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Trends in Streamflow, Sedimentation, and Sediment
Chemistry for the Wolf River, Menominee Indian
Reservation, Wisconsin, 1850-1999

By Faith A. Fitzpatrick

Abstract

Historical trends in streamflow, sedimentation, and
sediment chemistry of the Wolf River were examined
for a 6-mile reach that flows through the southern part
of the Menominee Indian Reservation and the northern
part of Shawano County, Wis. Trends were examined in
the context of effects from dams, climate, and land-cover
change. Annual flood peaks and mean monthly flow for
the Wolf River were examined for 1907-96 and compared
to mean annual and mean monthly precipitation. Analy-
sis of trends in sedimentation (from before about 1850
through 1999) involved collection of cores and elevation
data along nine valley transects spanning the Wolf River
channel, flood plain, and backwater and impounded areas;
radioisotope analyses of impounded sediment cores; and
analysis of General Land Office Survey Notes (1853-91).
Trends in sediment chemistry were examined by analyzing
samples from an impoundment core for minor and trace
elements. Annual flood peaks for the Wolf River decreased
during 1907-49 but increased during 1950-96, most
likely reflecting general changes in upper-atmospheric
circulation patterns from more zonal before 1950 to more
meridional after 1950. The decrease in flood peaks during
1907-49 may also, in part, be due to forest regrowth. Mean
monthly streamflow during 1912-96 increased for the
months of February and March but decreased for June and
July, suggesting that spring snowmelt occurs earlier in the
season than it did in the past. Decreases in early summer
flows may be a reflection earlier spring snowmelt and large
rainstorms in early spring rather than early summer. These
trends also may reflect upper-atmospheric circulation pat-
terns. The Balsam Row Dam impoundment contains up to
10 feet of organic-rich silty clay and has lost much of its
storage capacity. Fine sediment has accumulated for
1.8 miles upstream from the Balsam Row Dam. Historical

average linear and mass sedimentation rates in the

Balsam Row impoundment were 0.09 feet per year and
1.15 pounds per square foot per year for 1927-62 and
0.10 feet per year and 1.04 pounds per square foot per
year for 1963-99. Sedimentation in the impoundment was
episodic and was associated with large floods, especially
the flood-related failure of the Keshena Falls Dam in 1972
and a large flood in 1973. Sand deposition is common in
the Wolf River upstream from the impounded reach for
2.5 miles and is caused by the base-level increase associ-
ated with the Balsam Row Dam. Some sand deposition
also may have been associated with logging and log drives
in the late 1800s and the failure of the Keshena Falls

Dam. In the upstream 1.5-mile part of the studied reach,
the substrate is mainly rocky; however, about 2,000 feet
downstream from Keshena Falls, the channel has narrowed
and incised since the 1890s, likely related to human altera-
tions associated with logging, log drives, and (or) changes
in hydraulics and sediment characteristics associated with
completion of the Keshena Falls Dam and head race in
1908. Minor- and trace-element concentrations in sediment
from Balsam Row impoundment and other depositional
areas along the Wolf River generally reflect background
conditions as affected by watershed geology and historical
inputs from regional and local atmospheric deposition.

Introduction

The Wolf River is a recreationally and economically
important natural resource for the Menominee Indian
Tribe of Wisconsin. A study was begun in 1998 by the
U.S. Geological Survey (USGS), in cooperation with the
Menominee Indian Tribe, to examine historical trends in
streamflow, sedimentation, and sediment chemistry of a
6-mi reach of the Wolf River as it flows through the
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southern part of the Menominee Indian Reservation and
northern part of Shawano County, Wis. (fig. 1). For 24 mi
upstream from Keshena Falls, the Wolf River was desig-
nated a Federal Wild and Scenic River in 1968. The State
of Wisconsin also designated the river an Outstanding
Resource Water in 1988.

Two dams, the Balsam Row Dam and the failed dam
at Keshena Falls, form the lower and upper boundary of
the studied reach and have affected channel characteristics
in the reach (figs. 1-2). The Keshena Falls Dam failed in
1972 (fig. 2C). Anecdotal evidence from local residents
suggests that sedimentation rates in the impoundment
above the Balsam Row Dam and sand deposition in the
free-flowing reach upstream of the impoundment have
accelerated in the last three decades, possibly coincident
with the failure of the Keshena Falls Dam. Flooding-
related ice jams in winter also have been a problem in the
town of Keshena after the failure of the Keshena Falls
Dam (U.S. Army Corps of Engineers, 1995).

The goals of this study were to (1) describe historical
trends (for the last 100 years or more) in streamflow, sedi-
mentation, and sediment-chemistry characteristics for the
Wolf River and (2) identify major factors affecting flood-
ing, sedimentation, and sediment-chemistry characteristics.
Data collected as part of this study were useful for deter-
mining long-term and upstream/downstream effects from
dams on channel characteristics of the Wolf River. Data are
useful for establishing baseline conditions in case of future
changes in hydrology, sedimentation, or sediment chem-
istry. Results from the study also provide information for
protection or management of available resources, including
water quantity, water quality, and aquatic habitat.

Purpose and Scope

This report presents the results from the study of
historical trends in streamflow, sedimentation, and sedi-
ment chemistry for a 6-mi reach of the Wolf River between
the Balsam Row Dam in Shawano County and Keshena
Falls in the Menominee Reservation (fig. 1). Trends are
described for annual flood peaks and mean monthly flow
for the Wolf River based on about 90 years of combined
data (1907-96) from two USGS stream gages—Keshena
Falls and the Balsam Row Dam (near Shawano). Annual
flood peaks during 1968-96 from the stream gage near
Shawano were compared to flood peaks at an upstream
gage on the Wolf River near Langlade, Wis. Precipitation
data from three nearby precipitation stations for 1907-96
are compared to the streamflow trends. Sedimentation pat-
terns in channel, backwater, flood-plain, and impounded

areas, historical sedimentation rates, and channel changes
are described for a period from about 1850 (pre-European
settlement) to 1999. Lastly, minor- and trace-element
concentrations in impounded, backwater, and flood-plain
sediment are described in terms of historical trends (about
1850-1999) and spatial distribution. This report attempts
to evaluate the effects of climate change, logging, forest
regrowth, and dams on trends in streamflow, sedimenta-
tion, and sediment chemistry over the historical period of
interest.

Description of Study Area

The Wolf River upstream of the Balsam Row Dam
has a drainage area of 816 mi® and has a temperate, conti-
nental climate characterized by large seasonal changes in
temperature but little variation in monthly precipitation.
The Wolf River Basin is typified by an average annual
temperature of 43°F, about 30 in. of annual precipitation,
48 in. of annual snowfall, and 18 in. of annual evapotrans-
piration (Wendland and others, 1985; Olcott, 1968).

The reach of the Wolf River included in this study
(fig. 1) generally flows south through coarse-grained
glacial deposits and outwash (Clayton and others, 1991;
Milfred and others, 1967). These deposits are underlain by
Precambrian granite and syenite rocks associated with the
Wolf River Complex (Mudrey and others, 1982). Rocks
associated with the Wolf River Complex crop out at Kes-
hena Falls but are buried by glacial, outwash, and fluvial
deposits to the south and through most of the study reach.

Flood-plain soils near the Wolf River are character-
ized as loamy Fluvaquents or Fluvents and are underlain
by coarse- and fine-grained deposits associated with out-
wash plains or glacial lakes (Gundlach and others, 1982).
The flood-plain soils generally contain about an 8-in.
thick organic surface layer, although some have as much
as 15 in. of organic-rich loam at the surface. Upland soils
near the studied reach are well-drained sandy or loamy
Spodosols or Alfisols (Gundlach and others, 1982).

The slope of the Wolf River is highly variable
through the Menominee Indian Reservation but flattens
out considerably below Keshena Falls (fig. 3). Based on
measurements of stream length and contour intervals from
USGS 7.5-minute topographic maps, the average slope
is 11.6 ft/mi from the headwaters to Big Smoky Falls,
and the average slope from Big Smoky Falls to Keshena
Falls is 4.9 ft/mi. In contrast, the average slope is 2.0 ft/mi
downstream from Keshena Falls to the Balsam Row Dam.

Land cover in the Wolf River Basin upstream from
the Balsam Row Dam is mainly forest (72 percent of the
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Figure 2. Photos of A, Balsam Row Dam in 1998, looking upstream at dam, B, Keshena Falls Dam in 1950, and C, failed Keshena
Falls Dam, Wis., in 1972. (Photos B and C from the Wisconsin Department of Natural Resources, Dam File No. 72.1, Madison, Wis.)
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Figure 3. Longitudinal profile of the Wolf River through the Menominee Indian Reservation, Wis.

basin) and wetland (15 percent) as inferred from 1992-93
satellite imagery (Reese and others, 2002). Cropland
accounts for only 4 percent of the drainage area. Of the
forested land, 78 percent is deciduous (mainly aspen and
maple), 16 percent is mixed deciduous and conifer, and
6 percent is conifer. Along the study reach, vegetation in
the upland generally is categorized as pine plantation (Mil-
fred and others, 1967). The Menominee Indian Tribe has
used selective logging and sustainable forestry techniques
on their lands since the reservation was established in 1854
(Menominee Tribal Enterprises, 1997). The reservation
covers the lower third of the Wolf River Basin (fig. 1).
Most of the upper part of the basin was logged before 1900
(Connor, 1978). The Wolf River and its tributaries were
used for transportation of saw logs from the upper basin
to Shawano and further downstream during the late 1800s
(Oehmcke and Truax, 1964; Connor, 1978). Logging in the
area peaked in 1873.

