2280
2380
2280
2360
2400
2400
2400
2560 | 280
2280
2290
2300
2310
2310
2310
2310
2310
2310
231 | 2550
2520
2470
2430
2390
2360
2280
2240
2250
2250
2250
2250
2250
2250
225 | 2510
2500
2460
2430
2380
2340
2270
2230
2230
2220
2230
2200
2240
2210
2260
2240
2250
2260
2250
2260
2250
2250
2250
225 | 2520
2510
2480
2450
2410
2360
2230
2230
2220
2240
2230
2240
2250
2260
2270
2280
2280
2280
2280
2280
2290
2310
2310
2310
2310
2310
2300 | 2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2250 2260 2260 2300 2300 2310 2310 2310 2330 2340 2380 2380 2380 2380 2390 | 2220
2220
2160
2150
2120
2130
2170
2170
2160
2210
2220
2220
2280
2280
2280
2280
2290
2300
2310
2310
2320
2300
2370
2370
2370 | 2250
2240
2210
2170
2150
2150
2170
2170
2190
2290
2230
2240
2240
2250
2270
2290
2300
2300
2300
2310
2320
2320
2320
2330
2320
232 | 2380
2370
2380
2320
2340
2600
1340
1150
1240
1300
1310
1310
1300
1300
1300
1310
1300
1310 | 2340
2350
2350
2250
2220
1340
1020
1040
1150
1280
1300
1290
1270
1270
1270
1270
1270
1270
1270
127 | 2370 2360 2280 2270 2070 1130 1090 1180 1260 1290 1310 1300 1280 1280 1290 1310 1340 1340 1340 | # 08136500 Concho River at Paint Rock, TX--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------|------|------|------|-----|------|------|------------|--------|------------|-------|----------|------| | | | JUNE | | | JULY | | I | AUGUST | | | SEPTEMBE | lR. | | 1 | 1360 | 1290 | 1340 | | | | | | | 665 | 650 | 656 | | 2 | 1670 | 391 | 821 | | | | | | | 704 | 665 | 684 | | 3 | 489 | 400 | 446 | | | | | | | 728 | 694 | 708 | | 4 | 542 | 489 | 511 | | | | | | | 718 | 695 | 705 | | 5 | 564 | 541 | 547 | | | | | | | 759 | 705 | 724 | | | | | | | | | | | | | | | | 6 | 590 | 560 | 571 | | | | | | | 800 | 759 | 785 | | 7 | 594 | 584 | 589 | | | | | | | 799 | 738 | 774 | | 8 | 615 | 593 | 601 | | | | | | | 770 | 736 | 754 | | 9 | 635 | 606 | 618 | | | | | | | 856 | 737 | 789 | | 10 | 646 | 620 | 634 | | | | | | | 1030 | 856 | 955 | | | | | | | | | | | | | | | | 11 | 656 | 636 | 645 | | | | | | | 1070 | 1030 | 1060 | | 12 | 658 | 641 | 650 | | | | | | | 1100 | 1070 | 1080 | | 13 | 663 | 631 | 653 | | | | | | | 1100 | 1080 | 1100 | | 14 | 666 | 647 | 658 | | | | | | | 1110 | 1100 | 1110 | | 15 | 678 | 641 | 657 | | | | | | | 1120 | 1100 | 1110 | | | | | | | | | | | | | | | | 16 | 684 | 672 | 679 | | | | | | | 1120 | 1100 | 1120 | | 17 | 689 | 676 | 684 | | | | | | | 1140 | 1120 | 1120 | | 18 | | | | | | | | | | 1150 | 1110 | 1130 | | 19 | | | | | | | | | | 1540 | 1040 | 1200 | | 20 | | | | | | | | | | 2490 | 928 | 1050 | | 0.1 | | | | | | | | | | 21.50 | 0.400 | 0000 | | 21 | | | | | | | | | | 3150 | 2490 | 2980 | | 22 | | | | | | | | | | 2930 | 1860 | 2390 | | 23 | | | | | | | | | | 1870 | 695 | 885 | | 24 | | | | | | | | | | 1050 | 839 | 963 | | 25 | | | | | | | | | | 1230 | 1050 | 1130 | | 26 | | | | | | | | | | 1350 | 1220 | 1280 | | 26
27 | | | | | | | | | | 1510 | 1340 | 1430 | | 28 | | | | | | | | | | 1610 | 1480 | 1550 | | 28
29 | | | | | | | 975 | 648 | 747 | 1660 | 1610 | 1640 | | 29
30 | | | | | | | 975
651 | 634 | | 1690 | 1640 | 1670 | | 30
31 | | | | | | | 651
652 | 634 | 641
645 | 1690 | 1640 | 1670 | | ΣI | | | | | | | 052 | 039 | 045 | | | | | MONTH | | | | | | | | | | 3150 | 650 | 1150 | | MONTH | | | | | | | | | | 3130 | 050 | 1130 | | | | | | | | | | | | | | | 08136500 Concho River at Paint Rock, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | | WAIER (DEC | | | | | | | | | |---|--|--|--|--|--|--|--|---|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | 1 | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7
8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | 13
14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | 18
19 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | 23
24 | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | 28
29 | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | | | | MARCH | | | APRIL | | | MAY | | | 1
2 | | FEBRUARY |
 | 11.7
12.7 | MARCH
9.7
11.6 | 10.7
12.1 | 18.8
22.7 | APRIL
15.1
17.4 | 16.7
19.2 | 25.1
25.5 | MAY
21.4
22.1 | 22.9
23.6 | | 1
2
3 | | FEBRUARY | | 11.7
12.7
13.5 | MARCH
9.7
11.6
12.0 | 10.7
12.1
12.4 | 18.8
22.7
24.6 | APRIL
15.1
17.4
19.5 | 16.7
19.2
21.3 | 25.1
25.5
23.8 | MAY
21.4
22.1
22.7 | 22.9
23.6
23.1 | | 1
2 | | FEBRUARY |
 | 11.7
12.7 | MARCH
9.7
11.6 | 10.7
12.1 | 18.8
22.7 | APRIL
15.1
17.4 | 16.7
19.2 | 25.1
25.5 | MAY
21.4
22.1 | 22.9
23.6 | | 1
2
3
4
5 |

 | FEBRUARY | | 11.7
12.7
13.5
14.8
18.9 | 9.7
11.6
12.0
11.7
12.7 | 10.7
12.1
12.4
13.1
14.9 | 18.8
22.7
24.6
23.6
22.8 | APRIL
15.1
17.4
19.5
20.5
21.6 |
16.7
19.2
21.3
21.8
22.0 | 25.1
25.5
23.8
23.5
23.2 | MAY 21.4 22.1 22.7 22.1 21.0 | 22.9
23.6
23.1
22.6
21.9 | | 1
2
3
4 |

 | FEBRUARY | | 11.7
12.7
13.5
14.8 | 9.7
11.6
12.0
11.7 | 10.7
12.1
12.4
13.1 | 18.8
22.7
24.6
23.6 | APRIL
15.1
17.4
19.5
20.5 | 16.7
19.2
21.3
21.8 | 25.1
25.5
23.8
23.5 | MAY 21.4 22.1 22.7 22.1 | 22.9
23.6
23.1
22.6 | | 1
2
3
4
5
6
7
8 |

14.9 | FEBRUARY 12.0 13.6 |

13.4
14.2 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
17.4 | 9.7
11.6
12.0
11.7
12.7
14.3
14.2
15.3 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0 | 15.1
17.4
19.5
20.5
21.6
21.2
21.1
21.9 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2 | | 1
2
3
4
5 |

14.9 | FEBRUARY 12.0 |

13.4 | 11.7
12.7
13.5
14.8
18.9 | 9.7
11.6
12.0
11.7
12.7
14.3
14.2 | 10.7
12.1
12.4
13.1
14.9 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8 | APRIL
15.1
17.4
19.5
20.5
21.6
21.2
21.1 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5 | | 1
2
3
4
5
6
7
8
9 |

14.9
14.6
13.4 | FEBRUARY 12.0 13.6 13.2 11.8 |

13.4
14.2
14.0
12.5 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
17.4
16.5 | 9.7
11.6
12.0
11.7
12.7
14.3
14.2
15.3
15.1 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9
23.5 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.2 | | 1
2
3
4
5
6
7
8
9 |

14.9
14.9 | FEBRUARY 12.0 13.6 13.2 |

13.4
14.2
14.0 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
17.4 | 9.7
11.6
12.0
11.7
12.7
14.3
14.2
15.3
15.1 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4 | 15.1
17.4
19.5
20.5
21.6
21.2
21.1
21.9
22.9 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.2
26.3
26.3 | | 1
2
3
4
5
6
7
8
9
10 | 14.9
14.9
14.6
13.4
12.4
13.4
15.1 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 | 13.4
14.2
14.2
12.5
11.6
12.2
13.4 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
17.4
16.5
15.3 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9
23.5
22.7
22.1
21.7 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.2
26.3
26.3
26.1 | | 1
2
3
4
5
6
7
8
9
10 |

14.9
14.6
13.4 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 |

13.4
14.2
14.0
12.5 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
17.4
16.5
15.3 | 9.7
11.6
12.0
11.7
12.7
14.3
14.2
15.3
15.1
14.4 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9
23.5 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.2
26.3
26.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 14.9
14.9
14.6
13.4
12.4
15.1
16.8
16.2 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 | 13.4
14.2
14.2
12.5
11.6
12.2
13.4
15.1 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
17.4
16.5
15.3
19.2
17.5
17.8
17.6
16.2 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.7
16.3
16.1
15.4 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.4
23.5
22.9
24.7
26.3 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9
23.5
22.7
22.1
21.7
23.0
23.9 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
29.0 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.0 24.8 24.8 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.3
26.3
26.1
26.1
26.2
26.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 |

14.9
14.6
13.4
12.4
13.4
15.1
16.8 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 | 13.4
14.2
14.0
12.5
11.6
12.2
13.4
15.1 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
16.5
15.3 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.7
16.3
16.1 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.5
23.4
23.5
22.9 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9
23.5
22.7
22.1
21.7
23.0 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.0 24.8 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.2
26.3
26.3
26.1
26.1
26.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 14.9
14.9
14.6
13.4
12.4
13.4
15.1
16.8
16.2 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.2 | 13.4
14.2
14.0
12.5
11.6
12.2
13.4
15.1
15.1
12.8
12.0
11.4 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
17.4
17.5
15.3
19.2
17.5
17.8
17.6
16.2 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.7
16.3
16.1
15.4 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.4
23.5
22.9
24.7
26.3 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9
23.5
22.7
22.1
21.7
23.0
23.9
24.0
22.0
20.4 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
29.0 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.0 24.8 24.8 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.3
26.3
26.1
26.1
26.2
26.7
27.5
27.9
28.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 14.9
14.6
13.4
12.4
13.5.1
16.8
16.2
13.6
14.3
12.7
14.1 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.8 | 13.4
14.2
14.0
12.5
11.6
12.2
13.4
15.1
15.1
12.8
12.0
11.4
12.2 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
16.5
15.3
19.2
17.5
17.8
17.6
16.2 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.7
16.3
16.1
15.4 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.4
23.5
22.9
24.7
26.3
25.3
24.1
21.6
23.4 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9
23.5
22.7
22.1
21.7
23.0
23.9
24.0
22.0
20.4
21.0 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
29.0 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.3 25.3 25.3 25.3 25.3 |
22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.2
26.3
26.1
26.1
26.1
26.7
27.5
27.5
27.5
27.5
27.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 14.9
14.9
14.9
14.6
13.4
15.1
16.8
16.2
13.6
14.3
12.7
14.1
16.7 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.2 10.7 12.0 | 13.4
14.2
14.0
12.5
11.6
12.2
13.4
15.1
15.1
12.8
12.0
11.4
12.2
14.0 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
17.4
17.5
17.8
17.5
17.8
17.6
16.2 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.7
16.3
16.1
15.4
15.0
14.1
12.9
12.6
14.5 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.4
23.5
22.9
24.7
26.3
25.3
24.1
21.6
23.4
24.4 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.5
22.7
22.1
21.7
23.0
23.9
24.0
22.0
20.4
21.0
22.3 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
29.0
30.0
30.8
31.7
28.1
28.0 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.0 24.8 24.8 25.5 26.1 26.4 27.0 26.2 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.3
26.3
26.1
26.1
26.2
26.7
27.9
28.3
27.5
27.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 14.9
14.6
13.4
12.4
13.5.1
16.8
16.2
13.6
14.3
12.7
14.1
16.7 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.8 10.7 12.0 13.6 | 13.4
14.2
14.0
12.5
11.6
12.2
13.4
15.1
15.1
12.8
12.0
11.4
12.2
14.0 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
16.5
15.3
19.2
17.5
17.8
17.6
16.2 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.3
16.1
15.4
15.0
14.1
12.6
14.5 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.4
24.5
23.4
24.7
26.3
25.3
24.1
21.6
23.4
24.4 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9
23.5
22.7
22.1
21.7
23.0
23.9
24.0
22.0
20.4
21.0
22.3 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
29.0
30.0
30.8
31.7
28.1
28.0 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.3 25.3 25.6 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.2
26.3
26.1
26.1
26.1
26.7
27.5
27.9
28.3
27.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 14.9
14.9
14.9
14.6
13.4
12.4
13.4
15.1
16.8
16.2
13.6
14.3
12.7
14.1
16.7 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.2 10.7 12.0 13.6 12.4 12.1 | 13.4
14.2
14.0
12.5
11.6
12.2
13.4
15.1
15.1
12.8
12.0
11.4
12.2
14.0
11.4
12.2
14.0 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
17.4
16.5
15.3
19.2
17.5
17.8
17.6
16.2
17.7
14.8
13.6
13.8
18.8 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.7
16.3
16.1
15.4
15.0
14.1
12.9
12.6
14.5 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.5
22.9
24.7
26.3
25.3
24.1
21.6
23.4
24.4 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.8 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9
23.5
22.7
22.1
21.7
23.0
23.9
24.0
22.0
20.4
21.0
22.3 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
30.0
30.8
31.7
28.1
28.0 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.0 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.6 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.3
26.1
26.1
26.1
26.2
27.5
27.9
28.3
27.5
27.9
28.3
27.5
27.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 14.9
14.6
13.4
12.4
13.5.1
16.8
16.2
13.6
14.3
12.7
14.1
16.7 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.8 10.7 12.0 13.6 12.4 12.1 | 13.4
14.2
14.0
12.5
11.6
12.2
13.4
15.1
15.1
12.8
12.0
11.4
12.2
14.0
14.3
12.9
12.4 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
16.5
15.3
19.2
17.5
17.6
16.2
17.7
14.8
13.6
13.8
18.8
18.8 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 15.6 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.3
16.1
15.4
15.0
14.1
12.6
14.5
15.3
17.4
19.3
17.4 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.4
24.5
23.4
24.7
26.3
25.3
24.1
21.6
23.4
24.4 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.7 20.8 | 16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4 21.0 22.3 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
29.0
30.8
31.7
28.1
28.0
27.2
27.2 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.3 25.6 24.8 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.8 22.8 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.2
26.3
26.1
26.1
26.2
27.5
27.5
27.5
27.0
28.3
27.0
25.5
24.7
25.5
25.5
27.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 14.9
14.9
14.9
14.6
13.4
12.4
13.4
15.1
16.2
13.6
14.3
12.7
14.1
16.7 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.2 10.7 12.0 13.6 12.1 12.4 12.1 | 13.4
14.2
14.0
12.5
11.6
12.2
13.4
15.1
15.1
12.8
12.0
11.4
12.2
14.0
12.2
14.0 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
17.4
16.5
15.3
19.2
17.5
17.8
17.6
16.2
17.7
14.8
13.6
13.8
18.8
18.2
21.0
21.6
18.9 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 15.6 14.9 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.7
16.3
16.1
15.4
15.0
14.1
12.9
12.6
14.5
15.3
17.4
19.3
17.2 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.5
22.9
24.7
26.3
25.3
24.1
21.6
23.4
24.4
24.5 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.8 20.9 20.1 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9
23.5
22.7
22.1
21.7
23.0
23.9
24.0
22.0
24.0
22.3
22.3 | 25.1
23.8
23.5
23.2
26.3
25.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
29.0
30.0
30.8
31.7
28.1
28.0
27.2
27.4
28.1 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.0 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.6 23.9 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.3
26.1
26.1
26.2
26.7
27.5
27.9
28.3
27.5
27.5
27.5
27.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 14.9
14.6
13.4
12.4
13.5.1
16.8
16.2
13.6
14.3
12.7
14.1
16.7 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.2 10.7 12.0 13.6 12.4 12.1 12.4 12.3 14.3 | 13.4
14.2
14.0
12.5
11.6
12.2
13.4
15.1
15.1
12.8
12.0
11.4
12.2
14.0
14.3
12.9
12.4 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
16.5
15.3
19.2
17.5
17.6
16.2
17.7
14.8
13.6
13.8
18.8
18.8 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 15.6 14.9 13.1 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.3
16.1
15.4
15.0
14.1
12.6
14.5
15.3
17.4
19.3
17.2
15.5 |
18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.4
24.5
23.4
24.7
26.3
25.3
24.1
21.6
23.4
24.4
24.4
24.6
23.8
24.2 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.9 22.1 21.9 22.3 | 16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4 21.0 22.3 22.0 22.4 23.0 22.4 23.0 22.4 23.0 22.4 23.0 22.4 23.0 22.4 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
29.0
30.8
31.7
28.1
28.0
27.2
27.2 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.3 25.6 24.8 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.8 22.8 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.2
26.3
26.1
26.1
26.2
27.5
27.5
27.5
27.0
28.3
27.0
25.5
24.7
25.5
25.5
27.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 14.9
14.9
14.9
14.6
13.4
12.4
13.4
15.1
16.2
13.6
14.3
12.7
14.1
16.7
15.2
13.6
12.9
14.1
17.4
15.6
15.9
14.9 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.2 10.7 12.0 13.6 12.4 12.1 12.4 12.3 14.3 14.8 10.7 | 13.4
14.2
14.0
12.5
11.6
12.2
13.4
15.1
15.1
12.8
12.0
11.4
12.2
14.0
14.3
12.9
12.4
13.2
14.0 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
16.5
15.3
19.2
17.5
17.8
17.6
16.2
17.7
14.8
13.6
13.8
18.2
21.0
21.6
18.9 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 15.6 14.9 13.1 11.6 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.7
16.3
16.1
15.4
15.0
14.1
12.9
12.6
14.5
15.3
17.4
19.3
17.2
15.5 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.5
22.9
24.7
26.3
25.3
24.1
21.6
23.4
24.4
24.4
24.6
23.8
24.1
22.9
22.9 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.9 20.9 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9
23.5
22.7
22.1
21.7
23.0
22.0
24.0
22.0
24.0
22.3
22.1
21.7
21.7
21.7
21.7
21.7
21.7
21.7 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
29.0
30.8
31.7
28.1
28.0
27.2 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.0 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.6 23.9 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.3
26.1
26.1
26.1
26.2
26.7
27.5
27.9
28.3
27.5
27.0
25.5
24.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 14.9
14.6
13.4
12.4
13.4
15.1
16.8
16.2
13.6
14.3
12.7
15.2
13.6
12.9
14.1
17.4 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.2 10.7 12.0 13.6 12.4 12.1 12.4 12.3 14.8 10.7 |

13.4
14.2
14.0
12.5
11.6
12.2
13.4
15.1
15.1
12.8
12.0
11.4
12.2
14.0
14.3
12.9
12.4
13.2
14.0 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
16.5
15.3
19.2
17.5
17.6
16.2
17.7
14.8
13.6
13.8
18.8
18.8
18.2
21.0
21.6
18.9
16.4 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 11.9 11.8 13.0 14.7 17.5 15.6 14.9 13.1 11.6 11.0 11.3 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.3
16.1
15.4
15.0
14.1
12.6
14.5
17.4
19.3
17.4
19.3
17.2
15.5 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.4
24.7
26.3
25.3
24.1
21.6
23.4
24.4
24.4
24.0
24.6
23.8
24.2 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.9 22.1 19.9 22.3 | 16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4 21.0 22.3 22.0 22.4 23.0 22.4 23.0 22.1 21.7 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
29.0
30.0
30.8
31.7
28.1
28.0
27.2
27.8
28.1 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.0 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.6 23.9 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.3
26.3
26.1
26.1
26.2
27.5
27.5
27.0
28.3
27.5
27.0
25.5
24.7
25.5
24.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 14.9
14.6
13.4
12.4
13.5.1
16.8
16.2
13.6
14.3
12.7
14.1
16.7
15.2
13.6
12.9
14.1
17.4 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.2 10.7 12.0 13.6 12.4 12.1 12.4 12.3 14.3 14.3 14.8 10.7 | 13.4
14.2
14.0
12.5
11.6
12.2
13.4
15.1
15.1
12.8
12.0
11.4
12.2
14.0
14.3
12.9
12.4
13.2
14.2 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
16.5
15.3
19.2
17.5
17.8
17.6
16.2
17.7
14.8
13.6
13.8
18.2
21.0
21.6
18.9 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 15.6 14.9 13.1 11.6 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.7
16.3
16.1
15.4
15.0
14.1
12.9
12.6
14.5
15.3
17.4
19.3
17.2
15.5 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.5
22.9
24.7
26.3
25.3
24.1
21.6
23.4
24.4
24.4
24.6
23.8
24.1
22.9
22.9 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.9 20.9 | 16.7
19.2
21.3
21.8
22.0
21.8
22.5
23.4
23.9
23.5
22.7
22.1
21.7
23.0
22.0
24.0
22.0
24.0
22.3
22.1
21.7
21.7
21.7
21.7
21.7
21.7
21.7 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
29.0
30.8
31.7
28.1
28.0
27.2
27.8
28.1
28.0 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.3 25.0 24.8 24.8 24.8 25.5 26.1 26.2 24.3 22.8 22.8 22.8 23.9 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.2
26.3
26.1
26.1
26.2
26.7
27.5
27.9
28.3
27.5
27.5
27.5
27.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 14.9
14.6
13.4
12.4
13.4
15.1
16.8
16.2
13.6
14.3
12.7
15.2
13.6
12.9
14.1
17.4
15.6
12.9
14.9 | FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.2 11.7 12.0 13.6 12.4 12.1 12.4 12.1 12.4 12.3 14.8 10.7 | 11.6
12.5
11.6
12.2
13.4
15.1
15.1
12.8
12.0
11.4
12.2
14.0
14.3
12.9
12.4
13.2
14.2 | 11.7
12.7
13.5
14.8
18.9
16.5
17.4
16.5
15.3
19.2
17.5
17.8
17.6
16.2
17.7
14.8
13.6
13.8
18.8
18.8 | MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 15.6 14.9 13.1 11.6 11.0 11.3 11.7 | 10.7
12.1
12.4
13.1
14.9
15.2
15.7
16.1
15.6
14.8
16.2
16.7
16.1
15.4
15.0
14.1
12.9
14.5
17.4
19.3
17.2
15.5
17.4
19.3
17.2
15.5
17.3
17.2
17.2
17.3
17.2
17.3
17.3
17.3
17.3
17.3
17.3
17.3
17.3 | 18.8
22.7
24.6
23.6
22.8
22.3
24.8
26.0
25.4
24.5
23.5
22.9
22.9
24.7
26.3
25.3
24.1
21.6
23.4
24.4
22.4
24.2
22.4
24.2
22.9
22.9
22 | APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.8 20.9 20.1 | 16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4 21.0 22.3 22.0 22.1 21.7 21.7 21.4 21.3 21.5 21.8 22.1 | 25.1
25.5
23.8
23.5
23.2
26.3
25.3
27.4
28.9
28.0
27.6
27.2
27.8
28.0
29.0
30.0
30.8
31.7
28.1
28.0
27.2
27.8
28.1 | MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.3 25.0 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.6 23.9 | 22.9
23.6
23.1
22.6
21.9
23.5
24.5
25.2
26.2
26.3
26.1
26.1
26.2
27.5
27.9
28.3
27.5
27.0
25.5
24.7
25.0
25.0 | # 08136500 Concho River at Paint Rock, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DAY | MAX | MIN | MEAN | |----------|------|------|------|-----|------|------|--------------|--------|--------------|--------------|----------|------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | lR. | | 1 | 26.3 | 24.4 | 25.9 | | | | | | | 28.8 | 25.2 | 26.5 | | 2 | 24.9 | 20.9 | 23.2 | | | | | | | 33.2 | 25.5 | 28.1 | | 3 | 29.0 | 23.1 | 25.6 | | | | | | | 30.9
 26.5 | 27.9 | | 4 | 29.8 | 25.8 | 27.3 | | | | | | | 31.5 | 25.6 | 27.6 | | 5 | 29.3 | 26.3 | 27.6 | | | | | | | 28.5 | 25.7 | 26.7 | | 6 | 31.7 | 26.6 | 28.5 | | | | | | | 30.5 | 25.4 | 27.1 | | 7 | 32.0 | 27.5 | 29.3 | | | | | | | 32.0 | 25.7 | 28.2 | | 8 | 30.1 | 27.7 | 28.8 | | | | | | | 33.0 | 27.2 | 29.4 | | 9 | 31.5 | 27.1 | 28.5 | | | | | | | 29.5 | 26.1 | 27.2 | | 10 | 32.0 | 26.8 | 28.8 | | | | | | | 29.0 | 25.4 | 26.5 | | | | | | | | | | | | | | | | 11 | 31.9 | 27.2 | 28.9 | | | | | | | 27.2 | 25.4 | 26.2 | | 12 | 30.9 | 27.6 | 28.9 | | | | | | | 30.5 | 25.1 | 26.8 | | 13 | 31.9 | 27.4 | 29.1 | | | | | | | 29.4 | 24.9 | 26.5 | | 14 | 32.2 | 27.4 | 29.6 | | | | | | | 28.4 | 25.5 | 26.6 | | 15 | 32.0 | 28.8 | 30.0 | | | | | | | 26.4 | 25.3 | 25.8 | | 16 | 32.4 | 27.8 | 29.3 | | | | | | | 27.8 | 24.8 | 25.8 | | | | | | | | | | | | | | | | 17 | 31.6 | 27.5 | 29.0 | | | | | | | 27.9 | 24.6 | 25.9 | | 18 | | | | | | | | | | 32.4 | 24.9 | 27.5 | | 19 | | | | | | | | | | 29.8 | 25.8 | 27.2 | | 20 | | | | | | | | | | 31.3 | 26.5 | 28.2 | | 21 | | | | | | | | | | 29.4 | 26.0 | 27.7 | | 22 | | | | | | | | | | 29.4 | 26.2 | 27.2 | | 23 | | | | | | | | | | 26.3 | 22.1 | 23.7 | | 24 | | | | | | | | | | 24.9 | 22.6 | 23.6 | | 25 | | | | | | | | | | 26.5 | 21.7 | 23.2 | | 26 | | | | | | | | | | 25.7 | 21.6 | 23.2 | | 27 | | | | | | | | | | 25.7 | 21.8 | 23.4 | | 28 | | | | | | | | | | 25.9
25.6 | 21.8 | 23.4 | | 29 | | | | | | | 26.1 | 22.6 | 24.1 | 25.5 | 22.2 | 23.3 | | 30 | | | | | | | 31.8 | 22.6 | 25.5 | 25.5
24.6 | 22.0 | 23.3 | | 30
31 | | | | | | | 31.8
28.6 | 23.9 | 25.5
26.4 | 24.6 | 21.7 | 22.7 | | 3± | | | | | | | ∠8.0 | 24.8 | ∠0.4 | | | | | MONTH | | | | | | | | | | 33.2 | 21.6 | 26.1 | DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE Figure 5.--Map showing location of gaging stations in the third section of the Colorado River Basin | 08136600 | O.H. Ivie Reservoir near Voss, TX | 136 | |----------|--------------------------------------|-------| | 08136700 | Colorado River near Stacy, TX | 138 | | 08138000 | Colorado River at Winchell, TX | 140 | | 08140770 | Lake Coleman near Novice, TX | 142 | | 08141000 | Hords Creek Lake near Valera, TX | 144 | | 08143000 | Lake Brownwood near Brownwood, TX | 146 | | 08143600 | Pecan Bayou near Mullin, TX | 148 | | 08143900 | Springs at Fort McKavett, TX | 321 | | 08143950 | Clear Creek near Menard, TX | 323 | | 08144500 | San Saba River at Menard, TX | 150 | | 08144600 | San Saba River near Brady, TX | 152 | | 08144900 | Brady Creek Reservoir near Brady, TX | 154 | | 08145000 | Brady Creek at Brady, TX | 156 | | 08146000 | San Saba River at San Saba, TX | 158 | | 08146500 | Can Caha Chringe at Can Caha TV | 2 2 1 | ## 08136600 O.H. Ivie Reservoir near Voss, TX DRAINAGE AREA.--24,038 mi², of which 11,391 mi² probably is noncontributing. PERIOD OF RECORD. -- Sept. 1990 to current year. GAGE.--Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records good. The lake is formed by a concrete dam and spillway with six 50- by 40-foot tainter gates, and a 6,000 ft overflow spillway with a 2,000 ft tapered fuse plug release feature. Total length of the dam is 12,000 ft. The dam was completed and storage began Mar. 15, 1990. Recording equipment was installed May 30, 1990, but water did not reach the sensing point until Sept. 21, 1990 (at an elevation of 1,502.05 ft). The dam is owned by the Colorado River Municipal Water District. Water is utilized for municipal use for several West Texas communities, the city of San Angelo being the largest user. The capacity curve is based on a survey made in 1989 by Freese and Nichols, Consulting Engineers, Fort Worth, TX. Conservation pool storage is 554,340 acre-ft. Data regarding the dam are given in the following table: | Top of dam | evation | |--|---------| | Top of dam | feet) | | | 584.0 | | Crest of overflow spillway | 563.0 | | Top of conservation storage | 551.5 | | Crest of spillway (tainter gates sill) | 528.0 | | Lowest gated outlet (service outlet) | 440.0 | COOPERATION. -- The capacity table dated Sept. 15, 1990 was furnished by the Colorado River Municipal Water District. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 574,700 acre-ft, June 26, 1997, elevation, 1,552.55 ft; minimum contents after initial filling, 269,500 acre-ft, Aug. 26, 2001, elevation, 1,532.93 ft. RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 EXTREMES FOR CURRENT YEAR.--Maximum contents, 323,600 acre-ft, Nov. 24, elevation, 1,537.25 ft; minimum contents, 269,500 acre-ft, Aug. 26, elevation, 1,532.93 ft. | | DAILY MEAN VALUES | | | | | | | | | | | | |------|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 287700 | 294800 | 322100 | 318800 | 317800 | 319300 | 319300 | 313200 | 307700 | 295000 | 279800 | 270300 | | 2 | 287400 | 294900 | 321800 | 318700 | 317700 | 319500 | 319400 | 312900 | 308600 | 295300 | 279300 | 270000 | | 3 | 287000 | 298100 | 321700 | 318700 | 317600 | 319600 | 319400 | 312700 | 308700 | 295300 | 278800 | 270000 | | 4 | 286700 | 303500 | 321800 | 318700 | 317600 | 319600 | 319300 | 312900 | 308300 | 295000 | 278300 | 270600 | | 5 | 286400 | 306300 | 321800 | 318600 | 317400 | 319500 | 319300 | 314600 | 307900 | 294600 | 277900 | 270300 | | 6 | 286000 | 315700 | 321900 | 318500 | 317400 | 319500 | 319100 | 315600 | 307600 | 294200 | 277400 | 270100 | | 7 | 285300 | 318600 | 321600 | 318500 | 317300 | 319400 | 319200 | 315800 | 307300 | 293600 | 276800 | 270800 | | 8 | 284700 | 320100 | 321600 | 318300 | 317100 | 319700 | 319000 | 315900 | 306800 | 293100 | 276300 | 271000 | | 9 | 284000 | 320700 | 321400 | 318100 | 317600 | 319900 | 318900 | 315800 | 306300 | 292600 | 275800 | 274600 | | 10 | 283700 | 321100 | 321400 | 318300 | 317100 | 319800 | 318700 | 315500 | 306000 | 292100 | 275300 | 274700 | | | | | | | | | | | | | | | | 11 | 283200 | 321600 | 321400 | 318500 | 316900 | 319900 | 318900 | 315300 | 305600 | 291600 | 274800 | 274400 | | 12 | 283000 | 322200 | 320900 | 318300 | 316900 | 320100 | 318400 | 315100 | 305000 | 291100 | 274300 | 274100 | | 13 | 282800 | 322300 | 320800 | 318400 | 316900 | 319900 | 318200 | 314800 | 304400 | 290600 | 273800 | 273800 | | 14 | 282700 | 322100 | 320700 | 318300 | 316800 | 319900 | 318200 | 314500 | 304000 | 290100 | 273500 | 273400 | | 15 | 283000 | 322000 | 320700 | 318200 | 317100 | 320500 | 318100 | 314200 | 303500 | 289600 | 273400 | 273000 | | 16 | 283600 | 322200 | 320800 | 318100 | 318000 | 319700 | 317700 | 313900 | 302900 | 289000 | 273100 | 272700 | | 17 | 284200 | 322000 | 320200 | 318300 | 317800 | 319400 | 317300 | 313600 | 302400 | 288300 | 273200 | 272300 | | 18 | 286200 | 322000 | 320400 | 318300 | 317900 | 319500 | 316800 | 313300 | 301800 | 287700 | 273000 | 271900 | | 19 | 286400 | 322000 | 320000 | 318300 | 317900 | 319600 | 316500 | 313000 | 301300 | 287100 | 272700 | 271900 | | 20 | 286700 | 321900 | 319900 | 317900 | 318000 | 319500 | 316300 | 312800 | 300700 | 286600 | 272300 | 271600 | | 21 | 286700 | 321800 | 319500 | 318000 | 318100 | 319400 | 316000 | 312400 | 300200 | 286100 | 271800 | 272000 | | 22 | 286800 | 321700 | 319300 | 317800 | 317900 | 319400 | 315800 | 311500 | 299700 | 285600 | 271300 | 272700 | | 23 | 287000 | 322100 | 319300 | 317700 | 318100 | 319300 | 316200 | 311100 | 299100 | 285000 | 270800 | 273700 | | 24 | 287900 | 322900 | 319200 | 317600 | 318900 | 319400 | 315700 | 310700 | 298600 | 284400 | 270300 | 274000 | | 25 | 288100 | 322600 | 319100 | 317500 | 318800 | 319100 | 315400 | 310200 | 298100 | 283800 | 269900 | 273600 | | 26 | 288700 | 322500 | 319700 | 317500 | 318800 | 318800 | 315100 | 309700 | 297600 | 283300 | 270300 | 273200 | | 27 | 288900 | 322500 | 319700 | 317300 | 318900 | 319000 | 314700 | 309500 | 297100 | 282700 | 270900 | 272900 | | 28 | 289100 | 322500 | 319400 | 317700 | 319200 | 319200 | 314200 | 309000 | 296500 | 282200 | 270600 | 272600 | | 29 | 292000 | 322300 | 319300 | 318600 | | 319300 | 313900 | 308500 | 295900 | 281700 | 270400 | 272200 | | 30 | 293500 | 322100 | 319000 | 318200 | | 319400 | 313500 | 308300 | 295400 | 281100 | 270300 | 271800 | | 31 | 294400 | | 319000 | 318000 | | 319500 | | 307900 | | 280400 | 270200 | | | MUAN | 286600 | 217000 | 220502 | 210000 | 217000 | 210500 | 217200 | 212700 | 202000 | 200702 | 073000 | 070200 | | MEAN | | 317900 | 320500 | 318200 | 317800 | 319500 | 317300 | 312700 | 302800 | 288700 | 273800 | 272300 | | MAX | 294400 | 322900 | 322100 | 318800 | 319200 | 320500 | 319400 | 315900 | 308700 | 295300 | 279800 | 274700 | | MIN | 282700 | 294800 | 319000 | 317300 | 316800 | 318800 | 313500 | 307900 | 295400 | 280400 | 269900 | 270000 | | (+) | 1534.99 | 1537.14 | 1536.90 | 1536.83 | 1536.92 | 1536.94 | 1536.49 | 1536.05 | 1535.07 | 1533.84 | 1532.99 | 1533.12 | | (@) | +6400 | +27700 | -3100 | -1000 | +1200 | +300 | -6000 | -5600 | -12500 | -15000 | -10200 | +1600 | CAL YR 2000 MAX 337500 MIN 280000 (@) -3200 WTR YR 2001 MAX 322900 MIN 269900 (@) -16200 ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in contents, in acre-feet. 08136600 O.H. Ivie Reservoir near Voss, TX--Continued ## 08136700 Colorado River near Stacy, TX LOCATION.--Lat 31°29'37", long 99°34'25", Coleman County, Hydrologic Unit 12090106, on left bank at downstream side of bridge on Farm Road 503, 1.2 mi upstream from Bois d'Arc Creek, 1.8 mi northeast of Stacy, 10.5 mi downstream from O.H. Ivie Reservoir, 24 mi downstream from Concho River, and at mile 604.8. DRAINAGE AREA.--24,193 mi^2 , of which approximately 11,391 mi^2 probably is noncontributing. PERIOD OF RECORD.--Mar. 1968 to current year. Prior to Oct. 1970, published as "at Stacy". Water-quality
records.--Chemical data: Dec. 1961 to July 1994. Biochemical data: Oct. 1974 to Aug. 1977. Pesticide data: Apr. 1975 to Aug. 1977. Sediment data: Oct. 1974 to Oct. 1977. Specific conductance: Apr. 1968 to Sept. 1994. Water temperature: Apr. 1968 to Sept. 1994. REVISED RECORDS.--WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,394.66 ft above sea level (Texas Department of Transportation bridge plans). Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Since installation of gage in Mar. 1968, at least 10% of contributing drainage area has been regulated by upstream reservoirs, and since Mar. 15, 1990, flow completely regulated by O.H. Ivie Reservoir (station 08136600, conservation pool storage 554,340 acre-ft), 10.5 mi upstream. There are many diversions above station for irrigation, municipal, and oil field operations. Wastewater effluent is returned to the river from numerous wastewater plants above station. At times flow may be slightly affected by discharge from the flood-detention pools of 42 floodwater-retarding structures with a combined detention capacity of 56,730 acre-ft. These structures control runoff from 277 mi² above this station. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum discharge since at least 1882, 356,000 ft³/s Sept. 18, 1936 (gage height, 64.59 ft), by slope—area measurement of peak flow. The flood of Sept. 18, 1936, was 4 ft higher than the 1906 flood and 7 to 8 ft higher than the 1882 flood, from information by local resident. | | | DISCHA | RGE, CUB | IC FEET PI | ER SECOND,
DAILY | WATER YE
MEAN VA | | R 2000 TO | SEPTEMBE | R 2001 | | | |--------------------------------------|--------------------------------------|-------------------------------------|--|--|-------------------------------------|--|-----------------------------------|-------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 13
12
12
12
11 | 8.0
6.1
197
154
41 | 4.1
3.6
4.1
4.8
4.9 | 4.3
4.3
4.3
4.3 | 5.5
8.0
5.5
4.3
4.0 | 3.2
3.9
3.9
3.6
3.1 | 3.2
2.9
2.7
2.7
2.7 | 9.4
9.5
9.4
13
35 | 30
28
13
10
9.7 | 12
29
19
12 | 12
13
13
13
13 | 24
19
18
22
18 | | 6
7
8
9
10 | 6.8
4.2
4.5
5.1
5.6 | 273
65
32
22
13 | 4.6
4.1
3.9
3.8
3.8 | 4.2
4.2
4.1
4.2
5.0 | 3.3
2.6
2.9
3.1
2.8 | 2.9
2.5
3.1
3.6
3.6 | 7.1
10
10
10
9.8 | 30
15
12
12
11 | 10
11
10
10 | 11
11
11
11 | 13
13
13
13
13 | 17
16
16
47
22 | | 11
12
13
14
15 | 5.7
4.7
3.6
2.9
5.3 | 8.9
7.0
5.7
5.2
4.7 | 3.8
3.7
3.8
4.0
4.3 | 5.8
5.6
5.1
4.6
4.5 | 3.0
2.7
2.7
3.1
3.5 | 3.4
3.2
3.0
3.1
2.8 | 10
15
11
10
9.9 | 11
11
12
12
11 | 10
10
9.6
10 | 11
11
11
11 | 13
13
14
15
16 | 16
15
14
14 | | 16
17
18
19
20 | 7.4
6.4
5.2
5.6
8.4 | 4.5
4.3
4.2
4.0
3.9 | 4.1
4.0
4.0
3.7
3.9 | 4.5
4.7
5.0
4.9
4.6 | 8.7
6.8
4.7
3.6
2.9 | 2.2
2.3
2.6
2.5
2.6 | 9.3
8.5
8.6
9.3
9.5 | 11
11
11
11
12 | 12
11
11
10
10 | 11
10
11
11 | 16
33
25
17
16 | 14
14
14
23
18 | | 21
22
23
24
25 | 5.8
4.8
11
20
9.2 | 3.7
3.8
5.1
7.0
6.6 | 3.7
3.8
4.0
4.1
4.4 | 4.4
4.1
4.3
4.3 | 2.7
2.6
3.6
4.3
3.9 | 2.6
2.3
2.0
2.1
2.0 | 9.7
11
19
11
8.7 | 11
10
10
10 | 11
11
11
12
11 | 11
11
11
11 | 15
15
15
15
15 | 20
80
59
19
14 | | 26
27
28
29
30
31 | 5.0
3.9
5.3
191
64
17 | 5.2
4.3
8.9
7.7
5.0 | 6.0
7.0
6.2
5.0
4.5
4.5 | 4.4
4.4
5.0
6.9
6.5
5.4 | 3.5
2.9
2.6
 | 2.0
2.2
2.7
3.4
3.7
3.5 | 8.9
8.8
8.8
8.8 | 11
11
11
11
11 | 11
11
10
10
10 | 12
12
12
12
12
12 | 22
35
22
19
18
19 | 14
14
14
14
14 | | TOTAL
MEAN
MAX
MIN
AC-FT | 478.4
15.4
191
2.9
949 | 920.8
30.7
273
3.7
1830 | 134.2
4.33
7.0
3.6
266 | 146.2
4.72
6.9
4.1
290 | 109.8
3.92
8.7
2.6
218 | 89.6
2.89
3.9
2.0
178 | 265.7
8.86
19
2.7
527 | 386.3
12.5
35
9.4
766 | 356.3
11.9
30
9.6
707 | 375
12.1
29
10
744 | 517
16.7
35
12
1030 | 637
21.2
80
14
1260 | | STATIST | rics of M | MONTHLY ME | AN DATA | FOR WATER | YEARS 1968 | 3 - 2001, | BY WATER | YEAR (WY | .) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 221
1475
1987
4.42
1999 | 114
1344
1975
4.57
1999 | 96.9
562
1975
2.07
1999 | 97.9
470
1975
2.09
1999 | 99.9
666
1975
2.19
1999 | 138
732
1987
2.78
2000 | 135
873
1977
.41
1986 | 314
1440
1987
.000
1984 | 357
1783
1996
.000
1984 | 111
623
1987
.000
1974 | 163
1516
1978
2.24
1983 | 257
2953
1980
.000
1983 | # 08136700 Colorado River near Stacy, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1968 - 2001 | |--------------------------|------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 6734.5 | 4416.3 | | | ANNUAL MEAN | 18.4 | 12.1 | 174 | | HIGHEST ANNUAL MEAN | | | 719 1987 | | LOWEST ANNUAL MEAN | | | 12.1 2001 | | HIGHEST DAILY MEAN | 1480 Jun 15 | 273 Nov 6 | 31300 Sep 10 1980 | | LOWEST DAILY MEAN | 1.6 Mar 30 | 2.0 Mar 23 | .00 Jun 22 1974 | | ANNUAL SEVEN-DAY MINIMUM | 2.0 Mar 26 | 2.2 Mar 21 | .00 Jun 22 1974 | | MAXIMUM PEAK FLOW | | 635 Nov 6 | c45000 Sep 10 1980 | | MAXIMUM PEAK STAGE | | 6.22 Nov 6 | 28.00 Sep 10 1980 | | ANNUAL RUNOFF (AC-FT) | 13360 | 8760 | 125800 | | 10 PERCENT EXCEEDS | 17 | 18 | 358 | | 50 PERCENT EXCEEDS | 8.9 | 9.5 | 42 | | 90 PERCENT EXCEEDS | 3.2 | 3.1 | 6.1 | c From rating curve extended above $36,600 \text{ ft}^3/\text{s}$. #### 08138000 Colorado River at Winchell, TX LOCATION.--Lat 31°28'04", long 99°09'43", McCulloch-Brown County line, Hydrologic Unit 12090106, near left bank at downstream end of pier of old abandoned bridge, 300 ft upstream from bridge on U.S. Highway 377, 0.3 mi south of Winchell, 5.9 mi downstream from Home Creek, and at mile 560.7. DRAINAGE AREA.--25,179 mi², approximately, of which 11,391 mi² probably is noncontributing. PERIOD OF RECORD.--Nov. 1923 to Sept. 1934 published as "near Milburn", June 1939 to Sept. 1993, and Oct. 1997 to current year. Water-quality records.--Chemical data: Nov. 1967 to Sept. 1985, Dec. 1990 to Sept. 1993. Biochemical data: Dec. 1990 to Aug. 1993. Specific conductance: Feb. 1991 to Sept. 1993. Water temperature: Feb. 1991 to Sept. 1993. REVISED RECORDS.--WDR TX-81-3: Drainage area. WDR TX-88-3: 1985. GAGE.--Water-stage recorder. Datum of gage is 1,264.86 ft above sea level. Nov. 1923 to Sept. 1934, nonrecording gage at site 4.2 mi downstream at datum 10.14 ft lower. Jan. 13, 1939, to Mar. 24, 1940, nonrecording gage at present site and datum. Radio telemeter at station REMARKS.—Records good except those for estimated daily discharges, which are poor. Since water year 1931, at least 10% of contributing drainage area has been regulated. At times, flow may also be affected by discharge from the flood-detention pools of 89 floodwater-retarding structures. These flood-detention structures control runoff from 512 mi² above this station. There are many diversions above station for irrigation, municipal supply, and for oil field operation. No flow at times. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--6 years (water years 1925-30) prior to construction of Lake Nasworthy, 798 ft³/s (578,400 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1925-30).--Maximum discharge, $42,300 \text{ ft}^3/\text{s}$ June 15, 1930 (gage height, 38.3 ft, at site 4.2 mi downstream at datum 10.14 ft lower); no flow Aug. 8-10, Sept. 1-5, 1929. EXTREMES OUTSIDE PERIOD OF RECORD.--Highest stages since 1882 were 62.2 ft Sept. 19, 1936, and 56.2 ft Aug. 8, 1906, at railway bridge 1,000 ft upstream and converted to present site and datum, from information by Gulf, Colorado, and Santa Fe Railway Co. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT DEC JAN FEB APR JUL NOV MAR MAY AUG 6 5 4 0 0.0 5.0 4.2 .00 .00 .00 4.1 6.4 .00 7.6 7.5 4 4 0.0 .00 e5.0 .00 0.0 7 4 0.0 e8 5 9.7 .00 e30 .00 .00 9.9 e210 .00 .57 8.8 .00 7.4 .00 3.6 9.7 3.4 9.4 .00 3.1 .00 8.7 5.2 8.0 3.9 3.1 .00 3.2 .00 9.9 5.6 2.0 .00 8.5 8.9 .88 .00 35 7.4 6.2 .00 . 31 7.6 .00 .08 4.6 .00 7.3 9.9 .00 .00 3.5 .00 8.5 2.3 9.4 .00 8.2 2.7 2.7 2.1 . 00 .00 2.2 .00 .00 2.3 7.5 .00 .00 3.0 6.8 .00 .00 71 3.1 6.4 .00 .03 2.5 6.0 . 00 2.0 .00 ___ 8.1 1.8 4.8 .00 8.6 ------2.0 . 00 ------TOTAL 6007 77 647 7 617.3 988 1 106 57 161 03 1358 5 MEAN 33.5 35.9 86.5 64.0 21.6 19.9 32.9 3.44 5.19 45.3 7 5 MTN 0.0 1 8 4 8 0.0 7 3
AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 2001hz, BY WATER YEAR (WY) MEAN MAX (WY) .074 1.09 .000 .000 .000 .000 .000 (WY) ## 08138000 Colorado River at Winchell, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1931 - 2001hz | |---|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 52088.36 | 39471.97 | 434 | | ANNUAL MEAN | 142 | 108 | | | HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | | | 2070 1957
19.6 1999 | | HIGHEST DAILY MEAN | 6350 Nov 3 | 6350 Nov 3 | 67000 Oct 14 1930 | | LOWEST DAILY MEAN | .00 Mar 16 | .00 Oct 1 | .00 Aug 15 1934 | | ANNUAL SEVEN-DAY MINIMUM | .00 Mar 16 | .00 Oct 1 | .00 Aug 15 1934 | | MAXIMUM PEAK FLOW | | 12800 Nov 3 | c76100 Oct 15 1930 | | MAXIMUM PEAK STAGE | 103300 | a19.68 Nov 3 | aa51.80 Oct 15 1930 | | ANNUAL RUNOFF (AC-FT) | | 78290 | 314300 | | 10 PERCENT EXCEEDS | 136 | 131 | 649 | | 50 PERCENT EXCEEDS | 3.6 | | 58 | | 90 PERCENT EXCEEDS | .00 | .00 | 2.6 | - e Estimated h See PERIOD OF RECORD paragraph. z Period of regulated streamflow. c From rating curve extended above 8,600 ft³/s at site then in use. a From floodmark. aa From floodmark at present site and datum. ## 08140770 Lake Coleman near Novice, TX LOCATION.--Lat 32°01'48", long 99°27'54", Coleman County, Hydrologic Unit 12090108, 800 ft left of service outlet structure at Coleman Dam on Jim Ned Creek, 2.0 mi upstream from Salt Branch, 2.5 mi west of U.S. Highway 283, 3.0 mi south of Coleman and Callahan County line, 10.0 mi northeast of Novice, and 14.0 mi north of Coleman. DRAINAGE AREA. -- 292 mi². PERIOD OF RECORD. -- Feb. 1999 to current year. GAGE.--Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records good except those for June 26 through Sept. 30, which are fair. The lake is formed by a rolled earthfill dam 3,200 ft long. Impoundment began Apr. 1966 and dam was completed in May 1966. The top of the dam was raised 2.0 ft in 1975. The dam and reservoir are owned and operated by the city of Coleman. The uncontrolled emergency spillway is 1,500 ft long across natural earth. The uncontrolled morning glory service spillway is 28 ft wide at the crest. A service outlet is provided for small releases through a 24-inch conduit. Water may be pumped from reservoir for municipal and industrial use. Conservation pool storage is 40,000 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |------------------------------|-----------| | | (feet) | | Top of dam | 1,742.0 | | Crest of emergency spillway | 1,726.0 | | Crest of service spillway | 1,717.5 | | Lowest gated outlet (invert) | 1,662.5 | COOPERATION.—The capacity table based on area and capacity table furnished by city of Coleman was revised to reflect topography from recent quadrangle maps east of longitude $99^{\circ}30'$. Record of diversions may be obtained from city of Coleman. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 29,670 acre-ft, Feb. 27, 1999, elevation, 1,712.25 ft; minimum contents, 14,320 acre-ft, Sept. 30, 2001, elevation, 1,700.28 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 18,250 acre-ft, Apr. 11, elevation, 1,704.06 ft; minimum contents, 14,320 acre-ft, Sept. 30, elevation, 1,700.28 ft. RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | 1 | 17540 | 17510 | 17780 | 17530 | 17540 | 17780 | 18070 | 17920 | 17530 | 16630 | 15580 | 14790 | | 2 | 17520 | 17490 | 17750 | 17520 | 17530 | 17790 | 18080 | 17910 | 17530 | 16600 | 15550 | 14780 | | 3 | 17490 | 17640 | 17740 | 17530 | 17530 | 17800 | 18080 | 17900 | 17510 | 16580 | 15510 | 14750 | | 4 | 17470 | 17730 | 17730 | 17530 | 17530 | 17820 | 18080 | 17940 | 17480 | 16550 | 15480 | 14750 | | 5 | 17450 | 17760 | 17740 | 17520 | 17520 | 17820 | 18080 | 18020 | 17440 | 16520 | 15440 | 14730 | | 6 | 17400 | 17830 | 17740 | 17520 | 17520 | 17820 | 18090 | 18040 | 17420 | 16490 | 15410 | 14720 | | 7 | 17340 | 17820 | 17720 | 17520 | 17520 | 17830 | 18090 | 18030 | 17390 | 16450 | 15370 | 14700 | | 8 | 17310 | 17880 | 17720 | 17500 | 17520 | 17870 | 18080 | 18020 | 17360 | 16410 | 15360 | 14690 | | 9 | 17270 | 17910 | 17710 | 17490 | 17550 | 17940 | 18070 | 18010 | 17330 | 16380 | 15330 | 14710 | | 10 | 17250 | 17910 | 17710 | 17510 | 17520 | 17960 | 18070 | 17990 | 17310 | 16360 | 15290 | 14680 | | 11 | 17230 | 17910 | 17680 | 17530 | 17520 | 18000 | 18190 | 17970 | 17290 | 16320 | 15260 | 14660 | | 12 | 17220 | 17910 | 17650 | 17530 | 17520 | 18020 | 18170 | 17960 | 17260 | 16280 | 15230 | 14650 | | 13 | 17210 | 17890 | 17660 | 17540 | 17520 | 18010 | 18180 | 17940 | 17220 | 16240 | 15190 | 14630 | | 14 | 17200 | 17870 | 17660 | 17530 | 17530 | 18030 | 18200 | 17930 | 17180 | 16200 | 15160 | 14610 | | 15 | 17210 | 17860 | 17660 | 17520 | 17530 | 18060 | 18200 | 17910 | 17140 | 16190 | 15150 | 14590 | | 16 | 17220 | 17860 | 17660 | 17510 | 17610 | 18000 | 18180 | 17880 | 17110 | 16150 | 15110 | 14560 | | 17 | 17330 | 17840 | 17630 | 17520 | 17590 | 17990 | 18140 | 17860 | 17070 | 16100 | 15090 | 14540 | | 18 | 17450 | 17820 | 17630 | 17530 | 17590 | 17990 | 18130 | 17840 | 17040 | 16060 | 15100 | 14510 | | 19 | 17450 | 17820 | 17600 | 17520 | 17600 | 18000 | 18130 | 17820 | 17000 | 16020 | 15080 | 14500 | | 20 | 17450 | 17800 | 17600 | 17510 | 17600 | 18010 | 18130 | 17810 | 16970 | 15990 | 15060 | 14480 | | 21 | 17440 | 17790 | 17570 | 17520 | 17590 | 18010 | 18120 | 17750 | 16940 | 15960 | 15030 | 14510 | | 22 | 17450 | 17800 | 17560 | 17490 | 17580 | 18010 | 18120 | 17710 | 16910 | 15930 | 14990 | 14510 | | 23 | 17440 | 17820 | 17560 | 17490 | 17610 | 18010 | 18090 | 17680 | 16880 | 15890 | 14960 | 14530 | | 24 | 17490 | 17860 | 17540 | 17490 | 17720 | 18040 | 18060 | 17650 | 16860 | 15850 | 14920 | 14490 | | 25 | 17490 | 17840 | 17540 | 17480 | 17710 | 18030 | 18040 | 17620 | 16830 | 15820 | 14900 | 14460 | | 26 | 17480 | 17830 | 17580 | 17490 | 17720 | 18020 | 18020 | 17600 | 16790 | 15780 | 14860 | 14440 | | 27 | 17470 | 17820 | 17580 | 17470 | 17740 | 18010 | 18000 | 17580 | 16770 | 15740 | 14840 | 14410 | | 28 | 17480 | 17820 | 17570 | 17500 | 17750 | 18030 | 17980 | 17550 | 16730 | 15730 | 14810 | 14390 | | 29 | 17520 | 17800 | 17560 | 17600 | | 18040 | 17960 | 17530 | 16690 | 15700 | 14780 | 14370 | | 30 | 17510 | 17790 | 17550 | 17580 | | 18050 | 17940 | 17520 | 16650 | 15670 | 14770 | 14340 | | 31 | 17510 | | 17540 | 17550 | | 18060 | 1/940 | 17560 | | 15620 | 14780 | 14340 | | MEAN | 17400 | 17810 | 17640 | 17520 | 17580 | 17960 | 18090 | 17820 | 17120 | 16140 | 15140 | 14580 | | MAX | 17540 | 17910 | 17780 | 17600 | 17750 | 18060 | 18200 | 18040 | 17530 | 16630 | 15580 | 14790 | | MIN | 17200 | 17490 | 17540 | 17470 | 17520 | 17780 | 17940 | 17520 | 16650 | 15620 | 14770 | 14340 | | | | | | | | | | | | | | | | (+) | 1703.39 | 1703.64 | 1703.42 | 1703.42 | 1703.61 | 1703.89 | 1703.78 | 1703.44 | 1702.59 | 1701.60 | 1700.75 | 1700.30 | | (@) | -30 | +280 | -250 | +10 | +200 | +310 | -120 | -380 | -910 | -1030 | -840 | -440 | CAL YR 2000 MAX 22350 MIN 17200 (@) -4790 WTR YR 2001 MAX 18200 MIN 14340 (@) -3200 (@) Change in contents, in acre-feet. ⁽⁺⁾ Elevation, in feet, at end of month. 08140770 Lake Coleman near Novice, TX--Continued ### 08141000 Hords Creek Lake near Valera, TX LOCATION.--Lat $31^{\circ}49'58$ ", long $99^{\circ}33'38$ ", Coleman County, Hydrologic Unit 12090108, at outlet-works structure near right end of dam on Hords Creek, 5.6 mi north of Valera, and 8.8 mi west of Coleman. DRAINAGE AREA. -- 48 mi², approximately. PERIOD OF RECORD.--Apr. 1948 to Sept. 2000 (U.S. Army Corps of Engineers furnished contents), Oct. 2000 to current year. Prior to Oct. 1970, published as "Hords Creek Reservoir". Water-quality records.--Chemical data: Oct. 1969 to Aug. 1982. GAGE. -- Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by a rolled earthfill dam 6,800 ft long, including spillway. Deliberate impoundment of water began Apr. 7, 1948, and the dam was completed in June 1948. The spillway is an excavated channel through natural ground, 500 ft wide, located about 600 ft from the right end of dam. The spillway consists of three concrete conduits; two controlled by 5.0- by 6.0-foot slide gates, and a third uncontrolled ogee spillway 4.0 ft wide and 19.5 ft high. The dam is owned by the U.S. Army Corps of Engineers. The lake is operated for flood control and municipal water supply for the city of Coleman. The capacity table of Aug. 1974 based on a sedimentation survey was made in 1948. Flow is affected at times by discharge from the flood-detention pool of one floodwater-retarding structure with a detention capacity of 1,370 acre-ft. This structure controls runoff from 6.82 mi² in the Jim Ned Creek drainage basin. Conservation pool storage is 8,112 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |--|-----------| | | (feet) | | Top of dam | 1,939.0 | | Design flood | | | Crest of spillway | 1,920.0 | | Crest of spillway (top of conservation pool) | 1,900.0 | | Lowest gated outlet (invert) | 1,856.0 | COOPERATION.--Capacity table dated May 2, 1990 was furnished by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 12,790 acre-ft, May 1, 1956, elevation, 1906.86 ft; maximum elevation, Mar. 4, 1992, elevation, 1907.31 ft; minimum since first appreciable storage in June 1951, 1,550 acre-ft, Sept. 2, 1984, elevation, 1878.01 ft. EXTREMES FOR CURRENT
YEAR.--Maximum contents, 4,540 acre-ft, Apr. 11, elevation, 1,891.25 ft; minimum estimated daily contents, 3,250 acre-ft, Oct. 22. RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | DAILY MEAN VALUES | | | | | | | | | | | | |------|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3410 | 3510 | 4250 | 4140 | 4100 | 4410 | 4470 | 4440 | 4350 | 4070 | 3750 | 3550 | | 2 | 3410 | 3510 | 4240 | 4140 | 4090 | 4420 | 4470 | 4440 | 4350 | 4060 | 3740 | 3540 | | 3 | 3400 | 3750 | 4240 | 4130 | 4090 | 4420 | 4470 | 4440 | 4350 | 4050 | 3730 | 3540 | | 4 | 3390 | 3910 | 4240 | 4130 | 4090 | 4430 | 4470 | 4470 | 4340 | 4040 | 3720 | 3560 | | 5 | 3390 | 4000 | 4240 | 4130 | 4090 | 4440 | 4470 | 4500 | 4330 | 4040 | 3710 | 3550 | | 6 | 3380 | 4250 | 4230 | 4120 | 4080 | 4440 | 4460 | 4510 | 4320 | 4030 | 3700 | 3550 | | 7 | 3370 | 4260 | 4230 | 4120 | 4080 | 4440 | 4460 | 4510 | 4310 | 4020 | 3690 | 3540 | | 8 | 3360 | 4270 | 4220 | 4120 | 4080 | 4450 | 4460 | 4510 | 4300 | 4000 | 3680 | 3530 | | 9 | 3350 | 4290 | 4220 | 4110 | 4090 | 4470 | 4460 | 4500 | 4290 | 3990 | 3670 | 3520 | | 10 | 3340 | 4290 | 4220 | 4120 | 4080 | 4470 | 4450 | 4500 | 4290 | 3980 | 3660 | 3520 | | 10 | 3310 | 1250 | 1220 | 1120 | 1000 | 1170 | 1150 | 1500 | 1250 | 3,000 | 3000 | 3320 | | 11 | 3330 | 4290 | 4210 | 4120 | 4080 | 4470 | 4530 | 4490 | 4280 | 3970 | 3650 | 3510 | | 12 | 3330 | 4300 | 4210 | 4120 | 4080 | 4470 | 4530 | 4490 | 4270 | 3960 | 3640 | 3500 | | 13 | 3330 | 4300 | 4210 | 4120 | 4080 | 4470 | 4530 | 4490 | 4260 | 3950 | 3630 | 3500 | | 14 | 3330 | 4290 | 4200 | 4120 | 4080 | 4480 | 4530 | 4480 | 4250 | 3940 | 3620 | 3490 | | 15 | 3320 | 4290 | 4200 | 4110 | 4080 | 4480 | 4530 | 4470 | 4230 | 3930 | 3620 | 3480 | | 1.0 | 2222 | 4000 | 4000 | 4110 | 4100 | 4.450 | 4500 | 4.450 | 4000 | 2000 | 2610 | 2400 | | 16 | e3300 | 4290 | 4200 | 4110 | 4100 | 4470 | 4530 | 4470 | 4220 | 3920 | 3610 | 3480 | | 17 | e3300 | 4280 | 4190 | 4110 | 4100 | 4470 | 4520 | 4460 | 4210 | 3910 | 3610 | 3470 | | 18 | e3300 | 4280 | 4180 | 4110 | 4100 | 4470 | 4510 | 4450 | 4200 | 3900 | 3610 | 3460 | | 19 | e3300 | 4280 | 4180 | 4110 | 4100 | 4470 | 4510 | 4450 | 4190 | 3890 | 3600 | 3450 | | 20 | e3300 | 4270 | 4180 | 4100 | 4100 | 4470 | 4510 | 4440 | 4180 | 3870 | 3590 | 3450 | | 21 | e3300 | 4270 | 4170 | 4100 | 4100 | 4470 | 4510 | 4430 | 4170 | 3860 | 3580 | 3450 | | 22 | e3250 | 4270 | 4160 | 4100 | 4100 | 4470 | 4500 | 4420 | 4160 | 3850 | 3570 | 3450 | | 23 | e3400 | 4270 | 4160 | 4100 | 4110 | 4470 | 4490 | 4410 | 4150 | 3840 | 3560 | 3460 | | 24 | e3400 | 4270 | 4160 | 4090 | 4150 | 4470 | 4490 | 4400 | 4140 | 3830 | 3550 | 3450 | | 25 | e3400 | 4270 | 4160 | 4090 | 4140 | 4470 | 4480 | 4390 | 4130 | 3820 | 3540 | 3440 | | 26 | e3400 | 4270 | 4160 | 4090 | 4150 | 4460 | 4470 | 4380 | 4120 | 3810 | 3540 | 3440 | | 27 | 3420 | 4260 | 4160 | 4090 | 4240 | 4460 | 4470 | 4370 | 4110 | 3800 | 3560 | 3430 | | 28 | 3420 | 4260 | 4150 | 4090 | 4390 | 4460 | 4460 | 4370 | 4100 | 3790 | 3560 | 3420 | | 29 | 3500 | 4260 | 4150 | 4110 | 4550 | 4460 | 4450 | 4360 | 4080 | 3780 | 3550 | 3410 | | 30 | 3510 | 4250 | 4150 | 4100 | | 4460 | 4450 | 4350 | 4070 | 3770 | 3550 | 3410 | | 31 | 3510 | | 4140 | 4100 | | 4460 | | 4360 | | 3760 | 3550 | 3410 | | 31 | 3310 | | 4140 | 4100 | | 4400 | | 4300 | | 3700 | 3330 | | | MEAN | 3370 | 4190 | 4190 | 4110 | 4110 | 4460 | 4490 | 4440 | 4220 | 3920 | 3620 | 3480 | | MAX | 3510 | 4300 | 4250 | 4140 | 4390 | 4480 | 4530 | 4510 | 4350 | 4070 | 3750 | 3560 | | MIN | 3250 | 3510 | 4140 | 4090 | 4080 | 4410 | 4450 | 4350 | 4070 | 3760 | 3540 | 3410 | | (+) | 1887.67 | 1890.32 | 1889.96 | 1889.80 | 1890.77 | 1891.01 | 1890.95 | 1890.66 | 1889.72 | 1888.60 | 1887.82 | 1887.28 | | (@) | +100 | +740 | -110 | -40 | +290 | +70 | -10 | -90 | -290 | -310 | -210 | -140 | | / | 00 | ., 10 | | | . 250 | .,0 | | | 2,0 | 510 | 220 | | CAL YR 2000 MAX 4500 MIN 2600 (@) +740 WTR YR 2001 MAX 4530 MIN 3250 (@) 0 ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet. e Estimated 08141000 Hords Creek Lake near Valera, TX--Continued ### 08143000 Lake Brownwood near Brownwood, TX LOCATION.--Lat 31°50′13", long 99°00′13", Brown County, Hydrologic Unit 12090107, on abandoned service outlet structure near center of dam on Pecan Bayou, 0.2 mi downstream from Jim Ned Creek, 8.0 mi north of Brownwood, and 57.1 mi upstream from mouth. DRAINAGE AREA. -- 1,565 mi². PERIOD OF RECORD.--July 1933 to May 1941, Nov. 1944 to Sept. 1986, and Feb. 1999 to current year. Fragmentary records July 1934 to Apr. 1935 and Oct. 1940 to May 1941. Prior to Oct. 1970, published as "Brownwood Reservoir". Water-quality records.--Chemical data: Oct. 1970 to Apr. 1984. REVISED RECORDS.--WSP 1212: 1948-50. WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is sea level. From July 1933 to May 1941, July 23, 1946 to May 12, 1948, non-recording gage at irrigation outlet structure near right end of dam, Nov. 21, 1944 to July 22, 1946, water-stage recorder on irrigation outlet structure near right end of dam, May 13, 1948 to June 30, 1949, water-stage recorder in right downstream corner of outlet control tower, July 1, 1949 to Sept. 30, 1986, non-recording gage at irrigation outlet structure near right end of dam all at datum 0.50 ft higher. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records good. The lake is formed by a rolled earthfill dam, 1,580 ft long. The dam was completed in 1933 and deliberate impoundment began in July 1933. In Aug. 1983, work was completed to reinforce backside of dam and dam was raised 20 ft. The uncontrolled emergency spillway is a broad-crested weir 479 ft long located 800 ft to left of dam. The controlled service spillway consists of two 48-inch horseshoe-shaped concrete conduits. Water is used for irrigation, municipal, and industrial supply. Flow is affected at times by discharge from the flood-detention pools of 59 floodwater-retarding structures with a combined capacity of 73,310 acre-ft. These structures control runoff from 353 mi² in the Jim Ned Creek and Pecan Bayou drainage basins. The dam is owned by Brown County WID No. 1. Conservation pool storage is 131,428 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |------------------------------|-----------| | | (feet) | | Top of dam | 1,470.0 | | Crest of spillway | 1,424.6 | | Lowest gated outlet (invert) | 1,329.5 | COOPERATION.--The capacity table dated Feb. 23, 1999, was furnished by Brown County Water Improvement District No. 1 and is based on a volumetric survey of Apr. 1997 by Texas Water Development Board. Records of diversions may be obtained from the city of Brownwood. EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 192,300 acre-ft, May 2, 1956, elevation, 1,430.9 ft; minimum contents observed, 11,900 acre-ft, July 15, 1934, elevation, 1,389.0 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 133,700 acre-ft, May 7, elevation, 1,424.83 ft; minimum contents, 80,650 acre-ft, Oct. 15, elevation, 1,415.65 ft. RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--------------------------------|--|--|--|--|--|--|--| | 1 | 82580 | 84440 | 109600 | 108000 | 108400 | 123300 | 129400 | 130600 | 129700 | 122900 | 114200 | 109800 | | 2 | 82420 | 84460 | 109400 | 108000 | 108400 | 124200 | 129400 | 130500 | 129600 | 122700 | 113900 | 109800 | | 3 | 82270 | 85880 | 109300 | 107900 | 108400 | 124600 | 129400 | 130500 | 129400 | 122500 | 113700 | 109800 | | 4 | 82140 | 89800 | 109300 | 107900 | 108400 | 124900 | 129500 | 130600 | 129200 | 122300 | 113400 | 110000 | | 5 | 82020 | 91530 | 109200 | 107900 | 108400 | 125000 | 129500 | 132000 | 129000 | 122100 | 113200 | 110000 | | 6 | 81840 | 102600 | 109200 | 107900 | 108400 | 125100 | 129500 | 133100 | 128800 | 121900 | 112900 | 110100 | | 7 | 81570 | 106400 | 109100 | 107900 | 108300 | 125200 | 129500 | 133600 | 128600 | 121600 | 112600 | 110000 | | 8 | 81340 | 107600 | 109100 | 107800 | 108400 | 125600 | 129500 | 133500 | 128400 | 121300 | 112300 | 109900 | | 9 | 81180 | 108600 | 109000 | 107700 | 108600 | 126500 | 129500 | 133300 | 128200 | 121100 | 112000 | 110100 | | 10 | 81060 | 109100 | 108900 | 107800 | 108400 | 127200 | 129400 | 133100 | 128000 | 120800 | 111700 | 110100 | | 11 | 80940 | 109300 | 108900 | 107900 | 108300 | 127700 | 129700 | 132900 | 127800 | 120500 | 111400 | 110000 | | 12 | 80850 | 109500 | 108800 | 107800 | 108300 | 128400 | 130500 | 132700 | 127500 | 120200 | 111100 | 109900 | | 13 | 80790 | 109600 | 108700 | 107900 | 108300 | 128500 | 131000 | 132500 | 127200 | 119900 | 110900 | 109800 | | 14 | 80740 | 109600 | 108700 | 107900 | 108400 | 128700 | 131200 | 132400 | 127000 | 119600 | 110700 | 109700 | | 15 | 80830 | 109600 | 108600 | 107800 | 108500 | 129100 | 131300 | 132200 | 126800 | 119300 | 110600 | 109600 | | 16 | 81180 | 109700 | 108700 | 107800 | 111000 | 128800 | 131300 | 132100 | 126600 | 119000 | 110700 | 109500 | | 17 | 81230 | 109600 | 108500 | 107800 | 113000 | 128800 | 131300 | 131900 | 126300 |
118700 | 110700 | 109400 | | 18 | 81320 | 109600 | 108500 | 107900 | 113500 | 128800 | 131200 | 131800 | 126100 | 118400 | 110700 | 109300 | | 19 | 81300 | 109600 | 108300 | 107800 | 113700 | 128900 | 131100 | 131600 | 125800 | 118100 | 110600 | 109300 | | 20 | 81310 | 109500 | 108300 | 107700 | 113900 | 128900 | 131100 | 131600 | 125500 | 117700 | 110500 | 109200 | | 21 | 81300 | 109500 | 108200 | 107700 | 114000 | 128900 | 131000 | 131400 | 125300 | 117400 | 110300 | 110900 | | 22 | 81310 | 109400 | 108000 | 107600 | 114000 | 128900 | 131100 | 131200 | 125100 | 117100 | 110100 | 111100 | | 23 | 81400 | 109500 | 108000 | 107600 | 114100 | 128900 | 131600 | 131000 | 124800 | 116800 | 109900 | 111400 | | 24 | 81760 | 109700 | 107900 | 107600 | 116800 | 129200 | 131400 | 130800 | 124600 | 116500 | 109700 | 111300 | | 25 | 81810 | 109700 | 107800 | 107500 | 118300 | 129100 | 131300 | 130600 | 124300 | 116200 | 109500 | 111100 | | 26
27
28
29
30
31 | 81820
81790
81850
83410
84230
84380 | 109700
109700
109700
109600
109600 | 108200
108300
108200
108200
108100
108100 | 107600
107600
107800
108400
108500 | 118800
119200
121600
 | 129000
129000
129200
129300
129300
129300 | 131200
131100
131000
130800
130700 | 130600
130600
130400
130200
130100
130000 | 124100
123900
123600
123300
123100 | 115900
115600
115400
115100
114800
114500 | 109400
109200
109400
109800
109700
109700 | 111000
110900
110800
110600
110500 | | MEAN | 81740 | 105400 | 108600 | 107900 | 111700 | 127700 | 130500 | 131600 | 126600 | 118900 | 111100 | 110200 | | MAX | 84380 | 109700 | 109600 | 108500 | 121600 | 129300 | 131600 | 133600 | 129700 | 122900 | 114200 | 111400 | | MIN | 80740 | 84440 | 107800 | 107500 | 108300 | 123300 | 129400 | 130000 | 123100 | 114500 | 109200 | 109200 | | (+) | 1416.41 | 1420.99 | 1420.74 | 1420.81 | 1422.96 | 1424.18 | 1424.39 | 1424.28 | 1423.19 | 1421.81 | 1421.02 | 1421.15 | | (@) | +1740 | +25220 | -1500 | +400 | +13100 | +7700 | +1400 | -700 | -6900 | -8600 | -4800 | +800 | CAL YR 2000 MAX 109700 MIN 73190 (@) +23510 WTR YR 2001 MAX 133600 MIN 80740 (@) +27860 ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet. 08143000 Lake Brownwood near Brownwood, TX--Continued ## 08143600 Pecan Bayou near Mullin, TX LOCATION.--Lat $31^{\circ}31'02$ ", long $98^{\circ}44'25$ ", Mills County, Hydrologic Unit 12090107, on right bank 44 ft downstream from bridge on Farm Road 573, 0.6 mi downstream from Blanket Creek, 5.5 mi southwest of Mullin, and 13.6 mi upstream from mouth. DRAINAGE AREA. -- 2,073 mi². PERIOD OF RECORD.--Oct. 1967 to current year. Water-quality records.--Chemical data: Oct. 1967 to Aug. 1996. Biochemical data: Nov. 1991 to Aug. 1996. Specific conductance: Oct. 1967 to Sept. 1991. Water temperature: Oct. 1967 to Sept. 1991. REVISED RECORDS.--WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,202.93 ft above sea level. Radio telemeter at station. Satellite telemeter at REMARKS.--No estimated daily discharges. Records good. Since installation of gage in water year 1968, at least 10% of contributing drainage area has been regulated. In addition, flow from 152 mi² (from an intervening drainage area of 641 mi²) above this station and below Lake Brownwood is partly controlled by 41 floodwater-retarding structures. No flow at times many years. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES | | | | | | | | | | | | | |---|--------------------------------------|--------------------------------------|---|-------------------------------------|-------------------------------------|--|---|------------------------------------|--|--|---|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | 72
34
2530
1500
407 | 9.9
10
11
11 | 13
15
14
14
14 | 47
35
31
28
26 | 297
240
164
137
111 | 70
65
62
61
64 | 35
33
32
37
118 | 14
23
16
11
9.4 | 3.7
4.2
3.6
3.7
4.3 | .48
.36
.27
.18 | 45
23
15
68
64 | | 6
7
8
9
10 | .00
.00
.00
.00 | 1440
377
208
208
128 | 12
12
11
11
12 | 13
13
12
11
12 | 24
23
22
22
21 | 90
74
138
339
198 | 57
52
50
49
45 | 241
201
223
205
166 | 9.4
7.9
6.8
6.9
8.7 | 4.3
4.1
3.1
2.5
2.2 | .06
.29
.61
.59 | 26
17
14
13
11 | | 11
12
13
14
15 | .00
.00
.00
.00 | 72
50
38
30
27 | 14
12
12
11
11 | 13
19
19
15
14 | 20
20
26
28
27 | 139
318
190
144
152 | 185
104
73
59
48 | 134
106
85
89
74 | 8.9
8.5
6.8
5.8 | 2.0
2.0
1.9
1.8
1.7 | 1.4
1.8
1.6
4.2 | 10
12
9.9
8.8
8.1 | | | .00
174
204
45
21 | 24
21
26
21
18 | 11
11
11
10
9.7 | 13
15
14
21
21 | 538
448
159
96
73 | 115
90
83
91
87 | 42
48
50
52
44 | 57
46
41
36
32 | 14
7.5
6.1
5.9
5.2 | 1.5
1.3
1.1
.96 | 20
11
8.9
8.4
6.8 | 7.8
7.9
8.1
11
8.4 | | | 24
32
20
1370
130 | 16
15
14
17
19 | 9.6
9.6
11
11 | 18
15
14
13
12 | 62
53
51
71
69 | 76
72
69
96
120 | 40
37
722
412
161 | 30
26
24
23
21 | 4.3
3.6
4.8
6.9
6.4 | .82
.76
.72
.71 | 6.4
5.7
5.5
4.8
4.1 | 24
181
61
43
27 | | | 36
16
10
1940
754
201 | 20
17
14
13
12 | 13
15
30
19
16
14 | 12
13
18
212
176
80 | 55
177
581
 | 99
77
77
83
83
77 | 95
66
52
45
40 | 20
21
28
21
17
14 | 5.7
5.4
4.7
3.9
3.7 | .74
.73
.68
.62
.55 | 3.8
3.3
2.9
111
77
88 | 18
13
10
9.3
8.6 | | TOTAL 4
MEAN
MAX
MIN
AC-FT | 161
1940
.00
9870 | 7388
246
2530
12
14650 | 383.8
12.4
30
9.6
761 | 878
28.3
212
11
1740 | 2833
101
581
20
5620 | 4126
133
339
69
8180 | 2950
98.3
722
37
5850 | 2236
72.1
241
14
4440 | 389.2
13.0
158
3.6
772 | 58.43
1.88
4.3
.52
116 | 427.47
13.8
111
.06
848 | 782.9
26.1
181
7.8
1550 | | | | | | | | | BY WATER | | | 50.0 | 05.4 | EC 0 | | MEAN
MAX
(WY)
MIN
(WY) | 147
987
1975
.59
1989 | 85.1
1227
1975
4.79
1989 | 183
4741
1992
3.90
1984 | 138
1965
1968
4.57
1986 | 230
4416
1992
6.52
2000 | 236
2361
1992
5.45
1996 | 220
3510
1990
3.63
1984 | 279
1975
1994
.12
1984 | 341
2898
1997
.000
1984 | 52.3
434
1997
.000
1974 | 25.4
195
1971
.000
1980 | 76.8
980
1991
.000
2000 | | SUMMARY | STATIST | CICS | FOR | 2000 CALEN | DAR YEAR | F | OR 2001 WAS | TER YEAR | | WATER Y | EARS 1968 | - 2001 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 19594.56
53.5
2530
.00
.00
38870
33
4.8
.00 | Nov 3
Aug 24 | | 27429.80
75.2
2530
.00
4760
12.27
54410
160
17 | Nov 3
Oct 1
Oct 1
Nov 3
Nov 3 | | 167
1245
9.0
37000
.0
38300
42.1
121200
253
14
2.7 | Apr :
00 Jun :
00 Jun :
Apr : | 1992
1984
27 1990
29 1974
29 1974
27 1990
27 1990 | | # 08143600 Pecan Bayou near Mullin, TX--Continued ## 08144500 San Saba River at Menard, TX LOCATION.--Lat 30°55′08", long 99°47′07", Menard County, Hydrologic Unit 12090109, at downstream side of bridge on U.S. Highway 83 in Menard, 1.1 mi downstream from Las Moras Creek, 1.9 mi upstream from Volkmann Draw, and 116.3 mi upstream from mouth. DRAINAGE AREA.--1,135 mi², of which 6.6 mi² probably is noncontributing. PERIOD OF RECORD.--Sept. 1915 to Sept. 1993, Oct. 1997 to current year. Water-quality records.--Chemical data: Nov. 1964 to July 1967. REVISED RECORDS.--WDR TX-81-3: Drainage area. WSP 1512: 1918-20, 1922-25, 1926(M), 1927-32, 1934(M), 1936, 1938(M). GAGE.--Water-stage recorder. Datum of gage is 1,863.05 ft above sea level. Sept. 14, 1915, to Mar. 12, 1924, nonrecording gage at site 635 ft downstream at datum 2.20 ft lower. Mar. 13, 1924, to Feb. 21, 1939, nonrecording gage at site 1,000 ft upstream at datum 2.00 ft higher. Feb. 22, 1939, to Jan. 25, 1940, nonrecording gage at present site and datum. Jan. 26, 1940, to Sept. 19, 1957, water-stage recorder at site 240 ft to right at present datum. Feb. 8, 1962, to Jan. 22, 1963, nonrecording gage at site 600 ft downstream at present datum. Radio telemeter at station. Satellite telemeter at station. REMARKS.--No estimated daily discharges.
Records fair. Since about 1890, low flow regulated during irrigation season by diversions to Noyes Canal at Menard (discontinued station 08144000) 4.6 mi upstream and diversions by pumping at several locations upstream. No flow at times. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage-discharge relation at medium to high stages and computes and publishes streamflow record. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, 23.3 ft June 6, 1899, present site and datum, from information by local resident. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER
Y MEAN | YEAR OCTOBER
VALUES | 2000 TO | SEPTEMBER | 2001 | | | |--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|------------------------------------|------------------------------------|------------------------|--------------------------------------|-------------------------------------|--|-------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.2
5.1
5.5
5.7
5.9 | 43
156
17100
2970
400 | 56
55
58
60
57 | 48
49
50
50
49 | 47
47
47
46
45 | 44
27
44
46
44 | 26
26
25 | 23
23
22
25
31 | 31
25
17
16
15 | 7.2
14
18
13
11 | 3.2
3.2
3.6
3.9
4.1 | 20
18
18
17
57 | | 6
7
8
9
10 | 5.6
6.0
7.2
9.2
9.7 | 700
320
152
109
86 | 56
54
55
54
53 | 49
49
48
48
50 | 45
45
46
45
43 | 34
24
24
27
26 | 24
22
23 | 32
40
111
52
33 | 14
15
15
15
16 | 10
8.9
7.6
7.1
7.1 | 4.8
4.4
4.7
4.9
5.1 | 68
26
18
2690
309 | | 11
12
13
14
15 | 9.7
9.8
9.9
9.7 | 76
71
68
65
64 | 53
53
52
52
52 | 53
51
51
50
49 | 44
45
46
46
46 | 24
24
23
24
23 | 36
31
29 | 29
28
27
25
23 | 15
15
15
14
14 | 6.9
6.9
5.4
5.8
6.3 | 5.0
4.9
4.6
4.5
5.1 | 105
65
53
47
43 | | 16
17
18
19
20 | 38
39
23
16
13 | 64
63
86
79
70 | 52
50
50
50
50 | 49
50
50
50
49 | 55
51
47
46
46 | 23
22
26
27
26 | 25
24
25 | 22
20
19
20
20 | 10
9.6
9.6
9.7
8.8 | 6.1
5.5
5.5
5.2
5.3 | 6.6
11
11
13
9.9 | 44
43
42
60
76 | | 21
22
23
24
25 | 13
15
24
38
26 | 66
65
64
63
61 | 50
50
50
50
50 | 49
48
47
47
45 | 45
44
44
46
44 | 25
24
24
24
23 | 25
29
27 | 19
17
17
18
17 | 8.2
8.1
7.9
10 | 5.3
4.9
4.8
4.8
4.1 | 8.1
7.2
6.8
6.4
5.3 | 54
58
56
48
45 | | 26
27
28
29
30
31 | 22
16
15
2410
532
72 | 61
60
59
57
56 | 55
57
52
50
50
49 | 45
47
50
58
54
48 | 42
43
44
 | 23
26
28
27
27
26 | 24
23
23
22 | 17
18
17
16
16 | 10
9.5
8.5
7.5
6.9 | 3.8
4.4
5.0
4.9
4.7
3.6 | 5.2
15
120
120
39
24 | 44
44
43
43
42 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3428.2
111
2410
5.1
6800 | 23354
778
17100
43
46320 | 1635
52.7
60
49
3240 | 1530
49.4
58
45
3030 | 1280
45.7
55
42
2540 | 859
27.7
46
22
1700 | 26.1
39
22 | 815
26.3
111
16
1620 | 387.3
12.9
31
6.9
768 | 213.1
6.87
18
3.6
423 | 474.5
15.3
120
3.2
941 | 4296
143
2690
17
8520 | | STATIS | TICS OF | MONTHLY MEA | N DATA FO | R WATER Y | EARS 191 | 6 - 200 | 1h, BY WATER | YEAR (WY | () | | | | | MEAN
MAX
(WY)
MIN
(WY) | 88.3
914
1942
.000
1957 | 45.5
778
2001
.000
1957 | 31.9
152
1985
.000
1955 | 32.0
80.4
1985
.035
1957 | 38.1
261
1958
.82
1955 | 32.9
251
1922
.99
1956 | 1206
1922
.89 | 76.3
1631
1957
1.22
1964 | 56.7
667
1958
.000
1953 | 101
5140
1938
.000
1952 | 42.2
869
1974
.000
1952 | 134
2870
1936
.000
1954 | ## 08144500 San Saba River at Menard, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YE | EAR WATER YEARS 1916 - 2001h | |--------------------------|------------------------|-------------------|------------------------------| | ANNUAL TOTAL | 31449.60 | 39054.1 | | | ANNUAL MEAN | 85.9 | 107 | 62.3 | | HIGHEST ANNUAL MEAN | | | 485 1938 | | LOWEST ANNUAL MEAN | | | 6.12 1952 | | HIGHEST DAILY MEAN | 17100 Nov 3 | 17100 Nov | 3 53300 Jul 23 1938 | | LOWEST DAILY MEAN | .56 Aug 13 | 3.2 Aug | 1 .00 Jul 12 1918 | | ANNUAL SEVEN-DAY MINIMUM | .97 Aug 12 | 3.8 Jul | 30 .00 Jul 19 1918 | | MAXIMUM PEAK FLOW | | 47000 Nov | 3 c130000 Jul 23 1938 | | MAXIMUM PEAK STAGE | | a18.00 Nov | 3 a22.20 Jul 23 1938 | | ANNUAL RUNOFF (AC-FT) | 62380 | 77460 | 45140 | | 10 PERCENT EXCEEDS | 56 | 61 | 59 | | 50 PERCENT EXCEEDS | 14 | 26 | 22 | | 90 PERCENT EXCEEDS | 2.9 | 5.6 | 2.2 | See PERIOD OF RECORD paragraph. From rating curve extended above $56,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of $130,000~{\rm ft}^3/{\rm s}$. From floodmark. ## 08144600 San Saba River near Brady, TX LOCATION.--Lat 31°00′14", long 99°16′07", McCulloch County, Hydrologic Unit 12090109, on right bank at downstream side of bridge on U.S. Highways 87 and 377, 0.4 mi upstream from Hudson Branch, and 8.4 mi southeast of Brady, and 72.9 mi upstream from mouth. DRAINAGE AREA.--1,633 mi^2 , of which 6.60 mi^2 probably is noncontributing. PERIOD OF RECORD. -- July 1979 to Sept. 1993, Oct. 1997 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,530.98 ft above sea level. Radio telemeter at station. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. No known regulation. Since about 1890, water diverted to Noyes Canal at Menard (discontinued station 08144000) during irrigation season. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record. EXTREMES OUTSIDE PERIOD OF RECORD.--Highest stage since June 1899, 33.8 ft July 23, 1938, from floodmark on left bank 150 ft upstream from present site. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE.
MEAN VA | AR OCTOBER
LUES | 2000 TO | SEPTEMBER | 2001 | | | |--|---|---|--|---|-------------------------------------|-------------------------------------|--|---|------------------------------------|---|------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .10
.09
.08
.07 | 182
112
19300
12000
1250 | 88
83
92
97
92 | 61
59
58
59 | 65
60
58
57
56 | 55
56
60
52
53 | 51
50
49
48
46 | 30
29
31
38
736 | 27
29
43
40
30 | 10
9.2
8.0
7.1
6.6 | 1.0
.98
.95
1.0 | 45
33
27
26
21 | | 6
7
8
9
10 | .05
.10
.25
.18 | 4310
728
454
305
227 | 88
82
80
76
74 | 58
58
55
54
58 | | 56
54
60
62
47 | 44
41
38
38
41 | 434
113
94
193
139 | 26
24
23
23
22 | 6.0
e6.0
e6.0
6.5
6.1 | 1.1
1.1
1.1
1.1 | 24
38
63
1390
1390 | | 11
12
13
14
15 | .15
.16
.16
.16
.40 | 185
159
138
123
114 | 76
74
73
69
70
72
69 | 65
61
62
59
57 | 51
53
57
57
59 | 45
44
39
40
41 | 42
40
55
57
48 | 82
85
67
56
52 | 22
21
20
16
23 | 6.0
5.9
5.2
4.5
3.9 | 1.0
1.0
.93
1.0 | 273
136
79
61
50 | | 16
17
18
19
20 | 3.0
46
31
49
35 | 121
113
329
324
206 | 69
66
63
62
65 | 57
57
59
59
57 | 93
77
73
69
64 | 37
35
50
64
50 | 44
41
40
39
39 | 48
46
43
42
43 | 20
19
17
17
16 | 3.2
2.7
2.4
2.1
1.9 | 1.4
1.5
1.6
1.6 | 44
41
37
36
34 | | 21
22
23
24
25 | 27
25
1500
698
103 | 168
148
152
140
121 | 61
61
61
61
64 | 55
53
52
51
51 | 62
60
64
62
58 | 47
45
43
51
51 | 39
39
76
69
46 | 41
38
36
31
31 | 15
13
15
19
12 | 1.7
1.6
1.5
1.4 | 1.3
1.1
1.0
.96 | 62
67
51
45
43 | |
26
27
28
29
30
31 | 65
47
42
797
1940
404 | 113
103
108
93
91 | 74
76
71
68
63
61 | 51
53
56
81
72
70 | 58
57
55

