

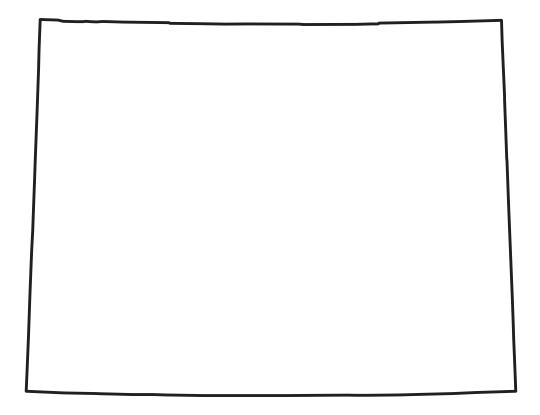
Water Resources Data Wyoming Water Year 2002

Volume 2. Ground Water

Water-Data Report WY-02-2

CALENDAR FOR WATER YEAR 2002

2001


		00	тов	ER					NO	VEM	BER					DE	CEM	BER		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
	1	2	3	4	5	6					1	2	3							1
7	8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8
14	15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15
21	22	23	24	25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	22
28	29	30	31				25	26	27	28	29	30		23	24	25	26	27	28	29
														30	31					
										2002	2									
		JA	NUA	RY					FEI	BRUA	RY					N	/IARC	Н		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
		1	2	3	4	5						1	2						1	2
6	7	8	9	10	11	12	3	4	5	6	7	8	9	3	4	5	6	7	8	9
13	14	15	16	17	18	19	10	11	12	13	14	15	16	10	11	12	13	14	15	16
20	21	22	23	24	25	26	17	18	19	20	21	22	23	17	18	19	20	21	22	23
27	28	29	30	31			24	25	26	27	28			24	25	26	27	28	29	30
														31						
		1	APRIL						I	MAY						J	UNE			
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
	1	2	3	4	5	6				1	2	3	4							1
7	8	9	10	11	12	13	5	6	7	8	9	10	11	2	3	4	5	6	7	8
14	15	16	17	18	19	20	12	13	14	15	16	17	18	9	10	11	12	13	14	15
21	22		24	25	26	27		20	21	22		24	25	16		18		20	21	22
28	29	30					26	27	28	29	30	31		23	24	25	26	27	28	29
														30						
			JULY						Αl	JGUS	Т					SEP	ГЕМЕ	BER		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
	1	2	3	4	5	6					1	2	3	1	2	3	4	5	6	7
7	8	9	10	11	12	13		5	6	7	8	9	10	8	9	10	11	12	13	14
14	15	16	17	18	19	20	11	12	13	14	15	16	17	15	16	17	18	19	20	21
21	22	23	24	25	26	27	18	19	20	21	22	23	24	22	23	24	25	26	27	28
28	29	30	31				25	26	27	28	29	30	31	29	30					

Water Resources Data Wyoming Water Year 2002

Volume 2. Ground Water

By R.B. Swanson, E.J. Blajszczak, S.C. Roberts, K.R. Watson, and J.P. Mason

Water-Data Report WY-02-2

UNITED STATES DEPARTMENT OF THE INTERIOR

GALE A. NORTON, Secretary

GEOLOGICAL SURVEY

Charles G. Groat, Director

For information on the water program in Wyoming, write to:
District Chief, Water Resources Division
U.S. Geological Survey
2617 East Lincolnway, Suite B
Cheyenne, Wyoming 82001-5662

PREFACE

This annual hydrologic data report of Wyoming is one of a series of annual reports that documents hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and the quality of water provide the hydrologic information needed by Federal, State, and local agencies, and the private sector for administrating, developing, and managing our Nation's land and water resources. These records are contained in 2 volumes:

Volume 1. Surface-Water Data Volume 2. Ground-Water Data

These reports are the culmination of a concerted effort by personnel from the Wyoming District of the U.S. Geological Survey and personnel of the Wyoming State Engineer's Office. Water-quality data and some water-level data contained in this report were collected by personnel from the U.S. Geological Survey. In addition U.S. Geological Survey personnel compiled, analyzed, verified, and organized the data, as well as typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to U.S. Geological Survey policies and guidelines. The following U.S. Geological Survey personnel are recognized for their significant contributions to this report:

T. Bartos E. Blajszczak M. Clark	G. Laidlaw T. Lehman C. Miller	K. Remley W. Sadler P. Spatz	J. Wheeler R. Woodruff
N. Friday	J. Norris	J. Swanson	
L. Hallberg	T. Pointon	K. Watson	

Most of the water-level data contained in this report were collected by personnel from the Wyoming State Engineer's Office. The following Wyoming State Engineer's Office personnel are recognized for their significant contributions to this report:

J. Harju	D. Parkin	R. Stockdale
J. Manley	L. Porter	C. Verplancke

This report was prepared under the general supervision of Myron H. Brooks, District Chief, Wyoming, and in cooperation with Patrick T. Tyrrell, the Wyoming State Engineer.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Annigton, VA 222	.02-4302, and to the Office of Management	and budget, Paperwork Reduction Proje	ect (0704-0166), Washington, DC 20505.
1. AGENCY USE ONLY (Leave blank)	OATES COVERED 001 to September 2002		
4. TITLE AND SUBTITLE		5	5. FUNDING NUMBERS
Water Resources Data for W Volume 2. Ground-water da			
Volume 2. Ground-water da	ıa		
A AUTHOR(0)			
6. AUTHOR(S) R.B. Swanson, E.J. Blajszcza	ak, S.C. Roberts, K.R. Watso	on, and J.P. Mason	
	,,	,	
7. PERFORMING ORGANIZATION NAME		3	B. PERFORMING ORGANIZATION REPORT NUMBER
U.S. Geological Survey, Wat			USGS-WDR-WY-02-2
2617 E. Lincolnway, Suite B Cheyenne, Wyoming 82001			USUS-WDR-W 1-02-2
encycline, wyolining ozoor	3002		
9. SPONSORING / MONITORING AGENC		1	0. SPONSORING / MONITORING AGENCY REPORT NUMBER
U.S. Geological Survey, Wat 2617 E. Lincolnway, Suite B			USGS-WDR-WY-02-2
Cheyenne, Wyoming 82001			0505 WDR W1 02 2
11. SUPPLEMENTARY NOTES			
Prepared in cooperation with	the State of Wyoming and	with other agencies.	
12a. DISTRIBUTION / AVAILABILITY STA		1	2b. DISTRIBUTION CODE
This report may be purchased National Technical Informa			
Springfield, VA	tion betvice		
1 0			
13. ABSTRACT (Maximum 200 words)			
			age, discharge and water quality
			r data were collected at various
			ellaneous studies and programs.
			er Data System operated by the
U.S. Geological Survey and	cooperating State and Federa	al agencies in Wyoming.	
14. SUBJECT TERMS			15. NUMBER OF PAGES
*Wyoming, *Hydrologic dat	140		
Water levels, Water analyses			16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT
OF REPORT Unclassifed	OF THIS PAGE Unclassifed	OF ABSTRACT Unclassifed	25. 2
I		in The Control of the	1

 \mathbf{v}

CONTENTS

3323	Page
PrefaceList of ground-water wells, by county, for which records are published	iii vi
Introduction	1
Cooperation	3
Summary of hydrologic conditions	3
Ground-water levels	3
Explanation of the records	6
Numbering system for wells	6
Latitude-longitude system	8
Data collection and computation	8
Presentation of data	8
Station manuscript	9
Explanation of hydrographs	9
Ground-water quality	9
Data collection	10
Data presentation	10
Remark codes	10
Access to water data	10
Definition of terms	11
Techniques of water-resources investigations of the U.S. Geological Survey	28
Station records, ground water	33 34
Ground-water levels	
High Plains studyQuality of ground-water	115 116
Ground-water quality near wastewater-treatment facilities, Grand Teton National Park	116
Pesticide and nutrient sampling program	118
Supplementary data for pesticide and nutrient sampling program	127
Goshen County nutrient sampling program	129
Index	130
ILLUSTRATIONS	
Figure 1. Map showing location of observation wells covered by this report, as of September 2002 2. Water-level hydrographs for observation wells in areas of extensive ground-water	2
withdrawals, calendar year 1998 through September 30, 2002	5
3. Federal township-range system for numbering wells	6
4. System for numbering wells on the Wind River Indian Reservation	7
5. System for assigning identification numbers to wells using latitude and longitude	8
6. Albany County	33
7. Big Horn County	36
8. Campbell County	38
9. Carbon County	40
10. Converse County	43
11. Crook County	46
12. Fremont County	52
13. Goshen County	54
14. Hot Springs County	63
15. Laramie County	66
16. Niobrara County	91
17. Platte County	97
18. Sweetwater County	107
19. Washakie County	109
20. Weston County	111
TABLES	
Table 1. Changes in ground-water levels in statewide observation-well network and wells completed in the	
High Plains aquifer	4

```
ALBANY COUNTY
  CAMPBELL COUNTY
  CARBON COUNTY
  CONVERSE COUNTY
   Station number, 424420105364201. Local number, 32-073-16cdb01. Local name, Natural Bridge East....... 44
  CROOK COUNTY
  Station number, 441113104151001. Local number, 49-062-36cbb01. Local name, Inyan Kara Mountain CCMOW6.. 47
  Station number, 441113104151002. Local number, 49-062-36cbb02. Local name, Inyan Kara Mountain CCMOW6A. 48

      Station number, 442739104214601.
      Local number, 52-063-25dcd01.
      Local name, Cole #3A.
      49

      Station number, 443453104425602.
      Local number, 53-065-18bbd02.
      Local name, Park Service.
      50

      Station number, 444854104534502.
      Local number, 56-067-28aab02.
      Local name, Cole #41 Minnelusa.
      51

  GOSHEN COUNTY
  Station number, 422512104135501. Local number, 28-061-06aba01. Local name, Goshen County #2....... 58
  Station number, 422928104121401. Local number, 29-061-17aad01. Local name, Prairie Center #4............59
   Station number, 422849104090801. Local number, 29-061-23abb01. Local name, Goshen County #1...... 60
  Station number, 422730104094801. Local number, 29-061-26cbb01. Local name, Prairie Center #3........... 61
   Station number, 423549104120901. Local number, 30-061-09bbb01. Local name, Prairie Center #5........... 62
HOT SPRINGS COUNTY
   Station number, 434136108183301. Local number, 43-095-18cab01. Local name, Thermopolis GTW-1...... 64
   Station number, 433933108121901. Local number, 43-095-25cdc01. Local name, Thermopolis GTW-3....... 65
LARAMIE COUNTY
  Station number, 410059104072401. Local number, 12-060-07ddd01. Local name, Laramie County #1......... 67
   Station number, 410100104160301. Local number, 12-062-13baa01. Local name, USGS southeast of Carpenter. 68
  Station number, 410324104481701. Local number, 13-066-32bbd01. Local name, Laramie County #14....... 71

      Station number, 410530104574001.
      Local number, 13-068-13ccc01.
      Local name, Borie.
      72

      Station number, 411238104070801.
      Local number, 14-060-05bcb01.
      Local name, C.C. Gross.
      73

  Station number, 411022104141201. Local number, 14-061-18ddd01. Local name, Laramie County #2............ 74
  Station number, 410616104462401. Local number, 14-066-28adb01. Local name, Cheyenne Ogallala Well...... 78
  Station number, 410930104524701. Local number, 14-067-27bac01. Local name, Laramie County #13....... 81
  Station number, 410838104530401. Local number, 14-067-34bbc01. Local name, Laramie County #11. . . . . . 82
Station number, 410827104501601. Local number, 14-067-36acb01. Local name, Pioneer Park. . . . . . . . . . . . 83
   Station number, 411531104194701. Local number, 15-062-20aaa01. Local name, Laramie County #4........... 85
Station number, 412227104081402. Local number, 16-060-07bbb02. Local name, USGS southwest of Albin..... 86
   NIOBRARA COUNTY
   Station number, 424709104194101. Local number, 32-062-05baa01. Local name, Niobrara County #1...... 92

      Station number, 430422104183201.
      Local number, 36-062-28ab01.
      Local name, ETSI T-2.
      94

      Station number, 430422104183202.
      Local number, 36-062-28ab02.
      Local name, ETSI O-2.
      95
```

PLATTE COUNTY					
Station number,	420246104590302.	Local number,	24-068-22aab02.	Local name,	Platte County #1A 98
Station number,	420718104553901.	Local number,	25-067-19dda01.	Local name,	Ed Wilhelm 99
Station number,	420524104530201.	Local number,	25-067-34ccd01.	Local name,	Platte County #2 100
Station number,	420859104565001.	Local number,	25-068-12dda01.	Local name,	Platte County #4 101
Station number,	420840105000401.	Local number,	25-068-15bbd01.	Local name,	Platte County #6 102
Station number,	420748104565001.	Local number,	25-068-24aad01.	Local name,	Platte County #3 103
Station number,	420613105024401.	Local number,	25-068-31aaa01.	Local name,	Platte County #7 104
Station number,	421443104574601.	Local number,	26-068-12cbd01.	Local name,	E. Rutherford105
Station number,	421128104575801.	Local number,	26-068-36bbb01.	Local name,	Platte County #5 106
SWEETWATER COUNTY					
Station number,	413850109150601.	Local number,	19-105-10bbb01.	Local name,	Rock Springs Golf Course 108
WASHAKIE COUNTY					
Station number,	440621107273801.	Local number,	48-089-25ada01.	Local name,	Mills 110
WESTON COUNTY					
Station number,	434539104233401.	Local number,	44-063-26cac01.	Local name,	Townsend Well
Station number,	435610104433001.	Local number,	46-066-25dbb01.	Local name,	Terra Resources
Station number,	440530104381001.	Local number,	48-065-35ccb01.	Local name,	Town of Upton #4

1

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey (USGS), in cooperation with State, Tribal, county, municipal, and other Federal agencies, collects data each water year describing the water resources of Wyoming. These data, accumulated through many water years, contribute to an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled, "Water Resources Data for Wyoming".

Water resources data for Wyoming in this volume consists of records of ground-water levels and quality for water year 2002, which began October 1, 2001, and ended September 30, 2002. This report contains historic water levels from 68 observation wells in the form of tables and hydrographs. The locations of observation wells listed in this report are shown in figure 1. Additional ground-water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements.

Since 1940, the USGS, in cooperation with State, county, municipal, and other Federal agencies, has measured ground-water levels in observation wells in Wyoming. Ground-water levels were systematically measured in 67 observation wells in 15 counties in Wyoming during the water year. The observation-well program is conducted by the USGS in cooperation with the Wyoming State Engineer's Office. Water-level data were collected at 58 of the 67 observation wells by Wyoming State Engineer personnel; data at the remaining nine wells were collected by USGS personnel. The wells are located primarily in areas where ground water is used in large quantities for irrigation or municipal purposes.

Prior to 1997, only miscellaneous ground-water data were published in this report. In the past, the majority of ground-water level data collected in Wyoming was published in other report series of the USGS. Records of ground-water levels were published from 1935 to 1974 in a series of USGS water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities of the United States or may be purchased from USGS Information Services, Box 25286, DenverFederal Center, Denver, Colorado 80225. Wyoming ground-water-level data and hydrographs can be found in a series of 14 open-file reports published by the U.S. Geological Survey between 1973 and 1995.

Beginning with the 1971 water year, streamflow, water-quality, and ground-water data were published in official USGS reports on a State-boundary basis. These official USGS reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report WY-02-2." These water-data reports are for sale, in paper copy or on microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page, by telephone at (307) 778-2931, or by email at state_rep_wy@usgs.gov. Hydrologic data for Wyoming is available on the World Wide Web at:

http://wy.water.usgs.gov/

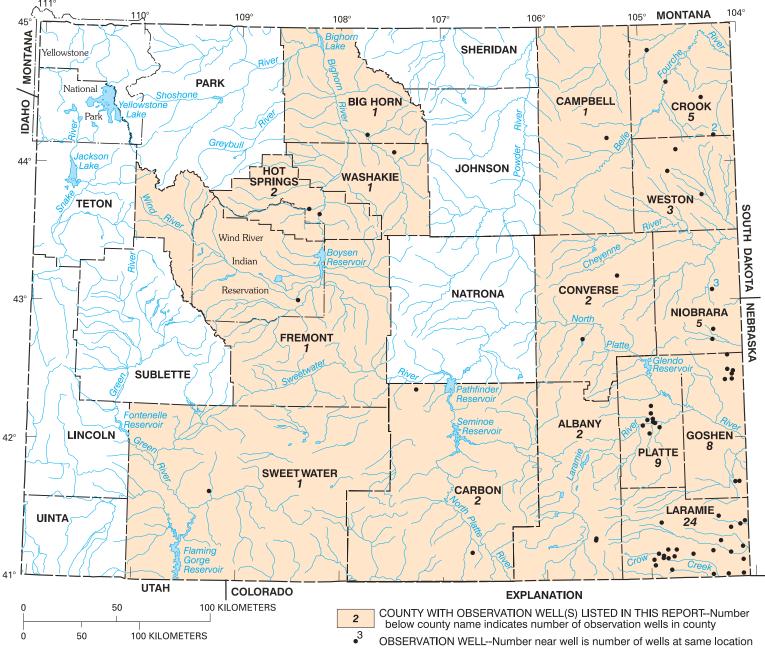


Figure 1. Location of observation wells covered by this report.

COOPERATION

The USGS and organizations of the State of Wyoming have had cooperative agreements for the systematic collection of streamflow records since 1895, for measurement of ground-water levels since 1940, and for collection of water-quality samples since 1946. Agencies and organizations that assisted in data collection during water year 2002 through cooperative agreements with the USGS were:

Federal Agencies

National Park Service, U.S. Department of the Interior

State Agencies

Wyoming State Engineer's Office, Patrick T. Tyrrell, State Engineer

Wyoming Department of Agriculture, Ronald Micheli, Commissioner

Local Agencies

Lingle-Fort Laramie Conservation District, Nancy Borton, District Manager North Platte Valley Conservation District, Nancy Borton, District Manager

SUMMARY OF HYDROLOGIC CONDITIONS

Ground-Water Levels

Wyoming continued to experience prolonged drought during water year 2002. Water-levels measured in Wyoming last year (water year 2001) were already declining and in water year 2002 continued to decline. On average, water-levels in the statewide observation-well network decreased by 0.89 ft between water years 2000 and 2001 and by 1.18 ft between water years 2001 and 2002. Record low water levels were recorded at 46 percent of the wells in the statewide network in water year 2002. The average period of record from wells with record-setting low water levels was 22 years with the longest record being 33 years.

Wells completed in the High Plains aquifer coincide with areas of ground-water withdrawal in southeastern Wyoming and comprise 60 percent of the observation-well network. Ground water is withdrawn from the High Plains aquifer for irrigation in Niobrara County, Platte County, Goshen County, and the eastern part of Laramie County. In addition, large quantities of ground water are withdrawn from the High Plains aquifer for municipal and domestic use in central Laramie County. Record low water levels were recorded during water year 2002 at 63 percent of the network observation wells completed in the High Plains aquifer. The average period of record from wells with record-setting low water levels in the High Plains aquifer was 22 years with the longest record being 33 years. Hydrographs from representative High Plains observation wells in southeastern Wyoming are shown in figure 2.

Water levels were measured in at least one observation well in 15 of 23 counties in Wyoming. During 2002, water levels were measured continuously in 52 wells equipped with float-driven digital water-level recorders or electronic data recorders and in one well equipped with a pressure-sensing transducer and an electronic data recorder. Hydraulic heads in two flowing wells were measured continuously using pressure-sensing transducers and electronic data recorders. The remaining 12 wells were periodically measured using a steel tape, electric tape, or an air line.

Changes in water levels for the statewide observation-well network and for wells completed only in the High Plains aquifer are summarized in table 1. Many of the observation wells in these networks are located in areas with extensive ground-water withdrawal or in areas of artificial recharge. Water levels from some of these wells may reflect local, rather than regional ground-water conditions. Local influences such as nearby pumping can cause water levels in observaton wells to be lower than the regional-water table, while artificial recharge by surface-water irrigation can cause the water

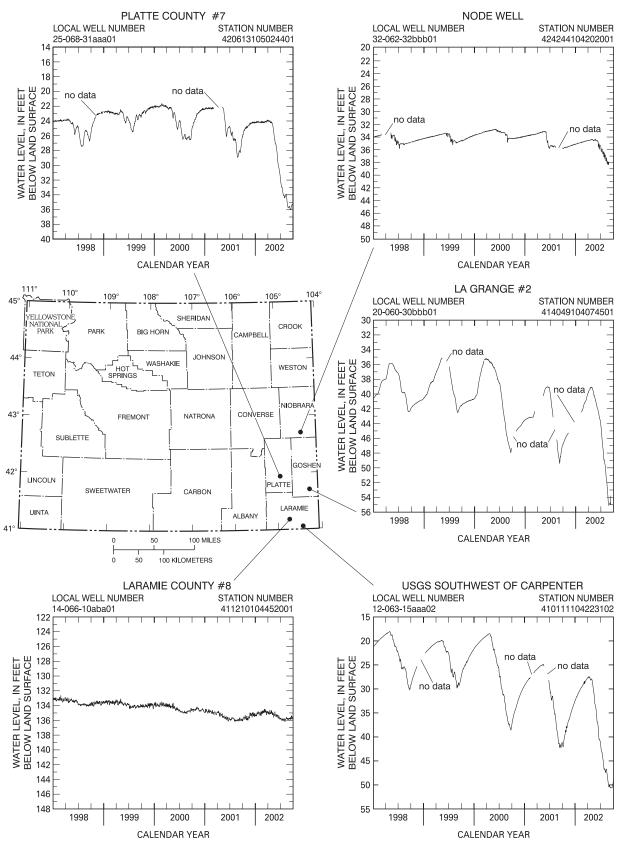

levels in observation wells to be higher than the regional-water table. The changes in water levels from water year 2001 to water year 2002 were determined from the difference between the highest water levels measured each year. Some wells in the network were not included in the comparison of water-level changes between water years because few water-level measurements were made at the wells. Many of the wells not included in the comparison of water-level changes between water years were hand-measured wells where only two or three measurements per year were collected.

Table 1.--Changes in ground-water levels in statewide observation-well network and wells completed in the High Plains aquifer.

[Hydrographs for five representative observation wells in southeast Wyoming are shown in figure 2]

Observation-well network	Water years ¹	Number of wells in network	Number of wells with water-level increase	Average water- level increase (in feet)	Number of wells with water-level decrease	Average water- level decrease (in feet)	Number of wells with few water-level measurements
Statewide network	2001-2002	67	9	0.34	45	-1.49	13
High Plains aquifer	2001-2002	43	4	0.13	34	-1.12	5

¹Water year is from October 1 to September 30 of the following year.

Figure 2. Water-level hydrographs for observation wells in areas of extensive ground-water withdrawals, calendar year 1998 through September 30, 2002.

EXPLANATION OF THE RECORDS

Numbering System for Wells

All wells listed in this report, except for one well located on the Wind River Indian Reservation, are identified according to the Federal township-range system of land subdivision, and also are assigned a local number. An example of a local number in this report is 14-063-15aaa01 (fig. 3). The first number (14) denotes the township, the second number (063) denotes the range, and the third number (15) denotes the section. The first letter following the section number denotes the quarter section (160-acre tract); the second letter, the quarter-quarter section (40-acre tract); and the third letter, if shown, the quarter-quarter-quarter section (10-acre tract). These subsections are designated a, b, c, and d in a counter-clockwise direction, beginning in the northeastern quadrant. The last two numbers in the local number are a sequence number indicating the order of inventory. For example, in figure 3, observation well 14-063-15aaa01 is the first well inventoried in the northeastern quarter of the northeastern quarter of section 15, township 14 north (T. 14 N.), range 63 west (R. 63 W.). All wells in this report have ranges west of the Sixth Principal Meridian and townships north of the 40th Parallel Base Line.

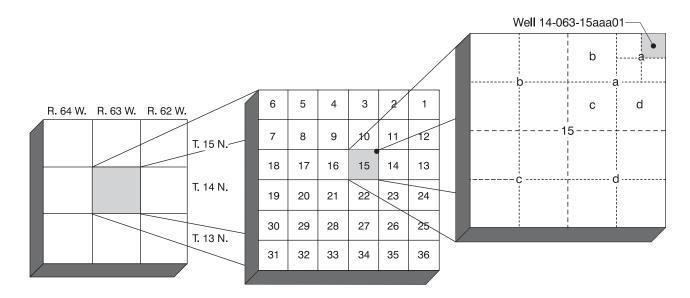


Figure 3. Federal township-range system for numbering wells.

On the Wind River Indian Reservation, the township-range system is based on the Wind River Meridian and Base Line system. Townships are denoted as north or south of the base line and ranges are denoted as east or west of the meridian. Wells may be located in the northeastern, northwestern, southwestern, or southeastern quadrants of this baseline and meridian net. For example, in figure 4, observation well 1N-4E-28acc01 is the first well inventoried in the southwestern quarter of the southwestern quarter of section 28, township 1 north (T. 1 N.), range 4 east (R. 4 E.), in the northeastern quadrant of the Wind River Indian Reservation.

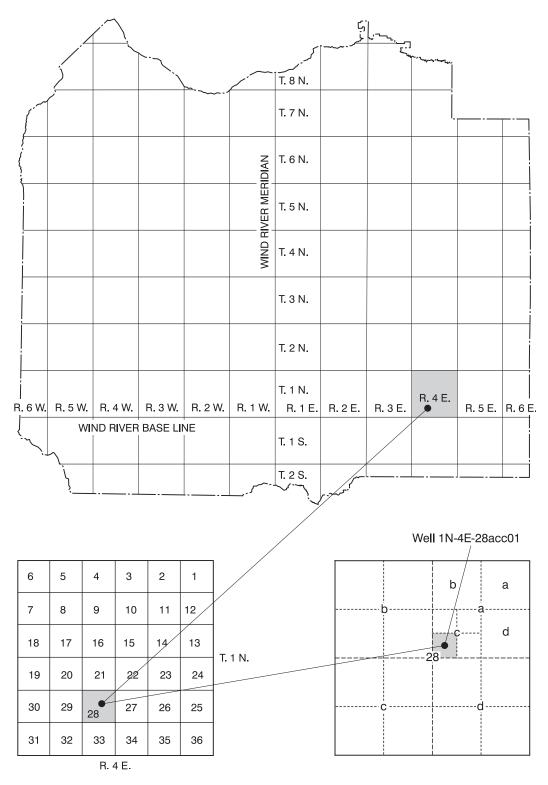


Figure 4. System for numbering wells on the Wind River Indian Reservation.

Latitude-Longitude System

Identification numbers also are assigned to wells according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of north latitude, the next seven digits denote degrees, minutes, and seconds of west longitude, and the last two digits (assigned sequentially) identify the order of inventory of sites if more than one site lies within a 1-second grid (fig. 5). The identification number, once assigned, has no locational significance. If the initial determination of latitude and longitude is found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description.

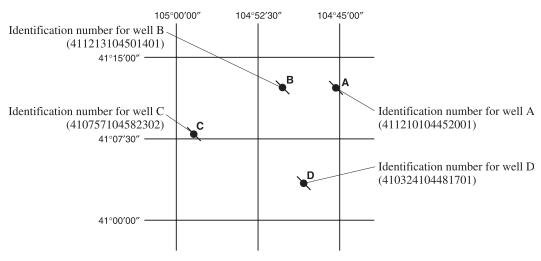


Figure 5. System for assigning identification numbers to wells using latitude and longitude.

Data Collection and Computation

Water levels are measured in many types of wells, often with changing hydrologic conditions, but the methods of measurement are standardized as much as possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and precision.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot or a larger unit.

Presentation of Data

Water-level data are presented by county; the counties for which water-level data are available are listed alphabetically. Records of observation wells for each county are preceded by a map showing the location of the wells (figs. 6-20). Water-level hydrographs or hydraulic-head hydrographs for the period of record for each well follow the map for each county. A table above each hydrograph lists water-level measurements taken during water year 2002. For wells equipped with continuous water-level recorders, the table lists the daily maximum recorded water level for every fifth day and the end of the month (EOM). The daily maximum recorded water level in a well is the water level recorded for the day with the minimum distance from the land surface to the water level in the well. Data for artesian wells are listed as daily maximum in feet of hydraulic head and are the maximum difference in the water surface to the land surface at the well. For hand-measured wells, the table lists all water-level measurements obtained during water year 2002.

The hydrographs for the 67 observation wells were plotted using water-level measurements from either continuous water-level recorders or periodic measurements. The daily maximum water level was used for plotting hydrographs for wells equipped with continuous recorders. The hydrographs show water-level fluctuations and water-level trends. If more precise water levels are needed, tabulations of actual water-level measurements are available from the U.S. Geological Survey, 2617 East Lincolnway, Suite B, Cheyenne, Wyoming 82001-5662 (telephone (307) 778-2931).

Miscellaneous ground-water-level measurements and ground-water-quality data are listed at the end of the volume. These data are from wells that are not part of a systematic observation network. Both miscellaneous water-level and water-quality data are presented in tabular form.

Station Manuscript

Station number: See text description of latitude-longitude system (p. 8).

Local number: See text description of numbering system for wells (p. 6).

Local name: Local reference name of observation well.

Location: Latitude, longitude, and legal description of well.

Hydrologic unit: Geographic area representing part or all of a surface-drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight digit number.

Aquifer: The geologic formation, group of formations, or part of a formation that the well is completed in.

Well characteristics: Depth of well, in feet below land surface.

Datum: Elevation of land surface in feet above sea level. Water levels are given in feet below or above this datum plane.

Measuring point: Arbitrary permanent reference point from which the distance to the water surface is measured to obtain the water level. The height of the measuring point above or below the land surface is subtracted or added to the water-level measurement to determine the depth to water below the land surface or feet of head above the land surface.

Cooperation.--Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.

Period of record: Years for which water-level measurements are available.

Extremes for period of record: The highest and lowest water levels or hydraulic heads recorded for the period of record which represent the static water levels, in feet below land surface, or hydraulic heads, in feet above land surface, unless otherwise footnoted.

Explanation of Hydrographs

Water-level or hydraulic-head measurements collected by digital or electronic data recorders. Missing sections of lines indicate periods of no measurement (no data). Typically, intermittent periods without data are the result of recording equipment malfunctions.

Individual water-level measurements. Dashed line represents inferred trends between measurements; however, actual water levels may deviate (increase or decrease) from the inferred line.

Ground-Water Quality

Records of ground-water quality in this report differ from records of ground-water levels because ground-water quality samples were collected only once or twice during the water year. The quality of ground water ordinarily changes slowly; therefore, for most purposes, one annual sampling, or a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurements of the same constituents are not necessary unless one is concerned with a particular problem, such as monitoring for trends in individual water-quality constituents. In the special cases where ground-water quality may change more rapidly, samples may be collected more frequently to characterize temporal changes.

Data Collection

The records of ground-water quality in this report primarily were obtained from special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties, but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide.

Procedures for on-site measurements and for collecting, preserving, and shipping ground-water samples are documented in a series of Techniques of Water-Resources Investigations (TWRI) publications titled "National Field Manual for the Collection of Water-Quality Data". All of these references are listed under "TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" which appears at the end of the introductory text. The values included in this report represent water-quality conditions at the time of sampling, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped for a sufficient time period to assure that the water collected came directly from the aquifer and to minimize exposure to the atmosphere and to the materials comprising the casings.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-levels records. Data for quality of ground water are grouped by special study and then listed alphabetically by county, and are identified by well number. The primary identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other ancillary data are given in the table containing the chemical analyses of the ground water.

Precision varies for different analytical methods used to determine the same constituent. The presence of trailing zeroes after the decimal point in values printed in this report does not necessarily indicate that the method used for the determination is as precise as the level implied by the rightmost zero.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
E	Estimated value
M	Presence of material verified, but not quantified
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
k	Results based on colony count outside the acceptable range (non- ideal colony count)

ACCESS TO WATER DATA

The USGS provides water-quality and ground-water data through the World Wide Web (WWW). These data may be accessed at:

http://water.usgs.gov/nwis/

In addition, data can be provided in various machine-readable formats. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District offices (See address on the back of the title page).

DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Definitions of common terms such as algae, water level, and precipitation are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting inch/pound units to International System (SI) units on the inside of the back cover.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")

Adenosine triphosphate (ATP) is an organic, phosphate-rich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight")

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.

Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.)

Aroclor is the registered trademark for a group of poly-chlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine.

Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass")

Aspect is the direction toward which a slope faces with respect to the compass.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Bankfull stage, as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals.

Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow")

Base flow is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.

Bedload is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load.

Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge")

Bed material is the sediment mixture of which a stream-bed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")

Benthic organisms are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

Biomass pigment ratio is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index.

Blue-green algae (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Bottom material (See "Bed material")

Bulk electrical conductivity is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved solids content of the pore water and lithology and porosity of the rock.

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L).

Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However,

cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μ m³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere $4/3 \pi r^3$ cone $1/3 \pi r^2 h$ cylinder $\pi r^2 h$.

pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159....

From cell volume, total algal biomass expressed as biovolume (μ m³/mL) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species.

Cfs-day (See "Cubic foot per second-day")

Channel bars, as used in this report, are the lowest prominent geomorphic features higher than the channel bed.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (*C. perfringens*) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

Coliphages are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment.

Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuous-record station is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

Control designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete.

Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.

Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")

Daily mean suspended-sediment concentration is the time-weighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration")

Daily-record station is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis.

Data collection platform (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.

Data logger is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems.

Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Diel is of or pertaining to a 24-hour period of time; a regular daily cycle.

Discharge, or **flow**, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).

Dissolved refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

Diversity index (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that contains a drainage system with a common outlet for its surface run-off. (See "Drainage area")

Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

Dry weight refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

Embeddedness is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class")

Enterococcus bacteria are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis*, *Streptococcus feacalis*, *Streptococcus feacalis*, *Streptococcus*

EPT Index is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) **concentration value** is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<).

Euglenoids (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment.

Fecal coliform bacteria are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fire algae (Pyrrhophyta) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

Gage values are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution.

Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

Hardness of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA web site:* http://www.co-ops.noaa.gov/tideglos.html

Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N} ,$$

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

Hydrologic index stations referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff")

Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")

Island, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events.

Laboratory reporting level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. [Note: In several previous NWQL documents (NWQL Technical Memorandum 98.07, 1998), the LRL was called the nondetection value or NDV—a term that is no longer used.]

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter.

Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation:

$$I = I_o e^{-\lambda L} ,$$

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} .$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. *See NOAA web site:*http://www.co-ops.noa.gov/tideglos.html

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

Mean high or low tide is the average of all high or low tides, respectively, over a specific period.

Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")

Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in

a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per kilogram (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.

Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture.

Minimum reporting level (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method.

Miscellaneous site, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.

Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.

Multiple-plate samplers are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")

Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")

Nekton are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.

Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.

North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks.

Open or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organic carbon (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).

Organic mass or **volatile mass** of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

Parameter code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.

Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	>0.00024 - 0.004	Sedimentation
Silt	>0.004 - 0.062	Sedimentation
Sand	>0.062 - 2.0	Sedimentation/sieve
Gravel	>2.0 - 64.0	Sieve
Cobble	>64 - 256	Manual measurement
Boulder	>256	Manual measurement

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

Percent composition or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

Percent shading is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade.

Periodic-record station is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water.

Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton")

Picocurie (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7×10^{10} radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

Pool, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Reach, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow (7Q₁₀) is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the non-exceedances of the 7Q₁₀ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the 7Q₁₀.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

Riffle, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation.

River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river.

Run, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

Sea level, as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums.

Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of pre-cipitation.

Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter.

Seven-day, 10-year low flow ($7Q_{10}$) is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval")

Shelves, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Soil heat flux (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter.

Soil-water content is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of

the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

Stage-discharge relation is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Substrate embeddedness class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment:

0 no gravel or larger substrate 3 26-50 percent 1 > 75 percent 4 5-25 percent 2 51-75 percent 5 < 5 percent

Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

Surficial bed material is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended mate-rial collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")

Suspended-sediment discharge (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft^3/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxa (Species) richness is the number of species (taxa) present in a defined area or sampling unit.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal
Phylum: Arthropoda
Class: Insecta

Order: Ephemeroptera
Family: Ephemeridae
Genus: Hexagenia

Species: Hexagenia limbata

Thalweg is the line formed by connecting points of minimum streambed elevation (deepest part of the channel).

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

Tons per acre-foot (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria")

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total organism count is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Total sediment discharge is the mass of suspended-sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Total sediment load or **total load** is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load")

Transect, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line.

Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values.

Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample.

Unconfined aquifer is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer")

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens.

Water table is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which the water table is found.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY

The USGS publishes a series of manuals titled the "Techniques of Water-Resources Investigations" that describe procedures for planning and conducting specialized work in water-resources investigations. The material in these manuals is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. Each chapter then is limited to a narrow field of the section subject matter. This publication format permits flexibility when revision or printing is required.