In the late 1800s the upper Wolf River had vari-
ous small dams related to logging and log drives (Smith,
1908; U.S. Department of Agriculture and the University
of Wisconsin, 1961). Both the Keshena Falls Dam and
the Balsam Row Dam were used for hydroelectric power
generation. Neither dam has flood-control function. The
presence of some sort of dam structure at Keshena Falls

dates back to the 1870s and was related to logging, but the
most recent dam was constructed in 190608 and failed in
1972 (Wisconsin Department of Natural Resources, Dam
File No. 72.1, Madison, Wis.). The Keshena Falls Dam
had about 16 ft of head. The dam consisted of two parts—a
wooden apron that extended across the main channel of the
Wolf River and four gates across a diversion canal (head
race) for the powerplant (fig. 2B). The failure of the Kes-
hena Falls Dam in 1972 happened after about 9 years of
disrepair along the left side of the wooden spillway apron
(Wisconsin Department of Natural Resources, Dam File
No. 72.1, Madison, Wis.) (fig. 2C).

The Balsam Row Dam (fig. 2A) was constructed in
1927 and there is no indication of any earlier version of a
dam at Balsam Row before then (Smith, 1908). The Bal-
sam Row Dam has six gates and about 14 ft of head. The
powerhouse is on the east side of the dam embankment
next to the gates.

A general description of the surface-water and
ground-water quality for the Menominee Indian Reserva-
tion was previously published in Krohelski and others
(1994). Garn and others (2001) provide additional data on
the quality of water, sediment, and selected benthic organ-
isms from the Wolf River during 1986-98.
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Methods

This study involved collecting and compiling histori-
cal records as well as collecting new field data. General
Land Office Survey notes provided information on channel
characteristics before and during European settlement, log-
ging, and log drives in the mid to late 1800s.

Streamflow trend analyses involved statistical
examination of trends in annual peak and average monthly
flow data from a former USGS stream gage at the Balsam
Row Dam near Shawano, Wis. (USGS station number
04077400), with 93 years of data (1907-09, 1910-2001).
The stream gage was moved from Keshena Falls to the
Balsam Row Dam in 1985 (table 1). Mean daily flow data
were examined before and after the site location changed
to confirm that streamflow characteristics were the same
at both locations. Annual peak data from the Shawano
site also were compared to data from the Wolf River near
Langlade, Wis. (USGS station number 04074950). The
drainage area of the Wolf River at Langlade is about half
that of the Wolf River near Shawano (table 1). Trend
analysis was also done on annual and monthly precipita-
tion from three nearby National Weather Service climate
stations (Rhinelander, Shawano, and Green Bay, Wis.) over
the same period to identify climatic effects on streamflow
characteristics.

Analysis of historical changes in sedimentation and
sediment quality involved collection of cores and elevation
data along nine valley transects spanning the Wolf River
channel, flood plain, and impounded area above the Bal-
sam Row Dam from February through June 1999 (table 2).
Locations of transects are shown in figure 1. The number
of cores collected along each transect varied because of
differences in the number of depositional environments
found along each transect. For example, transect T4.2
was along a stretch of the Wolf River with no flood plain
and a uniform sand channel bottom. In contrast, transect

Table 1.

[mi2, square miles]

T7 intersected a longitudinal bar, a backwater channel,

and flood-plain deposits and required more cores for an
adequate description of the range of fluvial environments
traversed. Sediment samples were selected from cores of
the various environments and analyzed for sediment chem-
istry, radiometric age dating, and particle-size distribution.
In November 2001, a second core was collected near core
T2-1 to obtain additional information on water, organic-
matter content, and dry-bulk density.

Analysis of General Land Office Survey Notes

General Land Office (GLO) Surveys were done in the
mid 1800s across Wisconsin to map and establish town-
ships, ranges, and sections. In northern Wisconsin, these
surveys usually were done before European settlement and
were useful for characterizing stream conditions before
widespread logging and burning coincident with Euro-
pean settlement in the late 1800s. Copies of original GLO
survey notes were obtained from the State of Wisconsin,
Board of Commissioners of Public Lands for two town-
ships: Township 27 North, Range 15 East, and Township
28 North, Range 15 East. The surveys were done from
1845 through 1891, with notes for the south boundary of
Township 28 from 1845, Township 27 from 1853, and
Township 28 from 1891.

Field notes from the GLO Surveys contain informa-
tion on vegetation, soils, and the lay of the land, as well
as the location, width, depth, substrate, swiftness of flow,
and direction of streams at section-line crossings. These
notes were used to determine the location of the Wolf
River channel before the impoundment of water behind the
Balsam Row Dam. Meander data for the Wolf River also
were reported; these data described the location of both
streambanks longitudinally.

U.S. Geological Survey stream gages used in the analyses of streamflow trends from the Wolf River, Wis.

USGS station identification
number (fig. 1)

Station name

Drainage area

Period of record (mi?)

Wolf River at Balsam Row Dam near Shawano, Wis.
Wolf River at Keshena/Keshena Falls, Wis.
Wolf River at Langlade, Wis.

04077400 1985-2001 816
04077000 1907-09,1910-85 788
04074950 1968—present 463
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Table 2. Description of valley transects and cores collected along the Wolf River from the Balsam Row Dam to Keshena Falls, Wis.

[Distances are curvilinear channel distances; ft, feet]

Distance Distance along Number of Cores
upstream longitudinal Number of duplicate sampled for
Transect of Balsam profile cores cores laboratory
(fig. 1) Description Row Dam (ft) (ft) (fig. 9) collected collected analyses
T1b Impoundment 450 1,850 3 0 None
Tlc Impoundment 860 2,260 3 0 None
T2 Impoundment 1,390 2,790 4 1 T2-1
T3 Cedar wetland, rice beds, water 5,650 7,050 4 0 None
impounded but some current
T4 County line, large backwater 9,690 11,090 10 4 T4-7, T4-9
area on left side
T4.2 Sand deposition in channel 13,530 14,930 4 0 None
T4.5 Sand deposition in channel 13,980 15,380 1 0 None
T5! Sand deposition in channel 15,200 16,600 3 0 None
T6' Sand deposition in channel 17,500 18,900 2 0 None
T7 Large depositional bar on right 20,440 21,840 17 4 T7-2, T7-3,
side of channel T7-12
T9 Wide flood plain 28,570 29,970 12 7 T9-2

! No valley transect surveys were done for T5 and T6.

Streamflow and Precipitation Data Analyses

Data from two USGS stream gages on the Wolf River
were examined for trends in annual flood peaks and mean
monthly flow: the Wolf River near Shawano (the Balsam
Row Dam) and the Wolf River near Langlade (fig. 1,
table 1). The gage near Shawano was moved from Keshena
Falls to the Balsam Row Dam in 1985 and was operated
at the Balsam Row Dam until 2001. Streamflow data for
the two gages were combined and recorded under site
04077400 in USGS databases because of similar drain-
age areas (table 1). Annual flood peaks for the combined
record are available for 1907-09 and 1910-96. Mean
monthly data are available for 1912-96. Mean daily
flow and annual peaks from 1975-85 and 1985-95 were
examined for differences by use of two-sample t-tests with
log-transformed data and the nonparametric Wilcoxon
rank sum test (Iman and Conover, 1983). Gebert and Krug
(1996) also combined data from the Balsam Row Dam and
Keshena Falls gages and examined trends in annual flood
peaks and low flow for the period of record 1931-91.

Tests for normal distributions of the data were per-
formed and log transformations were used to normalize the
data. The log-transformed data were analyzed for trends by
use of the least squares method for linear regression (Iman
and Conover, 1983). Slopes in the trend lines were con-

sidered statistically significant if p-values were less than
0.10. Trend analyses were done on annual peak flow and
mean monthly data for 1907-96 and also divided into pre-
and post-1950 periods because hemispheric-scale climate
change is thought to have occurred around 1950 (Knox
and others, 1975; Kalnicky, 1974). Although highly vari-
able and season-dependent, upper atmospheric circulation
patterns generally changed from more zonal (west-east)
before 1950 to more meridional (north-south) after 1950.
Changes in upper atmospheric circulation in Wisconsin
affect the frequency, intensity, and seasonality of precipi-
tation (Knox and others, 1975). Meridional patterns tend
to produce more floods on an annual basis than any other
circulation pattern. Zonal patterns tend to produce mild
weather in the Great Lakes region (Eichenlaub, 1979).

Annual precipitation data from three long-term
climate stations (Rhinelander, Shawano, and Green Bay,
fig. 1) were obtained from the State Climatologist’s Office
in Madison, Wisconsin. The stations are operated by the
National Weather Service. The Rhinelander station had
data beginning in 1908. Precipitation records for Shawano
began in 1923 and for Green Bay began in 1912. Trend
analyses (least squares method for linear regression) were
done on average annual and average monthly precipitation
data in the same fashion as was done with the streamflow
data.
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Transect Surveys and Sediment Coring

Data collected from valley transect surveys and sedi-
ment coring were used to determine historical sedimenta-
tion rates and historical trends in sediment chemistry. A
reconnaissance trip was done in October 1998 along the
Wolf River from Keshena Falls to the Balsam Row Dam to
identify possible transects for sediment coring. Nine tran-
sects (fig. 1; table 2) were selected along the study reach
and numbered in upstream order, the starting point being
at the Balsam Row Dam. Transects were located in reaches
with a flood plain and with depositional zones within the
channel. Transects were surveyed in May and June 1999
by use of an auto level. A global positioning system was
used to verify the location of each transect. Elevation data
were tied into U.S. Army Corps of Engineers reference
marks from a flood-plain delineation study done in 1995
(U.S. Army Corps of Engineers, 1995). Soft- and hard-
bottom elevations for transect T1b, Tlc, T2, T3, and T4
were collected by use of a sounding pole in unwadeable
areas. Hard-bottom elevations are assumed to be elevations
of pre-dam sediment surfaces (streambed, streambank,
backwater, or flood plain). No valley-transect surveys were
done at TS5 and T6; only exploratory cores from channel
deposits were collected during the reconnaissance trip.

