Water Resources Data Texas Water Year 2001

Volume 4. Colorado River Basin, Lavaca River Basin, and Intervening Coastal Basins

By S.C. Gandara

Water-Data Report TX-01-4

UNITED STATES DEPARTMENT OF THE INTERIOR

GALE A. NORTON, Secretary

GEOLOGICAL SURVEY

Charles G. Groat, Director

For additional information write to:
District Chief, Water Resources Division
U.S. Geological Survey
8027 Exchange Dr.
Austin, Texas 78754-4733

PREFACE

This edition of the annual hydrologic data report of Texas is one of a series of annual reports that document hydrologic data collected from the U.S. Geological Survey's collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by Federal, State, local agencies, and the private sector for developing and managing land and water resources in Texas which are contained in 6 volumes:

Volume 1.	Arkansas River Basin, Red River Basin, Sabine River Basin, Neches River Basin, and
	Intervening Coastal Basins

Volume 2. Trinity River Basin

Volume 3. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening

Coastal Basins

Volume 4. Colorado River Basin, Lavaca River Basin, and Intervening Coastal Basins

Volume 5. Guadalupe River Basin, Nueces River Basin, Rio Grande Basin, and Intervening Coastal

Basins

Volume 6. Ground-Water Data

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had the primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to U.S. Geological Survey policy and established guidelines, most of the data were collected, computed, and processed from Subdistrict and Field Offices. The following supervised the collection, processing, and tabulation of the data:

> David S. Brown Timothy H. Raines Mike E. Dorsey Debra A. Sneck-Fahrer Addis M. Miller III John W. Unruh Jimmy G. Pond Ken VanZandt

The following individuals contributed to the collection, processing and preparation of the data:

Houston Subdistrict Office

San Antonio Subdistrict Office

San Angelo Field Office

Chris Angel	Jimmy E. Hopkins	James M. Briers	Vidal A. Mendoza
Cindy Billington	Scott E. Jennings	Amy R. Clark	Robert T. Meyer
Dexter W. Brown	Mark C. Kasmarek	Eric B. Cooper	Michael B. Nyman
J. Pat Bruchmiller	Patrick O. Keefe	Shawn M. French	Cassi L. Otero
Mike R. Burnich	Dale Melton	Allen L. Furlow	Diana E. Pedraza
Al Campodonico	Russell Neill	Jon R. Gilhousen	Jorge O. Pena
Laura S. Coplin	Edna M. Paul	Ken C. Grimm	Brian L. Petri
Jeff W. East	Cervando S. Ramirez	C.A. Hartmann, Jr.	Richard N. Slattery
Lee B. Goldstein	Jasper D. Schaer	Chiquita S. Lopez	Douglas E. Thomas
		Stephanie L. Marr	Mark A. Warzecha
Fort Worth Fie	<u>ld Office</u>	Cecilio R. Martinez	John F. Wojcik

Patrick B. Allen	Jennifer L. Pickard	Austin Field Office	
Jack D. Benton	Darryl G. Pinion		
Dana A. Blanchette	Clyde T. Schoultz	Jose D. Cruz	Randy A. Samuelson
Wendell L. Bradford	Jeffrey T. Sandlin	Michael L. Greenslate	Keith R. Snider
Martin J. Danz	Roger K. Trader	William E. Harris	Peter A. Spatz
Judith H. Donohue	David V. Tudor	Searcy M. Jacobs	K. Craig Weiss
Bradley L. Mansfield		Venezia Muniz	

Wichita Falls Field Office

Randal S. Alexander	Jackie D. Kelly	Joe G. Beauchamp	Lawanna M. Kiser
Stanley Baldys	Michael T. Pettibon	Jeremy K. Crosby	James B. Schiller
Benjamin J. Carr	Jeanne C. Place	Hector H. Garza	Tim E. Teagarden
Laith P. Hairell	Anita M. Ross	Henry Jacques, Jr.	

This report was prepared in cooperation with the State of Texas and other agencies under the supervision of Jayne E. May, District Data Chief.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503-

	,	0 , 1	, (,,	
AGENCY USE ONLY (Leave blank)	2. REPORT DATE March 2002		3. REPORT TYPE AND DATES COVERED AnnualOct. 1, 2000, to Sept. 30, 2001		
4. TITLE AND SUBTITLE				NDING NUMBERS	
Water Resources DataTexas Colorado River, Lavaca Rive					
6. AUTHOR(S) S.C. Gandara					
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PEF	REFORMING ORGANIZATION	
U.S. Geological Survey, Water Texas District	er Resources Division			PORT NUMBER GS-WDR-TX-01-4	
8027 Exchange Dr. Austin, TX 78754-4733					
9. SPONSORING / MONITORING AGENCE U.S. Geological Survey, Water				PONSORING / MONITORING BENCY REPORT NUMBER	
Texas District 8027 Exchange Dr.			US	GS-WDR-TX-01-4	
Austin, TX 78754-4733					
11. SUPPLEMENTARY NOTES Prepared in cooperation with	Federal, State, and local ago	encies.			
12a. DISTRIBUTION / AVAILABILITY STA			12b. [DISTRIBUTION CODE	
No restriction on distribution. This report may be purchased National Technical Information Springfield, VA 22161	from				
Water-resources data for the 2 discharge, and water quality water levels and water quality stations; stage and contents a record stations comprised of cluded are lists of discontinue ity stations. Additional water and are published as miscellar operated by the U.S. Geologic few pertinent stations in the b	of streams and canals; stage y of ground-water wells. Vo t 14 lakes and reservoirs; w 3 flood-hydrograph, 6 low- d surface-water discharge o data were collected at various neous measurements. These cal Survey and cooperating	e, contents, and water- plume 4 contains record rater quality at 41 gagin flow, 1 crest-stage, and r stage-only stations ar as sites, not part of the data represent that part Federal, State, and local	quality of ds for wing station of 2 miscond disconsystema to of the N	of lakes and reservoirs; and vater discharge at 66 gaging ons; and data for 12 partial-tellaneous stations. Also inntinued surface-water-qualtic data-collection program, National Water Data System	
14. SUBJECT TERMS				15. NUMBER OF PAGES	
*Texas, *hydrologic data, *s lakes, reservoirs, chemical an				355	
Takes, reservoirs, encimedial	•			16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICA OF ABSTRACT Unclassified	TION	20. LIMITATION OF ABSTRACT	

CONTENTS

		Page
Preface -		ii
	gaging stations, in downstream order, for which records are published	
List of d	discontinued surface-water discharge or stage-only stations	vii
	liscontinued surface-water-quality stations	
	ctionation	
Uvdrolo	adon	<u>1</u> <u>1</u>
пушою	Streamflow	
	Water quality	
Special r	networks and programs	(
Explanat	ation of the records	7
	Station identification numbers	′
	Downstream order numbering	<i>′</i>
	Records of stage and water discharge	·-
	Data collection and computation	
	Data presentationStation manuscript	9
	Data table of daily mean values	. <u>.</u> 9
	Statistics of monthly mean data	
	Summary statistics	10 10
	Identifying estimated daily discharge	1
	Accuracy of the records	1
	Other records available	13
	Records of surface-water quality	13
	Classification of records	13
	Arrangement of records	
	On-site measurements and sample collection	
	Water temperature	
	Laboratory measurements	
	Data presentation	
	Remark codes	
	Water-Quality-Control Data	
	Blank samples	1:
	Reference samples	
	Replicate samples	
	Spike samples	
Access to	to USGS water data	
	on of terms	
Publicati	tions of techniques of water-resources investigations	2
Gaging-s	station records	3
Miscella	aneous water-quality data	31
Discharg	ge at partial-record stations and miscellaneous sites	32
	Low-flow partial-record stations	32
	Discharge measurements at miscellaneous sites	32: 32:
Index	Discharge measurements at miscentaneous sites	
	ILLUSTRATIONS	
Figure	Area of Texas covered by volume 4 and location of selected streamflow and water-quality stations in volume 4	:
	2. Monthly mean discharges at four long-term hydrologic index stations during 2001 water year	
	and median of the monthly mean discharges for 1961-90 water years	2
	 Map showing location of gaging stations in the first section of the Colorado River Basin Map showing location of gaging stations in the second section of the Colorado River Basin 	3: 6
	5. Map showing location of gaging stations in the third section of the Colorado River Basin	13
	6. Map showing location of gaging stations in the fourth section of the Colorado River Basin	16
	7. Map showing location of gaging stations in the Austin inset of the Colorado River Basin	16
	8. Map showing location of gaging stations in the fifth section of the Colorado River Basin	25
	9. Map showing location of gaging stations in the Lavaca and Coastal River Basins	27
	- • • • •	
	TABLES	
Table	1 Streamflow at six selected stations	1

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

[Type of data collected: (d) discharge; (c) chemical; (b) biological; (t) water temperature; (s) sediment; (e) elevation, gage heights, or contents.]

	Station	
	number	Page
WESTERN GULF OF MEXICO BASINS		8-
COLORADO RIVER BASIN		
Colorado River near Gail (d)	08117995	34
Lake J.B. Thomas near Vincent (e)		36
Big Sulphur Creek:		
Deep Creek near Dunn (d)	08120500	38
Colorado River near Cuthbert (d) (c) (t)	08120700	40
Colorado River at Colorado City (d) (c) (t)	08121000	48
Morgan Creek:		
Lake Colorado City near Colorado City (e)	08123000	54
Champion Creek Reservoir near Colorado City (e)	08123600	56
Beals Creek:		
Moss Creek:		
Moss Creek Lake near Coahoma (e)	08123755	58
Beals Creek near Westbrook (d) (c) (t)		60
Colorado River above Silver (d) (c) (t)	08123850	70
E.V. Spence Reservoir near Robert Lee (e)		78
Colorado River at Robert Lee (d)		80
Oak Creek Reservoir near Blackwell (e)		82
Colorado River near Ballinger (d) (c) (t)		84
Elm Creek at Ballinger (d) (c) (t)		92
South Concho River (head of Concho River):		
South Concho River at Christoval (d)	08128000	100
Middle Concho River above Tankersley (d)		102
Spring Creek above Tankersley (d)	08129300	104
Dove Creek at Knickerbocker (d)		106
Twin Buttes Reservoir near San Angelo (e)		108
Pecan Creek near San Angelo (d)	08131400	110
Lake Nasworthy near San Angelo (e)		112
North Concho River above Sterling City (d)		114
North Concho River at Sterling City (d)	08133500	116
North Concho River near Carlsbad (d)		118
North Concho River near Grape Creek (d)	08134250	120
O.C. Fisher Lake at San Angelo (e)	08134500	122
Concho River at San Angelo (d)	08136000	124
Concho River at Paint Rock (d) (c) (t)		126
O.H. Ivie Reservoir near Voss (e)		136
Colorado River near Stacy (d)	08136700	138
Colorado River at Winchell (d)		140
Pecan Bayou:		
Jim Ned Creek:		
Lake Coleman near Novice (e)	08140770	142
Hords Creek:		
Hords Creek Lake near Valera (e)	08141000	144
Lake Brownwood near Brownwood (e)		146
Pecan Bayou near Mullin (d)	08143600	148
San Saba River at Menard (d)		150
San Saba River near Brady (d)	08144600	152
Brady Creek Reservoir near Brady (e)	08144900	154
Brady Creek at Brady (d)	08145000	156
San Saba River at San Saba (d)	08146000	158
Colorado River near San Saba (d)	08147000	164
North Llano River near Junction (d)		166
Llano River near Junction (d)		168
Llano River near Mason (d)		170
Beaver Creek near Mason (d)	08150800	172
Llano River at Llano (d)	09151500	174
Sandy Creek near Kingsland (d)		1/4

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

	Station	
	number	Page
WESTERN GULF OF MEXICO BASINSContinued		
COLORADO RIVER BASINContinued	00150000	170
Pedernales River near Fredericksburg (d)	08152900	178
Pedernales River near Johnson City (d)	08153500	180
Bull Creek at Loop 360 near Austin (d) (c) (t) (b)	08154700	182
Lake Austin at Austin (c) (t) (b) (s)		186
Barton Creek at State Highway 71 near Oak Hill (d) (c) (t) (b)	08155200	192
Barton Creek at Lost Creek Boulevard, Austin (d) (c) (t) (b)	08155240	196
Barton Creek at Loop 360, Austin (d) (c) (t) (b)	08155300	200
Barton Creek above Barton Springs, Austin (c) (t) (b)	08155400	204
Barton Springs at Austin (d) (c) (t) (b)	08155500	210
Shoal Creek at 12th Street, Austin (d) (c) (t) (b)	08156800	214
East Bouldin Creek at South 1st Street, Austin (d)	08157600	218
Blunn Creek near Little Stacy Park, Austin (d) (c) (t) (b)	08157700	220
Town Lake at Austin (c) (t) (b) (s)		224
Colorado River at Austin (d)		232
Boggy Creek at U.S. Highway 183, Austin (d) (c) (t) (b)	08158050	234
Walnut Creek at Webberville Road, Austin (d) (c) (t) (b)	08158600	238
Onion Creek near Driftwood (d) (c) (t) (b)		242
Bear Creek below Farm to Market Road 1826 near Driftwood (d)		246
Slaughter Creek at Farm to Market Road 1826 near Austin (c) (t) (b)	08158840	248
Williamson Creek at Brush Country Blvd., Oak Hill (d) (c) (t) (b)		250
Williamson Creek at Manchaca Road, Austin (d)		254
Onion Creek at U.S. Highway 183, Austin (d)		256
Colorado River at Bastrop (d)		260
Colorado River at Smithville (d)		262
Colorado River above LaGrange (d)	08160400	264
Cummins Creek:	001 (0000	266
Redgate Creek near Columbus (d)		266
Colorado River at Columbus (d)		268
Colorado River at Wharton (d)		270
Colorado River near Bay City (d)	08162500	272
TRES PALACIOS RIVER BASIN	004 50 500	
Tres Palacios River near Midfield (d)	08162600	276
LAVACA RIVER BASIN	004.54000	2=0
Lavaca River near Edna (d)		278
Navidad River near Hallettsville (d)	08164300	280
Navidad River at Strane Park near Edna (d) (c) (t)		282
Sandy Creek near Ganado (d) (c) (t)	08164450	286
Mustang Creek:		
West Mustang Creek near Ganado (d) (c) (t)	08164503	290
East Mustang Creek near Louise (d) (c) (t)		294
Lake Texana near Edna (e) (c) (t)	08164525	298
GARCITAS CREEK BASIN		
Garcitas Creek near Inez (d)	08164600	314
PLACEDO CREEK BASIN	00:-:	
Dlacado Craek near Dlacado (d)	08164800	316

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Texas have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as partial-record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the title page of this report.

[Letters after station name designate the type of data collected: (d) discharge, (e) elevation (stage only).]

Station name	Station number	Drainage area (mi ²)	Period of record (water years)
Punta De Agua Creek near Channing (d)	07227448	3,568	1968-73
East Chyenne Creek Tributary near Channing (e)	07227460	0.86	1965-74
Canadian River at Tascosa (d)	07227470	18,536	1969-77
Tecovas Creek Tributary near Bushland (e)	07227480	2.5	1966-74
Dixon Creek near Borger (d)	07227920	134	1974-89
Palo Duro Creek near Canyon (e)	07229700	982	1942-54
White Woman Creek Tributary near Darrouzett (e)	07234150	4.03	1966-74
Tierra Blanca Creek above Buffalo Lake near Umbarger (d)	07295500	1,968	1939-54,
			1967-73
Buffalo Lake near Umbarger (e)	07296000	2,075	1938-54
Tierra Blanca Creek below Buffalo Lake near Umbarger (d)	07296100	2,075	1967-73
Prairie Dog Town Fork Red River near Canyon (d)	07297500	3,369	1924-26,
			1938-49
Middle Tule Draw near Tulia (e)	07297920	313	1967-74
North Tule Draw at Reservoir near Tulia (d)	07298000	189	1939-40,
			1941-73
Rock Creek Tributary near Silverton (d)	07298150	13.7	1966-74
Tule Creek near Silverton (d)	07298200	1,150	1964-86
Prairie Dog Town Fork Red River near Brice (d)	07298500	6,082	1939-44,
			1949-51,
			1960-63
Mulberry Creek near Brice (d)	07299000	534	1949-51
Prairie Dog Town Fork Red River near Lakeview (d)	07299200	6,792	1963-80
Little Red River near Turkey (d)	07299300	139	1968-81
Prairie Dog Town Fork Red River near Estelline (d)	07299500	7,293	1924-25,
			1938-47
Prairie Dog Town Fork Red River below Mountain Creek near Estelline (e)	07299505	7,341	1974-77
Prairie Dog Town Fork Red River above Jonah Creek near Estelline (e)	07299510	7,533	1974-77
Jonah Creek at Weir near Estelline (d)	07299512	65.50	1974-82
Jonah Creek below Weir near Estelline (d)	07299514	66.60	1974-76
Jonah Creek at mouth near Estelline (d)	07299516	76	1974-76
Salt Creek near Estelline (d)	07299530	142	1974-79
Buck Creek near Wellington (e)	07299550	210	1951-64
Red River near Quanah (d)	07299570	8,321	1960-82
North Groesbeck Creek Tributary near Kirkland (d)	07299575	0.16	1966-74
Wanders Creek at Odell (e)	07299750	199	1949-50,
			1952-89
Salt Fork Red River near Clarendon (d)	07299850	457	1960-64
Lelia Lake Creek near Hedley (e)	07299900	86	1951-70
Salt Fork Red River near Hedley (e)	07299930	744	1951,
			1956-62
Oklahoma Draw Tributary near Hedley (e)	07299940	1.1	1965-74
Sweetwater Creek near Wheeler (e)	07301400	164	1951-64
Doodlebug Creek near Wheeler (e)	07301405	0.19	1967-73
Elm Creek near Shamrock (e)	07303300	N/A	1947-89
Quitaque Creek near Quitaque (d)	07307500	293	1945-59
North Pease River near Childress (d)	07307600	1,434	1973-79
North Pease River near Kirkland (e)	07307660	N/A	1973-79
Roaring Springs near Roaring Springs (e)	07307700	N/A	1937,
			1943-95
Cottonwood Creek Tributary near Afton (e)	07307720	0.68	1967-74
· · · · · · · · · · · · · · · · · · ·	07307750	1,086	1973-79
Middle Pease River near Paducah (d)	0/30//30	1,000	17/3-/7

Drainage Period Station name Station area of record number (mi²)(water years) ______ Middle Pease River near Kirkland (e) 07307780 1.250 1973-79 Canal Creek near Crowell (e) 07307950 49.0 1968-70, 1978-79 Pease River near Crowell (d) 07308000 3,037 1924-47 Plum Creek near Vernon (e) 07308220 4.99 1967-74 China Creek near Electra (e) 07308400 37 1967-76 North Fork Wichita River near Crowell (d) 07311622 591 1971-76 Middle Fork Wichita River near Truscott (d) 1971-76 07311648 161 South Fork Wichita River near Guthrie (d) 07311780 239 1952-54. 1956-57 1971-76 1971-79 South Fork Wichita River at Ross Ranch near Benjamin (d) 07311790 499 Beaver Creek near Electra (d) 07312200* 652 1960-99 Beaver Creek Tributary near Crowell (e) 07312140 3.43 1966-74 Wolf Creek near Iowa Park (e) 07312300 8.5 1966-74 North Fork Little Wichita River Tributary near Archer City (e) 07314200 0.10 1966-74 Little Wichita River near Henrietta (d) 1.037 1953-79 07315000 Little Wichita River near Ringgold (d) 07315400 1,350 1959-65 Farmers Creek near Saint Jo (e) 07315550 0.82 1966-74 1968-77 Mineral Creek near Sadler (d) 07316200 26 Sandy Creek near Sadler (e) 07316230 1968-74 24 Lake Texoma near Denison (e) 07331500 39,719 1942-93. 2000 Red River at Denison Dam near Denison (d) 07331600 39,720 1924-89 Bois D'Arc Creek near Randolph (d) 1963-85 07332600 72 Cooper Creek near Bonham (e) 07332602 6.21 1966-74 Sanders Creek near Chicota (d) 07335400 175 1968-86 Little Pine Creek near Kanawha (d) 07336750 75.40 1969-80 Pecan Bayou near Clarksville (d) 07336800 100 1962-77 Red River near DeKalb (d) 07336820 47.348 1967-98 McKinney Bayou near Leary (e) 07336940 3.33 1966-73 Barkman Creek near Leary (e) 07336950 1958-64 31.5 Nelson Branch near Leonard (e) 07342450 0.22 1966-74 South Sulphur River near Commerce (d) 07342470 189 1980-91 1964-74 Cuthand Creek near Bogata (d) 07343300 69 Dial Branch near Bagwell (e) 07343350 1.00 1966-74 White Oak Creek near Mt. Vernon (e) 07343480 434 1966, 1969-75 White Oak Creek below Talco (d) 07343800 579 1938-50 Buck Creek near Cookville (e) 1966-74 07343900 0.78 Sulphur River near Darden (d) 07344000 2,774 1924-56 Sulphur River near Texarkana (d) 07344210 1980-85 3,443 Big Cypress Creek near Winnsboro (d) 07344482 27.2 1974-92 Dragoo Creek near Mt. Pleasant (e) 07344490 4.27 1967-74 Williamson Creek near Pittsburg (e) 07344600 7.11 1967-74 Boggy Creek near Daingerfield (d) 07345000 72 1943-77 Ellison Creek Reservoir near Lone Star (e) 07345500 37 1943-62. 1974-89 Cypress Creek Tributary near Jefferson (e) 07346010 0.51 1966-74 Taylor Branch near Smithland (e) 07346072 1966-74 0.73 Big Cypress Creek near Karnack (e) 07346085 2.174 1980-85 Frazier Creek near Linden (d) 07346140 48.0 1965-91 Sabine River near Emory (d) 08017500 888 1952-73 Burnett Branch near Canton (e) 08017700 0.33 1966-74 1968-73 Grand Saline Creek near Grand Saline (d) 08018200 91.4 Burke Creek near Yantis (d) 08018730 33.10 1979-89 Dry Creek near Quitman (e) 08018950 63.6 1968-75 Lake Winnsboro near Winnsboro (d) 08019300 27.1 1962-86 Big Sandy Creek near Hawkins (e) 08019430 196 1980-82 Prairie Creek near Gladewater (d) 08020200 48.90 1968-77

Station name	Station	Drainage area	Period of record
Sanoname	number	(mi ²)	(water years)
Sabine River near Longview (d)	08020500	2,947	1904-07,
			1924-33
Rabbit Creek at Kilgore (d)	08020700	75.80	1964-77
Grace Creek Tributary at Longview (e)	08020800	5.05	1967-74
Mill Creek near Henderson (d)	08020960	20.30	1979-81
Mill Creek near Longview (d)	08020980	47.90	1979-81
Tiawichi Creek near Longview (d) Charaksa Payan near Eldamida (d)	08020990	62.70 120	1978-81
Cherokee Bayou near Elderville (d) Lake Cherokee near Longview (e)	08021000 08021500	158	1940-49 1951-83
Sabine River near Tatum (d)	08022000	3,493	1931-83
" " " (e)	08022000	3,493	1979-82
Redmon Branch near Hallesville (e)	08022010	0.46	1966-74
Eight Mile Creek near Tatum (e)	08022050	106	1962-71
Martin Creek near Tatum (d)	08022070	148	1974-96
Martin Creek near Beckville (e)	08022080	192	1962-71
Murvaul Bayou near Gary (d)	08022300	134	1958-83
Socagee Creek near Carthage (d)	08022400	82.60	1962-73
Tenaha Creek near Shelbyville (d)	08023200	97.80	1952-81
Dorsey Branch near Milam (e)	08024290	0.70	1967-74
Patroon Bayou near Milam (e)	08024300	130	1952-54,
•			1959-63
Sabine River near Milam (d)	08024400	6,508	1924-25,
			1939-68
Palo Gaucho Bayou near Hemphill (d)	08024500	123	1952-65
Housen Bayou near Yellowpine (e)	08025250	92.1	1952-54,
			1957,
			1959-63
Sandy Creek near Yellowpine (e)	08025300	135	1952-54,
			1957,
			1959-63
Mill Creek near Burkeville (d)	08025307	17.6	1974-79
Little Cow Creek below McGraw Creek near Burkeville (e)	08026500	112	1952-58
Moore Branch near Newton (e)	08028505	3.77	1967-74
Nichols Creek near Buna (e)	08029750	54.4	1959-64
Cypress Creek near Buna (d)	08030000	69.20	1952-83
Adams Bayou Tributary near Deweyville (e)	08030700	12.4	1966-74
Cow Bayou near Mauriceville (d)	08031000	83.30	1952-86
Bethlehem Branch near Van (e)	08031100	1.09	1966-74
Kickapoo Creek near Brownsboro (d) Neches River near Reese (d)	08031200	232 851	1962-89
Hurricane Creek Tributary near Palestine (e)	08031500 08032100	0.39	1924-27 1966-74
One Arm Creek near Maydelle (e)	08032100	6.01	1967-74
Squirrel Creek near Elkhart (e)	08032300	1.57	1967-74
Neches River near Alto (d)	08032500	1,945	1944-79
Piney Creek Tributary near Pennington (e)	08033250	1.17	1967-74
Piney Creek near Groveton (d)	08033300	79	1962-89
Shawnee Creek Tributary near Huntington (e)	08033450	0.52	1966-74
Greenwood Creek Tributary near Colmesneil (e)	08033480	0.15	1966-74
Bowles Creek near Selman City (e)	08033600	14.5	1968-85
Striker Creek near Summerfield (d)	08033700	146	1941-49
Striker Creek Reservoir near New Salem (e)	08033800	148	1941-49
East Fork Angelina River near Cushing (d)	08033900	158	1964-89
Mud Creek near Jacksonville (d)	08034500	376	1939-79
Mud Creek at Ponta (d)	08035000	475	1924-27
Angelina River near Lufkin (d)	08037000	1,600	1924-34,
			1939-79
Bayou Lanana at Nacogdoches (d)	08037050	31.3	1965-86,
			1988-93
	08037300	0.90	1967-74
	08037500	75.30	1938-40
Angelina River near Zavalla (d)	08038500	2,892	1952-65
Gingham Branch near Mt. Enterprise (e) Arenoso Creek near San Augustine (d) Angelina River near Zavalla (d)	08037300	0.90	19 19 19

		Period	
Station name	Station	Drainage area	of record
	number	(mi ²)	(water years)
Ayish Bayou at San Augustine (d)	08039000	15.80	1924-25
Angelina River at Horger (d)	08039500	3,486	1928-51,
1 mgomu 111 of ut 110 gor (u)	00027200	2,.00	1967-73
Little Sandy Creek Tributary near Jasper (e)	08039900	0.46	1967-74
Drakes Branch near Spurger (e)	08041400	5.03	1967-74
Hillebrandt Bayou near Lovell Lake (d)	08042500	128	1954-84
West Fork Double Bayou near Anahuac (e)	08042550	4.43	1967-74
North Creek SWS No. 28-A near Jermyn (e)	08042650	6.82	1972-80
North Creek near Jacksboro (d)	08042700	21.60	1956-80
Beans Creek at Wizard Wells (e)	08042900	29.60	1993-95
West Fork Trinity River at Bridgeport (d)	08043100	1,113	1984-89
West Fork Trinity River at Bridgeport (d)	08043500	1,147	1908-30
Big Sandy Creek near Bridgeport (d)	08044000	333	1937-95
Garrett Creek near Paradise (e)	08044135	52.5	1992-95
Salt Creek near Paradise (e)	08044140	52.7	1992-95
Walker Creek near Boyd (e)	08044200	2.95	1965-74
West Fork Trinity River at Lake Worth, Fort Worth (d)	08045500	2,069	1924-34
Clear Fork Trinity River near Aledo (d)	08046000	251	1947-75
Marine Creek at Fort Worth (d)	08048500	16.80	1950-58
Sycamore Creek at I.H. 35W, Fort Worth (d)	08048520	17.70	1970-76
Sycamore Creek Trib. above Seminary South, Fort Worth (d)	08048530	0.97	1970-76
Sycamore Creek Trib. at I.H. 35W, Fort Worth (d)	08048540	1.35	1970-76
Dry Branch at Fain Street at Fort Worth (d)	08048600	2.15	1969-76
Big Fossil Creek at Haltom City (d)	08048800*	52.8	1959-73
Little Fossil Creek at I.H. 820, Fort Worth (e)	08048820	5.64	1969-73
Little Fossil Creek at Mesquite Street, Fort Worth (d)	08048850 08048900	12.30 5.86	1969-76 1967-74
Deer Creek Tributary near Crowley (e) Village Creek at Kennedale (d)	08048980	100	1986-89
Village Creek near Handley (d)	08049900	126	1925-30
Big Bear Creek near Grapevine (d)	08049000	29.6	1967-79
Trigg Branch at DFW Airport near Euless (d)	08049565	1.73	1983-87
Mountain Creek near Cedar Hill (d)	08049600	119	1961-84
Mountain Creek above Duncanville (e)	08049850	224	1986-87
Mountain Creek near Duncanville (e)	08049900	225	1971-90
Mountain Creek near Grand Prairie (d)	08050000	273	1925-33
Elm Fork Trinity River SWS 6-O near Muenster (e)	08050200	0.77	1957-73
Elm Fork Trinity River near Muenster (d)	08050300	46	1957-73
Elm Fork Trinity River near Sanger (d)	08050500	381	1949-85
Isle Du Bois Creek near Pilot Point (d)	08051000	266	1949-85
Elm Fork Trinity River near Pilot Point (d)	08051130	692	1985-92
Elm Fork Trinity River above Aubrey (e)	08051190	684	1981-89
Elm Fork Trinity River near Denton (d)	08052000	1,084	1924-27
Lake Dallas near Lake Dallas (e)	08052500	1,165	1929-57
Little Elm Creek SWS #10 near Gunter (e)	08052630	2.10	1966-72
Little Elm Creek near Celina (d)	08052650	46.70	1966-76
Hickory Creek at Denton (d)	08052780	129	1985-87
Indian Creek at Hebron Parkway at Carrollton (d)	08053010	15.0	1987-90
Furneaux Creek at Josey Lane at Carrollton (d)	08053030	4.10	1987-90
Hutton Branch at Broadway at Carrollton (e)	08053090	9.10	1987-90
Jones Valley Creek Tributary near Forestburg (e)	08053100	1.70	1966-74
Denton Creek near Roanoke (d)	08054000	621	1924-28,
Camble Branch near Argula (a)	00054200	0.50	1939-55
Gamble Branch near Argyle (e) Denton Creek near Grapevine (d)	08054200	0.50 705	1965-74
* ' '	08055000	705	1948-91
Joe's Creek at Royal Lane, Dallas (e) Joes Creek near Dallas (e)	08055580 08055600	1.94 7.4	1973-78 1964-79
Bachman Branch at Dallas (d)	08055700	10	1964-79
Turtle Creek at Dallas (d)	08056500	7.98	1952-80,
Tartio Crock at Danus (a)	00030300	7.70	1984-91
Coombs Creek at Sylvan Avenue, Dallas (e)	08057020	4.75	1965-78
Coomos Crock at Dyrvan Avenue, Danas (c)	00037020	7.75	1705-10

		Drainage	Period
Stationname	Station	area	of record
	number	(mi ²)	(water years)
Cedar Creek at Bonnie View Road, Dallas (e)	08057050	9.42	1965-78
White Rock Creek at Keller Springs Road, Dallas (d)	08057100	29.40	1961-79
Spanky Branch at McCallum Lane at Dallas (e)	08057120	6.77	1962-78
Rush Branch at Arapaho Road, Dallas (e)	08057130	1.22	1973-78
Newton Creek at Interstate Highway 635, Dallas (e)	08057135	5.91	1974-78
Cottonwood Creek at Forest Lane, Dallas (e)	08057140 08057160	8.50 4.17	1962-78 1962-78
Floyd Branch at Forrest Lane, Dallas (e) White Rock Creek at White Rock Lake, Dallas (d)	08057300	100	1962-78
Ash Creek at Highland Road, Dallas (e)	08057320	6.92	1963-78
Forney Creek at Lawnview Avenue, Dallas (e)	08057340	1.84	1963-72
White Rock Creek at Scyene Road, Dallas (d)	08057400	122	1963-79
Trinity River below Dallas (d)	08057410	6,278	1956-98
Elm Creek at Seco Boulevard, Dallas (e)	08057415	1.25	1973-78
Fivemile Creek at Kiest Boulevard, Dallas (e)	08057418	7.65	1974-78
Fivemile Creek at US Highway 77 West, Dallas (e)	08057420	14.30	1965-78
Woody Branch at US Highway 77 West, Dallas (e) Fivemile Creek at Lancaster Road, Dallas (e)	08057425 08057430	10.30 37.90	1965-78 1965-78
White Branch at Interstate Highway 635, Dallas (e)	08057440	2.53	1903-78
Tenmile Creek at State Highway 342 at Lancaster (d)	08057450	52.80	1970-79
Honey Creek SWS #11 near McKinney (e)	08057500	2.14	1952-73
Honey Creek SWS #12 near McKinney (e)	08058000	1.26	1952-77
Honey Creek near McKinney (d)	08058500	39	1951-73
East Fork Trinity River near McKinney (d)	08059000	190	1949-75
Arls Branch near Westminster (e)	08059200	0.52	1965-74
Sister Grove Creek near Princeton (d)	08059500	113	1949-75
East Fork Trinity River above Pilot Grove near Lavon (d)	08060000	324	1949-53
East Fork Trinity River near Lavon (d) East Fork Trinity River near Rockwall (d)	08061000 08061500	773 840	1954-89 1924-54
Duck Creek at Buckingham Road, Garland (e)	08061620	8.05	1969-76
Duck Creek near Garland (d)	08061700	31.6	1958-93
South Mesquite Creek at State Highway 352, Mesquite (e)	08061920	13.40	1969-76
South Mesquite Creek at Mercury Road near Mesquite (d)	08061950	23	1969-79
Cedar Creek Reservoir Spillway Outflow near Trinidad (d)	08062650	1,007	1966-82
Cedar Creek near Kemp (d)	08062800	189	1963-87
Bachelor Creek near Terrell (e)	08062850	13.0	1967-74
Kings Creek near Kaufman (d)	08062900	233	1963-87
Lacey Fork near Mabank (d) Cedar Creek near Mabank (d)	08062980 08063000	118 733	1983-84 1939-66
South Twin Creek near Eustace (d)	08063003	27.40	1983-84
Red Oak Branch near Eustace (e)	08063005	0.90	1966-74
Cedar Creek at Trinidad (d)	08063020	1,011	1965-71
Briar Creek Tributary near Corsicana (e)	08063180	0.72	1966-74
Pin Oak Creek near Hubbard (d)	08063200	17.60	1956-72
Richland Creek near Richland (d)	08063500	734	1939-88
Alvarado Branch near Alvarado (e)	08063550	0.84	1966-74
Kings Branch near Reagor Springs (e)	08063620	0.62	1966-74
Chambers Creek near Corsicana (d)	08064500	963	1939-84
Richland Creek near Fairfield (d) Saline Branch Tributary near Bethel (e)	08064600 08064630	1,957 0.22	1972-83 1967-74
Catfish Creek near Tennessee Colony (d)	08064800	207	1962-89
Mayes Branch near Latexo (e)	08065320	4.26	1967-74
Trinity River near Midway (d)	08065500	14,450	1939-71
Caney Creek near Madisonville (d)	08065700	112	1963-77
Nelson Creek near Riverside (e)	08065950	86.4	1949,
			1965,
	^~~	00.7	1970-74
Harmon Creek near Huntsville (e)	08065975	89.2	1973-81
West Carolina Creek near Oakhurst (e)	08066050	15.2	1949, 1966-73
White Rock Creek near Trinity (e)	08066100	222	1974-85
White Rock Creek near Trinity (e)	08066130	228	1966-74
··· - ·· · · · · · · · · · · · · · · ·	55555125		

		Drainage	Period
Station name	Station	area	of record
	number	(mi^2)	(water years)
Tantaboque Creek near Trinity (e)	08066140	61.3	1966-73
Caney Creek near Groveton (e)	08066145	41.4	1966-73
Brushy Creek near Onalaska (d)	08066150	29.1	1966-70
Rocky Creek near Onalaska (e)	08066180	40.6	1966-73
Livingston Reservoir outflow weir near Goodrich (d)	08066191	16,583	1969-94
Long King Creek near Goodrich (d)	08066210	220	1972-81
Bluff Creek Tributary near Livingston (e)	08066280	0.62	1965-74
Big Creek near Shepherd(e)	08066400	38.80	1966-89
Gaylor Creek near Moss Hill (e)	08066800	32.3	1966-73
Devers Canal near Liberty (d)	08067080	N/A	1972-82
Cedar Bayou at Crosby (d)	08067500*	65.0	1972-91
Goose Creek near McNair (e)	08067520	6.7	1963-65,
Welch Branch near Huntsville (e)	08067550	2.35	1965-74
Lake Conroe near Montgomery (e)	08067580	445	1973-76
Lake Conroe at Outflow Weir near Conroe (d)	08067610	445	1974, 1977-89
Caney Creek near Dobbin (d)	08067700	40.40	1963-65
Landrum Creek Tributary near Montgomery (e)	08067750	0.13	1965-74
Lake Creek near Conroe (e)	08067900	291	1969-89
West Fork San Jacinto River near Porter (e)	08068100	970	1970-76
Mill Creek Tributary near Dobbin (e)	08068300	4.07	1967-73
Swale No. 8 at Woodlands (e)	08068438	0.55	1975-76,
			1980-88
Spring Creek at Spring (d)	08068520	419	1975-95
Spring Creek near Humble (e)	08068600	435	1971-76
Cypress Creek at Sharp Road near Hockley (d)	08068700	80.7	1975-85
Cypress Creek near Cypress (e)	08068750*	138	1971-76
Little Cypress Creek near Cypress (d)	08068780*	41.0	1983-92
Cypress Creek at Grant Road near Houston (d)	08068800*	214	1983-92
Cypress Creek at Stuebner-Airline Road near Westfield (d)	08068900*	248 319	1982-87 1971-76
Cypress Creek near Humble (e) West Fork San Jacinto River near Humble (d)	08069200 08069500	1,741	1971-76
Bear Creek near Cleveland (e)	08069850	1,741	1929-34
Caney Creek near New Caney (e)	08070600	178	1970-76
Peach Creek near New Caney (e)	08071100	155	1970-76
Tarkington Bayou near Dayton (e)	08071200	142	1964-76
Luce Bayou near Huffman (e)	08071300	226	1971-76
San Jacinto River near Huffman (d)	08071500	2,800	1937-53
Buffalo Bayou at Clodine (e)	08072400	84.2	1974-85
Langham Creek at West Little York Road, Addicks (d)	08072760*	25.0	1977-85
Bettina Street Ditch at Houston (e)	08073630	1.37	1979-85
Stony Brook Street Ditch at Houston (e)	08073750	0.50	1967-72
Bering Ditch at Woodway Drive, Houston (e)	08073800	2.77	1965-73
Cole Creek at Guhn Road at Houston (e)	08074100	7.05	1964-72
Bingle Road Storm Sewer at Houston (e)	08074145	0.21	1980-88
Cole Creek at Deihl Road at Houston (d)	08074150*	7.50	1964-86
Brickhouse Gully at Clarblak Street at Houston (e)	08074200	2.56	1965-83
Brickhouse Gully at Costa Rica Street at Houston (d)	08074250*	11.4	1964-81
Lazybrook Street Storm Sewer, Houston (e)	08074400	0.13	1978-88
Little White Oak Bayou at Houston (e)	08074550	20.9	1971-79
Buffalo Bayou at Main St., Houston (d)	08074600*	469 460	1962-94
Buffalo Bayou at McKee Street, Houston (d) Buffalo Bayou at 60th Street, Houston (a)	08074610	469 476	1992-2000
Buffalo Bayou at 69th Street, Houston (e) Brays Bayou at Addicks-Clodine Rd., Houston (e)	08074700	476	1961-86
Brays Bayou at Alief Road, Alief (e)	08074750 08074760*	0.87 12.9	1974-77 1977-85
Keegans Bayou at Keegans Road near Houston (e)	08074760* 08074780*	7.47	1977-85 1964-71
Keegans Bayou at Roark Road near Houston (d)	08074800*	13.0	1964-71
Bintliff Ditch at Bissonnet Street, Houston (e)	0007-000		1704-03
	08074850	4.38	1968-82
Willow Waterhole Bayou at Landsdowne Street, Houston (e)	08074850 08074900	4.38 3.81	1968-82 1965-72

Station name	Station	Drainage area	Period of record
	number	(mi ²)	(water years)
Brays Bayou at Scott Street, Houston (e)	08075100	106	1971-81
Sims Bayou at Carlsbad Street, Houston (e)	08075300	3.81	1964-72
Sims Bayou at MLK Blvd., Houston (e)	08075470	48.4	1978-89
Berry Bayou at Gilpin Street, Houston (e)	08075550	2.87	1965-84
Berry Bayou Tributary at Globe Street, Houston (e)	08075600	1.58	1965-72
Berry Bayou at Forest Oaks Street, Houston (e)	08075650*	10.7	1968-82
Berry Bayou at Galveston Road, Houston (e)	08075700	4.86	1965-72
Huntington Bayou Tributary at Cavalcade Street, Houston (e)	08075750	1.20	1965-72
Huntington Bayou at Falls Street, Houston (e)	08075760	2.75	1964-84
Halls Bayou at Deertrail Street at Houston (e)	08076200	8.69	1965-84
Carpenters Bayou at Cloverleaf (e)	08076900	25.8	1964,
			1971-93
Clear Creek near Pearland (d)	08077000	38.8	1944-45,
			1946-60,
			1963-94
Clear Creek Tributary at Hall Road, Houston (e)	08077100	1.31	1965-86
Clear Creek at Friendswood (d)	08077540	99.6	1994-97
Cowart Creek near Friendswood (e)	08077550	18	1965-74
Clear Creek near Friendswood (e)	08077600	126	1966-94
Armand Bayou near Genoa (e)	08077620	18.2	1968,
W. 11 . 1D	00077700	1.7.	1971-73
Highland Bayou at Hitchcock (e)	08077700	15.6	1963-82
Highland Bayou Tributary near Texas City (e)	08077750	1.97	1966-73
Highland Bayou near Texas City (e)	08077780	20.8	1965-88
Flores Bayou near Danbury (e)	08078700	23.3	1967-72
Oyster Creek near Angleton (d)	08079000	171	1945-80
North Fork Double Mountain Fork Brazos River at Lubbock (d)	08079500	5,300	1940-49,
North Fork Double Mountain Fork Brazos River above	08079530	29.3	1952-54,
Buffalo Springs nr Lubbock (e)			1957,
			1962, 1967-76
Buffalo Springs Lake near Lubbock (e)	08079550	236	1967-76
Barnum Springs Draw near Post (e)	08079570	4.99	1965-73
North Fork Double Mountain Fork Brazos River near Post (d)	08079575	438	1984-93
Rattlesnake Creek near Post (e)	08079580	2.75	1966-74
Double Mountain Fork Brazos River near Rotan (d)	08080000	8,536	1950-51
Guest-Flowers Draw near Aspermont (e)	08080510	3.02	1965-74
McDonald Creek near Post (d)	08080540	103	1966-78
Running Water Draw at Plainview (d)	08080700	1,291	1939-53,
running water Braw at Family (a)	00000700	1,271	1957-78
Callahan Draw near Lockney (e)	08080750	37.5	1966-77
White River near Crosbytown (e)	08080800	529	1951-64
White River below falls near Crosbytown (e)	08080900	529	1951-64
Salt Fork Brazos River at Farm Road 1081 near Clairemont (e)	08080916	1,135	1968-77
Red Mud Creek near Spur (e)	08080918	65.1	1967-74
Salt Fork Brazos River at State Highway 208 near Clairemont (e)	08080940	1,357	1968-77
Duck Creek near Girard (d)	08080950	431	1965-89
Salt Fork Brazos River at U.S. Highway 380 near Jayton (e)	08080959	1,797	1968-77
Salt Fork Brazos River near Peacock (d)	08081000	4,619	1950-51,
			1965-86
Short Croton Creek at mouth near Jayton (e)	08081050	18.1	1959-82
Croton Creek below Short Croton Creek near Jayton (e)	08081100	250	1959-82
Croton Creek near Jayton (d)	08081200	290	1959-86
Salt Croton Creek at Weir D near Aspermont (e)	08081400	55.5	1957-76
Haystack Creek at Weir E near Aspermont (e)	08081450	15.1	1957-77
Salt Croton Creek near Aspermont (d)	08081500	64.30	1957-77
Stinking Creek near Aspermont (d)	08082100	88.80	1966-83
North Croton Creek near Knox City (d)	08082180	251	1965-86
North Elm Creek near Throckmorton (e)	08082900	3.58	1965-77
Elm Creek near Profitt (e)	08082950	275	1969-85
Brazos River near Graham (d)	08083000	16,830	1916-20