 | 47
48
56
55
55 | 40
38
34
32
30 | 33
30
28
25
24
25 | 12
11
11
11
11 | 1.5
1.4
1.3
1.3
1.2 | 7.9 | 42
39
37
36
35 | | TOTAL
MEAN
MAX
MIN
AC-FT | 5814.17
188
1940
.05
11530 | 41917
1397
19300
91
83140 | 2251
72.6
97
61
4460 | 1817
58.6
81
51
3600 | 1694
60.5
93
51
3360 | 1552
50.1
64
35
3080 | 1334
44.5
76
30
2650 | 2743
88.5
736
24
5440 | 608
20.3
43
11
1210 | | 191.32
6.17
75
.89
379 | 4305
144
1390
21
8540 | | | | | | | | | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 54.0
188
2001
3.35
2000 | 118
1397
2001
16.5
2000 | 83.0
516
1985
22.6
1986 | 65.0
282
1985
24.0
2000 | 71.6
400
1992
23.3
2000 | 61.1
160
1992
18.3
2000 | 49.3
144
1992
16.3
1986 | 61.1
167
1987
6.35
1984 | 90.9
511
1987
.75
1984 | 73.6
901
1990
.49
1998 | 50.2
543
1990
.13
2000 | 182
1631
1980
.074
1984 | | SUMMAI | RY STATIST | CICS | FOR 2 | 000 CALENI | DAR YEAR | F | OR 2001 WAT | TER YEAR | | WATER Y | ZEARS 1979 | - 2001h | | ANNUAL HIGHES LOWES HIGHES LOWES ANNUAL MAXIM MAXIM ANNUAL 10 PEI 50 PEI | L TOTAL L MEAN T ANNUAL T ANNUAL T ANNUAL T DAILY ME L SEVEN-DA M PEAK FI M PEAK SI L RUNOFF (RCENT EXCE RCENT EXCE RCENT EXCE | MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN | | 54262.37
148
19300
.02
.04
107600
104
17 | Nov 3
Sep 3
Aug 30 | | 19300
.05
.08
43800
a20.10
127600
113
47
1.2 | Nov 3
Oct 6
Oct 1
Nov 3
Nov 3 | | 80.3
256
15.4
23900
.0
66000
25.5
58190
39
4.4 | Sep | 1990
2000
8 1980
6 1999
6 1999
8 1980
8 1980 | e Estimated h See PERIOD OF RECORD paragraph. a From floodmark. 08144600 San Saba River near Brady, TX--Continued ### 08144900 Brady Creek Reservoir near Brady, TX LOCATION.--Lat 31°08'17", long 99°23'07", McCulloch County, Hydrologic Unit 12090110, at mouth of Bear Creek on Brady Creek, 280 ft upstream from Farm Road 3022 over Brady Creek Dam, 3.0 mi west of Brady, and 34.1 mi upstream from mouth. DRAINAGE AREA. -- 523 mi². PERIOD OF RECORD.--May 1963 to Sept. 1983, Jan. 1999 to current year. Water-quality records.--Chemical data: Sept. 1964 to Apr. 1983. REVISED RECORDS.--WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are fair. The reservoir is formed by a compacted earthfill dam 8,400 ft long. The dam was completed and storage began in May 1963. The dam was built by the city of Brady in cooperation with the Natural Resources Conservation Service and the Farmers Home Administration for flood control, municipal, and industrial water supply. The spillway is a cut channel through natural ground 1,000 ft wide located at right end of dam. The service spillway is an uncontrolled concrete drop-inlet structure that discharges through a 7.0 by 7.0-foot concrete box conduit and is designed to discharge 4,000 ft³/s at a 19.4-ft head. The gated outlet is a 36-inch pipe that extends through the embankment and is equipped with three sluice gates for controlled releases downstream. Flow into reservoir is affected at times by discharge from the flood-detention pools of 35 floodwater-retarding structures with a combined detention capacity of 77,950 acre-ft. These structures were built during the period Feb. 1955 to July 1962 and control runoff from 263 mi² in the Brady Creek watershed above this station. Conservation pool storage is 30,430 acre-ft. Data regarding the dam are given in Brady Creek watershed above this station. Conservation pool storage is 30,430 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |------------------------------|-----------| | | (feet) | | Top of dam | 1,783.0 | | Crest of emergency spillway | 1,762.4 | | Crest of service spillway | 1,743.0 | | Lowest gated outlet (invert) | 1,712.0 | COOPERATION. -- The capacity table dated May 22, 1963, was prepared from curve obtained from the city of Brady. The capacity curve is based on U.S. Geological Survey topographic map but was not adjusted for earth material that might have been moved. Records of diversions may be obtained from the city of Brady. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 40,880 acre-ft, Sept. 24, 1971, elevation, 1,747.70 ft; minimum contents, 1,030 acre-ft, Sept. 18, 1964, elevation, 1,710.40 ft. EXTREMES FOR CURRENT YEAR. -- Maximum contents, 29,860 acre-ft, Apr. 11, elevation, 1,742.71 ft; minimum contents, 9,350 acre-ft, Oct. 11, elevation, 1,728.31 ft. > RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|-----------------------------|--|--|--|---|--|--|---| | 1 | 9540 | 10460 | 29430 | 29140 | 29180 | 29360 | 29560 | 29100 | 28710 | 27460 | 25930 | 25020 | | 2 | 9520 | 10650 | 29400 | 29140 | 29160 | 29360 | 29570 | e29100 | 28720 | 27440 | 25880 | 25000 | | 3 | 9510 | 17920 | 29390 | 29140 | 29160 | 29380 | 29580 | e29000 | 28680 | 27440 | 25830 | 24980 | | 4 | 9490 | 24300 | 29420 | 29120 | 29160 | 29400 | 29580 | e29300 | 28630 | 27400 | 25790 | 24940 | | 5 | 9470 | 25250 | 29420 | 29120 | 29150 | 29390 | 29580 | e29400 | 28580 | 27360 | 25750 | 24920 | | 6 | 9450 | 27340 | 29420 | 29110 | 29140 | 29380 | 29580 | e29400 | 28560 | 27320 | 25710 | 24890 | | 7 | 9420 | 28230 | 29420 | 29100 | 29140 | 29380 | 29580 | e29400 | 28520 | 27270 | 25650 | 24850 | | 8 | 9410 | 28680 | 29420 | 29070 | 29150 | 29410 | 29580 | e29400 | 28470 | 27200 | 25610 | 24810 | | 9 | 9390 | 28970 | 29410 | 29060 | 29170 | 29440 | 29570 | e29400 | 28430 | 27150 | 25540 | 25220 | | 10 | 9380 | 29120 | 29400 | 29080 | 29130 | 29430 | 29560 | e29300 | 28390 | 27110 | 25490 | 25380 | | 11 | 9360 | 29230 | 29380 | 29110 | 29110 | 29440 | 29750 | e29300 | 28360 | 27060 | 25440 | 25380 | | 12 | e9350 | 29340 | 29330 | 29100 | 29130 | 29590 | 29730 | e29300 | 28310 | 27020 | 25390 | 25360 | | 13 | e9350 | 29360 | 29320 | 29120 | 29140 | 29600 | 29710 | e29300 | 28250 | 26960 | 25330 | 25320 | | 14 | e9350 | 29340 | 29320 | 29110 | 29150 | 29600 | 29710 | e29300 | 28200 | 26910 | 25330 | 25290 | | 15 | e9400 | 29340 | 29320 | 29100 | 29180 | 29590 | 29700 | 29240 | 28210 | 26870 | 25360 | 25260 | | 16 | 9430 | 29380 | 29320 | 29080 | 29360 | 29540 | 29690 | 29210 | 28180 | 26800 | 25330 | 25230 | | 17 | 9430 | 29380 | 29280 | 29100 | 29350 | 29510 | 29640 | 29180 | 28130 | 26740 | 25300 | 25180 | | 18 | 9430 | 29420 | 29270 | 29120 | 29340 | 29530 | 29590 | 29150 | 28080 | 26690 | 25270 | 25140 | | 19 | 9430 | 29440 | 29250 | 29110 | 29330 | 29540 | 29550 | 29130 | 28030 | 26630 | 25250 | 25130 | | 20 | 9430 | 29440 | 29180 | 29090 | 29350 | 29530 | 29530 | 29100 | 27980 | 26570 | 25220 | 25110 | | 21 | 9430 | 29420 | 29150 | 29080 | 29360 | 29520 | 29520 | 29050 | 27930 | 26520 | 25160 | 25140 | | 22 | 9430 | 29410 | 29130 | 29060 | 29350 | 29510 | 29490 | 28980 | 27900 | 26460 | 25090 | 25160 | | 23 | 9480 | 29440 | 29120 | 29050 | 29360 | 29510 | 29510 | 28920 | 27860 | 26410 | 25030 | 25290 | | 24 | 9670 | 29500 | 29120 | 29040 | 29410 | 29540 | 29460 | 28880 | 27820 | 26350 | 24970 | 25290 | | 25 | 9680 | 29480 | 29120 | 29040 | 29350 | 29530 | 29440 | 28870 | 27770 | 26310 | 24930 | 25240 | | 26
27
28
29
30
31 | 9690
9680
9670
9960
10400
10440 | 29480
29470
29460
29460
29440 | 29200
29210
29190
29180
29170
29150 | 29040
29060
29110
29260
29210
29190 | 29340
29360
29370
 | 29500
29520
29540
29560
29560
29560 | 29410
29380
e29300
e29300
e29200 | 28870
28850
28810
28770
28730
28730 | 27730
27680
27610
27550
27500 | 26250
26210
26150
26100
26050
25980 | 24870
25010
25000
25000
25000
25010 | 25190
25150
25120
25080
25030 | | MEAN
MAX
MIN | 9550
10440
9350 | 27300
29500
10460 | 29290
29430
29120 | 29110
29260
29040
1742.37 | 29250
29410
29110 | 29490
29600
29360
1742.56 | 29540
29750
29200 | 29110
29400
28730 | 28160
28720
27500 | 26780
27460
25980 | 25340
25930
24870
1740.15 | 25140
25380
24810
1740.16 | | (@) | +900 | +19000 | -290 | +40 | +180 | +190 | -360 | -470 | -1230 | -1520 | -970 | +20 | CAL YR 2000 MAX 29500 MIN 7470 (@) +20140 WTR YR 2001 MAX 29750 MIN 9350 (@) +15490 e Estimated ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet. ## 08144900 Brady Creek Reservoir near Brady, TX--Continued ## 08145000 Brady Creek at Brady, TX LOCATION.--Lat 31°08'17", long 99°20'05", McCulloch County, Hydrologic Unit 12090110, on left bank 60 ft upstream from bridge on U.S. Highway 377 on North Bridge Street in Brady, 0.4 mi downstream from Live Oak Creek, and 30.4 mi
upstream from mouth. DRAINAGE AREA. -- 588 mi². PERIOD OF RECORD.--May 1939 to Sept. 1986, Apr. 2001 to current year. REVISED RECORDS.--WSP 1512: 1941(M), 1951(M). WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,646.50 ft above sea level. Prior to July 9, 1940, nonrecording gage at site 3,600 ft upstream at datum 8.24 ft higher. Satellite telemeter at station. REMARKS.--Records poor. The city of Brady returns sewage effluent downstream from the gage. Since water year 1962 at least 10% of contributing drainage area has been regulated. Flow is also affected at times by discharge from the flood-detention pools of several flood-retarding structures above this station. No flow at times most years. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--23 years (water years 1940-62) prior to completion of Brady Creek Reservoir, $25.2~{\rm ft}^3/{\rm s}$ ($18,260,000~{\rm acre-ft/yr}$). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1939-62).--Maximum discharge, 39,100 ft 3 /s Sept. 10, 1952 (gage height, 24.80 ft); no flow at times most years. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, 29.1 ft July 23, 1938, present site and datum (discharge at site 5.0 mi downstream, 86,000 ft 3 /s), by slope-area measurement. Flood of Oct. 6, 1930 (second highest since 1882), reached a stage of 25.9 ft (discharge, 50,300 ft 3 /s, present site and datum), from information by local residents. | DAY | | | DISCHAR | GE, CUBIC | C FEET PER | | WATER YEA
MEAN VAI | | R 2000 TO | SEPTEMBE | R 2001 | | | |--|---------|------------|------------|-----------|------------|------------|-----------------------|-----------|-----------|----------|--------|-------|-------| | 2 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 2 | 1 | | | | | | | | .20 | .45 | .00 | .00 | 2.7 | | ## | | | | | | | | | | | | | | | The second color of | 3 | | | | | | | | .16 | .45 | .00 | .00 | 1.0 | | The second color of | 4 | | | | | | | | 4.6 | .41 | .00 | .00 | .84 | | 7 2.4 .29 .00 .00 .00 .44 8 1.4 .27 .00 .00 .00 .28 9 1.3 .25 .00 .00 .00 .16 10 1.3 .20 .00 .00 .00 .14 11 1.3 .20 .00 .00 .00 .00 1.4 11 1.3 .20 .00 .00 .00 .00 .96 12 1.3 .11 .00 .00 .00 .39 13 1.3 .07 .00 .00 .00 .39 13 1.3 .07 .00 .00 .00 .00 .39 13 1.3 .00 .00 .00 .00 .00 .39 15 1.3 .00 .00 .00 .00 .00 .00 .15 .14 14 1.3 .00 .00 .00 .00 .00 .00 .00 .15 .10 .00 .00 .00 .00 .00 .00 .00 .15 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | 5 | | | | | | | | 16 | .37 | .00 | .00 | .75 | | 7 2.4 .29 .00 .00 .00 .44 8 1.4 .27 .00 .00 .00 .28 9 1.3 .25 .00 .00 .00 .16 10 1.3 .20 .00 .00 .00 .14 11 1.3 .20 .00 .00 .00 .00 1.4 11 1.3 .20 .00 .00 .00 .00 .96 12 1.3 .11 .00 .00 .00 .39 13 1.3 .07 .00 .00 .00 .39 13 1.3 .07 .00 .00 .00 .00 .39 13 1.3 .00 .00 .00 .00 .00 .39 15 1.3 .00 .00 .00 .00 .00 .00 .15 .14 14 1.3 .00 .00 .00 .00 .00 .00 .00 .15 .10 .00 .00 .00 .00 .00 .00 .00 .15 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | 6 | | | | | | | | 10 | .33 | . 00 | .00 | . 70 | | 9 1.3 .25 .00 .00 16 10 1.3 .20 .00 .00 1.4 11 1.3 .20 .00 .00 .00 .00 .00 12 1.3 .11 .00 .00 .00 .39 13 1.3 .11 .00 .00 .00 .39 13 1.3 .07 .00 .00 .00 .11 15 1.2 .07 .00 .01 .03 16 1.2 .09 .00 .05 .00 16 1.2 .07 .00 .01 .00 17 1.0 .05 .00 .00 .00 18 1.0 .05 .00 .00 .00 19 1.0 .05 .00 .00 .00 20 1.80 .01 .00 .00 .00 20 1.73 .00 .00 .00 .00 21 1.51 .00 .00 .00 .00 .00 22 1.51 .00 .00 .00 .00 .00 22 1.51 .00 .00 .00 .00 .00 22 1.51 .00 .00 .00 .00 .00 24 23 1.51 .00 .00 .00 .00 .00 22 1.38 .00 .00 .00 .00 .14 25 1.51 .00 .00 .00 .00 .13 26 1.51 .00 .00 .00 .00 .00 .13 26 1.51 .00 .00 .00 .00 .00 .14 27 1.56 .00 .00 .00 .00 .14 28 1.56 .00 .00 .00 .00 .14 29 1.56 .00 .00 .00 .00 .14 29 1.50 .58 .00 .00 .00 .14 MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1975 1986 1971 1971 1971 MINN 1000 .000 .000 .000 .000 .000 .000 .0 | 7 | | | | | | | | | | | | .44 | | 10 1.3 .20 .00 .00 .00 1.4 11 1.3 .16 .00 .00 .96 12 1.3 .11 .00 .00 .99 13 1.3 .11 .00 .00 .00 .31 14 1.3 .07 .00 .00 .01 15 1.3 .04 .00 .03 .03 15 1.2 .09 .00 .05 .00 16 1.2 .07 .00 .01 .00 17 1.2 .07 .00 .01 .00 18 1.0 .05 .00 .00 .00 19 1.0 .05 .00 .00 .00 19 80 .01 .00 .00 .00 .00 20 80 .01 .00 .00 .00 .00 21 80 .01 .00 .00 .00 .00 21 551 .00 .00 .00 .00 .00 22 551 .00 .00 .00 .00 .00 2351 .00 .00 .00 .00 .00 2451 .00 .00 .00 .00 .00 .00 2251 .00 .00 .00 .00 .00 .00 2351 .00 .00 .00 .00 .00 .00 2451 .00 .00 .00 .00 .00 .00 2551 .00 .00 .00 .00 .00 .00 .00 2651 .00 .00 .00 .00 .00 .00 .00 2751 .00 .00 .00 .00 .00 .00 .00 2851 .00 .00 .00 .00 .00 .00 .00 2951 .00 .00 .00 .00 .00 .00 .00 2051 .00 .00 .00 .00 .00 .00 .00 2155 .00 .00 .00 .00 .00 .00 .00 2455 .00 .00 .00 .00 .00 .00 .00 .00 2500 .11 .00 .00 .00 .00 .00 .00 .00 2655 .75 4.13 .00 .00 .00 .00 .00 2703 1.0 .00 .00 .00 .00 .00 2803 1.0 .00 .00 .00 .00 .00 2918 .00 .00 .00 .00 .00 .00 2003 1.0 .00 .00 .00 .00 .00 2103 1.0 .00 .00 .00 .00 .00 2203 1.0 .00 .00 .00 .00 .00 23 | | | | | | | | | | | | | | | 11 1.3 | | | | | | | | | | | | | | | Total Tota | 10 | | | | | | | | 1.3 | .20 | .00 | .00 | 1.4 | | 13 | | | | | | | | | | | | | | | 14 1.3 .04 .00 .03 .03 15 1.2 .09 .00 .05 .00 16 1.2 .07 .00 .01 .00 17 1.0 .05 .00 .00 .00 18 .90 .03 .00 .00 .00 20 .90 .03 .00 .0 | | | | | | | | | | | | | | | 15 1.2 .09 .00 .05 .00 16 1.2 .07 .00 .01 .00 17 1.0 .05 .00 .00 .00 18 1.0 .05 .00 .00 .00 1990 .03 .00 .00 .00 2080 .01 .00 .00 .00 e.00 2151 .00 .00 .00 .00 e.00 2251 .00 .00 .00 .00 24 2351 .00 .00 .00 .00 .45 2438 .00 .01 .00 .00 .00 .00 .45 2551 .00 .00 .00 .00 .00 .13 2651 .00 .00 .00 .00 .00 .13 2651 .00 .00 .00 .00 .00 .13 2651 .00 .00 .00 .00 .00 .13 2751 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | 17 | 15 | | | | | | | | 1.2 | .09 | .00 | .05 | .00 | | 18 90 .03 .00 .00 .00 19 80 .01 .00 .00 .00 e.00 21 .73 .00 | 16 | | | | | | | | 1.2 | .07 | .00 | .01 | .00 | | 19 | 17 | | | | | | | | 1.0 | .05 | .00 | .00 | .00 | | 2073 .00 .00 .00 .00 e.00 2161 .00 .00 .00 .00 .00 .80 2251 .00 .00 .00 .00 .00 .24 2341 .00 .00 .00 .00 .00 .45 2438 .00 .00 .00 .00 .14 2561 .00 .00 .00 .00 .00 .13 2661 .00 .00 .00 .00 .00 .13 2600 1.1 .00 .00 .00 .00 .00 .97 2703 1.0 .00 .00 .00 .04 .68 2809 .80 .00 .00 .00 .14 .49 2999 .80 .00 .00 .00 1.3 .31 3015 .69 .00 .00 .00 1.3 .31 3020 .58 .00 .00 .00 .95 .19 3120 .58 .00 .00 .00 .95 .19 3115 .69 .00 .00 .00 .95 .19 TOTAL15 .69 .00 .00 .00 .95 .19 TOTAL15 .69 .00 .00 .00 .95 .19 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1975 1975 1986 1971 1971 1971 MINN .000 .000 .000 .000 .000 .000 .000 . | 18 | | | | | | | | .90 | .03 | .00 | .00 | .00 | | 21 | 19 | | | | | | | | .80 | .01 | .00 | .00 | e.00 | | 22 | 20 | | | | | | | | .73 | .00 | .00 | .00 | e.00 | | 2341 .00 .00 .00 .00 4.5 2438 .00 .00 .00 .00 1.4 2561 .00 .00 .00 .00 1.3 2600 1.1 .00 .00 .00 .00 .97 2703 1.0 .00 .00 .00 .04 .68 2809 .80 .00 .00 .00 1.4 .49 2915 .69 .00 .00 .00 1.3 .31 3015 .69 .00 .00 .00 1.3 .31 3120 .58 .00 .00 .00 .95 .19 314800 12 TOTAL4800 12 TOTAL 1.80 .14 .000 .51 2.05 MAX 1.6 .48 .00 12 24 MIN 1.6 .48 .00 .12 24 MIN 1.11 8.2 .00 .31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY
WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 | 21 | | | | | | | | .61 | .00 | .00 | .00 | | | 2438 .00 .00 .00 .00 1.4 25561 .00 .00 .00 .00 1.3 3 2600 1.1 .00 .00 .00 .00 .97 2703 1.0 .00 .00 .00 .04 .68 2809 .80 .00 .00 .00 1.4 .49 2915 .69 .00 .00 .00 1.3 .31 3020 .58 .00 .00 .00 .95 .19 314800 12 TOTAL4800 12 TOTAL 1.80 .14 .000 .51 MEAN 1.80 .14 .000 .51 MEAN 1.80 .14 .000 .51 MEAN 1.6 .00 .00 .00 .00 .00 AC-FT 1.11 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 1971 MIN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | | | | | | | | | | .00 | .00 | .00 | | | 2561 .00 .00 .00 .00 .00 1.3 2600 1.1 .00 .00 .00 .00 .97 2703 1.0 .00 .00 .00 .04 .68 2809 .80 .00 .00 .00 1.4 .49 2915 .69 .00 .00 .13 .31 3020 .58 .00 .00 .00 1.3 .31 3120 .58 .00 .00 .00 .95 .19 314800 12 TOTAL4800 12 TOTAL 1.80 .14 .000 .51 2.05 MAX 1.80 .14 .000 .51 2.05 MAX 1.6 .48 .00 12 24 MIN 1.6 .00 .00 .00 .00 AC-FT 111 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1988 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 | 23 | | | | | | | | | .00 | .00 | .00 | 4.5 | | 2600 1.1 .00 .00 .00 .04 .68 2809 .80 .00 .00 .00 1.4 .49 2915 .69 .00 .00 .00 1.3 .31 3020 .58 .00 .00 .00 .95 .19 314800 12 TOTAL 55.75 4.13 0.00 15.78 61.44 MEAN 55.75 4.13 0.00 15.78 61.44 MEAN 1.80 .14 .000 .51 2.05 MAX 1.6 .48 .00 12 24 MIN 1.6 .48 .00 .12 24 MIN 1.11 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .005 .005 | | | | | | | | | | | | | | | 27 | 25 | | | | | | | | .61 | .00 | .00 | .00 | 1.3 | | 28 | 26 | | | | | | | .00 | 1.1 | .00 | .00 | .00 | .97 | | 29 1.5 | 27 | | | | | | | .03 | 1.0 | .00 | .00 | .04 | .68 | | 3020 .58 .00 .00 .95 .19 314800 12 TOTAL4800 12 TOTAL 1.80 .14 .000 .51 2.05 MAX 1.80 .14 .000 .51 2.05 MAX 1.6 .48 .00 12 24 MIN 1.6 .48 .00 12 24 MIN 1.16 .00 .00 .00 .00 AC-FT 1.11 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .000 .000 .0 | 28 | | | | | | | .09 | .80 | .00 | .00 | 1.4 | .49 | | 314800 12 TOTAL 55.75 4.13 0.00 15.78 61.44 MEAN 1.80 .14 .000 .51 2.05 MAX 16 .48 .00 12 24 MIN 16 .00 .00 .00 .00 AC-FT 111 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1988 1975 1977 1975 1975 1986 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 | 29 | | | | | | | .15 | | .00 | .00 | 1.3 | | | TOTAL 55.75 4.13 0.00 15.78 61.44 MEAN 1.80 .14 .000 .51 2.05 MAX 1.80 .14 .000 .51 2.05 MAX 1.6 .48 .00 12 24 MIN 1.6 .00 .00 .00 .00 AC-FT 1.11 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .005 .005 | 30 | | | | | | | .20 | .58 | .00 | .00 | .95 | | | MEAN 1.80 .14 .000 .51 2.05 MAX 1.6 .48 .00 12 24 MIN 1.6 .00 .00 .00 .00 .00 AC-FT 1.16 .00 .00 .00 .00 .00 AC-FT 1.11 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000 .000 | 31 | | | | | | | | .48 | | .00 | 12 | | | MEAN 1.80 1.4 .000 .51 2.05 MAX 16 .48 .00 12 24 MIN 16 .00 .00 .00 10 AC-FT 111 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000 | TOTAL | | | | | | | | 55.75 | 4.13 | 0.00 | 15.78 | 61.44 | | MIN 1.16 .00 .00 .00 .00 .00 AC-FT 111 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000 | MEAN | | | | | | | | 1.80 | .14 | .000 | .51 | 2.05 | | AC-FT 111 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000 | MAX | | | | | | | | 16 | .48 | .00 | 12 | 24 | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN 0.000 0.000 0.000 0.000 0.007 0.000 0.035 0.001 0.000 0.000 0.000 | MIN | | | | | | | | .16 | .00 | .00 | .00 | .00 | | MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1975 1975 1986 1971 1971 1971 MIN 0.00 0.000 0.000 0.000 0.007 0.000 0.000 0.35 0.001 0.000 0.000 0.000 | AC-FT | | | | | | | | 111 | 8.2 | .00 | 31 | 122 | | MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000 | STATIST | TICS OF MO | ONTHLY MEA | N DATA FO | OR WATER Y | YEARS 1963 | 3 - 2001hz | z, BY WAT | ER YEAR (| WY) | | | | | MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000 | MEAN | 13.9 | 4.13 | 3.53 | 4.24 | 3.13 | 3.86 | 5.82 | 8.21 | 6.35 | 16.8 | 13.6 | 19.7 | | (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 MIN .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 | | | | | | | | | | | | | | | MIN .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000 | ## 08145000 Brady Creek at Brady, TX--Continued | SUMMARY STATISTICS | FOR 2001 WATER YEAR | WATER YEARS 1963 - 2001hz | |------------------------------------|---------------------|---------------------------| | ANNUAL MEAN
HIGHEST ANNUAL MEAN | | 8.85
88.4 1971 | | LOWEST ANNUAL MEAN | | .034 1963 | | HIGHEST DAILY MEAN | 24 Sep 22 | 4580 Jul 26 1971 | | LOWEST DAILY MEAN | .00 Apr 26 | .00 Oct 1 1962 | | ANNUAL SEVEN-DAY MINIMUM | .00 Jun 20 | .00 Oct 1 1962 | | MAXIMUM PEAK FLOW | 198 Sep 22 | 24700 Jul 26 1971 | | MAXIMUM PEAK STAGE | 7.59 Sep 22 | 19.80 Jul 26 1971 | | ANNUAL RUNOFF (AC-FT) | | 6410 | | 10 PERCENT EXCEEDS | 1.3 | 5.4 | | 50 PERCENT EXCEEDS | .04 | .09 | | 90 PERCENT EXCEEDS | .00 | .00 | - Estimated See PERIOD OF RECORD paragraph. Period of regulated streamflow. ### 08146000 San Saba River at San Saba, TX LOCATION.--Lat 31°12′47", long 98°43′09", San Saba County, Hydrologic Unit 12090109, on left bank near left downstream end of bridge on State Highway 16, 1.2 mi north of San Saba, 2.7 mi upstream from Mill Creek, 4.8 mi downstream from China Creek, and 16.8 mi upstream from mouth. DRAINAGE AREA. -- 3,046 mi², of which 6.6 mi² probably is noncontributing. PERIOD OF RECORD.--Dec. 1904 to Dec. 1906 (gage heights only), Sept. 1915 to Sept. 1993, and Oct. 1997 to current year. Published as "near San Saba" Dec. 1904 to Dec. 1906 and Sept. 1915 to Aug. 1930. Water-quality records.--Chemical data: Sept. 1947 to Feb. 1949, Nov. 1958 to Sept. 1969. Water temperature: Sept. 1962 to Sept. 1969. REVISED RECORDS.--WSP 458: 1915-16. WSP 1282: WDR TX-81-3: Drainage area. WSP 1512: 1918-19(M), 1922, 1931(M), 1935. WSP 1922: 1917. WDR TX-00-4: 1992. GAGE.--Water-stage recorder. Datum of gage is 1,162.16 ft above sea level. See WSP 1922 for brief history of changes prior to July 8, 1953. From Oct. 1956 to Sept. 1993, at site 250 ft to right and supplementary water-stage recorder 2,780 ft to right of main channel gage used for floodflows at same datum. Radio telemeter at station. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since water year 1963, at least 10% of contributing drainage area has been regulated. Many diversions above station for irrigation and municipal use affect low flows. No
flow at times. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--47 years (water years 1916-1962) prior to completion of Brady Creek Reservoir, 248 ft³/s (179,900 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1916-1962).--Maximum discharge, 203,000 ft 3 /s July 23, 1938 (gage height, 39.30 ft, from floodmarks, at site then in use, adjusted to present datum), from rating curve extended above 40,600 ft 3 /s on basis of slope-area measurement of 203,000 ft 3 /s; no flow at times in 1918, 1930, 1954-56. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 6, 1899, reached a stage of 36.7 ft, present site and datum, from information by local residents. | | | DISCH | IARGE, CUI | BIC FEET P | | , WATER Y
LY MEAN V | | ER 2000 TO |) SEPTEMBE | ER 2001 | | | |----------|----------|------------|------------|------------|------------|------------------------|------------|------------|------------|----------|----------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 18 | 462 | 261 | 156 | 213 | 152 | 182 | 83 | 107 | 41 | 19 | e40 | | 2 | 18 | 258 | 250 | 151 | 204 | 148 | 179 | 83 | 122 | 46 | 23 | e40 | | 3 | 17 | 4520 | 240 | 144 | 185 | 158 | 177 | 79 | 128 | 54 | 20 | e40 | | 4 | 17 | 32700 | 252 | 134 | 169 | 173 | 173 | 80 | 109 | 46 | 22 | e35 | | 5 | 16 | 6150 | 266 | 133 | 161 | 168 | 166 | 275 | 106 | 45 | 23 | e35 | | 6 | 16 | 6960 | 280 | 131 | 156 | 156 | 157 | 914 | 123 | 37 | 21 | e35 | | 7 | 17 | 4280 | 247 | 129 | 163 | 153 | 149 | 640 | 109 | 33 | 19 | e35 | | 8 | 18 | 1560 | 240 | 123 | 167 | 171 | 141 | 330 | 101 | 34 | 16 | e30 | | 9 | 19 | 1290 | 225 | 124 | 165 | 180 | 132 | 243 | 97 | 32 | 16 | e30 | | 10 | 20 | 1000 | 217 | 135 | 160 | e190 | 127 | 257 | 91 | 27 | 20 | 1510 | | 11 | 20 | 811 | 216 | 141 | 153 | 188 | 131 | 297 | 89 | 22 | 22 | 1090 | | 12 | 19 | 660 | 204 | 140 | 161 | 180 | 139 | 236 | 87 | 20 | 22 | 434 | | 13
14 | 19
20 | 568
485 | 200
196 | 150
134 | 183
188 | 177
174 | 131
127 | 255
287 | 83
74 | 20
21 | 23
21 | 254
183 | | 15 | 20 | 434 | 196 | 128 | 186 | 168 | 138 | 228 | 98 | 22 | 23 | 141 | | 16 | 23 | 418 | 194 | 127 | 471 | 163 | 139 | 198 | 94 | 24 | 21 | 120 | | 17 | 25 | 389 | 186 | 127 | 459 | 156 | 131 | 178 | 83 | 20 | 26 | 108 | | 18 | 24 | 397 | 182 | 125 | 295 | 159 | 115 | 167 | 80 | 17 | 28 | 96 | | 19 | 24 | 868 | 174 | 135 | 239 | 229 | 110 | 160 | 73 | 17 | 26 | 90 | | 20 | 25 | 705 | 171 | 135 | 224 | 287 | 106 | 155 | 71 | 16 | 24 | 84 | | 21 | 27 | 517 | 165 | 127 | 203 | 208 | 104 | 147 | 64 | 13 | 20 | 109 | | 22 | 28 | 444 | 166 | 127 | 180 | 180 | 100 | 139 | 61 | 14 | 17 | 107 | | 23 | 30 | 409 | 161 | 129 | 174 | 172 | 100 | 135 | 60 | 15 | 19 | 143 | | 24 | 1700 | 429 | 159 | 122 | 189 | 172 | 102 | 127 | 59 | 11 | 19 | 143 | | 25 | 713 | 429 | 163 | 119 | 177 | 171 | 149 | 122 | 57 | 9.8 | 20 | 100 | | 26 | 289 | 353 | 185 | 112 | 161 | 194 | 129 | 125 | 54 | 11 | 20 | 100 | | 27 | 164 | 342 | 191 | 118 | 161 | 175 | 105 | 120 | 58 | 15 | 22 | 95 | | 28 | 115 | 299 | 191 | 137 | 157 | 188 | 95 | 118 | 51 | 17 | 25 | e90 | | 29 | 113 | 288 | 184 | 194 | | 206 | 90 | 116 | 42 | 16 | 33 | e85 | | 30 | 1010 | 269 | 173 | 289 | | 211 | 87 | 114 | 44 | 15 | e40 | e80 | | 31 | 1240 | | 165 | 269 | | 194 | | 111 | | 18 | e40 | | | TOTAL | 5824 | 68694 | 6300 | 4440 | 5704 | 5601 | 3911 | 6519 | 2475 | 748.8 | 710 | 5482 | | MEAN | 188 | 2290 | 203 | 143 | 204 | 181 | 130 | 210 | 82.5 | 24.2 | 22.9 | 183 | | MAX | 1700 | 32700 | 280 | 289 | 471 | 287 | 182 | 914 | 128 | 54 | 40 | 1510 | | MIN | 16 | 258 | 159 | 112 | 153 | 148 | 87 | 79 | 42 | 9.8 | 16 | 30 | | AC-FT | 11550 | 136300 | 12500 | 8810 | 11310 | 11110 | 7760 | 12930 | 4910 | 1490 | 1410 | 10870 | | STATIST | rics of | MONTHLY M | EAN DATA | FOR WATER | YEARS 19 | 63 - 2001 | hz, BY WAT | TER YEAR | (WY) | | | | | MEAN | 214 | 184 | 154 | 159 | 179 | 165 | 156 | 201 | 164 | 144 | 164 | 305 | | MAX | 1716 | 2290 | 935 | 896 | 1542 | 635 | 777 | 1195 | 695 | 1201 | 1768 | 2144 | | (WY) | 1974 | 2001 | 1992 | 1968 | 1992 | 1992 | 1977 | 1965 | 1992 | 1971 | 1971 | 1974 | | MIN | 17.6 | 32.7 | 47.8 | 46.1 | 44.9 | 34.7 | 23.4 | 10.3 | 5.31 | .32 | 9.43 | 11.1 | | (WY) | 1964 | 2000 | 1964 | 1964 | 1984 | 1986 | 1986 | 1984 | 1984 | 1964 | 1980 | 1984 | ## 08146000 San Saba River at San Saba, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 19 | 963 - 2001hz | |---|-------------------------|-----------------------------|----------------|--------------------------| | ANNUAL TOTAL
ANNUAL MEAN | 93755.8
256 | 116408.8
319 | 182 | | | HIGHEST ANNUAL MEAN | 230 | 319 | 493
29.2 | 1974
1984 | | HIGHEST DAILY MEAN | 32700 Nov 4 | | 32700 No | ov 4 2000 | | LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM | 6.2 Aug 4
7.9 Jul 31 | 13 Jul 21 | .00 Ji | ul 17 1963
ul 25 1963 | | MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE | | c46200 Nov 4
29.72 Nov 4 | 29.94 Se | ov 4 2000
ep 18 1990 | | ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS | 186000
303 | 230900
346 | 132100
272 | | | 50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | 37
13 | 131
20 | 89
26 | | - Estimated See PERIOD OF RECORD paragraph. Period of regulated streamflow. From rating curve extended above $40,600~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of 203,000 ${\rm ft}^3/{\rm s}$. e h z c Figure 6.--Map showing location of gaging stations in the fourth section of the Colorado River Basin Figure 7.--Map showing location of gaging stations in the Austin inset of the Colorado River Basin | 08147000 | Colorado River near San Saba, TX | 164 | |-----------------|--|-----| | 08148500 | North Llano River near Junction, TX | 166 | | 08149400 | South Llano River near Telegraph, TX | 321 | | 08149405 | Tanner Springs near Telegraph, TX | 323 | | 08149500 | Seven Hundred Springs near Telegraph, TX | 321 | | 08150000 | Llano River near Junction, TX | 168 | | 08150700 | Llano River near Mason, TX | 170 | | 08150800 | Beaver Creek near Mason, TX | 172 | | 08151500 | Llano River at Llano, TX | 174 | | 08152000 | Sandy Creek near Kingsland, TX | 176 | | 08152900 | Pedernales River near Fredericksburg, TX | 178 | | 08153500 | Pedernales River near Johnson City, TX | 180 | | 08154700 | Bull Creek at Loop 360 near Austin, TX | 182 | | 08154900 | Lake Austin at Austin, TX | 186 | | 08155200 | Barton Creek at State Highway 71 near Oak Hill, TX | 192 | | 08155240 | Barton Creek at Lost Creek Boulevard, Austin, TX | 196 | | 08155300 | Barton Creek at Loop 360, Austin, TX | 200 | | 08155395 | Upper Barton Springs at Austin, TX | 318 | | 08155400 | Barton Creek above Barton Springs, Austin, TX | 318 | | 08155500 | Barton Springs at Austin, TX | 318 | | 08156800 | Shoal Creek at 12th Street, Austin, TX | 214 | | 08157600 | East Bouldin Creek at South 1st Street, Austin, TX | 218 | | 08157700 | Blunn Creek at Little Stacy Park, Austin, TX | 220 | | 08157900 | Town Lake at Austin, TX | 224 | | 08158000 | Colorado River at Austin, TX | 232 | | 08158050 | Boggy Creek at U.S. Highway 183, Austin, TX | 234 | | 08158600 | Walnut Creek at Webberville Road, Austin, TX | 238 | | 08158700 | Onion Creek near Driftwood, TX | 242 | | 08158810 | Bear Creek below Farm Road 1826 near Driftwood, TX | 246 | | 08158840 | Slaughter Creek at Farm Road 1826 near Austin, TX | 248 | | 08158922 | Williamson Creek at Brushy Country Blvd., Oak Hill, TX | 250 | | 08158930 | Williamson Creek at Manchaca Road, Austin, TX | 254 | | 08159000 | Onion Creek at U.S. Highway 183, Austin, TX | 256 | | 301546097460201 | Old Mill Spring at Austin, TX | 318 | | 301548097461602 | Eliza Spring at Austin, TX | 318 | THIS PAGE IS INTENTIONALLY BLANK. #### 08147000 Colorado River near San Saba, TX LOCATION.--Lat 31°13′04", long 98°33′51", San Saba-Lampasas County line, Hydrologic Unit 12090201, on left bank at downstream side of bridge on U.S. Highway 190, 5.2 mi downstream from San Saba River, 9.2 mi east of San Saba, and at mile 474.3. DRAINAGE AREA. -- 31,217 mi², approximately, of which 11,398 mi² probably is noncontributing. PERIOD OF RECORD.--Oct. 1915 to Oct. 1922, published as "near Chadwick", Oct. 1923 to Aug. 1930, published as "near Tow", Sept. 1930 to current year. Monthly discharge only for some periods, published in WSP 1312. Water-quality records.--Chemical data: Aug. 1941, Sept. 1947 to Sept. 1967, Jan. 1968 to Aug. 1993. Biochemical data: Jan. 1968 to Aug. 1993. Pesticide data: Jan. 1968 to Apr. 1982. Sediment data: May 1951 to Oct. 1962 and Oct. 1977 to Aug. 1993. Suspended sediment discharge: Dec. 1950 to Sept. 1962. Specific conductance: Sept. 1947 to Sept. 1992. Water temperature: Sept. REVISED RECORDS.--WSP 458: 1916. WSP 858: 1900(M), 1936(M). WDR TX-81-3: Drainage area. WSP 1512: 1916-18(M), 1936. WSP 1732: 1925-26(M) GAGE.--Water-stage recorder. Datum of gage is 1,096.22 ft above sea level. See WSP 1922 for brief history of changes prior to May 23, 1940. From May 1940 to Nov. 1996, at site 150 ft right at same datum. Radio telemeter at station. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since water year 1931 at least 10% of contributing drainage area has been regulated. Flow is also affected at times by discharge from the flood-detention pools of 187 floodwater-retarding structures. These flood-detention structures control runoff from an 944 mi² area above this station. There are many diversions above station for irrigation, municipal use, and for
oil field operations. No flow at times. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation of low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--12 years (water years 1917-19, 1921-22, 1924-30) prior to completion of Lake Nasworthy, 1,440 ft³/s (1,040,000 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1917-19, 1921-22, 1924-30).--Maximum discharge, 130,000 ft³/s Apr. 26, 1922 (gage height about 54.0 ft, present site), from information by local residents; minimum observed discharge, 1.5 ft³/s Aug. 22, 23, 1918. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1878 to July 22, 1938, 58.4 ft Sept. 25, 1900 (discharge, 184,000 ft³/s, present site), from floodmarks at former site. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN MAR APR JUN JUL AUG SEP MAY 2.7 ___ ---e135 ---___ ___ TOTAL. MEAN 44.5 35.6 MTN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 2001z, BY WATER YEAR (WY) MEAN MAX (WY) 2.06 MIN 29.5 39.3 31.8 41.5 40.5 24.4 33.6 11.2 4.16 2.68 11.9 (WY) ## 08147000 Colorado River near San Saba, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1931 - 2001z | |--|--------------------------|-------------------------|---------------------------------------| | ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | 206090.0 563 | 236842
649 | 1023
3880 1938
84.1 1984 | | HIGHEST DAILY MEAN | 43900 Nov 4
3.4 Aug 1 | 43900 Nov 4
21 Oct 7 | 191000 Jul 23 1938
.00 Aug 27 1954 | | ANNUAL SEVEN-DAY MINIMUM | 5.4 Aug 1
5.4 Jul 31 | 23 Oct 2 | .00 Aug 3 1963 | | MAXIMUM PEAK FLOW | | 58300 Nov 4 | c224000 Jul 23 1938 | | MAXIMUM PEAK STAGE | | a35.06 Nov 4 | aa62.24 Jul 23 1938 | | ANNUAL RUNOFF (AC-FT) | 408800 | 469800 | 741200 | | 10 PERCENT EXCEEDS | 681 | 806 | 1590 | | 50 PERCENT EXCEEDS | 72 | 214 | 221 | | 90 PERCENT EXCEEDS | 8.0 | 34 | 52 | - e Estimated z Period of regulated streamflow. c From rating curve extended above 215,000 ft³/s. a From floodmark. aa From floodmarks at site then in use adjusted to present datum. ## 08148500 North Llano River near Junction, TX LOCATION.--Lat 30°31′02", long 99°48′21", Kimble County, Hydrologic Unit 12090202, on left bank 50 ft south of Ranch Road 1674, 600 ft west of county road KC 171, 1.7 mi northwest of Junction, and 3.7 mi upstream from confluence with South Llano River. DRATNAGE AREA. -- 914 mi². PERIOD OF RECORD.--Sept. 1915 to Sept. 1977, June 2001 to current year. REVISED RECORDS.--WSP 568: 1920, 1922. WSP 1512: 1915, 1918-19, 1923(M), 1924-26, 1928, 1930(M), 1931-33, 1934(M), 1935. WDR TX-76-3: 1942(M), 1948(M), 1957(M), 1958(P), 1959(M), 1961(M), 1964(M), 1970-71(M), 1974(P). GAGE.--Water-stage recorder. Datum of gage is 1,709.92 ft above sea level. Prior to Aug. 1925, nonrecording gage at site 1,450 ft upstream at datum 10 ft lower. Aug. 1925 to Sept. 1936, water-stage recorder 1,450 ft upstream at datum 10 ft lower. Sept. 1936 to June 1940, nonrecording gages at various sites at datum 10 ft lower. June 1940 to Sept. 1977, water-stage recorder at site 2,000 ft upstream at datum 10 ft lower. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. No known regulation. Low flow affected by diversions from irrigation. No flow at times most years. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875, that of Sept. 16, 1936; maximum stage during period 1875 to Sept. 15, 1936, 27 ft in 1889, from information by local resident. | | | DISCHARGE | E, CUBIC | C FEET PER | | WATER YEA
Y MEAN VAI | | 2000 TO | SEPTEMBE | R 2001 | | | |-------------|-----------------------|--------------|-------------|-------------|--------------|-------------------------|-------------|--------------|-------------|--------------|-------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | | 11 | 3.6 | 1.5 | | 2 | | | | | | | | | | 13 | 3.3 | .53 | | 3 | | | | | | | | | | 11 | 3.3 | 1.3 | | 4 | | | | | | | | | | 11 | 3.0 | 4.3
7.5 | | 5 | | | | | | | | | | 9.5 | 2.5 | 7.5 | | 6
7 | | | | | | | | | | 9.1
8.9 | 2.5 | 34
35 | | 8 | | | | | | | | | | 8.6 | 1.7 | 24 | | 9 | | | | | | | | | | 8.6 | 1.3 | 174 | | 10 | | | | | | | | | | 8.8 | .66 | 146 | | 11 | | | | | | | | | | 8.8 | .73 | 58 | | 12 | | | | | | | | | | 8.4 | .05 | 40 | | 13 | | | | | | | | | 15 | 7.7 | .00 | 33 | | 14 | | | | | | | | | 15 | 7.3 | .00 | 31 | | 15 | | | | | | | | | 15 | 7.7 | .00 | 31 | | 16 | | | | | | | | | 15 | 7.2 | .00 | 29 | | 17 | | | | | | | | | 14 | 7.3 | .09 | 28 | | 18 | | | | | | | | | 14 | 7.4 | .01 | 27 | | 19 | | | | | | | | | 13 | 6.7 | .00 | 27 | | 20 | | | | | | | | | 13 | 6.1 | .00 | 26 | | 21 | | | | | | | | | 11 | 5.5 | .00 | 28 | | 22 | | | | | | | | | 11
11 | 4.7 | .00 | 34 | | 23 | | | | | | | | | 12 | 5.2 | .00 | 31 | | 24 | | | | | | | | | 15 | 5.6 | .00 | 29 | | 25 | | | | | | | | | 16 | 5.2 | .00 | 28 | | 26 | | | | | | | | | 13 | 4.6 | .00 | 25 | | 27 | | | | | | | | | 11 | 4.0 | .53 | 24 | | 28 | | | | | | | | | 11 | 3.9 | .42 | 23 | | 29 | | | | | | | | | 10 | 3.6 | .02 | 21 | | 30 | | | | | | | | | 10 | 2.6 | .90 | 22 | | 31 | | | | | | | | | | 3.6 | 1.5 | | | TOTAL | | | | | | | | | | 222.6 | 28.71 | 1023.13 | | MEAN | | | | | | | | | | 7.18 | .93 | 34.1 | | MAX | | | | | | | | | | 13 | 3.6 | 174 | | MIN | | | | | | | | | | 2.6 | .00 | .53 | | AC-FT | | | | | | | | | | 442 | 57 | 2030 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FO | OR WATER Y | EARS 191 | 6 - 2001h, | BY WATER | YEAR (WY | () | | | | | | | | | | | | | | | | | | | MEAN | 85.2 | 43.4 | 30.9 | 29.6 | 34.7 | 30.3 | 62.4 | 112 | 112 | 82.2 | 61.0 | 161 | | MAX | 944 | 662 | 203
1924 | 124
1924 | 450 | 134 | 886 | 1524 | 1938 | 2924 | 1456 | 2730 | | (WY)
MIN | 1931
.000 | 1924
.000 | .000 | .000 | 1958
.000 | 1941
.18 | 1918
.35 | 1925
4.67 | 1935
.46 | 1938
.000 | 1974 | 1932
.000 | | (WY) | 1935 | 1918 | 1955 | 1955 | 1955 | 1957 | 1955 | 1927 | 1953 | 1953 | 1917 | 1934 | | | STATISTI | | | | | 001 WATER | | | | | | 6 - 2001h | | | | | | | | | | | | | | | | ANNUAL N | | | | | | | | | | 70.8 | | 1020 | | | ANNUAL M | | | | | | | | | 298 | | 1938
1954 | | | ANNUAL ME
DAILY ME | | | | 1 | 74 Se | ep 9 | | | .80
42400 | Morr | 29 1925 | | | DAILY MEA | | | | 1 | | ig 13 | | | .00 | | 16 1917 | | | SEVEN-DAY | | | | | | ig 19 | | | .00 | | 16 1917 | | | PEAK FLO | | | | cc7 | | | | | c94800 | | 16 1936 | | | PEAK STA | | | | | 9.77 Se | _ | | | g29.20 | | 16 1936 | | | RUNOFF (A | | | | | | | | | 51290 | - | | | | ENT EXCEE | | | | | 31 | | | | 72 | | | | | ENT EXCEE | | | | | 8.0 | | | | 20 | | | | 90 PERCE | ENT EXCEE | DS | | | | .00 | | | | .80 | | | h See PERIOD OF RECORD paragraph. cc From rating curve extended above 146 $\rm ft^3/s$ on basis of slope-area measurements of 94,800 $\rm ft^3/s$. c From rating curve extended above 68,000 $\rm ft^3/s$ on basis of slope-area measurement of 94,800 $\rm ft^3/s$. g At former site and datum based on gage-height relation curve. 08148500 North Llano River near Junction, TX--Continued ## 08150000 Llano River near Junction, TX LOCATION.--Lat 30°30′15", long 99°44′03", Kimble County, Hydrologic Unit 12090204, on right bank 960 ft upstream from abandoned low-water crossing, 1.0 mi east of Junction, 2.6 mi downstream from bridge on Interstate Highway 10, 2.8 mi downstream from confluence of North and South Llano Rivers, 5.3 mi upstream from Johnson Fork, and 114.8 mi upstream from mouth. DRAINAGE AREA.--1,854 mi², of which 5.1 mi² probably is noncontributing. PERIOD OF RECORD. -- Sept. 1915 to May 1993, Oct. 1997 to current year. REVISED RECORDS.--WSP 568: 1915-16, 1918-20, 1922. WDR TX-81-3: Drainage area. WSP 1922: 1920, 1923. GAGE.--Water-stage recorder. Datum of gage is 1,634.32 ft above sea level. Prior to Aug. 14, 1925, nonrecording gage, and Aug. 14, 1925, to May 17, 1940, and Aug. 18, 1944, to Oct. 12, 1981, water-stage recorder at site 5,330 ft downstream at datum 6.0 ft lower, designated as regular gage (destroyed by flood of Oct. 13, 1981). Prior to June 13, 1990, at datum 2.0 ft higher. Radio telemeter at station. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. No known regulation. There are diversions above station for irrigation. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875, that of June 14, 1935. A major flood in 1889 was the highest known prior to June 14, 1935. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DISCI | AKGE, COL | JIC FEET F | | LY MEAN V | | EK 2000 1 | O DEFIEMD | ER ZOUI | | | |-----------------------------------|---|--|--|--|---|--|---|---|---|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR
 APR | MAY | JUN | JUL | AUG | SEP | | 1 | 95 | 394 | 388 | 257 | 189 | 202 | 212 | 153 | 167 | 104 | 95 | 117 | | 2 | 93 | 400 | 378 | 255 | 188 | 200 | 210 | 149 | 118 | 129 | 95 | 113 | | 3 | 90 | 57500 | 379 | 252 | 183 | 207 | 210 | 146 | 100 | 112 | 98 | 116 | | 4 | 89 | 29200 | 373 | 250 | 181 | 209 | 206 | 202 | 94 | 108 | 104 | 129 | | 5 | 89 | 3510 | 361 | 248 | 177 | 200 | 204 | 269 | 90 | 106 | 103 | 228 | | 6 | 88 | 5400 | 350 | 246 | 179 | 199 | 202 | 198 | 85 | 106 | 100 | 183 | | 7 | 105 | 2060 | 343 | 244 | 179 | 200 | 200 | 175 | 91 | 103 | 101 | 125 | | 8 | 111 | 1160 | 336 | 240 | 167 | 210 | 199 | 172 | 95 | 100 | 99 | 118 | | 9 | 121 | 891 | 331 | 238 | 162 | 208 | 197 | 226 | 98 | 101 | 103 | 170 | | 10 | 113 | 765 | 326 | 255 | 165 | 205 | 192 | 175 | 108 | 100 | 97 | 294 | | 11 | 107 | 690 | 321 | 253 | 167 | 205 | 203 | 167 | 116 | 101 | 100 | 177 | | 12 | 104 | 634 | 315 | 241 | 169 | 209 | 185 | 172 | 121 | 101 | 102 | 152 | | 13 | 101 | 593 | 313 | 236 | 172 | 202 | 183 | 173 | 120 | 99 | 107 | 141 | | 14 | 99 | 557 | 308 | 231 | 170 | 203 | 185 | 170 | 117 | 98 | 108 | 135 | | 15 | 98 | 536 | 301 | 226 | 170 | 203 | 187 | 167 | 123 | 102 | 108 | 133 | | 16 | 98 | 558 | 299 | 224 | 238 | 196 | 177 | 166 | 113 | 102 | 111 | 131 | | 17 | 108 | 516 | 295 | 223 | 205 | 192 | 176 | 158 | 123 | 98 | 112 | 128 | | 18 | 221 | 556 | 290 | 220 | 193 | 217 | 171 | 154 | 125 | 95 | 106 | 126 | | 19 | 190 | 585 | 287 | 217 | 187 | 205 | 172 | 147 | 131 | 94 | 96 | 126 | | 20 | 157 | 554 | 285 | 214 | 182 | 198 | 173 | 146 | 111 | 97 | 103 | 124 | | 21 | 154 | 533 | 280 | 210 | 180 | 203 | 171 | 148 | 105 | 98 | 103 | 142 | | 22 | 251 | 518 | 278 | 209 | 183 | 237 | 172 | 151 | 108 | 101 | 102 | 141 | | 23 | 10200 | 510 | 276 | 198 | 205 | 232 | 202 | 153 | 109 | 99 | 109 | 148 | | 24 | 25500 | 505 | 274 | 198 | 199 | 226 | 191 | 160 | 114 | 99 | 106 | 134 | | 25 | 2600 | 473 | 277 | 199 | 187 | 218 | 174 | 166 | 124 | 97 | 97 | 130 | | 26
27
28
29
30
31 | 952
698
587
1700
833
568 | 448
430
414
402
397 | 298
286
274
267
262
259 | 198
198
195
212
201
194 | 188
193
210
 | 215
247
237
229
216
211 | 170
166
163
155
153 | 167
169
163
159
154
172 | 115
108
105
104
104 | 96
95
97
98
98 | 105
116
119
111
118
117 | 129
128
126
124
124 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 46320
1494
25500
88
91880
.81
.93 | 111689
3723
57500
394
221500
2.01
2.25 | 9610
310
388
259
19060
.17
.19 | 6982
225
257
194
13850
.12
.14 | 5168
185
238
162
10250
.10 | 6541
211
247
192
12970
.11
.13 | 5561
185
212
153
11030
.10 | 5247
169
269
146
10410
.09 | 3342
111
167
85
6630
.06 | 3131
101
129
94
6210
.05 | 3251
105
119
95
6450
.06 | 4292
143
294
113
8510
.08 | | STATIST | TICS OF | MONTHLY M | EAN DATA | FOR WATER | YEARS 19 | 16 - 2001h | n, BY WAT | ER YEAR (| WY) | | | | | MEAN | 274 | 185 | 142 | 125 | 132 | 118 | 171 | 239 | 288 | 203 | 183 | 332 | | MAX | 2708 | 3723 | 1229 | 641 | 816 | 428 | 1222 | 2395 | 5797 | 4236 | 2299 | 4298 | | (WY) | 1924 | 2001 | 1985 | 1968 | 1958 | 1992 | 1977 | 1925 | 1935 | 1938 | 1974 | 1932 | | MIN | 15.8 | 21.5 | 25.3 | 26.2 | 27.9 | 27.0 | 21.3 | 30.3 | 12.4 | 10.5 | 11.4 | 13.1 | | (WY) | 1957 | 1957 | 1957 | 1957 | 1954 | 1954 | 1955 | 1954 | 1953 | 1956 | 1956 | 1956 | ## 08150000 Llano River near Junction, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALEN | DAR YE | CAR | FOR 2001 WAT | TER YE | AR | WATER YEAR: | 3 1916 | - | 2001h | |--------------------------|----------------|--------|-----|--------------|--------|----|-------------|--------|----|-------| | ANNUAL TOTAL | 192960 | | | 211134 | | | | | | | | ANNUAL MEAN | 527 | | | 578 | | | 199 | | | | | HIGHEST ANNUAL MEAN | | | | | | | 708 | | | 1935 | | LOWEST ANNUAL MEAN | | | | | | | 29.8 | | | 1953 | | HIGHEST DAILY MEAN | 57500 | Nov | 3 | 57500 | Nov | 3 | 124000 | Jun 1 | L4 | 1935 | | LOWEST DAILY MEAN | 69 | Sep | 7 | 85 | Jun | 6 | 3.7 | Aug 1 | L7 | 1956 | | ANNUAL SEVEN-DAY MINIMUM | 70 | Sep | 3 | 93 | Oct | 1 | 4.2 | Aug 1 | 1 | 1956 | | MAXIMUM PEAK FLOW | | | | cc158000 | Nov | 3 | c319000 | Jun 1 | L4 | 1935 | | MAXIMUM PEAK STAGE | | | | a35.08 | Nov | 3 | a43.30 | Jun 1 | L4 | 1935 | | ANNUAL RUNOFF (AC-FT) | 382700 | | | 418800 | | | 144500 | | | | | ANNUAL RUNOFF (CFSM) | .29 | | | .31 | | | .11 | | | | | ANNUAL RUNOFF (INCHES) | 3.88 | | | 4.25 | | | 1.47 | | | | | 10 PERCENT EXCEEDS | 401 | | | 401 | | | 221 | | | | | 50 PERCENT EXCEEDS | 97 | | | 175 | | | 99 | | | | | 90 PERCENT EXCEEDS | 74 | | | 99 | | | 43 | | | | h See PERIOD OF RECORD paragraph. cc From rating curve extended above $144,000~\rm{ft}^3/s$ on basis of slope-area measurements of $154,000~\rm{and}~319,000~\rm{ft}^3/s$. c From rating curve extended above $54,000~\rm{ft}^3/s$ on basis of slope-area measurements of $154,000~\rm{and}~319,000~\rm{ft}^3/s$. a From floodmark. ## 08150700 Llano River near Mason, TX LOCATION.--Lat 30°39'38", long 99°06'32", Mason County, Hydrologic Unit 12090204, on right bank 98 ft downstream from downstream bridge on U.S. Highway 87, 1.0 mi upstream from Beaver Creek, 9.1 mi southeast of Mason, 10.2 mi downstream from James River, and 61.1 mi upstream from mouth. DRAINAGE AREA.--3,247 mi^2 , of which 5.1 mi^2 probably is noncontributing. PERIOD OF RECORD. -- Mar. 1968 to May 1993, Oct. 1997 to current year. REVISED RECORDS.--WDR TX-75-3: 1968(P). WDR TX-81-3: Drainage area. TOTAL GAGE.--Water-stage recorder. Datum of gage is 1,230.36 ft above sea level. Prior to Jan. 19, 1971, at site 190 ft upstream at same datum. Radio telemeter at station. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily discharges, which are poor. No known regulation or diversion. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage-discharge relation at medium to high stages and computes and publishes streamflow record. EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since at least 1875, about 46 ft June 14, 1935 (discharge, about 380,000 ${\rm ft}^3/{\rm s}$), from information by Texas Department of Transportation; at site 17.0 mi downstream discharge was 388,000 ${\rm ft}^3/{\rm s}$ by slope-area measurement. Discharges for other floods are 258,000 ${\rm ft}^3/{\rm s}$, 1952; 218,000 ${\rm ft}^3/{\rm s}$, 1889. REVISIONS.--The maximum discharge for calendar and water year 1980 has been revised to 215,000 ft³/s, Sept. 8, 1980, gage height, 37.00 ft, from floodmark; daily mean discharge for Sept. 8, 1980 has been revised to 64,800 ft³/s. These figures supersede those published in the report for 1980. ANNUAL RUNOFF (AC-FT) MIN MAX | SEPT. 198
CAL YR 198
WTR YR 198 | 0 | 98,395
143,539
131,879 | 3,280
392
360 | 64,800
64,800
64,800 | 26
26
26 | | 195,200
284,700
261,600 | | | | | | |---------------------------------------|--|--|--|--|--------------------------------------|--|-------------------------------|--|-------------------------------------|--|--|-------------------------------------| | | | DISCHA | ARGE, CUBI | C FEET PER | | WATER
Y MEAN | YEAR OCTOBER
VALUES | 2000 TO | SEPTEMBER | 2001 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 111
105
103
101
99 | 1210
1380
35600
80800
8180 | 672
641
632
637
607 | 412
408
401
394
391 | 362
349
343
337
331 | 363
366
392
421
383 | 395
391
386 | 269
267
260
278
664 | 254
276
239
212
197 | 141
156
293
165
154 | 111
110
109
108
109 | 142
136
132
172
146 | | 6
7
8
9 | 97
96
125
159
132 | 9430
4330
2680
2200
1910 | 584
560
548
537
528 | 389
384
374
370
388 | 330
326
328
321
297 | 356
340
354
423
387 | 367
362
356
347 | 450
370
730
552
388 | 190
189
182
178
175 | 147
143
139
135
133 | 108
111
112
113
112 | 183
234
173
172
196 | | 11
12
13
14
15 | 130
125
120
116
120 | 1670
1440
1290
1170
1050 | 523
500
497
496
493 | 413
399
389
377
369 | 298
308
326
332
332 | 359
350
334
334 | 334
330
330 | 346
381
449
347
315 | 174
170
166
162
162 | 131
131
131
e130
e130 | 108
108
107
119
135 | 228
237
171
158
151 | | 16
17
18
19
20 | 159
148
137
134
174 | 1170
1160
1740
1980
1400 | 485
471
463
453
447 | 364
371
378
380
365 | 1430
656
482
429
408 | 316
309
432
549
419 | 305
296
292 | 295
286
278
273
284 | 161
160
158
157
153 | e125
123
121
119
116 | 116
114
114
116
111 | 147
144
142
139
139 | | 21
22
23
24
25 | 165
161
2950
32700
6600 | 1220
1120
1110
1050
1000 | 440
434
432
432
439 | 355
349
345
342
332 | 394
379
377
383
384 | 379
356
343
337
325 | 294
667
485 |
312
272
258
257
256 | 150
151
152
149
145 | 115
111
114
117
115 | 118
111
110
110
106 | 467
300
190
162
e150 | | 26
27
28
29
30
31 | 2500
1720
1370
2240
2350
1520 | 890
822
770
726
703 | 480
479
454
434
423
416 | 331
342
354
452
430
385 | 357
353
349
 | 325
429
614
484
439
431 | 297
287
277
272 | 280
255
240
229
225
232 | 143
143
139
135
135 | 111
111
111
111
111
111 | 104
127
187
177
150
145 | 145
142
140
140
139 | | TOTAL
MEAN
MAX
MIN
AC-FT | 56767
1831
32700
96
112600 | 171201
5707
80800
703
339600 | 15637
504
672
416
31020 | 11733
378
452
331
23270 | 11301
404
1430
297
22420 | 11983
387
614
309
23770 | 348
667
272 | 10298
332
730
225
20430 | 5157
172
276
135
10230 | 4101
132
293
111
8130 | 3696
119
187
104
7330 | 5317
177
467
132
10550 | | STATIS | TICS OF | MONTHLY MI | EAN DATA F | OR WATER Y | EARS 196 | 8 - 200 | lh, BY WATER | YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 549
3222
1974
72.9
1984 | 422
5707
2001
105
1969 | 303
1929
1985
108
1984 | 241
1053
1985
118
1984 | 262
1530
1992
98.5
1984 | 238
875
1992
89.0
1984 | 2097
1977
71.5 | 361
1559
1990
66.0
1984 | 339
1791
1987
49.1
1984 | 233
1439
1988
38.4
1980 | 392
3331
1974
31.2
1980 | 390
3280
1980
38.1
1984 | ## 08150700 Llano River near Mason, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALEN | IDAR YEAR | FOR 2001 WAT | ER YEAR | WATER YEARS | 1968 - 2001h | |--------------------------|----------------|-----------|--------------|---------|-------------|--------------| | ANNUAL TOTAL | 274316 | | 317618 | | | | | ANNUAL MEAN | 749 | | 870 | | 337 | | | HIGHEST ANNUAL MEAN | | | | | 870 | 2001 | | LOWEST ANNUAL MEAN | | | | | 77.7 | 1984 | | HIGHEST DAILY MEAN | 80800 | Nov 4 | 80800 | Nov 4 | 80800 | Nov 4 2000 | | LOWEST DAILY MEAN | 59 | Aug 22 | 96 | Oct 7 | 10 | Jul 17 1984 | | ANNUAL SEVEN-DAY MINIMUM | 61 | Aug 17 | 102 | Oct 1 | 18 | Jul 12 1984 | | MAXIMUM PEAK FLOW | | | c170000 | Nov 4 | c215000 | Sep 8 1980 | | MAXIMUM PEAK STAGE | | | a32.00 | Nov 4 | a37.00 | Sep 8 1980 | | ANNUAL RUNOFF (AC-FT) | 544100 | | 630000 | | 244400 | | | 10 PERCENT EXCEEDS | 842 | | 849 | | 425 | | | 50 PERCENT EXCEEDS | 119 | | 325 | | 176 | | | 90 PERCENT EXCEEDS | 67 | | 115 | | 90 | | Estimated See PERIOD OF RECORD paragraph. From rating curve extended above 145,000 ft³/s. From floodmark. e h c a ## 08150800 Beaver Creek near Mason, TX LOCATION.--Lat 30°38′36", long 99°05′44", Mason County, Hydrologic Unit 12090204, on left bank at downstream side of downstream bridge on U.S. Highway 87, 1.8 mi upstream from Llano River, 6.4 mi downstream from Spring Creek, and 11.1 mi southeast of DRAINAGE AREA.--215 mi². PERIOD OF RECORD. -- July 1963 to current year. REVISED RECORDS.--WSP 2122: 1964-65. WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,253.24 ft above sea level. Prior to Aug. 3, 1978, at site 300 ft upstream at same datum. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good except those for Nov. 3-6, which are fair. No known regulation or diversions. No flow at times. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
MEAN VA | AR OCTOBER
LUES | 2000 TO | SEPTEMBE | R 2001 | | | |---|---|---|--|---|---|---|--|--|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .97
.75
.64
.51 | 13
15
1760
764
1130 | 27
25
27
31
26 | 22
21
20
20
19 | 38
36
34
33
31 | 34
35
44
46
37 | 46
44
42
41
38 | 16
16
15
18
71 | 17
19
10
8.1
6.8 | 1.7
3.5
3.7
2.9
2.6 | .07
.07
.07
.07
.06 | 19
12
7.5
7.5
5.8 | | 6
7
8
9
10 | .38
.45
.69
2.6
4.7 | 1130
115
292
92
63 | 25
22
21
20
20 | 18
18
16
16
22 | 30
30
29
27
25 | 34
33
46
55
41 | 36
36
36
33
32 | 29
22
22
19
17 | 6.8
6.8
6.6
6.7 | 2.0
1.5
1.1
.80
.63 | .06
.06
.06
.05 | 9.1
8.0
4.3
6.7
7.3 | | 11
12
13
14
15 | 3.6
2.8
2.3
2.1
2.9 | 52
51
45
39
37 | 19
17
18
19
18 | 30
22
21
21
19 | 27
27
33
34
30 | 39
39
35
35
34 | 32
30
31
31
28 | 15
16
17
15 | 5.8
5.1
4.3
3.7
3.8 | .47
.39
.33
.26 | .04
.04
.04
.14 | 4.9
3.8
3.4
2.9
2.6 | | 16
17
18
19
20 | 9.3
8.2
7.3
6.0
4.2 | 49
47
193
113
62 | 18
15
15
14
14 | 19
22
25
25
21 | 198
53
44
40
38 | 32
31
38
37
33 | 27
26
26
24
25 | 12
11
11
11
13 | 4.0
4.0
3.4
3.1
2.9 | .20
.17
.16
.15 | 1.2
.76
.52
2.5
26 | 2.5
2.2
2.0
1.8
1.6 | | 21
22
23
24
25 | 4.3
18
123
67
23 | 52
46
48
45
40 | 14
13
14
14 | 20
19
18
18 | 36
34
36
40
33 | 31
29
28
28
28 | 24
23
36
28
22 | 21
12
10
9.4
24 | 2.8
2.6
4.1
6.1
4.6 | .13
.11
.11
.11 | 8.3
3.1
1.8
1.2
.80 | 16
11
7.9
3.8
2.9 | | 26
27
28
29
30
31 | 16
12
9.0
230
30
18 | 36
34
32
30
28 | 41
38
28
25
22
22 | 18
22
33
136
52
42 | 32
32
32
 | 27
172
104
58
53
52 | 20
19
18
17
16 | 20
13
11
10
9.0 | 3.4
2.7
2.0
1.6
1.3 | .10
.09
.08
.08
.07 | .59
2.3
15
13
8.4
6.8 | 2.2
2.1
2.1
2.0
1.9 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 611.12
19.7
230
.38
1210
.09 | 6453
215
1760
13
12800
1.00 | 657
21.2
41
13
1300
.10 | 813
26.2
136
16
1610
.12 | 1112
39.7
198
25
2210
.18
.19 | 1368
44.1
172
27
2710
.21
.24 | 887
29.6
46
16
1760
.14 | 530.4
17.1
71
9.0
1050
.08
.09 | 165.7
5.52
19
1.3
329
.03 | 23.97
.77
3.7
.07
48
.00 | 93.78
3.03
26
.04
186
.01 | 166.8
5.56
19
1.6
331
.03 | | STATIS | TICS OF M | ONTHLY MEA | N DATA FO | R WATER YI | EARS 1963 | - 2001, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 29.6
329
1997
.37
1983 | 13.4
215
2001
.91
1980 | 14.4
220
1992
1.44
1983 | 13.3
183
1968
1.84
1971 | 23.2
285
1992
1.41
1984 | 22.8
164
1997
1.29
1967 | 19.3
132
1977
.49
1984 | 28.5
197
1975
.72
1996 | 27.0
327
1987
.21
1971 | 3.68
24.3
1997
.003
1964 | 19.0
443
1978
.000
1985 | 10.5
167
1964
.021
1977 | | SUMMAR | Y STATIST | ics | FOR 2 | 000 CALENI | DAR YEAR | F | OR 2001 WAT | TER YEAR | | WATER YE | EARS 1963 | - 2001 | | LOWEST
HIGHES'
LOWEST
ANNUAL
MAXIMU
ANNUAL
ANNUAL
ANNUAL
10 PER-
50 PER- | MEAN
T ANNUAL
ANNUAL M
T DAILY ME | MEAN MEAN MAN MAN MINIMUM MAGE AC-FT) CFSM) MINCHES) MEDS MEDS MEDS | | .00 | Nov 3
Jul 19
Jul 19 | | .04
.05
8600 | | | 18.8
91.5
1.97
12800
.00
c66900
a24.00
13590
.08
1.15
24
3.2 | Aug Aug Aug Aug Aug Aug Aug | 1997
1967
3 1978
3 1963
3 1963
3 1978 | c From rating curve extended above 7,430 ${\rm ft}^3/{\rm s}$ based on slope-area measurements of 20,100 and 66,900 ${\rm ft}^3/{\rm s}$. a From floodmark. 08150800 Beaver Creek near Mason, TX--Continued ## 08151500 Llano River at Llano, TX LOCATION.--Lat 30°45′04", long 98°40′10", Llano County, Hydrologic Unit 12090204, on right bank in Llano, 0.4 mi downstream from bridge on State Highway 16, 7.0 mi upstream from Little Llano River, and 29.3 mi upstream from mouth. DRAINAGE AREA. -- 4,197 mi², of which 5.1 mi² probably is noncontributing. PERIOD OF RECORD.--Sept. 1939 to current year. Water-quality records.--Chemical data: Apr. 1948 to Oct. 1967, Apr. 1979 to Sept. 1986. Biochemical data: Apr. 1979 to Sept. 1986. Sediment data: Sept. 1964, Apr. 1979 to Sept. 1986. Specific conductance: Apr. 1979 to Sept. 1980. Water temperature: Apr. 1979 to Sept. 1980. REVISED RECORDS. -- WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 970.01 ft above sea level. Radio telemeter at station. Satellite telemeter at COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes
streamflow record. REMARKS.--Records fair. No known regulation or diversions. Part of low flow of the Llano River disappears into various formations, many of which are faulted, between this station and Llano River near Junction (station 08150000). No flow at EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1879, 41.5 ft June 14, 1935 (discharge, 380,000 ft³/s), from information by local resident. | | | DISCH | IARGE, CUI | BIC FEET P | | , WATER YE
LY MEAN VA | | R 2000 TO |) SEPTEMBE | R 2001 | | | |----------------------------------|---|---------------------------------------|--|--|---------------------------------|--|---------------------------------|--|---------------------------------|----------------------------------|--------------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 147
129
117
110
107 | 856
760
18200
88500
17400 | 718
696
680
747
732 | 423
416
410
410
406 | 484
426
398
382
363 | 536
619
717
1110
704 | 739
665
639
612
585 | 276
272
266
284
565 | 242
280
274
236
206 | 143
163
156
253
184 | 83
83
84
84 | 201
146
138
204
175 | | 6 | 104 | 24000 | 691 | 401 | 353 | 575 | 552 | 903 | 195 | 156 | 81 | 187 | | 7 | 105 | 10600 | 649 | 398 | 351 | 520 | 522 | 891 | 190 | 145 | 82 | | | 8 | 106 | 8510 | 611 | 390 | 340 | 662 | 511 | 472 | 189 | 135 | 83 | 192 | | 9 | 110 | 5290 | 587 | 381 | 342 | 1290 | 488 | 872 | 190 | 129 | 84 | 242 | | 10 | 187 | 3670 | 576 | 448 | 321 | 773 | 460 | 551 | 192 | 123 | 84 | 194 | | 11 | 165 | 2890 | 564 | 590 | 303 | 655 | 440 | 402 | 186 | 118 | 87 | 201 | | 12 | 154 | 2470 | 537 | 495 | 314 | 631 | 433 | 378 | 183 | 115 | 85 | 183 | | 13 | 150 | 2160 | 518 | 453 | 343 | 558 | 428 | 532 | 178 | 114 | 92 | 217 | | 14 | 143 | 1700 | 513 | 434 | 414 | 514 | 426 | 452 | 175 | 112 | 92 | 176 | | 15 | 142 | 1460 | 511 | 412 | 386 | 519 | 420 | 345 | 173 | 110 | 86 | 155 | | 16 | 153 | 1990 | 505 | 400 | 3770 | 472 | 402 | 313 | 167 | 108 | 108 | 144 | | 17 | 194 | 1980 | 479 | 435 | 1730 | 428 | 384 | 290 | 166 | 105 | 103 | 137 | | 18 | 219 | 4180 | 463 | 515 | 916 | 819 | 391 | 274 | 164 | 104 | 90 | 132 | | 19 | 179 | 4730 | 440 | 512 | 727 | 1240 | 371 | 266 | 159 | 104 | 112 | 129 | | 20 | 167 | 2360 | 434 | 454 | 636 | 787 | 368 | 272 | 154 | 103 | 108 | 126 | | 21 | 215 | 1570 | 427 | 416 | 596 | 614 | 366 | 328 | 151 | 100 | 98 | 160 | | 22 | 472 | 1370 | 419 | 399 | 550 | 534 | 362 | 304 | 147 | 97 | 99 | 383 | | 23 | 287 | 1300 | 417 | 391 | 552 | 488 | 640 | 257 | 145 | 92 | 95 | 285 | | 24 | 28200 | 1270 | 419 | 387 | 701 | 500 | 955 | 247 | 194 | 90 | 87 | 193 | | 25 | 10800 | 1020 | 429 | 382 | 572 | 543 | 519 | 279 | 190 | 92 | 86 | 169 | | 26
27
28
29
30
31 | e3000
1470
1000
1470
1980
1290 | 954
914
829
792
747 | 558
760
569
492
452
431 | 373
395
537
2520
1050
612 | 517
477
501
 | 468
954
2110
1150
900
861 | 394
340
318
295
282 | 274
275
244
228
215
226 | 160
147
141
136
139 | 93
89
85
86
86
82 | 85
89
202
158
188
157 | 158
149
143
143
144 | | TOTAL | 53072 | 214472 | 17024 | 16245 | 17765 | 23251 | 14307 | 11753 | 5449 | 3672 | 3139 | 5206 | | MEAN | 1712 | 7149 | 549 | 524 | 634 | 750 | 477 | 379 | 182 | 118 | 101 | 180 | | MAX | 28200 | 88500 | 760 | 2520 | 3770 | 2110 | 955 | 903 | 280 | 253 | 202 | 383 | | MIN | 104 | 747 | 417 | 373 | 303 | 428 | 282 | 215 | 136 | 82 | 81 | 126 | | AC-FT | 105300 | 425400 | 33770 | 32220 | 35240 | 46120 | 28380 | 23310 | 10810 | 7280 | 6230 | 10330 | | STATIS | TICS OF | MONTHLY M | IEAN DATA | FOR WATER | YEARS 193 | 39 - 2001, | BY WATER | YEAR (WY | ") | | | | | MEAN | 541 | 343 | 296 | 286 | 386 | 332 | 376 | 512 | 560 | 225 | 313 | 444 | | MAX | 3700 | 7149 | 3179 | 2483 | 3754 | 2798 | 3115 | 3350 | 4620 | 1796 | 3605 | 3891 | | (WY) | 1974 | 2001 | 1992 | 1968 | 1992 | 1997 | 1977 | 1957 | 1997 | 1988 | 1974 | 1952 | | MIN | 18.0 | 20.7 | 27.5 | 31.7 | 37.7 | 23.7 | 20.9 | 41.0 | 7.93 | .000 | .087 | .56 | | (WY) | 1952 | 1957 | 1955 | 1957 | 1954 | 1954 | 1955 | 1984 | 1953 | 1956 | 1952 | 1954 | ## 08151500 Llano River at Llano, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALEN | IDAR YEAR | FOR 2001 WAT | ER YEAR | WATER YEAR | S 1939 - 2001 | |--------------------------|----------------|-----------|--------------|---------|------------|---------------| | ANNUAL TOTAL | 313492 | | | | | | | ANNUAL MEAN | 857 | | | | 373 | | | HIGHEST ANNUAL MEAN | | | | | 1308 | 1997 | | LOWEST ANNUAL MEAN | | | | | 50.0 | 1954 | | HIGHEST DAILY MEAN | 88500 | Nov 4 | 88500 | Nov 4 | 88500 | Nov 4 2000 | | LOWEST DAILY MEAN | 14 | Sep 6 | 81 | Aug 6 | .00 | Aug 5 1952 | | ANNUAL SEVEN-DAY MINIMUM | 23 | Sep 3 | 83 | Jul 31 | .00 | Aug 27 1952 | | MAXIMUM PEAK FLOW | | | 151000 | Nov 4 | 260000 | Jun 23 1997 | | MAXIMUM PEAK STAGE | | | 29.05 | Nov 4 | 38.86 | Jun 23 1997 | | ANNUAL RUNOFF (AC-FT) | 621800 | | | | 269900 | | | 10 PERCENT EXCEEDS | 837 | | 1130 | | 541 | | | 50 PERCENT EXCEEDS | 112 | | 380 | | 156 | | | 90 PERCENT EXCEEDS | 35 | | 104 | | 41 | | ## e Estimated 08152000 Sandy Creek near Kingsland, TX DRAINAGE AREA. -- 346 mi². PERIOD OF RECORD.--Oct. 1966 to Mar. 1993, Oct. 1997 to current year. Water-quality records.--Sediment data: Jan. 1968 to Sept. 1975. REVISED RECORDS.--WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 862.31 ft above sea level. Radio telemeter at station. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair except those for daily discharges below 1 ${\rm ft}^3/{\rm s}$ which are poor. No known regulation. There are several small diversions above station for irrigation. No flow at times. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes streamflow record. EXTREMES OUTSIDE PERIOD OF RECORD.—The flood of Sept. 11, 1952, the highest since at least 1881, reached a stage of 34.2 ft (discharge, $163,000 \text{ ft}^3/\text{s}$), from slope-area measurement at gage site. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | | | | | | | |------------------------------------|---|---|--|---|---|--|--|---|--|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | 6.5
1.6
37
1430
359 | 40
37
40
44
40 | 36
32
27
24
23 | 157
109
95
84
78 | 58
120
123
232
112 | 159
164
148
147
138 | 32
34
35
32
238 | 35
27
20
17
13 | 4.6
6.6
6.4
4.8
3.7 | .04
.01
.00
.00 | .82
.40
5.0
41
52 | | 6
7
8
9
10 | .00
.00
.00
.00 | 3720
524
262
164
91 | 37
32
28
27
26 | 21
22
22
20
35 | 88
74
62
58
57 | 77
73
135
579
162 | 126
110
95
96
95 | 110
55
46
39
38 | 12
10
9.3
9.4
8.2 | 1.1
.34
.19
.11
.06 | .00
.01
.01
.11 | 98
66
34
23
21 | | 11
12
13
14
15 | .00
.00
.00
.00 | 60
57
61
47
39 | 25
23
24
24
24 | 197
102
65
61
54 | 61
63
66
71
70 | 107
193
128
116
97 | 80
80
75
65
60 | 31
26
26
23
22 | 6.8
5.7
4.5
4.1
9.4 | .04
.04
.05
.04 | .16
.18
.07
.07 | 18
8.8
3.7
2.4
1.8 | | 16
17
18
19
20 | .00
.00
.00
.00 | 44
55
96
418
175 | 24
23
22
19
19 | 48
78
134
135
88 | 203
177
84
76
71 | 76
73
70
87
65 | 54
51
50
47
47 | 19
16
14
13
15 | 11
6.8
4.4
3.3
1.6 | .13
.25
.16
.20
.35 | 2.5
1.5
.23
.44
.22 | 1.3
1.3
1.0
.33 | | 21
22
23
24
25 | .00
.02
1.1
.96
.36 | 98
68
90
81
63 | 19
19
19
19
23 | 73
68
63
55
51 | 72
63
58
86
70 | 60
53
46
49
46 | 48
47
262
168
70 | 30
24
17
12
75 | .40
.91
.23
1.2 | . 26
. 22
. 32
. 37
. 20 | .15
.15
.14
.16 | 5.5
58
37
27
20 | | 26
27
28
29
30
31 | 1.1
1.7
2.1
16
29
12 | 61
53
51
48
41 | 54
76
57
48
41
38 | 47
84
230
1190
492
217 | 52
43
46

