

NEAR FIELD RECEIVING WATER MONITORING OF TRACE METALS IN CLAMS (*MACOMA BALTHICA*) AND SEDIMENTS NEAR THE PALO ALTO WATER QUALITY CONTROL PLANT IN SOUTH SAN FRANCISCO BAY, CALIFORNIA: 2002

U.S. GEOLOGICAL SURVEY

OPEN FILE REPORT 03-339

Prepared in cooperation with the CITY OF PALO ALTO, CALIFORNIA

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

NEAR FIELD RECEIVING WATER MONITORING OF TRACE METALS IN CLAMS (*MACOMA BALTHICA*) AND SEDIMENTS NEAR THE PALO ALTO WATER QUALITY CONTROL PLANT IN SOUTH SAN FRANCISCO BAY, CALIFORNIA: 2002

Edward Moon, Carlos Primo C. David, Samuel N. Luoma, Daniel J. Cain, Michelle I. Hornberger and Irene R. Lavigne

U.S. GEOLOGICAL SURVEY

OPEN FILE REPORT 03-339

Prepared in cooperation with the CITY OF PALO ALTO, CALIFORNIA

Menlo Park, California

U.S. DEPARTMENT OF THE INTERIOR GALE NORTON, Secretary

U.S. GEOLOGICAL SURVEY CHARLES GROAT, Director

For Additional Information Write to:

Samuel N. Luoma, MS 465 U.S. Geological Survey 345 Middlefield Road Menlo Park, CA 94025 Copies of this report may be obtained from the authors or

U.S. Geological Survey Information Center Box 25286, MS 517 Denver Federal Center Denver, CO 80225

Table of contents

Table of contents	1
List of figures	2
List of tables	3
List of tables	3
Abstract	4
Introduction	4
Purpose	5
Study Site	5
Methods	6
Sediment	6
Clams	7
Metals Analysis	7
Results and Discussion	8
Salinity	8
Sediments	8
Clams	9
Conclusion	. 10
References	. 11
Figures	. 13
Tables	33
Appendix A	A-1
Appendix B	B-1
Appendix C	C-1
Appendix D	D-1
Appendix E	E-1
Appendix F	.F-1

List of figures

Figure 1. Location of the Palo Alto sampling station in South San Francisco Bay14
Figure 2. Water column salinity at Palo Alto from 1994 through 2002
Figure 3. Percent aluminum (\triangle), iron (\Box) and silt/clay (\bullet) in sediments at Palo Alto from 1994
through 2002
Figure 4. Near-total extraction concentrations of chromium (Cr) (\Box), nickel (Ni) (\bullet) and
vanadium (V) (\triangle) in sediments at Palo Alto from 1994 through 2002
Figure 5. Near-total (\blacksquare) and partial-extractable (\triangle) copper concentrations in sediments at Palo
Alto from 1994 through 2002
Figure 6. Near-total (\blacksquare) and partial-extractable (\triangle) zinc concentrations in sediments at Palo
Alto from 1994 through 2002 19
Figure 7. Acid-extractable silver concentrations in sediments at Palo Alto from 1994 through
2002
Figure 8. Concentrations of selenium (\blacktriangle) and mercury (\Box) in sediments at Palo Alto from 1994
through 2002
Figure 9. Annual mean concentrations of copper in Macoma balthica at Palo Alto from 1977
through 2002
Figure 10. Annual mean concentrations of silver in <i>Macoma balthica</i> at Palo Alto from 1977
through 2002
Figure 11. Concentrations of copper in <i>Macoma balthica</i> at Palo Alto from 1994 through 2002.
Figure 12. Concentrations of silver in Macoma balthica at Palo Alto from 1994 through 2002. 25
Figure 13. Concentrations of chromium in <i>Macoma balthica</i> at Palo Alto from 1994 through
2002
Figure 14. Concentrations of nickel in Macoma balthica at Palo Alto from 1994 through 2002.27
Figure 15. Concentrations of zinc in Macoma balthica at Palo Alto from 1994 through 200228
Figure 16. Concentrations of mercury in <i>Macoma balthica</i> at Palo Alto from 1994 through 2002.
Figure 17. Concentrations of selenium in sediments (\triangle) and in <i>Macoma balthica</i> (\bullet) at Palo
Alto from 1994 through 2002 30
Figure 18. Condition index (CI) of <i>Macoma balthica</i> as determined between 1988 through 2002.
Figure 19. Correlation of maximum condition index (CI) in Macoma balthica vs. maximum
copper concentrations in the months preceding the determination of maximum condition. 32

List of tables

Table 1. Sediment and environmental characteristics at the Palo Alto mudflat in 2002
Table 2. Concentrations, standard deviations and annual means of trace elements in sediments in
2002 at the Palo Alto mudflat
Table 3. Concentrations, standard error of means and annual means of trace elements in the soft
tissues of the clam Macoma balthica in 2002 at the Palo Alto mudflat
Table 4. Annual mean copper (Cu) concentrations in clams and sediments at Palo Alto: January
1977 through December 2002
Table 5. Annual mean silver concentrations in clams and sediments at Palo Alto, January 1977
through December 2002

NEAR FIELD RECEIVING WATER MONITORING OF TRACE METALS IN CLAMS (*MACOMA BALTHICA*) AND SEDIMENTS NEAR THE PALO ALTO WATER QUALITY CONTROL PLANT IN SOUTH SAN FRANCISCO BAY: 2002

Edward Moon, Carlos Primo C. David, Samuel N. Luoma, Daniel J. Cain,

Michelle I. Hornberger and Irene R. Lavigne

Abstract

This report presents trace element concentrations analyzed on samples of fine-grained sediments and clams (*Macoma balthica*) collected from a mudflat one kilometer south of the discharge of the Palo Alto Regional Water Quality Control Plant in South San Francisco Bay. This report serves as a continuation of the Near Field Receiving Water Monitoring Study, which was started in 1994. The data for 2002, herein, are interpreted within that context. Metal concentrations in both sediments and clam tissue samples have been within the range of values produced by seasonal variability. However, copper and zinc, display continued decreases. Copper in sediment was observed to drop below the ERL (Effects Range-Low) concentration for the third consecutive year and zinc concentrations never exceeded the ERL. Yearly average concentrations of copper, zinc and silver in *Macoma balthica* for 2002 are some of the lowest recorded since monitoring began in 1975. Mercury and selenium concentrations in sediments and clams at Palo Alto were similar concentrations observed elsewhere in the San Francisco Bay.

Introduction

Sampling sediments and benthic organisms in an estuary is a common method used to determine spatial distributions and temporal trends of metal contamination. Sediment particles strongly bind metals, effectively removing them from solution. As a result, sediments may retain metals released to the environment. Thus, concentrations of metals in sediments serve as a record of metal exposure in an estuary, with at least some integration over time. Fluctuations in the record may be indicative of changes in anthropogenic releases of metals into the environment.

Metals in sediments are also indicative of the level of metal exposure of benthic animals in contact with bottom sediments and suspended particulate materials. However, the route through which organisms assimilate bioavailable sediment-bound metal is not well understood. In order to better estimate bioavailable metal exposures, the tissues of the organisms themselves may be analyzed for trace metals. Benthic organisms concentrate most metals to levels higher than those that occur in solution, and therefore, the record of tissue metal concentrations can be a more sensitive indicator of anthropogenic metal inputs than the sediment record. Different species concentrate metals to different degrees. If one species is analyzed consistently, the results can be employed to indicate trace element exposures to the local food web. For example, silver (Ag), copper (Cu) and selenium (Se) contamination, originally observed in clams (*Macoma balthica*) at the Palo Alto mudflat, was later also found in diving ducks, snails, and mussels from that area (Luoma et al., USGS, unpublished data). Because of the proven value of the above approaches for monitoring near field receiving waters, the California Regional Water Quality Control Board (RWQCB) has described a Self Monitoring Program, with its re-issuance of the National Pollutant Discharge Elimination System (NPDES) permits for South San Francisco Bay dischargers, that includes specific receiving water monitoring requirements. One of the requirements is for inshore monitoring of metals and other specified parameters using the clam *M. balthica* and fine-grained sediments. The monitoring protocols should be compatible with or complement the Board's Regional Monitoring Program. Monitoring efforts are to be coordinated with the U. S. Geological Survey's (USGS) 24 years of previous data collected from the site south of the Palo Alto discharge site.

Purpose

The purpose of this study is to present trace metal concentrations observed in sediments and clams at an inshore location in South San Francisco Bay. These data and those collected in earlier studies (Luoma et al., 1991; 1992; 1993; 1995; 1996; 1997; 1998; Wellise et al., 1999; David et al., 2002) will be used to meet the following objectives:

- Provide data to assess seasonal and year-to-year trends in trace element concentrations in sediments and clams in receiving waters near the Palo Alto Regional Water Quality Control Plant (PARWQCP) as designated in the RWQCB's Self-Monitoring Program guidelines.
- Present the data within the context of historical changes inshore in South San Francisco Bay and within the context of other locations in San Francisco Bay published in the international literature.
- Coordinate inshore receiving water monitoring programs for PARWQCB and provide data compatible with relevant aspects of the Regional Monitoring Program. The near field data will augment the Regional Monitoring Program as suggested by the RWQCB.
- Provide data, which could support other South San Francisco Bay issues or programs such as development of sediment quality standards.

Study Site

The Palo Alto site (PA) is located one kilometer south of the intertidal discharge point of the PA RWQCP (Figure 1). Spatial distributions of metal concentrations near the PARWQCP site were described by Thomson et al. (1984) (also reported by Luoma et al., 1991; 1992; 1993; 1995; 1996; 1997; 1998; Wellise et al., 1999; David et al., 2002). The PARWQCP appeared to be the primary source of the elevated metal concentrations at the PA site in the spring of 1980, based upon spatial and temporal trends of Cu, Ag and zinc (Zn) in clams and sediments (Thomson *et al.*, 1984; Cain and Luoma, 1990). Metal concentrations in sediments and clams (*M. balthica*), especially Cu and Ag, have declined substantially since the original studies as more efficient treatment processes and source control were employed that significantly reduced metal discharges from the treatment plant (Hornberger et al., 2000). However, frequent sampling within a year was necessary to characterize those trends since there was significant seasonal variability (Cain and Luoma, 1990; Luoma et al., 1985). This report characterizes data for the year 2002, employing the methods described in the succeeding section.

Previous reports (Luoma et al., 1995; 1996; 1997; 1998; Wellise et al., 1999) included a study area in addition to the Palo Alto sampling site. This area was located in a region that was influenced by discharge from the San Jose/Santa Clara Water Pollution Control Plant (SJ). Samples were collected from this site from 1994 to September 1999. Used as a reference, the SJ site allowed differentiation of local and regional long-term metal trends.

Methods

The PA site samples were collected from the exposed mudflat at low tide, with hand and shovel between January and December 2002. Samples collected in the field included surface water, sediment, and the deposit-feeding clam *M. balthica*.

Sediment

Sediment samples were scraped from the oxidized surface layers (1-2 cm) of mud. Thus, samples represent recently deposited sediments, or sediments affected by recent chemical reaction with the water column. Sediment samples were immediately taken to the laboratory and sieved through a 100 mm polyethylene mesh with distilled water to remove large grains that might bias interpretation of concentrations. The mesh size was chosen to match the largest grains typically found in the digestive tract of *Macoma balthica*. To provide a measure of bulk sediment characteristics at a site (and thus provide some comparability with bulk sediment determination such as those employed in the Regional Monitoring Program - San Francisco Estuary Institute (SFEI), 1997), the percent of the sediment mass that passed through the sieve was determined. This fraction is termed percent silt/clay in the following discussion. Previous studies have shown little difference between metal concentrations in sieved and unsieved sediments when silt/clay type sediment is dominant at a station. However, where sand-size particles dominate the bed sediment, differences can be substantial. Spatially and temporally, sediments in extreme South San Francisco Bay can vary in their sand content (Luoma et al., 1995; 1996; 1997; 1998; Wellise et al., 1999; David et al., 2002; also see SFEI, 1997). Where sand content varies, sieving reduces the likelihood that differences in metal concentration are the result of sampling sediments of different character. All sediment data reported herein were determined from the fraction that passed through the sieve (< 100 mm). Some differences between the USGS and the Regional Monitoring Program results (SFEI, 1997) reflected the bias of particle size on the latter's data.

The fraction of sediment that did not pass through the sieve was weighed and the percentage of the bulk sample was determined to assess percent sand and percent silt/clay in the sediment (Appendix A). The <100 mm fraction was dried at 60° C, weighed, and then measured into 0.4 to 0.6 gram aliquots in replicates for analysis. The samples were again dried at 60° C before re-weighing and extraction. The replicate sub samples were digested for near-total metal analysis by refluxing in 10 ml of concentrated nitric acid until the digest was clear. This method is comparable with the recommended procedures of US Environmental Protection Agency and with the procedures employed in the Regional Monitoring Program. It also provides data comparable to the historical data available on San Francisco Bay sediments. While near-total analysis does not result in 100% recovery of all metals, recent comparisons between this method and more rigorous complete decomposition show that trends in the two types of data are very similar (Hornberger et al., 1999). After decomposition, samples were evaporated until dry and reconstituted in dilute hydrochloric acid for analysis. The hydrochloric acid matrix was

specifically chosen because it mobilizes silver (Ag) into solution through the creation of Agchloro complexes. Sediment samples were also subjected to a partial weak acid extraction in 0.6 N Hydrochloric acid (HCl), as a crude chemical estimate of bioavailable metal. These sub samples were extracted for 2 hours with 12 ml of acid at room temperature. The extract was pressure filtered through a 0.45 mm membrane filter before analysis. Percent organic carbon, percent organic nitrogen, d13C, d15N were determined using a continuous flow isotope ratio mass spectrometer (IRMS) (Appendix A). Prior to analysis, samples were acidified with concentrated HCl vapor to remove inorganic carbon.