Stationname	Station	Drainage area	Period of record
	number	(mi^2)	(water years)
Clear Fork Brazos River at Hawley (d)	08083240	1,416	1968-89
Mulberry Creek near Hawley (d)	08083245	205	1968-89
Elm Creek near Abilene (d)	08083300	133	1964-79
Little Elm Creek near Abilene (d)	08083400	39.10	1964-79
Elm Creek at Abilene (d)	08083430	422	1980-83
Cedar Creek at Abilene (d)	08083470	119	1971-84
Paint Creek near Haskell (d)	08085000	914	1950-51
Humphries Draw near Haskell (e)	08085300	3.51	1965-77
Clear Fork Brazos River at Crystall Falls (d)	08086000	4,323	1922-29
Hubbard Creek near Sedwick (d) Living Creek at History 280 near March (e)	08086015	128 152	1964-66
Hubbard Creek at Highway 380 near Moran (e)	08086020 08086030	33.8	1963-76 1963-66
Deep Creek near Putnam (e) Brushy Creek near Putnam (e)	08086040	27.6	1963-66
Mexia Creek near Putnam (e)	08086045	67.0	1963-66
Deep Creek at Moran (d)	08086050	228	1963-75
Hubbard Creek near Albany (d)	08086100	454	1962-75
Salt Prong Hubbard Creek below Lake McCarty near Albany (e)	08086110	45.5	1963-66
Salt Prong Hubbard Creek at U.S. 380 near Albany (d)	08086120	61	1964-68
Cook Creek near Albany (e)	08086130	11.3	1963-76
North Fork Hubbard Creek near Albany (d)	08086150	39.3	1963-90
Salt Prong Hubbard Creek near Albany (d)	08086200	115	1962-63
Snailum Creek near Albany (d)	08086210	22.90	1964-66
Big Sandy Creek near Eolian (e)	08086220	91.4	1963-76
Battle Creek near Putnam (e)	08086230	32.0	1963-66
Battle Creek near Moran (d)	08086235	108	1967-68
Battle Creek near Eolian (e)	08086240	137	1963-66
Pecan Creek at FM 1853 near Eolian (e)	08086250	6.95	1963-66
Pecan Creek near Eolian (d)	08086260	26.40	1967-75
Big Sandy Creek near Breckenridge (e)	08086300	288	1962-75
Hubbard Creek near Breckenridge (d)	08086500	1,089	1955-86
Clear Fork Brazos River near Crystal Falls (e)	08087000	5,658	1916-20,
			1928-51
Clear Fork Brazos River near Eliasville (d)	08087300	5,697	1916-20,
			1924-25,
			1928-51,
			1962-82
Salt Creek at Olney (d)	08088100	11.80	1958-77
Salt Creek near Newcastle (d)	08088200	120	1958-60
Briar Creek near Graham (d)	08088300	24.20	1958-89
Brazos River at Farm Road 1287 near Graham (e)	08088420	13,432	1970-77
Big Cedar Creek near Ivan (d)	08088450	97	1965-89
Brazos River at Morris Sheppard Dam near Graford (d)	08088600	14,030	1990-94
Elm Creek Tributary near Graford (e)	08089100	1.10	1965-74
Lake Palo Pinto near Santo (e)	08090300	461	1964-82
Palo Pinto Creek near Santo (d)	08090500	573	1925, 1951-76
Cidwell Branch near Granbury (e)	08090850	3.37	1966-73
Morris Branch near Glanbury (e)	08091200	0.06	1965-73
Panther Branch near Tolar (e)	08091700	7.82	1966-74
Lake Pat Cleburne near Cleburne (d)	08091700	100	1965-85
Nolan River at Blum (d)	08092000*	282.0	1924-87
Brazos River near Whitney (d)	08093000	17,648	1939-74
Bond Branch near Hillsboro (e)	08093200	0.36	1965-74
Hackberry Creek at Hillsboro (d)	08093250	57.9	1980-92
Hackberry Creek below Hillsboro (e)	08093260	86.8	1980-92
Aquilla Creek above Aquilla (d)	08093360*	255.0	1980-92
Cobb Creek near Abbott (d)	08093400	12.40	1967-79
Aquilla Creek at RR bridge near Aquilla (e)	08093530	345	1976-85
Aquilla Creek at Farm Road 2114 near Aquilla (e)	08093540	351	1976-85
Aquilla Creek at Farm Road and 1858 near Ross (e)	08093560	392	1976-85
Aquilla Creek at Farm Road 933 near Ross (e)	08093580	397	1976-85

Drainage Period Station name Station area of record number (mi²)(water years) ______ North Bosque River at Stephenville (d) 08093700 95.90 1958-79 Green Creek SWS #1 near Dublin (d) 08094000 1955-77 4.19 Green Creek near Alexander (d) 08094500 45.40 1958-73 South Bosque River near McGregor (e) 08095220 15.9 1967-73 Willow Branch at McGregor (e) 08095250 2.52 1966-73 Middle Bosque River near McGregor (d) 08095300* 182.0 1959-86 Hog Creek near Crawford (d) 08095400* 78.0 1959-86 South Bosque River near Speegleville (d) 08095500 1924-30 386 Bosque River near Waco (d) 08095600 1,656 1960-82 Box Branch at Robinson (e) 08096550 0.34 1965-73 Cow Bayou SWS No. 4 (inflow) near Bruceville (e) 5.04 1958-75 08096800 Cow Bayou at Mooreville (d) 08097000 83.50 1958-75 1939-51 Brazos River near Marlin (d) 08097500 30.211 Deer Creek at Chilton (d) 08098000 84.50 1934-36 Little Pond Creek at Burlington (d) 08098300 23 1963-82 Leon River near De Leon (d) 08099100* 479.0 1960-87 Sabana River near De Leon (d) 08099300* 264.0 1960-87 08099350 0.48 1966-74 Sabana River Tributary near De Leon (e) Leon River near Hasse (d) 08099500 1,261 1939-91 Eidson Creek near Hamilton (e) 08100100 2.91 1965-73 Bermuda Branch near Gatesville (e) 08100400 0.50 1966-73 Hoffman Branch near Hamilton (e) 08100800 1966-74 5.56 Cowhouse Creek near Killeen (d) 08101500 667 1925, 1939-42 Nolan Creek at Belton (d) 08102600 112 1974-82 08102900 0.90 1966-73 School Branch near Lampasas (e) Fleece Branch near Lampasas (e) 08103450 1.08 1965-74 Lampasas River at Youngsport (d) 08104000 1.240 1924-80 Lampasas River near Belton (d) 08104100* 1,321 1963-89 Salado Creek above Salado (e) 08104290* 134 1985-88 Salado Creek below Salado Springs (d) 08104310* 136 1985-87 N. Fork San Gabriel River upstream from State Highway 418 at Georgetown (e) 08104795* 271 1985-88 North Fork San Gabriel River at Georgetown (d) 1964-68 08104800 268 South Fork San Gabriel River near Bertram (e) 08104850 8.9 1967-74 San Gabriel River at Georgetown (d) 08105000* 405 1924-25, 1934-73. 1984-87 Berry Creek at State Hwy. 971 near Georgetown (d) 08105200* 117 1985-87 San Gabriel River near Weir (d) 08105300* 563 1977-90 San Gabriel River near Circleville (d) 08105400 599 1924-34, 1967-77 Avery Branch near Taylor (e) 08105900 3.52 1966-73 Brushy Creek at Coupland (d) 1924-26 08106000 205.0 Brushy Creek near Rockdale (d) 08106300 505 1967-80 San Gabriel River near Rockdale (d) 08106310 1,359 1975-92 Big Elm Creek near Temple (d) 08107000 74.70 1934-36 Big Elm Creek near Buckholts (d) 08107500 171 1934-36 North Elm Creek near Ben Arnold (d) 08108000 32.20 1935-36 North Elm Creek near Cameron (d) 08108200 44.80 1963-73 Little Branch near Bryan (e) 08108800 0.14 1966-73 1899-1903, Brazos River near Bryan (d) 08109000 39,515 1918-92 Brazos River near College Station (d) 08109500 30,033 1899-1902, 1918-25 Yegua Creek near Somerville (d) 08110000 1,009 1924-92 1966-95 Brazos River at Washington (e) 08110200 41.192 Plummers Creek at Mexia (e) 08110350 4.42 1965-73 1965-79 Navasota River near Groesbeck (d) 08110400 311 Navasota River near Bryan (d) 08111000 1,454 1951-94, 1994-97 Navasota River near College Station (d) 08111010 1.809 1977-85

Station name	Station	Drainage area (mi ²)	Period of record
	number	(m1²)	(water years)
Burton Creek at Villa Maria Road, Bryan (d)	08111025	1.33	1968-70
Hudson Creek near Bryan (d)	08111050	1.94	1968-70
Winkleman Creek near Brenham (e)	08111100	0.75	1965-73
Piney Creek near Bellville (e)	08111600	30.7	1948,
			1955,
			1958,
TT - T - 1 200 G - 1	00444.550	4.7.0	1964-89
West Fork Mill Creek near Industry (e)	08111650	15.3	1964-89
Mill Creek near Bellville (d)	08111700	376	1963-93
Brazos River near San Felipe (d)	08112000	35,100	1939-57
Brazos River near Wallis (e)	08112200	44,700 N/A	1974-75
Brazos River Authority Canal A near Fulshear (d)	08112500	N/A	1932-54, 1958-73
Richmond Irrigation Co. Canal near Richmond (d)	08113500	N/A	1938-73
Richmond Irrigation Co. Canar near Richmond (d)	08113300	IN/A	1952-34, 1956-78
Brazos River near Juliff (d)	08114500	45,084	1949-69
Seabourne Creek near Rosenberg (e)	08114900	5.78	1968-74
Fairchild Creek near Needville (d)	08115500	26.20	1947-55
Big Creek near Guy (d)	08116000	116	1947-50
Dry Creek near Rosenberg (d)	08116400	8.65	1959-79
Dry Creek near Richmond (d)	08116500	12.20	1947-50,
Dry Creek hear Richmond (d)	00110300	12.20	1957-58
San Bernard River near West Columbia (e)	08117700	766	1949,
			1971-77
Mound Creek Tributary at Guy (e)	08117800	1.48	1966-73
Big Boggy Creek near Wadsworth (d)	08117900	10.30	1970-77
Bull Creek near Ira (d)	08118500	26.30	1948-54,
			1959-62
Colorado River below Bull Creek near Ira (e)	08118600	3,524	1975-78
Bluff Creek near Ira (d)	08119000	42.60	1948-65
Bluff Creek at mouth near Ira (e)	08119100	44.1	1975-78
Colorado River near Ira (d)	08119500	3,483	1948-52, 1959-89
Morgan Creek near Westbrook (d)	08121500	273	1954-63
Graze Creek near Westbrook (d)	08122000	21.70	1954-59
Morgan Creek near Colorado City (d)	08122500	313	1947-49
Champlin Creek near Colorado City (d)	08123500	198	1948-59
Sulphur Springs Draw near Wellman (e)	08123620	41.80	1966-74
Beals Creek above Big Spring (d)	08123650	9,319	1959-79
Beals Creek at Big Spring (d)	08123700	9,341	1957-59
Beals Creek near Coahoma (d)	08123720	9,383	1983-88
Coahoma Draw Tributary near Big Spring (e)	08123750	2.38	1966-74
Bull Creek Tributary near Forsan (e)	08123760	0.4	1966-74
Colorado River near Silver (d)	08123900	14,997	1957-70
Bitter Creek near Silver (e)	08123920	4.3	1967-74
Salt Creek Tributary near Hylton (e)	08125450	0.25	1966-74
Oak Creek Reservoir near Blackwell (e)	08125500	238	1953-83
Fish Creek Tributary near Hylton (e)	08126300	0.25	1966-71
Colorado River at Ballinger (d)	08126500	16,413	1907-79
Dry Creek near Christoval (e) South Conche Imigation Co. Conclut Christoval (d)	08127100	0.79	1965-73
South Concho Irrigation Co. Canal at Christoval (d)	08127500	N/A	1940-83
Middle Concho River near Tankersley (d)	08128500	2,653	1930-61
Spring Creek above Tankersley (d) Doug Creek Springs peer Kniekerheeker (d)	08129300*	424.7	1961-95
Dove Creek springs near Knickerbocker (d)	08129500*	N/A 226.43	1944-58
Dove Creek at Knickerbocker (d) Spring Creek near Tankersley (d)	08130500* 08131000	226.43 699	1961-95 1930-60
South Concho River above Gardner Dam near San Angelo (e)	08131000 08131190	434	1930-60 1966-74,
South Concho River above Guidner Dain field Ball Aligero (c)	00131170	7.57	2000
South Concho River above Pecan Creek near San Angelo (e)	08131300	470	1963-84
Tom Green Co. WCID No. 1 Canal near San Angelo (d)	08131600	N/A	1963-81
Tom Green Co. WCID 110. I Canal near San Angelo (a)	00131000	11/11	1703-01

Station name		Drainage	Period
	Station	area	of record
	number 	(mi ²)	(water years)
South Concho River at San Angelo (d)	08132500	3,866	1932-53
Quarry Creek near Sterling City (e)	08133300	3.25	1965-73
North Concho River at Sterling City (d)	08133500*	588.0	1939-87
Broome Creek near Broome (e)	08133800	0.29	1965-73
Nolke Station Creek near San Angelo (e)	08134300	0.59	1965-73
Gravel Pit Creek near San Angelo (e)	08134400	0.19	1965-74
North Concho River at San Angelo (d)	08135000	1,525	1916-31, 1947-90
Concho River near Veribest (e)	08136150	5,610	1970-74, 1998-2000
Puddle Creek near Veribest (e)	08136200	12.0	1966-73
Frog Pond Creek near Eden (e)	08136300	1.96	1967-73
Mukewater Creek SWS No. 10A near Trickham (e)	08136900	15.3	1965-72
Mukewater Creek SWS No. 9 near Trickham (e)	08137000	4.02	1961-72
Mukewater Creek at Trickham (d)	08137500	70	1951-73
Deep Creek SWS No. 3 near Placid (e)	08139000	3.42	1954-60
Deep Creek near Mercury (d)	08139500	43.90	1954-73
Deep Creek SWS No. 8 near Mercury (e)	08140000	5.14	1952-71
Dry Prong Deep Creek near Mercury (d)	08140500	8.31	1951-71
Lake Clyde near Clyde (e)	08140600	36.9	1970-85
Pecan Bayou near Cross Cut (d)	08140700	532	1968-79
Jim Ned Creek near Coleman (d)	08140800	333	1965-80
McCall Branch near Coleman (e)	08141100	2.17	1966-73
Hords Creek near Valera (d)	08141500	54.20	1947-91
Hords Creek at Coleman (d)	08142000	107	1941-70
Brown County WID No. 1 Canal near Brownwood (d)	08142500	N/A	1950-83
Pecan Bayou at Brownwood (d)	08143500	1,660	1917-18, 1924-83
Brown Creek Tributary near Goldthwaite (e)	08143700	2.48	1966-73
Noyes Canal at Menard (d)	08144000	N/A	1924-83
Brady Creek near Eden (d)	08144800	101	1962-85
Brady Creek Tributary near Brady (e)	08145100	4.05	1967-73
Lake Buchanan near Burnet (e)	08148000	31,910	1937-90
Llano River Tributary near London (e)	08150200	0.58	1966-73
Stone Creek Tributary near Art (e)	08150900	0.40	1966-73
Llano River near Castell (d)	08151000	3,747	1924-39
Johnson Creek near Valley Spring (e)	08151300	5.66	1967-73
Sandy Creek near Kingsland (d)	08152000	327	1967-93
Little Flatrock Creek near Marble Falls (e)	08152700	3.20	1966-74
Spring Creek near Fredericksburg (e)	08152800	15.20	1967-73
Pedernales River at Stonewall (d)	08153000	647	1924-34
Cane Branch at Stonewall (e)	08153100	1.37	1965-71
Pedernales River near Spicewood (d)	08154000	1,294	1924-39
Lake Travis near Austin (d)	08154500	38,755	1940-90
Colorado River below Mansfield Dam, Austin (d) West Bull Creek at Loop 360 near Austin (e)	08154510	38,755	1975-90
* * * * * * * * * * * * * * * * * * * *	08154750	6.77	1976-82
Bull Creek at FM 2222, Austin (e) Rea Creek at West Lake Drive mean Avetin (c)	08154760	30.4	1975-78
Bee Creek at West Lake Drive near Austin (e) Barton Creek near Camp Craft Road near Austin (d)	08154950	3.28 109	1980-82
Skunk Hollow Creek below Pond 1 at Austin (e)	08155260		1982-89
West Bouldin Creek at Riverside Drive, Austin (e)	08155400	0.12	1982-84
Shoal Creek at Steck Avenue, Austin (e)	08155550 08156650	3.12 2.79	1976-82 1975-82
Shoal Creek at Northwest Park at Austin (d)	08156700	6.52	1975-84
Shoal Creek at White Rick Drive, Austin (d)	08156750	12.30	1975-84
Waller Creek at 38th Street, Austin (d)	08157000	2.31	1955-80
Waller Creek at 35th Street, Austin (d) Waller Creek at 23rd Street, Austin (d)	08157500	4.13	1955-80
Walnut Creek at Farm-Market 1325 near Austin (e)	08158100	12.60	1975-88
Walnut Creek at Paini-Market 1929 hear Austin (e) Walnut Creek at Dessau Road, Austin (e)	08158200	26.20	1975-88
Ferguson Branch at Springdale Road, Austin (e)	08158300	1.63	1978-82
Little Walnut Creek at Georgian Drive, Austin (e)	08158380	5.22	1975-88
Little Walnut Creek at IH 35, Austin (e)	08158400	5.57	1975-82

		Drainage	Period
Station name	Station	area	of record
	number	(mi ²)	(water years)
Little Walnut Creek at Manor Road, Austin (e)	08158500	12.1	1975-82
Walnut Creek at Southern Pacific Railroad bridge, Austin (e)	08158640	53.5	1975-86
Onion Creek at Buda (e)	08158800	166	1961-78,
" " (d)			1979-83,
			1992-95
Bear Creek at Farm-Market Road 1626 near Manchaca (e)	08158820	24.0	1979-83
Little Bear Creek at Farm-Market Road 1626 near Manchaca (d)	08158825	21.0	1979
Slaughter Creek at FM 2304 near Austin (e)	08158860	23.1	1978-83
Boggy Creek (South) at Circle S Road, Austin (e)	08158880	3.58	1976-88
Fox Branch near Oak Hill (e)	08158900	0.12	1965-73
Williamson Creek at Oak Hill (d)	08158920	6.30	1978-93
Williamson Creek at Jimmy Clay Road, Austin (d)	08158970	27.60	1975-85
Onion Creek below Del Valle (e)	08159100	339	1962-75
Wilbarger Creek near Pflugerville (d)	08159150	4.6	1963-80
Big Sandy Creek near McDade (d)	08159165	38.70	1979-85
Big Sandy Creek near Elgin (d)	08159170	63.80	1979-85
Dogwood Creek near McDade (e)	08159180	0.53	1980-85
Dogwood Creek at Highway 95 near McDade (e)	08159185	5.03	1980-85
Reeds Creek near Bastrop (e)	08159450	5.22	1967-73
Dry Creek at Buescher Lake near Smithville (d)	08160000	1.48	1940-66
Colorado River at La Grange (d)	08160500	40,430	1939-55
Colorado River above Columbus (d)	08160700	41,403	1983-85
Dry Branch Tributary near Altair (e)	08161580	0.68	1966-73
Little Robin Slough near Matagorda (e)	08162530	3.4	1969
Cashs Creek near Blessing (e)	08162650	14.8	1969-77
East Carancahua Creek near Blessing (e)	08162700	81.2	1968,
			1970-83
West Carancahua Creek near Laward (e)	08162800	57.1	1970-76
Navidad River near Speaks (d)	08164350	437	1982-89,
N. 11 171	004 540 70	7.10	1995-2000
Navidad River at Morales (d)	08164370	549	1995-2000
Navidad River near Ganado (d)	08164500	826	1939-80
Guadalupe River above Kerrville (e)	08166150	488	1976-79
Turtle Creek Tributary near Kerrville (e)	08166300	0.46	1966-74
Guadalupe River near Comfort (d)	08166500	762	1918-32
Rebecca Creek near Spring Branch (d)	08167600	10.90	1960-79
Blieders Creek at New Braunfels (e)	08168600	16.0	1962-89
Panther Canyon at New Braunfels (e)	08168700	0.73	1962-89
Trough Creek near New Braunfels (e)	08168720	0.48	1966-74
W.P. Dry Comal Creek Tributary near New Braunfels (e)	08168750	0.32	1966-74
Dry Comal Creek at New Braunfels (e)	08168800	N/A	1962-74
Walnut Branch near Seguin (e)	08169750	5.46	1967-74
East Pecan Branch near Gonzales (e)	08169850	0.24	1965-74
San Marcos River at San Marcos (d)	08169950	83.7	1915-21
West Elm Creek near Niederwald (e)	08172100	0.44	1965-74
Plum Creek near Lockhart (d)	08172500	184	1925-30
San Marcos River at Ottine (d)	08173500	1,249	1915-43
Guadalupe River below Cuero (d)	08176000	4,923	1903-07,
			1916-19,
	0045400		1921-36
Irish Creek near Cuero (e)	08176200	15.5	1967-74
Three Mile Creek near Cuero (e)	08176600	0.48	1966-74
Coleto Creek Reservoir inflow (Guadalupe diversion) near Schroeder (d)	08176990	357	1980-94
Coleto Creek near Schroeder (d)	08177000	369	1930-34,
OL OLIMINA AMAZZA OLIMINA	004==	A	1953-79
Olmos Creek Tributary at FM 1535 at Savano Park (e)	08177600	0.33	1969-81
Olmos Reservoir at San Antonio (e)	08177800	32.4	1968-71,
			1976-89.
	004===		1992-95
San Antonio River at Woodlawn Avenue, San Antonio (e)	08177860	36.4	1989-95

Station name	Station number	Drainage area (mi ²)	Period of record (water years)
San Antonio River at Dolorosa, San Antonio (d) San Antonio River at San Antonio (d)	08177920 08178000	N/A 41.8	1980-86 1895- 1906, 1915-29, 1939-97
Alazan Creek at St. Cloud Street, San Antonio (e)	08178300	3.26	1969-79
San Pedro Creek at Furnish St., San Antonio (d)	08178500*	2.60	1916-29
Harlandale Creek at W. Harding Street, San Antonio (e)	08178555	2.43	1977-81
Panther Springs Creek at FM 2696 near San Antonio (e)	08178600	9.54	1969-77
Lorence Creek at Thousand Oaks Blvd., San Antonio (e)	08178620	4.05	1980-84
West Elm Creek at San Antonio (e)	08178640	2.45	1976-88
East Elm Creek at San Antonio (e)	08178645	2.33	1976-81
Salado Creek Tributary at Bitters Road, San Antonio (e) Salado Creek at Rittman Road, San Antonio (e)	08178690 08178720	0.26 137.1	1969-81 1968-81
Salado Creek Tributary at Bee Street, San Antonio (e)	08178736	0.45	1970-77
Salado Creek at E. Houston Street, San Antonio (e)	08178740	181	1968-81
Salado Creek at U.S. Highway 87, San Antonio (e)	08178760	186	1968-81
Salado Creek at Southcross Blvd., San Antonio (e)	08178780	188	1968-81
Bandera Creek Tributary near Bandera (e)	08178900	0.27	1966-74
Medina River near Pipe Creek (d)	08179000	474	1923-35,
Ded Dloff Condenses Bios Conde (d)	00170100	56.20	1953-82
Red Bluff Creek near Pipe Creek (d) Medina River Tributary near Pipe Creek (e)	08179100 08179200	56.30 0.30	1956-81 1966-74
Medina River at La Coste (d)	08180640	805	1987-2000
Medio Creek at Pearsall Road, San Antonio (e)	08180750	47.9	1987-95
Leon Creek Tributary at FM 1604, San Antonio (e)	08181000	5.57	1968-80
French Creek Tributary near Helotes (e)	08181200	1.08	1966-74
Ranch Creek near Helotes (d)	08181410		1978
Leon Creek Tributary at Kelly Air Force Base (d)	08181450	1.19	1969-79
Calaveras Creek SWS No. 6 (inflow) near Elmendorf (e)	08182400	7.01	1957-77
Calaveras Creek near Elmendorf (d) San Antonio River at Calaveras (d)	08182500 08183000	77.20 1,786	1954-71 1918-25
Cibolo Creek near Boerne (d)	08183900	68.4	1963-95
Cibolo Creek near Bulverde (d)	08184000	198	1946-66
Cibolo Creek above Bracken (d)	08184500	250	1946-51
Cibolo Creek at Sutherland Springs (d)	08185500	665	1924-29
Ecleto Creek near Runge (d)	08186500	239	1962-89
Escondido Creek SWS No. 1 (inflow) near Kenedy (e)	08187000	3.29	1955-73
Escondido Creek at Kenedy (d)	08187500	72.40	1954-73
Escondido Creek SWS No. 11 (inflow) near Kenedy (e) Dry Escondido Creek near Kenedy (d)	08187900 08188000	8.45 9.43	1959-77 1954-59
Baugh Creek at Goliad (e)	08188400	3.02	1966-74
Guadalupe-Blanco River Authority Calhoun Canal-Flume No. 2	08188750	N/A	1972-86
near Long Mott (d)			
Guadalupe River at State Highway 35 near Tivoli (e)	08188810	10,280	1975-82
Medio Creek near Beeville (d)	08189300	204	1962-77
Olmos Creek Tributary near Skidmore (e)	08189600	0.58	1966-73
Chiltipin Creek at Sinton (d)	08189800	128	1970-91
Nueces River near Uvalde (d) Nueces River near Cinonia (d)	08191500 08192500	1,930 2,150	1928-39 1915-25
Plant Creek near Tilden (e)	08192500	0.36	1965-74
Nueces River at Simmons (d)	08194600	8,561	1965-77
Frio River at Knippa (d)	08195700	N/A	1953
Dry Frio River at Knippa (d)	08196500	179	1953
East Elm Creek near Sabinal (e)	08198900	10.6	1967-74
Frio River near Frio Town (d)	08199700	1,460	1924-27
Hondo Creek near Hondo (d)	08200500	132	1953-64
Bone Creek near Hondo (e)	08200900	0.19	1965-74 1952-61
Seco Creek near Utopia (d) Seco Creek Reservoir inflow near Utopia (d)	08202000 08202450	53.20 59.5	1952-61 1991-98

		Drainage	Period	
Station name	Station	area	of record	
	number	(mi ²)	(water years)	
Parkers Creek Reservoir (d)	08202800	10.0	1991-99	
Leona River Tributary near Uvalde (e)	08203500	1.21	1966-74	
Leona River Spring Flow near Uvalde (d)	08204000*	1.21	1939-77	
Leona River near Divot (d)	08204500	565	1924-29	
Frio River at Calliham (d)	08207000	5,491	1925-26, 1932-81	
Rutledge Hollow Creek near Poteet (e)	08207200	9.33	1966-74	
Rutledge Hollow at 7th Street, Poteet (d)	08207220	N/A	1979-2000	
Atascoas River at U.S. Highway 281, Pleasanton (d)	08207300	N/A	1973-2000	
Atascosa River near McCoy (d) Lucas Creek near Pleasanton (e)	08207500 08207700	530 32.80	1951-57 1966-73	
Ramirena Creek near George West (d)	08210300	84.40	1968-72	
Lagarto Creek near George West (d)	08210400	155	1972-89	
Nueces River below Mathis (d)	08211100	16,726	1966-67	
Rincon Bayou Channel near Calallen (d)	08211503	N/A	1996-2000	
Pintas Creek Tributary near Banquete (e)	08211550	3.28	1966-74	
Hamon Creek near Freer (e)	08211600	0.73	1965-73	
San Diego Creek at Alice (d)	08211800	319	1964-89	
Lake Alice at Alice (e)	08211850	150	1965-86	
San Fernando Creek near Alice (d)	08212000	518	1962-63	
North Las Animas Creek Tributary near Freer (e)	08212320	0.07	1969-74	
Rio Grande at Vinton Bridge near Anthony (d)	08363840	28,680 6.89	1969-74	
Northgate Reservoir at El Paso (e) Range Reservoir at El Paso (e)	08365540 08365545	11.89	1973-75 1973-75	
Franklin Canal at El Paso (d)	08365550	N/A	1969-72	
McKelligon Canyon at El Paso (d)	08365600	2.30	1958-77	
Government Ditch at El Paso (d)	08365800	6.40	1958-77	
Rio Grande at Jaurez, MX (d)	08366000	29,350	1938-56	
Riverside Canal near Socorro (d)	08366400	37,830	1969-72	
Rio Grande at Island Station near El Paso (d)	08366500	29,743	1938-60	
Rio Grande at Tornillo Branch near Fabens (d)	08367000	N/A	1924-38	
Tornillo Drain at mouth near Tornillo (d)	08368000	N/A	1969-72	
Tornillo Canal near Tornillo (d)	08368300	N/A	1969-72	
Hudspeth Feeder Canal near Tornillo (d)	08368900	N/A	1969-72	
Rio Grande at County Line Station near El Paso (d) Camo Rice Arroyo Tributary near Fort Hancock (e)	08369500 08370200	30,610 2.35	1938-60 1966-74	
Wild Horse Creek Tributary near Van Horn (e)	08370200	0.74	1966-73	
Cibolo Creek near Presidio (d)	08373200	276	1971-77	
Rio Grande above Presidio (lower Station) (d)	08373500	N/A	1901-13,	
			1924-54	
Rio Grande at Langtry (d)	08377500	84,795	1900-14,	
			1920,	
			1924-60	
Rio Grande Tributary near Langtry (e)	08377600	0.32	1966-74	
Delaware River Tributary near Orla (e)	08407800	1.6	1966-74	
Pecos River near Angeles (d) Salt Screwbean Draw near Orla (d)	08409500	20,540 464	1914-37 1939-41,	
Sait Sciewbean Diaw near Offa (d)	08411500	404	1939-41, 1944-57	
Pecos River near Mentone (d)	08414000	21,650	1922-26,	
recos rever near mentone (a)	00111000	21,030	1969-73	
Reeves County WID No. 2 Canal near Mentone (d)	08414500	N/A	1922-25,	
•			1939-57,	
			1964-90	
Ward County WID No. 3 Canal near Barstow (d)	08415000	N/A	1939-57,	
			1964-90	
Pecos River above Barstow (d)	08416500	21,800	1916-21	
Ward County Irrigation District No. 1 Canal near Barstow (d)	08418000	N/A	1922-25,	
			1939-57,	
Pages Divige et Pages (d)	00420500	22 100	1964-90	
Pecos River at Pecos (d)	08420500	22,100	1898-1907,	
			1914-15, 1922-26,	
			10// /h	

		Drainage	Period
Stationname	Station	area	of record
	number	(mi^2)	(water years)
Madera Canyon near Toyahvale (d)	08424500	53.80	1932-49
Phantom Lake Spring near Toyahvale (d)	08425500*	N/A	1932-34,
Thankom Bake Spring near Toyan valo (a)	00123300	14/11	1942-66
Giffin Springs at Toyahvale (d)	08427000*	N/A	1932-33
San Solomon Springs at Toyahvale (d)	08427500*	N/A	1932-34,
			1941-65
West Sandia Spring at Balmorhea (d)	08429000	N/A	1932-33
East Sandia Spring at Balmorhea (d)	08430000	N/A	1932-33
Toyah Creek near Pecos (d)	08431000	1,024	1940-41,
			1944-45
Salt Draw near Pecos (d)	08431500	1,882	1939-41,
			1944-45
Limpia Creek below Fort Davis (d)	08431800	227	1962-77
Limpia Creek near Fort Davis (d)	08432000	303	1925-32
Barrilla Draw near Saragosa (d)	08433000	612	1925-26,
			1932,
Toyoh Crook holow Toyoh Laka noor Dooos (d)	08434000	3,709	1976-83 1939-51
Toyah Creek below Toyah Lake near Pecos (d) Grandfalls-Big Valley Canal near Barstow (d)	08435000	3,709 N/A	1922-26,
Grandians-Dig valley Canal hear Barstow (d)	08433000	IV/A	1939-57,
			1964-76
Pecos River below Barstow (d)	08435500	25,980	1939-41
Toronto Creek near Alpine (d)	08435600	27.90	1971-76
Alpine Creek at Alpine (d)	08435620	18.10	1971-76
Moss Creek near Alpine (d)	08435660	11.30	1971-76
Sunny Glen Canyon near Alpine (d)	08435700	29.70	1968-77
Coyanosa Draw near Fort Stockton (d)	08435800	1,182	1964-77
Pecos County WID No. 2 (Upper Div.) Canal near Grandfalls (d)	08436500	N/A	1922-25,
-			1939-57,
			1964-90
Courtney Creek Tributary near Fort Stockton (e)	08436800	0.44	1966-74
Pecos County WID No. 2 Canal near Imperial (d)	08437500	N/A	1940-57,
			1964-90
Lake Leon Tributary near Fort Stockton (e)	08437550	1.59	1966-74
Pecos County WID No. 3 Canal near Imperial (d)	08437600	N/A	1940-57,
M (D TII) (D (/)	00.127.550	170	1964-90
Monument Draw Tributary at Pyote (e)	08437650	178	1966-74
Ward County WID No. 2 Canal near Grand Falls (d)	08437700	N/A	1939-57,
Pecos River near Grand Falls (d)	08438100	27,810	1964-90 1916-26
Pecos River below Grand Falls (d)	08441500	27,810	1921-26,
1 ccos rever below Grand I ans (d)	00441300	27,020	1939-56
Three Mile Mesa Creek near Fort Stockton (e)	08444400	1.04	1966-74
Comanche Springs at Fort Stockton (d)	08444500	N/A	1936-64
Pecos River near Sheffield (d)	08447000	31,600	1922-25,
		,	1940-49
Independence Creek near Sheffield (d)	08447020	763	1974-85
Howards Creek Tributary near Ozona (e)	08447200	7.53	1967-73
Pecos River near Shumla (d)	08447400	35,162	1955-60
Pecos River near Comstock (d)	08447500	35,298	1900-54
Goodenough Springs near Comstock (e)	08448500	N/A	1929-60
Sonora Field Creek at Sonora (e)	08448800	2.60	1965-71
Devils River near Juno (d)	08449000	2,730	1925-49,
			1964-73
Devils River near Comstock (d)	08449300	3,903	1955-58
Rough Canyon Tributary near Del Rio (e)	08449470	7.90	1967-73
Devils River near Del Rio (d)	08449500	4,185	1900-14,
Evans Crack Tributary near Dal Dia (a)	00440400	0.20	1924-57
Evans Creek Tributary near Del Rio (e) Devile Piver near mouth, Del Rio (d)	08449600	0.39	1966-73
Devils River near mouth, Del Rio (d)	08450500	4,305	1954-60

Station name	Station number	Drainage area (mi ²)	Period of record (water years)
Rio Grande near Del Rio (d)	08452500	123.303	1900-15.
		-,	1920,
			1924-54
San Felipe Creek near Del Rio (e)	08453000	46.0	1931-60
Zorro Creek near Del Rio (e)	08453100	10.0	1966-74
East Perdido Creek near Brackettville (e)	08454900	3.39	1965-74
Pinto Creek near Del Rio (d)	08455000	249	1929-69,
			1971-72
Rio Grande at San Antonio Crossing (d)	08458700	129,226	1952-60
Arroyo San Bartolo at Zapata (e)	08459600	0.61	1966-74
Rio Grande near Zapata (d)	08460500	163,344	1932-53
International Falcon Reservoir near Falcon Heights (d)	08461200	N/A	1953-60
Rio Grande at Roma (d)	08462500	166,464	1900-13,
			1923-54
Rio Grande near Rio Grande City (d)	08465500	180,941	1932-54
Rio Grande Tributary near Rio Grande City (e)	08466100	1.20	1966-74
Rio Grande Tributary near Sullivan City (e)	08466200	0.40	1966-74
North Floodway South of McAllen (d)	08468000	N/A	1928-60
South Floodway South of McAllen (d)	08470000	N/A	1929-60
Rio Grande at Hildalgo (d)	08471500	176,100	1928-32,
			1935,
			1939,
			1941-51
Rio Grande near Progreso Bridge (d)	08473300	176,228	1953-60
Rio Grande near San Beniot (d)	08473700	176,304	1953-60
Rio Grande at Matamoros, MX (d)	08474500	182,211	1900-13,
			1923-54
Rio Grande near Brownsville (d)	08475000	176,333	1935-50

The following stations were discontinued as continuous-record surface-water-quality stations prior to the 2000 water year. Daily records of specific conductance, temperature, sediment, color, pH, dissolved oxygen, or chloride were collected and published for the record shown for each station.

[SC, specific conductance; T, temperature; S, sediment; C, color; pH, pH; DO, dissolved oxygen; Cl, chloride.]