 | 43
1880
1420
531
274
186 | 52
51
45
40
33 | 61
37
28
24
18
21 | .12
.08
.03
.01
.02 | .08
.09
.06
.03
.04 | .30
1.2
.57
.85
.66 |
13
3.8
2.6
1.8
2.1 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 64.34
2.08
29
.00
128
.01 | 8301.1
277
3720
1.6
16470
.80
.89 | 991
32.0
76
19
1970
.09 | 3794
122
1190
20
7530
.35
.41 | 2294
81.9
203
43
4550
.24
.25 | 7271
235
1880
43
14420
.68
.78 | 2703
90.1
262
33
5360
.26 | 1211
39.1
238
12
2400
.11
.13 | 221.81
7.39
35
.01
440
.02
.02 | 30.98
1.00
6.6
.03
61
.00 | 11.34
.37
2.5
.00
22
.00 | 550.79
18.4
98
.14
1090
.05
.06 | | STATIS | TICS OF 1 | MONTHLY ME | AN DATA FO | OR WATER | YEARS 196 | 7 - 2001h | , BY WATE | R YEAR (V | WY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 63.0
306
1972
.045
1990 | 42.1
277
2001
.045
1989 | 76.6
1074
1992
1.10
1990 | 59.2
511
1968
1.06
1990 | 89.4
936
1992
4.19
1967 | 85.6
425
1992
1.86
1967 | 59.7
528
1977
1.41
1984 | 122
510
1975
.71
1984 | 113
862
1987
.055
1971 | 22.5
258
1976
.10
1980 | 22.2
358
1974
.000
1989 | 27.3
188
1976
.000
1989 | ## 08152000 Sandy Creek near Kingsland, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1967 - 2001h | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 11812.56 | 27444.36 | | | ANNUAL MEAN | 32.3 | 75.2 | 65.7 | | HIGHEST ANNUAL MEAN | | | 279 1992 | | LOWEST ANNUAL MEAN | | | 3.62 1984 | | HIGHEST DAILY MEAN | 3720 Nov 6 | 3720 Nov 6 | 14200 Dec 21 1991 | | LOWEST DAILY MEAN | .00 Jul 12 | .00 Oct 1 | .00 Jul 16 1967 | | ANNUAL SEVEN-DAY MINIMUM | .00 Jul 12 | .00 Oct 1 | .00 Jul 16 1967 | | MAXIMUM PEAK FLOW | | 9620 Nov 6 | 39500 Dec 20 1991 | | MAXIMUM PEAK STAGE | | 10.92 Nov 6 | 17.63 Jun 16 1987 | | ANNUAL RUNOFF (AC-FT) | 23430 | 54440 | 47590 | | ANNUAL RUNOFF (CFSM) | .093 | .22 | .19 | | ANNUAL RUNOFF (INCHES) | 1.27 | 2.95 | 2.58 | | 10 PERCENT EXCEEDS | 41 | 130 | 96 | | 50 PERCENT EXCEEDS | 2.9 | 27 | 11 | | 90 PERCENT EXCEEDS | .00 | .04 | .09 | h See PERIOD OF RECORD paragraph. ## 08152900 Pedernales River near Fredericksburg, TX LOCATION.--Lat 30°13'13", long 98°52'10", Gillespie County, Hydrologic Unit 12090206, on left bank at downstream side of bridge on U.S. Highway 87, 2.0 mi upstream from Mueseback Creek, 3.8 mi south of Fredericksburg, and 88.7 mi upstream from mouth. DRAINAGE AREA. -- 369 mi². PERIOD OF RECORD. -- July 1979 to May 1993, Mar. 1998 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,564,96 ft above sea level. Radio telemeter at station. Satellite telemeter at station. REMARKS.--Records fair except those for daily discharges below 5.0 ft³/s, which are poor. No known regulation or diversion above station. No flow at times some years. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes streamflow record. EXTREMES OUTSIDE PERIOD OF RECORD.—The flood of Aug. 2, 1978, which is the highest since 1907, reached a stage of 41.6 ft (discharge not determined). The highest known discharge was $64,000 \text{ ft}^3/\text{s}$ June 1, 1979 (gage height, 34.4 ft, from floodmark), from rating curve extended above a discharge measurement of $42,300 \text{ ft}^3/\text{s}$. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DISCHAR | GE, CUBIC | FEET PER | | MEAN VA | AR OCTOBER
LUES | 2000 10 | SEPTEMBE | R 2001 | | | |-------------|-----------------------|--------------|----------------------------|----------------------------|----------------------------|-------------------------|----------------------------|----------------------|--------------|----------------------------|--------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1.1 | 4.5 | 48 | 45
43
43
43
44 | 83 | 64 | 105 | 79 | 42 | 10 | 10 | 137 | | 2
3 | 1.2 | 13
1910 | 47
47 | 43 | 78
74 | 73
88 | 104
103 | 79
79 | 39
35 | 12
13 | 10
11 | 25
12 | | 4 | 1.2 | 2150 | 48 | 43 | 71 | 113 | 101 | 81 | 32 | 13 | 10 | 15 | | 5 | 1.2 | 871 | 47 | 44 | 74
71
67 | 73
88
113
86 | 100 | 246 | 30 | 16 | 11 | 223 | | 6 | 1.0 | 2070 | 46 | 43 | 66 | 77 | 99 | 102 | 28 | 18 | 11 | 128 | | 7 | 1.4
3.2 | 269
269 | 46
45 | 43
43 | 65
64 | 75
154 | 98
97 | e49
e25 | 27
27 | 14
12 | 11
10 | 33
20 | | 8
9 | 3.2 | 148 | 45 | 43 | 64 | 283 | 97
96 | 72 | 27 | 10 | 10 | 14 | | 10 | 2.8 | 102 | 44 | 128 | 59 | 127 | 94 | 92 | 26 | 9.1 | 10 | 12 | | 11 | 2.3 | 82 | 44 | 118 | 58 | 116 | 94 | 74 | 25 | 9.0 | 10 | 12 | | 12 | 1.9 | 75 | 43 | 66
59 | 60 | 227 | 92
91 | 69 | 22 | 9.5 | 10 | 12 | | 13
14 | 1.6
1.5 | 69
60 | 43
44 | 59
58 | 62
71 | 138
122 | 91 | 69
65 | 19
17 | 9.6
9.6 | 10
10 | 11
11 | | 15 | 1.4 | 57 | 43 | 53 | 65 | 119 | 92 | 60 | 19 | 9.7 | 10 | 11 | | 16 | 1.3 | 58 | 43
43 | 52 | 221 | 109 | 90 | 57 | 19 | 10 | 10 | 12 | | 17 | 1.6 | 59 | 43 | 61 | 221
122
83
77 | 106 | 88 | 57
54
52
52 | 19 | 10 | 9.6 | 12 | | 18
19 | 2.2
1.7 | 96
156 | 41
41 | 69
61 | 83
77 | 111
118 | 86
86 | 52
52 | 18
15 | 10
10 | 9.6
9.6 | 12
12 | | 20 | 1.4 | 93 | 41 | 52
61
69
61
56 | 77
74 | 108 | 88 | 52 | 14 | 10 | 9.6 | 12 | | 21 | 2.0 | 77 | 41 | 54 | 71 | 104 | 88 | 50
46
45 | 13 | 10 | 9.6 | 12 | | 22 | 4.1 | 70 | 41
40
41
41 | 52 | 68 | 103 | 86 | 46 | 13 | 10 | 9.6 | 13 | | 23
24 | 95
76 | 72
70 | 41 | 52
51 | 70 | 101
100 | 104
104 | 45
44 | 13
13 | 10
10 | 9.6
9.6 | 12
14 | | 25 | 24 | 62 | 42 | 52
52
51
50 | 71
68
70
83
70 | 99 | 90 | 45 | 15 | 10 | 9.6 | 12 | | 26 | 19 | 59 | 50 | | | 98 | 85
84
82
82
80 | 47 | 18 | 10 | 10 | 11 | | 27 | 11 | 56 | 69 | 70 | 65 | 98
106
127
113 | 84 | 45 | 14 | 11 | 17 | 11 | | 28 | 7.5 | 55 | 52 | 82 | 65 | 127 | 82 | 43 | 13 | 10 | 11 | 11 | | 29
30 | 5.9
5.1 | 52
49 | 50
69
52
46
45 | 370
141 | | 113 | 82
80 | 40
37 | 11
9.9 | 10
10 | 8.8
8.5 | 9.9
10 | | 31 | 4.4 | | 45 | 94 | | 110 | | 38 | | 10 | 122 | | | TOTAL | 289.0 | 9233.5 | 1400 | 2234
72.1
370 | 2139 | 3586 | 2782 | 1988
64.1 | 632.9 | 335.5
10.8
18
9.0 | 427.7 | 851.9 | | MEAN | 9.32 | 308 | 45.2 | 72.1 | 76.4 | 3586
116 | 92.7 | 64.1 | 21.1 | 10.8 | 13.8 | 28.4 | | MAX
MIN | 95
1.0 | 2150
4.5 | 69
40 | 370
41 | 221
58 | 283
64 | 105
80 | 246
25 | 42
a a | 8 U | 122
8 5 | 223
9.9 | | AC-FT | 573 | 18310 | 2780 | 4430 | 4240 | 7110 | 5520 | 3940 | 1260 | 665 | 848 | 1690 | | STATIST | ICS OF N | MONTHLY MEA | N DATA FO | R WATER Y | EARS 1980 | - 2001h | , BY WATER | YEAR (W | Y) | | | | | MEAN | 60.9 | 45.2 | 97.5 | 42.3 | 73.1 | 65.8 | 49.5 | 85.5 | 103 | 35.6 | 13.8 | 16.6 | | MAX | 408 | 308 | 993 | 173 | 631 | 370 | 224 | 261 | 635 | 191 | 48.2 | 48.8 | | (WY) | 1986 | 2001 | 1992 | 1992 | 1992 | 1992 | 1992 | 1990 | 1987 | 1987 | 1987 | 1981 | | MIN
(WY) | 3.25
2000 | 5.70
2000 | 7.18
1990 | 8.78
1990 | 8.32
1984 | 9.77
1984 | 5.96
1984 | 2.95
1984 | 2.33
1984 | .78
2000 | .23
1985 | .31
1984 | | | STATIST | | | 000 CALENI | | | OR 2001 WAT | | | | EARS 1980 | - 2001h | | ANNUAL | TOTAL | | | 13662.26 | | | 25899.5 | | | | | | | ANNUAL | | | | 37.3 | | | 71.0 | | | 59.0 | | 1000 | | | 'ANNUAL
ANNUAL N | | | | | | | | | 244
5.3 | 1 | 1992
1984 | | | DAILY N | | | 2150 | Nov 4 | | 2150 | Nov 4 | | 14800 | Dec | 20 1991 | | | DAILY ME | | | .00 | Sep 2
Sep 2 | | 1.0
1.2 | Oct 6 | | .0 | 0 Jul | 13 1984 | | | SEVEN-DA
I PEAK FI | AY MINIMUM | | .00 | sep 2 | | 1.2
8880 | Nov 3 | | 14800
.00
49900 | u Sep
Dec | 2 2000
20 1991 | | | PEAK ST | | | | | | 15.07 | Nov 3 | | 32.0 | 9 Dec | 20 1991 | | | RUNOFF | | | 27100 | | | 51370 | | | 42770 | | | | | ENT EXC | | | 54
8.6 | | | 107
45 | | | 88
21 | | | | | ENT EXC | | | .51 | | | 9.6 | | | 3.1 | | | | | | | | | | | | | | | | | e Estimated h See PERIOD OF RECORD paragraph. 08152900 Pedernales River near Fredericksburg, TX--Continued #### 08153500 Pedernales River near Johnson City, TX LOCATION.--Lat 30°17'30", long 98°23'57", Blanco County, Hydrologic Unit 12090206, near left downstream end of bridge on U.S. Highway 281, 0.2 mi downstream from Towhead Creek, 1.1 mi northeast of Johnson City, 3.4 mi downstream from Buffalo Creek, and 48.0 mi upstream from mouth. DRAINAGE AREA. -- 901 mi². PERIOD OF RECORD.--May 1939 to current year. Water-quality records.--Chemical data: Apr. 1948 to Sept. 1950, Oct. 1971 to Sept. 1985. REVISED RECORDS.--WSP 1632: 1953(M), 1957, 1958(M). WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,096.70 ft above sea level. May 4 to Sept. 13, 1939, nonrecording gage, and Sept. 14, 1939, to Sept. 10, 1952, water-stage recorder at upstream side of bridge at same datum. Sept. 11, 1952, to June 29, 1953, nonrecording gage, and June 30, 1953, to Oct. 7, 1954, water-stage recorder at site 360 ft downstream at same datum. Radio telemeter at station. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. There are diversions above station for irrigation. During the year, the city of Fredericksburg discharged varying amounts of wastewater effluent into the river upstream from station. The city of Johnson City diverts varying amounts of water from the pool at gage and
discharges wastewater effluent into river below the gage. Flow is affected at times by discharge from the flood-detention pools of four floodwater-retarding structures. These structures control runoff from 15.6 mi² in the Williamson Creek drainage basin. No flow at times. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes streamflow record. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of July 1869, reached a stage of 33 ft from information by local residents. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY .TTTN JUL AUG SEP 78 .83 127 0.0 .00 .00 .49 .00 .39 0.0 73 .36 .34 179 .00 .00 .29 0.0 2.7 .00 .26 0.0 .00 .40 .39 8.3 3.3 .42 5.2 4.7 3.4 5.3 6.1 6.8 5.9 4.8 4.8 18 3.7 3.0 2.6 2.6 2.5 2.4 2.2 2.4 2.0 .99 1.7 1.5 1.3 1.3 3.2 ---1.1 6.5 .84 .85 TOTAL 597.18 407.09 168.08 MEAN 19.3 78.6 69.6 13.1 5.42 MAX .00 .84 MIN .26 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 - 2001, BY WATER YEAR (WY) 97.6 MEAN MAX (WY) 2.51 2.44 4.83 2.07 .060 2.05 .000 MTN .44 1.68 . 52 .001 .000 (WY) ## 08153500 Pedernales River near Johnson City, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR YEAR | FOR 2001 WATER YEAR | WATER YEARS 1939 - 2001 | |------------------------------------|------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 31483.94 | 70583.35 | 100 | | ANNUAL MEAN
HIGHEST ANNUAL MEAN | 86.0 | 193 | 193
840 1992 | | LOWEST ANNUAL MEAN | | | 4.12 1956 | | HIGHEST DAILY MEAN | 6000 Nov 6 | 6000 Nov 6 | 129000 Sep 11 1952 | | LOWEST DAILY MEAN | .00 Jul 20 | .00 Oct 1 | .00 Aug 8 1951 | | ANNUAL SEVEN-DAY MINIMUM | .00 Jul 20 | .00 Oct 1 | .00 Aug 8 1951 | | MAXIMUM PEAK FLOW | | 16400 Sep 5 | 441000 Sep 11 1952 | | MAXIMUM PEAK STAGE | | 15.13 Sep 5 | 42.50 Sep 11 1952 | | ANNUAL RUNOFF (AC-FT) | 62450 | 140000 | 140000 | | 10 PERCENT EXCEEDS | 94 | 270 | 280 | | 50 PERCENT EXCEEDS | 17 | 85 | 51 | | 90 PERCENT EXCEEDS | .00 | 1.3 | 4.5 | ## 08154700 Bull Creek at Loop 360 near Austin, TX LOCATION.--Lat 30°22′19", long 97°47′04", Travis County, Hydrologic Unit 12090205, on right bank at downstream side of bridge at Loop 360, 1.0 mi upstream from West Fork Bull Creek and Farm Road 2222, and 7.1 mi northwest of the State Capitol Building in Austin. DRAINAGE AREA.--22.3 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Apr. 1976 to July 1978 (peak discharge greater than base discharge), July 1978 to current year. GAGE.--Water-stage recorder, concrete control, and crest-stage gage. Datum of gage is 534.08 ft above sea level (levels from city of Austin benchmark). Satellite telemeter at station. REMARKS.--Records good. No known regulation or diversions. No flow at times. | | | DISCHAR | GE, CUBIC | FEET PER | | VATER YE
MEAN VA | AR OCTOBER | R 2000 TO | SEPTEMBE | R 2001 | | | |--|---|---|------------------------------------|--|-------------------------------------|--------------------------------------|--|---|------------------------------------|--------------------------------------|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .38
.13
.12
.15 | 9.3
43
451
133
104 | 26
21
19
19
17 | 33
30
27
26
25 | 29
26
25
23
21 | 19
19
69
52
40 | 82
73
65
59
54 | 11
7.8
7.4
8.1
22 | 53
46
20
14
10 | 6.4
4.5
9.0
4.2
2.4 | .12
.14
.11
.08 | 37
25
17
44
38 | | 6
7
8
9
10 | .12
e.16
e.18
e.25
.21 | 233
125
100
68
53 | 18
18
21
17
16 | 23
21
19
18
105 | 21
22
22
27
21 | 31
26
46
41
30 | 50
46
41
38
35 | 37
70
25
19
30 | 8.7
8.0
8.8
10
8.8 | 2.3
1.9
1.7
1.3 | .06
.05
.09
.05 | 26
16
12
11
10 | | 11
12
13
14
15 | .23
.26
8.9 | | | | | | 32
30
28
26
23 | | | 1.1
.80
.65
.66 | .04
.06
.25
.43 | 9.0
8.1
7.3
7.4
6.4 | | 18
19 | 29
8.8
2.7
1.3
.98 | 28
23
59
53
41 | | | | | 22
20
23
24
22 | | | | | 6.5
4.1
3.8
4.6
4.8 | | 21
22
23
24
25 | 157
109
65
33
19 | | 12
12
12
11
69 | | | | 20
18
23
19
16 | | | | .07
.08
.20
.18 | 4.0
4.2
3.4
3.2
2.4 | | | 14
13
13
11
9.9
9.3 | 46
40
31
29
27 | 148
106
67
50
41
37 | 25
27
27
67
40
33 | 15
15
16
 | 20
511
219
131
104
96 | 14
13
11
11
9.5 | 24
22
18
14
12 | 3.4
3.4
2.0
1.7
2.8 | .11
.17
.16
.11
.09 | 21
12 | 2.5
2.3
2.1
1.9
1.8 | | | 507.64 | | | 1139
36.7
105
18
2260 | | 1956
63.1
511
19
3880 | 947.5
31.6
82
9.5
1880 | 701.6
22.6
135
5.6
1390 | 9.29 | 42.09
1.36
9.0
.09
83 | 308.62
9.96
119
.04
612 | 325.8
10.9
44
1.8
646 | | | | MONTHLY MEA | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 16.6
120
1999
.17
2000 | 13.1
73.0
2001
.061
2000 | 16.8
130
1992
.64
1990 | 13.7
55.9
1992
1.08
1990 | 17.2
114
1992
1.92
1996 | 17.3
64.7
1992
2.06
1996 | 12.4
69.4
1997
1.28
1984 | 24.4
58.9
1992
.33
1984 | 25.7
141
1987
.57
1998 | 3.98
22.6
1997
.043
1994 | 4.00
26.3
1991
.006
2000 | 3.99
15.3
1987
.009
1999 | | SUMMAR | Y STATIST | rics | FOR 2 | 000 CALEN | DAR YEAR | F | OR 2001 WA | ATER YEAR | | WATER Y | EARS 1978 | - 2001 | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL 10 PER 50 PER | T ANNUAL M
ANNUAL M
T DAILY M
DAILY ME | MEAN MEAN EAN AY MINIMUM LOW FAGE AC-FT) EEDS | | 4333.42
11.8
451
.00
.00
8600
31
1.9
.00 | Nov 3
Aug 6
Aug 6 | | 9936.15
27.2
511
.04
1570
5.88
19710
55
18 | Mar 27
4 Aug 10
5 Aug 6
Mar 27
3 Mar 27 | | 1180
.0
.0
13700 | 00 Jul
00 Jul
00 Jul
May 1 | 17 1998
4 1984
4 1984
13 1982 | e Estimated 08154700 Bull Creek at Loop 360 near Austin, TX--Continued ## 08154700 Bull Creek at Loop 360 near Austin, TX--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.-CHEMICAL DATA: Apr. 1978 to current year. BIOCHEMICAL DATA: Apr. 1978 to current year. RADIOCHEMICAL DATA: Jan. to Apr. 1980. PESTICIDE DATA: June 1978 to Sept. 1986, Jan. 1993 to June 1995. INSTRUMENTATION. -- Stage-activated automatic sampler. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | WAILK | QUALITI L | MIM, WAIL | IC TEARCOC | TODER 200 | O TO DEFT | EMDER 200 | _ | | | | |---------------------|--|--|--|--|--|--|--|--|--|---|---|--|---| | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | | OCT
15-16
DEC | 2115 | 30 | | 413 | 7.9 | | 25 | 26 | | | | 26 | 94000 | | 05 | 1330 | | 16 | 767 | 8.4 | 13.0 | <1 | .5 | | 11.5 | 110 | <10 | E14 | | MAY
06-07 | 2130 | 168 | | 434 | 7.6 | | 12 | 56 | | | | 38 | 17000 | | SEP
17 | 1115 | | 3.7 | 737 | 7.8 | 24.5 | <1 | | 1.4 | 7.5 | 92.3 | <10 | 27 | | DATE | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) |
NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
15-16
DEC | 32000 | 99 | 61 | .416 | .011 | .427 | .047 | 1.21 | .734 | .78 | .099 | <.060 | <.018 | | 05 | 30 | 244 | <10 | | <.006 | 1.32 | <.041 | 1.61 | | .30 | <.060 | <.060 | <.018 | | MAY
06-07 | 22000 | 145 | 175 | .514 | .011 | .525 | E.022 | 1.90 | | 1.4 | .153 | <.060 | <.018 | | SEP
17 | 17 | 210 | <10 | | E.004 | .060 | <.040 | .316 | | .26 | <.060 | <.060 | <.020 | | | | DA | TE | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | | | | | | | OCI
1
DEC | 5-16 | 9.4 | | | E.05 | 3.0 | 2 | E18 | | | | | | | 0 | 5 | 2.9 | .1 | <.1 | <.11 | E.8 | <1 | 4 | | | | | | | | 6-07 | 15 | | | E.08 | 3.6 | 3 | 17 | | | | | | | SEP
1 | 7 | 3.1 | .3 | <.1 | <.10 | E.8 | <1 | <1 | | | | | | | | | | | | | | | | | | | THIS PAGE IS INTENTIONALLY LEFT BLANK. ## 08154900 Lake Austin at Austin, TX LOCATION.--Lat $30^{\circ}18'55$ ", long $97^{\circ}47'10$ ", Travis County, Hydrologic Unit 12090205, at city of Austin Waterplant No. 2 and 1.5 mi upstream from Tom Miller Dam on the Colorado River at Austin. DRAINAGE AREA.--38,846 mi², of which 11,403 mi² probably is noncontributing. PERIOD OF RECORD.-CHEMICAL DATA: Oct. 1978 to Aug. 1990, Oct. 1990 to current year. BIOCHEMICAL DATA: Oct. 1978 to Aug. 1990, Oct. 1990 to current year. PESTICIDE DATA: Oct. 1978 to Aug. 1990. REMARKS.--Trace metal and pesticide analyses of bottom sediments at selected sites June 2001. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 ### 301739097471601 -- Lk Austin Site AR | | 301/3505/1/1001 Extrapelli Bicc fac | | | | | | | | | | | |------------------------------|--------------------------------------|---|--|--|--------------------------------------|--|--|--|--|--|--| | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | | , , | ATION) | | | | | | OCT 22 22 22 22 22 22 MAR 28 | 0845
0847
0851
0932
0934 | 1.00
10.0
25.0
10.0
20.0 | 483
482
498
483
479
451 | 7.8
7.7
7.4
7.9
7.8 | 21.7
21.6
21.1
21.8
21.6 | 5.8
5.8
3.6
7.2
6.8
9.5 | 67
67
41
83
78
92
92 | | | | | | 28 | 0930 | 25.0
25.0 | 453 | 7.9 | 13.5 | 9.5 | 92 | | | | | | ANS- | SPE- | PH
WATER | | | | | OXYGEN,
DIS- | | | | | | DATE | TIME | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | |------|------|--|---|--|--|---|---|--|--|---|---|--|--| | OCT | | | | | | | | | | | | | | | 22 | 0855 | 3.00 | 1.00 | 482 | 7.9 | 21.7 | 1.0 | 1.2 | 6.8 | 78 | E48 | E36 | 146 | | 22 | 0857 | | 10.0 | 484 | 7.8 | 21.6 | | | 6.5 | 75 | | | | | 22 | 0859 | | 20.0 | 497 | 7.8 | 21.6 | | | 6.5 | 75 | | | | | 22 | 0901 | | 30.0 | 496 | 7.5 | 20.7 | | | 4.0 | 45 | | | | | 22 | 0903 | | 40.0 | 498 | 7.5 | 20.6 | | | 20.6 | 232 | | | | | 22 | 0905 | | 50.0 | 500 | 7.4 | 20.6 | 1.7 | 5.4 | 3.1 | 35 | | | | | MAR | | | | | | | | | | | | | | | 28 | 0948 | 2.10 | 1.00 | 451 | 7.9 | 13.5 | | 5.7 | 9.4 | 91 | E41 | E29 | 141 | | 28 | 0950 | | 10.0 | 450 | 7.9 | 13.5 | | | 9.5 | 92 | | | | | 28 | 0952 | | 20.0 | 451 | 7.9 | 13.5 | | | 9.5 | 92 | | | | | 28 | 0954 | | 30.0 | 450 | 7.9 | 13.5 | | | 9.4 | 91 | | | | | 28 | 0956 | | 40.0 | 450 | 7.9 | 13.5 | | | 9.4 | 91 | | | | | 28 | 0958 | | 50.0 | 453 | 7.9 | 13.5 | | 7.1 | 9.4 | 91 | | | 142 | | JUN | | | | | | | | | | | | | | | 21 | 0940 | | | | | | | | | | | | | | 301739097471201 |
Lik | Austin | Site | AC. | |-----------------|---------|--------|------|-----| | DATE | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | |------|---|--|--|--|--|--|--|---|---|---|--|--|--| | OCT | | | | | | | | | | | | | | | 22 | 267 | <10 | | E.003 | E.028 | <.041 | | | .26 | <.060 | <.060 | <.018 | 3.4 | | 22 | | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | | 22 | 278 | <10 | .049 | .013 | .062 | .104 | .45 | .29 | .39 | <.060 | <.060 | <.018 | 3.8 | | MAR | | | | | | | | | | | | | | | 28 | 261 | <10 | | E.003 | .456 | E.023 | .75 | | .29 | <.060 | <.060 | <.018 | 5.7 | | 28 | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | 28 | 262 | <10 | | <.006 | .428 | E.022 | .69 | | .26 | <.060 | <.060 | <.018 | 3.9 | | JUN | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | ## 08154900 Lake Austin at Austin, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 301739097471201 -- Lk Austin Site AC | | CHLOR-A | CHLOR-B | BED | BED | BED | BED | BED | CADMIUM | CHRO- | | | COPPER, | | |------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | PHYTO- | PHYTO- | MAT. | MAT. | MAT. | MAT. | MAT. | RECOV. | MIUM, | COPPER, | | RECOV. | | | | PLANK- | PLANK- | SIEVE | SIEVE | SIEVE | SIEVE | SIEVE | FM BOT- | RECOV. | TOTAL | COPPER, | FM BOT- | IRON, | | | TON | TON | DIAM. | DIAM. | DIAM. | DIAM. | DIAM. | TOM MA- | FM BOT- | RECOV- | DIS- | TOM MA- | SEDIMT, | | | CHROMO | CHROMO | % FINER | TERIAL | TOM MA- | ERABLE | SOLVED | TERIAL | BED MA- | | DATE | FLUOROM | FLUOROM | THAN | THAN | THAN | THAN | THAN | (UG/G | TERIAL | (UG/L | (UG/L | (UG/G | TERIAL | | | (UG/L) | (UG/L) | .062 MM | .125 MM | .250 MM | .500 MM | 1.00 MM | AS CD) | (UG/G) | AS CU) | AS CU) | AS CU) | AS FE) | | | (70953) | (70954) | (80164) | (80165) | (80166) | (80167) | (80168) | (01028) | (01029) | (01042) | (01040) | (01043) | (01170) | | OCT | | | | | | | | | | | | | | | OCT | | | | | | | | | | | 0 0 | | | | 22 | | | | | | | | | | | 2.8 | | | | 22 | | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | | 22
 | | | | | | | | | | | | | | 22 | | | | | | | | | | | 3.4 | | | | MAR | _ | _ | | | | | | | | | | | | | 28 | .3 | <.1 | | | | | | | | E1.6 | 1.4 | | | | 28 | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | 28 | | | | | | | | | | E1.5 | 1.7 | | | | JUN | | | | | | | | | | | | | | | 21 | | | 95 | 98 | 100 | 100 | 100 | .3 | 13 | | | 18 | 15000 | ## 301739097471201 -- Lk Austin Site AC | DATE | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB)
(01052) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G)
(01053) | RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | |------|---|---|--|---|---| | OCT | | | | | | | 22 | | <1.00 | | | | | 22 | | | | | | | 22 | | | | | | | 22 | | | | | | | 22 | | | | | | | 22 | | <1.00 | | | | | MAR | | | | | | | 28 | | | | | | | 28 | | | | | | | 28 | | | | | | | 28 | | | | | | | 28 | | | | | | | 28 | | | | | | | JUN | | | | | | | 21 | 24 | | 1500 | .03 | 60 | ### 301739097470901 -- Lk Austin Site AL | | | | | PH | | | OXYGEN, | |------|------|---------|---------|---------|---------|---------|---------| | | | | SPE- | WATER | | | DIS- | | | | | CIFIC | WHOLE | | | SOLVED | | | | SAM- | CON- | FIELD | TEMPER- | OXYGEN, | (PER- | | | | PLING | DUCT- | (STAND- | ATURE | DIS- | CENT | | DATE | TIME | DEPTH | ANCE | ARD | WATER | SOLVED | SATUR- | | | | (FEET) | (US/CM) | UNITS) | (DEG C) | (MG/L) | ATION) | | | | (00003) | (00095) | (00400) | (00010) | (00300) | (00301) | | | | | | | | | | | OCT | | | | | | | | | 22 | 0915 | 1.00 | 483 | 7.9 | 21.7 | 7.2 | 83 | | 22 | 0917 | 10.0 | 486 | 7.8 | 21.6 | 6.2 | 71 | | 22 | 0919 | 24.0 | 497 | 7.4 | 21.0 | 3.8 | 43 | | MAR | | | | | | | | | 28 | 1010 | 1.00 | 451 | 7.9 | 13.5 | 9.5 | 92 | | 28 | 1012 | 10.0 | 453 | 7.9 | 13.5 | 9.4 | 91 | | 28 | 1014 | 23.0 | 457 | 7.9 | 13.5 | 9.3 | 90 | | | | | | | | | | ## 08154900 Lake Austin at Austin, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 302043097472401 -- Lk Austin Site BC | | 302043097472401 Lk Austin Site BC | | | | | | | | | | | | | |--------------------|---|--|--|--|--|--|--|--|---|---|---|--|---| | DATE | TIME | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | | OCT
22
22 | 0930
0936 | 2.00 | 1.00
30.0 | 482
459 | 7.9
7.6 | 21.8
21.1 | 1.0
15 | 1.8
23 | 7.0
5.9 | 81
67 | 400 | E280 | 142
133 | | MAR 28 28 28 21 21 | 1034
1036
1038
1040 | 2.40

 | 1.00
10.0
20.0
30.0 | 444
446
446
435 | 8.0
8.0
8.0
8.0 | 13.0
13.0
12.5
12.0 |

 | 4.0

17 | 9.6
9.6
9.8
9.8 | 92
92
93
92 | 44

 | 58

 | 142

149 | | 21 | 1015 | | | | | | | | | | | | | | | | | | 30 | 204309747 | '2401 L | k Austin | Site BC | | | | | | | DATE | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | | OCT
22
22 | 266
259 | <10
26 |
.289 | E.004
.008 | .055 | <.041
E.038 | .33 | | .27 | <.060
E.040 | <.060
<.060 | <.018
<.018 | | | MAR
28
28 | 260 | <10 | | <.006 | .404 | E.021 | .74 | | .34 | <.060 | <.060 | <.018 | | | 28
28 | 254 |
10 | | E.004 | .746 | .041 | 1.2 | .39 | .43 |
E.050 | E.048 | .025 | .077 | | JUN
21 | | | | | | | | | | | | | | | | | | | 30 | 204309747 | '2401 L | k Austin | Site BC | | | | | | | DATE | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(80164) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM
(80165) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.250 MM
(80166) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
1.00 MM
(80168) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD)
(01028) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G)
(01029) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU)
(01043) | | OCT
22
22 | 3.9
4.9 | | | | | | | | | | | 2.6
3.5 | | | MAR
28
28 | 3.6 | .2 | <.1 | | | | | | | | E1.5 | 1.5 | | | 28
28 |
4.0 | | | | | | | | | |
E1.7 |
1.4 | | | JUN
21 | | | | 93 | 98 | 100 | 100 | 100 | .2 | 7.8 | | | 14 | | | | | | 30 | 204309747 | '2401 L | k Austin | Site BC | | | | | | | | | | DATE | IRC
SEDI
BED
TERI
AS
(011 | MT, TOM MA- TER AL (UG FE) AS | OV.
BOT- LEA
MA- DI
IAL SOL
B/G (UG
PB) AS | NESD, RECD, RECD FM EVED TOM (VED TERD) | OV. FM B
OT- TOM
MA- TER
IAL (UG | OV. REC
OT- FM B
MA- TOM
IAL TER
I/G (UG
HG) AS | OV.
OT-
MA-
IAL
/G
ZN) | | | | | | | | OCT 22 22 MAR 28 28 28 | -
- |
 | | 00 –
– –
– – |

 |

 | - | | | | | | | | 28
JUN | - | | | | | | | | | | 189 ## 08154900 Lake Austin at Austin, TX--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 302044097472301 -- Lk Austin Site BL | | | DA | | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | | | | |------------------------------|---|--|--|--|--|---|---|--|--|---|---|---|--| | | | 2 | 2
2
2 | 0950
0952
0954 | 1.00
10.0
19.0 | 480
481
481 | 7.8
7.9
7.9 | 21.8
21.8
21.8 | 6.9
7.2
7.2 | 80
83
83 | | | | | | | 2 2 | 8
8
8 | 1024
1026
1028 | 1.00
10.0
20.0 | 444
447
440 | 7.9
7.9
7.9 | 13.0
13.0
13.0 | 9.4
9.4
9.5 |
90
90
91 | | | | | | | | | 30 | 192609750 | 2201 L | k Austin | Site CC | | | | | | | DATE | TIME | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | | OCT
22
22
22
MAR | 1015
1017
1019 | 3.00 | 1.00
10.0
22.0 | 484
484
491 | 7.8
7.8
7.5 | 21.6
21.5
21.4 | .9

5.2 | 1.4

8.3 | 6.8
6.8
5.0 |
78
57 | E84

 | E22

 | 148

145 | | 28
28
28
JUN | 1100
1102
1104 | 2.10 | 1.00
10.0
23.0 | 439
441
439 | 7.9
7.8
7.8 | 11.5
11.5
11.5 |
 | 8.2

5.7 | 8.9
8.8
8.8 | 83
82
82 | 46

 | 56

 | 138

140 | | 21 | 1050 | | | | | | | | | | | | | | | | | | 30 | 192609750 | 2201 L | k Austin | Site CC | | | | | | | DATE | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) | | OCT 22 | 266 | <10 | <.006 | E.038 | E.026 | | .38 | <.060 | <.060 | <.018 | 3.5 | | | | 22
22 | 273 | 31 | <.006 | .070 | E.021 | .42 | .35 | <.060 | <.060 | <.018 | 4.4 | | | | MAR
28 | 256 | <10 | <.006 | .473 | <.041 | .77 | .30 | <.060 | <.060 | E.011 | 4.0 | .2 | <.1 | | 28
28 | 253 | <10 | <.006 | .463 | <.041 | .77 | .31 | <.060 | <.060 | E.011 | 5.3 | | | | JUN
21 | | | | | | | | | | | | | | | | | | | 30 | 192609750 | 2201 L | k Austin | Site CC | | | | | | | DATE | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(80164) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM
(80165) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.250 MM
(80166) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.500 MM
(80167) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
1.00 MM
(80168) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD)
(01028) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G)
(01029) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU)
(01043) | IRON,
SEDIMT,
BED MA-
TERIAL
AS FE)
(01170) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB)
(01052) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | | OCT 22 | | | | | | | | | 2.4 | | | | <1.00 | | 22 | | | | | | | | | 2.4 | | | | <1.00 | | MAR
28 | | | | | | | | E1.4 | E1.3 | | | | | | 28
28 | | | | | | | | E1.4
E1.3 | 1.4 | | | | | | JUN
21 | 37 | 46 |
75 | 100 | 100 | .1 | 3.3 |
E1.3 | | <10 | 4900 | 4.4 | | | | ٠, | 10 | , , | 100 | -50 | • - | 5.5 | | | -10 | 1000 | | | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 495 495 506 439 438 437 DATE OCT 22... 22... MAR 28... 28... 28... JUN 21... TRANS-PAR- ENCY (SECCHI DISK) (M) (00078) .60 -- 1.70 TIME 1100 1102 1142 1144 SAM- PLING DEPTH (FEET) (00003) 1.00 1.00 9.00 440 443 7.9 7.9 12.0 12.0 SAM-PLING DEPTH (FEET) (00003) 1.00 10.0 17.0 10.0 19.0 1.00 TIME 1040 1042 1044 1124 1126 1128 1130 DATE OCT 22... 22... MAR 28... 22... 28... 28... 21... DATE OCT 22... 22... MAR 28... 28... ### 08154900 Lake Austin at Austin, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 301926097502201 -- Lk Austin Site CC | 30 | 192009750 | 12201 L | K AUSTIII | SILE CC | | | | | | |--|--|---|---|--|--|---|---|--|---| | DA | TE | | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG)
(71921) | | | | | | | | OCT | | | | | | | | | | | | 2 | | | | | | | | | | | 2 | | | | | | | | | | MAR | 2 | | | | | | | | | | | 8 | | | | | | | | | | | 8 | | | | | | | | | | JUN | 8 | | | | | | | | | | | 1 | 540 | <.01 | 20 | | | | | | | 30 | 202109754 | 10001 L | k Austin | Site DC | | | | | | | | | | | | | | | | ~~~~~ | | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | | THAN
.062 MM | THAN
.125 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.250 MM
(80166) | THAN
.500 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
1.00 MM
(80168) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD)
(01028) | | 7.6 | 22.6 | 5.5 | 64 | | | | | | | | 7.6 | 22.5 | 5.3 | 62 | | | | | | | | 7.3 | 22.2 | 1.6 | 19 | | | | | | | | 7.8 | 11.5 | 8.4 | 78 | | | | | | | | 7.8 | 11.5 | 8.4 | 78 | | | | | | | | 7.8 | 11.5 | 8.4 | 78 | | | | | | | | | | | | 26 | 32 | 51 | 95 | 100 | .1 | | 30 | 202109754 | 10001 L | k Austin | Site DC | | | | | | | MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | | SEDIMT,
BED MA-
TERIAL
AS FE) | FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G)
(01053) | TOM MA-
TERIAL
(UG/G
AS HG) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN)
(01093) | 4.0 | <10 | 4700 | 4.6 | 410 | <.01 | <20 | | | | | 30 | 231409754 | 14901 L | k Austin | Site EC | | | | | | | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | | 508
492 | 7.6
7.5 | 22.1
21.8 | 4.5
25 | 10
29 | 3.6
3.2 | 42
37 | 560
 | 720
 | 149 | 9.0 8.9 3.5 85 84 E33 E52 137 ## 08154900 Lake Austin at Austin, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 ## 302314097544901 -- Lk Austin Site EC | DATE | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | |------|---|--|--|--|--|--|--|---|---|---|--
--|--| | OCT | | | | | | | | | | | | | | | 22 | 281 | <10 | .043 | .017 | .060 | .127 | .53 | .34 | .47 | <.060 | <.060 | <.018 | 4.1 | | 22 | 269 | 29 | .070 | .019 | .089 | .101 | .65 | .46 | .56 | E.038 | <.060 | <.018 | 4.6 | | MAR | | | | | | | | | | | | | | | 28 | 256 | <10 | | <.006 | .478 | <.041 | .98 | | .51 | <.060 | <.060 | E.014 | 3.8 | | 28 | | | | | | | | | | | | | | ### 302314097544901 -- Lk Austin Site EC | DATE | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | |------|---|--|--|---|---| | OCT | | | | | | | 22 | | | | 2.7 | <1.00 | | 22 | | | | 3.1 | E.61 | | MAR | | | | | | | 28 | .9 | <.1 | E1.3 | 1.6 | | | 28 | | | | | | ### 08155200 Barton Creek at State Highway 71 near Oak Hill, TX LOCATION.--Lat 30°17′46", long 97°55′31", Travis County, Hydrologic Unit 12090205, at upstream side of bridge on State Highway 71, 0.1 mi downstream from Little Barton Creek, and 5.8 mi northwest of Oak Hill. DRAINAGE AREA. -- 89.7 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Aug. 1975 to Feb. 1978 (peak discharge greater than base discharge), Feb. 1978 to Sept. 1982, Jan. 1989 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 737.04 ft above sea level. Satellite telemeter at station. REMARKS.--Records fair except those below 15.0 ft^3/s , which are poor. No known regulation or diversions. No flow at times. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEA
MEAN VAI | AR OCTOBER
LUES | 2000 TO | SEPTEMBE | R 2001 | | | |---|--|---|--|--|--|--|--|---|---|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | .36
14
191
102
94 | 67
64
61
61 | 112
105
99
96
90 | 114
109
106
101
95 | 72
73
104
121
100 | 110
110
108
105
102 | 61
60
58
57
76 | 32
32
29
27
24 | 1.5
1.4
1.5
1.4 | .00
.00
.00
.00 | 2.2
.91
1.6
30
15 | | 6
7
8
9
10 | .00
.00
.00
.00 | 440
170
179
125
96 | 60
57
56
54
54 | 85
83
79
76
194 | 93
90
89
87
82 | 96
93
94
94
91 | 99
99
108
103
100 | 80
196
97
114
82 | 22
21
21
22
22 | 1.2
.95
.80
.69 | .00
.00
.00
.00 | 10
6.4
4.9
4.9
4.7 | | 11
12
13
14
15 | .00
.00
.00
.00 | 84
78
71
65
63 | 54
51
71
74
66 | 226
147
139
135
120 | 81
80
78
78
77 | 91
144
107
112
123 | 97
93
93
91
86 | 74
70
78
69
63 | 19
16
14
12
12 | .63
.58
.54
.52
.50 | .00
.00
.00
.00 | 4.7
3.5
3.1
3.0
2.7 | | 16
17
18
19
20 | .00
.00
.00
.00 | 61
57
75
102
83 | 63
59
60
57
58 | 118
145
180
165
148 | 99
88
80
79
77 | 107
107
121
133
115 | e78
77
79
76
75 | 61
57
55
52
52 | 13
13
11
8.7
7.4 | . 47
. 46
. 45
. 43
. 41 | .00
.00
.00
.00 | 2.5
2.4
2.5
2.4
2.1 | | 21
22
23
24
25 | .27
4.6
1.4
.71
.61 | 77
75
77
103
90 | 57
56
56
56
88 | 140
131
124
120
116 | 76
72
73
76
70 | 114
108
101
99
94 | 72
69
89
84
71 | 50
47
44
39
44 | 6.2
5.2
5.0
4.4
3.8 | .38
.36
.35
.32
.30 | .00
.00
.00
.00 | 2.2
2.4
2.2
2.2
2.9 | | 26
27
28
29
30
31 | .52
.44
.40
.41
.39 | 81
77
76
72
69 | 193
188
152
136
125
119 | 113
115
134
143
131
120 | 68
69
67
 | 92
121
165
127
120
115 | 66
65
66
63
61 | e45
e46
41
40
36
34 | 3.2
2.7
2.3
1.8
1.4 | .29
.28
.25
.11
.00 | .01
.18
.51
e.42
3.8
7.3 | 2.4
1.9
1.8
1.5
1.3 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 10.11
.33
4.6
.00
20
.00 | 2947.36
98.2
440
.36
5850
1.10 | 2434
78.5
193
51
4830
.88
1.01 | 3929
127
226
76
7790
1.41
1.63 | 2354
84.1
114
67
4670
.94 | 3354
108
165
72
6650
1.21
1.39 | 2595
86.5
110
61
5150
.96
1.08 | 1978
63.8
196
34
3920
.71
.82 | 414.1
13.8
32
1.4
821
.15
.17 | 19.02
.61
1.5
.00
38
.01 | 12.22
.39
7.3
.00
24
.00 | 130.31
4.34
30
.91
258
.05 | | STATIST | rics of | MONTHLY MEA | N DATA FO | R WATER Y | EARS 1978 | - 2001h | , BY WATER | YEAR (W | () | | | | | MEAN
MAX
(WY)
MIN
(WY) | 21.7
192
1999
.000
1991 | 22.1
156
1999
.000
2000 | 51.6
520
1992
.000
2000 | 49.5
293
1992
.000
2000 | 63.2
465
1992
.000
2000 | 63.6
338
1992
.000
2000 | 47.4
196
1979
.040
2000 | 66.5
226
1992
.001
1996 | 95.7
613
1981
.000
1996 | 11.7
56.5
1997
.000
1978 | 2.64
15.2
1991
.000
1996 | 2.25
24.2
1991
.000
1999 | | SUMMAR | Y STATIS | TICS | FOR 2 | 000 CALEN | DAR YEAR | FO | OR 2001 WA | TER YEAR | | WATER Y | EARS 1978 | 3 - 2001h | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUI ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC | MEAN I ANNUAL ANNUAL I DAILY DAILY M SEVEN-D M PEAK F M PEAK S RUNOFF RUNOFF | MEAN MEAN EAN EAN AY MINIMUM LOW TAGE (AC-FT) (CFSM) (CINCHES) EEDS | | .00 | Nov 6
Jan 1
Jan 1 | | .00
.00
905 | Nov 6
Oct 1
Oct 1
Nov 6
Nov 6 | | 43.9
182
.1'
4960
.00
14900
18.10
31830
.4!
6.66
94
4
3.8 | Dec
0 Feb
0 Feb
Dec
0 Dec | 1992
1996
21 1991
7 1978
7 1978
20 1991
20 1991 | e Estimated h See PERIOD OF RECORD paragraph. 08155200 Barton Creek at State Highway 71 near Oak Hill, TX--Continued ### 08155200 Barton Creek at State Highway 71 near Oak Hill, TX--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.-CHEMICAL DATA: Apr. 1978 to Sept. 1982, Feb. 1989 to current year. BIOCHEMICAL DATA: Apr. 1978 to Sept. 1982, Feb. 1989 to current year. RADIOCHEMICAL DATA: Oct. 1979 to Sept. 1980. PESTICIDE DATA: Apr. 1978 to Sept. 1982, Jan. 1998 to current year. ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$ | | WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | | | | | | | | | | |---------------------|---|--|--|--|--|--|--|--|--|---|---|--|---| | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | | NOV
02-03 | 2030 | 57 | | 354 | 8.0 | | 250 | 340 | | | | 35 | E8000 | | DEC 04 | 0925 | | 61 | 626 | 8.1 | 11.0 | <1 | .4 | | 10.2 | 93.1 | <10 | E14 | | APR
16
MAY | 0855 | | 79 | 592 | 7.6 |
23.0 | <1 | 2.0 | | 6.6 | 78.4 | <10 | 41 | | 06-07
JUN | 2320 | 204 | | 433 | 7.6 | | 100 | 280 | | | | 31 | E4200 | | 04
JUL | 1130 | | 26 | 573 | 7.8 | 27.5 | <1 | | 2.5 | 7.0 | 91.0 | <10 | 45 | | 10 | 0920 | | .73 | 557 | 7.8 | 26.5 | <1 | | 6.1 | 4.8 | 61.0 | <10 | 49 | | DATE | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | ALKA-
LINITY
WAT DIS
FIX END
FIELD
CAC03
(MG/L)
(39036) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV
02-03
DEC | 14000 | 124 | | 780 | .330 | .011 | .341 | <.041 | 2.46 | 2.1 | .551 | E.030 | <.018 | | 04
APR | 48 | 254 | | <10 | | <.006 | .251 | E.033 | .510 | .26 | <.060 | <.060 | <.018 | | 16
MAY | 23 | 214 | | <10 | | <.006 | .070 | E.023 | .270 | .20 | <.060 | <.060 | <.018 | | 06-07
JUN | 5000 | | 150 | 221 | .222 | .009 | .231 | E.034 | 1.62 | 1.4 | .231 | <.060 | <.018 | | 04
JUL | 40 | 185 | | <10 | | <.006 | <.050 | <.040 | | .12 | <.060 | <.060 | <.020 | | 10 | 36 | 211 | | <10 | | .010 | E.024 | E.025 | | .11 | <.060 | <.060 | <.020 | | | | DA | TE | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | | | | | | | NOV | ,
12-03 | 20 | | | .18 | 9.2 | 12 | 35 | | | | | | | DEC | | 1.7 | .1 | <.1 | <.11 | <1.2 | <1 | 1 | | | | | | | APR | | 1.8 | .1 | <.1 | <.11 | <1.8 | <1 | 14 | | | | | | | MAY
0 | 6-07 | 14 | | | E.10 | 4.1 | 6 | 21 | | | | | | | JUN
0 | f
 4 | 1.9 | <.1 | <.1 | <.10 | <1.0 | <1 | 1 | | | | | | | JUL
1 | 0 | 1.6 | .1 | <.1 | <.10 | <1.0 | <1 | 4 | | | | THIS PAGE IS INTENTIONALLY LEFT BLANK. ### 08155240 Barton Creek at Lost Creek Boulevard, Austin, TX LOCATION.--Lat $30^{\circ}16'26$ ", long $97^{\circ}50'40$ ", Travis County, Hydrologic Unit 12090205, 1.4 mi southwest of intersection of Lost Creek Boulevard and Loop 360, and 6.2 mi west of State Capitol Building in Austin. DRAINAGE AREA. -- 107 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Jan. 1979 to Sept. 1980 (periodic gage heights and discharge measurements only), Dec. 1988 to current year. GAGE.--Water-stage recorder. Datum of gage is 600 ft above sea level, from topographic map. Satellite telemeter at station. REMARKS.--Records fair except those below 15.0 ft³/s, which are poor. No known regulation or diversions. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--The flood of May 28, 1929, was probably the highest since that date (discharge 39,400 ft³/s), based on slope-area measurement of peak flow at a site about 2.1 mi downstream. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | | | | | | | | | | | | |--------------------------------------|---|-------------------------------------|------------------------------------|--|------------------------------------|--|------------------------------------|------------------------------------|-----------------------------------|---|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00 | 1.5
8.6
454
255
118 | 73
68
63
62
61 | 122
107
102
99
94 | 139
134
126
122
114 | 75
81
118
159
132 | 195
182
170
162
157 | 43
40
39
37
52 | 22
21
21
17
15 | 1.3
1.2
1.3
1.1 | .00
.00
.00
.00 | 3.0
5.1
4.0
15
21 | | 6
7
8
9
10 | .00
.00
.00
.00 | 619
307
334
232
171 | 59
54
51
47
44 | 87
83
77
75
137 | 111
106
103
103
95 | 125
122
123
124
118 | 150
143
137
128
120 | 74
257
116
131
84 | 14
14
13
13 | 1.0
.95
.77
.70
.60 | .00
.00
.00
.00 | 15
12
9.8
8.5
8.4 | | 11
12
13
14
15 | .00
.00
.00
.00 | 140
115
98
87
81 | 43
34
48
63
58 | 326
174
163
156
144 | 91
89
85
84
82 | 116
201
170
171
209 | 114
106
102
99
92 | 70
64
67
65
55 | 12
11
8.9
6.9
6.3 | .48
.43
.40
.40
.43 | .00
.00
.00
.00 | 8.0
8.2
7.5
7.2
6.3 | | 16
17
18
19
20 | .00
.03
.02
.02 | 78
73
92
126
115 | 56
51
50
50
48 | 138
148
199
191
164 | 108
114
92
87
85 | 171
160
185
223
175 | 87
81
80
76
71 | 50
48
43
40
38 | 5.8
5.8
5.8
5.0
4.2 | .45
.33
.31
.29
.26 | .00
.00
.00
.00 | 5.9
5.4
4.7
4.4
4.0 | | 21
22
23
24
25 | .26
3.8
4.7
7.4
5.8 | e105
94
97
119
112 | 48
45
45
45
46 | 157
151
145
144
139 | 83
81
81
83
77 | 173
161
154
151
141 | 68
66
79
98
69 | 37
34
30
28
30 | 3.4
3.6
3.3
3.1
2.8 | .25
.23
.20
.17
.16 | .01
.01
.01
.02 | 4.3
3.7
4.0
3.8
3.8 | | 26
27
28
29
30
31 | 4.0
3.7
3.9
3.1
2.1 | 99
94
90
86
78 | e194
156
186
e150
137 | 142
147
160
175
168
149 | 70
70
71
 | 134
188
307
240
222
216 | 59
53
49
46
44
 | 39
43
36
30
26
26 | 2.5
2.1
1.7
1.3
1.2 | .16
.13
.07
.04
.03 | 1.5
.64
.07
.10
1.2 | 3.5
3.8
4.0
3.5
3.0 | | TOTAL
MEAN
MAX
MIN
AC-FT | 40.55
1.31
7.4
.00
80 | 4479.1
149
619
1.5
8880 | 73.3
194
34
4510 | 144
326
75
8850 | 2686
95.9
139
70
5330 | 163
307
75
10010 | 195
44
6120 | 57.2
257
26
3510 | 8.66
22
1.2
515 | 15.35
.50
1.3
.01
30 | 13.58
.44
10
.00
27 | 200.8
6.69
21
3.0
398 | | | | MONTHLY MEA | | | | | | | | 10.1 | 2.05 | 2 05 | | MEAN
MAX
(WY)
MIN
(WY) | 28.4
269
1999
.025
2000 | 33.5
188
1999
.23
2000 | 76.1
627
1992
.22
1990 | 69.5
307
1992
.40
1990 | 92.9
581
1992
.96
1996 | 80.0
381
1992
.81
1996 | 61.2
247
1997
.84
1996 | 87.1
264
1992
.42
1996 | 105
701
1997
.93
1998 | 12.1
67.8
1997
.17
1996 | 3.25
23.2
1991
.005
1998 | 3.27
25.6
1991
.001
2000 | | SUMMARY | Y STATIS | rics | FOR 2 | 000 CALENI | DAR YEAR | F | OR 2001 WA | TER YEAR | | WATER Y | EARS 1989 | - 2001 | | | | | | | Nov 6
Aug 30
Aug 30 | | | | | 55.6
212
1.1.
7000
.0
16400
12.9
40320
127
5.6 | Dec Dec Dec Dec | 1992
1996
21 1991
24 1993
24 1993
21 1991
21 1991 | e Estimated 08155240 Barton Creek at Lost Creek Boulevard, Austin, TX--Continued ### 08155240 Barton Creek at Lost Creek Boulevard, Austin, TX--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Dec. 1988 to current year. BIOCHEMICAL DATA: Dec. 1988 to current year. PESTICIDE DATA: Jan. 1993 to May 1995. INSTRUMENTATION.--Stage-activated automatic sampler. WATER-OUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | | | | | | | | | | | |---|--|--|--|--|--
--|--|--|---|--|---|--|---| | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | | NOV
02-03 | 2235 | 120 | | 571 | 8.1 | | 13 | 18 | | | | 11 | 16000 | | DEC
06
APR | 1100 | | 61 | 652 | 8.1 | 12.7 | <1 | .4 | | 9.5 | 90.2 | <10 | 100 | | 16 | 1035 | | 86 | 589 | 7.7 | 23.0 | 2 | 1.8 | | 6.1 | 72.0 | <10 | 27 | | MAY
06-07
JUN | 2135 | 228 | | 471 | 7.7 | | 18 | 46 | | | | 14 | E3200 | | 04 | 1250 | | 17 | 582 | 7.8 | 27.5 | 2 | | 3.1 | 6.8 | 87.8 | <10 | 96 | | JUL
10 | 1015 | | .72 | 653 | 7.9 | 27.5 | <1 | | 5.2 | 5.5 | 70.8 | <10 | 30 | | DATE | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV
02-03 | 8000 | 145 | 34 | .783 | .010 | .793 | E.037 | 1.48 | | .68 | .099 | E.041 | .036 | | DEC
06 | 84 | 225 | <10 | | <.006 | .410 | <.041 | .702 | | .29 | <.060 | <.060 | <.018 | | APR
16
MAY | 26 | 194 | <10 | | <.006 | .116 | <.041 | .313 | | .20 | <.060 | <.060 | <.018 | | 06-07 | E4200 | 162 | 68 | | E.004 | .136 | <.041 | .977 | | .84 | .074 | <.060 | <.018 | | JUN
04
JUL | 21 | 181 | <10 | | E.003 | .066 | <.040 | .252 | | .19 | <.060 | <.060 | <.020 | | 10 | 30 | 213 | <10 | | <.006 | E.041 | .049 | | .224 | .27 | <.060 | <.060 | <.020 | | | | NOV 02-03 DEC 06 | (MG
AS P
(006 | TE, HO, CARE S- ORG#2 VED TOT L/L (MG 04) AS 60) (006 10 6 1. | 80N, PL# ANIC TO FAL CHRC G/L FLUC C) (UG 880) (709 | TTO- PHY NK- PLA P | TO- CADM NK- WAT N UNFIL MO TOT PROM (UG 54) (010 - <.1 1 <.1 | TER TOTAL TO | TAL TOTO COV- REC BBLE ERA G/L (UG CU) AS 042) (010 | TAL TOT RECURS R | CAL
COV-
BLE
E/L
ZN)
92) | | | | | | 16
MAY | _ | - 2. | . 1 | 2 <. | 1 <.1 | .1 <1. | .8 <1 | . 2 | | | | 6.4 MAY 06-07 06-0, JUN 04... JUL 10... 1.9 <.1 <.11 <.1 <.10 3.0 .3 <.1 <.10 <1.0 E1.2 <1.0 1 <1 <1 7 2 1 THIS PAGE IS INTENTIONALLY LEFT BLANK. ### 08155300 Barton Creek at Loop 360, Austin, TX LOCATION.--Lat 30°14′40", long 97°48′07", Travis County, Hydrologic Unit 12090205, on Loop 360,
0.9 mi west of the intersection of Ben White and Lamar Boulevards, and 4.3 mi southwest of the State Capitol Building in Austin. DRAINAGE AREA. -- 116 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1975 to Jan. 1977 (peak discharge greater than base discharge), Feb. 1977 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 510.32 ft above sea level (Texas Department of Transportation bench mark). Satellite telemeter at station. $\textit{REMARKS.--} \textit{Records fair except those below 5.0 ft}^3/\textit{s, which are poor. No known regulation or diversions. No flow at times. } \\$ EXTREMES OUTSIDE PERIOD OF RECORD.—The flood of May 28, 1929, was probably the highest since that date (discharge 39,400 ${\rm ft}^3/{\rm s}$), based on a slope-area measurement of peak flow at a site about 2 mi upstream. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, N | WATER Y | YEAR OCTOBER | 2000 TO | SEPTEMBER | 2001 | | | |-------------------|-------------------|---------------------|--|--|-----------------------------------|---------------------------------|------------------------------|----------------------|---|--------------|-------------------------|--------------------| | | | | | | DAILY | MEAN V | VALUES | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2 | .00 | .00
16 | 38
34 | 111
103 | 108
103 | 43
50 | 140
133 | 19
17 | 1.9
.91 | .00 | .00 | .63
.00 | | 3
4 | .00 | 415
228 | 32
30 | 103
97
92
87 | 103
101
96
92 | 82
129
103 | 130
124 | 15
13 | .32
.04 | .00 | .00 | .63
.21 | | 5 | .00 | 86 | | | | | | 23 | .00 | .00 | .00 | .00 | | 6
7 | .00 | 487
235 | 26
24 | 82
75
66
61
113 | 86
78
73
71
64 | 95
91 | 111
105
99
94
90 | 45
191 | .00 | .00 | .00 | .00 | | 8
9 | .00 | 245
176 | 21
18 | 66
61 | 73
71 | 92
93 | 99
94 | 101
104 | .00 | .00 | .00 | .00 | | 10 | .00 | 127 | | | | | | 71 | .00 | .00 | .00 | .00 | | 11
12 | .00 | 103
89 | 14
14 | 273
152
138
135
123 | 60
58 | 85
160
134
131
151 | 86
78 | 51
42
43
47 | .00 | .00 | .00 | .00 | | 13
14 | .00 | 71
54 | 25
38 | 138
135 | 58
56
52
50 | 134 | 71
65 | 43
47 | .00 | .00 | .00 | .00 | | 15 | .27 | 46 | | | | | | 36 | .00 | .00 | .00 | .00 | | 16
17 | .00 | 31
26 | 24
21 | 115
122
168
160 | 77
88
63
57
54 | 128
119
129
153
136 | 58
53 | 30
26 | .00 | .00 | .00 | .00 | | 18
19 | .00 | 45
93 | 19
19 | 160
145 | 57 | 153 | 52
50 | 22
19 | .00 | .00 | .00 | .00 | | 20 | .00 | 73 | | | | | | 18 | .00 | .00 | .00 | .00 | | 21
22
23 | 1.2
.77
.00 | 60
53
54 | 16
15
14 | 136
127 | 50
47
46
49
45 | 127
120
111
108
101 | 42
37 | 16
14
12 | .01 | .00 | .00 | .37
.00
.00 | | 24
25 | .00 | 71 | 14 | 121
115
107 | 49 | 108 | 37
42
71
44 | 9.3
8.6 | .00 | .00 | .00
.00
.00 | .00 | | 26 | .00 | e65
e58 | | | | | | 14 | .00 | .00 | 63 | .00 | | 27
28 | | e51
e51 | 221
167 | 102
105
117
134
130
114 | 38
39 | 96
130
208
169 | 34
29
26
23
21 | 20
14 | .00 | .00 | 5.9 | .00 | | 29
30 | .00 | 46
41 | 141
128 | 134 | | 169
155 | 23 | 8.0
4.6 | .00 | .00 | .04 | | | 31 | .00 | | | | | 152 | | 3.4 | | .00 | 92 | | | TOTAL
MEAN | 072 | 3196.00
107 | 1545
49.8
221
14
3060
.43 | 3726
120 | 1840
65.7
108
38
3650 | 3669
118 | 71 1 | 1056.9
34.1 | 3.18
.11
1.9
.00
6.3 | 0.00 | 183.94
5.93 | 1.84 | | MAX
MIN | 1.2 | 487
.00
6340 | 221
14 | 273
61 | 108
38 | 208
43 | 140
21
4230 | 191
3.4
2100 | 1.9 | .00 | 92 | .63 | | AC-FT
CFSM | 4.4 | 6340
.92 | 3060
. 43 | 7390
1.04 | 3650
.57 | 7280
1.02 | 4230
.61 | 2100
.29 | 6.3 | .00 | 92
.00
365
.05 | 3.6 | | IN. | .00 | 1.02 | .50 | 1.19 | .59 | 1.18 | .68 | .34 | 3.18
.11
1.9
.00
6.3
.00 | .00 | .06 | .00 | | STATIST | ICS OF I | MONTHLY MEA | N DATA FO | R WATER YI | EARS 1977 | - 2001 | 1, BY WATER | YEAR (WY |) | | | | | MEAN
MAX | 26.3
282 | 20.1
204 | 69.1
865 | 42.6
281 | 61.7
609 | 55.2
342 | 319 | 75.0
321 | 145
1142 | 7.62
73.1 | .93
13.9 | .48
7.57 | | (WY)
MIN | 1999
.000 | 204
1999
.000 | 865
1992
.000 | 1992
.000 | 1992
.000 | 1992
.000 | 1977
.000 | 1992
.000 | 1987
.000 | 1981
.000 | 1991
.000 | 1983 | | (WY) | 1978 | 1978 | 1978 | 1978 | 1978 | 1978 | 1978 | 1978 | 1978 | 1977 | 1977 | 1977 | | SUMMARY | | TICS | FOR 2 | | DAR YEAR | | FOR 2001 WA | | | WATER Y | YEARS 1977 | - 2001 | | ANNUAL I | MEAN | | | 5433.82
14.8 | | | 17356.10
47.6 | | | 45.4 | 1 | | | HIGHEST
LOWEST | ANNUAL I | MEAN | | | | | | | | 229 | | 1992
1978 | | HIGHEST
LOWEST | DAILY M | EAN | | .00 | Nov 6
Jan 1 | | .00 | Nov 6
Oct 1 | | 10800 | Dec
00 Apr
00 Jun | 21 1991
11 1977 | | MAXIMUM | PEAK F | | | .00 | Jan 9 | | 1080 | Oct 1
Aug 26 | | 18100 | May | 25 1981 | | | RUNOFF | (AC-FT) | | 10780 | | | 34430 | | | 32920 | | 45 1981 | | | RUNOFF | (INCHES) | | .13
1.74 | | | .41
5.57 | | | 5.3 | 32 | | | 10 PERC | ENT EXC | EEDS | | .00 | | | 129
21 | | | 98 | 00 | | | 90 PERC | EMI EXC | FEDS | | .00 | | | .00 | | | . (| 00 | | e Estimated ## 08155300 Barton Creek at Loop 360, Austin, TX--Continued ### 08155300 Barton Creek at Loop 360, Austin, TX--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Jan. 1979 to current year. BIOCHEMICAL DATA: Jan. 1979 to current year. RADIOCHEMICAL DATA: Apr. 1980. PESTICIDE DATA: Jan. 1979 to Sept. 1986. | | | | WIIIDIC | QUILLII D | 21111, 111111 | iic illine oc | TODER 200 | O IO DELI | DI-IDDIC 200 | _ | | | | |---------------------|--|---|--|--|--|--|--|--|--|--|---|---|---| | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | | MOTA | | | | | | | | | | | | | | | NOV
02-03
DEC | 1420 | 110 | | 221 | 7.6 | | 50 | 20 | | | | 13 | 120000 | | 04
APR | 1050 | | 30 | 629 | 8.2 | 10.5 | <1 | .7 | | 10.5 | 93.6 | <10 | E1 | | 16
MAY | 1235 | | 59 | 572 | 8.1 | 24.0 | <1 | 1.7 | | 6.9 | 82.7 | <10 | 80 | | 06-07 | 2150 | 205 | | 306 | 7.8 | | 12 | 26 | | | | <10 | 92000 | | 30
AUG | 0915 | | 4.7 | 533 | 7.8 | 27.0 | 5 | .6 | | 5.3 | 67.3 | <10 | E85 | | 26 | 1915 | 177 | | 92 | 7.1 | | 70 | | 83 | | | 57 | 72000 | | DATE | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | | NOV | | | | | | | | | | | | | | | 02-03 | 74000 | | 69 | 41 | .334 | .008 | .342 | .051 | .846 | .453 | .50 | .431 | E.052 | | DEC
04 | E9 | 4 | 212 | <10 | | <.006 | .400 | <.041 | .630 | | .23 | <.060 | <.060 | | APR
16 | 44 | | 197 | <10 | | <.006 | .093 | E.026 | .285 | | .19 | <.060 | <.060 | | MAY
06-07
30 | 68000
64 | | 103
169 | 145
<10 | .182 | .010
E.004 | .192
E.039 | <.041
E.023 | .733 | | .54
.20 | E.042
<.060 | <.060
<.060 | | AUG
26 | 60000 | | 30 | 280 | .711 | .042 | .753 | .215 | 2.91 | 1.94 | 2.2 | .416 | .195 | | | DA | TE | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) |
CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | | | | | NOV | , | | | | | | | | | | | | | | DEC | 2-03 | .044 | .135 | 6.9 | | | <.11 | 2.0 | 3 | 18 | | | | | 0 | 4 | <.018 | | 1.9 | <.1 | <.1 | <.11 | <1.2 | <1 | 5 | | | | | APR
1
MAY | 6 | <.018 | | 2.1 | .1 | <.1 | <.11 | <1.8 | <1 | 2 | | | | | 0 | 6-07 | <.018
<.020 | | 7.6
2.0 | .2 | <.1 | <.11
<.10 | 1.7
<1.0 | 2
<1 | 36
<1 | | | | | | 6 | E.154 | | 30 | | | .16 | 6.7 | 9 | 38 | | | THIS PAGE IS INTENTIONALLY LEFT BLANK. ### 08155400 Barton Creek above Barton Springs, Austin, TX DRAINAGE AREA.--125 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Sept. 1981 to Oct. 1984 (daily mean discharge less than base discharge), Sept. 1998 to current year. GAGE.--Water-stage recorder. Datum of gage is 430.5 ft above sea level. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records poor except those for daily discharges after May 10, which are fair. No known regulation or diversions. No flow at times. | | | DISCHA | ARGE, CUBIO | C FEET PER | | WATER YE
MEAN VA | | ER 2000 TO | SEPTEMBE | R 2001 | | | |---|------------------------------------|---|--|--|--------------------------------------|---------------------------------------|---|--|--------------------------------------|---|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | .00
20
429
224
66 | 22
18
15
15 | 202
183
166
152
137 | 109
103
98
94
85 | 44
53
95
210
175 | 152
150
143
133
121 | 12
11
9.1
8.5
13 | 4.8
4.4
4.2
4.0
3.8 | 2.6
2.6
2.6
2.4
2.4 | 1.2
1.3
1.3
1.2 | 8.5
4.0
3.6
3.8
3.7 | | 6
7
8
9
10 | .00
.00
.00
.00 | 421
223
248
148
100 | 13
10
8.3
6.9
5.9 | 120
106
91
81
204 | 71 | 162
148
148
154
128 | 112
105
98
89
82 | 58
277
117
91
66 | 3.6
3.5
3.4
3.2
3.1 | 2.3
2.2
2.2
2.2
2.1 | 1.1
.98
.98
.98 | 3.4
2.9
2.8
2.6
2.4 | | 11
12
13
14
15 | .00
.00
.00
.00 | 69
56
42
30
25 | 4.8
3.6
7.4
27
23 | 366
219
165
159
149 | 61
60
59
57 | 116
213
164
128
150 | 76
70
65
56
49 | 51
42
38
47
37 | 2.9
2.8
2.7
2.7
2.6 | 2.1
2.0
2.1
2.0
2.0 | .98
.99
.99
1.0
.97 | 2.2
1.9
1.9
1.6
1.4 | | 16
17
18
19
20 | .00
.00
.00
.00 | 23
19
33
85
65 | 16
10
9.1
7.9
7.5 | 149
163
233
226
199 | 67
71
54
49
48 | 132
121
124
148
135 | 44
39
38
37
34 | 16 | 2.5
2.5
2.5
2.5
2.5 | 2.0
2.1
2.0
2.0
2.0 | .94
.93
.94
.96 | 1.3
1.4
1.3
1.1 | | 21
22
23
24
25 | .00
.00
.00
.00 | 50
41
42
60
72 | 6.1
4.6
3.7
3.5
23 | 183
165
149
138
122 | 47
45
44
47
44 | 125
117
112
113
101 | 31
28
27
54
36 | 13
10
8.1
6.6
6.1 | 2.5
3.2
3.1
3.0
3.0 | 2.0
1.6
1.6
1.6 | .97
.93
.94
.91 | 1.1
1.2
1.2
1.0
.99 | | 26
27
28
29
30
31 | .00
.00
.00
.00 | 50
41
36
32
26 | 309
492
343
277
245
222 | 112
113
127
168
153
122 | 39
38
39
 | 92
144
235
171
158
156 | 27
23
20
17
14 | 7.6
12
9.7
6.3
5.2
5.4 | 2.8
2.6
2.6
2.5
2.5 | | 77
48
4.2
4.0
30
92 | .86
.80
.78
.74 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.00
.000
.00
.00 | 2776.00
92.5
429
.00
5510 | 2173.3
70.1
492
3.5
4310 | 5022
162
366
81
9960 | 1777
63.5
109
38
3520 | 4272
138
235
44
8470 | 1970
65.7
152
14
3910 | 1087.6
35.1
277
5.2
2160 | 92.0
3.07
4.8
2.5
182 | 61.0
1.97
2.6
1.2
121 | 280.54
9.05
92
.85
556 | 62.32
2.08
8.5
.74
124 | | STATIST | CICS OF I | MONTHLY MI | EAN DATA FO | OR WATER Y | EARS 1998 | - 2001, | BY WATER | R YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 141
422
1999
.000
2000 | 220
566
1999
.000
2000 | 70.4
141
1999
.000
2000 | 57.9
162
2001
.000
2000 | 21.7
63.5
2001
.000
2000 | 46.5
138
2001
.000
2000 | 22.5
65.7
2001
.000
2000 | 13.8
35.1
2001
.31
2000 | 13.6
32.5
2000
3.07
2001 | 1.25
1.97
2001
.001
2000 | 3.08
9.05
2001
.000
2000 | .69
2.08
2001
.000
2000 | | SUMMARY | STATIS | TICS | FOR : | 2000 CALEN | DAR YEAR | F | OR 2001 W | ATER YEAR | | WATER : | YEARS 1998 | - 2001 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ANNUAL DAILY DAILY M | MEAN
MEAN
EAN
AY MINIMUI
LOW
TAGE
(AC-FT)
EEDS
EEDS | 4 | 5932.56
16.2
644
.00
.00
11770
25
.00 | Jun 10
Jan 1
Jan 1 | | 19573.7
53.6
492
.0
1000
9.9
38820
155
14 | Dec 27
00 Oct 1
00 Oct 1
Aug 26
08 Nov 3 | | 51.0
96.5
2.6
2040