Clams

More than 60 individuals of *M. balthica* were collected on each sampling occasion. When possible, the range of sizes (shell length) was maximized by intensive field sampling. Salinity was determined for surface water and the mantle water of clams at the time of collection using a refractometer. Mantle water and surface water salinity were typically within 1 ppt (‰) of each other. Only surface water values are reported. Clams were returned to the laboratory and held for 48 hours in ocean water diluted to the ambient salinity at the time of sampling, to depurate undigested material from their digestive tracts. After depuration, the individual clams were separated into 1 mm size classes. Soft tissues from all of the individuals in a size class were collected to constitute a single sample for analysis. Samples for each date were thus composed of six to thirteen replicate composites, with each composite consisting of 3 to 15 clams of a similar shell length. Calm tissue samples were dried, weighed and refluxed in concentrated nitric acid until the digest was clear. Digests were then dried and reconstituted in dilute 0.6 N hydrochloric acid for trace metal analysis.

Metals Analysis

Metals analysis was conducted by using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) (Appendix B and C). Mercury (Hg) and Se were determined in both sediment and clam tissues by Hydride Atomic Absorption Spectrophotometry (Appendix D). Mercury subsamples were digested at 100° C in aqua regia, re-digested in 10 percent nitric acid plus potassium dichromate and then reduced at the time of the hydride analysis.

All glassware and field collection apparatus used were acid washed, thoroughly rinsed in ultra-clean deionized water, dried in a dust-free positive pressure environment, sealed and stored in a dust free cabinet. Quality control was maintained by frequent analysis of blanks, analysis of National Institute of Standards and Technology (NIST) standard reference materials (tissues and sediments) with each analytical run, and internal comparisons with prepared quality control standards. A full QA/QC plan is available upon request. Analyses of NIST reference materials (oyster tissue, San Joaquin soils) were within an acceptable range of certified values reported by NIST or were consistent where the nitric acid digest did not completely decompose the sediment samples (Appendix E). High recoveries for cadmium (Cd) have been observed for the sediment standard. As a result, Cd in the sediments for 2002 is not presented in this report. When this instrument interference is corrected or the samples are re-run with conventional atomic absorption spectrometry (AAS) the data for 2002 will be added to the previous dataset (Appendix F).

Results and Discussion

Salinity

Surface water salinity values show a seasonal pattern governed by wet and dry seasons (Figure 2, Table 1). Salinities were low during the winter rainy season and salinities were high summer dry season. Overall high salinities for 2002 were recorded indicating relatively low runoff during the previous winter. Salinity did not go below 21 ppt during the winter of 2002, representing the highest wintertime salinity in eight years. The peak salinity for 2002 was the highest recorded maximum during the 9 years of this study.

Sediments

Percent silt/clay in sediments indicates particle size distributions before sediments were sieved. At Palo Alto, percent silt/clay typically varied from 50 - 100% by weight (Figure 3). Aluminum (Al) and iron (Fe) concentrations changed directly with the proportion of clay-size (very fine) particles within the 100 mm fraction of the sediment after sieving (Figure 3, Table 1). Percent silt/clay, Al and Fe tended to follow a seasonal cycle of relative increases early in the year then declining to a minimum by September or October. The seasonal trend, especially for Al and Fe concentrations, was typical of that reported earlier for this site by Thompson-Becker et al. (1985). Those authors suggested that fine sediments, accompanied by high Al and Fe concentrations, are dominant during the period of freshwater input (low salinities through April), reflecting annual terrigenous sediment inputs from runoff. Coarser sediments dominated later in the year because the seasonal diurnal winds progressively winnow the fine sediments into suspension through the summer. The total organic carbon content of the sediments remains generally constant throughout the year with an average of 1.18% (Table 1).

The trace metals chromium (Cr), nickel (Ni) and vanadium (V) in sediments show a seasonal cycle (Figure 4, Table 2). The pattern of seasonal change for these metals in 2002 was typical of earlier years, with the highest concentrations early in the year (winter maximum) and the lowest concentrations in September-November. These metals are strongly enriched in some geologic formations within the watershed. In North San Francisco Bay, studies of sediment cores indicated that concentrations of these elements similar to that reported here were derived from natural geologic inputs (Hornberger et al., 1999). However, Cr and Ni also occur in the effluents of the PARWQCP. The seasonal variability and the similarities among Cr, Ni and V continued to suggest that hydrogeologic processes were the predominant influence on concentrations of these elements.

Copper exhibits a seasonal cycling signature (Figure 5, Table 2). Seasonal minima concentrations of near-total Cu in 2002 dropped below the effects range-low (ERL) guidelines set by the National Oceanic and Atmospheric Administration (Long et al., 1995). However, this drop was not as large as that observed in 2000 and 2001 (David et al., 2002). Long et al. (1995) defined values between ERL (Effects Range-Low) and ERM (Effects Range-Median) as concentrations that are occasionally associated with adverse effects (21 - 47% of the time for different metals). Values greater than the ERM were frequently associated with adverse effects (42% - 93% of the time for different metals). It must be remembered, however, that these effects levels were derived mostly from bioassay data and are not accurate estimates of sediment toxicity. The continued decrease in near-total Cu in sediments was also reflected in the partial-extractable trend (Figure 5). In 2002, the wintertime maximum was the lowest ever observed.

This maximum was similar to the minima of previous years. The summertime minimum concentration of 2002 matched the previously recorded low in 2001.

Zinc concentrations continued to show a decreasing trend (Figure 6). In 2002, the winter maximum for total extractable Zn, again fell below the Zn ERL. For partial-extractable Zn the lowest winter maximum and summer minimum were observed.

Concentrations of partial-extractable Ag in sediments did not show the decrease and maintained the range of concentration that was perceived to be attributable to seasonal cycling of the element (Figure 7, Table 2). This range was above the established concentration for uncontaminated sediments in San Francisco Bay (Hornberger et al., 1999) but well below the Ag ERL.

Mercury concentrations in Palo Alto sediment remained consistent with earlier years at an enrichment level typical of San Francisco Bay as a whole $(0.2 - 0.4 \ \mu g/g)$ (Figure 8 and Table 2).

Concentrations of Se in sediments showed a maximum in February 1999 that was more elevated than the corresponding seasonal maxima in previous years. (Figure 8 and Table 2) This maximum was followed by relatively low concentrations in 2000 and 2001. In 2002 the relatively low concentrations of Se continued. The maximum Se concentration observed in PA sediment in February 1999 was comparable to the highest concentrations observed in sediments anywhere in the San Francisco Bay (Hornberger et al., 1999).

Clams

Exposures to Cu and Ag, as reflected in clam tissues, have been of special interest due to the high concentrations that these metals recorded in the 1970s and 1980s (Figures 9&10, Tables 3&4, respectively). Trends in these two metals at Palo Alto were lower throughout the 1990s than in the years prior to 1988. The previous minimum concentrations were observed in 1991, but a five-year period of slightly increased concentrations followed. Concentrations declined in 1997 and have remained relatively constant through 2002. Concentrations for the last five years are among the lowest observed during the 20-year period of study.

Intra-annual variations in Cu concentrations in clam soft tissues display a consistent seasonal signal, with fall/winter maxima and spring/summer minima (Figure 11). Winter maxima have declined over the last five years. This trend seemed to have started in mid-1997 wherein the range of Cu concentrations decreased to only 17-48 μ g/g as opposed to 21-100 μ g/g in previous years. Silver also displayed a seasonal signal and the same depressed winter maxima which started in 1997 (Figure 12).

Seasonal cycles were also exhibited in Cr (Figure 13, Table 2), Ni (Figure 14, Table 2) and Zn (Figure 15, Table 2). Wellise et al. (1999) observed that the trends of these metals Cr, Ni and Zn in Palo Alto clam samples were similar to those from the San Jose site, suggesting that regional-scale processes may be more important than treatment plant inputs in controlling seasonality and bioavailability of these elements. The seasonality signal continued in 2002 wherein the lowest Cr, Ni, and Zn concentrations were observed during summer (June-September), and the maxima typically occurred during winter (December-March). The lowest Cr concentration ever observed occurred in September of 2002. However for Ni, the winter concentrations were higher than those observed in the last 3 years and the December 2002 value was the highest seen in 5 years. For Zn there appears to be a general decreasing trend in winter

maxima concentrations since 1996. In 2002, the lowest winter maximum Zn concentration was recorded.

In 1996, there was a decrease in mercury concentrations (Figure 16). Since 1996, lower levels of Hg have persisted. In 2002, Hg concentrations continued to be lower than the pre-1996 decrease (Figure 16).

Selenium concentrations in clam tissue and sediments showed similar trends (Figure 17). The average sediment concentrations in 2001 and 2002 were lower than previous years. In 2002, concentrations in clams had the lowest average values recorded to date ($<3 \mu g/g$ to $4 \mu g/g$).

Condition index (CI) is a measure of physiological "fatness", the tissue weight of a clam of a given for a given length. It is an index of the clams' well-being and is linked to the seasonal reproductive cycle. Seasonally, a clam of a given shell length will increase in weight as a part of growth and during the early stages of reproduction. This weight is then lost during and after reproduction. Other stressors such as pollutant exposure, salinity extremes or lack of food can also reduce condition index.

The condition index for 2002 was greater than many previous years (Figure 18). The high CI in 2002 at PA coincided with reduced concentrations of Cu and Ag. Moreover, while CI maxima were typically within the range of values observed in previous years, the annual minima for 2002 are among the highest in the 15-year dataset. This may be suggestive of further improvement in clam physiology, however, further investigation is necessary to understand the dynamics of food availability and condition to interpret this observation. A simple correlation between maximum condition index and the preceding months' maximum metal exposure was not significant (Figure 19). Still, the data distribution raised the possibility that Cu concentrations above $80 - 90 \mu g/g$ might affect growth in the bivalves.

Conclusion

Frequent sampling is essential for characterizing ambient metal concentrations in the environments in the vicinity of the outfall. Monitoring studies could not always unambiguously determine the causes of the trends in metals concentrations in either sediments or clams. The value of monitoring was to describe trends, identify previously undocumented phenomena, and raise otherwise unrecognized hypotheses that might guide detailed explanatory studies. The interpretation of time series data allows the separation of signals from anthropogenic sources and natural annual and inter annual variability. For many elements of regulatory interest, including Cr, V, Ni, and Zn, regional scale factors appeared to influence sedimentary and bioavailable concentrations, although this may not be completely accurate in all years. The decrease in Cu and Ag concentrations in clam and sediment samples reflected the continued decrease in the loading of these metals from the treatment plant. Other variables that may contribute to this decline in concentration such as a decrease in precipitation for 2002 should still be investigated.

References

- Cain, D. J. and Luoma, S. N., 1990, Influence of seasonal growth, age and environmental exposure on Cu and Ag in a bivalve indicator, *Macoma balthica* in San Francisco Bay: Marine Ecology Progress Series 60, p. 45-55.
- David, C. P. C., Luoma, S. N, Brown, C, Cain, D. J, Hornberger, M. and Lavigne, I. R. 2002. Near field receiving water monitoring of trace metals in clams (*Macoma balthica*) and sediments near the Palo Alto Water Quality Control Plant in South San Francisco Bay, California: 1999-2001. U. S. Geological Survey Open File Report 02-453. Menlo Park, California. 105pp.
- Hornberger, M. I., Luoma, S. N., Van Geen, A., Fuller, C. C., and Anima, R. 1999, Historical trends of metals in the sediments of San Francisco Bay, California. Marine Chemistry 64, p. 39-55.
- Hornberger, M.I., Luoma, S. N., Cain, D., Parchaso, F., Brown, C., Bouse, R., Wellise, C.J., Thompson, J., 2000, Bioaccumulation of metals by the bivalve *Macoma balthica* at a site in South San Francisco Bay between 1977 and 1997: Long-term trends and associated biological effects with changing pollutant loadings. U. S. Geological Survey Open File Report 99-55. Menlo Park, California.
- Long, E. R., MacDonald, D. D., Smith, S. L., and Calder, F. D., 1995, Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments: Environmental Management, v. 19, p. 81-97.
- Luoma, S. N., Cain, D. J., and Johansson, C., 1985, Temporal Fluctuations of Silver, Copper and Zinc in the Bivalve *Macoma balthica* at Five Stations in South San Francisco Bay: Hydrobiologia 129:109_120, 1985.
- Luoma, S. N., Cain, D. J., Brown, C. and Axtmann, E. V., 1991, Trace Metals in Clams (*Macoma balthica*) and sediments at the Palo Alto Mudflat in South San Francisco Bay: April, 1990 - April, 1991. U. S. Geological Survey Open File Report 91-460. Menlo Park, California. 47pp.
- Luoma, S. N., Cain, D. J., Brown, C. and Hornberger, M., 1992, Trace Metals in Clams (*Macoma balthica*) and sediments at the Palo Alto Mudflat in South San Francisco Bay: May 1991 - May 1992. U. S. Geological Survey Open File Report 92-456. Menlo Park, California. 51pp.
- Luoma, S. N., Cain, D. J., Brown, C. and Hornberger, M., 1993, Trace Metals in Clams (*Macoma balthica*) and sediments at the Palo Alto Mudflat in South San Francisco Bay: June 1992 - June 1993. U. S. Geological Survey Open File Report 93-500. Menlo Park, California. 52pp.