		Drainage		
Stationname	Station	area	Type of	of record
	number	(mi ²)	record	(water years)
Canadian River at Tascosa	07227470	19,200	SC, T, Cl	1948-53,
Canadian River at Tascosa	0/22/4/0	18,536	SC, T, pH, Cl	1969-77
Canadian River near Canadian	07228000	22,866	SC, T	1974-81
Prairie Dog Town Fork Red River near Wayside	07297910	4,221	SC, T	1969-81
Tule Creek near Silverton	07298200	1,150	SC, T, pH, Cl	1968-69
Prairie Dog Town Fork Red River near Brice	07298500	6,082	SC, pH, Cl, S	1949-51,
	***	-,	T	1950-51
Mulberry Creek near Brice	07299000	534	SC, pH, Cl, S	1949-51
Prairie Dog Town Fork Red River near Lakeview	07299200	6,792	SC, T	1968-80,
č		•	S	1979-80
Little Red River near Turkey	07299300	139	SC, T	1968-81,
•			S	1979-81
Jonah Creek at Weir near Estelline	07299512	65.50	SC	1974-82
Jonah Creek below Weir near Estelline	07299514	66.60	SC	1974-76
Salt Creek near Estelline	07299530	142	SC	1974-79
Prairie Dog Town Fork Red River near Childress	07299540	7,725	SC, T	1968-82,
•				1994-97
Salt Fork Red River near Hedley	07299930	868	SC, T, pH, Cl	1956-61
Salt Fork Red River near Wellington	07300000	1,222	SC, T, pH, Cl	1952-54,
			SC, T	1968-91
North Pease River near Childress	07307600	1,434	SC, T	1973-79
Middle Pease River near Paducah	07307750	1,086	SC	1973-79,
			T	1973-79,
			S	1994-97
Middle Pease River near Paducah	07307760	1,128	SC	1980-82,
			T	1980
Pease River near Childress	07307800	2,754	SC, T	1968-82,
				1994-97
Pease River near Crowell	07308000	3,037	SC	1942-43
Pease River near Vernon	07308200	3,488	SC,T	1999
Red River near Burkburnett	07308500	20,570	SC, T	1968-81
North Fork Wichita River near Paducah	07311600	540	SC, T	1968-76
North Fork Wichita River near Crowell	07311622	591	SC	1971-76
Middle Fork Wichita River near Truscott	07311648	161	SC	1970-76
Truscott Brine Lake near Truscott	07311669	26.2	SC, T	1985-90
North Fork Wichita River near Truscott	07311700	937	SC, T	1969-92
South Fork Wichita River near Guthrie	07311780	239	SC	1970-76
South Wichita River below Low-Flow Dam near Guthrie	07311783	223	SC, T	1987-89
South Fork Wichita River at Ross Ranch near Guthrie	07311790	499	SC	1971-79,
			Cl	1988-97,
			S	1978-79
Wichita River near Seymour	07311900	1,874	SC, T	1968-79
Beaver Creek near Electra	07312200	652	SC,T	1969-70
				1996-99
Little Wichita River near Archer City	07314500	481	SC	1953-55,
	0	4.0==	T	1953-54
Little Wichita River near Henrietta	07314900	1,037	SC, DO	1999
Little Wichita River near Henrietta	07315000	1,037	SC, T, pH, Cl	1953-56,
			S, T	1959-66,
East Fork Little Wichita River near Henrietta	07315200	178	T	1954
Little Wichita River near Ringgold	07315400	1,350	SC, pH, Cl	1959-62
Red River near Gainesville	07316000	30,872	SC, Cl	1944-46,
			SC, T, pH, Cl	1953-63,
			SC, T	1967-89,

Station name	Ctation	Drainage	Type of	Period of record
Stationname	Station number	area (mi ²)	Type of record	(water years)
Red River at Denison Dam near Denison	07331600	39,720	SC	1944-89,
			T	1945-89
Little Pine Creek near Kanawha	07336750	75.40	T	1980
Red River near De Kalb	07336820	47,348	SC, T	1968-91
South Sulphur River near Cooper	07342500	527	SC, T, pH, Cl	1959-66,
				1968-72,
			SC, T	1973-89
Sulphur River near Talco	07343200	1,365	SC, T, pH, Cl	1966-72,
WW. 0.10 1 W.	05040500	40.4	SC, T	1973-91
White Oak Creek near Talco	07343500	494	SC, T, pH, Cl	1966-72,
C-1-1 D' D1	07244000	2.774	SC, T	1973-91
Sulphur River near Darden	07344000	2,774	SC, T, pH, Cl	1947-50
Big Cypress Creek near Pittsburg	07344500	366	SC, T, pH, Cl	1968-72,
Little Cypress Creek near Jefferson	07346070	675	SC, T SC, T, pH, Cl	1973-89 1968-72,
Little Cypiess Creek hear Jerrerson	0/3400/0	073	SC, T, pH, CI	1908-72,
Sabine River near Emory	08017500	888	SC, T, pH, Cl	1973-91
Grand Saline Creek near Grand Saline	08017300	91.40	SC, T, pH, Cl	1968-73
Sabine River near Mineola	08018500	1,357	SC, T, pH, Cl	1968-72,
Subme 14761 near 141meoid	00010300	1,557	SC, T	1973-92
Lake Fork Creek near Quitman	08019000	585	SC, T, pH, Cl	1968-72,
	***************************************		SC, T	1973-89
Big Sandy Creek near Big Sandy	08019500	231	SC, T, S	1985-86
Sabine River near Beckville	08022040	3,589	SC, T	1952-98
Sabine River below Toledo Bend near Burkeville	08026000	7,482	SC, T	1969-86,
			C	1969-75
Sabine River near Bon Wier	08028500	8,229	SC, T, C	1969-84
Sabine River near Ruliff	08030500	9,329	SC	1945,
				1947-98
			T	1947-98
			pH, DO	1968-75,
			C	1970-76,
			Cl	1968
Cow Bayou near Mauriceville	08031000	83.30	SC, T, pH, Cl	1952-54,
			SC, T	1954-56
Neches River near Neches	08032000	1,145	SC, T	1974-91
Neches River near Alto	08032500	1,945	SC, T	1950-69
Neches River near Diboll	08033000	2,724	SC, T	1970-81
Neches River near Rockland	08033500	3,636	SC	1941-42,
A 1' D' I (1'	00027000	1 (00		1946-47
Angelina River near Lufkin	08037000	1,600	SC, T, pH, Cl	1955-78,
Attorios Doving many Chinana	00020000	502	SC, T	1955-
Attoyac Bayou near Chireno	08038000	503	SC, T	1984-99
Sam Rayburn Reservoir near Jasper	08039300	3,449	SC, T	1964-84, 1993-99
Angelina River below Sam Rayburn Dam near Jasper	08039400	3,449	SC, T	1964-79
Angelina River at SH 63 near Ebenezer	08039500	3,435	SC, T	1994-79
Village Creek near Kountze	08033300	860	SC, T	1968-70
Pine Island Bayou near Sour Lake	08041700	336	SC, T, pH, Cl	1968-72,
I ino Island Dayou near bour bake	03041700	550	SC, T, pH, CI SC, T	1908-72,
Big Sandy Creek near Bridgeport	08044000	333	SC, T, S	1968-77,
Lake Worth above Fort Worth	08045400	2,064	pH, Cl	1,00 11,
Clear Fork Trinity River at Fort Worth	08047500	518	SC, pH, Cl	1949-52,
	55017500	210	T	
			1	1940-02
Village Creek at Everman	08048970	84.5	SC, pH, T, DO	1948-62 1990

Station name	Station	Drainage area	Type of	Period of record	
Station Haine	number	(mi ²)	record	(water years)	
Elm Fork Trinity River near Muenster	08050300	46	SC	1967-68,	
			T	1957-58,	
				1966-68,	
			S	1957-68	
Clear Creek near Sanger	08051500	295	SC, T, S	1968-77	
Little Elm Creek near Celina	08052650	46.70	SC	1967-75,	
			T, S	1966-75	
Little Elm Creek near Aubrey	08052700	75.50	SC	1967-75,	
	000.72000	4	T, S	1967-75	
Elm Fork Trinity River near Lewisville	08053000	1,673	SC	1982-86,	
White Deels Court at Coursells Assessed Dellas	00057200	66.4	T SCH T DO	1976-86	
White Rock Creek at Greenville Avenue, Dallas	08057200	66.4	SC, pH, T, DO	1997-2000	
Trinity River below Dallas	08057410	6,278	SC, T S	1968-2000,	
			S	1972-75, 1998-2000	
			Cl	1970-81,	
			CI	1970-81,	
Lavon Lake near Lavon	08060500	770	SC,T,CL	1969-74,	
Eavon Earc near Eavon	00000300	770	BC, I,CL	1975,82,	
				1995-99	
Duck Creek near Garland	08061700	31.6	SC, pH, T, DO	1988-89	
East Fork Trinity River above Seagoville	08061970	1,183	SC, T, pH, DO	1987-93	
East Fork Trinity River at Seagoville	08061980	1,224	SC, pH, T, DO	1987-96	
East Fork Trinity River near Crandall	08062000	1,256	SC, T	1968-1981,	
•				1987-2000	
			pH, DO	1977,	
			•	1986-2000	
			Cl	1964-81,	
				1986-2000	
Trinity River at Trinidad	08062700	8,538	SC, T	1967-81	
				1986-2000	
			pH, DO	1967-81,	
				1986-2000	
			Cl	1966-94	
	000 < 2000	700	S	1978-94	
Cedar Creek near Mabank	08063000	733	SC, T, pH, Cl	1956-57	
Pin Oak Creek near Hubbard	08063200	17.60	SC	1967-72,	
			T	1957-60, 1965-72,	
			S	1903-72,	
			3	1962-72	
Richland Creek near Richland	08063500	734	SC, T, pH, Cl	1968-69,	
Richard Crock four Richard	00003300	751	SC, T	1983-89	
Chambers Creek near Corsicana	08064500	963	SC, T, pH, Cl	1961-70	
Richland Creek near Fairfield	08064600	1,957	SC, T, pH, Cl	1956-66,	
		•	1	1972,	
			SC, T	1973-83	
Trinity River near Oakwood	08065000	12,833	SC, T, pH, Cl	1948-54,	
			SC, T, S	1977-81	
Bedias Creek near Madisonville	08065800	321	SC, T	1985-87,	
			S	1986	
Long King Creek at Livingston	08066200	141	SC, T, pH, Cl	1963-72	
Trinity River near Goodrich	08066250	16,844	SC, T	1970-73	
Trinity River near Moss Bluff	08067100	17,738	SC, pH, Cl	1950-65	
Old River near Cove	08067200	19.0	SC, pH, Cl	1950-65,	
			T	1965	
Trinity River at Anahuac	08067300	17,912	SC, pH, Cl	1950-65	

Station name	Drainage Station area Type of			Period of record	
Station name	number	area (mi ²)	Type of record	(water years)	
West Fork San Jacinto River near Conroe	08068000	828	SC, T	1962-90,	
			DO	1979-81	
Panther Branch near Spring	08068450	34.50	S	1975-76	
West Fork San Jacinto River near Humble	08069500	1,741	SC, Cl	1945-46	
East Fork San Jacinto River near New Caney	08070200	388	SC,T	1984-99	
San Jacinto River near Huffman	08071500	2,800	SC	1945-54,	
D 00 1 D	000=2<00	205	T	1949-54	
Buffalo Bayou at West Belt Drive at Houston	08073600	307	SC, T	1979-81	
Buffalo Bayou at Houston	08074000	358	SC, pH, T, DO Cl	1986-2000 1969-81	
Whiteoak Bayou at Main Street, Houston	08074598	127	SC, T, DO	1909-81	
Buffalo Bayou at Main Street, Houston	08074598	469	SC, T, DO	1986-92	
Buffalo Bayou at McKee Street, Houston	08074610	469	SC, T, DO	1992-2000	
Bullato Bayou at McKee Street, Houston	08074010	409	pH	1998-2000	
Sims Bayou at Houston	08075500	63.0	SC, T, DO	1994-97	
Chocolate Bayou near Alvin	08078000	87.70	SC, T	1978-81	
North Fork Double Mountain Fork Brazos River near Post	08079575	438	SC, T	1984-93	
Double Mountain Fork Brazos River near Rotan	08080000	8,536	SC, T	1950-51	
Double Mountain Fork Brazos River near Aspermont	08080500	8,796	SC, T, S	1949-51	
		-,	SC, T	1957-95	
McDonald Creek near Post	08080540	103	SC, T	1964-78	
Salt Fork Brazos River near Peacock	08081000	4,619	SC, T	1950-51,	
				1965-86	
Croton Creek near Jayton	08081200	290	SC, T	1961-80	
Salt Croton Creek near Aspermont	08081500	64.30	SC	1969-77,	
			T	1972-73	
Salt Fork Brazos River near Aspermont	08082000	5,130	SC, T, pH, Cl	1949-51,	
			SC, T	1957-82	
Stinking Creek near Aspermont	08082100	88.80	T	1950,	
			SC, T	1966-69	
North Croton Creek near Knox City	08082180	251	SC, T	1966-86	
Brazos River at Seymour	08082500	15,538	SC, T	1960-95	
Medina River near Somerset	08082800	967	SC, T, Cl	1998-2000	
Clear Fork Brazos River at Hawley	08083240	1,416	SC, T	1968-79,	
Class Fouls Brogges Bivon at Nagant	00004000	2 100	CC T all Cl	1982-84	
Clear Fork Brazos River at Nugent California Creek near Stamford	08084000	2,199	SC, T, pH, Cl SC, T	1948-53	
	08084800 08085000	478		1963-79	
Paint Creek near Haskell Clear Fork Brazos River at Fort Griffin	08085500	914 3,988	SC, T SC, T, S	1950-5 1950-51,	
Clear Fork Brazos River at Fort Griffin	08083300	3,900	SC, T, S SC, T	1950-51,	
			50, 1	1982-84	
Hubbard Creek near Sedwick	08086015	128	SC, T	1964-66	
Deep Creek at Moran	08086050	228	SC, T	1963-75	
Hubbard Creek near Albany	08086100	454	SC, T	1962-75	
Salt Prong Hubbard Creek at U.S. Highway 380 near Albany	08086120	61	SC, T	1964-68	
North Fork Hubbard Creek near Albany	08086150	39.30	SC, T	1964-90	
Salt Prong Hubbard Creek near Albany	08086200	115	SC, T	1962-63	
Snailum Creek near Albany	08086210	22.90	SC, T	1964-66	
Battle Creek near Moran	08086235	108	SC, T	1967-68	
Pecan Creek near Eolian	08086260	26.40	SC, T	1967-75	
Big Sandy Creek near Breckenridge	08086300	288	SC, T	1962-77	
Hubbard Creek near Breckenridge	08086500	1,089	SC, T	1955-75	
Clear Fork Brazos River at Eliasville	08087300	5,697	SC, T	1962-82	
Brazos River near South Bend	08088000	22,673	SC, Cl	1942-48,	
			SC, T	1978-81	
Salt Creek at Olney	08088100	11.80	SC, T	1958-60	
Salt Creek near Newcastle	08088200	120	SC, T	1958-60	

		Drainage		Period	
Stationname	Station	area	Type of	of record	
	number	(mi ²)	record	(water years)	
Brazos River at Morris Sheppard Dam near Graford	08088600	23,596	SC	1942-91,	
			T	1950-55,	
				1966-91	
Brazos River near Dennis	08090800	25,237	SC, T	1971-95	
Brazos River at Whitney Dam near Whitney	08092600	27,189	SC, T	1947-97	
Aquilla Creek above Aquilla	08093360	255	SC, T	1980-83	
Aquilla Creek near Aquilla	08093500	308	SC, T	1966,	
D D' II' II I	00000200	20.426	TT.	1968-82	
Brazos River near Highbank Leon River near Eastland	08098290	30,436	T	1968-84	
Leon River near Hasse	08098500 08099500	235 1,261	SC, T SC, T	1950-53 1980-82,	
Leon River hear riasse	08099300	1,201	SC, 1	1980-82, 1990-97	
Leon River near Belton	08102500	3,542	T	1957-72	
South Fork Rocky Creek near Briggs	08103900	33.30	S	1963-65	
Lampasas River at Youngsport	08104000	1,240	SC, T	1961-64	
Little River near Little River	08104500	5,228	SC, T	1965-73,	
		-, -	,	1980-82	
Little River near Cameron	08106500	7,065	SC, T	1959-97	
San Gabriel River near Weir	08105300	563	T	1977-82	
San Gabriel River at Laneport	08105700	738	T	1977-82	
Brazos River at State Highway 21 near Bryan	08108700	39,049	SC, T	1961-65	
Brazos River near Bryan	08109000	39,515	SC, T	1966	
Brazos River near College Station	08109500	39,599	SC, T	1961-84	
Yegua Creek near Somerville	08110000	1,009	SC, T	1961-67	
Navasota River above Groesbeck	08110325	239	SC, T	1968-89	
Navasota River near Groesbeck	08110400	311	SC, T	1968-78	
Navasota River near Easterly	08110500	968	SC	1942-43,	
				1947	
Navasota River near Bryan	08111000	1,454	SC, T	1959-81,	
			S	1976-81	
Brazos River near Richmond	08114000	45,007	S	1966-86,	
			SC	1942-95,	
	0044 5570	4.5.000	T	1951-95	
Brazos River near Rosharon	08116650	45,399	SC, T	1969-80	
Brazos River at Harris Reservoir near Angleton	08116700	44,000	SC	1962-77,	
Daniel Branchis Daniel Branchis	00117200	44.000	T	1967-77	
Brazos River at Brazoria Reservoir near Brazoria	08117200	44,000	SC T	1962-77,	
San Bernard River near Boling	08117500	727	SC, T	1967-77 1978-81	
San Bernard River near Bonnig	08117300	121	SC, 1	1976-61	
Colorado River above Bull Creek near Knapp	08118200	N/A	SC, T, Cl	1950-52	
Bull Creek near Ira	08118500	26.30	SC, T, pH, Cl	1950-51	
Bluff Creek near Ira	08119000	42.60	SC, T, pH, Cl	1950	
Colorado River near Ira	08119500	3,483	SC, T	1950-52,	
	00117500	2,.02	20, 1	1959-70,	
				1975-82,	
			Cl	1951-52	
Deep Creek near Dunn	08120500	198	SC, T	1953-54	
Morgan Creek near Westbrook	08121500	273	T	1954-55	
Graze Creek near Westbrook	08122000	21.70	T	1954-55	
Morgan Creek near Colorado City	08122500	313	T	1947-49	
Lake Colorado City near Colorado City	08123000	340	T	1954-55	
Beals Creek above Big Spring	08123650	9,319	SC, T	1973-78	
Beals Creek near Big Spring	08123700	9,341	SC, T	1956-57	
Beals Creek near Coahoma	08123720	9,383	SC, T	1983-88	
Colorado River near Silver	08123900	14,997	SC, T	1957-68	
Colorado River at Robert Lee	08124000	15,307	SC, T, pH, Cl	1948-51,	
			S	1949-51	

		Drainage		Period	
Stationname	Station	area Type of		of record	
	number	(mi ²)	record	(water years)	
Oak Creek near Blackwell	08126000	209	SC, T	1950	
Colorado River at Ballinger	08126500	16,413	SC, T	1961-79,	
			S	1978-79	
Pecan Bayou at Brownwood	08143500	1,660	SC, T	1948-49	
Pecan Bayou near Mullin	08143600	2,073	SC, T	1968-91	
San Saba River near San Saba	08145500	N/A	SC, T	1962-65	
San Saba River at San Saba	08146000	3,046	SC	1962-69,	
Colorado River near San Saba	08147000	37,217	T SC, T	1963-70 1947-92,	
Colorado River near San Saba	08147000	37,217	SC, 1	1947-92,	
Llano River at Llano	08151500	4,197	SC, T	1979-81	
Lake Austin at Austin	08154900	38,240	SC, T	1965-80	
Barton Creek below Barton Springs at Austin	08155505	125	SC, T,	1965,	
3			, ,	1975-83,	
				1989-91,	
				1994-97	
Waller Creek at 23rd Street at Austin	08157500	4.13	T	1955-60	
East Bouldin Creek at South 1st Street, Austin	08157600	2.4	Cl	1997-2000	
Colorado River at Austin	08158000	39,009	SC, T	1948-91	
Colorado River above Columbus	08160700	41,403	SC, T	1983-86	
Colorado River at Columbus	08161000	41,640	SC	1967-73,	
			T	1957-59,	
				1961-68	
			S	1957-73	
Colorado River at Wharton	08162000	42,003	SC	1945-92,	
			T	1946-48,	
Lavaca River near Edna	08164000	817	SC, T	1978-81	
Navidad River near Speaks	08164350	437	SC, T, pH, Cl	1996-97	
Navidad River near Ganado	08164500	826	SC, T	1960-80	
Guadalupe River near Spring Branch	08167500	1,315	SC	1942-45	
Guadalupe River at Sattler	08167800	1,436	T	1984-87	
Blanco River at Wimberley	08171000	355	T	1977-78	
Plum Creek near Luling	08173000	309	SC, T	1968-86	
Sandies Creek near Westhoff	08175000	549	S	1966	
			Cl	1962-99	
Guadalupe River at Victoria	08176500	5,198	SC	1946-81,	
			T	1951-81	
Coleto Creek Reservoir (Condenser No. 1) near Fannin	08177360	414	T	1980-94	
Coleto Creek Reservoir (outflow) near Victoria	08177410	494	T	1980-94	
Olmos Creek at Dresden Drive, San Antonio	08177700	21.2	SC, pH, T, DO	1969-99	
	004=0000	44.0	S	1973	
San Antonio River at San Antonio	08178000	41.8	SC, T	1991-92,	
G A . ' D' . AM': 1 HG G A . '	00170050	12.1		1996-97	
San Antonio River at Mitchell Street, San Antonio	08178050	42.4	SC, pH, T, DO	1992-99	
San Antonio River at Loop 410 at San Antonio	08178565	125	SC, pH, T, DO	1987-2000	
Medina River near Macdona	08180700	885	SC, pH, T, DO	1998-2000	
Medina River at La Coste	08180640	805	SC, pH, T, DO	1987-95	
Medio Creek at Pearsall Rd. at San Antonio	08180750	47.9	SC, pH, T, DO	1987-95	
Ingram Road Outfall at Leon Creek Tributary at San Antonio Leon Creek at Interstate Highway 35 at San Antonio	08181410	0.02	SC, pH, T, DO SC, pH, T, DO	1994-2000	
Medina River at San Antonio	08181480	219 1,317	SC, pH, T, DO SC, pH, T, DO	1985-2000	
INICUINA INIVEL AL SAIL AMOUNO	08181500	1,31/	SC, pH, 1, DO	1987-2000	
San Antonio River near Falls City	08183500	2,113	SC, pH, T, DO	1965-2000 1987-96	
Cibolo Creek near Falls City	08186000	2,113 827	SC, ph, 1, DO SC, T	1987-96 1969-91	
Escondido Creek SWS #1 near Kenedy	08187000	3.29	SC, 1	1955-65	
Guadalupe River at Tivoli	08188800	10,128	SC, T	1966-82	
Mission River at Refugio	08189500	690	SC, T	1961-81	
	0010/300	0,0	JU, 1	1,01 01	

Station name	Station	Drainage area	Type of	Period of record	
	number	(mi ²)	record	(water years)	
Nueces River at Cotulla	08194000	5,171	SC	1942	
Nueces River near Tilden	08194500	8,093	SC, T, S	1950	
Frio River at Calliham	08207000	5,491	SC, T	1968-81	
Nueces River near Three Rivers	08210000	15,427	SC	1945-47,	
			SC, T, pH, Cl,	S 1951-52,	
			SC, T	1975-81	
Nueces River at Bluntzer	08211000	16,772	SC, T	1948-91	
Los Olmos Creek near Falfurrias	08212400	480	SC, T	1975-81	
Rio Grande at El Paso	08364000	29,267	SC, pH, T, DO	1930-2000	
Rio Grande at Fort Quitman	08370500	31,944	SC, T	1975-78.	
Rio Grande at Foster Ranch near Langtry	08377200	80,742	SC, T	1975-81	
Pecos River below Red Bluff Dam near Orla	08410100	20,720	SC	1937-69,	
			T	1953-69	
Salt Draw near Orla	08411500	464	SC, T	1943-48	
Pecos River near Mentone	08414000	21,650	SC	1939	
Pecos River at Pecos	08420500	22,100	SC	1939-41	
Toyah Creek near Pecos	08431000	1,024	SC	1940,	
				1944	
Salt Draw near Pecos	08431500	1,882	SC	1940,	
				1944	
Toyah Creek below Toyah Lake near Pecos	08434000	3,709	SC	1940-50,	
			Cl	1940	
Pecos River below Grand Falls	08441500	27,820	SC	1939-42,	
				1947-56	
Pecos River near Girvin	08446500	29,560	SC	1940-41,	
				1947,	
				1954-82	
			T	1954-59,	
				1964-82	
Pecos River near Sheffield	08447000	31,600	SC	1940-41,	
				1947	
Pecos River near Langtry	08447410	35,179	SC, T	1971-76,	
				1981-85	
Devils River at Pafford Crossing near Comstock	08449400	3,961	SC, T	1978-85	
Rio Grande at Laredo	08459000	132,578	SC	1975-86,	
			T	1974-76	
Rio Grande at Roma	08462500	166,464	SC	1942-43	
Rio Grande at Fort Ringgold, Rio Grande City	08464700	174,362	SC, pH, T	1959-2000	
Rio Grande near Los Ebanos	08466300	N/A	SC, pH, T	1977-2000	
Rio Grande at Mission Pumping Plant	08468000	171,800	SC	1945-50	
Rio Grande below Anzalduas Dam	08469200	176,112	SC, pH, T	1967-72,	
				1959-2000	
Rio Grande at Cameron Co. WID #2 near San Benito	08473800	N/A	SC	1942-43	
Rio Grande at Los Fresnos Pumping Plant near Brownsville	08474130	N/A	SC	1945-46	
Rio Grande near Brownsville	08475000	176,333	SC	1943-44,	
			SC, T	1967-83	
			S	1966-83	

WATER RESOURCES DATA—TEXAS, 2001

VOLUME 4

COLORADO RIVER BASIN, LAVACA RIVER BASIN AND INTERVENING COASTAL BASINS

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and City agencies, obtains a large amount of data pertaining to the water resources of Texas each water year. Such data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in six volumes of this report series entitled "Water Resources Data - Texas."

This report series includes records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs and water levels and water quality of ground water wells. Volume 4 contains records for water discharge at 66 gaging stations; stage and contents at 14 lakes and reservoirs; and water quality at 41 gaging stations. Also included are data for 12 partial-record stations comprised of 3 flood-hydrograph, 6 low-flow, 1 crest-stage, and 2 miscellaneous measurement stations. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating Federal, State, and City agencies in Texas.

This series of annual reports for Texas began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to its present format, with data on quantities and quality of surface water contained in each of three volumes, and expanding to five volumes beginning with the 1999 water year. Ground-water levels and water quality have been published in a separate volume beginning with the 1991 water year.

Prior to introduction of this series and for several water years concurrent with it, water resources data for Texas were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 7 and 8." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from U.S. Geological Survey, Books and Open-File Reports, Federal Center, Bldg. 41, Box 25425 Denver, CO 80225.

Publications similar to this report are published annually by the U.S. Geological Survey for all States. These official U.S. Geological Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water Data Report TX-01-4." For archiving and general distribution, the reports for the 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or may be purchased on microfiche from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161 (703)) 605-6000.

Additional information, including the current prices, for ordering specific reports may be obtained from the Texas District Chief at the address given on the back of the title page or by telephone (512) 927-3500.

COOPERATION

Federal agencies that assisted the U.S. Geological Survey in the collection of data in this report in the form of funds or services in water year 2001 are:

 Corps of Engineers, U.S. Army.
 International Boundary and Water Commission United States and Mexico, U.S. Section.
 National Park Service
 U.S. Bureau of Reclamation.

Organizations that assisted in the collection of data in this report through joint funding agreements through the Texas Water Development Board or through direct joint funding agreements with the U.S. Geological Survey are:

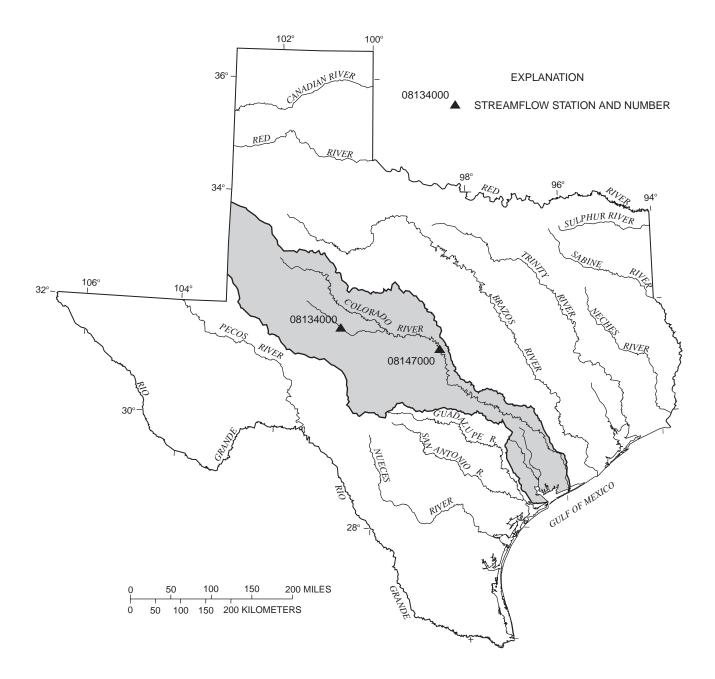
Texas Water Development Board, G.E. Kretzschmar, Executive Administrator; the cities of Abilene, Arlington, Austin, Corpus Christi, Fort Worth, Gainesville, Garland, Georgetown, Graham, Houston, Lubbock, Nacogdoches, San Angelo, and Wichita Falls; Bexar, Medina, and Atascosa Counties Water Improvement District No. 1; Barton Springs/Edwards Aquifer Conservation District; Brazos River Authority; Canadian Municipal Water Authority; Coastal Water Authority; Colorado River Municipal Water District; Dallas Public Works Department; Dallas Water Utilities; Edwards Underground Aquifer Authority; Fort Bend Subsidence District; Franklin County Water District; Galveston County; Greenbelt Municipal and Industrial Water Authority; Guadalupe-Blanco River Authority; Harris-Galveston Coastal Subsidence District; Harris County Office of Emergency Management; Harris County Flood Control District: Houston-Galveston Area Council; Lavaca-Navidad River Authority; Lower Colorado River Authority; Lower Neches Valley Authority; North Central Texas Municipal Water Authority; Northeast Texas Municipal Water District; North Texas Municipal Water District; Orange County; Pecos River Commission; Red Bluff Water Power Control District; Red River Authority of Texas; Sabine River Authority of Texas; Sabine River Compact Administration; San Antonio City Public Service Board; San Antonio River Authority; San Antonio Water System; San Jacinto River Authority; Somervell County Water District; Tarrant Regional Water District; Texas Soil & Water Conservation Board; Texas State Department of Highways & Public Transportations; Texas Natural Resources Conservation Commission; Titus County Fresh Water Supply District No. 1; Trinity River Authority; Upper Colorado River Authority; Upper Guadalupe River Authority; Upper Neches River Municipal Water Authority; West Central Texas Municipal Water District; and Wichita County Water Improvement District No. 2.

HYDROLOGIC CONDITIONS

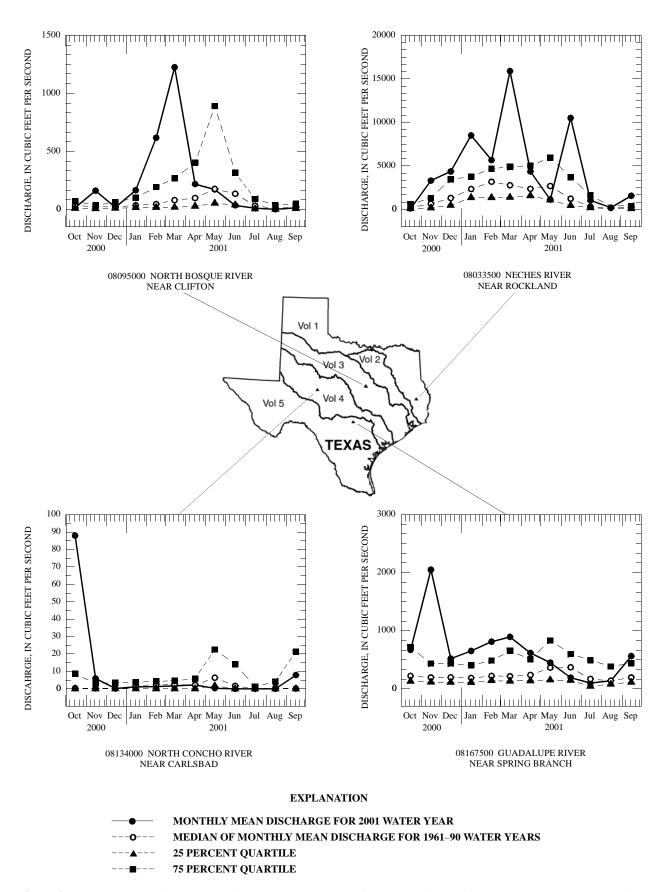
Large variations in precipitation, runoff, and streamflow characterize the usual hydrologic conditions in Texas. In the eastern part of the State, streams typically are deep with wide alluvial flood plains, and streamflow is perennial. In the western part of the State, most streams flow through arroyos, and streamflow usually is ephemeral.

Streamflow across the State averaged above normal during water year 2001.

Conservation storage in 77 selected reservoirs throughout the State, with a combined conservation capacity of 34,481,000 acre-feet, increased from 67 percent at the end of September 2000 to 76 percent at the end of September 2001. Records from these reservoirs indicate that storage increased in 54, decreased in 20, and remained the same in 3.


The area for which water resources data are presented in volume 4 includes the Colorado River Basin, Lavaca River Basin, and Intervening Costal Basins. The area described in volume 4 and the location of selected streamflow and water-quality stations in the area are shown in figure 1.

Streamflow


In the area covered in volume 4, streamflow averaged above normal during water year 2001. Streamflow for water year 2001 and for the period of record at two selected stations (fig. 1) for which data are included in volume 4 is presented in table 1.

At the four long-term hydrologic index stations in the State, monthly mean streamflow during water year 2001 averaged above normal. Monthly mean discharges for water year 2000 and the median of the long-term monthly means for water years 1961–90 for the four long-term hydrologic index stations in the State are shown in figure 2. Streamflow at the hydrologic index station North Concho River near Carlsbad had above normal streamflow for October and November, below normal streamflow for May, and normal streamflow for the remaining 9 months. Streamflow for the station Guadalupe River near Spring Branch was above normal for November through April and September, and normal for the remaining 5 months. Streamflow at the station Neches River near Rockland was above normal during November through March, June, and September and normal for the remaining 5 months. The station North Bosque River near Clifton had above normal streamflow during November, January, February and March, below normal streamflow during June and August, and normal streamflow for the remaining 6 months of water year 2001

Conservation storage in 12 selected reservoirs in this area of the State, with a total combined conservation capacity of

Figure 1. Area of Texas covered by volume 4 (shaded) and location of selected streamflow and water-quality stations in volume 4.

Figure 2. Monthly mean discharges at four long-term hydrologic index stations during 2001 water year and median of the monthly mean discharges for 1961–90 water years.

3,962,000 acre-feet, increased from 42 percent of capacity at the end of September 2000 to 60 percent of capacity at the end of September 2001. Records from these reservoirs indicate that storage increased in 5 and decreased in 7.

Water Quality

Dissolved-solids concentrations in most streams in the State are inversely related to streamflow discharges. During years

when precipitation and runoff are less than normal, streamflow commonly is more mineralized than during years when precipitation and runoff are normal or greater than normal. However, for streams where discharge is controlled by reservoirs, the dissolved-solids concentrations may remain relatively constant despite substantial fluctuations in precipitation and runoff.

Station no. and name		Discharge during 2001 water year (cubic feet per second)		Discharge during period of record (cubic feet per second)			
		Maximum instantaneous	Minimum daily mean	Mean	Maximum instantaneous	Minimun daily mea	
Colorado R	iver Basin						
08134000	North Concho River near Carlsbad, TX 1/	7,030	0	9.2	94,600	0	28.4 (1924-2001)
08147000	Colorado River near San Saba, TX	58,300	21	649	224,000	0	1,023 (1931-2001)

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative of undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the effects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of the constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN program can be found at http://water.usgs.gov/nasqan/.

Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation-chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions

and subsequent impacts to the Nation's land and water resources. Data from the network, as well as information about individual sites, are available through the World Wide Web at: http://nadp.sws.uiuc.edu/.

National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

The USGS National Water-Quality Laboratory collects quality-control data on a continuing basis to evaluate selected analytical methods to determine long-term method detection levels (LT-MDL's) and laboratory reporting levels (LRL's). These values are re-evaluated each year on the basis of the most recent quality-control data and, consequently, may change from year to year.

This reporting procedure limits the occurrence of false positive error. The chance of falsely reporting a concentration greater than the LT-MDL for a sample in which the analyte is not present is 1 percent or less. Application of the LRL limits the occurrence of false negative error. The chance of falsely reporting a non-detection for a sample in which the analyte is present at a concentration equal to or greater than the LRL is 1 percent or less.

Accordingly, concentrations are reported as <LRL for samples in which the analyte was either not detected or did not pass identification. Analytes that are detected at concentrations between LT-MDL and LRL and that pass identification criteria are estimated. Estimated concentrations will be noted with a remark code of "E." These data should be used with the understanding that their uncertainty is greater than that of data reported without the "E" remark code.

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. There are currently three NAWQA Programs operating in Texas; the Trinity NAWQA, the South Central Texas NAWQA, and the southern portion of the High Plains Ground-Water NAWQA.

Additional information about the NAWQA Programs are available through the world wide web at:

<u>Radiochemical Program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water records published in this report are for the 2001 water year that began October 1, 2000, and ended September 30, 2001. A calendar of the water year is provided on the inside of the front cover. The records contain stage and streamflow data, stage and content data for lakes and reservoirs, and water-quality data for surface water. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitudelongitude" system is used for wells.

Downstream Order Numbering

Since October 1, 1950, the order of listing hydrologic-station records in U.S. Geological Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station, such as 08057000, which appears just to the left of the station name, includes the 2-digit Part number "08" plus the 6-digit downstream-order number "057000." The Part number designates the major river basin; for example, Part "08" is the Western Gulf of Mexico basin.

Records of Stage and Water Discharge

Records of stage and streamflow may be complete or partial. Complete records of discharge are those obtained using a stage-recording device through which either instantaneous or daily mean discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated for any time, or period of time. They may be obtained using a stage-recording device, but need not be. Because daily-mean discharges and daily-mean reservoir contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Flood-hydrograph partial records,

"Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow channel gain and loss studies, may be considered as partial records, but they are presented separately in this report. Instantaneous peak discharges are presented for all but the low-flow partial-record stations.

Data Collection and Computation

The data obtained at a complete record gaging station on a stream or canal consist of records of stage (that is recorded every 5, 15, 30, or 60 minutes), measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relation between stage and discharge. These data, together with supplemental information such as weather records, are used to compute daily mean discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relation between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute lake storage.

Records of stage are obtained with recorders at selected time intervals. Measurements of discharge are made with current meters and indirect procedures using methods adopted by the U.S. Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, TWRI, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves then are constructed. From these curves, rating tables indicating the discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves can be extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques. Stage-discharge ratings at gaging stations are described in TWRI, Book 3, Chapter A10.

Instantaneous discharges are computed by applying each individual recorded stage (gage height) to the stage-discharge table. The daily mean discharge is computed as the mean of the instantaneous discharges. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the discharge is

determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the rating tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations, that the daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by backwater from reservoirs, tributary streams, bays, or other sources. This necessitates the use of the slope method in which the slope (fall) in a reach of the stream is a factor in computing discharge. The slope is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relation of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes are determined. If the stage-content relation changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relation. Even when this is done, the contents computed may increase in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relations much as other stream discharges are computed.

For some streamflow gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the stage sensor or recorder fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily mean discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily-mean contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surface-water discharge station (gaging station) now consists of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly-mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7- day low-flow minimums, and flow duration.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years which the revisions apply to. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to sea level, and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.-- Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made in the U.S. Geological Survey's distributed data system, NWIS, and subsequently to its web-based National data system, NWISWeb [http://water.usgs.gov/nwis/nwis]. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure the most recent updates. Updates to NWISWeb are currently made on an annual basis.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents.

Data table of daily mean values

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acrefeet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the daily mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period, expressed as "FOR WATER YEARS _____, BY WATER YEAR (WY)," will list the first and last water years of the range selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line head-

ings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS _____," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. However, data for partial water years, if any, will only be used in the statistical calculations, if appropriate. For example, all of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINI-MUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the column heading. When this occurs, it should be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data is omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period.

INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.

INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

- 10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent.

Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft 3 /s; to the nearest tenth between 1.0 and 10 ft 3 /s; to whole numbers between 10 and 1,000 ft 3 /s; and to 3 significant figures for more than 1,000 ft 3 /s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory

adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables, is on file in the Texas District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications.

A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values obtained by data logger. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surfacewater daily record station is not available or where the water quality differs significantly from that at the nearby surfacewater station, the continuing water-quality record is published with its own station number and name in the regular downstream order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Records of surface-water quality at some National Water Quality Accounting (NAWQA) Sites include data collected by different government agencies as identified in the water-quality data tables under AGENCY COLLECTING SAMPLE (CODE NUMBER). Values for this code are given below:

1028 - U.S. Geological Survey

84823 - International Boundary & Water Commission

Procedures for on-site measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. A1, A3, and A4; Book 9, Chap. A1-A9. All of these references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" which appears at the end of the introductory text. Detailed information on collecting, treating, and shipping samples may be obtained from the Texas Office of the Central Region Office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (NASQAN) (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and

other factors which must be evaluated by the collector. Information on the method used to collect the sample at National Stream Quality Accounting Network sites is given in the water-quality data tables under SAMPLING METHOD. Values for this code are given below:

10 - Equal Width Increment (EWI)

20 - Equal Discharge Increment (EDI)

25 - Timed Sampling Interval

30 - Single Vertical

40 - Multiple Verticals

50 - Point Sample

60 - Weighted Bottle

70 - Grab Sample (DIP)

90 - Discharge Integrated, Centroid

120 - Velocity Integrated

8010 - Other

Detailed information on sampling methods may be found in the following publications: OFR-90-127 "Guidelines for Collection and Analysis of Water-Quality Samples from Streams in Texas", OFR-94-455 "Field Guide for Collecting and Processing Stream-Water Samples for the National Water-Quality Assessment Program", and OFR-94-539 "U.S. Geological Survey protocol for the collection and processing of surfacewater samples for the subsequent determination of inorganic constituents in filtered water". Specific questions pertaining to water-quality sample collection may be directed to the District Water-Quality Specialist in Austin, Texas, or the Regional Water-Quality Specialist in Denver, Colorado.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

For chemical-quality stations equipped with water-quality monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly readings beginning at 0100 hours and ending at 2400 hours for the day of record.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the Texas District Office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge-weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the U.S. Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the U.S. Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Historical and current (2001) dissolved trace-element concentrations are reported herein for water that was collected, processed, and analyzed by using either ultraclean or other than ultraclean techniques. If ultraclean techniques were used, then those concentrations are reported in nanograms per liter. If other than ultraclean techniques were used, then those concentrations are reported in micrograms per liter and could reflect contamination introduced during some phase of the procedure.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radio-chemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuousrecord station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge" same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. These periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made in the U.S. Geological Survey's distributed data system, NWIS, and subsequently to its web-based National data system, NWISWeb [http://water.usgs.gov/nwis/nwis]. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure the most recent updates. Updates to NWISWeb are currently made on an annual basis.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remarks Codes

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT REMARK

e or E	Estimated value.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted).
D	Biological organism count equal to or greater than 15 percent (dominant).
V	Analyte was detected in both the environmental sample and the associated blanks.
&	Biological organism estimated as dominant.
M	Presence of material verified but not quantified.

Dissolved Trace-Element Concentrations

*NOTE:--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (µg/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the µg/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994.

Change in National Trends Network Procedures

*NOTE:--Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP Program Office, Illinois State Water Survey, 2204 Griffith Drive, Champaign, IL 61820-7495 (217-333-7873).

Water-Quality Control Data

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of

blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are:

Source solution blank – a blank solution that is transferred to a sample bottle in an area of the office laboratory with an atmosphere that is relatively clean and protected with respect to target analytes.

Ambient blank – a blank solution that is put in the same type of bottle used for an environmental sample, kept with the set of sample bottles before sample collection, and opened at the site and exposed to the ambient conditions.

Field blank – a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank – a blank solution that is put in the same type of bottle used for an environmental sample, and kept with the set of sample bottles before and after sample collection.

Equipment blank – a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to field blank but normally done in the more controlled conditions of the office).

Sampler blank – a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Pump blank – a blank solution that is processed through the same pump-and-tubing system used for an environmental sample.

Standpipe blank – a blank solution that is poured from the containment vessel (stand-pipe) before the pump is inserted to obtain the pump blank.

Filter blank – a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank – a blank solution that is treated with the sample preservatives used for an environmental sample.

Canister blank – a blank solution that is taken directly from a stainless steel canister just before the VOC sampler is submerged to obtain a field blank sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can used to assess a measurement method. Samples of reference material are submitted for analysis to

ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this District are:

Concurrent sample – a type of replicate sample in which the samples are collected simultaneoulsy with two or more samplers or by using one sampler and alternating collection of samples into two or more compositing containers.

Sequential sample – a type of replicate sample in which the samples collected one after the other, typically over a short time.

Split sample – a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

Concurrent sample – a type of spike sample that is collected at the same time with the same sampling and compositing devices then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

Split sample – a type of spike sample in which a sample is split into subsamples contemporaneous in time and space then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (www). These data may be accessed at http://tx.usgs.gov

Some water-quality and ground-water data also are available through the www. In addition, data can be provided in various machine-readable formats on magnetic tape, 3-1/2 inch floppy disk or CD-ROM. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.)

DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.

Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 to September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type and the last two digits represent the weight percent of the hydrogen substituted chlorine.

Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass")

Bacteria are microscopic unicellular organisims, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peaks per year will be published.

Base flow is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.

Bedload is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 ft) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler may also contain a component of the suspended load.

Bedload discharge (tons per day) is rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload" and "Sediment")

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")

Benthic organisms are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

Biomass pigment ratio is an indicator of the total proportion of periphyton which are autotrophic (plants). This is also called the Autotrophic Index.

Blue-green algae (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Bottom material See "Bed material".

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L).

Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μm³) is determined by obtaining critical cell measurements on cell dimensions (for example,

length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere $4/3 \pi r^3$ cone $1/3 \pi r^3 h$ cylinder $\pi r^3 h$.

pi is the ratio of the circumference to the diameter of a circle; pi = 3.14159...

From cell volume, total algal biomass expressed as biovolume ($\mu m^3/mL$) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes over all species.

Cfs-day (See "Cubic foot per second-day")

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warm-blooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

Coliphages are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of waters and of the survival and transport of viruses in the environment.

Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well. (See also "Aquifer")

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuous-record station is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

Control designates a feature in the channel downstream from a gaging station that physically influences the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-feet" sometimes is used synonymously with "cubic feet per second" but is now obsolete.

Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily-mean discharges reported in the daily-value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.

Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")

Daily mean suspended-sediment concentration is the timeweighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Daily mean suspended-sediment concentration," "Sediment," and "Suspended-sediment concentration")

Daily-record station is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis.

Data Collection Platform (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.

Data logger is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems.

Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal

datum is a reference for positions given in terms of latitudelongitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Diel is of or pertaining to a 24-hour period of time; a regular daily cycle.

Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediments or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents such as suspended sediment, bedload, and dissolved or suspended chemical constituents, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).

Dissolved refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

Diversity index (H) (Shannon Index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i \approx 1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")

Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

Dry weight refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

Enterococcus bacteria are commonly found in the feces of humans and other warm-blooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium*, and their variants. (See also "Bacteria")

EPT Index is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive, the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warm-blooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium. Their concentra-

tions are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) value of a concentration is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<).

Euglenoids (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semi-volatile and extractable by ethyl acetate from air-dried streambed sediments. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediments.