Manuals in the Techniques of Water-Resources Investigations series, which are listed below, are available online at http://water.usgs.gov/pubs/twri/. Printed copies are available for sale from the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (an authorized agent of the Superintendent of Documents, Government Printing Office). Please telephone "1-888-ASK-USGS" for current prices, and refer to the title, book number, section number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Other products can be viewed online at http://www.usgs.gov/sales.html, or ordered by telephone or by FAX to (303)236-4693. Order forms for FAX requests are available online at http://mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required.

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- 1–D1. Water temperature—Influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.
- 1–D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2–D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p.
- 2–D2. *Application of seismic-refraction techniques to hydrologic studies*, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p.

Section E. Subsurface Geophysical Methods

- 2–E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p.
- 2–E2. *Borehole geophysics applied to ground-water investigations*, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p.

Section F. Drilling and Sampling Methods

2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

3–A1. *General field and office procedures for indirect discharge measurements*, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p.

- 3–A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p.
- 3–A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3–A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.
- 3–A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3, chap. A5. 1967. 29 p.
- 3–A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p.
- 3–A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3–A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p.
- 3–A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p.
- 3-Alo. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. Alo. 1984. 59 p.
- 3–A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p.
- 3–A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
- 3–A13. *Computation of continuous records of streamflow*, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p.
- 3–A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p.
- 3–A15. *Computation of water-surface profiles in open channels*, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.
- 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p.
- 3–A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p.
- 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p.
- 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI book 3, chap. A21. 1995. 56 p.

Section B. Ground-Water Techniques

- 3–B1. *Aquifer-test design, observation, and data analysis,* by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p.
- 3–B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p.
- 3–B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p.
- 3–B4. *Regression modeling of ground-water flow*, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.

- 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p.
- 3–B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.
- 3–B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.
- 3–B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3–B8. *System and boundary conceptualization in ground-water flow simulation*, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

Section C. Sedimentation and Erosion Techniques

- 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 p.
- 3–C2. *Field methods for measurement of fluvial sediment*, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- 3–C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 p.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4–A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4, chap. A1. 1968. 39 p.
- 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p.
- 4–A3. *Statistical methods in water resources*, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.)

Section B. Surface Water

- 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 p.
- 4–B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p.
- 4–B3. *Regional analyses of streamflow characteristics*, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p.

Section D. Interrelated Phases of the Hydrologic Cycle

4–D1. *Computation of rate and volume of stream depletion by wells*, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5–A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5–A2. *Determination of minor elements in water by emission spectroscopy*, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.
- 5–A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.
- 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5–A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.
- 5–A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p.Section C. Sediment Analysis

5–C1. *Laboratory theory and methods for sediment analysis*, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p.

Book 6. Modeling Techniques

Section A. Ground Water

- 6–A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.
- 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p.
- 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.
- 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p.
- 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p.
- 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p.
- 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7. 2002. 77 p.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.
- 7–C2. *Computer model of two-dimensional solute transport and dispersion in ground water*, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p.
- 7–C3. *A model for simulation of flow in singular and interconnected channels*, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8–A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.
- 8–A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.

Section B. Instruments for Measurement of Discharge

8–B2. *Calibration and maintenance of vertical-axis type current meters*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9–A1. *National field manual for the collection of water-quality data: Preparations for water sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9–A2. *National field manual for the collection of water-quality data: Selection of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.
- 9–A3. *National field manual for the collection of water-quality data: Cleaning of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p.
- 9–A4. *National field manual for the collection of water-quality data: Collection of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.
- 9–A5. *National field manual for the collection of water-quality data: Processing of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9–A6. *National field manual for the collection of water-quality data: Field measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated.
- 9–A7. *National field manual for the collection of water-quality data: Biological indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9–A8. *National field manual for the collection of water-quality data: Bottom-material samples*, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p.
- 9–A9. *National field manual for the collection of water-quality data: Safety in field activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p.

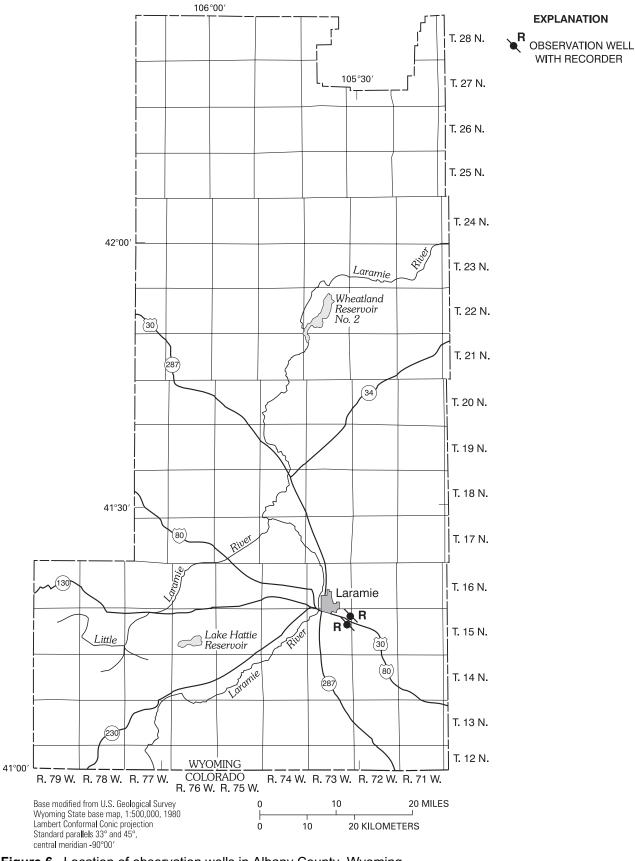


Figure 6. Location of observation wells in Albany County, Wyoming.

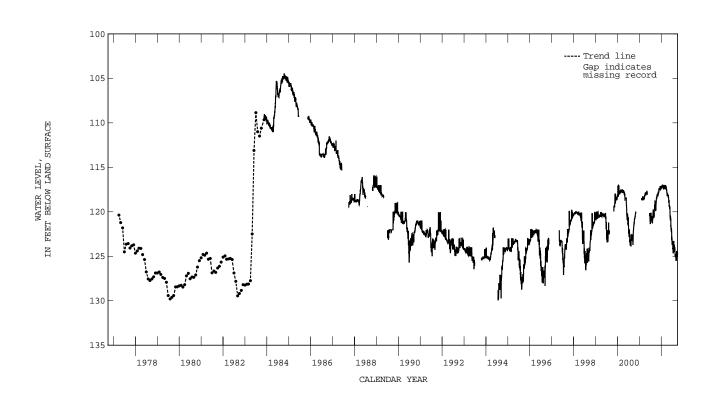
ALBANY COUNTY

IDENTIFICATION.--Station number, 411751105312701. Local number, 15-073-01dba01. Local name, Huntoon #1.

Location.--Lat 41°17'51", long 105°31'27", in NE $^{1}/_{4}$ NW $^{1}/_{4}$ Sec.1, T.15 N., R.73 W., Hydrologic Unit 10180010.

Aquifer. -- Casper Formation.

WELL CHARACTERISTICS.--Depth of well, 182 ft below land surface.


DATUM.--Elevation of land surface is 6,500 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 0.9 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 104.45 ft below land surface, Oct. 17, 1984; lowest, 129.95 ft below land surface, July 22, 1994.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	119.24	118.16	117.40	117.32	117.22	117.28	117.89	118.73	120.56	123.42	124.24	125.20
10	118.79	117.97	117.22	117.31	117.50	117.35	118.09	118.81	121.69	123.61	123.94	124.75
15	118.58	117.84	117.12	117.06	117.35	117.25	117.97	119.40	121.80	124.16	124.37	124.59
20	118.22	117.71	117.35	116.96	117.18	117.41	118.09	119.67	122.04	124.16	124.86	124.78
25	118.18	117.37	117.43	117.15	117.23	117.35	118.35	119.63	122.82	123.50	125.04	124.91
EOM	117.95	117.34	117.25	117.08	117.11	117.63	118.33	120.71	123.33	124.52	124.94	124.59
MAX	117.95	117.34	117.12	116.96	117.02	116.99	117.59	118.35	120.56	123.28	123.85	124.46
MIN	119.79	118.27	117.59	117.35	117.50	117.63	118.37	120.71	123.34	124.66	125.13	125.49

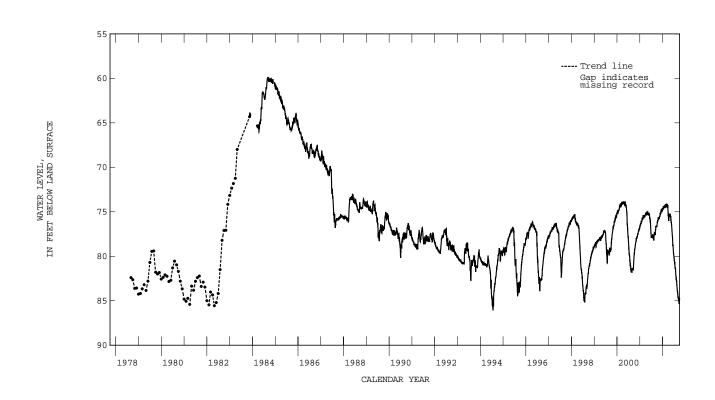
ALBANY COUNTY--Continued

IDENTIFICATION.--Station number, 411703105314001. Local number, 15-073-12dbb01. Local name, Huntoon #2.

LOCATION.--Lat 41°17'03", long 105°31'40", in NW $^{1}/_{4}$ NW $^{1}/_{4}$ Sec.12, T.15 N., R.73 W., Hydrologic Unit 10180010.

AQUIFER. -- Casper Formation.

WELL CHARACTERISTICS. -- Depth of well, 243 ft below land surface.


DATUM.--Elevation of land surface is 6,500 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.30 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 59.84 ft below land surface, Sept. 7, 1984; lowest, 86.08 ft below land surface, July 24, 1994.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	76.38 76.22 76.10 75.88 75.90 75.60	75.66 75.60 75.57 75.39 75.16 75.05	75.00 74.77 74.75 74.80 74.84 74.71	74.72 74.68 74.44 74.36 74.52 74.47	74.43 74.56 74.41 74.33 74.32 74.13	74.29 74.35 74.35 74.52 74.38 75.30	75.80 75.86 75.33 75.36 75.41 75.28	75.56 75.55 75.90 76.24 76.47 77.23	77.59 78.16 78.75 79.18 79.71 79.95	80.36 80.53 80.90 81.31 81.42 82.07	82.37 82.69 83.04 83.42 83.82 84.08	84.59 84.66 84.91 85.11 85.16 84.69
MAX MIN	75.60 75.60 76.57	75.05 75.05 75.83	74.71 74.59 75.25	74.47 74.31 74.75	74.13 74.13 74.56	74.07 75.30	75.20 75.04	75.25 77.23	79.95 77.20 79.95	80.03 82.07	82.19 84.08	84.28 85.35

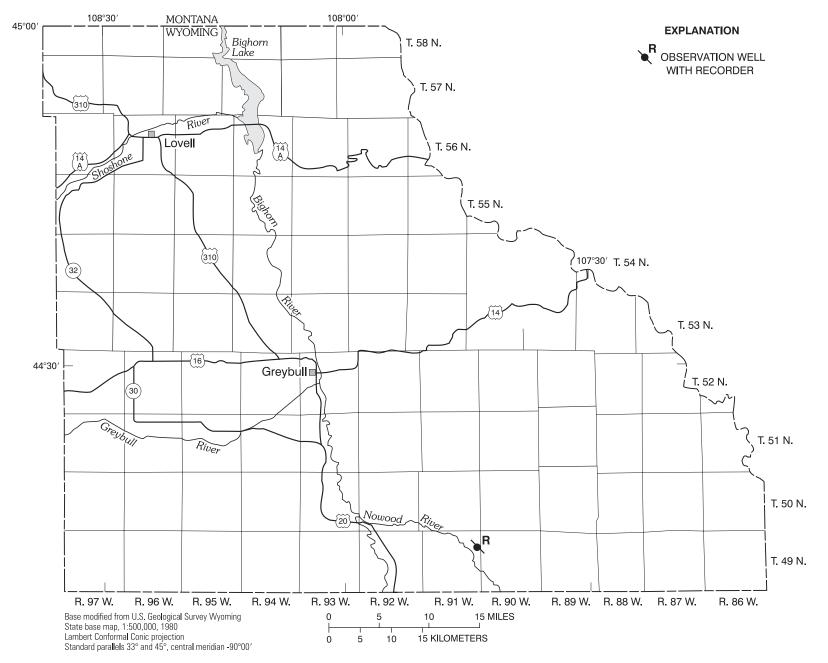


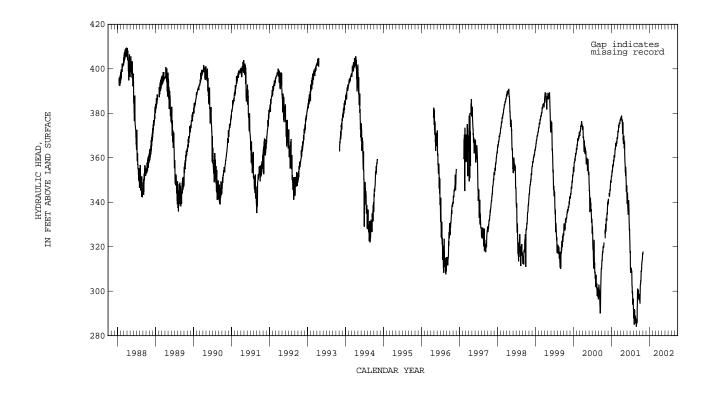
Figure 7. Location of observation well in Big Horn County, Wyoming.

BIG HORN COUNTY

IDENTIFICATION.--Station number, 441351107434701. Local number, 49-091-12dba01. Local name, Worland-1.

LOCATION.--Lat $44^{\circ}13^{\circ}53^{\circ}$, long $107^{\circ}43^{\circ}41^{\circ}$, in NE $^{1}/_{4}$ NW $^{1}/_{4}$ SE $^{1}/_{4}$ sec.12, T.49 N., R.91 W., Hydrologic Unit 10080008.

AQUIFER. -- Madison Limestone.


WELL CHARACTERISTICS. -- Depth of well, 2,730 ft below land surface.

DATUM.--Elevation of land surface is 4,421.7 ft above NGVD of 1929, from levels.

REMARKS.--Shut-in pressure was measured by pressure transducer and converted to hydraulic head above land surface for illustration purposes. Hydraulic head, in feet above land surface, was calculated by multiplying the shut-in pressure in pounds per square inch by 2.31. The accuracy of the hydraulic head measurements is 5.0 ft. Data collected by U.S. Geological Survey. Water levels not available at time of publication.

PERIOD OF RECORD. -- 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest hydraulic head, 409.50 ft above land surface, Mar. 26, 1988; lowest, 284.02 ft above land surface, Aug. 29, 2001.

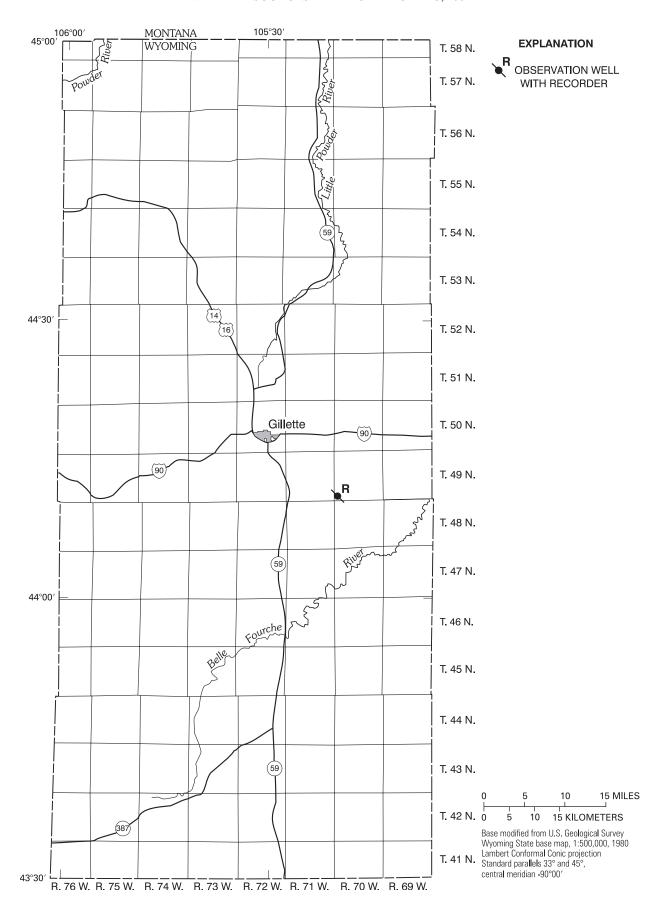


Figure 8. Location of observation well in Campbell County, Wyoming.

CAMPBELL COUNTY--Continued

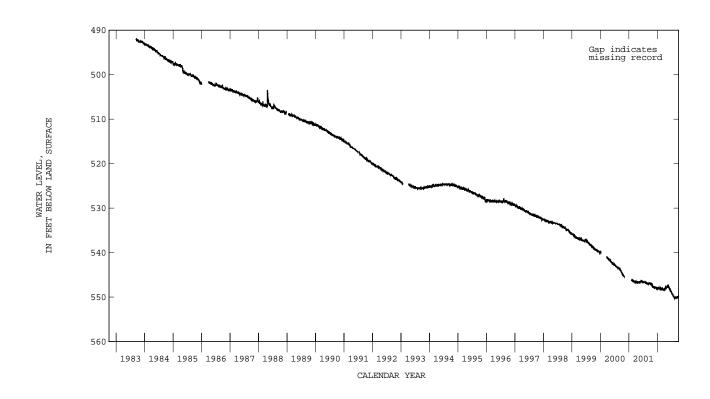
IDENTIFICATION.-- Station number, 441117105192901. Local number, 49-070-31bbb01. Local name, Hampshire-1.

 $\texttt{LOCATION.--Lat } \ 44^{\circ}11^{\circ}17^{\circ}, \ \log \ 105^{\circ}19^{\circ}29^{\circ}, \ \text{in } \ NW^{1}/_{4} \ NW^{1}/_{4} \ \sec .31, \ T.49 \ N., \ R.70 \ W., \ Hydrologic \ Unit \ 10120201.$

AQUIFER. -- Fox Hills Formation.

WELL CHARACTERISTICS. -- Depth of well, 3,750 ft below land surface.

DATUM.--Elevation of land surface is 4,620 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.60 ft above land surface.


REMARKS.--Because of the extreme depths to water and well construction, the accuracy of water-level measurements is 4.0 ft.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 491.98 ft below land surface, Sept. 17, 1983; lowest, 550.43 ft below land surface, Aug. 17, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	547.03	547.63	547.89	548.18	548.14	548.16	548.19	547.68	548.11	549.03	550.12	550.04
10	547.00	547.76	547.72	548.19	548.12	548.24	548.14	547.72	548.12	549.49	550.24	550.23
15	547.34	547.86	547.98	548.05	548.33	548.30	547.68	547.56	548.48	549.36	550.22	550.06
20	547.24	547.71	547.85	547.83	548.14	548.34	548.05	547.57	548.66	549.56	550.04	549.86
25	547.55	547.96	548.05	547.96	548.50	548.39	548.01	547.71	548.87	549.80	550.22	550.07
EOM	547.25	547.82	548.14	548.19	548.09	548.11	547.84	547.97	548.90	549.85	550.15	549.71
MAX	547.55	548.14	548.20	548.19	548.50	548.56	548.44	547.97	548.90	549.86	550.30	550.23
MIN	546.83	547.50	547.63	547.79	547.91	548.00	547.68	547.28	547.86	548.91	549.97	549.71

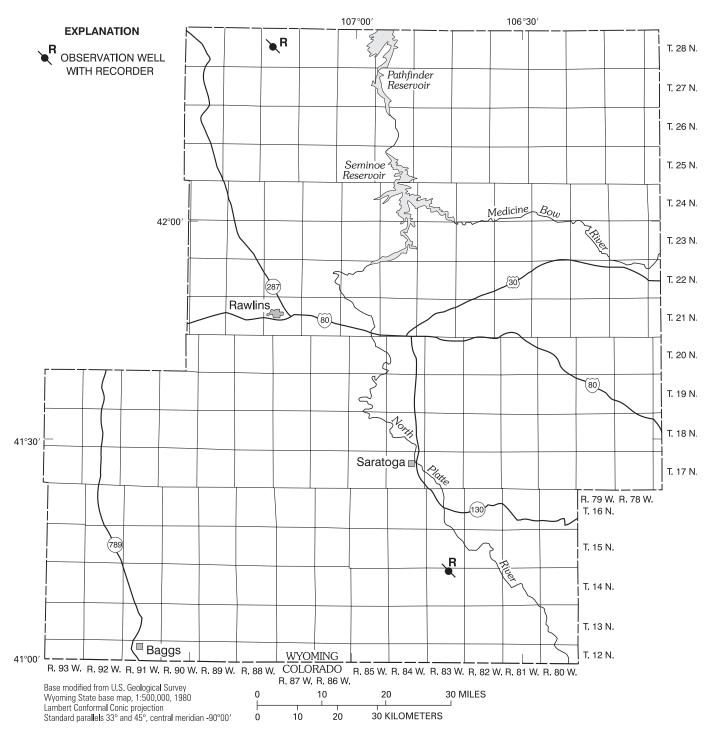


Figure 9. Location of observation wells in Carbon County, Wyoming.

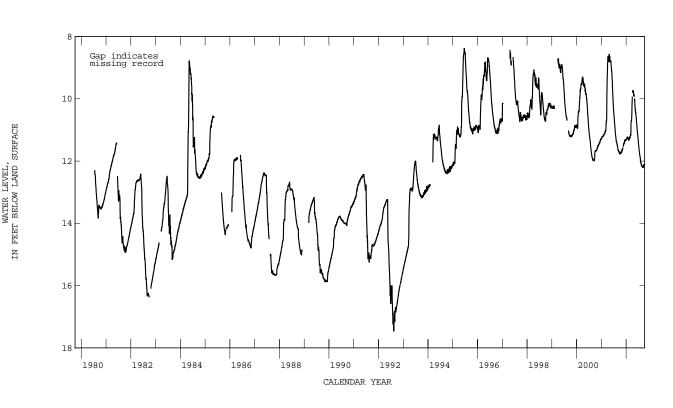
CARBON COUNTY

IDENTIFICATION.--Station number, 411234106424601. Local number, 14-083-03cab01. Local name, Helmer South.

 $\texttt{LOCATION.--Lat } 41^{\circ}12'34", \ \texttt{long } 106^{\circ}42'46", \ \texttt{in } \texttt{NW}^{1}/_{4} \ \texttt{NE}^{1}/_{4} \ \texttt{SW}^{1}/_{4} \ \texttt{sec.3, T.14 N., R.83 W., Hydrologic Unit } 10180002.$

AQUIFER. -- Browns Park Formation (formerly North Park Formation).

WELL CHARACTERISTICS. -- Depth of well, 58 ft below land surface.


DATUM.--Elevation of land surface is 7,245 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 5.40 ft below land surface.

REMARKS.--Data collected by U.S. Geological Survey.

PERIOD OF RECORD. -- 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.37 ft below land surface, June 20, 1995; lowest, 17.47 ft below land surface, Aug. 13, 1992.

		DEPIR	I BETOM TH	IND SURFAC		MAXIMUM V		BER 2001	IO SEPIEN	BER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	11.77 11.77 11.76 11.71 11.72 11.62	11.63 11.59 11.51 11.43 11.42	11.40 11.34 11.32 11.31 11.33	11.32 11.29 11.23 11.23 11.27	11.28 11.35 11.30 11.27 11.22 11.20	11.18 11.14 10.75 10.70 10.50	9.80 9.74 9.74 9.80 9.89 9.90	10.03 10.19 10.33 10.45 10.54 10.65	10.82 10.94 11.06 11.16 11.27 11.40	11.51 11.63 11.72 11.81 11.86 11.97	12.05 12.09 12.14 12.15 12.17 12.19	12.20 12.21 12.14 12.13 12.12
MAX	11.62 11.78	11.42 11.67	11.29 11.44	11.23 11.32	11.20 11.35	10.01	9.74	9.92 10.65	10.69 11.40	11.42 11.97	11.99 12.19	12.11

CARBON COUNTY--Continued

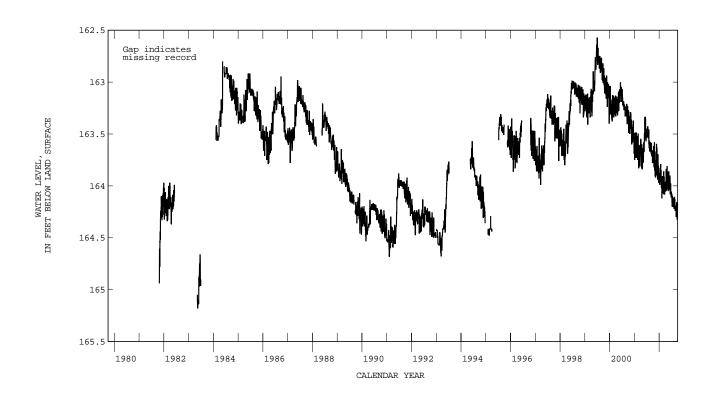
IDENTIFICATION.--Station number, 422338107145001. Local number, 28-087-16cca01. Local name, Split Rock #2.

 $\texttt{LOCATION.--Lat } \ 42^{\circ}23'38", \ \texttt{long } \ 107^{\circ}14'50", \ \texttt{in } \ \texttt{NE}^{1}/_{4} \ \texttt{SW}^{1}/_{4} \ \texttt{sec.} 16, \ \texttt{T.28 N, R.87 W., Hydrologic Unit } \ 10180006.$

AQUIFER. -- White River Formation (formerly Arikaree Formation).

WELL CHARACTERISTICS. -- Depth of well, 812 ft below land surface.

DATUM.--Elevation of land surface is 6,000 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.95 ft above land surface.


REMARKS.--The record from a twenty-day pumping test conducted in September and October 1981 is not shown on the hydrograph.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 162.57 ft below land surface, July 3, 1999; lowest, 182.66 ft below land surface, Oct. 16, 1981, affected by pumping test.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	163.75 163.67 163.71 163.72 163.75 163.67	163.84 163.87 163.81 163.82 163.63 163.64	163.75 163.74 163.70 163.87 163.97 163.92	163.95 163.95 163.88 163.82 163.96 163.93	164.02 164.12 164.02 163.95 163.98 163.94	164.01 164.08 163.92 164.02 163.99 164.02	164.05 164.03 163.84 164.02 163.97 163.90	163.94 163.97 163.96 163.98 163.96 164.03	164.04 163.91 164.07 164.04 164.10	164.08 164.19 164.10 164.12 164.20 164.15	164.19 164.11 164.13 164.24 164.21	164.23 164.30 164.29 164.20 164.27 164.19
MAX MIN	163.58 163.85	163.60 163.92	163.70 163.97	163.79 163.99	163.91 164.12	163.86 164.08	163.81 164.05	163.86 164.05	163.90 164.11	164.08 164.20	164.11 164.24	164.16 164.32

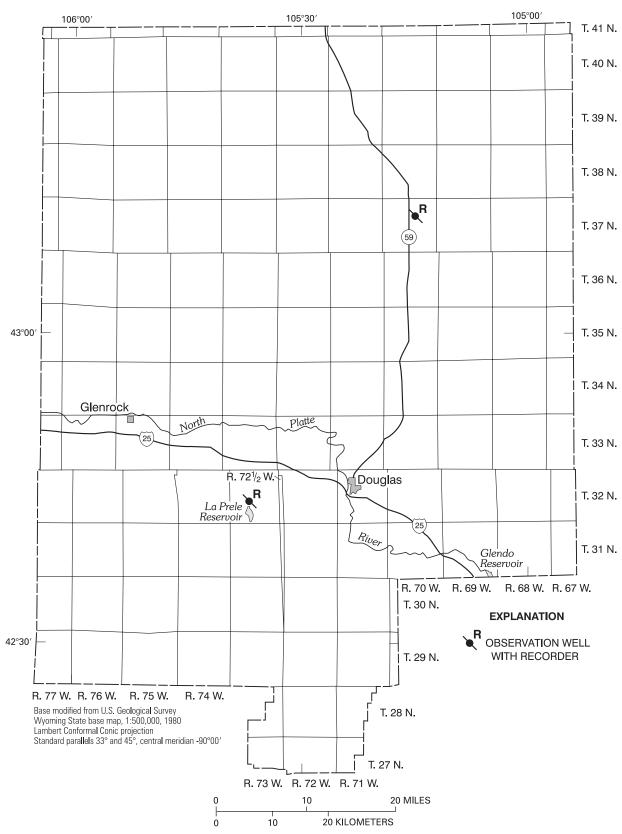


Figure 10. Location of observation wells in Converse County, Wyoming.

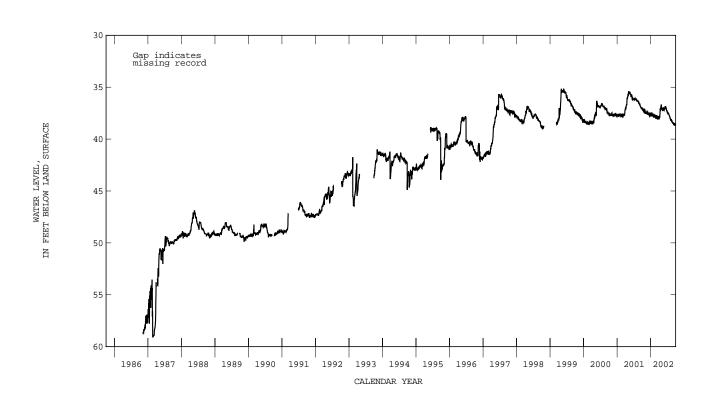
CONVERSE COUNTY

IDENTIFICATION.-- Station number, 424420105364201. Local number, 32-073-16cdb01. Local name, Natural Bridge East.

 $\texttt{LOCATION.--Lat } \ 42^{\circ}44^{\circ}20^{\circ}, \ \log \ 105^{\circ}36^{\circ}42^{\circ}, \ \text{in } \ NW^{1}/_{4} \ \text{SE}^{1}/_{4} \ \text{SW}^{1}/_{4} \ \text{sec.} 16, \ \text{T.} 32 \ \text{N., R.} 73 \ \text{W., Hydrologic Unit } \ 10180007.$

AQUIFER. -- Casper Formation.

WELL CHARACTERISTICS.--Depth of well, 220 ft below land surface.


DATUM.--Elevation of land surface is 5,316.4 ft above NGVD of 1929, from levels. Measuring point: top of casing, 1.70 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 35.19 ft below land surface, May 3, 4, 1999; lowest, 59.12 ft below land surface , Feb. 21, 1987.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	37.20 37.23 37.41 37.25 37.45 37.14	37.37 37.44 37.47 37.44 37.39 37.44	37.56 37.49 37.56 37.66 37.79	37.70 37.76 37.62 37.58 37.70 37.84	37.79 37.88 37.92 37.82 38.03	37.81 37.85 37.97 37.98 37.99	37.90 37.79 37.08 36.99 36.82 36.91	37.14 37.17 37.07 37.15 37.17 37.10	37.05 36.93 36.96 37.14 37.29 37.34	37.41 37.61 37.52 37.65 37.80 37.95	38.10 38.15 38.18 38.20 38.36 38.46	38.52 38.63 38.63 38.55 38.68 38.59
MAX MIN	37.04 37.46	37.25 37.64	37.44 37.83	37.43 37.84	37.65 38.03	37.69 38.10	36.67 38.11	36.94 37.30	36.81 37.34	37.35 37.96	37.98 38.46	38.42 38.68

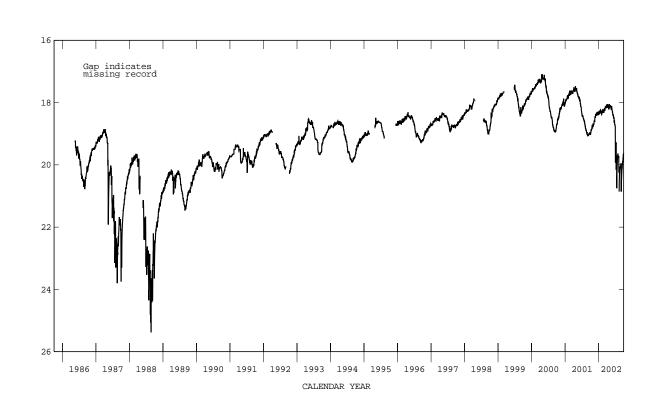
CONVERSE COUNTY--Continued

IDENTIFICATION.--Station number, 431140105151901. Local number, 37-070-10cbb01. Local name, Bill #6.

 $\texttt{LOCATION.--Lat } \ 43^{\circ}11^{\circ}40^{\circ}, \ \log \ 105^{\circ}15^{\circ}19^{\circ}, \ \text{in } \ N\text{W}^{1}/_{4} \ N\text{W}^{1}/_{4} \ \text{Sec.}10, \ \textbf{T.37 N., R.70 W., Hydrologic Unit } \ 10120105.$

AQUIFER. -- Wasatch Formation.

WELL CHARACTERISTICS.--Depth of well, 268 ft below land surface.


DATUM.--Elevation of land surface is 4,720 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 0.40 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 17.09 ft below land surface, Apr. 23, 25, 2000; lowest, 25.38 ft below land surface, Aug. 31, 1988.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10	19.00 18.92	18.69 18.67	18.41 18.34	18.37 18.37	18.35 18.32	18.22 18.22	18.12 18.11	18.10 18.11	18.40 18.44	19.55 19.28	19.73	20.68 20.27
15	18.90	18.60	18.34	18.30	18.30	18.15	18.08	18.12	18.50	19.71	20.38	20.05
20	18.81	18.52	18.35	18.24	18.26	18.14	18.17	18.20	18.64	20.23	20.05	19.88
25	18.82	18.45	18.39	18.31	18.33	18.14	18.17	18.21	18.70	19.81	20.08	19.77
EOM	18.67	18.39	18.32	18.36	18.22	18.09	18.12	18.31	18.76	19.66	19.97	19.63
MAX	18.67	18.36	18.29	18.24	18.22	18.07	18.05	18.09	18.31	18.77	19.71	19.63
MIN	19.04	18.77	18.42	18.39	18.38	18.28	18.22	18.31	18.76	20.75	20.86	20.86

WATER LEVEL, IN FEET BELOW LAND SURFACE

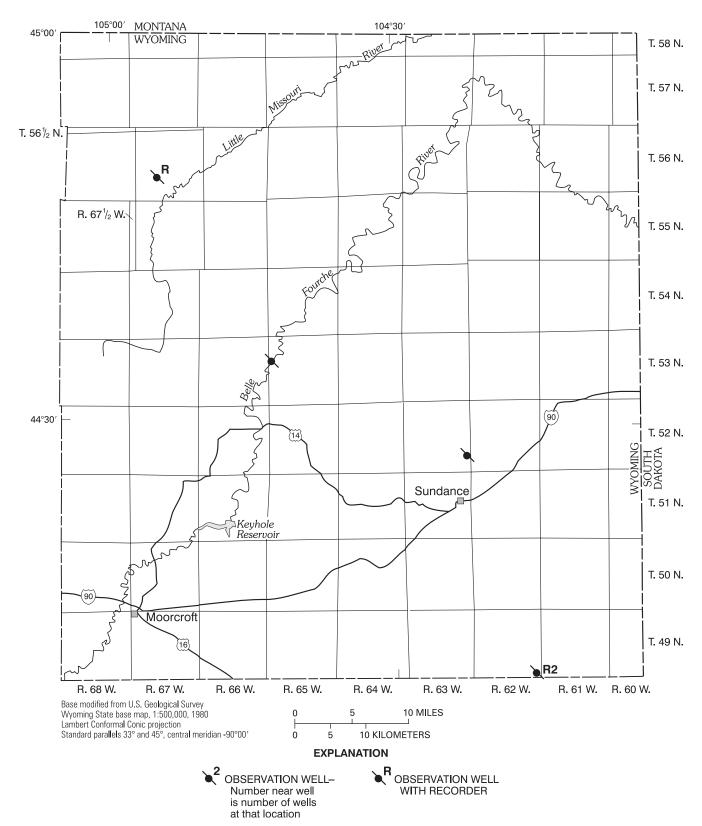


Figure 11. Location of observation wells in Crook County, Wyoming.

CROOK COUNTY

IDENTIFICATION.--Station number, 441113104151001. Local number, 49-062-36cbb01. Local name, Inyan Kara Mountain CCMOW6.