- Luoma, S. N., Cain, D. J., Brown, C. and Hornberger, M., 1995, Near Field Receiving Water Monitoring of Trace Metals in Clams (*Macoma balthica*) and sediments near the Palo Alto and San Jose/Sunnyvale Water Quality Control Plants in South San Francisco Bay: June 1993 - October 1994. U. S. Geological Survey Open File Report 95-299. Menlo Park, California. 83pp.
- Luoma, S. N., Cain, D. J., Brown, C., Hornberger, M., and Bouse, R. 1996, Near Field Receiving Water Monitoring of Trace Metals in Clams (*Macoma balthica*) and sediments near the Palo Alto and San Jose/Sunnyvale Water Quality Control Plants in South San Francisco Bay: December 1994 - December 1995 U. S. Geological Survey Open File Report 96-203. Menlo Park, California. 90pp.
- Luoma, S. N., Cain, D. J., Brown, C., Hornberger, M., and Bouse, R. 1997, Near Field Receiving Water Monitoring of Trace Metals in Clams (*Macoma balthica*) and sediments near the Palo Alto and San Jose/Sunnyvale Water Quality Control Plants in South San Francisco Bay: 1996 U. S. Geological Survey Open File Report 97-585. Menlo Park, California. 91pp.
- Luoma, S. N., Wellise, C, Cain, D. J., Brown, C., Hornberger, M., and Bouse, R. 1998, Near Field Receiving Water Monitoring of Trace Metals in Clams (*Macoma balthica*) and sediments near the Palo Alto and San Jose/Sunnyvale Water Quality Control Plants in South San Francisco Bay: 1997 U. S. Geological Survey Open File Report 98-563. Menlo Park, California. 88pp.
- San Francisco Estuary Inst. 1997, RMP, Regional Monitoring Program for Trace Substances: 1996. Richmond, CA. 349 pp.
- Thomson, E. A., Luoma, S. N., Johansson, C. E., and Cain, D. J., 1984, Comparison of sediments and organisms in identifying sources of biologically available trace metal contamination: Water Research, v. 18, p. 755-765.
- Thomson-Becker, E. A., and Luoma, S. N., 1985. Temporal fluctuations in grain size, organic materials and iron concentrations in intertidal surface sediment. Hydrobiologia, v. 129, p. 91-109.
- Wellise, C., Luoma, S. N., Cain, D. J., Brown, C., Hornberger, M., and Bouse, R. 1999, Near Field Receiving Water Monitoring of Trace Metals in Clams (Macoma balthica) and sediments near the Palo Alto and San Jose/Sunnyvale Water Quality Control Plants in South San Francisco Bay: 1998 U.S. Geological Survey Open File Report 99-455. Menlo Park, California. 101pp.

Figures

Figure 1. Location of the Palo Alto sampling station in South San Francisco Bay.

Figure 2. Water column salinity at Palo Alto from 1994 through 2002.

Figure 3. Percent aluminum (\triangle), iron (\Box) and silt/clay (\bullet) in sediments at Palo Alto from 1994 through 2002.

Figure 4. Near-total extraction concentrations of chromium (Cr) (\Box), nickel (Ni) (\bullet) and vanadium (V) (\triangle) in sediments at Palo Alto from 1994 through 2002.

Figure 5. Near-total (\blacksquare) and partial-extractable (\triangle) copper concentrations in sediments at Palo Alto from 1994 through 2002.

Figure 6. Near-total (\blacksquare) and partial-extractable (\triangle) zinc concentrations in sediments at Palo Alto from 1994 through 2002.

Figure 7. Acid-extractable silver concentrations in sediments at Palo Alto from 1994 through 2002. Extractions were conducted with 0.6 N hydrochloric acid.

Figure 8. Concentrations of selenium (\blacktriangle) and mercury (\Box) in sediments at Palo Alto from 1994 through 2002.

Figure 9. Annual mean concentrations of copper in *Macoma balthica* at Palo Alto from 1977 through 2002. Error bars are the standard error of the mean (SEM).

Figure 10. Annual mean concentrations of silver in *Macoma balthica* at Palo Alto from 1977 through 2002. Error bars are the standard error of the mean (SEM).

Figure 11. Concentrations of copper in *Macoma balthica* at Palo Alto from 1994 through 2002. Error bars are the standard error of the mean (SEM).

Figure 12. Concentrations of silver in *Macoma balthica* at Palo Alto from 1994 through 2002. Error bars are the standard error of the mean (SEM).

Figure 13. Concentrations of chromium in *Macoma balthica* at Palo Alto from 1994 through 2002. Error bars are the standard error of the mean (SEM).

Figure 14. Concentrations of nickel in *Macoma balthica* at Palo Alto from 1994 through 2002. Error bars are the standard error of the mean (SEM).

Figure 15. Concentrations of zinc in *Macoma balthica* at Palo Alto from 1994 through 2002. Error bars are the standard error of the mean (SEM).

Figure 16. Concentrations of mercury in *Macoma balthica* at Palo Alto from 1994 through 2002. Error bars are the standard error of the mean (SEM).

Figure 17. Concentrations of selenium in sediments (\triangle) and in *Macoma balthica* (\bullet) at Palo Alto from 1994 through 2002. Error bars are the standard error of the mean (SEM).

Figure 18. Condition index (CI) of *Macoma balthica* as determined between 1988 through 2002. Condition index is defined as total weight of soft tissues of *Macoma balthica* having a shell length of 25 mm.

Figure 19. Correlation of maximum condition index (CI) *in Macoma balthica* vs. maximum copper concentrations in the months preceding the determination of maximum condition.

Data from Palo Alto sites is for the period from 1990 through 2001 (\bullet) and 2002 (\triangle).

Tables
Table 1. Sediment and environmental characteristics at the Palo Alto mudflat in 2002.

Units are microgram per gram dry weight. STD is standard deviation of the two samples. SEM is standard error of the means for the year.

Date	AI		F	е	Organic	Sand	Salinity
	(perc	cent)	(perc	cent)	(percent)	(percent)	(ppt)
	mean	std	mean	std			
January 8, 2002	3.2	0.3	3.33	0.001	1.0	45	22
February 8, 2002	4.16	0.02	4.16	0.05	1.3	38	21
March 7, 2002	4.9	0.1	4.34	0.07	1.5	4	22
April 15, 2002	4.1	0.3	3.81	0.07	1.2	14	26
May 15, 2002	4.33	0.05	3.93	0.01	1.3	20	25
June 11, 2002	3.7	0.2	3.5	0.1	1.2	11	28
September 9, 2002	3.2	0.2	3.26	0.04	0.9	35	30
October 7, 2002	3.1	0.1	3.19	0.02	0.9	59	29
December 16, 2002	5.1	0.1	4.08	0.02	1.3	23	20
Annual Mean:	4.	0	3.	.7	1.18	28	25
SEM:	0.	2	0.	1	0.07	6	1

Table 2. Concentrations, standard deviations and annual means of trace elements in sediments in 2002 at the Palo Alto mudflat.

All concentrations except for silver are for near-total extracts. Silver values are partial extracts. Units are microgram per gram dry weight. STD is standard deviation of the two samples. SEM is standard error of the means for the year.

Date	A	g	C	r	C	u	Hg	1	li	Se		/	Z	n
	mean	STD	mean	STD	mean	STD	mean	mean	STD	mean	mean	STD	mean	STD
January 8, 2002	0.29	0.01	92	2	32	0.9	0.26	74	0.2	0.32	70	9	95	2
February 8, 2002	0.36	0.01	120	1	40	0.2	0.31	94	0.5	0.39	85	3	124	0.1
March 7, 2002	0.35	0.01	128	4	47	0.8	0.34	98	1.0	0.42	94	2	132	3
April 15, 2002	0.27	0.03	109	5	39	2		85	2		86	5	111	4
May 15, 2002	0.28	0.00	115	1	41	0.6	0.28	88	0.2	0.38	87	2	116	1
June 11, 2002	0.27	0.02	95	10	36	2		79	2.1		76	5	103	3
September 9, 2002	0.24	0.01	91	3	33	0.4	0.25	73	0.04	0.32	69	6	93	3
October 7, 2002	0.26	0.00	85	2	32	0.3		71	0.1		66	4	92	6
December 16, 2002	0.46	0.01	138	3	43	0.3	0.4	92	0.2	0.30	130	3	124	0.2
Annual Mean:	0.31		108		38		27	84		0.4	85		110	
SEM:	0.02		6		2		1	3		0.1	6		5	

Table 3. Concentrations, standard error of means and annual means of trace elements in the soft tissues of the clam Macoma balthica in 2002 at the Palo Alto mudflat.

All units microgram per gram soft tissue dry weight. Condition index is the soft tissue weight in milligrams of a 25 mm shell length clam. SEM is standard errors of the means from 6-14 replicate analyses of composite samples.

Date		Ag	Cr	Cu	Hg	Ni	Se	Zn	Condition Index
January 8, 2002	mean	4.9	3.5	44	0.42	6.0	4.0	288	97
	*SEM	0.3	0.3	1	0.02	0.2	0.4	18	
February 8, 2002	mean	2.5	3.4	37		5.5		311	93
	*SEM	0.2	0.6	3		0.4		22	
March 7, 2002	mean	2.2	3.4	30		5.4		304	102
	*SEM	0.2	0.4	4		0.3		21	
April 15, 2002	mean	1.1	2.8	18	0.20	3.8	2.9	215	174
	*SEM	0.1	0.3	0	0.03	0.2	0.3	11	
May 15, 2002	mean	4.0	3.1	36		5.0		261	195
	*SEM	0.6	0.7	6		0.8		45	
June 11, 2002	mean	1.2	1.4	23	0.19	3.9	2.9	193	160
	*SEM	0.2	0.1	1	0.01	0.1	0.3	8	
September 9, 2002	mean	2.8	0.8	40	0.34	4.4	2.9	160	120
	*SEM	0.1	0.1	2	0.04	0.2	0.4	9	
October 7, 2002	mean	3.7	2.7	53		7.2		175	87
	*SEM	0.4	0.3	3		0.3		11	
December 16, 2002	mean	4.4	5.4	45		8.5		265	90
	*SEM	0.4	0.3	2		0.4		14	
Annual Mean:		3.0	2.9	36	0.29	5.5	3.2	241	124
SEM:		0.5	0.4	4	0.06	0.5	0.3	19	14

Table 4. Annual mean copper (Cu) concentrations in clams and sediments at Palo Alto: January 1977 through December 2002.

Values are annual means from 7 to 12 collections per year and standard errors of those means for the year. Means are calculated between January and December. Units are microgram per gram dry weight of soft tissue for clams (Macoma balthica) and microgram per gram dry weight for sediment.

	Copper in	sediment	Copper
Year	HCI	Total	in clams
1977	28±6	45±13	130±23
1978	42±11	57±13	187±104
1979	55±13	86±18	248±114
1980	47±5	66±9	287±66
1981	48±7	57±22	206±55
1982	35±4	34±24	168±35
1983	22±9	38±21	191±48
1984	26±10	40±16	159±55
1985	27±3	45±7	138±22
1986	24±3	49±9	114±49
1987	21±3	47±6	95±25
1988	27±3	53±5	53±24
1989	23±6	44±13	35±10
1990	23±2	51±4	35±11
1991	25±2	52±5	24±8
1992	27±6	52±5	46±14
1993	21±3	43±7	60±14
1994	19±2	45±4	59±12
1995	19±2	44±5	61±16
1996	19±2	43±4	71±11
1997	18±1	43±3	32±7
1998	20±1	46±2	35±4
1999	18±1	44±2	34±2
2000	18±1	39±3	32±3
2001	17±1	35±2	31±3
2002	13±1	38±2	36±4

Table 5. Annual mean silver concentrations in clams and sediments at Palo Alto, January 1977 through December 2002.

Values are annual means from 7 to 12 collections per year and standard errors of those means for the year. Means are calculated between January and December. Units are microgram per gram dry weight of soft tissue for clams (Macoma balthica) and microgram per gram dry weight for sediment.

	Silver in	Silver in
Year	sediment	clams
1977	0.65 ± 0.59	87 ± 21
1978	1.39 ± 0.35	106 ± 17
1979	1.62 ± 0.28	96 ± 29
1980	1.28 ± 0.38	105 ± 24
1981	1.41 ± 0.15	63 ± 18
1982	0.74 ± 0.21	45 ± 13
1983	0.56 ± 0.26	56 ± 11
1984	0.64 ± 0.20	57 ± 18
1985	0.78 ± 0.14	58 ± 6
1986	0.61 ± 0.14	50 ± 20
1987	ND	55 ± 18
1988	ND	20 ± 10
1989	ND	11 ± 4
1990	0.39 ± 0.09	7.7 ± 3.4
1991	0.25 ± 0.07	3.3± 2.0
1992	0.35 ± 0.11	5.9 ± 1.9
1993	0.36± 0.09	6.9 ± 3.2
1994	0.46 ± 0.07	5.4 ± 1.1
1995	0.27 ± 0.05	5.5 ± 1.2
1996	0.24 ± 0.06	7.5 ± 1.6
1997	0.34 ± 0.04	3.6 ± 1.0
1998	0.34 ± 0.04	3.3 ± 0.6
1999	0.22 ± 0.01	3.6 ± 0.3
2000	0.34 ± 0.02	3.0 ± 0.4
2001	0.43 ± 0.03	3.0 ± 0.4
2002	0.31 ± 0.02	3.0 ± 0.5

Appendix A.