Fecal coliform bacteria are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestine of warm-blooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fire algae (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly larger than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any National geodetic datum. However, if the elevation of the gage datum relative to the National datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the National datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

Gage values are values that are recorded, transmitted and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is computed.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html

Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution which uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N}$$

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

Hydrologic benchmark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a benchmark station may be used to separate effects of natural from human-induced changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped benchmark basin.

Hydrologic index stations referred to in this report are four continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff")

Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")

Laboratory Reporting Level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a non-detection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually based on the most current quality-control data and may, therefore, change. [Note: In several previous NWQL documents (Connor and others, 1998; NWQL Technical Memorandum 98.07, 1998), the LRL was called the non-detection value or NDV—a term that is no longer used.)

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation

$$I = I_{o}e^{-\lambda L}$$
,

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} .$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-Term Method Detection Level (LT–MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT–MDL data are collected on a continuous basis to assess year-to-year variations in the LT–MDL. The LT–MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT–MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that are usually arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

Mean high or low tide is the average of all high or low tides, respectively, over a specific period.

Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")

Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymphadult.

Method Detection Limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per kilogram (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

Micrograms per liter (UG/L, μg/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.

Microsiemens per centimeter (US/CM, μS/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the

International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

Minimum Reporting Level (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method (Timme, 1995).

Miscellaneous site, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.

Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.

Multiple-plate samplers are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")

Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate.")

Nekton are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.

Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of Formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.

North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the U.S. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and U.S. first-order terrestrial leveling networks.

Open or screened interval is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organic carbon (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediments. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

Parameter Code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded

Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube,

Sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size	(n	nm)	Method of analysis
Clay	0.00024	_	0.004	Sedimentation
Silt	0.004	-	0.062	Sedimentation
Sand	0.062	-	2.0	Sedimentation/sieve
Gravel	2.0	_	64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation to the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

Percent composition or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

Percent shading is determined by using a clinometer to estimate left and right bank shading. The values are added together and divided by 180 to determine percent shading relative to a horizontal surface.

Periodic-record station is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year, but at a frequency insufficient to develop a daily record.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7 are termed "acidic," and solutions with a pH greater than 7 are termed "basic." Solutions with a pH of 7 are neutral. The presence and concentration of many dissolved chemical constituents found in water are, in part, influenced by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms are also influenced, in part, by the hydrogen-ion activity of water.

Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae. (See also "Plankton")

Picocurie (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL of sample).

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for

periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. Carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. Oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Radioisotopes are isotopic forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or non-exceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most

of the times being less than the average and a few being substantially greater than the average. For example, the 100year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day 10-year low flow (7Q₁₀) is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the non-exceedances of the 7Q10 occur less than 10 years after the previous non-exceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous non-exceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the 7Q₁₀.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council, and typically used to denote location along a river.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin in a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

Sea level, as used in this report, refers to one of the two commonly used national vertical datums, (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums. See conversion of units page (inside back cover) for identification of the datum used in this report.

Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation. Seven-day 10-year low flow (7Q10) is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-run average. The recurrence interval of the 7Q10 is 10 years; the chance that the annual 7-day minimum flow will be less than the 7Q10 is 10 percent in any given year. (See also "Recurrence interval" and "Annual 7-day minimum")

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MILL/MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific waters, to evaluate mixing of different waters, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

Stage-discharge relation is the relation between the watersurface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation

Substrate is the physical surface upon which an organism

Substrate Embeddedness Class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as percent covered by fine sediment:

0 < no gravel or larger substrate

1 > 75%

2 51-75% 4 5-25% 3 26-50% 5 < 5% Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

Surficial bed material is the upper surface (0.1 to 0.2 ft) of the bed material such as that material which is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is operationally defined as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")

Suspended-sediment discharge (tons/day) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxa richness is the total number of distinct species or groups and usually decreases with pollution. (See also "Percent Shading")

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal
Phylum: Arthropoda
Class: Insecta

Order: Ephemeroptera
Family: Ephemeridae
Genus: Hexagenia

Species: Hexagenia limbata

Temperature preferences:

Cold – preferred water temperature for the species is less than 20 °C or spawning temperature preference less than 16 °C and native distribution is considered to be predominantly north of 45° N. latitude.

Warm – preferred water temperatures for the species is greater than 20 °C or spawning temperature preference greater than 16 °C and native distribution is considered to be predominantly south of 45° N. latitude.

Cool – intermediate between cold and warm water temperature preferences.

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

Tons per acre-foot (**T/acre-ft**) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are char-

acterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total organism count is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume.")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Total sediment discharge is the mass of suspended-

sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Sediment," "Suspended sediment," "Suspended-Sediment Concentration," "Bed-load," and "Bedload discharge")

Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-Sediment Load," and "Total load")

Trophic group:

Filter feeder – diet composed of suspended plant and/or animal material.

Herbivore – diet composed predominantly of plant material.

Invertivore – diet composed predominantly of invertebrates.

Omnivore – diet composed of at least 25-percent plant and 25-percent animal material.

Piscivore – diet composed predominantly of fish.

Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values. Consequently, the method of measurement and type of instrument used to derive turbidity records should be included in the "REMARKS" column of the Annual Data Report.

Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample.

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by

purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens (U.S. Environmental Protection Agency, 1996).

Water table is the level in the saturated zone at which the pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which is found the water table.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2001, is called the "2001 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate dischargeweighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

PUBLICATIONS OF TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

Book 1. Collection of Water Data by Direct Measurement *Section D. Water Quality*

- 1-D1. Water temperature-influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS-TWRI Book 1, Chapter D2. 1976. 24 pages.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2-D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS-TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI Book 2, Chapter D2. 1988. 86 pages.

Section E. Subsurface Geophysical Methods

- 2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS-TWRI 11.0
- 2-E2. Borehole geophysics applied to ground-water investigations, by W.S. Scott Keys: USGS-TWRI Book 2, Chapter E2. 1990. 150 pages.

Section F. Drilling and Sampling Methods

2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and Warren E. Teasdale: USGS-TWRI Book 2, Chapter F1. 1989. 97 pages.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS-TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS—TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS-TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. *Measurement of peak discharge at width contractions* by indirect methods, by H.F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS-TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS-TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. *Stage measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS-TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick, and J.F. Wilson, Jr.: USGS—TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-A10. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-A11. *Measurement of discharge by moving-boat method,* by G.F. Smoot and C.E. Novak: USGS-TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A12. Fluorometric procedures for dye tracing, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI Book 3, Chapter A12, 1986. 41 pages.
- 3-A13. Computations of continuous records of streamflow, by E.J. Kennedy: USGS- TWRI Book 3, Chapter A13, 1983. 53 pages.
- 3-A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS-TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI Book 3, Chapter A17. 1985. 38 pages.
- 3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, N. Yotsukura, G.W. Parker, and L.L. DeLong: USGS-TWRI Book 3, Chapter A18. 1989. 52 pages.

- 3-A19. Levels of streamflow gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A19. 1990. 27 pages.
- 3-A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS-TWRI Book 3, Chapter A20. 1993. 38 pages.
- 3-A21. *Stream-gaging cableways*, by C. Russell Wagner: USGS–TWRI Book 3, Chapter A21. 1995. 56 pages.

Section B. Ground-Water Techniques

- 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self instruction, by G.D. Bennett: USGS-TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS–TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B4. Regression modeling of ground-water flow, by Richard L. Cooley and Richard L. Naff: USGS-TWRI Book 3, Chapter B4. 1990. 232 pages.
- 3-B4. Supplement 1. Regression modeling of ground-water flow-Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley. USGS-TWRI Book 3, Chapter B4. 1993. 8 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS—TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS-TWRI Book 3, Chapter B7. 1992. 190 pages.
- 3-B8. System and boundary conceptualization in ground-water flow simulation, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, Chapter B8. 2001. 29 pages.

Section C. Sedimentation and Erosion Techniques

- 3-C1. *Fluvial sediment concepts*, by H.P. Guy: USGS–TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H.P. Guy and V.W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. *Computation of fluvial-sediment discharge*, by George Porterfield: USGS-TWRI Book 3, Chapter C3. 1972. 66 pages.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

4-A1. *Some statistical tools in hydrology*, by H.C. Riggs: USGS–TWRI Book 4, Chapter A1. 1968. 39 pages.

4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI Book 4, Chapter A2. 1968. 15 pages.

Section B. Surface Water

- 4-B1. *Low-flow investigations*, by H.C. Riggs: USGS-TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS-TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS-TWRI Book 4, Chapter B3. 1973. 15 pages.

Section D. Interrelated Phases of the Hydrologic Cycle

4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman: USGS-TWRI Book 5, Chapter A1. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS—TWRI Book 5, Chapter A3. 1987. 80 pages.
- 5-A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI Book 5, Chapter A4. 1989. 363 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS-TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS–TWRI Book 5, Chapter A6. 1982. 181 pages.

Section A. Sediment Analysis

5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS–TWRI Book 5, Chapter C1. 1969. 58 pages.

Book 6. Modeling Techniques

Section A. Ground Water

- 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS-TWRI Book 6, Chapter A1. 1988. 586 pages.
- 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS-TWRI Book 6, Chapter A2. 1991. 68 pages.

- 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS-TWRI Book 6, Chapter A3. 1993. 136 pages.
- 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS—TWRI Book 6, Chapter A4. 1992. 108 pages.
- 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak. USGS-TWRI Book 6, Chapter A5. 1993. 243 pages.
- 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler. 1995. 125 pages.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by pages.C. Trescott, G.F. Pinder, and S.P. Larson: USGS-TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffrannek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI Book 7, Chapter C3. 1983. 110 pages.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8-A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS–TWRI Book 8, Chapter A1. 1968. 23 pages.
- 8-A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS-TWRI Book 8, Chapter A2. 1983. 57 pages.

Section B. Instruments for Measurement of Discharge

8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS—TWRI Book 8, Chapter B2. 1968. 15 pages.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9-A1. National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI Book 9, Chapter A1. 1998. 47 pages.
- 9-A2. National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI Book 9, Chapter A2. 1998. 94 pages.
- 9-A3. National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS—TWRI Book 9, Chapter A3. 1998. 75 pages.
- 9-A4. National Field Manual for the Collection of Water-Quality Data: Collection of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI Book 9, Chapter A5. 1999. 156 pages.
- 9-A5. National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI Book 9, Chapter A5. 1999. 149 pages.
- 9-A6. National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F.D. Wilde and D.B. Radtke: USGS-TWRI Book 9, Chapter A6. 1998. Variously paginated.
- 9-A7. National Field Manual for the Collection of Water-Quality Data: Biological Indicators, edited by D.N. Myers and F.D. Wilde: USGS-TWRI Book 9, Chapter A7. 1997 and 1999. Variously paginated.
- 9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom Material Samples, by D.B. Radtke: USGS-TWRI Book 9, Chapter A8. 1998. 48 pages.
- 9-A9. National Field Manual for the Collection of Water-Quality Data: Saafety in Field Activities, by S.L. Lane and R.G. Fay: USGS-TWRI Book 9, Chapter A9. 1998. 60 pages.

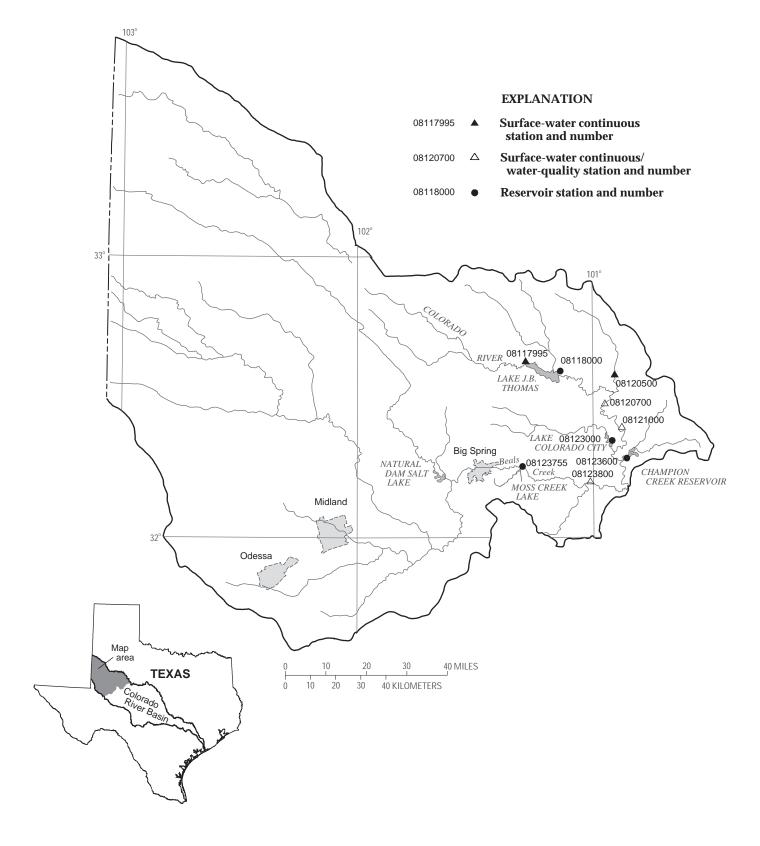


Figure 3.--Map showing location of gaging stations in the first section of the Colorado River Basin

08117995	Colorado River near Gail, TX	34
08118000	Lake J.B. Thomas near Vincent, TX	36
08120500	Deep Creek near Dunn, TX	38
08120700	Colorado River near Cuthbert, TX	40
08121000	Colorado River at Colorado City, Tx	48
08123000	Lake Colorado City near Colorado City, TX	54
08123600	Champion Creek Reservoir near Colorado City, TX	56
08123755	Moss Creek Lake near Coahoma, TX	58
08123800	Beals Creek near Westbrook, TX	60

08117995 Colorado River near Gail, TX

LOCATION.--Lat 32°37'43", long 101°17'06", Borden County, Hydrologic Unit 12080002, near right downstream end of bridge on FM 1205, 5.0 mi north of junction with FM 1785, 13 mi southeast of Gail, 14 mi northwest of Vincent, and 25 mi west of Ira.

DRAINAGE AREA. -- 498 mi².

PERIOD OF RECORD. -- Mar. 1988 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,240 ft above sea level, from topographic map. Satellite telemeter at station.

REMARKS.--Records fair except those for estimated daily discharges and Aug. 30 to Sept. 30, which are poor. No known regulation or diversions. No flow at times.

REVISIONS.—Revised maximum discharges for water years 1988-91 and revised daily mean discharges, in ft³/s, for high-water period in July 1988 are given below. These figures supersede those published in the "Water Resources Data--Texas" reports for 1988-91.

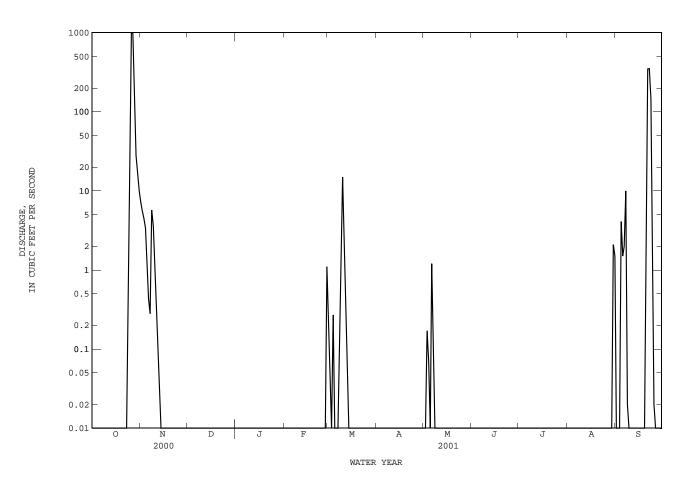
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Water year	Date	Discharge (ft ³ /s)	Gage height (ft)
1988	July 3, 1988	2,120	15.88
1989	Sept. 14, 1989	1,310	13.19
1990	Apr. 19, 1990	1,490	13.97
1991	May 3, 1991	1,750	14.81

Daily mean discharges:

July 2, 1988....788 July 3, 1988....925

TOTAL MEAN MAX MIN ANNUAL-RUNOFF (AC-FT)


July 1988 2,358.36 76.1 925 .41 4,680

DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR MAY JUN JUL AUG SEP JAN 7.3 5.6 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 e.00 2 .07 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 3 .00 4.5 .00 .00 .00 .00 .00 .17 .00 .00 .00 .00 3.4 1.3 4 1 4 0.0 00 0.0 0.0 27 0.0 07 00 0.0 0.0 5 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 e1.5 6 7 0.0 0.0 0.0 0.0 0.0 0.0 1 2 0.0 0.0 e2 0 44 0.0 .10 .00 . 28 .00 .00 .00 .00 .00 .00 .00 .00 e10 8 .00 5.7 .00 .00 .00 .35 .00 .00 .00 .00 .00 e.02 3.6 3.0 .00 .00 .00 .00 .00 .00 .00 .00 .00 e.00 10 .88 .00 .00 .00 .00 .00 .00 11 .00 .00 .00 .00 .00 .00 .26 .00 3.9 .00 .00 .00 12 .00 .11 .00 .00 .00 .78 .00 .00 .00 .00 .00 .00 13 .00 .04 .00 .00 .00 .14 . 00 .00 .00 .00 .00 .00 14 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 15 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 16 17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 18 .00 . 00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 19 .00 .00 .00 .00 .00 .00 20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .17 21 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 348 22 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 352 .00 23 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 147 24 24 .00 .00 .00 e5.0 .00 .00 .00 .00 .00 .00 .00 25 184 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 e.02 26 996 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 e.00 27 1000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 e.00 28 188 .00 .00 .00 1.1 .00 .00 .00 .00 .00 .00 e.0029 28 .00 .00 .00 .00 .00 .00 .00 .00 .00 e.00 30 16 .00 .00 .00 ---.00 .00 .00 .00 .00 2.1 e.00 ---31 10 ---.00 .00 .00 ---.00 ---.00 e1.5 ---TOTAL 2446.00 33.41 0 00 0 00 1 10 23.76 0 00 1 54 0.00 0 00 3.60 869.81 .77 MEAN 78.9 1.11 7.3 .000 .000 .039 .000 .050 .000 .000 .12 29.0 1000 15 MAX .00 .00 1.1 .00 1.2 .00 .00 352 .00 MTN 0.0 00 .00 0.0 0.0 0.0 0.0 0.0 .00 0.0 00 4850 1730 AC-FT 66 .00 .00 2.2 47 .00 3.1 .00 .00 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1988 - 2001, BY WATER YEAR (WY) 7.31 MEAN 5.43 48.2 11.3 4.47 15.8 4.71 1992 51.5 1990 MAX 78.9 15.6 8.42 23 8 51.2 263 166 107 22.6 49 1 1992 1992 2001 1992 1992 1992 1988 1996 1989 (WY) 2000 000 .000 .000 000 .000 .000 000 .000 .000 1990 1995 1991 1991 1993 1997 (WY) 1990 1990 1991 1990 1994 1994

08117995 Colorado River near Gail, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1988 - 2001
SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS	FOR 2000 CALENDAR YEAR 8497.28 23.2 1080 Jun 3 .00 Jan 1 .00 Jan 1	FOR 2001 WATER YEAR 3379.22 9.26 1000 Oct 27 .00 Oct 1 .00 Oct 1 1260 Oct 26 13.11 Oct 26 6700 .26	11.0 46.2 .48 1998 2060 May 25 1992 .00 Jun 7 1988 .00 Jun 7 1988 4010 Jul 3 1988 ml6.43 May 26 1992 8000 6.5
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	.00	.00	.00

Estimated Result of earthen dam.

08118000 Lake J.B. Thomas near Vincent, TX

LOCATION.--Lat 32°35'35", long 101°08'16", Scurry County, Hydrologic Unit 12080002, on upstream edge of dam 500 feet right of valve tower for Snyder pump station near center of dam on Colorado River, 8.5 mi west of Ira, 9.2 mi northeast of Vincent, and at mile 837.0.

DRAINAGE AREA.--3,389 mi^2 , of which 2,371 mi^2 probably is noncontributing. Drainage area includes 455 mi^2 above Bull Creek diversion dam, of which 38 mi^2 probably is noncontributing.

PERIOD OF RECORD.--Oct. 1953 to Sept. 1986, Feb. 1999 to current year. Water-quality records.--Chemical data: Feb. 1970 to May 1984.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. Water-stage recorder and nonrecording gage read once daily from Oct. 1953 to Sept. 1986 at site 4.0 mi upstream at same datum. Nov. 4, 1953, to Feb. 7, 1955, Colorado River Municipal Water District nonrecording gage at present site and datum. Satellite telemeter at station.

REMARKS.--No estimated daily contents. Records fair. The lake is formed by a rolled earthfill dam, 14,500 ft long. Storage began in July 1952 and the dam was completed in Sept. 1952. There was no appreciable storage prior to July 1953. There are two uncontrolled emergency spillways, both cut through natural ground and located as follows: the first is a 500 ft wide cut located at the left end of dam, and the second cut is 1,600 ft wide located at the right end of dam. These spillways are designed to discharge 161,000 ft³/s (elevation, 2,275.0 ft). An uncontrolled rectangular concrete drop inlet, 38.0 by 53.0 ft at the crest, discharges into two 10.0 ft concrete conduits. In addition, there is an outlet that can release water through a 24-inch gate into a 30-inch concrete pipe. The dam was built by the Colorado River Municipal Water District to impound water for municipal and industrial supply for the cities of Big Spring, Odessa, and Snyder. A diversion dam on Bull Creek diverts water through a 13,000 ft long gravity canal into Lake J.B. Thomas. These diversions began in Nov. 1953. Conservation pool storage is 199,931 acre-ft. Data regarding the dam are given in the following table:

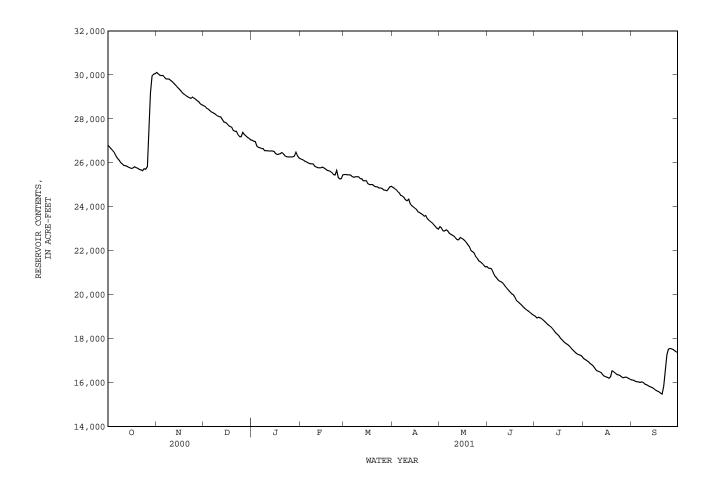
	Elevation
	(feet)
Top of dam	2,280.0
Crest of right spillway (south)	2,267.0
Crest of left spillway (north)	2,264.0
Crest of drop inlet	2,258.0
Lowest gated outlet (invert)	2,200.0

COOPERATION.--The capacity table dated July 1, 1953 was derived from area and capacity curves furnished by Colorado River Municipal Water District and is based on surveys made by Freese and Nichols in 1948 and 1950. A volumetric survey by the Texas Water Development Board in Nov. 1999 has not received final approval from the Colorado River Municipal Water District.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 218,600 acre-ft, Sept. 8, 1962, elevation, 2,259.85 ft; minimum contents, 4,960 acre-ft, May 28, 1971, elevation, 2,206.43 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 30,200 acre-ft, Nov. 1, elevation, 2,221.52 ft; minimum contents, 15,390 acre-ft, Sept. 20, elevation, 2,214.35 ft.

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26800	30120	28600	27030	26180	25470	24880	23100	21210	19020	17090	16120
2	26710	30050	28560	26990	26150	25470	24840	23040	21200	18940	17040	16100
3	26630	29990	28480	26970	26110	25460	24780	22910	21180	18970	16990	16050
4	26550	29970	28440	26770	26060	25460	24700	22900	21020	18950	16940	16040
5	26460	29980	28380	26710	26030	25440	24640	22950	20860	18910	16870	16030
6	26320	29890	28310	26690	25990	25370	24520	22910	20780	18850	16820	16010
7	26200	29820	28280	26650	25960	25340	24490	22800	20690	18780	16750	16030
8	26120	29820	28240	26650	25960	25370	24420	22750	20620	18710	16650	16000
9	26020	29810	28190	26560	25950	25370	24320	22700	20590	18640	16550	15930
10	25950	29750	28130	26560	25850	25370	24280	22660	20540	18590	16520	15910
11 12 13 14 15	25890 25870 25850 25800 25770	29700 29620 29540 29460 29390	28100 28090 27970 27860 27840	26550 26540 26540 26540 26520	25810 25780 25780 25780 25780 25810	25280 25280 25190 25190 25190	24350 24130 24050 24000 23940	22580 22510 22500 22600 22560	20460 20360 20270 20190 20110	18530 18440 18360 18270 18200	16490 16450 16360 16290 16260	15860 15820 15800 15750 15710
16	25740	29320	27780	26420	25760	25050	23880	22520	20040	18130	16240	15650
17	25780	29220	27690	26380	25710	25010	23770	22450	19990	18020	16200	15610
18	25820	29140	27650	26400	25660	25010	23740	22360	19880	17950	16270	15580
19	25780	29110	27610	26420	25640	25010	23690	22260	19730	17870	16530	15520
20	25750	29050	27470	26470	25610	24940	23640	22170	19670	17810	16500	15480
21	25700	29000	27440	26410	25550	24910	23570	22000	19610	17760	16440	15840
22	25680	28960	27440	26320	25470	24910	23610	21950	19540	17710	16370	16590
23	25640	28940	27280	26280	25450	24860	23460	21880	19460	17640	16350	17270
24	25730	29000	27190	26270	25650	24860	23390	21730	19390	17550	16330	17510
25	25710	28940	27190	26270	25330	24840	23330	21640	19340	17480	16260	17550
26 27 28 29 30 31	25820 27240 29170 29950 30040 30060	28890 28820 28780 28680 28640	27390 27290 27230 27160 27120 27050	26270 26270 26310 26490 26320 26220	25270 25280 25460 	24770 24760 24730 24810 24910 24930	23270 23190 23110 23030 22980	21530 21490 21420 21340 21270 21280	19280 19230 19170 19100 19060	17410 17340 17290 17260 17240 17180	16220 16240 16250 16210 16170 16130	17540 17500 17450 17400 17360

08118000 Lake J.B. Thomas near Vincent, TX--Continued

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	26530	29380	27790	26510	25750	25110	23930	22280	20090	18120	16480	16300
MAX	30060	30120	28600	27030	26180	25470	24880	23100	21210	19020	17090	17550
MIN	25640	28640	27050	26220	25270	24730	22980	21270	19060	17180	16130	15480
(+)	2221.46	2220.87	2220.18	2219.81	2219.47	2219.23	2218.32	2217.50	2216.38	2215.36	2214.78	2215.46
(@)	+3190	-1420	-1590	-830	-760	-530	-1950	-1700	-2220	-1880	-1050	+1230

CAL YR 2000 MAX 37020 MIN 25640 (@) -2620 WTR YR 2001 MAX 30120 MIN 15480 (@) -9510

- (+) Elevation, in feet, at end of month.(@) Change in contents, in acre-feet.

08120500 Deep Creek near Dunn, TX

LOCATION.--Lat $32^{\circ}34'25$ ", long $100^{\circ}54'27$ ", Scurry County, Hydrologic Unit 12080002, at right end of downstream side of bridge on Farm Road 1606, 1.5 mi northwest of Dunn, 2.7 mi upstream from Sulphur Draw, and 9.6 mi upstream from mouth.

DRAINAGE AREA.--198 mi², of which 10 mi² probably is noncontributing.

PERIOD OF RECORD.--Apr. 1953 to Sept. 1986, July 2001 to current year.

Water-quality records.--Specific conductance: Mar. 1953 to Sept. 1954. Water temperature: Mar. 1953 to Sept. 1954.

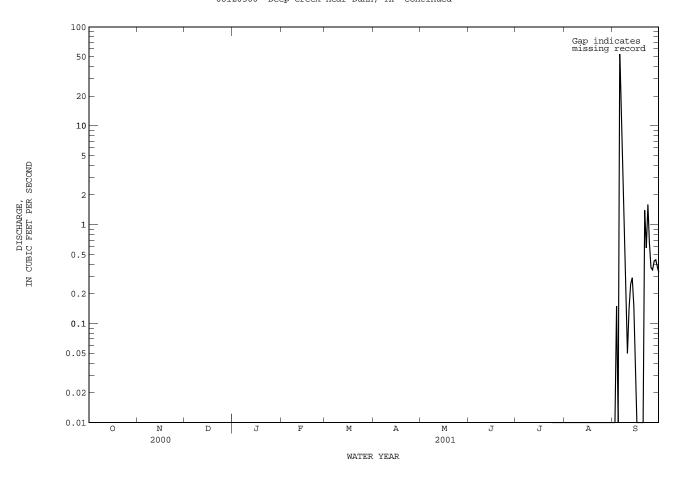
REVISED RECORDS. -- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,172.17 ft above sea level (Texas Department of Transportation bridge plans).

Prior to Apr. 21, 1955, nonrecording gage at site 128 ft left at same datum. Water-stage recorder 128 ft left at same datum from Apr. 1953 to Sept. 1986. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. No known regulation or diversions. No flow many days each year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1881, 36,400 ft³/s June 19, 1939, by slope-area measurement at site 8.0 mi upstream from gage. Flood in 1892 reached about same stage as that of June 19, 1939, from information by local residents.


		DISCHARGE	, CUBIC	FEET PER			YEAR OCTOBER VALUES	2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1											.00	.00
2											.00	.00
3											.00	.15
4											.00	.00
5											.00	60
6											.00	4.5
7											.00	1.1
8											.00	.46
9											.00	.14
10											.00	.05
11											.00	.14
12											.00	.25
13											.00	.29
14											.00	.15
15											.00	.04
16											.00	.01
17											.00	.00
18											.00	.00
19											.00	.00
20											.00	.00
21											00	1 4
22											.00	1.4 .58
23											.00	1.6
24										.00	.00	.67
25										.00	.00	.37
26										.00	.00	.35
27										.00	.00	.43
28										.00	.00	.44
29										.00	.00	.38
30										.00	.00	.33
31										.00	.00	
TOTAL											0.00	73.83
MEAN											.000	2.46
MAX											.00	60
MTN											.00	.00
AC-FT											.00	146
STATIST	ICS OF MO	NTHLY MEAN	DATA FO	R WATER Y	EARS 1953	- 200	lh, BY WATER	YEAR (WY	()			
MEAN	9.09		1.47	1.39	3.30	2.29		39.7	26.1	7.01	22.0	15.2
MAX	96.9		5.92	5.55	58.3	20.5		253	252	66.0	316	214
(WY)	1956		1985	1983	1957	1973		1957	1967	1959	1972	1980
MIN	.000		.000	.000	.000	.000		.005	.000	.000	.000	.000
(WY)	1955	1955	1954	1955	1965	1954	1955	1967	1953	1954	1956	1954
SUMMARY	STATISTI	CS			FOR 20	01 WAT	ER YEAR			WATER YEA	RS 1953	- 2001h
	MEAN ANNUAL M ANNUAL ME.									11.9 38.5 1.14		1957 1970
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE					cc27	.00 .00 .00 9 5.98	Sep 5 Jul 24 Jul 24 Sep 5 Sep 5			6990 .00 .00 c20700 a31.28	Aug 14 1972 Apr 1 1953 Apr 1 1953 Aug 14 1972	
	RUNOFF (A						-			8630		
	ENT EXCEE					.58				3.9		
	ENT EXCEE					.00				. 57		
90 PERC	ENT EXCEE	DS				.00				.00		

h See PERIOD OF RECORD paragraph.

c From rating curve extended above $94 \text{ ft}^3/\text{s}$. c From rating curve extended above $12,300 \text{ ft}^3/\text{s}$ on basis of velocity area study.

a From floodmark.

08120500 Deep Creek near Dunn, TX--Continued

08120700 Colorado River near Cuthbert, TX

LOCATION.--Lat 32°28'38", long 100°56'58", Mitchell County, Hydrologic Unit 12080002, on left bank at downstream side of bridge on Farm Road 1808, 4.0 mi downstream from Deep Creek, 4.8 mi east of Cuthbert, 8.0 mi northwest of Colorado City, and at mile 810.0.

DRAINAGE AREA.--3,912 mi^2 , of which 2,381 mi^2 probably is noncontributing.

WATER-DISCHARGE RECORDS

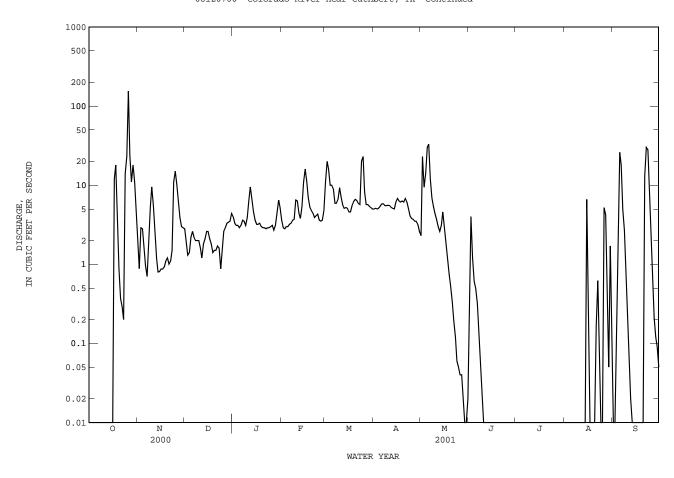
PERIOD OF RECORD. -- Mar. 1965 to current year.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,073.49 ft above sea level. Oct. 29, 1987 to Oct. 23, 1989, water-stage recorder at site on right bank 300 ft downstream at same datum. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. Since installation of gage in Mar. 1965, at least 10% of contributing drainage area has been regulated. There are numerous diversions from Lake J.B. Thomas for municipal use and for oil field operations. No flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods in 1941 and 1946 reached a stage of 36.1 ft, from Texas Department of Transportation bridge plans.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	2.0 .88 2.9 2.8 1.6	2.8 1.9 1.3 1.4 2.2	4.0 3.3 3.1 3.1 2.9	3.6 2.9 2.8 3.0 3.0	11 20 16 10	5.0 5.1 5.0 5.1 5.4	2.3 23 9.4 14 30	.93 4.0 1.2 .61 .49	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 1.1 7.3 26
6 7 8 9 10	.00 .00 .00 .00	.96 .70 2.0 5.2 9.5	2.6 2.2 2.0 2.0 2.0	3.1 3.6 3.5 3.1 3.9	3.2 3.3 3.6 3.7 6.5	9.0 5.9 5.9 6.6 9.3	5.8 5.5 5.5 5.6	33 12 6.9 5.3 4.3	.32 .14 .05 .02	.00 .00 .00 .00	.00 .00 .00 .00	18 4.9 2.7 .69 .19
11 12 13 14 15	.00 .00 .00 .00	2.8 1.2 .80	1.6 1.2 1.8 2.1 2.6	6.5 9.5 6.7 4.6 3.6	6.3 4.4 3.8 5.4	7.0 5.6 5.1 5.2 5.1	5.5 5.2 5.1 5.0 6.1	3.7 3.0 2.6 3.1 4.6	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.06 .02 .00 .00
16 17 18 19 20	.00 12 18 5.3 .88	.87 .87 .93 1.1 1.2			16 11 7.0 5.3 4.8				.00 .00 .00 .00	.00 .00 .00 .00	.85 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	.37 .29 .20 14 23	15						.34 .19 .12 .06		.00	.17 .62 .11 .01	13 30 28 5.4 1.3
26 27 28 29 30 31	155 24 11 18 11 5.0	10 5.9 3.9 3.0 2.9			3.5 3.6 4.8 						5.2 4.2 .60 .05 1.7	.46 .21 .12 .09
	298.04 9.61 155 .00 591	100.02 3.33 15 .70 198	66.38 2.14 4.4 .88 132	119.7 3.86 9.5 2.7 237	142.8 5.10 16 2.8 283	255.5 8.24 23 4.6 507	154.8 5.16 6.8 2.6 307	165.37 5.33 33 .01 328	7.76 .26 4.0 .00	0.00 .000 .00 .00	20.17 .65 6.6 .00 40	139.59 4.65 30 .00 277
STATIS	TICS OF M	MEA	N DATA F	OR WATER Y	EARS 1965	- 2001,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	26.9 304 1987 .000 1969	7.80 37.1 1985 .092 1971	7.70 51.5 1992 .53 1971	7.05 30.2 1992 .68 1971	10.8 86.5 1992 .82 1971	21.3 420 2000 .20 1971	27.1 204 1981 .39 1971	69.3 403 1965 .044 1967	80.8 592 1982 .000 1984	17.3 131 1988 .000 1970	52.7 771 1971 .000 1970	47.0 810 1980 .000 1983
SUMMAR	Y STATIST	CICS	FOR	2000 CALEN	IDAR YEAR	F	OR 2001 W	ATER YEAR		WATER YE	EARS 1965	- 2001
LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL 10 PER 50 PER	MEAN T ANNUAL M T DAILY M DAILY ME SEVEN-DA M PEAK FI RUNOFF (CENT EXCE	MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN		2.0	Mar 23) Aug 3) Aug 3		2.3	Oct 26 0 Oct 1 0 Oct 1 0 Oct 26 0 Oct 26		30.8 104 2.59 8770 .00 c15100 p29.55 22310 24	Sep) Apr) Apr Mar 5 Mar	1980 1998 29 1980 13 1965 13 1965 23 2000 23 2000
90 PER	CENT EXCE	FUS		.00	J		.00	U		.00	J	

c From rating curve extended above $14,800 \text{ ft}^3/\text{s}$.

p Observed.

08120700 Colorado River near Cuthbert, TX--Continued

08120700 Colorado River near Cuthbert, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD . --

CHEMICAL DATA: Mar. 1965 to Sept. 1999, Feb. 2001 to current year.

PERIOD OF DAILY RECORD . -

SPECIFIC CONDUCTANCE: Mar. 1965 to May 1980 (local observer), June 1980 to Oct. 1987, Nov. 1987 to Sept. 1989 (local observer),

Oct. 1989 to Sept. 1999, Feb. 2001 to current year.

WATER TEMPERATURE: Mar. 1965 to May 1980 (local observer), Apr. 1983 to Oct. 1987, Nov. 1987 to Sept. 1989 (local observer), Oct. 1989 to Sept. 1999, Feb. 2001 to current year.

INSTRUMENTATION.--Specific conductance recorder from Mar. 1965 to Oct. 1987, Oct. 1989 to Sept. 1999, Feb. 2001 to current year. Water temperature recorder from Apr. 1983 to Oct. 1987, Oct. 1989 to Sept. 1999, Feb. 2001 to current year.

REMARKS.--Records good. Interruptions in the record were due to no flow. No flow June 10 to Aug. 14, Aug. 17-20, 25, Sept. 1, 2, 13-20. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous years using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD. -

EXPECTS FOR PARTON OF DATH RECORD.

SPECIFIC CONDUCTANCE: Maximum, 70,000 microsiemens/cm, Nov. 17, 1968; minimum, 102 microsiemens/cm, Sept. 28, 1980. WATER TEMPERATURE: Maximum, 36.0°C, Aug. 7, 1985; minimum, 0.0°C, on many days during winter months.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 14,100 microsiemens/cm, May 2; minimum, 232 microsiemens/cm, Aug. 15. WATER TEMPERATURE: Maximum, 33.2°C, June 6; minimum, 3.2°C, Feb. 2.