 $\texttt{LOCATION.--Lat } \ 44^{\circ}11'13", \ \texttt{long } \ 104^{\circ}15'10", \ \texttt{in } \ \texttt{NW}^{1}/_{4} \ \texttt{NW}^{1}/_{4} \ \texttt{sec.} 36, \ \texttt{T.49 N., R.62 W., Hydrologic Unit } \ 101202011.$

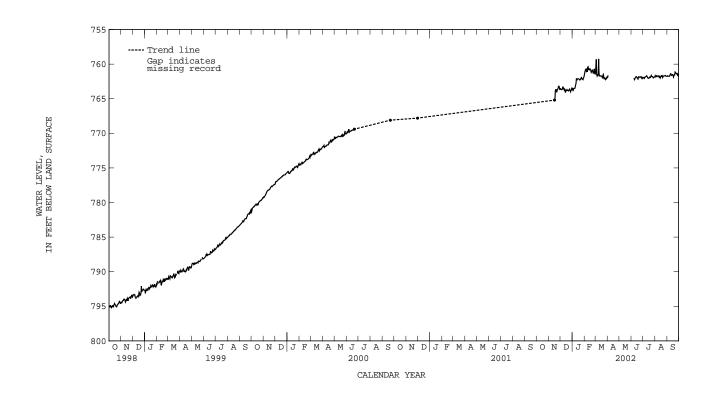
AQUIFER. -- Madison Formation.

WELL CHARACTERISTICS. -- Depth of well, 1,280 ft below land surface.

DATUM.--Elevation of land surface is 5,403 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 0.60 ft

REMARKS.--This well was included in the cooperative program between the Wyoming State Engineer's Office and the U.S. Geological Survey cooperative program on Oct. 1, 1997. Data prior to Oct. 1, 1997 is available from the Wyoming State Engineer's Office.

COOPERATION.--Data collected by the Wyoming State Engineer's Office and compiled and reviewed by U.S. Geological Survey.


PERIOD OF RECORD. -- 1994 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 768.10 ft below land surface, from hand-measured data, Sept. 21, 2000; lowest, 840.05* ft below land surface, Apr. 22, 1995.

			1	DAILY MAXIM	IUM VALUES					
NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEI
	763.68	763.50	760.62	761.68				761.93	761.81	761.7
	763.62	762.81	760.37	761.30			762.11	761.68	761.74	761.38
	763 75	762 12	760 68	761 68			761 93	762 05	761 87	761 50

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5			763.68	763.50	760.62	761.68				761.93	761.81	761.75
-												
10			763.62	762.81	760.37	761.30			762.11	761.68	761.74	761.38
15			763.75	762.12	760.68	761.68			761.93	762.05	761.87	761.50
20		763.68	763.81	762.30	760.99	761.62			761.81	761.93	761.93	761.56
25		763.50	763.75	762.05	760.99	761.99			761.81	761.81	761.69	761.38
EOM		763.56	763.68	761.68	761.43	761.87			761.93	761.87	761.75	761.44
MAX		763.18	763.31	761.68	760.37	759.24	761.68		761.81	761.62	761.63	761.13
MIN		765.20	764.12	763.75	761.43	762.24	761.93		762.24	762.05	761.99	761.87

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

CROOK COUNTY--Continued

IDENTIFICATION.--Station number, 441113104151002. Local number, 49-062-36cbb02. Local name, Inyan Kara Mountain CCMOW6A.

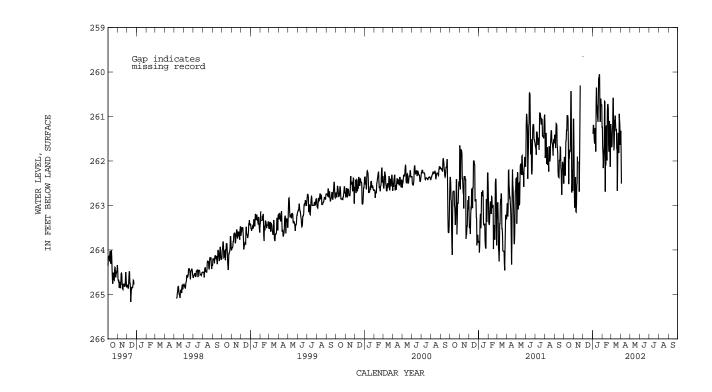
 $\texttt{LOCATION.--Lat } \ 44^{\circ}11'13", \ \texttt{long } \ 104^{\circ}15'10", \ \texttt{in } \ \texttt{NW}^{1}/_{4} \ \texttt{NW}^{1}/_{4} \ \texttt{sec.} 36, \ \texttt{T.49 N., R.62 W., Hydrologic Unit } \ 101202011.$

AQUIFER. -- Minnelusa Formation.

WELL CHARACTERISTICS. -- Depth of well, 500 ft below land surface.

DATUM.--Elevation of land surface is 5,403 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 0.90 ft

REMARKS.--This well was included in the Wyoming State Engineer's Office/U.S. Geological Survey cooperative program on Oct. 1, 1997. Data prior to Oct. 1, 1997 is available from the Wyoming State Engineer's Office.


COOPERATION.--Data collected by the Wyoming State Engineer's Office and compiled and reviewed by U.S. Geological Survey.

PERIOD OF RECORD. -- 1995 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 261.94 ft below land surface, Sept. 9, 2000; lowest, 267.30* ft below land surface, Mar. 1, 1995.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	262.33	262.52		261.34	262.00	261.28						
10	261.31	262.97		261.48	262.69	261.76						
15	261.65			260.78	261.72	261.12						
20	261.76	261.94		260.14	260.83	261.74						
25	261.65			261.12	261.73	261.73						
EOM	261.06	259.65		261.24	261.17	261.53						
MAX	260.44	259.65		260.06	260.66	260.59	261.32					
MIN	262.71	263.15		261.79	262.69	262.67	262.51					

LOWEST 425.48 APR 03, 2002 AUG 20, 2002

CROOK COUNTY--Continued

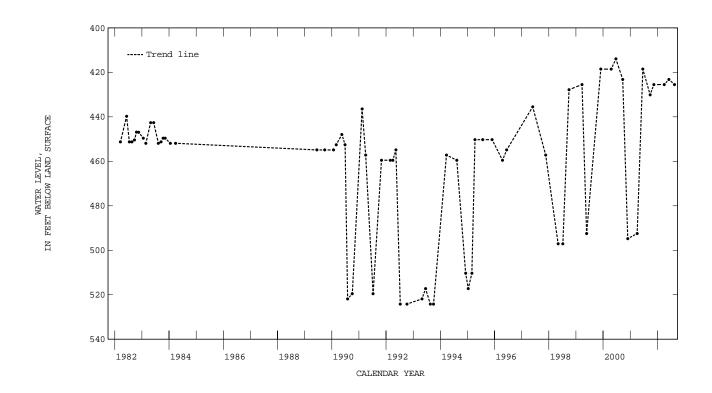
IDENTIFICATION.--Station number, 442739104214601. Local number, 52-063-25dcd01. Local name, Cole #3A.

 $\texttt{LOCATION.--Lat } \ 44^{\circ}27^{\circ}39^{\circ}\text{, long } 104^{\circ}21^{\circ}46^{\circ}\text{, in } \text{SE}^{1}/_{4} \ \text{SW}^{1}/_{4} \ \text{Se}^{1}/_{4} \ \text{sec. } 25\text{, T.52 N., R.63 W., Hydrologic Unit } 101202033.$

AQUIFER. -- Madison Limestone.

WELL CHARACTERISTICS.--Depth of well, 1,120 ft below land surface.

DATUM.--Elevation of land surface is 4,740 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 2.0 ft above land surface.


REMARKS.--Data reflect static and pumping water levels.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD. -- 1982 to 1984, 1989 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 413.93 ft below land surface, June 21, 2000; lowest, 524.19 ft below land surface, July 10, Oct. 7, 1992, Aug. 18, Oct. 1, 1993.

WATER LEVELS IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	ATER EVEL DATE	WATER LEVEL		ATER EVEL D	DATE	WATER LEVEL	
NOV 14 425	5.48 APR 03	425.48	JUN 04 423	3.17 AU	JG 20	425.48	
WATER YEAR 2002 HIGH	EST 423.17 JU	JN 04, 2002	LOWEST	425.48 AP	PR 03,	2002 AUG	20, 2

CROOK COUNTY--Continued

IDENTIFICATION.--Station number, 443453104425602. Local number, 53-065-18bbd02. Local name, Park Service.

 $\texttt{LOCATION.--44°34'53", long } 104°42'56", in \texttt{SE}^{1}/_{4} \texttt{NW}^{1}/_{4} \texttt{sec.18, T.53 N., R.65 W., Hydrologic Unit 10120201. }$

AQUIFER. -- Madison (Pahasapa) Limestone.

WELL CHARACTERISTICS. -- Depth of well, 1,340 ft below land surface.

DATUM.--Elevation of land surface is 3,865 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 2.3 ft above land surface.


REMARKS.--After 1982, some water levels were measured while well was being pumped or recently after the well was pumped.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1962 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.90 ft below land surface, Sept. 1, 1976; lowest, 97.24 ft below land surface (well being pumped), Dec. 8, 1993.

WATER LEVELS IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		WAT			
NOV 14	16.39	APR 03	23.32	JUN 05	46.42	AUG 21	L	21.	01		
WATER VE	2002 אַבּי	HIGHEST	16 39	NOV 14	2002	LOWEST	23	32	ΔPR	nα	2002

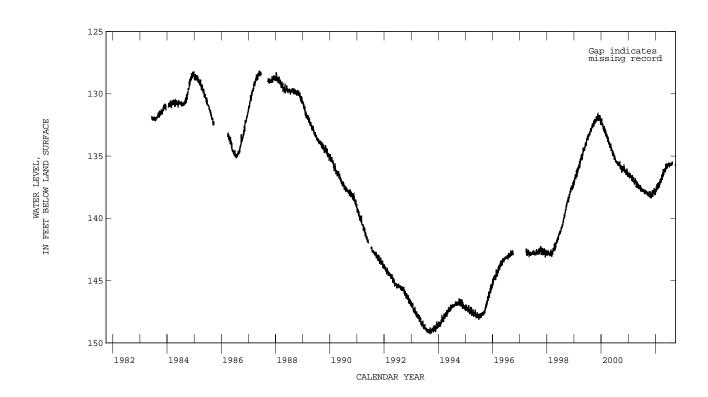
CROOK COUNTY--Continued

IDENTIFICATION.--Station number, 444854104534502. Local number, 56-067-28aab02. Local name, Cole #41 Minnelusa.

 $\texttt{LOCATION.--Lat } \ 44^{\circ}48^{\circ}54^{\circ}, \ \texttt{long } \ 104^{\circ}53^{\circ}45^{\circ}, \ \texttt{in } \ \texttt{NW}^{1}/_{4} \ \texttt{NE}^{1}/_{4} \ \texttt{Sec.} 28, \ \texttt{T.56 N., R.67 W., Hydrologic Unit } \ 10110201.$

AQUIFER. -- Minnelusa Formation.

WELL CHARACTERISTICS. -- Depth of well, 2,230 ft below land surface.


DATUM.--Elevation of land surface is 4,500 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.20 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 128.18 ft below land surface, May 25-28, 31, 1987; lowest, 149.25 ft below land surface, Sept. 28, 1993.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
138	1.17	138.15	137.90	137.90	137.47	136.99	136.58	136.11	135.86	135.59	135.67	
138	.05	138.22	137.83	137.89	137.50	136.96	136.55	136.16	135.71	135.91	135.62	
138	.32	138.16	137.70	137.70	137.45	136.95	136.05	135.99	135.85	135.60	135.66	
138	1.10	138.08	137.81	137.36	137.20	136.90	136.45	135.98	135.83	135.64		
138	.27	137.95	138.06	137.43	137.52	136.84	136.43	135.95	135.82	135.68		
137	.84	137.81	137.97	137.57	137.03	136.50	136.25	135.96	135.60	135.56		135.63
	.82	137.74	137.56	137.28	137.03	136.50	136.05	135.66	135.56	135.54	135.44	135.61
138	1.34	138.41	138.09	138.12	137.62	137.32	136.90	136.31	135.99	135.91	135.77	135.81

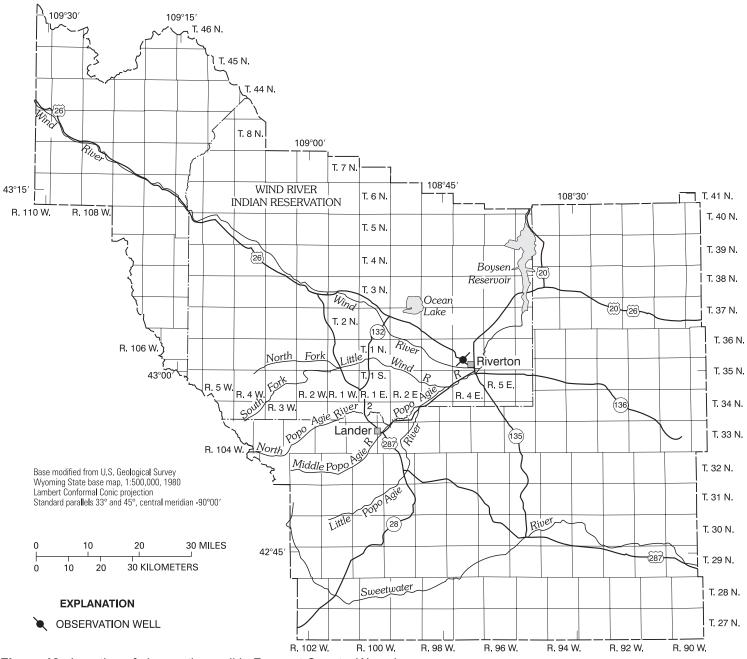


Figure 12. Location of observation well in Fremont County, Wyoming.

FREMONT COUNTY

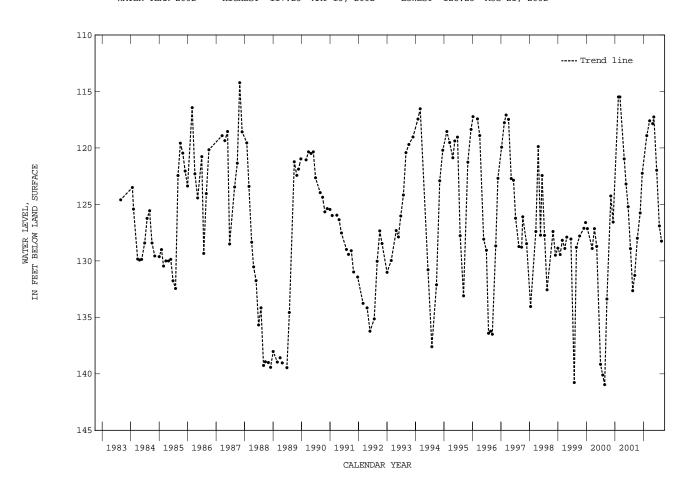
IDENTIFICATION.--Station number, 430205108243201. Local number, 1N-4E-28acc01. Local name, Brentwood.

 $\texttt{LOCATION.--Lat } \ 43^{\circ}02''05", \ \texttt{long } \ 108^{\circ}24''32", \ \texttt{in } \ \texttt{SW}^{1}/_{4} \ \texttt{NE}^{1}/_{4} \ \texttt{sec.28}, \ \texttt{T.1 N., R.4 E., Hydrologic Unit } \ 10080001.$

AQUIFER. -- Wind River Formation.

WELL CHARACTERISTICS. -- Depth of well, 440 ft below land surface.

DATUM.--Elevation of land surface is 5,050 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.0 ft above land surface.


REMARKS.--Data collected by U.S. Geological Survey.

PERIOD OF RECORD. -- 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 114.22 ft below land surface, Oct. 30, 1987; lowest, 140.96 ft below land-surface, Aug. 22, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15 NOV 20			122.24 118.92		117.59 117.85		117.25 121.97	JUL 24 AUG 21	
WATE	R YEAR 2002	HTG	HEST 117 2	5 MAY 1	5. 2002	LOWEST	128 25	ATTG 21. 20	0.2

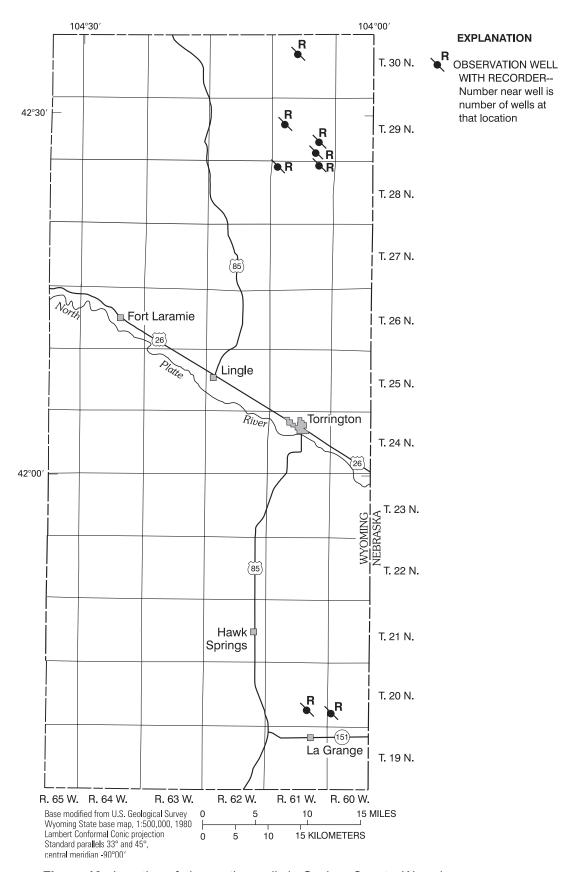


Figure 13. Location of observation wells in Goshen County, Wyoming.

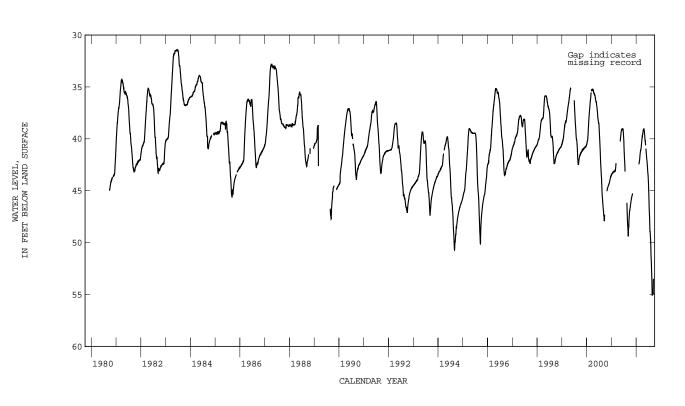
GOSHEN COUNTY

IDENTIFICATION.--Station number, 414049104074501. Local number, 20-060-30bbb01. Local name, LaGrange #2.

 $\texttt{LOCATION.--Lat } 41^{\circ}40^{\circ}49^{\circ}, \ \log \ 104^{\circ}07^{\circ}45^{\circ}, \ \text{in } N\text{W}^{1}/_{4} \ N\text{W}^{1}/_{4} \ \text{Nec.}30 \ \text{T.20 N., R.60 W., Hydrologic Unit } 10180012.$

AQUIFER. -- Brule Formation.

WELL CHARACTERISTICS. -- Depth of well, 70 ft below land surface.


DATUM.--Elevation of land surface is 4,530 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.00 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 31.40 ft below land surface, June 18-21, 1983; lowest, 55.42 ft below land surface, Aug. 26 and Sept. 1, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	46.58	45.37				41.19	39.59	39.54	41.92	45.07	50.48	54.73
10	46.32				42.46	41.05	39.42	40.00	42.19	46.28	51.50	54.18
15	46.12				42.26	40.87	39.18	40.23	42.60	47.26	52.44	
20	45.89				42.05	40.55	39.11	40.62	43.15	48.29	53.67	
25	45.71				41.69	40.17	39.08	41.00	43.48	48.91	55.13	
EOM	45.49				41.44	39.81	39.24	41.47	44.13	49.55		
MAX	45.49	45.26			41.44	39.81	39.06	39.31	41.57	44.27	49.71	53.49
MIN	46.77	45.48			42.46	41.40	39.75	41.47	44.13	49.55	55.13	54.98

GOSHEN COUNTY--Continued

IDENTIFICATION.--Station number, 414051104100701. Local number, 20-061-23ccc01. Local name, Curt Meier.

 $\text{LOCATION.--Lat } 41^{\circ}40^{\circ}51^{\circ}\text{, long } 104^{\circ}10^{\circ}07^{\circ}\text{, in } \text{SW}^{1}/_{4} \text{ SW}^{1}/_{4} \text{ sec. 23, T.20 N., R.61 W., Hydrologic Unit } 10180012.$

AQUIFER. -- Alluvium.

WELL CHARACTERISTICS.--Depth of well, 82.0 ft below land surface.

DATUM.--Elevation of land surface is 4,506 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.00 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1972 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 9.89 ft below land surface, May 19, 1987; lowest, 32.59 ft below land surface, from hand-measured data, Sept. 18, 1978.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5		17.19	16.83		16.51	16.15	15.75	15.40				
10		17.09			16.41	16.12	15.54	15.44				
15		16.92		16.71	16.35	16.06	15.38	15.37				
20		16.88		16.60	16.32	16.03	15.37	15.41				
25		16.83		16.55	16.26	16.00	15.40	15.48				
EOM	17.22	16.83		16.54	16.25	15.92	15.38					
MAX	17.22	16.83	16.82	16.54	16.25	15.92	15.37	15.37				
MIN	17.22	17.22	16.83	16.72	16.54	16.23	15.88	15.48				

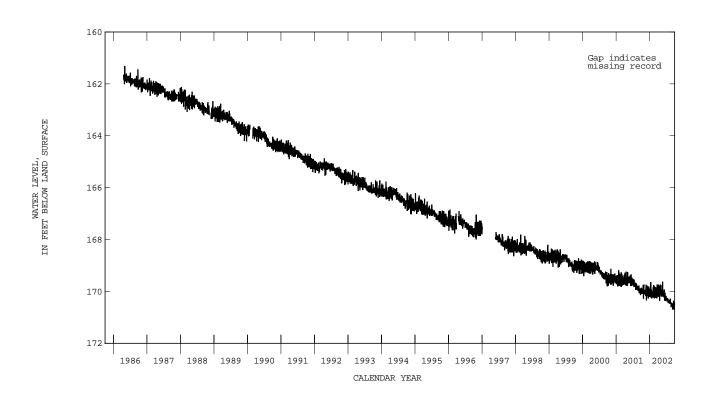
GOSHEN COUNTY--Continued

IDENTIFICATION.--Station number, 422519104095101. Local number, 28-061-02ccd01. Local name, Prairie Center #6.

LOCATION.--Lat 42°25'19", long 104°09'51", in $\mathrm{SE}^{1}/_{4}$ $\mathrm{SW}^{1}/_{4}$ sec. 2, T.28 N., R.61 W., Hydrologic Unit 10180009.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 255 ft below land surface.


DATUM.--Elevation of land surface is 4,795 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.70 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 161.31 ft below land surface, May 4, 1986; lowest, 170.90 ft below land surface, Sept. 22, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	170.08 170.00 170.08 170.01 170.27 169.74	169.96 170.06 170.08 169.95 170.10 169.79	169.99 169.89 169.90 170.11 170.16	170.13 170.11 170.08 169.94 170.08 170.19	170.04 170.23 170.13 170.10 170.17 169.84	169.98 170.03 170.13 170.16 170.13 169.96	170.05 170.12 169.81 170.06 170.04 169.98	170.07 170.03 169.78 170.01 170.13	170.20 170.01 170.17 170.37 170.26 170.19	170.28 170.38 170.27 170.35 170.39	170.47 170.41 170.30 170.43 170.54 170.51	170.53 170.70 170.63 170.57 170.48 170.53
MAX MIN	169.74 170.28	169.76 170.34	169.80 170.27	169.66 170.27	169.76 170.27	169.73 170.27	169.75 170.36	169.62 170.20	169.94 170.37	170.27 170.45	170.30 170.59	170.38 170.70

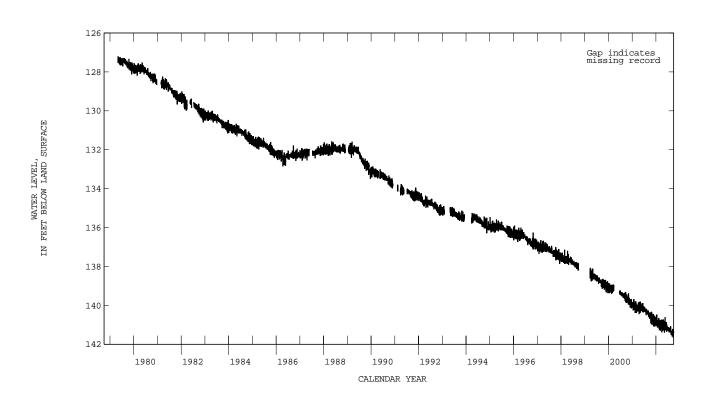
GOSHEN COUNTY--Continued

IDENTIFICATION.--Station number, 422512104135501. Local number, 28-061-06aba01. Local name, Goshen County #2.

 $\texttt{LOCATION.--Lat } \ 42^{\circ}25'12", \ \texttt{long } \ 104^{\circ}13'55", \ \texttt{in } \ \texttt{NE}^{1}/_{4} \ \texttt{NE}^{1}/_{4} \ \texttt{sec. 6, T.28 N., R.61 W., Hydrologic Unit } \ 10180009.$

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 220 ft below land surface.


DATUM.--Elevation of land surface is 4,765 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.60 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 127.23 ft below land surface, May 4, 1979; lowest, 141.89 ft below land surface, Sept. 21, 22, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

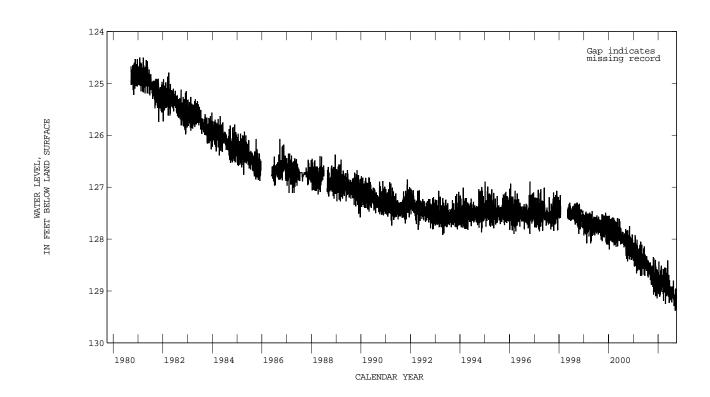
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	140.58	140.60	140.73	140.98	140.94	140.92	140.95	141.05	141.11	141.22	141.30	141.41
10	140.68	140.74	140.69	141.05	141.04	140.93	141.07	141.05	141.06	141.32	141.20	141.51
15	140.93	140.84	140.70	140.85	141.13	141.20	140.79	140.92	141.07	141.22	141.15	141.45
20	140.57	140.64	140.94	140.78	141.07	141.12	141.02	141.00	141.28	141.25	141.28	141.38
25	140.96	140.79	140.95	140.93	141.26	141.14	141.00	141.12	141.25	141.29	141.37	141.45
EOM	140.37	140.59	140.94	141.10	140.76	140.89	140.95	141.13	141.19	141.22	141.41	141.38
MAX	140.33	140.44	140.52	140.47	140.65	140.74	140.72	140.61	140.86	141.12	141.07	141.21
MIN	140.96	141.08	141.09	141.14	141.26	141.30	141.38	141.40	141.35	141.38	141.52	141.65

GOSHEN COUNTY--Continued

IDENTIFICATION.--Station number, 422928104121401. Local number, 29-061-17aad01. Local name, Prairie Center #4.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 220 ft below land surface.


DATUM.--Elevation of land surface is 4,790 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.90 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 124.50 ft below land surface, Jan. 24, Mar. 20, 1981; lowest, 129.63 ft below land surface, Sept. 21, 22, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	128.75	128.68	128.77	128.95	128.85	128.72	128.86	128.93	129.04	128.98	129.11	129.18
10	128.77	128.81	128.60	128.93	128.99	128.92	128.92	128.94	128.80	129.18	129.00	129.38
15	128.92	128.87	128.64	128.83	128.89	128.93	128.56	128.66	128.97	128.95	128.81	129.28
20	128.68	128.70	128.89	128.69	128.81	129.00	129.13	128.91	129.17	129.03	129.04	129.17
25	129.07	128.83	128.96	128.90	128.91	128.83	128.92	129.01	129.09	129.06	129.17	129.17
EOM	128.37	128.54	128.95	129.05	128.72	128.76	128.80	129.00	128.92	129.00	129.14	129.14
MAX	128.35	128.41	128.58	128.44	128.52	128.58	128.55	128.41	128.70	128.92	128.80	128.96
MIN	129.07	129.10	129.14	129.11	129.07	129.19	129.25	129.10	129.23	129.22	129.29	129.38

GOSHEN COUNTY--Continued

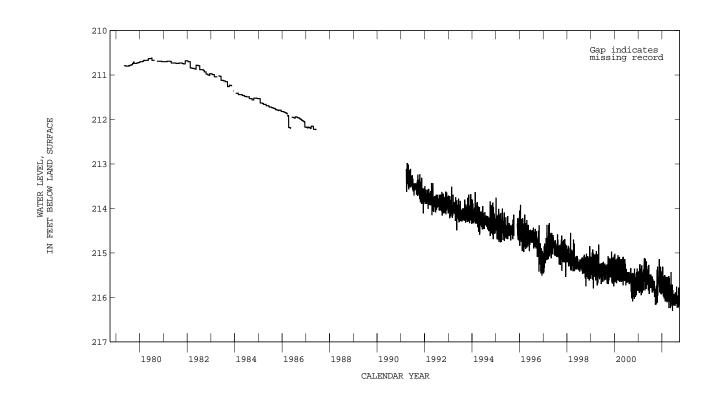
IDENTIFICATION.--Station number, 422849104090801. Local number, 29-061-23abb01. Local name, Goshen County #1.

LOCATION.--Lat $42^{\circ}28^{\circ}49^{\circ}$, long $104^{\circ}09^{\circ}08^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ Sec. 23, T.29 N., R.61 W., Hydrologic Unit 10180009.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 300 ft below land surface.

DATUM.--Elevation of land surface is 4,870 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.00 ft above land surface.


REMARKS.--Well was slug tested by instantaneous recharge on June 12, 1987 to test well's connection with aquifer. Water level did not recover properly, so it was redeveloped in March 1991.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 198.29 ft below land surface, affected by slug test; lowest, 216.56 ft below land surface, Mar. 21, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10	215.87 216.14	215.60	215.57 215.34	215.83 215.91	215.80 215.95	215.74 215.84	215.88 215.93	215.95 215.96	216.04 215.87	216.03 216.18	216.07 215.97	216.04 216.22
15	215.83	215.65	215.45	215.68	215.95	216.01	215.53	215.77	216.00	215.97	215.88	216.10
20	216.12	215.48	215.70	215.54	215.84	216.00	215.96	215.92	216.18	216.01	215.95	215.97
25	215.34	215.56	215.82	215.81	216.05	215.97	215.95	216.03	216.12	216.06	216.08	216.06
EOM	215.62	215.37	215.80	215.97	215.57	215.77	215.83	216.01	216.01	215.97	216.08	215.94
MAX MIN	215.31 216.14	215.14 215.89	215.31 215.93	215.31 215.98	215.50 216.09	215.54 216.11	215.52 216.24	215.43 216.24	215.71 216.30	215.89 216.19	215.76 216.23	215.78 216.22

GOSHEN COUNTY--Continued

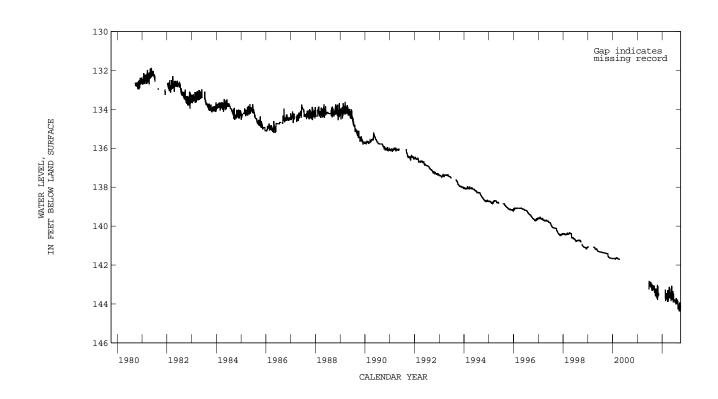
IDENTIFICATION.--Station number, 422730104094801. Local number, 29-061-26cbb01. Local name, Prairie Center #3.

LOCATION.--Lat $42^{\circ}27^{\circ}30^{\circ}$, long $104^{\circ}09^{\circ}48^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ Sec. 26, T.29 N., R.61 W., Hydrologic Unit 10180009.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS. -- Depth of well, 200 ft below land surface.

DATUM.--Elevation of land surface is 4,770 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.50 ft above land surface.


REMARKS.--Considerable seepage of sediment into the well in combination with a falling water level caused the well to go dry in April 2000.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 131.89 ft below land surface, May 15, 16, 1981; lowest, 144.69 ft below land surface, Sept. 21, 22, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	143.47								143.81	143.81	143.92	144.16
10	143.50	143.57					143.60	143.55	143.41	143.94	143.85	144.38
15	143.72				143.72		143.14	143.38		143.80	143.80	144.25
20	143.38				143.54	143.73		143.53	143.85	143.82	143.96	144.12
25	143.80				143.80			143.63	143.83	143.87	144.15	144.29
EOM	143.08					143.46	143.43	143.62	143.79	143.82	144.16	144.13
MAX	143.02	143.26			143.26	143.28	143.14	143.07	143.33	143.70	143.80	143.94
MTN	143.80	143.60			143.86	143.89	143.87	143.86	143.93	144.02	144.27	144.38

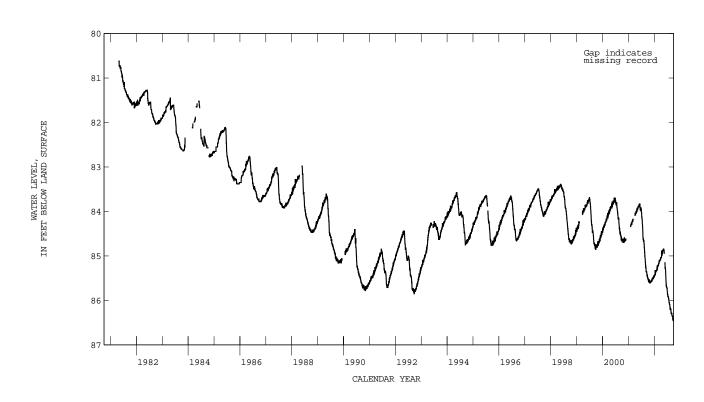
GOSHEN COUNTY--Continued

IDENTIFICATION.--Station number, 423549104120901. Local number, 30-061-09bbb01. Local name, Prairie Center #5.

 $\texttt{LOCATION.--Lat } \ 42^{\circ}35^{\circ}49^{\circ}, \ \texttt{long } \ 104^{\circ}12^{\circ}09^{\circ}, \ \texttt{in } \ \texttt{NW}^{1}/_{4} \ \texttt{NW}^{1}/_{4} \ \texttt{Sec. } 9 , \ \texttt{T.30 N., R.61 W., Hydrologic Unit } \ 101800099.$

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 220 ft below land surface.


DATUM.--Elevation of land surface is 4,850 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.60 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 80.61 ft below land surface, May 1, 1981; lowest, 86.46 ft below land surface, Sept. 23-30, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	85.52	85.57	85.53	85.44	85.31	85.17	85.04	84.89	85.27	85.82	86.09	86.30
10	85.56	85.59	85.50	85.43	85.26	85.12	85.03	84.87	85.37	85.87	86.14	86.35
15	85.59	85.58	85.49	85.37	85.28	85.13	84.93	84.85	85.56	85.91	86.21	86.36
20	85.54	85.58	85.47	85.34	85.23	85.11	84.99	84.94	85.69	85.93	86.19	86.44
25	85.59	85.56	85.46	85.32	85.21	85.08	84.93		85.71	85.98	86.26	86.45
EOM	85.56	85.54	85.46	85.34	85.20	85.04	84.89	85.15	85.73	86.05	86.30	86.46
MAX	85.49	85.53	85.44	85.32	85.20	85.04	84.88	84.84	85.20	85.73	86.05	86.28
MIN	85.61	85.61	85.55	85.46	85.33	85.22	85.05	85.15	85.73	86.05	86.30	86.46

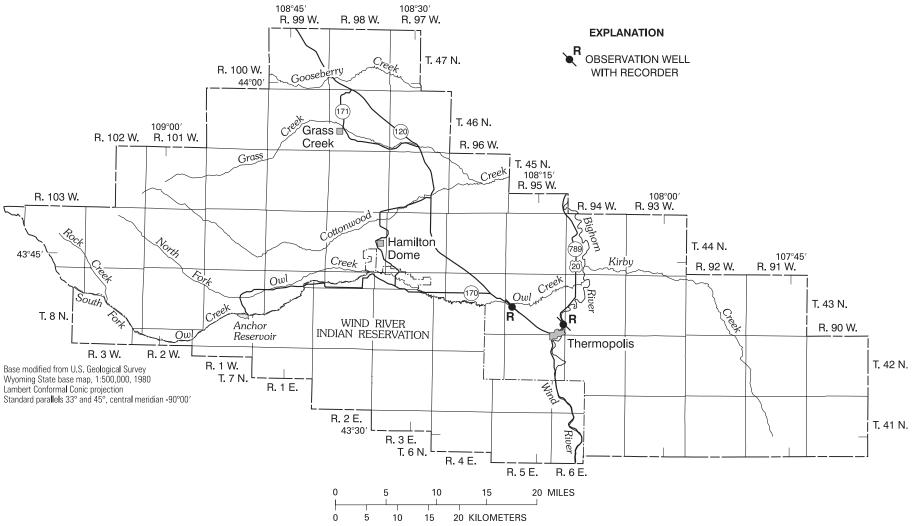


Figure 14. Location of observation wells in Hot Springs County, Wyoming.