The thickness, texture, chemistry, and age of sedi-
ment in the flood plain, backwater areas, impoundment,
and modern channel were examined by sediment coring
and sampling with four devices, including a 1-in.-diameter
hand-held soil probe, a geoprobe, and two types of piston
corers—the Wisconsin Department of Natural Resources
(WDNR) corer (3-in. diameter) and the modified Liv-
ingston corer (2-in. diameter) (table 3). The hand-held
soil probe was useful for quick exploratory coring of
flood-plain deposits and field sediment descriptions. The
geoprobe is a tapping-type coring device that was mounted
on a four-wheel all-terrain vehicle and was used to collect
cores from the impounded reach when it was frozen and
from accessible flood-plain areas. The WDNR corer is
limited to depths less than about 2 m and was used to col-
lect cores from inundated areas. The modified Livingston
was used to collect multiple cores at depth from fine-
grained deposits (Wright, 1967).

Cores were collected along transects T1b, Tlc, and
T2 with the geoprobe and the piston corers in February
and March 1999 while the impoundment was frozen.
Elevations of pre-dam surfaces identified in the cores were
compared to elevations of the hard bottom determined
with the sounding pole. The remainder of the coring was
done in May and June 1999 by use of a boat or by wad-

ing. Backwater, channel, and impoundment deposits were
cored with the WDNR and Livingston piston corer. The
WDNR corer was used first, and then the Livingston

corer was used to collect cores at deeper intervals. Before
coring, potential sites were submitted to the Environmen-
tal Services Department, Menominee Indian Tribe for
checking against known archeological sites. No cores were
collected from known archeological sites.

All cores were described for texture and color in the
field by use of the U.S. Department of Agriculture textural
triangle and color chart (Munsell Color, 1975; Soil Survey
Staff, 1951). Field grading of texture was done by rubbing
soil between the fingers (Milfred, 1967). Recovery ratios
were recorded for all coring devices. Sediment samples
from a subset of cores were analyzed for water content,
organic matter, particle size, chemistry, and radiometric
dating (table 2). County-level soil survey data also were
used to verify the lateral extent of deposits observed in the
cores (unpublished Menominee County Soil Survey, about
1999; Gundlach and others, 1982).

Buried soils are commonly found in flood-plain
deposits and can be good indicators of flood-plain surface
stability. Buried soils represent older flood-plain surfaces
(Birkland, 1984; Retallick, 1985). In general, modern
flood-plain soils are usually poorly developed because
of the possibility of a fast rate of burial, high water table,
and anthropogenic disturbance. Many buried flood-plain
surfaces will have the beginnings of an A horizon or only
a thin layer of organic matter and remnants of vegetation.
The A horizon is a dark zone at the surface of the soil
caused by accumulation of decomposing organic matter.
The buried flood-plain surfaces can be recognized by one
or more of the following characteristics: presence of an
A horizon, organic matter accumulation from flood-plain
vegetation, lateral extent (a buried surface is parallel to
the land surface and may truncate geologic bedding), root
traces, and soil structure (Birkland, 1984; Retallick, 1985).
Sometimes, part of a buried soil will be removed by scour
activity associated with flooding, channel migration, or
channel avulsion.

Laboratory Analysis

Physical Characteristics and Organic-Matter
Content

Physical characteristics measured included water-
weight percent, particle size, and organic-matter content
(loss on ignition). Water-weight percent and organic-mat-



ter content were analyzed at the USGS, Middleton, Wis.,
for 47 samples collected from core T2-1. Water-weight
percent was measured by use of standard American
Society for Testing and Materials Procedure D2216-92
(1992), except that sample sizes were less than 20 g wet
weight because of the numerous samples from the single
core. Water-weight percent was determined by measur-
ing weight loss after 24 hours at 105°C. Organic-matter
content was determined by weight loss after ashing (loss
on ignition, or LOI) at 550°C for 1 hour (Dean, 1974).
Dry-bulk density was estimated by use of the formula

_ (DQ5I+16C)
(D +(1-D)(2.51 + 1.6C)

where p is dry-bulk density (g/cm?), x is depth in the core,
D is proportion dry weight of unit wet volume, / is inor-
ganic proportion of dry material (assuming a density of
2.5 g/cm?), and C is organic proportion of dry material
(assuming a density of 1.6 g/cm?®) (Hakanson and Jansson,
1983). The density of water is assumed to be 1.00 g/cm.

Twenty-six samples were analyzed for particle size
at the USGS Cascades Volcano Laboratory at Vancouver,
Wash. Samples were analyzed for percent sand, silt (four
size fractions), and clay by the sieve-pipet method (Guy,
1969).

Radiometric Dating and Sedimentation Rates

Analyses of 137Cs, 219pp, and ?*°Ra were done on
twelve 3-in. intervals from core T2-1, which contained
84 in. (7 ft) of post-dam sediment, and eight 0.1-ft inter-
vals from core T7-2, which contained 1 ft of post-dam
sediment. Analyses were done at Quanterra Analytical
Services, Richland, Wash. Activity concentrations of 2°Pb,
26Ra, and ’Cs were determined from gamma spectros-
copy counting. The profile for '*’Cs is used to compare
sedimentation rates before and after 1963. In 1945, ¥7Cs
was first detected, and in 1954 the first increase occurred
in the Northern Hemisphere, corresponding to increased
nuclear weapons testing (Krishnaswami and Lal, 1978).
In 1960 a minimum occurred, followed by a maximum
in 1963. With the signing of the atmospheric nuclear test
ban treaty, atmospheric contributions have dropped off
substantially (Olsson, 1986). A date of 1963 was assigned
to the sample with the highest '*’Cs activity. Mass and
linear sedimentation rates were determined for 1927-63
and 1963-99, from dam construction to the time the cores
were collected.

Methods 9

The >!°Pb dating technique is based on the escape
of radon from the Earth and the subsequent decay of this
radioactive gas into 2!°Pb. This technique is most suitable
for dating within the last 150 years because the half-life
of 2!%Pb is about 22 years (Olsson, 1986). To account for
some of the variability associated with possible fluctua-
tion in the sources of lead or inhomogeneous sediment,
226Ra also was analyzed in each of the samples. Optimally,
samples from sediment more than 150 years old are col-
lected to measure local background concentrations of 2!°Pb
supplied to the sediment from decay of uranium minerals
(Olsson, 1986). Unsupported (excess) 210py, activity was
estimated by subtracting the average **Ra activity for all
sampled intervals in a core from total 2!°Pb activity. For
the constant initial concentration model, the amount of
unsupported 2'°Pb activity in the uppermost sediment layer
is assumed to be constant through time; thus, a profile
of 219Pb activity exhibits a log-linear decrease with depth
(Goldberg, 1963; Krishnaswami and others, 1971; and
Robbins, 1978).

Wood or organic material was collected from backwa-
ter and impoundment cores from transects T4, T7, and T9
and nine samples were radiocarbon dated (**C). Radiocar-
bon analyses can be useful for dating carbon-rich samples
from about 200 to 40,000 years old (Bowman, 1990;
Libby, 1946). Two types of radiocarbon analyses were
done. Two samples were large enough for conventional
radiocarbon techniques, which use beta particle counting
from decaying '*C atoms to estimate the age of the sample.
Seven samples weighed less than 3 g and required the use
of accelerator mass spectrometry (AMS). All samples
were analyzed at Beta Analytic, Inc., Miami, Fla. Calen-
dar calibrated age ranges were calibrated by the Pretoria
calibration procedure (Talma and Vogel, 1993; Stuiver and
others, 1998).

Sediment Chemistry

Twenty-eight samples from six cores were submitted
to the USGS National Water-Quality Laboratory, Denver,
Colo., to be analyzed for 26 minor and trace elements.
Plastic equipment (Teflon, polypropylene, or polyethyl-
ene) was used to subsample cores. The WDNR piston core
tube was composed of Lexane, and the geoprobe cores
had plastic liners. The Livingston core tube was composed
of stainless steel. Samples were not sieved. Laboratory
methodology is detailed in Arbogast (1996) and Briggs
and Meier (1999). Total digestions were done.
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Quality Control

Quality-control procedures included collecting and
analyzing samples from duplicate cores and about 15 per-
cent replicate samples to assess within-site and analytical
variance. Quality-control measures at the USGS laborato-
ries included comparisons to standard reference materials,
spikes, and duplicates (Pirkey and Glodt, 1998).

Streamflow Trends

Results from two-sided t-tests indicate no statisti-
cally significant differences for streamflow between the
Balsam Row Dam and Keshena Falls stream gages for
either mean daily flows or annual peaks over the period
1975-96. Wilcoxon signed-rank tests for the same data
yielded similar results. Boxplots illustrate the absence of
difference between the sites in mean daily flow and annual
flood peaks (fig. 4). These results indicate that combining
data from both sites for analyses of streamflow trends was
appropriate. Hereafter, streamflow trends from the com-
bined records are referred to as the record from the Wolf
River near Shawano.