Grain size (p. A-2) and total organic carbon (p. A-4) data. Concentrations of Hg and Se in surface sediments (p. 63) are reported in separate summary tables.

PALTO ALTO GRAIN SIZE DATA: <100um

Year	Date	%<100um
1994	01/10/94	61
	02/08/94	48
	03/22/94	88
	04/20/94	82
	06/13/94	90
	09/20/94	60
	10/17/94	83
	12/12/94	84
1995	01/18/95	59
	02/22/95	98
	03/27/95	76
	04/25/95	78
	06/06/95	90
	07/01/95	69
	08/01/95	48
	09/25/95	56
	10/24/95	80
	12/05/95	76
1996	01/17/96	85
	02/13/96	96
	03/13/96	98
	04/10/96	86
	06/18/96	79
	09/26/96	84
	12/09/96	70
1997	01/08/97	75
	02/19/97	92
	03/19/97	53
	04/14/97	86
	06/11/97	93
	09/17/97	54
	10/15/97	59
	12/09/97	84
1998	01/07/98	94
	02/04/98	87
	03/03/98	91
	04/13/98	81
	06/15/98	67
	09/09/98	78
	10/20/98	74
	12/14/98	71

Year	Date	%<100um
1999	01/15/99	89
	02/26/99	91
	03/22/99	92
	04/18/99	96
	05/19/99	71
	06/16/99	68
	09/13/99	32
	11/23/99	61
	12/20/99	95
2000	01/18/00	87
	02/15/00	83
	03/22/00	84
	04/10/00	92
	06/19/00	60
	09/13/00	70
	11/09/00	66
	12/12/00	61
2001	01/09/01	59
	02/05/01	68
	03/05/01	71
	04/10/01	88
	05/08/01	79
	06/12/01	61
	09/18/01	41
	10/15/01	61
	12/11/01	84
2002	01/08/02	55
	02/08/02	62
	03/07/02	96
	04/15/02	86
	05/15/02	80
	06/11/02	89
	09/09/02	65
	10/07/02	41
	12/16/02	77

Palo Alto Grain Size: Sieved <100um

Date	%C	%N	d13C	d15N
January 8, 2002	1.0	0.2	-23.9	-8.1
February 8, 2002	1.3	0.3	-23.5	-8.0
March 7, 2002	1.5	0.4	-23.6	-11.9
April 15, 2002	1.2	0.2	-23.2	-8.1
May 15, 2002	1.3	0.2	-23.0	-5.0
June 11, 2002	1.2	0.2	-23.0	-9.2
September 9, 2002	0.9	0.2	-23.7	-8.5
October 7, 2002	0.9	0.2	-73.6	-12.8
December 16, 2002	1.3	0.2	-23.5	-7.1

Carbon and Nitrogen analysis for 2002 Palo Alto surface sediments

Appendix B.

Metal concentrations determined by ICP-OES in sediments collected at the Palo Alto mudflat. Each monthly collection is reported on a separate page. Concentrations observed in the reconstituted samples or extracts (in micrograms per milliliter or $\mu g/ml$) are reported at the top of each page, along with the sediment weight and dilution factor. The latter are used to calculate concentrations in sediments (reported as microgram per gram dry sediment or $\mu g/g$). Replicate subsamples were analyzed from each collection. Mean and standard deviation for the replicate samples are reported for the near-total and hydrochloric acid extracts.

Palo Alto Total Extracts: 2002

1/08/2002: 55% <100 µm

Sample	Weight (g)	Recon. (ml)	Dil. Factor	AL	CR	CU	FE	MN	NI	PB	V	ZN
Tot1	0.5477	10	10	186	0.51	0.18	182	5.1	0.41	0.13	0.42	0.51
Tot2	0.5626	10	10	165	0.51	0.18	187	5.3	0.42	0.13	0.36	0.55
				33957	93	33	33263	931	74	24	76	94
				29378	90	32	33244	937	75	23	64	97
			Average	31667	92	32	33253	934	74	24	70	95
			Std	3238	1.66	0.86	14	4.8	0.15	0.55	8.9	2.4
2/08/2002	2: 62% < 100 µ	ım										
Sample	Weight (g)	Recon. (ml)	Dil. Factor	AL	CR	CU	FE	MN	NI	PB	V	ZN
Tot1	0.5621	10	10	233	0.68	0.22	232	7.5	0.52	0.17	0.47	0.70
Tot2	0.5463	10	10	228	0.65	0.22	229	7.4	0.51	0.16	0.48	0.68
				41488	121	40	41289	1336	93	30	83	124
				41769	119	40	41975	1346	94	30	88	124
			Average	41629	120	40	41632	1341	94	30	85	124
			Std	199	1.1	0.15	485	6.8	0.54	0.07	3.1	0.12
3/7/2002: Sample	96% <100 μm Weight (g)	n Recon. (ml)	Dil. Factor	AL	CR	CU	FE	MN	NI	PB	V	ZN
Tot1	0.5534	10	10	266	0.69	0.25	237	8.0	0.54	0.18	0.51	0.72
Tot2	0.5673	10	10	280	0.74	0.27	249	8.3	0.56	0.18	0.54	0.76
				48001	125	46	42889	1439	97	32	92	130
			F a	49417	131	47	43844	1463	99	32	95	134
			Average	48709	128	47	43366	1451	98	32	94	132
			510	1001	3.8	0.83	675	17.0	0.98	0.22	2.48	2.8
4/15/2002	. 96% ∠100 u	m										
Sample	Weight (g)	Recon (ml)	Dil Eactor	AI	CR	CU	FF	MN	NI	PB	V	7N
Tot1	0 5454	10	10	216	0.57	0.20	205	4.3	0.46	0.14	0.45	0.59
Tot2	0.5585	10	10	241	0.63	0.22	215	4.5	0.48	0.16	0.50	0.63
	0.0000			39553	105	37	37532	794	84	26	83	108
				43170	113	40	38575	811	86	28	90	113
			Average	41362	109	39	38054	802	85	27	86	111
			Std	2558	5.3	2.30	737	12	1.54	1.20	5.1	3.6

5/15/2002: 80% < 100 μm

Sample	Weight (g)	Recon. (ml)	Dil. Factor	AL	CR	CU	FE	MN	NI	ΡB	V	ZN
Tot1	0.5781	10	10	249	0.66	0.24	228	4.7	0.51	0.16	0.50	0.68
Tot2	0.5804	10	10	253	0.67	0.24	228	4.7	0.51	0.16	0.51	0.67
				42990	114	41	39415	811	88	28	86	117
				43643	116	42	39215	809	88	28	88	115
			Average	43317	115	41	39315	810	88	28	87	116
			Std	462	1.2	0.62	142	1.1	0.21	0.23	1.6	1.3
6/11/200	02: 89% <100	μm										
Sample	Weight (g)	Recon. (ml)	Dil. Factor	AL	CR	CU	FE	MN	NI	ΡB	V	ZN
Tot1	0.5353	10	10	203	0.55	0.20	193	3.7	0.43	0.14	0.43	0.56
Tot2	0.5887	10	10	208	0.52	0.20	204	4.0	0.45	0.14	0.43	0.59
				37845	102	37	35976	700	80	25	80	105
				35283	88	34	34581	676	77	24	73	101
			Average	36564	95	36	35279	688	79	25	76	103
			Std	1811	10	2.1	986	17.05	2.1	0.79	5.0	2.8
9/09/200 Sample	01: 65% <100 Weight (g))µm Recon (ml)	Dil Factor	ΔI	CR	CU	FF	MN	NI	PB	V	7N
Tot1	0.6072	10	10	206	0.56	0.20	200	4 44	0 44	0 14	0 44	0.58
Tot2	0.5971	10	10	184	0.53	0.20	193	4.32	0.44	0.14	0.38	0.54
1012	0.0011	10	10	33870	93	33	32889	731	73	23	73	95
				30878	88	32	32304	724	73	23	64	90
			Average	32374	91	33	32597	727	73	23	69	93
			Std	2116	3.1	0.45	414	4.7	0.04	0.03	6.0	3.3
10/07/20	02: 41% <10	0 μm										
Sample	Weight (g)	Recon. (ml)	Dil. Factor	AL	CR	CU	FE	ΜN	NI	ΡB	V	ZN
Tot1	0.5378	10	10	170	0.46	0.17	172	3.75	0.38	0.11	0.37	0.52
Tot2	0.5378	10	10	160	0.45	0.17	171	3.73	0.38	0.11	0.34	0.47
				31684	86	32	32029	698	71	21	69	96
				29715	84	32	31794	693	71	21	63	87
			A verage	30700	85	32	31911	695	71	21	66	92
			Std	1392	1.8	0.28	166	3.5	0.06	0.13	4.3	6.4

12/17/2002: 77% <100 μm

Sample	Weight (g)	Recon. (ml)	Dil. Factor	AL	CR	CU	FE	MN	NI	ΡB	V	ZN
Tot1	0.5081	10	10	262	0.71	0.22	208	6.85	0.47	0.16	0.67	0.63
Tot2	0.5106	10	10	254	0.70	0.22	207	6.88	0.47	0.16	0.65	0.64
				51471	141	43	40938	1348	92	31	132	124
				49758	136	42	40606	1347	92	31	128	124
			Average	50614	138	43	40772	1348	92	31	130	124
			Std	1211	2.9	0.32	235	0.87	0.21	0.26	3.1	0.16

Palo Alto HCI Extracts: 2002

01/08/02													
Sample	Weight (g)	Recon. (ml)		AG	AL	CR	CU	FE	ΜN	NI	ΡB	V	ZN
HCI1	0.5374	12		0.013	62	0.09	0.52	150	27	0.23	0.69	0.31	1.2
HCL2	0.5645	12		0.014	68	0.11	0.57	165	30	0.26	0.77	0.34	1.4
				0.28	1389	2.0	12	3339	613	5.2	15	7.02	28
				0.30	1450	2.3	12	3499	636	5.5	16	7.31	30
			Average	0.29	1419	2.1	12	3419	625	5.3	16	7.16	29
			Std	0.010	31	0.16	0.26	80	12	0.12	0.42	0.15	1.0
02/08/02													
Sample	Weight (g)	Recon (ml)		٨G	Δ1	CP	CU	FF	MN	NI	DB	V	71
	0 5573			0.017	70	0.13	0.64	17/	/3	0.26	0.87	0.44	1.5
	0.5375	12		0.017	60	0.13	0.04	174	20	0.20	0.07	0.44	1.5
HULZ	0.5501	12		0.015	1602	0.11	0.55	100	30	0.24	0.76	0.39	1.4
				0.37	1692	2.0	14	3749	924	5.6	19	9.5	33
				0.35	1571	2.4	12	3519	830	5.5	18	8.9	31
			Average	0.36	1631	2.6	13	3634	890	5.5	18	9.2	32
			Std	0.011	60	0.20	0.82	115	34	0.05	0.62	0.32	1.2
03/07/02													
Sample	Weight (g)	Recon. (ml)		AG	AL	CR	CU	FE	MN	NI	PB	V	ZN
HCI1	0.5716	12		0.017	79	0.14	0.65	175	42	0.26	0.79	0.42	1.6
HCL2	0.5539	12		0.016	69	0.10	0.63	149	40	0.22	0.75	0.38	1.4
				0.36	1663	2.9	14	3675	877	5.5	17	8.9	34
				0.34	1498	2.3	14	3227	866	4.9	16	8.3	31
			Average	0.35	1580	2.6	14	3451	871	5.2	16	8.6	33
			Std	0.009	82	0.33	0.08	224	5.5	0.30	0.20	0.30	1.5