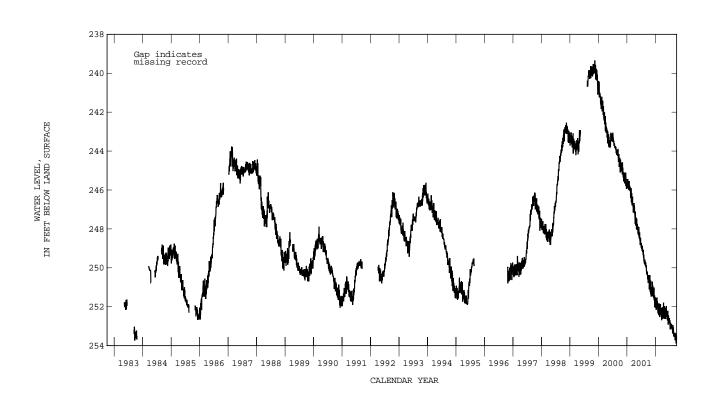
HOT SPRINGS COUNTY

IDENTIFICATION.--Station number, 434136108183301. Local number, 43-095-18cab01. Local name, Thermopolis GTW-1.

 $\texttt{LOCATION.--Lat } \ 43^{\circ}41'36", \ \texttt{long } \ 108^{\circ}18'33", \ \texttt{in } \ \texttt{NW}^{1}/_{4} \ \texttt{NE}^{1}/_{4} \ \texttt{SW}^{1}/_{4} \ \texttt{sec.} 18, \ \texttt{T.43 N., } \ \texttt{R.95 W., } \ \texttt{Hydrologic Unit } \ \texttt{10080007.}$

AQUIFER. -- Ten Sleep Sandstone.

WELL CHARACTERISTICS. -- Depth of well, 354 ft below land surface.


DATUM.--Elevation of land surface is 4,700 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.40 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 239.34 ft below land surface, Nov. 16, 1999; lowest, 253.89 ft below land surface, Sept. 25, 26, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	250.72 250.72 251.11 250.79 251.17 250.65	251.05 251.22 251.18 251.14 250.92 250.94	251.23 251.16 251.08 251.50 251.99 251.85	252.02 252.13 251.92 251.65 251.90 252.16	252.18 252.30 252.38 252.08 252.53 252.00	252.04 252.18 252.27 252.35 252.39 252.19	252.21 252.33 251.79 252.33 252.38 252.15	252.23 252.33 252.29 252.17 252.44 252.46	252.55 252.50 252.71 252.74 252.86 252.72	252.71 253.16 252.84 253.00 253.10 252.98	253.15 253.15 253.10 253.38 253.45	253.46 253.70 253.61 253.54 253.85 253.53
MAX MIN	250.37 251.23	250.71 251.48	251.01 252.02	251.52 252.16	251.83 252.53	251.87 252.69	251.79 252.63	251.96 252.63	252.21 252.92	252.68 253.16	252.94 253.54	253.34 253.88

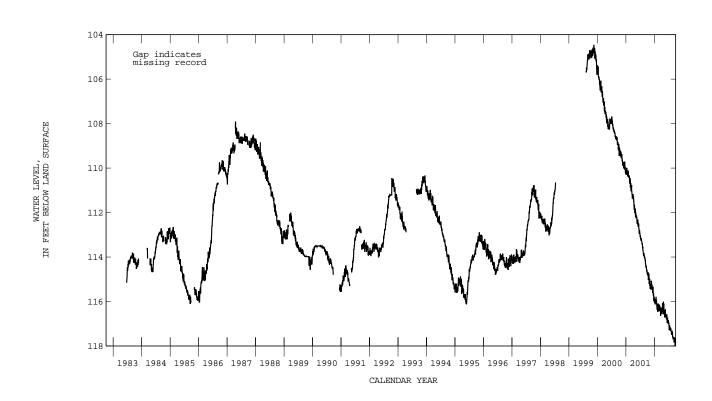
HOT SPRINGS COUNTY--Continued

IDENTIFICATION.--Station number, 433933108121901. Local number, 43-095-25cdc01. Local name, Thermopolis GTW-3.

 $\texttt{LOCATION.--Lat 43^{\circ}39^{\circ}33^{\circ}, \ long \ 108^{\circ}12^{\circ}19^{\circ}, \ in \ SW}^{1}/_{4} \ SE}^{1}/_{4} \ SW}^{1}/_{4} \ sec. 25, \ T. 43 \ N., \ R. 95 \ W., \ Hydrologic \ Unit \ 10080007. }$

AQUIFER.--Phosphoria Formation (formerly identified as Park City Formation).

WELL CHARACTERISTICS. -- Depth of well, 228 ft below land surface.


DATUM.--Elevation of land surface is 4,700 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.60 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 104.46 ft below land surface, Nov. 17, 1999; lowest, 118.06 ft below land surface, Sept. 23, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	114.83 114.82 115.03 114.92 115.08 114.97	115.22 115.36 115.28 115.36 115.13 115.26	115.36 115.45 115.35 115.67 115.98 115.95	116.04 116.10 116.00 115.87 116.05 116.18	116.32 116.37 116.37 116.17 116.41 116.28	116.26 116.34 116.31 116.42 116.41 116.38	116.43 116.39 116.08 116.45 116.50 116.40	116.45 116.56 116.56 116.51 116.64 116.69	116.76 116.68 116.92 116.89 116.99 116.89	116.97 117.29 117.08 117.18 117.28 117.22	117.42 117.39 117.38 117.59 117.63	117.66 117.84 117.82 117.74 118.00 117.83
MAX MIN	114.68 115.21	115.00 115.47	115.28 115.98	115.79 116.18	116.09 116.46	116.14 116.64	116.00 116.57	116.09 116.71	116.58 116.99	116.92 117.29	117.27 117.68	117.60 118.00

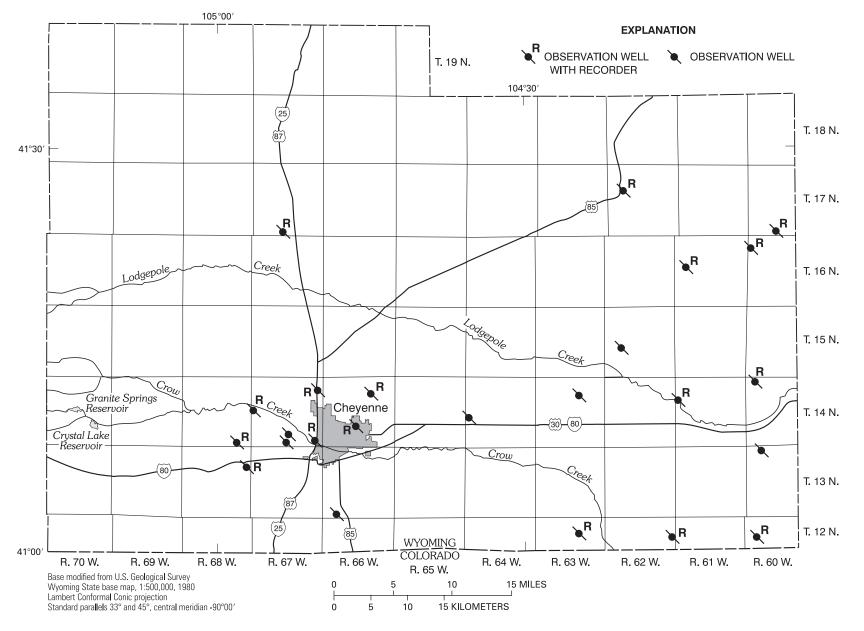


Figure 15. Location of observation wells in Laramie County, Wyoming.

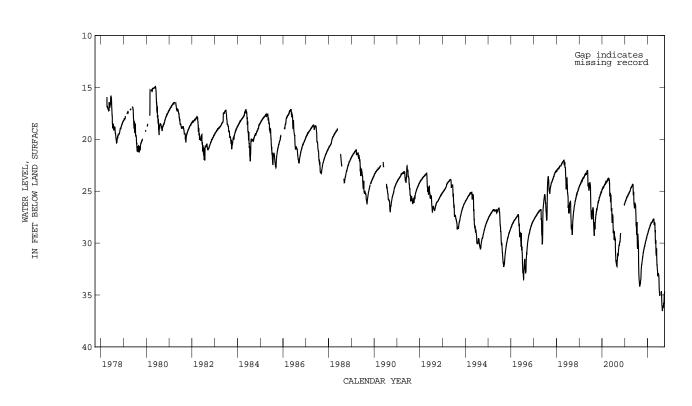
LARAMIE COUNTY

IDENTIFICATION.--Station number, 410059104072401. Local number, 12-060-07ddd01. Local name, Laramie County #1.

 $\texttt{LOCATION.--Lat } \ 41^{\circ}00^{\circ}59^{"}, \ \log \ 104^{\circ}07^{\circ}24^{"}, \ \text{in } \ \text{SE}^{1}/_{4} \ \text{SE}^{1}/_{4} \ \text{sec.7, T.12 N., R.60 W., Hydrologic Unit } \ 10190015.$

AQUIFER. -- Brule Formation.

WELL CHARACTERISTICS. -- Depth of well, 120 ft below land surface.


DATUM.--Elevation of land surface is 5,176 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.70 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.90 ft below land surface, May 24, 25, 1980; lowest, 36.63 ft below land surface, Aug. 26, 27, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	31.77 31.53 31.33 31.09 30.88 30.62	30.51 30.39 30.28 30.13 29.99 29.85	29.75 29.58 29.50 29.38 29.25 29.15	29.05 28.95 28.81 28.67 28.63 28.54	28.44 28.38 28.24 28.16 28.10 28.04	28.02 28.01 27.95 27.93 27.82 27.77	27.75 27.68 28.08 28.11 28.12 28.96	29.77 29.77 30.90 31.12 30.60 32.16	32.48 32.93 33.12 32.95 32.96 33.21	34.20 34.78 	34.67 35.50 36.05 36.51 36.25	36.15 36.14 35.79 35.65 34.96 34.64
MAX MIN	30.62 31.91	29.85 30.62	29.15 29.85	28.54 29.15	28.04 28.53	27.77 28.04	27.68 28.96	28.74 32.16	32.05 33.21	33.33 35.10	34.67 36.55	34.64 36.25

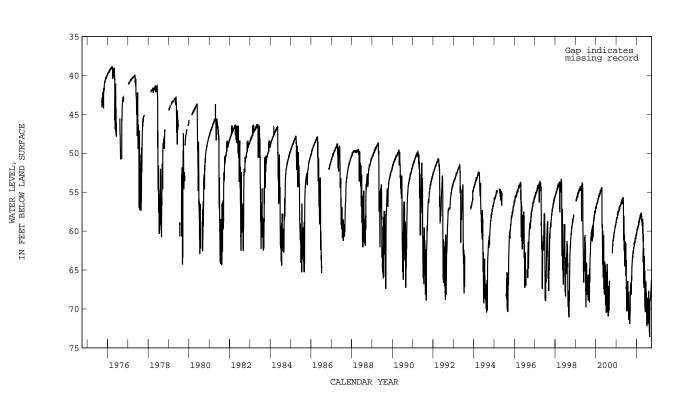
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 410100104160301. Local number, 12-062-13baa01. Local name, USGS southeast of Carpenter.

 $\texttt{LOCATION.--Lat } \ 41^{\circ}01'00', \ long \ 104^{\circ}16'03'', \ in \ NE^{1}/_{4} \ NE^{1}/_{4} \ NE^{1}/_{4} \ sec. 13, \ T.12 \ N., \ R.62 \ W., \ Hydrologic \ Unit \ 10190009.$

AQUIFER. -- Terrace deposits.

WELL CHARACTERISTICS.--Depth of well, 198 ft below land surface datum.


DATUM.--Elevation of land surface is 5,315 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.70 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 38.53 ft below land surface, from hand-measured data, May 19, 1975; lowest, 73.68 ft below land surface, Aug. 26, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	65.77	62.56	61.25	60.33	59.26	58.31	58.04	62.41	66.56	71.37	69.66	68.78
10	65.20	62.40	60.94	60.12	59.26	58.22	58.41	62.18	69.98	72.21	69.55	68.78
15	64.37	62.20	60.78	59.79	58.94	58.18	59.34	65.92	67.68	69.50	70.74	68.08
20	63.63	61.82	60.88	59.52	58.75	58.13	58.60	63.84	67.53	68.62	72.11	67.38
25	63.47	61.61	60.69	59.58	58.64	57.94	58.99	65.08	67.92	71.83	73.60	66.75
EOM	62.57	61.33	60.46	59.45	58.29	58.10	60.94	68.02	70.04	68.98	68.99	66.31
MAX	62.57	61.33	60.35	59.32	58.29	57.64	58.03	60.40	66.35	68.52	67.73	66.29
MIN	67.25	62.93	61.57	60.48	59.47	58.54	61.34	68.02	70.41	72.21	73.60	68.90

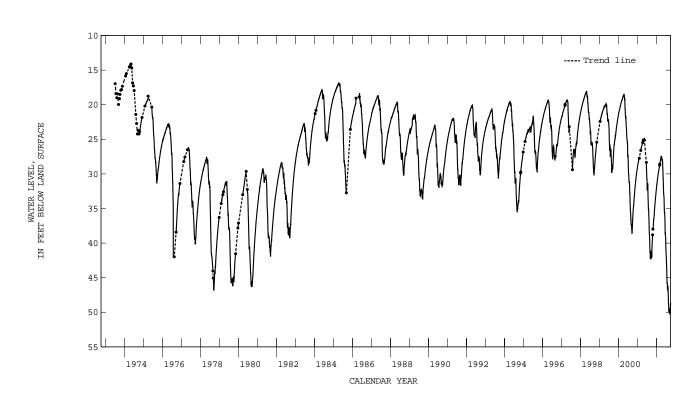
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 410111104223102. Local number, 12-063-15aaa02. Local name, USGS southwest of Carpenter.

 $\texttt{LOCATION.--Lat } \ 41^{\circ}00^{\circ}59^{\circ}, \ \log \ 104^{\circ}24^{\circ}32^{\circ}, \ \text{in NE}^{1}/_{4} \ \text{NE}^{1}/_{4} \ \text{NE}^{1}/_{4} \ \text{sec.}15, \ \textbf{T.}12 \ \textbf{N., R.}63 \ \textbf{W., Hydrologic Unit } \ 101900099.$

AQUIFER. -- Brule Formation.

WELL CHARACTERISTICS.--Depth of well, 110 ft below land surface.


DATUM.--Elevation of land surface is 5,385 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.50 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.12 ft below land surface, May 1, 2, 1974; lowest, 50.12 ft below land surface, Sept. 7-9, 18-20, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25	41.21 40.14 39.45 38.80	37.01 36.48 36.26 35.69 35.15	34.24 33.79 33.39 32.99 32.59	31.77 31.51 31.13 30.80 30.51	29.92 29.72 29.50 29.25 29.04	28.42 28.23 28.03 27.80	27.44 27.54 27.92 28.08 27.96	29.54 30.62 31.86 32.87 33.23	35.56 36.07 37.52 38.60 39.04	41.39 42.04 43.25 44.61 45.85	46.70 46.21 47.29 48.49 49.43	49.94 50.08 50.07 50.08 49.39
EOM	37.68	34.68	32.13	30.22	28.87	27.66	28.51	34.72	40.22	46.33	49.54	48.58
MAX MIN	37.68 42.05	34.68 37.58	32.13 34.60	30.22 32.06	28.87 30.15	27.61 28.86	27.41 28.51	28.93 34.72	34.96 40.22	40.56 46.33	46.21 49.91	48.58 50.12

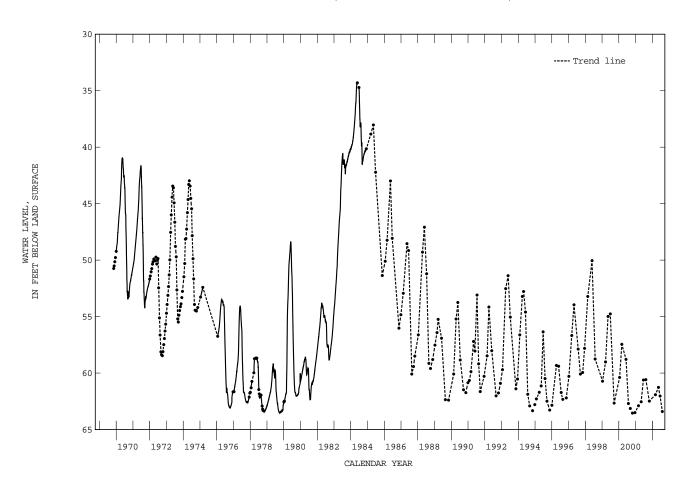
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 410703104071201. Local number, 13-060-05ccb01. Local name, Elmer Glantz.

 $\texttt{LOCATION.--Lat } \ 41^{\circ}07^{\circ}03^{\circ}\text{, long } 104^{\circ}07^{\circ}12^{\circ}\text{, in } NW^{1}/_{4} \ SW^{1}/_{4} \ Sw^{1}/_{4} \ sec.5\text{, T.13 N., R.60 W., Hydrologic Unit } 10190015\text{.}$

AQUIFER. -- Brule Formation.

WELL CHARACTERISTICS.--Depth of well, 100 ft below land surface.


DATUM.--Elevation of land surface is 5,125 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, at land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1969 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 34.18 ft below land surface, May 20, 1984; lowest, 63.52 ft below land surface, Oct. 9, 12, 13, 1979.

WATER LEVELS IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	62.48	MAR 08	61.92	MAY 13	61.27	JUN 17	62.03	AUG 07	63.40
WATER YE	AR 2002	HIGHEST	61.27	MAY 13, 2	2002	LOWEST 63	.40 AUG	07, 2002	

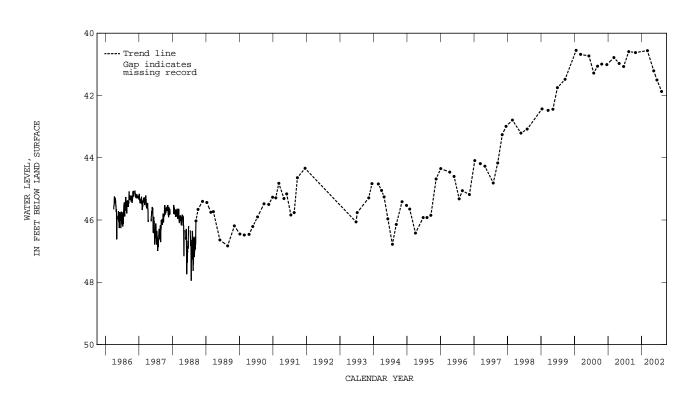
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 410324104481701. Local number, 13-066-32bbd01. Local name, Laramie County #14.

 $\texttt{LOCATION.--Lat } 41^{\circ}03'24", \texttt{ long } 104^{\circ}48'17", \texttt{ in } \mathtt{SE}^{1}/_{4} \mathtt{NW}^{1}/_{4} \mathtt{sec.} 32, \texttt{ T.13 N., R.66 W., Hydrologic Unit } 10190009. \\$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS.--Depth of well, 160 ft below land surface.


DATUM.--Elevation of land surface is 6,180 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.3 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 40.55 ft below land surface, from hand-measured data, Jan. 18, 2000; lowest, 47.95 ft below land surface, July 23, 1988.

WATER LEVELS IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	40.62	MAR 05	40.56	MAY 13	41.21	JUN 17	41.50	AUG 07	41.87
WATER YE	AR 2002	HIGHEST	40.56	MAR 05,	2002	LOWEST 41	.87 AUG	07, 2002	

LARAMIE COUNTY--Continued

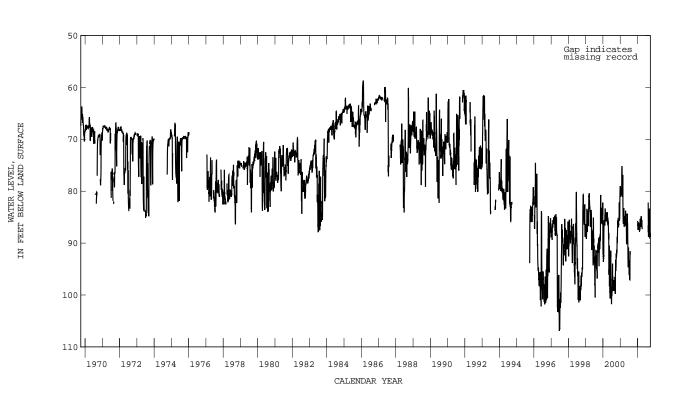
IDENTIFICATION.--Station number, 410530104574001. Local number, 13-068-13ccc01. Local name, Borie.

 $\text{LOCATION.--Lat } 41^{\circ}05'30", \text{ long } 104^{\circ}57'40", \text{ in } \text{SW}^{1}/_{4} \text{ SW}^{1}/_{4} \text{ sec.} 13, \text{ T.} 13 \text{ N., R.} 68 \text{ W., Hydrologic Unit } 101900099.$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS. -- Depth of well, unknown.

DATUM.--Elevation of land surface is 6,528 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 0.80 ft above land surface.


REMARKS.--Data collected by U.S. Geological Survey.

PERIOD OF RECORD.--1942 to 1950, 1969 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 36.78 ft below land surface, from hand-measured data, Mar. 23, 1945; lowest, 106.91 ft below land surface, June 23, 1997.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5				85.92	86.30	85.91	85.91					86.84
10				87.02	86.91	86.78	87.29					83.68
15				86.00	87.55	86.20					82.17	87.67
20				86.69	87.31	85.72					87.93	87.83
25				86.05	86.73	85.02					86.60	88.75
EOM				86.98	85.68	86.65					87.51	88.61
MAX				85.73	85.67	84.80	85.55				82.17	83.36
MIN				87.44	87.81	86.91	87.29				88.82	89.07

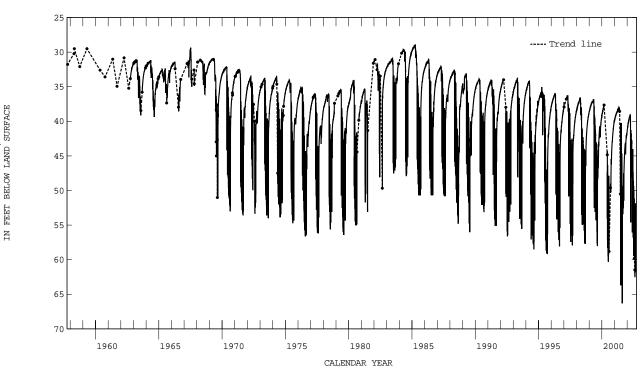
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 411238104070801. Local number, 14-060-05bcb01. Local name, C.C. Gross.

 $\texttt{LOCATION.--Lat } 41^{\circ}12^{\circ}38^{"}, \ \log \ 104^{\circ}07^{\circ}08^{"}, \ \text{in } NW^{1}/_{4} \ SW^{1}/_{4} \ \text{sec.5, T.14 N., R.60 W., Hydrologic Unit } 10190015.$

AQUIFER. -- Brule Formation.

WELL CHARACTERISTICS.--Depth of well, 100 ft below land surface.


DATUM.--Elevation of land-surface is 5,082 ft above NGVD of 1929, from topographic map. Measuring point: bottom of shelf, 3.35 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1957 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 28.96 ft below land surface, Apr. 3, 4, 1985; lowest, 69.18 ft below land surface, Aug. 12, 2001.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	46.63	43.37	42.30	41.26	40.19	39.51	39.30	47.45	45.94	57.63		
10	45.72	43.21	42.06	41.05	40.09	39.41	43.41	42.77	44.50	56.22	62.12	
15	45.10	44.79	41.98	40.79	39.96	39.35	45.17	44.72	46.80	57.00	62.52	
20	44.50	43.47	41.88	40.60	39.80	39.27	41.36	44.34	47.33	51.18	61.85	
25	44.05	42.93	41.79	40.47	39.75	39.17	41.75	44.15	56.58	59.33	61.84	
EOM	43.67	42.61	41.50	40.34	39.60	39.08	46.57	56.07	49.71			
MAX	43.67	42.61	41.50	40.34	39.60	39.07	39.08	42.51	44.03	49.33	51.83	
MIN	47.24	44.79	42.53	41.48	40.31	39.62	54.60	56.07	56.81	59.80	62.52	

WATER LEVEL, FEET BELOW LAND SURFACE

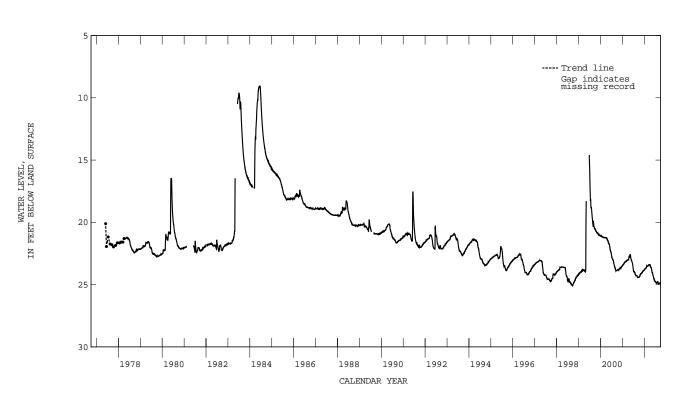
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 411022104141201. Local number, 14-061-18ddd01. Local name, Laramie County #2.

 $\texttt{LOCATION.--Lat } 41^{\circ}10^{\circ}22^{\circ}, \ \texttt{long } 104^{\circ}14^{\circ}12^{\circ}, \ \texttt{in } \mathbb{SE}^{1}/_{4} \ \mathbb{SE}^{1}/_{4} \ \mathbb{SE}^{1}/_{4} \ \mathbb{Sec.}18, \ \texttt{T.14 N., R.61 W., Hydrologic Unit } 10190015.$

AQUIFER. -- Brule Formation.

WELL CHARACTERISTICS. -- Depth of well, 90 ft below land surface.


DATUM.--Elevation of land surface is 5,264 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.70 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 9.08 ft below land surface, June 18, 1984; lowest, 25.09 ft below land surface, Sept. 22, 1998.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	24.40	24.13	23.95 23.92	23.80 23.77	23.66	23.46	23.40	23.84	24.46	24.78	24.92	24.90 24.90
10 15	24.37 24.35	24.11 24.08	23.92	23.77	23.53 23.53	23.47 23.43	23.46 23.56	23.99 24.05	24.53 24.54	24.81 24.84	24.76 24.75	24.90
20	24.31	24.06	23.87	23.68	23.52	23.43	23.61	24.08	24.70	24.85	24.85	24.87
25	24.19	24.04	23.85	23.66	23.51	23.43	23.62	24.23	24.71	24.89	24.89	24.86
EOM	24.13	24.00	23.84	23.66	23.50	23.39	23.69	24.31	24.72	24.91	24.94	24.84
MAX	24.13	24.00	23.84	23.66	23.50	23.39	23.39	23.69	24.35	24.72	24.75	24.84
MIN	24.42	24.13	24.00	23.84	23.66	23.50	23.69	24.31	24.72	24.91	24.94	24.93

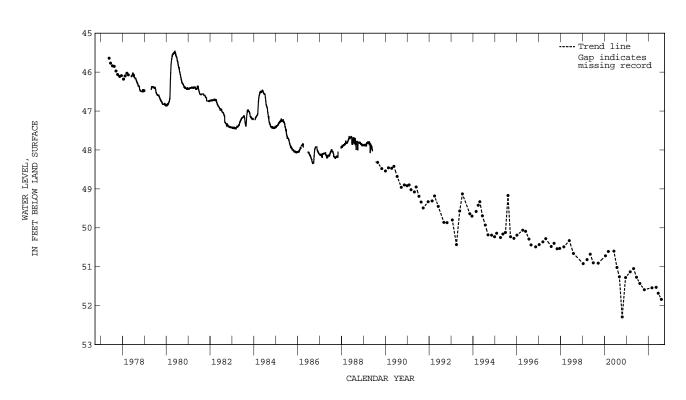
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 411114104242501. Local number, 14-063-15aaa01. Local name, Laramie County #3.

 $\texttt{LOCATION.--Lat } 41^{\circ}11'14", \texttt{ long } 104^{\circ}24'25", \texttt{ in } \texttt{NE}^{1}/_{4} \texttt{NE}^{1}/_{4} \texttt{ sec.} 15, \texttt{T.} 14 \texttt{ N.}, \texttt{R.} 63 \texttt{ W.}, \texttt{ Hydrologic Unit } 10190015.$

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 165 ft below land surface.


DATUM.--Elevation of land surface is 5,489 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.3 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 45.45 ft below land surface, May 24, 1980; lowest, 51.26 ft below land surface, from hand-measured data, Sept. 6, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	51.59	MAR 05	51.54	MAY 13	51.53	JUN 17	51.68	AUG 07	51.84
WATER YEA	AR 2002	HIGHEST	51.53	MAY 13, 2	2002	LOWEST 51	.84 AUG	07, 2002	

LARAMIE COUNTY--Continued

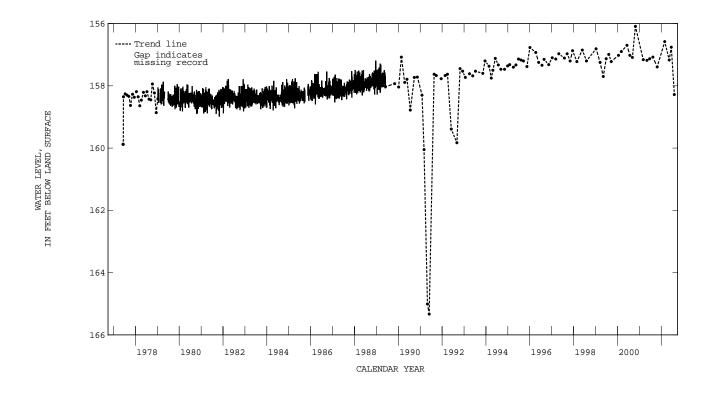
IDENTIFICATION.--Station number, 411005104355001. Local number, 14-064-19bcc01. Local name, Laramie County #9.

 $\texttt{LOCATION.--Lat } \ 41^{\circ}10^{\circ}05^{\circ}, \ \log \ 104^{\circ}35^{\circ}50^{\circ}, \ \text{in } \ SW}^{1}/_{4} \ SW}^{1}/_{4} \ SW}^{1}/_{4} \ \text{sec.19, T.14 N., R.64 W., Hydrologic Unit } \ 10190015.$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS.--Depth of well, 180 ft below land surface.

DATUM.--Elevation of land surface is 5,880 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.5 ft above land surface.


COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological. Survey.

PERIOD OF RECORD. -- 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 156.70 ft below land surface, from hand-measured data, June 9, 2000; lowest, 165.33 ft below land surface, from hand-measured data, May 30, 1991.

WATER LEVELS IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25	157.39	FEB 28	156.58	MAY 13	157.17	JUN 17	156.76	AUG 07	158.28
WATER V	EAR 2002	HIGHES	т 156 58	FER 28	2002	LOWEST 15	8 28 ATTG	07 2002	

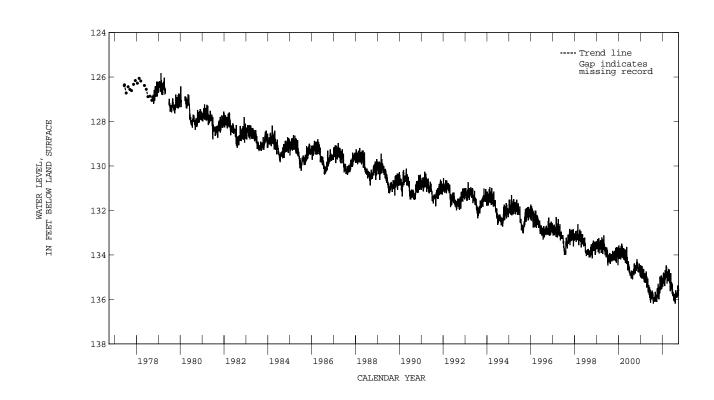
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 411210104452001. Local number, 14-066-10aba01. Local name, Laramie County #8.

 $\texttt{LOCATION.--Lat } \ 41^{\circ}12^{\circ}10^{\circ}, \ \log \ 104^{\circ}45^{\circ}20^{\circ}, \ \text{in NE}^{1}/_{4} \ \texttt{NW}^{1}/_{4} \ \texttt{NE}^{1}/_{4} \ \texttt{sec.}10, \ \texttt{T.14 N., R.66 W., Hydrologic Unit } \ 10190015.$

AQUIFER. -- Ogalalla Formation.

WELL CHARACTERISTICS .-- Depth of well, 190 ft below land surface.


DATUM.--Elevation of land surface is 6,090 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.40 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 125.82 ft below land surface, Feb. 14, 1979; lowest, 136.32 ft below land surface, Aug. 1, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	135.87	135.76	135.19	135.38	135.21	134.86	135.17	135.16	135.45	135.74	135.97	135.78
10	135.68	135.77	135.04	135.35	135.40	134.93	135.04	135.17	135.30	136.04	135.82	135.91
15	135.72	135.63	134.92	135.02	135.14	134.86	134.63	135.21	135.64	135.82	135.66	135.84
20	135.66	135.49	135.39	134.84	134.83	135.07	134.97	135.27	135.56	135.79	135.70	135.47
25	135.79	135.10	135.47	135.15	134.96	134.96	135.09	135.24	135.82	135.98	135.93	135.70
EOM	135.43	135.05	135.32	135.11	134.67	135.00	134.90	135.47	135.75	135.99	135.87	135.55
MAX	135.30	134.98	134.92	134.80	134.67	134.47	134.63	134.82	135.22	135.69	135.59	135.37
MTN	135.97	136.00	135.58	135.44	135.40	135.29	135.18	135.63	135.84	136.08	136.19	135.91

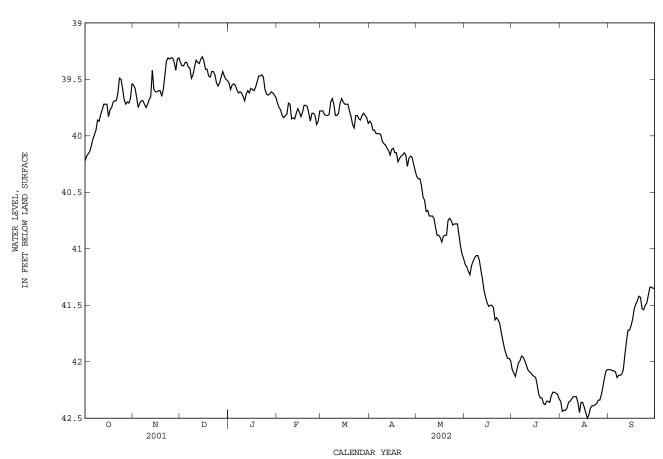
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 410616104462401. Local number, 14-066-28adb01. Local name, Cheyenne Ogallala Well.

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS. -- Depth of well, 265 ft below land surface.

DATUM.--Elevation of land surface is 6,041.44 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 3.00 ft above land surface.


COOPERATION.--Data collected by U.S. Geological Survey.

PERIOD OF RECORD. -- 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 39.30 ft below land surface, Dec. 15, 2001; lowest, 42.52 ft below land surface, Aug. 19, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	40.09 39.87 39.72 39.69 39.58 39.54	39.71 39.72 39.61 39.59 39.31 39.31	39.35 39.39 39.30 39.48 39.56 39.51	39.55 39.65 39.58 39.47 39.63 39.66	39.84 39.85 39.79 39.74 39.82 39.78	39.82 39.82 39.70 39.83 39.85 39.89	39.98 40.07 40.12 40.20 40.27 40.31	40.54 40.71 40.88 40.88 40.78 41.09	41.15 41.10 41.48 41.63 41.81 41.99	42.01 42.03 42.13 42.32 42.36 42.33	42.41 42.31 42.36 42.41 42.34 42.07	42.09 42.07 41.68 41.42 41.48 41.35
MAX MIN	40.22 39.49	39.31 39.75 39.31	39.51 39.56 39.30	39.66 39.69 39.46	39.78 39.90 39.71	39.89 39.93 39.67	40.31 40.31 39.87	41.09 41.09 40.36	41.99 41.99 41.06	42.33 42.38 41.95	42.07 42.50 42.07	42.14 41.34

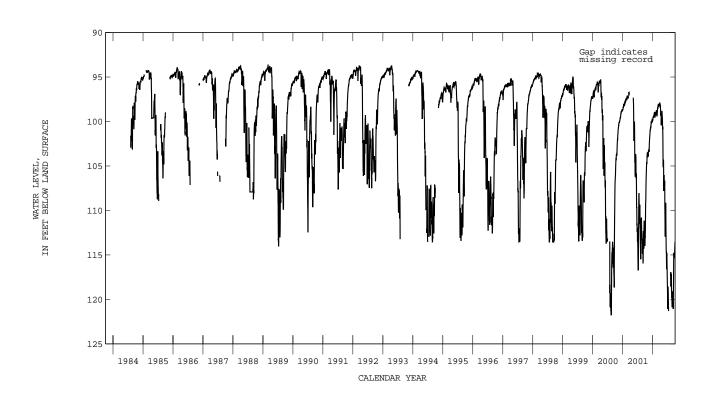
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 411213104501401. Local number, 14-067-12abb01. Local name, Laramie County #10.