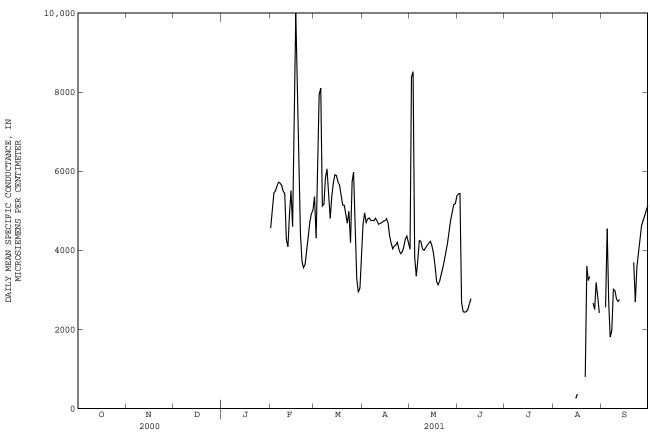
WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
FEB 21	1530	4.4	3620	12.4	563	144	49.7	525	9.63	7.89	413	832	.6
MAR 29	1215	5.5	3030	11.4	509	133	42.8	412	7.96	7.18	350	662	.6

STLTCA. DIS-SOLVED (MG/L DATE SIO2) (00955) FEB 21... 2.5 MAR 29... 1.1

43

08120700 Colorado River near Cuthbert, TX--Continued


SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	R	N	OVEMBER		DI	ECEMBER			JANUARY	
1												
2												
4												
5												
6												
7 8												
9												
10												
11												
12 13												
14												
15												
16												
17												
18 19												
20												
21												
21 22												
23												
24												
25												
26 27												
28												
29												
30 31												
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY	7		MARCH			APRIL			MAY	
1	4790	4440	4570	5890	4840	5360	5010	4340	4650	4080	3930	4030
2 3	5230 5540	4790 5230	5010 5450	5040 7480	3380 5040	4310 6070	5070 4800	4790 4630	4950 4700	14100 13600	3830 5200	8380 8520
4	5540	5460	5500	8250	7480	7940	4870	4720	4790	5200	2330	3830
5	5690	5530	5620	8440	6410	8100	4900	4730	4820	5480	1680	3350
6	5750	5670	5720	6410	4930	5120	4790	4720	4760	5480	3170	3730
7	5770	5640	5700	5530	4980	5170	4820	4700	4760	4460	3580	4250
8 9	5670 5550	5510 5430	5640 5500	5950 6190	5530 5910	5820 6060	4780 4840	4720 4780	4750 4810	4400 4140	4130 3950	4230 4040
10	5590	5360	5440	6290	4280	5390	4830	4670	4750	4030	3970	4000
11	5600	3820	4270	5120	4360	4810	4740	4570	4660	4100	4020	4060
12	4390	3870	4090	5560	5120	5360	4750	4600	4680	4190	4060	4130
13	5360	4390	4880	5860	5560	5690	4740	4650	4700	4220	4130	4180
14 15	5720	3920 3310	5510 4600	5990 6010	5860 5770	5910 5890	4790 4790	4700 4720	4740 4750	4270 4190	4170	4230 4130
16 17	11400 11700	5260 8950	8070 10000	5910 5740	5570 5590	5730 5660	4870 4790	4730 4530	4800 4690	4030 3830	3830 3380	3940 3620
18	9090	6580	8160	5600	5300	5410	4530	4260	4380	3400	3110	3220
19	6580	4940	5670	5330	4950	5150	4290	3990	4180	3160	3100	3130
20	4940	3990	4410	5190	5080	5140	4100	3970	4040	3300	3160	3220
21	3990	3630	3720	5190	4610	4910	4150	4070	4110	3520	3300	3400
22 23	3650 3780	3510 3550	3560 3640	4910 5120	4610 3430	4690 4990	4180 4250	4070 4130	4130 4200	3700 3840	3500 3690	3570 3760
24	4220	3780	4010	8600	1890	4200	4230	3950	4020	4080	3830	3950
25	4490	4220	4350	8590	3480	5740	3970	3860	3920	4400	4060	4180
26	4890	4490	4720	6090	5480	5980	3990	3920	3960	4720	4340	4460
27	4980	4880	4920	5890	3750	4720	4160	3990	4070	4940	4620	4770
28 29	5160	4800	5010	3750 3000	3000 2900	3280 2940	4390 4410	4160 4290	4280 4360	5070 5300	4870 5040	4970 5160
30				3330	2930	3050	4290	3900	4190	5320	5100	5180
31				4340	3330	3780				5500	5250	5380
MONTH	11700	3310	5280	8600	1890	5240	5070	3860	4490	14100	1680	4350

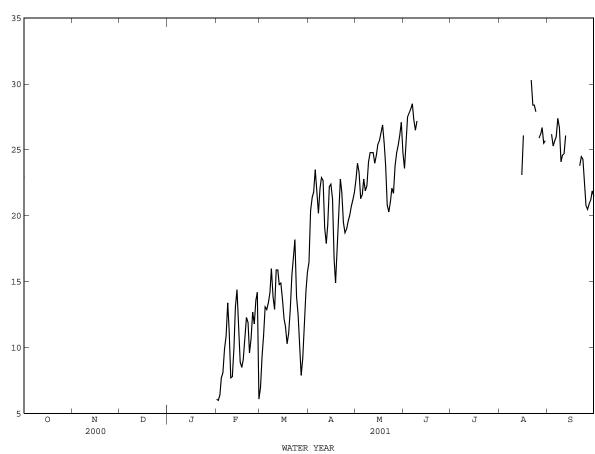
08120700 Colorado River near Cuthbert, TX--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	lR.
1	5620	4040	5430									
2	7440	3380	5440									
3	3380	2460	2690							3460	2140	2560
4	2480	2400	2450							6070	2650	4550
5	2460	2400	2440							4400	1260	2650
6	2470	2410	2450							1900	1330	1810
7	2570	2460	2500							2080	1880	1980
8	2730	2570	2650							3240	2080	3020
9	2850	2720	2780							3200	2850	2980
10										2860	2680	2780
11										2740	2690	2710
12										2800	2720	2760
13												
14												
15							360	232	263			
16							388	345	367			
17												
18												
19												
20												
21							1670	750	799	6930	705	3700
22							4520	1670	3600	6930	1040	2700
23							3620	2950	3240	4690	1920	3590
24							3830	3130	3340	4100	3860	3920
25										4490	4050	4290
26							3530	399	2670	4700	4490	4630
27							4320	738	2510	4840	4700	4760
28							3600	2810	3190	4940	4840	4880
29							2960	2680	2830	5070	4940	5010
30							3100	369	2420	5240	5070	5130
31												
MONTH												

WATER YEAR

> 08120700 Colorado River near Cuthbert, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001


DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER		Γ	DECEMBER			JANUARY	
1												
2												
3 4												
5												
6												
7												
8 9												
10												
11												
11 12												
13												
14												
15												
16												
17												
18 19												
20												
0.1												
21 22												
23												
24												
25												
26												
27												
28 29												
30												
31												
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1			6 1	10.0		7 0	20.6		16 5	26.4		22.8
1 2	8.6 8.7	FEBRUARY 3.6 3.2	6.1 6.0	10.0 10.0	MARCH 4.7 8.7	7.0 9.4	20.6 24.5	APRIL 12.9 17.1	16.5 20.4	26.4 26.4	MAY 19.7 22.2	22.8 24.0
2 3	8.6 8.7 9.0	3.6 3.2 3.5	6.0 6.4	10.0 13.1	4.7 8.7 9.2	9.4 10.9	24.5 24.0	12.9 17.1 19.2	20.4 21.4	26.4 24.3	19.7 22.2 22.2	24.0 23.3
2 3 4	8.6 8.7 9.0 10.3	3.6 3.2 3.5 5.3	6.0 6.4 7.7	10.0 13.1 16.3	4.7 8.7 9.2 10.6	9.4 10.9 13.1	24.5 24.0 25.4	12.9 17.1 19.2 18.3	20.4 21.4 21.8	26.4 24.3 22.9	19.7 22.2 22.2 20.2	24.0 23.3 21.3
2 3 4 5	8.6 8.7 9.0	3.6 3.2 3.5 5.3 4.8	6.0 6.4 7.7 8.1	10.0 13.1	4.7 8.7 9.2	9.4 10.9	24.5 24.0 25.4 25.7	12.9 17.1 19.2 18.3 21.4	20.4 21.4 21.8 23.5	26.4 24.3	19.7 22.2 22.2	24.0 23.3 21.3 21.6
2 3 4 5	8.6 8.7 9.0 10.3 11.1	3.6 3.2 3.5 5.3 4.8	6.0 6.4 7.7 8.1 9.9	10.0 13.1 16.3 16.0	4.7 8.7 9.2 10.6 10.4	9.4 10.9 13.1 12.9	24.5 24.0 25.4 25.7	12.9 17.1 19.2 18.3 21.4	20.4 21.4 21.8 23.5	26.4 24.3 22.9 24.2	19.7 22.2 22.2 20.2 19.2	24.0 23.3 21.3 21.6
2 3 4 5 6 7	8.6 8.7 9.0 10.3 11.1 12.5 13.9	3.6 3.2 3.5 5.3 4.8 7.2 7.9	6.0 6.4 7.7 8.1 9.9	10.0 13.1 16.3 16.0 16.2 17.6	4.7 8.7 9.2 10.6 10.4 11.4 11.2	9.4 10.9 13.1 12.9 13.4 14.2	24.5 24.0 25.4 25.7 24.2 23.2	12.9 17.1 19.2 18.3 21.4 20.3 17.5	20.4 21.4 21.8 23.5 21.9 20.2	26.4 24.3 22.9 24.2 25.9 23.8	19.7 22.2 22.2 20.2 19.2	24.0 23.3 21.3 21.6 22.8 21.9
2 3 4 5	8.6 8.7 9.0 10.3 11.1	3.6 3.2 3.5 5.3 4.8	6.0 6.4 7.7 8.1 9.9	10.0 13.1 16.3 16.0	4.7 8.7 9.2 10.6 10.4	9.4 10.9 13.1 12.9	24.5 24.0 25.4 25.7	12.9 17.1 19.2 18.3 21.4	20.4 21.4 21.8 23.5	26.4 24.3 22.9 24.2	19.7 22.2 22.2 20.2 19.2	24.0 23.3 21.3 21.6
2 3 4 5 6 7 8	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0	6.0 6.4 7.7 8.1 9.9 10.9	10.0 13.1 16.3 16.0 16.2 17.6 18.9	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5	9.4 10.9 13.1 12.9 13.4 14.2 16.0	24.5 24.0 25.4 25.7 24.2 23.2 25.4	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3	20.4 21.4 21.8 23.5 21.9 20.2 22.1	26.4 24.3 22.9 24.2 25.9 23.8 25.7	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7	24.0 23.3 21.3 21.6 22.8 21.9 22.3
2 3 4 5 6 7 8 9	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9 22.7	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8
2 3 4 5 6 7 8 9	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1
2 3 4 5 6 7 8 9 10 11 12 13	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.8	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9 22.7 19.1 17.9 19.3	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.8
2 3 4 5 6 7 8 9 10 11 12 13 14	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 14.4	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.8	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3 13.3 13.4 12.1	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5 16.4 14.9 17.5 20.3	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.8 24.6
2 3 4 5 6 7 8 9 10 11 12 13 14 15	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.6 15.3 14.4	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 14.4 11.5	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.2 16.2	4.7 8.7 9.2 10.6 10.4 11.2 14.5 13.1 11.3 13.3 13.3 12.1 13.0 11.1	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5 16.4 14.9 17.5 20.3 20.3	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4 28.3	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.8 24.6 25.4
2 3 4 5 6 7 8 9 10 11 12 13 14 15	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.3 14.4	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 14.4 11.5	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.2 16.2	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3 13.3 13.4 12.1 13.0 11.1	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 15.9 14.8 14.9 13.7	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6	12.9 17.1 19.2 18.3 21.4 20.3 17.5 20.5 21.5 16.4 14.9 17.5 20.3 20.3	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4 28.3	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.0 24.6 25.4 25.7
2 3 4 5 6 7 8 9 10 11 12 13 14 15	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.3 14.4	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 14.4 11.5 8.9 8.5	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.8 17.8 17.2 16.2	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3 13.3 13.4 12.1 13.0 11.1	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6 24.1 21.2	12.9 17.1 19.2 18.3 21.4 20.3 17.5 20.5 21.5 16.4 14.9 17.5 20.3 20.3	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4 28.3	19.7 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.8 24.6 25.4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.3 14.4 9.9 11.0 11.7 14.0	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3 8.0 6.2 6.9 7.7	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 14.4 11.5 8.9 8.5 1.0.6	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.2 16.2	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3 13.3 13.4 12.1 13.0 11.1 8.8 10.3 9.6 8.9	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7 12.2 11.6 10.3 11.1	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6 24.1 21.2	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5 16.4 14.9 17.5 20.3 20.3 20.3	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7 14.9	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4 28.3 28.0 29.6 30.8 27.4	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.3 23.6	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.6 25.4 25.7 26.3 26.3 26.5 25.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.6 15.3 14.4	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 4.1.0 13.5 9.3	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 14.4 11.5 8.9 8.5 9.1	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.2 16.2	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3 13.3 13.4 12.1 13.0 11.1	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6 24.1 21.2	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5 21.5 20.3 20.3 20.3 19.0 14.3 13.0	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7 14.9	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4 28.3 28.0 29.6 30.8	19.7 22.2 22.2 20.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.8 24.6 25.4 25.7 26.3 26.9
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.3 14.4 9.9 11.0 11.7 14.0	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3 8.0 6.2 6.9 7.7	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 14.4 11.5 8.9 8.5 1.0.6	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.2 16.2	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3 13.3 13.4 12.1 13.0 11.1 8.8 10.3 9.6 8.9	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7 12.2 11.6 10.3 11.1	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6 24.1 21.2	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5 16.4 14.9 17.5 20.3 20.3 20.3	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7 14.9	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4 28.3 28.0 29.6 30.8 27.4	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.3 23.6	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.6 25.4 25.7 26.3 26.3 26.5 25.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.3 14.4 9.9 11.0 11.7 11.7	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3 8.0 6.2 6.9 7.7 9.1	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 11.5 8.9 8.5 9.1 10.3 11.9 9.6	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.8 17.8 17.8 17.8 17.8 17.8 17.7 16.2	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3 13.3 13.4 12.1 13.0 11.1 8.8 10.3 9.6 8.9 8.8	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7 12.2 11.6 10.3 11.1 12.9	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6 24.1 21.2 17.6 20.7 23.1	12.9 17.1 19.2 18.3 21.4 20.3 17.5 20.5 21.5 16.4 14.9 17.5 20.3 20.3 19.0 14.3 13.0 15.0 18.4 20.8 20.5	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7 14.9 17.5 20.6	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.6 27.0 26.8 27.0 27.4 28.3 28.0 29.6 30.8 27.4 27.3	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.3 23.6 21.3	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.0 25.4 25.4 25.7 26.3 26.9 25.5 23.8
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.6 15.3 14.4 9.9 11.0 11.7 14.0 15.8	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3 8.0 6.2 6.9 7.7 9.1	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 14.4 11.5 8.9 8.5 9.1 10.6 12.3 11.9 10.9	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.2 16.2 15.3 13.4 11.5 13.9 17.4	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3 13.3 13.4 12.1 13.0 11.1 8.8 8.9 8.9 8.8	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7 12.2 11.6 10.3 11.1 12.9	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6 24.1 21.2 17.6 20.7 23.1	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5 20.3 20.3 20.3 20.3 19.0 14.3 13.0 15.0 18.4 20.8 20.8 20.5	20.4 21.4 21.8 23.5 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7 14.9 17.5 20.6	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.6 27.0 26.8 27.0 27.4 28.3 28.0 29.6 30.8 27.4 27.3 27.4	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.0 24.6 25.4 25.7 26.3 26.9 25.5 23.8 20.3 21.1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.3 14.4 9.9 11.0 11.7 11.7	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3 8.0 6.2 6.9 7.7 9.1	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 11.5 8.9 8.5 9.1 10.3 11.9 9.6	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.8 17.8 17.8 17.8 17.8 17.8 17.7 16.2	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3 13.3 13.4 12.1 13.0 11.1 8.8 10.3 9.6 8.9 8.8	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7 12.2 11.6 10.3 11.1 12.9	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6 24.1 21.2 17.6 20.7 23.1	12.9 17.1 19.2 18.3 21.4 20.3 17.5 20.5 21.5 16.4 14.9 17.5 20.3 20.3 19.0 14.3 13.0 15.0 18.4 20.8 20.5	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7 14.9 17.5 20.6	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.6 27.0 26.8 27.0 27.4 28.3 28.0 29.6 30.8 27.4 27.3	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.3 23.6 21.3	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.0 25.4 25.4 25.7 26.3 26.9 25.5 23.8
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.6 15.3 14.4 9.9 11.0 11.7 14.0 15.8	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3 8.0 6.2 6.9 7.7 9.1 11.0 8.9 9.1 11.4 8.8	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 14.4 11.5 8.9 8.5 9.1 10.6 12.3 11.9 9.6 10.7 12.7 11.8	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.2 16.2 15.3 13.4 11.5 13.9 17.4	4.7 8.7 9.2 10.6 10.4 11.2 14.5 13.1 11.3 13.3 13.4 12.1 13.0 11.1 8.8 8.9 8.8 8.9 8.8	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7 12.2 11.6 10.3 11.1 12.9 15.5 16.8 18.2 13.9	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6 24.1 21.2 17.6 20.7 23.1	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5 20.3 20.3 19.0 14.3 13.0 15.0 18.4 20.8 20.5 17.0 15.6 15.8	20.4 21.4 21.8 23.5 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7 14.9 17.5 20.6 22.8 21.8 21.8 21.8	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4 28.3 28.0 29.6 30.8 27.4 27.3 24.4 27.3	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3 17.4 14.8 15.7 18.2 17.3	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.0 24.6 25.4 25.7 26.3 26.9 25.5 23.8 20.3 21.1 22.1 21.7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.6 15.3 14.4 9.9 11.0 11.7 14.0 15.8	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3 8.0 6.9 7.7 9.1 11.0 8.9 11.4 8.8	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 14.4 11.5 8.9 9.1 10.6 12.3 11.9 9.6 10.7 11.8	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.2 16.2 15.3 13.4 11.5 13.9 17.4 19.6 20.4 22.1 17.5 14.1	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3 13.3 13.4 12.1 13.0 11.1 8.8 10.3 9.6 8.9 8.8 11.8 13.4 14.2 12.0 11.0	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 15.9 14.8 14.9 13.7 12.2 11.6 10.3 11.1 12.9 15.5 16.8 18.2 13.9 12.5	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6 24.1 21.2 17.6 20.7 23.1 25.7 23.2	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5 16.4 14.9 17.5 20.3 20.3 19.0 14.3 13.0 15.0 18.4 20.8 20.5 17.0 15.6 15.6 15.8	20.4 21.4 21.8 23.5 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7 14.9 17.5 20.6 22.8 21.8 21.8 21.9 21.9 22.9 22.1 22.9 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4 28.3 28.0 29.6 30.8 27.4 27.3 24.4 26.7 26.8 27.4 27.3	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3 17.4 14.8 15.7 18.2 17.3 19.8	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.0 24.6 25.4 25.7 26.9 25.5 23.8 20.8 20.3 21.1 21.7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.6 15.3 14.4 9.9 11.0 11.7 14.0 15.8 13.7 14.0 15.1	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3 8.0 6.2 6.9 7.7 9.1 11.0 8.9 9.1 11.4 8.8	6.0 6.4 7.7 8.1 9.9 10.9 13.4 17.7 7.8 10.0 13.1 14.4 11.5 8.9 8.5 9.1 10.6 12.7 11.8 13.6 14.7 12.7 11.8	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.2 16.2 15.3 13.4 11.5 13.9 17.4 19.6 20.4 22.1 17.5 14.1	4.7 8.7 9.2 10.6 10.4 11.2 14.5 13.1 11.3 13.3 13.4 12.1 13.0 11.1 8.8 10.3 9.6 8.9 8.8 11.8 14.2 12.0 11.0	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7 12.2 11.6 10.3 11.1 12.9 15.5 16.8 18.2 13.9 12.5	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6 24.1 21.2 17.6 20.7 23.1 25.7 23.1 25.4 24.7 24.7 24.7 24.6 24.1 21.2 21.2 21.2 22.1 22.3 22.3 22.3 22	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5 20.3 20.3 19.0 14.3 13.0 15.0 18.4 20.8 20.5 17.0 15.6 15.8	20.4 21.4 21.8 23.5 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7 14.9 17.5 20.6 22.8 21.8 19.5 18.7 19.0	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4 28.3 28.0 29.6 30.8 27.4 27.3 24.4 27.3 24.4 26.5 26.4	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3 17.4 14.8 15.7 18.2 17.3	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.0 24.6 25.4 25.7 26.3 26.9 25.5 23.8 20.3 21.1 22.1 21.7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.6 15.3 14.4 9.9 11.0 11.7 14.0 15.8	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3 8.0 6.2 6.9 7.7 9.1 11.0 8.9 9.1 11.4 8.8	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 14.4 11.5 8.9 9.1 10.6 12.3 11.9 9.6 10.7 11.8 13.6 14.2 6.1	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.2 16.2 15.3 13.4 11.5 13.9 17.4 19.6 20.4 22.1 17.5 14.1	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3 13.3 13.3 12.1 13.0 11.1 8.8 10.3 9.6 8.9 8.8 11.8 13.4 14.2 12.0 11.0	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7 12.2 11.6 10.3 11.1 12.9 15.5 16.8 18.2 13.9 12.5	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6 24.1 21.2 17.6 20.7 23.1 25.7 23.2 25.4 24.7 24.6	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5 16.4 14.9 17.5 20.3 20.3 19.0 14.3 13.0 15.0 18.4 20.8 20.5 17.0 15.6 15.8	20.4 21.4 21.8 23.5 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7 14.9 17.5 20.6 22.8 21.8 21.8 21.9 20.2 22.1 22.1 22.9 20.2 20.7 20.2 20.7 20.2 20.2 20.2 20.2	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4 28.3 28.0 29.6 30.8 27.4 27.3 24.4 26.7 26.8 26.5 26.8 27.0 29.6 30.8 27.4 27.3	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3 17.4 14.8 15.7 18.2 17.3 19.8 20.7 22.3 23.1	24.0 23.3 21.6 22.8 21.9 22.3 24.1 24.8 24.0 24.6 25.4 25.7 26.3 26.9 25.5 23.8 20.8 20.3 21.1 21.7 23.8 24.8 24.8
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.3 14.4 9.9 11.0 11.7 14.0 15.8 13.7 11.0 15.8	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3 8.0 6.2 6.9 7.7 9.1 11.0 8.9 9.1 11.4 8.8	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 11.5 8.9 8.5 9.1 10.6 10.7 11.8 13.6 14.2 6.1	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.8 17.2 16.2 15.3 13.4 11.5 13.9 17.4 19.6 20.4 22.1 17.5 14.1	4.7 8.7 9.2 10.6 10.4 11.4 11.3 13.3 13.4 12.1 13.0 11.1 8.8 10.3 9.6 8.9 8.8 11.8 13.4 14.2 12.0 11.0	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7 12.2 11.6 10.3 11.1 12.9 15.5 16.8 18.2 13.9 12.5	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.6 24.1 21.2 17.6 20.7 23.1 25.7 23.2 22.1 22.5 22.1 23.2 22.1 24.7 24.6	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5 16.4 14.9 17.5 20.3 20.3 19.0 14.3 13.0 15.0 18.4 20.5 17.6 17.6 18.4 19.6	20.4 21.4 21.8 23.5 21.9 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7 14.9 17.5 20.6 22.8 21.8 19.5 19.7 19.0	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 26.8 27.0 29.6 30.8 27.4 28.3 28.0 29.6 30.8 27.4 27.3 28.0 29.6 30.8 27.4 27.3 28.0 29.6 30.8 27.4 27.3 28.0 29.6 30.8 27.4 27.3 28.0 29.6 30.8 27.4 27.3 27.4 28.3 29.6 30.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 2	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3 17.4 14.8 15.7 18.2 17.3 19.8 20.7 22.3 23.1 23.1	24.0 23.3 21.3 21.6 22.8 21.9 22.3 24.1 24.8 24.8 24.0 25.4 25.7 26.3 26.9 25.5 23.8 20.3 21.1 22.1 21.7 23.8 24.8 24.8 24.1 25.4 25.4 25.7 26.3 26.9 27.1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	8.6 8.7 9.0 10.3 11.1 12.5 13.9 15.0 13.7 9.7 10.3 11.6 15.6 15.3 14.4 9.9 11.0 11.7 14.0 15.8	3.6 3.2 3.5 5.3 4.8 7.2 7.9 12.0 9.5 5.8 5.6 8.4 11.0 13.5 9.3 8.0 6.2 6.9 7.7 9.1 11.0 8.9 9.1 11.4 8.8	6.0 6.4 7.7 8.1 9.9 10.9 13.4 11.3 7.7 7.8 10.0 13.1 14.4 11.5 8.9 9.1 10.6 12.3 11.9 9.6 10.7 11.8 13.6 14.2 6.1	10.0 13.1 16.3 16.0 16.2 17.6 18.9 14.8 15.0 19.4 18.8 17.2 16.2 15.3 13.4 11.5 13.9 17.4 19.6 20.4 22.1 17.5 14.1	4.7 8.7 9.2 10.6 10.4 11.4 11.2 14.5 13.1 11.3 13.3 13.3 12.1 13.0 11.1 8.8 10.3 9.6 8.9 8.8 11.8 13.4 14.2 12.0 11.0	9.4 10.9 13.1 12.9 13.4 14.2 16.0 13.9 12.9 15.9 14.8 14.9 13.7 12.2 11.6 10.3 11.1 12.9 15.5 16.8 18.2 13.9 12.5	24.5 24.0 25.4 25.7 24.2 23.2 25.4 24.7 23.7 22.0 20.7 21.1 24.7 24.6 24.1 21.2 17.6 20.7 23.1 25.7 23.2 25.4 24.7 24.6	12.9 17.1 19.2 18.3 21.4 20.3 17.5 19.3 20.5 21.5 16.4 14.9 17.5 20.3 20.3 19.0 14.3 13.0 15.0 18.4 20.8 20.5 17.0 15.6 15.8	20.4 21.4 21.8 23.5 20.2 22.1 22.9 22.7 19.1 17.9 19.3 22.2 22.4 21.3 16.7 14.9 17.5 20.6 22.8 21.8 21.8 21.9 20.2 22.1 22.1 22.9 20.2 20.7 20.2 20.7 20.2 20.2 20.2 20.2	26.4 24.3 22.9 24.2 25.9 23.8 25.7 27.3 27.6 27.0 26.8 27.0 27.4 28.3 28.0 29.6 30.8 27.4 27.3 24.4 26.7 26.8 26.5 26.8 27.0 29.6 30.8 27.4 27.3	19.7 22.2 22.2 20.2 19.2 19.9 20.8 19.7 21.0 22.3 22.6 22.9 21.4 22.1 22.5 23.3 23.3 23.6 21.3 17.4 14.8 15.7 18.2 17.3 19.8 20.7 22.3 23.1	24.0 23.3 21.6 22.8 21.9 22.3 24.1 24.8 24.0 24.6 25.4 25.5 23.8 20.8 20.3 21.1 21.7 23.8 24.8 24.8

DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE

08120700 Colorado River near Cuthbert, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBI	ER
1 2	25.5 30.5	21.9 21.8	23.6 25.7									
3	30.5	21.8	25.7							27.3	24.3	26.2
4	31.4	25.0	27.8							27.3	23.7	25.3
5	32.3	25.0	28.1							28.2	24.2	25.3
5	32.3	23.1	20.1							20.2	24.2	23.7
6	33.2	25.1	28.5							29.1	23.7	26.0
7	31.7	24.2	27.3							30.3	25.3	27.4
8	30.8	22.9	26.5							30.4	23.9	26.7
9	32.2	22.6	27.2							26.7	21.5	24.1
10										29.2	21.7	24.6
11										28.0	22.3	24.7
12										31.0	22.3	26.1
13												
14												
15							23.2	22.3	23.1			
16							30.4	22.7	26.1			
17												
18												
19												
20												
21							30.5	29.6	30.3	28.1	19.2	23.8
22							30.2	26.6	28.4	26.6	23.1	24.5
23							32.3	25.6	28.4	26.5	22.3	24.3
24							29.8	25.0	27.9	24.6	20.3	22.6
25										24.5	17.8	20.8
26							27.2	23.5	25.9	23.4	17.8	20.5
27							29.6	23.5	26.2	23.9	18.3	20.9
28							29.1	24.9	26.7	24.7	18.5	21.2
29							27.2	24.3	25.5	26.4	19.2	21.9
30							28.2	23.8	25.7	26.0	18.7	21.5
31												
MONTH												
MONTH												

THIS PAGE IS INTENTIONALLY LEFT BLANK.

08121000 Colorado River at Colorado City, TX

LOCATION.--Lat 32°23'33", long 100°52'42", Mitchell County, Hydrologic Unit 12080002, on right bank at Colorado City, 3,517 ft upstream from bridge on State Highway 377, 4,100 ft upstream from the Texas and Pacific Railroad Company bridge, 1.3 mi downstream from bridge on Interstate Highway 20 and U.S. Highway 80, 1.6 mi upstream from Lone Wolf Creek, and at mile 796.3.

DRAINAGE AREA.--3,966 mi^2 , of which 2,381 mi^2 probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Nov. 1923 to Aug. 1925 (published as "at Colorado"), May 1946 to current year.

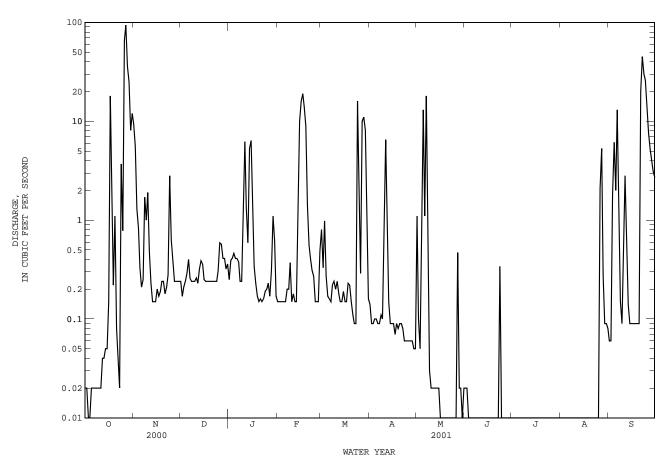
REVISED RECORDS.--WSP 1512: 1946(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,030.16 ft above sea level. Nov. 28, 1923, to Aug. 31, 1925, nonrecording gage at site 1.4 mi downstream at different datum. May 9 to Aug. 5, 1946, nonrecording gage at site 185 ft upstream at present datum. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. Since water year 1952 at least 10% of contributing drainage area has been regulated. The Colorado River Municipal Water District diverts low flow into an off channel reservoir 3 mi upstream for brine disposal. There are numerous diversions from Lake J.B. Thomas for municipal use and for oil field operations.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--5 years (water years 1947-51) prior to completion of Lake J.B. Thomas, 102 ft³/s (73,660 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1947-51).--Maximum discharge, 24,900 ft³/s July 6, 1948 (gage height, 22.37 ft, from floodmark); no flow at times.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1910, 35.9 ft June 20, 1939, present site and datum, based on floodmarks 1,000 ft upstream and 3,740 ft downstream from gage; discharge, 66,000 ft³/s, by slope-area measurement of peak flow at site 2.5 mi upstream from gage.

		DISCHA	RGE, CUBI	C FEET PI		WATER YE Y MEAN VA		R 2000 TO	SEPTEMBER	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.02 .02 .01 .01	9.4 5.6 1.3 .83	.24 .17 .21 .24	.25 .39 .41 .46	.15 .15 .15 .15	.80 .33 .98 .27	.14 .09 .09 .10	1.1 .10 .05 2.4	.02 .02 .01 .01	.00 .00 .00 .01	.00 .00 .00 .00	.06 .06 1.8 6.1 2.0
6 7 8 9 10	.02 .02 .02 .02 .02	.21 .25 1.7 1.0	.40 .26 .24 .24	.41 .38 .24 .24	.15 .20 .20 .37 .15	.16 .15 .22 .24 .20	.09 .09 .11 .10	1.1 18 .98 .03 .02	.00 .00 .01 .00	.01 .01 .00 .00	.00 .00 .00 .00	13 2.3 .15 .09
11 12 13 14 15	.02 .04 .04 .05	.48 .23 .15 .15	.26 .23 .32 .39	6.2 1.3 .59 5.3 6.4	.18 .15 .15 2.1	.24 .18 .15 .15	6.5 1.5 .15 .09	.02 .02 .02 .02 .02	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	2.8 .53 .14 .09
16 17 18 19 20	.15 18 2.8 .22 1.1	.20 .17 .19 .24	.25 .24 .24 .24 .24	1.1 .34 .23 .17	16 19 14 8.9 1.4	.15 .15 .23 .22	.09 .07 .09 .08	.01 .01 .01 .01	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.09 .09 .09 .09
21 22 23 24 25	.08 .04 .02 3.7 .78	.18 .21 .28 2.8 .63	.24 .24 .24 .24	.16 .15 .16 .19	.56 .41 .31 .27	.11 .09 .09 16 1.1	.09 .08 .06 .06	.00 .00 .00 .00	.01 .01 .34 .00	.00 .00 .00 .00	.00 .00 .00 .00	20 45 30 26 13
26 27 28 29 30 31	66 94 36 25 8.1	.37 .24 .24 .24 .24	.59 .57 .41 .41 .32	.23 .17 .31 1.1 .61	.15 .15 .49 	.29 10 11 8.1 .79 .16	.06 .06 .05 .05	.01 .47 .02 .02 .01	.01 .00 .00 .00	.00 .00 .00 .00 .00	2.1 5.3 .28 .09 .09	7.6 5.2 3.9 3.1 2.7
TOTAL MEAN MAX MIN AC-FT	268.37 8.66 94 .01 532	30.15 1.00 9.4 .15 60	9.23 .30 .59 .17 18	29.62 .96 6.4 .15	76.19 2.72 19 .15 151	53.06 1.71 16 .09 105	10.71 .36 6.5 .05 21	37.48 1.21 18 .00 74	0.47 .016 .34 .00	0.04 .001 .01 .00	7.94 .26 5.3 .00 16	186.47 6.22 45 .06 370
		MONTHLY MEA										
MEAN MAX (WY) MIN (WY)	34.9 339 1987 .000 1969	7.10 61.1 1985 .000 1956	5.35 49.6 1992 .026 1955	4.19 33.6 1992 .051 1971	9.63 99.0 1957 .061 1971	19.0 595 2000 .000 1956	34.5 332 1957 .010 1955	92.4 1048 1957 .001 1970	79.0 745 1982 .000 1953	20.3 197 1961 .000 1974	38.0 684 1971 .000 1954	54.2 817 1962 .000 1954

08121000 Colorado River at Colorado City, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1952 - 2001z
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	20547.34 56.1	709.73 1.94	33.3 143 1957
LOWEST ANNUAL MEAN			.34 1998
HIGHEST DAILY MEAN LOWEST DAILY MEAN	9220 Mar 24 .01 Sep 9	94 Oct 27 .00 May 21	9560 May 25 1957 .00 Oct 1 1951
ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW	.02 Sep 5	.00 Jun 9 183 Oct 26	.00 Oct 1 1951 c17700 Mar 24 2000
MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT)	40760	5.14 Oct 26 1410	28.58 Mar 24 2000 24110
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	8.5 .29	3.3 .15	23
90 PERCENT EXCEEDS	.03	.00	.00

Period of regulated streamflow. From rating curve extended above $9,550~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of $66,000~{\rm ft}^3/{\rm s}$. z c

08121000 Colorado River at Colorado City, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD .--

CHEMICAL DATA: May 1946 to Sept. 1954, Nov. 1956 to current year.

PERIOD OF DAILY RECORD . --

SPECIFIC CONDUCTANCE: May 1946 to Sept. 1954 and Nov. 1956 to current year (local observer). WATER TEMPERATURE: Nov. 1952 to Sept. 1954 and Nov. 1956 to current year (local observer).

REMARKS.--Records good except those for estimated daily equivalent mean specific conductance, which are poor. Interruptions in the record are due to no flow except for Dec. 1-4, 26, Mar. 31, Apr. 1-3, and Aug. 28 when specific conductance and water temperature were not determined. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. New regression equations were developed based on data from water years 1992 to 2001. The standard error of estimate for dissolved solids is 6%, chloride is 75%, sulfate is 30% and for hardness is 33%. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum daily, 76,000 microsiemens/cm, Sept. 21, 1998; minimum daily, 240 microsiemens/cm, Sept. 29, 1980.

WATER TEMPERATURE: Maximum daily, 39.0°C, July 21, 1995; minimum daily, 0.0°C, on many days during winter months.

EXTREMES FOR CURRENT YEAR . --

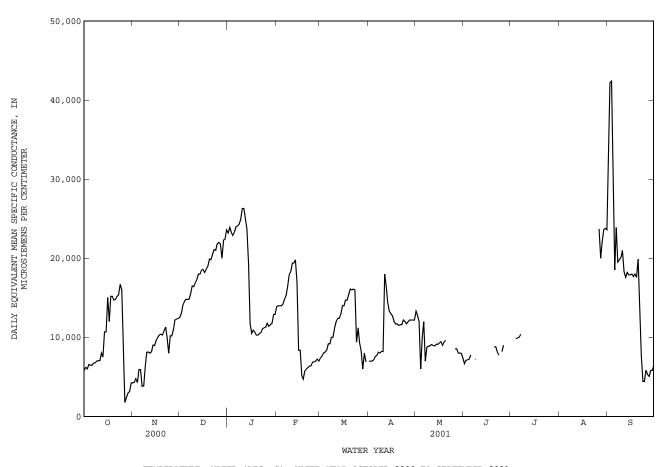
SPECIFIC CONDUCTANCE: Maximum daily, 42,400 microsiemens/cm, Sept. 3; minimum daily, 1,750 microsiemens/cm, Oct. 27. WATER TEMPERATURE: Maximum daily, 37.0°C, June 25; minimum daily, 3.0°C, Dec. 12.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIS-											
		CHARGE,	SPE-		HARD-		MAGNE-		SODIUM	POTAS-		CHLO-	FLUO-
		INST.	CIFIC		NESS	CALCIUM	SIUM,	SODIUM,	AD-	SIUM,	SULFATE	RIDE,	RIDE,
		CUBIC	CON-	TEMPER-	TOTAL	DIS-	DIS-	DIS-	SORP-	DIS-	DIS-	DIS-	DIS-
		FEET	DUCT-	ATURE	(MG/L	SOLVED	SOLVED	SOLVED	TION	SOLVED	SOLVED	SOLVED	SOLVED
DATE	TIME	PER	ANCE	WATER	AS	(MG/L	(MG/L	(MG/L	RATIO	(MG/L	(MG/L	(MG/L	(MG/L
		SECOND	(US/CM)	(DEG C)	CACO3)	AS CA)	AS MG)	AS NA)		AS K)	AS SO4)	AS CL)	AS F)
		(00061)	(00095)	(00010)	(00900)	(00915)	(00925)	(00930)	(00931)	(00935)	(00945)	(00940)	(00950)
OCT													
OCT	1.400	0.0	6010	00.0	1000	010	100	1100	16.0	11 0	1610	1160	
13	1400	.08	6810	22.3	1060	213	128	1190	16.0	11.0	1610	1160	.8
18	1420	2.1	15300	19.9	1010	253	90.8	3060	42.0	12.9	844	4740	.3
NOV													
30	1515	.31	12300	10.9	1110	259	114	2340	30.5	8.87	1270	3450	.5
FEB													
22	0945	.45	6180	8.4	743	178	72.1	996	15.9	7.53	730	1560	.5
MAR													
30	0735	.88	6980	12.0	871	212	82.7	1140	16.7	7.76	673	1800	.6
MAY													
24	1245	E.01	9800	23.8	1340	265	164	1730	20.6	9.24	1810	2240	.7

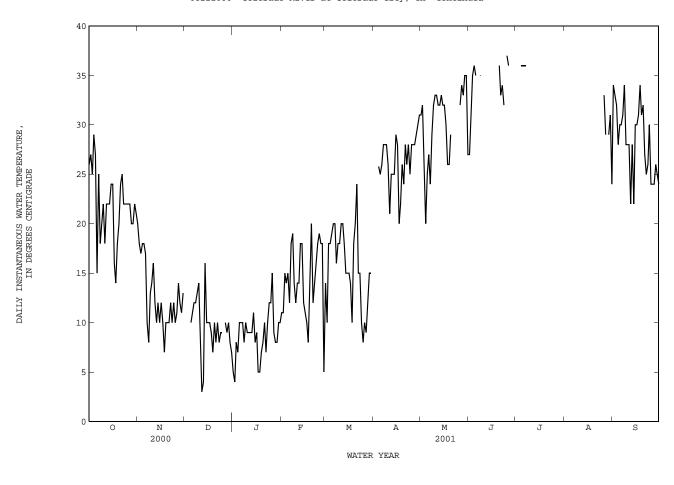
DATE	SOLVED (MG/L AS	CONSTI- TUENTS, DIS- SOLVEI (MG/L)
18	13.8 4.2	
30	1.0	7560
FEB 22	1.1	3650
MAR 30	1.9	4020
MAY 24	4.1	6310

08121000 Colorado River at Colorado City, TX--Continued


MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 2000 TO SEPTEMBER 2001

MONTH Y	/EAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- SIEMENS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 2	2000	268.37	4810	2900	2100	1400	988	480	348	430
NOV. 2	2000	30.15	5890	3550	289	1700	135	590	48.2	530
DEC. 2	2000	9.23	18730	11910	297	5700	142	1800	43.9	1600
JAN. 2	2001	29.62	18770	12020	962	5800	463	1700	140	1600
FEB. 2	2001	76.19	6980	4230	870	2000	408	700	143	620
MAR. 2	2001	53.06	8360	5080	727	2400	342	830	119	740
APR. 2	2001	10.71	15770	9910	287	4700	137	1500	43.5	1400
MAY 2	2001	37.48	8410	5110	517	2400	243	840	84.6	750
JUNE 2	2001	0.47	7750	4680	5.9	2200	2.8	770	0.98	690
JULY 2	2001	0.04	10040	6130	0.66	2900	0.31	990	0.11	890
AUG. 2	2001	7.94	21170	13580	291	6500	140	2000	42.2	1800
SEPT 2	2001	186.47	9770	6120	3080	2900	1470	940	472	850
TOTAL		709.73	**	**	9430	**	4470	**	1490	**
WTD.AVG	₹.	1.9	7960	4920	**	2300	**	780	**	700
	SPECIFIC	C CONDUCTANCE	(MICROSIEME		5 DEG. C), IVALENT MEA		OCTOBER 20	000 TO SEPT	TEMBER 2001	
DAY	OCT	NOV I	DEC JAN	FEB	MAR	APR	MAY	JUN 3	JUL AUG	G SEP
1 2 3	5800 6210 6030	4240 e125 4300 e130 4790 e140	23900	14000	7400 7640 8000	e7000	12800	100 -		- 42200

DAILY EQUIVALENT MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5800	4240	e12500	23200	13900	7400	e7000	13300	6660			30000
2	6210	4300	e13000	23900	14000	7640	e7000	12800	7100			42200
3	6030	4790	e14000	23300	14000	8000	e7000	12000	7160			42400
4	6570	4290	e14500	22900	14000	8120	7130	6000	7240	9810		29700
5	6470	5940	14800	23300	14200	8400	7560	10000	7790	9930		18500
6	6460	5920	14800	24000	14800	9200	7710	12000		10000		23900
7	6750	3810	14800	24100	15300	9180	8110	7000		10400		19500
8	6780	3850	15500	24300	16500	10000	8000	8760	7200			19800
9	7000	6400	16500	24900	17900	10000	8220	8880				20100
10	7060	8130	16400	26300	18300	11200	8200	8940				21000
11	7050	8150	16900	26300	19400	12000	18000	9080				18300
12	8000	8000	17300	25000	19400	12400	16400	8970				17600
13	7500	8180	18000	23700	19800	12400	14400	8900				18200
14	10700	9010	18000	19400	17000	12900	13300	9130				17900
15	10700	8980	18500	11700	8360	14000	13000	9110				17900
16	15000	9630	18600	10500	8380	14000	12700	9310				18000
17	12000	9980	18200	10900	5180	14700	12000	9460				17700
18	15200	10300	18600	10700	4720	14700	11700	9000				18000
19	15200	10400	19000	10300	5770	15400	11700	9430				17600
20	14700	10300	19900	10300	6000	16100	11500	9630	8820			19900
21	14800	10800	19800	10500	6200	16000	11600		8820			14400
22	15200	11300	20500	10600	6370	16100	11600		8160			7680
23	15400	10000	21100	11100	6410	16000	12200		7770			4430
24	16700	8000	21000	11200	6870	9410	12000					4420
25	16000	10200	21800	11300	6910	11200	11700		8180			5840
26	8000	10200	e22000	11800	7000	9350	12000	8560	9000		23700	5300
27	1750	11000	21800	11400	7230	8270	12200	8560			20000	5060
28	2400	12200	20000	11600	6990	6000	12200	8010			e22000	5820
29	2970	12300	22300	11800		8000	12200	8030			23600	5830
30	3160	12400	22400	12900		6890	12200	7990			23800	6420
31	4260		23600	12900				7360			23600	
MEAN	9090	8430	18300	17000	11500		11000					17100
MAX	16700	12400	23600	26300	19800		18000					42400
MIN	1750	3810	12500	10300	4720		7000					4420


e Estimated

08121000 Colorado River at Colorado City, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY INSTANTANEOUS VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 26.0 20.0 5.0 11.0 14.0 31.0 27.0 34.0 ------27.0 25.0 18.0 17.0 ---4.0 11.0 15.0 10.0 32.0 30.0 33.0 ---3 8.0 18.0 25.0 35.0 32.0 29.0 27.0 18.0 18.0 7.0 14.0 15.0 4 5 18.0 25.8 20.0 36.0 36.0 28.0 30.0 10.0 25.0 10.0 19.0 25.0 35.0 36.0 6 7 15.0 25.0 18.0 17.0 10.0 11.0 12.0 10.0 10.0 8.0 12.0 18.0 19.0 20.0 26.0 28.0 28.0 27.0 24.0 30.0 36.0 36.0 31.0 ---8 8.0 12.0 16.0 29.0 35.0 34.0 9 20.0 13.0 13.0 10.0 14.0 12.0 18.0 28.0 32.0 ---28.0 10 22.0 14.0 14.0 18.0 26.0 33.0 28.0 21.0 25.0 25.0 18.0 22.0 22.0 16.0 12.0 8.0 9.0 14.0 14.0 20.0 28.0 22.0 11 33.0 32.0 32.0 12 9.0 13 10.0 4.0 9.0 18.0 18.0 ___ ___ 28.0 14 15 22.0 25.0 ---------12.0 16.0 11.0 18.0 15.0 33.0 22.0 24.0 10.0 10.0 12.0 29.0 30.0 8.0 15.0 32.0 12.0 32.0 16 17 10.0 11.0 15.0 30.0 24.0 9.0 28.0 ---10.0 7.0 10.0 16.0 10.0 5.0 10.0 14.0 20.0 30.0 31.0 18 14.0 9.0 5.0 7.0 8.0 15.0 10.0 22.0 26.0 26.0 ___ ------34.0 ------18.0 26.0 31.0 19 18.0 20 20.0 10.0 10.0 8.0 20.0 20.0 24.0 29.0 36.0 32.0 10.0 10.0 7.0 10.0 12.0 21 8.0 12.0 24.0 28.0 33.0 27.0 24.0 26.0 28.0 22 25.0 12.0 10.0 14.0 15.0 25.0 34.0 22.0 10.0 16.0 18.0 8.0 15.0 10.0 23 ---32.0 ___ ---26.0 ---------30.0 24 25.0 25 22.0 10.0 9.0 12.0 19.0 8.0 28.0 37.0 24.0 26 22.0 11.0 15.0 18.0 10.0 28.0 32.0 36.0 33.0 24.0 22.0 9.0 12.0 15.0 27 14.0 10.0 9.0 18.0 28.0 34.0 ------29.0 24.0 12.0 9.0 29.0 33.0 35.0 28 ___ 26.0 25.0 8.0 29 20.0 ------29.0 ---8.0 ---------30 22.0 10.0 15.0 31.0 31.0 24.0 21.0 31 10.0 27.0 24.0 MEAN 21.8 12.6 8.8 14.3 28.4 MAX MIN 29.0 14.0 20.0 ---15.0 4.0 20.0 ------------------34.0 22.0

08121000 Colorado River at Colorado City, TX--Continued

08123000 Lake Colorado City near Colorado City, TX

LOCATION.--Lat 32°20'41", long 100°55'10", Mitchell County, Hydrologic Unit 12080002, on left bank at municipal water-intake structure, 1.7 mi upstream from Colorado City Dam on Morgan Creek, 2.2 mi downstream from the Texas and Pacific Railway Co. bridge, 2.5 mi upstream from mouth, and 4.0 mi southwest of Colorado City.