04/15/02

Sample	Weight (g)	Recon. (ml)		AG	AL	CR	CU	FE	MN	NI	PВ	V	ZN
HCI1	0.5208	12		0.010	55	0.07	0.47	128	16	0.21	0.61	0.27	1.2
HCL2	0.5245	12		0.013	63	0.09	0.59	143	20	0.23	0.74	0.33	1.4
				0.24	1257	1.6	11	2956	379	4.8	14	6.3	27
				0.30	1439	2.0	13	3262	458	5.3	17	7.5	32
			Average	0.27	1348	1.8	12	3109	419	5.0	15	6.9	29
			Std	0.027	91	0.17	1.3	153	39	0.26	1.4	0.57	2.1
05/15/02													
Sample	Weight (g)	Recon. (ml)		AG	AL	CR	CU	FE	MN	NI	ΡB	V	ZN
HCI1	0.5413	12		0.013	69	0.10	0.69	163	21	0.25	0.77	0.35	1.6
HCL2	0.562	12		0.013	70	0.10	0.73	162	22	0.25	0.81	0.36	1.6
				0.28	1540	2.3	15	3616	455	5.6	17	7.8	35
				0.28	1499	2.1	16	3458	463	5.4	17	7.8	35
			Average	0.28	1519	2.2	15	3537	459	5.5	17	7.8	35
			Std	0.001	20	0.10	0.13	79	4.1	0.10	0.13	0.02	0.2
06/11/02 Sample	Weight (g)	Recon. (ml)		AG	AL	CR	CU	FE	MN	NI	PB	V	ZN
HCI1	0.5709	12		0.012	64	0.09	0.57	158	17	0.24	0.67	0.31	1.4
HCI2	0.5781	12		0.014	70	0.10	0.66	168	19	0.26	0.75	0.34	1.5
				0.25	1337	1.9	12	3323	356	5.1	14	6.4	29
				0.28	1449	2.1	14	3494	388	5.3	16	7.0	32
			Average	0.27	1393	2.0	13	3409	372	5.2	15	6.7	31
			510	0.010	30	0.00	0.00	00	10	0.11	0.70	0.27	1.1
09/09/01													
Sample	Weight (g)	Recon. (ml)		AG	AL	CR	CU	FE	ΜN	NI	PВ	V	ZN
HCI1	0.6005	12		0.013	64	0.09	0.61	161	21	0.26	0.72	0.30	1.4
HCI2	0.6093	12		0.012	63	0.09	0.57	161	19	0.25	0.67	0.29	1.4
				0.25	1285	1.8	12	3224	413	5.1	14	6.0	28
				0.23	1238	1.8	11	3161	384	5.0	13	5.7	28
			Average	0.24	1261	1.8	12	3193	399	5.1	14	5.8	28
			Std	0.013	24	0.01	0.50	32	15	0.06	0.52	0.16	0.4

10/07/02

Sample	Weight (g)	Recon. (ml)		AG	AL	CR	CU	FE	ΜN	NI	ΡB	V	ZN
HCI1	0.5451	12		0.012	59	0.08	0.56	155	19	0.25	0.64	0.28	1.3
HCI2	0.521	12		0.011	56	0.07	0.50	148	18	0.24	0.59	0.26	1.2
				0.26	1307	1.8	12	3412	419	5.6	14	6.2	28
				0.26	1289	1.7	12	3414	425	5.5	14	6.0	28
			Average	0.26	1298	1.8	12	3413	422	5.6	14	6.1	28
			Std	0.000	8.6	0.04	0.32	1.1	3.1	0.027	0.30	0.07	0.4
12/17/02 Sample	Weight (g)	Recon. (ml)		AG	AL	CR	CU	FE	MN	NI	PB	V	ZN
HCI1	0.5138	12		0.019	74	0.11	0.68	149	38	0.24	0.81	0.37	1.5
HCI2	0.5295	12		0.021	74	0.11	0.70	146	38	0.23	0.84	0.37	1.5
				0.45	1731	2.5	16	3489	876	5.7	19	8.5	34
				0.47	1674	2.4	16	3319	851	5.3	19	8.3	33
			A verage	0.46	1703	2.5	16	3404	864	5.5	19	8.4	34
			Std	0.012	29	0.01	0.04	85	13	0.17	0.05	0.10	0.6

Appendix C.

Metal concentrations in the clam *Macoma balthica* collected at the Palo Alto Mudflat. Each monthly collection is reported on two pages. The first page contains summary statistics:

- Mean concentrations in microgram per gram dry tissue weight $(\mu g/g)$.
- STD is the standard deviation of the mean.
- SEM is the standard error of the mean.
- CV percent is the coefficient of variation.
- r wt x [] is the correlation coefficient for the concentration versus weight correlation for each element.
- X 100mg is the concentration interpolated from the above regression for a 100 mg animal.
- r l x [] is the correlation coefficient for the concentration versus shell length regression.
- X 20 mm and X 25 mm are concentrations interpolated from the regression for 20mm and 25 mm animals.

Content (a measure of metal bioaccumulation that is standardized to tissue mass) is also shown for 20 and 25 mm animals, as is the weight determined for animals of 15 mm and 20 mm shell length.

The second page shows the analysis of each composite within the sample, the number of animals in each composite, concentration as calculated from sample dry weight and the dilution factor and the metal content for each composite.

Station:	Palo Alto	St	tatistical Sum	nmary				
Date:	01/09/01							
	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mean(ug/g)	4.947	0.458	3.536	44.328	6.036	1.301	3.755	287.564
STD	0.766	0.064	0.820	3.407	0.554	0.140	0.480	50.974
SEM	0.271	0.023	0.290	1.205	0.196	0.050	0.170	18.022
CV%	15.488	14.036	23.204	7.686	9.171	10.794	12.774	17.726
n	8	8	8	8	8	8	8	8
r wt x []	0.344	0.486	0.112	0.276	0.096	0.609	0.208	0.516
X 100mg	5.438	0.400	3.707	46.080	5.938	1.142	3.569	238.568
r1x[]	0.513	0.496	0.078	0.348	0.108	0.582	0.223	0.551
X 15mm	4.229	0.516	3.418	42.164	5.928	1.450	3.950	338.896
X 20mm	4.927	0.460	3.532	44.268	6.033	1.305	3.760	289.002
X 25mm	5.625	0.403	3.647	46.372	6.139	1.160	3.571	239.108

	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
15mm	0.083	0.010	0.066	0.834	0.117	0.029	0.079	6.950
20mm	0.238	0.022	0.166	2.147	0.292	0.063	0.181	13.752
25mm	0.538	0.039	0.343	4.472	0.594	0.113	0.345	23.349

Estimated weight for 15mm clam

Estimated weight for 20mm clam

0.020 gm 19.943 mg 0.049 gm 48.555 mg

Estimated weight for 25mm clam

0.097 gm 96.826 mg

Station:	Palo Alto			Macoma ba	lthica							
Date:	01/09/01											
	Average	Total	Average	Recon		Concentrati	ion (ug/ml) - Blank C	orrected fr	om ICP-AI	ES	
Sample #-n	Length (mm)	Dry Wt (gm)	Dry Wt (gm)	Amt (ml)	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
						0.04.40						
Mbl	16.50	0.338	0.0282	11	0.1351	0.0169	0.1345	1.2804	0.1820	0.0445	0.13/1	8.9639
Mb2	17.10	0.2621	0.0291	11	0.1150	0.0118	0.0787	1.1665	0.1492	0.0344	0.0891	8.8208
Mb4	10.21	0.3241	0.0403	11	0.1295	0.0120	0.0962	0.6727	0.1400	0.0349	0.0993	0.3370
Mb5	20.84	0.1700	0.0427	11	0.0000	0.0038	0.0277	1 2080	0.0977	0.0200	0.0478	9.2457
Mb6	20.64	0.3031	0.0503	11	0.1478	0.0131	0.1040	1.2080	0.1721	0.0343	0.1088	9.2457
Mb7	21.44	0.2900	0.0595	11	0.1322	0.0143	0.1183	1.1655	0.1857	0.0401	0.1074	6 1008
Mb8	22.04	0.3231	0.0058	11	0.1390	0.0129	0.1105	1 3271	0.1616	0.0324	0.1013	7 3188
MDO	24.72	0.3107	0.1002	11	0.1390	0.0115	0.1020	1.3271	0.1010	0.0324	0.1013	7.5188
				LOD LOQ	0.0006 0.0020	0.0004 0.0017	0.0018 0.0064	0.0006 0.0023	0.0030 0.0084	0.0396 0.1099	0.0283 0.0767	0.0009 0.0037
				Sample #								
		Concentration	n (ug/g) ==>	Mb1	4.3967	0.5503	4.3761	41.6701	5.9214	1.4466	4.4605	291.723
				Mb2	4.8277	0.4936	3.3040	48.9572	6.2626	1.4454	3.7390	370.198
				Mb3	4.3959	0.4283	3.2648	38.7831	4.9756	1.1828	3.3699	282.987
				Mb4	3.9100	0.3727	1.7862	43.3714	6.3021	1.2876	3.0821	260.919
				Mb5	5.3295	0.4712	3.7502	43.5524	6.2038	1.2370	3.9234	333.344
				Mb6	5.6469	0.5298	4.3086	43.9006	6.8167	1.4873	4.3785	304.813
				Mb7	6.2718	0.4298	3.9536	48.5878	6.2317	1.2046	3.5885	203.916
				Mb8	4.7980	0.3883	3.5424	45.8049	5.5780	1.1173	3.4971	252.611
		Content	(ug) ==>	Sample # Mb1 Mb2 Mb3 Mb4 Mb5 Mb6 Mb7 Mb8	0.1238 0.1406 0.1781 0.1668 0.2710 0.3349 0.4128 0.5097	0.0155 0.0144 0.0174 0.0240 0.0314 0.0283 0.0413	0.1233 0.0962 0.1323 0.0762 0.1907 0.2555 0.2602 0.3763	1.1737 1.4257 1.5712 1.8498 2.2146 2.6033 3.1980 4.8660	0.1668 0.1824 0.2016 0.2688 0.3155 0.4042 0.4102 0.5926	0.0407 0.0421 0.0479 0.0549 0.0629 0.0882 0.0793 0.1187	0.1256 0.1089 0.1365 0.1315 0.1995 0.2596 0.2362 0.3715	8.2169 10.7810 11.4645 11.1282 16.9505 18.0754 13.4218 26.8357

Station:	Palo Alto	St	atistical Sum	nmary				
Date:	02/08/02							
	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mean(ug/g)	2.533	0.350	3.400	37.168	5.477	0.917	2.965	311.288
STD	0.553	0.104	1.375	5.747	0.785	0.241	0.893	48.972
SEM	0.247	0.046	0.615	2.570	0.351	0.108	0.400	21.901
CV%	21.819	29.567	40.434	15.461	14.332	26.266	30.127	15.732
n	5	5	5	5	5	5	5	5
r wt x []	0.785	0.918	0.594	0.752	0.881	0.836	0.978	0.293
X 100mg	5.018	0.375	2.935	38.646	4.842	1.337	3.527	294.693
r l x []	0.669	0.847	0.372	0.748	0.774	0.720	0.938	0.060
X 15mm	2.469	0.267	2.413	32.757	3.737	1.048	2.311	275.058
X 20mm	3.629	0.318	2.615	35.642	4.247	1.180	2.897	278.574
X 25mm	4.790	0.370	2.817	38.528	4.758	1.313	3.482	282.089

_	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
15mm	0.073	0.007	0.063	0.850	0.099	0.028	0.062	7.106
20mm	0.184	0.017	0.137	1.897	0.226	0.063	0.154	14.421
25mm	0.375	0.033	0.248	3.534	0.428	0.118	0.314	24.969

Estimated weight for 15mm clam	Estimated weight for 20mm clam
0.026 gm	0.053 gm
25.549 mg	52.910 mg

Estimated weight for 25mm clam

0.093 gm 93.064 mg

Station:	Palo Alto		-	Macoma ba	lthica							
Date:	02/08/02											
	Average	Total	Average	Recon		Concentrat	ion (ug/ml) - Blank C	orrected fr	om ICP-AI	ES	
Sample #-n	Length (mm)	Dry Wt (gm) I	Dry Wt (gm)	Amt (ml)	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
101		0 4744		0	0.0241	0.0054	0.0752	0.6725	0 1000	0.0151	0.0454	F F () 7
Mbl		0.1744		9	0.0341	0.0054	0.0753	0.6735	0.1008	0.0151	0.0454	5.5667
Mb2		0.111		9	0.0301	0.0049	0.0406	0.3758	0.0798	0.0131	0.0454	3.3884
Mb3		0.2207		9	0.0595	0.0099	0.0950	1.0350	0.1389	0.0214	0.0799	8.9242
Mb4		0.2442		9	0.0746	0.0125	0.1305	0.9312	0.1551	0.0338	0.1033	7.2140
Mb5		0.1637		9	0.0597	0.0038	0.0208	0.8019	0.0788	0.0114	0.0317	6.6324
				LOD	0.0010	-0.0001	0.0023	-0.0009	0.0004	0.0053	0.0004	0.0025
				LOQ	0.0025	0.0001	0.0086	0.0010	0.0018	0.0205	0.0008	0.0085
			-	Sample #								
		Concentration	(ug/g)>	Mb1	1 7618	0 2792	3 8861	34 7580	5 1008	0 7787	2 3413	287 270
		Concentration	(ug/g)>	Mb2	2 4 4 3 0	0.2792	3 2888	30.4678	6.4711	1.0605	3 6811	207.270
				Mb3	2.4450	0.3989	3 8758	42 2061	5 6626	0.8731	3 2566	363 924
				Mb4	2.4270	0.4596	1 8003	42.2001	5 7158	1 2450	3 8064	265 872
				Mb5	3 2817	0.4590	4.8095	14.0801	1 3334	0.6290	1 7412	205.072
				NI05	5.2017	0.2075	1.141/	44.0091	4.5554	0.0290	1./412	504.041
			-	Sample #								
		Content (u	ug) ==>	Mb1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
				Mb2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
				Mb3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
				Mb4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
				Mb5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Station:	Palo Alto	Statistical Summary							
Date:	03/07/02								
	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn	
Mean(ug/g)	2.162	0.365	3.402	30.017	5.443	0.915	3.168	304.144	
STD	0.466	0.076	0.978	10.367	0.806	0.219	0.775	56.257	
SEM	0.176	0.029	0.369	3.918	0.305	0.083	0.293	21.263	
CV%	21.569	20.831	28.730	34.536	14.804	23.937	24.453	18.497	
n	7	7	7	7	7	7	7	7	
r wt x []	0.366	0.654	0.708	0.927	0.829	0.741	0.783	0.608	
X 100mg	2.566	0.483	5.042	52.777	7.026	1.300	4.605	385.126	
rlx[]	0.533	0.715	0.740	0.967	0.863	0.755	0.810	0.629	
X 15mm	2.154	0.364	3.381	29.724	5.423	0.911	3.150	303.109	
X 20mm	2.408	0.419	4.120	39.958	6.133	1.080	3.790	339.236	
X 25mm	2.662	0.475	4.859	50.193	6.843	1.249	4.431	375.363	