 $\texttt{LOCATION.--Lat } \ 41^{\circ}12^{\circ}13^{\circ}, \ \log \ 104^{\circ}50^{\circ}14^{\circ}, \ \text{in } \ NW^{1}/_{4} \ NW^{1}/_{4} \ \text{NE}^{1}/_{4} \ \text{sec.} 12, \ \text{T.} 14 \ \text{N., R.} 67 \ \text{W., Hydrologic Unit } \ 101900099.$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS.--Depth of well, 220 ft below land surface.


DATUM.--Elevation of land surface is 6,230 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.25 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 93.62 ft below land surface, Mar. 3, 1989; lowest, 121.78 ft below land surface, Aug. 11, 2000.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	110.01	103.93	100.68	99.52	99.26	98.41	98.54	102.75	109.99	118.76		120.33
10	107.56	103.19	100.42	99.48	99.07	98.26	99.21	105.07	111.51	120.19	117.35	118.49
15	105.62	103.21	99.98	99.36	98.77	98.06	100.42	107.81	114.67		117.20	114.76
20	104.56	102.59	100.03	99.03	99.31	98.12	99.21	106.74	115.19		119.80	114.92
25	103.72	101.71	100.01	98.97	99.06	98.15	99.24	106.63	116.66		120.67	114.52
EOM	103.52	101.03	99.86	99.26	98.54	98.40	100.73	111.90	119.28		119.26	113.60
MAX	103.52	101.03	99.71	98.97	98.54	97.88	98.23	100.58	109.14	118.56	116.94	113.59
MIN	113.02	103.93	100.98	99.78	99.42	98.54	100.73	111.90	119.28	121.31	120.88	121.07

LARAMIE COUNTY--Continued

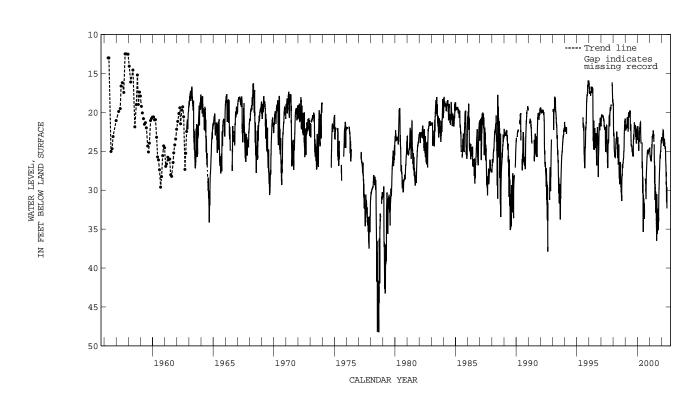
IDENTIFICATION.--Station number, 411034104554001. Local number, 14-067-18ddc01. Local name, Bell #14.

LOCATION.--Lat $41^{\circ}10^{\circ}34^{\circ}$, long $104^{\circ}55^{\circ}40^{\circ}$, in SW $^{1}/_{4}$ SE $^{1}/_{4}$ sec.18, T.14 N., R.67 W., Hydrologic Unit 10190009.

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS.--Depth of well, 229 ft below land surface.

DATUM.--Elevation of land surface is 6,248 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.50 ft above land surface.


REMARKS.--Data collected by U.S. Geological Survey.

PERIOD OF RECORD. -- 1956 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.48 ft below land surface, from hand measured data, Sept. 26, Oct. 28, 1957; lowest, 48.25 ft below land surface, Aug. 31, 1978.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	32.81	27.05	25.05	23.20	23.09	24.19	24.02	26.14	30.06			
10	31.07	26.26	24.49	23.96	22.75	23.99	24.32	26.65	31.30			
15	29.97	25.67	24.11	23.59	22.56	24.10	24.36	27.22				
20	29.37	25.44	23.72	23.35	22.37	23.59	24.60	27.80				
25	28.48	25.46	23.57	23.31	22.89	23.69	24.48	28.92				
EOM	27.52	25.05	23.52	23.50	22.70	23.55	24.78	31.54				
MAX	27.52	25.03	23.51	23.20	22.28	23.03	23.55	25.23	29.61			
MIN	34.04	27.49	25.07	23.97	23.57	24.32	24.78	31.54	32.34			

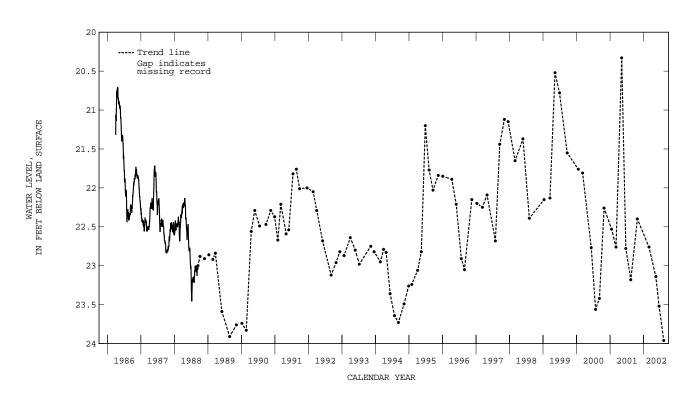
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 410930104524701. Local number, 14-067-27bac01. Local name, Laramie County #13.

 $\texttt{LOCATION.--Lat } 41^{\circ}09'30", \texttt{ long } 104^{\circ}52'47", \texttt{ in } \text{SW}^{1}/_{4} \text{ NE}^{1}/_{4} \text{ NW}^{1}/_{4} \text{ sec.} 27, \texttt{T.} 14 \texttt{ N.}, \texttt{R.} 67 \texttt{ W.}, \texttt{ Hydrologic Unit } 10190009. \\$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS.--Depth of well, 140 ft below land surface.


DATUM.--Elevation of land surface is 6,180 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.8 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 20.52 ft below land surface, from hand-measured data, May 11, 1999; lowest, 23.96 ft below land surface, Aug. 8, 2002.

WATER LEVELS IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25	22.40	FEB 28	22.76	MAY 14	23.14	JUN 18	23.52	AUG 08	23.96
WATER YE	AR 2002	HIGHEST	22 40	OCT 25. 3	2001	LOWEST 2	3 96 AIIG	08. 2002	

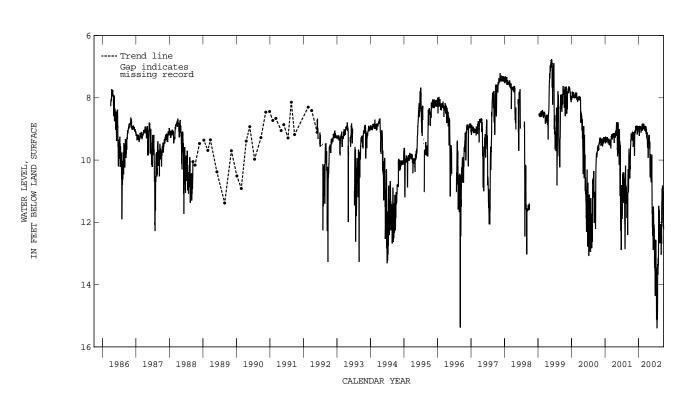
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 410838104530401. Local number, 14-067-34bbc01. Local name, Laramie County #11.

LOCATION.--Lat 41°08'38", long 104°53'04", in SW $^{1}/_{4}$ NW $^{1}/_{4}$ NW $^{1}/_{4}$ sec.34, T.14 N., R.67 W., Hydrologic Unit 10190009.

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS.--Depth of well, 162 ft below land surface.


DATUM.--Elevation of land surface is 6,210 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.50 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.76 ft below land surface, May 29, 1999; lowest, 15.40 ft below land surface, July 20, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	9.54	9.45	8.97	9.00	9.00	9.00	9.34	10.34	12.21	12.56	13.01	12.65
10	9.29	9.15	8.97	9.14	9.05	9.05	9.48	10.30	11.94	13.65	12.23	11.48
15	9.25	9.36	8.91	8.93	8.91	8.97	9.83	10.59	12.52	15.12	11.80	10.92
20	9.30	9.19	9.03	8.91	8.92	9.02	9.29	10.46	12.22	15.40	12.39	11.19
25	9.13	9.10	9.05	8.95	9.01	9.14	9.30	9.82	13.31	15.14	12.52	11.99
EOM		8.92	9.01	9.03	8.85	9.29	9.63	12.14	13.39	13.68	12.06	12.22
MAX	9.09	8.92	8.89	8.90	8.83	8.90	9.12	9.41	11.49	12.56	11.47	10.82
MIN	10.30	9.86	9.18	9.22	9.06	9.29	9.93	12.14	13.56	15.40	13.48	13.04

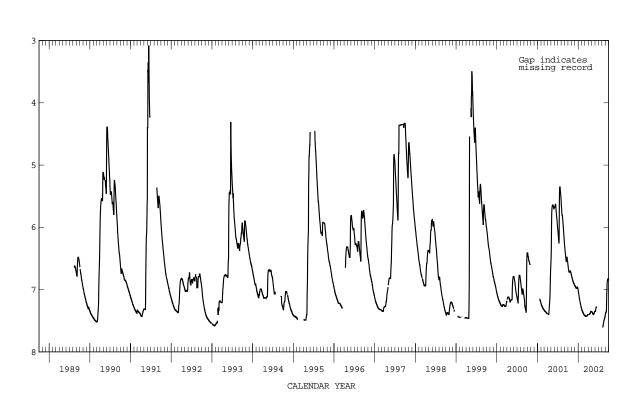
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 410827104501601. Local number, 14-067-36acb01. Local name, Pioneer Park.

 $\texttt{LOCATION.--Lat } 41^{\circ}08'27", \texttt{ long } 104^{\circ}50'16", \texttt{ in } \texttt{NW}^{1}/_{4} \texttt{ SW}^{1}/_{4} \texttt{ NE}^{1}/_{4} \texttt{ sec.} 36, \texttt{ T.14 N., R.67 W., Hydrologic Unit } 10190009. \\$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS. -- Depth of well, 24 ft below land surface.


DATUM.--Elevation of land surface is 6,099 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.00 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1989 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.08 ft below land surface, June 13, 1991; lowest, 7.62 ft below land surface, Aug. 8, 9, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	6.67	6.80	6.95	7.07	7.34	7.42	7.40	7.36	7.33			7.37
10	6.72	6.84	6.96	7.13	7.36	7.43	7.40	7.38	7.29		7.59	7.36
15	6.72	6.87	6.98	7.18	7.38	7.42	7.39	7.40	7.28		7.54	6.98
20	6.70	6.90	6.97	7.23	7.40	7.42	7.37	7.39			7.49	6.85
25	6.72	6.91	6.96	7.27	7.41	7.41	7.35	7.37			7.47	6.83
EOM	6.76	6.93	7.01	7.31	7.41	7.40	7.35	7.35			7.40	6.85
MAX	6.61	6.77	6.94	7.02	7.32	7.40	7.35	7.35	7.28		7.40	6.83
MIN	6.76	6.93	7.01	7.31	7.41	7.43	7.40	7.40	7.35		7.61	7.39

WATER LEVEL, IN FEET BELOW LAND SURFACE

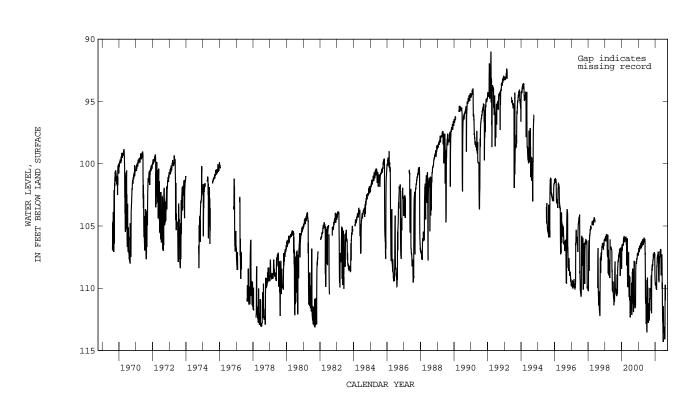
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 410757104582302. Local number, 14-068-35ddc02. Local name, King #3.

 $\text{LOCATION.--Lat } 41^{\circ}07^{\circ}57^{\circ}\text{, long } 104^{\circ}58^{\circ}23^{\circ}\text{, in } \text{SW}^{1}/_{4} \text{ SE}^{1}/_{4} \text{ Sec.}35\text{, T.14 N., R.68 W., Hydrologic Unit } 10190009\text{.}$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS.--Depth of well, 230 ft below land surface.


DATUM.--Elevation of land surface is 6,520 ft above NGVD of 1929, from levels. Measuring point: top of casing, at land surface. REMARKS.--Data collected by U.S. Geological Survey.

PERIOD OF RECORD. -- 1969 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 91.00 ft below land surface, Mar. 15, 1992; lowest, 114.38 ft below land surface, June 26, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	109.45	108.24	107.38	109.57	108.95	107.34	107.82	106.97	109.60	113.33	111.87	
10 15	109.15 112.00	108.06 107.73	107.38 107.10	109.70 109.69	108.24 107.85	107.30 107.76	107.47 107.09	108.50 108.87	111.59 112.70	113.49 113.12	109.72	
20 25	108.93 108.41	107.71 107.27	107.37 107.59	109.69 110.01	107.47 107.43	109.26 109.30	107.19 107.22	108.26 107.52	113.00 114.18	113.45 113.57		
EOM	108.13	107.33	109.33	110.01	107.33	108.51	106.95	107.50	111.44	113.98		
MAX	112.00	108.33	109.33	110.04	110.13	109.51	108.14	108.97	114.31	114.08	109.72	
MIN	108.13	107.26	107.10	109.40	107.33	107.06	106.91	106.88	108.09	111.55	114.00	

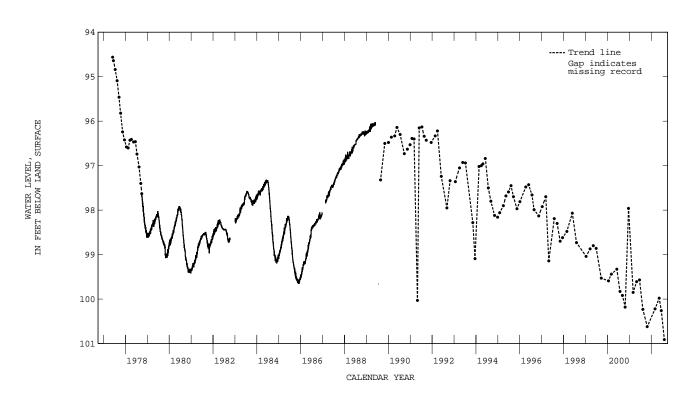
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 411531104194701. Local number, 15-062-20aaa01. Local name, Laramie County #4.

 $\texttt{LOCATION.--Lat } 41^{\circ}15'31", \texttt{ long } 104^{\circ}19'47", \texttt{ in } \texttt{NE}^{1}/_{4} \texttt{ NE}^{1}/_{4} \texttt{ sec.} 20, \texttt{ T.15 N., R.62 W., Hydrologic Unit } 10190015.$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS.--Depth of well, 165 ft below land surface.


DATUM.--Elevation of land surface is 5,510 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.0 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 94.56 ft below land surface, from hand-measured data, June 1, 1977; lowest, 100.91 ft below land surface, from hand-measured data, Aug. 7, 2002.

WATER LEVELS IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL
OCT 26 100.62	MAR 05 100.22	MAY 13 99.98	JUN 17 100.26	AUG 07	100.91
WATER YEAR 2002	HIGHEST 99.98	MAY 13, 2002	LOWEST 100.91 AUG	07. 2002	

LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 412227104081402. Local number, 16-060-07bbb02. Local name, USGS southwest of Albin.

 $\texttt{LOCATION.--Lat } 41^{\circ}22^{\circ}27^{\circ}, \text{ long } 104^{\circ}08^{\circ}14^{\circ}, \text{ in } NW^{1}/_{4} \text{ } NW^{1}/_{4} \text{ sec.7, T.16 N., R.60 W., Hydrologic Unit } 10190016.$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS.--Depth of well, 215 ft below land surface.

DATUM.--Elevation of land surface is 5,310 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.10 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 147.06 ft below land surface, May 30, 31, 1991; lowest, 151.14 ft below land surface, Aug. 18, 19, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	150.28						150.13	150.25				
10	150.19					150.35	150.37	150.18			150.45	
15	150.35					150.45	149.85	149.98			150.57	
20	150.19					150.51	150.27	150.21			150.61	
25	150.56					150.37	150.19	150.36				
EOM						150.18	150.12	150.26				
MAX	149.94					149.87	149.85	149.68	150.12		150.28	
									150.12		150.26	
MIN	150.56					150.67	150.52	150.49	150.12		150.69	

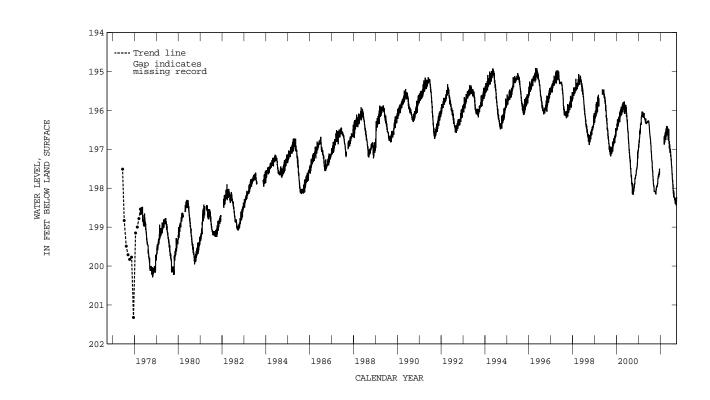
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 411136104125301. Local number, 16-061-17aaa01. Local name, Laramie County #5.

 $\texttt{LOCATION.--Lat } \ 41^{\circ}11^{\circ}36^{\circ}, \ \log \ 104^{\circ}12^{\circ}53^{\circ}, \ \text{in NE}^{1}/_{4} \ \text{NE}^{1}/_{4} \ \text{NE}^{1}/_{4} \ \text{sec.} 17, \ \text{T.} 16 \ \text{N., R.} 61 \ \text{W., Hydrologic Unit } 10190016.$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS. -- Depth of well, 285 ft below land surface.


DATUM.--Elevation of land surface is 5,451 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.30 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 194.91 ft below land surface, Apr. 24, 1996; lowest, 201.32 ft below land surface, from hand-measured data, Dec. 16, 1977.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	198.09	197.95	197.65				196.55	196.50	196.93	197.36	198.05	198.31
10	198.10	197.96	197.60			196.68	196.59	196.56	197.04	197.45	198.06	198.34
15	198.10	197.91	197.59			196.82	196.44	196.65		197.58	198.15	198.33
20	198.15	197.83	197.65			196.72	196.46	196.70	197.05	197.68	198.18	198.30
25	198.04	197.75				196.72	196.43	196.79	197.19	197.83	198.23	198.31
EOM	197.95	197.68				196.54	196.47	196.86	197.25	197.93	198.31	198.27
MAX	197.95	197.68	197.50			196.54	196.40	196.45	196.87	197.25	197.90	198.23
MIN	198.15	197.97	197.71			196.88	196.76	196.86	197.25	197.93	198.31	198.44

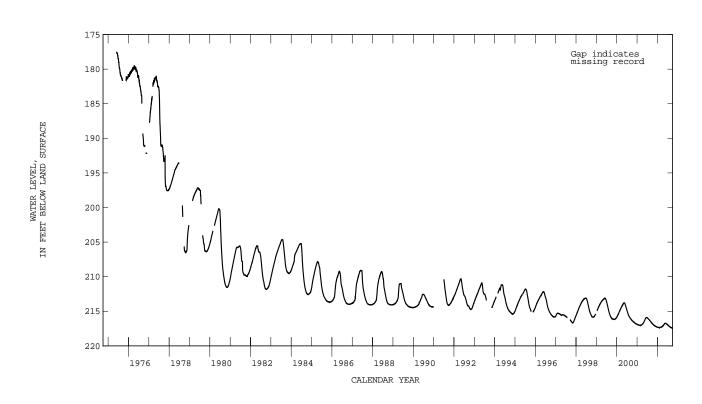
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 412343104053101. Local number, 17-060-33cbb01. Local name, USGS south of Albin.

 $\texttt{LOCATION.--Lat 41^o23^143^u, long 104^o05^131^u, in NW}^{1}/_{4} \ NW}^{1}/_{4} \ \sec{.33}, \ \texttt{T.17 N., R.60 W., Hydrologic Unit 10190016}. }$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS.--Depth of well, 275 ft below land surface.


DATUM.--Elevation of land surface is 5,280 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.00 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 177.52 ft below land surface, May 30, 31, 1975; lowest, 217.46 ft below land surface, Sept. 28-30, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	216.82	217.05	217.20	217.31	217.37	217.30	217.15	216.84	216.78	216.97	217.21	217.36
10	216.87	217.09	217.22	217.32	217.37	217.30	217.10	216.79	216.80	217.01	217.22	217.38
15	216.91	217.10	217.24	217.33	217.33	217.28	217.05	216.75	216.86	217.04	217.26	217.41
20	216.94	217.14	217.26	217.34	217.32	217.26	217.00	216.74	216.87	217.08	217.29	217.42
25	216.99	217.15	217.28	217.35	217.32	217.23	216.94	216.73	216.90	217.11	217.31	217.44
EOM	217.01	217.18	217.30	217.35	217.32	217.18	216.89	216.75	216.93	217.16	217.34	217.45
MAX	216.79	217.01	217.18	217.30	217.32	217.18	216.89	216.73	216.76	216.95	217.17	217.35
MIN	217.01	217.18	217.30	217.35	217.37	217.32	217.16	216.88	216.93	217.16	217.34	217.45

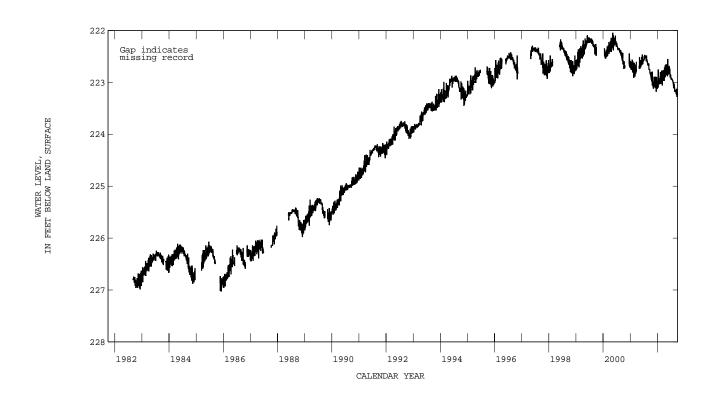
LARAMIE COUNTY--Continued

IDENTIFICATION.--Station number, 412605104203001. Local number, 17-062-17ccc01. Local name, Laramie County #6A.

 $\text{LOCATION.--Lat } 41^{\circ}26^{\circ}05^{\circ}\text{, long } 104^{\circ}20^{\circ}30^{\circ}\text{, in } \text{SW}^{1}/_{4} \text{ SW}^{1}/_{4} \text{ Sec.}17\text{, T.17 N., R.62 W., Hydrologic Unit } 10190016\text{.}$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS.--Depth of well, 360 ft below land surface.


DATUM.--Elevation of land surface is 5,570 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.80 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 222.05 ft below land surface, May 10, 11, 2000; lowest, 227.03 ft below land surface, Dec. 4, 1985.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	222.89	222.99	222.98	223.06	222.99	222.88	222.83	222.75	222.82	222.91	223.07	223.18
10	222.94	223.05	222.90	223.06	222.94	222.85	222.89	222.76	222.72	222.94	223.06	223.22
15	222.98	223.03	222.97	222.92	223.03	222.97	222.71	222.75	222.75	222.94	223.03	223.24
20	222.93	223.00	223.02	222.96	222.93	222.91	222.74	222.79	222.90	222.94	223.10	223.19
25	223.06	223.01	223.09	223.00	222.95	222.94	222.71	222.83	222.85	222.97	223.15	223.21
EOM	222.89	222.92	223.10	223.01	222.77	222.81	222.72	222.80	222.86	223.01	223.17	223.22
MAX	222.79	222.90	222.89	222.75	222.77	222.76	222.66	222.55	222.69	222.91	223.00	223.13
MIN	223.06	223.12	223.18	223.10	223.03	223.06	222.97	222.88	222.90	223.01	223.18	223.28

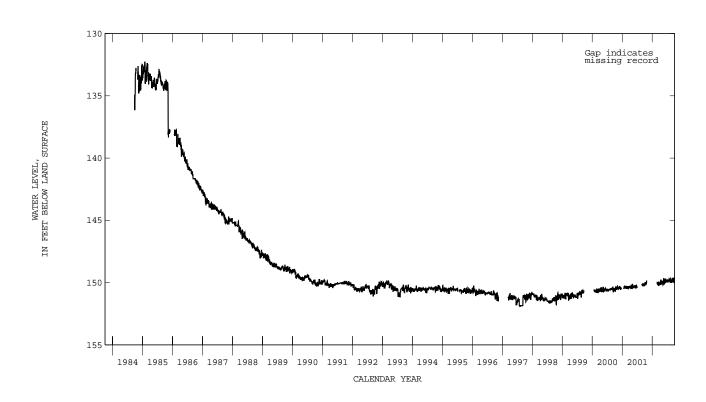
LARAMIE COUNTY--Continued

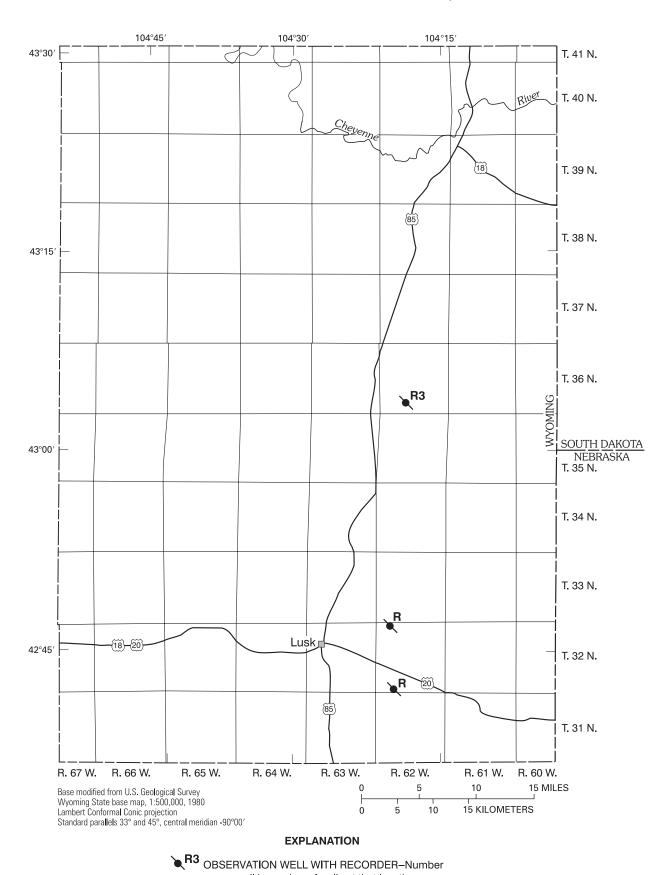
IDENTIFICATION.--Station number, 412400104533901. Local number, 17-067-33baa01. Local name, MX-North.

 $\texttt{LOCATION.--Lat } 41^{\circ}24^{\circ}00^{\circ}, \text{ long } 104^{\circ}53^{\circ}39^{\circ}, \text{ in } \text{NE}^{1}/_{4} \text{ NE}^{1}/_{4} \text{ NE}^{1}/_{4} \text{ sec.} 33, \text{ T.17 N., R.67 W., Hydrologic Unit } 10190009. \\$

AQUIFER. -- Ogallala Formation.

WELL CHARACTERISTICS.--Depth of well, 200 ft below land surface.


DATUM.--Elevation of land surface is 6,425 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.40 ft above land surface.


COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 132.26 ft below land surface, Jan. 28, 1985; lowest, 151.87 ft below land surface, July 29, Aug 8, 11, 1997.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	150.16					150.06	150.12	150.08	149.99	149.81	149.92	149.79
10	150.10					150.11	150.14	150.07	149.72	149.94	149.84	149.93
15	150.19					150.10	149.81	150.01	149.86	149.79	149.68	149.90
20	150.07					150.24	150.06	149.87	149.93	149.78	149.82	149.72
25						150.13	150.09	150.05	149.92	149.83	149.92	149.86
EOM						150.11	149.96	150.03	149.80	149.74	149.84	149.74
MAX	149.84					149.91	149.76	149.65	149.69	149.71	149.67	149.65
MIN	150.21					150.27	150.18	150.19	150.04	150.00	150.00	149.93

near well is number of wells at that location

Figure 16. Location of observation wells in Niobrara County, Wyoming.

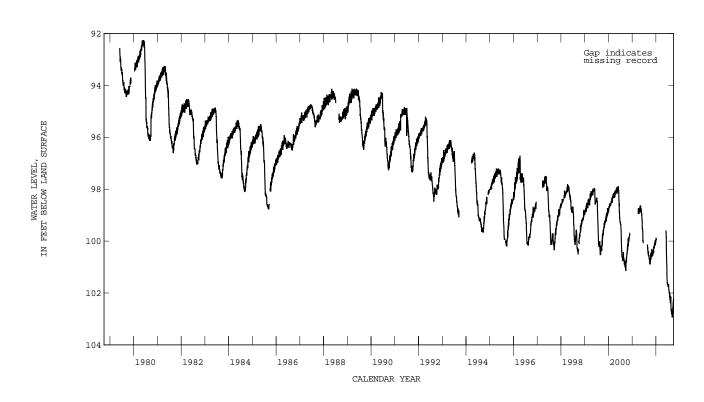
NIOBRARA COUNTY

IDENTIFICATION.--Station number, 424709104194101. Local number, 32-062-05baa01. Local name, Niobrara County #1.

LOCATION.--Lat 42°47'09", long 104°19'41", in NE $^{1}/_{4}$ NE $^{1}/_{4}$ Ne $^{1}/_{4}$ sec.5, T.32 N., R.62 W., Hydrologic Unit 10150002.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 177 ft below land surface.


DATUM.--Elevation of land surface is 4,970 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.20 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 92.26 ft below land surface, June 1, 1980; lowest, 102.96 ft below land surface, Sept. 13, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	100.75	100.44	100.19	99.91					99.61	101.68	102.27	102.79
10	100.66	100.49	100.07						99.96	101.70	102.20	102.93
15	100.72	100.51	100.09						100.65	101.69	102.29	102.74
20	100.51	100.44	100.01						101.38	101.88	102.48	102.55
25	100.61	100.40	100.04						101.64	101.98	102.68	102.41
EOM	100.32	100.23	99.96						101.62	102.08	102.77	102.25
MAX	100.32	100.23	99.96	99.89					99.59	101.67	102.05	102.22
MIN	100.89	100.60	100.29	100.03					101.64	102.08	102.77	102.93

NIOBRARA COUNTY--Continued

IDENTIFICATION.--Station number, 424244104202001. Local number, 32-062-32bbb01. Local name, Node Well.

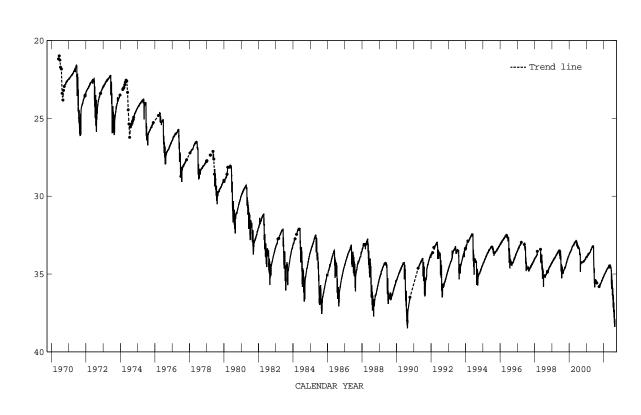
LOCATION.--Lat $42^{\circ}42^{\circ}44^{\circ}$, long $104^{\circ}20^{\circ}20^{\circ}$, in NW $^{1}/_{4}$ NW $^{1}/_{4}$ Sec. 32, T.32 N., R.62 W., Hydrologic Unit 10150002.

AQUIFER. -- Arikaree Formation.

WATER LEVEL, FEET BELOW LAND SURFACE

Z

WELL CHARACTERISTICS.--Depth of well, 485 ft below land surface.


DATUM.--Elevation of land surface is 4,898 ft above NGVD of 1929, from topographic map. Measuring point: bottom of shelf, 3.00 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1970 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 20.93 ft below land surface, June 23, 1970; lowest, 38.68 ft below land surface, Aug. 27, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	35.76	35.56	35.34	35.12	34.91	34.74	34.58	34.50	34.65	36.19	37.66	
10	35.72	35.52	35.25	35.10	34.89	34.70	34.56	34.56	34.78	36.01	37.29	
15	35.74	35.50	35.24	35.04	34.87	34.68	34.48	34.49	35.30	36.39	38.16	
20	35.68	35.43	35.22	35.00	34.84	34.66	34.48	34.45	35.95	36.39	37.99	
25	35.67	35.40	35.19	34.98	34.82	34.62	34.44	34.56	35.39	36.55	38.09	
EOM	35.58	35.36	35.16	34.96	34.77	34.58	34.42	34.54	35.53	36.88		
MAX	35.58	35.35	35.14	34.96	34.77	34.58	34.42	34.39	34.55	35.67	36.84	
MIN	35.84	35.63	35.39	35.16	34.95	34.79	34.61	34.64	35.95	37.44	38.40	

NIOBRARA COUNTY--Continued

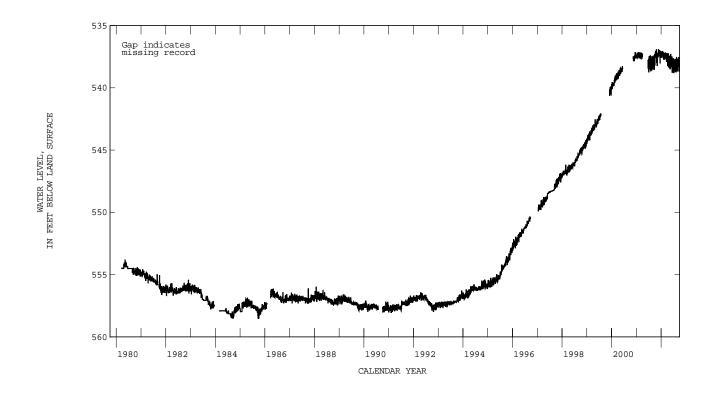
IDENTIFICATION.--Station number, 430422104183201. Local number, 36-062-28ab01. Local name, ETSI T-2.

LOCATION.--Lat 43°04'22", long 104°18'32", in NW $^{1}/_{4}$ NE $^{1}/_{4}$ sec.28, T.36 N., R.62 W., Hydrologic Unit 10120104.

AQUIFER. -- Madison Limestone.

WELL CHARACTERISTICS.--Depth of well, 3,120 ft below land surface.

DATUM.--Elevation of land surface is 4,244 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, at land surface.


REMARKS.--Data from 1974 through March 1980 are unavailable electronically. Data available in reports in the Wyoming District office. Water levels from Apr. 18 through Sept. 30 not available at time of publication.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 536.92 ft below land surface, Nov. 23, 2001; lowest, 558.54 ft below land surface, Sept. 29, 1985.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25	537.40 537.30 537.53 537.30 537.84	537.33 537.44 537.38 537.31 537.09	537.23 537.18 537.72 537.33 537.51	537.43 537.55 537.32 537.12 537.26	537.57 537.75 537.61 537.39 537.73	537.41 537.44 537.50 537.55	537.78 537.51 537.28 538.20 538.24	537.56 538.34 538.16 537.67 537.72	538.34 537.52 537.84 537.81	537.70 538.20 538.66 537.80 538.63	537.95 537.74 537.75 538.19 537.97	537.72 538.05 537.79 537.57 538.70
EOM	537.48	536.99	537.45	537.50	537.28	537.35	537.61	538.24	537.66	537.69	537.92	537.59
MAX MIN	536.91 538.19	536.90 538.25	536.99 538.05	537.04 537.60	537.15 537.75	537.19 537.91	537.22 538.37	537.28 538.51	537.48 538.79	537.69 538.82	537.54 538.77	537.54 538.70

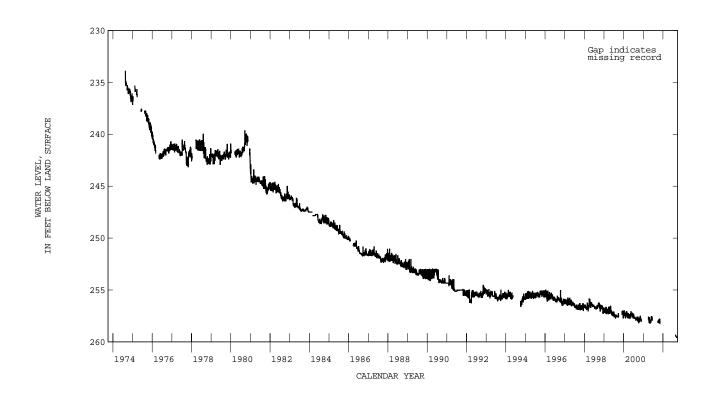
NIOBRARA COUNTY--Continued

IDENTIFICATION.--Station number, 430422104183202. Local number, 36-062-28ab02. Local name, ETSI 0-2.