7300
144.3
36970
142
1 | 00 Sep
00 Sep
00 Oct | 1999
2000
17 1998
4 1999
6 1999
17 1998
17 1998 | 08155400 Barton Creek above Barton Springs, Austin, TX--Continued ### 08155400 Barton Creek above Barton Springs, Austin, TX DRAINAGE AREA. -- 125 mi². PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1998 to current year. BIOCHEMICAL DATA: Oct. 1998 to current year. PESTICIDE DATA: Oct. 1998 to current year. INSTRUMENTATION.--Stage-activated automatic sampler. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | |---|--|--|--|--|--|--|--|---|---|--|---|---|---| | NOV
02-03 | 1940 | 194 | | 163 | | | 60 | 30 | | | 18 | 38000 | 53000 | | DEC | | | 1.5 | | 7.0 | 12.0 | | | 0.0 | 02.4 | | | | | 04
MAR | 1240 | | 15 | 626 | 7.8 | 13.0 | <1 | .8 | 9.9 | 93.4 | <10 | E13 | 56 | | 12-12
APR | 0130 | 244 | | 434 | 7.7 | | 100 | 65 | | | 26 | 5000 | E750 | | 16
MAY | 1400 | | 44 | 572 | 8.0 | 24.0 | 2 | 2.4 | 6.9 | 82.6 | <10 | 46 | 28 | | 03 | 2315 | | 8.6 | | | | | | | | | | | | MAY
06-07 | 2135 | 323 | 25 | 313 | 7.4 | | 20 | 68 | | | 32 | 28000 | 60000 | | 06 | 2245 | | 682 | | | | | | | | | | | | 07 | 1700 | | 368 | | | | | | | | | | | | 07 | 1702 | | 369 | | | | | | | | | | | | 08 | 1940 | | 78 | | | | | | | | | | | | 10 | 1505 | | 114 | | | | | | | | | | | | 30 | 0950 | | 5.4 | 616 | 7.2 | 23.0 | | .5 | 4.7 | 55.4 | <10 | 110 | 41 | | | | | | | | | | | | | | | | | DATE | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS
N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | | NOV
02-03 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | NOV
02-03
DEC
04 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | | NOV
02-03
DEC
04
MAR
12-12 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | | NOV
02-03
DEC
04
MAR
12-12
APR
16 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530)
58
<10 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .041 <.041 | GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.164
<.060 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | | NOV
02-03
DEC
04
MAR
12-12
APR
16
MAY
03 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 66 222 134 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 58 <10 134 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618)
.952 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .009 <.006 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .961 .630 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .041 <.041 E.038 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.64
.905 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.68
.28 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.164
<.060 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.071
<.060
E.032 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.056
<.018 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660)
.172
 | | NOV
02-03
DEC
04
MAR
12-12
APR
16
MAY
03 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 66 222 134 198 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 58 <10 134 <10 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .952313 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .009 <.006 .006 <.006 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.961
.630
.319
.206 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .041 <.041 E.038 <.041 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.64
.905
1.29
.404 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605)
.634 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .68 .28 .97 .20 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.164
<.060
.164
<.060 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.071
<.060
E.032
<.060 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.056
<.018
.021
<.018 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660)
.172

.064 | | NOV
02-03
DEC
04
MAR
12-12
APR
16
MAY
03
MAY | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 66 222 134 198 104 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 58 <10 134 <10 150 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .952313278 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .009 <.006 .006 <.006010 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.961
.630
.319
.206 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .041 <.041 E.038 <.041 E.029 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.64
.905
1.29
.404
 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.68
.28
.97
.20 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.164
<.060
.164
<.060 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.071
<.060
E.032
<.060 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.056
<.018
.021
<.018 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660)
.172

.064

.071 | | NOV
02-03
DEC
04
MAR
12-12
APR
16
MAY
03
MAY
06-07 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 66 222 134 198 104 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)(00530) 58 <10 134 <10 150 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .952313278 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .009 <.006 .006 <.006 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .961 .630 .319 .206288 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .041 <.041 E.038 <.041 E.029 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.64
.905
1.29
.404 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .68 .28 .97 .20 1.2 | PHORUS TOTAL (MG/L AS P) (00665) .164 <.060 .164 <.060230 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.071
<.060
E.032
<.060 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.056
<.018
.021
<.018 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660)
.172

.064

.071 | | NOV
02-03
DEC
04
MAR
12-12
APR
16
MAY
03
MAY
06-07
06
07 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 66 222 134 198 104 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 58 <10 134 <10 150 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .952313278278 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .009 <.006 .006 <.006010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .961 .630 .319 .206288 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .041 <.041 E.038 <.041 E.029 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.64
.905
1.29
.404
 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .68 .28 .97 .20 1.2 | PHORUS TOTAL (MG/L AS P) (00665) .164 <.060 .164 <.060230 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.071
<.060
E.032
<.060

<.060 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.056
<.018
.021
<.018 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660)
.172

.064

.071 | | NOV
02-03
DEC
04
MAR
12-12
APR
16
MAY
03
MAY
06-07
06
07 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 66 222 134 198 104 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 58 <10 134 <10 150 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .952313278 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .009 <.006 .006 <.006010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .961 .630 .319 .206288 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .041 <.041 E.038 <.041 E.029 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.64
.905
1.29
.404

1.45
 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .68 .28 .97 .20 1.2 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.164
<.060
.164
<.060 | PHORUS DIS-
SOLVED (MG/L AS P) (00666) .071 <.060 E.032 <.060 <.060 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.056
<.018
.021
<.018

.023
 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660)
.172

.064

.071
 | | NOV
02-03
DEC
04
MAR
12-12
APR
16
MAY
03
MAY
06-07
06
07
07 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 66 222 134 198 104 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 58 <10 134 <10 150 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .952313278 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .009 <.006 .006 <.006010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .961 .630 .319 .206288 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .041 <.041 E.038 <.041 E.029 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.64
.905
1.29
.404

1.45

 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .68 .28 .97 .20 1.2 | PHORUS TOTAL (MG/L AS P) (00665) .164 <.060 .164 <.060230 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .071 <.060 E.032 <.060 <.060 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.056
<.018
.021
<.018 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660)
.172

.064

.071
 | | NOV
02-03
DEC
04
MAR
12-12
APR
16
MAY
03
MAY
06-07
06
07 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 66 222 134 198 104 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 58 <10 134 <10 150 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .952313278 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .009 <.006 .006 <.006010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .961 .630 .319 .206288 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .041 <.041 E.038 <.041 E.029 | GEN,
TOTAL
(MG/L
AS N)
(00600)
1.64
.905
1.29
.404

1.45
 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .68 .28 .97 .20 1.2 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.164
<.060
.164
<.060 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .071 <.060 E.032 <.060 <.060 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.056
<.018
.021
<.018

.023
 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660)
.172

.064

.071
 | 207 # 08155400 Barton Creek above Barton Springs, Austin, TX--Continued | DATE | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | |----------------------|---|--|--|--|---|--|--|---|--|---|--|--|--| | NOV
02-03 | 9.8 | | | E.05 | 2.4 | 3 | 37 | | | | | | | | DEC 04 | 2.7 | .2 | <.1 | <.11 | 1.9 | <1 | 5 | | | | | | | | MAR
12-12 | 9.8 | | | E.06 | 3.1 | 9 | 27 | | | | | | | | APR
16 | 2.2 | .2 | <.1 | <.11 | <1.8 | <1 | 7 | | | | | | | | MAY
03 | | | | | | | | <.002 | <.004 | <.002 | <.005 | .015 | <.050 | | MAY
06-07 | 13 | | | <.11 | 3.6 | 10 | 30 | | | | | | | | 06 | | | | | | |
 | <.002
<.002 | <.004
<.004 | <.002
<.002 | <.005
<.005 | .583
.173 | <.050
<.050 | | 07 | | | | | | | | <.002
<.002 | <.004 | <.002
<.002 | <.005
<.005 | <.007 | <.050
<.050 | | 10 |
1.5 |
.5 |
<.1 |
<.10 |
<1.0 |
M |
1 | <.002 | <.004 | <.002 | <.005 | .058 | <.050 | | 30 | 1.5 | .5 | <.⊥ | <.10 | <1.0 | 141 | 1 | | | | | | | | DATE | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | NOV
02-03 | | | | | | | | | | | | | | | DEC 04 | | | | | | | | | | | | | | | MAR
12-12 | | | | | | | | | | | | | | | APR 16 | | | | | | | | | | | | | | | MAY
03 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | E.005 | <.005 | <.005 | <.021 | <.002 | | MAY
06-07 | | | | | | | | | | | | | | | 06 | <.010
<.010 | <.002
<.002 | E.062 | <.020
<.020 | E.003 | <.006
<.006 | <.018
<.018 | <.003
<.003 | E.015
E.015 | .104 | <.005
<.005 | <.021
<.021 | <.002
<.002 | | 07 | <.010
<.010 | <.002
<.002 | <.041
<.041 | <.020
<.020 | <.005
<.005 | <.006
<.006 | <.018
<.018 | <.003
<.003 | <.006
E.010 | <.005 | <.005
<.005 | <.021
<.021 | <.002
<.002 | | 10 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | E.012 | E.002 | <.005 | <.021 | <.002 | | DATE | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | | NOV
02-03 | | | | | | | | | | | | | | | DEC 04 | | | | | | | | | | | | | | | MAR
12-12 | | | | | | | | | | | | | | | APR
16 | | | | | | | | | | | | | | | MAY
03 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | <.013 | <.006 | <.002 | <.007 | <.003 | <.007 | <.006 | | MAY
06-07 | | | | | | | | | | | | | | | 06 | <.009
<.009 | <.005
<.005 | <.003
<.003 | <.004
<.004 | <.035
<.035 | E.003 | E.004
E.003 | <.006
<.006 | <.002
<.002 | <.007
<.007 | <.003
<.003 | <.007
<.007 | <.006
<.006 | | 07
07
10
30 | <.009
<.009
<.009
<.009 | <.005
<.005
<.005
<.005 | <.003
<.003
<.003
<.003 | <.004
<.004
<.004
<.004 | <.035
<.035
<.035
<.035 | <.027
<.027
<.027
<.027 | <.013
<.013
<.013 | <.006
<.006
<.006
<.006 | <.002
<.002
<.002
<.002 | <.007
<.007
<.007
<.007 | <.003
<.003
<.003
<.003 | <.007
<.007
<.007
<.007 | <.006
<.006
<.006
<.006 | ## 08155400 Barton Creek above Barton Springs, Austin, TX--Continued | DATE | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681) | |-----------|---
---|--|---|---|--|--|---|---|---|--|--|---| | NOV | | | | | | | | | | | | | | | 02-03 | | | | | | | | | | | | | | | DEC | | | | | | | | | | | | | | | 04 | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 12-12 | | | | | | | | | | | | | | | APR | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | MAY
03 | <.002 | <.010 | <.011 | <.015 | <.010 | <.011 | <.023 | <.004 | <.011 | <.016 | <.034 | <.017 | <.005 | | MAY | <.002 | <.010 | <.011 | <.015 | <.010 | <.011 | <.023 | <.004 | <.011 | <.010 | <.034 | <.017 | <.005 | | 06-07 | | | | | | | | | | | | | | | 06 | <.002 | <.010 | <.011 | <.015 | <.010 | <.011 | <.023 | < .004 | E.009 | <.016 | <.034 | <.017 | <.005 | | 07 | <.002 | <.010 | <.011 | <.015 | <.010 | <.011 | <.023 | < .004 | .268 | <.016 | <.034 | <.017 | <.005 | | 07 | <.002 | <.010 | <.011 | <.015 | <.010 | <.011 | <.023 | < .004 | <.011 | <.016 | <.034 | <.017 | <.005 | | 08 | <.002 | <.010 | <.011 | <.015 | <.010 | <.011 | <.023 | < .004 | .043 | <.016 | <.034 | <.017 | <.005 | | 10 | <.002 | <.010 | <.011 | E.002 | <.010 | <.011 | <.023 | < .004 | .030 | <.016 | <.034 | <.017 | <.005 | | 30 | | | | | | | | | | | | | | | DATE | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | (UG/L) | |--------------|---|--------| | | , , | , , | | NOV
02-03 | | | | DEC | | | | 04 | | | | MAR | | | | 12-12 | | | | APR | | | | 16
MAY | | | | 03 | <.002 | <.009 | | MAY | <.002 | <.009 | | 06-07 | | | | 06 | <.002 | <.009 | | 07 | <.002 | <.009 | | 07 | <.002 | <.009 | | 08 | <.002 | <.009 | | 10 | <.002 | <.009 | | 30 | | | THIS PAGE IS INTENTIONALLY LEFT BLANK. ### 08155500 Barton Springs at Austin, TX LOCATION.--Lat 30°15′48", long 97°46′16", Travis County, Hydrologic Unit 12090205, at ground-water well (YD 58-42-903), on right bank 0.4 mi upstream from Barton Springs Road bridge over Barton Creek, 0.7 mi upstream from mouth, and 1.8 mi southwest of the State Capitol Building in Austin. DRAINAGE AREA.--Not applicable. Only springflow is published for this station. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Nov. 1894 to Apr. 1917, and Oct. 1918 to Feb. 1978 (discharge measurements only), May 1917 to Sept. 1918 (published as "Barton Creek at Austin, TX"), Mar. 1978 to Sept. 1994 (daily mean discharge), Oct. 1994 to Sept. 1999 (discharge at 1200 hours), Oct. 1999 to current year. GAGE.--Water-stage recorder. Datum of gage, at ground-water well (YD-58-42-903), is 462.34 ft above sea level. May 1917 to Sept. 1918, nonrecording gage at site 1,000 ft downstream at different datum. Satellite telemeter at station. REMARKS.--Records poor. Only springflow from the Edwards and associated limestones in the Balcones Fault Zone is published for this station. Operation of Barton Springs pool significantly affects level recorded in well. Pool is drained at closing and allowed to fill after cleaning operations. Under normal conditions gage height is in direct relation with discharge. Determination of flow from spring is considered best when pool/well level has stabilized at 1200 hrs. From Oct. 1, 1994, to Sept. 30, 1999, daily flow has been determined using the recorded level at 1200 hrs. Beginning Oct. 1, 1999, flow is determined from daily mean. | | | DISCHARG | E, CUBIC | C FEET PER | | WATER YE
MEAN VA | EAR OCTOBER | 2000 TO | SEPTEMBER | 2001 | | | |---|-------------------------------------|---|-------------------------------------|--|-------------------------------------|--|--|--|-------------------------------------|---|---------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 20
18
17
17
16 | 37
e44
e51
e58
e62 | 84
84
85
84
84 | 90
90
90
90 | 99
99
99
99 | e99
e99
e99
99 | 103
104
103
103
103 | 102
102
102
102
103 | 100
100
100
99
99 | 93
93
93
93
92 | 82
81
80
80
79 | e80
e81
e81
e82
82 | | 6
7
8
9
10 | e16
18
24
24
24 | e64
e67
e69
e70
e72 | 84
84
84
84 | 89
89
89
89 | 99
99
100
100 | 99
99
99
100
100 | 103
103
103
103
103 | 103
105
105
105
105 | 98
98
97
97
97 | 92
92
91
91
91 | 79
78
78
78
77 | 81
80
80
79 | | 11
12
13
14
15 | 22
18
e18
19
20 | e73
e75
e76
e77
e78 | 85
85
86
85
85 | e92
e93
e93
e93
e94 | 100
100
100
100
99 | 100
101
101
102
102 | 103
103
103
103
103 | 104
104
103
103 | 96
96
96
95
95 | 90
90
89
89 | 77
76
76
75
75 | 79
78
78
77
77 | | 16
17
18
19
20 | 26
26
26
24
25 | e79
e79
e80
e80
e81 | 85
85
85
85 | e94
93
94
95
95 | 100
100
100
100
100 | 102
102
102
103
102 | 103
102
103
103
103 | 103
102
102
102
102 | 95
95
95
94
94 | 88
88
87
87 | 74
73
73
72
72 | 77
76
76
75
75 | | 21
22
23
24
25 | 30
41
47
46
45 | e81
e82
e82
e82
e83 | 85
83
83
83 | 95
96
96
96 | 100
100
99
99 | 102
102
102
102
102 | 103
103
103
103
103 | 102
102
102
102
102 | 94
94
94
94 | 86
86
85
85 | 71
71
70
70
69 | 75
75
75
75
74 | | 26
27
28
29
30
31 | 44
41
41
40
38
37 | e83
e84
e84
e84 | 86
90
90
90
90 | 96
96
97
98
98 | e99
e99
e99
 | 102
103
104
103
103
103 | 102
102
102
102
102 | 102
103
103
102
102
101 | 93
93
93
93
93 | 84
84
83
83
83 | 69
e76
e78
e79
e80
e80 | 74
73
73
72
72 | | TOTAL
MEAN
MAX
MIN
AC-FT | 868
28.0
47
16
1720 | 2201
73.4
84
37
4370 | 2645
85.3
90
83
5250 | 2893
93.3
98
89
5740 | 2786
99.5
100
99
5530 | 3137
101
104
99
6220 | 3085
103
104
102
6120 | 3185
103
105
101
6320 | 2871
95.7
100
93
5690 | 2730
88.1
93
82
5410 | 2348
75.7
82
69
4660 | 2313
77.1
82
72
4590 | | STATIST | CICS OF MO | NTHLY MEAN | DATA FO | OR WATER Y | EARS 1978 | - 2001, | BY WATER Y | EAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 53.6
116
1993
18.5
1990 | 55.6
104
1999
20.6
1990 | 55.8
105
1999
18.2
1990 | 58.9
102
1999
15.8
1990 | 61.7
120
1992
16.8
1990 | 64.0
106
1993
21.6
1990 | 65.8
108
1993
25.2
1996 | 68.9
108
1993
20.7
1996 | 72.2
106
1987
26.2
1996 | 67.3
112
1997
21.0
1996 | 60.8
126
1992
21.5
1996 | 55.4
123
1992
21.1
2000 | | SUMMARY | STATISTI | CS | FOR 2 | 2000 CALEN | DAR YEAR | F | FOR 2001 WAT | ER YEAR | | WATER YE | ARS 1978 - | - 2001 | | LOWEST
HIGHEST
LOWEST
ANNUAL
ANNUAL
10 PERC
50 PERC | | AN
AN
N
MINIMUM
C-FT)
DS
DS | | 13875
37.9
90
16
17
27520
83
28
21 | Dec 27
Oct 5
Oct 1 | | 31062
85.1
105
16
17
61610
103
90
63 | May 7
Oct 5
Oct 1 | | 62.6
99.3
26.8
130
14
15
45340
100
60
26 | Dec 24
Dec 30
Jan 9 | 1989 | e Estimated 08155500 Barton Springs at Austin, TX--Continued ### 08155500 Barton Springs at Austin, TX--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.-CHEMICAL DATA: Oct. 1903, June 1941 to Feb. 1959, Dec. 1978 to current year. BIOCHEMICAL DATA: Dec. 1978 to current year. RADIOCHEMICAL DATA: Jan. to Sept. 1980. PESTICIDE DATA: Dec. 1978 to Nov. 1994, Aug. 1998 to current year. | | | | | | , | | | | | _ | | | | |------------------|--|--|--|--|---|--|---|--|--
---|---|--|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | | DEC | | | | | | | | | | | | | | | 06
MAY | 1240 | 84 | 637 | 7.1 | 20.0 | <1 | .5 | | 6.2 | 68.2 | <10 | 20 | E10 | | 03 | 2320 | 102 | | | | | | | | | | | | | 07 | 1430 | 105 | 614 | 6.9 | | <1 | 2.1 | | | | <10 | E280 | 600 | | 08
10 | 1950
1440 | 105
105 | | | | | | | | | | | | | 10 | 1442 | 105 | | | | | | | | | | | | | 13 | 1955 | 103 | | | | | | | | | | | | | 18
JUN | 2100 | 104 | | | | | | | | | | | | | 04
AUG | 1430 | 99 | 642 | 6.9 | 21.0 | | | 1.2 | 7.0 | 79.8 | <10 | E73 | 49 | | 28 | 0830 | 4.7 | 575 | 6.5 | 21.0 | <1 | | 5.4 | 6.4 | 72.4 | <10 | 560 | 1500 | | DATE | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | | DEC | | | | | | | | | | | | | | | 06
MAY | 262 | <10 | <.006 | 1.16 | E.024 | 1.27 | .10 | <.060 | <.060 | <.018 | 2.0 | <.1 | <.1 | | 03 | 254 | <10 | <.006 | 1 04 | <.041 | |
 | | | | 1 4 | | | | 07
08 | 254 | <10 | <.006 | 1.04 | <.041 | | E.06 | <.060 | <.060 | <.018 | 1.4 | | | | 10 | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | 13
18 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 04
AUG | 250 | <10 | <.006 | 1.25 | <.040 | | E.05 | <.060 | <.060 | <.020 | E.42 | <.1 | <.1 | | 28 | 242 | <10 | <.006 | 1.52 | <.040 | 1.63 | .11 | <.060 | <.060 | <.020 | 2.3 | | | | DATE | CADMIUM
WATER
UNFLITED
TOTAL
(UG/L
AS CD)
(01027) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | | DEC
06
MAY | <.11 | <1.2 | <1 | <1 | | | | | | | | | | | 03 | | | | | <.002 | <.004 | <.002 | <.005 | .017 | <.050 | <.010 | <.002 | <.041 | | 07 | <.11 | <1.2 | <1 | 1 | | | | | | | | | | | 08
10 | | | | | <.002
<.002 | <.004
<.004 | <.002
<.002 | <.005
<.005 | .207
.104 | <.050
<.050 | <.010
<.010 | <.002
<.002 | <.041
<.041 | | 10 | | | | | <.002 | <.004 | <.002 | <.005 | .091 | <.050 | <.010 | <.002 | <.041 | | 13 | | | | | <.002 | <.004 | <.002 | < .005 | .028 | <.050 | <.010 | <.002 | <.041 | | 18
JUN | | | | | <.002 | <.004 | <.002 | <.005 | .020 | <.050 | <.010 | <.002 | <.041 | | 04
AUG | <.10 | <1.0 | <1 | <1 | | | | | | | | | | | 28 | <.10 | <1.0 | <1 | <1 | | | | | | | | | | ## 08155500 Barton Springs at Austin, TX--Continued | | | | MAIDIC | QUALITIE | MIN, WALL | IC TEARCOC | TODER ZUC | JO TO DEFT | ENDER 200 | , _ | | | | |------------------|--|---|--|--|--|--|---|--|--|--|---|---|---| | DATE | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | | DEC
06 | | | | | | | | | | | | | | | MAY | | | | | | | | | | | | | | | 03
07 | <.020 | <.005 | <.006 | <.018 | <.003 | E.011 | <.005 | <.005 | <.021 | <.002 | <.009 | <.005 | <.003 | | 08
10 | <.020
<.020 | <.005
<.005 | <.006
<.006 | <.018
<.018 | <.003
<.003 | E.022
E.018 | E.005 | <.005
<.005 | <.021
<.021 | <.002
<.002 | <.009
<.009 | <.005
<.005 | <.003
<.003 | | 10 | <.020 | <.005 | <.006 | <.018 | <.003 | E.019 | <.005 | <.005 | <.021 | <.002 | <.009 | <.005 | <.003 | | 13
18 | <.020
<.020 | <.005
<.005 | <.006
<.006 | <.018
<.018 | <.003
<.003 | E.011
E.010 | <.005
<.005 | <.005
<.005 | <.021
<.021 | <.005
<.002 | <.009
<.009 | <.005
<.005 | <.003
<.003 | | JUN
04
AUG | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | DATE | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) |
METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82664) | | DEC | | | | | | | | | | | | | | | 06
MAY | | | | | | | | | | | | | | | 03
07 | <.004 | <.035 | <.027 | <.013 | <.006 | <.002 | <.007 | <.003 | <.007 | <.006 | <.002 | <.010 | <.011 | | 08 | <.004 | <.035 | <.027 | <.013 | <.006 | <.002 | <.007 | <.003 | <.007 | <.006 | <.002 | <.010 | <.011 | | 10
10 | <.004
<.004 | <.035
<.035 | <.027
<.027 | <.013
<.013 | <.006
<.006 | <.002
<.002 | <.007
<.007 | <.004
<.003 | <.007
<.007 | <.006
<.006 | <.002
<.002 | <.010
<.010 | <.011
<.011 | | 13
18 | <.004
<.004 | <.035
<.035 | <.027
<.027 | <.013
<.013 | <.006
<.006 | <.002
<.002 | <.007
<.007 | <.003
<.003 | <.007
<.007 | <.006
<.006 | <.002
<.002 | <.010
<.010 | <.011
<.011 | | JUN
04 | | | | | | | | | | | | | | | AUG | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | DATE | PRO
MET
WAT
DIS
REC
(UG/
(040 | ON, CHL
ER, WAT
S, DIS
E REC
L) (UG/ | OR, WAT
ER, FLT
S, 0.7
GF,
L) (UG/ | IL PARGER WATER WA | TER WAT
TRD FLT
7 U 0.7
REC GF,
(L) (UG/ | DE SI-
ER MAZI
RD WAT
U DIS
REC REC
L) (UG/ | NE, WATER, FLTSS, 0.7
S, 0.7
S, GF,
L) (UG/ | JRON BAC
FER WAT
FRD FLT
7 U 0.7
REC GF,
/L) (UG/ | EIL BUF
ER WAT
RD FLT
'U 0.7
REC GF,
'L) (UG/ | TER WATERD FLTVU 0.7 REC GF, (L) (UG/ | CARB LAT
CER WAT
CRD FLT
U 0.7
REC GF,
(L) (UG/ | E FLU ER ALI RD WAT U 0.7 REC GF, L) (UG/ | N
FLT
U
REC
L) | | DEC
06
MAY | _ | | | | | | | | | | | | - | | 03 | <.0 | | | 11 <.0 | 023 <.0 | 04 E.O | | | | | | | | | 07
08 | <.0 | 15 <.0 | | | | 04 E.0 | 05 <.0 |
016 <.0 | | | 005 <.0 | 02 <.0 | 09 | | 10
10 | E.0
E.0 | 02 <.0 | 10 <.0 | 11 <.0 | 23 <.0 | 04 E.0 | 08 <.0 | 016 <.0 | 34 <.0 | 17 <.0 | 005 <.0 | 02 <.0 | 09 | | 13 | <.0 | 15 <.0 | 10 <.0 | 11 <.0 | 23 <.0 | 04 E.0 | 04 <.0 | 016 <.0 | 34 <.0 | 17 <.0 | 005 <.0 | 02 <.0 | 09 | | 18
JUN | <.0 | 15 <.0 | 10 <.0 | 11 <.0 | | | 06 <.0 | 016 <.0 | 134 <.0 |)17 <.0 | 005 <.0 | | | | 04
AUG | - | | | | | | | | | | | | - | | 28 | - | | | | | | | | | | | | - | ### 08156800 Shoal Creek at 12th Street, Austin, TX DRATNAGE AREA. -- 12.3 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Nov. 1974 to Mar. 1975 (periodic discharge measurement, and associated peak discharges along with annual maximum), Apr. 1975 to Sept. 1984 (peak discharges greater than base discharge), Oct. 1984 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 455.33 ft above sea level. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. No flow at times. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .00 .00 OΩ 0020 6.4 0.0 OΩ ΛN ΛN 6.7 2 159 .00 .00 .00 .15 9.3 4.6 .00 .00 .00 .30 1.9 .00 400 .00 .00 .09 3.2 .00 .00 .00 .00 .00 56 . 00 ΛN .06 19 2.2 .84 . 00 .00 .00 23 5 53 5.9 .00 63 .02 .00 .04 7.6 1.4 .00 .00 .00 2.7 1.3 6 7 0.0 76 ΛN \cap UЗ 128 ΛN $\cap \cap$ \cap 1 9 .99 .00 56 .00 .00 .03 52 .00 .00 .00 .09 8.4 8 .00 42 .00 .16 .03 .34 .00 .00 .00 .00 0.0 9.2 00 .00 66 19 21 6.5 00 0.0 0.0 25 1.9 .17 10 5.6 .01 .00 .00 .02 .00 .00 .00 .00 11 0.0 15 0.0 3.3 01 1.9 21 .00 0.0 0.0 0.0 0.0 12 .01 100 .16 .00 .96 .00 .01 .00 .00 .00 .00 .00 23 1.8 1.1 .01 12 .18 .00 .00 .43 .00 .00 .01 14 .00 00 47 20 00 0.0 0.0 00 122 .20 15 .00 .00 .00 .01 18 .00 6.2 .00 .00 .00 7 8 00 0.0 0.0 16 134 0.0 .00 71 20 0.0 0.0 0.0 17 6.5 .28 .04 .00 58 .03 .00 5.0 .00 .00 .00 2.4 .00 8.5 33 .18 .00 .00 .00 .00 19 0.0 18 0.0 3.2 .48 14 17 0.0 0.0 0.0 0.0 00 .01 6.1 .17 2.4 20 .00 2.3 .00 .00 .19 .00 .00 .00 00 42 12 21 120 01 0.0 3 4 23 0.0 0.0 0.0 26 22 1.8 .00 .00 .00 .00 .04 .06 1.3 .00 .00 .34 23 35 6.9 .00 .00 .56 1.1 15 .00 .10 .00 .00 .00 3 6 19 1 6 24 32 0.0 0.0 1 2 0.0 86 0.0 0.0 00 .01 25 110 .00 4.8 .01 .69 .00 .00 26 .00 .00 103 .00 .03 1.0 .01 3.9 .00 .00 357 .00 27 231 .00 .00 16 .00 .00 284 28 .00 .08 .60 .00 .44 41 .01 .00 .00 .00 11 .00 29 19 29 .00 .00 .04 .00 .00 .00 .00 16 .00 30 .00 .01 1.3 ___ 25 .00 .00 .00 257 31 .00 .01 .46 ---12 .06 .00 129 39.02 TOTAL 586.00 995.30 252.68 193.31 84.32 788.4 298.28 8.69 0.00 1054.30 73.08 MEAN 18.9 33.2 8.15 6.24 3.01 25.4 1.30 9.62 .29 .000 34.0 2.44 231 134 400 110 121 71 128 6.2 .00 357 33 MAX 15 MIN .00 .00 .00 .00 .01 1.0 .00 .00 .00 .00 .00 .00 77 AC-FT 1160 1970 501 383 167 1560 592 17 .00 2090 145 CFSM 2.70 2.07 2.77 1.54 .51 .24 .78 .02 .00 .66 .20 IN. 1.77 3.01 .76 .58 .12 .03 .00 .22 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2001, BY WATER YEAR (WY) 7.38 13.9 7.36 9.71 6.24 15.9 MEAN 5.30 5.55 5.14 10.4 2.24 5.04 67.6 33.2 70.8 22.6 29.2 25.4 18.2 1997 38.7 46.1 11.9 38.9 12.5 MAX (WY) 1999 2001 1992 1991 1992 2001 1995 1987 1987 1996 1986 MTN . 2.2 .000 .065 .000 .000 .012. 41 .11 . 29 .000 .000 .000 (WY) 1997 2000 1996 1996 1999 1996 1998 1998 2001 1989 1993 1999 FOR 2001 WATER YEAR FOR 2000 CALENDAR YEAR SUMMARY STATISTICS WATER YEARS 1985 - 2001 ANNUAL TOTAL 3076.83 4373.38 7.87 ANNUAL MEAN 8.41 12.0 HIGHEST ANNUAL MEAN 15.7 LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 3.26 1988 1030 Oct. 17 1998 400 Nov 3 400 Nov .00 Jan LOWEST DAILY MEAN Oct Oct May 6 1985 ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW .00 Jan 10 .00 Oct 1 .00 5680 16000 Aug 26 May 24 1981 MAXIMUM PEAK STAGE 15.97 23.11 May 24 1981 Aug 26 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 8670 5700 6100 .68 .64 ANNUAL RUNOFF (INCHES) 9.31 13.23 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 19 25 13 .00 .00 .01 90 PERCENT EXCEEDS .00 .00 .00 08156800 Shoal Creek at 12th Street, Austin, TX--Continued ### 08156800 Shoal Creek at 12th Street, Austin, TX--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.-CHEMICAL DATA: Feb. 1943, Nov. 1974 to current year. BIOCHEMICAL DATA: Feb. 1943, Nov. 1974 to current year. RADIOCHEMICAL DATA: Apr. 1980. PESTICIDE DATA: Jan. 1975 to Sept. 1985, Jan. 1993 to May 1996, Dec. 1997 to current year. ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$ | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | |------------------------------|--|--|--|--|---|---|---|--|---|--|--|--|--| | OCT
15-16
MAR
27-27 | 1950
1035 | 355
481 | 137
165 | 7.9
7.5 | 22.0 | 55
80 | 400
200 | 71
17 | E140000
12000 | 55000
30000 | 42
51 | 960
<10 | .410 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | | OCT
15-16
MAR
27-27 | .015 | .425 | .099 | 2.73 | 2.21 | 2.3 | .864 | E.059 | .051 | .156 | 32
17 | .45 | 15.9
9.6 | | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | |--------------
--|--| | OCT
15-16 | 32 | 111 | | MAR
27-27 | 22 | 63 | THIS PAGE IS INTENTIONALLY LEFT BLANK. ### 08157600 East Bouldin Creek at South 1st Street, Austin, TX LOCATION.--Lat 30°15′07", long 97°45′14", Travis County, Hydrologic Unit 12090205, at bridge on South 1st Street, and 1.75 mi south of State Capitol Building in Austin. DRAINAGE AREA. -- 2.4 mi². PERIOD OF RECORD.--Apr. 1997 to Jan. 2001 (discontinued). Water-quality records.--Chemical data: June 1997 to June 2001. Biochemical data: June 1997 to June 2001. GAGE.--Water-stage recorder. Satellite telemeter at station. REMARKS.--Records fair. No known regulation or diversion. No flow at times. | | | DISCHAF | RGE, CUBI | C FEET PER | | NATER YEA
MEAN VAI | | 2000 TO 3 | SEPTEMBE | R 2001 | | | | |---|--------------------------------|-------------|-------------|--------------------------|-------------|------------------------|-------------|-------------|------------------------------------|-------------------------|--------------|-------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | .05 | .13 | .74 | .86 | | | | | | | | | | | 2 | .04 | 75 | .78 | .77 | | | | | | | | | | | 3 | .01 | 63 | .77 | .76 | | | | | | | | | | | 4
5 | .01 | 2.6 | .84 | .64 | | | | | | | | | | | Э | .00 | 17 | .65 | .62 | | | | | | | | | | | 6 | 1.4 | 4.7 | .71 | .61 | | | | | | | | | | | 7 | 4.2 | 5.9 | .78 | .60 | | | | | | | | | | | 8
9 | .56
.41 | 4.7
1.1 | .74
.80 | .57
.55 | | | | | | | | | | | 10 | .15 | .88 | .82 | 18 | 11
12 | .13
.13 | .79
9.2 | .79
.58 | 1.4 | | | | | | | | | | | 13 | .13 | 1.0 | 5.6 | 1.8 | | | | | | | | | | | 14 | .10 | .76 | .47 | .95 | | | | | | | | | | | 15 | 10 | .65 | .41 | .86 | | | | | | | | | | | 16 | 21 | 70 | 40 | .94 | | | | | | | | | | | 16
17 | .31
6.3 | .70
.61 | .40
.42 | 8.9 | | | | | | | | | | | 18 | .35 | 14 | .42 | 5.1 | | | | | | | | | | | 19 | .12 | 1.6 | .44 | 1.6 | | | | | | | | | | | 20 | .07 | 1.0 | .50 | 1.3 | | | | | | | | | | | 21 | 19 | .79 | .51 | 1.2 | | | | | | | | | | | 22 | 18 | .84 | .50 | 1.2 | | | | | | | | | | | 23 | 3.0 | 3.9 | .48 | 1.1 | | | | | | | | | | | 24 | 7.3 | 3.5 | .53 | 1.1 | | | | | | | | | | | 25 | .83 | .87 | 15 | 1.0 | | | | | | | | | | | 26 | e2.7 | .74 | 26 | .99 | | | | | | | | | | | 27 | e2.8 | .72 | 2.5 | 2.9 | | | | | | | | | | | 28 | e.21 | .76 | 1.2 | 1.1 | | | | | | | | | | | 29
30 | e.15 | .81
.80 | .96
.89 | 7.2
1.1 | | | | | | | | | | | 31 | .13
.12 | .00 | .96 | 1.1 | TOTAL | 78.69 | 219.05 | 67.19 | 67.82 | | | | | | | | | | | MEAN | 2.54 | 7.30 | 2.17 | 2.19 | | | | | | | | | | | MAX
MIN | 19
.00 | 75
.13 | 26
.40 | 18
.55 | | | | | | | | | | | AC-FT | 156 | 434 | 133 | 135 | STATIST | rics of M | MONTHLY MEA | AN DATA F | OR WATER Y | EARS 1997 | - 2001, | BY WATER Y | YEAR (WY) | | | | | | | MEAN | 2.70 | 2.49 | 1.29 | 1.24 | .72 | 1.35 | 1.07 | 1.89 | 2.68 | .65 | .51 | .52 | | | MAX | 6.17 | 7.30 | 2.17 | 2.19 | 1.07 | 2.03 | 2.58 | 4.07 | 6.12 | 1.80 | .81 | 1.52 | | | (WY)
MIN | 1999
.55 | 2001
.37 | 2001
.76 | 2001
.52 | 1998
.31 | 1999
.50 | 1997
.30 | 1997
.21 | 1997
.24 | 1999
.11 | 1997
.075 | 1998
.11 | | | (WY) | 2000 | 2000 | 1999 | 1999 | 1999 | 2000 | 1999 | 1998 | 1998 | 1998 | 2000 | 2000 | | | | Y STATIST | | | 2000 CALEN | | | OR 2001 WAT | | | WATER YEARS 1997 - 2001 | | | | | 7 7 TATA T | TOTAT | | | E00 17 | | | | | | | | | | | ANNUAL
ANNUAL | | | | 598.17
1.63 | | | | | | 1.05 | | | | | | r annual | MEAN | | | | | | | | 1.50 | | 1999 | | | LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN | | | | | | | | | | .81 | .81 2 | | | | | | | | 75 | Nov 2 | 75 Nov 2
.00 Oct 5 | | | | 110 | | | | | LOWEST DAILY MEAN | | | | .00 May 15
.00 Jun 29 | | | | | .00 Sep 14 1997
.00 Sep 14 1997 | | | | | | ANNUAL SEVEN-DAY MINIMUM
MAXIMUM PEAK FLOW | | | | .00 | Juli 29 | .23 Oct 8
818 Nov 2 | | | | 943 | | 7 1998 | | | MAXIMUM PEAK STAGE | | | | | | | | Nov 2 | | 7.01 | | 7 1998 | | | ANNUAL RUNOFF (AC-FT) | | | | 1190 | | | | | | | | | | | 10 PERCENT EXCEEDS | | | | 2.9 | | | 8.3 | | 2.1 | | | | | | 50 PERCENT EXCEEDS | | | | .19 | | | .82 | | . 26 | | | | | | JU PERC | 90 PERCENT EXCEEDS .00 .13 .01 | | | | | | | | | | | | | e Estimated 08157600 East Bouldin Creek at South 1st Street, Austin, TX--Continued ### 08157700 Blunn Creek near Little Stacy Park, Austin, TX LOCATION.--Lat 30°14′50", long 97°44′37", Travis County, Hydrologic Unit 12090205, on right bank near intersection of Sunset Lane and Eastside Drive. DRAINAGE AREA.--1.2 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Apr. 1997 to Jan. 2001 (discontinued). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 490 ft above sea level. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair except those below $0.50~{\rm ft}^3/{\rm s}$, which are poor. No known regulation or diversions. No flow at times. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YE | AR OCTOBER
LUES | 2000 TO | SEPTEMBE | R 2001 | | | | | |--|--------------|-------------------|-----------------------|----------------|-------------|--------------|--------------------|----------------|--|------------------|-------------|--------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | .00 | .00 | 1.0 | 1.2 | | | | | | | | | | | | 2 | .00 | 29 | 1.0 | 1.1 | | | | | | | | | | | | 3
4 | .00 | 32 | 1.1 | 1.1 | | | | | | | | | | | | 4
5 | .00 | 3.8
9.2 | 1.1
.96 | 1.1
1.0 | | | | | | | | | | | | 3 | .00 | ٥.2 | | 1.0 | | | | | | | | | | | | 6 | .00 | 6.2 | .96 | 1.0 | | | | | | | | | | | | 7
8 | 1.3 | 5.3
5.9 | .97
.92 | .96
.96 | | | | | | | | | | | | 9 | .00 | 1.7 | .92 | .96 | | | | | | | | | | | | 10 | .00 | 1.2 | .94 | 11 | | | | | | | | | | | | | 0.0 | 1 1 | 1 0 | 0.0 | | | | | | | | | | | | 11
12 | .00 | $\frac{1.1}{4.4}$ | 1.0
1.1 | 2.0
1.3 | | | | | | | | | | | | 13 | .00 | 1.2 | 5.4 | 2.1 | | | | | | | | | | | | 14 | .00 | 1.0 | .82 | 1.2 | | | | | | | | | | | | 15 | 2.0 | .97 | .71 | 1.1 | | | | | | | | | | | | 16 | .13 | 1.0 | .74 | 1.2 | | | | | | | | | | | | 17 | 6.3 | .80 | .99 | 3.5 | | | | | | | | | | | | 18 | .57 | 9.1 | 1.0 | 3.8 | | | | | | | | | | | | 19
20 | .05
.00 | 2.1
1.2 | 1.1
1.3 | 2.0 | | | | | | | | | | | | 20 | .00 | 1.2 | 1.3 | 1.3 | | | | | | | | | | | | 21 | 9.2 | 1.1 | 1.4 | 1.2 | | | | | | | | | | | | 22 | 11 | 1.1 | 1.5 | 1.2 | | | | | | | | | | | | 23
24 | 2.9
3.9 | 2.5
3.5 | 1.5
1.7 | 1.1
1.1 | | | | | | | | | | | | 25 | 1.4 | 1.1 | 11 | 1.0 | 26 | .22 | .99
.94 | 15
4.0 | .97 | | | | | | | | | | | | 27
28 | .33
.09 | .94 | 2.1 | 2.1
1.0 | | | | | | | | | | | | 29 | .08 | 1.0 | 1.5 | 5.0 | | | | | | | | | | | | 30 | .06 | 1.0 | 1.3 | 1.1 | | | | | | | | | | | | 31 | .02 | | 1.3 | .87 | | | | | | | | | | | | TOTAL | 39.55 | 131.39 | 66.33 | 56.52 | | | | | | | | | | | | MEAN | 1.28 | 4.38 | 2.14 | 1.82 | | | | | | | | | | | | MAX | 11 | 32 | 15 | 11 | | | | | | | | | | | | MIN
AC-FT | .00
78 | .00
261 | .71
132 | .87
112 | | | | | | | | | | | | 110 11 | , 0 | 201 | 132 | | | | | | | | | | | | | STATIST | TICS OF N | MONTHLY ME | AN DATA F | OR WATER Y | | - 2001, | BY WATER Y | YEAR (WY) | | | | | | | | MEAN | 2.08 | 2.01 | 1.02 | .88 | .39 | 1.65 | .33 | .78 | 1.39 | .53 | .20 | .42 | | | | MAX
(WY) | 6.32
1999 | 4.38
2001 | 2.14
2001 | 1.82
2001 | .44
2000 | 3.71
1999 | .41
2000 | 1.50
1999 | 2.57
1999 | 1.79
1999 | .51
1998 | 1.51
1998 | | | | MIN | .21 | .003 | .14 | .27 | .35 | .21 | .27 | .097 | .086 | .067 | .000 | .000 | | | | (WY) | 2000 | 2000 | 2000 | 1998 | 1999 | 2000 | 1999 | 1998 | 1998 | 2000 | 2000 | 2000 | | | | SUMMAR | Y STATIST | rics | FOR | 2000 CALEN | DAR YEAR | F | OR 2001 WAT | TER YEAR | | WATER YEA | ARS 1997 | - 2001 | | | | ANNUAL | TOTAL. | | | 390.02 | | | | | | | | | | | | ANNUAL | | | | 390.02
1.07 | | | | | | .91 | | | | | | | T ANNUAL | | | | | | | | | 1.65 | | 1999 | | | | LOWEST ANNUAL MEAN | | | 32 Nov 3
.00 Jan 1 | | | 20 | | | .45 200
96 Oct 17 199
.00 Apr 19 199 | | | | | | | HIGHEST DAILY MEAN
LOWEST DAILY MEAN | | | | | | | 32
.00 | Nov 3
Oct 1 | | | | | | | | ANNUAL SEVEN-DAY MINIMUM | | | | .00 | | .00 Oct 8 | | | | .00 May 3 1998 | | | | | | MAXIMUM PEAK FLOW | | | | | | | 245 | Nov 3 | | 827 | Oct 1 | 7 1998 | | | | MAXIMUM PEAK STAGE | | | | 771 | | | 4.21 | Nov 3 | | 6.65 Oct 17 1998 | | | | | | ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS | | | | 774
2.6 | | | 5.7 | | | | 660
2.0 | | | | | 50 PERCENT EXCEEDS | | | | .03 | | | 1.1 | | | .15 | | | | | | 90 PER | CENT EXC | EEDS | | .00 | | | .00 | | | .00 | | | | | 08157700 Blunn Creek near Little Stacy Park, Austin, TX--Continued ## 08157700 Blunn Creek near Little Stacy Park, Austin, TX--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Mar. 1999 to June 1999. BIOCHEMICAL DATA: Mar. 1999 to Feb. 2001 (discontinued). INSTRUMENTATION. -- Stage-activated automatic sampler. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) |
TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | |--------------|--|--|--|--|---|---|--|---|--|--|--|--|--| | OCT
15-15 | 2005 | 9.8 | 207 | 8.0 | 50 | 200 | 120 | E140000 | 92000 | 56 | 668 | .700 | .024 | | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | | OCT
15-15 | .724 | .276 | 5.23 | 4.23 | 4.5 | 1.35 | .115 | .102 | .313 | 54 | .66 | 21.7 | 59 | ZINC, TOTAL RECOV-ERABLE (UG/L AS ZN) (01092) DATE OCT 15-15 190 THIS PAGE IS INTENTIONALLY LEFT BLANK. #### 08157900 Town Lake at Austin, TX LOCATION.--Lat $30^{\circ}14'56$ ", long $97^{\circ}43'03$ ", Travis County, Hydrologic Unit 12090205, at Longhorn Dam on the Colorado River at Austin, 1.5 mi downstream from Interstate Highway 35, and 2.3 mi southeast of the State Capitol Building in Austin. DRAINAGE AREA.--39,003 mi^2 , approximately, of which 11,403 mi^2 probably is noncontributing. PERIOD OF RECORD.-CHEMICAL DATA: Feb. 1975 to Aug. 1990, Oct. 1990 to current year. BIOCHEMICAL DATA: Feb. 1975 to Aug. 1990, Oct. 1990 to current year. PESTICIDE DATA: Feb. 1975 to Aug. 1990, Feb. 1991 to current year. REMARKS.--Trace metal and pesticide analyses of bottom sediments at selected sites Feb. 1991 to current year. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | MILLIE | 2012211 2 | 3015590 | 97424801 | Twn Lk | : AR | 200 | - | | | | |-----------------------------|--|---|--|--|--|--|--|--|--|---|---|---|--| | | | DA | TE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | | | | | | | 1
1 | 6
6
6 | 0905
0907
0909
0911 | 1.00
10.0
20.0
27.0 | 509
516
517
522 | 8.2
7.8
7.5
7.5 | 25.9
23.1
20.9
21.3 | 7.6
6.2
3.0
2.6 | 94
73
34
30 | | | | | | | 0 | 7
7
7 | 0823
0825
0827 | 1.00
10.0
22.0 | 451
450
472 | 7.7
7.7
7.6 | 20.5
20.5
19.5 | 7.6
7.5
6.3 | 85
84
69 | | | | | | | | | | 3015000 | 97424801 | Twn Lk | AC | | | | | | | DATE | TIME | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | | | OCT
16
16
16 | 0840
0842
0844
0846 | 2.10

 | 1.00
10.0
20.0
27.0 | 512
507
509
516 | 8.2
8.0
7.9
7.5 | 26.0
23.9
23.4
21.0 | .8

.6 | .9

.8 | 7.8
7.1
7.0
4.4 | 97
85
83
50 | <10

 | 390

 | 480

 | | MAY
07
07
07
07 | 0757
0759
0801
0803
0805 | .82

 | 1.00
10.0
20.0
25.0
28.0 | 444
454
470
470
477 | 7.7
7.7
7.6
7.4
7.4 | 20.5
20.0
19.5
19.0
19.0 |

 | 10

7.9 | 7.7
7.4
6.4
4.8
4.2 | 86
82
70
52
46 |

 | 3800

 | 5400

 | | JUN
21 | 1335 | | | | | | | | | | | | | | | | | | | 3015000 | 97424801 | Twn Lk | AC AC | | | | | | | DATE | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN, | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
16
16 | 153 | 289 | <10

 | .042 | .006 | .048 | <.041 | .33 |

 | .28 | <.060 | <.060 | <.018 | | 16
MAY
07 | 176
135 | 284
267 | <10
<10 | .126 | .010 | .136 | .060 | .50
.77 | .30 | .36 | <.060
E.031 | <.060
<.060 | <.018 | | 07
07 | | | | | | | | | | | | | | | 07
07 |
147 |
278 |
<10 | .340 | .013 | .353 | .065 |
.79 | .37 | .44 | E.031 | <.060 | <.018 | | JUN
21 | | | | | | | | | | | | | | ### 08157900 Town Lake at Austin, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 ## 301500097424801 -- Twn Lk AC | DATE | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(80164) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM
(80165) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.250 MM
(80166) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.500 MM
(80167) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
1.00 MM
(80168) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD)
(01028) | CHRO-MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G)
(01029) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU)
(01043) | |------|--|--|--|--|--|--|--|--
---|---|--|---|---| | OCT | | | | | | | | | | | | | | | 16 | 3.7 | 5.9 | E.2 | | | | | | | | | 5.1 | | | 16 | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | 16 | 3.9 | | | | | | | | | | | 4.5 | | | MAY | | | | | | | | | | | | | | | 07 | 6.0 | .8 | <.1 | | | | | | | | 2.5 | E1.3 | | | 07 | | | | | | | | | | | | | | | 07 | | | | | | | | | | | | | | | 07 | | | | | | | | | | | | | | | 07 | 4.5 | | | | | | | | | | 3.0 | 2.5 | | | JUN | | | | | | | | | | | | | | | 21 | | | | 87 | 90 | 95 | 100 | 100 | .5 | 12 | | | 22 | ### 301500097424801 -- Twn Lk AC | DATE | IRON,
SEDIMT,
BED MA-
TERIAL
AS FE)
(01170) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB)
(01052) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G)
(01053) | | RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | |------|--|---|---|--|-----|---| | OCT | | | | | | | | 16 | | | <1.00 | | | | | 16 | | | | | | | | 16 | | | | | | | | 16 | | | <1.00 | | | | | MAY | | | | | | | | 07 | | | | | | | | 07 | | | | | | | | 07 | | | | | | | | 07 | | | | | | | | 07 | | | | | | | | JUN | | | | | | | | 21 | 8700 | 52 | | 500 | .06 | 90 | ### 301503097424701 -- Twn Lk AL | | | | | PH | | | OXYGEN, | |------|------|---------|---------|---------|---------|---------|---------| | | | | SPE- | WATER | | | DIS- | | | | | CIFIC | WHOLE | | | SOLVED | | | | SAM- | CON- | FIELD | TEMPER- | OXYGEN, | (PER- | | | | PLING | DUCT- | (STAND- | ATURE | DIS- | CENT | | DATE | TIME | DEPTH | ANCE | ARD | WATER | SOLVED | SATUR- | | | | (FEET) | (US/CM) | UNITS) | (DEG C) | (MG/L) | ATION) | | | | (00003) | (00095) | (00400) | (00010) | (00300) | (00301) | | | | | | | | | | | OCT | | | | | | | | | 16 | 0915 | 1.00 | 512 | 8.1 | 26.7 | 6.9 | 87 | | 16 | 0917 | 10.0 | 485 | 7.8 | 23.4 | 6.2 | 73 | | 16 | 0919 | 17.0 | 521 | 7.4 | 21.8 | 2.5 | 29 | ## 301504097440901 -- Twn Lk BC | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |------|------|---|--|--|---|--|---| | OCT | | | | | | | | | 16 | 0925 | 1.00 | 498 | 8.3 | 25.0 | 8.3 | 101 | | 16 | 0927 | 10.0 | 402 | 8.1 | 23.7 | 7.0 | 83 | | 16 | 0929 | 20.0 | 524 | 7.4 | 21.0 | 2.2 | 25 | | 16 | 0931 | 29.0 | 525 | 7.3 | 21.2 | 1.3 | 15 | ### 08157900 Town Lake at Austin, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 301503097424701 -- Twn Lk AL | | | MAY
0
0 | TE 7 7 | TIME
0832
0834
0836 | SAM-
PLING
DEPTH
(FEET)
(00003)
1.00
10.0
18.0 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
422
460
460 | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) 7.7 7.7 7.6 | TEMPER-ATURE WATER (DEG C) (00010) 20.5 20.5 20.0 | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300)
7.5
7.2
7.0 | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | | | | |------------------------------------|------------------------------|---|--|---|---|---|---|--|---|---|--|--|---| | | | | | | 3015000 | 97440801 | Twn Lk | BR. | | | | | | | | | DA
OCT | TE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | | | | | | | 1
1
1 | 6
6
6 | 0935
0937
0939
0941 | 1.00
10.0
20.0
26.0 | 498
412
524
526 | 8.3
8.0
7.4
7.3 | 24.8
23.6
21.0
21.2 | 8.0
6.4
2.6
1.9 | 97
76
29
22 | | | | | | | 0 | 7
7
7 | 0855
0857
0859 | 1.00
10.0
20.0 | 330
336
331 | 7.8
7.7
7.8 | 21.0
20.5
20.5 | 7.3
7.3
7.3 | 82
82
82 | | | | | | | | | | 3015040 | 97440901 | Twn Lk | BC BC | | | | | | | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(80164) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM
(80165) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.250 MM
(80166) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.500 MM
(80167) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
1.00 MM
(80168) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD)
(01028) | | MAY
07
07
07
07
JUN | 0844
0846
0848
0850 | 1.00
10.0
20.0
29.0 | 307
310
320
367 | 7.8
7.8
7.8
7.7 | 20.5
20.5
20.5
20.5 | 7.3
7.3
7.3
7.3 | 82
82
82
82 |

 |

 |

 |

 |

 |

 | | 21 | 1355 | | | | | | | 95 | 98 | 100 | 100 | 100 | .4 | | | | | | | 3015040 | 97440901 | Twn Lk | BC BC | | | | | | | | | DA | TE | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G)
(01029) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU)
(01043) | IRON,
SEDIMT,
BED MA-
TERIAL
AS FE)
(01170) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB)
(01052) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G)
(01053) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG)
(71921) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN)
(01093) | | | | | | | 0 | 7
7
7
7 |

 | | | | | | | 1 | 8.5 | 24 | 6300 | 52 | 390 | .06 | 110 | | | | | | | | | | 3015440 | 97445201 | Twn Lk | CR. | | | | | | | | | DA | TE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | | | | | | | 0 | 7
7
7 | 0938
0940
0942 | 1.00
10.0
14.0 | 270
402
408 | 7.7
7.7
7.6 | 21.0
20.0
20.0 | 7.6
7.3
7.3 | 86
81
81 | | | | ### 08157900 Town Lake at Austin, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 301546097445101 -- Twn Lk CC | | | | | | 3015460 | 97445101 | Twn Lk | CC | | | | | | |------------------------------|--|---|--|---|--|---|--|--|---|---|---|---|--| | DATE | TIME | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) |
SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | | OCT
16
16
16
MAY | 1000
1002
1004 | .30 | 1.00
10.0
18.0 | 419
441
313 | 8.2
7.8
7.8 | 23.6
22.4
22.2 | 30

58 | 32

.3 | 7.3
6.9
6.4 | 87
80
74 | 13

 | E32000

 | 22000

 | | 07
07
07 | 0918
0920
0922 | .31 | 1.00
10.0
16.0 | 327
424
422 | 7.6
7.6
7.6 | 20.0
20.0
20.0 |

 | 51

30 | 7.6
7.3
7.3 | 84
81
81 |

 | 22000

 | 17000

 | | JUN
21 | 1415 | | | | | | | | | | | | | | | | | | | 3015460 | 97445101 | Twn Lk | CC | | | | | | | DATE | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
16
16
16
MAY | 126

136 | 232

194 | 32

76 | .155

.219 | .009 | .164

.226 | E.036

.071 | .75

.81 |

.51 | .59

.58 | .109

.133 | <.060

<.060 | .018

E.014 | | 07
07 | 92
 | 187 | 45 | .476 | .012 | .488 | .088 | 1.0 | .45 | .54 | .109 | .065 | .050 | | 07
JUN | 141 | 248 | 22 | .459 | .006 | .465 | E.040 | .92 | | .45 | .072 | <.060 | .022 | | 21 | 3015460 | 97445101 | Twn Lk | CC | | | | | | | DATE | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(80164) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM
(80165) | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.250 MM
(80166) | THAN | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
1.00 MM
(80168) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD)
(01028) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G)
(01029) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | | OCT
16 | .055 | 5.1 | 10.8 | E.4 | | | | | | | | | 3.6 | | 16
16 | | 5.1 | | | | | | | | | | | 2.9 | | MAY
07
07 | .153 | 5.8 | .3 | <.1 | | | | | | | | 3.0 | 1.6 | | 07
JUN | .067 | 6.8 | | | | | | | | | | 2.5 | 1.3 | | 21 | | | | | 85 | 92 | 98 | 100 | 100 | .5 | 16 | | | | | | | | | 3015460 | 97445101 | Twn Lk | CC | | | | | | | | | DA | TE | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU)
(01043) | IRON,
SEDIMT,
BED MA-
TERIAL
AS FE)
(01170) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB)
(01052) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G)
(01053) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG)
(71921) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN)
(01093) | | | | | | | 1 | 6
6
6 |

 |

 |

 | <1.00

<1.00 |

 |

 |

 | | | | | | | 0 | 7 | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 2 | 1 | 22 | 12000 | 55 | | 370 | .04 | 130 | | | | ### 08157900 Town Lake at Austin, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 301556097452301 -- Twn Lk DR | | | OCT | .TE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | | | | |--|--|---|---|--|---|--|--|---|--|--|---|---|--| | | | | 6 | 1100 | 13.0 | 524 | 7.6 | 21.4 | 5.6 | 64 | | | | | | | 0 | 7 | 1012
1014 | 1.00
13.0 | 458
462 | 7.4
7.6 | 21.0
20.0 | 6.9
6.8 | 78
75 | | | | | | | | | | 3015580 | 97452201 | Twn Lk | DC | | | | | | | DATE | TIME | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | | OCT
16
16
16
MAY | 1045
1047
1049 | .80

 | 1.00
10.0
19.0 | 512
528
525 | 8.0
7.6
7.4 | 22.5
21.7
21.1 | 1.6

2.5 | 6.4

2.4 | 7.9
6.4
2.7 | 92
73
31 | <10

 | 10000 | 7500

 | | 07
07 | 0953
0955 | .61 | 1.00
10.0 | 464
456 | 7.6
7.7 | 20.0 | | 21 | 7.5
7.5 | 83
83 | | 9200 | 8000 | | 07
JUN | 0957 | | 20.0 | 440 | 7.8 | 19.8 | | 7.3 | 7.3 | 80 | | | | | 21 | 1435 | | | | | | | | | | | | | | | | | | | 3015580 | 97452201 | Twn Lk | DC | | | | | | | | ALKA-
LINITY | SOLIDS,
RESIDUE | RESIDUE
TOTAL | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | | NITRO- | NITRO-
GEN,AM- | | PHOS- | PHOS-
PHORUS | | DATE | WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | DIS-
SOLVED
(MG/L
AS N)
(00618) | DIS-
SOLVED
(MG/L
AS N)
(00613) | NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | MONIA + ORGANIC TOTAL (MG/L AS
N) (00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
16 | TOT IT
FIELD
MG/L AS
CACO3
(39086) | DEG. C
DIS-
SOLVED
(MG/L)
(70300) | DEG. C,
SUS-
PENDED
(MG/L)
(00530) | DIS-
SOLVED
(MG/L
AS N)
(00618) | DIS-
SOLVED
(MG/L
AS N)
(00613) | DIS-
SOLVED
(MG/L
AS N)
(00631) | DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
TOTAL
(MG/L
AS N)
(00600) | ORGANIC
TOTAL
(MG/L
AS N)
(00605) | ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | DIS-
SOLVED
(MG/L
AS P)
(00666) | DIS-
SOLVED
(MG/L
AS P) | | OCT
16
16 | TOT IT
FIELD
MG/L AS
CACO3
(39086) | DEG. C
DIS-
SOLVED
(MG/L)
(70300) | DEG. C,
SUS-
PENDED
(MG/L)
(00530) | DIS-
SOLVED
(MG/L
AS N)
(00618) | DIS-
SOLVED
(MG/L
AS N)
(00613) | DIS-
SOLVED
(MG/L
AS N)
(00631) | DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
TOTAL
(MG/L
AS N)
(00600) | ORGANIC
TOTAL
(MG/L
AS N)
(00605) | ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | DIS-
SOLVED
(MG/L
AS P)
(00666) | DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
16
16
16
MAY
07 | TOT IT
FIELD
MG/L AS
CACO3
(39086)
161