Estimated content (µg) for 15mm, 20mm and 25mm clam	
---	--

	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
15mm	0.061	0.010	0.096	0.841	0.156	0.026	0.090	8.630
20mm	0.146	0.025	0.241	2.343	0.359	0.063	0.222	19.516
25mm	0.286	0.048	0.492	5.188	0.687	0.127	0.449	36.752

Estimated weight for 15mm clam	Estimated weight for 20mm clam
0.028 gm	0.059 gm
28.465 mg	58.515 mg

Estimated weight for 25mm clam

0.102 gm 102.331 mg

Station:	Palo Alto			Macoma ba	lthica							
Date:	03/07/02											
	Average	Total	Average	Recon		Concentrat	ion (ug/ml) - Blank C	Corrected fi	om ICP-Al	ES	
Sample #-n	Length (mm)	Dry Wt (gm)	Dry Wt (gm)	Amt (ml)	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mb1	9.09	0.1436	0.0080	9	0.0211	0.0043	0.0334	0.3074	0.0689	0.0089	0.0320	4.4479
Mb2	10.74	0.1672	0.0129	9	0.0330	0.0064	0.0642	0.3319	0.0995	0.0192	0.0604	4.5995
Mb3	13.08	0.177	0.0197	9	0.0510	0.0059	0.0505	0.4734	0.0895	0.0144	0.0509	5.4779
Mb4	15.39	0.2633	0.0293	11	0.0593	0.0081	0.0647	0.7486	0.1290	0.0223	0.0656	8.5407
Mb5	16.46	0.3621	0.0362	11	0.0841	0.0160	0.1514	1.2356	0.2014	0.0341	0.1294	11.5125
Mb6	17.29	0.2981	0.0426	11	0.0584	0.0104	0.1064	0.9069	0.1578	0.0240	0.0940	6.4913
Mb7	23.93	0.2719	0.0906	11	0.0558	0.0107	0.1104	1.1528	0.1618	0.0304	0.1037	9.3449
				LOD	0.0006	0.0020	0.0013	0.0010	-0.0001	-0.0016	0 0004	0.0014
				100	0.0011	0.0056	0.0060	0.0055	0.0001	-0.0016	0.0016	0.0037
				200	0.0011	0.00000	0.0000	0.00000	010001	0.0010	0.0010	010007
				Sample #								
				Sumple #								
		Concentration	ר (ווס/ס) ==>	Mb1	1 3218	0 2689	2.0961	19 2689	4 3164	0 5597	2.0075	278 768
		contendado	. (4 <u>8</u> / <u>8</u> /	Mb2	1.7747	0.3467	3.4584	17.8658	5.3575	1.0340	3.2485	247.578
				Mb3	2 5927	0 2995	2 5684	24 0704	4 5514	0.7317	2 5861	278 538
				Mb4	2.4787	0.3367	2.7028	31.2758	5.3889	0.9312	2.7406	356.809
				Mb5	2.5539	0.4873	4.5994	37.5344	6.1194	1.0359	3.9319	349,730
				Mb6	2.1535	0.3830	3.9245	33,4651	5.8232	0.8867	3.4675	239,530
				Mb7	2.2554	0.4341	4.4669	46.6396	6.5474	1.2287	4.1941	378.057
				Sample #								
		Content	(ug) ==>	Mb1 Mb2	0.0105	0.0021	0.0167	0.1537	0.0344	0.0045	0.0160	2.2240
				Mb2	0.0228	0.0045	0.0445	0.2298	0.0895	0.0133	0.0509	5.4779
				Mb4	0.0725	0.0099	0.0791	0.9150	0.1577	0.0272	0.0802	10.4386
				Mb5	0.0925	0.0176	0.1665	1.3591	0.2216	0.0375	0.1424	12.6637
				Mb6 Mb7	0.0917	0.0163	0.1671	1.4251	0.2480	0.0378	0.1477	10.2005

Station:	Palo Alto	St	atistical Sum	nmary				
Date:	04/15/02							
	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mean(ug/g)	1.073	0.236	2.835	17.611	3.840	0.995	2.467	215.315
STD	0.296	0.040	0.738	1.260	0.441	0.479	0.625	31.092
SEM	0.105	0.014	0.261	0.445	0.156	0.169	0.221	10.993
CV%	27.589	16.969	26.038	7.153	11.492	48.124	25.330	14.440
n	8	8	8	8	8	8	8	8
r wt x []	0.633	0.304	0.210	0.091	0.356	0.363	0.207	0.279
X 100mg	1.259	0.224	2.682	17.724	3.996	0.823	2.339	223.884
rlx[]	0.744	0.346	0.317	0.220	0.296	0.509	0.315	0.366
X 15mm	1.027	0.239	2.885	17.553	3.813	1.046	2.508	212.899
X 20mm	1.285	0.223	2.611	17.877	3.966	0.761	2.278	226.245
X 25mm	1.543	0.207	2.337	18.202	4.119	0.476	2.047	239.591

_	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
15mm	0.037	0.009	0.103	0.648	0.141	0.035	0.090	7.846
20mm	0.114	0.019	0.225	1.583	0.346	0.066	0.196	19.930
25mm	0.271	0.036	0.411	3.164	0.697	0.107	0.360	41.071

Estimated weight for 15mm clam	Estimated weight for 20mm clam
0.037 gm	0.088 gm
36.982 mg	88.437 mg

Estimated weight for 25mm clam

0.174 gm 173.912 mg

Station:	Palo Alto			Macoma ba	lthica							
Date:	04/15/02											
	Average	Total	Average	Recon	C	Concentrati	ion (ug/ml) - Blank C	orrected fr	om ICP-AI	ES	
Sample #-n	Length (mm)	Dry Wt (gm)	Dry Wt (gm)	Amt (ml)	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mb1	10.91	0.2240	0.0122	11	0.0171	0.0062	0 0000	0.2502	0.0962	0.0427	0.0792	4 2261
Mb2	10.81	0.2249	0.0132	11	0.0171	0.0062	0.0898	0.3503	0.0862	0.0437	0.0783	4.2201
Mb2	12.00	0.2900	0.0250	11	0.0222	0.0039	0.0005	0.4890	0.0972	0.0275	0.0670	5.5071
Mb4	13.29	0.3303	0.0275	11	0.0243	0.0071	0.0829	0.4729	0.1179	0.0264	0.0079	6 5032
Mb5	14.00	0.3782	0.0344	11	0.0279	0.0083	0.0940	0.5972	0.1107	0.0255	0.0794	5 7537
Mb6	16.57	0.350/	0.0513	11	0.0333	0.0053	0.0000	0.5618	0.1085	0.0150	0.0570	8.0370
Mb7	19.37	0.3157	0.0789	11	0.0446	0.0075	0.0015	0.5745	0.1313	0.0234	0.0826	7 8890
Mb8	24.34	0.3186	0.1593	11	0.0371	0.0058	0.0743	0.4905	0.1193	0.0270	0.0651	6 1073
				LOD LOQ Sample #	0.0012 0.0030	0.0000 0.0005	0.0228 0.0702	0.0009 0.0033	0.0388 0.1114	0.0014 0.0095	0.0016 0.0039	0.0000 0.0001
		~ .										
		Concentration	n (ug/g) ==>	Mb1	0.8349	0.3047	4.3913	17.1324	4.2166	2.1354	3.8302	206.703
				Mb2	0.8173	0.2168	2.5127	18.0017	3.5798	1.0131	2.2733	195.373
				Mb3	0.8079	0.2368	2.7608	15.7488	3.9271	0.9445	2.2609	217.394
				Mb4	0.8103	0.2400	2.7524	17.3706	3.3939	0.7359	2.3082	189.146
				Mb5	1.1358	0.1846	1.9007	18.4906	3.5923	0.6212	1.8058	182.183
				Mb6	1.3461	0.2234	2.4956	17.1945	3.3208	0.7777	2.1290	245.984
				Mb7	1.5530	0.2819	3.3000	20.0186	4.5739	0.9415	2.8784	274.879
				MD8	1.2820	0.2009	2.3009	10.9340	4.1190	0.7872	2.2470	210.801
		Content	(ug) ==>	Sample # Mb1 Mb2 Mb3 Mb4 Mb5	0.0110 0.0188 0.0222 0.0279 0.0438	0.0040 0.0050 0.0065 0.0083 0.0071	0.0581 0.0578 0.0760 0.0946 0.0734	0.2267 0.4138 0.4335 0.5972 0.7137	0.0558 0.0823 0.1081 0.1167 0.1387	0.0283 0.0233 0.0260 0.0253 0.0240	0.0507 0.0523 0.0622 0.0794 0.0697	2.7346 4.4906 5.9838 6.5032 7.0323

Station:	Palo Alto	St	atistical Sum	nmary				
Date:	05/15/02							
	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mean(ug/g)	3.964	0.410	3.058	36.303	5.030	1.141	3.285	260.651
STD	1.458	0.200	1.685	14.386	1.892	0.505	1.592	109.755
SEM	0.595	0.082	0.688	5.873	0.772	0.206	0.650	44.807
CV%	36.772	48.955	55.097	39.626	37.605	44.254	48.452	42.108
n	6	6	6	6	6	6	6	6
r wt x []	0.749	0.805	0.705	0.888	0.822	0.849	0.769	0.863
X 100mg	-4.550	-0.849	-6.212	-63.299	-7.105	-2.202	-6.264	-478.428
r l x []	0.682	0.771	0.678	0.829	0.772	0.808	0.742	0.789
X 15mm	2.994	0.259	1.944	24.671	3.605	0.743	2.132	176.152
X 20mm	-0.592	-0.298	-2.174	-18.307	-1.661	-0.728	-2.128	-136.044
X 25mm	-4.179	-0.855	-6.291	-61.285	-6.927	-2.199	-6.388	-448.240

	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
15mm	0.111	0.010	0.071	0.951	0.139	0.029	0.082	6.634
20mm	0.138	0.009	0.065	0.969	0.161	0.028	0.081	6.539
25mm	0.163	0.009	0.061	0.984	0.180	0.028	0.080	6.467

Estimated weight for 15mm clam	Estimated weight for 20mm clam
0.038 gm	0.096 gm

0.038 gm 38.220 mg

95.626 mg

Estimated weight for 25mm clam

0.195 gm 194.766 mg

Station:	Palo Alto			Macoma ba	lthica							
Date:	05/15/01											
					r.							
	Average	Total	Average	Recon		Concentrat	ion (ug/ml) - Blank C	orrected fr	om ICP-AI	ES	
Sample #-n	Length (mm)	Dry Wt (gm)	Dry Wt (gm)	Amt (ml)	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
		0.0470										
Mb1	11.75	0.2479	0.0177	11	0.1351	0.0169	0.1345	1.2804	0.1820	0.0445	0.1371	8.9639
Mb2	12.63	0.2607	0.0201	11	0.1150	0.0118	0.0787	1.1665	0.1492	0.0344	0.0891	8.8208
Mb3	13.23	0.351	0.0270	11	0.1295	0.0126	0.0962	1.1427	0.1466	0.0349	0.0993	8.3378
Mb4	14.05	0.4069	0.0339	11	0.0606	0.0058	0.0277	0.6727	0.0977	0.0200	0.0478	4.0466
Mb5	14.68	0.4287	0.0357	11	0.1478	0.0131	0.1040	1.2080	0.1721	0.0343	0.1088	9.2457
Mb6	15.54	0.4858	0.0405	11	0.1522	0.0143	0.1161	1.1833	0.1837	0.0401	0.1180	8.2161
		Concentration	n (ug/g) ==>	LOD LOQ Sample # Mb1 Mb2 Mb3 Mb4 Mb5	0.0006 0.0007 5.9948 4.8536 4.0590 1.6393 3.7929	-0.0001 0.0003 0.7503 0.4962 0.3955 0.1563 0.3354 0.3354	-0.0020 -0.0010 5.9666 3.3217 3.0146 0.7489 2.6690	0.0010 0.0055 56.8152 49.2201 35.8108 18.1842 30.9957	0.0005 0.0010 8.0736 6.2962 4.5943 2.6423 4.4151	0.0025 0.0130 1.9724 1.4532 1.0922 0.5399 0.8804	0.0058 0.0090 6.0817 3.7591 3.1117 1.2922 2.7922	0.0014 0.0051 397.751 372.186 261.299 109.395 237.236
		Content	(ug) ==>	Mb6 Sample # Mb1 Mb2 Mb3	0.1062 0.0973 0.1096	0.3233 0.0133 0.0100 0.0107	0.1057 0.0666 0.0814	26.7940 1.0060 0.9871 0.9669	0.1430 0.1263 0.1240	0.9078	0.1077 0.0754 0.0840	7.0430 7.4638 7.0551
				Mb5 Mb5 Mb6	0.1096 0.0556 0.1355 0.1395	0.0107 0.0053 0.0120 0.0131	0.0314 0.0254 0.0953 0.1065	0.6166 1.1073 1.0847	0.1240 0.0896 0.1577 0.1684	0.0293 0.0183 0.0315 0.0367	0.0840 0.0438 0.0998 0.1082	7.0331 3.7094 8.4753 7.5314