DRAINAGE AREA.--345 mi², of which 42.7 mi² probably is noncontributing

PERIOD OF RECORD.--Apr. 1949 to current year.
Water-quality records.--Chemical data: Dec. 1969 to May 1984.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

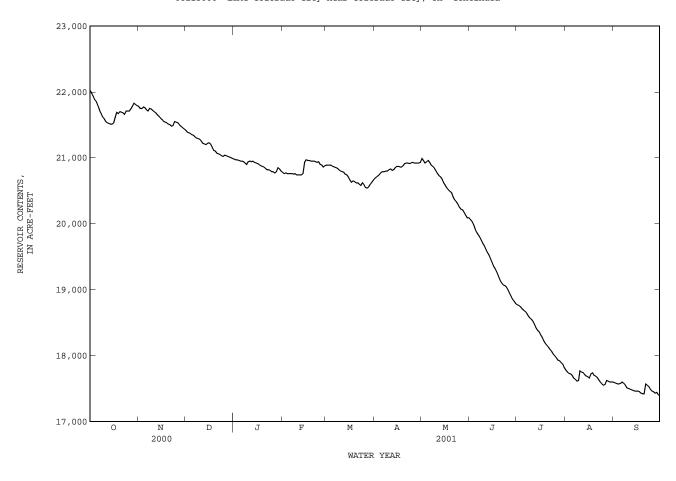
GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to Aug. 23, 1950, nonrecording gages at or near powerplant about 0.7 mi downstream at same datum. Satellite telemeter at station.

REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by a rolled earthfill dam 4,800 ft long. Storage began in Apr. 1949, and the dam was completed in Sept. 1949. The dam and lake are owned by the Texas Electric Service Co. to operate their thermal electric powerplant. The uncontrolled spillway is an excavated cut channel through natural ground 1,200 ft wide located 600 ft upstream and to the left of left end of dam. The spillway is designed to discharge 150,000 ft³/s at the maximum design flood elevation. The service spillway is an uncontrolled rectangular drop inlet located 100 ft upstream from dam with two uncontrolled openings of 10.0 by 12.0 ft. The spillway is designed for a maximum discharge of 5,000 ft³/s. A service outlet is provided for small releases downstream through a 30-inch valve-controlled concrete pipe. Record of pumpage from Champion Creek Reservoir (station 08123600, conservation pool storage 41,600 acre-ft), into Lake Colorado City can be obtained from the Texas Electric Service Co. Conservation pool storage is 30,800 acre-ft. Data regarding the dam are given in the following table:

	Elevation (feet)
Top of dam	2,090.0
Design flood	2,086.7
Crest of spillway	2,073.7
Crest of service spillway	2,069.6
Lowest gated outlet (invert)	2,024.3

COOPERATION.--Capacity curve dated Oct. 1, 1964 was furnished by the Texas Utilities Electric Co. Record of diversions for municipal use can be obtained from the city of Colorado City.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 40,280 acre-ft, Sept. 7, 1962, elevation, 2,075.10 ft; minimum contents after initial filling, 9,740 acre-ft, Aug. 30, 31, and Sept. 1, 1953, elevation, 2,051.30 ft.


EXTREMES FOR CURRENT YEAR.--Maximum contents, 22,040 acre-ft, Oct. 1, elevation, 2,063.39 ft; minimum contents, 17,360 acre-ft, Sept. 30, elevation, 2,059.44 ft.

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY DEC FEB SEP OCT NOV JAN MAR APR MAY JUN JUL AUG 21750 e19100 2.2 2.7 ---MEAN MTN 2063.19 2062.92 2062.55 2062.40 2062.47 2062.29 2062.51 2061.82 2060.71 2059.85 2059.65 2059.46 +80 +270 (@) -250 -350 -450 -190 -220 -840 -1300 -970 -220 -210

CAL YR 2000 MAX 29320 MIN 13520 (@) +6560 WTR YR 2001 MAX 22020 MIN 17390 (@) -4650

- (+) Elevation, in feet, at end of month.
- (@) Change in contents, in acre-feet.

08123000 Lake Colorado City near Colorado City, TX--Continued

08123600 Champion Creek Reservoir near Colorado City, TX

LOCATION.--Lat 32°16'53", long 100°51'30", Mitchell County, Hydrologic Unit 12080002, 50 ft downstream from service outlet structure at Champion Creek Dam on Champion Creek, 1.0 mi upstream from mouth, 4.8 mi downstream from State Highway 208, and 7.2 mi south of Colorado City.

DRAINAGE AREA. -- 207 mi², of which 20.8 mi² probably is noncontributing.

PERIOD OF RECORD.--Oct. 1959 to Sept. 1987 and May 1997 to current year. Water-quality records.--Chemical data: Aug. 1967 to May 1984.

REVISED RECORDS. -- WRD TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to Sept. 29, 1959, nonrecording gage at same site and datum. Satellite telemeter at station.

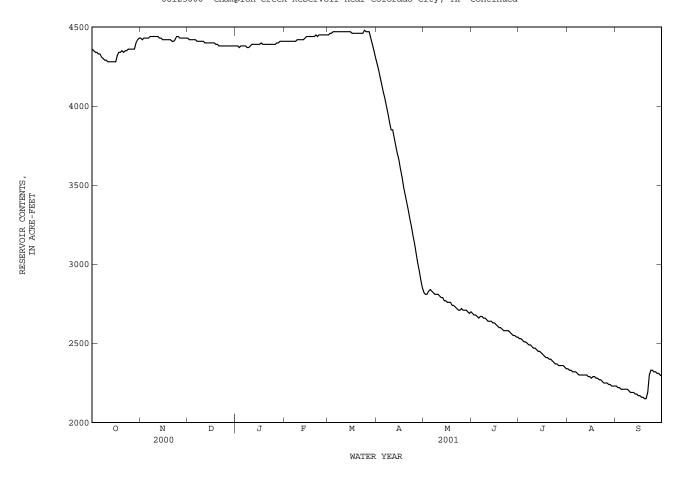
REMARKS.--No estimated daily contents. Records good except those for May 1-24, which are fair. The reservoir is formed by a rolled earthfill dam about 6,800 ft long. The dam was completed on Apr. 30, 1959. Closure and storage began in Feb. 1959. The capacity curve is based on U.S. Geological Survey topographic map surveyed in 1950: excavation for borrow, estimated not to exceed 1,200 acre-ft, is not included. The dam and reservoir are owned and operated by the Texas Electric Service Company. Water may be pumped from the reservoir through a 24-inch pipeline to Lake Colorado City (station 08123000, conservation pool storage 30,800 acre-ft) for municipal use and for cooling operations of a steam generating powerplant. There are two spillways. The uncontrolled emergency spillway, 450 ft wide and 800 ft long, is located at the right end of dam. The controlled service spillway is a cut channel 50 ft wide, about 1,800 ft long and 8 ft deep, and cut into the emergency spillway at the extreme right end. There is a controlled drop-inlet structure, 4.0 by 5.0 ft, with a side opening of 1.5 by 3.0 ft. Conservation pool storage is 41,600 acre-ft. Data regarding the dam are given in the following table:

	Elevation
	(feet)
Top of dam	2,109.0
Design flood	2,104.0
Crest of emergency spillway	2,091.0
Crest of service spillway	
Lowest gated outlet (invert)	2,020.0

COOPERATION.--The capacity table dated Apr. 14, 1959, was prepared from curve furnished by Freese and Nichols, Consulting Engineers, Fort Worth, Texas. Record of diversions into Lake Colorado City may be obtained from Texas Utilities Electric Co.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 47,060 acre-ft, June 29, 1982, elevation, 2,085.79 ft; minimum contents, 1,720 acre-ft, Apr. 11-15, 1971, elevation, 2,026.75 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 4,490 acre-ft, Mar. 24, elevation, 2,038.22 ft; minimum contents, 2,140 acre-ft, Sept. 21, elevation, 2,029.07 ft.


		RESE	RVOIR STO	RAGE (ACR		WATER YEA LY MEAN V		2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4360	4430	4430	4380	4410	4450	4270	2820	2690	2530	2340	2230
2	4350	4420	4420	4380	4410	4460	4230	2810	2680	2530	2330	2220
3	4340	4430	4420	4370	4410	4460	4180	2810	2680	2520	2330	2220
4	4340	4430	4420	4380	4410	4470	4140	2830	2670	2510	2320	2210
5	4330	4430	4420	4380	4410	4470	4090	2840	2660	2510	2320	2210
J	4330	4430	1120	4300	4410	4470	4090	2040	2000	2310	2320	2210
6	4330	4430	4420	4380	4410	4470	4050	2830	2670	2500	2320	2210
7	4310	4440	4410	4380	4410	4470	4000	2820	2670	2490	2310	2210
8	4300	4440	4410	4370	4410	4470	3950	2810	2660	2490	2300	2210
9	4290	4440	4410	4370	4420	4470	3900	2810	2660	2480	2300	2200
10	4290	4440	4410	4380	4420	4470	3850	2810	2650	2470	2300	2190
11	4280	4440	4410	4390	4420	4470	3850	2800	2640	2470	2300	2190
12	4280	4440	4400	4390	4420	4470	3800	2790	2640	2460	2300	2190
13	4280	4430	4400	4390	4420	4470	3750	2790	2640	2450	2300	2180
14	4280	4430	4400	4390	4430	4470	3700	2770	2630	2450	2290	2180
15	4280	4420	4400	4390	4440	4470	3660	2770	2630	2440	2290	2170
16	4280	4420	4400	4390	4440	4460	3600	2760	2620	2430	2280	2170
17	4320	4420	4400	4400	4440	4460	3550	2760	2610	2420	2290	2170
18	4320	4420	4400	4390	4440	4460	3490	2760	2610	2420	2290	2160
	4340	4420	4390	4390	4440	4460	3490 3440	2760	2600	2410		
19											2280	2150
20	4350	4420	4390	4390	4440	4460	3390	2740	2590	2400	2280	2150
21	4340	4410	4380	4390	4450	4460	3340	2730	2580	2400	2270	2190
22	4350	4410	4380	4390	4440	4460	3290	2720	2580	2390	2270	2300
23	4350	4420	4380	4390	4450	4460	3240	2710	2580	2380	2260	2330
24	4360	4440	4380	4390	4450	4480	3180	2710	2580	2370	2250	2330
25	4360	4440	4380	4390	4450	4470	3130	2720	2570	2370	2250	2320
26	4360	4430	4380	4390	4450	4470	3070	2710	2560	2360	2250	2320
27	4360	4430	4380	4400	4450	4470	3010	2710	2550	2360	2240	2310
28	4360	4430	4380	4400	4450	4430	2960	2710	2550	2360	2240	2310
29	4400	4430	4380	4410		4390	2900	2700	2540	2360	2230	2300
30	4420	4430	4380	4410		4350	2850	2690	2540	2350	2230	2300
31	4430		4380	4410		4310		2700		2340	2230	
MEAN	4330	4430	4400	4390	4430	4450	3600	2760	2620	2430	2280	2230
MAX	4430	4440	4430	4410	4450	4480	4270	2840	2690	2530	2340	2330
MIN	4280	4410	4380	4370	4410	4310	2850	2690	2540	2340	2230	2150
IAITIA	4200	4410	4360	43/0	4410	4310	2030	2090	Z34U	2340	∠∠30	Z130
(+)	2038.02	2038.02	2037.87	2037.97	2038.10	2037.67	2032.50	2031.86	2031.07	2030.12	2029.53	2029.88
(@)	+70	0	-50	+30	+40	-140	-1460	-150	-160	-200	-110	+70

CAL YR 2000 MAX 5420 MIN 4280 (@) -670 WTR YR 2001 MAX 4480 MIN 2150 (@) -2060

WIR IR 2001 MAX 4460 MIN 2150 (@) -200

⁽⁺⁾ Elevation, in feet, at end of month.
(@) Change in contents, in acre-feet.

08123600 Champion Creek Reservoir near Colorado City, TX--Continued

08123755 Moss Creek Lake near Coahoma, TX

LOCATION.--Lat 32°14'37", long 101°18'41", Howard County, Hydrologic Unit 12080007, 195 ft left of service outlet structure at Moss Creek Dam on Moss Creek, 1.4 mi upstream from mouth, 3.4 mi south of Coahoma, and 7.4 mi east of Big Spring.

DRAINAGE AREA. -- 26.0 mi².

PERIOD OF RECORD. -- Feb. 1999 to current year.

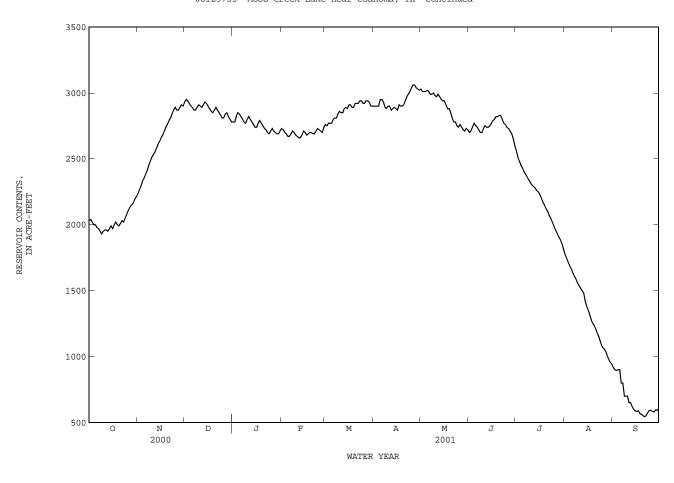
GAGE.--Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station.

REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by a rolled earthfill dam 2,450 ft long. The dam was completed in 1939. The capacity curve was developed by Freese and Nichols in 1970. The dam and reservoir are owned by the city of Big Spring. The city of Big Spring operates the reservoir for recreational purposes. The Colorado River Municipal Water District owns the water rights for municipal and industrial use. The uncontrolled south emergency spillway is 250 ft wide through natural ground at right end of dam. The uncontrolled north emergency spillway is 400 ft wide with concrete sill at left end of dam. The service spillway is gate operated with a rectangular shaped inlet feeding into a pipe fitted inside the west conduit. Conservation pool storage is 3,522 acre-ft. Data regarding the dam are given in the following table:

	Elevation
	(feet)
Top of dam	2,343.5
Crest of south emergency spillway	2,338.7
Crest of north emergency spillway	2,337.5
Crest of service outlet	2,330.5

COOPERATION. -- Capacity table furnished by Colorado River Municipal Water District.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 4,090 acre-ft, Mar. 23, 2000, elevation, 2,340.86 ft; minimum contents, 536 acre-ft, Sept. 21, 2001, elevation, 2,311.65 ft.


EXTREMES FOR CURRENT YEAR.--Maximum contents, 3,070 acre-ft, Apr. 26, elevation, 2,334.64 ft; minimum contents, 536 acre-ft, Sept. 21, elevation, 2,311.65 ft. RESERVOIR STORAGE (ACRE-FEET) WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		RESE	RVOIR STO	RAGE (ACR		WATER YEA LY MEAN V		2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2030	2230	2930	2780	2730	2760	e2900	3030	2700	2560	1780	917
2	2040	2260	2950	2780	2720	2750	e2900	3010	2710	2510	1750	899
3	2020	2290	2940	2820	2700	2770	e2900	3010	2740	2480	1720	894
4	2000	2330	2920	2850	2690	2770	e2900	3010	2770	2450	1690	e900
5	2000	2350	2900	2840	2670	2770	2950	3020	2750	2430	1670	e900
6	1980	2380	2890	2820	2670	2800	2950	3010	2740	2400	1640	e800
7	1970	2410	2870	2800	2690	2810	2930	2990	2720	2380	1610	e800
8	1950	2450	2870	2780	2710	2810	2890	2990	2700	2360	1590	e700
9	1930	2480	2890	2770	2700	2840	2880	3000	2700	2340	1560	e700
10	1950	2510	2910	2800	2680	2860	2900	2980	2730	2320	1540	e700
11	1960	2530	2900	2820	2670	2850	2900	2970	2750	2300	1520	e650
12	1960	2550	2890	2800	2660	2850	2870	2990	2740	2290	1500	e650
13	1950	2580	2910	2780	2660	2880	2880	2970	2740	2280	1480	621
14	1970	2610	2930	2760	2680	2890	2890	2950	2750	2260	1420	598
15	1990	2630	2920	2740	2710	2880	2880	2940	2770	2250	1380	587
16	1970	2660	2900	2740	2700	2910	2870	2940	2790	2230	1350	585
17	2000	2680	2880	2770	2680	2910	2910	2910	2800	2200	1310	588
18	2020	2710	2860	2790	2690	2890	2900	2880	2820	2170	1270	566
19	2000	2740	2850	2770	e2700	2890	2900	2880	2820	2150	1250	563
20	1990	2760	2870	2750	e2700	2920	2910	2850	2830	2120	1230	550
21	2010	2790	2890	2730	2690	2920	2940	2810	2830	2100	1200	543
22	2030	2810	2870	2720	2690	2920	2970	2780	2800	2070	1170	554
23	2020	2840	2850	2700	2710	2940	2990	2780	2770	2050	1140	575
24	2050	2870	2830	2690	2730	2940	3010	2750	2760	2020	1100	591
25	2080	2890	2810	2710	2720	2920	3040	2740	2740	1990	1070	593
26 27 28 29 30 31	2110 2130 2150 2160 2190 2210	2870 2870 2890 2910 2900	2810 2840 2850 2820 2800 2780	2730 2710 2700 2690 2690 2710	2710 2700 2740 	2920 2940 2940 2930 e2900 e2900	3060 3060 3040 3030 3020	2760 2740 2720 2710 2730 2720	2730 2710 2690 2650 2600	1960 1940 1910 1890 1860 1820	1060 1040 1010 981 956 942	583 580 595 592 607
MEAN	2030	2630	2880	2760	2700	2870	2940	2890	2740	2200	1350	666
MAX	2210	2910	2950	2850	2740	2940	3060	3030	2830	2560	1780	917
MIN	1930	2230	2780	2690	2660	2750	2870	2710	2600	1820	942	543
(+)	2328.49	2333.50	2332.69	2332.16	2332.35	2333.50	2334.28	2332.21	2331.35	2325.37	2316.88	2312.67
(@)	+190	+690	-120	-70	+30	+160	+120	-300	-120	-780	-878	-335

CAL YR 2000 MAX 3570 MIN 1930 (@) WTR YR 2001 MAX 3060 MIN 543 (@) -1413

⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet.

08123755 Moss Creek Lake near Coahoma, TX--Continued

08123800 Beals Creek near Westbrook, TX

LOCATION.--Lat 32°11'57", long 101°00'49", Mitchell County, Hydrologic Unit 12080007, on left bank at downstream side of bridge on State Highway 163, 2.1 mi downstream from Hackberry Creek, 10.8 mi south of Westbrook, 15.7 mi southwest of Colorado City, and 19.1 mi upstream from mouth.

DRAINAGE AREA.--9,802 mi^2 , of which 7,814 mi^2 probably is noncontributing.

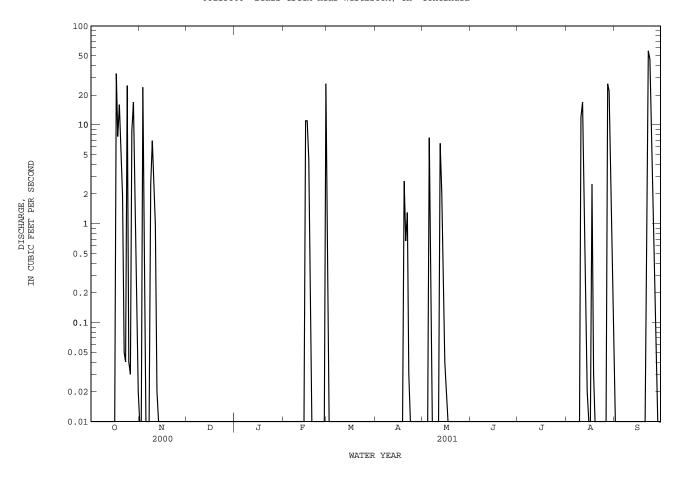
WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Oct. 1958 to current year.

REVISED RECORDS.--WRD TX-72-1: 1971. WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,048.74 ft above sea level. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. No known regulation. Low flow is affected by diversion upstream from station. No flow at times most years.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1908, about 24.5 ft in 1922, from information by local resident.

		DISCHARG	E, CUBIC	FEET PER	SECOND, W		YEAR OCTOBER VALUES	2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00	.00 .00 24 .95 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.14 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 7.4	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.01 .00 .00 .00
6 7 8 9 10	.00 .00 .00 .00	.00 .00 2.5 6.9 3.1	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.40 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	.97 .02 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00	.00 .00 .00 .00	.00 6.5 2.1 .15 .04	.00 .00 .00 .00	.00	17 3.9 .37 .02 .00	.00 .00 .00 .00
16 17 18 19 20		.00 .00 .00 .00						.02 .01 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 2.5 .03 .00	.00 .00 .00 .00
21 22 23 24 25	1.9 .05 .04 25	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00	1.3 .03 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00			
26 27 28 29 30 31	.03 8.7 17 5.0 .36 .02	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 26 	.00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 26 22 2.1 .43 .05	.92 .12 .01 .00
TOTAL MEAN MAX MIN AC-FT	120.64 3.89 33 .00 239	38.44 1.28 24 .00 76	0.00 .000 .00 .00	0.00 .000 .00 .00	52.54 1.88 26 .00 104	0.14 .005 .14 .00	4.70 .16 2.7 .00 9.3	16.62 .54 7.4 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	86.40 2.79 26 .00 171	119.93 4.00 56 .00 238
STATIS							1, BY WATER					
MEAN MAX (WY) MIN (WY)	38.0 572 1987 .000 1964	5.96 29.4 1987 .000 2000	5.07 49.2 1992 .000 1999	4.81 47.0 1987 .000 1999	8.28 94.9 1992 .000 1999	19.3 544 2000 .005 2001	19.7 256 1966 .012 1998	56.1 334 1994 .14 1962	40.9 254 1987 .000 2001	24.2 258 1961 .000 1964	17.7 168 1971 .000 2000	60.0 680 1980 .000 1998
SUMMAR	Y STATIST	ICS	FOR 2	000 CALEN	DAR YEAR		FOR 2001 WA	TER YEAR		WATER YE	ARS 1959	- 2001
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS				20889.22 57.1 7340 .00 .00 41430 25 .00	Mar 23 Jan 1 Jan 1		182	Sep 22 Oct 1 Oct 1 Feb 28 Feb 28		25.1 107 1.20 7340 .00 c13000 a23.70 18150 23 2.0 .00	Mar	1987 2001 23 2000 1 1958 1 1958 23 2000 23 2000

c From rating curve extended above 5,840 ft³/s.

a From floodmark.

08123800 Beals Creek near Westbrook, TX--Continued

08123800 Beals Creek near Westbrook, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Nov. 1958 to current year. BIOCHEMICAL DATA: Nov. 1974 to Oct. 1977. SEDIMENT DATA: Oct. 1974 to Oct. 1977.

SPECIFIC CONDUCTANCE: Nov. 1958 to Feb. 1981 (local observer) and Mar. 1981 to current year. WATER TEMPERATURE: Nov. 1958 to Feb. 1981 (local observer) and Mar. 1981 to current year.

INSTRUMENTATION. -- Water-quality monitor since Mar. 5, 1981.

REMARKS.--No estimated daily specific conductance or water temperature. Records good. Interruptions in the specific conductance and water temperature values were due to no flow. No flow for many days. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. The computations of the selected constituent loads might include estimated discharge or specific conductance data. New regression equations were developed based on data from water years 1992 to 2001. The standard error of estimate for dissolved solids is 3%, chloride is 58%, sulfate is 30% and for hardness is 12%. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request District Office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 24,500 microsiemens/cm, Aug. 9, 1989; minimum, 59 microsiemens/cm, Nov. 1, 1998.
WATER TEMPERATURE: Maximum daily, 37.0°C, June 28, 1960, and July 3, 1976; minimum, 0.0°C, on many days during winter months.

EXTREMES FOR CURRENT YEAR. --

SPECIFIC CONDUCTANCE: Maximum, 9,850 microsiemens/cm, Apr. 22; minimum, 156 microsiemens/cm, Feb. 15. WATER TEMPERATURE: Maximum, 34.1°C, Aug. 13; minimum, 1.6°C, Feb. 28.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

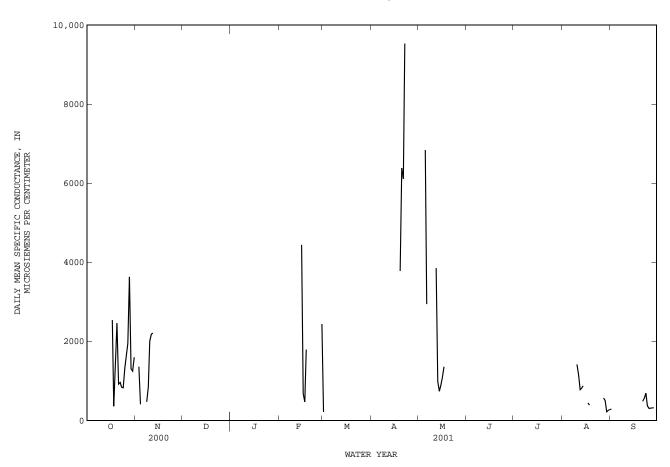
		DIS-											
		CHARGE,	SPE-		HARD-		MAGNE -		SODIUM	POTAS-		CHLO-	FLUO-
		INST.	CIFIC		NESS	CALCIUM	SIUM,	SODIUM,	AD-	SIUM,	SULFATE	RIDE,	RIDE,
		CUBIC	CON-	TEMPER-	TOTAL	DIS-	DIS-	DIS-	SORP-	DIS-	DIS-	DIS-	DIS-
		FEET	DUCT-	ATURE	(MG/L	SOLVED	SOLVED	SOLVED	TION	SOLVED	SOLVED	SOLVED	SOLVED
DATE	TIME	PER	ANCE	WATER	AS	(MG/L	(MG/L	(MG/L	RATIO	(MG/L	(MG/L	(MG/L	(MG/L
		SECOND	(US/CM)	(DEG C)	CACO3)	AS CA)	AS MG)	AS NA)		AS K)	AS SO4)	AS CL)	AS F)
		(00061)	(00095)	(00010)	(00900)	(00915)	(00925)	(00930)	(00931)	(00935)	(00945)	(00940)	(00950)
OCT													
18	1215	16	263	16.5	88.8	27.6	4.84	14.1	.649	5.72	16.2	15.6	3
AUG	1213	10	203	10.5	00.0	27.0	1.01	11.1	.042	3.72	10.2	13.0	
27	1245	45	530	24.6	99.4	26.5	8.05	63.5	2.77	4.96	44.9	97.7	. 4

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)
OCT 18	6.0	137
AUG 27	6.1	291

08123800 Beals Creek near Westbrook, TX--Continued

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 2000 TO SEPTEMBER 2001

MONTH YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- SIEMENS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT. 2000	120.64	1910	1090	354	460	151	200	65.9	370
NOV. 2000	38.44	1260	704	73.1	300	31.3	130	13.1	240
DEC. 2000	0								
JAN. 2001	0								
FEB. 2001	52.54	2320	1330	189	570	80.3	250	36.0	460
MAR. 2001	0.14	212	116	0.04	50	0.02	20	0.01	40
APR. 2001	4.7	4830	2860	36.3	1200	15.2	580	7.4	970
MAY 2001	16.62	4760	2840	128	1200	53.4	580	26.2	960
JUNE 2001	0								
JULY 2001	0								
AUG. 2001	86.4	785	435	102	190	43.6	77	17.9	150
SEPT 2001	119.93	581	320	104	140	44.6	56	18.1	110
TOTAL	439.41	**	**	985	**	419	**	185	**
WTD.AVG.	1.2	1460	830	**	350	**	160	**	280


	SPECIFIC	CONDUCTA	ANCE (MIC	ROSIEMENS/	CM AT 25	DEG. C)	, WATER YEAI	R OCTOB	ER 2000 T	O SEPTEMBER	2001	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	2	N	OVEMBER		DEG	CEMBER		Ċ	JANUAR	ď
1												
2												
3				2080	215	1360						
4				424	345	407						
5												
6												
7												
8				596	418	473						
9				1900	326	848						
10				2150	1900	2010						
11				2230	2140	2180						
12				2260	2140	2210						
13												
14												
15												
16												
17	4430	197	2540									
18	806	217	359									
19	5960	333	1320									
20	5980	994	2460									
21	994	894	920									
22	984	942	962									
23	845	682	842									
24	1500	433	826									
25	1400	1130	1320									
26	1820	1520	1650									
27	3090	1120	1950									
28	4540	1670	3630									
29	2580	1080	1310									
30	1350	1140	1250									
31	1730	1350	1600									
MONTH												

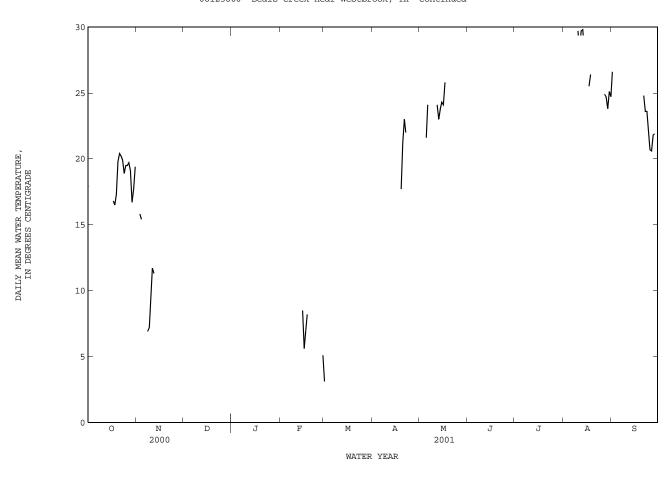
08123800 Beals Creek near Westbrook, TX--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	1 2011 10						, miidi id					
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
		PEDROAKI			PIARCII			ALKID			Inni	
1				217	193	212						
2												
3 4												
5										9080	3820	6840
6										3820	2680	2940
7 8												
9												
10												
11 12										4150	1360	3850
13										2300	686	986
14										777	688	738
15	6860	156	4440							1000	777	886
1.0	1070	165	C02							1000	000	1000
16 17	1970 878	165 319	683 468							1220 1460	988 1220	1090 1360
18	2910	668	1790									
19							5250	1710	3780			
20							6880	5250	6380			
21							8130	E200	6110			
22							9850	5380 8130	9530			
23												
24												
25												
26												
27												
28	5340	190	2440									
29												
30 31												
31												
MONTH												
DAV	MAN	MIN	MUANT	14737	MIN	MELDAT	MAN	MTN	MELTAN	14737	MIN	MEDAN
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	
		JUNE			JULY			AUGUST			SEPTEMBE	IR.
1		JUNE			JULY			AUGUST		298	SEPTEMBE	289
1 2		JUNE			JULY			AUGUST			SEPTEMBE	289
1		JUNE			JULY			AUGUST		298 	SEPTEMBE	289
1 2 3		JUNE 			JULY 		 	AUGUST	 	298 	281 	289
1 2 3 4 5	 	JUNE	 	 	JULY	 	 	AUGUST	 	298 	281 	289
1 2 3 4 5		JUNE		 	JULY	 	 	AUGUST	 	298 	281 	289
1 2 3 4 5	 	JUNE	 	 	JULY	 	 	AUGUST	 	298 	281 	289
1 2 3 4 5	 	JUNE		 	JULY		 	AUGUST	 	298 	281 	289
1 2 3 4 5 6 7 8	 	JUNE	 	 	JULY	 	 	AUGUST	 	298 	281 	289
1 2 3 4 5 6 7 8 9	 	JUNE		 	JULY		 2450	AUGUST 416	 1420	298 	281 	289
1 2 3 4 5 6 7 8 9 10	==== ==== ==== ====	JUNE		 	JULY	 	 2450	AUGUST 416 916	 1420	298 	281 	289
1 2 3 4 5 6 7 8 9 10		JUNE			JULY		 2450	AUGUST 416	 1420	298 	281 	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14		JUNE			JULY		 2450 2630 929 853 886	AUGUST 416 916 741 777 852	 1420 1160 781 820 871	298 	281	289
1 2 3 4 5 6 7 8 9 10		JUNE			JULY		 2450 2630 929 853	AUGUST 416 916 741	 1420 1160 781 820	298	281 	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		JUNE			JULY		 2450 2630 929 853 886	AUGUST 416 916 741 777 852	 1420 1160 781 820 871	298 	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14		JUNE			JULY		 2450 2630 929 853 886	AUGUST 416 916 741 777 852	 1420 1160 781 820 871	298	281 	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		JUNE			JULY		 2450 2630 929 853 886 927 401	AUGUST 416 916 741 777 852 248 378	 1420 1160 781 820 871 439 387	298	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		JUNE			JULY		 2450 2630 929 853 886 927 401	AUGUST 416 916 741 777 852 248 378	1160 781 820 871 439 387	298	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		JUNE			JULY		 2450 2630 929 853 886 927 401	AUGUST 416 916 741 777 852 248 378	 1420 1160 781 820 871 439 387	298	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		JUNE			JULY		 2450 2630 929 853 886 927 401	AUGUST 416 916 741 777 852 248 378	1160 781 820 871 439 387	298	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22		JUNE			JULY		 2450 2630 929 853 886 927 401	AUGUST 416 916 741 777 852 248 378	 1420 1160 781 820 871 439 387 	298	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23		JUNE			JULY		 2450 2630 929 853 886 927 401 	AUGUST 416 916 741 777 852 248 378	 1420 1160 781 820 871 439 387 	298	281	289 483 561 691
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		JUNE			JULY		 2450 2630 929 853 886 927 401 	AUGUST 416 916 741 777 852 248 378	1160 781 820 871 439 387 	298	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23		JUNE			JULY		 2450 2630 929 853 886 927 401 	AUGUST 416 916 741 777 852 248 378	 1420 1160 781 820 871 439 387 	298	281	289 483 561 691
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		JUNE			JULY		 2450 2630 929 853 886 927 401 	AUGUST 416 916 741 777 852 248 378	1160 781 820 871 439 387 	298	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27		JUNE			JULY		2450 2630 929 853 886 927 401 931	AUGUST 416 916 741 777 852 248 378 248 378 402	 1420 1160 781 820 871 439 387 567	298	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28		JUNE			JULY		2450 2630 929 853 886 927 401	AUGUST 416 916 741 777 852 248 378 248 378 402 185	 1420 1160 781 820 871 439 387 567 510	298	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29		JUNE			JULY		 2450 2630 929 853 886 927 401 	AUGUST 416 916 741 777 852 248 378 402 185	1160 781 820 871 439 387 567 510 222	298	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30		JUNE			JULY		2450 2630 929 853 886 927 401 931 733 245 267	AUGUST 416 916 741 777 852 248 378 248 378 402 185 199 245		298	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31		JUNE			JULY		 2450 2630 929 853 886 927 401 -	AUGUST 416 916 741 777 852 248 378 248 378 402 185 199 245 264	1160 781 820 871 439 387 567 510 222 258 274	298	281	289
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30		JUNE			JULY		2450 2630 929 853 886 927 401 931 733 245 267	AUGUST 416 916 741 777 852 248 378 248 378 402 185 199 245		298	281	289

08123800 Beals Creek near Westbrook, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001


DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	!	N	OVEMBER		DE	CEMBER		Ċ	JANUARY	
1												
2												
3				16.0	15.3	15.8						
4				15.7	15.0	15.4						
5												
6												
7												
8				8.7	6.1	6.9						
9				8.7	5.3	7.2						
10				11.8	7.3	9.2						
11				14.3	9.8	11.7						
12				12.2	10.1	11.3						
13												
14												
15												
16												
17	17.3	16.0	16.8									
18	18.4	15.0	16.5									
19	18.6	16.0	17.3									
20	22.2	18.2	19.8									
21	21.1	19.9	20.4									
22	22.2	18.6	20.2									
23	19.9	18.7	19.9									
24	19.9	17.9	18.9									
25	19.9	19.1	19.5									
26	20.4	18.9	19.5									
27	20.2	19.2	19.7									
28	20.2	17.0	19.1									
29	18.7	15.0	16.7									
30	20.5	15.4	17.7									
31	20.6	18.2	19.4									
MONTH												

08123800 Beals Creek near Westbrook, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

				WIIIII (DEC								
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1				3.3	2.6	3.1						
2												
3 4												
5										24.6	19.6	21.6
6										28.0	20.6	24.1
7 8												
9												
10												
11												
12 13										24.9 27.3	22.5 19.8	24.1
14										27.3	20.9	23.0 23.8
15	11.3	2.1	8.5							28.8	21.0	24.3
16	8.0	3.8	5.6							28.0	21.0	24.1
17	9.1	5.0	7.0							29.7	21.4	25.8
18 19	11.1	5.7 	8.2				21.4	14.8	 17.7			
20							24.1	19.0	21.2			
21							26 1	20.0	22.0			
22							26.1 23.1	20.8 20.5	23.0 22.0			
23												
24 25												
26 27												
28	8.4	1.6	5.1									
29												
30 31												
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX		MEAN	MAX		MEAN			MEAN			
		JUNE			JULY			AUGUST			SEPTEMBE	R
1		JUNE			JULY			AUGUST		29.9	SEPTEMBE	26.6
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4	 	JUNE 	 		JULY	 	 	AUGUST	 	29.9 	SEPTEMBE 22.7 	26.6
1 2 3		JUNE 		 	JULY 	 	 	AUGUST		29.9 	SEPTEMBE 22.7 	26.6
1 2 3 4 5	 	JUNE		 	JULY	 	 	AUGUST	 	29.9 	SEPTEMBE 22.7 	26.6
1 2 3 4 5		JUNE		 	JULY		=== === === ===	AUGUST	====	29.9 	22.7 	26.6
1 2 3 4 5	 	JUNE		 	JULY	 	 	AUGUST	 	29.9 	SEPTEMBE 22.7 	26.6
1 2 3 4 5 6 7 8	 	JUNE	 	 	JULY			AUGUST		29.9 	22.7 	26.6
1 2 3 4 5 6 7 8 9 10		JUNE			JULY		 30.1	AUGUST 27.8 25.7	 29.7	29.9	22.7 	26.6
1 2 3 4 5 6 7 8 9 10	 	JUNE		 	JULY		 30.1 30.8 32.6	AUGUST 27.8 25.7 27.0	 29.7 28.2 29.7	29.9	22.7 	26.6
1 2 3 4 5 6 7 8 9 10		JUNE			JULY		 30.1	AUGUST 27.8 25.7	 29.7	29.9	22.7 	26.6
1 2 3 4 5 6 7 8 9 10		JUNE		 	JULY		 30.1 30.8 32.6 34.1	AUGUST 27.8 25.7 27.0 26.9	 29.7 28.2 29.7 29.8	29.9	22.7 	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		JUNE			JULY		 30.1 30.8 32.6 34.1 31.8	AUGUST 27.8 25.7 27.0 26.9 26.8	 29.7 28.2 29.7 29.8 28.4	29.9	SEPTEMBE 22.7	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		JUNE			JULY		 30.1 30.8 32.6 34.1 31.8	AUGUST 27.8 25.7 27.0 26.9 26.8 23.2	 29.7 28.2 29.7 29.8 28.4 	29.9	SEPTEMBE 22.7	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		JUNE			JULY		 30.1 30.8 32.6 34.1 31.8	AUGUST 27.8 25.7 27.0 26.9 26.8	 29.7 28.2 29.7 29.8 28.4	29.9	SEPTEMBE 22.7	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		JUNE			JULY		 30.1 30.8 32.6 34.1 31.8 29.2 30.7	AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3	 29.7 28.2 29.7 29.8 28.4 	29.9	SEPTEMBE 22.7	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19		JUNE			JULY		30.1 30.8 32.6 34.1 31.8 29.2 30.7	AUGUST 27.8 25.7 27.0 26.9 26.9 26.8 23.2 24.3	 29.7 28.2 29.7 29.8 28.4 25.5 26.4	29.9	SEPTEMBE 22.7	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22		JUNE			JULY		30.1 30.8 32.6 34.1 31.8 29.2 30.7	AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3	 29.7 28.2 29.7 29.8 28.4 25.5 26.4	29.9	SEPTEMBE 22.7	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23		JUNE			JULY		30.1 30.8 32.6 34.1 31.8 29.2 30.7	AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3	 29.7 28.2 29.7 29.8 28.4 25.5 26.4 	29.9	SEPTEMBE 22.7	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22		JUNE			JULY		30.1 30.8 32.6 34.1 31.8 29.2 30.7	AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3	 29.7 28.2 29.7 29.8 28.4 25.5 26.4	29.9	SEPTEMBE 22.7	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		JUNE			JULY		30.1 30.8 32.6 34.1 31.8 29.2 30.7	AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3	 29.7 28.2 29.7 29.8 28.4 25.5 26.4 	29.9	SEPTEMBE 22.7	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27		JUNE			JULY		 30.1 30.8 32.6 34.1 31.8 29.2 30.7 29.2	AUGUST	 29.7 28.2 29.7 29.8 28.4 25.5 26.4 24.9	29.9	SEPTEMBE 22.7	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28		JUNE			JULY		 30.1 30.8 32.6 34.1 31.8 29.2 30.7 29.2 30.7	AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3 23.1 23.7	29.7 28.2 29.7 29.8 28.4 25.5 26.4 24.9 24.9	29.9	SEPTEMBE 22.7	26.6 24.8 23.6 22.1 20.7 20.6 21.8 21.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27		JUNE			JULY		 30.1 30.8 32.6 34.1 31.8 29.2 30.7 29.2	AUGUST	 29.7 28.2 29.7 29.8 28.4 25.5 26.4 24.9	29.9	SEPTEMBE 22.7	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29		JUNE			JULY		30.1 30.8 32.6 34.1 31.8 29.2 30.7 26.3 26.9 25.1	AUGUST 27.8 25.7 27.0 26.9 26.8 23.2 24.3 23.1 23.7 22.7	 29.7 28.2 29.7 29.8 28.4 25.5 26.4 24.9 24.7 23.8	29.9	SEPTEMBE 22.7	26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		JUNE			JULY		 30.1 30.8 32.6 34.1 31.8 29.2 30.7 26.3 26.9 25.1 29.0	AUGUST 27.8 25.7 27.0 26.9 26.9 24.3 23.2 24.3 23.1 23.7 22.7 23.0	 29.7 28.2 29.7 29.8 28.4 25.5 26.4 24.9 24.7 23.8 25.1	29.9	SEPTEMBE 22.7	26.6

08123800 Beals Creek near Westbrook, TX--Continued

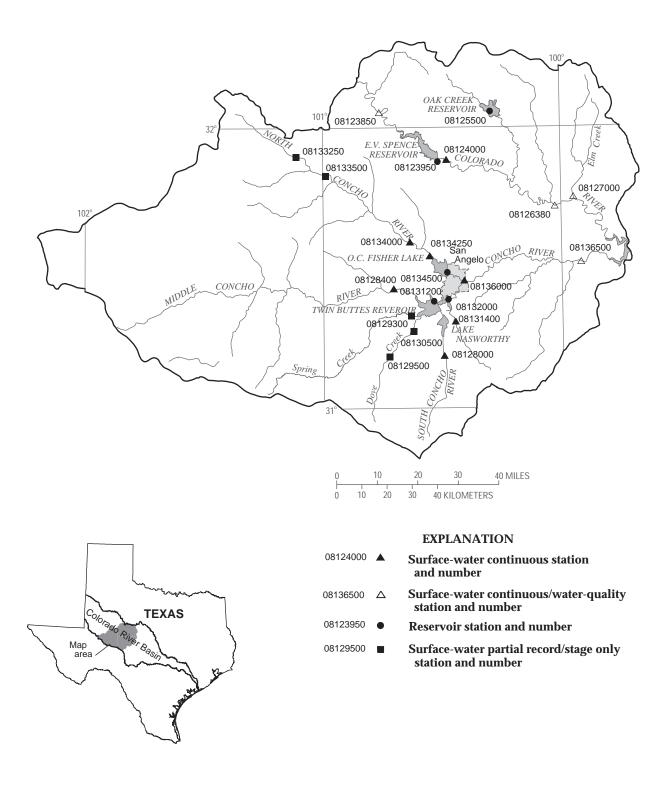


Figure 4.--Map showing location of gaging stations in the second section of the Colorado River Basin

08123850	Colorado River above Silver, TX	70
08123950	E.V. Spence Reservoir near Robert Lee, TX	78
08124000	Colorado River at Robert Lee, TX	80
08125500	Oak Creek Reservoir near Blackwell, TX	82
08126380	Colorado River near Ballinger, TX	84
08127000	Elm Creek at Ballinger, TX	92
08128000	South Concho River at Christoval, TX	100
08128400	Middle Concho River above Tankersley, TX	102
08129300	Spring Creek above Tankersley, TX	104
08129500	Dove Creek Spring near Knickerbocker, TX	321
08130500	Dove Creek at Knickerbocker, TX	106
08131200	Twin Buttes Reservoir near San Angelo, TX	108
08131400	Pecan Creek near San Angelo, TX	110
08132000	Lake Nasworthy near San Angelo, TX	112
08133250	North Concho River above Sterling City, TX	114
08133500	North Concho River at Sterling City, TX	116
08134000	North Concho River near Carlsbad, TX	118
08134250	North Concho River near Grape Creek, TX	120
08134500	O.C. Fisher Lake at San Angelo, TX	122
08136000	Concho River at San Angelo, TX	124
08136500	Concho River at Paint Rock, TX	126

08123850 Colorado River above Silver, TX

 $\label{location.--Lat 32^03'13", long 100°45'42", Coke County, Hydrologic Unit 12080008, on right bank 25 ft downstream from Pan American Oil Co. bridge, 4.7 mi west of Silver, and at mile 756.0.$

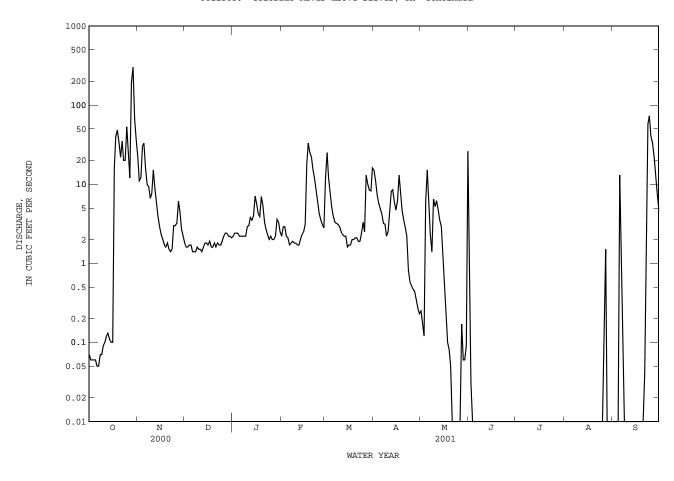
DRAINAGE AREA.--14,910 mi², of which 10,260 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Aug. 1967 to current year.

REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,907.66 ft above sea level. Prior to Oct. 4, 1972, water-stage recorder at site 0.5 mi downstream at same datum. Satellite telemeter at station.


REMARKS.--No estimated daily discharges. Records fair. Since installation of gage in Aug. 1967, at least 10% of contributing drainage area has been regulated. The Colorado River Municipal Water District diverts low flow into an off channel reservoir 3 mi above Colorado River at Colorado City (station 08121000) for brine disposal. There are numerous diversions from Lake J.B. Thomas for municipal use and for oil field operations. No flow at times.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCHAR	JE, CUBI	C FEET PER		MEAN V		ER 2000 10	SELIEMB!	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.07 .06 .06 .06	23 11 12 30 33	1.8 1.6 1.6 1.7	2.2 2.4 2.4 2.4 2.2	2.2 2.9 2.9 2.2 2.1	12 25 12 7.8 5.1	15 11 7.3 5.8 4.9	.25 .18 .12 6.0	1.4 .03 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9 10	.05 .05 .07 .07	16 10 9.3 6.6 7.6	1.4 1.4 1.6 1.5	2.2 2.2 2.2 2.2 2.9	1.7 1.8 1.9 1.8	3.9 3.3 3.2 3.1 2.9	4.2 3.2 3.1 2.2 2.5	5.2 2.3 1.4 6.5 5.2	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.89 .07 .00 .00
11 12 13 14 15	.10 .12 .13 .11	15 8.7 5.8 3.9 2.9	1.5 1.4 1.6 1.8 1.8	3.0 3.8 3.5 4.0 7.1	1.7 1.7 2.0 2.3 2.5	2.5 2.3 2.2 2.2 1.6	4.4 8.1 8.5 6.0 4.7	6.2 4.8 3.5 2.9	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
18 19	.10 16 40 48 34			5.6 4.3 3.9 7.0 5.3			6.2 13 8.1 4.6 3.5	.52 .22 .10 .08	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
22 23 24	22 35 20 20 53					2.1 1.9 1.9 2.4 3.3	2.8 2.2 .82 .58 .52	.01 .00 .01 .01	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.04 2.7 58 73 40
27 28 1 29 3	22 12 192 302 67 36	3.2 6.1 4.5 2.7 2.2	2.2 2.4 2.4 2.2 2.2 2.1	2.0 2.0 2.2 3.6 3.3 2.5	3.5 3.1 2.8 	2.5 13 10 8.4 8.2	. 47 . 44 . 35 . 27 . 23	.01 .17 .06 .06 .09	.00 .00 .00 .00	.00 .00 .00 .00 .00	.23 1.5 .00 .00	33 22 13 7.7 4.8
TOTAL 9 MEAN MAX MIN AC-FT	920.30 29.7 302 .05 1830	233.3 7.78 33 1.4 463	54.6 1.76 2.4 1.4 108	98.9 3.19 7.1 2.0 196	187.9 6.71 33 1.7 373	168.3 5.43 25 1.6 334	134.98 4.50 15 .23 268	88.24 2.85 26 .00 175	1.43 .048 1.4 .00 2.8	.00	1.73 .056 1.5 .00 3.4	268.20 8.94 73 .00 532
STATISTI	ICS OF M	ONTHLY MEAI	N DATA F	OR WATER Y				R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	116 1834 1987 .000 1969	18.7 67.5 1973 .000 1971	17.6 120 1992 .30 1971	16.7 90.7 1987 1.17 1971	29.0 256 1992 1.02 1971	55.7 999 2000 .36 1971	50.5 599 1981 .70 1998	145 681 1994 1.91 1984	160 1242 1982 .048 2001	49.7 313 1988 .000 1970	79.6 1122 1971 .010 1984	142 1853 1980 .000 1968
SUMMARY	STATIST	ICS	FOR	2000 CALEN	IDAR YEAR	I	FOR 2001 V	WATER YEAR		WATER YEA	RS 1967	- 2001
MAXIMUM	MEAN ANNUAL MANNUAL MANNUAL MEAILY MEAULY ME	EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS EDS		39105.53 107 10500 .05 .06 77570 60 2.7 .08	Mar 25 5 Sep 18 5 Sep 15		1.7	Oct 29 00 May 22 00 Jun 3 Oct 28 75 Oct 28		73.7 298 4.69 15900 .00 c18900 22.73 53360 91 8.1 .10	Sep Aug Aug Sep Sep	1987 1998 30 1980 2 1968 2 1968 9 1980 9 1980

c From rating curve extended above 12,800 ft³/s.

08123850 Colorado River above Silver, TX--Continued

08123850 Colorado River above Silver, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. --

RIOD OF RECORD.--CHEMICAL DATA: Aug. 1967 to current year. BIOCHEMICAL DATA: Nov. 1977 to current year. PESTICIDE DATA: Oct. 1969 to Aug. 1981. SEDIMENT DATA: Aug. 1977 to Aug. 1994.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Dec. 1967 to current year.

WATER TEMPERATURE: Dec. 1967 to May 1981 (local observer) and June 1981 to current year.

INSTRUMENTATION. -- Specific conductance recorder since Dec. 1967. Water-temperature recorder since June 1981.

REMARKS.--No estimated daily specific conductance or water temperature. Records fair. Interruptions in the record were due to no flow. No flow June 3 to Aug. 25, Aug. 28 to Sept. 4, Sept. 8-20. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. New regression equations were developed based on data from water years 1992 to 2001. The standard error of estimate for dissolved solids is 6%, chloride is 31%, sulfate is 48% and for hardness is 30%. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 19,900 microsiemens/cm, Sept. 10, 1988; minimum, 154 microsiemens/cm, Sept. 21, 1990. WATER TEMPERATURE: Maximum, 35.5°C, Aug. 2, 7, 1985; minimum, 0.0°C, on many days during winter months.

EXTREMES FOR CURRENT YEAR.-

SPECIFIC CONDUCTANCE: Maximum, 12,300 microsiemens/cm, Feb. 18; minimum, 566 microsiemens/cm, Oct. 28. WATER TEMPERATURE: Maximum, 31.0° C, May 17; minimum, 1.6° C, Dec. 27.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			WAIDK	QUALITI D	MIM, WAIL	ik IBAK OC	TODER 200	O IO DEFI	EMDER 200	_			
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)
OCT 13 JAN	1200	.14	8560	8.3	18.0	9.1	105	3000		831	225	948	7.53
11	1300	2.7	5570	7.8	6.8	11.8	103	1370	1250	362	114	673	7.90
MAR 06 APR	1330	4.2	6990	8.1	14.5	9.9	106	987	877	250	88.0	1070	14.8
25 SEP	1200	.72	6900	8.1	21.4	8.9	109	1430	1300	357	130	908	10.5
07	1200	.11	3610		27.8			1160		328	83.9	397	5.06
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)
OCT 13	2.73				2540	1780	.6	13.8		<.006	<.047	.061	.412
JAN 11	7.79	0	150	123	1230	1130	. 4	1.0	3600	<.006	<.047	E.021	
MAR 06	7.86	0	134	110	835	1770	.5	1.2	4090	<.006	<.047	<.041	
APR 25 SEP	9.78	0	156	128	1360	1500	.6	5.6	4350	<.006	<.047	<.041	
07	7.65				1010	709	. 4	9.6					
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)
OCT 13	.47	<.060	E.009	3.9	99.8	<.14	<.8	<1.3	<10	<2.00	4.9	<.23	5.2
JAN 11	.32	<.060	<.018	E1.6	61.0	<.14	<.8	<1.3	<50	<1.00	21.0	<.23	2.6
MAR 06 APR	.35	<.060	<.018	E1.4	16.6	<.42	E.7	E1.8	<50	<3.00	37.3	<.23	<2.4
25 SEP	.41	<.060	<.018	2.7	106	<.28	E.6	E1.2	<50	<2.00	20.7	<.01	<2.4
07													

73

08123850 Colorado River above Silver, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	
OCT 13	.5	<20
JAN 11	<.2	<100
MAR 06 APR	<.5	<100
25 SEP	<.3	<100
07		

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 2000 TO SEPTEMBER 2001

MONTH	YEAR	DISCHARGE (CFS-DAYS)	SPECIFIC CONDUCT- ANCE (MICRO- SIEMENS)	DIS- SOLVED SOLIDS (MG/L)	DIS- SOLVED SOLIDS (TONS)	DIS- SOLVED CHLORIDE (MG/L)	DIS- SOLVED CHLORIDE (TONS)	DIS- SOLVED SULFATE (MG/L)	DIS- SOLVED SULFATE (TONS)	HARDNESS (CA,MG) (MG/L)
OCT.	2000	920.3	2110	1340	3330	430	1080	410	1020	520
NOV.	2000	233.3	2040	1280	803	410	259	390	245	500
DEC.	2000	54.6	4730	3090	455	1000	149	970	143	1200
JAN.	2001	98.9	6150	4110	1100	1400	363	1300	348	1500
FEB.	2001	187.9	7490	5150	2610	1700	874	1700	841	1900
MAR.	2001	168.3	5860	3910	1780	1300	587	1200	563	1500
APR.	2001	134.98	6010	4000	1460	1300	482	1300	461	1500
MAY	2001	88.24	7100	4840	1150	1600	384	1500	369	1800
JUNE	2001	1.43	4010	2590	10.0	840	3.3	800	3.1	990
JULY	2001	0								
AUG.	2001	1.73	7950	5460	25.5	1800	8.5	1800	8.2	2000
SEPT	2001	268.2	2980	1910	1390	620	451	590	430	730
TOTAL		2157.88	**	**	14110	**	4640	**	4430	**
WTD.A	VG.	5.9	3680	2420	**	800	**	760	**	910

08123850 Colorado River above Silver, TX--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
2.11		OCTOBER		N			D			1111	JANUARY	
1	7150	7030			1160	1100			3110	5460	5400	5430
2 3	7390 7200	7030 7090 7120	7140 7160	1230 1290 1460 1780 1840	1230	1180 1260 1360 1610 1820	3170 3290 3390 3550 3740	3160	3110 3220 3330 3460	5520 5570	5450 5490	5480 5520
4	7220	7120 7190	7190	1780	1460 1770	1610	3550 3740	3390	3460	5570 5600 5600	5490	5550
5	7450							3340	3040	3600	5550	5570
6 7	7400 7500	7230 7390	7320 7450	2000 2210 2430 2810 2930	1740 2000	1840 2120 2270 2640 2890	3930 4070 4240 4390 4570	3740 3930	3830 4000	5640 5650	5550 5590	5590 5620
8 9	7520 7500	7390 7470 7450 7430	7500 7480	2430	2210 2430	2270 2640	4240 4390	4070	4160 4310	5730 5750 5760	5590 5640 5670	5670 5710
10	7490	7430				2890	4570	4390	4460	5760	5730	5740
11	7470	7410	7440	2870 2490 2310 2150 2160	2490	2650	4620	4520	4550	5830	5750	5780
12 13	7410 7470	7310 7280 7040	7360 7310	2490	2300	2390 2230	4710	4610 4690	4670 4720	5940 6040	5790 5930	5780 5880 5980
14 15	7290 7160	7040 6980	7220 7120	2150 2160	2070 2080	2650 2390 2230 2100 2120	4620 4710 4750 4750 4850	4720 4700	4730 4760	6120 6260	6020 6110	6090 6200
16	7140		7070	2360								6300
17	6990	5520	7070 6690 5580 4270 5340	2360 2590 2800 2950 3040	2350	2260 2470 2690 2880 3000	4890 4970 5040 5120 5160	4890	4920	6320 6400 6430 6420 6310	6320	6360
18 19	6640 5920	3150 1520	4270	2800 2950	2590 2790	2690 2880	5120	4960 5030	5000 5070	6430	6250	6410 6330
20	7590	2720			2950				5130	6310	6190	6240
21 22	3170 3100	2680 1660	2960 2200	3110 3180 3220 3210 3110	3040 3100	3070 3140	5250 5270 5320 5360 5420	5080	5190 5240	6260	6170 6200	6220 6280
23	2000	1830	1940	3220	3170	3190	5320	5210 5260	5290	6320 6410 6520	6280	6350
24 25	1870 2040	1510 1510	1650 1760	3210 3110	3080 3000	3070 3140 3190 3150 3040	5360 5420	5310 5360	5330 5380	6520 6610	6400 6510	6480 6570
26	2270				2900				5380	6690	6580	6630
27	2260	1720 566 1150 1070	2050 2010 1380 1520 1160	3010 2900 2930 3040 3090	2840	2950 2870 2880 2990	5410 5390 5410 5410 5410 5400	5350	5370	6740 6760 6680 6750	6640	6690
28 29	1720 2130	566 1150	1520	3040	2810	2880 2990	5410 5410	5330 5350	5390 5370	6760 6680	6660 6610	6740 6650
30	1290	1070	1160	3090	3030	3050	5410	5330	5370	6750	6650	6720
31	1100	1070							5390	6800	6710	6760
MONTH	7590	566	5100	3220	1160	2470	5420	3070	4660	6800	5400	6110
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	34737	NATAT	MILANT	MAX	MIN	MEAN
				1.11.11.1	PILLIN	MEAN	MAX	MIN	MEAN	MAA	IVILLIA	MEAN
		FEBRUARY			MARCH			APRIL			MAY	MEAN
1	6780	FEBRUARY			MARCH 6070	6230		APRIL			MAY 8260	8320
2	6780 6890 6840	FEBRUARY			MARCH 6070	6230		APRIL			MAY 8260 8360 8460	8320 8430 8550
2 3 4	6780 6890 6840 6830	FEBRUARY 6680 6710 6750 6740			MARCH 6070 6370 6830 8070	6230 6760 8030 8510	5930 5880 5880 5920	5750 5730 5760 5720	5870 5820 5830 5870	8380 8460 8590 8620	MAY 8260 8360 8460 8050	8320 8430 8550 8380
2 3 4 5	6780 6890 6840 6830 6900	FEBRUARY 6680 6710 6750 6740 6810	6730 6760 6800 6800 6850	7070 7350 8770 8790 8070	MARCH 6070 6370 6830 8070 6800	6230 6760 8030 8510 7520	5930 5880 5880 5920 5890	5750 5730 5760 5720 5820	5870 5820 5830 5870 5860	8380 8460 8590 8620 9800	MAY 8260 8360 8460 8050 8120	8320 8430 8550 8380 9320
2 3 4	6780 6890 6840 6830 6900	FEBRUARY 6680 6710 6750 6740 6810 6810 6820	6730 6760 6800 6800 6850	7070 7350 8770 8790 8070	MARCH 6070 6370 6830 8070 6800	6230 6760 8030 8510 7520	5930 5880 5880 5920 5890	5750 5730 5760 5720 5820	5870 5820 5830 5870 5860	8380 8460 8590 8620 9800	MAY 8260 8360 8460 8050 8120 7890 7830	8320 8430 8550 8380 9320 8300 7910
2 3 4 5 6 7 8	6780 6890 6840 6830 6900 6940 6900	FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830	6730 6760 6800 6800 6850	7070 7350 8770 8790 8070	MARCH 6070 6370 6830 8070 6800	6230 6760 8030 8510 7520	5930 5880 5880 5920 5890	5750 5730 5760 5720 5820	5870 5820 5830 5870 5860	8380 8460 8590 8620 9800	MAY 8260 8360 8460 8050 8120 7890 7830 7930	8320 8430 8550 8380 9320 8300 7910 7970
2 3 4 5 6 7	6780 6890 6840 6830 6900	FEBRUARY 6680 6710 6750 6740 6810 6810 6820	6730 6760 6800 6800 6850		MARCH 6070 6370 6830 8070 6800	6230 6760 8030 8510 7520	5930 5880 5880 5920	APRIL 5750 5730 5760 5720 5820 5800 5760 5760 5790 5860	5870 5820 5830 5870 5860	8380 8460 8590 8620 9800 8790 7990 8020	MAY 8260 8360 8460 8050 8120 7890 7830	8320 8430 8550 8380 9320 8300 7910
2 3 4 5 6 7 8 9	6780 6890 6840 6830 6900 6940 6900 6870 6930 7010	FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6830 6920	6730 6760 6800 6850 6850 6860 6850 6860 6960	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160	MARCH 6070 6370 6830 8070 6800 5570 4790 4470 4150 3970	6230 6760 8030 8510 7520 6050 5140 4660 4210 4070	5930 5880 5880 5920 5890 5860 5980 5980 5920 5990	APRIL 5750 5730 5760 5720 5820 5800 5760 5790 5860 5870	5870 5820 5830 5870 5860 5850 5850 5900 5950	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500	MAY 8260 8360 8460 8050 8120 7890 7830 7930 7500 5240	8320 8430 8550 8380 9320 8300 7910 7970 7930 6080
2 3 4 5 6 7 8 9	6780 6890 6840 6830 6900 6940 6900 6870 6930 7010	FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6830 6920	6730 6760 6800 6850 6850 6860 6850 6860 6960	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160	MARCH 6070 6370 6830 8070 6800 5570 4790 4470 4150 3970	6230 6760 8030 8510 7520 6050 5140 4660 4210 4070	5930 5880 5880 5920 5890 5860 5980 5980 5920 5990	APRIL 5750 5730 5760 5720 5820 5800 5760 5790 5860 5870	5870 5820 5830 5870 5860 5850 5850 5900 5950	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500	MAY 8260 8360 8460 8050 8120 7890 7830 7930 7500 5240	8320 8430 8550 8380 9320 8300 7910 7970 7930 6080
2 3 4 5 6 7 8 9 10 11 12 13 14	6780 6890 6840 6830 6900 6940 6930 7010 7050 6990 6950 6930	FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890	6730 6760 6800 6800 6850 6850 6850 6860 6960 7000 6970 6910	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900	MARCH 6070 6370 6830 8070 6800 5570 4470 44150 3970 3980 4040 4370 4640	6230 6760 8030 8510 7520 6050 5140 4660 4210 4070 4020 4250 4530 4770	5930 5880 5880 5920 5890 5860 5980 5980 5990 5950 6150 6200 6070	5750 5730 5760 5720 5820 5820 5800 5790 5860 5870 5810 5940 6030 5960	5870 5820 5830 5870 5860 5850 5850 5950 5950 5870 6010 6120 6020	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500 5240 5110 5640 6040	MAY 8260 8360 8460 8050 8120 7890 7830 7930 7500 5240 4710 4720 5110 5630	8320 8430 8550 8380 9320 8300 7910 7970 7930 6080 4890 4870 5430 5870
2 3 4 5 6 7 8 9 10 11 12 13 14 15	6780 6890 6840 6830 6900 6970 6970 6970 6990 6950 6930 7030	FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6830 6920 6930 6940 6870 6890 6930	6730 6760 6800 6850 6850 6860 6870 6850 6860 6960 7000 6910 6910 6980	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900 5100	MARCH 6070 6370 6830 8070 6800 5570 4790 4470 4150 3970 3980 4040 4370 4640 4900	6230 6760 8030 8510 7520 6050 5140 4660 4210 4070 4020 4250 4530 4770 5000	5930 5880 5920 5890 5860 5980 5880 5920 5990 5950 6150 6200 6070 6050	5750 5730 5730 5720 5820 5820 5860 5760 5790 5860 5870 5810 5940 6030 5960 5970	5870 5820 5830 5870 5860 5850 5950 5950 5970 6010 6120 6020 6010	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500 5240 5110 5640 6040 6220	MAY 8260 8360 8460 8050 8120 7890 7830 7930 7500 5240 4710 4720 5110 5630 6020	8320 8430 8550 8380 9320 8300 7910 7970 7930 6080 4890 4870 5430 5870 6130
2 3 4 5 6 7 8 9 10 11 12 13 14 15	6780 6890 6840 6830 6900 6940 6970 6930 7010 7050 6990 6950 6930 7030	FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930	6730 6760 6800 6800 6850 6860 6870 6850 6860 6960 7000 6970 6910 6980	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900 5100	MARCH 6070 6370 6830 8070 6800 5570 4470 44150 3970 3980 4040 4370 4640 4900 5090	6230 6760 8030 8510 7520 6050 5140 4210 4070 4220 4250 4530 4770 5000	5930 5880 5880 5920 5890 5860 5980 5980 5920 5990 5950 6150 6200 6070 6050	5750 5730 5760 5720 5820 5820 5800 5760 5790 5860 5870 5810 5940 6030 5960 5970	5870 5820 5830 5870 5860 5850 5850 5950 5950 5870 6010 6120 6020 6010	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500 5240 5110 5640 6040 6220	MAY 8260 8360 8460 8050 8120 7890 7830 7930 7500 5240 4710 4720 5110 5630 6020	8320 8430 8550 8380 9320 8300 7910 7970 7930 6080 4890 4870 5430 5430 6130
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	6780 6890 6840 6830 6900 6940 6900 6930 7010 7050 6990 6950 6950 7030 7030 7030 7030	FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6830 6920 6930 6940 6870 6890 6930 6930 6930 6930	6730 6760 6800 6800 6850 6860 6870 6860 6960 7000 6910 6910 6980	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900 5100 5230 5360 5380	MARCH 6070 6370 6830 8070 6800 5570 4790 4150 3970 3980 4040 4370 4640 4900 5090 5220 5310	6230 6760 8030 8510 7520 6050 5140 4660 4210 4070 4020 4250 4530 4770 5000 5170 5300 5340	5930 5880 5920 5890 5860 5980 5980 5920 5990 5950 6150 6200 6070 6050	5750 5730 5730 5720 5820 5820 5800 5760 5760 5870 5810 5940 6030 5940 6030 5970 6010 6000 5920	5870 5820 5830 5870 5860 5850 5950 5950 5950 6010 6120 6020 6010 6060 5970	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500 5240 6040 6220 6380 6510 6630	MAY 8260 8360 8460 8050 8120 7890 7830 7930 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510	8320 8430 8550 8380 9320 8380 9320 8300 7910 7930 6080 4890 4870 5430 5430 6130 6310 6430 6570
2 3 4 5 6 7 8 9 10 11 12 13 14 15	6780 6890 6840 6830 6900 6940 6900 6970 7050 6990 6930 7030 7000 7820	FEBRUARY 6680 6710 6750 6740 6810 6820 6830 6820 6930 6940 6870 6890 6930 6930 6930	6730 6760 6800 6800 6850 6850 6860 6960 7000 6910 6910 6980 6960 7210	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900 5100 5230 5360	MARCH 6070 6370 6830 8070 6800 5570 4790 4150 3970 3980 4040 4370 4640 4900 5090 5220	6230 6760 8030 8510 7520 6050 5140 4660 4210 4070 4020 4250 4530 4770 5000	5930 5880 5880 5920 5890 5860 5980 5980 5990 5950 6150 6200 6070 6050	5750 5730 5760 5720 5820 5820 5860 5760 5870 5860 5870 5810 5940 6030 5960 5970 6010 6000	5870 5830 5830 5870 5860 5850 5860 5950 5950 5950 6010 6020 6020 6020 6060	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500 5240 5110 5640 6040 6220	MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340	8320 8430 8550 8380 9320 8300 7910 7970 6080 4870 5430 5870 6130
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	6780 6890 6840 6830 6900 6940 6930 7010 7050 6930 7030 7000 7820 12300 12100 7900	FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 6940 7820 7900 5490 4860	6730 6760 6800 6800 6850 6860 6870 6860 6960 7000 6910 6910 6910 6980 6960 7210 10600 9890 6680	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900 5100 5230 5360 5380 5380 5430	MARCH 6070 6370 6830 8070 6800 5570 4470 44150 3970 3980 4040 4370 4640 4900 5090 5220 5310 5300 5260	6230 6760 8030 8510 7520 6050 5140 4210 4070 4220 4250 4530 4770 5000 5170 5340 5340 5350	5930 5880 5880 5920 5890 5860 5980 5980 5920 5990 6150 6200 6070 6050 6110 6110 6110 6130 6200	5750 5730 5760 5720 5820 5820 5800 5790 5860 5870 5810 5940 6030 5960 5970 6010 6000 6130 6180	5870 5820 5830 5870 5860 5850 5850 5950 5950 6120 6020 6010 6060 6060 6060 6060 6160	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500 5240 5110 6040 6220 6380 6510 6630 6720 6840	MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6700 6830	8320 8430 8550 8380 9320 8300 7910 7970 7930 6080 4890 4870 5430 6310 6430 6570 6660 6760
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	6780 6890 6840 6830 6900 6940 6900 6970 6930 7010 7050 6990 6930 7030 7000 7820 12300 7900 5500 5300	FEBRUARY 6680 6710 6750 6740 6810 6820 6830 6820 6930 6940 6870 6870 6890 6930 6940 7820 7900 5490 4860 5100	6730 6760 6800 6800 6850 6860 6870 6860 6960 7000 6910 6910 6910 10600 9890 6680 5010 5240	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900 5100 5230 5360 5380 5380 5430	MARCH 6070 6370 6830 8070 6800 5570 4790 4470 4450 3970 3980 4040 4370 5090 5220 5310 5300 5260 5290 5330	6230 6760 8030 8510 7520 6050 5140 4660 4210 4070 4020 4250 4530 4570 5000 5170 5340 5340 5350	5930 5880 5880 5920 5890 5860 5980 5980 5920 5990 6150 6200 6070 6010 6110 6010 6130 6200	APRIL 5750 5730 5760 5720 5820 5820 5800 5760 5870 5860 5870 5810 5940 6030 6010 6000 6000 6130 6180 6340	5870 5820 5830 5870 5860 5850 5860 5950 5950 5950 6010 6020 6010 6060 5970 6060 6060 6060 6060 6060 6060 6060 6	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500 5240 5110 5640 6040 6220 6380 6710 6630 6720 6840	MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6610 6700	8320 8430 8550 8380 9320 8300 7910 7930 6080 4870 5430 66130 6430 6570 6660 6760
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	6780 6890 6840 6830 6900 6940 6930 7010 7050 6930 7030 7000 7220 12300 12100 7900 5550 5550	FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 6960 7820 7900 5490 4860 5100 5270 5300	6730 6760 6800 6800 6850 6860 6870 6860 6960 7000 6910 6910 6910 10600 9890 6680 5010 5240 5290 5390	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900 5100 5230 5360 5380 5430 5430 5440 5440 5480	MARCH 6070 6370 6830 8070 6800 5570 4470 44150 3970 3980 4040 4370 4640 4900 5090 5220 5310 5300 5260 5290 5330 5320	6230 6760 8030 8510 7520 6050 5140 4070 4020 4250 4250 4250 4530 4770 5300 5340 5340 5350 5360 5360	5930 5880 5880 5920 5890 5860 5980 5980 5990 5950 6150 6200 6070 6050 6110 6110 6110 6130 6200 6350 6600 6900 7230	5750 5730 5760 5720 5820 5820 5800 5790 5860 5870 5810 5940 6030 5960 5970 6010 6000 6130 6180 6340 66340 66880	5870 5820 5830 5870 5860 5850 5850 5950 5950 6120 6020 6010 6060 6060 6060 6160 6260 6480 6730 7040	8380 8460 8590 8620 9800 8790 7990 8130 7500 5240 5110 6640 6220 6380 6510 6630 6720 6840	MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6700 6830 7080 7160	8320 8430 8550 8380 9320 8300 7910 7970 7930 6080 4890 4870 5430 6570 66130 6570 6660 6760
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	6780 6890 6840 6830 6900 6940 6900 6970 6930 7010 7050 6990 6950 6930 7030 7220 12300 12100 7900 5500 5310 5550 5770	FEBRUARY 6680 6710 6750 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 6930 6930 4860 7820 7900 5490 4860 5100 5270 5300 5550	6730 6760 6800 6800 6850 6850 6860 6960 7000 6910 6910 6980 6960 7210 10600 9890 6880 5010 5240 5390 5390 5630	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900 5100 5230 5360 5380 5380 5430 5440 5440 5480 5510	MARCH 6070 6370 6830 8070 6800 5570 4790 44750 3970 3980 4040 4370 4640 4900 5090 5220 5310 5300 5260 5290 5320 5320 5340	6230 6760 8030 8510 7520 6050 5140 4660 4210 4070 4250 4530 4770 5000 5170 5340 5340 5340 5350 5360 5380 5360 5420	5930 5880 5880 5920 5890 5890 5880 5980 5990 5950 6150 6200 6070 6010 6110 6010 6130 6200 6600 6600 66900 7230 7430	5750 5730 5760 5720 5820 5820 5860 5760 5760 5870 5860 5870 5810 5940 6030 5920 6000 6130 6180 6340 6680 6880 7130	5870 5830 5830 5870 5860 5850 5860 5950 5950 6010 6020 6010 6060 6060 5970 6060 6160 6260 6480 6730 7040 7280	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500 5240 6310 6630 6720 6840 6970 7150 7250	MAY 8260 8360 8460 8050 8120 7890 7830 7930 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6610 6700 6830 7080 7160	8320 8430 8550 8380 9320 8300 7910 7970 6080 4870 5430 5870 6630 6670 6660 6760 6720 6720 7210
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	6780 6890 6840 6830 6900 6940 6930 7010 7050 6930 7030 7000 7820 12300 12100 7900 5550 5310 5770	FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 6940 7820 7900 5490 4860 5100 5270 5300 5550	6730 6760 6800 6800 6850 6860 6870 6860 6960 7000 6910 6910 6980 6960 7210 10600 9890 6680 5010 5240 5290 5390 5630	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900 5100 5230 5360 5380 5430 5410 5410 5480 5510	MARCH 6070 6370 6830 8070 6800 5570 44790 44150 3970 3980 4040 4370 4640 4900 5090 5310 5300 5260 5290 5330 5320 5340	6230 6760 8030 8510 7520 6050 5140 4070 4020 4250 4530 4770 5000 5170 5340 5340 5350 5360 5360 5360 5420	5930 5880 5880 5920 5890 5890 5860 5980 5980 5920 5990 6150 6200 6070 6050 6110 6110 6110 6110 6130 6200 6350 6600 6900 7230 7430 7640	5750 5730 5760 5720 5820 5820 5800 5790 5860 5870 5810 5940 6030 5960 5970 6010 6000 6130 6180 6340 6600 6880 7130	5870 5820 5830 5870 5860 5850 5850 5950 5950 6120 6020 6010 6060 6060 6060 6160 6260 6480 6730 7040 7280	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500 5240 5110 6640 6040 6220 6380 6510 6630 6720 6840	MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6610 6700 6830 7080 7160 7340	8320 8430 8550 8380 9320 8300 7910 7970 7930 6080 4890 4870 5430 6570 66130 6570 6660 6760
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	6780 6890 6840 6830 6900 6940 6900 6970 7050 6990 6930 7030 7000 7820 12300 12300 7900 5550 5770 5790 5920 6080	FEBRUARY 6680 6710 6750 6740 6810 6820 6830 6920 6930 6940 6870 6890 6930 6930 4860 7820 7900 5490 4860 5100 5270 5300 5550	6730 6760 6800 6800 6850 6850 6860 6960 7000 6910 6910 6980 6960 7210 10600 9890 6680 5010 5240 5290 5390 5630 5750 5840 6000	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900 5100 5230 5360 5380 5430 5440 5440 5480 5510	MARCH 6070 6370 6830 8070 6800 5570 4790 4150 3970 3980 4040 4370 4640 4900 5220 5310 5320 5320 5320 5340 5480 4830	6230 6760 8030 8510 7520 6050 5140 4660 4210 4070 4250 4530 4770 5000 5170 5340 5340 5340 5350 5360 5360 5420 5580 5580 5580 55210	5930 5880 5880 5920 5890 5890 5880 5980 5990 5950 6150 6200 6070 6010 6110 6110 6110 6110 6130 6200 6350 6600 6900 7230 7430 7640 7830 8030	5750 5730 5760 5720 5820 5820 5860 5760 5760 5870 5810 5940 6030 5960 5970 6010 6000 5920 6000 6130 6180 6340 6680 6880 7130	5870 5830 5830 5870 5860 5850 5860 5990 5950 6010 6020 6020 6020 6060 5970 6060 6160 6260 6480 6730 7040 7280 7730 77940	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500 5240 5110 5640 6040 6220 6380 6510 6630 6720 6840 6970 7150 7250 7430 7340 7310	MAY 8260 8360 8460 8460 870 88050 88120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6610 6700 6830 7080 7160 7340 7190 7210	8320 8430 8550 8380 9320 8300 7910 7930 6080 4870 5430 5870 6130 6570 6660 6760 6720 7210 7270 7270
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	6780 6890 6840 6830 6900 6940 6970 6930 7010 7050 6990 6930 7030 7000 7820 12300 12100 7900 5500 5310 55770	FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 6940 7820 7900 5490 4860 5100 5270 5300 5550	6730 6760 6800 6800 6850 6860 6870 6850 6960 7000 6910 6910 6910 10600 9890 6680 5010 5240 5290 5390 5630 5750 5840	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900 5100 5230 5360 5380 5380 5430 5410 5440 5440 5510	MARCH 6070 6370 6830 8070 6800 5570 4790 4470 4450 3970 3980 4040 4370 5090 5220 5310 5320 5320 5320 5340 5510 5480	6230 6760 8030 8510 7520 6050 5140 4660 4210 4070 4250 4250 4530 4570 5340 5340 5340 5350 5340 5360 5380 5360 5380 5360 5420	5930 5880 5880 5920 5890 5890 5980 5980 5920 5990 6150 6200 6070 6010 6110 6110 6110 6130 6200 6350 6600 6900 7230 7430	5750 5730 5730 5760 5720 5820 5800 5760 5870 5860 5870 5810 5940 6030 5960 5970 6010 6000 6130 6180 6340 6680 7130 7400 7640	5870 5820 5830 5870 5860 5850 5850 5950 5950 5950 6010 6020 6010 6060 6060 6060 6160 6260 6480 6730 7040 7280	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500 5240 5110 6640 6630 6630 6630 6630 6630 6720 6840	MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6610 6700 6830 7080 7160 7340 7190	8320 8430 8550 8380 9320 8300 7910 7970 7930 6080 4870 5430 6130 6310 6430 6570 6660 6760 6930 7120 7210 7390 7270
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 21 22 22 23 24 24 25 26 27 27 28 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	6780 6890 6840 6830 6900 6940 6930 7010 7050 6930 7030 7000 7200 12300 12100 7900 5310 5550 5770 5790 5920 6080	FEBRUARY 6680 6710 6750 6740 6810 6810 6820 6830 6920 6930 6940 6870 6890 6930 6960 7820 7900 5490 4860 5100 5270 5300 5550 5680 5790 5900	6730 6760 6800 6800 6850 6860 6870 6860 6960 7000 6910 6910 6910 10600 9890 6680 5010 5240 5290 5390 5630 5750 5840 6000	7070 7350 8770 8790 8070 6800 5590 4840 4470 4160 4060 4380 4640 4900 5100 5230 5360 5380 5430 5410 5410 5410 5410 5410 5410 5410 541	MARCH 6070 6370 6830 8070 6800 5570 4470 44150 3970 3980 4040 4370 4640 4900 5090 5310 5300 5260 5290 5330 5320 5340 5510 5480 4830 4830 4830 4858	6230 6760 8030 8510 7520 6050 5140 4070 4020 4250 4250 4530 4770 5000 5170 5340 5340 5350 5360 5360 5420 5580 5640 5210 4670	5930 5880 5880 5920 5890 5890 5860 5980 5980 5920 5990 6150 6200 6070 6050 6110 6110 6110 6110 6130 6200 6350 6600 6900 7230 7430 7830 8030 8030 8030 8030 8030 8030 80	5750 5730 5760 5720 5820 5820 5800 5790 5860 5870 5810 5940 6030 5960 5970 6010 6000 6130 6180 6340 6600 6880 7130 7400 7640 7830 8030	5870 5820 5830 5870 5860 5850 5850 5950 5950 6120 6020 6010 6060 6060 6060 6160 6260 6480 6730 7040 7280 7490 7730 7940 7730 7940 7730 7940 7730	8380 8460 8590 8620 9800 8790 7990 8020 8130 7500 5240 5110 6640 6040 6220 6380 6510 6630 6720 6840 6970 7150 7250 7150 7340 7310 7350	MAY 8260 8360 8460 8050 8120 7890 7830 7500 5240 4710 4720 5110 5630 6020 6220 6340 6510 6610 6700 6830 7080 7160 7340 7190 7210 7280	8320 8430 8450 8380 9320 8300 7910 7970 7930 6680 4890 4870 5430 6570 66130 6570 6660 6760 6930 7120 7270 7270 7270 7270 73320

MAX

MIN

MEAN

MAX MIN MEAN

08123850 Colorado River above Silver, TX--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 MEAN

MIN

MAX

DAY

DAILY MEAN SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER

MAX

MIN

N 2000

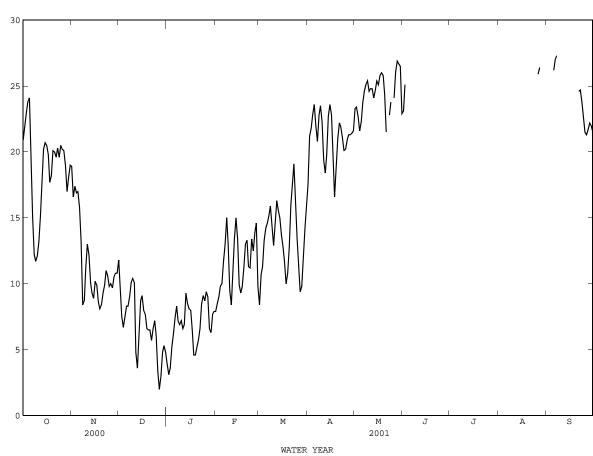
MEAN

		JUNE JULY					AUGUST SEPTEMBER					
1 2	6100 3480	2900 3000	4030 3280			 						
3						 						
4 5						 			6560	3790	4780	
6						 			3890	3700	3780	
7 8						 			3820	3710	3750	
9						 						
10						 						
11 12						 						
13						 						
14 15						 						
16						 						
17						 						
18 19						 						
20						 						
21						 			4520	4070	4450	
22 23						 			4250	3620	3910	
23						 			6310 3380	2240 1130	4400 1970	
25						 			1440	1180	1370	
26						 8080	7790	7800	1610	1110	1230	
27 28						 8210	7750 	7970 	5030 6210	1610 5020	3310 5740	
29						 			6520	6210	6390	
30 31						 			6590 	6480	6550 	
MONTH						 						
10,000 - 8000 - 4000 -	-			\\\		1		, <u> </u>			,	
		V										