LOCATION.--Lat 43°04'22", long 104°18'32", in NW $^{1}/_{4}$ NE $^{1}/_{4}$ sec.28, T.36 N., R.62 W., Hydrologic Unit 10120104.

AQUIFER. -- Lakota Formation.

WELL CHARACTERISTICS. -- Depth of well, 505 ft below land surface.


DATUM.--Elevation of land surface is 4,247 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, at land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 233.87 ft below land surface, Aug. 19, 1974; lowest, 259.62 ft below land surface, Sept. 20-30, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	258.11	258.08										259.51
10	258.00	258.15										259.55
15	258.12											259.57
20	258.10											259.57
25	258.11										259.41	259.58
EOM	257.79										259.47	259.58
MAX	257.79	257.79									259.31	259.48
MIN	258.14	258.15									259.47	259.58

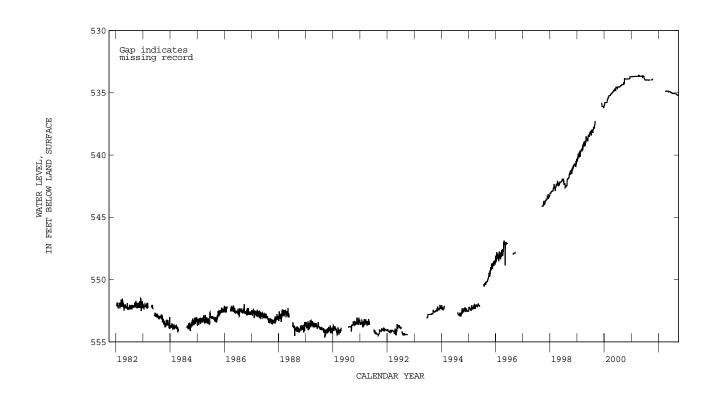
NIOBRARA COUNTY--Continued

IDENTIFICATION.--Station number, 430421104200701. Local number, 36-062-28bbd01. Local name, ETSI T-1.

 $\texttt{LOCATION.--Lat } \ 43^{\circ}04^{\circ}21^{\circ}\text{, long } 104^{\circ}20^{\circ}07^{\circ}\text{, in SE }^{1}/_{4} \ \texttt{NW }^{1}/_{4} \ \texttt{sec.28, T.36 N., R.62 W., Hydrologic Unit } 10120104.$

AQUIFER. -- Minnelusa Formation.

WELL CHARACTERISTICS.--Depth of well, 1,510 ft below land surface.


DATUM.--Elevation of land surface is 5,200 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 0.45 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 537.25 ft below land surface, Sept. 2, 1999; lowest, 554.67 ft below land surface, Sept. 12, 1989.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	533.96						534.87	534.87	534.92	535.03	535.06	535.15
10	533.94						534.88	534.87	534.92	535.04	535.06	535.15
15	533.91						534.87	534.88	534.95	535.05	535.06	535.18
20	533.91						534.85	534.91	534.96	535.05		535.18
25							534.86	534.91	534.99	535.05	535.09	535.20
EOM							534.87	534.92	535.01	535.06	535.12	535.21
MAX	533.91						534.85	534.87	534.92	535.02	535.06	535.13
MIN	533.97						534.88	534.92	535.01	535.06	535.12	535.21

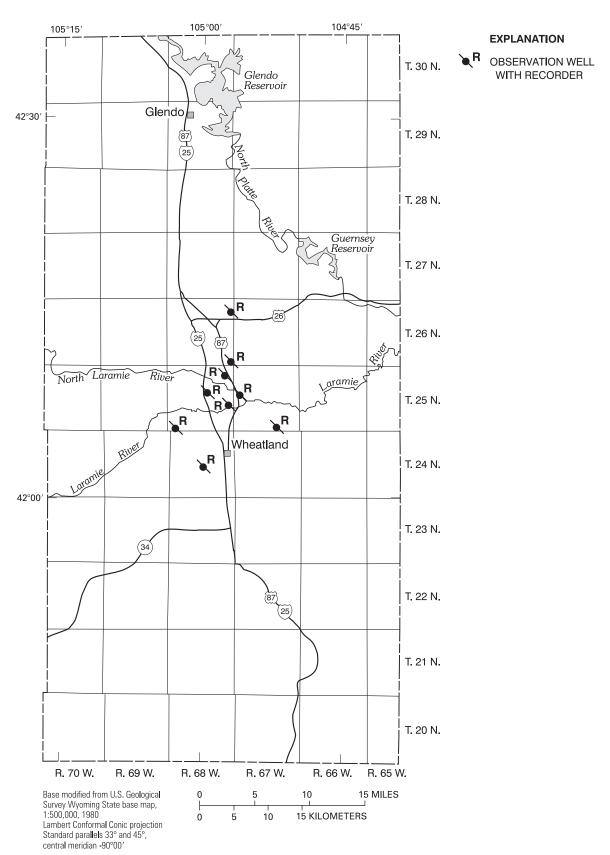


Figure 17. Location of observation wells in Platte County, Wyoming.

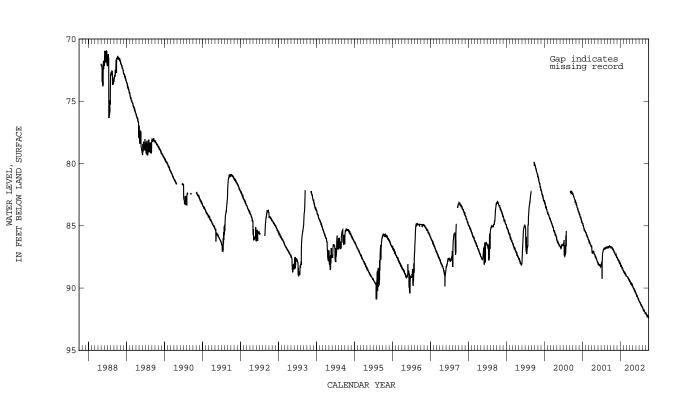
PLATTE COUNTY

IDENTIFICATION.--Station number, 420246104590302. Local number, 24-068-22aab02. Local name, Platte County #1A.

LOCATION.--Lat $42^{\circ}02^{\circ}46^{\circ}$, long $104^{\circ}59^{\circ}03^{\circ}$, in NW $^{1}/_{4}$ NE $^{1}/_{4}$ Sec.22, T.24 N., R.68 W., Hydrologic Unit 10180011.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 200 ft below land surface.


DATUM.--Elevation of land surface is 4,860 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.35 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 70.95 ft below land surface, June 5, 1988; lowest, 92.44 ft below land surface, Sept. 27-30, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	86.73 86.79 86.88 86.86 86.98	87.12 87.23 87.33 87.37 87.44 87.55	87.63 87.69 87.78 87.87 87.98 88.09	88.19 88.28 88.32 88.40 88.50 88.66	88.69 88.73 88.86 88.87 88.97 89.00	89.07 89.22 89.23 89.34 89.39	89.48 89.58 89.59 89.72 89.75 89.85	89.99 90.06 90.15 90.23 90.34 90.44	90.51 90.60 90.69 90.86 90.95 91.08	91.14 91.18 91.29 91.38 91.45 91.52	91.62 91.76 91.83 91.84 91.94 92.03	92.09 92.16 92.21 92.26 92.34 92.33
MAX MIN	86.66 87.04	87.07 87.57	87.57 88.09	88.09 88.66	88.66 89.03	89.05 89.41	89.41 89.88	89.89 90.44	90.43 91.08	91.04 91.52	91.54 92.03	92.02 92.39

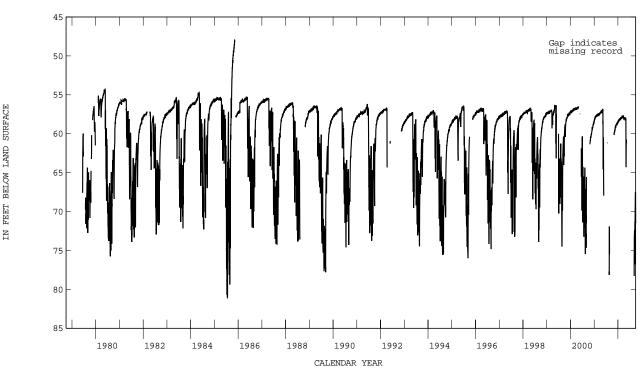
PLATTE COUNTY--Continued

IDENTIFICATION.--Station number, 420718104553901. Local number, 25-067-19dda01. Local name, Ed Wilhelm.

LOCATION.--Lat $42^{\circ}07^{\circ}18^{\circ}$, long $104^{\circ}55^{\circ}39^{\circ}$, in NE $^{1}/_{4}$ SE $^{1}/_{4}$ Sec.19, T.25 N., R.67 W., Hydrologic Unit 10180011.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS. -- Depth of well, 760 ft below land surface.


DATUM.--Elevation of land surface is 4,540 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.50 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD. -- 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 47.88 ft below land surface, Nov. 8, 1985; lowest, 81.04 ft below land surface, July 19, 1985.

DEPTH BELOW LAND LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5		59.88	58.94	58.53	58.13	57.84	57.95	64.29				
10		59.69	58.70	58.49	58.08	57.94	58.06	60.76				73.28
15		59.54	58.65	58.31	58.14	57.89	57.90					74.24
20		59.28	58.67	58.14	58.02	57.92	58.17					71.29
25		59.14	58.69	58.20	58.11	57.94	58.20					68.48
EOM	59.97	58.93	58.59	58.25	57.82	57.91	58.06					71.47
MAX	59.97	58.92	58.46	58.10	57.82	57.65	57.90	58.07				67.50
MIN	59.97	60.14	59.04	58.63	58.24	57.99	58.29	64.29				78.28

WATER LEVEL, FEET BELOW LAND SURFACE

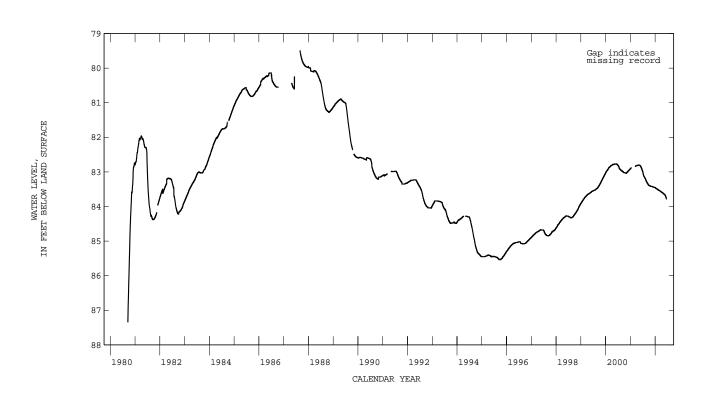
PLATTE COUNTY--Continued

IDENTIFICATION.--Station number, 420524104530201. Local number, 25-067-34ccd01. Local name, Platte County #2.

LOCATION.--Lat $42^{\circ}05^{\circ}24^{\circ}$, long $104^{\circ}53^{\circ}02^{\circ}$, in SE $^{1}/_{4}$ SW $^{1}/_{4}$ Sec $^{3}/_{4}$ Sec $^{3}/_{4}$ S. R. 67 W., Hydrologic Unit 10180011.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 380 ft below land surface.


DATUM.--Elevation of land surface is 4,620 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.60 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 79.49 ft below land surface, Aug. 27, 28, 29, 1987; lowest, 87.35 ft below land surface, Sept. 16, 1980.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	83.39	83.42	83.44	83.46	83.50	83.54	83.58	83.63	83.71			
10	83.40	83.42	83.44	83.47	83.51	83.55	83.59	83.64	83.74			
15	83.40	83.42	83.44	83.48	83.53	83.55	83.59	83.64	83.77			
20	83.41	83.42	83.45	83.48	83.53	83.56	83.60	83.65				
25	83.41	83.43	83.45	83.49	83.53	83.57	83.61	83.66				
EOM	83.42	83.43	83.45	83.49	83.53	83.58	83.62	83.68				
MAX	83.39	83.42	83.43	83.45	83.49	83.53	83.58	83.62	83.69			
24727	00 40	02 42	00 45	00 40	02 52	02 50	02 60	02 60	02 70			
MIN	83.42	83.43	83.45	83.49	83.53	83.58	83.62	83.68	83.79			

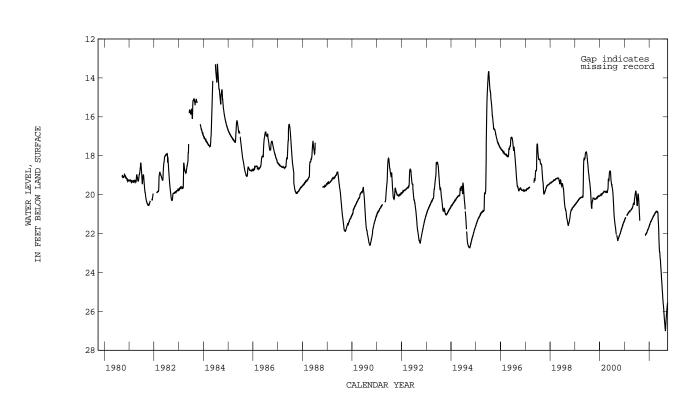
PLATTE COUNTY--Continued

IDENTIFICATION.--Station number, 420859104565001. Local number, 25-068-12dda01. Local name, Platte County #4.

LOCATION.--Lat $42^{\circ}08^{\circ}59^{\circ}$, long $104^{\circ}56^{\circ}50^{\circ}$, in NE $^{1}/_{4}$ SE $^{1}/_{4}$ Sec.12, T.25 N., R.68 W., Hydrologic Unit 10180011.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 100 ft below land surface.


DATUM.--Elevation of land surface is 4,510 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.60 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 13.30 ft below land surface, June 25, July 25, 26, 1984; lowest, 27.02 ft below land surface, Aug. 29, 30, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5		22.08	21.85	21.58	21.31	21.09	20.91	20.91	22.94	24.46	25.98	26.57
10		22.05	21.82	21.53	21.27	21.08	20.89	20.94	23.18	24.73	26.25	26.31
15		22.02	21.78	21.48	21.24	21.05	20.87	21.35	23.35	24.99	26.49	26.08
20		21.98	21.75	21.41	21.21	21.01	20.87	21.72	23.64	25.29	26.69	25.87
25		21.96	21.70	21.38	21.17	20.99	20.87	22.29	23.91	25.52	26.90	25.68
EOM	22.09	21.93	21.63	21.36	21.14	20.94	20.88	22.82	24.18	25.74	26.91	
MAX MIN	22.09 22.09	21.93 22.09	21.63 21.91	21.36 21.63	21.14 21.34	20.94 21.13	20.86	20.88	22.89 24.18	24.24 25.74	25.80 27.01	25.55 26.83

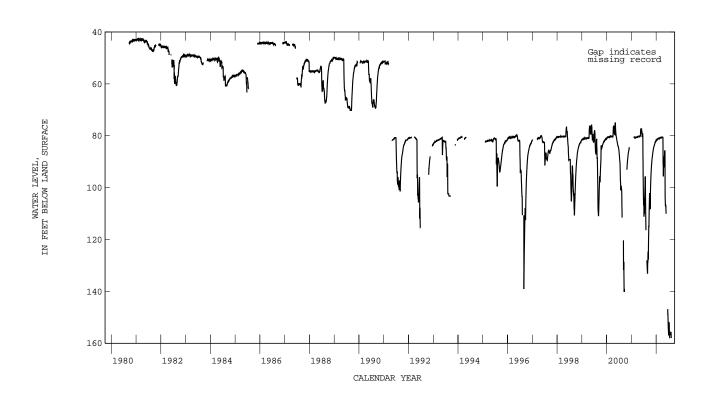
PLATTE COUNTY--Continued

IDENTIFICATION.--Station number, 420840105000401. Local number, 25-068-15bbd01. Local name, Platte County #6.

LOCATION.--Lat 42°08'40", long 105°00'04", in SE $^{1}/_{4}$ NW $^{1}/_{4}$ sec.15, T.25 N., R.68 W., Hydrologic Unit 10180011.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 220 ft below land surface.


DATUM.--Elevation of land surface is 4,640 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.30 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 42.50 ft below land surface, Feb. 9, Mar. 30, 1981; lowest, 158.68 ft below land surface, Aug. 13, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	107.81	87.94	83.58	81.77	81.18	80.80	80.64	86.62		154.06	155.90	
10	99.73	86.96	83.15	81.65	81.18	80.76	80.60	85.82		152.05	157.25	
15	96.02	86.03	82.65	81.42	81.07	80.63	91.87	105.12		155.89		
20	93.20	85.19	82.37	81.24	80.93	80.66	91.72	107.18	146.82			
25	91.20	84.50	82.21	81.24	80.94	80.66	88.23	108.50	150.93			
EOM	89.06	83.99	81.92	81.20	80.81	80.57	89.69		154.95			
MAX	89.06	83.99	81.92	81.16	80.81	80.56	80.54	85.76	146.82	152.05	155.61	
MIN	108.28	88.89	83.92	81.94	81.21	80.87	95.64	110.07	154.95	158.06	157.97	

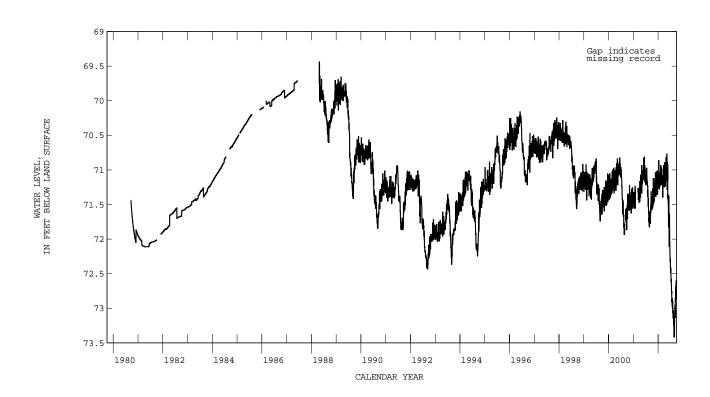
PLATTE COUNTY--Continued

IDENTIFICATION.--Station number, 420748104565001. Local number, 25-068-24aad01. Local name, Platte County #3.

LOCATION.--Lat $42^{\circ}07^{\circ}48^{\circ}$, long $104^{\circ}56^{\circ}50^{\circ}$, in SE $^{1}/_{4}$ NE $^{1}/_{4}$ Sec.24, T.25 N., R.68 W., Hydrologic Unit 10180011.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 240 ft below land surface.


DATUM.--Elevation of land surface is 4,560 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 0.55 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 69.44 ft below land surface, Apr. 28, 29, 1988; lowest, 73.65 ft below land surface, Aug. 28, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	71.55 71.50 71.54 71.31 71.50 71.12	71.20 71.25 71.30 71.17 71.21 71.08	71.18 71.03 71.09 71.17 71.23 71.18	71.20 71.00 71.21 71.19 71.17 71.20	71.17 71.19 71.21 71.16 71.10	71.09 71.25 71.19 71.19 70.98	71.05 71.08 70.90 71.03 70.98 70.92	70.96 70.77 70.90 71.15 71.35 71.49	71.41 71.65 71.78 72.02 72.28 72.32	72.41 72.62 72.66 72.80 72.92 72.92	73.06 73.05 73.07 73.21 73.35 73.28	73.00 73.01 72.83 72.74 72.71 72.61
MAX MIN	71.12 71.57	71.03 71.46	71.01 71.36	70.86 71.28	70.93 71.22	70.93 71.40	70.82 71.25	70.77 71.49	71.37 72.33	72.41 72.98	72.89 73.42	72.59 73.14

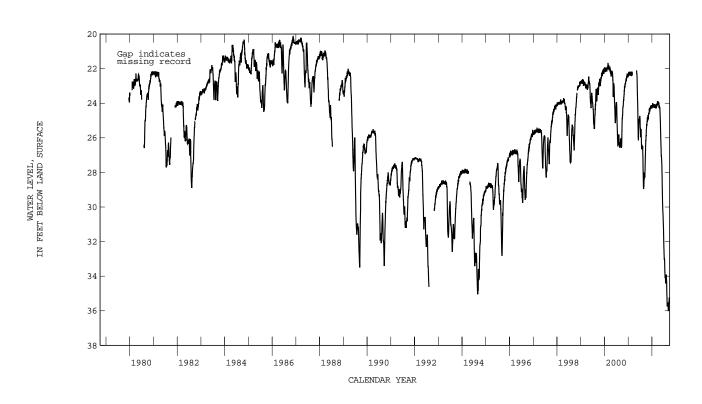
PLATTE COUNTY--Continued

IDENTIFICATION.--Station number, 420613105024401. Local number, 25-068-31aaa01. Local name, Platte County #7.

LOCATION.--Lat $42^{\circ}06'13"$, long $105^{\circ}02'44"$, in NE $^{1}/_{4}$ NE $^{1}/_{4}$ Sec.31, T.25 N., R.68 W., Hydrologic Unit 10180011.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 400 ft below land surface.


DATUM.--Elevation of land surface is 4,633 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.50 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 20.13 ft below land surface, Nov. 19, 1986; lowest, 36.05 ft below land surface, Sept. 10, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	25.69 25.37 25.31 25.03 24.96 24.69	24.79 24.67 24.57 24.47 24.36 24.27	24.30 24.18 24.18 24.22 24.27 24.23	24.23 24.24 24.11 24.09 24.16 24.23	24.21 24.22 24.23 24.18 24.30 24.09	24.16 24.19 24.16 24.14 24.08 23.90	24.02 24.04 23.97 24.16 24.23 24.24	24.54 25.02 25.76 26.51 27.05 27.42	28.09 29.15 29.91 30.44 30.93 31.76	32.47 33.03 33.15 33.86 34.07 34.37	34.08 33.92 34.34 35.19 35.75 35.67	35.65 36.01 35.92 35.47
MAX MIN	24.69 25.96	24.26 24.93	24.11 24.34	24.00 24.30	24.06 24.30	23.89 24.29	23.90 24.29	24.28 27.42	27.44 31.76	31.99 34.41	33.91 35.75	35.23 36.01

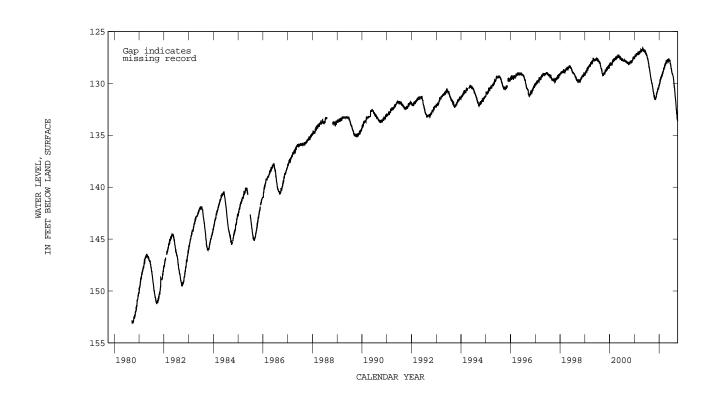
PLATTE COUNTY--Continued

IDENTIFICATION.--Station number, 421443104574601. Local number, 26-068-12cbd01. Local name, E. Rutherford.

LOCATION.--Lat 42°14'43", long $104^{\circ}57'46$ ", in SE $^{1}/_{4}$ NW $^{1}/_{4}$ Sec.12, T.26 N., R.68 W., Hydrologic Unit 10180011.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS.--Depth of well, 320 ft below land surface.


DATUM.--Elevation of land surface is 4,860 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, at land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 127.26 ft below land surface, May 10, 11, 2000; lowest, 153.11 ft below land-surface, Oct. 2, 1980.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	130.84	131.45	130.77	130.10	129.41	128.72	128.17	127.83	127.87	128.80	129.91	132.02
10	130.93	131.45	130.58	130.01	129.37	128.65	128.05	127.81	127.81	129.06	130.22	132.48
15	131.21	131.34	130.44	129.76	129.22	128.51	127.80	127.79	128.11	129.06	130.39	132.75
20	131.25	131.22	130.50	129.55	129.01	128.43	127.95	127.84	128.30	129.16	130.78	133.03
25	131.43	130.98	130.44	129.55	129.01	128.30	127.94	127.77	128.48	129.31	131.27	133.43
EOM	131.33	130.83	130.23	129.46	128.80	128.13	127.82	127.78	128.60	129.56	131.60	133.59
MAX	130.57	130.81	130.16	129.41	128.80	128.12	127.75	127.59	127.72	128.68	129.60	131.67
MIN	131.55	131.58	130.87	130.26	129.47	128.87	128.22	127.91	128.60	129.56	131.60	133.59

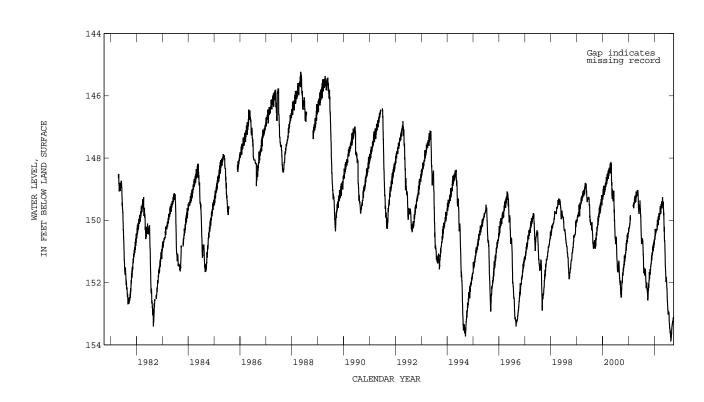
PLATTE COUNTY--Continued

IDENTIFICATION.--Station number, 421128104575801. Local number, 26-068-36bbb01. Local name, Platte County #5.

LOCATION.--Lat $42^{\circ}11^{\circ}28^{\circ}$, long $104^{\circ}57^{\circ}58^{\circ}$, in NW $^{1}/_{4}$ NW $^{1}/_{4}$ Sec.36, T.26 N., R.68 W., Hydrologic Unit 10180011.

AQUIFER. -- Arikaree Formation.

WELL CHARACTERISTICS. -- Depth of well, 200 ft below land surface.


DATUM.--Elevation of land surface is 4,670 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.40 ft above land surface.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PEROD OF RECORD.--1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 145.23 ft below land surface, May 7, 1988; lowest, 153.90 ft below land surface, Aug. 22, 2002.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	152.44 152.24 152.16 151.93 151.89 151.57	151.56 151.52 151.43 151.30 151.19 151.05	151.03 150.87 150.79 150.81 150.79 150.70	150.64 150.59 150.41 150.32 150.32	150.31 150.29 150.18 150.10 150.15 149.87	149.83 149.85 149.89 149.77 149.73	149.54 149.53 149.40 149.46 149.42 149.39	149.43 149.63 149.85 150.35 150.65 150.95	151.48 151.70 151.92 151.94 152.11 152.31	152.60 152.89 152.97 152.97 152.96 153.28	153.46 153.54 153.59 153.76 153.82 153.67	153.45 153.36 153.32 153.23 153.17 153.11
MAX MIN	152.52 151.57	151.74 151.05	151.12 150.63	150.74 150.27	150.33 149.87	150.00 149.54	149.79 149.27	150.95 149.40	152.31 151.07	153.28 152.41	153.89 153.32	153.63 153.11

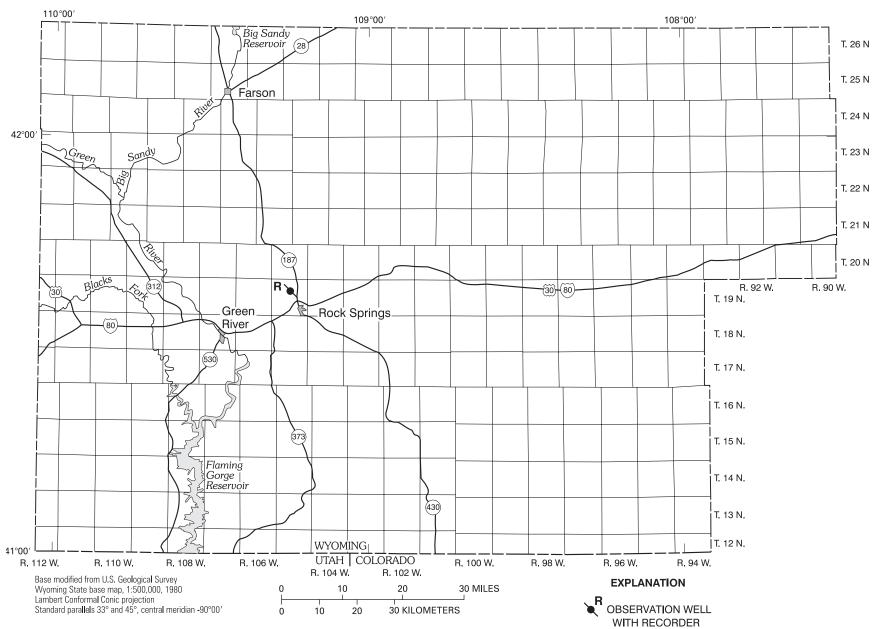


Figure 18. Location of observation well in Sweetwater County, Wyoming.

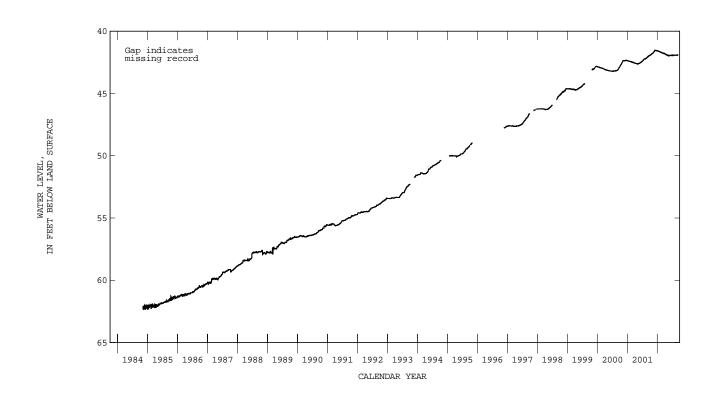
SWEETWATER COUNTY

IDENTIFICATION.--Station number, 413850109150601. Local number, 19-105-10bbb01. Local name, Rock Springs Golf Course.

LOCATION.--Lat 41°38'50", long 109°15'06", in NW $^{1}/_{4}$ NW $^{1}/_{4}$ sec.10, T.19 N., R.105 W., Hydrologic Unit 14040105.

AQUIFER. -- Fort Union Formation.

WELL CHARACTERISTICS. -- Depth of well, 240 ft below land surface.


DATUM.--Elevation of land surface is 6,430 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 0.60 ft above land surface.

REMARKS.--Data collected by U.S. Geological Survey.

PERIOD OF RECORD.--1984-1995; 1997 to curent year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 41.54 ft below land surface, Dec. 6, 14, 15, 2001; lowest, 62.36 ft below land surface, Dec. 6, 1984, Jan. 3, 1985.

DEPTH BELOW LAND SURFACE, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES NOV SEP DAY OCT DEC FEB MAR MAY JUN JUL AUG JAN APR 41.77 41.75 5 41.93 41.55 41.58 41.66 41.82 41.93 41.95 41.93 41.93 41.91 41.59 41.91 41.75 41.84 41.95 41.94 10 41.76 41.94 41.93 41.91 41.55 41.68 15 41.88 41.71 41.54 41.70 41.77 41.86 41.95 41.94 41.94 41.92 ---20 41.86 41.68 41.55 41.62 41.71 41.78 41.89 41.95 41.93 41.94 41.91 25 41.63 41.79 41.95 41.94 41.82 41.60 41.56 41.72 41.90 41.93 41.91 EOM 41.79 41.57 41.80 MAX 41.79 41.56 41.54 41.58 41.65 41.74 41.80 41.92 41.93 41.93 41.91 41.90 MIN 41.95 41.78 41.57 41.65 41.73 41.80 41.92 41.96 41.95 41.94 41.93

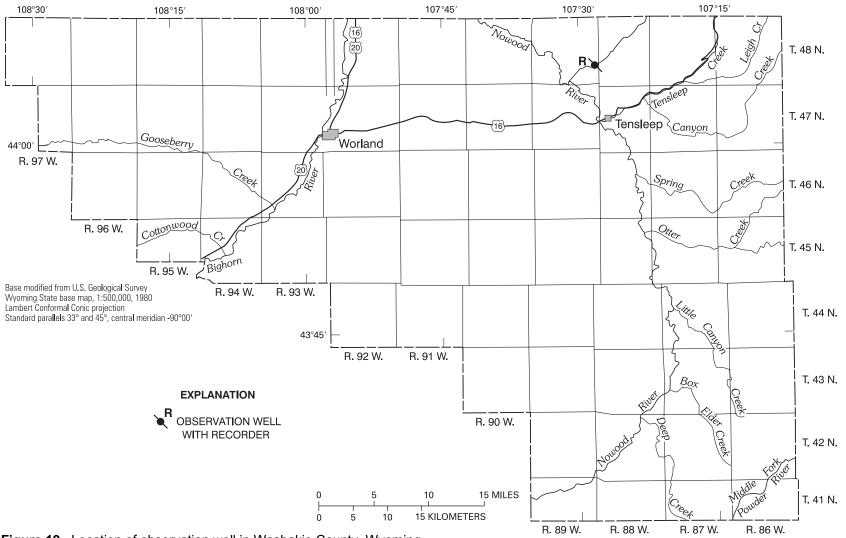


Figure 19. Location of observation well in Washakie County, Wyoming.

WASHAKIE COUNTY

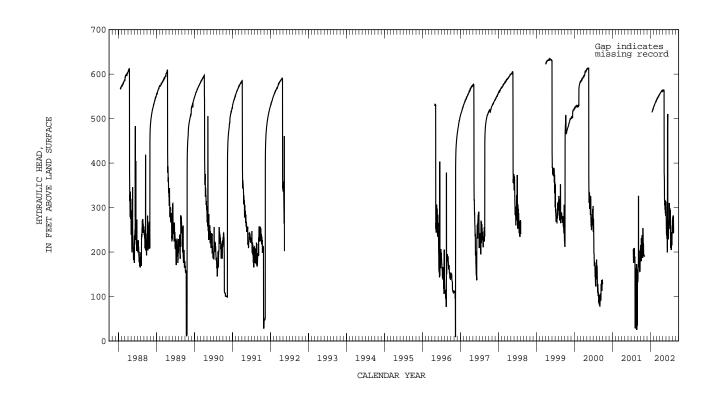
IDENTIFICATION.--Station number, 440621107273801. Local number, 48-089-25ada01. Local name, Mills.

LOCATION.--Lat $44^{\circ}06^{\circ}21^{\circ}$, long $107^{\circ}27^{\circ}38^{\circ}$, in NE $^{1}/_{4}$ NE $^{1}/_{4}$ Ne $^{1}/_{4}$ sec.25, T.48 N., R.89 W., Hydrologic Unit 10080008.

AQUIFER. -- Flathead Sandstone.

WELL CHARACTERISTICS. -- Depth of well, 2,290 ft below land surface.

DATUM.--Elevation of land surface is 4,560 ft above NGVD of 1929, from topographic map.


REMARKS.--Shut-in pressure was measured by pressure transducer and converted to hydraulic head above land surface for illustration purposes. Hydraulic head, in feet above land surface, was calculated by multiplying the shut-in pressure in pounds per square inch by 2.307. Hydraulic head data from May 13, 1992 to Mar. 24, 1995 were not plotted on the hydrograph because the monitoring equipment was out of calibration during this time. The data, and a more detailed explanation of the data, were published in Open-File report 96-648 "Ground-Water Levels in Wyoming, January 1986 through September 1995." Hydraulic head data from Mar. 24, 1995 to Apr. 25, 1996 were not collected. The accuracy of the hydraulic head measurements is 5.0 ft. Data collected by U.S. Geological Survey.

PERIOD OF RECORD. -- 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest hydraulic head, 633.67 ft above land surface, May 5, 6, 8, 11, 1999; lowest, 8.78 ft above land surface, Nov. 14, 1996.