Annual flood peaks from the Wolf River near Sha-
wano for the entire period of record (1907-96) showed
no statistically significant trend based on linear regres-
sion on log-transformed discharge data (table 4; fig. 5A).
These results are similar to those found by Gebert and
Krug (1996) for the period 1931-91. However, when the
annual flood peaks are divided into two periods before and

A B
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after 1950, there is a statistically significant downtrend in
annual flood peaks for 1907—49 and an uptrend for 1950—
96 (fig. 5B). During 190749, only three large floods with
a recurrence interval of about 25 years occurred—those in
1912, 1922, and 1929. (The recurrence interval is based
on the entire record from 1907-96.) The 1912 flood was
in September and the 1922 and 1929 floods were in April.
During 1950-96, four large floods occurred with recur-
rence intervals of 50—100 years: those in 1960 (75-year),
1973 (greater than 100-year), 1976 (50-year), and 1986
(50-year). These floods were in March—-May and resulted
from a combination of snowmelt and intense rainfall. In
general, these trends are similar to results found for floods
in the Upper Mississippi Valley, where upper atmospheric
circulation patterns were mainly zonal before 1950 and
meridional after 1950 (Knox and others, 1975). Meridional
(north-south) patterns tend to produce more floods on an
annual basis than other circulation types.

Data collection at the Langlade stream gage on the
Wolf River began in 1968, much later than at the Shawano
gage (table 1). A comparison of annual flood peaks from
Langlade and Shawano for 1968-96 showed no significant
trend in annual flood peaks for the period (fig. 6). The
records are somewhat similar, but large floods in the lower
Wolf (Shawano) did not always correspond to large floods
in the upper Wolf (Langlade). Four of the six major floods
above 3,000 ft3/s at Shawano (1973, 1976, 1986, and
1996) corresponded to similarly large floods at Langlade
(fig. 6). Examination of the time of year for the floods
indicates that spring snowmelt coupled possibly with
frontal-type precipitation (large extent, low intensity, long

4,000 4,500

*
3,000 [ * 1 s3mof

2,000 - E 3,000
1,000 - - 2,250 |-

STREAMFLOW
IN CUBIC FEET PER SECOND

EXPLANATION

Very extreme data value

Extreme data value

90th percentile

75th percentile
Median

95-percent confidence
interval around the median

25th percentile

10th percentile

0 1,500

1975-85 1986-96
Keshena Falls Balsam Row Dam

Figure 4.

1975-86
Keshena Falls

1985-96
Balsam Row Dam

Boxplots of A, mean daily streamflow, and B, annual peak floods for the Wolf River near Shawano (Balsam Row Dam),

Wis., and the Wolf River at Keshena Falls, Wis. The stream gage was moved from Keshena Falls to Balsam Row Dam in 1985.
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duration) caused large floods in both the upper and lower tion sites (table 4). For 1912-49, the Green Bay site had
Wolf River. However, convectional precipitation (summer a downtrend in annual precipitation (fig. 7), similar to
thunderstorms with limited extent, high intensity, and short the downtrend in annual flood peaks (fig 5B). However,
duration) resulted in more localized flooding, as indicated data from the Rhinelander site had an uptrend that was
by June floods in 1969 and 1993 for the lower Wolf River not statistically significant, and the Shawano site had a
but not the upper Wolf River. nonsignificant downtrend (table 4). The Rhinelander and
Similar to annual flood peaks, annual precipita- Shawano sites are closer to the Wolf River Basin than the
tion data for the entire period of record did not show Green Bay site is (fig. 1). Annual precipitation data from
any significant trends (p > 0.10) for the three precipita- all three sites showed a nonsignificant uptrend during

Table 4. Selected trend-test results for streamflow and precipitation in the Wolf River, Wis., study area, 1912-96.

[A negative t-statistic reflects a decreasing trend and a positive t-statistic reflects an increasing trend. Statistically significant trends (p-values < 0.10)
are in bold.]

Type of data Time period Regression t-statistic P-value for regression

Wolf River near Shawano, Wis.—streamflow (log-transformed)

Annual flood peak 1907-96 0.50 0.62
Annual flood peak 1907-49 -1.72 .094
Annual flood peak 1950-96 2.03 .049
January mean monthly 1912-96 1.56 12
February mean monthly 1912-96 1.96 054
March mean monthly 1912-96 191 .059
April mean monthly 1912-96 -.24 .80
May mean monthly 1912-96 -1.64 .10
June mean monthly 1912-96 -2.10 038
July mean monthly 1912-96 -1.71 .09
August mean monthly 1912-96 -71 48
September mean monthly 1912-96 -.23 .82
October mean monthly 1912-96 29 77
November mean monthly 1912-96 15 .89
December mean monthly 1912-96 1.12 27
July mean monthly 191249 -1.95 .058
Green Bay, Wis.—precipitation (monthly log-transformed)
Annual 1912-96 1.03 31
Annual 1912-49 -1.76 .085
Annual 1950-96 1.22 22
February mean monthly 1912-96 -2.55 013
March mean monthly 1912-96 .55 .58
June mean monthly 1912-96 -1.02 31
July mean monthly 1912-96 72 48
July mean monthly 1912-49 -3.25 0025
Shawano, Wis.—precipitation
Annual 1923-96 32 75
Annual 1923-49 -43 .67
Annual 1950-96 .61 .55
Rhinelander, Wis.—precipitation

Annual 1908-96 .68 .50
Annual 1908-49 .19 .85

Annual 1950-96 1.33 .19
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Figure 5. Annual peak streamflow from the Wolf River near Shawano (the Balsam Row Dam), Wis. for 1907-1996: A, trend line
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Figure 6. Annual peak flow and trend lines for the Wolf River near Shawano, Wis., and the Wolf River at Langlade, Wis., 1968—96.

1950-96 (table 4, fig. 7). Therefore, trends in annual flood
peaks for the Wolf River may be related to trends in annual
precipitation, but the relations are confounded. In general,
zonal circulation patterns tended to decrease precipitation,
whereas meridional circulation patterns tended to increase
precipitation in the upper Mississippi Valley (Knox and
others, 1975). Perhaps annual precipitation data are not
sensitive enough to determine frequency of rainstorms
that produce large floods, especially spring floods that are
related to a combination of snowmelt and rainstorms.

Trends in mean monthly flow at the Wolf River
near Shawano were observed for some months for the
entire record (1912-96) and during 1912-49. During
1912-96, mean monthly flow for February and March
increased, whereas mean monthly flow for June and July
decreased (table 4). These results also were found dur-
ing 1912-90 for the same gage (Peters, 1997). July mean
streamflow also decreased significantly during 1912—49
(table 4).

In contrast to the trends at the Wolf River near Sha-
wano, no trends in monthly precipitation at Green Bay
were found for March, June, or July for 1912-96, and Feb-
ruary precipitation for 1912-96 decreased. Only decreas-
ing July precipitation during 191249 matched decreas-

ing July mean monthly flow during 1912-49 (table 4).
Therefore, the uptrend during 1912-96 in mean monthly
flow for February and March indicates that snowmelt is
occurring earlier. An earlier snowmelt also may cause an
apparent decrease in streamflow during the early summer
months because low-flow conditions may start earlier in
the summer season. The downtrend in July precipitation
and streamflow during 1912—49 may indicate a decrease in
the occurrence of summer storms during that period.

A secondary cause for decreases in early summer
monthly flow over the period of record may be related to
forest regrowth. Most of the old growth forests of north-
eastern Wisconsin were logged and burned after European
settlement in the late 1800s. Widespread logging and burn-
ing continued in the region until the late 1920s (Connor,
1978; Fries, 1951), although the Menominee Indian Tribe
practiced selective cutting techniques on their land since
1854 (Menominee Tribal Enterprises, 1997). In northern
Wisconsin, property taxes were based on the amount of
board feet per acre up until 1927, which promoted repeated
cutting and burning after the initial logging. It is worth-
while to include a description of logging in the Wolf River
Basin as described by Samuel Shaw on December 9, 1886,
in the “Forest Republican”. He states, “The Upper Wolf
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Figure 7.

River is stripped clean of pine. The Lower Wolf River is
bare. There is nothing to tempt a lumberman to lift an ax
or draw a saw” (Connor, 1978). By the late 1970s,
second- and third-generation forest covered much of the
Upper Wolf River Basin (Connor, 1978). Much of the land
in the basin in 1999 was owned by the Menominee Tribe,
the U.S. Forest Service, counties, or private lumber compa-
nies.

Flood peaks would be expected to decrease during
forest regrowth as surface runoff is decreased or slowed
because of increases in interception, hydraulic roughness,
and infiltration (Fitzpatrick and others, 1999). Base flow
also would be expected to decrease because of an increase
in evapotranspiration, especially during summer. Forest
evapotranspiration reduces the amount of water available
for ground-water recharge and base flow (Sartz, 1972).