161
158 | DEG. C
DIS-
SOLVED
(MG/L)
(70300) | DEG. C,
SUS-
PENDED
(MG/L)
(00530)
<10

<10 | DIS-
SOLVED
(MG/L
AS N)
(00618) | DIS-
SOLVED
(MG/L
AS N)
(00613)
E.005

.006 | DIS-
SOLVED
(MG/L
AS N)
(00631)
.220

.165 | DIS-
SOLVED
(MG/L
AS N)
(00608)
<.041

.158
E.023 | GEN,
TOTAL
(MG/L
AS N)
(00600) | ORGANIC
TOTAL
(MG/L
AS N)
(00605) | ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
E.037

E.038 | DIS-
SOLVED
(MG/L
AS P)
(00666)

<.060

<.060 | DIS-
SOLVED (MG/L
AS P) (00671)
<.018

E.017 | | OCT
16
16
16
MAY | TOT IT
FIELD
MG/L AS
CACO3
(39086) | DEG. C
DIS-
SOLVED
(MG/L)
(70300) | DEG. C,
SUS-
PENDED
(MG/L)
(00530) | DIS-
SOLVED
(MG/L
AS N)
(00618) | DIS-
SOLVED
(MG/L
AS N)
(00613)
E.005 | DIS-
SOLVED
(MG/L
AS N)
(00631) | DIS-
SOLVED
(MG/L
AS N)
(00608)
<.041

.158 | GEN,
TOTAL
(MG/L
AS N)
(00600) | ORGANIC
TOTAL
(MG/L
AS N)
(00605) | ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
E.037

E.038 | DIS-
SOLVED
(MG/L
AS P)
(00666)
<.060 | DIS-
SOLVED
(MG/L
AS P)
(00671)
<.018 | | OCT
16
16
MAY
07
07 | TOT IT FIELD MG/L AS CACO3 (39086) 161 161 158 | DEG. C
DIS-
SOLVED
(MG/L)
(70300) | DEG. C,
SUS-
PENDED
(MG/L)
(00530)
<10

<10 | DIS-
SOLVED
(MG/L
AS N)
(00618) | DIS-
SOLVED
(MG/L
AS N)
(00613)
E.005

.006 | DIS-
SOLVED
(MG/L
AS N)
(00631)
.220

.165 | DIS-
SOLVED
(MG/L
AS N)
(00608)
<.041

.158
E.023 | GEN,
TOTAL
(MG/L
AS N)
(00600) | ORGANIC
TOTAL
(MG/L
AS N)
(00605) | ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
E.037

E.038 | DIS-
SOLVED
(MG/L
AS P)
(00666)
<.060

<.060 | DIS-
SOLVED
(MG/L
AS P)
(00671)
<.018

E.017 | | OCT
16
16
MAY
07
07
UN | TOT IT
FIELD
MG/L AS
CACO3
(39086)
161

161
158

138 | DEG. C
DIS-
SOLVED
(MG/L)
(70300)
282

290
267

260 | DEG. C,
SUS-
PENDED
(MG/L)
(00530)
<10

<10
15

14 | DIS-
SOLVED
(MG/L
AS N)
(00618) | DIS-
SOLVED
(MG/L
AS N)
(00613)
E.005

.006
E.005

E.005 | DIS-
SOLVED
(MG/L
AS N)
(00631)
.220

.165
.518

.380 | DIS-
SOLVED
(MG/L
AS N)
(00608)
<.041

.158
E.023

.052 | GEN,
TOTAL
(MG/L
AS N)
(00600)
.55

.60
.87

.78 | ORGANIC
TOTAL
(MG/L
AS N)
(00605) | ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.33

.43
.35

.40 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
E.037

E.038 | DIS-
SOLVED
(MG/L
AS P)
(00666)
<.060

<.060 | DIS-
SOLVED
(MG/L
AS P)
(00671)
<.018

E.017
E.013

E.012 | | OCT
16
16
MAY
07
07
UN | TOT IT
FIELD
MG/L AS
CACO3
(39086)
161

161
158

138 | DEG. C
DIS-
SOLVED
(MG/L)
(70300)
282

290
267

260 | DEG. C,
SUS-
PENDED
(MG/L)
(00530)
<10

<10
15

14 | DIS-
SOLVED
(MG/L
AS N)
(00618) | DIS-
SOLVED
(MG/L
AS N)
(00613)
E.005

.006
E.005

E.005 | DIS-
SOLVED
(MG/L
AS N)
(00631)
.220

.165
.518

.380 | DIS-
SOLVED
(MG/L
AS N)
(00608)
<.041

.158
E.023

.052 | GEN,
TOTAL
(MG/L
AS N)
(00600)
.55

.60
.87

.78 | ORGANIC
TOTAL
(MG/L
AS N)
(00605) | ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.33

.43
.35

.40 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
E.037

E.038 | DIS-
SOLVED
(MG/L
AS P)
(00666)
<.060

<.060 | DIS-
SOLVED
(MG/L
AS P)
(00671)
<.018

E.017
E.013

E.012 | | OCT 16 16 16 MAY 07 07 21 | TOT IT FIELD MG/L AS CACO3 (39086) 161 161 158 138 CARBON, ORGANIC TOTAL (MG/L AS C) (00680) | DEG. C DIS- SOLVED (MG/L) (70300) 282 290 267 260 CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | DEG. C, SUS- PENDED (MG/L) (00530) <10 <10 15 14 CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) | DIS- SOLVED (MG/L AS N) (00618) 159 | DIS-
SOLVED
(MG/L
AS N)
(00613)
E.005

E.005

E.005

SIEVE
DIAM.
% FINER
THAN
.125 MM | DIS-
SOLVED
(MG/L
AS N)
(00631)
.220

.165
.518

.380

.97452201
BED
MAT.
SIEVE
DIAM.
* FINER
THAN
.250 MM | DIS-
SOLVED
(MG/L
AS N)
(00608)
<.041

.158
E.023

.052

Twn Lk
BED
MAT.
SIEVE
DIAM.
* FINER
THAN | GEN, TOTAL (MG/L AS N) (00600) .5560 .8778 EDC BED MAT. SIEVE DIAM. \$ FINER THAN 1.00 MM | ORGANIC TOTAL (MG/L AS N) (00605) 28 34 CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) | ORGANIC TOTAL (MG/L AS N) (00625) .3343 .3540 CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
E.037

E.038
E.041

E.044

COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | DIS-
SOLVED
(MG/L
AS P)
(00666)

<.060
E.030

<.060

<.060

(UG/L
AS CU) | DIS-
SOLVED
(MG/L
AS P)
(00671)
<.018

E.017
E.013

E.012

COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | | OCT 16 16 MAY 07 07 UN 21 | TOT IT FIELD MG/L AS CACO3 (39086) 161 161 158 138 CARBON, ORGANIC TOTAL (MG/L AS C) | DEG. C DIS- SOLVED (MG/L) (70300) 282 290 267 260 CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | DEG. C, SUS- PENDED (MG/L) (00530) <10 <10 15 14 CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | DIS-
SOLVED
(MG/L
AS N)
(00618)

.159

BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(80164) | DIS-
SOLVED
(MG/L
AS N)
(00613)
E.005

E.005

E.005

SIEVE
DIAM.
% FINER
THAN
.125 MM
(80165) | DIS-
SOLVED
(MG/L
AS N)
(00631)
.220

.165
.518

.380

.97452201
BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.250 MM
(80166) | DIS-
SOLVED
(MG/L
AS N)
(00608)
<.041

.158
E.023

.052

Twn Lk
BED
MAT.
SIEVE
DIAM.
\$ FINER
THAN
.500 MM
(80167) | GEN, TOTAL (MG/L AS N) (00600) .5560 .8778TOC BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168) | ORGANIC TOTAL (MG/L AS N) (00605) 2834 CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028) | ORGANIC TOTAL (MG/L AS N) (00625) .3343 .3540 CHRO- MIUM, RECOV. FM BOT- TOM MA- TERTAL (UG/G) (01029) | PHORUS TOTAL (MG/L AS P) (00665) E.037 E.038 E.041 E.044 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042) | DIS-
SOLVED
(MG/L
AS P)
(00666)

<.060
E.030

<.060

<.060

(UG/L
AS CU)
(01040) | DIS-
SOLVED
(MG/L
AS P)
(00671)
<.018

E.017
E.013

E.012

COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU)
(01043) | | OCT 16 16 MAY 07 07 UNN 21 DATE OCT 16 16 16 16 MAY 07 | TOT IT FIELD MG/L AS C) (00680) CARBON, ORGANIC TOTAL (MG/L AS C) (00680) | DEG. C DIS- SOLVED (MG/L)
(70300) 282 290 267 260 CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 6.02 | DEG. C, SUS- PENDED (MG/L) (00530) <10 <10 15 14 CHLOR-B PHYTO- PLANK- TON CHCOMO FLUOROM (UG/L) (70954) E.2 <11 | DIS-
SOLVED
(MG/L
AS N)
(00618)

.159

.159

.159

.159
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(80164) | DIS-
SOLVED
(MG/L
AS N)
(00613)
E.005

E.005

E.005

3015580
BED
MAT.
SIEVE
DIAM.
* FINER
THAN
.125 MM
(80165) | DIS-
SOLVED
(MG/L
AS N)
(00631)
.220
.165
.518

.380

.97452201
BED
MAT.
SIEVE
DIAM.
* FINER
THAN
.250 MM
(80166) | DIS-
SOLVED
(MG/L
AS N)
(00608)
<.041

.158
E.023

.052

TWN Lk
BED
MAT.
SIEVE
DIAM.
* FINER
THAN
.500 MM
(80167) | GEN, TOTAL (MG/L AS N) (00600) .5560 .8778 EDC BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168) | ORGANIC TOTAL (MG/L AS N) (00605) 2834 CADMIUM RECOV. FM BOT- TOM MA- TERTAL (UG/G AS CD) (01028) | ORGANIC TOTAL (MG/L AS N) (00625) .33 | PHORUS TOTAL (MG/L AS P) (00665) E.037 | DIS-
SOLVED (MG/L
AS P) (00666) <.060 <.060 E.030 <.060 <.060 <.060 3.0 1.4 | DIS-
SOLVED
(MG/L
AS P)
(00671)
<.018

E.017
E.013

E.012

COPPER,
RECOV.
FM BOT-
TOM MA-
TERTAL
(UG/G
AS CU)
(01043) | | OCT 16 16 16 MAY 07 07 UNN 21 DATE OCT 16 16 16 16 | TOT IT FIELD MG/L AS CACO3 (39086) 161 161 158 138 138 1000 CTOTAL (MG/L AS C) (00680) 3.7 3.5 | DEG. C DIS- SOLVED (MG/L) (70300) 282 290 267 260 CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 6.0 | DEG. C, SUS-PENDED (MG/L) (00530) <10 <10 15 14 CHLOR-B PHYTO-PLANK-TON CHROMO FLUOROM (UG/L) (70954) E.2 | DIS-
SOLVED
(MG/L
AS N)
(00618)

.159

.159

BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(80164) | DIS-
SOLVED
(MG/L
AS N)
(00613)
E.005

E.005

E.005

3015580
BED
MAT.
SIEVE
DIAM.
* FINER
THAN
1.25 MM
(80165) | DIS-
SOLVED
(MG/L
AS N)
(00631)
.220
.165
.518

.380

.97452201
BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.250 MM
(80166) | DIS-
SOLVED
(MG/L
AS N)
(00608)
<.041

.158
E.023

.052

TWN Lk
BED
MAT.
SIEVE
DIAM.
FINER
THAN
.500 MM
(80167) | GEN, TOTAL (MG/L AS N) (00600) .55 | ORGANIC TOTAL (MG/L AS N) (00605) 2834 CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028) | ORGANIC TOTAL (MG/L AS N) (00625) .3343 .3540 CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01029) | PHORUS TOTAL (MG/L AS P) (00665) E.037 E.038 E.041 E.044 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042) | DIS-
SOLVED
(MG/L
AS P)
(00666)
<.060
E.030

<.060

COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040)
2.8

3.0 | DIS-
SOLVED
(MG/L
AS P)
(00671)
<.018

E.017
E.013

E.012

COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU)
(01043) | #### 08157900 Town Lake at Austin, TX--Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 ### 301558097452201 -- Twn Lk DC DATE OCT 16... 16... MAY 07... DATE OCT 16... 16... 16... MAY 07... 07... 07... 16... 07... 16... MAY 07... 07... | | | DATE | IRO
SEDI
BED
TERI
AS
(011 | N, FM E
MT, TOM
MA- TER
AL (UG
FE) AS | OV.
BOT- LEA
MA- DI
LIAL SOL
B/G (UG
PB) AS | NESAD, REC
S- FM E
VED TOM
G/L TEF
PB) (UG | COV. FM E
BOT- TOM
MA- TEF
RIAL (UC
G/G) AS | COV. REC
BOT- FM B
MA- TOM
RIAL TER
B/G (UG
HG) AS | OV.
OT-
MA-
IAL
J/G
ZN) | | | | |--|---|--|--|--|--|--|---|---|---|--|---|--| | | | OCT
16
16 | -
-
- | | <1.
<1. | | |
 | | | | | | | | MAY
07
07
07
JUN
21 | -
-
-
98 | | | | | .04 7 | - | | | | | | | | | 3017120 | 97470701 | Twn Lk | EC EC | | | | | | | TIME | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | | 1125
1127
1129 | 2.60 | 1.00
10.0
18.0 | 513
634
676 | 7.8
7.0
6.9 | 22.2
21.3
21.0 | .7

.4 | 1.0 | 7.3
6.2
6.0 | 85
71
68 | 10

 | 410

 | 370

 | | 1036
1038
1040 | 1.84 | 1.00
10.0
20.0 | 476
476
467 | 7.7
7.6
7.7 | 19.5
19.5
19.5 |

 | 4.0

5.6 | 7.7
7.6
7.6 | 84
83
83 |

 | 210

 | 330

 | | | | | | 3017120 | 97470701 | Twn Lk | EC EC | | | | | | | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | | 158 | 282 | <10 | E.003 | .101 | <.041 | .39 | .29 | <.060 | <.060 | <.018 | 3.2 | 2.0 | | 273 | 387 | <10 | <.006 | 1.48 | <.041 | | E.07 | <.060 | <.060 | <.018 | 3.2 | | | 152 | 276 | <10
 | E.005 | .378 | <.041 | .67
 | .29 | <.060 | <.060 | <.018 | 3.9 | .9 | | 152 | 274 | <10 | E.004 | .398 | <.041 | .70 | .30 | <.060 | <.060 | <.018 | 3.7 | | | | | | DATE | CHLC
PHY
PLA
TC
CHRC
FLUC | OR-B TO- COPE NK- TOT ON REC MO ERA OROM (UG | CAL COPE
COV- DIS
ABLE SOI
G/L (UG
CU) AS | PER, LEAS- DI
LVED SOI
E/L (UC
CU) AS | IS-
LVED
B/L
PB) | | | | | | | | | OCT
16
16
MAY | | | 3.
5. | | | | | | | 1.3 <.1 1.5 E1.2 1.7 ---- MANGA- MERCURY ### 08157900 Town Lake at Austin, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 ## 301601097454001 -- Twn Lk FC | | | | | PH | | | OXYGEN, | |------|------|---------|---------|---------|---------|---------|---------| | | | | SPE- | WATER | | | DIS- | | | | | CIFIC | WHOLE | | | SOLVED | | | | SAM- | CON- | FIELD | TEMPER- | OXYGEN, | (PER- | | | | PLING | DUCT- | (STAND- | ATURE | DIS- | CENT | | DATE | TIME | DEPTH | ANCE | ARD | WATER | SOLVED | SATUR- | | | | (FEET) | (US/CM) | UNITS) | (DEG C) | (MG/L) | ATION) | | | | (00003) | (00095) | (00400) | (00010) | (00300) | (00301) | | | | | | | | | | | OCT | | | | | | | | | 16 | 1110 | 2.00 | 541 | 7.2 | 22.3 | 4.3 | 50 | | MAY | | | | | | | | | 07 | 1020 | 1.50 | 475 | 7.4 | 21.5 | 7.7 | 88 | THIS PAGE IS INTENTIONALLY LEFT BLANK. #### 08158000 Colorado River at Austin, TX LOCATION.--Lat 30°14′40", long 97°41′39", Travis County, Hydrologic Unit 12090205, on right bank 1,000 ft upstream from upstream bridge on U.S. Highway 183 in Austin, 1.4 mi downstream from Longhorn Dam, and at mile 290.3. DRAINAGE AREA. -39,009 mi², approximately, of which 11,403 mi² probably is noncontributing. PERIOD OF RECORD.--Feb. 1898 to current year. Records of daily discharge for Dec. 13-26, 1914, and Feb. 9-17, 1915, published in WSP 408, have been found unreliable and should not be used. Water-quality records.--Chemical data: Oct. 1947 to Sept. 1993. Specific conductance: Oct. 1947 to Sept. 1991. Water temperature: Oct. 1947 to Sept. 1991. REVISED RECORDS.--WSP 508: 1915(m). WSP 528: 1900(M), 1918(m). WSP 548: 1901-16. WSP 1342: Drainage area. WSP 1562: 1908, 1929(M), 1936. GAGE.--Water-stage recorder. Datum of gage is 402.27 ft above sea level. Prior to June 19, 1939, all records collected at or near Congress Avenue bridge 3.9 mi upstream at datum 19.6 ft higher; prior to June 18, 1915, nonrecording gages, recording gages thereafter; June 20, 1939, to Oct. 16, 1963, at site 1,000 ft downstream from present site at datum 5.0 ft higher. Satellite telemeter at station. REMARKS.--Records fair. Since installation of gage in 1898, at least 10% of
contributing drainage area has been regulated by Town Lake, Lake Austin, Lake Travis, and other reservoirs. The city of Austin diverts water for municipal use upstream from station and returns wastewater effluent downstream. There are many other diversions above Lake Buchanan for irrigation, municipal supplies, and oil field operations. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage-discharge relation at medium to high stages, computes and publishes streamflow record. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1833, 51 ft July 7, 1869, present site and datum (adjusted to present site on basis of record for flood of June 15, 1935), determined from information concerning stage at former site furnished by Dean T.U. Taylor. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC TAN FEB MAR APR MAY TITIN JUL ATTG SEP 1.250 e63 e2410 e1550 e1550 e1550 ---___ TOTAL MEAN MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1898 - 2001. BY WATER YEAR (WY) MEAN MAX (WY) 57.5 43.9 46.2 49.7 55.0 MIN 38.7 70.3 (WY) ### 08158000 Colorado River at Austin, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALEN | IDAR YEAR | FOR 2001 WAT | TER YEAR | WATER YEAR | S 1898 - 2001 | |--------------------------|----------------|-----------|--------------|----------|------------|---------------| | ANNUAL TOTAL | 347660 | | 587035 | | | | | ANNUAL MEAN | 950 | | 1608 | | 2183 | | | HIGHEST ANNUAL MEAN | | | | | 7535 | 1914 | | LOWEST ANNUAL MEAN | | | | | 590 | 1917 | | HIGHEST DAILY MEAN | 4030 | Jul 22 | 4320 | Apr 1 | 323000 | Jun 15 1935 | | LOWEST DAILY MEAN | 23 | Oct 20 | 23 | Oct 20 | .00 | Sep 29 1914 | | ANNUAL SEVEN-DAY MINIMUM | 105 | Oct 24 | 105 | Oct 24 | 18 | Oct 25 1990 | | MAXIMUM PEAK FLOW | | | 15600 | Aug 26 | 481000 | Jun 15 1935 | | MAXIMUM PEAK STAGE | | | 14.20 | Aug 26 | a50.00 | Jun 15 1935 | | ANNUAL RUNOFF (AC-FT) | 689600 | | 1164000 | | 1581000 | | | 10 PERCENT EXCEEDS | 1960 | | 3440 | | 3860 | | | 50 PERCENT EXCEEDS | 894 | | 1550 | | 1140 | | | 90 PERCENT EXCEEDS | 144 | | 190 | | 175 | | Estimated From floodmark. #### 08158050 Boggy Creek at U.S. Highway 183, Austin, TX LOCATION.--Lat 30°15'47", long 97°40'20", Travis County, Hydrologic Unit 12090205, on U.S. Highway 183, 1.6 mi south of the intersection of Webberville Road and U.S. Highway 183, and 4.1 mi east of the State Capitol Building in Austin. DRAINAGE AREA. -- 13.1 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Jan. to July 1975 (periodic discharge measurements only), Aug. 1975 to June 1977 (peak discharge greater than base discharge), June 1977 to Sept. 1986, (daily mean discharge), Oct. 1986 to May 1994 (annual maximum discharge), May 1994 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 411.29 ft sea level (levels from city of Austin benchmark). Satellite telemeter at station. REMARKS.--Records fair. No known regulation or diversions. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge 4,370 ft³/s May 17, 1989, gage height, 14.79 ft, from floodmark. | | | DISCHA | RGE, CUBIC | C FEET PER | | WATER YEA
MEAN VAL | | R 2000 TO | SEPTEMBER | R 2001 | | | |--|--|--|--|--|--|---|--|---|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | .00
244
392
46
79 | 1.3
.91
.88
2.3
1.5 | 3.7
2.5
2.4
1.8
1.3 | 2.8
2.3
2.0
2.0
2.3 | 21
17
88
18
9.5 | 3.0
3.3
3.4
4.0
4.0 | .82
1.1
.66
.54 | 1.4
2.8
.75
.54 | .12
.16
.18
.23
.14 | .00
.00
.00
.00 | 6.5
2.0
70
44
13 | | 6
7
8
9
10 | 2.5
9.8
6.8
4.9 | 78
43
49
4.9
2.5 | 1.3
1.1
.86
.79
.97 | 1.4
1.4
1.1
1.0 | 2.0
2.3
2.5
4.3
2.2 | 8.4
9.2
17
11
7.0 | 3.7
3.7
4.4
4.2 | 137
56
1.8
1.4
.93 | .30
.03
1.1
1.9 | .00
.00
.00
.00 | .00
.00
.00
.00 | 2.5
1.2
.85
33
1.5 | | 11
12
13
14
15 | .23
.00
.00
.00 | 2.0
24
4.6
1.2
1.1 | 1.0
.64
55
2.9
1.6 | 9.7
4.4
9.8
4.6
3.4 | 2.5
2.7
2.9
2.9
2.8 | 7.9
153
4.4
61
8.1 | 3.8
2.8
3.1
3.7
2.5 | .98
.91
.99
.79 | .58
e.20
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .93
.76
.66
.48 | | 16
17
18
19
20 | 39
33
3.8
1.1
.49 | 3.9
2.7
114
15
3.3 | 1.4
.93
1.0
.88
1.2 | 3.4
42
29
13
4.7 | 85
3.9
3.3
3.6
3.6 | 3.5
2.8
28
5.1
3.1 | 2.2
3.0
3.3
1.6
1.4 | .59
.44
.42
.45 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .42
.38
.18
.01 | | 21
22
23
24
25 | 81
53
17
6.5
1.5 | 2.3
2.4
14
56
3.4 | .80
.77
.87
3.9 | 3.8
3.4
3.5
3.3
2.9 | 3.9
3.5
5.3
7.6
3.8 | 2.8
2.9
3.2
18
5.3 | 1.3
1.1
7.7
2.3
1.5 | .42
.43
.31
.12 | .00
.02
.04
.02 | .00
.00
.00
.00 | .00
.00
.00
.00 | .06
1.4
.55
.52 | | 26
27
28
29
30
31 | 2.8
1.6
.91
.63
.42 | 2.4
2.1
2.1
1.9
1.2 | 257
27
10
6.4
3.9
3.5 | 2.8
4.5
4.2
44
4.0
2.8 | 3.9
7.2
8.7
 | 3.6
187
18
5.7
9.9
4.5 | 1.5
1.2
1.5
.86
.85 | 7.0
2.4
1.0
.59
.40
3.1 | .05
.06
.06
.10
.13 | .00 6
.00
.00
.00 | 1200
117
47
51
556
363 | .21
.07
.00
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 379.88
12.3
112
.00
753
.94
1.08 | 1198.00
39.9
392
.00
2380
3.05
3.40 | 534.60
17.2
257
.64
1060
1.32
1.52 | 11.3 | 181.8
6.49
85
2.0
361
.50 | 743.9
24.0
187
2.8
1480
1.83
2.11 | 85.31
2.84
7.7
.85
169
.22
.24 | 10.2 | 11.35
.38
2.8
.00
23
.03 | 1.6 | 2334.00
75.3
1200
.00
4630
5.75
6.63 | 181.77
6.06
70
.00
361
.46
.52 | | STATIS | TICS OF | MONTHLY ME | CAN DATA FO | OR WATER YE | EARS 1977 | - 2001h, | BY WATE | R YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 11.5
60.4
1999
.44
1979 | 8.02
39.9
2001
.10
1980 | 5.71
17.2
2001
.027
1978 | 3.25
11.3
2001
.055
1996 | 97.4
1580
1977
.28
1996 | 7.10
24.0
2001
.31
1986 | 4.41
18.5
1997
.063
1984 | 15.4
48.7
1979
.39
1984 | 10.9
55.2
1981
.025
1994 | 4.96
54.5
1979
.025
1986 | 9.70
75.3
2001
.002
1984 | 6.26
20.2
1998
.000
1999 | | SUMMAR | Y STATIS | TICS | FOR 2 | 2000 CALENI | DAR YEAR | FC | OR 2001 W | ATER YEAR | | WATER Y | YEARS 197 | 7 - 2001h | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
ANNUAL
ANNUAL
ANNUAL
10 PER
50 PER | MEAN T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D M PEAK F M PEAK S RUNOFF RUNOFF | MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS | ī | 3285.11
8.98
392
.00
.00
6520
.69
9.33
15
.11 | Nov 3
Jan 1
Jan 15 | | .0
.0
3310 | Aug 26
0 Oct 1
0 Jun 13
Aug 26
0 Aug 26 | | 7.8
17.1
1.2
1660
.(
6100
17.2
5660 | 3
29
Feb
00 Jul
00 Jul
May
24 Oct | 2001
1984
11 1977
13 1978
13 1978
23 1975
17 1998 | e Estimated h See PERIOD OF RECORD paragraph. 08158050 Boggy Creek at U.S. Highway 183, Austin, TX--Continued #### 08158050 Boggy Creek at U.S. Highway 183, Austin, TX--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Jan. 1975 to Sept. 1986, Apr. 1994 to current year. BIOCHEMICAL DATA: Jan. 1975 to Sept. 1986, Apr. 1994 to current year. RADIOCHEMICAL DATA: Jan. 1980. PESTICIDE DATA: Jan. 1975 to Dec. 1984. INSTRUMENTATION.--Stage-activated automatic sampler. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | |--------------
--|--|--|--|--|--|--|--|---|---|--|---|--| | OCT
15-16 | 2105 | 481 | | 106 | 7.9 | | 50 | 350 | | | 61 | E150000 | 110000 | | DEC
05 | 0855 | | 1.3 | 679 | 7.9 | 11.0 | 10 | 1.4 | 9.5 | 86.5 | 12 | 4900 | 5900 | | JAN
10-10 | 0940 | 380 | | 219 | 6.6 | 6.5 | 60 | 130 | | | 43 | E1600 | 2800 | | MAY
30 | 0820 | | .40 | 601 | 7.2 | 26.0 | 8 | 3.3 | 6.5 | 81.1 | 16 | 92 | E72 | | DATE | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | | OCT
15-16 | 37 | 940 | .421 | .014 | .435 | .096 | 3.08 | 2.55 | 2.6 | .958 | .081 | .070 | .215 | | DEC
05 | 244 | <10 | .142 | .013 | .155 | .062 | .774 | .557 | .62 | E.042 | <.060 | E.013 | | | JAN
10-10 | 70 | 344 | .529 | .023 | .552 | <.041 | 2.04 | | 1.5 | .453 | .090 | .028 | .086 | | MAY
30 | 198 | <10 | | .010 | E.029 | <.040 | | | .25 | <.060 | <.060 | <.020 | | | | | DA | TE | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | | | | | | | | 5-16 | 30 | | | .54 | 14.9 | 48 | 108 | | | | | | | | 5 | 5.1 | 3.2 | .2 | <.11 | 1.8 | <1 | 6 | | | | | | | | 0-10 | 16 | | | .75 | 9.0 | 20 | 60 | | | | | | | MAY
3 | 0 | 4.7 | 1.1 | .2 | <.10 | E.6 | <1 | 2 | | | | THIS PAGE IS INTENTIONALLY LEFT BLANK. #### 08158600 Walnut Creek at Webberville Road, Austin, TX LOCATION.--Lat 30°16′59", long 97°39′17", Travis County, Hydrologic Unit 12090205, on left bank 190 ft downstream from bridge on Farm Road 969, 0.8 mi downstream from Little Walnut Creek, 2.8 mi upstream from Colorado River, 5.2 mi east of the State Capitol Building in Austin, and 2.8 mi upstream from mouth. DRAINAGE AREA.--51.3 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1966 to current year. REVISED RECORDS.--WDR TX-00-4: daily mean discharge, Feb. 11, 1999. GAGE.--Water-stage recorder. Datum of gage is 425.96 ft above sea level. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges and those above 150 ${\rm ft}^3/{\rm s}$, which are poor. No known regulation or diversions. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 15, 1935, reached a stage of 24 ft, backwater from Colorado River. A flood in 1919 reached a stage of 22 ft, from information by local residents. Maximum stage since at least 1891, that of May 25, 1981. | | J | DISCHA | RGE, CUBIC | FEET PER | | VATER Y | YEAR OCTOBER | 2000 TO | SEPTEMBE | R 2001 | | | |---|--|--|---|--|--|--|--|--|--|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .19
.19
.19
e.19
e7.0 | e280
e640
854
173
118 | 26
23
22
22
20 | 34
31
30
30
27 | 29
27
26
25
24 | e56
e36
e136
60
38 | 57
51
44
40
36 | 8.6
7.8
7.0
7.0 | 14
36
10
7.7
8.6 | 19
17
39
14
7.3 | .72
1.1
4.0
4.2
5.9 | 167
59
109
251
89 | | 6
7
8
9
10 | e25
e42
15
11
e4.0 | 224
121
121
69
56 | 20
19
17
16
16 | 26
25
23
22
234 | 21
18
18
25
18 | 33
30
117
93
45 | 33
30
28
25
24 | 163
283
53
35
21 | 8.6
8.6
21
28
21 | 5.0
3.6
2.5
2.0
3.9 | 4.3
5.3
.77
1.2
5.4 | 49
39
32
89
34 | | 11
12
13
14
15 | .70
.73
2.0
2.0 | 47
50
48
35
32 | 15
13
83
25
18 | 81
46
54
41
35 | 18
18
18
17
17 | 39
257
59
177
77 | 28
25
24
24
20 | 17
15
11
9.5
8.9 | 14
7.4
4.2
4.0
83 | 6.9
6.2
2.7
1.8
1.5 | 1.3
.72
.72
13
2.7 | 28
24
18
16
15 | | 16
17
18
19
20 | 211
100
46
24
19 | 38
30
139
75
50 | 15
13
12
11 | 33
98
88
65
44 | 122
30
e26
e24
e22 | 52
46
113
62
45 | 19
24
25
17
16 | 9.1
7.9
7.1
6.8
7.1 | 32
23
18
15
14 | 1.3
1.0
.89
.90 | 2.1
2.8
3.2
3.3
4.4 | 12
11
11
11
8.3 | | 21
22
23
24
25 | e260
203
138
78
e49 | 41
34
55
124
54 | 11
10
9.5
14
248 | 39
35
33
30
28 | e21
e20
e22
e23
e18 | 40
34
28
64
27 | 15
13
48
17
12 | 225
24
13
9.6
52 | 12
21
15
41
15 | .78
.73
.73
.74 | 3.4
3.9
4.6
3.4
3.6 | 19
13
7.7
7.5
4.5 | | 26
27
28
29
30
31 | e37
e30
e29
e25
22
e21 | 44
37
34
32
28 | 382
127
68
51
44
39 | 27
34
31
107
41
32 | e17
e20
e23
 | 22
804
277
121
111
70 | 11
10
11
9.2
8.6 | 47
27
13
9.7
7.8 | 11
8.6
6.8
6.0
5.0 | 1.0
.84
2.5
.82
.72 | 462
768
196
100
830
662 | 4.0
3.8
4.3
3.9
4.7 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 1521.19
49.1
260
.19
3020
.96
1.10 | 3683
123
854
28
7310
2.39
2.67 | 1420.5
45.8
382
9.5
2820
.89
1.03 | 1504
48.5
234
22
2980
.95
1.09 | 707
25.2
122
17
1400
.49
.51 | 3169
102
804
22
6290
1.99
2.30 | | 1229.9
39.7
283
6.8
2440
.77
.89 | 519.5
17.3
83
4.0
1030
.34
.38 | 147.80
4.77
39
.72
293
.09 | 3104.03
100
830
.72
6160
1.95
2.25 | 1144.7
38.2
251
3.8
2270
.74
.83 | | STATIS | STICS OF M | ONTHLY ME | AN DATA FO | R WATER Y | EARS 1966 | - 2001 | L, BY WATER | YEAR (WY) |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 33.5
215
1999
1.37
1979 | 24.7
161
1975
1.03
1967 | 33.8
367
1992
1.22
1967 | 29.8
237
1968
1.07
1967 | 31.3
203
1992
1.88
1967 | 28.9
121
1992
1.06
1967 | 24.5
90.0
1977
1.79
1971 | 57.8
170
1981
.58
1971 | 42.0
435
1981
.23
1967 | 11.1
55.7
1987
.052
1971 | 13.5
100
2001
.32
1977 | 13.8
51.7
1973
.59
1999 | | SUMMAR | RY STATIST | ICS | FOR 2 | 000 CALENI | DAR YEAR | | FOR 2001 WA | ATER YEAR | | WATER | YEARS 1966 | 5 - 2001 | | ANNUAI HIGHES LOWEST ANNUAI MAXIM MAXIM ANNUAI ANNUAI ANNUAI 10 PER | TOTAL MEAN TANNUAL TANNUAL TANNUAL TANNUAL TOALLY ME SEVEN-DA JM PEAK TL M PEAK TL RUNOFF (L RUNOFF (L RUNOFF (CENT EXCE RCENT EXCE | EAN EAN AN Y MINIMUM OW AGE AC-FT) CFSM) INCHES) EDS EDS | ſ | | Nov 3
Aug 14
Aug 9 | | 18895.42
51.8
854
.19
.79
4640
17.64
37480
1.01
13.70
117
22
2.6 | Nov 3
Oct 1
O Jul 21
Aug 26
Aug 26 | | 28.
94.
1.
4330
14300
27.
20910
7.
45
7. | 6
91 Dec
00 Jun
00 Jun
May
24 May
56
64 | 1992
1967
21 1991
17
1967
17 1967
25 1981
25 1981 | e Estimated 08158600 Walnut Creek at Webberville Road, Austin, TX--Continued #### 08158600 Walnut Creek at Webberville Road, Austin, TX--Continued #### WATER-QUALITY RECORDS OCT 15-16 DEC 05... MAR 27... SEP 17... .037 21 .082 39 3.1 .2 .141 3.5 .1 <.1 <.10 PERIOD OF RECORD.--CHEMICAL DATA: Apr. 1976 to current year. BIOCHEMICAL DATA: Apr. 1976 to current year. RADIOCHEMICAL DATA: Jan. 1980. PESTICIDE DATA: Nov. 1976 to Sept. 1986. SEDIMENT DATA: Dec. 1977 to July 1982. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | WILLIAM | QUILLII D | 21111, 111111 | iic illinic oc | TODDIC 200 | O TO DELL | DINDBIC 200 | - | | | | |---------------------|--|--|--|--|--|--|--|--|---|---|---|--|---| | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | | OCT
15-16
DEC | 2100 | 528 | | 176 | 8.0 | | 40 | 380 | | | | 35 | 44000 | | 05 | 1050 | | 20 | 700 | 8.1 | 11.5 | 5 | .6 | | 10.5 | 96.8 | <10 | 94 | | MAR
27
SEP | 0950 | 1260 | | 236 | 7.7 | | 120 | 480 | | | | 10 | 24000 | | 17 | 1250 | | 11 | 535 | 7.9 | 24.5 | <1 | | 9.2 | 7.8 | 95.8 | <10 | 30 | | DATE | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
15-16
DEC | 24000 | 66 | 904 | .291 | .016 | .307 | .089 | 2.22 | 1.83 | 1.9 | .996 | .060 | .012 | | 05 | 150 | 219 | <10 | 1.87 | .009 | 1.88 | <.041 | 2.23 | | .35 | <.060 | <.060 | <.018 | | MAR
27
SEP | 19000 | 77 | 2110 | .578 | .010 | .588 | .124 | 5.20 | 4.49 | 4.6 | 1.81 | .060 | .027 | | 17 | 11 | 154 | <10 | .451 | .039 | .490 | .061 | .816 | .265 | .33 | .076 | E.055 | .046 | | | | DATE | PHO
PHA
ORT
DI
SOL
(MG
AS P | TE, HO, CARB S- ORGA VED TOT /L (MG O4) AS | PHY ON, PLA NIC TO AL CHRO (L) FLUC C) (UG | MO CHRO
ROM FLUO
(UG | TO- CADM NK- WAT N UNFL MO TOT ROM (UG | ER TOT
TRD REC
AL ERA
/L (UG
CD) AS | TAL TOT
COV- REC
ABLE ERA
E/L (UG
CU) AS | AL TOT
OV- REC
BLE ERA
J/L (UG
PB) AS | PAL
POV-
BLE
F/L
ZN) | | | -- -- .37 8.9 <.1 -- -- .48 <.11 E1.0 19.1 15 <1 26 E1.2 <1 1 80 2 91 THIS PAGE IS INTENTIONALLY LEFT BLANK. #### 08158700 Onion Creek near Driftwood, TX LOCATION.--Lat 30°04′58", long 98°00′27", Hays County, Hydrologic Unit 12090205, on left bank, 160 ft left of the upstream side of bridge at low-water crossing on Farm Road 150, 3.2 mi southeast of Driftwood, and 10 mi west of Buda. DRAINAGE AREA. -- 124 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Apr. 1958, Nov. 1961 to June 1979 (periodic discharge measurements only), July 1979 to current year. GAGE.--Water-stage recorder. Datum of gage is 878.13 ft above sea level. Satellite telemeter at station. ${\tt REMARKS.--Records}$ fair. No known regulation or diversions. No flow at times. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE.
MEAN VA | AR OCTOBER
LUES | 2000 TO | SEPTEMBE | R 2001 | | | |---|--|--|--|---|--|--|---|---|--|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | .11
551
615
129
103 | 70
65
63
63 | 95
90
87
85
82 | 110
106
104
100
97 | 69
71
111
113
98 | 105
104
101
97
93 | 23
21
19
17
33 | 53
51
41
36
33 | 7.5
7.0
6.5
6.0
5.6 | 1.3
1.4
1.3
1.2 | 64
26
13
13
20 | | 6
7
8
9
10 | .00
.00
.00
.00 | 374
148
140
106
90 | 60
57
54
52
52 | 79
77
72
69
214 | 95
93
93
90
84 | 95
94
94
93
91 | 89
84
80
75
70 | 53
1040
215
195
162 | 33
30
29
31
29 | 5.1
4.6
4.3
4.2
4.3 | 1.2
1.2
.98
.95 | 15
12
10
9.7
8.0 | | 11
12
13
14
15 | .00
.00
.00
.00 | 80
74
66
60
58 | 50
44
66
65
59 | 239
149
137
128
119 | 83
81
80
79
78 | 90
268
225
228
227 | 66
62
61
57
52 | 147
159
175
135
125 | 26
24
23
21
20 | 4.4
4.2
4.0
3.6
3.3 | .70
.57
.46
.38 | 7.7
7.6
7.0
6.4
5.9 | | 16
17
18
19
20 | .00
.00
.00
.00 | 56
52
67
94
81 | 57
50
50
47
48 | 115
135
159
144
128 | 104
86
80
79
77 | 205
194
197
194
171 | 49
46
45
43
42 | 116
112
106
103
101 | 20
18
17
16
15 | 3.0
3.0
2.8
2.7
2.7 | .37
.54
.47
.40 | e5.4
e5.1
e4.6
e4.4
e4.4 | | 21
22
23
24
25 | .00
.04
.01
.02
.03 | 75
74
77
101
95 | 45
42
43
44
62 | 125
119
116
110
105 | 76
73
73
78
71 | 157
150
143
136
124 | 39
36
55
53
38 | 96
87
76
72
88 | 14
14
13
12
12 | 2.5
2.3
2.1
2.0
2.0 | .33
.33
.29
.28 | e4.3
e4.1
e3.7
e3.8
e3.6 | | 26
27
28
29
30
31 | .05
.07
.09
.10
.10 | 87
82
79
75
71 | 157
155
123
109
102
99 | 104
108
127
138
124
114 | 67
67
65