HYDRAULIC HEAD, IN FEET ABOVE LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
_	170 24	100 05			505.04	E42.06	FF7 00	562.00	040 17	001 00	070 10	
5	179.34	190.95			527.94	543.86	557.00	563.89	242.17	281.99	279.12	
10	197.09				531.36	545.90	558.57	563.39	229.88	259.28	282.29	
15	215.91				534.08	548.17	560.14	372.46	480.57	232.17		
20	247.33			516.75	536.82	549.51	561.03	313.07	233.66	215.93		
25	217.39			520.64	539.31	552.01	563.29	305.13	261.82	242.25		
EOM	191.96			524.29	540.45	554.72	563.71	313.67	252.26	246.12		
MIN	179.34	189.47		514.01	525.43	541.36	554.95	281.25	199.02	204.44	219.10	184.43
MAX	254.14	191.96		524.29	540.69	554.72	563.72	564.13	510.44	310.33	282.29	267.86

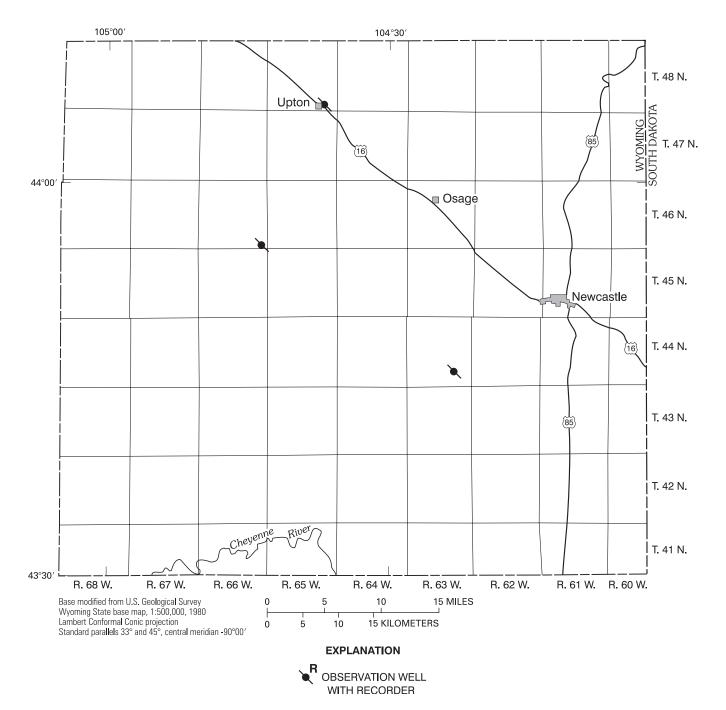


Figure 20. Location of observation wells in Weston County, Wyoming.

WESTON COUNTY

IDENTIFICATION.--Station number, 434539104233401. Local number, 44-063-26cac01. Local name, Townsend Well.

LOCATION.--Lat 43°45'39", long 104°23'34", in SW $^{1}/_{4}$ NE $^{1}/_{4}$ SW $^{1}/_{4}$ sec.26, T.44 N., R.63 W., Hydrologic Unit 10120107.

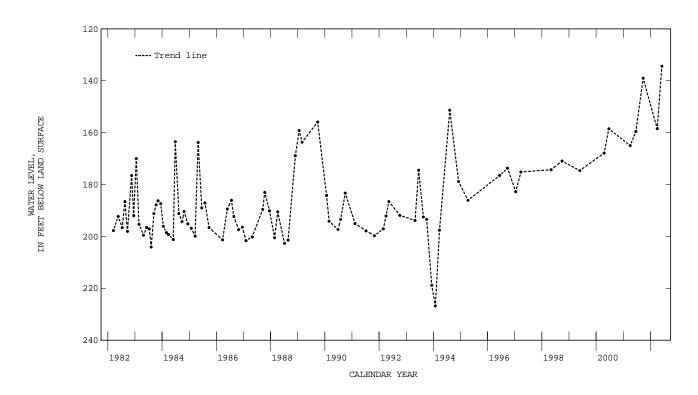
AQUIFER. -- Madison (Pahasapa) Limestone.

WELL CHARACTERISTICS.--Depth of well, 6,880 ft below land surface.

DATUM.--Elevation of land surface is 3,990 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 1.5 ft above land surface.

REMARKS.--Data reflects static and pumping water levels.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1982 to current year.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 134.37 ft below land surface, from hand-measured data, June 4, 2002; lowest, 226.80 ft below land surface, from hand-measured data, Jan. 27, 1994.

WATER LEVELS IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

 DATE
 WATER LEVEL
 DATE
 WATER LEVEL

 APR 02
 158.46
 JUN 04
 134.39

WATER YEAR 2002 HIGHEST 134.39 JUN 04, 2002 LOWEST 158.46 APR 02, 2002

WESTON COUNTY--Continued

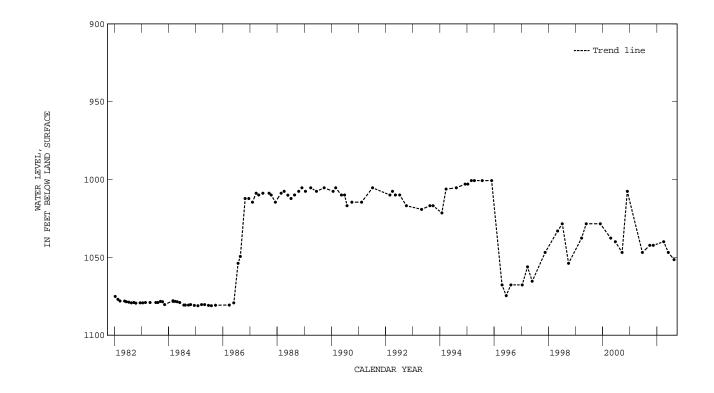
IDENTIFICATION.--Station number, 435610104433001. Local number, 46-066-25dbb01. Local name, Terra Resources.

LOCATION.--Lat $43^{\circ}56^{\circ}10^{\circ}$, long $104^{\circ}43^{\circ}30^{\circ}$, in NW $^{1}/_{4}$ NW $^{1}/_{4}$ Sec.25, T.46 N., R.66 W., Hydrologic Unit 10120103.

AQUIFER. -- Madison (Pahasapa) Limestone.

WELL CHARACTERISTICS. -- Depth of well, 8,780 ft below land surface.

DATUM.--Elevation of land surface is 4,200 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, at land surface.


REMARKS.--Data reflects static conditions and pumping of nearby oil field water flood system.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1,000.67 ft below land surface, from hand-measured data, Feb. 28, Apr. 11, July 25, and Nov. 28, 1995; lowest, 1,081.06 ft below land surface, from-hand measured data, July 30, 1985.

WATER LEVELS IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE	WATER LEVEL	DATE	WATER LEVEL	DAT	WATE E LEVE		WATER LEVEL	
NOV 13	1042.25	APR 02	1039.94	JUN	04 1046.8	37 AUG 20	1051.49	
WATED VEN	P 2002	итсирст	1020 04	7 DD 02	2002	TOWERT 1051	40 ATTC	20 2002

WESTON COUNTY--Continued

IDENTIFICATION.--Station number, 440530104381001. Local number, 48-065-35ccb01. Local name, Town of Upton #4.

LOCATION.--Lat $44^{\circ}05'30"$, long $104^{\circ}38'10"$, in NW $^{1}/_{4}$ SW $^{1}/_{4}$ Sec.35, T.48 N., R.65 W., Hydrologic Unit 10120107.

AQUIFER. -- Madison (Pahasapa) Limestone.

WELL CHARACTERISTICS. -- Depth of well, 3,190 ft below land surface.

DATUM.--Elevation of land surface is 4,220 ft above NGVD of 1929, from topographic map. Measuring point: top of casing, 0.70 ft above land surface.


REMARKS.--Data reflects static and pumping water levels.

COOPERATION.--Data collected and records provided by the Wyoming State Engineer's Office and reviewed by U.S. Geological Survey. PERIOD OF RECORD.--1970 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.40 ft above land surface, from hand-measured data, Nov. 30, 1999; lowest, 280.67 ft below land surface, from hand-measured data, Jan. 27, 1994.

WATER LEVELS IN FEET BELOW LAND SURFACE, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DATE WATER LEVEL
AUG 20 8.64

115 HIGH PLAINS STUDY

GOSHEN COUNTY

STATION NUMBER 413716104203401	LATITUDE (DEGREES) 413716	LONGITUDE (DEGREES) 1042034	LOCAL WELL NUMBER 19-062-17bbb01	ALTITUDE OF LAND SURFACE (FEET) 4940	WATER- LEVEL DATE 06-17-02	WATER LEVEL IN FEET BELOW LAND SURFACE 23.01
415539104033501	415539	1040335	23-060-34abb01	4070	06-17-02	4.48
415925104310801	415925	1043108	23-064-03dda01	4275	06-19-02	23.70
420845104122301	420845	1041223	25-061-17aaa01	4310	06-17-02	53.53
421328104205401	421328	1042054	26-062-18dbd01	4500	06-17-02	61.96
422347104212001	422347	1042120	28-062-18cac01	4470	06-17-02	13.26
423056104212701	423056	1042127	29-062-06cba01	4700	06-17-02	28.84
423057104212701	423057	1042127	29-062-06cba02	4700	06-17-02	29.33
		LARAM	HE COUNTY			
STATION NUMBER	LATITUDE (DEGREES)	LONGITUDE (DEGREES)	LOCAL WELL NUMBER	ALTITUDE OF LAND SURFACE (FEET)	WATER- LEVEL DATE	WATER LEVEL IN FEET BELOW LAND SURFACE
412304104311001	412304	1043110	16-064-02bcb01	5778	06-17-02	233.13
		NIOBRA	ARA COUNTY			
STATION NUMBER 423940104031201 424908104085901	LATITUDE (DEGREES) 423939 424908	LONGITUDE (DEGREES) 1040310 1040859	LOCAL WELL NUMBER 31-060-15dbc01 33-061-23dcb01	ALTITUDE OF LAND SURFACE (FEET) 4730 5155	WATER- LEVEL DATE 06-19-02	WATER LEVEL IN FEET BELOW LAND SURFACE 35.52 262.52
		PLAT	TE COUNTY			
STATION NUMBER 414206104500101	LATITUDE (DEGREES) 414206	LONGITUDE (DEGREES) 1045001	LOCAL WELL NUMBER 20-067-13dbd01	ALTITUDE OF LAND SURFACE (FEET) 5490	WATER- LEVEL DATE 06-18-02	WATER LEVEL IN FEET BELOW LAND SURFACE 40.23
414755104391101	414752	1043914	21-065-16aaa01	5294	06-18-02	74.26
422355105023401	422355	1050238	28-068-17cbc01	4918	06-18-02	58.04

GROUND-WATER QUALITY NEAR WASTEWATER-TREATMENT FACILITIES, GRAND TETON NATIONAL PARK

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	STATION NUMBER	GI	EOLOGIC UNIT	LOCA IDENTI		Date	Time	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	
	4339321104 4339391104 4339391104 4349201103 4349271103	24001 1 25601 1 70801 1	111ALVM 111ALVM 111ALVM 111ALVM 111ALVM	43-116-25 43-116-25 43-116-25 45-115-36 45-115-36	dbd01 (caa01 (bcc01	09-10-02 09-10-02 09-10-02 09-11-02 09-12-02	1515 1255 1730 1025 1115	9.47 14.56 14.11 114.09 93.76	49 48.6 42.8 118 120	6455 6460 6462 6860 6888.70	
	4353571103 4353571103 4353571103 4353571103 4353581103	74103 1 74104 1 74105 1	111ALVM 111ALVM 111ALVM 111ALVM 111ALVM	45-115-02 45-115-02 45-115-02 45-115-02 45-115-02	abc03 (abc04 (abc05 (09-11-02 09-11-02 09-11-02 09-12-02 09-12-02	1345 1700 1810 1400 1530	1.73 4.37 4.52 1.20 2.07	15 28 45 12.5 13	6810 6810 6810 6810 6810	
	4406401104 4406411104 4406411104 4406411104 4406411104	00101 1 02101 1 02102 1	111ALVM 111ALVM 111ALVM 111ALVM 111ALVM	48-115-21 48-115-21 48-115-21 48-115-21 48-115-21	bdb02 (bcb01 (bcb02 (09-13-02 09-13-02 09-13-02 09-13-02 09-13-02	1530 1910 1225 1130 1020	30.35 33.71 27.19 27.16 27.35	47.3 39.8 37.5 42.6 52.6	6838.02 6845.35 6836.23 6836.50 6836.57	
	4406431104 4406451104 4406451104	01101	111ALVM 111ALVM 111ALVM	48-115-21 48-115-21 48-115-21	bc 02 (09-13-02 09-12-02 09-13-02	1710 1810 1400	34.92 28.44 26.38	48.0 37.3	6844.78 6837.06 6834.24	
STATION NUMBER	Date	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
	Date 09-10-02 09-10-02 09-10-02 09-11-02 09-12-02	METRIC PRES- SURE (MM OF HG)	DIS- SOLVED (MG/L)	DIS- SOLVED (PER- CENT SATUR- ATION)	WATER WHOLE FIELD (STAND- ARD UNITS)	CIFIC CON- DUCT- ANCE (US/CM)	ATURE AIR (DEG C)	ATURE WATER (DEG C)	NESS TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)
NUMBER 433932110430801 433939110424001 433939110425601 434920110370801	09-10-02 09-10-02 09-10-02 09-11-02	METRIC PRES- SURE (MM OF HG) (00025) 611 612 611 600	DIS- SOLVED (MG/L) (00300) 3.8 2.2 4.5 8.0	DIS- SOLVED (PER- CENT SATUR- ATION) (00301) 42 25 51 89	WATER WHOLE FIELD (STAND- ARD UNITS) (00400) 8.5 8.4 7.7 7.8	CIFIC CON- DUCT- ANCE (US/CM) (00095) 98 157 145 264	ATURE AIR (DEG C) (00020) 20.0 20.0 20.0 11.0	ATURE WATER (DEG C) (00010) 9.8 11.1 10.8 9.4	NESS TOTAL (MG/L AS CACO3) (00900) 47 78 71	DIS- SOLVED (MG/L AS CA) (00915) 14.1 24.0 21.5 32.2	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 2.75 4.37 4.27 6.39
NUMBER 433932110430801 433939110424001 433939110425601 434920110370801 434927110370801 435357110374102 435357110374104 435357110374104	09-10-02 09-10-02 09-10-02 09-11-02 09-11-02 09-11-02 09-11-02 09-11-02 09-12-02	METRIC PRES- SURE (MM OF HG) (00025) 611 612 611 600 598 600 600 600 598	DIS- SOLVED (MG/L) (00300) 3.8 2.2 4.5 8.0 5.5	DIS- SOLVED (PER- CENT SATUR- ATION) (00301) 42 25 51 89 45 	WATER WHOLE FIELD (STAND- ARD UNITS) (00400) 8.5 8.4 7.7 7.8 7.0 6.6 7.6 6.6 6.8 6.7	CIFIC CON- DUCT- ANCE (US/CM) (00095) 98 157 145 264 508	ATURE AIR (DEG C) (00020) 20.0 20.0 20.0 11.0 19.0 19.5 19.5	ATURE WATER (DEG C) (00010) 9.8 11.1 10.8 9.4 12.8 12.2 16.5 9.0 12.2	NESS TOTAL (MG/L AS CACO3) (00900) 47 78 71 110 240 93 150 110 98	DIS- SOLVED (MG/L AS CA) (00915) 14.1 24.0 21.5 32.2 83.0 27.9 44.7 33.9 29.4	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 2.75 4.37 4.27 6.39 8.96 5.72 9.39 6.69 6.02

GEOLOGIC UNIT (Aquifer):

111ALVM HOLOCENE 111TRRC TERRACE DEPOSIT

124GRRV GREEN RIVER FORMATION

GROUND-WATER QUALITY NEAR WASTEWATER-TREATMENT FACILITIES, GRAND TETON NATIONAL PARK--Continued

STATION NUMBER	Date	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)
433932110430801 433939110424001 433939110425601 434920110370801 434927110370801	09-10-02 09-10-02 09-10-02 09-11-02 09-12-02	.71 .82 .69 1.69 4.93	.1 .1 .5 2	1.09 1.11 1.05 11.6 54.1	49 81 74 109 226	E.25 E.25 E.22 9.26 79.7	E.1 E.1 E.1 .5	7.3 7.7 8.1 24.8 26.3	1.4 1.4 1.5 9.7 13.1	 . 23 . 60	 167 438
435357110374102 435357110374103 435357110374104 435357110374105 435358110374201	09-11-02 09-11-02 09-11-02 09-12-02 09-12-02	8.07 2.75 6.99 7.01 6.25	3 2 3 3 3	73.2 47.5 64.4 70.8 60.0	E87 170 E95 122 115	114 54.4 102 108 90.2	.2 .1 .2 .2	33.0 19.9 34.0 21.9 19.9	15.7 19.2 19.0 16.1 17.5	 .41 .46 .41	300 338 304
440640110401001 440641110400101 440641110402101 440641110402102 440641110402103	09-13-02 09-13-02 09-13-02 09-13-02 09-13-02	2.63 2.95 3.59 3.59 3.58	.8 1 .7 .7	18.3 21.8 18.5 19.7 19.8	117 102 154 162 172	10.6 11.3 11.6 13.9 13.9	1.2 1.4 .9 .9	25.9 27.2 24.4 24.9 25.8	14.7 18.1 14.2 13.7 13.4	. 25 . 24 . 32 . 34 . 36	186 175 236 252 263
440643110400101 440645110401101 440645110402001	09-13-02 09-12-02 09-13-02	2.59 1.90 4.02	.9 .3 2	20.7 7.18 55.4	108 128 183	9.41 7.30 25.1	1.3 .5 3.0	25.6 21.7 44.8	14.8 7.0 4.0	. 23 . 23 . 38	172 168 282
	STATIO NUMBER	N	Date	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	FECAL STREP, KF STRP MF, WATER (COL/ 100 ML) (31673)	
	4339321104 4339391104 4339391104 4349201103 4349271103	24001 25601 70801	09-10-02 09-10-02 09-10-02 09-11-02 09-12-02	<.04 <.04 <.04 <.04 <.04	.18 .12 .09 1.11 6.31	<.008 <.008 <.008 <.008 <.246	E.01 E.01 E.01 .04 1.30	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	
	4353571103 4353571103 4353571103 4353571103 4353581103	74103 74104 74105	09-11-02 09-11-02 09-11-02 09-12-02 09-12-02	5.03 .13 5.37 4.03 2.01	<.05 <.05 <.05 <.05 <.05	E.007 <.008 <.008 .010 E.006	.14 <.02 .26 .16	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	
	4406401104 4406411104 4406411104 4406411104 4406411104	00101 02101 02102	09-13-02 09-13-02 09-13-02 09-13-02 09-13-02	<.04 <.04 <.04 <.04 <.04	.88 .12 3.08 3.60 4.19	<.008 <.008 <.008 <.008 <.008	E.02 E.01 .58 .67	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	
	4406431104 4406451104 4406451104	01101	09-13-02 09-12-02 09-13-02	<.04 <.04 <.04	.12 .14 .09	<.008 <.008 <.008	E.01 .03 .09	<1 E1k E1k	<1 <1 <1	<1 <1 <1	

 $[\]mbox{\bf E}$ -- Estimated value $\mbox{\bf k}$ -- Counts outside acceptable range (non-ideal colony count).

PESTICIDE AND NUTRIENT SAMPLING PROGRAM

NATRONA COUNTY

	WELL NUMBER		TION BER	GEOLOG UNIT		LOCAL DENTIFIER	DATE	: TIM	DEPTH BELOW LAND SURFAC (WATE IE LEVEL (FEET (72019	DEPTH OF OF TOTAL () (FEET)) NGVD)	E I E
	N11 N12 N10 N6 N7	423622 424921 424946	106402601 106373601 106231101 106223901 106240101	111ALV 111ALV 111ALV 111ALV 111ALV	M 31-08 M 33-08 M 33-08	32-09cbd01 32-35bdc01 30-13cda01 30-13ada01 30-14aca01	03-20- 03-20- 03-22- 03-22- 03-21-	02 113 02 091 02 103	0 9. 0 10. 0 9.	1 25 4 32 6 20	5320 5320 5125 5150 5120	
	N3 N4a N9 N2 N1	425126 425134 425137	106185701 106193101 106064401 106180401 106155101	111ALV 111ALV 111ALV 111ALV 111ALV	M 33-07 M 33-07 M 33-07	79-03ccc01 79-04acc02 77-05bdd01 79-03adb01 79-36dcd01	03-20- 05-14- 03-20- 03-21- 05-15-	02 182 02 111 02 130	0 13. 5 10. 0 12.	4 18 0 40 0 15	5120 5105 5040 5100 5095	
	И8	425400	106272101	111ALV	M 34-08	30-20add01	03-20-	02 141	5 17.	8 24	5316.	29
STATION NUMBER		DATE	OXYGEN, DIS- (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- UNITS) (00400)	SPE- CIFIC CON- DUCT- (US/CM) (00095)	TEMPER- ATURE (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED AS N) (00613)	ORTHO- PHOS- PHATE, DIS- SOLVED AS P) (00671)	2,4-D, DIS- (UG/L) (39732)	2,4-DB WATER, FLTRD, GF 0.7U (UG/L) (38746)
42344810640260 42362210637360 42492110623110 42494610622390 42494610624010	01 0 01 0 01 0	3-20-02 3-20-02 3-22-02 3-22-02 3-21-02	.1 .4 .3 .3	7.6 7.6 7.7 7.4 7.3	920 512 1350 2870 2000	10.0 9.0 8.5 10.0 10.5	<.04 .14 <.04 <.04 <.04	2.13 <.05 3.58 17.1 6.62	.033 <.008 .084 <.008 .066	<.02 E.01 <.02 .08 <.02	<.16 <.16 <.16 <.16 <.16	<.25 <.25 <.25 <.25 <.25 <.25
42510110618570 42512610619310 42513410606440 42513710618040 42515410615510	01 0 01 0 01 0	3-20-02 5-14-02 3-20-02 3-21-02 5-15-02	4.4 .8 5.0	7.4 7.3 7.9 7.3 7.5	6360 1680 761 2900 6670	9.5 14.0 9.0 10.0 12.0	<.04 E.02 .45 <.04	11.9 .56 <.05 4.73 2.57	<.008 E.006 <.008 .073 <.008	.06 .02 <.02 <.02 E.01	<.16 <.16 <.16 <.16 <.16	<.25 <.25 <.25 <.25 <.25 <.25
42540010627210	01 0	3-20-02	4.1	7.3	1270	11.5	<.04	5.13	<.008	<.02	<.16	<.25
STATION NUMBER		DATE	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BRO- MACIL, WATER, DISS, REC (UG/L) (04029)	CLOPYR- ALID, WATER, FLTRD, GF 0.7U REC (UG/L) (49305)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
42344810640260 42362210637360 42492110623110 42494610622390 42494610624010	01 0 01 0	3-20-02 3-20-02 3-22-02 3-22-02 3-21-02	<.004 <.004 <.004 <.004 <.004	<.20 <.20 <.20 <.20 <.20	<.27 <.27 <.27 <.27 <.27 <.27	<.21 <.21 <.21 <.21 <.21	<.007 <.007 <.007 <.007 <.007	<.09 <.09 <.09 <.09 <.09	<.42 <.42 <.42 <.42 <.42	<.018 <.018 <.018 <.018 <.018	<.003 <.003 <.003 <.003 <.003	<.006 <.006 <.006 <.006 <.006
42510110618570 42512610619310 42513410606440 42513710618040 42515410615510	01 0 01 0 01 0	3-20-02 5-14-02 3-20-02 3-21-02 5-15-02	<.004 <.004 <.004 <.004 <.004	<.57 <.52 <.20 <.20 <.20	<.27 <.27 <.27 <.27 <.27	<.21 <.21 <.21 <.21 <.21	.007 <.007 <.007 .014 <.007	<.09 <.09 <.09 <.09 <.09	<.42 <.42 <.42 <.42 <.42	<.018 <.018 <.018 <.018 <.018	<.003 <.003 <.003 <.003 <.003	<.006 <.006 <.006 E.010 <.006
42540010627210	01 0	3-20-02	<.004	<.20	<.27	<.21	.147	5.38	<.42	<.018	<.003	E.018

PESTICIDE AND NUTRIENT SAMPLING PROGRAM--Continued

NATRONA COUNTY--Continued

STATION NUMBER	DATE	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	PIC- LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699)
423448106402601 423622106373601	03-20-02 03-20-02	<.005 <.005	<.11 <.11	<.013 <.013	<.006 <.006	<.09 <.09	<.01 <.01	<.005 <.005	<.02 <.02	<1 <1	<1 <1
424921106231101	03-22-02	<.005	<.11	<.013	<.006	<.09	<.01	<.005	<.02	<1	<1
424946106223901	03-22-02	<.005	<.11	<.013	<.006	<.09	E.01	<.005	<.02	<1	<1
424946106240101	03-21-02	<.005	<.11	<.013	<.006	<.09	<.01	<.005	<.02	<1	<1
425101106185701	03-20-02	<.005	<.11	<.013	<.006	<.09	.05	<.005	.09	<1	<1
425126106193101	05-14-02	<.005	<.11	<.013	<.006	<.09	<.01	<.005	<.02	<1	<1
425134106064401	03-20-02	<.005	<.11	<.013	<.006	<.09	<.01	<.005	<.02	<1	<1
425137106180401	03-21-02	<.005	<.11	<.013	<.006	<.09	.11	<.005	.49	<1	<1
425154106155101	05-15-02	<.005	<.11	<.013	<.006	<.09	.08	<.005	<.02	<1	<1
425400106272101	03-20-02	<.005	<.11	<.013	<.006	E.04	1.24	.041	<.02	<1	<1

E -- Estimated value

PESTICIDE AND NUTRIENT SAMPLING PROGRAM

SWEETWATER COUNTY

1	WELL NUMBER		TION BER	GEOLOG UNIT		LOCAL ENTIFIER	DAT	E TIME	DEPTH BELOW LAND SURFACI (WATEI LEVEL (FEET (72019	R WELL,) TOTAL) (FEET)	ELEV. OF LANI SURFACE DATUM (FT. ABOVE NGVD) (72000)	Ε
	E7 E5 E6 E8 E3	413131 413134 413428	109280001 109281101 109274301 109135201 109133501	111ALVI 111ALVI 111ALVI 111ALVI 111ALVI	M 18-10 M 18-10 M 18-10	7-22ddc01 7-22acc01 7-23bcc01 5-02bbb01 5-35bdc01	03-30- 03-30- 03-30- 03-28- 03-31-	02 1530 02 1720 02 1600	28.2 8.4 7.1 7.8 11.4	35 12 15 20 19	6100 6080 6080 6240 6260	
	E11 E1 E12 E9 E13	413701 420302 420635	109585401 109134901 109261501 109270101 109243201	111ALVI 111ALVI 124GRR' 124GRR' 124GRR'	M 19-10 V 24-10 V 25-10	1-30dad02 5-23bbb01 6-21bbb01 6-27cbb01 6-13cbb01	03-30- 03-31- 03-29- 03-29- 03-29-	02 1030 02 1530 02 1010	7.3 11.8 8.0 26.7 8.3	85 20 25 80 85	6270 6295 6610 6590 6635	
	E10	421442	107333501	111ALVI 111ALVI		0-11bbc01 0-11bbc01	10-05- 03-31-		24.8 25.4	29 29	6840 6840	
STATION NUMBER		DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	2,4-D, DIS- SOLVED (UG/L) (39732)	2,4-DB WATER, FLTRD, GF 0.7U REC (UG/L) (38746)
41310610928000 41313110928110 41313410927430 41342810913520 41345410913350	1 0 1 0 1 0	3-30-02 3-30-02 3-30-02 3-28-02 3-31-02	.7 .5 .1 .5	7.2 7.8 8.4 6.8 6.9	5640 4610 12000 10100 22100	12.0 7.5 9.0 11.0 12.0	.04 <.04 <.04 .36	93.8 1.09 128 <.05 44.4	<.008 .087 1.05 .009 .106	.02 .52 .44 <.02 .08	<.23 <.16 <.16 <.16 <.16	<.25 <.25 <.25 <.25 <.25
41354410958540 41370110913490 42030210926150 42063510927010 42082810924320	1 0 1 0 1 0	3-30-02 3-31-02 3-29-02 3-29-02 3-29-02	.8 2.0 .1 1.4 1.8	7.6 7.2 8.0 7.7 7.9	1680 3510 1090 880 5260	8.0 11.0 7.0 8.5 8.5	.30 .13 <.04 <.04 .63	.06 2.14 1.45 1.82 <.05	.010 .041 E.006 <.008 E.006	<.02 E.01 .03 E.01 <.02	<.16 <.22 <.16 <.16 <.16	<.25 <.25 <.25 <.25 <.25 <.25
42144210733350		0-05-01 3-31-02	.3	7.2 7.1	2710 2500	8.5 10.0	.05 E.04	.13 E.04	<.008 <.008	<.02 E.01	<.16 <.19	<.25 <.25
STATION NUMBER		DATE	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BRO- MACIL, WATER, DISS, REC (UG/L) (04029)	CLOPYR- ALID, WATER, FLTRD, GF 0.7U REC (UG/L) (49305)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
41310610928000 41313110928110 41313410927430 41342810913520 41345410913350	1 0 1 0 1 0	3-30-02 3-30-02 3-30-02 3-28-02 3-31-02	<.004 <.004 <.004 <.004 <.004	<.20 <.20 <.20 <.20 <.20	<.27 <.27 <.27 <.27 <.27 <.27	<.21 <.21 <.21 <.21 <.21 <.21	<.007 <.007 <.007 <.007 <.007	<.09 <.09 <.09 <.09 <.09	<.84 <.42 <.84 <.84	<.018 <.018 <.018 <.018 <.018	<.003 <.003 <.003 <.003 <.003	<.006 <.006 <.006 <.006
41354410958540 41370110913490 42030210926150 42063510927010 42082810924320	1 0 1 0 1 0	3-30-02 3-31-02 3-29-02 3-29-02 3-29-02	<.004 <.004 <.004 <.004 <.004	<.20 <.20 <.20 <.20 <.20	<.27 <.27 <.27 <.27 <.27 <.27	<.21 <.21 <.21 <.21 <.21 <.21	<.007 <.007 <.007 <.007 <.007	<1.10 .10 <.09 <.09 <.09	<.42 <.42 <.42 <.42 <.42 <.42 <.42	<.018 <.018 <.018 <.018 <.018	<.003 <.003 <.003 <.003 <.003	<.006 <.006 <.006 <.006 <.006
42144210733350		0-05-01 3-31-02	<.002 <.004	<.20 <.20	<.27 <.27	<.21 <.21	.015	<.09 <.09	<.42 <.42	<.018 <.018	<.003 <.003	E.012 E.004

PESTICIDE AND NUTRIENT SAMPLING PROGRAM--Continued

SWEETWATER COUNTY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

STATION NUMBER	DATE	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	PIC- LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699)
				S	WEETWATER	COUNTY					
413106109280001 413131109281101 413134109274301 413428109135201 413454109133501	03-30-02 03-30-02 03-30-02 03-28-02 03-31-02	<.005 <.005 <.005 <.005 <.005	<.11 <.11 <.11 <.11	<.013 <.013 <.013 <.013 <.013	<.006 <.006 <.006 <.006 <.006	<.18 <.09 <.18 <.18	<.01 <.01 <.01 <.01 E.01	<.005 <.005 <.005 <.005 <.005	<.02 .05 <.02 <.02 E.01	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1
413544109585401 413701109134901 420302109261501 420635109270101 420828109243201	03-30-02 03-31-02 03-29-02 03-29-02 03-29-02	<.005 <.005 <.005 <.005 <.005	<.11 <.11 <.11 <.11 <.11	<.013 <.013 <.013 <.013 <.013	<.006 <.006 <.006 <.006 <.006	<.09 <.09 <.09 <.09 <.09	<.01 .04 <.01 <.01 <.01	<.005 <.005 <.005 <.005 <.005 <.005	<.02 .03 <.02 <.02 <.02	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1
421442107333501	10-05-01 03-31-02	<.005 <.005	<.11 <.11	<.013 <.013	<.006 <.006	<.09 <.09	<.01 <.01	<.011 <.005	<.02 <.02	<1 <1	<1 <1

E -- Estimated value

PESTICIDE AND NUTRIENT SAMPLING PROGRAM

TETON COUNTY

	WELL NUMBER		ATION MBER	GEOLOG UNIT		LOCAL DENTIFIER	DAT	E TIME	DEPTH BELOW LAND SURFAC: (WATE: LEVEL (FEET (72019	DEPTH E OF R WELL,) TOTAL) (FEET)		E
	T12 T5	432447	1110453001 7110483901	111ALVI 111ALVI 111ALVI	M 40-11 M 40-11	16-34bba01 16-19cbb01 16-19cbb01	03-25- 10-04- 03-28-	-01 1015 -02 0850		72 72	6250 6020 6020	
	Т6	432541	1110465401	111ALVI 111ALVI		.6-17dbc01 .6-17dbc01	10-03- 03-25-		3.5 4.0		6060 6060	
	T3 T7		2110493201 5110521601	111ALVI 111ALVI 111ALVI	M 41-11	1-01bab01 17-34dbc01 17-34dbc01	03-25-0 10-04- 03-26-	-01 0830			6105 6115 6115	
	T11 T11a		9110454901 8110454401	111ALVI 111ALVI	M 41-11	6-28ddd01 6-28dda01	10-01- 03-27-	01 1600	45.3		6280 6220	
	Т8	433114	1110502401	111ALVI 111ALVI		7-13bbc01 7-13bbc01	10-02- 03-26-				6180 6180	
	Т9 Т4		3110492001 3110455801	111ALVI 111ALVI 111ALVI	м 41-11	17-01add01 17-01add01 16-33add01	10-03- 03-26- 10-03-	02 1010	10.7	17.5 17.5 60		
	T15 T14 T13	434942	5110445201 2110242101 3110400601	111ALVI 111ALVI 111ALVI 111ALVI 111ALVI	M 42-11 M 45-11 M 45-11	.6-33add01 .6-10add01 .3-27dcc01 .3-27dcc01 .5-28abc01	03-27- 05-16- 10-02- 05-15- 10-02-	-02 1310 -01 1245 -02 1650	15.5 E10 9.3	40 41	6320 6390 6080 6080 6820	
				111ALVI	м 48-11	5-28abc01	05-16-	-02 1000	4.7	14	6820	
STATION NUMBER		DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER - ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	2,4-D, DIS- SOLVED (UG/L) (39732)	2,4-DB WATER, FLTRD, GF 0.7U REC (UG/L) (38746)
43181411045300 43244711048390	1 10	3-25-02 0-04-01 3-28-02	3.7 1.9 4.5	7.6 7.5 7.5	593 416 446	10.0 10.0 8.0	<.04 <.04 <.04	.85 .12 .21	<.008 <.008 .008	<.02 <.02 E.02	<.16 <.16 <.16	<.25 <.25 <.25
43254111046540		0-03-01 3-25-02	1.5 1.8	7.3 7.4	778 799	10.0	<.04 <.04	.49 .39	<.008 <.008	<.02 <.02	<.16 <.16	<.25 <.25
43275211049320 43281611052160	1 10	3-25-02 0-04-01 3-26-02	2.7 2.1 2.8	7.6 7.8 8.0	492 259 268	9.0 9.0 8.5	<.04 <.04 <.04	.29 .10 .13	<.008 <.008 <.008	.04 <.02 <.02	<.16 <.16 <.16	<.25 <.25 <.25
43284911045490 43285811045440	1 10	0-01-01 3-27-02	7.7	7.4 7.2	580 628	11.0 10.0	<.04 <.04	E.03 .39	<.006 .012	<.02	<.16 <.16	<.25 <.25
43333811045580		0-02-01 3-26-02	2.5 2.4	7.9 7.9	260 275	10.5 7.0	<.04 <.04	.12 .11	<.006 <.008	<.02 <.02	<.16 <.16	<.25 <.25
43324811049200 43333811045580	1 10 03	0-03-01 3-26-02 0-03-01	.7 3.2 6.4	7.5 7.5 7.7	225 267 409	11.5 8.0 9.5	<.04 <.04 <.04	E.04 .15 .08	<.008 <.008 <.008	<.02 <.02 <.02	<.11 <.16 <.11	<.10 <.25 <.10
43371611044520 43494211024210 44060811040060	1 05 1 10 05	3-27-02 5-16-02 0-02-01 5-15-02 0-02-01	7.4 5.0 .2 .1	7.6 8.0 8.0 7.5 6.7	431 262 390 401 275	8.0 11.5 8.0 9.0 10.5	<.04 <.04 <.04 <.04 <.04	.07 .68 E.03 <.05	<.008 <.008 <.006 E.005 <.006	<.02 E.02 <.02 E.01 <.02	<.16 <.16 <.16 <.16 <.16	<.25 <.25 <.25 <.25 <.25 <.25
	05	5-16-02	1.2	6.7	257	5.5	<.04	.92	<.008	<.02	<.16	<.25