Annual flood peaks and runoff volumes from three
watersheds near the Wolf River with similar logging his-
tories also have shown relations to both precipitation and
forest-cover change (Fitzpatrick, 1993; Rayburg, 1999).
The Pike and Oconto Rivers are to the east of the Wolf
River (fig. 1), and annual flood peaks and runoff volumes
for those streams decreased starting in about 1930 (Fitz-
patrick, 1993). The Pike River Basin (257 mi%) is smaller

Annual precipitation and trend lines for Green Bay, Wis., 1912—49 and 1950-96.

than the Wolf River Basin and is directly east of the
Rhinelander climate station. However, no downtrend was
observed in annual precipitation at Rhinelander for 1912—
49, suggesting that streamflow in the Pike River was more
likely affected by forest regrowth than by precipitation. In
contrast, trends in annual flood peaks and runoff volumes
for the Oconto River Basin (737 mi?) corresponded more
closely to precipitation at the Oconto precipitation site.
Historical streamflow trends in the Prairie River Basin
(181 mi?), about 50 mi northwest of the Wolf River study
reach, primarily were attributed to land cover and second-
arily to climate change (Rayburg, 1999). Mean monthly
flow increased in the Prairie River during the winter, but
total annual flow decreased. Reduction in flow volumes
occurred in the Prairie River during the growing season.
In summary, three large floods occurred on the Wolf
River near Shawano between 1912 and 1929, followed by
no large floods during 1930-59. Four large floods occurred
between 1960 and 1986. The trends toward smaller annual
flood peaks during 1908-49 compared to larger annual
flood peaks during 1950-96 appear to be related to pre-
cipitation and upper atmospheric circulation patterns. The
trend toward smaller annual flood peaks during 190849
may secondarily be related to forest regrowth. During
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1908-96, floods became more common in early spring,
and mean monthly flows decreased in June and July. The
flood records for the lower Wolf River (near Shawano)
and the upper Wolf River (Langlade) are similar, but large
floods in the lower Wolf did not always correspond to
large floods in the upper Wolf. Snowmelt coupled with
frontal-type precipitation caused large floods in both parts
of the basin, whereas floods from intense summer rain-
storms were more localized.

Sedimentation Trends

Coring, sounding, and survey data from nine tran-
sects provided the information necessary to reconstruct the
sedimentation history of the Wolf River through the study
reach. Transect locations and number of cores collected at
each transect are listed in table 2, and water depth, penetra-
tion depth, and type of sample analyses for the cores col-
lected along each transect are summarized in table 3.

The GLO notes (from 1853 for the lower part)
describe the reach as having a swift current and in places
rapids. Banks were generally high. The channel bottom
was composed of sand and rocks, and water depths were
from 1 to 3 ft. The river was reported to be navigable for
steamboats at high stages (Oehmcke and Truax, 1964).
The GLO notes describe the presence of rapids or falls just
below the county line with a 10- to 12-ft drop over 400 ft
of channel length. Evidence of the rapids has disappeared
after that part of the reach was covered with impounded
water and sediment associated with the Balsam Row Dam.
The GLO notes also provided data on the location and
planform of the Wolf River through the study reach
(fig. 8). These data were compared to the coring and
sounding data and used to confirm the pre-dam location of
the Wolf River in the impounded reach.

A detailed longitudinal profile of the Wolf River
thalweg (deepest part of the channel) in 1999 and before
the construction of the Balsam Row Dam was created from
the 1999 coring, sounding, and survey data from the nine
valley transects and supplemented with information from
the GLO notes, 1998 exploratory cores from the two
sites (TS and T6) with no valley cross-section surveys
(table 3), and data from the 1995 U.S. Army Corps of
Engineers (USACE) flood-plain delineation study (U.S.
Army Corps of Engineers, 1995). Distances along the
longitudinal profile (fig. 9) are curvilinear channel dis-
tances; these are the same distances used by the USACE
study, which are listed in table 2 along with the upstream
distance of each transect from the Balsam Row Dam.

The longitudinal profile was divided into three
reaches on the basis of sedimentation history and stream-
bed characteristics. The impounded reach extends from
the dam to the county line and encompasses the part of the
study reach with silty clay deposition. The sandy reach,
from the county line to the Fairground Road Bridge,
encompasses the part that has noticeable sand deposition.
The upper reach, from the Fairground Road Bridge to Kes-
hena Falls, has predominantly rocky/gravel substrate and
little deposition of sand, silt, or clay.

The following three-part description of sedimentation
history for the study reach is based on the above substrate
conditions. This description proceeds from the downstream
boundary to the upstream boundary of the study reach.
Geologic sections are shown in figures 10-12 and in fig-
ures 15-20 for each transect looking south (downstream).

Impounded Reach

The impounded reach extends from about 1,400 to
11,000 ft (1.8 mi) along the longitudinal profile, from the
Balsam Row Dam to the county/reservation boundary
(fig. 9). About 5 to 10 ft of organic-rich silty clay (muck)
was deposited in the impoundment from 1927 to 1999. The
normal water-surface elevation at the dam is about 15 ft
above its pre-dam elevation. The bulk of the sediment was
deposited in the 9,000-ft reach between the dam and the
buried falls downstream of the county line. The impounded
reach varies in width from about 400 to 700 ft.

Transects T1b, Tlc, and T2 represent typical condi-
tions in the impounded reach (figs. 10-12). Post-dam
deposits are composed of organic-rich stratified clay and
silty clay, with interbedded layers of abundant woody
debris, leaf debris, pine needles, and rootlets. These layers
of organic debris are thought to represent deposits from
large floods. As stated earlier, five floods with a recur-
rence interval of 25 years (greater than 4,100 ft*/s) or more
occurred after the dam was constructed in 1927 (fig. 5B).
Four of the five floods were between 1960 and 1986, and
two were within 4 years of each other (1973 and 1976).
The layers of organic debris were common in the upper
part of the impounded deposits and were especially
noticeable in cores from transect T1b (fig. 10). There was
less organic debris in the impounded sediment on the east
side of the impoundment through its widest stretch at T2
(fig. 12). Most of the organic debris settled out in the nar-
row parts of the impoundment or toward the west side of
the impoundment, where it widens (fig. 12).

The pre-dam (pre-1927) channel through the
impounded reach was identified by the presence of a gravel
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Profiles for *’Cs and *°Pb from core
T2-1 were used to distinguish linear and
mass sedimentation rates for the impound-
ment (fig. 13). The undisturbed '*’Cs profile
from core T2-1 with a sharp peak indicates
no bioturbation or postdepositional mixing
in this core. The *’Cs profile shows a sharp
peak at 3.6 ft, which is assumed to corre-
spond to the peak fallout of *’Cs in 1963.
The expected monotonic decay curve for
the >!°Pb profile shows a break from about
2.6 to 3.1 ft. This break may be the input of
older sediment stored behind the Keshena
Falls Dam (1908-72) and transported to the
Balsam Row impoundment after the failure

853

of the Keshena Falls Dam. Based on core
data, the 1927 surface was at 7.0 ft. Linear
sedimentation rates, based on the '*’Cs peak
and the 1927 surface, are similar before
1963 and after 1963, at about 0.09 ft/y and
0.10 ft/y, respectively.

Data for particle size, dry-bulk density,
and organic-carbon content from core
T2-1 indicate that the source of sediment
to the impoundment most likely changed
over time and that deposition probably

Balsam
Row Dam was episodic (fig. 14; table 5). Impounded
sediment averaged about 51 percent clay,
43 percent silt, and 6 percent sand. An

increase in sand at about 2.2 ft (mid-1970s)

Figure 8. Trace of the Wolf River, Wis., showing channel position in 1853

(before impoundment by the Balsam Row Dam).

lag deposit and relative elevation interpreted from core
and sounding data. The pre-dam flood-plain surface was
identified by the presence of a buried A horizon, abundant
root remnants, grass remnants, and the presence of loam
or sand. The 1927 channel was at the same location as the
1853 channel as reconstructed from the GLO notes

(fig. 8). Upstream from the dam at transect T1b, the pre-
dam channel was on the west side of the impoundment
(fig. 10). Further upstream, at transects T1c and T2, the
pre-dam channel was on the east side of the impoundment
(figs. 11-12). In contrast, most of the flow throughout the
length of the impoundment in 1999 was on the west side
because the dam gates were usually open on the west side.

is followed by an increase in silt upcore
from 2.2 to 1.7 ft. This shift in composi-
tion may reflect input of sediment from
behind the Keshena Falls Dam that was
likely transported downstream during the
1972 dam failure and the 1973 flood (larg-
est flood on record). The slight increase in silt, increase in
bulk density, and decrease in organic carbon at about 4.0 ft
(about 1960) may reflect an increase in coarser sediment
delivered during the 1960 flood, which was the first large
flood to occur after 31 years of relatively small floods
between 1929 and 1960 (fig. 5B). Also, during the 1960
flood, an earth-fill wall near the powerplant at the Keshena
Falls dam was dynamited to relieve pressure on the dam
(U.S. Geological Survey, 1961). This action also may have
caused a pulse of more coarse-grained sediment to the
Balsam Row impoundment. Low concentrations of organic
carbon in sediment cores from impoundments in the Upper
Mississippi River Basin also were attributed to large floods
(Juracek, 2004).
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Figure 13. Data for "*Cs, unsupported ?'°Pb, and %°Ra from core T2-1 from the Balsam Row Dam impoundment, Wolf River, Wis.

Taking into account the dry bulk density of the sedi-
ment, which ranged from 6 Ib/ft’ at the top of the core to
about 12 Ib/ft® with depth (fig. 14B), mass sedimentation
rates after 1963 (1.04 1b/ft?/y) are slightly lower than mass
sedimentation rates before 1963 (1.15 Ib/ft*/y). Assuming
constant sedimentation rates, the natural log of unsup-
ported 2!°Pb activity would be a linear curve when plotted
against cumulative mass. The unsupported 2!°Pb profile for
T2-1 is linear except for a slight change in the curve from
2.6 to 3.1 ft (profile not shown). The 2!°Pb profile also
indicates that sources of sediment and sedimentation rates
may have fluctuated in the 1960s—1970s.