 | 118
126
154
133
118
111 | 33
30
27
25
24 | 79
71
64
58
55 | 11
9.3
8.4
7.8
7.3 | 1.8
1.8
1.5
e1.2
e1.3 | 3.0
5.0
1.4
1.4
3.2 | 3.7
3.9
3.8
3.6
3.2 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 0.61
.020
.10
.00
1.2
.00 | 3760.11
125
615
.11
7460
1.01 | 2114
68.2
157
42
4190
.55 | 3693
119
239
69
7330
.96 | 2369
84.6
110
65
4700
.68 | 4398
142
268
69
8720
1.14
1.32 | 1781
59.4
105
24
3530
.48
.53 | 3856
124
1040
17
7650
1.00
1.16 | 674.8
22.5
53
7.3
1340
.18
.20 | 109.1
3.52
7.5
1.2
216
.03 | 91.66
2.96
60
.28
182
.02 | 286.9
9.56
64
3.2
569
.08 | | | | MONTHLY MEA | | | | | | · | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 33.7
391
1999
.020
2001 | 34.8
320
1999
.10
1989 | 67.6
548
1992
.10
1989 | 56.5
316
1992
.25
2000 | 69.1
506
1992
.26
2000 | 73.1
356
1992
.40
2000 | 50.7
231
1997
.25
2000 | 72.3
202
1992
.27
1996 | 140
792
1987
.089
1996 | 24.6
109
1997
.13
1996 | 5.33
22.0
1987
.055
1996 | 7.32
49.8
1998
.006
1994 | | SUMMARY | STATIS | TICS | FOR 2 | 000 CALEN | DAR YEAR | F | OR 2001 WA | TER YEAR | | WATER YE | ARS 1979 | - 2001 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
ANNUAL
ANNUAL
ANNUAL
10 PERC
50 PERC
 MEAN ANNUAL DAILY M SEVEN-D PEAK F RUNOFF RUNOFF | MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS | | .00 | Nov 3
Sep 6
Sep 6 | | .00
.00
4800 | | | 52.7
196
1.11
5060
.00
15800
25.10
38200
43
5.78
123
8.9 | Aug 2
Sep 1
Oct 1
Oct 1 | 1992
2000
21 1991
21 1984
14 1984
17 1998
17 1998 | e Estimated 08158700 Onion Creek near Driftwood, TX--Continued #### 08158700 Onion Creek near Driftwood, TX--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Jan. 1974 to current year. BIOCHEMICAL DATA: Jan. 1974 to current year. RADIOCHEMICAL DATA: Jan. 1980. PESTICIDE DATA: Jan. 1978 to Sept. 1986. ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$ #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | WAIDK | QUALITI L | MIM, WAIL | ik IBAK OC | TOBER 200 | O IO SEPI | EMBER 200 | 1 | | | | |---------------------|--|---|--|--|--|--|--|--|--|---|---|--|---| | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | | NOV
02-03
DEC | 1910 | 1750 | | 115 | 7.6 | | 150 | 280 | | | | 110 | 14000 | | 06 | 0835 | | 61 | 550 | 8.1 | 13.5 | <1 | . 4 | | 9.7 | 94.9 | <10 | 180 | | SEP
17 | 1005 | | 5.0 | S495 | 7.9 | 25.0 | <1 | | 1.4 | 5.5 | | <10 | <1 | | DATE | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | | NOV
02-03
DEC | 21000 | | 47 | 1060 | .218 | .008 | .226 | .124 | 5.25 | 4.90 | 5.0 | .666 | <.060 | | 06
SEP | 180 | 24 | 230 | <10 | | <.006 | .543 | <.041 | .641 | | .10 | <.060 | <.060 | | 17 | 6 | | 195 | <10 | | <.006 | .052 | <.040 | .190 | | .14 | <.060 | <.060 | | | | DATE | PHC
PHOR
ORT
DIS
SOLV
(MG/
AS P | US HO, CARE - ORGA ED TOT L (MG) AS | PHY SON, PLA NIC TO 'AL CHRO S/L FLUC C) (UG | NK- PLA
N TO
MO CHRO
ROM FLUC
(J/L) (UG | TO- CADM
NK- WAT
N UNFL
MO TOT
ROM (UC | TRD REC
TAL ERA
E/L (UC
CD) AS | CAL TOT
COV- REC
ABLE ERA
G/L (UG
CU) AS | AL TOTO OV- RECORDE ERA /L (UG PB) AS | PAL
POV-
BLE
F/L
ZN) | | | | | | NOV
02-03
DEC | E.0 | | | | 2 | | | | | | | | | | 06
SEP | <.0 | 18 1. | 5 . | 2 <. | 1 .1 | .1 1. | 2 1 | 3 | | | | | | | 17 | <.0 | 20 3. | 0 <. | 1 <. | 1 <.1 | .0 <1. | 0 <1 | <1 | | | | THIS PAGE IS INTENTIONALLY LEFT BLANK. #### 08158810 Bear Creek below Farm Road 1826, near Driftwood, TX $\label{location.--Lat 30^09'19", long 97^56'23", Hays County, Hydrologic Unit 12090205, 0.8 \ \mbox{mi southeast of Farm Road 1826 and 5.9 mi northeast of Driftwood. }$ DRAINAGE AREA. -- 12.2 mi². PERIOD OF RECORD.--Mar. 1978 to July 1979 (periodic discharge measurements only), Oct. 1978 to June 1979 (peak discharges greater than base discharge), July 1979 to current year. Water-quality records.--Chemical data: Mar. 1978 to June 1997. Biochemical data: Mar 1978 to June 1997. Radiochemical data: Jun. 1980. Pesticide data: June 1978 to Sept. 1986. GAGE.--Water-stage recorder. Elevation of gage is 860 ft above sea level from topographic map. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges and those below $0.50~{\rm ft}^3/{\rm s}$, which are poor. No known regulation or diversions. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 9, 1939, reached a stage of 16.2 ft; discharge, $14,200 \text{ ft}^3/\text{s}$, and is the highest since at least 1924, from information by local resident. A flood in 1915 was reported to be 2.0 ft higher than the 1939 flood, from information by local resident. | | | DISCHAR | GE, CUBIC | | SECOND,
DAILY | | CAR OCTOBER | 2000 TO | SEPTEMBE | R 2001 | | | |--|---|---|---|---|--|---|--|---|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00 | .39
109
127
36
66 | 12
11
11
11
10 | 16
15
15
14
14 | 13
13
13
12
12 | 9.4
9.3
16
13
12 | 11
10
10
10
9.5 | 3.8
3.6
3.6
3.6
4.5 | 2.5
2.4
2.2
2.1
2.0 | e.25
e.24
e.19
e.17
e.16 | .00
.00
.00
.00 | 2.7
1.7
1.3
1.5 | | 6
7
8
9
10 | .00 | | 10
9.7
9.6
9.2
9.0 | | | 12
12
12 | | | 2.0
1.9
2.0
1.9
1.7 | e.15
e.13
e.10
.10 | | | | 11
12
13
14
15 | .00 | 22
21
17
16
15 | 8.8
8.2
11
10
10 | 24
20
21
19
17 | 10
10
10
10
10 | 12
37
15
20
19 | 7.2
7.1
7.0
6.6
6.1 | 4.9
4.7
4.6
4.4
4.3 | 1.6
1.5
1.3
1.2 | .04
.05
.03
.02 | .00
.00
.00
.00 | | | 16
17
18
19
20 | .00
.00
.00
.00 | 14
13
22
21
17 | 9.4
8.9
8.8
8.5
8.5 | 17
20
21
20
e19 | 12
10
10
10
9.9 | 16
16
19
18
16 | 5.7
5.5
5.4
5.3
5.0 | 4.1
4.0
3.8
3.9
3.8 | 1.1
1.0
.89
.82
.78 | .00
.00
.00
.00 | ()() | .63
.61
.58 | | 21
22
23
24
25 | .08
1.8
3.0
1.0 | 16
15
16
19
16 | 8.2
8.1
8.1
8.0 | e17
e16
16
15
14 | 9.6
9.3
9.5
9.5
8.9 | 14
13
12
12
11 | 4.7
4.6
5.7
4.8
4.5 | 3.8
3.4
3.2
3.1
3.2 | e.74
e.70
e.59
e.59
e.52 | .00
.00
.00
.00 | 0.0 | .62 | | 26
27
28
29
30
31 | .44
.40 | 12 | 19
18 | 15
14 | | 12
11 | 4.3
4.1
4.0
3.9
3.9 | 2.7
2.6 | e.29 | .00
.00
.00
.00 | 1.2
.43
.45
1.3 | . 46
. 45
. 41
. 39 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 9.43
.30
3.0
.00
19
.02 | 916.39
30.5
127
.39
1820
2.50
2.79 | 392.0
12.6
38
8.0
778
1.04
1.20 | 534
17.2
45
12
1060
1.41
1.63 | 293.4
10.5
13
8.9
582
.86 | 440.7
14.2
37
9.3
874
1.17
1.34 | 197.0
6.57
11
3.9
391
.54 | 134.3
4.33
13
2.6
266
.36
.41 | 37.17
1.24
2.5
.29
74
.10 | 1.71
.055
.25
.00
3.4
.00 | 27.38
.88
.24
.00
.54
.07 | 25.82
.86
2.7
.39
51
.07 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.25
46.3
1999
.000
1989 | 4.42
30.5
2001
.000
1989 | 9.11
91.8
1992
.000
1989 | 6.64
33.3
1992
.000
1989 | 8.20
49.4
1992
.017
1990 | 7.74
32.3
1992
.053
1996 | 5.88
26.2
1991
.048
1996 | 7.85
23.7
1992
.013
1996 | 17.3
144
1981
.001
1984 | 2.15
8.22
1997
.000
1984 | .69
3.59
1979
.000
1984 | .54
2.71
1991
.000
1984 | | SUMMARY | STATIST | rics | FOR 2 | 000
CALEN | DAR YEAR | F | OR 2001 WA | TER YEAR | | WATER YE | ARS 1979 | - 2001 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
ANNUAL
ANNUAL
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL AND | MEAN MEAN EAN AY MINIMUM LOW FAGE (AC-FT) (CFSM) (CINCHES) EEDS | | .00 | Nov 3
Jan 1
Jan 1 | | .00
.00
1790 | | | 6.19
22.3
.10
1000
.00
.00
10200
14.23
4490
.51
6.89
14
1.1
.00 | Dec 2
Aug 2
Aug 2
Dec 2 | 1992
1996
20 1991
28 1980
28 1980
20 1991
20 1991 | e Estimated 08158810 Bear Creek below Farm Road 1826, near Driftwood, TX--Continued # 08158840 Slaughter Creek at Farm to Market Road 1826 near Austin, TX--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: June 1983 to current year. BIOCHEMICAL DATA: June 1983 to current year. PESTICIDE DATA: June 1983 to Sept. 1986. ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$ WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | WAIER- | QUALITY D | AIA, WAIE | R YEAR OC | TOBER 200 | JU TO SEPI | EMBER 200 | 11 | | | | |---------------------|--|--|--|--|--|--|--|--|--|---|---|--|---| | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | | NOV
02-03
DEC | 1940 | 53 | | 162 | 7.7 | | 75 | 42 | | | | 26 | 34000 | | 06 | 0945 | | 4.4 | 861 | 8.0 | 14.0 | <1 | .5 | | 9.0 | 88.8 | <10 | 55 | | JUN
04 | 1013 | | 1.0 | 818 | 7.6 | 26.5 | 2 | | 2.3 | 6.8 | 87.3 | <10 | 40 | | DATE | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV
02-03
DEC | 44000 | | 57 | 94 | .178 | .007 | .185 | <.041 | 1.18 | .99 | .157 | E.043 | .035 | | 06
JUN | 58 | 340 | 278 | <10 | | <.006 | .601 | <.041 | .722 | .12 | <.060 | <.060 | <.018 | | 04 | 25 | | 249 | <10 | | E.003 | E.023 | <.040 | | .18 | <.060 | <.060 | <.020 | | | | DATE | ORT
DI | TE,
HO, CARB
S- ORGA
VED TOT
(MG | PHY SON, PLA NIC TO 'AL CHRO S/L FLUC C) (UG | NK- PLA
N TO
MO CHRO
ROM FLUC
(/L) (UG | TO- CADM
NK- WAT
NN UNFI
NMO TOT
OROM (UC | TRD REC
TAL ERA
E/L (UC
CD) AS | TAL TOT
COV- REC
ABLE ERA
E/L (UG
CU) AS | CAL TOT
COV- REC
BLE ERA
C/L (UG
PB) AS | PAL
POV-
BLE
F/L
ZN) | | | | | | NOV
02-03 | 1 | 07 14 | _ | | - E.O | 08 2. | .3 3 | 16 | | | | | | | DEC
06 | | - 2. | | 1 <. | | | | | | | | | | | JUN
04 | | - 2. | | · | | | | | | | | | | | U4 | _ | - 2. | э. | ٠ | 1 <.1 | .0 <1. | .0 <1 | . <1 | | | | THIS PAGE IS INTENTIONALLY LEFT BLANK. #### 08158922 Williamson Creek at Brush Country Boulevard, Oak Hill, TX LOCATION.--Lat 30°13′34", long 97°50′28", Travis County, Hydrologic Unit 12090205, at downstream side of bridge on Brush Country Boulevard near Oak Hill, and 7.7 mi southwest of the State Capitol Building in Austin. DRAINAGE AREA. -- 6.79 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Mar. 1993 to current year. GAGE.--Water-stage recorder. Datum of gage is 740.25 ft above sea level, city of Austin bench mark. Satellite telemeter at station. REMARKS.--Records poor. No known regulation or diversions. No flow at times. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YE | | R 2000 TO | SEPTEMBE | R 2001 | | | |---|--|---|--------------------------------------|--|--------------------------------------|--|--|--|--------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | .00
33
179
34
26 | | .25
.09
.00
.00 | | | .00 | | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .02
.00
.00
.00 | | 6
7
8
9
10 | | | | .00
.00
.00
.00 | | | | | | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 11
12
13
14
15 | .00
.00
.00
.00 | .00 | .00
.00
.37
.01 | 5.3
2.3
2.1
1.4
.86 | .00
.00
.00
.00 | .00
27
2.1
8.6
4.2 | .00
.00
.00
.00 | | | | .00
.00
.00
.00 | .00 | | 16
17
18
19
20 | .00
.00
.00
.00 | | | .54
1.4
2.7
2.1
1.0 | 1.2
.00
.00
.00 | 1.3
.91
3.3
1.3
.53 | | | | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 21
22
23
24
25 | .12
.53
.02
.00 | .11
.00
.01
1.2
.17 | .00
.00
.00
.00
3.7 | .60
.31
.11
.00 | .00
.00
.00
.00 | .10
.00
.00
.06 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 26
27
28
29
30
31 | .00
.00
.00
.00 | .00
.00
.00
.00 | 23
14
5.1
1.8
.79
.46 | .00
.47
.31
2.7
1.0 | .00 | .00
4.3
2.6
1.2
.72
.32 | .00
.00
.00
.00 | .00 | .00
.00
.00
.00
| .00
.00
.00
.00 | e47
.41
.00
.00
5.7
32 | .00
.00
.00
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | .00 | .00 | 49.23
1.59
23
.00
98 | 42.90
1.38
17
.00
85 | 1.42
.051
1.2
.00
2.8 | 63.89
2.06
27
.00
127 | 0.05
.002
.05
.00 | 21.06
.68
.11
.00
42 | .00 | 0.00
.000
.00
.00 | 85.11
2.75
47
.00
169 | 0.98
.033
.96
.00 | | | | | | OR WATER Y | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 3.73
24.8
1999
.000
1997 | 2.14
12.2
2001
.000
2000 | .66
2.38
1995
.000
1996 | .41
1.76
1998
.000
1994 | 2.00
15.9
1998
.000
1999 | .92
4.88
1998
.000
1996 | .43
3.48
1997
.000
1999 | 2.29
10.3
1997
.004
1998 | 2.36
13.1
1997
.000
2001 | .003
.014
1999
.000
1993 | .37
2.75
2001
.000
1999 | .029
.14
1994
.000
1993 | | SUMMARY | STATIST | rics | FOR | 2000 CALEN | DAR YEAR | F | OR 2001 W | ATER YEAR | | WATER Y | EARS 1993 | - 2001 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC | MEAN ANNUAL MAILY MEALLY MEALL | MEAN
MEAN
EAN
AY MINIMUM
LOW
(AC-FT)
EEDS
EEDS | | 521.50
1.42
179
.00
.00
1030
.03
.00
.00 | Nov 3
Jan 1
Jan 9 | | 631.48
1.73
179
.00
510
4.44
1250
1.4 | Nov 3
Oct 1
Oct 24
Nov 3
Nov 3 | | 1.3
2.5
.0
455
.0
2700
7.1
962
.0 | 1 39 Oct 1 0 Mar 1 0 Oct 1 0 Oct 1 0 Oct 1 4 0 | 1999
1996
7 1998
1 1993
1 1993
7 1998
7 1998 | e Estimated 08158922 Williamson Creek at Brush Country Boulevard, Oak Hill, TX--Continued ## 08158922 Williamson Creek at Brush Country Boulevard, Oak Hill, TX--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1993 to current year. BIOCHEMICAL DATA: Oct. 1993 to current year. INSTRUMENTATION. -- Stage-activated automatic sampler. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | COLOR
(PLAT-
INUM-
COBALT
UNITS)
(00080) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | |---------------------|--|--|--|---|---|---|--|---|--|--|--|--|--| | NOV | | | | | | | | | | | | | | | 02-03
MAY | 1630 | 95 | 140 | 7.4 | 100 | 65 | 27 | 110000 | 130000 | 50 | 136 | .431 | .011 | | 06-07 | 2205 | 85 | 150 | 7.7 | 50 | 91 | 39 | E9400 | 16000 | 55 | 191 | .313 | .011 | | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L | NITRO-
GEN,
TOTAL
(MG/L | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L | | | AS N)
(00631) | AS N)
(00608) | AS N)
(00600) | AS N)
(00625) | (00665) | (00666) | (00671) | (00660) | (00680) | AS CD)
(01027) | AS CU)
(01042) | AS PB)
(01051) | AS ZN)
(01092) | | NOV
02-03
MAY | | | | | | | | | | | | | | THIS PAGE IS INTENTIONALLY LEFT BLANK. #### 08158930 Williamson Creek at Manchaca Road, Austin, TX LOCATION.--Lat 30°13′16", long 97°47′36", Travis County, Hydrologic Unit 12090205, on downstream side of the bridge on Manchaca Road, 0.7 mile south of the intersection of Ben White Boulevard and Manchaca Road, and 4.9 miles southwest of the State Capitol Building in Austin. DRAINAGE AREA. -- 19.0 mi². PERIOD OF RECORD. -- May 1975 to Sept. 1985 (discharge measurements and annual maximum), Jan. 2000 to current year. GAGE.--Water-stage recorder. Datum of gage is 618.39 ft above sea level. Satellite telemeter at gage. REMARKS. -- No estimated daily discharges. Records fair. No known regulation or diversions. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $8,490~{\rm ft}^3/{\rm s}$ June 11, 1981 (gage height, $16.00~{\rm ft}$); minimum discharge, no flow at times. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,220 ft³/s Aug. 26 (gage height, 9.42 ft); minimum discharge, no flow many days. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES FEB DAY OCT NOV DEC MAR MAY JUN JUL AUG SEP JAN APR ΛN .08 25 .41 . 28 1.5 17 0.9 0.2 . 44 ΛN 4.4 2 168 .25 .08 .10 .90 .00 .26 .28 .71 .18 .02 .00 7.0 .00 466 .25 .25 .24 14 .19 .08 .03 .03 .00 1.5 54 24 .23 4 5 .00 .49 25 .17 .12 02 .00 .00 4.3 10 .00 .23 .24 .36 .16 .00 .00 .00 .76 6 7 .03 114 19 22 20 26 .14 63 0.0 0.0 0.0 57 .17 .22 .21 .27 .13 . 45 36 .00 .00 .00 8 1.4 17 .19 .20 2.7 .70 .20 .14 .08 .06 .00 .36 .19 .38 .00 1.3 1.2 .17 .37 .38 .12 09 05 77 10 .11 .20 . 55 .20 .18 .24 .14 .03 .00 .00 .40 11 0.7 50 19 11 18 .24 10 1.0 0.1 0.0 0.0 30 1.1 49 .11 12 .01 8.6 .19 . 24 .15 .08 .00 .00 .00 .00 1.4 7.6 .45 .00 1.1 .12 .00 .42 .53 .36 14 .00 .22 4 4 12 06 0.0 0.0 0.0 19 15 .26 1.0 .12 .23 .31 .04 .00 .17 .00 .00 . 63 16 1.3 17 29 20 22 11 03 0.0 0.0 0.0 16 17 8.7 .11 .15 .18 .05 .00 .00 .00 .15 . 24 1.6 18 .78 24 .15 2.4 .25 .12 .04 .00 .00 .00 .14 6.3 .77 .23 19 16 13 1.3 23 14 0.4 0.0 0.0 0.0 14 .11 20 .04 .20 .16 .03 .00 .00 .00 .13 21 20 44 .13 46 20 16 12 0.4 03 0.0 0.0 3 6 22 18 .23 .12 .02 2.5 .36 .40 .18 .00 .00 .55 .14 23 3.6 3.0 .15 .35 .42 .18 .53 .02 .00 .00 .32 24 2.1 6.4 .34 .27 .22 .66 .24 .01 .00 .00 .23 .74 .49 43 .24 .39 .08 .00 8.7 26 83 .24 .21 .18 .10 .04 .13 .38 .33 .00 326 .27 27 .43 .26 3.7 .30 7.8 .10 .01 .00 34 .11 28 .27 .26 4.3 1.6 .20 1.5 .10 .09 .00 .00 2.2 .10 .27 13 .35 29 .16 1.1 .10 .06 .00 .00 4.8 .08 30 .12 .27 .51 .69 ---.19 .09 .04 .00 .00 153 31 .10 .46 .35 ---.18 ---.03 .00 317 ---TOTAL 68.09 935.98 168.88 107.84 26.59 90.95 4.29 141.79 4.20 0.68 837.00 27.06 .14 2.5 .90 7.0 MEAN 2.20 31.2 5.45 3.48 .95 2.93 .14 4.57 .022 27.0 57 .53 63 20 83 20 326 466 49 .44 MAX MIN .00 .13 .17 .16 .09 .01 .00 .00 .00 .04 AC-FT 135 1860 335 214 53 180 8.5 281 8.3 1.3 1660 54 08158930 Williamson Creek at Manchaca Road, Austin, TX--Continued #### 08159000 Onion Creek at U.S. Highway 183, Austin, TX LOCATION.--Lat 30°10'40", long 97°41'18", Travis County, Hydrologic Unit 12090205, on right bank at downstream side of downstream bridge on U.S. Highway 183, 2.4 mi downstream from Williamson Creek, 3.2 mi southwest of Del Valle, and 7.5 mi southeast of the State Capitol Building in Austin. DRAINAGE AREA. -- 321 mi². PERIOD OF RECORD.--May 1924 to Mar. 1930 station was published as "near Del Valle", Mar. 1976 to current year. Water-quality records.--Chemical data: Oct. 1976 to Sept. 1988. Biochemical data: Oct. 1976 to Sept. 1988. Radiochemical data: Jan. 1980. Pesticide data: Oct. 1976 to Sept. 1986. Sediment data: Oct. 1976 to Sept. 1982. GAGE.--Water-stage recorder. Datum of gage is 442.85 ft above sea level (Texas Department of Transportation datum). May 15, 1924, to Mar. 15, 1930, nonrecording gage at highway bridge 1,700 ft upstream at 6.42 ft higher datum. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good except those for daily discharges below $4.0~{\rm ft}^3/{\rm s}$, which are poor. No known regulation or diversions. Flow is slightly affected by several small ponds on main channel and tributaries above station. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1869 occurred about July 3, 1869, stage about 38 ft, from newspaper accounts, and Sept. 9, 1921, stage 38.0 ft, from floodmark, present site and datum. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DISCHAR | GE, CUBIC | : FEET PER | | MEAN VAI | | R 2000 TO | SEPTEMBE | R 2001 | | | |--|--|--|--|--|--|---|--|--
---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | .00
161
5260
566
139 | 18
16
15
15 | 68
59
51
46
42 | 60
50
49
46
40 | 22
26
99
114
78 | 52
46
41
37
31 | 9.9
9.5
8.9
8.3 | 12
11
9.3
7.6
7.2 | 3.7
5.9
4.8
3.9
3.0 | .00
.00
.00
.00 | 125
37
19
37
21 | | 6
7
8
9
10 | .00
.00
.00
.00 | 864
321
234
103
71 | 14
13
12
12 | 36
34
29
25
189 | 36
36
33
30
24 | 54
48
47
49
45 | 29
26
23
21
20 | 71
2030
322
222
153 | 7.1
6.7
9.7
12
7.8 | 2.3
1.7
1.1
.37 | .00
.00
.00
.00 | 13
8.7
6.4
31
15 | | 11
12
13
14
15 | .00
.00
.00
.00 | 41
30
27
18
14 | 12
11
40
26
20 | 423
199
145
134
109 | 24
22
21
21
20 | 42
259
176
164
198 | 19
18
18
18
16 | 75
57
80
79
48 | 6.6
5.7
4.8
4.4
4.1 | .00
.00
.00
.00 | .00
.00
.00
.00 | 8.1
6.0
5.0
4.6
4.4 | | 16
17
18
19
20 | .00
26
15
1.7
.25 | 13
12
87
82
38 | 15
13
12
11
11 | 97
117
155
192
137 | 168
66
41
30
25 | 113
94
110
135
108 | 20
18
19
18
16 | 36
28
24
20
18 | 4.1
4.0
3.9
3.8
3.0 | .00
.00
.00
.00 | .00
.00
.00
.00 | 4.1
3.9
3.7
3.5
3.4 | | 21
22
23
24
25 | 27
130
37
8.6
6.7 | 25
21
20
345
91 | 11
10
10
12
72 | 115
103
99
93
79 | 24
23
23
26
22 | 93
81
74
70
55 | 15
14
16
20
16 | 15
13
11
11
13 | 16
41
19
23
7.8 | .00
.00
.00
.00 | .00
.00
.00
.00 | 3.6
121
56
22
12 | | 26
27
28
29
30
31 | 1.9
1.3
.76
.43
.19 | 48
33
29
24
21 | 382
392
190
124
89
75 | 70
55
51
182
111
74 | 20
21
22
 | 50
86
98
94
73
60 | 14
12
12
11
10 | 53
27
21
19
15 | 4.7
3.5
2.9
2.3
2.0 | .00
.00
.00
.00 | .00
283
76
39
488
948 | 8.3
6.8
5.8
5.1
4.8 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 256.87
8.29
130
.00
510
.03 | 8738.00
291
5260
.00
17330
.91
1.01 | 1680
54.2
392
10
3330
.17 | 3319
107
423
25
6580
.33
.38 | 1023
36.5
168
20
2030
.11 | 2815
90.8
259
22
5580
.28
.33 | 646
21.5
52
10
1280
.07 | 3558.6
115
2030
8.3
7060
.36
.41 | 257.0
8.57
41
2.0
510
.03
.03 | 26.87
.87
5.9
.00
53
.00 | 1834.00
59.2
948
.00
3640
.18
.21 | 605.2
20.2
125
3.4
1200
.06 | | STATIS | TICS OF | MONTHLY MEA | N DATA FO | R WATER Y | EARS 1924 | - 2001h | , BY WATE | R YEAR (W | ď) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 79.5
1346
1999
.000
1929 | 45.1
400
1999
.27
1994 | 91.5
1526
1992
.000
1990 | 53.3
487
1992
.002
1990 | 77.5
908
1992
1.65
1925 | 82.0
576
1992
1.80
1996 | 100
847
1926
1.39
1994 | 173
1767
1929
1.40
1984 | 230
2305
1981
.010
1925 | 31.2
133
1981
.000
1925 | 8.61
59.2
2001
.000
1925 | 8.83
48.0
1986
.000
1988 | | SUMMAR | Y STATIS | TICS | FOR 2 | 000 CALEN | DAR YEAR | FO | OR 2001 W | ATER YEAR | | WATER Y | ZEARS 1924 | - 2001h | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL ANNUAL ANNUAL 10 PER 50 PER | T ANNUAL
'ANNUAL
T DAILY
'DAILY M | MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS | | | Nov 3
May 29
Jul 1 | | 9550 | Nov 3
0 Oct 1
0 Oct 1
Nov 3
6 Nov 3 | | 80.7
379
1.4
30500
.(
76000
32.3
58440
.2
125
6.2 | May May Jun 00 Jun May Oct 0ct 0ct 0ct 0ct 0ct 0ct 0ct 0ct 0ct 0 | 1992
1925
28 1929
3 1925
3 1925
28 1929
17 1998 | h See PERIOD OF RECORD paragraph. 08159000 Onion Creek at U.S. Highway 183, Austin, TX--Continued Figure 8.--Map showing location of gaging stations in the fifth section of the Colorado River Basin | 08159200 | Colorado River at Bastrop, TX | 260 | |----------|-----------------------------------|-----| | 08159500 | Colorado River at Smithville, TX | 262 | | 08160400 | Colorado River above LaGrange, TX | 264 | | 08160800 | Redgate Creek near Columbus, TX | 266 | | 08161000 | Colorado River at Columbus, TX | 268 | | 08162000 | Colorado River at Wharton, TX | 270 | | 08162500 | Colorado River near Bay City, TX | 272 | #### 08159200 Colorado River at Bastrop, TX LOCATION.--Lat 30°06′16", long 97°19′09", Bastrop County, Hydrologic Unit 12090301, at the downstream side of bridge on State Highway 71 bridge, at Bastrop, 0.3 mi upstream from Gills Branch, 1.2 mi downstream from Piney Creek, and at mile 236.6. DRAINAGE AREA.--39,979 mi², approximately, of which 11,403 mi² probably is noncontributing. PERIOD OF RECORD.--Mar. 1960 to current year. Oct. 1973 to Sept. 1975, daily discharges estimated by hydrographic comparison with Colorado River at Austin (station 08158000) and Colorado River near Smithville (station 08159500). Water-quality records.--Chemical data: Mar. 1944, Feb. 1968 to Sept. 1994. Biochemical data: Feb. 1968 to Sept. 1994. Specific conductance: Nov. 1986 to Sept. 1994. pH: Nov. 1986 to Sept. 1994. Water temperature: Nov. 1986 to Sept. 1994. Dissolved oxygen: Nov. 1986 to Sept. 1994. REVISED RECORDS. -- WDR TX-81-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 307.38 ft above sea level. Prior to May 10, 1960, nonrecording gage at a site 400 ft upstream from present site and at same datum. May 10, 1960, to Sept. 30, 1973, Oct. 1, 1975, to Oct. 28, 1986, at a site 400 ft upstream from present site and at same datum. Radio telemeter at station. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. Since installation of gage in 1960, at least 10% of contributing drainage area has been regulated. There are many diversions above station for irrigation and for municipal supply. The city of Austin diverts water into Decker Lake (by pumpage) upstream from this station. The Lower Colorado River Authority also diverts water from the Colorado into Lake Bastrop (by pumpage) upstream from this station. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes, and publishes streamflow record. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1845, 60.3 ft July 7 or 8, 1869. Flood of June 16, 1935, reached a stage of 57.0 ft, and flood of Dec. 4, 1913, reached a stage of 53.3 ft, from information by local resident. | | | DISCH | ARGE, CUI | SIC PEEL P | | LY MEAN V | | ER 2000 I |) SEPIEMB | ER ZUUI | | | |----------------------------------|--|----------------------------------|--|--|--------------------------|---|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1020 | 344 | 655 | 2670 | 3320 | 1320 | 4770 | 1670 | 1710 | 1960 | 1350 | 5700 | | 2 | 1090 | 407 | 617 | 3180 | 3770 | 1930 | 4740 | 1610 | 1790 | 1950 | 1320 | 2030 | | 3 | 1120 | 9280 | 583 | 2640 | 4170 | 1970 | 4610 | 1640 | 1750 | 1910 | 1280 | 1620 | | 4 | 981 | 14100 | 555 | 2180 | 3850 | 3960 | 4560 | 1520 | 1730 | 1860 | 1290 | 2970 | | 5 | 839 | 3820 | 683 | 1970 | 4170 | 2440 | 4530 | 1770 | 1800 | 1800 | 1430 | 3950 | | 6 | 814 | 4280 | 968 | 1990 | 4190 | 2590 | 4530 | 2220 | 1760 | 1750 | 1480 | 4840 | | 7 | 621 | 4210 | 568 | 1780 | 4200 | 2570 | 4430 | 4830 | 1710 | 1740 | 1550 | 1860 | | 8 | 615 | 2430 | 773 | 1620 | 4180 | 3410 | 4430 | 5600 | 1690 | 1450 | 1560 | 1340 | | 9 | 618 | 2190 | 727 | 910 | 1860 | 4540 | 4470 | 3500 | 1750 | 1600 | 1590 | 1890 | | 10 | 600 | 1590 | 585 | 1280 | 903 | 3990 | 2780 | 3480 | 1690 | 1620 | 1610 | 2440 | | 11 | 570 | 1180 | 528 | 4710 | 799 | 3460 | 1220 | 3120 | 1650 | 1680 | 1640 | 1380 | | 12 | 470 | 983 | 479 | 4460 | 733 | 4470 | 1420 | 3350 | 1630 | 1590 | 1610 | 893 | | 13 | 386 | 1290 | 1700 | 4070 | 704 | 5170 | 1540 | 3340 | 1550 | 1510 | 1630 | 1370 | | 14 | 347 | 1100 | 1950 | 4060 | 664 | 4160 | 1800 | 3330 | 1570 | 1480 | 1690 | 1410 | | 15 | 326 | 809 | 1530 | 4070 | 656 | 6080 | 1840 | 3280 | 1670 | 1420 | 1700 | 1390 | | 16 | 288 | 748 | 1100 | 3230 | 982 | 4220 | 1840 | 3270 | 1660 | 1520 | 1620 | 1550 | | 17 | 977 | 753 | 802 | 1570 | 1810 | 2520 | 1760 | 2430 | 1580 | 1380 | 1690 | 1420 | | 18 | 1350 | 792 | 1040 | 2280 | 2640 | 1690 | 2300 | 2010 | 1530 | 1490 | 1910 | 1420 | | 19 | 602 | 2770 | 1030 | 4090 | 3660 | 1980 | 2310 | 1690 | 1560 | 1490 | 1770 | 1380 | | 20 | 529 | 1640 | 1380 | 3520 | 3670 | 1740 |
1570 | 1930 | 1590 | 1440 | 1830 | 1240 | | 21 | 492 | 1000 | 885 | 1400 | 3860 | 3540 | 1490 | 2380 | 1550 | 1540 | 1880 | 1120 | | 22 | 1560 | 1020 | 1100 | 1120 | 3860 | 3550 | 1570 | 2360 | 1650 | 1550 | 1960 | 1270 | | 23 | 2620 | 1030 | 708 | 1580 | 3920 | 3480 | 1520 | 2150 | 1790 | 1570 | 2030 | 1500 | | 24 | 1300 | 1450 | 685 | 2240 | 3830 | 1660 | 1590 | 1900 | 1830 | 1520 | 1970 | 1250 | | 25 | 706 | 2070 | 672 | 2450 | 3810 | 2140 | 3030 | 2130 | 1890 | 1520 | 1880 | 1340 | | 26
27
28
29
30
31 | 550
456
373
352
316
281 | 1050
864
763
702
679 | 3320
8470
4530
2710
3810
3050 | 2390
2320
1590
3150
3950
3980 | 3850
3790
1540
 | 1960
2010
10800
5590
4710
4490 | 1720
1560
1500
1670
1790 | 2370
2690
2060
2020
1950
1790 | 1750
1850
1920
1860
1870 | 1480
1510
1570
1480
1450
1370 | 2230
3490
3840
2450
2740
6970 | 1340
1120
1180
1040
1060 | | TOTAL | 23169 | 65344 | 48193 | 82450 | 79391 | 108140 | 78890 | 79390 | 51330 | 49200 | 62990 | 54313 | | MEAN | 747 | 2178 | 1555 | 2660 | 2835 | 3488 | 2630 | 2561 | 1711 | 1587 | 2032 | 1810 | | MAX | 2620 | 14100 | 8470 | 4710 | 4200 | 10800 | 4770 | 5600 | 1920 | 1960 | 6970 | 5700 | | MIN | 281 | 344 | 479 | 910 | 656 | 1320 | 1220 | 1520 | 1530 | 1370 | 1280 | 893 | | AC-FT | 45960 | 129600 | 95590 | 163500 | 157500 | 214500 | 156500 | 157500 | 101800 | 97590 | 124900 | 107700 | | STATIST | rics of | MONTHLY M | EAN DATA | FOR WATER | YEARS 19 | 60 - 2001 | , BY WATE | R YEAR (W | Y) | | | | | MEAN | 1412 | 1255 | 1465 | 1695 | 2140 | 2335 | 2505 | 3403 | 4398 | 2563 | 1883 | 1719 | | MAX | 6380 | 11330 | 14770 | 17490 | 29140 | 16910 | 11080 | 10420 | 23620 | 12750 | 3705 | 4930 | | (WY) | 1974 | 1975 | 1992 | 1992 | 1992 | 1992 | 1977 | 1975 | 1987 | 1997 | 1961 | 1974 | | MIN | 291 | 94.6 | 111 | 109 | 138 | 131 | 565 | 1471 | 1489 | 1302 | 1125 | 1003 | | (WY) | 1965 | 1964 | 1964 | 1964 | 1964 | 1964 | 1962 | 1962 | 1993 | 1967 | 1999 | 1999 | ### 08159200 Colorado River at Bastrop, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDAR | YEAR | FOR 2001 WAT | TER YEAR | WATER YEARS | 1960 - 2001 | |--------------------------|-------------------|-------|--------------|----------|-------------|-------------| | ANNUAL TOTAL | 450253 | | 782800 | | | | | ANNUAL MEAN | 1230 | | 2145 | | 2230 | | | HIGHEST ANNUAL MEAN | | | | | 9073 | 1992 | | LOWEST ANNUAL MEAN | | | | | 828 | 1964 | | HIGHEST DAILY MEAN | 14100 No | ov 4 | 14100 | Nov 4 | 65800 | Dec 22 1991 | | LOWEST DAILY MEAN | 218 Fe | eb 20 | 281 | Oct 31 | 75 | Apr 1 1964 | | ANNUAL SEVEN-DAY MINIMUM | 254 Fe | b 17 | 361 | Oct 27 | 84 | Oct 19 1964 | | MAXIMUM PEAK FLOW | | | 16800 | Nov 4 | 79600 | Oct 29 1960 | | MAXIMUM PEAK STAGE | | | 15.01 | Nov 4 | 37.48 | Dec 22 1991 | | ANNUAL RUNOFF (AC-FT) | 893100 | | 1553000 | | 1615000 | | | 10 PERCENT EXCEEDS | 1900 | | 4160 | | 4170 | | | 50 PERCENT EXCEEDS | 1080 | | 1690 | | 1550 | | | 90 PERCENT EXCEEDS | 326 | | 703 | | 257 | | #### 08159500 Colorado River at Smithville, TX LOCATION.--Lat 30°00'45", long 97°09'42", Bastrop County, Hydrologic Unit 12090301, on right bank 28 ft downstream from bridge on Business State Highway 71 in Smithville, 500 ft below mouth of Gazley Creek, 3.9 mi below mouth of Alum Creek, and at mile 212.1. DRAINAGE AREA.--40,371 \min^2 approximately, of which 11,403 \min^2 probably is noncontributing. PERIOD OF RECORD.--July 1930 to Sept. 1975, Oct. 1997 to current year. Gage-height records collected in this vicinity since 1920 are contained in reports of the National Weather Service. Water-quality records.--Chemical data: Oct. 1973 to Sept. 1975. Biological data: Oct. 1973 to Sept. 1975. REVISED RECORDS.--WSP 1342: Drainage are. WSP 1562: 1934. WSP 1712: 1953, 1954(M), 1957-58. GAGE.--Water-stage recorder. Datum of gage is 270.14 ft above sea level. Prior to Apr. 9, 1931, nonrecording gage at same site and datum. Apr. 9, 1931, to Sept. 2, 1971, water-stage recorder at site 360 ft downstream at same datum. Radio telemeter at station. REMARKS.--Records fair. Since installation of gage in 1930, at least 10% of contributing drainage area has been regulated. At times, low-flow releases from Lake Travis are made for generation of electric power and to fulfill downstream water contracts. There are many diversions above station for irrigation and municipal supply. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes, and publishes streamflow record. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1860, occurred July 8, 1869, and was several feet higher than flood of Dec. 4, 1913, which reached a stage of 47.4 ft and was the highest since 1869, from information by local residents. | | | DISCH | ARGE, CUB | IC FEET PEF | | , WATER
LY MEAN | YEAR OCTOBE
VALUES | R 2000 TO | SEPTEMBER | 2001 | | | |--------------------------------------|--|---|--|--|--|--|-------------------------------|--|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1080
1150
1260
1270
1080 | 323
415
3710
18200
8190 | 684
639
601
566
554 | 2570
3150
3190
2500
2250 | 3650
3980
4300
4100
4280 | 1590
1820
2240
4570
3420 | 4900
4800
4770 | 1860
1860
1780
1710
1840 | 1780
1790
1830
1750
1710 | 1860
1940
1940
1980
1880 | 1090
1070
1050
1070
1100 | 6050
2560
1550
1780
3510 | | 6
7
8
9 | 990
833
759
752
734 | 3780
5700
2710
2670
1830 | 956
696
590
788
698 | 2310
1950
1760
1400
1210 | 4350
4360
4370
3200
1280 | 2690
2870
3320
4030
4710 | 4570
4620
4590 | 2390
3770
6380
4060
3760 | 1720
1590
1610
1610
1630 | 1830
1800
1600
1570
1600 | 1210
1230
1250
1300
1320 | 5200
2420
1440
1510
2220 | | 11
12
13
14
15 | 706
635
557
451
418 | 1380
1120
1920
1450
941 | 552
510
782
2600
1760 | 4390
5280
4400
4240
4350 | 1000
885
811
776
733 | 3530
3810
5670
4450
6210 | 1390
1650
1700 | 3360
3450
3600
3610
3500 | 1570
1540
1520
1500
1640 | 1620
1590
1480
1430
1360 | 1320
1350
1290
1340
1370 | 1810
923
942
1310
1140 | | 16
17
18
19
20 | 379
655
1370
1100
658 | 767
728
781
2930
2700 | 1430
946
917
982
1410 | 3980
2130
2340
4450
5070 | 789
2260
2080
3680
3790 | 5130
3480
2230
1870
2230 | 1990
2240
2400 | 3400
2700
2360
1920
1940 | 1620
1630
1530
1510
1480 | 1350
1410
1360
1400
1410 | 1380
1350
e1350
e1500
e1570 | 1320
1390
1280
1300
1210 | | 21
22
23
24
25 | 682
738
2680
1930
1170 | 1310
978
1060
2930
3570 | 1120
990
1020
674
823 | 2410
1410
1450
2230
2650 | 4000
4020
4000
4070
3960 | 3020
3740
3660
2610
2200 | 1660
1730
1720 | 2190
2660
2340
2040
1970 | 1470
1520
e1780
e1850
e1970 | 1400
1420
1390
1370
1360 | 1510
1530
1660
1710
1680 | 1120
1010
1140
1390
1080 | | 26
27
28
29
30
31 | 783
682
526
441
406
361 | 1520
1040
868
770
714 | 2020
8430
7210
2880
3640
3780 | 2580
2620
2250
2350
5880
4470 | 4000
4010
2590
 | 2290
2080
7770
7870
4920
4540 | 1780
1690
1630
1920 | 2390
2610
2340
2040
1970
1950 | 1750
1750
1820
1800
1750 | 1290
1250
1270
1240
1140
1120 | e1660
e3980
e3130
2540
2040
4940 | 1260
1110
1030
973
886 | | TOTAL
MEAN
MAX
MIN
AC-FT | 27236
879
2680
361
54020 | 77005
2567
18200
323
152700 | 51248
1653
8430
510
101700 | 93220
3007
5880
1210
184900 | 85324
3047
4370
733
169200 | 114570
3696
7870
1590
227200 | 84480
2816
4930
1390 | 83750
2702
6380
1710
166100 | 50020
1667
1970
1470
99210 | 46660
1505
1980
1120
92550 | 51890
1674
4940
1050
102900 | 51864
1729
6050
886
102900 | | STATIST | CS OF | MONTHLY M | EAN DATA | FOR WATER Y | EARS 193 | 30 - 200 | lh, BY WATE | R YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2835
20380
1931
117
1935 | 1919
13480
1975
133
1964 | 1678
5738
1941
129
1964 | 1894
7823
1968
133
1964 | 2174
8516
1958
145
1964 | 2043
7292
1958
176
1964 | 11300
1941
471 | 4426
27980
1957
1088
1942 | 4132
31510
1935
391
1934 | 3424
31310
1938
852
1933 | 1915
7303
1938
240
1930 | 2960
38090
1936
337
1934 | ### 08159500 Colorado River at Smithville, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENDA | R YEAR | FOR 2001 WAT | TER YEAR | WATER YEAR: | 3 1930 - 2001h |
------------------------------------|------------------|--------|--------------|----------|--------------|----------------| | ANNUAL TOTAL | 473957 | | 817267 | | 0550 | | | ANNUAL MEAN
HIGHEST ANNUAL MEAN | 1295 | | 2239 | | 2668
6780 | 1935 | | LOWEST ANNUAL MEAN | | | | | 794 | 1952 | | HIGHEST DAILY MEAN | | Nov 4 | 18200 | Nov 4 | 219000 | Jun 16 1935 | | LOWEST DAILY MEAN | | Feb 21 | 323 | Nov 1 | 79 | Nov 1 1934 | | ANNUAL SEVEN-DAY MINIMUM | 355 | Feb 17 | 451 | Oct 27 | 84 | Oct 27 1934 | | MAXIMUM PEAK FLOW | | | 21000 | Nov 4 | 305000 | Jun 16 1935 | | MAXIMUM PEAK STAGE | | | 13.46 | Nov 4 | 42.50 | Jun 16 1935 | | ANNUAL RUNOFF (AC-FT) | 940100 | | 1621000 | | 1933000 | | | 10 PERCENT EXCEEDS | 1940 | | 4360 | | 4700 | | | 50 PERCENT EXCEEDS | 1100 | | 1750 | | 1620 | | | 90 PERCENT EXCEEDS | 415 | | 774 | | 342 | | Estimated See PERIOD OF RECORD paragraph. e h #### 08160400 Colorado River above LaGrange, TX DRAINAGE AREA. --40,874 mi², of which 11,403 mi² probably is noncontributing. PERIOD OF RECORD.--Dec. 1979 to Sept. 1982 (discharge measurements only), Apr. 1988 to current year. GAGE.--Water-stage recorder. Datum of gage is 210.04 ft above sea level. Dec. 12, 1979, to Sept. 30, 1982, discharge measurements only were made at old State Highway 71 bridge, 1.0 mi downstream and at different datum. Radio telemeter at station. Satellite telemeter at station. REMARKS.--Records fair. Since installation of gage in 1988, at least 10% of contributing drainage area has been regulated. At times, low-flow releases from Lake Travis are made for generation of electric power and to fulfill downstream water contracts. There are many diversions above station for irrigation and municipal supply. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes, and publishes streamflow record. EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since at least 1869, about 56.7 ft on July 9, 1869 (from marble high-water marker in LaGrange). Stages of other floods are as follows: Dec. 5, 1913, 56.4 ft, from floodmark; June 17, 1935, 50.84 ft, from floodmarks (discharge 255,000 ft³/s) from rating curve extended above 200,000 ft³/s); July 27, 1938, 42.95 ft (discharge, 200,000 ft³/s). These data were collected at a site 2.6 mi downstream at streamflow station and published as Colorado River at LaGrange at datum different than at present site. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DISCHA | RGE, CUB | BIC FEET PI | | WATER Y
Y MEAN V | | ER 2000 TO | SEPTEME | ER 2001 | | | |----------|------------------------|-----------------|----------|-------------|------------|---------------------|--------------|-----------------|---------|--------------|------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 901 | 323 | 526 | 3020 | 3990 | 1530 | 4810 | 1740 | 1750 | 1580 | 988 | 8600 | | 2 | 877 | 281 | 498 | 2760 | 3520 | 1850 | 4910 | 1660 | 1560 | 1930 | 970 | 5690 | | 3 | 919 | 367 | 474 | 3240 | 3820 | 3810 | 4810 | 1560 | 1610 | 2150 | 945 | 2780 | | 4 | 989 | 9990 | 455 | 2640 | 4100 | e6040 | 4730 | 1590 | 1580 | 1930 | 921 | 2160 | | 5 | 975 | 13500 | 428 | 2220 | 3900 | e4110 | 4640 | 1570 | 1480 | 1810 | 949 | 4310 | | 6 | 844 | 4770 | 419 | 1990 | 4140 | 2590 | 4610 | 1780 | 1460 | 1710 | 1010 | 8070 | | 7 | 847 | 5740 | 730 | 1990 | 4150 | 2580 | 4560 | 4830 | 1430 | 1630 | 1220 | 5650 | | 8 | 704 | 4090 | 477 | 1740 | 4160 | 2540 | 4480 | 6000 | 1380 | 1590 | 1180 | 2380 | | 9 | 637 | 2690 | 461 | 1550 | 3960 | 3130 | 4470 | 5780 | 1380 | 1320 | 1210 | 2510 | | 10 | 618 | 2230 | 528 | 939 | 2130 | 4210 | 4430 | 3780 | 1400 | 1430 | 1270 | 4440 | | 11 | 601 | 1590 | 481 | 2690 | e1400 | 3470 | 2660 | 3610 | 1360 | 1430 | 1310 | 2960 | | 12 | 581 | 1660 | 403 | 5800 | 827 | e3440 | 1380 | 3270 | 1320 | 1420 | 1350 | 1840 | | 13 | 533 | 3640 | 458 | 4590 | 734 | 4490 | 1430 | 3400 | 1320 | 1350 | 1350 | 1050 | | 14 | 480 | 2110 | 1670 | 4170 | 680 | 4800 | 1540 | 3560 | 1270 | 1270 | 1350 | 1170 | | 15 | 417 | 1150 | 1960 | 4180 | 636 | 6590 | 1760 | 3450 | 1400 | 1200 | 1430 | 1530 | | 16 | 382 | 773 | 1470 | 4380 | 822 | 6170 | 1800 | 3370 | 1470 | 1170 | 1450 | 1390 | | 17 | 357 | 609 | 1060 | 3830 | 1330 | 4020 | 1770 | 3280 | 1440 | 1220 | 1450 | 1640 | | 18 | 562 | 880 | 662 | 2550 | 1810 | 2540 | 1700 | 2490 | 1340 | 1180 | 1470 | 1570 | | 19 | 1000 | 3260 | 758 | 4810 | 2490 | 1750 | 2240 | 2050 | 1290 | 1230 | 1650 | 1520 | | 20 | 730 | 3810 | 758 | 6230 | 3280 | 1960 | 2280 | 1720 | 1270 | 1240 | 1610 | 1480 | | 21 | 539 | 1840 | 1170 | 3800 | 3340 | 1800 | e1760 | 1910 | 1280 | 1210 | 1610 | 1380 | | 22 | 566 | 1040 | 741 | 1740 | 3440 | 3290 | e1740 | 2330 | 1310 | 1270 | 1670 | 1320 | | 23 | 1050 | 870 | 815 | 1260 | 3430 | 3360 | 1550 | 2300 | 1390 | 1260 | 1760 | 1240 | | 24 | 2240 | 2820 | 645 | 1640 | 3490 | 3280 | 1510 | 2070 | 1550 | 1260 | 1880 | 1550 | | 25 | 1260 | 4580 | 842 | 2330 | 3390 | 1750 | 1560 | 1870 | 1600 | 1210 | 1860 | 1520 | | 26 | 823 | 2520 | 2050 | 2520 | 3370 | 2070 | 2830 | 2070 | 1650 | 1210 | 1780 | 1320 | | 27 | 613 | 1170 | 6920 | 2470 | 3410 | 2190 | 1660 | 2420 | 1500 | 1140 | 2060 | 1500 | | 28 | 546 | 838 | 9320 | 2380 | 3230 | 6650 | 1490 | 2550 | 1570 | 1130 | 3370 | 1300 | | 29 | 445 | 660 | 4380 | 2600 | | 10800 | 1410 | 1960 | 1640 | 1160 | 3750 | 1230 | | 30 | 389 | 562 | 3070 | 4960 | | 5570 | 1600 | 1820 | 1590 | 1100 | 2650 | 1120 | | 31 | 362 | | 3870 | 4560 | | 4830 | | 1840 | | 1010 | 3480 | | | TOTAL | 22787 | 80363 | 48499 | 95579 | 78979 | 117210 | 82120 | 83630 | 43590 | 42750 | 50953 | 76220 | | MEAN | 735 | 2679 | 1564 | 3083 | 2821 | 3781 | 2737 | 2698 | 1453 | 1379 | 1644 | 2541 | | MAX | 2240 | 13500 | 9320 | 6230 | 4160 | 10800 | 4910 | 6000 | 1750 | 2150 | 3750 | 8600 | | MIN | 357 | 281 | 403 | 939 | 636 | 1530 | 1380 | 1560 | 1270 | 1010 | 921 | 1050 | | AC-FT | 45200 | 159400 | 96200 | 189600 | 156700 | 232500 | 162900 | 165900 | 86460 | 84790 | 101100 | 151200 | | STATIST | rics of i | MONTHLY MEA | AN DATA | FOR WATER | YEARS 198 | 8 - 2001 | , BY WATE | R YEAR (WY) | | | | | | MEAN | 1876 | 965 | 2199 | 2722 | 3701 | 3862 | 2838 | 3327 | 4292 | 2742 | 1664 | 1619 | | MAX | 10510 | 4762 | 16350 | 18640 | 31160 | 18080 | 7333 | 8290 | 15180 | 12900 | 2096 | 2541 | | (WY) | 1999 | 1999 | 1992 | 1992 | 1992 | 1992 | 1997 | 1992 | 1997 | 1997 | 1992 | 2001 | | MIN | 476 | 244 | 248 | 247 | 356 | 380 | 984 | 1771 | 1453 | 1379 | 1177 | 939 | | (WY) | 1997 | 1989 | 1990 | 1990 | 1990 | 2000 | 2000 | 2000 | 2001 | 2001 | 2000 | 1999 | | SUMMARY | Y STATIS | TICS | FOR | 2000 CAL | ENDAR YEAR | | FOR 2001 | WATER YEAR | | WATER Y | ZEARS 1988 | 3 - 2001 | | ANNUAL | TOTAL. | | | 456823 | | | 822680 | | | | | | | ANNUAL | | | | 1248 | | | 2254 | | | 2670 | | | | | r annual | | | | | | | | | 9913 | | 1992 | | | ANNUAL I | | | | | | | | | 930 | | 2000 | | | r daily i | | | 13500 | Nov 5 | | 13500 | Nov 5
Nov 2 | | 84000 | | 23 1991 | | LOWEST | DAILY M | EAN | | 234 | Feb 22 | | 281 | Nov 2 | | 167 | | 21 1989 | | ANNUAL | SEVEN-DA | AY MINIMUM | | 283 | Feb 18 | | 388
16000 | Oct 28
Nov 5 | | 170
89800 | | 16 1989 | | | M PEAK FI
M PEAK S' | | | | | | 17. | 46 Nov 5 | | 45.4 | | 20 1998
20 1998 | | ANNITAT. | RIMORF | (AC-ET) | | 906100 | | | 1632000 | 40 MOA 2 | | 1934000 | ı, OCL | 20 1220 | | 10 PERG | TENT EXC | (AC-FT)
EEDS | | 1890 | | | 4480 | | | 4580 | | | | 50 PERC | CENT EXC | EEDS | | 1020 | | | 1640 | | | 1470 | | | | | CENT EXC | | | 339 | | | 654 | | | 375 | | | | | | | | | | | | | | | | | e Estimated ### 08160400 Colorado River above LaGrange, TX--Continued #### 08160800 Redgate Creek near Columbus, TX LOCATION.--Lat 29°47′56", long 96°31′55", Colorado County, Hydrologic Unit 12090301, on left bank at downstream side of bridge on Farm Road 109, 1.9 mi upstream from Cummins Creek, and 7.0 mi north of Columbus. DRAINAGE AREA. -- 17.3 mi². PERIOD OF RECORD.--Apr. 1962 to current year. REVISED RECORDS.--WSP 2122: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 210.82 ft above sea level. Prior to Oct. 1, 1975, datum 10.00 ft higher. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1860, about 33.4 ft in late June or early July 1940, from information by Texas Department of Transportation and local resident. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES | | | | | | | | | | | | | |---|--|---|--|---|--|--|---|--|---
--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | .04
.03
.09
.66 | .61
.62
.61
.60 | 2.7
1.7
1.3
1.1 | 1.9
1.8
1.8
1.8 | 2.4
38
30
8.7
3.7 | 2.2
2.0
2.0
1.9
1.7 | 1.1
1.2
1.0
1.0 | .66
.56
.52
.49 | 1.4
.92
.89
.62 | .16
.16
.15
.14 | 1.6
.77
.49
.37
.45 | | 6
7
8
9
10 | .00
.03
.04
.05 | 4.3
.06
2.7
.08
.04 | .67
.62
.56
.57 | 1.0
1.0
.99
.96 | 1.8
1.8
1.9
2.0 | 2.7
2.4
2.5
3.6
2.5 | 1.6
1.5
1.4
1.4 | 1.7
11
1.9
1.2
.96 | .53
.52
.81
1.3
.78 | .50
.47
.48
.45
.43 | .15
2.6
1.4
.56
.26 | .53
.48
.35
4.0
1.1 | | 11
12
13
14
15 | .02
.02
.02
.02
.02 | .03
2.3
.95
.07 | .68
.76
5.6
1.2
.74 | 6.8
2.0
1.6
1.9 | 1.9
2.0
2.0
2.0
2.0 | 6.4
5.7
3.1
202
19 | 1.4
1.3
1.4
1.4 | 1.3
1.2
.81
.82 | .64
.57
.54
.51 | .42
.38
.35
.35 | .19
.17
.14
.16
.15 | . 49
. 38
. 35
. 35
. 35 | | 16
17
18
19
20 | .04
3.7
.85
.04 | 19
1.9
123
10
1.5 | .77
.77
.85
.89 | 2.2
3.9
56
34
5.5 | 5.0
2.8
2.1
2.0
1.9 | 5.2
3.5
3.1
2.9
2.7 | 2.1
4.2
1.7
1.4
1.3 | .65
.63
.60
.60 | .83
.70
.68
.62 | .34
.32
.29
.32
.29 | .13
.13
.13
.10 | .36
.36
.38
.37 | | 21
22
23
24
25 | .23
.21
.57
.19 | .88
.68
.69
49 | 1.1
1.2
1.2
1.4
9.4 | 3.8
3.1
2.8
2.7
2.4 | 1.9
1.9
1.8
1.9 | 2.5
2.5
2.4
2.5
2.4 | 1.3
1.2
1.2
1.1 | .62
.53
.56
.53 | .60
.73
.57
.57 | .30
.25
.22
.23
.25 | .10
.07
.06
.05 | .35
1.6
3.0
2.5
.54 | | 26
27
28
29
30
31 | .03
.02
.02
.02
.02 | .99
.71
.64
.71
.66 | 4.3
3.7
1.8
1.4
1.2 | 2.2
2.1
2.1
2.7
2.4
2.0 | 1.7
1.8
2.3
 | 2.3
90
64
7.3
3.8
2.6 | 1.1
1.0
1.0
1.1 | 2.6
1.5
.85
.67
.59 | .52
.55
.49
.56
.63 | .28
.34
.36
.27
.20 | .05
.08
.21
.70
.67 | .40
.35
.33
.32
.31 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 6.27
.20
3.7
.00
12
.01 | 223.60
7.45
123
.03
444
.43
.48 | 47.24
1.52
9.4
.56
94
.09 | 167.45
5.40
56
.96
332
.31 | 57.3
2.05
5.0
1.7
114
.12 | 532.4
17.2
202
2.3
1060
.99
1.14 | 45.6
1.52
4.2
1.0
90
.09 | 50.74
1.64
12
.53
101
.09 | 19.72
.66
1.6
.48
.39
.04 | 13.02
.42
1.4
.18
26
.02 | 13.27
.43
4.1
.05
26
.02
.03 | 23.60
.79
4.0
.31
47
.05 | | | | | | FOR WATER Y | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 6.38
69.3
1999
.000
1964 | 4.99
98.4
1999
.070
1967 | 4.71
25.4
1992
.25
1967 | 6.58
31.9
1974
.24
1967 | 7.69
67.5
1992
.21
1967 | 6.51
38.1
1973
.19
1967 | 7.13
39.9
1991
.24
1971 | 11.5
55.5
1979
.33
1971 | 9.33
83.4
1993
.065
1990 | 1.04
4.44
1993
.007
1971 | 1.19
17.4
1974
.000
1970 | 3.21
38.5
1974
.040
1963 | | SUMMARY | STATIST | rics | FOR | 2000 CALEN | NDAR YEAR | F | OR 2001 W | ATER YEAR | | WATER Y | EARS 1962 | - 2001 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 0.0 | Nov 18) Sep 1) Sep 27 | | .00
.00
1290 | Mar 14 0 Oct 1 0 Oct 1 Mar 14 1 Mar 14 | | 5.8i
20.7
.8:
1180
.00
5360
27.1:
4260
.3:
4.6:
5.1 | Jun 100 Aug 100 Aug 100 May 10 | 1992
1964
13 1973
7 1962
7 1962
22 1979
22 1979 | | 08160800 Redgate Creek near Columbus, TX--Continued #### 08161000 Colorado River at Columbus, TX LOCATION.--Lat 29°42′22", long 96°32′12", Colorado County, Hydrologic Unit 12090301, near right bank at downstream side of pier of bridge on U.S. Highway 90 at eastern edge of Columbus, 340 ft downstream from Texas and New Orleans Railroad Co. bridge, 2.6 mi downstream from Cummins Creek, and at mile 135.1. DRAINAGE AREA.--41,640 mi², approximately, of which 11,403 mi² probably is noncontributing. PERIOD OF RECORD.--Jan. 1903 to Dec. 1911 (gage heights only), May 1916 to current year. Discharge records for 1902-11, published in WSP 84, 99, 132, 174, 210, 288, and 308, have been found to be unreliable and should not be used. Records collected at site 23 mi downstream Oct. 1930 to May 1939, published as "near Eagle Lake". Gage-height records collected in this vicinity since 1903 are contained in reports of the National Weather Service. Water-quality records.--Chemical data: Oct. 1967 to Sept. 1981. Biochemical data: Feb. 1968 to Sept. 1981. Sediment data: Mar. 1957 to Sept. 1973. REVISED RECORDS.--WSP 1562: 1920-21(M), 1922. WDR TX-81-3: Drainage area. See also PERIOD OF RECORD. GAGE.--Water-stage recorder. Datum of gage is 145.52 ft above sea level. Prior to May 1, 1919, various nonrecording gages at sites in the immediate vicinity at datum 7.00 ft higher. May 1, 1919, to Nov. 23, 1930, water-stage recorder at site about 300 ft downstream at datum 7.00 ft higher. Sept. 17, 1930, to June 12, 1939 (Oct. 1, 1930, to May 31, 1939, used herein), water- stage recorder at site 23 mi downstream at different datum. May 17 to Nov. 14, 1939, nonrecording gage at present site and datum 10.00 ft higher; Nov. 15, 1939, to Dec. 31, 1988, water-stage recorder at present site and at datum 10.00 ft higher Gage-height telemeter at station. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Since installation of gage in May 1916, at least 10% of contributing drainage area has been regulated. There are many other diversions above this station for irrigation and for municipal supply. Low-flow releases from Lake Travis, 251 mi upstream, are made for the generation of electric power to fulfill downstream water contracts. COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage-discharge relation at low stages. U.S. Geological Survey maintains stage-discharge relation at medium to high stages, computes, and publishes streamflow record. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1852, 51.6 ft, present datum, in July 1869 and Dec. 6, 1913, from information by local resident. River divided each time and left city of Columbus on an island. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC TAN FEB MAR APR MAY .TTTN .TITT. ATTG SEP ---___ TOTAL MEAN MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1916 - 2001. BY WATER YEAR (WY) MEAN MAX (WY) MIN (WY) ### 08161000 Colorado River at Columbus, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALEND | AR YEAR | FOR 2001 WAT | ER YEAR | WATER YEAR | S 1916 - 2001 | |--------------------------|-----------------|---------|--------------|---------|------------|---------------| | ANNUAL TOTAL | 497248 | | 926272 | | | | | ANNUAL MEAN | 1359 | | 2538 | | 3108 | | | HIGHEST ANNUAL MEAN | | | | | 10810 | 1992 | | LOWEST ANNUAL MEAN | | | | | 653 | 1917 | | HIGHEST DAILY MEAN | 12700 | Nov 5 | 12700 |
Nov 5 | 164000 | Jun 19 1935 | | LOWEST DAILY MEAN | 291 | Feb 22 | 452 | Nov 3 | 93 | Sep 1 1918 | | ANNUAL SEVEN-DAY MINIMUM | 335 | Mar 24 | 594 | Oct 28 | 106 | Aug 22 1917 | | MAXIMUM PEAK FLOW | | | 15100 | Mar 15 | 190000 | Jun 18 1935 | | MAXIMUM PEAK STAGE | | | 22.18 | Mar 15 | 48.50 | Jun 18 1935 | | ANNUAL RUNOFF (AC-FT) | 986300 | | 1837000 | | 2252000 | | | 10 PERCENT EXCEEDS | 2230 | | 4600 | | 5910 | | | 50 PERCENT EXCEEDS | 1120 | | 1850 | | 1620 | | | 90 PERCENT EXCEEDS | 397 | | 1060 | | 400 | | #### 08162000 Colorado River at Wharton, TX LOCATION.--Lat 29°18'32", long 96°06'13", Wharton County, Hydrologic Unit 12090302, near left bank at downstream side of downstream bridge on U.S. Highway 59 in Wharton, 1,100 ft downstream from Texas and New Orleans Railroad Co. bridge, 12 mi upstream from Jones Creek, and at mile 66.6. DRAINAGE AREA.--42,003 mi², approximately, of which 11,403 mi² probably is noncontributing. PERIOD OF RECORD.--July 1916 to Aug. 1918 (intermittent periods), Mar. 1919 to Sept. 1925, July and Aug. 1938 (flood discharge measurements only), Oct. 1938 to current year. June to Nov. 1901, May to Sept. 1902, daily records published in U.S. measurements only), Oct. 1938 to current year. June to Nov. 1901, May to Sept. 1902, daily records published in U.S. Department of Agriculture, Office of Experiment Stations, Bulletin Nos. 119 and 133. Gage-height records collected in this vicinity since 1935 are contained in reports of the National Weather Service. Water-quality records.—Chemical data: Apr. 1944 to Sept. 1995. Biochemical data: Jan. 1968 to Sept. 1995. Radiochemical data: Dec. 1973 to Sept. 1995. Pesticide data: Oct. 1967 to June 1982. Sediment data: Oct. 1974 to Sept. 1995. REVISED RECORDS.--WSP 878: 1938(M). WDR TX-81-3: Drainage area. WDR TX-88-3: 1985. GAGE.--Water-stage recorder. Datum of gage is 52.42 ft above sea level. Prior to Oct. 1, 1938, various types of recording and nonrecording gages 800 ft upstream at different datum. Oct. 1, 1938, to June 1, 1956, nonrecording gage 100 ft upstream at datum 13.00 ft higher. June 1, 1966, to Sept. 30, 1975, water-stage recorder at present site at datum 13.00 ft higher. Oct. 1, 1975, to Mar. 1, 1983, water-stage recorder at present site at datum 10.00 ft higher. Satellite telemeter at station. REMARKS.--Records good. Since installation of gage in Oct. 1938, at least 10% of contributing drainage area has been regulated. There are many diversions above station for irrigation, municipal supply, cooling water for thermal-electric power plant, and for oil field operations. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1869, 51.9 ft Dec. 8, 1913, present datum, from information by local residents; below Wharton floodwater combined with that of the Brazos River. Flood of about July 12, 1869, reached about same height. Flood of June 20, 1935, reached a stage of 51.2 ft, present datum, furnished by National Weather Service (discharge, 159,000 ft³/s), from rating curve defined by current-meter measurements below 145,000 ft³/s. Flood of July 30, 1938, reached a stage of 50.4 ft, present datum, observed by U.S. Geological Survey personnel (discharge, 145,000 ft³/s). DISCURDED CIDIO DEPT DED CECOND MATER VEAD COTODER 2000 TO CEDTEMBER 2001 | | | DISCH | IARGE, CUE | BIC FEET P | | , WATER Y
LY MEAN V | ZEAR OCTOBE
VALUES | ER 2000 TO | O SEPTEMB | ER 2001 | | | |--------|---------|-----------|------------|------------|----------|------------------------|-----------------------|------------|-----------|---------|-------|--------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 623 | 601 | 1690 | 3640 | 5510 | 3970 | 6040 | 1200 | 1440 | e940 | 650 | 6260 | | 2 | 517 | 540 | 1470 | 3980 | 4680 | 3690 | 5280 | 1190 | 1370 | e971 | 610 | 6960 | | 3 | 516 | 504 | 1300 | 3240 | 4030 | 4760 | 5200 | 1200 | 1300 | 971 | 654 | 7760 | | 4 | 557 | 569 | 1270 | 3090 | 3850 | 7730 | 5090 | 1110 | 1080 | 1160 | 650 | 4900 | | 5 | 557 | 1310 | 1110 | 3320 | 4070 | 9060 | 4910 | 1140 | 1020 | 1470 | 630 | 3490 | | 6 | 634 | 12600 | 1010 | 2860 | 4110 | 7200 | 4800 | 1720 | 913 | 1390 | 568 | 3450 | | 7 | 778 | 9890 | 953 | 2550 | 4100 | 5170 | 4600 | 2190 | 800 | 1220 | 539 | 6610 | | 8 | 803 | 5480 | 909 | 2380 | 4320 | 3770 | 4590 | 4330 | 784 | 1040 | 480 | 7400 | | 9 | 783 | 5830 | 976 | 2300 | 4300 | 3640 | 4500 | 5530 | 864 | 900 | 579 | 4790 | | 10 | 843 | 3990 | 1030 | 2120 | 4310 | 3620 | 4410 | 6270 | 1400 | 807 | 591 | 5110 | | 11 | 702 | 3140 | 895 | 2410 | 3880 | 4240 | 4300 | 4820 | 1740 | 706 | 635 | 6070 | | 12 | 578 | 2760 | 917 | 2180 | 2530 | 4970 | 4010 | 3570 | 1480 | 682 | 552 | 4470 | | 13 | 459 | 2820 | 915 | 3990 | 1830 | 4150 | 2680 | 3210 | 1180 | 695 | 591 | 3080 | | 14 | 425 | 7360 | 868 | 5540 | 1570 | 4260 | 1870 | 3000 | 890 | 692 | 640 | 2170 | | 15 | 406 | 4680 | 905 | 4630 | 1400 | 9810 | 1710 | 2860 | 766 | 608 | 620 | 1530 | | 16 | 465 | 3250 | 1470 | 4310 | 1290 | 12800 | 1760 | 2690 | 731 | 500 | 600 | 1150 | | 17 | 578 | 2460 | 2090 | 4580 | 1240 | 9200 | 1650 | 2500 | 906 | 411 | 511 | 1180 | | 18 | 750 | 3460 | 1760 | 5290 | 1640 | 6600 | 1730 | 2330 | 1000 | 380 | 528 | 1020 | | 19 | 915 | 7040 | 1490 | 6520 | 2030 | 4840 | 1730 | 2170 | 840 | 441 | 510 | 975 | | 20 | 635 | 9090 | 1200 | 7500 | 2310 | 3520 | 1660 | 1700 | 701 | 531 | 478 | 903 | | 21 | 762 | 5950 | 1090 | 7390 | 2960 | 2820 | 1940 | 1390 | 617 | 529 | 430 | 817 | | 22 | 1110 | 4620 | 1130 | 6270 | 3610 | 2790 | 2000 | 1150 | 576 | 574 | 466 | 895 | | 23 | 931 | 3120 | 1310 | 4020 | 3760 | 2790 | 1660 | 1230 | 554 | 614 | 434 | 996 | | 24 | 767 | 3210 | 1270 | 2690 | 3850 | 3720 | 1580 | 1410 | 568 | 615 | 445 | 1740 | | 25 | 774 | 5130 | 1240 | 2170 | 3900 | 3770 | 1480 | 1430 | 652 | 648 | 437 | 1440 | | 26 | 1780 | 6220 | 1290 | 2250 | 3940 | 3460 | 1390 | 1320 | 758 | 699 | 496 | 1260 | | 27 | 1670 | 5190 | 1890 | 2700 | 3910 | 2490 | 1440 | 1180 | 827 | 709 | 565 | 1260 | | 28 | 1280 | 3400 | 5110 | 2800 | 3960 | 3450 | 2160 | 1400 | 820 | 700 | 584 | 1050 | | 29 | 979 | 2440 | 9060 | 2870 | | 9300 | 1530 | 1850 | 698 | 757 | 701 | 1000 | | 30 | 793 | 1960 | 7640 | 3120 | | 10300 | 1320 | 1920 | e810 | 737 | 1820 | 956 | | 31 | 696 | | 4150 | 3810 | | 8900 | | 1570 | | 692 | 6500 | | | TOTAL | 24066 | 128614 | 59408 | 116520 | 92890 | 170790 | 89020 | 70580 | 28085 | 23789 | 24494 | 90692 | | MEAN | 776 | 4287 | 1916 | 3759 | 3318 | 5509 | 2967 | 2277 | 936 | 767 | 790 | 3023 | | MAX | 1780 | 12600 | 9060 | 7500 | 5510 | 12800 | 6040 | 6270 | 1740 | 1470 | 6500 | 7760 | | MIN | 406 | 504 | 868 | 2120 | 1240 | 2490 | 1320 | 1110 | 554 | 380 | 430 | 817 | | AC-FT | 47730 | 255100 | 117800 | 231100 | 184200 | 338800 | 176600 | 140000 | 55710 | 47190 | 48580 | 179900 | | STATIS | TICS OF | MONTHLY M | IEAN DATA | FOR WATER | YEARS 19 | 39 - 2001 | , BY WATER | R YEAR (W | Y) | | | | | MEAN | 2280 | 2414 | 2239 | 2503 | 2965 | 2806 | 3081 | 4103 | 4663 | 2479 | 1350 | 1882 | | MAX | 14590 | 13870 | 15060 | 21810 | 35520 | 21550 | 13730 | 27300 | 30910 | 15010 | 3916 | 9394 | | (WY) | 1999 | 1975 | 1992 | 1992 | 1992 | 1992 | 1977 | 1957 | 1987 | 1997 | 1945 | 1961 | | MIN | 296 | 220 | 253 | 224 | 268 | 328 | 566 | 825 | 838 | 706 | 406 | 436 | | (WY) | 1957 | 1957 | 1990 | 1964 | 1967 | 1952 | 1951 | 1962 | 1948 | 1967 | 1964 | 1954 | | | | | | | | | | | | | | | ### 08162000 Colorado River at Wharton, TX--Continued | SUMMARY STATISTICS | FOR 2000 CALENI | DAR YEAR | FOR 2001 WAT | TER YEAR | WATER YEAR | S 1939 - 2001 | |--------------------------|-----------------|----------|--------------|----------|------------|---------------| | ANNUAL TOTAL | 442401 | | 918948 | | | | | ANNUAL MEAN | 1209 | | 2518 | | 2726 | | | HIGHEST ANNUAL MEAN | | | | | 11120 | 1992 | | LOWEST ANNUAL MEAN | | | | | 615 | 1964 | | HIGHEST DAILY MEAN | 12600 | Nov 6 | 12800 | Mar 16 | 90600 | Jul 3 1940 | | LOWEST DAILY MEAN | 102 | Aug 20 | 380 | Jul 18 | 42 | Aug 22 1964 | | ANNUAL SEVEN-DAY MINIMUM | 161 | Aug 18 | 455 | Aug 20 | 110 | Dec 11 1956 | | MAXIMUM PEAK FLOW | | | 14500 | Mar 16 | 100000 | Jul 3 1940 | | MAXIMUM PEAK STAGE | | | 23.06 | Mar 16 | 48.99 | Jul 3 1940 | | ANNUAL RUNOFF (AC-FT) | 877500 | | 1823000 | | 1975000 | | | 10 PERCENT EXCEEDS | 2450 | | 5490 | | 5470 | | | 50 PERCENT EXCEEDS | 693 | | 1570 | | 1320 | | | 90 PERCENT EXCEEDS | 368 | | 577 | | 467 | | ### e Estimated #### 08162500 Colorado River near Bay City, TX LOCATION.--Lat 28°58′26", long 96°00′44", Matagorda County, Hydrologic Unit 12090302, on left bank, 6,300 ft downstream from bridge on State Highway 35, 7,100 ft downstream from Texas and New Orleans Railroad Co. bridge, 2.8 mi west of Bay City, and at mile 32.5. DRAINAGE AREA.--42,240 \min^2 , approximately, of which 11,403 \min^2 probably is noncontributing. PERIOD OF RECORD.--July 1940 (WSP 1046), Apr. 1948 to current year. Records of elevation collected in this vicinity since 1946 are contained in reports of the National Weather Service. Water-quality records.--Chemical data: Oct. 1974 to Sept. 1975. Biochemical data: Oct. 1974 to Sept. 1975. REVISED RECORDS.--WDR TX-81-3: Drainage area. WDR TX-88-3: 1985. GAGE.--Water-stage recorder. Datum of gage is sea level. July 2-6, 1940, nonrecording gage at highway bridge, 6,300 ft upstream at datum 30.60 ft lower. On Feb. 19, 1992, gage was temporarily moved 6,200 ft upstream at same datum. Gage re-established on left bank 6,300 ft downstream on May 12, 1993. Radio telemeter at station. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since installation of gage in Apr. 1948, at least 10% of contributing drainage area has been regulated. There are many other diversions above this station for irrigation and for municipal supply. No flow at times in 1951-53 and 1956. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation since 1869, 56.1 ft Dec. 10, 1913.
Flood in July 1869 probably reached about same elevation. Elevation of other floods are as follows: May 8, 1922, 55.4 ft; June 1929, 55.0 ft; June 22, 1935, 54.6 ft; Oct. 5, 1936, 52.2 ft; Aug. 2, 1938, 53.4 ft; Nov. 27, 1940, 47.6 ft. All above flood data from information by Texas and New Orleans Railroad Co. and adjusted to present site. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | DISCH | ARGE, COB | IC FEET FE | | Y MEAN V | | EK 2000 10 | SEFIEME | ER ZUUI | | | |----------|--------------|-----------------|--------------|----------------|------------------------------|--------------|-------------------------------------|--|---------------------------------|-----------------|---------------|----------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 351 | 930 | 1670 | 3290 | 4390 | 3420 | 6180 | 664 | 931 | e210 | 263 | 22300 | | 2 | 352 | e860 | 1420 | 3580 | 4630 | 3380 | 4970 | 625 | 826 | e290 | 266 | 20600 | | 3 | 285 | 796 | 1260 | 3350 | 3940 | 3230 | 4550 | 580 | 747 | e400 | 206 | 17200 | | 4 | 326 | 718 | 1160 | 2810 | 3430 | 6420 | 4510 | 602 | 606 | e620 | 262 | 9930 | | 5 | 328 | 936 | 1030 | 3000 | 3570 | 8150 | 4280 | 619 | 428 | e750 | 287 | 7060 | | 6 | 363 | 8480 | 1000 | 2820 | 3730 | 7350
5480 | 4190 | 1120 | 437 | e940 | 255 | 5470 | | 7 | 458 | 13200 | 932 | 2430 | 3640 | 5480 | 4060 | 2460 | 326 | 762 | 227 | 5480 | | 8 | 712 | 6380 | 885 | 2240 | 3770 | 3730 | 3940 | 3210 | 328 | 577 | 207 | 7720 | | 9 | 642 | 5320 | 889 | 2170 | 3880 | 3260
3060 | 3840
3720 | 5120 | 413 | 439 | 178 | 5900 | | 10 | 709 | 4540 | 1040 | 2570 | | | | 5190 | 586 | 356 | 226 | 4280 | | 11 | 656 | e3100 | 950 | 5570 | 3760 | 3520 | 3660
3620
2860
1850 | 5070 | 1230 | 275 | 241 | 5700 | | 12 | 514 | 2860 | 823 | 3280 | 3760
2820
1910
1580 | 4300 | 3620 | 3280 | 944 | 196 | 259 | 5080 | | 13 | 387 | e2350 | 870 | 2840 | 1910 | 3910 | 2860 | 2930 | 724 | 173 | 327 | 3250 | | 14 | 326 | e4870 | 861 | 5140 | 1580 | 3510 | 1850 | 2640 | 409 | 175 | 320 | 2360 | | 15 | 348 | 5530 | 837 | 4630 | 1340 | 6560 | 1440 | 2360 | 294 | 173 | 359 | 1600 | | 16 | 483 | 4030 | 975 | 4200 | 1240 | 13300 | 1350 | 2150 | 217
224
392
316
203 | 142 | 405 | 1070 | | 17 | 805 | 4670 | 1890 | 4390 | 1160
1220
1740
2030 | 10000 | 1290 | 1880 | 224 | 98
95 | 318 | 897 | | 18 | 840 | 6000 | 1760 | 5210 | 1220 | 7100
4890 | 1240 | 1690 | 392 | 95 | 326 | 812 | | 19 | 1120 | 10800 | 1570 | 7200 | 1740 | | 1400 | 1520 | 316 | 104 | 331 | 693 | | 20 | 1090 | 11400 | 1290 | 7490 | | 3440 | 1330 | | | 142 | 291 | 679 | | 21 | 863 | 6860 | 1020 | 7140 | 2220 | 2660
2350 | 1410 | 846
594
503
575
675 | 128 | 170 | 256 | 589 | | 22 | 977 | 4890 | 1040 | 6590 | 3070 | 2350 | e1620 | 594 | 79 | 180 | 220 | 677 | | 23 | 1070 | 3390 | 1100 | 4600 | 3270
3430
3470 | 2300 | 1480 | 503 | 62 | 188 | 247 | 981 | | 24 | 966 | 5860 | 1280 | 2930 | 3430 | 2920 | 1180 | 575 | 48 | 219 | 251 | 1320 | | 25 | 840 | 5990 | 1580 | 2190 | | | 1060 | | 86 | 245 | 229 | 1830 | | 26 | 1020 | 6110 | 1800 | 2010 | 3500 | 3190 | e1000
783
1140
1170
755 | 612 | 164
208
203
122
162 | 281 | 232 | 1220 | | 27 | 1770 | 5440 | 2700 | 2340 | 3460 | 2380 | 783 | 594 | 208 | 370 | 280 | 1160 | | 28 | 1500 | 3750 | 3530 | 2580 | 3470 | 2380 | 1140 | 528 | 203 | e362 | 432 | 1080 | | 29 | 1200 | 2510 | 7420 | 2760 | | 6480 | 1170 | 862 | 122 | e359 | 701 | 880 | | 30
31 | e1080
939 | 1960 | 8520
5020 | 2890
3370 | | 9450 | 755
 | 1090 | 162 | e353
328 | 1750
16100 | 855 | | 31 | | | 5020 | 3370 | | 9670 | | 1090 | | | 16100 | | | TOTAL | 23320 | 144530 | 58122 | 117610 | 83530 | 155270 | 75878
2529 | 52909 | 11843 | 9972 | 26252 | 138673 | | MEAN | 752 | 4818 | 1875 | 3794 | 2983 | 5009 | 2529 | 1707 | 395 | 322 | 847 | 4622 | | MAX | 1770 | 13200 | 8520 | 7490 | 4630 | 13300 | 6180 | 5190
503 | 1230 | 940 | 16100 | 22300 | | MIN | 285 | 718 | 823 | 2010 | 1160 | 2300 | /55 | | 48 | | 178 | 589 | | AC-FT | 46260 | 286700 | 115300 | 233300 | 165700 | 308000 | 150500 | 104900 | 23490 | 19780 | 52070 | 275100 | | STATIST | TICS OF I | MONTHLY M | EAN DATA | FOR WATER | YEARS 194 | 8 - 2001 | L, BY WATE | R YEAR (WY) | 1 | | | | | MEAN | 2479 | 2388 | 2254 | 2590 | 3230 | 2841 | 2825 | 3871 | 4406 | 1656 | 825 | 1785 | | MAX | 16110 | 13470 | 16200 | 25780 | 42200 | 25780 | 13410 | 27750 | 30360 | 14240 | 2876 | 11160 | | (WY) | 1999 | 1975 | 1992 | 1992 | 1992 | 1992 | 1977 | 1957 | 1987 | 1997 | 1961 | 1961 | | MIN | 254 | 226 | 292 | 249 | 246 | 257 | 125 | 227 | 155 | 1.00 | 114 | 93.9 | | (WY) | 1990 | 1957 | 292
1990 | 1957 | 1967 | 1967 | 1964 | 1964 | 1971 | 1967 | 1964 | 1966 | | SUMMAR | Y STATIS | TICS | FOR | 2000 CALE | NDAR YEAR | | FOR 2001 | WATER YEAR | | WATER Y | EARS 1948 | 3 - 2001 | | ANNUAL | ΤΟΤΔΙ. | | | 394513.5 | ; | | 897909 | | | | | | | ANNUAL | | | | 1078 | , | | 2460 | | | 2603 | | | | | r annual | MEAN | | | | | | | | 14270 | | 1992 | | | ANNUAL I | MEΔN | | | | | | | | | | 1964 | | HIGHES' | T DAILY I | MEAN | | 13200 | Nov 7 | | 22300 | Sep 1 | | 79300 | Oct | 23 1998 | | | DAILY M | LAIN . | | 9.5
14 | aug 22 | | 48
110 | Sep 1
Jun 24
Jun 20
Sep 1
36 Sep 1 | | .0 | 0 Jun | 1 1951 | | | | AY MINIMU | M | 14 | Aug 17 | | 110
22800
22. | Jun 20 | | . 4 | 4 Oct | 4 1969 | | | M PEAK F | | | | | | 22800 | Sep 1 | | 84100 | Jun | 26 1960 | | MAXIMUI | M PEAK S' | TAGE | | 50050° | | | 22. | 36 Sep 1 | | 46.4 | U Jun | 26 1960 | | ANNUAL | KUNOFF | (AC-FT)
EEDS | | 782500
2820 | | | 1781000
5620 | | | 1885000
5700 | | | | | CENT EXC | | | 2820
464 | | | 1260 | | | 899 | | | | | CENT EXC | | | 68 | | | 243 | | | 240 | | | | | ULLU LIMU | טעעע | | 00 | | | 243 | | | 240 | | | e Estimated 08162500 Colorado River near Bay City, TX--Continued Figure 9.--Map showing location of gaging stations in the Lavaca and Coastal River Basins | 08162600 | Tres Palacios River near Midfield, TX | 276 | |----------|--|-----| | 08163500 | Lavaca River at Hallettsville, TX | 322 | | 08164000 | Lavaca River near Edna, TX | 278 | | 08164300 | Navidad River near Hallettsville, TX | 280 | | 08164390 | Navidad River at Strane Park near Edna, TX | 282 | | 08164450 | Sandy Creek near Ganado, TX | 286 | | 08164503 | West Mustang Creek near Ganado, TX | 290 | | 08164504 | East Mustang Creek near Louise, TX | 294 | | 08164525 | Lake Texana near Edna, TX | 298 | | 08164600 | Garcitas Creek near Inez, TX | 314 | | 08164800 | Placedo Creek near Placedo. TX | 316 | 276 TRES PALACIOS RIVER BASIN #### 08162600 Tres Palacios River near Midfield, TX DRAINAGE AREA. -- 145 mi². PERIOD OF RECORD.--June 1970 to current year. Prior to Oct. 1973, published as "Tres Palacios Creek near Midfield". Water-quality records.--Chemical data: Oct. 1968 to Sept. 1981. Biochemical data: Oct. 1968 to Sept. 1981. Pesticide data: Oct. 1968 to Sept. 1981. GAGE.--Water-stage recorder. Datum of gage is 5.38 ft above sea level. June 17, 1970, to Apr. 28, 1988, at same site and datum. Apr. 29, 1988, to Sept. 4, 1991, at right downstream end of bridge at same datum. Satellite telemeter at station. REMARKS.--Records fair. No known regulation. There are ten known diversions above station, but amounts are unknown. An undetermined amount of water from irrigated rice fields enters the river at various points upstream from station. Extensive channel cleaning upstream and downstream from the gage was begun during the 1983 water year and completed during the 1984 water year. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1885, 37 ft in June 1960, and 35 ft in Aug. 1945, from information by local residents. | | | DISCHA | ARGE, CUBI | C FEET PEF | | WATER YE
MEAN V | | R 2000 TO | SEPTEMBE | ER 2001 | | | |---|--|---|---------------------------------------|--|------------------------------------|-------------------------------------|--|---|------------------------------------|--|---------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 13
8.8
3.9
2.1
1.9 | 7.3 | 38
31
24
19
16 | 32
26
28
23
23 | 29
23
18
12 | 12
11
19
34
27 | 11
9.4
9.6
12 | 15
9.0
8.7
9.3
15 | 62
39
25
18
15 | 17
33
228
230
152 | 17
17
15
14
12 | 6160
6770
5390
3650
1880 | | 6
7
8
9
10 | 5.8
11
23
e29
e25 | 782
855
232
95
47 | 16
15
14
13 | 15
18
17
13
290 | 10
11
9.7
9.6 | 15
9.8
11
19
13 | 8.8
9.6
9.9
11
13 | 1510
1100 | 13
13
23
57
57 | 80
47
32
24
18 | 11
11
14
15
15 | 1290
723
302
163
149 | | 11
12
13
14
15 | 22
14
9.9
9.5
11 | 29
20
15
13
12 | 9.9
8.4
8.4
8.5
8.7 | 2820
1130
299
151
88 | 9.5
9.8
9.6
9.3
9.1 | 13
11
9.1
10
25 | 8.3
9.3
9.6
12 | 122
53
135
90
46 | 41
29
21
19
22 | 14
13
13
13
13 | 14
12
8.5
6.2
5.8 | 93
58
40
33
34 | | 16
17
18
19
20 | 7.7
3.6
24
e52
e58
| 364
e3220
e2990
e2150
e1210 | 10
8.3
8.7
7.3
9.8 | 98
151
297
887
466 | 9.2
9.2
9.9
11
8.7 | 81
42
24
15
13 | 14
31
22
23
22 | 25
16
15
17
16 | 41
32
22
18
18 | 12
13
16
17
27 | 5.1
3.7
3.1
3.1
3.2 | 28
22
19
18
17 | | 25 | | | | | | | | 13
12
9.5
9.4
9.9 | | | | 16
19
89
189
148 | | 26
27
28
29
30
31 | 14
11
4.9
3.9
3.2
3.8 | 473
191
106
63
44 | 326
1200
552
179
83
46 | 19
16
14
59
77
55 | 9.4
7.4
11
 | 7.7
7.9
9.6
15
24
17 | 11
12
11
11
11 | 11
18
21
14
14
22 | 14
14
20
21
19 | 14
17
19
23
24
18 | 8.2
6.7
11
88
150
2200 | 67
36
23
23
21 | | TOTAL
MEAN
MAX
MIN
AC-FT | 534.0
17.2
58
1.9
1060 | 16772.4
559
3220
3.5
33270 | 2754.9
88.9
1200
7.3
5460 | 7456
241
2820
13
14790 | 307.4
11.0
29
7.1
610 | 546.7
17.6
81
7.7
1080 | 381.5
12.7
31
8.3
757 | 4941.8
159
1510
8.7
9800 | 786
26.2
62
13
1560 | 1274
41.1
230
12
2530 | 2694.2
86.9
2200
3.1
5340 | 27470
916
6770
16
54490 | | | | | | | | | | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 246
1375
1985
8.43
2000 | 152
582
1993
3.66
2000 | 128
568
1992
5.29
2000 | 143
542
1991
4.83
1971 | 149
978
1992
6.66
1976 | 120
1058
1997
7.79
1996 | 144
689
1997
10.4
1989 | 234
1080
1982
14.4
1998 | 175
699
1996
10.4
1990 | 105
623
1981
11.1
1998 | 55.6
166
1998
9.95
2000 | 265
1308
1979
6.45
2000 | | SUMMARY | Y STATIS | TICS | FOR | 2000 CALEN | IDAR YEAR | I | FOR 2001 W | ATER YEAR | | WATER Y | EARS 1970 | - 2001 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERCE 50 PERCE | MEAN F ANNUAL ANNUAL F DAILY DAILY M SEVEN-D M PEAK F M PEAK S | MEAN
MEAN
EAN
AY MINIMUN
LOW
TAGE
(AC-FT)
EEDS
EEDS | 1 | 41696.72
114
3220
.22
1.0
82710
209
12
2.2 | | | 65918.9
181
6770
1.9
4.1
6930
28.6
130800
229
17
8.2 | Sep 2
Oct 5
Aug 17
Sep 2
55 Sep 2 | | 160
325
42.2
12500
17000
32.4
115900
246
23
8.2 | | 1992
1986
19 1994
18 2000
17 2000
17 1984
17 1984 | e Estimated # 08162600 Tres Palacios River near Midfield, TX--Continued #### 08164000 Lavaca River near Edna, TX LOCATION.--Lat 28°57′35", long 96°41′10", Jackson County, Hydrologic Unit 12100101, at downstream side near center of upstream bridge of two bridges on U.S. Highway 59, 660 ft upstream from Texas and New Orleans Railroad Co. bridge, and 2.8 mi southwest of Edna. DRAINAGE AREA. -- 817 mi². PERIOD OF RECORD.--Aug. 1938 to current year. Water-quality records.--Chemical data: Aug. 1945 to Aug. 1993. Biochemical data: Feb. 1971 to Aug. 1993. Pesticide data: Jan. 1968 to Aug. 1981. Sediment data: Nov. 1977 to Aug. 1993. Specific conductance: Nov. 1977 to Sept. 1981. Water temperature: Nov. 1977 to Sept. 1981. REVISED RECORDS.--WSP 1923: 1955. WRD TX-73-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 14.10 ft above sea level. Prior to June 6, 1939, nonrecording gage (property of U.S. Army Corps of Engineers); June 6, 1939 to Apr. 3, 1957, nonrecording gage at site 110 ft downstream; Apr. 4, 1957, to Mar. 21, 1961, nonrecording gage; all at same datum. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. No known regulation. Small diversions above station for irrigation. No EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, 33.8 ft May 25, 1936 (discharge, 83,400 ft³/s), from information by local resident. | | | DISCHAF | RGE, CUBIC | FEET PER | | WATER Y
MEAN V | YEAR OCTOBER | 2000 TO | SEPTEMBER | 2001 | | | |---|------------------------------------|--|--|--|-------------------------------------|--|---|---|------------------------------------|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.6
1.5
1.4
1.1 | 11
8.7
9.0
9.6 | 210
133
101
92
88 | 114
98
84
73
65 | 159
128
112
102
97 | 71
111
872
2280
1600 | 103
94
89
85
82 | 42
41
40
39
141 | 78
92
92
73
64 | 28
29
39
65
72 | 11
11
11
10
9.7 | 23600
24600
13600
4410
2810 | | 6
7
8
9
10 | 1.6
2.7
3.0
3.6
5.9 | 84
627
254
98
55 | 80
75
68
63
61 | 59
55
52
48
160 | 93
91
90
91
88 | 520
293
216
334
504 | 79
77
74
71
68 | 7150
15600
2680
570
358 | 58
56
54
54
53 | 55
39
31
27
25 | 9.2
9.7
9.4
8.8
8.5 | 4940
2530
823
705
2580 | | 11
12
13
14
15 | 6.3
5.4
10
11
9.8 | 38
30
26
273
235 | 59
56
52
51
51 | 1130
1070
459
268
185 | 86
85
85
84
84 | 333
215
169
203
918 | 67
65
64
64
63 | 266
223
222
164
143 | 52
50
49
46
46 | 24
22
21
20
19 | 7.9
7.4
7.0
8.0
7.5 | 4540
873
421
321
264 | | 16
17
18
19
20 | 8.8
10
31
52
16 | 77
53
201
3170
5980 | 77
62
52
47
45 | 145
264
473
1510
2080 | 84
83
83
95
91 | 3900
3010
434
286
212 | 59
57
54
53
53 | 128
119
110
102
98 | 47
44
43
46
42 | 18
17
17
17
17 | 7.0
6.5
6.3
6.3 | 230
205
187
174
165 | | 21
22
23
24
25 | 10
31
38
29
17 | 3380
389
221
1050
4070 | 44
41
40
42
78 | 362
245
194
167 | 83
80
77
77
76 | 175
156
141
130
120 | 53
52
51
50
49 | 93
88
82
79
77 | 41
48
42
43
153 | 15
15
14
14
16 | 7.1
6.8
6.8
6.7
6.4 | 160
163
537
764
350 | | 26
27
28
29
30
31 | 14
22
74
61
25
15 | 2530
465
281
199
197 | 135
1250
1090
485
219
138 | 149
136
126
127
327
274 | 75
74
73
 | 111
104
113
157
136
115 | 48
46
45
43
42 | 75
74
72
71
78
72 | 87
61
42
33
30 | 19
16
17
17
14
12 | 6.2
7.6
12
36
66
10200 | 206
158
137
127
118 | | TOTAL
MEAN
MAX
MIN
AC-FT | 520.1
16.8
74
1.1
1030 | 24031.3
801
5980
8.7
47670 | 5085
164
1250
40
10090 | 11263
363
2080
48
22340 | 2526
90.2
159
73
5010 | 17939
579
3900
71
35580 | 1900
63.3
103
42
3770 | 29097
939
15600
39
57710 | 1719
57.3
153
30
3410 | 771
24.9
72
12
1530 | 10530.3
340
10200
6.2
20890 | 90698
3023
24600
118
179900 | | STATIST | | | | | | | L, BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 478
7118
1995
.58
1991 | 339
3875
1999
.003
1957 | 245
2400
1977
.19
1991 | 286
1564
1979
.055
1957 | 387
5214
1992
13.5
1954 | 279
2696
1997
6.58
1956 | 489
5014
1997
4.43
1956 | 671
3239
1982
8.16
1956 | 634
5005
1973
.72
1990 | 204
3999
1940
2.14
1954 | 90.9
713
1946
.16
1990 | 391
3023
2001
.13
1989 | | SUMMARY | STATIS' | TICS | FOR 2 | 000 CALENI | DAR YEAR | | FOR 2001 WAT | TER YEAR | | WATER | YEARS 1938 | 3 - 2001 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUN
MAXIMUN
ANNUAL
10 PERC
50 PERC | MEAN CANNUAL ANNUAL CDAILY DAILY M | MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) EEDS | | 61805.5
169
5980
1.1
1.4
122600
238
32
4.0 | Nov 20
Sep 29
Sep 29 | | 24600
1.1
1.6
29400
28.00
388900
658
74
9.5 | Sep 2
Oct 4
Oct 1
Sep 2
Sep 2 | | 374
1385
6.
122000
150000
35.
270900
421
53
9. | 12 Oct
00 Nov
00 Jul
0ct
49 Oct | 1992
1956
19 1994
10 1954
2 1956
19 1994
19 1994 | ### 08164000 Lavaca River near Edna, TX--Continued #### 08164300 Navidad River near Hallettsville, TX LOCATION.--Lat 29°28'00", long 96°48'45", Lavaca County, Hydrologic Unit 12100102, on right bank 28 ft downstream from bridge on U.S. Highway 90-A, 0.8 mi downstream from Mixons Creek, 1.2 mi southwest of Sublime, and 8 mi northeast of Hallettsville. DRAINAGE AREA. -- 332 mi². PERIOD OF RECORD. -- Oct. 1961 to current year. REVISED RECORDS. -- WSP 2123: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 159.28 ft above sea level. Satellite telemeter at station. REMARKS .-- No estimated daily discharges. Records fair. No known regulation or diversions. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1860, 40 ft in June 1940; flood in July 1936 reached a stage of 39 ft, from information by local
residents and Southern Pacific Railroad Company. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES JUL DAY OCT NOV DEC JAN FEB MAR APR MAY NUL AUG SEP .14 .43 .15 1.9 21 12 135 .37 .35 .17 9.3 .32 .20 7.9 8.5 .32 .22 .30 .62 15 32 38 71 7.0 5.5 4.6 .29 100 8.4 1.8 .32 3.0 8.0 3.1 .32 6.5 2.4 7.6 6.2 1.9 .29 53 1.0 .81 .71 .70 1.1 .81 .21 1.3 16 .87 .79 .21 6.6 3.7 5.3 .77 .23 .99 4 0 3.4 .73 .17 .52 12 2 2 3.7 5.3 .64 .63 1.3 8.5 .56 .58 .57 .57 5.0 8.8 2.0 .59 1.8 ___ 9.1 .57 .51 9.8 .47 TOTAL 100.57 401.4 2643.48 11914.7 111.33 3.59 3.24 36.0 37.6 13.4 MEAN 76.1 44.6 85.3 .14 MAX 3.4 .47 MIN AC-FT .11 .04 CFSM .01 1.20 .23 .32 .13 1.39 1.60 .11 .01 .26 .99 .26 .37 .12 .30 1.10 .01 1.34 .14 .01 IN. .13 .04 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1962 - 2001, BY WATER YEAR (WY) MEAN 23.5 27.5 MAX 91.6 (WY) MTN .000 .035 6.38 8.46 9.87 7.17 2.39 (WY) SUMMARY STATISTICS FOR 2000 CALENDAR YEAR FOR 2001 WATER YEAR WATER YEARS 1962 - 2001 ANNUAL TOTAL 20924.98 48385.48 ANNUAL MEAN HIGHEST ANNUAL MEAN 57.2 LOWEST ANNUAL MEAN 11.5 Sep 14 1974 HIGHEST DAILY MEAN Nov 19 Mar 15 .00 LOWEST DATLY MEAN .06 .14 Oct. 1 Aug 5 1964 Sep .00 .00 53500 ANNUAL SEVEN-DAY MINIMUM Aug 31 .22 .07 Aug 15 Sep MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE Mar 15 Sep 13 1974 25.59 36.05 Sep 13 1974 Mar 15 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 2.34 5.42 6.11 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 9 8 .59 1.9 .20 ### 08164300 Navidad River near Hallettsville, TX--Continued #### 08164390 Navidad River at Strane Park near Edna, TX $\texttt{LOCATION.--Lat 29}^\circ 03'55", \ \texttt{long 96}^\circ 40'26", \ \texttt{Jackson County, Hydrologic Unit 12100102}, \ \texttt{on County Road 401, 6.3 mi north of Edna. }$ DRAINAGE AREA.--579 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Oct. 1996 to current year. GAGE.--Water-stage recorder. Datum of gage is 42.53 ft above sea level. Satellite telemeter at station. REMARKS.--Records fair. Much of low flow during the irrigation season (Apr. to Sept.) is drainage from rice fields irrigated by water originally diverted from the Colorado River. No known regulation or diversions. No flow at times. | | | DISCHAR | GE, CUBIC | C FEET PER | | WATER Y | EAR OCTOBER
ALUES | 2000 TO | SEPTEMBE | ER 2001 | | | |--|---------------------------------------|--|---|---|------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .02
.01
.02
.02 | 2.5
2.0
2.5
3.2
3.7 | 85
61
49
45
41 | 86
70
54
45
39 | 127
80
60
51
44 | 33
129
1460
2190
1490 | 92
73
63
58
53 | 14
13
13
12
60 | 36
39
26
25
20 | 18
19
23
27
23 | 1.8
1.8
1.3
1.3 | 9540
6930
3100
655
1750 | | 6
7
8
9
10 | .02
.06
.02
.05 | 15
88
79
30
15 | 39
35
32
29
27 | 36
34
31
29
52 | 40
37
36
35
35 | 422
229
156
213
394 | 50
46
41
37
35 | 4240
2530
1150
431
182 | 18
17
17
18
17 | 17
14
12
11
9.6 | 1.4
1.1
1.2
.81
.98 | 2270
2180
697
348
1890 | | 11
12
13
14
15 | .01
.01
.00
.00 | 9.8
7.4
7.2
942
147 | 25
23
22
22
22 | 593
408
203
135
98 | 32
30
29
30
30 | 227
138
102
108
1070 | 35
33
31
30
28 | 107
217
135
80
62 | 17
18
16
14
14 | 8.1
6.4
5.6
4.7
4.3 | .78
.44
.30
.86 | 1610
285
161
112
86 | | 16
17
18
19
20 | .01
.03
.36
2.7
1.3 | 59
41
437
1940
3080 | e21
e21
e21
21
19 | 78
218
333
1130
1500 | 30
29
132
83
47 | 2900
4740
1150
281
200 | 27
25
23
22
21 | 48
42
36
34
31 | 16
15
21
20
15 | 4.6
4.3
3.9
4.0
3.6 | .97
.78
.34
.07 | 70
60
53
48
44 | | 21
22
23
24
25 | 3.5
20
24
21
7.6 | 2460
259
134
683
2030 | 18
17
17
17
47 | 515
230
140
101
80 | 35
30
28
26
25 | 160
136
120
107
91 | 21
21
19
19 | 29
26
26
24
24 | 13
15
14
15
77 | 3.4
4.0
3.4
2.7
2.3 | .00
.00
.00
.00 | 41
38
565
271
157 | | 26
27
28
29
30
31 | 4.5
5.0
6.5
10
4.8
3.1 | 1630
278
154
103
106 | 293
973
1250
464
189
110 | 67
58
52
58
640
314 | 26
26
23
 | 81
75
333
428
212
128 | 19
18
17
16
15 | 24
30
33
28
26
22 | 118
48
31
22
19 | 2.3
3.3
4.7
3.2
2.6
1.8 | .00
.01
.65
3.0
21
6480 | 85
57
44
36
31 | | TOTAL
MEAN
MAX
MIN
AC-FT | 114.68
3.70
24
.00
227 | 14748.3
492
3080
2.0
29250 | 4055
131
1250
17
8040 | 7427
240
1500
29
14730 | 1236
44.1
132
23
2450 | 19503
629
4740
33
38680 | 1007
33.6
92
15
2000 | 9729
314
4240
12
19300 | 771
25.7
118
13
1530 | 256.8
8.28
27
1.8
509 | 6523.60
210
6480
.00
12940 | 33214
1107
9540
31
65880 | | STATIS | | | | | | | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 794
2636
1999
3.70
2001 | 624
2334
1999
7.73
2000 | 193
402
1999
10.8
2000 | 265
690
1997
16.5
2000 | 275
904
1998
22.7
2000 | 527
1540
1997
39.0
2000 | 452
2030
1997
33.6
2001 | 360
1038
1997
27.7
1998 | 482
1632
1997
25.7
2001 | 36.5
80.5
1999
2.80
2000 | 64.4
210
2001
.69
2000 | 397
1107
2001
.041
2000 | | SUMMAR | Y STATIS | TICS | FOR 2 | 2000 CALEN | DAR YEAR | 1 | FOR 2001 WA | TER YEAR | | WATER | YEARS 1997 | - 2001 | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL 10 PER 50 PER | IN 3.70 7.73
WY) 2001 2000 | | | 34505.77
94.3
3080
.00
.01
68440
149
15
.02 | Nov 20
Sep 23
Oct 10 | | | Sep 1
Oct 13
Aug 20
Sep 1 | | 372
627
44.
23300
c25000
a30.
269500
540
38
5. | 8 Oct
00 Sep
00 Aug
Oct
08 Oct | 1997
2000
19 1998
23 2000
20 2001
19 1998
19 1998 | c From rating curve extended above current meter discharge measurement of 9,150 ${\rm ft^3/s.}$ a From floodmark. 08164390 Navidad River at Strane Park near Edna, TX--Continued # 08164390 Navidad River at Strane Park near Edna, TX--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: June 1998 to current year. PESTICIDE DATA: June 1998 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | WATER- | QUALITY D | ATA, WATE | R YEAR OC | TOBER 200 | 0 TO SEPT | EMBER 200 | 1 | | | | |-----------------|---|---|--|---|---|---|---|---|--|--|---|--|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | 2,4,5-T
DIS-
SOLVED
(UG/L)
(39742) | 2,4-D,
DIS-
SOLVED
(UG/L)
(39732) | 2,4-DB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38746) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | 3HYDRXY
CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | | MAY
23
23 | 1010
1010 | 27 | 8.0 | 89.6 | 8.4 | 712
 | 21.0 | <.04 | <.11 | <.10 | <.002 | <.11 | <.004 | | AUG
08
08 | 0940
0940 | 1.1 | 5.4 | 66.7 | 8.0 | 803 | 26.5 | <.04 | <.11 | <.10 | <.002 | <.20 | <.004 | | DATE | ACIFL-
UORFEN
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49315) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALDI-
CARB
SULFONE
WAT,FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA-
RB SUL-
FOXIDE,
WAT,FLT
GF
0.7U
REC
(UG/L)
(49314) | ALDI-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49312) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BENTA-
ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | BRO-
MACIL,
WATER,
DISS,
REC
(UG/L)
(04029) | BRO-
MOXYNIL
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49311) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49310) | | MAY
23
23 | <.05 | <.002 | <.20 | <.12 | <.21 | <.005 | .028 | <.010 | <.04 | <.09 | <.07 | <.002 | <.02 | | AUG
08
08 | <.05 | <.002 | <.20 | <.02 | <.21 | <.005 | E.002 | <.010 | <.04 | <.09 | <.07 | <.002 | <.02 | | DATE | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49309) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLORO-
THALO-
NIL,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49306) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CLOPYR-
ALID,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49305) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DACTHAL
MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DICAMBA
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | DICHLO-
BENIL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49303) | | MAY
23
23 | <.041 | <.29 | <.020 | <.13 | <.005 | <.42 | <.018 | <.07 | <.003 | <.006 | <.005 | <.04 | <.05 | | AUG
08
08 | <.041 | <.29 | <.020 | <.13 | <.005 | <1.16 | <.018 | <.07 | <.003 | <.006 | <.005 | <.04 | <.05 | | DATE | DICHLOR
PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49302) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DINOSEB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49301) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | DIURON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49300) | DNOC
WAT,FLT
GF 0.7U
REC
(UG/L)
(49299) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FEN-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49297) | FLUO-
METURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38811) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | | MAY
23
23 | <.05 | <.005 | <.14 | <.021 | <.06 | <.25 | <.002 | <.009 | <.005 | <.07 | <.06 | <.003 | <.004 | | AUG
08
08 | <.05
 | <.005 | <.09 | <.021 | <.06 | <.25 | <.002 | <.009 | <.005 | <.07 | <.06 | <.003 | <.004 | | DATE | LINURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38478) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | MCPA,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38482) | MCPB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38487) | METHIO-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | METH-
OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | | MAY
23
23 | <.02 | <.035 | <.027 | <.08 | <.13 | <.07 | <.02 | <.050 | <.006 | E.005 | <.006 | .028 | <.007 | | AUG
08
08 | <.02 | <.035 | <.027 | <.08 | <.13 | <.07 | <.02 | <.050 | <.006 | <.013 | <.006 | <.002 | <.007 | ## 08164390 Navidad River at Strane Park near Edna, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | NEB-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR
AZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49293) | ORY-
ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | OXAMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PIC-
LORAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49291) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | |----------|--|---|--|---|---|--|--|---|--|---|---|---|--| | MAY | | | | | | | | | | | | | | | 23
23 | <.06 | <.04 | <.28 | <2.97 | <.003 | <.007 | <.002 | <.010 | <.006 | <.011 | <.09 | <.015 | <.004 | | AUG | | | | | | | | | | | | | | | 08
08 | <.10 | <.04 | <.28 | <.02 | <.003 | <.007 | <.002 | <.010 | <.006 | <.011 | <.09 | E.003 | <.004 | | 08 | | | | | | | | | | | | | | | DATE | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRO-
PHAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49236) | PRO-
POXUR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38538) | SILVEX,
DIS-
SOLVED
(UG/L)
(39762) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
CLOPYR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49235) | | MAY | | | | | | | | | | | | | | | 23
23 | <.010 | <.011 | <.023 | <.28 | <.12 | <.03 | <.011 | E.007 | <.034 | <.017 | E.004 | <.002 | <.07 | | AUG | | | | | | | | | | | | | | | 08
08 | <.010 | <.011 | <.023 | <.09 | <.12 | <.03 | <.011 | <.016 | <.034 | <.017 | <.005 | <.002 | <.07 | | 08 | | | | | | | | | | | | | | | | | DA | TE | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39571) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39399) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39531) | METHYL
PARA-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG)
(39601) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | TRI-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39787) | | | | | | | MAY | | | | | | | | | | | | | | | | 3 | <.009 | <.2 | <.2 | <.2 | <.2 | <.2 | <.2 | | | | | | | AUG | | | <.∠ | <.∠ | <.∠ | <.∠ | <.∠ | <.∠ | | | | | | | | 8 | <.009 | <.2 | <.2 | <.2 | <.2 | <.2 | <.2 | | | | #### 08164450 Sandy Creek near Ganado, TX LOCATION.--Lat 29°09'36", long 96°32'46", Jackson County, Hydrologic Unit 12100102, on left bank at downstream end of bridge on Farm Road 710, 0.9 mi upstream from Goldenrod Creek, and 8.0 mi north of Ganado. DRAINAGE AREA. -- 289 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Oct. 1977 to current year. Prior to Oct. 1997, published as "near Louise." GAGE.--Water-stage recorder. Datum of gage is 59.72 ft above sea level. Satellite telemeter at station. REMARKS.--Records fair. Much of the low flow during the irrigation season (Apr. to Sept.) is drainage from rice fields irrigated by water originally diverted from the Colorado River. No known regulation or diversions. No flow at times. | | | DISCHA | RGE, CUB | IC FEET PI | | WATER Y | | BER 2000 TO | SEPTEMBE | ER 2001 | | | |--|--|---|---------------------------------------|---------------------------------------
--------------------------------------|--------------------------------------|--|--|-------------------------------------|------------------------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 17
18
29
28
23 | 9.5
8.1
7.9
12
16 | 73
50
36
30
24 | 40
33
20
13
9.0 | 139
77
49
39
30 | 55
479
2630
2370
1510 | 184
103
71
53
43 | 5.5
5.5
5.3
5.4 | 17
14
12
1.9
2.6 | 32
63
117
110
91 | 58
49
43
44
32 | 9350
5360
2960
1710
1870 | | 6
7
8
9
10 | 27
48
141
299
308 | 316
782
497
204
123 | 22
17
11
8.5
6.3 | 7.3
7.2
5.5
4.2 | 26
23
21
20
17 | 785
346
194
346
539 | 33
26
20
14
5.6 | 1130
1500
1160
620
199 | 1.3
1.3
1.6
2.5
39 | 76
62
40
37
24 | 19
14
4.7
33
31 | 1270
730
388
405
2240 | | 11
12
13
14
15 | 253
198
154
141
123 | 71
45
359
375
141 | 4.3
3.8
3.8
4.3
4.2 | 749
727
400
193
150 | 14
10
10
12
20 | 264
233
169
187
2200 | 4.9
4.7
17
26
24 | 78
86
36
16
2.7 | 67
43
23
12
21 | 22
25
25
23
33 | 18
8.4
1.4
2.7
.55 | 1050
699
298
156
86 | | 16
17
18
19
20 | 92
71
102
293
377 | 83
63
665
3470
2520 | | 113
552
879
1840
1540 | 23
25
30
29
27 | 1670
838
287
145
88 | 19
21
14
11
6.5 | .68
.14
.20
.07 | 51
81
68
49
37 | 31
36
49
67
76 | .24
6.9
4.4
1.4
.39 | 63
49
43
37
32 | | 21
22
23
24
25 | 210
240
375
268
171 | 355
1470 | 3.0
2.4
2.0
2.5
8.1 | 713
229
122
85
62 | 18
11
7.3
5.8
4.8 | 62
47
38
33
30 | 5.4
12
16
33
56 | .05
.02
.03
.02 | 20
25 | 81
84
58
41
58 | .08
.01
.00
.00 | 35
59
143
254
184 | | 26
27
28
29
30
31 | 105
57
32
22
12
9.5 | 924
432
192
117
87 | 170
831
703
279
120
59 | 30 | 42
330
131

 | 25
24
528
987
960
488 | 55
21
7.6
5.8
5.6 | 3.9
118
261
144
68
31 | 51
45
43
38
29 | 66
86
89
97
95
72 | .60
6.1
29
60
310
5480 | 130
102
87
76
78 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4243.5
137
377
9.5
8420 | 17903.5
597
3470
7.9
35510 | 2498.5
80.6
831
2.0
4960 | 9265.2
299
1840
4.2
18380 | 1190.9
42.5
330
4.8
2360 | 18557
599
2630
24
36810 | 918.1
30.6
184
4.7
1820 | 5556.58
179
1500
.02
11020 | 884.2
29.5
81
1.3
1750 | 1866
60.2
117
22
3700 | 6257.87
202
5480
.00
12410 | 29944
998
9350
32
59390 | | STATIS | TICS OF | MONTHLY ME | AN DATA | FOR WATER | YEARS 1978 | - 2001 | , BY WATE | CR YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 355
2917
1999
18.6
2000 | 209
1513
1999
.000
2000 | 134
746
1992
.000
2000 | 265
956
1992
.022
2000 | 261
2331
1992
.28
1988 | 191
1406
1997
.080
1996 | 211
1316
1997
3.14
1980 | 304
1150
1993
1.82
1996 | 351
1866
1993
.030
1990 | 121
475
1983
7.25
1997 | 41.7
202
2001
3.21
1991 | 270
1364
1978
11.8
1988 | | SUMMAR | Y STATIS | TICS | FOR | 2000 CAL | ENDAR YEAR | : | FOR 2001 | WATER YEAR | | WATER | YEARS 1978 | - 2001 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
ANNUAL
10 PER
50 PER | MEAN T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D M PEAK F M PEAK S | MEAN
MEAN
EAN
AY MINIMUM
LOW
TAGE
(AC-FT)
EEDS | | . (| Nov 19
00 Jan 1
00 Jan 1 | | 99085. 271 9350 10000 20. 196500 719 43 3. | Sep 1
00 Aug 23
04 May 19
Sep 1
84 Sep 1 | | 459
21 | | 1992
1990
19 1998
5 1978
10 1980
19 1998
19 1998 | e Estimated c From rating curve extended above indirect measurement of 60,000 ${\rm ft^3/s.}$ a From floodmark. 08164450 Sandy Creek near Ganado, TX--Continued ### 08164450 Sandy Creek near Ganado, TX--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.-CHEMICAL DATA: Oct. 1977 to current year. BIOCHEMICAL DATA: Oct. 1977 to Nov. 1992. PESTICIDE DATA: Nov. 1977 to July 1981, Apr. 1996 to current year. SEDIMENT DATA: Sept. 1978 to Apr. 1979. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | WATER- | QUALITY D | ATA, WATE | R YEAR OC | TOBER 200 | 00 TO SEPT | EMBER 200 | 1 | | | | |------------------------|---|---|--|---|---|---|---|---|--|--|---|--|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | 2,4,5-T
DIS-
SOLVED
(UG/L)
(39742) | 2,4-D,
DIS-
SOLVED
(UG/L)
(39732) | 2,4-DB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38746) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | 3HYDRXY
CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | | MAY
23
23 | 1330
1330 | .03 | 8.8 | 117 | 7.8 | 336 | 30.5 | <.04 | <.11 | <.10 | <.002 | <.11 | <.004 | | AUG
08
08 | 1200
1200 | 4.0 | 7.1 | 90.1 | 8.1 | 675
 | 28.0 | <.04 | <.11 | <.10 | <.002 | <.39 | <.004 | | DATE | ACIFL-
UORFEN
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49315) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALDI-
CARB
SULFONE
WAT,FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA-
RB SUL-
FOXIDE,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49314) | ALDI-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49312) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BENTA-
ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | BRO-
MACIL,
WATER,
DISS,
REC
(UG/L)
(04029) | BRO-
MOXYNIL
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49311) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49310) | | MAY
23
23 | <.12 | <.002 | <.91 | <.18 | <.62 | <.005 | .026 | <.010 | <.04 | <.09 | <.07 | <.002 | <.02 | | AUG
08
08 | <.05
 | <.002 | <.20 | <.06 | <.51 | <.005 | .009 | <.010 | <.04 | <.09 | <.07 | <.002 | <.02 | | DATE | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49309) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLORO-
THALO-
NIL,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49306) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CLOPYR-
ALID,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49305) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DACTHAL
MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DICAMBA
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | DICHLO-
BENIL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49303) | | MAY
23
23
AUG | <.041 | <.29 | <.020 | <.13 | <.005 | <.42 | <.018 | <.80 | <.003 | E.005 | <.005 | <.13 | <.17 | | 08 | <.041 | <.29 | <.020 | <.13 | <.005 | <.42 | <.018 | <.07 | <.003 | <.006 | <.005 | <.04 | <.05
 | | DATE | DICHLOR
PROP,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49302) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DINOSEB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49301) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | DIURON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49300) | DNOC
WAT,FLT
GF 0.7U
REC
(UG/L)
(49299) | EPTC
WATER
FLTRD
0.7 U
GF,
REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FEN-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49297) | FLUO-
METURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38811) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | | MAY
23
23 | <.05
 | <.005 | <.13 | <.021 | .11 | <.25 | <.002 | <.009 | <.005 | <.07 | <.30 | <.003 | <.004 | | AUG
08
08 | <.05
 | <.005 | <.09 | <.021 | <.06 | <.25 | <.002 | <.009 | <.005 | <.14 | <.06 | <.003 | <.004 | | DATE | LINURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38478) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | MCPA,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38482) | MCPB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38487) | METHIO-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | METH-
OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | AZIN-
PHOS | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | | MAY
23
23 | <.02 | <.035 | E.015 | <.08 | <.57 | <.07 | <4.90 | <.050 | <.006 | .047 | <.006 | 1.04 | <.007 | | AUG
08
08 | <.02 | <.035 | E.022 | <.08 | <.13 | <.07 | <36.4 | <.050 | <.006 | E.008 | <.006 | .033 | <.007 | ### 08164450 Sandy Creek near Ganado, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | NEB-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR
AZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49293) | ORY-
ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | OXAMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PIC-
LORAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49291) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PRON-
AMIDE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82676) | |------------------------|--|---|--|---|---|--|--|---|--|---|---|---|--| | MAY
23
23
AUG | <.20 | <.04 | <.28 | <13.6 | <.003 | <.007 | <.002 | <.010 | <.006 | <.011 | <.09 | <.015 | <.004 | | 08 | <.12 | <.04 | <.28 | <.10 | <.003 | <.007 | <.002 | <.010 | <.006 | <.011 | <.09 | <.015 | <.004 | | DATE | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRO-
PHAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49236) | PRO-
POXUR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38538) | SILVEX,
DIS-
SOLVED
(UG/L)
(39762) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
CLOPYR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49235) | | MAY
23
23
AUG | <.010 | <.011 | <.023 | <.09 | <.12 | <.19 | E.010 | E.014 | <.034 | <.017 | .565
 | <.002 | <.07 | | 08
08 | <.010 | <.011 | <.023 | <.09 | <.39 | <.03 | <.011 | E.001 | <.034 | <.017 | .015 | <.002 | <.07 | | | | D A | TE | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39571) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39399) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39531) | METHYL
PARA-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG)
(39601) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | TRI-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39787) | | | | | | | AUG
0 | 3 | <.009