PESTICIDE AND NUTRIENT SAMPLING PROGRAM--Continued

TETON COUNTY--Continued

STATION NUMBER	DATE	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BRO- MACIL, WATER, DISS, REC (UG/L) (04029)	CLOPYR- ALID, WATER, FLTRD, GF 0.7U REC (UG/L) (49305)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
431814110453001 432447110483901	03-25-02 10-04-01 03-28-02	<.004 <.002 <.004	<.20 <.20 <.20	<.27 <.27 <.27	<.21 <.21 <.21	<.007 <.007 <.007	<.09 <.09 <.09	<.42 <.42 <.42	<.018 <.018 <.018	<.003 <.003 <.003	<.006 <.006 <.006
432541110465401	10-03-01 03-25-02	<.002 <.004	<.20 <.20	<.27 <.27	<.21 <.21	<.007 <.007	<.09 <.09	<.42 <.42	<.018 <.018	<.003 <.003	<.006 <.006
432752110493201 432816110521601	03-25-02 10-04-01 03-26-02	<.004 <.002 <.004	<.20 <.20 <.20	<.27 <.27 <.27	<.21 <.21 <.21	<.007 <.007 <.007	<.09 <.09 <.09	<.42 <.42 <.42	<.018 <.018 <.018	<.003 <.003 <.003	<.006 <.006 <.006
432849110454901 432858110454401	10-01-01 03-27-02	<.002 <.004	<.20 <.20	<.27 <.27	<.21 <.21	<.007 <.007	<.09 <.09	<.42 <.42	<.018 <.018	<.003 <.003	<.006 <.006
433114110502401	10-02-01 03-26-02	<.002 <.004	<.20	<.27 <.27	<.21 <.21	<.007 <.007	<.09 <.09	<.42 <.42	<.018 <.018	<.003	<.006 <.006
433248110492001 433338110455801	10-03-01 03-26-02 10-03-01	<.002 <.004 <.002	<.20 <.20 <.20	<.02 <.27 <.02	<.21 <.21 <.21	<.007 <.007 <.007	<.09 <.09 <.09	<.42 <.42 <.42	<.018 <.018 <.018	<.003 <.003 <.003	<.006 <.006 <.006
433716110445201 434942110242101 440608110400601	03-27-02 05-16-02 10-02-01 05-15-02 10-02-01	<.004 <.004 <.002 <.004 <.002	<.20 <.20 <.20 <.20 <.20	<.27 <.27 <.27 <.27 <.27	<.21 <.21 <.21 <.21 <.21	<.007 <.007 <.007 <.007 <.007 <.007	<.09 <.09 <.09 <.09 <.09	<.42 <.42 <.42 <.42 <.42	<.018 <.018 <.018 <.018 <.018	<.003 <.003 <.003 <.003 <.003 <.003	<.006 <.006 <.006 <.006 <.006
	05-16-02	<.004	<.20	<.27	<.21	<.007	<.09	<.42	<.018	<.003	<.006
STATION NUMBER	DATE	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	PIC- LORAM, WATER, FLITRD, GF 0.7U REC (UG/L) (49291)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699)
	03-25-02 10-04-01	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005	WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	LACHLOR WATER DISSOLV (UG/L) (39415) <.013 <.013	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006	LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291)	METON, WATER, DISS, REC (UG/L) (04037)	MAZINE, WATER, DISS, REC (UG/L) (04035)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.02 <.02	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699)
NUMBER 431814110453001	03-25-02	AZINON, DIS- SOLVED (UG/L) (39572)	WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	LACHLOR WATER DISSOLV (UG/L) (39415)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291)	METON, WATER, DISS, REC (UG/L) (04037)	MAZINE, WATER, DISS, REC (UG/L) (04035)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699)
NUMBER 431814110453001 432447110483901	03-25-02 10-04-01 03-28-02 10-03-01 03-25-02 03-25-02 10-04-01	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005	WATER, FLITED, GF 0.7U REC (UG/L) (38442) <.11 <.11 <.11 <.11 <.11 <.11 <.11 <.1	LACHLOR WATER DISSOLV (UG/L) (39415) <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 <.006 <.006	LORAM, WATTER, FLTRD, GF 0.7U REC (UG/L) (49291) <.09 <.09 <.09 <.09 <.09 <.09 <.09 <.0	METON, WATER, DISS, REC (UG/L) (04037) .02 <.01 <.01 M <.01	MAZINE, WATER, DISS, REC (UG/L) (04035) <.005 <.011 <.005 <.001 <.005 <.005 <.011	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704) <1 <1 <1 <1 <1 <1 <1	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699) <1 <1 <1 <1 <1 <1
NUMBER 431814110453001 432447110483901 432541110465401 432752110493201	03-25-02 10-04-01 03-28-02 10-03-01 03-25-02	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005	WATER, FLIRD, GF 0.7U REC (UG/L) (38442) <.11 <.11 <.11 <.11	LACHLOR WATER DISSOLV (UG/L) (39415) <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 <.006	LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291) <.09 <.09 <.09 <.09 <.09 <.09 <.09 <.0	METON, WATER, DISS, REC (UG/L) (04037) .02 <.01 <.01 M <.01	MAZINE, WATER, DISS, REC (UG/L) (04035) <.005 <.011 <.005 <.011 <.005	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704) <1 <1 <1 <1 <1 <1	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699) <1 <1 <1 <1 <1 <1 <1
NUMBER 431814110453001 432447110483901 432541110465401 432752110493201 432816110521601 432849110454901	03-25-02 10-04-01 03-28-02 10-03-01 03-25-02 03-25-02 10-04-01 03-26-02 10-01-01	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	WATER, FLIRD, GF 0.7U REC (UG/L) (38442) <.11 <.11 <.11 <.11 <.11 <.11 <.11 <.1	LACHLOR WATER DISSOLV (UG/L) (39415) <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </013 </014 </013 </013 </013 </013 </013 </013 </013 </013 </013 </01</td <td>BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006</td> <td>LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291) <.09 <.09 <.09 <.09 <.09 <.09 <.09 <.0</td> <td>METON, WATER, DISS, REC (UG/L) (04037) .02 <.01 <.01 M <.01 <.01 <.01 <.01 <.01</td> <td>MAZINE, WATER, DISS, REC (UG/L) (04035) <.005 <.011 <.005 <.001 <.005 <.001 <.005 <.011 <.005 <.011</td> <td>THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0</td> <td>1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1</td> <td>1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1</td>	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291) <.09 <.09 <.09 <.09 <.09 <.09 <.09 <.0	METON, WATER, DISS, REC (UG/L) (04037) .02 <.01 <.01 M <.01 <.01 <.01 <.01 <.01	MAZINE, WATER, DISS, REC (UG/L) (04035) <.005 <.011 <.005 <.001 <.005 <.001 <.005 <.011 <.005 <.011	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
NUMBER 431814110453001 432447110483901 432541110465401 432752110493201 432816110521601 432849110454901 432858110454401	03-25-02 10-04-01 03-28-02 10-03-01 03-25-02 03-25-02 10-04-01 03-26-02 10-01-01 03-27-02	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	WATER, FLITRD, GF 0.7U REC (UG/L) (38442) <.11 <.11 <.11 <.11 <.11 <.11 <.11 <.1	LACHLOR WATER DISSOLV (UG/L) (39415) <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291) <.09 <.09 <.09 <.09 <.09 <.09 <.09 <.0	METON, WATER, DISS, REC (UG/L) (04037) .02 <.01 <.01 M <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	MAZINE, WATER, DISS, REC (UG/L) (04035) <.005 <.011 <.005 <.011 <.005 <.011 <.005 <.011 <.005 <.011 <.005 <.011	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
NUMBER 431814110453001 432447110483901 432541110465401 432752110493201 432816110521601 432849110454901 432858110454401 433114110502401 433248110492001	03-25-02 10-04-01 03-28-02 10-03-01 03-25-02 03-25-02 10-04-01 03-26-02 10-01-01 03-27-02 10-02-01 03-26-02 10-03-01 03-26-02	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	WATER, FLITRD, GF 0.7U REC (UG/L) (38442) <.11 <.11 <.11 <.11 <.11 <.11 <.11 <.1	LACHLOR WATER DISSOLV (UG/L) (39415) <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291) <.09 <.09 <.09 <.09 <.09 <.09 <.09 <.0	METON, WATER, DISS, REC (UG/L) (04037) .02 <.01 <.01 M <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	MAZINE, WATER, DISS, REC (UG/L) (04035) <.005 <.011 <.005 <.011 <.005 <.011 <.005 <.011 <.005 <.011 <.005 <.011 <.005	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <

E -- Estimated value M -- Presence verified, not quantified

PESTICIDE AND NUTRIENT SAMPLING PROGRAM

UINTA COUNTY

	WELL NUMBER		ATION MBER	GEOLC UNI		:	LOCAL IDENTIFIER	DA	TE T	IME	DEPT BELO LAND SURFA (WAT LEVE (FEE (7201	W DEPT CE OF ER WELL L) TOTA T) (FEE	DATU , (FI L ABOU T) NGVI	AND ACE JM F. VE
	U5 U3 U4 U8 U7	41041 41064 41133	111052380 111007410 711050310 211023530 011100080	1 111AL 1 111AL 1 111AL	VM 1 VM 1 VM 1	L3-1: L3-1: L4-1:	19-06dbd02 13-34aab01 19-09dcc01 15-05aca01 21-31cba01	. 09-18 . 09-17 . 09-18	-02 09 -02 08 -02 12	045 900 345 230 300	4. 8. 3. 18.	0 45 5 23 5 50	740 735 706	00 50 50
	U11 U9 U2 U12 U10	41161 41164 41192	411057380 411020280 311058340 611021420 711017280	1 111AL 1 111AL 1 111AL	VM 1 VM 1 VM 1	L5-1: L5-1: L6-1:	20-21cbd02 15-23abd01 20-17bdd01 15-34acd01 14-32bdb01	. 09-18 . 09-19 . 09-19	-02 15 -02 17 -02 12	500 500 700 215 330	24. 8. 7. E5. 6.	5 13 8 35 0 E50	683 673 665	.0 .0 50
	U6 U1		511100180 511101030				21-25aaa01 21-01cdc01			515 500	12. E5.			
STATION NUMBER	D	ATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFI CON- DUCT ANCE (US/C)	EC - r- CM)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITROGEN, NO2+NO3 DIS- SOLVEI (MG/L AS N) (00631)	3 N3 O S (N	NITRO- GEN, ITRITE DIS- SOLVED MG/L AS N)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	2,4-D, DIS- SOLVED (UG/L) (39732)	2,4-DB WATER, FLTRD, GF 0.7U REC (UG/L) (38746)
41024111052380 41041111007410 41064711050310 41133211023530 41140011100080	L 09- L 09- L 09-	17-02 18-02 17-02 18-02 20-02	.1 .1 .3 .1 1.5	7.2 8.4 7.3 8.4 7.1	61 110 45 50 73	00 58 06	12.0 7.0 10.5 9.0 11.5	<.04 .41 <.04 .05 <.04	<.05 <.05 .29 <.05 .52	<	<.008 <.008 <.008 <.008 <.008	<.02 E.01 <.02 <.02 <.02	<.16 <.16 <.16 <.16 <.16	<.25 <.25 <.25 <.25 <.25 <.25
411544110573803 411614110202803 411643110583403 411926110214203 411937110172803	L 09- L 09- L 09-	17-02 18-02 19-02 19-02 19-02	4.2 .4 .2 5.5 .5	7.4 7.0 7.1 7.6 7.1	73 93 53 372 1640	30 32 20	10.5 14.5 10.5 9.0 16.5	<.04 <.04 <.04 .68 <.04	2.55 E.04 <.05 <.05 8.74	<	<.008 <.008 <.008 E.005	.03 E.01 <.02 <.02	<.16 <.16 <.16 <.16 <.16	<.25 <.25 <.25 <.25 <.25
412035111001803 412315111010303		17-02 19-02	1.0 5.6	7.6 7.2	72 81		10.0 9.0	<.04 E.04	.62 <.05		<.008	E.01 <.02	<.16 <.16	<.25 <.25
NUMBER	D	ATE	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	ALDIC RB SU FOXID WAT,F GF 0. REC (UG/ (4931	IL- DE, FLT .7U C /L)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BRO- MACIL WATER DISS, REC (UG/L) (04029)	, V , E GE	LOPYR- ALID, WATER, FLTRD, F 0.7U REC (UG/L) 49305)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
41024111052380 41041111007410 41064711050310 41133211023530 41140011100080	L 09- L 09- L 09-	17-02 18-02 17-02 18-02 20-02	<.004 <.004 <.004 <.004 <.004	<.20 <.20 <.20 <.20 <.20	<.27 <.27 <.27 <.27	7 7 7	<.21 <.21 <.21 <.21 <.21 <.21	<.007 <.007 <.007 <.007 <.007	<.09 <.09 <.09 <.09 <.11	<	<.42 <.42 <.42 <.42 <.42	<.018 <.018 <.018 <.018 <.018	<.003 <.003 <.003 <.003 <.003	<.006 <.006 <.006 <.006 <.006
41154411057380 41161411020280 41164311058340 41192611021420 41193711017280	L 09- L 09- L 09-	17-02 18-02 19-02 19-02 19-02	<.004 <.004 <.004 <.004 <.004	<.20 <.20 <.20 <.20 <.20	<.27 <.27 <.27 <.27	7 7 7	<.21 <.21 <.21 <.21 <.21 <.21	E.005 E.006 .013 <.007	<.25 <.09 <.09 <.09 <.09	<	<.42 <.42 <.42 <.42 <.42	<.018 <.018 <.018 <.018 <.018	<.003 <.003 <.003 <.003 <.003	<.006 <.006 E.003 <.006 <.006
412035111001803 412315111010303		17-02 19-02	<.004 <.004	<.20 <.20	<.27 <.27		<.21 <.21	<.007 <.007	<.09 <.09		<.42 <.42	<.018 <.018	<.003 <.003	<.006 <.006

PESTICIDE AND NUTRIENT SAMPLING PROGRAM--Continued

UINTA COUNTY--Continued

STATION NUMBER	DATE	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	PIC- LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699)
410241110523801 410411110074101 410647110503101 411332110235301 411400111000801	09-17-02 09-18-02 09-17-02 09-18-02 09-20-02	<.005 <.005 <.005 <.005 <.005	<.11 <.11 <.11 <.11	<.013 <.013 <.013 <.013 <.013	<.006 <.006 <.006 <.006 <.006	<.09 <.09 <.09 <.09 <.09	<.01 <.01 <.01 <.01 M	<.005 <.005 <.005 <.005 <.005	<.02 <.02 <.02 <.02 <.02	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1
411544110573801 411614110202801 411643110583401 411926110214201 411937110172801	09-17-02 09-18-02 09-19-02 09-19-02 09-19-02	<.005 <.005 <.005 <.005 <.005	<.11 <.11 <.11 <.11	<.013 <.013 <.013 <.013 <.013	<.006 <.006 <.006 <.006 <.006	<.09 <.09 <.09 <.09 <.09	.10 .04 .36 <.01 1.05	.058 <.005 <.005 <.005 <.005	E.01 <.02 <.02 <.02 <.02	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1
412035111001801 412315111010301	09-17-02 09-19-02	<.005 <.005	<.11 <.11	<.013 <.013	<.006 <.006	<.09 <.09	.03 <.01	<.005 <.005	<.02 <.02	<1 <1	<1 <1

E -- Estimated value M -- Presence verified, not quantified

SUPPLEMENTARY DATA FOR PESTICIDE AND NUTRIENT SAMPLING PROGRAM, DETECTIONS

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

NATRONA COUNTY

STATION NUMBER	DATE	Time	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L) (34475)
4250101106185701	03-20-02	1640	9

SWEETWATER COUNTY

STATION NUMBER	DATE	Time	XYLENE WATER UNFLTRD REC (UG/L) (81551)	STYRENE TOTAL (UG/L) (77128)	TOLUENE TOTAL (UG/L) (34010)	
4135544109585401	03-30-02	1040	11	6	15	

TETON COUNTY

STATION NUMBER	DATE	Time	ACETONE WHOLE TOTAL (UG/L) (81552
432752110493201	03-25-02	0940	20

127 SUPPLEMENTARY DATA FOR PESTICIDE AND NUTRIENT SAMPLING PROGRAM

These organic compounds are not pesticides of focus for the Pesticide and Nutrient Sampling Program (tabled on pages 119-125), but are included in the analytical methods employed by the program. With the exception of the five compounds listed in bold, no detections of these compounds were found in the counties sampled in Water Year 2002. The five compounds in bold each had one detection, and the results are tabled on page 126.

PARAMETER CODE	COMPOUND NAME	MINIMUM REPORTING LEVEL
45617	1,2-DICHLOROETHENE, WATER, WHOLE, RECOVERABLE, UG/L	1
39742	2,4,5-T, DISSOLVED (UG/L)	0.07
82660	2,6-DIETHYLANILINE, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.006
49308	3-HYDROXYCARBOFURAN, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.11
49260	ACETOCHLOR, WATER, FILTERED, RECOVERABLE, (UG/L)	0.006
49315	ACIFLUORFEN, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.05
34253	ALPHA BHC (UG/L)	0.005
82673	BENFLURALIN, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.01
38711 49311	BENTAZON, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L) BROMOXYNIL, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.05 0.07
04028	BUTYLATE, WATER, DISSOLVED, RECOVERABLE, UG/L	0.002
49310	CARBARYL, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.08
82680	CARBARYL, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.041
49309	CARBOFURAN, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.15
82674	CARBOFURAN, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.02
61188	CHLORAMBEN, METHYL ESTER, WATER, FILTERED, RECOVERABLE, (UG/L)	0.21
49306	CHLOROTHALONIL, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.25
38933	CHLORPYRIFOS DISSOLVED, UG/L	0.005
49304	DACTHAL, MONO-ACID, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.07
49303	DICHLOBENIL, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.09
49302 39381	DICHLORPROP, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L) DIELDRIN, DISSOLVED (UG/L)	0.12
49301	DINOSEB, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.003
82677	DISULFOTON, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.02
49300	DIURON, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.12
49299	DNOC, WATER, FILTERED, GF, 0.7 U, REC, (UG/L)	0.25
82668	EPTC, WATER, FILTERED, LASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.002
82663	ETHALFLURALIN, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.009
82672	ETHOPROP, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.005
49297	FENURON, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.07
38811	FLUOMETURON, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.06
04095	FONOFOS, WATER, DISSOLVED, RECOVERABLE, UG/L	0.003
39341 38478	LINDANE, DISSOLVED (UG/L) LINURON, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.004
82666	LINURON, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.035
39532	MALATHION, DISSOLVED (UG/L)	0.027
38482	MCPA, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.2
38487	MCPB, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.26
38501	METHIOCARB, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.07
49296	METHOMYL, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.22
82686	METHYL AZINPHOS, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.05
82667	METHYL PARATHION, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.006
82671	MOLINATE, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.002
82684 49294	NAPROPAMIDE, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L NEBURON, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.007 0.07
49293	NORFLURAZON, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.04
49292	ORYZALIN, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.28
38866	OXAMYL, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.16
34653	P,P' DDE DISSOLVED (UG/L)	0.003
39542	PARATHION, DISSOLVED (UG/L)	0.01
82669	PEBULATE, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.004
82683	PENDIMETHALIN, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.022
82687	PERMETHRIN, CIS, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.006
82664	PHORATE, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.011
82676 04024	PRONAMIDE, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L PROPACHLOR, WATER, DISSOLVED, RECOVERABLE, UG/L	0.004 0.01
82679	PROPACHLOR, WATER, DISSOLVED, RECOVERABLE, UG/L PROPANIL, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.01
82685	PROPARGITE, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.02
49236	PROPHAM, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.22
38538	PROPOXUR, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.12
39762	SILVEX, DISSOLVED (UG/L)	0.03
82665	TERBACIL, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.034
82675	TERBUFOS, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.02

PARAMETER CODE	COMPOUND NAME	MINIMUM REPORTING LEVEL
04022	TERBUTHYLAZINE, WATER, DISSOLVED, RECOVERABLE, UG/L	
82681	THIOBENCARB, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.005
82678	TRIALLATE, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.002
49235	TRICLOPYR, WATER, FILTERED, GF, 0.7 U, RECOVERABLE, (UG/L)	0.07
82661	TRIFLURALIN, WATER, FILTERED, GLASS FIBER, 0.7 U, RECOVERABLE, UG/L	0.009
81551	XYLENE, WATER, UNFILTERED, RECOVERABLE, UG/L	1
34506	1,1,1-TRICHLOROETHANE TOTAL (UG/L)	1
34511	1,1,2-TRICHLOROETHANE TOTAL (UG/L)	1
34496	1,1-DICHLOROETHANE TOTAL (UG/L)	1
34501	1,1-DICHLOROETHYLENE TOTAL (UG/L)	1
32103	1,2-DICHLOROETHANE TOTAL (UG/L)	1
34541	1,2-DICHLOROPROPANE TOTAL (UG/L)	1
34546	TRANS-1,2-DICHLOROETHENE, TOTAL, IN WATER (UG/L)	0.5
77103	2-HEXANONE, WATER, WHOLE, TOTAL, (UG/L)	5
81552	ACETONE, WATER, WHOLE, TOTAL, (UG/L)	10
34030	BENZENE, TOTAL (UG/L)	1
32104	BROMOFORM TOTAL (UG/L)	1
77041	CARBON DISULFIDE, WATER, WHOLE, TOTAL, (UG/L)	1
32102	CARBON TETRACHLORIDE, WATER, UNFILTERED, RECOVERABLE, (UG/L)	1
34301	CHLOROBENZENE TOTAL (UG/L)	1
32105	CHLORODIBROMOMETHANE TOTAL (UG/L)	1
34311	CHLOROETHANE TOTAL (UG/L)	2
32106	CHLOROFORM TOTAL (UG/L)	1
77093	CIS-1,2-DICHLOROETHENE, WATER, WHOLE, TOTAL, UG/L	1
32101	BROMODICHLOROMETHANE, WATER, UNFILTERED, RECOVERABLE, (UG/L)	1
34516	ETHANE, 1,1,2,2-TETRACHLORO-, WATER, UNFILTERED, RECOVERABLE, UG/L	1
34371	ETHYLBENZENE TOTAL (UG/L)	1
34413	METHYLBROMIDE TOTAL (UG/L)	2
34418	METHYLCHLORIDE, TOTAL (UG/L)	2
34423	METHYLENE CHLORIDE, WATER, UNFILTERED, RECOVERABLE, (UG/L)	1
81595	METHYLETHYLKETONE, WATER, WHOLE, TOTAL, (UG/L)	5
78133	METHYL ISOBUTYL KETONE, WATER, WHOLE, TOTAL, (UG/L)	5
77128	STYRENE, TOTAL (UG/L)	1
34475	TETRACHLOROETHYLENE TOTAL (UG/L)	1
34010	TOLUENE, TOTAL (UG/L)	1
39180	TRICHLOROETHYLENE TOTAL (UG/L)	1

¹ The minimum reporting level (MRL) is the lowest concentration for which a chemical can be quantified by the analytical method. In practice, the MRL is affected by many variables associated with the sample, sampling, preservation, shipping, and laboratory conditions. Actual MRL values occasionally vary from sample to sample.

BARO-

OXYGEN,

NUTRIENT SAMPLING PROGRAM

GOSHEN COUNTY

	'ATION IMBER	GEOLOGIC UNIT		OCAL NUMBER	DATE	TIME	METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	
42034	4104110001	111ALVM 111ALVM		-10cca01 -10cca01	12-27-01 04-05-02		656 581	5.3 4.2	61 55	
420422104132201		111ALVM 111ALVM	24-061 24-061	-08bba01 -08bba01	12-27-02 04-05-02	1 1445 2 1415	653 580	6.9 4.9	77 61	
42045	7104121001	111TRRC		L-04bdc02	12-27-01		653	6.5	72	
420459104105601		111TRRC 111TRRC 111TRRC	24-061	-04bdc02 -03bdc01 -03bdc01	04-05-02 12-27-03 04-05-02	1 1110	580 656 580	4.8 6.6 5.3	61 76 69	
42052	1104121701	111TRRC 111TRRC	25-061	-33ccc01 -33ccc01	12-27-01 04-04-02	1 1225	653 578	7.8 5.7	86 72	
42062	1104155301	111TRRC 111TRRC		2-26dda01 2-26dda01	12-27-03 04-04-02		650 578	7.9 6.0	88 76	
42074	3104232501	111ALVM		3-23abc01	12-28-03		649	.1	2	
42083	6104223501	111ALVM 111ALVM		3-23abc01 3-13bbd01	04-05-02 12-28-03		581 650	2.4 6.6	30 73	
42084	9104151001	111ALVM 111TRRC 111TRRC	25-062	3-13bbd01 2-12dcc01 2-12dcc01	04-05-02 12-27-03 04-05-02	1 1310	580 650 581	4.9 8.4 6.3	61 90 81	
42121	9104310401	111ALVM 111ALVM	26-064	l-22ddd01 l-22ddd01	12-28-03 04-05-02		650 580	5.6 4.7	62 58	
STATION NUMBER 420344104110001	DATE 12-27-01	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		TEMPER- ATURE WATER (DEG C) (00010)	DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	DIS- SOLVED (MG/L AS N)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	
420422104132201	04-05-02 12-27-01	7.2 7.1	1060 956	15.0 4.5	14.9 13.0	<.04	12.1 10.6	<.008	.05	
120122101132201	04-05-02	7.3	828	14.0	12.7	<.04	7.74	<.008	.08	
420457104121001	12-27-01	7.1	1020	3.0	13.0	<.04	14.2	<.008	.03	
420459104105601	04-05-02 12-27-01 04-05-02	7.3 6.9 7.2	875 1130 974	13.0 3.0 .5	13.8 14.5 14.8	<.04 <.04 <.04	12.5 11.2 19.2	<.008 <.008 <.008	.03 .02 .02	
420521104121701	12-27-01 04-04-02	7.2	839 724	3.0 13.0	13.0 13.3	<.04	6.07 5.50	<.008	.03	
420621104155301	12-27-01 04-04-02	7.2 7.4	964 839	 12.0	13.0 13.4	<.04 <.04	10.5 9.81	<.008 <.008	.02	
420743104232501	12-28-01 04-05-02	7.0	834 786	5.0	13.0	<.04	5.68 4.39	.009	.02	
420836104223501	12-28-01	7.1	1080		12.5	<.04	10.6	<.008	.03	
420849104151001	04-05-02 12-27-01 04-05-02	7.5 7.6 7.8	887 557 508	3.0 14.0	14.1	<.04 <.04 <.04	8.74 5.97 6.62	<.008 <.008 <.008	.03 E.01 E.02	
421219104310401	12-28-01 04-05-02	6.9 7.2	1010 871	5.0 14.0	12.5 12.0	<.04 <.04	7.71 6.32	<.008	.03	
F Eatimated	172 1110									

E -- Estimated value

130 INDEX

Access to water data	10	Daily mean suspended-sediment concentration,
Acid neutralizing capacity, definition of	11	definition of
Acre-foot, definition of	11	Daily-record station, definition of
Adenosine triphosphate, definition of	11	Data collection platform, definition of
ALBANY COUNTY	34	Data logger, definition of
Algae,		Data presentation, ground-water levels
Blue-green, definition of	12	Data collection and computation
Fire, definition of	16	Explanation of hydrographs
Green, definition of	16	Station manuscript
Algal growth potential, definition of	11	Data presentation, ground-water quality
Alkalinity, definition of	11	Data collection
Annual 7-day minimum, definition of	11	Datum, definition of
Annual runoff, definition of	11	Diatom, definition of
Aquifer, water table, definition of	27	Diel, definition of
Aroclor, definition of	11	Discharge, definition of
Artificial substrate, definition of	11	Dissolved oxygen, definition of
Ash mass, definition of	11	Dissolved, definition of
Aspect, definition of	11	Dissolved-solids concentration, definition of
-		Diversity index, definition of
Bacteria, definition of	12	Drainage area, definition of
Enterococcus, definition of	15	Drainage basin, definition of
Escherichia coli, definition of	15	Dry mass, definition of
Fecal coliform, definition of	16	Dry weight, definition of
Fecal streptococcal, definition of	16	, ,
Total coliform, definition of	26	Embeddedness, definition of
Bankfull stage, definition of	12	Enterococcus bacteria, definition of
Base discharge, definition of	12	EPT Index, definition of
Base flow, definition of	12	Escherichia coli (E. coli), definition of
Bed load, definition of	12	Estimated (E) concentration value, definition of
Bed material, definition of	12	Euglenoids, definition of
Bed-load discharge, definition of	12	Explanation of the records
Benthic organisms, definition of	12	Extractable organic halides, definition of
BIG HORN COUNTY	37	ž ,
Biochemical oxygen demand, definition of	12	Fecal coliform bacteria, definition of
Biomass pigment ratio, definition of	12	Fecal streptococcal bacteria, definition of
Biomass, definition of	12	Fire algae, definition of
Blue-green algae, definition of	12	Flow, definition of
Bottom material, definition of	12	Flow-duration percentiles, definition of
Bulk electrical conductivity, definition of	12	r
, , , , , , , , , , , , , , , , , , ,		Gage datum, definition of
CARBON COUNTY	41	Gage height, definition of
Cells volume, definition of	12	Gage values, definition of
Cells/volume, definition of	12	Gaging station, definition of
Cfs-day, definition of	13	Gas chromatography/flame ionization detector,
Channel bars, definition of	13	definition of
Chemical oxygen demand, definition of	13	Geomorphic channel units, definition of
Clostridium perfringens, definition of	13	GOSHEN COUNTY
Coliphages, definition of	13	Green algae, definition of
Color unit, definition of	13	Ground-water levels
Confined aquifer, definition of	13	Ground water 101015
Contents, definition of	13	Habitat quality index, definition of
Continuous-record station, definition of	13	Habitat, definition of
Control structure, definition of	13	Hardness, definition of
Control structure, definition of	13	High tide, definition of
CONVERSE COUNTY	13 44	Hilsenhoff's Biotic Index, definition of
	3	
CPOOK COUNTY	3 47	Horizontal datum, definition of
Crook County		HOT SPRINGS COUNTY
Cubic foot per second per square mile, definition of	14	Hydrologic index stations, definition of
Cubic foot per second, definition of	13 14	Hydrologic unit, definition of
Cubic tool per second-day, definition of	14	

INDEX 131

Inch, definition of	17	Peak flow, definition of	21
Instantaneous discharge, definition of	17	Percent composition, definition of	21
Introduction	1	Percent shading, definition of	21
Island, definition of	17	Periodic station, definition of	21
		Periphyton, definition of	21
Laboratory reporting level, definition of	17	Pesticides, definition of	21
Land-surface datum, definition of	17	pH, definition of	21
LARAMIE COUNTY	67	Phytoplankton, definition of	21
Latent heat flux, definition of	17	Picocurie, definition of	21
Latitude-longitude system, explanation of	8	Plankton, definition of	21
Light-attenuation coefficient, definition of	17	PLATTE COUNTY	98
Lipid, definition of	18	Polychlorinated biphenyls (PCB s), definition of	21
Long-term method detection level, definition of	18	Polychlorinated naphthalenes, definition of	21
Low flow, 7-day 10-year, definition of	23	Pool, definition of	
Low tide, definition of	18	Primary productivity, definition of	
		Carbon method, definition of	
Macrophytes, definition of	18	Oxygen method, definition of	
Mean concentration of suspended sediment,		,	
definition of	18	Radioisotopes, definition of	22
Mean discharge, definition of	18	Reach, definition of	
Mean high tide, definition of	18	Recoverable, bottom material, definition of	
Mean low tide, definition of	18	Recurrence interval, definition of	
Mean sea level, definition of	18	Remark codes, water quality	
Measuring point, definition of	18	Replicate samples, definition of	
Membrane filter, definition of	18	Return period, definition of	
Metamorphic stage, definition of	18	Riffle, definition of	
Method detection limit, definition of	18	River mileage, definition of	
Methylene blue active substances, definition of	19	Run, definition of	
Micrograms per gram, definition of	19	Runoff, definition of	
Micrograms per kilogram, definition of	19	Runori, definition of	23
Micrograms per liter, definition of	19	Sea level, definition of	23
Microsiemens per centimeter, definition of	19	Sediment, definition of	
Milligrams per liter, definition of	19	Sensible heat flux, definition of	
Minimum reporting level, definition of	19	Shelves, definition of	
Miscellaneous site, definition of	19	Sodium adsorption ratio, definition of	
Most probable number (MPN), definition of	19	Soil heat flux, definition of	
Multiple-plate samplers, definition of	19	Soil-water content, definition of	
Multiple-plate samplers, definition of	19		
Nanograms per liter, definition of	10	Specific conductance, definition of	
National Geodetic Vertical Datum of 1929,	19		
	10	Stage (see gage height)	
definition of	19	Stage-discharge relation, definition of	
Natural substrate, definition of	19	Streamflow, definition of	
Nekton, definition of	19	Substrate embeddedness class, definition of	
Nephelometric turbidity unit, definition of	20	Substrate, definition of	
NIOBRARA COUNTY	92	Artificial, definition of	
North American Vertical Datum of 1988, definition of	20	Natural, definition of	
Numbering system for wells, explanation of	6	Summary of hydrologic conditions	
	• •	Surface area, definition of	
Open or screened interval, definition of	20	Surficial bed material, definition of	
Organic carbon, definition of	20	Suspended sediment, definition of	
Organic mass, definition of	20	Suspended solids, total residue, definition of	
Organism count,		Suspended, definition of	
Area, definition of	20	Recoverable, definition of	
Total, definition of	26	Total, definition of	
Volume, definition of	20	Suspended-sediment concentration, definition of	
Organochlorine compounds, definition of	20	Suspended-sediment discharge, definition of	
		Suspended-sediment load, definition of	
Parameter Code, definition of	20	SWEETWATER COUNTY	
Partial-record station, definition of	20	Synoptic studies, definition of	25
Particle size, definition of	20		
Particle-size classification, definition of	20	Taxa (Species) richness, definition of	25

132 INDEX

Taxonomy, definition of	25
Thalweg, definition of	25
Thermograph, definition of	25
Time-weighted average, definition of	25
Tons per acre-foot, definition of	25
Tons per day, definition of	26
Total coliform bacteria, definition of	26
Total discharge, definition of	26
Total length, definition of	26
Total load, definition of	26
Total organism count, definition of	26
Total recoverable, definition of	26
Total sediment discharge, definition of	26
Total sediment load, definition of	26
Total, bottom material, definition of	26
Total, definition of	26
Transect, definition of	27
Turbidity, definition of	27
Ultraviolet (UV) absorbance (absorption), definition of	27
Unconfined aquifer, definition of	27
Vertical datum, definition of	27
Volatile organic compounds, definition of	27
WASHAKIE COUNTY	110
Water data, access to	10
Water table, definition of	27
Water year, definition of	27
Water-table aquifer, definition of	27
WDR, definition of	27
Weighted average, definition of	27
WESTON COUNTY	112
Wet mass, definition of	27
Wet weight, definition of	27
WSP, definition of	27
Zooplankton, definition of	28

CONVERSION FACTORS

Multiply	Ву	To obtain		
	Length			
inch (in.)	2.54×10^{1}	millimeter		
	2.54×10^{-2}	meter		
foot (ft)	3.048×10^{-1}	meter		
mile (mi)	1.609×10^0	kilometer		
	Area			
acre	4.047×10^3	square meter		
	4.047×10^{-1}	square hectometer		
	4.047×10^{-3}	square kilometer		
square mile (mi ²)	2.590×10^{0}	square kilometer		
	Volume			
gallon (gal)	3.785×10^{0}	liter		
	3.785×10^{0}	cubic decimeter		
	3.785×10^{-3}	cubic meter		
million gallons (Mgal)	3.785×10^3	cubic meter		
,	3.785×10^{-3}	cubic hectometer		
cubic foot (ft ³)	2.832×10^{1}	cubic decimeter		
	2.832x10 ⁻²	cubic meter		
cubic-foot-per-second day [(ft ³ /s) d]	2.447×10^3	cubic meter		
	2.447×10^{-3}	cubic hectometer		
acre-foot (acre-ft)	1.233×10^3	cubic meter		
	1.233×10^{-3}	cubic hectometer		
	1.233×10^{-6}	cubic kilometer		
	Flow			
cubic foot per second (ft ³ /s)	2.832×10^{1}	liter per second		
1	2.832×10^{1}	cubic decimeter per second		
	2.832×10^{-2}	cubic meter per second		
gallon per minute (gal/min)	6.309×10^{-2}	liter per second		
	6.309×10^{-2}	cubic decimeter per second		
	6.309×10^{-5}	cubic meter per second		
million gallons per day (Mgal/d)	4.381×10^{1}	cubic decimeter per second		
	4.381×10^{-2}	cubic meter per second		
	Mass			
ton (short)	9.072×10^{-1}	megagram or metric ton		

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: $^{\circ}F = (1.8 \times ^{\circ}C) + 32$

U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey 2617 E. Lincolnway, Suite B Cheyenne, WY 82001