Valley transect T3 represents depositional conditions
within the upper part of the impounded reach (fig. 15).
About 5 ft of silty clay was deposited in the channel at
this location after construction of the Balsam Row Dam in
1927. The sounding data indicated two possible channel
locations before 1927. The 1853 GLO survey plotted the
active channel in the west channel position (fig. 8); how-
ever, the east channel thalweg is about 3 ft below the west
channel thalweg. It is possible that the channel changed
position between 1853 and 1927, perhaps coincident
with the extensive log drives on the Wolf River in the late

1800s. Pre-dam channel deposits are assumed to be gravel
on the basis of soundings.

Transect T3 intersects a unique flood-plain environ-
ment on the west side, characterized by vegetation of
alder/willow near the river and white cedar along the slope
to the upland. The 1999 flood-plain surface was about
0.8 ft above the normal water level in the impoundment
and within the 100-year floodway (U.S. Army Corps of
Engineers, 1995). Inundated sediment near the west edge
of the water is composed of about 1.4 ft of organic-rich
silt loam underlain by 0.4 ft of loam. In the alder/willow
wetland, about 1.5-2.0 ft of peaty silt is underlain by about
1.0 ft of sand near the channel. Proceeding inland, the sand
layer thins and is replaced by about 0.3 ft of blue clay and
0.1 ft of sandy clay loam. Continuing upslope, the change
in vegetation from alder/willow to white cedar marks a
subsurface change in texture from peaty silt deposits to
loam and sand deposits (fig. 15). The peaty silt deposits
represent deposition of fines during floods and steady
deposition of organic matter from the flood-plain and
wetland vegetation. These peaty deposits appear to have
formed after the water level was raised for the Balsam
Row Dam. Farther upslope, the clay loam and coarse sand
are representative of Holocene fluvial deposits or possibly
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pre-Holocene outwash deposits. The steep east bank at T3
is more typical of banks along the impounded reach.

In summary, as much as 10 ft of organic-rich silty
clay was deposited in the impounded reach of the Wolf
River during 1927-99. Average mass sedimentation rates
during 1963-99 were slightly lower than during 1927-63,
as inferred from the *’Cs profile from core T2-1. However,
variations in the profiles of particle size, bulk density, and
organic-carbon content from core T2-1 indicate that sedi-
mentation was episodic, with relatively large amounts of
coarse sediment and organic debris deposited during large
floods in 1960 (earth wall dynamited at the Keshena Falls
Dam) and 1973 (after failure of the Keshena Falls Dam in
1972). The impounded reach has lost much of its storage
capacity. If the Balsam Row Dam was removed, upstream
head-cutting and incision through the impounded sediment
most likely would happen as far as the buried rapids near
the county line.

Sandy Reach

Upstream of the impounded reach, the channel of the
Wolf River is dominated by sand deposition and bar for-
mation. This reach of the Wolf River extends from about
11,000 to 24,000 ft (2.5 mi) on the longitudinal profile
(fig. 9) and includes data from valley transects and cores
from T4, T4.2, T4.5, TS, T6, and T7 (figs. 16-19). The
channel of the Wolf River is about 200 ft wide through this
reach, and thalweg depth is about 4 ft. The channel width
at the section line crossing near TS5 at 15,200 ft along the
longitudinal profile is similar to that recorded in the 1853
GLO notes, which indicates that the post-dam channel
width through the reach is similar to the pre-dam width.
However, sedimentation in this reach is affected by the
presence of the Balsam Row Dam (fig. 9). The deposi-
tional setting can be thought of as the upstream part of an
elongate in-channel delta plane, part of the upper zone of
a developing delta that formed behind the Balsam Row
Dam. Near the boundary between the sandy reach and the
impounded reach, velocities are reduced, the channel wid-
ens, and deposition is dominated by silt, clay, and organic
debris, as illustrated in the backwater area on the east side
of the channel at transect T4 (fig. 16). Sand deposition and
bar formation are evident in transects T4.2, T4.5, and T7
(figs. 17-19).

The shallow backwater area along the east side of
the channel at T4 is covered by about 1 to 2 ft of water. In
1999, only a remnant of the wild rice beds was growing
in the backwater, in contrast to observations of extensive
wild rice beds in 1997. Deposits generally are composed
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of about 1 ft of organic-rich silty clay underlain by a 1-ft-
thick woody debris layer, which is underlain by 1-2 ft of
peat or organic- and wood-rich silty clay or loam (fig. 16).
A 1-ft fine-grained sand loam layer underlies the peaty/
organic layer. In core T4-7, a 2-ft peat layer underlies the
sand loam.

Wood from core T4-7 from the lower peat layer had
a calibrated radiocarbon age of A.D. 160050, and wood
from the bottom of the upper peat layer had a calibrated
radiocarbon age of A.D. 1510470 to 1860+40. Compara-
tively, wood in the sand loam layer in core T4-9 had a cali-
brated radiocarbon age of A.D. 1940+50. Ages from these
wood samples indicate that 3—4 ft of sediment was depos-
ited in the backwater area along T4 after 1853. The deposi-
tion of the sand loam and overlying peat and fine-grained
sediment in the backwater area most likely resulted from
logging/log drives during the late 1800s, floods in the early
1900s, and (or) the Balsam Row Dam. The younger date
(modern) from wood in the sand loam at T4-9 indicates
that sediment near the 1999 channel thalweg is more likely
to be disturbed (from processes of scour and deposition)
than sediment farther away from the thalweg. This distur-
bance may have resulted from scour during the failure of
the Keshena Falls Dam in 1972 followed by the 1973 flood
and deposition from 1973 to 1999 of sediment that would
have been trapped behind the Keshena Falls Dam before
its failure.

On the west side of the river at transect T4, the 100-
year flood plain is about 150 ft wide (fig. 16). A 1.5-ft
layer of organic-rich poorly sorted clay loam extends
about 100 ft west of the right bank. This is the only
organic-rich and fine-grained deposit recorded in cores on
the west flood plain and probably represents deposition
after settlement and dam construction. The fine-grained
deposits are underlain by sand and gravel. Older flu-
vial deposits, composed of sand and gravel, are beneath
the fine-grained deposits in the flood plain and are also
beneath the low terrace. These deposits, which were oxi-
dized, were devoid of organic material and wood, probably
because organic material is not preserved well in oxidized
environments. Organic material and wood are preserved in
the inundated backwater area where deposits are oxygen
poor. The absence of fine-grained deposits at depth below
the flood-plain surface indicates that deposition of fine-
grained sediment is relatively recent, probably caused by
either logging or dam construction or a combination of
both. The flood-plain surface is about 2.5 ft above base-
flow stage in the Wolf River; based on stage-discharge
relations from the Keshena Falls stream gage, floods with
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Table 5. Water-weight percent, organic-matter content, and dry-bulk density for samples from Wolf River, Wis.,
sediment core T2-1, 2001.

[ft, feet; Ib, pound]

Interval top Interval bottom Water weight Organic-matter content Dry-bulk density
(ft) (ft) (percent) (percent) (Ib/fe)
0.0 0.1 90.91 38.76 5.96

.1 2 85.55 37.99 9.78

2 3 84.03 39.52 10.90

3 4 83.65 36.91 11.20

4 5 83.85 37.54 11.04

5 .6 84.68 38.95 10.42

.6 i 83.88 38.51 11.02

i 8 84.18 38.20 10.80

8 9 84.68 37.82 10.42

9 1.0 84.33 36.87 10.69
1.0 1.1 85.83 38.33 9.57
1.1 1.2 85.25 38.06 10.00
1.2 1.3 85.83 37.75 9.57
1.3 1.4 84.72 36.80 10.40
1.4 1.5 84.66 36.98 10.44
1.5 1.6 86.36 37.48 9.19
1.6 1.7 87.93 37.59 8.06
1.7 1.8 85.92 37.98 9.51
1.8 1.9 84.98 37.55 10.20
1.9 2.0 84.16 37.02 10.82
2.0 2.1 85.12 37.63 10.10
2.1 2.2 85.24 37.93 10.01
22 2.3 83.89 37.16 11.01
2.3 2.4 84.00 36.29 10.94
24 2.5 83.92 37.68 10.99
2.5 2.6 85.19 38.41 10.05
2.6 2.7 84.56 37.96 10.51
2.7 2.8 84.51 37.46 10.55
2.8 2.9 83.83 37.40 11.06
2.9 3.0 84.75 37.32 10.37
3.0 3.1 84.79 36.93 10.34
3.1 32 84.36 37.08 10.66
3.2 33 84.27 37.49 10.73
33 34 84.00 37.24 10.93
34 35 83.34 37.10 11.43

(98]
n
»
o

82.95 36.81 11.72
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Table 5. Water-weight percent, organic-matter content, and dry-bulk density for samples from Wolf River, Wis.,

sediment core T2-1, 2001—Continued.