Station:	Palo Alto	St	tatistical Sum	imary				
Date:	6/11/2002							
	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mean(ug/g)	1.176	0.171	1.402	22.664	3.851	0.937	1.368	192.851
STD	0.476	0.027	0.425	1.610	0.441	0.160	0.276	23.666
SEM	0.159	0.009	0.142	0.537	0.147	0.053	0.092	7.889
CV%	40.497	15.929	30.353	7.102	11.452	17.095	20.202	12.272
n	9	9	9	9	9	9	9	9
r wt x []	0.796	0.186	0.072	0.372	0.296	0.508	0.244	0.481
X 100mg	2.448	0.154	1.299	24.669	4.288	0.665	1.142	231.020
r1x[]	0.736	0.059	0.059	0.315	0.381	0.402	0.127	0.589
X 15mm	0.974	0.172	1.387	22.371	3.754	0.975	1.388	184.783
X 20mm	1.801	0.168	1.446	23.569	4.150	0.822	1.305	217.712
X 25mm	2.628	0.165	1.505	24.768	4.547	0.670	1.223	250.641

	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
15mm	0.030	0.005	0.042	0.708	0.118	0.030	0.043	5.805
20mm	0.130	0.013	0.111	1.837	0.325	0.065	0.101	17.200
25mm	0.400	0.026	0.235	3.846	0.714	0.116	0.197	39.945

Estimated weight for 15mm clam	Estimated weight for 20mm clam
0.032 gm	0.079 gm

0.032 gm 31.639 mg 0.079 gm 78.712 mg

Estimated weight for 25mm clam

0.160 gm 159.610 mg

Station:	Palo Alto			Macoma ba	lthica							
Date:	6/11/2002											
	Average	Total	Average	Recon		Concentrat	ion (ug/ml)) - Blank Co	orrected fro	om ICP-AE	S	
Sample #-n	Length (mm)	Dry Wt (gm)	Dry Wt (gm)	Amt (ml)	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mb1	12.58	0.3207	0.0178	11	0.0299	0.0047	0.0307	0.6844	0.1041	0.0288	0.0377	4.4481
Mb2	14.72	0.4811	0.0301	11	0.0497	0.0069	0.0642	1.0283	0.1367	0.0385	0.0578	7.9597
Mb3	15.05	0.3812	0.0318	11	0.0268	0.0060	0.0474	0.7517	0.1351	0.0348	0.0432	7.0289
Mb4	15.42	0.3609	0.0361	11	0.0208	0.0050	0.0304	0.6518	0.1240	0.0289	0.0404	5.5937
Mb5	16.15	0.4059	0.0406	11	0.0267	0.0068	0.0631	0.7705	0.1369	0.0359	0.0600	7.1485
Mb6	16.64	0.4151	0.0415	11	0.0391	0.0088	0.0868	0.8434	0.1809	0.0485	0.0750	8.4503
MD/	17.30	0.4007	0.0507	11	0.0010	0.0074	0.0613	0.9812	0.10/2	0.0379	0.0530	8.30/3
Mbo	10.55	0.4947	0.0018	11	0.0855	0.0075	0.0399	0.0457	0.1745	0.0303	0.0307	7 4212
Mb9	19.64	0.4425	0.0738	11	0.0773	0.0055	0.0394	0.9457	0.1556	0.0285	0.0421	7.4213
				LOD LOQ	0.0013 0.0035	0.0001 0.0006	-0.0022 -0.0022	0.0003 0.0032	0.0004 0.0013	-0.0004 0.0045	0.0025 0.0026	0.0019 0.0068
				Sample #								
		Commentation	((-))	MI-1	1.0262	0.1(02	1.0517	22 4722	2 5 60 6	0.0961	1 20 45	152 570
	•	Concentration	1(ug/g) ==>	Mb2	1.0205	0.1602	1.0517	23.4752	3 1240	0.9801	1.2945	132.370
				Mb2 Mb3	0.7728	0.1382	1.4070	21 6924	3 8991	1.0036	1.3223	202 826
				Mb4	0.6328	0.1527	0.9264	19.8651	3.7791	0.8818	1.2298	170.491
				Mb5	0.7236	0.1848	1.7104	20.8806	3.7100	0.9721	1.6271	193.727
				Mb6	1.0367	0.2327	2.3010	22.3497	4.7930	1.2844	1.9867	223.929
				Mb7	1.4860	0.1790	1.4794	23.6756	4.0342	0.9154	1.2925	200.443
				Mb8	1.8527	0.1663	1.3320	25.0219	3.8804	0.8063	1.2617	225.199
				Mb9	1.9216	0.1355	0.9783	23.5100	3.8683	0.7075	1.0475	184.484
		Content	(ug) ==>	Sample # Mb1 Mb2	0.0183 0.0341	0.0029 0.0048	0.0187 0.0441	0.4182 0.7070	0.0636 0.0940	0.0176 0.0264	0.0231 0.0398	2.7183 5.4723
				Mb3	0.0245	0.0055	0.0435	0.6891	0.1239	0.0319	0.0396	6.4431
				Mb4 Mb5	0.0228 0.0294	0.0055 0.0075	0.0334 0.0694	0.7169 0.8475	0.1364 0.1506	0.0318 0.0395	0.0444 0.0660	6.1530 7.8634

Station:	Palo Alto	St	tatistical Sum	nmary				
Date:	9/9/2002							
	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mean(ug/g)	2.770	0.213	0.779	39.952	4.359	1.185	1.641	160.181
STD	0.304	0.059	0.301	6.575	0.511	0.370	0.454	25.269
SEM	0.107	0.021	0.107	2.325	0.181	0.131	0.161	8.934
CV%	10.962	27.964	38.676	16.458	11.724	31.263	27.686	15.775
n	8	8	8	8	8	8	8	8
r wt x []	0.214	0.866	0.698	0.389	0.489	0.810	0.702	0.584
X 100mg	2.512	0.009	-0.053	29.834	3.371	-0.003	0.379	101.777
r1x[]	0.194	0.941	0.763	0.451	0.605	0.894	0.811	0.635
X 15mm	2.818	0.258	0.967	42.368	4.611	1.454	1.942	173.258
X 20mm	2.697	0.144	0.498	36.328	3.981	0.780	1.191	140.562
X 25mm	2.577	0.030	0.029	30.289	3.352	0.106	0.440	107.866

	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
15mm	0.059	0.005	0.019	0.881	0.096	0.029	0.039	3.584
20mm	0.150	0.009	0.027	2.004	0.224	0.047	0.070	7.891
25mm	0.312	0.013	0.035	3.792	0.432	0.068	0.109	14.556

Estimated weight for 15mm clam	Estimated weight for 20mm clam
0.001	0.0 .

0.021 gm 20.910 mg 0.056 gm 55.946 mg

Estimated weight for 25mm clam

0.120 gm 120.034 mg

Station: Date:	Palo Alto 9/9/2002			Macoma ba	lthica							
	Average	Total	Average	Recon	(Concentrati	ion (ug/ml) - Blank Co	orrected fro	om ICP-AE	S	
Sample #-n	Length (mm)	Dry Wt (gm)	Dry Wt (gm)	Amt (ml)	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mb1	13.10	0.1474	0.0134	9	0.0500	0.0053	0.0183	0.7744	0.0892	0.0318	0.0416	3.3067
Mb2	14.97	0.1854	0.0206	9	0.0490	0.0057	0.0218	0.9219	0.0962	0.0311	0.0430	3.1812
Mb3	15.67	0.2178	0.0242	9	0.0679	0.0052	0.0264	0.9263	0.0975	0.0258	0.0398	3.5641
Mb4	16.26	0.2243	0.0280	9	0.0741	0.0053	0.0171	0.9697	0.0993	0.0300	0.0349	4.6452
Mb5	17.62	0.2444	0.0349	9	0.0673	0.0050	0.0184	1.0122	0.1055	0.0280	0.0345	4.4688
Mb6	18.38	0.2001	0.0400	9	0.0719	0.0038	0.0114	0.7374	0.0998	0.0208	0.0330	2.9380
Mb/	19.75	0.2718	0.0544	11	0.0674	0.0039	0.0068	1.2147	0.1036	0.0242	0.0293	4.1070
				LOD LOQ Sample #	0.0002 0.0005	0.0002 0.0010	0.0026 0.0069	0.0027 0.0075	0.0003 0.0011	0.0018 0.0114	0.0018 0.0022	0.0004 0.0033
		Commentation	- ((-))		2.0517	0.2220	1 1 1 0 7	47 2951	5 4470	1.0422	2 5292	201 800
		Concentration	1 (ug/g) ==>	Mb1 Mb2	2 3806	0.3230	1.1197	47.2851	5.4470	1.9423	2.5382	201.899
				Mb2 Mb3	2.3800	0.2172	1.0507	44.7547 38.2774	4.0075	1.0657	2.0804	134.427
				Mb4	2.8037	0.2132	0.6880	38 9103	3 9856	1.0037	1.0430	147.278
				Mb5	2.9720	0.1852	0.6767	37 2724	3 8858	1.2037	1.4020	164 561
				Mb6	3 2343	0.1687	0 5146	33 1652	4 4865	0.9337	1 4843	132,142
				Mb7	2.7277	0.1578	0.2742	49.1606	4.1908	0.9810	1.1850	166.213
				Mb8	2.5083	0.1608	0.8117	30.7936	4.1830	0.8127	1.5186	128.541
		Content	(ug) ==>	Sample # Mb1 Mb2 Mb3 Mb4 Mb5	0.0409 0.0490 0.0679 0.0834	0.0043 0.0057 0.0052 0.0060	0.0150 0.0218 0.0264 0.0193 0.0226	0.6336 0.9219 0.9263 1.0909	0.0730 0.0962 0.0975 0.1117 0.1257	0.0260 0.0311 0.0258 0.0338	0.0340 0.0430 0.0398 0.0393	2.7054 3.1812 3.5641 5.2259 5.7552

Station:	Palo Alto	St	tatistical Sum	imary				
Date:	10/7/2002							
	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mean(ug/g)	3.745	0.361	2.656	52.595	7.160	2.058	3.520	175.270
STD	1.049	0.079	0.709	6.199	0.753	0.411	0.747	27.140
SEM	0.428	0.032	0.289	2.531	0.308	0.168	0.305	11.080
CV%	27.998	21.824	26.690	11.787	10.522	19.985	21.221	15.484
n	6	6	6	6	6	6	6	6
r wt x []	0.027	0.458	0.270	0.675	0.258	0.441	0.111	0.405
X 100mg	3.414	-0.065	0.397	3.168	4.868	-0.084	2.545	45.288
r l x []	0.112	0.461	0.248	0.676	0.205	0.448	0.128	0.451
X 15mm	3.790	0.375	2.723	54.189	7.219	2.128	3.557	179.931
X 20mm	3.409	0.257	2.154	40.639	6.719	1.532	3.247	140.322
X 25mm	3.027	0.140	1.584	27.090	6.218	0.936	2.937	100.712

Estimated content (ug) for 15mm, 20mm and 25mm clam	n
---	---

	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
15mm	0.062	0.006	0.045	0.913	0.122	0.035	0.059	3.014
20mm	0.132	0.012	0.089	1.796	0.287	0.070	0.137	6.178
25mm	0.237	0.019	0.150	3.038	0.557	0.118	0.262	10.780

Estimated weight for 15mm clam

Estimated weight for 20mm clam

0.017 gm 16.957 mg 0.043 gm 42.546 mg

Estimated weight for 25mm clam

0.087 gm 86.846 mg

Station:	Palo Alto			Macoma bal	lthica							
Date:	10/7/2002											
	Average	Total	Average	Recon	(Concentrati	ion (ug/ml	- Blank Co	orrected fro	om ICP-ΔE	s	
Sample #-n	Length (mm)	Drv Wt (gm)	Drv Wt (gm)	Amt (ml)	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
1		,	,		0							
Mb1	13.70	0.1406	0.0128	9	0.0756	0.0075	0.0484	0.8869	0.1235	0.0434	0.0678	3.3116
Mb2	14.52	0.1591	0.0159	9	0.0651	0.0056	0.0479	1.0210	0.1115	0.0323	0.0536	3.3454
Mb3	15.13	0.1616	0.0180	9	0.0552	0.0056	0.0381	0.9291	0.1265	0.0295	0.0547	2.4932
Mb4	15.62	0.1566	0.0174	9	0.0725	0.0058	0.0387	1.0137	0.1221	0.0361	0.0510	3.2773
Mb5	16.48	0.1359	0.0227	9	0.0311	0.0066	0.0577	0.6457	0.1237	0.0337	0.0695	2.2650
MIDO	18.09	0.16	0.0320	9	0.0827	0.0051	0.0348	0.8584	0.1154	0.0319	0.0565	3.0790
				LOD	0.0010	0.0000	0.0011	0.0036	0.0000	-0.0040	0.0116	0.0005
				LUQ	0.0030	0.0013	0.0097	0.0095	0.0017	-0.0024	0.0140	0.0020
				Sample #								
		Concentration	n (ug/g) ==>	Mb1	4.8367	0.4826	3.0981	56.7698	7.9060	2.7794	4.3425	211.977
				Mb2	3.6849	0.3162	2.7101	57.7562	6.3062	1.8266	3.0304	189.245
				Mb3	3.0731	0.3119	2.1240	51.7461	7.0474	1.6441	3.0459	138.852
				Mb4	4.1678	0.3328	2.2262	58.2558	7.0172	2.0718	2.9316	188.349
				Mb5	2.0570	0.4344	3.8223	42.7595	8.1947	2.2331	4.6053	150.002
				Mb6	4.6519	0.2863	1.9580	48.2832	6.4901	1.7938	3.1663	173.196
				Sample #								
		Content	(ug) ==>	Mb1 Mb2	0.0618	0.0062	0.0396	0.7256	0.1011	0.0355	0.0555	2.7095
				Mb2 Mb3	0.0586	0.0050	0.0431	0.9189	0.1003	0.0291	0.0482	3.0109 2.4932
				Mb4	0.0725	0.0058	0.0387	1.0137	0.1221	0.0361	0.0510	3.2773
				Mb5	0.0466	0.0098	0.0866	0.9685	0.1856	0.0506	0.1043	3.3975