<.009
 |
<.2

<.2 |
<.2

<.2 |
<.2

<.2 |
<.2

<.2 |
<.2

<.2 |
<.2

<.2 | | | | #### 08164503 West Mustang Creek near Ganado, TX LOCATION.--Lat 29°04'17", long 96°28'01", Jackson County, Hydrologic Unit 12100102, on right bank at downstream end of downstream bridge on U.S. Highway 59, 2.1 mi upstream from Middle Mustang Creek, and 3.6 mi east of Ganado. DRAINAGE AREA. -- 178 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Oct. 1977 to current year. GAGE.--Water-stage recorder. Datum of gage is 40.12 ft above sea level. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. Much of low flow during the irrigation season (Apr. to Sept.) is drainage from rice fields irrigated by water originally diverted from the Colorado River. No known regulation or diversions. No flow at times. | | | DISCHA | RGE, CUB | IC FEET PE | | WATER YE
Y MEAN V | EAR OCTOBER
ALUES | 2000 TO | SEPTEMBE | ER 2001 | | | |--|--|--|--|---|---|--|---|---|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.6
5.5
6.0
5.5
21 | 6.9
3.9
4.4
96
238 | 36
29
22
18
22 | 37
36
28
20
13 | 53
31
21
15
7.8 | 46
87
629
774
359 | 96
50
22
13
8.3 | 16
12
13
18
41 | 22
18
14
13
8.8 | 19
24
57
76
63 | 38
37
53
44
40 | 10100
7950
5740
3870
2880 | | 6
7
8
9
10 | 30
29
39
109
126 | 972
1940
855
244
107 | 18
13
9.8
7.5
6.2 | 9.4
8.0
6.9
6.2 | 4.8
3.3
2.6
2.1
2.6 | 130
57
29
25
93 | 5.7
5.3
5.3
3.8
6.3 | 617
1090
1200
402
133 | 9.2
12
11
9.3
21 | 50
36
31
27
24 | 34
31
25
21
21 | 1880
678
319
201
304 | | 11
12
13
14
15 | 125
97
76
53
27 | 56
32
33
53
29 | 4.9
3.6
8.6
6.5
5.1 | 1010
978
240
129
105 | 1.8
1.4
1.7
5.2
4.5 | 58
36
47
69
778 | 9.4
7.4
21
25
22 | 73
159
163
81
43 | 29
33
23
16
17 | 22
18
18
23
34 | 23
28
26
21
28 | 260
147
88
55
36 | | 16
17
18
19
20 | 17
13
14
69
128 | 59
315
886
2590
2290 | 3.9
3.1
2.8
2.4
2.2 | 74
180
394
1170
1090 | 3.2
4.6
3.0
4.3
4.5 | 674
216
93
43
24 | 17
13
15
15
6.4 | 47
34
22
24
19 | 36
51
46
31
21 | 32
27
33
58
65 | 27
29
19
15
10 | 29
25
22
20
19 | | 21
22
23
24
25 | 162
272
227
126
88 | 830
317
145
1060
2270 | 1.8
1.7
1.7
1.9
24 | 293
119
70
54
42 | 2.7
1.7
1.2
1.0 | 16
10
9.1
6.7
6.4 | 7.0
11
12
20
27 | 17
25
25
20
13 | 19
24
21
19
28 | 94
83
69
66
54 | 5.8
3.4
3.6
3.7
3.1 | 18
25
69
151
98 | | 26
27
28
29
30
31 | 58
33
22
13
7.7
6.2 |
810
229
117
74
51 | 225
739
516
182
84
41 | 31
26
20
24
90
82 | 6.7
242
119
 | 4.2
3.2
4.5
242
264
175 | 20
21
15
11
12 | 12
21
48
63
44
28 | 21
17
15
22
21 | 42
71
86
88
89
63 | 6.1
8.8
20
49
168
4720 | 68
45
35
31
22 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 2009.5
64.8
272
4.6
3990
.36
.42 | 16713.2
557
2590
3.9
33150
3.13
3.49 | 2042.7
65.9
739
1.7
4050
.37
.43 | 6443.5
208
1170
6.2
12780
1.17
1.35 | 552.43
19.7
242
.73
1100
.11 | 5008.1
162
778
3.2
9930
.91
1.05 | 522.9
17.4
96
3.8
1040
.10 | 4523
146
1200
12
8970
.82
.95 | 648.3
21.6
51
8.8
1290
.12
.14 | 1542
49.7
94
18
3060
.28
.32 | 5561.5
179
4720
3.1
11030
1.01
1.16 | 35185
1173
10100
18
69790
6.59
7.35 | | STATIS | TICS OF | MONTHLY ME | AN DATA I | FOR WATER | YEARS 197 | 8 - 2001, | , BY WATER Y | YEAR (WY) |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 252
1746
1995
14.2
1988 | 159
813
1999
1.32
2000 | 108
587
1992
.17
1991 | 182
881
1980
.72
1982 | 152
1243
1992
.87
1986 | 119
988
1997
.81
1986 | 161
1107
1997
12.3
1983 | 208
702
1993
11.2
1978 | 201
958
1993
5.56
1990 | 102
412
1983
38.1
1986 | 57.6
179
2001
14.0
2000 | 251
1173
2001
5.33
1988 | | SUMMAR | Y STATIS | TICS | FOR | 2000 CALE | ENDAR YEAR | . E | FOR 2001 WAT | TER YEAR | | WATER Y | EARS 1978 | - 2001 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
ANNUAL
ANNUAL
ANNUAL
10 PER
50 PER | MEAN T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D M PEAK F M PEAK S RUNOFF RUNOFF | MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS | ı | .0 | Nov 19
00 Jan 24
01 Jan 21
72 | | 80752.13
221
10100
.73
2.1
10600
22.52
160200
1.24
16.88
316
28
4.5 | Feb 25
Dec 18
Sep 1
Sep 1 | | 162
325
45.2
18700
.0
c20000
a28.3
117600
.9
12.3
299
23
1.5 | Oct 1 0 Dec 1 1 Dec 1 0ct 1 9 Oct 1 | 1997
1990
19 1994
19 1990
19 1990
19 1994 | c From rating curve extended above current meter discharge measurement of $19,000~{\rm ft}^3/{\rm s}$. a From floodmark. 08164503 West Mustang Creek near Ganado, TX--Continued #### 08164503 West Mustang Creek near Ganado, TX--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.-CHEMICAL DATA: Oct. 1977 to current year. BIOCHEMICAL DATA: Oct. 1977 to Nov. 1992. PESTICIDE DATA: Nov. 1977 to July 1981, Apr. 1996 to current year. SEDIMENT DATA: Sept. 1978 to Apr. 1979. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | WAIEK- | QUALITI D | AIA, WAIL | R ILAR OC | IUBER 200 | O TO SEPT | EMBER 200 | 1 | | | | |-----------------|---|---|--|---|---|---|---|---|--|--|---|--|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | 2,4,5-T
DIS-
SOLVED
(UG/L)
(39742) | 2,4-D,
DIS-
SOLVED
(UG/L)
(39732) | 2,4-DB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38746) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | 3HYDRXY
CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | | MAY
23
23 | 1120
1120 | 26
 | 6.3 | 72.5 | 7.8 | 641 | 22.5 | <.04 | <.11 | <.10 | <.002 | <.29 | .009 | | AUG
08
08 | 1050
1050 | 25
 | 6.3 | 79.3 | 8.0 | 745
 | 27.5 | <.04 | <.11 | <.10 | <.002 | <.29 | <.006 | | DATE | ACIFL-
UORFEN
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49315) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALDI-
CARB
SULFONE
WAT,FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA-
RB SUL-
FOXIDE,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49314) | ALDI-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49312) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BENTA-
ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | BRO-
MACIL,
WATER,
DISS,
REC
(UG/L)
(04029) | BRO-
MOXYNIL
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49311) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49310) | | MAY
23
23 | <.05 | .045 | <.20 | <.02 | <.21 | <.005 | .218 | <.010 | <.26 | <.14 | <.07 | <.002 | <.02 | | AUG
08
08 | <.05 | .007 | <.20 | <.02 | <.47 | <.005 | .273 | <.010 | <.04 | <.09 | <.07 | <.002 | <.02 | | DATE | CAR-
BARYL
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49309) | CARBO-
FURAN
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLORO-
THALO-
NIL,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49306) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CLOPYR-
ALID,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49305) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DACTHAL
MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DICAMBA
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | DICHLO-
BENIL,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(49303) | | MAY
23
23 | <.041 | <.29 | <.020 | <.13 | <.005 | <.42 | <.018 | <3.80 | <.003 | E.025 | <.005 | <.14 | <.05 | | AUG
08
08 | <.041 | <.29 | <.020 | <.13 | <.005 | <.42 | <.018 | <.07 | <.003 | E.016 | <.005 | <.04 | <.05 | | DATE | DICHLOR
PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49302) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DINOSEB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49301) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | DIURON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49300) | DNOC
WAT,FLT
GF 0.7U
REC
(UG/L)
(49299) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FEN-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49297) | FLUO-
METURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38811) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | | MAY
23
23 | <.05 | <.005 | <.09 | <.021 | <.06 | <.25 | <.002 | <.009 | <.005 | <.07 | <.06 | <.003 | <.004 | | AUG
08
08 | <.05
 | <.005 | <.09 | <.021 | <.06
 | <.25 | <.002 | <.009 | <.005 | <.07 | <.06 | <.003 | <.004 | | DATE | LINURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38478) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | MCPA,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38482) | MCPB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38487) | METHIO-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | METH-
OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | | MAY
23
23 | <.02 | <.035 | <.027 | <.08 | <.13 | <.07 | <.02 | <.050 | <.006 | .566 | <.006 | 5.80 | <.007 | | AUG
08
08 | <.21 | <.035 | <.027 | <.08 | <.13 | <.07 | <.02 | <.050 | .093 | .112 | <.006 | .034 | <.007 | ### 08164503 West Mustang Creek near Ganado, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | NEB-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49294) |
NORFLUR
AZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49293) | ORY-
ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | OXAMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PIC-
LORAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49291) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | |------------------------|--|---|--|---|---|--|--|---|--|---|---|---|--| | MAY
23
23
AUG | <.02 | <.04 | <.28 | <8.34 | <.003 | <.007 | <.002 | <.010 | <.006 | <.011 | <.09 | <.015 | <.004 | | 08
08 | <.02 | <.04 | <.28 | <.20 | <.003 | <.007 | <.002 | <.010 | <.006 | <.011 | <.09 | <.015
 | <.004 | | DATE | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRO-
PHAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49236) | PRO-
POXUR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38538) | SILVEX,
DIS-
SOLVED
(UG/L)
(39762) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
CLOPYR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49235) | | MAY
23
23 | <.010 | E.008 | <.023 | <.09 | <.89 | <.03 | .029 | E.004 | <.034 | <.017 | .548 | <.002 | <.63 | | AUG
08
08 | <.010 | <.011 | <.023 | <.96
 | <.81 | <.03 | <.011 | E.011 | <.034 | <.017 | .029 | <.002 | <.07 | | | | D# | .TE | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39399) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39531) | METHYL
PARA-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG)
(39601) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | TRI-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39787) | | | | | | | AUG
O |
 | <.009

<.009 |
<.2

<.2 |
<.2

<.2 |
<.2

<.2 |
<.2

<.2 |
<.2

<.2 |
<.2

<.2 | | | | #### 08164504 East Mustang Creek near Louise, TX LOCATION.--Lat 29°04'14", long 96°25'01", Wharton County, Hydrologic Unit 12100102, on right bank, 50 ft downstream from right end of bridge on Farm Road 647, 2.7 mi south of Louise. DRAINAGE AREA.--90.8 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Oct. 1996 to current year. Prior to Oct. 2000, published as "at FM 647 near Ganado". GAGE.--Water-stage recorder. Datum of gage is 43.02 ft above sea level. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. Much of the low flow during the irrigation season (Apr. to Sept.) is drainage from rice fields irrigated by water originally diverted from the Colorado River. No known regulation or diversions. | | | DISCHA | ARGE, CUB | IC FEET PER | R SECOND,
DAIL | | | ER 2000 TO | SEPTEMBE | R 2001 | | | |---|-----------------------------------|--|--------------------------------------|--|-------------------------------------|--|--|--|-------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | .00
.00
.00
.01 | 11
4.9
2.4
1.3
.94 | 9.0
13
6.6
3.7
2.2 | 4.3
2.4
1.5
1.0
.84 | .86
1.0
1.8
2.3
2.7 | .47
.33
.28
.25 | .15
.50
3.2
.41
4.9 | .95 | .17
.21
.31
.90 | 1.1
.36
.17
.09 | 2720
2210
1750
721
391 | | 6
7
8
9
10 | .00
.00
.00
.00 | 344
177
33
12
4.1 | .63
.39
.30
.25 | 1.4
.99
.78
.65 | .77
.84
.70
.63 | 2.1
1.4
1.1
1.0 | .19
.18
.17
.17 | 287
215
109
35
15 | .21 | 2.1
.94
.65
.54 | .01
.00
.00
.00 | 466
163
87
48
26 | | 11
12
13
14
15 | .00
.00
.00
.00 | 1.6
.62
.23
6.3
3.8 | .19
.14
.12
.09 | 432
109
38
21
17 | .52
.52
.53
.53 | .81
.74
.66
17
98 | .17
.17
.17
.16 | 6.2
4.2
18
7.7
2.9 | .74
.51
.44
.40 | .25
.18
.18
.17 | .00
3.4
1.4
.24 | 15
8.9
6.1
4.8
3.7 | | 18 | .00
.00
.00
1.7
4.8 | 1060 | .08
.05
.05
.03 | 11
29
170
522
121 | .46
.42
.40
.39 | 47
17
6.2
2.7
1.3 | .19
1.9
.51
.25 | 1.0
.71
.56
.47
.44 | .54
.20
.37
.27 | .17
.17
.17
.17 | .01
.25
.17
.18 | 3.4
2.9
2.5
2.1
2.2 | | 21
22
23
24
25 | 1.9
2.2
16
5.4
2.5 | 75
28
13
1050
417 | .02
.02
.02
8.5 | 34
15
7.7
4.5
2.8 | .40
.42
.45
.47 | .82
.54
.40
1.9
6.6 | 4.1
4.0
3.9
1.8 | .45
2.2
.71
1.3
.47 | .17
.17
.17
.22 | .21
.24
.22
.16 | .00
.00
.00
.00 | 2.2
2.0
2.1
7.6
4.4 | | 26
27
28
29
30
31 | 1.3
.27
.06
.00
.00 | 76
27
12
36
34 | 167
259
86
32
14
7.5 | 2.0
1.5
1.2
9.2
24 | .47
.47
.48
 | 1.4
.73
1.1
2.9
1.4
.74 | .26
2.4
.67
.27
.16 | 1.7
5.2
1.1
.97
.75 | .17
1.6
.72
.25
.17 | .11
.10
.10
2.2
3.0
1.5 | .00
.00
.00
1.1
50
2160 | 2.2
1.4
1.2
1.1
1.0 | | TOTAL
MEAN
MAX
MIN
AC-FT | 36.13
1.17
16
.00
72 | 5910.55
197
1590
.00
11720 | 901.25
29.1
304
.02
1790 | 1658.22
53.5
522
.65
3290 | 21.80
.78
4.3
.38
43 | 225.06
7.26
98
.40
446 | 26.18
.87
4.1
.16
52 | 728.89
23.5
287
.15
1450 | 12.83
.43
1.7
.17
25 | 19.24
.62
3.3
.10
38 | 2218.64
71.6
2160
.00
4400 | 8658.8
289
2720
1.0
17170 | | | | | | FOR WATER Y | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 105
371
1998
.21
2000 | 98.8
235
1999
.063
2000 | 24.4
61.6
1997
.073
2000 | 49.6
161
1997
.11
2000 | 25.4
63.3
1997
.54
1999 | 84.0
310
1997
7.26
2001 | 79.1
374
1997
.87
2001 | 51.9
131
1997
2.32
1998 | 14.4
39.7
2000
.43
2001 | 3.58
7.10
1999
.62
2001 | 32.5
83.5
1998
.26
2000 | 150
368
1998
.000
2000 | | SUMMAR | Y STATIS | TICS | FOR | 2000 CALEN | IDAR YEAR | | FOR 2001 V | VATER YEAR | | WATER | YEARS 1997 | 7 - 2001 | | LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI ANNUAL 10 PERO 50 PERO | MEAN
T ANNUAL | MEAN
MEAN
EAN
AY MINIMUN
LOW
CTAGE
(AC-FT)
EEDS | 1 | 11606.85
31.7
1590
.00
.00
23020
33
.17 | Nov 19
) Jul 14
) Jul 14 | | 20417.5
55.5
2720
.(
3120
21.5
40500
42 | Sep 1
00 Oct 1
00 Oct 1
Aug 31
90 Aug 31 | | 59.
104
13.
3640
4100
22.
43340
51
1. | 0 Sep
00 Jul
00 Jul
Sep
16 Sep | 1997
2000
11 1998
14 2000
14 2000
11 1998
11 1998 | ### 08164504 East Mustang Creek near Louise, TX--Continued ### 08164504 East Mustang Creek nr Louise, TX--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Apr. 1996 to current year PESTICIDE DATA: Apr. 1996 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | ********** | QUALITY L |
21111, 111111 | IC IDAIC OC | TODDIC DOO | O TO DEFT | EMBER 200 | _ | | | | |------------------------|---|--|--|--|---|--|--|--|--|--|--|--|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | 2,4,5-T
DIS-
SOLVED
(UG/L)
(39742) | 2,4-D,
DIS-
SOLVED
(UG/L)
(39732) | 2,4-DB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38746) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | 3HYDRXY
CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | | MAY
23
23 | 1210
1210 | .72 | 5.6 | 66.3 | 7.7 | 299
 | 24.0 | <.04 | <.11 | <.10 | .003 | <.76
 | <.004 | | DATE | ACIFL-
UORFEN
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49315) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALDI-
CARB
SULFONE
WAT,FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA-
RB SUL-
FOXIDE,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49314) | ALDI-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49312) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BENTA-
ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | BRO-
MACIL,
WATER,
DISS,
REC
(UG/L)
(04029) | BRO-
MOXYNIL
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49311) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49310) | | MAY
23
23 | <.05
 | .483 | <.89 | <.23 | <.21 | <.005 | 2.33 | <.010 | <.04 | <.09 | <.07 | <.002 | <.02 | | DATE | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49309) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLORO-
THALO-
NIL,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49306) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CLOPYR-
ALID,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49305) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DACTHAL
MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DICAMBA
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | DICHLO-
BENIL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49303) | | MAY
23
23 | <.041 | <.28 | <.020 | <.13 | <.005 | <.42 | <.018 | <.07 | <.003 | E.247 | <.005 | <.04 | <.44 | | | DICHLOR
PROP,
WATER,
FLTRD, | DI- | DINOSEB
WATER,
FLTRD, | DISUL-
FOTON
WATER
FLTRD | DIURON,
WATER,
FLTRD, | DNOC
WAT, FLT | EPTC
WATER
FLTRD | ETHAL-
FLUR-
ALIN
WAT FLT | ETHO-
PROP
WATER
FLTRD
0.7 U | FEN-
URON,
WATER,
FLTRD,
GF 0.7U | FLUO-
METURON
WATER,
FLTRD, | FONOFOS
WATER | LINDANE
DIS- | | DATE | GF 0.7U
REC
(UG/L)
(49302) | ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | GF 0.7U
REC
(UG/L)
(49301) | 0.7 U
GF, REC
(UG/L)
(82677) | GF 0.7U
REC
(UG/L)
(49300) | GF 0.7U
REC
(UG/L)
(49299) | 0.7 U
GF, REC
(UG/L)
(82668) | 0.7 U
GF, REC
(UG/L)
(82663) | GF, REC
(UG/L)
(82672) | REC
(UG/L)
(49297) | GF 0.7U
REC
(UG/L)
(38811) | DISS
REC
(UG/L)
(04095) | SOLVED
(UG/L)
(39341) | | DATE MAY 23 23 | GF 0.7U
REC
(UG/L) | DIS-
SOLVED
(UG/L) | GF 0.7U
REC
(UG/L) | GF, REC (UG/L) | REC
(UG/L) | REC
(UG/L) | GF, REC
(UG/L) | GF, REC (UG/L) | GF, REC
(UG/L) | REC
(UG/L) | REC
(UG/L) | REC
(UG/L) | SOLVED
(UG/L) | | MAY 23 | GF 0.7U REC (UG/L) (49302) <.05 LINURON WATER, FLTRD, GF 0.7U REC (UG/L) | DIS-
SOLVED
(UG/L)
(39381)
<.005

LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | GF 0.7U
REC
(UG/L)
(49301)
<.09

MALA-
THION,
DIS-
SOLVED
(UG/L) | GF, REC
(UG/L)
(82677)
<.021

MCPA,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | MCPB,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L) | REC
(UG/L)
(49299)
<.25

METHIO-
CARB,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L) | GF, REC
(UG/L)
(82668)
<.002

METH-
OMYL,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L) | GF, REC (UG/L) (82663) <.009 METHYL AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) | GF, REC (UG/L) (82672) <.005 METHYL PARA-THION WAT FLT 0.7 U GF, REC (UG/L) | REC
(UG/L)
(49297)
<.20

METO-
LACHLOR
WATER
DISSOLV
(UG/L) | REC
(UG/L)
(38811) | REC
(UG/L)
(04095)
<.003

MOL-
INATE
WATER
FLITED
0.7 U
GF, REC
(UG/L) | SOLVED
(UG/L)
(39341) | | MAY
23
23 | GF 0.7U REC (UG/L) (49302) <.05 LINURON WATER, FLTRD, GF 0.7U REC (UG/L) | DIS-
SOLVED
(UG/L)
(39381)
<.005

LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | GF 0.7U
REC
(UG/L)
(49301)
<.09

MALA-
THION,
DIS-
SOLVED
(UG/L) | GF, REC
(UG/L)
(82677)
<.021

MCPA,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | MCPB,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L) | REC
(UG/L)
(49299)
<.25

METHIO-
CARB,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L) | GF, REC
(UG/L)
(82668)
<.002

METH-
OMYL,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L) | GF, REC (UG/L) (82663) <.009 METHYL AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) | GF, REC (UG/L) (82672) <.005 METHYL PARA-THION WAT FLT 0.7 U GF, REC (UG/L) | REC
(UG/L)
(49297)
<.20

METO-
LACHLOR
WATER
DISSOLV
(UG/L) | REC
(UG/L)
(38811)
<2.70

METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L) | REC
(UG/L)
(04095)
<.003

MOL-
INATE
WATER
FLITED
0.7 U
GF, REC
(UG/L) | SOLVED
(UG/L)
(39341)
<.004

NAPROP-
AMIDE
WATER
FLITRD
0.7 U
GF, REC
(UG/L) | | MAY 23 23 DATE MAY 23 | GF 0.7U REC (UG/L) (49302) <.05 LINURON WATER, FLITRD, GF 0.7U REC (UG/L) (38478) | DIS-
SOLVED
(UG/L)
(39381)
<.005

URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666)
<.035

NORFLUR
AZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | GF 0.7U
REC
(UG/L)
(49301)
<.09

MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532)
<.027

ORY-
ZALIN,
WATER,
FLIRD, | GF, REC (UG/L) (82677) <.021 MCPA, WATER, FLTRD, GF 0.7U REC (UG/L) (38482) <.08 | MCPB,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(38487) | REC
(UG/L)
(49299)
<.25

METHIO-
CARB,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(38501) | GF, REC (UG/L) (82668) <.002 METH-OMYL, WATER, FLITED, GF 0.7U REC (UG/L) (49296) <.02 | GF, REC (UG/L) (82663) <.009 METHYL AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 PENDI-METH-ALIN | GF, REC (UG/L) (82672) <.005 METHYL PARA-THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 | METO-
LACHLOR WATER DISSOLV (UG/L) (39415) 8.81 PHORATE WATER FLTRD 0.7 U | REC
(UG/L)
(38811)
<2.70

METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630)
<.006 | REC
(UG/L)
(04095)
<.003

MOL-
INATE
WATER
FLITED
0.7 U
GF, REC
(UG/L)
(82671) | SOLVED
(UG/L)
(39341)
<.004

NAPROP-
AMIDE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82684)
<.007 | ### 08164504 East Mustang Creek nr Louise, TX--Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRO-
PHAM,
WATER,
FLTRD,
GF
0.7U
REC
(UG/L)
(49236) | PRO-
POXUR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38538) | SILVEX,
DIS-
SOLVED
(UG/L)
(39762) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
CLOPYR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49235) | |-----------------|---|--|--|---|---|--|--|---|--|---|---|---|--| | MAY
23
23 | <.010 | <.011 | <.023 | <10.2 | <.12 | <.18 | <.011 | E.010 | <.034 | <.017 | 2.11 | <.002 | <.31 | | | | DA | TE | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39571) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39399) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39531) | METHYL
PARA-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG)
(39601) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | TRI-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39787) | | | | | | | | 3 | <.009 |
<.2 |
<.2 |
<.2 |
<.2 |
<.2 |
<.2 | | | | #### 08164525 Lake Texana near Edna, TX LOCATION.--Lat 28°53'30", long 96°34'39", Jackson County, Hydrologic Unit 12100102, on river outlet works structure on upstream side of Palmetto Bend Dam on the Navidad River, 4.0 mi north of Lolita, 4.9 mi upstream from confluence with Lavaca River, and 7.2 mi southeast of Edna. DRAINAGE AREA. -- 1,370 mi². #### WATER-CONTENT RECORDS PERIOD OF RECORD. -- July 1999 to current year. REVISED RECORDS. -- WSP 1923: 1953(M), Drainage area. GAGE. -- Water-stage recorder. Datum of the gage is sea level. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records good. The lake is formed by a rolled earthfill dam 1.3 mi long, a concrete spillway 464 ft wide, and 6.6 mi of earthen dikes. The dam was completed and storage began May 1980. The spillway has twelve 35 ft wide by 22.5 ft high radial gates to discharge flood flows to the river channel downstream. Dual level municipal and industrial outlet works structures are located on each side of the spillway. These concrete structures provide for access to a conduit through the dam and for connecting a water delivery system. The river outlet works, a concrete structure with multi-level intake gates, discharge into the Navidad River through an 8 ft by 10 ft downstream conduit. The dam is owned by the Lavaco-Navidad River Authority. The primary purpose of Lake Texana is to provide dependable municipal and industrial water supply of 75,000 acre-ft annually, and to provide recreational, fish and wildlife facilities for the public. The lake is not designed to store floods; therefore, flooding both downstream and upstream remains approximately the same as conditions were before construction. Conservation pool storage is 153,137 acre-ft. Data regarding the dam are given in the following table: following table: | | Elevation | |---|-----------| | | (feet) | | Top of dam | 55.0 | | Top of gate | 45.3 | | Crest of spillways (tainter gates sill) | 23.0 | COOPERATION. -- Capacity table computed Apr. 1, 1992, by Bureau of Reclamation was provided by Lavaca-Navidad River Authority. Basic data for the table was obtained in the Lake Texana sediment resurvey completed in June 1991, by personnel from Bureau of Reclamation and from Lavaca-Navidad River Authority. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 162,300 acre-ft Sept. 24, 2001, elevation, 44.66 ft; minimum contents, 105,200 acre-ft Feb. 22, 2000, elevation, 38.33 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 162,300 acre-ft, Sept. 24, elevation, 44.66 ft; minimum contents, 117,400 acre-ft, Oct. 8, elevation, 39.85 ft. > RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1 | 118800 | 121600 | 157200 | 157500 | 156000 | 154900 | 156600 | 149800 | 153600 | 144300 | 135800 | 160800 | | 2 | 118500 | 120800 | 157700 | 156700 | 156100 | 155300 | 156700 | 149200 | 153100 | 144300 | 135400 | 159900 | | 3 | 118200 | 120600 | 157100 | 156300 | 156000 | 157700 | 157100 | 149000 | 152800 | 144500 | 134700 | 158900 | | 4 | 117900 | 120800 | 157000 | 156200 | 156000 | 157300 | 157300 | 148700 | 152400 | 144500 | 134400 | 159300 | | 5 | 117700 | 121300 | 156900 | 156200 | 155900 | 156800 | 156900 | 148800 | 152200 | 144200 | 134100 | 160700 | | 6
7
8
9 | 118000
118400
118000
117900
118300 | 124200
129300
134100
135600
136200 | 157100
156800
156700
156600
156400 | 156100
156100
156100
155900
156700 | 155600
155500
155300
156000
155800 | 156900
157200
157100
157800
157700 | 156500
156600
156500
156300
155700 | 152900
156500
157700
157700
157800 | 151200
151000
150800
149800
149500 | 144000
144000
143800
143500
142900 | 133700
133300
132700
132200
131800 | 161300
161300
160100
158600
158800 | | 11 | 118800 | 136300 | 156600 | 157700 | 155400 | 157200 | 155600 | 157600 | 149100 | 142100 | 131500 | 158400 | | 12 | 119100 | 136300 | 156300 | 157100 | 155300 | 156800 | 155500 | 157900 | 148600 | 141400 | 131100 | 159200 | | 13 | 119400 | 136600 | 155100 | 156700 | 155100 | 156900 | 155400 | 158600 | 148300 | 140900 | 130800 | 159000 | | 14 | 119600 | 136900 | 154700 | 156500 | 155000 | 157300 | 155200 | 158400 | 147900 | 140500 | 130600 | 158900 | | 15 | 119700 | 137900 | 154500 | 156700 | 154800 | 157400 | 155000 | 157800 | 148100 | 140200 | 130100 | 159100 | | 16 | 119800 | 140100 | 154600 | 157100 | 155400 | 156900 | 155000 | 157300 | 147800 | 139800 | 129700 | 159100 | | 17 | 120100 | 143100 | 154000 | 157500 | 154800 | 157000 | 155000 | 157100 | 147800 | 139100 | 129300 | 159000 | | 18 | 120400 | 148200 | 154100 | 157200 | 154500 | 156900 | 153800 | 156800 | 147600 | 138700 | 129000 | 158800 | | 19 | 120400 | 157000 | 153200 | 156900 | 154400 | 156600 | 153100 | 156600 | 146900 | 138500 | 128600 | 158700 | | 20 | 121000 | 157100 | 152300 | 156900 | 154300 | 156700 | 152700 | 156200 | 146300 | 138200 | 128300 | 158600 | | 21 | 122100 | 157500 | 152600 | 156800 | 154000 | 157000 | 152500 | 156100 | 146000 | 138000 | 127800 | 158500 | | 22 | 123800 | 157700 | 152000 | 156700 | 153900 | 157100 | 152100 | 155700 | 146000 | 137900 | 127500 | 158500 | | 23 | 125000 | 158100 | 151700 | 156600 | 153400 | 157400 | 152300 | 154900 | 145800 | 137800 | 127200 | 159400 | | 24 | 125300 | 157900 | 152200 | 156800 | 153100 | 157400 | 152200 | 154500 | 145600 | 137400 | 126800 | 160300 | | 25 | 125200 | 157400 | 153100 | 156700 | 153600 | 157100 | 151400 | 154400 | 145800 | 136700 | 126600 | 159000 | | 26
27
28
29
30
31 | 124600
124100
124000
123900
123600
122600 | 157100
157400
157500
157500
157100 | 155000
157300
157200
156800
157100
158000 | 156600
156400
156100
156600
157000 | 153600
153700
154900
 | 156700
156800
156700
156900
157100
156800 | 151200
151000
150800
150600
150400 | 154000
153600
153700
153900
153500
153500 | 145400
145100
144900
144600
144500 | 136200
136300
136500
136500
136400
136100 | 126600
126600
126900
128300
130000
149600 | 159200
159100
159100
159000
158800 | | MEAN | 120800 | 142300 | 155400 | 156700 | 154900 | 156900 | 154200 | 154800 | 148300 | 140200 | 131000 | 159300 | | MAX | 125300 | 158100 | 158000 | 157700 | 156100 | 157800 | 157300 | 158600 | 153600 | 144500 | 149600 | 161300 | | MIN | 117700 | 120600 | 151700 | 155900 | 153100 | 154900 | 150400 | 148700 | 144500 | 136100 | 126600 | 158400 | | (+) | 40.47 | 44.16 | 44.24 | 44.14 | 43.93 | 44.13 | 43.48 | 43.80 | 42.88 | 41.99 |
43.38 | 44.32 | | (@) | +3500 | +34500 | +900 | -1000 | -2100 | +1900 | -6400 | +3100 | -9000 | -8400 | +13500 | +9200 | CAL YR 2000 WTR YR 2001 MAX 158400 MIN 105800 (@) +44100 MAX 161300 MIN 117700 (@) +39700 ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet. 08164525 Lake Texana near Edna, TX--Continued #### 08164525 Lake Texana near Edna, TX--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Jan. 1988 to current year. BIOCHEMICAL DATA: Jan. 1988 to Sept. 1993. PESTICIDE DATA: May 1994 to current year. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | | 28 | 533109634 | 3501 I | k Texana | Site AC | | | | | | |---|--|---|--|--|---|--|--|---|---|---|--|--|--| | DATE | TIME | RESER-
VOIR
STORAGE
(AC-FT)
(00054) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | | JAN 31 31 31 31 31 31 | 0813
0815
0817
0819
0821
0823 | 158000

 | 1.00
10.0
20.0
30.0
40.0
50.0
66.0 | 165
165
165
165
165
166
169 | 7.8
7.8
7.8
7.8
7.7
7.7 | 12.0
12.0
12.0
12.0
12.0
12.0
10.5 | .15

 | 7.6
7.8
7.3
7.3
6.6
7.0
9.3 | 70
72
67
67
61
65
83 | 58

58 | 9

7 | 18.3

18.6 | 2.86

2.88 | | JUN 13 13 13 13 13 13 13 13 | 0815
0817
0819
0821
0823
0825
0827 | 148000

 | 1.00
10.0
20.0
30.0
40.0
50.0 | 191
192
192
192
192
191
190 | 7.9
7.9
7.9
7.8
7.7
7.5 | 27.5
27.5
27.5
27.5
27.0
26.5
25.0 | .24 | 6.8
6.8
6.7
6.1
4.9
3.4 | 86
86
85
77
61
41 | 69

71 | 7

7 | 23.3 | 2.72

2.77 | | 21
21
21
21
21
21
21 | 0815
0817
0819
0821
0823
0825
0827
0829 | 128000

 | 1.00
10.0
20.0
30.0
40.0
50.0
60.0 | 217
217
215
215
215
210
215
220 | 8.1
8.1
7.8
7.7
7.6
7.2
7.1 | 30.0
30.0
29.0
29.0
28.5
27.5
25.5 | .15

 | 8.6
8.9
7.8
7.2
6.7
1.9 | 113
117
101
93
86
24
1 | 79

81 |

 | 26.6

27.4 | 3.07

3.13 | 28 | 533109634 | 3501 T | k Texana | Site AC | | | | | | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO | PERCENT (00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN
31
31 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | PERCENT (00932) 25 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN
31
31 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | PERCENT (00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN 31 31 31 31 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | PERCENT (00932) 25 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN
31
31
31 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | PERCENT
(00932)
25

 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN 31 31 31 31 31 JUN | DIS-
SOLVED (MG/L
AS NA) (00930) | AD-
SORP-
TION
RATIO
(00931) | 25

25
25 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K)
(00935)
3.67

3.69 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
13.2

12.9 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1

E.1 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN 31 31 31 31 31 JUN 13 JUN | DIS-
SOLVED (MG/L
AS NA) (00930)
9.7

9.8 | AD-
SORP-
TION
RATIO
(00931) |
25

25
25
24
 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.67

3.69
3.72 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
49
 | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945)
6.1

6.1
6.8 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
13.2 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1

E.1 | DIS-
SOLVED (MG/L
AS
SIO2) (00955) | SUM OF CONSTI- TUENTS, DIS- SOLVED (70301) 94 96 109 | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN 31 31 31 31 31 31 31 31 31 JUN 13 13 | DIS-
SOLVED (MG/L
AS NA) (00930) | AD-
SORP-
TION
RATIO
(00931) | 25

25
24
 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
3.67

3.69
3.72 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) .00 .0 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945)
6.1

6.1
6.8
 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
13.2

12.9
14.0 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1

E.1 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
11.1

11.3
9.8 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN 31 31 31 31 31 JUN 13 13 13 13 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.7

9.8
10.6 | AD-
SORP-
TION
RATIO
(00931) | 25
 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.67

3.69
3.72 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
49
 | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945)
6.1

6.1
6.8

 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
13.2 12.9 14.0 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1

E.1 | DIS-
SOLVED (MG/L
AS
SIO2) (00955) | SUM OF CONSTI- TUENTS, DIS- SOLVED (70301) 94 96 109 96 | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN 31 31 31 31 31 31 31 31 JUN 13 13 13 13 13 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.7

9.8
10.6 | AD-
SORP-
TION
RATIO
(00931) | 25

25
24

 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
3.67

3.69
3.72 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945)
6.1

6.1
6.8

 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
13.2

12.9
14.0 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1

E.1 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
11.1

11.3
9.8

 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 94 96 109 | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN 31 31 31 31 31 JUN 13 13 13 13 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.7

9.8
10.6 | AD-
SORP-
TION
RATIO
(00931) | 25
 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.67

3.69
3.72 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) .000 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 60 | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
49
 | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945)
6.1

6.1
6.8

 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
13.2 12.9 14.0 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1

E.1 | DIS-
SOLVED (MG/L
AS
SIO2) (00955) | SUM OF CONSTI- TUENTS, DIS- SOLVED (70301) 94 96 109 96 | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN 31 31 31 31 31 JUN 13 13 13 13 13 13 13 13 13 13 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.7

9.8
10.6

10.3
11.6 | AD-
SORP-
TION
RATIO
(00931)
.6

.6 .6

.5 | 25

25
24

23 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
3.67

3.69
3.72

3.58
3.62 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) .0 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 60 62 76 78 | ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 49 51 63 64 | SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 6.1 6.1 6.8 6.8 7.7 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
13.2

12.9
14.0

13.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1

E.1
.2

2.
2 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
11.1

11.3
9.8

11.0 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 94 96 109 110 | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN 31 31 31 31 31 31 31 31 31 31 31 31 31 31 13 13 13 13 13 2UG 21 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.7
 | AD-
SORP-
TION
RATIO
(00931) | 25
 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.67

3.69
3.72

3.58 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) .000 .0 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 60 62 76 78 | ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 49 51 63 64 | SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 6.1 6.1 6.8 6.8 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
13.2

12.9
14.0

13.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1

E.1
.2

E.1 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
11.1

11.3 9.8

11.0 | SUM OF CONSTI- TUENTS, DIS- SOLVED (70301) 94 96 109 110 | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN 31 31 31 31 31 JUN 13 13 13 13 13 13 13 21 21 21 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.7
 | AD-
SORP-
TION
RATIO
(00931) | 25

25
25
24

23
23 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
3.67
 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) .0 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 60 62 76 78 | ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 49 51 63 64 | SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 6.1 6.1 6.8 6.8 7.7 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
13.2

12.9
14.0

13.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1

E.1
.2

2
.2
.2
.2
.2 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
11.1

11.3
9.8

11.0
11.2 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 94 96 109 110 110 | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN 31 31 31 31 31 31 31 31 31 31 31 31 13 13 13 13 13 21 21 21 21 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.7 | AD-
SORP-
TION
RATIO
(00931) | 25
 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.67

3.69
3.72

3.58
3.62 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) .0 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 60 | ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 49 51 63 64 64 | SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 6.1 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
13.2

12.9
14.0

13.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1

E.1
.2

2

2 | DIS-
SOLVED (MG/L AS SIO2) (00955) 11.1 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 94 96 109 110 | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | | JAN 31 31 31 31 31 JUN 13 13 13 13 13 13 13 21 21 21 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.7
 | AD-
SORP-
TION
RATIO
(00931) | 25 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935) 3.67 3.69 3.72 3.58 3.62 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) .0 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 60 62 76 78 | ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 49 51 63 64 64 | SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 6.1 6.1 6.8 6.8 7.7 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
13.2

12.9
14.0

13.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1

E.1
.2

2
.2 | DIS-
SOLVED (MG/L
AS
SIO2) (00955) 11.1 11.3 9.8 11.0 11.2 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 94 96 109 110 110 | GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L)
(00556) | ### 08164525 Lake Texana near Edna, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS
FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |------|--|--|---|---|---|---|--|---|---|---|---|---|---| | JAN | | | | | | | | | | | | | | | 31 | 1 | .10 | 2.1 | 67.2 | <.06 | < .04 | <.8 | .08 | 2.7 | 20 | .08 | E2.4 | 1.5 | | 31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | 31 | <1 | .10 | E1.6 | 67.0 | <.06 | E.02 | <.8 | .11 | 2.7 | 20 | E.07 | E2.5 | 11.7 | | JUN | | | | | | | | | | | | | | | 13 | 1 | .11 | E1.7 | 82.9 | <.06 | <.04 | <.8 | .07 | 2.2 | M | <.08 | <4.0 | . 2 | | 13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13 | <1 | .09 | E1.5 | 85.2 | <.06 | <.04 | <.8 | .06 | 2.8 | 10 | <.08 | E2.1 | 2.2 | | AUG | | | | | | | | | | | | | | | 21 | 2 | .12 | 2.3 | 88.6 | <.06 | <.04 | <.8 | .06 | 2.1 | <10 | <.08 | E2.5 | .9 | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | 21 | <1 | .09 | 13.8 | 112 | <.06 | <.04 | <.8 | 1.82 | 1.7 | 1130 | <.08 | <4.0 | 1540 | | 285331096343501 | T.k | Texana | a Site | AC | |-----------------|-----|--------|--------|----| | DATE | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U) | |-----------|--|---|--|---|--|--|--|--|--| | | (71890) | (01060) | (01065) | (01145) | (01075) | (01080) | (01085) | (01090) | (22703) | | JAN | | | | | | | | | | | 31 | <.23 | .5 | .83 | <2.4 | <1.0 | 69.3 | <8.0 | 2 | .16 | | 31 | | | | | | | | | | | 31 | | | | | | | | | | | 31 | | | | | | | | | | | 31 | | | | | | | | | | | 31 | | | | | | | | | | | 31 | <.23 | .5 | .85 | <2.4 | <1.0 | 69.8 | <8.0 | 3 | .15 | | JUN | | | | | | | | | | | 13 | <.01 | . 6 | .79 | <2.0 | <1.0 | 80.8 | <8.0 | 1 | .21 | | 13 | | | | | | | | | | | 13 | | | | | | | | | | | 13 | | | | | | | | | | | 13 | | | | | | | | | | | 13 | <.01 | | .92 | | | 01 2 | <8.0 | 4 | | | 13
AUG | <.01 | .6 | .92 | <2.0 | <1.0 | 81.3 | <8.0 | 4 | .14 | | 21 | <.01 | .7 | .64 | <2.0 | <1.0 | 89.7 | E4.5 | 1 | .13 | | 21 | ~.UI | | .04 | ~2.0 | ~1.0 | 09.7 | E4.5 | | .13 | | 21 | | | | | | | | | | | 21 | | | | | | | | | | | 21 | | | | | | | | | | | 21 | | | | | | | | | | | 21 | | | | | | | | | | | 21 | <.01 | . 6 | 1.63 | <2.0 | <1.0 | 91.2 | <8.0 | 11 | .07 | | | | | | | | | | | | ### 08164525 Lake Texana near Edna, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 285326096342101 -- Lk Texana Site AL | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |------|------|---|--|--|---|--|---| | JAN | | | | | | | | | 31 | 0907 | 1.00 | 165 | 7.8 | 12.5 | 8.5 | 79 | | 31 | 0909 | 10.0 | 165 | 7.8 | 12.5 | 8.5 | 79 | | 31 | 0911 | 20.0 | 165 | 7.9 | 12.5 | 8.6 | 80 | | 31 | 0913 | 30.0 | 165 | 7.8 | 12.5 | 8.7 | 81 | | 31 | 0915 | 36.0 | 165 | 7.8 | 12.5 | 8.5 | 79 | | JUN | | | | | | | | | 13 | 0900 | 1.00 | 191 | 7.9 | 27.5 | 6.9 | 88 | | 13 | 0902 | 10.0 | 192 | 7.9 | 27.5 | 6.8 | 86 | | 13 | 0904 | 20.0 | 192 | 7.9 | 27.0 | 6.8 | 86 | | 13 | 0906 | 30.0 | 192 | 7.8 | 27.0 | 6.7 | 84 | | 13 | 0908 | 35.0 | 192 | 7.8 | 27.0 | 6.5 | 82 | | AUG | | | | | | | | | 21 | 0850 | 1.00 | 217 | 8.0 | 29.5 | 8.8 | 115 | | 21 | 0852 | 10.0 | 217 | 8.0 | 29.5 | 8.7 | 114 | | 21 | 0854 | 20.0 | 217 | 8.0 | 29.5 | 8.7 | 114 | | 21 | 0856 | 34.0 | 217 | 7.8 | 29.0 | 8.1 | 105 | | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |----------|--------------|---|--|--|---|--|---| | JAN | | | | | | | | | 31 | 0934 | 1.00 | 153 | 7.7 | 12.5 | 8.7 | 81 | | 31 | 0936 | 10.0 | 153 | 7.7 | 12.5 | 8.8 | 82 | | 31 | 0938 | 20.0 | 153 | 7.7 | 12.5 | 8.9 | 83 | | 31 | 0940 | 30.0 | 153 | 7.7 | 12.5 | 8.9 | 83 | | 31 | 0942 | 40.0 | 154 | 7.7 | 12.5 | 9.1 | 85 | | JUN | 0000 | 1 00 | 104 | 7.0 | 00 5 | 6.0 | 0.0 | | 13 | 0922 | 1.00 | 194 | 7.9 | 28.5 | 6.9 | 89 | | 13 | 0924 | 10.0 | 194 | 7.9 | 28.5 | 6.8 | 88 | | 13 | 0925 | 20.0 | 196 | 7.7 | 28.0 | 6.2 | 80 | | 13
13 | 0927
0929 | 30.0
37.0 | 196
196 | 7.7
7.7 | 28.0
28.0 | 5.9
6.0 | 76
77 | | AUG | 0929 | 37.0 | 196 | /./ | 28.0 | 6.0 | // | | 21 | 0911 | 1.00 | 225 | 8.0 | 30.0 | 8.3 | 109 | | 21 | 0913 | 10.0 | 225 | 8.0 | 30.0 | 8.2 | 108 | | 21 | 0915 | 20.0 | 224 | 8.0 | 30.0 | 8.2 | 108 | | 21 | 0917 | 30.0 | 224 | 7.8 | 30.0 | 7.6 | 100 | | 21 | 0919 | 36.0 | 223 | 7.8 | 29.5 | 7.5 | 98 | | | | | | | | | | ### 08164525 Lake Texana near Edna, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | 2,4,5-T
DIS-
SOLVED
(UG/L)
(39742) | 2,4-D,
DIS-
SOLVED
(UG/L)
(39732) | 2,4-DB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38746) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | SILVEX,
DIS-
SOLVED
(UG/L)
(39762) | |--|---|--|---|---|--|--|---|--|--|--|---|---|--| | JAN
31
JAN | 1020 | 1.00 | 130 | 7.4 | 13.0 | .15 | 8.6 | 81 | | | | | | | 31-31
31
31
31 | 1020
1022
1024
1026
1028 | 10.0
20.0
30.0
37.0 | 130
131
131
133 |
7.4
7.4
7.4
7.4 | 13.0
13.0
13.0
13.0 |

 |
8.7
8.9
9.1
10.0 |
82
84
85
94 | <.04

 | <.11

 | <.12

 | <.002

 | <.03

 | | JUN
13 | 0950 | 1.00 | 198 | 7.8 | 28.5 | .21 | 6.8 | 88 | | | | | | | JUN 13-13 13 13 13 13 | 0950
0952
0954
0956
0958
0958 | 10.0
20.0
30.0
35.0
35.0 | 198
199
203
203 | 7.8
7.8
7.4
7.4 | 28.5
28.5
28.0
28.0 |

 |
6.6
6.3
4.9
5.0 |
85
82
63
64 | <.04

 | <.11

 | <.10

 | <.002

 | <.04

 | | AUG
21 | 0929 | 1.00 | 265 | 8.1 | 30.0 | .30 | 8.4 | 111 | | | | | | | AUG
21-21
21
21
21 | 0929
0931
0933
0935
0937 | 10.0
20.0
30.0
35.0 | 263
263
263
263 | 8.1
8.0
8.0
8.0 | 30.0
30.0
30.0
30.0 |

 | 8.2
8.0
8.1
7.9 | 108
105
107
104 | <.04

 | <.11

 | <.10

 | <.002

 | <.03

 | | | | | | 28 | 581609632 | 0201 L | k Tovana | Site CC | | | | | | | | | | | 20 | 301007032 | 0201 1 | ik icadia | DICE CC | | | | | | | DATE | 3HYDRXY
CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | DNOC
WAT,FLT
GF 0.7U
REC
(UG/L)
(49299) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ACIFL-
UORFEN
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49315) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALDI-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49312) | ALDI-
CARB
SULFONE
WAT,FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA-
RB SUL-
FOXIDE,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49314) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BENTA-
ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | | JAN | CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L) | WAT,FLT
GF 0.7U
REC
(UG/L) | CHLOR,
WATER
FLTRD
REC
(UG/L) | ACIFL-
UORFEN
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L) | ALDI-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | ALDI-
CARB
SULFONE
WAT,FLT
GF 0.7U
REC
(UG/L) | ALDICA-
RB SUL-
FOXIDE,
WAT,FLT
GF 0.7U
REC
(UG/L) | BHC
DIS-
SOLVED
(UG/L) | ZINE,
WATER,
DISS,
REC
(UG/L) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L) | ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | | JAN
31
JAN | CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | WAT,FLT
GF 0.7U
REC
(UG/L)
(49299) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ACIFL-
UORFEN
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49315) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALDI-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49312) | ALDI-
CARB
SULFONE
WAT,FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA-
RB SUL-
FOXIDE,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49314) | BHC
DIS-
SOLVED
(UG/L)
(34253) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | | JAN
31
JAN
31-31
31 | CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | WAT,FLT
GF 0.7U
REC
(UG/L)
(49299) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ACIFL-
UORFEN
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49315) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALDI-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49312) | ALDI-
CARB
SULFONE
WAT,FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA-
RB SUL-
FOXIDE,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49314) | BHC
DIS-
SOLVED
(UG/L)
(34253) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ZON,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(38711) | | JAN
31
JAN
31-31
31
31 | CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | WAT,FLT
GF 0.7U
REC
(UG/L)
(49299) | CHLOR,
WATER
FLTR
REC
(UG/L)
(49260) | ACIFL-
UORFEN
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49315) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALDI-
CARB,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49312) | ALDI-
CARB
SULFONE
WAT, FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA-
RB SUL-
FOXIDE,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49314) | BHC
DIS-
SOLVED
(UG/L)
(34253) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | | JAN 31 JAN 31-31 31 31 31 JUN | CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | WAT,FLT
GF 0.7U
REC
(UG/L)
(49299) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ACIFL-
UORFEN
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(49315) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALDI-
CARB,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(49312) | ALDI-
CARB
SULFONE
WAT, FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA-
RB SUL-
FOXIDE,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49314) | BHC
DIS-
SOLVED
(UG/L)
(34253) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13 JUN | CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | WAT,FLT
GF 0.7U
REC
(UG/L)
(49299)

<.25

 | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260)

<.004

 | ACIFL- UORFEN WATER, FLIRD, GF 0.7U REC (UG/L) (49315) <.05 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALDI-
CARB,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49312) | ALDI-
CARB
SULFONE
WAT, FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314) <.28 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | | JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 JUN 13-13 13 | CARBO-
FURAN WAT, FLT GF 0.7U REC (UG/L) (49308) | WAT, FLT
GF 0.7U
REC
(UG/L)
(49299)

<.25

<.25 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004077 | ACIFL- UORFEN WATER, FLTRD, GF 0.7U REC (UG/L) (49315) <.05 <.23 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)

<.002

270 | ALDI-
CARB,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49312) | ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313) <.20 <.20 | ALDICA- RB SUL- FOXIDE, WAT, FLT GF 0.7U REC (UG/L) (49314) <.28 <.02 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)

.291

.733 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

<.010 | ZON,
WATER,
FITRD,
GF 0.7U
REC
(UG/L)
(38711)

<.04

.04
 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 | CARBO-
FURAN WAT, FLT GF 0.7U REC (UG/L) (49308) <.39 | WAT,FLT
GF 0.7U
REC
(UG/L)
(49299)

<.25

<.25

 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004077 | ACIFL- UORFEN WATER, FLITRD, GF 0.7U REC (UG/L) (49315) <.05 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)

<.002

270
 | ALDI- CARB, WATER, FLIRD, GF 0.7U REC (UG/L) (49312) <.22 <.21 | ALDI-
CARB
SULFONE
WAT, FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA- RB SUL- FOXIDE, WAT, FLT GF 0.7U REC (UG/L) (49314) <.28 <.02 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

<.010 | ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711) <.040404 | | JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 13 13 13 | CARBO-
FURAN WAT, FLT GF 0.7U REC (UG/L) (49308) <.39 | WAT,FLT
GF 0.7U
REC
(UG/L)
(49299)

<.25

<.25
 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004077 | ACIFL- UORFEN WATER, FLIRD, GF 0.7U REC (UG/L) (49315) <.05 <.23 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALDI-
CARB,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49312) | ALDI-
CARB
SULFONE
WAT, FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314) <.28
<.02 <.02 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)

.291

.733 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

<.050

 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

<.010 | ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | | JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 13 13 13 13 13 13 13 | CARBO-
FURAN WAT, FLT GF 0.7U REC (UG/L) (49308) <.39 | WAT, FLT GF 0.7U REC (UG/L) (49299) <.25 <.25 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 | ACIFL- UORFEN WATER, FLITRD, GF 0.7U REC (UG/L) (49315) <.05 <.23 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)

<.002

270
 | ALDI- CARB, WATER, FLIRD, GF 0.7U REC (UG/L) (49312) <.22 <.21 | ALDI-
CARB
SULFONE
WAT, FLT
GF 0.7U
REC
(UG/L)
(49313)

<.20

<.20 | ALDICA- RB SUL- FOXIDE, WAT, FLT GF 0.7U REC (UG/L) (49314) <.28 <.02 | BHC DTS- DTS- SOLVED (UG/L) (34253) <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)

.291

.733 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

<.010 | ZON, WATER, FITRD, GF 0.7U REC (UG/L) (38711) <.04040404 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 AUG | CARBO-
FURAN WAT, FLT GF 0.7U REC (UG/L) (49308) <.39 | WAT,FLT GF 0.7U REC (UG/L) (49299) <.25 <.25 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 | ACIFL- UORFEN WATER, FLITRD, GF 0.7U REC (UG/L) (49315) <.05 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 270 | ALDI- CARB, WATER, FLIRD, GF 0.7U REC (UG/L) (49312) <.22 | ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313) <.20 | ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314) <.28 <.02 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 291733 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 | ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711) <.04040404 | | JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 | CARBO-
FURAN WAT, FLT GF 0.7U REC (UG/L) (49308) <.39 | WAT, FLT GF 0.7U REC (UG/L) (49299) <.25 <.25 <.25 <.25 <.25 | CHLOR, WATER FLIRD REC (UG/L) (49260) <.004077 | ACIFL- UORFEN WATER, FLITRD, GF 0.7U REC (UG/L) (49315) <.05 <.23 <.23 <.05 <.05 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002270 | ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312) <.22 <.21 <.21 <.21 | ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313) <.20 <.20 <.20 <.20 <.20 | ALDICA- RB SUL- FOXIDE, WAT, FLT GF 0.7U REC (UG/L) (49314) <.28 <.02 <.02 <.02 | BHC DTS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 291733515 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 | ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711) <.04040404 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 13 AUG 21 AUG 21-21 | CARBO-
FURAN WAT, FLT GF 0.7U REC (UG/L) (49308) <.39 <.11 <.11 <.11 <.11 <.11 <.11 | WAT,FLT GF 0.7U REC (UG/L) (49299) <.25 <.25 <.25 <.25 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 | ACIFL- UORFEN WATER, FLITRD, GF 0.7U REC (UG/L) (49315) <.05 <.23 <.23 <.05 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 270068 | ALDI- CARB, WATER, FLIRD, GF 0.7U REC (UG/L) (49312) <.22 <.21 <.21 <.21 | ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313) <.20 <.20 <.20 <.20 <.20 <.20 <.20 <.20 <.20 <.20 <.20 <.20 | ALDICA- RB SUL- FOXIDE, WAT, FLT GF 0.7U REC (UG/L) (49314) <.28 <.02 <.02 <.02 | BHC DTS- SOLVED (UG/L) (34253) <.005 <.005 <.005 < <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 291733515 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711) <.0404040404 | ### 08164525 Lake Texana near Edna, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | BRO-
MACIL,
WATER,
DISS,
REC
(UG/L)
(04029) | BRO-
MOXYNIL
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49311) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49310) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49309) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | TRI-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39787) | CHLORO-
THALO-
NIL,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49306) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | CLOPYR-
ALID,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49305) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | |--|---|--|---|---|--|---|---|---|---|--|--|---|--| | JAN
31 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 31-31
31 | <.09
 | <.07 | <.002 | <.02 | <.041 | <.29 | <.020 | | <.13 | <.005 | <.006 | <.42 | <.018 | | 31
31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | JUN
13 | | | | | | | | | | | | | | | JUN
13-13 | <.17 | <.07 | <.002 | <.02 | <.041 | <.29 | <.020 | | <.13 | <.005 | <.006 | <.42 | <.018 | | 13 | | | | | | | | | | | | | | | 13
13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13
AUG | | | | | | | | < . 4 | | | | | | | 21
AUG | | | | | | | | | | | | | | | 21-21 | <.16 | <.07 | <.002 | <.02 | <.041 | <.29 | <.020 | | <.13 | <.005 | <.006 | <.42 | <.018 | | 21
21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | | | | | 28 | 581609632 | 0201 L | k Texana | Site CC | DATE | DACTHAL
MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39571) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DICAMBA
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | DICHLO-
BENIL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49303) | DICHLOR
PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49302) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DINOSEB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49301) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | DIURON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49300) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | JAN | MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L) | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | AZINON,
DIS-
SOLVED
(UG/L) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | BENIL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | ELDRIN
DIS-
SOLVED
(UG/L) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | | |
MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | AZINON,
DIS-
SOLVED
(UG/L)
(39572) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | BENIL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49302) | ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | JAN
31
JAN
31-31 | MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39571) | AZINON,
DIS-
SOLVED
(UG/L)
(39572) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | BENIL,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49303) | PROP,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49302) | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49301) | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49300) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | JAN
31
JAN
31-31
31 | MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | AZINON,
DIS-
SOLVED
(UG/L)
(39572) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | BENIL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49303) | PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49302) | ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49301) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49300) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | JAN
31
JAN
31-31
31
31 | MONO-ACID, WAT,FLT GF 0.7U REC (UG/L) (49304) <.07 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39571) | AZINON,
DIS-
SOLVED
(UG/L)
(39572) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | BENIL,
WATER,
FITRD,
GF 0.7U
REC
(UG/L)
(49303) | PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49302) | ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49301) | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) | WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49300) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | JAN
31
JAN
31-31
31 | MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39571) | AZINON,
DIS-
SOLVED
(UG/L)
(39572) | WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(38442) | BENIL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49303) | PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49302) | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49301) | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) | WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49300) | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82668) | | JAN 31 JAN 31-31 31 31 31 31 JUN 13 | MONO-ACID, WAT,FLT GF 0.7U REC (UG/L) (49304) <.07 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39571) | AZINON,
DIS-
SOLVED
(UG/L)
(39572) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | BENIL,
WATER,
FITRD,
GF 0.7U
REC
(UG/L)
(49303) | PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49302) | ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49301) | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) | WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49300) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13 JUN 13-13 | MONO-ACID, WAT,FLT GF 0.7U REC (UG/L) (49304) <.07 <.07 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571) | AZINON,
DIS-
SOLVED
(UG/L)
(39572)

<.005

<.005 | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442)

<.04

<.04 | BENIL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49303) | PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49302) | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 | WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(49301)

<.09

<.09 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) | WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(49300) | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82668)

<.002

<.002 | | JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 JUN 13 | MONO-ACID, WAT,FLT GF 0.7U REC (UG/L) (49304) <.07 <.07 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.010

E.043 | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39571) | AZINON,
DIS-
SOLVED
(UG/L)
(39572)

<.005

<.005 | WATER, FLITRD, GF 0.7U REC (UG/L) (38442) <.04 <.04 <.04 | BENIL, WATER, FITRD, GF 0.7U REC (UG/L) (49303) <.05 <.05 <.05 <.05 <.05 <.05 < < < < < < < < < < < < < < < < < < < < < < < | PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302) <.05 <.05 <.05 <.05 < < < < < | ELDRIN
DIS-
SOLVED
(UG/L)
(39381)

<.005

<.005 | WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(49301)

<.09

<.09 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 < | WATER, FLIRD, GF 0.7U REC (UG/L) (49300) <.0609 | WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 | MONO-ACID, WAT,FLT GF 0.7U REC (UG/L) (49304) <.07 <.07 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.010

E.043 | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571) | AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442)

<.04

<.04

 | BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303) <.05 <.05 | PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302) | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 | WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(49301)

<.09

<.09

<.09 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) | WATER, FLIRD, GF 0.7U REC (UG/L) (49300) <.060909 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82668)

<.002

<.002

 | | JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 13 13 13 | MONO-ACID, ACID, WAT,FLT GF 0.7U REC (UG/L) (49304) <.07 <.07 | WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.010

E.043 | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571) | AZINON,
DIS-
SOLVED
(UG/L)
(39572)

<.005

<.005

 | WATER, FLITRD, GF 0.7U REC (UG/L) (38442) <.04 <.04 <.04 <.04 | BENIL,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(49303)

<.05

<.05

 | PROP,
WATER,
FLITED,
GF 0.7U
REC
(UG/L)
(49302)

<.05

<.05

<.05 | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 | WATER, FLITRD, GF 0.7U REC (UG/L) (49301) <.09 < < < < < | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) | WATER, FLIRD, GF 0.7U REC (UG/L) (49300) <.060909 | WATER FLIRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 AUG | MONO-ACID, WAT,FLT GF 0.7U REC (UG/L) (49304) <.07 <.07 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.010

E.043 | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571) | AZINON, DIS- SOLVED (UG/L) (39572) <.005 < < <.005 | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442)

<.04

<.04

 | BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303) <.05 <.05 | PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302) | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 | WATER, FLIRD, GF 0.7U REC (UG/L) (49301) <.09 <.09 <.09 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) | WATER, FLIRD, GF 0.7U REC (UG/L) (49300) <.060909 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82668)

<.002

<.002

 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 | MONO-ACID, ACID, WAT,FLT GF 0.7U REC (UG/L) (49304) <.07 <.07 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 |
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.010

E.043 | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571) | AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 | WATER, FLITRD, GF 0.7U REC (UG/L) (38442) <.04 <.04 <.04 <.04 | BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303) <.05 <.05 | PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302) | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 | WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(49301)

<.09

<.09

<.09 | FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) | WATER, FLIRD, GF 0.7U REC (UG/L) (49300) <.060909 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82668)

<.002

<.002 | | JAN 31 JAN 31-31 31 31 31 JUN 13-13 13 JUN 13-13 13 13 13 13 AUG 21 AUG | MONO-ACID, WAT,FIT GF 0.7U REC (UG/L) (49304) <.07 <.07 <.07 <.07 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.010

E.043

E.043 | AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39571) | AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442)

<.04

<.04

<.04

<.04 | BENIL, WATER, FITTRD, GF 0.7U REC (UG/L) (49303) <.05 <.05 <.05 <.05 <.05 < <.05 | PROP, WATER, FLIRD, GF 0.7U REC (UG/L) (49302) <.05 <.05 <.05 <.05 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 | WATER, FLIRD, GF 0.7U REC (UG/L) (49301) <.09 <.09 <.09 <.09 < < < < < < < < < | FOTON WATER FILTRD 0.7 U GF, REC (UG/L) (82677) <.021 <.021 <.021 <.021 <.021 <.021 | WATER, FLIRD, GF 0.7U REC (UG/L) (49300) <.06 | WATER FLITRD 0.7 U GF, REC (UG/L) (82668) | | JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 13 13 13 13 13 13 13 13 13 13 13 13 2MG 21 AUG 21-21 21 | MONO-ACID, WAT,FIT GF 0.7U REC (UG/L)(49304) <.07 <.07 | WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.010

E.043

 | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571) | AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 | WATER, FLITRD, GF 0.7U REC (UG/L) (38442) <.04 | BENIL, WATER, FLITRD, GF 0.7U REC (UG/L) (49303) <.05 <.05 <.05 < | PROP, WATER, FLIRP, GF 0.7U REC (UG/L) (49302) <.05 <.05 <.05 < | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 < <.005 | WATER, FLTRD, GF 0.7U REC (UG/L) (49301) <.09 <.09 <.09 < < | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.021 < <.021 <.021 | WATER, FLIRD, GF 0.7U REC (UG/L) (49300) <.06 | WATER FLIRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 | | JAN 31 JAN 31-31 31 31 31 JUN 13-13 13 JUN 13-13 13 13 13 13 AUG 21 AUG | MONO - ACID, WAT, FLT GF 0.7U REC (UG/L) (49304) | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.010