[ft, feet; Ib, pound]

Interval top Interval bottom Water weight Organic-matter content Dry-bulk density
(ft) (ft) (percent) (percent) (Ib/fe)
3.6 3.7 83.65 35.94 11.20
3.7 3.8 84.83 36.08 10.32
3.8 39 84.20 35.95 10.79
39 4.0 83.80 36.94 11.08
4.0 4.1 83.37 36.97 11.41
4.1 4.2 83.08 36.65 11.63
4.2 4.3 83.18 37.07 11.55
4.3 4.4 81.36 35.12 12.95
4.4 4.5 81.64 36.54 12.72
4.5 4.6 82.31 36.32 12.21
4.6 4.7 81.75 36.14 12.64
1.5 1.6 85.52 38.31 9.81
3.0! 3.1 85.10 36.96 10.12
4.5! 4.6 82.19 36.46 12.30

'Replicate samples.

a recurrence interval of about 25 years are needed to inun-
date this surface.

From about 13,500 to 20,000 ft along the longitudinal
profile, channel deposits are predominantly sand (fig. 9).
At transect T4 at 11,090 ft, the thalweg was characterized
by gravel, and little sand was present in the main channel
(fig. 16). In contrast, at 13,600 ft, about 1 ft of sand
overlies gravel in the thalweg. At 14,200 ft, channel
deposits consist of typically greater than 1.5 ft of sand.
Partial transects T4.2 and T4.5 at 14,930 and 15,380 ft,
respectively, along the longitudinal profile (figs. 17 and
18), illustrate how extensive the sand is and how it covers
older gravel and large woody debris. For example, on the
west side of T4.5, about 2 ft of coarse sand and fine gravel
cover a 1-ft-thick deposit of wood and bark pieces with a
diameter of up to 2.5 in (fig. 18). The wood and bark-rich
deposit may represent remnants of woody debris depos-
ited during the log drives, thus indicating that widespread
sand deposition in this reach occurred sometime in the
last 100 years. Whether the sand deposition began soon
after the log drives or whether it is associated with the
Balsam Row Dam construction or the Keshena Falls Dam
failure in 1972 and record flood in 1973 is unknown. At

T5 and 16,600 ft on the longitudinal profile, about 1.5 ft of
sand overlies gravel substrate. At T6 and 18,900 ft on the
longitudinal profile, about 0.5 ft of sand overlies gravel in
the main channel, and 2-2.5 ft of silt/organic material is
present in a small backwater area on the west side of the
channel.

At about 22,000 ft along the longitudinal profile, the
Wolf River widens and contains a longitudinal island/bar
and backwater slough on the west side within the 100-year
flood plain at transect T7 (fig. 1; fig. 9). Coring efforts for
T7 were concentrated along the island/bar and backwa-
ter slough (fig. 19) to determine the character and age of
sediment beneath these surfaces. Two wood samples from
about 3.5 ft below the surface of the island and backwater
channel had calibrated radiocarbon ages of 1940+50 and
194040, indicating that much of the sediment deposi-
tion on the island and in the backwater is relatively recent,
either after logging/log drives and (or) after construction of
the Balsam Row Dam. The lead/cesium profiles for T7-2
(not illustrated) also indicate that the fine-grained deposits
in the backwater zone have been disturbed or mixed and
the core is not suitable for estimating sedimentation rates.
An older calibrated radiocarbon age of 1790+40 also was
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obtained from wood about 3 ft down in core T7-3, near

the transition from bar to backwater slough. This older age
likely reflects reworking of older wood, probably related to
logging and log drives.

Based on stage-discharge relations at the Keshena
Falls stream gage, the elevation of the top of the island/bar
represents about the 2-year flood or bankfull stage. There-
fore, the island/bar is frequently inundated and probably is
subject to episodic scour and deposition related to both fre-
quent and infrequent floods. However, the general charac-
ter of the islands along the Wolf River did not change after
the Keshena Falls Dam failure, based on aerial photograph
comparisons (U.S. Army Corps of Engineers, 1993).

In the backwater slough along T7, a coarse sand-and-
gravel layer underlies the sandy loam, silt, peaty silt, and
woody debris at about 4-5 ft in depth (fig. 19). This gravel
most likely represents the substrate of an older channel
that occupied this position sometime before log drives and
construction of the Balsam Row Dam. The elevation of
this gravel is similar to the elevation of the 1999 channel
thalweg.

There is little flood plain on the west side of the river
at T7, and the land surface quickly rises onto a terrace
(fig. 19). The terrace is composed of more than 2 ft of silt
loam or fine sand loam overlying a gravel layer. The gravel
most likely represents the location of an older channel
(most likely Holocene or postglacial). The 1999 thalweg
and buried gravel in the backwater slough are 7 ft lower
than the gravel under the west terrace, indicating that this
reach was naturally down-cutting before 1853.

In summary, it appears that most of the sand deposi-
tion in the sandy reach resulted from the impoundment
effects of the Balsam Row Dam. Sand overlying gravel
and woody debris at every transect in this reach, regard-
less of the geomorphic setting of the transect or whether
the transect was in a meander or straightway, indicates that
the sand is ubiquitous and not a product of local lateral
migration or position within a meander. Therefore, the
construction of the Balsam Row Dam has likely altered
channel conditions for a 4-mi reach upstream from the
dam. There also is some evidence that sand deposition may
have increased during or after the failure of the Keshena
Falls Dam.

Rocky Reach

From about 24,000-31,000 ft (1.5 mi) along the lon-
gitudinal profile (fig. 9), the general character of channel
substrate in the Wolf River changes from mainly sand to
cobble, gravel, and sand. The channel is 200-250 ft wide
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through this reach. Transect T9 is at 29,970 ft along the
longitudinal profile and is about 3,000 ft downstream from
Keshena Falls (fig. 9). This transect bisects an island and
is in the widest expanse of flood plain (about 900 ft) along
the entire 6-mi study reach (fig. 20).

The main channel and side channel at transect T9 are
characterized by gravel, cobble, and boulder (fig. 20). The
island between the main and side channel is wooded and
composed of about 4 ft of loam or sand over gravel. The
elevation of the island is in the range of the stage of a 2- to
5-year flood. The area of flood plain between the side and
flood channel is at the same elevation and also wooded.
Tree trunks in this zone are scarred from ice jams and are
evidence that water levels reach 5 ft above the flood-plain
surface from ice-jam-related winter floods (fig. 21). The
winter floods inundate the entire flood plain along the
transect and are different than precipitation- or snowmelt-
generated floods in that they cause ice damage and may
be of longer duration. The ice-jam floods have occurred
only after the failure of the Keshena Falls Dam. The jams
occur at about 20,000 ft along the longitudinal profile and
are caused by the flattening of the water-surface slope at
this location (fig. 9). The slope flattens at this location
because of impoundment effects from the Balsam Row
Dam. Ice that formerly built up behind the Keshena Falls
Dam before it failed now is able to move downstream and
accumulates in the area where the slope flattens.

The core and survey data from transect T9 and GLO
notes indicate that the river has narrowed and incised at
this location since the late 1800s (fig. 20). Transect T9
bisects the section line between sections 22 and 27,

T. 28 N., R. 15 E. The 1999 channel was about 200 ft
wide, including the island. In 1891, the east side of the
river was recorded in the GLO notes as being a perpen-
dicular bluff 75 ft above the river; the channel width was
685 ft, and the right bank was 70 ft west of its location in
1999 (fig. 20). There is no mention of islands in the GLO
notes. At T9-2, large wood pieces 2.5 ft below the flood-
plain surface had calibrated radiocarbon ages of 1740+70,
evidence of post-settlement burial of the west part of the
channel. Based on depth of gravel in cores T9-1, T9-2,
T9-2.5, T9-2.3 and T9-2.8, the 1891 channel bottom was
about 2 ft higher than the 1999 channel bottom. Transect
T9 is about 2,000 ft downstream from Keshena Falls and
immediately downstream from a bedrock outcrop (fig. 9).
The channel at this location was likely in a downstream
scour zone related to locally decreased sediment inputs,

a result of sediment capture behind the Keshena Falls
Dam while it was in operation. Also, loggers may have
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Figure 21.

dynamited and deepened the channel at this location for
easier passage of logs.

The higher area of flood plain west of core T9-3.5
represents the pre-1891 flood-plain surface (fig. 20).
Gravel was found in cores T9-5 and T9-5.5 at the same
elevation as in the 1891 channel (as inferred from cores
T9-1 through T9-3), likely indicating that the pre-1891
channel migrated laterally but did not aggrade or incise.
The 1999 thalweg is deeper than any gravel related to
relict channels, indicating that incision during the last
100 years probably relates to logging, log drives, and (or)
the Keshena Falls Dam construction. GLO notes indicated
that the area surrounding the transect had been clear-cut
before the survey and that in 1891 the vegetation consisted
of a dense growth of alder along the right bank and aspen
brush and birch in the flood plain and upland, with scatter-
ings of white and Norway pine.

In summary, channel characteristics in the rocky
reach are not affected by the Balsam Row Dam but are
likely affected by a combination of historical human dis-
turbance related to logging and log drives and downstream
scour resulting from the Keshena Falls Dam. The river
width at transect T9 narrowed considerably after 1891 and
incised 2 ft. Part of the 1891 channel is filled with about
2 ft of organic-rich loam. The exact cause for the narrow-
ing is not known. Ice jams cause flooding in the wide flood
plain at T9. The effects of this flooding on flood-plain
vegetation are not known.