Station:	Palo Alto	St	atistical Sum	imary				
Date:	12/16/2002							
	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mean(ug/g)	4.437	0.474	5.361	45.431	8.527	3.084	6.018	264.693
STD	1.101	0.052	0.721	4.710	0.995	0.498	0.799	35.788
SEM	0.416	0.020	0.273	1.780	0.376	0.188	0.302	13.527
CV%	24.804	10.982	13.449	10.367	11.669	16.155	13.273	13.521
n	7	7	7	7	7	7	7	7
r wt x []	0.213	0.341	0.610	0.387	0.448	0.083	0.051	0.701
X 100mg	5.463	0.552	7.288	37.437	10.483	2.902	5.839	154.752
r l x []	0.017	0.325	0.560	0.504	0.327	0.250	0.188	0.666
X 15mm	4.426	0.465	5.132	46.777	8.343	3.154	6.103	278.203
X 20mm	4.457	0.492	5.785	42.937	8.869	2.953	5.860	239.655
X 25mm	4.488	0.519	6.438	39.096	9.396	2.751	5.616	201.107

	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
15mm	0.086	0.009	0.102	0.923	0.166	0.062	0.120	5.453
20mm	0.198	0.023	0.265	1.992	0.406	0.135	0.269	11.189
25mm	0.376	0.046	0.557	3.617	0.813	0.246	0.501	19.542

Estimated weight for 15mm clam	Estimated weight for 20mm clam			
0.020 m	0.047 mm			

0.020 gm 19.869 mg 0.047 gm 46.533 mg _____

Estimated weight for 25mm clam

0.090 gm 90.041 mg

Station:	Palo Alto			Macoma bal	lthica							
Date:	12/16/2002											
	Average	Total	Average	Recon	(Concentrat	ion (ug/ml)) - Blank C	orrected fro	om ICP-AE	S	
Sample #-n	Length (mm)	Dry Wt (gm)	Dry Wt (gm)	Amt (ml)	Ag	Cd	Cr	Cu	Ni	Pb	V	Zn
Mb1	12.02	0.1216	0.0111	9	0.0790	0.0059	0.0664	0.6857	0.1151	0.0504	0.0905	3.7299
Mb2	14.39	0.1322	0.0165	9	0.0593	0.0073	0.0807	0.7005	0.1348	0.0494	0.0978	4.8444
Mb3	15.52	0.1936	0.0215	9	0.0814	0.0106	0.1062	1.0795	0.1690	0.0596	0.1260	5.5813
Mb4	16.85	0.1878	0.0268	9	0.0762	0.0079	0.0869	0.7973	0.1431	0.0494	0.0934	5.6984
Mb5	17.81	0.1907	0.0328	9	0.0644	0.0115	0.1332	0.8800	0.18/9	0.0604	0.1333	5.1244
Mb7	21.02	0.2293	0.0455	9	0.1571	0.0118	0.1460	1.1747	0.2203	0.1105	0.1445	6.6768
W107	21.02	0.2775	0.0555	9	0.1008	0.0101	0.1870	1.5715	0.3089	0.1105	0.2033	0.0708
				LOD	0.0017	0.0000	-0.0022	0.0040	0.0824	-0.0014	0.0239	0.0000
				LOQ	0.0058	0.0007	0.0017	0.0115	0.2383	0.0037	0.0320	0.0000
				Sample #								
		Concentration	n (ug/g) ==>	Mb1	5.8485	0.4382	4.9173	50.7509	8.5211	3.7273	6.6967	276.059
				Mb2	4.0357	0.4970	5.4906	47.6862	9.1790	3.3624	6.6567	329.798
				MD5	3.7822	0.4928	4.9309	28 2008	7.8550	2.7/10	5.8574	259.462
				Mb5	2.0315	0.5790	4.1054	36.2096	0.6554 8 5002	2.5050	6 1001	275.066
				Mb6	2.9400 5 3812	0.3271	5 8324	40.3044	8 6558	2 7255	5 6696	263 279
				Mb7	5.4146	0.4055	6 0895	40.1000	10.0263	3 5873	6 6700	216 699
				10107	5.4140	0.5210	0.0075	44.5142	10.0205	5.5075	0.0700	210.077
		Contact	(ug)>	Sample #	0.0647	0.0049	0.0544	0.5610	0.0042	0.0412	0.0740	2 0517
		Content	(ug) ==>	Mb2	0.0647	0.0048	0.0544	0.3610	0.0942	0.0412	0.0740	5.4499
				Mb3	0.0814	0.0106	0.1062	1.0795	0.1690	0.0596	0.1260	5.5813
				Mb4	0.0980	0.0102	0.1117	1.0251	0.1839	0.0635	0.1201	7.3266
				Mb5	0.0966	0.0173	0.1998	1.3298	0.2819	0.0999	0.2000	7.6866

Appendix D.

Concentrations of Hg and Se in surface sediments (D-2) and clams (D-3). Data includes analysis of standard reference materials.

Palo Alto surface sediments, Hg and Se analysis: 2002

Date		mean Hg (μg/g)	mean Se (µg/g)
January 8, 2002		0.26	0.3
February 8, 2002		0.31	0.4
March 7, 2002		0.34	0.4
May 15, 2002		0.28	0.4
September 9, 2002		0.25	0.3
USGS SDO	Found	0.13	1.9
	Accepted	0.19±0.08	1.9 - 6.8
Palo Alto Macoma balthica, Hg analysis: 2002

Sample ID		mean Hg (µg/g)	SEM
January 8, 2002 April 15, 2002 June 11, 2002 September 9, 2002		0.42 0.20 0.19 0.34	0.02 0.03 0.01 0.04
DOLT-2	Found Accepted	2.1 2.0±0.1	
DORM-2	Found Accepted	4.4 4.6±0.03	
SRM 2976	Found Accepted	0.05 0.06±0.004	

Palo Alto Macoma balthica, Se analysis: 2002.

Sample ID		mean Se (μg/g) SEM					
January 8, 2002 April 15, 2002 June 11, 2002 September 9, 2002		4.03 2.87 2.90 2.87	0.43 0.29 0.30 0.37				
DOLT-2	Found Accepted	5.8 6.1±0.5					
DORM-2	Found Accepted	1.3 1.4±0.1					
SRM 2976	Found Accepted	1.7 0.06±0.004					

Appendix E.

Analysis of (NIST) reference materials. 2002 SRM 2709 (San Joaquin Soil) recoveries (HNO₃ extraction) (E-2). Metal concentrations analyzed (at each sampling) in Standard Reference Material (NIST) 2976 (Mussel tissue) compared to certified mean, maximum and minimum values for that material (E-3)

			Concentration ug/g										
Month	Rep	AG	AL	AS	CD	CR	CU	FE	MN	NI	ΡB	V	ZN
January	1	0	39098	0	0	89.3	32.3	30867	477	77.5	15.5	84.8	83.3
	2	0	34500	0	0	83.6	30.5	29879	471	77.8	13.9	73.9	80.3
February	1	0	35892	0	0	85.8	30.2	29693	465	75.8	15.3	76.7	80.9
	2	0	36986	0	0	85.7	30.8	30245	469	77.5	13.9	80.6	82.4
March	1	0	35607	0	0	85.6	29.5	30360	468	77.1	15.4	77.2	80.2
	2	0	38761	0	0	88.5	31.7	31369	478	78.7	15.7	85.4	84.3
April	1	0	31212	0	0	71.1	27.0	28044	431	71.3	12.7	68.3	73.9
	2	0	35543	0	0	84.0	29.6	31067	478	79.3	14.9	76.8	85.7
May	1	0	36368	0	0	85.2	30.2	31715	486	80.2	15.3	78.9	88.6
	2	0	34633	0	0	80.6	29.8	31870	489	80.8	15.3	76.2	85.0
June	1	0	34773	0	0	77.6	30.1	31403	483	79.9	14.7	76.0	84.1
	2	0	32863	0	0	76.1	28.6	30964	477	78.7	14.5	71.5	83.2
September	1	0	34448	0	0	78.4	29.1	31800	485	80.3	14.1	74.5	84.1
	2	0	35092	0	0	75.2	30.4	32005	488	81.2	15.0	77.0	85.5
October	1	0	36680	0	0	82.4	29.7	31810	486	80.0	14.8	79.5	86.5
	2	0	35801	0	0	81.6	29.9	31539	478	79.3	15.5	77.0	88.2
Certified Valu	ue, ug/g	0.41	75000	17.70	0.38	130.00	34.60	35000	538	88.0	18.9	112.0	106.0
Standard D	eviation	0.03	0	0.80	0.01	4.00	0.70	0	17	5.0	0.5	5.0	3.0

		Percent Recovery												
Month	Rep	AG	AL	AS	CD	CR	CU	FE	MN	NI	ΡB	V	ZN	
January	1	0.0	52	0.00	0.0	68.69	93.42	88	89	88.06	81.98	75.68	78.61	
	2	0.0	46	0.00	0.0	64.34	88.25	85	88	88.44	73.73	65.95	75.71	
February	1	0.0	48	0.00	0.0	65.99	87.26	85	86	86.12	80.83	68.51	76.33	
	2	0.0	49	0.00	0.0	65.91	89.02	86	87	88.07	73.39	72.00	77.77	
March	1	0.0	47	0.00	0.0	65.82	85.37	87	87	87.58	81.74	68.90	75.68	
	2	0.0	52	0.00	0.0	68.08	91.71	90	89	89.43	82.85	76.29	79.55	
April	1	0.0	42	0.00	0.0	54.72	77.95	80	80	81.02	67.07	61.00	69.75	
	2	0.0	47	0.00	0.0	64.65	85.67	89	89	90.09	78.82	68.60	80.83	
June	1	0.0	48	0.00	0.0	65.56	87.25	91	90	91.11	80.84	70.41	83.62	
	2	0.0	46	0.00	0.0	61.96	86.22	91	91	91.87	80.85	68.05	80.22	
September	1	0.0	46	0.00	0.0	60.32	84.08	91	90	91.21	74.64	66.53	79.36	
	2	0.0	47	0.00	0.0	57.88	87.92	91	91	92.29	79.30	68.73	80.66	
October	1	0.0	49	0.00	0.0	63.41	85.85	91	90	90.88	78.42	70.95	81.59	
	2	0.0	48	0.00	0.0	62.76	86.38	90	89	90.07	81.89	68.74	83.23	
Average % R	ecovery	0.0	48	0.00	0.0	63.58	86.88	88	88	89.02	78.31	69.31	78.78	
Standard D	Deviation	0.0	3	0.00	0.0	3.85	3.58	3	3	2.92	4.51	3.84	3.61	

Date	Cadmium	Chromium	Copper	Lead	Nickel	Silver	Vanadium	Zinc
01/08/02	0.71	0.59	3.34	1.01	0.67	0.05	0.90	167
02/08/02	0.64	0.59	2.90	0.42	0.63	0.06	0.77	164
03/07/02	0.67	0.26	3.00	0.85	0.61	0.05	0.68	137
04/15/02	0.86	0.63	3.25	1.12	0.77	0.05	0.80	157
05/15/02	0.78	0.52	3.24	0.98	1.01	0.03	0.89	133
06/11/02	0.79	0.28	2.83	0.86	0.72	0.04	0.77	149
10/07/02	0.83	0.67	3.16	1.08	0.76	0.03	1.07	146
12/16/02	0.78	0.55	3.21	1.33	0.76	0.05	1.15	124
Mean	0.75	0.51	3.11	0.96	0.74	0.04	0.88	147.29
STD	0.08	0.16	0.18	0.27	0.12	0.01	0.16	15.21
Certified Values								
Mean	0.82	0.5	4.02	1.19	0.93	0.011		137
Max.	0.98	0.66	4.35	1.37	1.05	0.016		150
Min.	0.66	0.37	3.69	1.01	0.81	0.006		124

[All values in micrograms per gram dry w eight]

Appendix F.

Near-total cadmium concentrations in sediments at Palo Alto from 1994 through 1999. (F-2). Sediment concentrations of cadmium (Cd) were slightly elevated from 1997 through 1999 compared to earlier years; although overall concentrations were lower compared to projected biological effects thresholds (1.2 μ g/g) (Long et al., 1995) (Figure 8). Also, there appears to be a general decreasing trend over the last three years (1997-1999).

Cadmium in sediment