E.043

 | AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571) | AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 | WATER, FLITRD, GF 0.7U REC (UG/L) (38442) <.04 <.04 <.04 <.04 | BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303) <.05 <.05 <.05 <.05 | PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302) | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 | WATER, FLITRD, GF 0.7U REC (UG/L) (49301) <.09 <.09 <.09 <.09 < < < < < < < < < | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.021 <.021 <.021 <.021 <.021 <.021 | WATER, FLIRD, GF 0.7U REC (UG/L) (49300) <.06 | WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 | ### 08164525 Lake Texana near Edna, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39399) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FEN-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49297) | FLUO-
METURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38811) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LINURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38478) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39531) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | MCPA,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38482) | MCPB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38487) | |---|---|---|--|--|--|---|---|--|---|---|--|--|---| | JAN | | | | | | | | | | | | | | | 31
JAN | | | | | | | | | | | | | | | 31-31 | <.009 | | <.005 | <.18 | <.18 | <.003 | <.004 | <.02 | <.035 | | <.027 | <.08 | <.13 | | 31
31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | 31
JUN | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13-13 | <.009 | | <.005 | <.10 | .12 | <.003 | <.004 | <.02 | <.035 | | <.027 | <.08 | <.13 | | 13
13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13
13 | |
<.4 | | | | | | | |
<.4 | | | | | AUG | | | | | | | | | | | | | | | 21
AUG | | | | | | | | | | | | | | | 21-21 | <.009 | | <.005 | <.07 | .08 | <.003 | <.004 | <.02 | <.035 | | <.027 | <.08 | <.13 | | 21
21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | 21 | 28 | | | k Texana | | | | | | | | DATE | METHIO-
CARB,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(38501) | METH-
OMYL,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49296) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) | MOL-
INATE
WATER
FLTRD
0.7 U | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | NEB-
URON,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49294) | Site CC NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293) | ORY-
ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | OXAMYL,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(38866) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN | CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | NEB-
URON,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR
AZON,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49293) | ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | DDE
DISSOLV
(UG/L)
(34653) | THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN
31 | CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | LACHLOR
WATER
DISSOLV
(UG/L) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | NEB-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | NORFLUR
AZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L) |
DDE
DISSOLV
(UG/L) | THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | THION,
DIS-
SOLVED
(UG/L) | | JAN
31
JAN
31-31 | CARB,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(38501) | OMYL,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | NEB-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR
AZON,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49293) | ZALIN,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49292) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | DDE
DISSOLV
(UG/L)
(34653) | THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN
31
JAN | CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | OMYL,
WATER,
FLITED,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | NEB-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR AZON, WATER, FLTRD, GF 0.7U REC (UG/L) (49293) | ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | DDE
DISSOLV
(UG/L)
(34653) | THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN
31
JAN
31-31
31
31 | CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501) | OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR WATER DISSOLV (UG/L) (39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | NEB-
URON,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR
AZON,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49293) | ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | WATER,
FLITED,
GF 0.7U
REC
(UG/L)
(38866) | DDE
DISSOLV
(UG/L)
(34653) | THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN
31
JAN
31-31
31
31
31 | CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501) | OMYL,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR WATER DISSOLV (UG/L) (39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | NEB-
URON,
WATER,
FLITED,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR
AZON,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(49293) | ZALIN,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49292) | WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(38866) | DDE
DISSOLV
(UG/L)
(34653)

<.003 | THION,
TOTAL
IN BOT-
TOM MA-
TERTAL
(UG/KG)
(39541) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN 31 JAN 31-31 31 31 31 31 JUN 13 | CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501) | OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR WATER DISSOLV (UG/L) (39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | NEB-
URON,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR
AZON,
WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(49293) | ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | WATER,
FLITED,
GF 0.7U
REC
(UG/L)
(38866) | DDE
DISSOLV
(UG/L)
(34653) | THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13 JUN 13-13 | CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501) | OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR WATER DISSOLV (UG/L) (39415) 041543 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671) <.002167 | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007 | NEB-
URON,
WATER,
FLITED,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293) <.04 <.04 | ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(38866)

<.02

<19.5 | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003 | THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | THION,
DIS-
SOLVED
(UG/L)
(39542)

<.007

<.007 | | JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13-13 13 | CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501) | OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR WATER DISSOLV (UG/L) (39415) | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.007 | NEB-
URON,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293) <.04 | ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | WATER,
FLIRD,
GF 0.7U
REC
(UG/L)
(38866) | DDE
DISSOLV
(UG/L)
(34653)

<.003

 | THION,
TOTAL
IN BOT-
TOM MA-
TERTAL
(UG/KG)
(39541) | THION,
DIS-
SOLVED
(UG/L)
(39542)

<.007

 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 | CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501) <.07 <.07 <.07 | OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR WATER DISSOLV (UG/L) (39415) 041 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671) <.002167 | NAPROP-
AMIDE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007 | NEB-
URON,
WATER,
FLITED,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293) <.04 <.04 | ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292) | WATER, FLITRD, GF 0.7U REC (UG/L) (38866) <.02 | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003

 | THION, TOTAL IN BOT-TOM MA-TERIAL (UG/KG) (39541) | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 | CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501) <.07 <.07 <.07 <.07 <.07 < < < < | OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR WATER DISSOLV (UG/L) (39415) 041 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

167 | NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 | NEB-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR AZON, WATER, FLITED, GF 0.7U REC (UG/L) (49293) <.04 <.04 | ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292)

<.49

<.28
 | WATER, FLITRD, GF 0.7U REC (UG/L) (38866) <.02 <19.5 | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003

 | THION, TOTAL IN BOT- TOM MA- TERTAL (UG/KG) (39541) | THION,
DIS-
SOLVED
(UG/L)
(39542)

<.007

<.007
 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13 13 13 13 13 13 | CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501) <.07 <.07 <.07 | OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296)

<1.68

<.02

 | LACHLOR WATER DISSOLV (UG/L) (39415) 041 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671) <.002 167 | NAPROP-
AMIDE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007

<.007 | NEB- URON, WATER, FLITED, GF 0.7U REC (UG/L) (49294) <.02 | NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293) <.04 <.04 | ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292) <.49 < < < < < 28 < < < < < < | WATER, FLITRD, GF 0.7U REC (UG/L) (38866) <.02 | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003

 | THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 13 AUG 21 AUG | CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501) <.07 | OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296)

<1.68

<.02

 | LACHLOR WATER DISSOLV (UG/L) (39415) 041 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.002167 | NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 | NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294) <.02 <.12 | NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293) <.04 <.04 | ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292) <.49 | WATER, FLITRD, GF 0.7U REC (UG/L) (38866) <.02 < < < | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003

 |
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 | | JAN 31-31 31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 13 AUG 21-21 | CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501) <.07 <.07 <.07 | OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296)

<1.68

<.02

 | LACHLOR WATER DISSOLV (UG/L) (39415) 041 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671) <.002 167 | NAPROP-
AMIDE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007

<.007 | NEB- URON, WATER, FLITED, GF 0.7U REC (UG/L) (49294) <.02 | NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293) <.04 <.04 | ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292) <.49 < < < < < 28 < < < < < < | WATER, FLITRD, GF 0.7U REC (UG/L) (38866) <.02 | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003

 | THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 4UG 21 AUG 21-21 21 | CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501) <.07 | OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296) <1.68 <.02 <.02 <.02 <.02 | LACHLOR WATER DISSOLV (UG/L) (39415) 041 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 | MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.002167167002 | NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 | NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294) <.02 <.12 <.26 <.26 | NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293) <.04 <.04 <.04 <.04 | ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292) <.49 <.28 <.28 <.28 <.28 <.28 <.28 <.28 <.28 <.28 <.28 < < < | WATER, FLITRD, GF 0.7U REC (UG/L) (38866) <.02 < < < < < < | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003

<.003

 | THION, TOTAL IN BOT- TOM MA- TERTAL (UG/KG) (39541) | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 | | JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13-13 | CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501) <.07 | OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296)

<1.68

<.02

 | LACHLOR WATER DISSOLV (UG/L) (39415) 041 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 | MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671) <.0021671671002 | NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 | NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294) <.02 <.12 <.12 <.26 | NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293) <.04 <.04 <.04 | ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292) | WATER, FLITRD, GF 0.7U REC (UG/L) (38866) <.02 < < < < < < | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003

<.003

<.003 | THION, TOTAL IN BOT-TOM MA-TERIAL (UG/KG) (39541) | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007 <.007 | ### 08164525 Lake Texana near Edna, TX--Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 285816096320201 -- Lk Texana Site CC | DATE | METHYL
PARA-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG)
(39601) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PIC-
LORAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49291) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRO-
PHAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49236) | PRO-
POXUR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38538) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | |----------|---|--|---|---|--|---|---|---|--|--|--|---|---| | JAN | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 31-31 | | <.006 | <.002 | <.010 | <.011 | <.09 | <.015 | <.010 | <.011 | <.023 | <.11 | <.12 | <.004 | | 31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | JUN | | . 006 | . 000 | . 010 | . 011 | . 00 | . 015 | . 010 | . 011 | . 000 | .2 00 | . 10 | . 004 | | 13-13 | | <.006 | <.002 | <.010 | <.011 | <.09 | <.015 | <.010 | <.011 | <.023 | <3.20 | <.12 | <.004 | | 13
13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13 | <.4 | | | | | | | | | | | | | | AUG | ` | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | AUG | | | | | | | | | | | | | | | 21-21 | | <.006 | <.002 | <.010 | <.011 | <.09 | <.015 | <.010 | <.011 | <.023 | <2.76 | <.12 | <.004 | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | 21 | DATE | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
CLOPYR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49235) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | |--------------|---|---|--|--|---|---|--|---| | JAN | | | | | | | | | | 31 | | | | | | | | | | JAN
31-31 | <.011 | <.016 | <.034 | <.017 | <.005 | < .002 | < .07 | <.009 | | 31 | V.011 | ~.UIU | ~.U34 | V.U17 | ~.003 | <.002
 | | ·.009 | | 31 | | | | | | | | | | 31 | | | | | | | | | | 31 | | | | | | | | | | JUN | | | | | | | | | | 13 | | | | | | | | | | JUN
13-13 | .045 | .017 | <.034 | <.017 | .086 | <.002 | < .07 | < . 009 | | 13 | .045 | .017 | <.U34
 | <.U17 | .000 | <.002 | | <.009 | | 13 | | | | | | | | | | 13 | | | | | | | | | | 13 | | | | | | | | | | 13 | | | | | | | | | | AUG | | | | | | | | | | 21 | | | | | | | | | | AUG
21-21 | .045 | E.015 | <.034 | <.017 | <.005 | <.002 | < .07 | <.009 | | 21-21 | .045 | E.U15 | <.034 | <.017 | <.005 | <.002 | <.07 | <.009 | | 21 | | | | | | | | | | 21 | | | | | | | | | | 21 | | | | | | | | | 307 ### 08164525 Lake Texana near Edna, TX--Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | 200042006221401 | Tle Torrono | Cita Da | |-----------------|-------------|---------| | JAN 31 JAN 31-31 31 31 JUN 13 JUN 13-13 13 JUN 13-13 13 | TIME 1104 1104 1106 1108 1110 1110 1112 1114 | SAM-
PLING
DEPTH
(FEET)
(00003)
1.00

10.0
22.0
1.00 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
194

188
205
234

235
235 | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) 7.6 7.6 7.6 7.7 7.7 7.6 | TEMPER-ATURE WATER (DEG C) (00010) 14.5 14.5 14.0 30.0 29.5 29.5 | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300)
8.3

8.4
8.4
6.4 | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301)
81

82
81
85

83
79 | OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556) | 2,4,5-T
DIS-
SOLVED
(UG/L)
(39742)

<.04

<.04
 | 2,4-D,
DIS-
SOLVED
(UG/L)
(39732)

<.11

<.11 | 2,4-DB WATER, FLITRD, GF 0.7U REC (UG/L) (38746) <.12 <.10 | 2,6-DI-
ETHYL
ANTLINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.002

<.002
 | |---|--
---|--|--|---|--|--|---|---|--|---|--|---| | 13
AUG
21 | 1114 | 18.0 | 369 | 8.0 | 30.0 | .37 |
7.5 | 99 | | | | | | | AUG
21-21 | 1011 | | | | | | | | | <.04 | <.11 | <.10 | <.002 | | 21
21 | 1013
1015 | 10.0
18.0 | 354
356 | 7.9
7.8 | 30.0
30.0 | | 6.7
6.2 | 88
82 | | | | | | | | | | | 29 | 004209633 | 1401 T | k Texana | Site DC | | | | | | | | | 3HYDRXY | | 2, | ACIFL- | | ALDI- | ALDI- | ALDICA- | | | METHYL | BEN- | | DATE | SILVEX,
DIS-
SOLVED
(UG/L)
(39762) | CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | DNOC
WAT,FLT
GF 0.7U
REC
(UG/L)
(49299) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | UORFEN
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49315) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49312) | CARB
SULFONE
WAT,FLT
GF 0.7U
REC
(UG/L)
(49313) | RB SUL-
FOXIDE,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49314) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | | JAN
31 | | | | | | | | | | | | | | | JAN
31-31 | <.03 | <.28 | <.25 | <.004 | <.05 | <.002 | <.21 | <.20 | <.02 | <.005 | .072 | <.050 | <.010 | | 31 | | | | | | | | | | | | | | | JUN
13
JUN | | | | | | | | | | | | | | | 13-13
13 | <.03 | <.11 | <.25 | .030 | <.05 | .117 | <.21 | <.20 | <.02 | <.005 | .415 | <.050 | <.010 | | 13 | | | | | | | | | | | | | | | AUG
21 | | | | | | | | | | | | | | | AUG
21-21 | <.03 | <.11 | <.25 | <.004 | <.05 | .028 | <.21 | <.20 | <.02 | <.005 | .365 | <.050 | <.010 | | 21
21 | | | | | | | | | | | | | | | | | | | 29 | 004209633 | 1401 L | k Texana | Site DC | | | | | | | DATE | BENTA-
ZON,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(38711) | BRO-
MACIL,
WATER,
DISS,
REC
(UG/L)
(04029) | BRO-
MOXYNIL
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49311) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49310) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49309) | CARBO-
FURAN
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82674) | TRI-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39787) | CHLORO-
THALO-
NIL,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49306) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | CLOPYR-
ALID,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49305) | | JAN
31 | | | | | | | | | | | | | | | JAN
31-31 | <.04 | <.09 | <.07 | <.002 | <.02 | <.041 | <.29 | <.020 | | <.13 | <.005 | <.006 | <.42 | | 31
31 | | | | | | | | | | | | | | | JUN
13 | | | | | | | | | | | | | | | JUN
13-13
13 | .05 | <.24 | <.07 | <.002 | <.02 | <.041 | <.29 | <.020 | | <.13 | <.005 | <.006 | <.42 | | 13
13 | | | | | | | | |
<.2 | | | | | | AUG
21 | | | | | | | | | | | | | | | AUG
21-21 | <.04 | <.09 | <.07 | <.002 | <.02 | <.041 | <.29 | <.020 | | <.13 | <.005 | <.006 | <.50 | | 21
21 | ### 08164525 Lake Texana near Edna, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DACTHAL
MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39571) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DICAMBA
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | DICHLO-
BENIL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49303) | DICHLOR
PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49302) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DINOSEB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49301) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | DIURON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49300) | |--------------|--|---|---|--|---|---|---|--|---|---|--|--|--| | JAN
31 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 31-31
31 | <.018 | <.07 | <.003 | <.006 | | <.005 | <.04 | <.05
 | <.05
 | <.005 | <.09 | <.021 | <.06
 | | JUN | | | | | | | | | | | | | | | 13
JUN | | | | | | | | | | | | | | | 13-13
13 | <.018 | <.07
 | <.003 | E.024 | | <.005 | <.04 | <.05
 | <.05
 | <.005
 | <.12 | <.021 | .15 | | 13
13 | | | | | <.2 | | | | | | | | | | AUG
21 | | | | | | | | | | | | | | | AUG
21-21 | <.018 | <.40 | <.003 | E.033 | | <.005 | <.04 | <.05 | <.05 | <.005 | <.09 | <.021 | E.01 | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | | | | | 29 | 004209633 | 1401 L | k Texana | Site DC | | | | | | | DATE | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39399) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FEN-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49297) | FLUO-
METURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38811) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LINURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38478) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39531) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | MCPA,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38482) | | JAN
31 | | | | | | | | | | | | | | | JAN
31-31 | | | | | | | | | | | | | | | 31 | <.002 | <.009 | | <.005
 | <.11 | <.06
 | <.003 | <.004 | <.02 | <.035 | | <.027 | <.08 | | JUN | | | | | | | | | | | | | | | 13
JUN | | | | | | | | | | | | | | | 13-13
13 | <.002 | <.009 | | <.005 | <.07 | .14 | <.003 | <.004 | <.02
 | <.035
 | | <.027 | <.08 | | 13
13 | | | <.2 | | | | | | | | <.2 | | | | AUG
21 | | | | | | | | | | | | | | | AUG
21-21 | <.002 | <.009 | | <.005 | <.07 | E.04 | <.003 | <.004 | <.02 | <.035 | | <.027 | <.08 | | 21
21 | 29 | 004209633 | 1401 L | k Texana | Site DC | | | | | | | DATE | MCPB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38487) | METHIO-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | METH-
OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | NEB-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR
AZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49293) | ORY-
ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | OXAMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | | JAN
31 | | | | | | | | | | | | | | | JAN
31-31 | <.13 | <.07 | <1.50 | <.013 | <.006 | <.002 | <.007 | <.02 | <.04 | <.55 | <.02 | <.003 | | | 31 | |
| | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 13
JUN | | | | | | | | | | | | | | | 13-13
13 | <.22 | <.07 | <.02 | .283 | <.006 | .686
 | <.007 | <.02 | <.04 | <.28 | <.02 | <.003 | | | 13
13 | | | | | | | | | | | | | <.2 | | AUG
21 | | | | | | | | | | | | | | | AUG
21-21 | <.13 | <.07 | <.27 | .135 | <.006 | <.002 | <.007 | <.02 | <.04 | <.28 | <.07 | <.003 | | | 21
21 | #### 08164525 Lake Texana near Edna, TX--Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 290042096331401 -- Lk Texana Site DC | | 290042096331401 Lk Texana Site DC | | | | | | | | | | | | | |--------------|---|---|--|---|---|--|---|---|---|--|--|--|--| | DATE | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG)
(39601) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PIC-
LORAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49291) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRO-
PHAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49236) | PRO-
POXUR,
WATER,
FLITRD,
GF 0.7U
REC
(UG/L)
(38538) | | JAN | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | JAN
31-31 | <.007 | | <.006 | <.002 | <.010 | <.011 | <.09 | <.015 | <.010 | <.011 | <.023 | <.09 | <.12 | | 31 | <.007
 | | | <.UUZ
 | | | | | | | | | | | 31 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | JUN
13-13 | <.007 | | <.006 | <.002 | <.010 | <.011 | <.09 | <.015 | <.010 | <.011 | <.023 | <1.80 | - 10 | | 13 | <.007 | | <.006 | <.00∠ | <.010 | <.011 | <.09 | <.015 | <.010 | <.011 | <.023 | <1.80 | <.12 | | 13 | | | | | | | | | | | | | | | 13 | | <.2 | | | | | | | | | | | | | AUG | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | AUG
21-21 | <.007 | | <.006 | <.002 | <.010 | <.011 | <.09 | <.015 | <.010 | <.011 | <.023 | <1.13 | <.12 | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | | | | | 29 | 004209633 | 1401 L | k Texana | Site DC | PRON- AMIDE WATER N FLIRD 0.7 U DATE GF, REC (UG/L) (82676) (| | | | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
CLOPYR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49235) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | | | | | JAN | | | | | | | | | | | | | | | 3 | 1 | | | | | | | | | | | | <.016 <.034 <.017 -- -- <.034 -- <.034 -- -- -- <.017 --- <.017 -- <.005 .055 <.005 -- <.002 -- <.002 <.002 <.07 <.009 <.009 <.009 -- -- <.07 -- <.07 -- 31-31 31... JUN 13-13 13... 13... 13... AUG 21... AUG 21-21 21... 21... JUN 13... <.004 -- -- <.004 ---- <.004 -- <.011 -- .050 -- .034 -- -- --- E.013 ----- E.019 -- ### 08164525 Lake Texana near Edna, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | 2,4,5-T
DIS-
SOLVED
(UG/L)
(39742) | 2,4-D,
DIS-
SOLVED
(UG/L)
(39732) | 2,4-DB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38746) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | SILVEX,
DIS-
SOLVED
(UG/L)
(39762) | |--|--|--|--|--|---|--|--|---|--|---|---|---|--| | JAN | | | | | | | | | | | | | | | 31
JAN | 1044 | 1.00 | 110 | 7.2 | 13.5 | .15 | 8.3 | 79 | | | | | | | 31-31 | 1044 | | | | | | | | <.04 | <.11 | <.10 | <.002 | <.03 | | 31 | 1046 | 10.0 | 110 | 7.2 | 13.5 | | 8.3 | 79 | | | | | | | 31
31 | 1048
1050 | 20.0
28.0 | 109
103 | 7.1
7.0 | 13.5
13.0 | | 8.1
8.4 | 77
79 | | | | | | | JUN | 1050 | 20.0 | 103 | 7.0 | 13.0 | | 0.4 | 79 | | | | | | | 13 | 1030 | 1.00 | 199 | 7.7 | 30.0 | .21 | 6.5 | 86 | | | | | | | JUN
13-13 | 1030 | | | | | | | | <.04 | <.11 | <.10 | <.002 | <.03 | | 13 | 1032 | 10.0 | 200 | 7.4 | 29.5 | | 5.5 | 72 | | | | | | | 13 | 1034 | 20.0 | 199 | 7.1 | 28.0 | | 3.6 | 46 | | | | | | | 13 | 1036 | 26.0 | 200 | 7.1 | 28.0 | | 3.3 | 42 | | | | | | | 13 | 1036 | 26.0 | | | | | | | | | | | | | AUG
21 | 0950 | 1.00 | 362 | 7.8 | 30.5 | .37 | 7.3 | 97 | | | | | | | AUG | 0930 | 1.00 | 302 | 7.0 | 30.3 | . 37 | 7.3 | 91 | | | | | | | 21-21 | 0950 | | | | | | | | <.04 | .74 | <.10 | M | <.03 | | 21 | 0952 | 10.0 | 399 | 7.6 | 30.0 | | 6.0 | 79 | | | | | | | 21 | 0954 | 23.0 | 411 | 7.5 | 30.0 | | 5.1 | 67 | | | | | | | | 3HYDRXY
CARBO-
FURAN | DNOC | ACETO-
CHLOR, | ACIFL-
UORFEN
WATER, | 594009631
ALA-
CHLOR, | 2101 L ALDI- CARB, WATER, | ALDI-
CARB
SULFONE | Site EC ALDICA- RB SUL- FOXIDE, | ALPHA | ATRA-
ZINE, | METHYL
AZIN-
PHOS | BEN-
FLUR-
ALIN | BENTA-
ZON,
WATER, | | DATE | WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | WAT,FLT
GF 0.7U
REC
(UG/L)
(49299) | WATER
FLTRD
REC
(UG/L)
(49260) | FLTRD,
GF 0.7U
REC
(UG/L)
(49315) | WATER,
DISS,
REC,
(UG/L)
(46342) | FLTRD,
GF 0.7U
REC
(UG/L)
(49312) | WAT,FLT
GF 0.7U
REC
(UG/L)
(49313) | WAT,FLT
GF 0.7U
REC
(UG/L)
(49314) | BHC
DIS-
SOLVED
(UG/L)
(34253) | WATER,
DISS,
REC
(UG/L)
(39632) | WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | | JAN | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 31-31
31 | < .34 | | | | | | | | | | | | | | | | <.25 | <.004 | <.05 | <.002 | <.21 | <.20 | <.02 | <.005 | .190 | <.050 | <.010 | <.04 | | 31 | | | | | | | | | | | | | | | 31
31 | 31
JUN
13 | | | | | | | | | | | | | | | 31
JUN
13
JUN | | | | | | | | | | | | | | | 31
JUN
13
JUN
13-13 |

<.11 |

 | | |

.444 | | |

<.04 | | |

<.050 | |

.09 | | 31
JUN
13
JUN | |

<.25 |

.112 |

<.07 | |

<.21 |

<.20 | |

<.005 | 1.03 | |

<.010 | | | 31
JUN
13
JUN
13-13
13 |

<.11 |

<.25 | .112 |

<.07 |

.444 |

<.21 |

<.20 |

<.04 |

<.005 | 1.03 |

<.050 |

<.010 | .09 | | 31 JUN 13 JUN 13-13 13 13 13 |

<.11 |

<.25
 | .112 |

<.07
 |

.444
 |

<.21
 |

<.20 |

<.04 |

<.005 | 1.03 |

<.050 |

<.010 | .09 | | 31 JUN 13 JUN 13-13 13 13 13 AUG 21 | <.11
 |

<.25

 | .112 |

<.07

 | .444 |

<.21

 |

<.20

 |

<.04

 |

<.005

 | 1.03 |

<.050

 |

<.010

 | .09 | | 31 JUN 13 JUN 13-13 13 13 13 AUG 21 AUG | <.11 |

<.25

 | .112 | <.07 | .444 | <.21 | <.20 | <.04 | <.005 | 1.03 | <.050 | <.010 | .09 | | 31 JUN 13 JUN 13-13 13 13 13 21 AUG 21 AUG 21-21 |

<.11

 |

<.25

 | .112 |

<.07

 | .444 | <.21 |

<.20

 |

<.04

 |

<.005

 | 1.03
 | <.050 | <.010 | .09 | | 31 JUN 13 JUN 13-13 13 13 13 AUG 21 AUG | <.11 <.11 <.11 <.11 |

<.25

<.25 | .112 |

<.07

<.05 | .444 | <.21 | <.20 | | <.005 <.005 | 1.03 | <.050 <.050 | <.010 <.010 | .09 | ### 08164525 Lake Texana near Edna, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | BRO-
MACIL,
WATER,
DISS,
REC
(UG/L)
(04029) | BRO-
MOXYNIL
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49311) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49310) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49309) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | TRI-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39787) | CHLORO-
THALO-
NIL,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49306) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | CLOPYR-
ALID,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49305) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | |--|---|--|--|---|--|---|--|---|---|--|--|---|---| | JAN | | | | | | | | | | | | | | | 31
JAN | | | | | | | | | | | | | | | 31-31 | <.09 | <.07 | <.002 | <.02 | <.041 | <.29 | <.020 | | <.13 | <.005 | <.006 | <.42 | <.018 | | 31 | | | | | | | | | | | | | | | 31
31 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | JUN
13-13 | <.18 | <.07 | <.002 | <.02 | <.041 | <.29 | <.020 | | <.13 | <.005 | <.006 | <.42 | <.018 | | 13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13
13 | | | | | | | | <.4 | | | | | | | AUG | | | | | | | | | | | | | | | 21
AUG | | | | | | | | | | | | | | | 21-21 | <.14 | <.07 | <.002 | <.02 | <.041 | <.29 | <.020 | | <.13 | <.005 | <.006 | <.42 | <.018 | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | DATE | DACTHAL
MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442) | DICHLO-BENIL, WATER, FLIRD, GF 0.7U REC (UG/L) (49303) | | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DINOSEB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49301) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | DIURON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49300) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | | JAN | | | | | | | | | | | | | | | 31
JAN | | | | | | | | | | | | | | | 31-31 | 0.7 | | | | | | | | | | | | | | 31 | <.07 | <.003 | E.014 | | <.005 | <.04 | <.05 | <.05 | <.005 | <.09 | <.021 | <.05 | <.002 | | 21 | | | | | | | | | | | | | | | 31
31 | | | | | | | | | | | | | | | 31
JUN | | | |

 | | | | | | | | | | | 31
JUN
13 | | | | | | | | | | | | | | | 31
JUN | | | |

 | | | | | | | | | | | 31
JUN
13
JUN
13-13
13 |

<.07 |

<.003 |

E.100 |

 |

<.005 |

<.04 |

<.08 |

<.05 |

<.005 |

<.13 |

<.021 | |

<.002 | | 31
JUN
13
JUN
13-13
13 |

<.07 |

<.003 |

E.100 |

 |

<.005 |

<.04 |

<.08 |

<.05 |

<.005 |

<.13 |

<.021 |

.08 |

<.002 | | 31 JUN 13 JUN 13-13 13 13 13 |

<.07 |

<.003 |

E.100 |

 |

<.005 |

<.04 |

<.08 |

<.05 |

<.005 |

<.13

 |

<.021 | .08 |

<.002 | | 31 JUN 13 JUN 13-13 13 13 13 | <.07 |

<.003 | E.100 |

 |

<.005

 |

<.04 |

<.08

 |

<.05

 |

<.005

 |

<.13

 |

<.021

 | .08 | <.002
 | | 31 JUN 13 JUN 13-13 13 13 13 AUG 21 AUG | <.07 | <.003 | E.100 |

<.4 | <.005 |

<.04

 | <.08 |

<.05

 | <.005 | <.13 | <.021 | .08 | <.002

 | | 31 JUN 13-13 13 13 13 13 21 AUG 21 AUG 21-21 | <.07 | <.003 | E.100 E.038 |

<.4 | <.005 | <.04 <.04 | <.08 <.05 | | <.005 <.005 <.005 | <.13 <.13 <.09 | <.021 <.021 <.021 | .08 | <.002 <.002 <.002 | | 31 JUN 13 JUN 13-13 13 13 13 AUG 21 AUG | <.07 | <.003 | E.100 |

<.4 | <.005 |

<.04

 | <.08 |

<.05

 | <.005 | <.13 | <.021 | .08 | <.002

 | ### 08164525 Lake Texana near Edna, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39399) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FEN-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49297) | FLUO-
METURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38811) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LINURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38478) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39531) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | MCPA,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38482) | MCPB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38487) | |--|---|---|--|---|---|---|---|---|---|---|---|--|--| | JAN
31 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 31-31
31 | <.009 | | <.005 | <.32 | <.06 | <.003 | <.004 | <.02 | <.035 | | <.027 | <.08 | <.13 | | 31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | JUN
13 | | | | | | | | | | | | | | | JUN
13-13 | <.009 | | <.005 | <.07 | .34 | <.003 | <.004 | <.02 | <.035 | | <.027 | <.08 | <.13 | | 13
13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13 | | < . 4 | | | | | | | | <.4 | | | | | AUG
21 | | | | | | | | | | | | | | | AUG | | | | | | | | | | | | | | | 21-21
21 | <.009 | | <.005 | <.07 | .07 | <.003 | <.004 | <.02 | <.035 | | <.027 | <.08 | <.13 | | 21 | | | | | | |
| | | | | | | | | METHIO-
CARB, | METH-
OMYL, | | METRI- | 594009631
MOL-
INATE
WATER | 2101 L
NAPROP-
AMIDE | NEB-
URON, | Site EC NORFLUR AZON, WATER, | ORY-
ZALIN,
WATER, | OXAMYL,
WATER, | | PARA-
THION, | | | DATE | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | WAIER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49293) | FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN | FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | SENCOR
WATER
DISSOLV
(UG/L)
(82630) | FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | FLTRD,
GF 0.7U
REC
(UG/L)
(49293) | FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | DDE
DISSOLV
(UG/L)
(34653) | IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN
31 | FLTRD,
GF 0.7U
REC
(UG/L) | FLTRD,
GF 0.7U
REC
(UG/L) | LACHLOR
WATER
DISSOLV
(UG/L) | SENCOR
WATER
DISSOLV
(UG/L) | FLTRD
0.7 U
GF, REC
(UG/L) | FLTRD
0.7 U
GF, REC
(UG/L) | FLTRD,
GF 0.7U
REC
(UG/L) | FLTRD,
GF 0.7U
REC
(UG/L) | FLTRD,
GF 0.7U
REC
(UG/L) | FLTRD,
GF 0.7U
REC
(UG/L) | DDE
DISSOLV
(UG/L) | IN BOT-
TOM MA-
TERIAL
(UG/KG) | THION,
DIS-
SOLVED
(UG/L) | | JAN
31
JAN
31-31 | FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | SENCOR
WATER
DISSOLV
(UG/L)
(82630) | FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | FLTRD,
GF 0.7U
REC
(UG/L)
(49293) | FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | DDE
DISSOLV
(UG/L)
(34653)
 | IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN
31
JAN
31-31
31 | FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | SENCOR
WATER
DISSOLV
(UG/L)
(82630) | FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | FLTRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007 | FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | FLTRD,
GF 0.7U
REC
(UG/L)
(49293) | FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | DDE
DISSOLV
(UG/L)
(34653)

<.003 | IN BOT- TOM MA- TERIAL (UG/KG) (39541) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN
31
JAN
31-31
31
31 | FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | SENCOR
WATER
DISSOLV
(UG/L)
(82630) | FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | FLTRD,
GF 0.7U
REC
(UG/L)
(49293) | FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | DDE
DISSOLV
(UG/L)
(34653)
 | IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN 31 JAN 31-31 31 31 JUN 13 | FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | LACHLOR WATER DISSOLV (UG/L) (39415) | SENCOR
WATER
DISSOLV
(UG/L)
(82630) | FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | FLTRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007 | FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | FLTRD,
GF 0.7U
REC
(UG/L)
(49293) | FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | DDE
DISSOLV
(UG/L)
(34653)

<.003 | IN BOT- TOM MA- TERIAL (UG/KG) (39541) | THION,
DIS-
SOLVED
(UG/L)
(39542) | | JAN 31 JAN 31-31 31 31 JUN 13 JUN JUN JUN | FLTRD,
GF 0.7U
REC
(UG/L)
(38501)

<.07

 | FLTRD,
GF 0.7U
REC
(UG/L)
(49296)

<.36

 | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | SENCOR
WATER
DISSOLV
(UG/L)
(82630) | FLTRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

 | FLTRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

 | FLTRD,
GF 0.7U
REC
(UG/L)
(49294)

<.02

 | FLTRD,
GF 0.7U
REC
(UG/L)
(49293)

<.04

 | FLTRD,
GF 0.7U
REC
(UG/L)
(49292)

<.53

 | FLTRD,
GF 0.7U
REC
(UG/L)
(38866)

<.17

 | DDE
DISSOLV
(UG/L)
(34653)

<.003

 | IN BOT-
TOM MA-
TERIAL
(UG/KG)
(39541) | THION,
DIS-
SOLVED
(UG/L)
(39542)

<.007

 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13 JUN 13 | FLTRD,
GF 0.7U
REC
(UG/L)
(38501)

<.07

<.07
 | FLTRD,
GF 0.7U
REC
(UG/L)
(49296)

<.36

<1.43
 | LACHLOR WATER DISSOLV (UG/L) (39415) 093 1.15 | SENCOR
WATER
DISSOLV
(UG/L)
(82630)

<.006

<.006
 | FLTRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

.424
 | FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | FLTRD,
GF 0.7U
REC
(UG/L)
(49294)

<.02

<.03
 | FLTRD,
GF 0.7U
REC
(UG/L)
(49293)

<.04

<.04
 | FLTRD,
GF 0.7U
REC
(UG/L)
(49292)

<.53

<.33
 | FLTRD,
GF 0.7U
REC
(UG/L)
(38866)

<.17

<.10
 | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003
 | IN BOT- TOM MA- TERIAL (UG/KG) (39541) | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 | | JAN 31 JAN 31-31 31 31 JUN 13 JUN 13-13 13 13 | FLTRD,
GF 0.7U
REC
(UG/L)
(38501)

<.07

<.07 | FLTRD,
GF 0.7U
REC
(UG/L)
(49296)

<.36

<1.43 | LACHLOR WATER DISSOLV (UG/L) (39415) | SENCOR
WATER
DISSOLV
(UG/L)
(82630)

<.006

<.006 | FLTRD 0.7 U GF, REC (UG/L) (82671) <.002424 | FLTRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007 | FLTRD,
GF 0.7U
REC
(UG/L)
(49294)

<.02

<.03 | FLTRD,
GF 0.7U
REC
(UG/L)
(49293)

<.04

<.04 | FLTRD,
GF 0.7U
REC
(UG/L)
(49292)

<.53

<.33 | FLTRD,
GF 0.7U
REC
(UG/L)
(38866)

<.17

<.10 | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003 | IN BOT- TOM MA- TERLAL (UG/KG) (39541) | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13 13 13 13 | FLTRD,
GF 0.7U
REC
(UG/L)
(38501)

<.07

<.07

 | FLTRD,
GF 0.7U
REC
(UG/L)
(49296)

<.36

<1.43
 | LACHLOR WATER DISSOLV (UG/L) (39415) 093 1.15 | SENCOR
WATER
DISSOLV
(UG/L)
(82630)

<.006

<.006
 | FLTRD 0.7 U GF, REC (UG/L) (82671) <.002424 | FLTRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007

 | FLTRD,
GF 0.7U
REC
(UG/L)
(49294)

<.02

<.03
 | FLTRD,
GF 0.7U
REC
(UG/L)
(49293)

<.04

<.04
 | FLTRD,
GF 0.7U
REC
(UG/L)
(49292)

<.53

<.33
 | FLTRD,
GF 0.7U
REC
(UG/L)
(38866)

<.17

<.10
 | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003
 | IN BOT- TOM MA- TERIAL (UG/KG) (39541) | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 | | JAN 31 JAN 31-31 31 31 JUN 13 JUN 13 JUN 13-13 13 13 13 AUG 21 | FLTRD,
GF 0.7U
REC
(UG/L)
(38501)

<.07

<.07

 | FLTRD,
GF 0.7U
REC
(UG/L)
(49296)

<.366

<1.43 | LACHLOR WATER DISSOLV (UG/L) (39415) 093 1.15 | SENCOR
WATER
DISSOLV
(UG/L)
(82630)

<.006

<.006 | FLTRD 0.7 U GF, REC (UG/L) (82671) <.002424 | FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 < < < | FLTRD,
GF 0.7U
REC
(UG/L)
(49294)

<.02

<.03

 | FLTRD,
GF 0.7U
REC
(UG/L)
(49293)

<.04

<.04

<.04 | FLTRD,
GF 0.7U
REC
(UG/L)
(49292)

<.53

<.33

 | FLTRD,
GF
0.7U
REC
(UG/L)
(38866)

<.17

<.10

 | DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 | IN BOT- TOM MA- TERIAL (UG/KG) (39541) | THION, DIS- SOLVED (UG/L) (39542) <.007 <-007 | | JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 AUG 21 AUG | FLTRD,
GF 0.7U
REC
(UG/L)
(38501)

<.07

<.07

<.07

 | FLTRD,
GF 0.7U
REC
(UG/L)
(49296)

<.366

<1.43

 | LACHLOR WATER DISSOLV (UG/L) (39415) 093115 | SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | FLTRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

.424

 | FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 | FLTRD,
GF 0.7U
REC
(UG/L)
(49294)

<.02

<.03

<.03 | FLTRD,
GF 0.7U
REC
(UG/L)
(49293)

<.04

<.04

<.04 | FLTRD,
GF 0.7U
REC
(UG/L)
(49292)

<.53

<.33

 | FLTRD,
GF 0.7U
REC
(UG/L)
(38866)

<.17

<.10

<.10

 | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003

 | IN BOT- TOM MA- TERIAL (UG/KG) (39541) | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 | | JAN 31 JAN 31-31 31 31 JUN 13 JUN 13 JUN 13-13 13 13 13 AUG 21 | FLTRD,
GF 0.7U
REC
(UG/L)
(38501)

<.07

<.07

 | FLTRD,
GF 0.7U
REC
(UG/L)
(49296)

<.36

<1.43

 | LACHLOR WATER DISSOLV (UG/L) (39415) 093 1.15 | SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 | FLTRD 0.7 U GF, REC (UG/L) (82671) <.002424 | FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 < <.007 | FLTRD, GF 0.7U REC (UG/L) (49294) <.02 <.03 | FLTRD,
GF 0.7U
REC
(UG/L)
(49293)

<.04

<.04

 | FLTRD,
GF 0.7U
REC
(UG/L)
(49292)

<.53

<.33

 | FLTRD,
GF 0.7U
REC
(UG/L)
(38866)

<.17

<.10

<.10
 | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003

 | IN BOT- TOM MA- TERIAL (UG/KG) (39541) | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 | #### 08164525 Lake Texana near Edna, TX--Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 285940096312101 -- Lk Texana Site EC | DATE | METHYL
PARA-
THION,
TOT. IN
BOTTOM
MATL.
(UG/KG)
(39601) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82664) | PIC-
LORAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49291) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRO-
PHAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49236) | PRO-
POXUR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38538) | PRON-
AMIDE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82676) | |-----------|---|--|---|---|---|---|---|---|--|--|--|---|--| | JAN | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 31-31 | | <.006 | <.002 | <.010 | <.011 | <.09 | <.015 | <.010 | <.011 | <.023 | <.66 | <.12 | <.004 | | 31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 13-13 | | <.006 | <.002 | <.010 | <.011 | <.09 | <.015 | <.010 | <.011 | <.023 | <3.90 | <.12 | <.004 | | 13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13 | <.4 | | | | | | | | | | | | | | AUG
21 | | | | | | | | | | | | | | | AUG | | | | | | | | | | | | | | | 21-21 | | <.006 | <.002 | <.010 | <.011 | <.09 | <.015 | <.010 | <.011 | <.023 | E1.71 | <.12 | <.004 | | 21-21 | | <.006 | <.002 | <.010 | <.011 | <.09 | <.015 | <.010 | <.011 | <.023 | E1./1 | <.12 | <.004 | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | | 285940096312101 Lk Texana Site EC | | | | | | | | | | | | | |--------------|---|---|--|--|---|---|--|---|--|--|--|--|--| | DATE | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
CLOPYR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49235) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | | | | | | | JAN | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | JAN
31-31 | <.011 | <.016 | <.034 | <.017 | <.005 | <.002 | < .16 | <.009 | | | | | | | 31 | V.UII | <.016 | <.U34
 | <.U17 | <.UU5 | <.002 | | <.009 | | | | | | | 31 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 13
JUN | | | | | | | | | | | | | | | 13-13 | .047 | .017 | <.034 | <.017 | .122 | <.002 | <.07 | <.009 | | | | | | | 13 | .047 | .017 | <.U34
 | <.U17 | .122 | <.002 | | <.009 | | | | | | | 13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | AUG | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | AUG | | | | | | | | | | | | | | | 21-21 | .045 | E.018 | <.034 | <.017 | <.005 | <.002 | .24 | <.009 | | | | | | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | 314 GARCITAS CREEK BASIN #### 08164600 Garcitas Creek near Inez, TX LOCATION.--Lat 28°53'28", long 96°49'08", Victoria County, Hydrologic Unit 12100402, at right downstream end of bridge on U.S. Highway 59 access road, 0.3 mi upstream from Southern Pacific Railroad bridge, 2.0 mi southwest of Inez, and 3.6 mi upstream from Casa Blanca Creek. DRAINAGE AREA.--91.7 mi². PERIOD OF RECORD.--June 1970 to current year. Water-quality records.--Chemical data: Apr. 1965 to Aug. 1988. Biochemical data: Apr. 1965 to Aug. 1988. Pesticide data: July 1970 to July 1981. REVISED RECORDS. -- WDR TX-94-3: 1992-93. GAGE.--Water-stage recorder. Datum of gage is 29.16 ft above sea level. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. An undetermined amount of return water from irrigation enters the stream above this station. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1903-70, 24.5 ft Oct. 26, 1960. In 1929, a flood nearly as high as the 1960 flood occurred, and a flood in Sept. 1967 reached a stage of 23.4 ft, from information by local resident. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YE
MEAN VA | | ER 2000 TO | SEPTEMBE | R 2001 | | | |---|---|--|--|--|---|---|--|--|---|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | 2.6
2.1
2.0
2.0
2.2 | 8.7
6.8
5.6
5.1
4.6 | 15
12
9.5
7.8
6.6 | 5.3
4.9
4.5
4.3
4.1 | 2.9
9.1
8.5
22
22 | 4.2
3.1
2.6
2.3
2.0 | .53
.60
.59
.53
9.7 | .79
.94
.51
.34 | .02
.02
.03
.01 | .00
.00
.00
.00 | 5960
2680
355
164
359 | | 6
7
8
9
10 | .06
.00
.00
.03 |
34
35
15
7.6
4.9 | 4.4
4.1
4.3
3.8
3.6 | 5.8
5.4
5.1
4.8
27 | 3.9
3.8
3.7
3.8
3.7 | 15
8.6
6.0
4.8
4.0 | 1.8
1.6
1.5
1.6 | 167
55
22
12
6.8 | .30
.24
.11
.11 | .01
.00
.00
.00 | .00
.00
.00
.00 | 542
222
82
136
227 | | 11
12
13
14
15 | .01
.01
.01
.02 | 3.6
3.0
2.7
2.1
2.0 | 3.3
3.0
3.1
3.2
3.5 | 581
261
87
60
47 | 3.5
3.5
3.8
3.7
3.7 | 3.5
3.3
2.9
18
115 | 1.5
1.5
1.5
1.4 | 31
150
40
12
5.8 | .08
.08
.07
.07 | .00
.00
.00
.00 | .00
.00
.00
.00 | 97
45
27
19
15 | | 16
17
18
19
20 | .03
.46
.21
.03 | 3.0
7.7
48
496
190 | 3.6
3.4
3.3
3.3
3.4 | 42
120
188
292
175 | 3.7
3.5
3.3
3.2
3.3 | 61
25
14
8.9
6.3 | 1.2
1.3
1.1
1.4
1.3 | 3.3
2.1
1.6
1.3
1.1 | .07
.07
.06
.05 | .00
.00
.00
.00 | .00
.00
.00
.00 | 12
11
9.5
8.6
7.9 | | 21
22
23
24
25 | 31
10
11
7.2
5.4 | 65
32
19
188
215 | 3.1
3.1
3.2
4.6
6.1 | 69
39
25
17
13 | 3.3
3.3
3.3
3.1
3.0 | 4.7
3.7
3.0
2.9
2.5 | 1.1
1.0
.96
.92
.81 | 1.0
.79
.73
.59 | .05
.05
.05
.52
.46 | .00
.00
.00
.00 | .00
.00
.00
.00 | 7.4
10
17
11
6.9 | | 26
27
28
29
30
31 | 7.2
6.9
6.6
6.3
4.6
3.4 | 69
35
21
14
10 | 7.8
421
134
61
34
20 | 11
8.8
7.5
7.1
6.8
6.0 | 2.9
3.0
2.9
 | 2.2
2.1
2.9
5.1
11
6.2 | .72
.68
.62
.58
.54 | .45
.42
.30
.25
.26 | .04
.04
.03
.03
.02 | .00
.00
.00
.00 | .00
.00
1.3
.14
1.1
2780 | 5.8
5.4
5.1
4.9
4.7 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 100.76
3.25
31
.00
200
.04 | 1533.5
51.1
496
2.0
3040
.56
.62 | 782.0
25.2
421
3.0
1550
.28 | 2162.2
69.7
581
4.8
4290
.76
.88 | 102.0
3.64
5.3
2.9
202
.04 | 407.1
13.1
115
2.1
807
.14 | 43.53
1.45
4.2
.54
86
.02 | 528.93
17.1
167
.25
1050
.19 | 5.82
.19
.94
.02
.12
.00 | 0.10
.003
.03
.00
.2
.00 | 2782.54
89.8
2780
.00
5520
.98
1.13 | 11057.2
369
5960
4.7
21930
4.02
4.49 | | STATIS | STICS OF N | MONTHLY ME. | AN DATA F | OR WATER Y | EARS 1970 | 0 - 2001, | BY WATER | R YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 69.2
695
1995
.000
1990 | 44.3
541
1999
.000
1990 | 36.1
263
1977
.006
1990 | 41.1
220
1992
.022
1990 | 49.5
558
1992
.14
1990 | 43.2
578
1997
.48
1996 | 79.8
658
1991
.25
1996 | 108
503
1979
.045
1996 | 113
745
1981
.000
1990 | 19.7
218
1983
.003
2001 | 9.16
89.8
2001
.056
1988 | 84.0
789
1978
.000
1988 | | SUMMAR | RY STATIST | TICS | FOR | 2000 CALEN | DAR YEAR | F | OR 2001 W | VATER YEAR | | WATER | YEARS 197 | 0 - 2001 | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL ANNUAL ANNUAL ANNUAL 10 PEF 50 PEF | T ANNUAL
ANNUAL M
T DAILY M
DAILY ME | MEAN MEAN CAN MEAN LOW PAGE (AC-FT) (CFSM) (INCHES) EEDS | | .00 | Jun 11
Sep 4
Sep 4 | | .0
.0
7370 | Sep 1
00 Oct 1
00 Jul 7
Sep 1
92 Sep 1 | | 58.
144
2.
13100
19700
33.
42090
8.
54 | 65 Oct 00 May 00 May Jun 43 Oct 63 61 | 1992
1989
19 1994
22 1971
26 1971
12 1981
19 1994 | ### 08164600 Garcitas Creek near Inez, TX--Continued 316 PLACEDO CREEK BASIN #### 08164800 Placedo Creek near Placedo, TX LOCATION.--Lat 28°43'30", long 96°46'07", Victoria County, Hydrologic Unit 12100402, on right bank at downstream end of bridge on Farm Road 616, 0.1 mi downstream from confluence of Lone Tree Creek and Arroyo Palo Alto, 1.2 mi upstream from Ninemile Creek, and 4.4 mi northeast of Placedo. DRAINAGE AREA. -- 68.3 mi². PERIOD OF RECORD. -- June 1970 to current year. Water-quality records.--Chemical data: Oct. 1968 to Sept. 1979. Biochemical data: Oct. 1968 to Sept. 1979. Pesticide data: Oct. 1968 to Sept. 1979. GAGE.--Water-stage recorder. Datum of gage is 5.58 ft above sea level. Satellite telemeter at station. REMARKS. -- No estimated daily discharges. Records fair. No known regulation or diversions. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1930, 31.9 ft in Sept. 1967 and 30.4 ft in 1960 (probably Oct.), from information by local resident. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR JUN JUL AUG SEP JAN APR MAY 2.4 ΛZ 1.0 4.4 4.0 92 51 36 32 .13 07 3680 2 .85 3.7 .88 .81 .04 4.5 .35 .28 .14 .06 830 .04 .74 4.1 .84 .93 1.0 .32 .26 .16 .20 180 .78 .90 4 5 .05 4.6 2.8 .80 95 30 23 .16 67 2.3 3.9 .05 .96 4.5 .76 1.8 .81 .23 .14 .53 39 6 7 06 92 77 4 3 1 6 .76 .78 1 9 77 733 167 24 13 43 172 .23 1.8 .85 .80 .12 .06 4.4 .30 93 17 8 .19 4.2 .84 .61 .83 42 .20 .13 38 .40 6.6 4.0 3.3 .82 .63 .80 17 20 18 0.7 62 10 8.0 3.2 4.1 303 .70 .73 .23 .23 160 .49 .96 .03 77 11 .41 1 8 4 1 1020 64 1 1 3.9 22 12 0.2 55 .37 1.7 .71 2.1 12 3.9 132 1.1 .20 .69 .08 .01 16 .54 .32 82 42 .91 1.5 .18 .05 73 14 .30 27 4.2 26 .72 73 1 2 17 03 01 4.1 .31 8.5 17 11 .62 2.6 2.3 15 .69 .03 .17 .01 16 32 91 4 0 9 7 64 20 59 1 5 17 03 0.0 1 8 6.6 .72 17 .32 129 3.8 22 .59 .95 .17 .02 .00 1.5 1.6 18 553 3.7 62 .59 2.8 .63 .85 .15 .02 1.3 .77 3.9 1.7 .65 .77 19 689 3 5 127 61 1.3 13 05 0.0 1 2 20 134 3.4 .04 .00 .64 .18 21 40 3 4 20 65 56 70 71 25 03 0.0 1 0 1 0 22 .60 .81 18 3.4 .63 .55 .64 .40 .02 .00 4.8 4.6 23 1.9 9.0 3.2 .60 .53 .51 .47 .23 .01 .00 7.8 23 24 1.8 3.4 2.7 .62 .49 .41 .43 .19 .01 .00 9.5 25 3.1 6.5 .53 7.3 26 22 1.7 .51 .45 .41 .40 .23 .01 .00 1.0 1.6 27 2.6 11 13 1.5 .57 .40 .26 .31 .01 .34 28 2.4 6.4 5.2 24 1.4 .53 1 0 .43 .21 2.6 .25 .70 2.0 .41 .67 29 14 1.4 43 .43 .31 .16 .83 1.4 30 4.6 7.6 1.2 ___ 12 .41 .31 .29 31 1.2 4.6 1.0 ---5.8 ---.35 ---.13 2740 TOTAL 30.87 2106.33 172.3 1890.1 19.34 129.21 23.12 993.16 6.45 5.82 2745.15 5441.06 4.17 .77 2.4 32.0 733 .19 2.6 MEAN 1.00 70.2 5.56 61.0 .69 .21 88.6 181 3.9 689 24 .92 .40 3680 MAX 1020 2740 MIN .03 3.2 1.0 .51 .45 .40 .13 .01 .00 AC-FT 61 4180 342 3750 38 256 46 1970 13 12 5450 10790 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2001, BY WATER YEAR (WY) MEAN 70.8 70.1 41.2 41.7 52.5 45.0 59.6 90.8 85.3 56.0 14.3 112 MAX 291 593 389 262 455 516 541 354 510 559 107 913 1998 1997 1973 1990 1978 (WY) 1999 1992 1991 1992 1991 1972 1972 MIN .004 .021 .015 .052 .002 .086 .019 .000 .031 .012 .013 1990 1989 1990 1990 1994 1989 1989 1996 1989 1989 1988 1988 (WY) FOR 2000 CALENDAR YEAR FOR 2001 WATER YEAR WATER YEARS 1970 - 2001 SUMMARY STATISTICS 5082.13 13562.91 ANNUAL TOTAL ANNUAL MEAN 13.9 37.2 61.4 HIGHEST ANNUAL MEAN 154 1992 LOWEST ANNUAL MEAN 1.20 1989 HIGHEST DAILY MEAN Sep 689 Nov 19 3680 11400 Nov .00 .00 .01 LOWEST DAILY MEAN Aug 20 Aug 16 Aug 12 1981 Jul 27 1982 ANNUAL SEVEN-DAY MINIMUM .01 Aug 29 .00 Aug 16 .00 MAXIMUM PEAK FLOW 7930 18300 Aug 31 27.51 Aug 31.62 MAXIMUM PEAK STAGE Nov 13 1998 ANNUAL RUNOFF (AC-FT) 10080 26900 44460 10 PERCENT EXCEEDS 23 45 71 .78 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 1.5 .03 .05 .13 ### 08164800 Placedo Creek near Placedo, TX--Continued 318 COLORADO RIVER BASIN ### Miscellaneous water quality - Barton Springs Hydrophobics #### MULTIPLE STATION ANALYSES | STATION NUMBER | | LOCAL
IDENT-
I-
FIER | | DATE | TIME | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | |------------------------------------|--
--|--|---|---|--|--|---|---|--|--|---| | 08155395
08155400 | Upper Bart
Barton Ck | | | 05-08-01
05-10-01
05-13-01
05-03-01
05-06-01 | 1000
1510
1935
2315
2245 | <.002
<.002
<.002
<.002
<.002 | <.004
<.004
<.004
<.004
<.004 | <.002
<.002
<.002
<.002
<.002 | <.005
<.005
<.005
<.005
<.005 | 3.19
.541
.029
.015
.583 | <.010
<.010
<.010
<.010
<.010 | <.002
<.002
<.002
<.002
<.002 | | 08155500 | Barton Spg | s at Aust | in, TX | 05-07-01
05-07-01
05-08-01
05-10-01
05-03-01 | 1700
1702
1940
1505
2320 | <.002
<.002
<.002
<.002
<.002 | <.004
<.004
<.004
<.004
<.004 | <.002
<.002
<.002
<.002
<.002 | <.005
<.005
<.005
<.005
<.005 | .173
<.007
.068
.058
.017 | <.010
<.010
<.010
<.010
<.010 | <.002
<.002
<.002
<.002
<.002 | | 301546097460201 | Old Mill S | pring at | Austin, | 05-08-01
05-10-01
05-10-01
05-13-01
05-03-01 | 1950
1440
1442
1955
2240 | <.002
<.002
<.002
<.002
<.002 | <.004
<.004
<.004
<.004
<.004 | <.002
<.002
<.002
<.002
<.002 | <.005
<.005
<.005
<.005
<.005 | .207
.104
.091
.028
E.007 | <.010
<.010
<.010
<.010
<.010 | <.002
<.002
<.002
<.002
<.002 | | 301548097461602 | Eliza Spg | at Austin | ı, TX | 05-07-01
05-08-01
05-13-01
05-04-01
05-07-01 | 1715
2005
2010
0005
1720 | <.002
<.002
<.002
<.002
<.002 | <.004
<.004
<.004
<.004
<.004 | <.002
<.002
<.005
<.002
<.002 | <.005 <.005 <.005 <.005 <.005 | .017
.063
.023
.008
.028 | <.010
<.010
<.010
<.010
<.010 | <.002
<.002
<.002
<.002
<.002 | | | | | | 05-08-01
05-08-01
05-10-01
05-13-01 | 1930
1935
1450
1900 | <.002
<.002
<.002
<.002 | <.004
<.004
<.004
<.004 | <.002
<.002
<.002
<.002 | <.005
<.005
<.005
<.005 | .112
.110
.064
.026 | <.010
<.010
<.010
<.010 | <.002
<.002
<.002
<.002 | | | | | | | | | | | | | | | | STATION NUMBER | DATE | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | | STATION NUMBER 08155395 08155400 | DATE
05-08-01
05-10-01
05-13-01
05-03-01
05-06-01 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PYRIFOS
DIS-
SOLVED
(UG/L) | ZINE,
WATER,
DISS,
REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L) | AZINON,
DIS-
SOLVED
(UG/L) | ELDRIN
DIS-
SOLVED
(UG/L) | FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
| | 08155395 | 05-08-01
05-10-01
05-13-01
05-03-01 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
E.010
<.041
<.041
<.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005
<.005
<.005
<.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018
<.018
<.018 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003
<.003
<.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.154
E.077
E.010
E.005 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
.143
E.005
<.005
<.005 | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) < .021 < .021 < .021 < .021 < .021 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002
<.008
<.005
<.002 | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663)
<.009
<.009
<.009
<.009 | | 08155395
08155400 | 05-08-01
05-10-01
05-13-01
05-03-01
05-06-01
05-07-01
05-07-01
05-08-01
05-10-01 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
E.010
<.041
<.041
E.062
<.041
<.041
<.041
<.041
<.041 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 | PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 E.003 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018
<.018
<.018
<.018
<.018
<.018
<.018
<.018
<.018
<.018
<.018 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.154
E.077
E.010
E.005
E.015
<.006
E.015 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
.143
E.005
<.005
<.005
.104
.055
<.005
.013
E.002 | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82668)
<.002
<.008
<.005
<.002
<.002
<.002
<.002
<.002
<.002
<.002 | FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | | 08155395
08155400
08155500 | 05-08-01
05-10-01
05-13-01
05-03-01
05-06-01
05-07-01
05-08-01
05-10-01
05-08-01
05-10-01
05-10-01
05-10-01
05-10-01 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
E.010
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
<.041
041<br 041<br < | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .0 | PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<018
<018
<018
<018
<018
<018
<018
<018 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.154 E.077 E.010 E.005 E.015 <.006 E.011 E.012 E.011 E.022 E.011 E.022 E.018 E.019 E.011 | AZINON, DIS- SOLVED (UG/L) (39572) .143 E.005 <.005 .104 .055 <.005 .013 E.002 <.005 <.005 <.005 <.005 <.005 | ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 | WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | # COLORADO RIVER BASIN 319 ### Miscellaneous water quality - Barton Springs Hydrophobics--Continued #### MULTIPLE STATION ANALYSES | STATION NUMBER | DATE | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | |------------------------------------|--
--|--|---|--|---|--|--|--|--|---|---| | 08155395
08155400 | 05-08-01
05-10-01
05-13-01
05-03-01
05-06-01 | <.005 <.005 <.005 <.005 <.005 | <.003 <.003 <.003 <.003 <.003 | <.004
<.004
<.004
<.004
<.004 | <.035 <.035 <.035 <.035 <.035 <.035 | <.027
<.027
<.027
<.027
E.003 | <.050
<.050
<.050
<.050
<.050 | <.006
<.006
<.006
<.006
<.006 | E.004
<.013
<.013
<.013
E.004 | <.006
<.006
<.006
<.006
<.006 | <.002
<.002
<.002
<.002
<.002 | <.007 <.007 <.007 <.007 <.007 | | 08155500 | 05-07-01
05-07-01
05-08-01
05-10-01
05-03-01 | <.005 <.005 <.005 <.005 <.005 | <.003
<.003
<.003
<.003
<.003 | <.004
<.004
<.004
<.004
<.004 | <.035 <.035 <.035 <.035 <.035 <.035 | <.027
<.027
<.027
<.027
<.027 | <.050
<.050
<.050
<.050
<.050 | <.006
<.006
<.006
<.006
<.006 | E.003
<.013
<.013
<.013
<.013 | <.006
<.006
<.006
<.006
<.006 | <.002
<.002
<.002
<.002
<.002 | <.007
<.007
<.007
<.007
<.007 | | 301546097460201 | 05-08-01
05-10-01
05-10-01
05-13-01
05-03-01 | <.005 <.005 <.005 <.005 <.005 | <.003 <.003 <.003 <.003 <.003 | <.004
<.004
<.004
<.004
<.004 | <.035 <.035 <.035 <.035 <.035 <.035 | <.027
<.027
<.027
<.027
<.027 | <.050
<.050
<.050
<.050
<.050 | <.006
<.006
<.006
<.006
<.006 | <.013
<.013
<.013
<.013
<.013 | <.006
<.006
<.006
<.006
<.006 | <.002
<.002
<.002
<.002
<.002 | <.007
<.007
<.007
<.007
<.007 | | 301548097461602 | 05-07-01
05-08-01
05-13-01
05-04-01
05-07-01 | <.005 <.005 <.005 <.005 <.005 | <.003
<.003
<.003
<.003
<.003 | <.004
<.004
<.004
<.004
<.004 | <.035 <.035 <.035 <.035 <.035 <.035 | <.027
<.027
<.027
<.027
<.027 | <.050
<.050
<.050
<.050
<.050 | <.006
<.006
<.006
<.006
<.006 | <.013
<.013
<.013
<.013
<.013 | <.006
<.006
<.006
<.006
<.006 | <.002
<.002
<.002
<.002
<.002 | <.007
<.007
<.007
<.007
<.007 | | | 05-08-01
05-08-01
05-10-01
05-13-01 | <.005
<.005
<.005
<.005 | <.003
<.003
<.003
<.003 | <.004
<.004
<.004
<.004 | <.035
<.035
<.035
<.035 | <.027
<.027
<.027
<.027 | <.050
<.050
<.050
<.050 | <.006
<.006
<.006
<.006 | <.013
<.013
<.013
<.013 | <.006
<.006
<.006
<.006 |
<.002
<.002
<.002
<.002 | <.007
<.007
<.007
<.007 | | | | | | | | | | | | | | | | STATION NUMBER | DATE | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | | STATION NUMBER 08155395 08155400 | DATE 05-08-01 05-10-01 05-13-01 05-03-01 05-06-01 | DDE
DISSOLV
(UG/L) | THION,
DIS-
SOLVED
(UG/L) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | METON,
WATER,
DISS,
REC
(UG/L) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | CHLOR,
WATER,
DISS,
REC
(UG/L) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | | 08155395 | 05-08-01
05-10-01
05-13-01
05-03-01 | DDE
DISSOLV
(UG/L)
(34653)
<.003
<.003
<.010
<.003 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.007
<.007
<.007
<.007 | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669)
<.002
<.002
<.002
<.002 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.010
<.010
<.010
<.010 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.006
<.006
<.006
<.006 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.011
<.011
<.011 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
E.004
E.006
<.015
<.015 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) < .004 < .004 < .004 < .004 < .004 | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024)
<.010
<.010
<.010
<.010 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 | PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) < .023 < .023 < .023 < .023 | | 08155395
08155400 | 05-08-01
05-10-01
05-13-01
05-03-01
05-06-01
05-07-01
05-07-01
05-08-01
05-10-01 | DDE DISSOLV (UG/L) (34653) < .003 < .003 < .010 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.010
<.010
<.010
<.010
<.010
<.010
<.010
<.010
<.010
<.010 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82664)
<.011
<.011
<.011
<.011
<.011
<.011
<.011
<.011
<.011
<.011 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
E.004
E.006
<.015
<.015
<.015
<.015
<.015
<.015
<.015 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </td | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 | | 08155395
08155400
08155500 | 05-08-01
05-10-01
05-13-01
05-03-01
05-06-01
05-07-01
05-07-01
05-10-01
05-03-01
05-08-01
05-10-01
05-10-01
05-10-01
05-10-01 | DDE DISSOLV (UG/L) (34653) < .003 < .003 < .010 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .004 < .003 < .003 < .003 < .003 < .004 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < . | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) E.004 E.006 <.015 <.015 <.015 <.015 <.015 <.015 <.015 <.015 E.002 <.015 | AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82676) < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 <
.004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </</th <th>PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011</th> <th>PARGITE WATER FLITRD 0.7 U GF, REC (UG/L) (82685) < .023 .023</th> | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLITRD 0.7 U GF, REC (UG/L) (82685) < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 | 320 COLORADO RIVER BASIN Miscellaneous water quality - Barton Springs Hydrophobics--Continued #### MULTIPLE STATION ANALYSES | STATION NUMBER | DATE | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | |-----------------|--|---|---|--|--|---|---|---| | 08155395 | 05-08-01 | .027 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | | 05-10-01 | .014 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | | 05-13-01 | .016 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | 08155400 | 05-03-01
05-06-01 | <.011
E.009 | <.016
<.016 | <.034 | <.017
<.017
<.017 | <.005
<.005 | <.002
<.002
<.002 | <.009
<.009 | | | 05-07-01 | .268 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | | 05-07-01 | <.011 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | | 05-08-01 | .043 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | | 05-10-01 | .030 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | 08155500 | 05-03-01 | E.011 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | 301546097460201 | 05-08-01 | E.005 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | | 05-10-01 | E.008 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | | 05-10-01 | E.007 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | | 05-13-01 | E.004 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | | 05-03-01 | E.005 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | 301548097461602 | 05-07-01
05-08-01
05-13-01
05-04-01
05-07-01 | E.004
E.006
E.008
<.011
E.003 | <.016
<.016
<.016
<.016
<.016 | <.034
<.034
<.034
<.034
<.034 | <.017
<.017
<.017
<.017
<.017 | <.005 <.005 <.005 <.005 <.005 <.005 | <.002
<.002
<.002
<.002
<.002 | <.009
<.009
<.009
<.009
<.009 | | | 05-08-01 | E.005 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | | 05-08-01 | E.004 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | | 05-10-01 | E.007 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | | | 05-13-01 | E.004 | <.016 | <.034 | <.017 | <.005 | <.002 | <.009 | The U.S. Geological Survey collects limited streamflow data at sites other than continuous stream-gaging stations because the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage of those events. The data collected for special reasons are called measurements at miscellaneous sites. Streamflow data collected at partial-record stations where water-quality data other than observations of water temperature are not obtained are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations; the second is a table of annual maximum stage and (or) discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low and high flows are given in a third table. Discharge measurements and water-quality data collected at partial-record stations are presented in downstream order in the section of this report entitled "Gaging-station records." #### Low-flow partial-record stations Measurements of streamflow at low-flow partial-record stations that are not published in the gaging-station section are given in the following table. Most of the measurements of low flow were made during periods when streamflow was sustained primarily by ground-water discharge. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will indicate the low-flow potential of the stream. The years listed in the column headed "Period of record" identifies the water years in which measurements were made at the same or at practically the same site. Discharge measurements made at low-flow partial-record station during water year 2001 | Station number | | | | | Measure | ements | |----------------|---|---|--|---|--|--| | | Station name | Location | Drainage
area
(mi ²) | Period
of
record | Date | Dis-
charge
(ft ³ /s) | | | | Colorado River Basin | | | | | | 08129500 | Dove Creek Spring near
Knickerbocker, TX | Lat 31°11'06", long 100°43'51", Irion County, at headquarters ranch house, 500 ft upstream from Dove Creek, 1.8 mi upstream from Stilson Dam on Dove Creek and 8.5 mi southwest of Knickerbocker. | - | 1944-58章,
1959-
2001 | 10-20-00
12-01-00
02-15-01
04-02-01
05-29-01
07-18-01
09-18-01 | 6.12
5.28
4.84
5.62
4.87
3.96
7.66 | | 08143900 | Springs at Fort McKavett,
TX | Lat 30°50'03", long 100°05'37", Menard County, 0.9 mi northwest of Fort McKavett at low-water crossing on Ranch Road 864. | | 1902,
1905,
1922,
1942,
1948-49,
1951-52,
1955-56,
1958-
2001 | 10-04-00
12-05-00
01-10-01
03-23-01
05-03-01
06-21-01 | 8.99
19.4
20.6
19.0
19.3
17.9 | | 08146500 | San Saba Springs at San
Saba, TX | Lat 31°11'44", long 98°42'42", San Saba County, 150 ft upstream from bridge on U.S.
Highway 190 at San Saba and 0.8 mi east of courthouse. | | 1939,
1952,
1957,
1959-
2001 | 10-02-00
12-07-00
01-12-01
03-13-01
05-01-01
06-19-01
08-06-01 | 8.28
12.3
8.96
10.2
11.2
9.37
10.7 | | 08149400 | South Llano River near
Telegraph, TX | Lat 30°15'43", long 99°56'01", Edwards County, 3.7 mi upstream from Paint Creek, 5.7 mi south of Telegraph, and 18.7 mi southwest of Junction. | 508 | 1939,
1952,
1956,
1959-
2001 | 10-04-00
12-04-00
01-10-01
03-23-01
05-03-01
06-20-01
08-07-01 | 24.6
61.6
47.6
40.6
35.7
29.1
30.0 | | 08149500 | Seven Hundred Springs
near Telegraph, TX | Lat 30°16'12", long 99°55'22", Edwards County, about 3 mi upstream from Paint Creek, about 5 mi south of Telegraph, and about 18 mi southwest of Junction. | | 1939,
1952,
1955-56,
1959-
2001 | 10-04-00
12-04-01
01-10-01
03-23-01
05-03-01
06-20-01
08-07-01 | 24.1
32.7
22.4
31.5
26.4
28.1
24.6 | The Operated as a continuous-record station. ## DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES #### Crest-stage partial-record stations The following table contains annual maximum stage and (or) discharge at partial-record stations operated primarily for the purpose of defining the flooding characteristics of the streams. At stations where discharge is given, or is footnoted "to be determined", a stage-discharge relation has been, or will be, defined by discharge measurements obtained by current meter or by indirect procedures. Water-stage recorders are located at these flood-hydrograph stations to facilitate complete hydrograph definition. At stations where only the maximum stage is given (discharge column is dashed), the data are generally collected for use in stage-frequency studies of flood-profile definition. Gages at these stations usually consist of a device that will register the peak stage occurring between inspection of the gage. The years used in the column "Period of record" identify the years in which the annual maximum has been determined. Annual maximum stage and (or) discharge during water year 2001 | | | | Water Ye | ear 2001 ma | ıximum | Period o | f record ma | aximum | |--|--|--------------------------|----------|------------------------|--|----------|------------------------|--| | Station name
and
number | Location | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | Lavaca R | iver Basin | | | | | | | | Lavaca River at
Hallettsville, TX
08163500 | Lat 29°26'35", long 96°56'41", Lavaca County, at down-
stream side of bridge on U.S. Highway 77 in Hallettsville.
Drainage area is 108 mi ² . | 1939-92
1993-
2001 | 03-15-01 | 16.45 | | 08-31-81 | <u>a</u> / 41.1 | <u>i</u> / 99,500 | **[†]** Operated as a continuous-record station. a/ From floodmark. i/ From indirect measurement of peak flow. # DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES Measurements of streamflow at points other than gaging stations or partial-record stations are given in the following table: Discharge measurements made at miscellaneous sites during water year 2001 | | | | Measur | | | | |---|----------------------|--|--|--|--|--| | Station number | Tributary to | Location | Drainage
area
(mi ²) | Measured
previously
(water
years) | Date | Dis-
charge
(ft ³ /s) | | | | Colorado River Basin | | | | | | Clear Creek
near
Menard, TX
08143950 | San Saba
River | Lat 30°54'13", long 99°55'27", Menard County, at bridge on U.S. Highway 190, about 9 mi west of Menard. | 106 | 1984-
2001 | 10-03-00
01-10-01
05-03-01
08-08-01 | 10.4
16.5
13.3
10.9 | | Tanner Springs
near
Telegraph, TX
08149405 | South Llano
River | Lat 30°15'45", long 99°56'03", Edwards County, about 5.6 mi south of Telegraph, Kimble County, and 18.6 mi southwest of Junction at mouth. | | 1939,
1962,
1987-
2001 | 10-04-00
12-04-00
01-10-01
03-23-01
05-03-01
06-20-01
08-07-01 | 11.5
15.9
16.3
14.0
9.26
14.6
12.6 | Operated as a continuous-record station. THIS PAGE IS INTENTIONALLY LEFT BLANK. ### INDEX | | Page | | Pag | |--|----------|--|---------| | Barton Creek, above Barton Springs at Austin | 204, 318 | Lavaca River, at Hallettsville | 32: | | at Loop 360, Austin | 200-203 | near Edna | 27 | | at Lost Creek Boulevard, Austin | 196-199 | Lavaca River basin, gaging-station records in | 274-32 | | at State Highway 71 near Oak Hill | 192-195 | crest-stage partial-record stations in | 32 | | Barton Springs at Austin | 210, 318 | Llano River, at Llano | 174 | | Beals Creek near Westbrook | 60-67 | near Junction | 168 | | Bear Creek below Farm Road 1826 near Driftwood | 246 | near Mason | 170 | | Beaver Creek near Mason | 172 | Low-flow partial-record stations | 32 | | Blunn Creek near Little Stacy Park, Austin | 220-223 | | | | Boggy Creek at U.S. Highway 183, Austin | 234-237 | Middle Concho River above Tankersley | 103 | | Brady Creek at Brady | 156 | Miscellaneous, partial-record stations | 32: | | Brady Creek Reservoir near Brady | 154 | water-quality data | 318-320 | | Bull Creek at Loop 360 near Austin | 182-185 | Moss Creek Lake near Coahoma | 5 | | • | | | | | Champion Creek Reservoir near Colorado City | 56 | Navidad River at Strane Park near Edna | 282-28: | | Clear Creek near Menard | 323 | near Hallettsville | 280 | | Colorado River, above LaGrange | 264 | North Concho River, above Sterling City | 114 | | above Silver | 70-77 | at Sterling City | 110 | | at Austin | 232 | near Carlsbad | 113 | | at Bastrop | 260 | near Grape Creek | 120 | | at Colorado City | 48-53 | North Llano River near Junction | 160 | | at Columbus | 268 | | | | at Robert Lee | 80 | O.C. Fisher Lake at San Angelo | 122 | | at Smithville | 262 | O.H. Ivie Reservoir near Voss | 130 | | at Wharton | 270 | Oak Creek Reservoir near Blackwell | 82 | | at Winchell | 140 | Old Mill Spring at Austin | 318-320 | | near Ballinger | 84-91 | Onion Creek, at U.S. Highway 183, Austin | 250 | | near Bay City | 272 | near Driftwood | 242-24: | | near Cuthbert | 40-47 | | | | near Gail | 34 | Partial-record stations, crest-stage | 32 | | | | low-flow | 32 | | near San Saba | 164 | miscellaneous | 323 | | near Stacy | 138 | Pecan Bayou near Mullin | 143 | | Colorado River Basin, discharge measurements | 222 | Pecan Creek near San Angelo | 110 | | at miscellaneous sites | 323 | Pedernales River, near Fredericksburg | 173 | | gaging-station records in | 32-273 | near Johnson City | 180 | | low-flow partial-record stations in | 321 | Placedo Creek near Placedo | 31 | | Concho River, at San Angelo | 124 | | | | at Paint Rock | 126-133 | Redgate Creek near Columbus | 26 | | Deep Creek near Dunn | 38 | | 1.54 | | Definition of terms | 16 | San Saba River, at Menard | 150 | | Discharge, at low-flow partial-record stations | 321 | at San Saba | 15 | | measurements at miscellaneous sites | 323 | near Brady | 153 | | Dove Creek at Knickerbocker | 106 | San Saba Springs at San Saba | | | Dove Creek Spring near Knickbocker | 321 | Sandy Creek, near Ganado | 286-289 | | Dove creek Spring hear Kinekoocker | 321 | near Kingsland | 170 | | Eart Davidia Constant Secreta 1-4 Street Associa | 210 | Seven Hundred Springs near Telegraph | 32 | | East Bouldin Creek at South 1st Street, Austin | 218 | Shoal Creek at 12th Street, Austin | 214-21 | | East Mustang Creek at FM 647 near Louise | 294-297 | Slaughter Creek at Farm Road 1826 near Austin | 24 | | Eliza Spring at Austin | 318-320 | South Concho River at Christoval | 100 | | Elm Creek at Ballinger | 92-99 | South Llano River near Telegraph | 32 | | E.V. Spence Reservoir near Robert Lee | 78 | Spring Creek above Tankersley | 104 | | | | Springs at Fort McKavett | 32 | | Gaging-station records | 32-320 | | | | Garcitas Creek near Inez | 316 | Tanner Spring near Telegraph | 32: | | | | Town Lake at Austin | 224-23 | | Hords Creek Lake near Valera | 144 | Tres Palacios River near Midfield | 270 | | | | Twin Buttes Reservoir near San Angelo | 10 | | Lake Austin at Austin | 186-191 | <u> </u> | | | Lake Brownwood near Brownwood | 146 | Upper Barton Springs at Austin | 318-320 | | Lake Coleman near Novice | 142 | 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | Lake Colorado City near Colorado City | 54 | Walnut Creek at Webberville Road, Austin | 238-24 | | Lake J.B. Thomas near Vincent | 36 | West Mustang Creek near Ganado | 290-29 | | Lake Nasworthy near San Angelo | 112 | Williamson Creek, at Brush Country Boulevard, Oak Hill | 250-25 | | Lake Texana near Edna | 298 | at Manchaca Road. Austin | 250-25 | | | | | |