Ice damage on trees in flood plain near transect T9, April 1,
1998, Wolf River, Wis. (Photo by Herbert Garn.)
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Sediment-Chemistry Trends

Selected intervals from six cores from
transect T2, T4, T7, and T9 were analyzed
for minor- and trace-element concentrations
(tables 3 and 6). Detailed profiles of minor
and trace elements for impounded sediment
were constructed from 12 samples from core
T2-1 over a range in depth that included one
pre-dam sample (fig. 22). Samples of back-
water sediment from the east side of transect
T4 (cores T4-7 and T4-9) (fig. 16) and the
west side of transect T7 (core T7-2) (fig. 19)
were analyzed, as well as island sediment
from transect T7 (core T7-12) (fig. 19) and
flood-plain sediment from transect T9 (core
T9-2) (fig. 20). All sediment sampled was
deposited after the 1870s, based on interpre-
tations of sedimentation rates and sediment
sources discussed in the previous section. Concentrations
of lead, mercury, and zinc were low in samples from 1.1
to 1.2 ft in core T4-7, from 0.5 to 0.8 ft in core T7-2, and
from 1.9 to 2.8 ft in core T9-2. Samples from core T7-2
and T9-2 generally were more coarse-grained than other
samples from backwater and impounded areas, which par-
tially explains the low concentrations (table 6); many trace
elements have an affinity for clay minerals and organic
matter and are found in higher concentrations in organic-
rich, fine-grained sediment compared to coarse-grained
sediment (Horowitz, 1991).

The sample from T4-7 in the 1.0-1.2 ft interval was a
mix of sand, silt, and clay in similar percentages as the sur-
ficial sample (0-0.2 ft) from core T7-12, and both samples
had similar concentrations of organic carbon (table 6).
However, concentrations of arsenic, cadmium, lead, and
mercury in the surficial T7-12 sample are near or more
than twice those in the T4-7 sample from 1.0 to
1.2 ft. Concentrations of chromium, copper, and nickel
were similar in the two samples. This similarity suggests,
as does the sedimentation history presented earlier, that the
sand loam in core T4-7 between the peat layer most likely
was deposited about the time of logging or log drives. This
sample is indicative of background concentrations (pre-
European settlement) for relatively coarse-grained fluvial
deposits (44 percent sand, 29 percent silt, and 28 percent
clay) with high amounts of organic matter (17 percent
organic carbon) for the Wolf River.

Minor- and trace-element concentration profiles from
core T2-1 from the Balsam Row Dam impoundment are
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representative of fine-grained deposits (generally greater
than 50 percent clay) with relatively high amounts of
organic matter (15.6—18.0 percent organic carbon)

(fig. 22). Profiles of cadmium, lead, and zinc are simi-

lar, with peak concentrations at about 3.2 ft (late 1960s),
decreasing concentrations upcore from 3.2 to 1.8 ft (1970-
90), and concentrations in the top 1 ft (1990s) less than the
pre-1960 concentrations. The range of concentrations in
the profiles for these elements is greater than within-
sample variability, as evidenced by low variability in con-
centrations for these elements in the duplicate sample for
core interval 2.25-2.5 (table 6).

Subsurface peaks in lead concentrations also have
been dated from the 1960s to early 1970s in other lakes
and impoundments (Callender and Van Metre, 1997; Fitz-
patrick and others, 2003). Decreasing concentrations of
lead in the late 1970s were expected because of the reduc-
tion of air emissions of particulate lead after the passage of
the Clean Air Act in 1970. Lead concentrations in the top
of core T2-1 are lower than concentrations in the pre-dam
sample; this may be due to dilution by higher percentages
of organic matter at the top of the core (fig. 14C). This
pattern also was seen in a sediment core from a bay of Lac
Courte Oreilles, in northwestern Wisconsin (Fitzpatrick
and others, 2003).

Cadmium and zinc concentrations may reflect his-
torical regional air emissions from smelters in northern
Wisconsin. However, the elevated concentrations are in
the same range of the core where physical characteristics
and radiometric dating indicate input of sediment from
the Keshena Dam impoundment. Perhaps sediment stored
behind the Keshena Dam historically had higher concen-
trations of atmospherically or watershed-derived trace ele-
ments than more locally derived sediment that would have
been deposited in the Balsam Row Dam Impoundment
when the Keshena Dam was functioning.

Aluminum and titanium are considered conservative
elements that are associated with the mineral component of
the sediment, and the profiles for these elements for core
T2-1 (fig. 22D) show unchanging concentrations along the
entire length of core. There is no evidence in the profile
for a change in conservative element concentrations from
input of sediment from the Keshena Falls Dam Impound-
ment after the dam failure.

Concentrations of arsenic, cadmium, chromium,
copper, lead, mercury, nickel, and zinc in sediment from
all sampled locations and core intervals were all below
consensus-based probable effect concentrations (PEC),
above which harmful effects on aquatic life are likely
to be observed (table 6) (MacDonald and others, 2000).
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Two samples from flood-plain sediment were above the
consensus-based threshold effect concentration (TEC)
for arsenic (MacDonald and others, 2000). (No harm-

ful effects on aquatic life are expected for concentrations
below the TEC.) Only samples from the impoundment
core T2-1 were above the TEC for cadmium, lead, and
zinc. Chromium concentrations were generally above the
TEC from all deposition zones except for older sediment
deposited before European settlement or during logging
or log drives. Only one sample from surficial backwater
sediment at transect T7 had a copper concentration above
the TEC. The highest mercury concentration (slightly
above the TEC) was from surficial backwater sediment at
transect T7; one sample of surficial sediment at T4 also
had a mercury concentration just above the TEC. Nickel
concentrations in all samples were below the TEC.

Concentrations of minor and trace elements are
similar to concentrations from sieved surficial sediment
collected during 199698 near the Fairground Road Bridge
(USGS identification number 04077100, fig. 1) at about
24,000 ft on the longitudinal profile (fig. 9, table 6) (Garn
and others, 2001). Concentrations also were in the range of
sieved surficial-sediment concentrations found by Scudder
and others (1997) for western tributaries to Lake Michi-
gan. However, arsenic, mercury, and selenium concentra-
tions in Wolf River sediment from the impoundment were
greater than the national median, and cadmium and lead
concentrations were greater than the 75th percentile based
on sieved sediment concentrations from 541 streams across
the Nation (Rice, 1999). Arsenic and selenium concen-
trations most likely reflect contributions from bedrock
sources. Mercury concentrations reflect contributions from
wetlands in the watershed.

In summary, minor- and trace-element concentra-
tions in sediment from depositional areas in impoundment,
backwater, and flood-plain environments generally reflect
background conditions as influenced by watershed geology
and historical inputs from regional and local atmospheric
deposition. All samples had concentrations below the PEC.
Concentrations of cadmium, chromium, lead, and zinc
were above the TEC in sediment from the Balsam Row
impoundment. Some samples from backwater sediment
from the sandy reach exceeded the TEC for copper and
mercury.

Summary and Conclusions

The USGS and the Menominee Indian Tribe exam-
ined historical trends in streamflow, sedimentation, and
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sediment chemistry for the Wolf River as it flows through
a 6-mi reach through the southern part of the Menominee
Indian Reservation. This study was done to determine the
upstream effects of the Balsam Row Dam on channel char-
acteristics of the Wolf River and to distinguish long-term
(from about 1850-1999) changes in streamflow, sedimen-
tation, and sediment chemistry from land cover or climate
changes.

Results from trend analyses of historical streamflow
and precipitation data indicate that annual flood peaks
decreased during 1907—49 but increased during 1950-96;
this pattern likely reflects mainly changes in precipita-
tion (upper air circulation patterns) for both pre- and
post-1950 and possibly forest regrowth during 1907—49.
Mean monthly streamflow during 1912-96 decreased for
February and March but increased for June and July. These
trends indicate that spring snowmelt is occurring earlier
in the spring. Decreases in early summer flows also may
be affected by increased evapotranspiration from forest
regrowth.

Results from analysis of sediment cores along nine
valley transects indicate that an increase in water-surface
elevation of 15 ft associated with Balsam Row Dam has
caused changes in channel conditions for about 4.3 mi
upstream. The Balsam Row impoundment extends for
1.8 mi and contains up to 10 ft of silty clay. The impound-
ment has lost much of its storage capacity. Historical aver-
age linear sedimentation rates in the impoundment were
similar during 1927-63 (0.09 ft/y) and 1963-1999
(0.10 ft/y). The average mass sedimentation rate during
1927-63 is 1.15 Ib/ft*/y, slightly higher than the average
mass sedimentation rate during 1963-99 of 1.04 Ib/ft*/y.
However, sedimentation in the impoundment during
1963-99 has been episodic and associated with large
floods, especially the record flood in 1973 that occurred
one year after the Keshena Falls Dam failure.

Sand deposition is common in the Wolf River channel
upstream from the impounded reach for 2.5 mi. Sand in
the channel overlies gravel substrate and abundant woody
debris assumed to be associated with logging and log
drives in the late 1800s. Most of the sand deposition can
be associated with slope changes in the water surface from
the Balsam Row impoundment, but some sand deposition
may also may have been caused by logging, log drives, and
the failure of the Keshena Falls Dam.

In the upstream 1.5-mi part of the studied reach, the
substrate is mainly rocky. About 2,000 ft downstream from
Keshena Falls, the channel has narrowed and incised since
the 1890s. The narrowing and incision at this location were

likely related to human alterations associated with logging,
log drives, or scour related to the Keshena Falls Dam.

Results from analyses of minor and trace elements
from selected core samples indicate that concentrations
generally reflect background conditions as affected by
watershed geology and historical inputs from regional and
local atmospheric deposition. All samples had concentra-
tions below the PEC. Concentrations of cadmium, chro-
mium, lead, and zinc were above the TEC in sediment
from the Balsam Row impoundment. Backwater sediment
from the sandy reach had some samples above the TEC for
copper and mercury.
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