WATER YEAR

М 2001

08123850 Colorado River above Silver, TX--Continued


TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

NAME MAN MEAN M			TEMPER	ATURE,	WATER (DEG	. C), W	ATER YEAR	OCTOBER	2000 TO	SEPTEMBER	2001		
1	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
6 24.1 17.7 20.7 17.0 14.4 15.8 9.2 7.4 8.3 8.9 6.1 7.5 8.3 8.8 7.5 7.5 8.3 8.8 12.8 11.9 12.2 10.4 7.5 8.4 9.7 8.0 9.0 8.3 6.0 7.5 7.5 7.6 9.1 9.			OCTOBER										
6 24.1 17.7 20.7 17.0 14.4 15.8 9.2 7.4 8.3 8.9 6.1 7.5 8.3 8.8 7.5 7.5 8.3 8.8 12.8 11.9 12.2 10.4 7.5 8.4 9.7 8.0 9.0 8.3 6.0 7.5 7.5 7.6 9.1 9.	2 3 4	26.0 25.6 26.1	19.8 20.9 21.8	22.0 23.0 23.8	20.3 18.2 17.8 17.4 17.5	17.5 15.0 17.0 16.4 16.7	18.9 16.6 17.4 16.9 17.0	12.5 11.4 8.9 7.4 7.9	10.9 8.4 6.5 6.3 7.2	11.8 9.4 7.5 6.7 7.5	4.2 3.7 5.1 7.5 7.6	3.7 2.8 2.6 3.6 4.8	3.9 3.1 3.6 5.2 6.2
16	7 8 9	17.7 12.8	12.8 11.9	15.0 12.2	17.0 15.9 10.4 11.3 13.6	14.4 10.4 7.5 7.0 9.1					8.9 8.8 8.3 7.6 7.5	6.1 7.5 6.0 5.7 7.0	8.3
16 22.0 19.5 20.5 11.6 8.9 10.2 9.9 8.1 9.1 8.5 7.7 8.0	12 13 14	16.7 19.9	12.3 14.2 16.7 18.9 20.4	13.2 15.2 18.0 20.2 20.7							7.4 8.2 10.8 9.7 9.3	5.6 5.8 8.2 6.9 6.8	9.3 8.5
21 20.7 19.5 20.0 10.8 7.6 9.3 7.4 5.6 6.5 7.5 4.0 5.8	17 18 19	22.0 20.5	17.6 16.3 16.5 18.6	19.8 17.7 18.2 20.1	11.6 11.2 9.7 9.6 10.3	8.9 9.3 8.0 6.6 6.6	10.2 9.9 8.6 8.1 8.4	9.9 8.8 8.3 7.4 7.5	8.1 6.9 6.7 5.5 5.5	9.1 8.0 7.7 6.6 6.5	8.5 7.9 5.4 6.5 6.8	7.7 5.4 4.3 3.0 3.8	8.0 6.6 4.6 4.6 5.2
26 20.7 19.8 20.2 11.8 8.1 10.0 5.3 2.1 3.4 10.8 8.4 9.4 27 20.8 19.4 20.1 11.2 8.4 9.7 2.6 1.6 2.0 10.5 7.6 9.4 28 20.2 16.0 19.0 12.4 9.1 10.5 4.6 2.0 3.0 7.6 5.4 6.6 29 18.1 15.4 17.0 12.0 9.7 10.8 5.7 3.9 4.8 8.3 4.5 6.6 30 19.8 16.7 18.1 12.6 9.1 10.8 6.1 4.1 5.3 9.5 5.7 7.7 31 20.2 18.3 19.0 5.9 4.2 4.8 9.5 6.0 7.7 7.7 31 20.2 18.3 19.0 5.9 4.2 4.8 9.5 6.0 7.7 7.7 31 20.2 18.3 19.0 5.9 4.2 4.8 9.5 6.0 7.7 7.7 7.7 MONTH 26.2 10.7 18.8 20.3 6.6 11.5 12.5 1.6 6.9 10.8 2.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	22 23 24	21.4 21.5 20.7	19.0	20.3	10.8 10.7 11.8 11.4 11.4	7.6 9.5 10.2 9.8 8.3	9.3 9.9 11.0 10.6 9.8	7.4 6.4 8.0 7.5 6.8	5.6 4.6 5.4 6.8 5.2	6.5 5.7 6.6 7.2 6.1	7.5 8.4 9.9 10.4 10.0	4.0 4.4 7.1 7.3 8.1	5.8 6.6 8.5 9.1 8.7
MAX	27 28 29 30	20.8 20.2 18.1 19.8	19.4 16.0 15.4 16.7	20.1 19.0 17.0 18.1	11.8 11.2 12.4 12.0 12.6	8.1 8.4 9.1 9.7 9.1							
The property The	MONTH	26.2	10.7	18.8	20.3	6.6	11.5	12.5	1.6	6.9	10.8	2.6	6.9
1 9,2 6.0 7.9 12.1 6.3 8.4 21.2 14.3 17.5 26.2 20.9 23.3 2 10.8 6.5 8.5 11.5 10.0 10.7 25.0 18.6 21.2 25.0 21.6 23.4 3 11.1 6.8 9.0 12.8 10.3 11.3 23.4 20.8 21.8 23.8 21.8 22.7 4 11.4 7.9 9.8 15.9 11.1 13.3 25.9 20.2 22.8 22.6 20.7 21.6 5 12.0 7.7 10.0 17.3 11.9 14.2 25.0 22.0 23.6 26.0 19.7 22.3 6 14.4 10.0 11.7 16.3 12.9 14.6 24.3 20.7 22.0 27.0 22.1 22.3 8 15.7 14.4 15.0 16.0 13.6 14.5 15.2 21.6 23.5 22.1 </td <td>DAY</td> <td>MAX</td> <td>MIN</td> <td>MEAN</td> <td>MAX</td> <td>MIN</td> <td>MEAN</td> <td>MAX</td> <td>MIN</td> <td>MEAN</td> <td>MAX</td> <td>MIN</td> <td>MEAN</td>	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
2 10.8 6.5 8.5 11.5 10.0 10.7 25.0 18.6 21.2 25.0 21.6 23.4 3 11.1 6.8 9.0 12.8 10.3 11.3 23.4 20.8 21.8 22.6 20.7 21.6 5 12.0 7.7 10.0 17.3 11.9 14.2 25.0 22.0 23.6 26.0 19.7 22.3 6 14.4 10.0 11.7 16.3 12.9 14.6 24.3 20.7 22.0 27.0 21.5 23.5 7 14.5 11.3 13.0 17.7 12.4 15.2 24.4 18.8 20.8 26.5 22.1 24.6 8 15.7 14.4 15.0 17.8 14.3 15.9 25.2 20.6 22.8 27.6 23.5 25.1 9 15.2 11.6 13.0 16.0 13.6 14.4 24.6 22.2 23.5 27.9 22.7 25.4 10 11.7 8.3 9.5 14.3			FEBRUARY			MARCH			APRIL			MAY	
11 10.4 6.9 8.4 16.8 13.3 14.8 21.5 17.1 19.4 27.7 21.7 24.8 12 12.1 10.4 11.1 18.0 14.5 16.3 22.1 16.4 18.4 26.9 23.0 24.8 13 15.2 12.0 13.4 16.9 13.4 15.6 21.6 18.4 19.8 26.7 21.9 24.1 14 15.9 14.0 15.0 16.1 13.7 15.0 25.4 20.6 22.7 26.4 22.8 24.7 15 15.9 10.8 13.4 15.1 12.3 13.7 25.4 21.3 23.6 28.6 22.7 25.4 16 10.9 9.1 9.9 14.8 10.7 12.8 25.3 20.1 22.8 28.6 22.7 25.4 16 10.9 9.1 9.9 14.8 10.7 12.8 25.3 20.1 22.8 28.1 22.5 25.1 17 12.0 7.0 9.3 13.3 </td <td>2 3 4</td> <td>10.8 11.1 11.4</td> <td>6.5 6.8 7.9</td> <td>8.5 9.0 9.8</td> <td>12.1 11.5 12.8 15.9 17.3</td> <td>6.3 10.0 10.3 11.1 11.9</td> <td>10.7 11.3 13.3 14.2</td> <td>25.0 23.4 25.9 25.0</td> <td>18.6 20.8 20.2 22.0</td> <td>21.2 21.8 22.8 23.6</td> <td>25.0 23.8 22.6 26.0</td> <td>21.6 21.8 20.7 19.7</td> <td>23.4 22.7 21.6</td>	2 3 4	10.8 11.1 11.4	6.5 6.8 7.9	8.5 9.0 9.8	12.1 11.5 12.8 15.9 17.3	6.3 10.0 10.3 11.1 11.9	10.7 11.3 13.3 14.2	25.0 23.4 25.9 25.0	18.6 20.8 20.2 22.0	21.2 21.8 22.8 23.6	25.0 23.8 22.6 26.0	21.6 21.8 20.7 19.7	23.4 22.7 21.6
13 15.2 12.0 13.4 16.9 13.4 15.6 21.6 18.4 19.8 26.7 21.9 24.1 14 15.9 14.0 15.0 16.1 13.7 15.0 25.4 20.6 22.7 26.4 22.8 24.7 15 15.9 10.8 13.4 15.1 12.3 13.7 25.4 20.6 22.7 26.4 22.8 24.7 16 10.9 9.1 9.9 14.8 10.7 12.8 25.3 20.1 22.8 28.1 22.5 25.1 17 12.0 7.0 9.3 13.3 10.6 11.7 24.1 16.4 18.9 31.0 22.8 25.8 18 11.9 7.8 9.8 10.6 9.6 10.0 18.7 15.0 16.6 29.9 24.3 26.0 19 13.8 9.1 11.2 12.8 9.3 10.8 21.4 16.1 18.6 28.3 24.3 25.8 20 16.1 10.8 13.0 16.9 <td>7 8 9</td> <td>14.5 15.7 15.2</td> <td>11.3 14.4 11.6</td> <td>13.0 15.0 13.0</td> <td>16.3 17.7 17.8 16.0 14.3</td> <td>12.9 12.4 14.3 13.6 11.5</td> <td>14.6 15.2 15.9 14.4 12.9</td> <td>24.3 24.4 25.2 24.6 23.7</td> <td>20.7 18.8 20.6 22.2 21.5</td> <td>22.0 20.8 22.8 23.5 22.3</td> <td>27.0 26.5 27.6 27.9 27.0</td> <td>21.5 22.1 23.5 22.7 22.1</td> <td>24.6 25.1 25.4</td>	7 8 9	14.5 15.7 15.2	11.3 14.4 11.6	13.0 15.0 13.0	16.3 17.7 17.8 16.0 14.3	12.9 12.4 14.3 13.6 11.5	14.6 15.2 15.9 14.4 12.9	24.3 24.4 25.2 24.6 23.7	20.7 18.8 20.6 22.2 21.5	22.0 20.8 22.8 23.5 22.3	27.0 26.5 27.6 27.9 27.0	21.5 22.1 23.5 22.7 22.1	24.6 25.1 25.4
17 12.0 7.0 9.3 13.3 10.6 11.7 24.1 16.4 18.9 31.0 22.8 25.8 18 11.9 7.8 9.8 10.6 9.6 10.0 18.7 15.0 16.6 29.9 24.3 26.0 19 13.8 9.1 11.2 12.8 9.3 10.8 21.4 16.1 18.6 28.3 24.3 25.9 20 16.1 10.8 13.0 16.9 10.6 12.8 22.5 19.7 21.0 26.7 22.7 24.4 21 14.9 12.4 13.3 18.3 13.2 16.0 23.5 21.1 22.2 24.3 20.1 21.5 22 12.4 10.6 11.3 20.0 14.9 17.5 23.7 20.5 21.9 23 13.0 9.9 11.2 21.9 16.3 19.1 23.1 19.3 21.1 26.7 19.5 22.8 24 14.5 12.4 13.4 20.9	12 13 14	12.1 15.2 15.9	10.4 12.0 14.0	11.1 13.4 15.0	16.9 16.1	14.5 13.4 13.7	16.3 15.6 15.0	22.1 21.6 25.4	18.4 20.6	19.8 22.7	26.7 26.4	21.9 22.8	24.8 24.1 24.7
22 12.4 10.6 11.3 20.0 14.9 17.5 23.7 20.5 21.9 23 13.0 9.9 11.2 21.9 16.3 19.1 23.1 19.3 21.1 26.7 19.5 22.8 24 14.5 12.4 13.4 20.9 13.3 16.4 23.5 17.8 20.1 26.9 22.1 23.8 25 16.0 10.8 12.5 15.6 11.5 13.4 23.3 17.5 20.2 26 15.4 12.3 13.9 14.3 10.2 11.7 23.2 18.4 20.9 27.9 22.1 24.1 27 15.8 14.0 14.6 10.2 8.9 9.4 23.8 19.0 21.3 29.5 23.3 26.1 28 14.0 7.4 9.8 12.0 8.7 9.8 23.3 19.5 21.3 30.3 24.5 26.9 29 13.4	17 18 19	12.0 11.9 13.8	7.0 7.8 9.1	9.3 9.8 11.2	13.3 10.6 12.8	10.6 9.6 9.3	11.7 10.0 10.8	24.1 18.7 21.4	16.4 15.0 16.1	18.9 16.6 18.6	31.0 29.9 28.3	22.8 24.3 24.3	25.8 26.0 25.8
26 15.4 12.3 13.9 14.3 10.2 11.7 23.2 18.4 20.9 27.9 22.1 24.1 27 15.8 14.0 14.6 10.2 8.9 9.4 23.8 19.0 21.3 29.5 23.3 26.1 28 14.0 7.4 9.8 12.0 8.7 9.8 23.3 19.5 21.3 30.3 24.5 26.9 29 13.4 10.7 11.8 23.7 19.3 21.4 28.3 24.9 26.7 30 16.5 12.4 14.2 23.4 19.8 21.6 30.4 24.9 26.5 31 18.1 14.0 15.8 26.3 22.3 22.9 MONTH 16.1 6.0 11.5 21.9 6.3 13.5 25.9 14.3 21.1	22 23 24	12.4 13.0 14.5	10.6 9.9 12.4	11.3 11.2 13.4	20.0 21.9 20.9	14.9 16.3 13.3	17.5 19.1 16.4	23.7 23.1 23.5	20.5 19.3 17.8	21.9 21.1 20.1	26.7 26.9	 19.5 22.1	22.8 23.8
MONTH 16.1 6.0 11.5 21.9 6.3 13.5 25.9 14.3 21.1	27 28 29 30	15.8 14.0 	14.0 7.4 	14.6 9.8 	10.2 12.0 13.4 16.5	8.9 8.7 10.7 12.4	9.4 9.8 11.8 14.2	23.8 23.3 23.7 23.4	19.0 19.5 19.3 19.8	20.9 21.3 21.3 21.4 21.6	27.9 29.5 30.3 28.3 30.4	22.1 23.3 24.5 24.9 24.9	26.1 26.9 26.7 26.5
										21.1			

08123850 Colorado River above Silver, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	IR.
1	24.0	22.5 21.5	23.1 25.1									
2	29.1		25.1									
3												
4												
5										29.0	24.4	26.2
6										28.8	25.2	27.0
7										30.4	25.5	27.3
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21										27.2	23.3	24.6
22										25.0	23.9	24.7
23										25.6	21.8	23.8
24										24.2	21.4	22.8
25										24.1	19.2	21.5
26							26.3	25.9	25.9	24.0	18.8	21.3
27							26.8	26.1	26.4	24.0	19.3	21.3
28							20.8	20.1	20.4	24.3	19.5	22.2
28 29										24.8	19.5	22.2
29 30										24.5	19.7	
30 31										23.2	19.9	21.5
31												
MONTH												

DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE

08123950 E.V. Spence Reservoir near Robert Lee, TX

LOCATION.--Lat 31°52′46", long 100°31′01", Coke County, Hydrologic Unit 12080008, in outlet works of Robert Lee Dam on the Colorado River, 2.2 mi west of Robert Lee, and at mile 716.0.

DRAINAGE AREA. -- 15,278 mi², approximately, of which 10,260 mi² probably is noncontributing.

PERIOD OF RECORD.--Dec. 1968 to current year.

Water-quality records.--Chemical data: Nov. 1969 to Aug. 1988. Biochemical data: Jan. 1978 to Aug. 1988.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE. -- Water-stage recorder. Datum of gage is sea level. Prior to June 24, 1969, nonrecording gage at same site and datum. Satellite telemeter at station.

REMARKS.--No estimated daily contents. Records good. The reservoir is formed by a rolled earthfill dam 21,500 ft long. Closure was made Dec. 30, 1968, and dam was completed in June 1969. The dam is the property of the Colorado River Municipal Water District, which has a permit to divert 50,000 acre-ft annually for municipal, mining, and industrial uses. Inflow into the reservoir is partially regulated by Lake J.B. Thomas (station 08118000, conservation pool storage 199,931 acre-ft), Lake Colorado City (station 08123000, conservation pool storage 30,800 acre-ft), and Champion Creek Reservoir (station 08123600, conservation pool storage 41,600 acre-ft). There are two spillways: The controlled service spillway is a morning-glory type that is partially controlled by 12 lift gates, 14.48 by 22.0 ft, and discharges through a 28.0 ft diameter concrete conduit. The uncontrolled spillway is a 3,200 ft wide cut through natural ground near the right end of dam. Conservation pool storage is 517,272 acre-ft. Data regarding the dam are given in the following table:

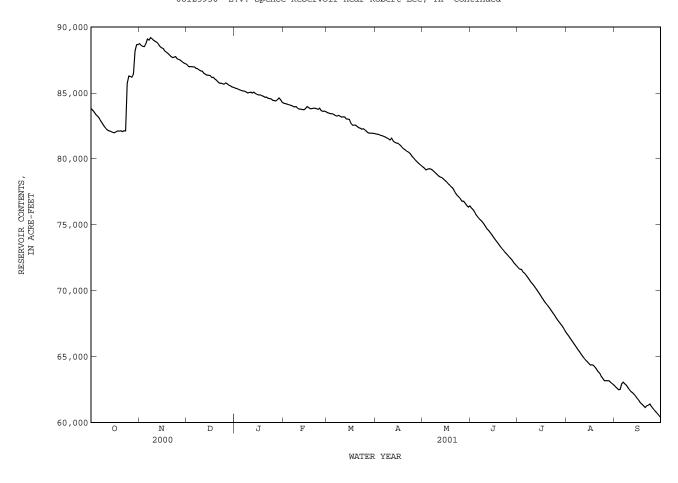
	Elevation (feet)
Top of dam	1,928.0
Crest of spillway	1,908.0
Top of gates	1,900.0
Crest of spillway	1,878.0
Lowest gated outlet (invert)	1,815.85

COOPERATION. -- Capacity table dated Mar. 1972 was furnished by the Colorado River Municipal Water District. Records of diversions can be obtained from the city of San Angelo and from the Colorado River Municipal Water District. A volumetric survey by the Texas Water Development Board in July 1999 has not received final approval from the Colorado River Municipal Water District.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 355,300 acre-ft, June 16, 1987, elevation, 1,887.03 ft; minimum contents after initial filling, 53,950 acre-ft, Mar. 23, 2000, elevation, 1,841.81 ft.

EXTREMES FOR CURRENT YEAR. -- Maximum contents, 89,330 acre-ft, Nov. 8, elevation, 1,851.54 ft; minimum contents, 60,270 acre-ft, Sept. 30, elevation, 1,843.82 ft.

> RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	83810	88730	87170	85360	84220	83500	81880	79370	76270	71730	66750	62730
2	83680	88590	87020	85330	84190	83470	81880	79290	76150	71630	66590	62610
3	83520	88530	86980	85270	84160	83430	81830	79160	75980	71620	66410	62480
4	83370	88510	87000	85220	84120	83420	81780	79210	75760	71420	66240	62510
5	83250	88730	86970	85180	84070	83370	81750	79250	75580	71310	66070	62950
6	83110	89100	86970	85150	84050	83280	81690	79230	75440	71160	65900	63050
7	82890	89000	86870	85130	83970	83230	81650	79150	75340	71000	65710	62940
8	82700	89200	86840	85070	83940	83300	81570	79050	75210	70820	65530	62820
9	82530	89100	86740	85000	83960	83240	81520	78930	75050	70660	65370	62640
10	82360	88980	86670	85030	83820	83160	81430	78820	74870	70520	65200	62480
11	82210	88900	86640	85060	83770	83190	81570	78700	74690	70360	65040	62340
12	82140	88830	86490	84980	83770	83170	81350	78620	74560	70200	64860	62250
13	82110	88690	86420	85050	83750	83030	81250	78590	74410	70040	64720	62120
14	82050	88530	86340	84950	83720	83020	81200	78480	74250	69860	64620	61980
15	81990	88420	86340	84880	83800	82990	81180	78380	74070	69670	64490	61820
16	81980	88370	86320	84850	83960	82690	81080	78270	73910	69480	64350	61670
17	82060	88190	86170	84850	83880	82560	80970	78120	73750	69300	64380	61490
18	82120	88090	86180	84790	83800	82560	80830	78010	73600	69130	64320	61380
19	82100	88010	86050	84750	83810	82560	80730	77870	73430	68970	64200	61270
20	82130	87880	85970	84670	83840	82440	80650	77800	73260	68820	64040	61140
21	82060	87760	85840	84680	83840	82360	80550	77590	73120	68670	63850	61260
22	82130	87680	85740	84590	83800	82320	80490	77370	72970	68510	63730	61310
23	82120	87710	85740	84570	83740	82240	80380	77210	72840	68330	63500	61400
24	85710	87750	85690	84550	83840	82290	80200	77100	72710	68150	63340	61220
25	86280	87580	85660	84440	83650	82190	80060	76960	72580	67960	63170	61060
26 27 28 29 30 31	86250 86180 86410 88180 88660 88670	87530 87470 87390 87290 87220	85760 85690 85580 85530 85460 85420	84430 84390 84480 84620 84480 84300	83600 83620 83580 	82080 81970 81950 81950 81940 81920	79920 79810 79690 79580 79480	76780 76790 76630 76470 76340 76420	72450 72320 72130 71990 71870	67780 67630 67480 67320 67130 66930	63180 63170 63160 63040 62950 62840	60920 60780 60640 60500 60360
MEAN	83700	88260	86270	84840	83870	82740	80930	78060	74020	69470	64540	61800
MAX	88670	89200	87170	85360	84220	83500	81880	79370	76270	71730	66750	63050
MIN	81980	87220	85420	84300	83580	81920	79480	76340	71870	66930	62840	60360
(+)	1851.39	1851.07	1850.63	1850.35	1850.17	1849.76	1849.15	1848.38	1847.13	1845.72	1844.55	1843.85
(@)	+4770	-1450	-1800	-1120	-720	-1660	-2440	-3060	-4550	-4940	-4090	-2480

CAL YR 2000 MAX 102900 MIN 54040 (@) +27000 WTR YR 2001 MAX 89200 MIN 60360 (@) -23540

⁽⁺⁾ Elevation, in feet, at end of month.

^(@) Change in contents, in acre-feet.

08123950 E.V. Spence Reservoir near Robert Lee, TX--Continued

08124000 Colorado River at Robert Lee, TX

LOCATION.--Lat 31°53′07", long 100°28′49", Coke County, Hydrologic Unit 12080008, on left bank 190 ft upstream from bridge on State Highway 208 in Robert Lee, 0.4 mi upstream from Mountain Creek, 2.7 mi downstream from Messbox Creek, 3.6 mi downstream from Robert Lee Dam, and at mile 712.4.

DRAINAGE AREA.--15,307 mi^2 , of which 10,260 mi^2 probably is noncontributing.

PERIOD OF RECORD.--Oct. 1923 to Dec. 1927, Apr. 1939 to May 1956, Oct. 1968 to current year. Prior to Dec. 1927, published as "near Robert Lee".

Water-quality records.--Chemical data: Oct. 1947 to Sept. 1957.

REVISED RECORDS.--WSP 1723: 1925(M). WDR TX-81-3: Drainage area.

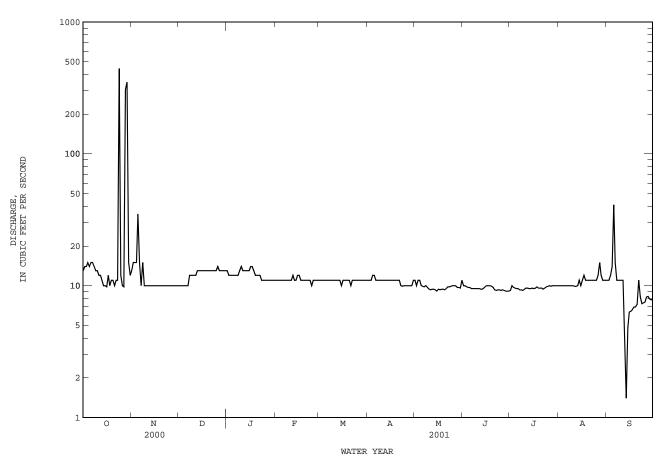
GAGE.--Water-stage recorder. Datum of gage is 1,771.70 ft above sea level. Prior to Dec. 31, 1927, nonrecording gage at site 9 mi downstream at different datum. Apr. 18 to Sept. 26, 1939, nonrecording gage, and Sept. 27, 1939 to May 9, 1956, water-stage recorder at site 200 ft downstream at same datum. Satellite telemeter at station.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Since July 1952, at least 10% of contributing drainage area has been regulated. There are many diversions above station for municipal, mining, agricultural, and industrial uses. No flow at times.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--16 years (water years 1924-27, 1940-51) prior to completion of Lake J.B. Thomas, 234 ft³/s (169,400 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS, 1924-27, 1940-51).--Maximum discharge, 32,500 ft³/s Sept. 6, 1926 (gage height, 20.20 ft, site and datum then in use), from rating curve extended above 15,000 ft³/s; no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1907, 26.7 ft Oct. 13, 1957, from floodmarks. Flood in Apr. 1922 reached a stage of 25.5 ft, present datum, from information by local resident.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAILY MEAN VALUES OCT DEC FEB SEP DAY NOV JAN MAR APR MAY JUN JUL AUG e10 9.2 e10 9.8 9.7 e10 e15 9.7 9.6 9.5 e35 e10 7 e15 e10 9 9 9 5 9 5 9.8 e10 e10 9.5 9.3 9.5 9.3 e15 9.7 e10 9 5 9 2 9.4 9.5 e10 e10 9 3 9 5 9 6 9 9 9.6 9.9 e10 3.5 e10 9.4 9.4 9.5 1.4 e10 9.3 9.6 9.5 4.8 6.3 9.8 e10 9.4 9.5 6.4 e10 9.3 e10 9.4 9.8 6.9 9.9 e10 9.4 9.6 6.9 7.2 9.5 e10 9.3 9.6 8.2 e10 9.8 9.2 9.4 e10 9.9 9.8 9.3 9.6 7.3 9.9 9.8 9.3 e10 e10 9.2 9.9 7.5 e10 9.3 8.2 9.8 e10 9.2 9.9 8.3 9.7 e10 9.1 7.9 e350 9.1 e10 7.8 e15 e10 ___ 9.6 9.1 8.0 ------тотат. 1441 6 323 9 304 1 286 2 298 8 333 8 290 6 12.2 9.64 MEAN 46.5 11.8 12.2 11.1 10.9 10.8 9.81 9.54 10.8 9.69 MAX MTN 9 8 1.0 9 9 9 1 9 1 9 2 9 9 1 4 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1952 - 2001hz, BY WATER YEAR (WY) MEAN 10.2 3.04 28.1 38.2 40.6 50.3 33.9 MAX 16.9 12.2 (WY) .000 (WY)

08124000 Colorado River at Robert Lee, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1952 - 2001hz
ANNUAL TOTAL	4631.37	5036.0	
ANNUAL MEAN	12.7	13.8	28.8
HIGHEST ANNUAL MEAN			237 1954
LOWEST ANNUAL MEAN			1.04 1969
HIGHEST DAILY MEAN	444 Oct 24	444 Oct 24	13400 May 12 1954
LOWEST DAILY MEAN	.79 Mar 20	1.4 Sep 13	.00 Oct 1 1951
ANNUAL SEVEN-DAY MINIMUM	.94 Mar 15	5.1 Sep 12	.00 Oct 1 1951
MAXIMUM PEAK FLOW		2700 Oct 24	c24500 Sep 9 1980
MAXIMUM PEAK STAGE		9.36 Oct 24	20.63 Sep 9 1980
ANNUAL RUNOFF (AC-FT)	9190	9990	20860
10 PERCENT EXCEEDS	14	13	15
50 PERCENT EXCEEDS	10	11	.77
90 PERCENT EXCEEDS	1.5	9.3	.00

- e h z c
- Estimated
 See PERIOD OF RECORD paragraph.
 Period of regulated streamflow.
 From rating curve extended above 19,200 ft³/s.

08125500 Oak Creek Reservoir near Blackwell, TX

LOCATION.--Lat $32^{\circ}03'25$ ", long $100^{\circ}17'37$ ", Coke County, Hydrologic Unit 12080008, on left bank at municipal pump station, 1.9 mi upstream from dam on Oak Creek, 2.5 mi southeast of Blackwell, 14.0 mi north of Bronte, and 20.0 mi upstream from mouth.

DRAINAGE AREA. -- 238 mi².

PERIOD OF RECORD.--May 1953 to Sept. 1983, Mar. 1999 to current year.

Water-quality records.--Chemical data: Apr. 1964 to Jan. 1967 and Nov. 1970 to Apr. 1983.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. May 1953 to Sept. 1983, nonrecording gage at same site and datum. Satellite telemeter at station.

REMARKS.--No estimated daily contents. Records good. The reservoir is formed by a rolled earthfill dam 3,800 ft long. The dam was completed in May 1952, and deliberate impoundment began May 12, 1953. The uncontrolled emergency spillway is an 800-foot-wide cut through natural ground, located 1,200 ft from right end of dam. The service spillway is an uncontrolled cut channel through natural ground 300 ft wide, located 2,000 ft from right end of dam. The reservoir and dam are the property of city of Sweetwater. The dam was built to impound water for municipal and industrial uses by the cities of Sweetwater, Blackwell, and Bronte. Since Apr. 1962, West Texas Utilities Company has operated a steam generating power plant located on the reservoir. There is a gated outlet at the service spillway that can release water downstream to Oak Creek through a 24-inch concrete pipe. The capacity curve is based on a 1950 topographic survey. Conservation pool storage is 39,360 acre-ft. Data regarding the dam are given in the following table:

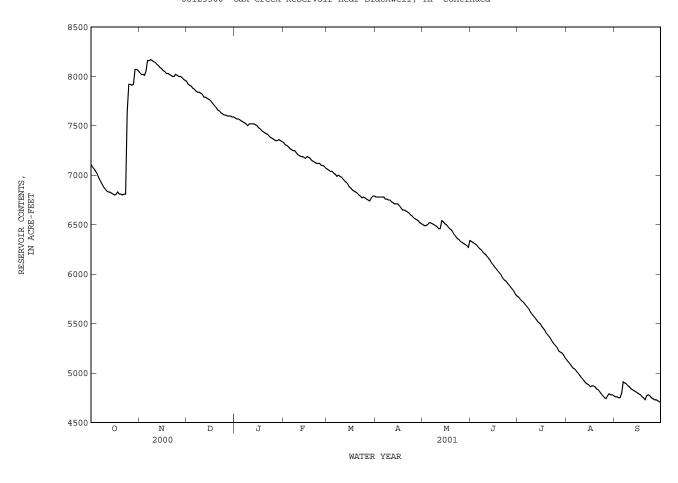
	Elevation (feet)
Top of dam	
Crest of spillway	2,005.0
Crest of spillway (top of conservation pool)	2,000.0
Lowest gated outlet (invert)	1,951.0

COOPERATION.--Capacity table dated Nov. 9, 1953, prepared from curve furnished by city of Sweetwater.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 49,100 acre-ft, Oct. 13, 1957, elevation, 2,003.80 ft; minimum contents, 4,690 acre-ft, Sept. 30, 2001, elevation, 1,971.81 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,180 acre-ft, Nov. 8, elevation, 1,977.86 ft; minimum contents, 4,690 acre-ft, Sept. 30, elevation, 1,971.81 ft.

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001


DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR APR JUN JUL AUG SEP JAN MAY ___ ---MEAN MAX MIN 1975.75 1977.69 1977.54 1977.01 1976.62 1976.20 1975.28 1975.00 1974.02 1972.81 1972.00 1971.84 (@) +950 -100 -370 -250 -280 -280

CAL YR 2000 MAX 13640 MIN 6800 (@) -6070 WTR YR 2001 MAX 8170 MIN 4700 (@) -2410

⁽⁺⁾ Elevation, in feet, at end of month.

^(@) Change in contents, in acre-feet.

08125500 Oak Creek Reservoir near Blackwell, TX--Continued

08126380 Colorado River near Ballinger, TX

LOCATION.--Lat $31^{\circ}42'55$ ", long $100^{\circ}01'34$ ", Runnels County, Hydrologic Unit 12090101, at right downstream end of bridge on Farm Road 2111, 0.4 mi upstream from Rocky Creek, 5.0 mi northwest of Ballinger, and at mile 665.8.

DRAINAGE AREA. --16,358 mi², approximately, of which 10,260 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1907 to Sept. 1979 (published as "at Ballinger", station 08126500) and Oct. 1979 to current year.

Monthly discharge only for some periods published in WSP 1312. Gage-height records collected in this vicinity from 1903-29 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 1118: Drainage area. WSP 1512: 1916-17, 1919-20, 1921(M), 1922-25, 1928(M), 1930(M). WSP 1712: 1935, 1954-55(M). WDR TX-78-3: 1975-77.

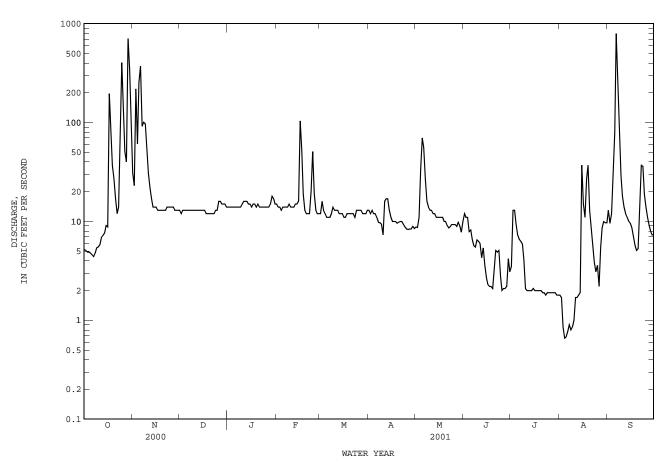
GAGE.--Water-stage recorder. Datum of gage is 1,606.51 ft above sea level. Prior to Nov. 29, 1930, nonrecording gages at several sites and at various datums near site 5.4 mi downstream. Nov. 29, 1930, to May 1, 1975, water-stage recorder at site 6.2 mi downstream and May 1, 1975, to Sept. 30, 1979, water-stage recorder at site 5.4 mi downstream, both at datum 12.77 ft lower. Oct. 1, 1979 to June 20, 2001, water-stage recorder at site 300 ft left at same datum. Satellite telemeter at station.

REMARKS.--Records good except those for May 14 to June 21, which are fair and those for estimated daily discharges, which are poor. Since water year 1968 at least 10% of contributing drainage area has been regulated. Many diversions upstream from station for irrigation, municipal supplies, and for oil field operations. Flow is also affected by Oak Creek Reservoir (station 08125500, conservation pool storage 39,360 acre-ft), and at times by discharge from the floodwater-retarding structures in the Kickapoo and Valley Creeks drainage basins. No flow at times.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--61 years (water years 1908-68) prior to completion of E.V. Spence Reservoir, 336 ft³/s (243,400 acre-ft/vr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1908-68).--Maximum discharge, 75,400 ft³/s Sept. 18, 1936 (gage height, 28.6 ft, at former site and datum); no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, about 36 ft sometime in 1884, at former site and datum, from information by local residents. Flood of Aug. 6, 1906, reached a stage of about 32.0 ft, at former site and datum, from floodmarks (backwater from Elm Creek).


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAILY MEAN VALUES DAY OCT DEC JAN FEB APR JUL SEP NOV MAR MAY JUN AUG 5 2 8 8 3.5 1 8 1.7 9.6 5.1 8.7 .85 4.9 9.5 7.3 7 9 4 9 4.8 8.2 .68 6 6 4 6 6 5 5.7 4.4 6.3 .90 4.8 9.7 5.5 5.9 .80 5.4 9.4 6.5 4.1 .86 6.3 6.0 1.7 5.8 e13 2.0 6.9 e12 4.3 2.0 1.7 7.2 e12 5.4 2.0 1.8 2.0 7.6 3.6 1.9 2.7 2.1 8.8 2.3 2.0 8.6 2.2 2.0 7.0 2.2 2.0 2.7 5.7 9.6 2.0 2.1 9.8 3.3 2.0 5.3 9.1 8.3 5.1 1 9 8.6 4.9 1.9 5.4 9.4 8.9 5.1 1.8 3.9 9.3 8.8 2.8 3.1 9.3 2.0 1.9 3.6 8.4 8.3 9.3 2.1 8.4 8.9 2.1 1.9 5.5 9.1 2.2 7.9 8.4 9.8 1.9 8.6 8.9 9.1 1.9 7.3 9.7 ---8.5 7.8 3.1 1.8 7.4 ---------1.8 9.7 ---TOTAL. 2332 0 321 7 470.6 148 3 112 0 227 12 1486 6 14.7 MEAN 75.2 53.5 13.2 20.2 12.3 10.7 15.2 4.94 3.61 7.33 49.6 7.8 7 3 MTN 4 4 2 0 1 8 5 1 AC-FT 2.22 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 2001z, BY WATER YEAR (WY) 27.2 MEAN 96.2 40.3 54.3 46.2 48.4 91.4 MAX (WY) 2.48 1.07 (WY)

08126380 Colorado River near Ballinger, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1969 - 2001z
ANNUAL TOTAL ANNUAL MEAN	15678.26 42.8	8513.32 23.3	67.9
HIGHEST ANNUAL MEAN	42.0	23.3	405 1987
LOWEST ANNUAL MEAN			7.18 1984
HIGHEST DAILY MEAN	5890 Jun 4	794 Sep 6	9220 Aug 28 1986
LOWEST DAILY MEAN	.31 Mar 9	.66 Aug 4	.00 Mar 20 1971
ANNUAL SEVEN-DAY MINIMUM	.36 Mar 4	.79 Aug 3	.00 Mar 20 1971
MAXIMUM PEAK FLOW		1130 Sep 6	g16600 Aug 3 1978
MAXIMUM PEAK STAGE		9.02 Sep 6	27.50 Sep 21 1990
ANNUAL RUNOFF (AC-FT)	31100	16890	49160
10 PERCENT EXCEEDS	23	28	113
50 PERCENT EXCEEDS	3.0	12	13
90 PERCENT EXCEEDS	.63	2.1	1.1

e z g

Estimated Period of regulated streamflow. At site and datum then in use.

08126380 Colorado River near Ballinger, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD . --

CHEMICAL DATA: Sept. 1961 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Oct. 1961 to Sept. 1997 (local observer), Feb. 2001 to current year. WATER TEMPERATURE: Oct. 1961 to Sept. 1997 (local observer), Feb. 2001 to current year. SUSPENDED SEDIMENT DISCHARGE: Jan. 1978 to Sept. 1981 (local observer).

INSTRUMENTATION. -- Water-quality monitor since Feb. 9, 2001.

REMARKS.--Records good except those for specific conductance from Apr. 8 to June 21 and water temperature from May 2 to June 21, which are fair. Interruptions in the specific conductance and water temperature values were due to malfunction of the instrument. Interruptions in the daily mean specific conductance values Apr. 10, 24-29, May 10-13, 17-23, 31, and June 4-20 were due to malfunction of the instrument. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous years using daily (or continuous) records of specific conductance and regression relations between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum daily, 13,500 microsiemens/cm, May 3, 1963; minimum daily, 244 microsiemens/cm, Sept. 9, 1980. WATER TEMPERATURE: Maximum daily, 39.0°C, July 3, 1977; minimum daily, 0.0°C, Jan. 9-11, 1973. SEDIMENT CONCENTRATION: Maximum daily mean, 3,740 mg/L, Sept. 9 1980; minimum daily mean, 4 mg/L, Feb. 2, 1980. SEDIMENT LOADS: Maximum daily, 94,100 tons Aug. 3, 1978; minimum daily, 0 tons on many days during 1978 and 1980-81.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum recorded, 6,970 microsiemens/cm, Aug. 15; minimum recorded, 325 microsiemens/cm, Sept. 6. WATER TEMPERATURE: Maximum recorded, 37.9°C, July 13; minimum, 8.5°C, Feb. 18.

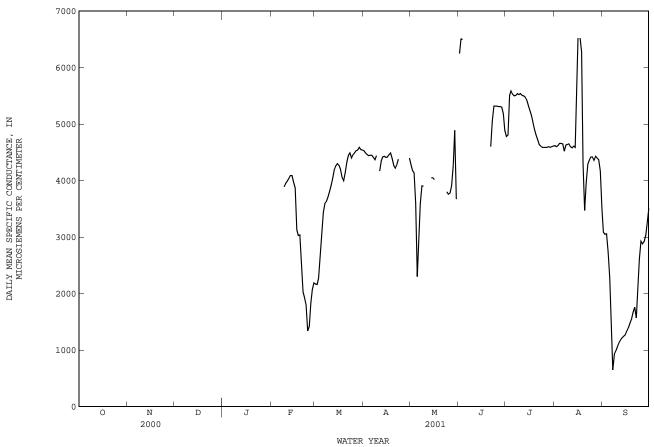
WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIS-											
		CHARGE,	SPE-		HARD-		MAGNE-		SODIUM	POTAS-		CHLO-	FLUO-
		INST.	CIFIC		NESS	CALCIUM	SIUM,	SODIUM,	AD-	SIUM,	SULFATE	RIDE,	RIDE,
		CUBIC	CON-	TEMPER-	TOTAL	DIS-	DIS-	DIS-	SORP-	DIS-	DIS-	DIS-	DIS-
DATE	TIME	FEET PER	DUCT- ANCE	ATURE	(MG/L AS	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	TION	SOLVED (MG/L	SOLVED (MG/L	SOLVED	SOLVED (MG/L
DAIL	TIME	SECOND	(US/CM)	WATER (DEG C)	CACO3)	AS CA)	AS MG)	AS NA)	RATIO	AS K)	AS SO4)	(MG/L AS CL)	AS F)
		(00061)	(00095)	(00010)	(00900)	(00915)	(00925)	(00930)	(00931)	(00935)	(00945)	(00940)	(00950)
		(00001)	(00055)	(00010)	(00500)	(00)13)	(00525)	(00)30)	(00)31)	(00)33)	(00)15)	(00510)	(00330)
OCT													
06	1100	4.4	4690	21.1	1190	262	131	598	7.54	18.5	974	959	.6
19	1015	37	2480	18.9	503	114	53.2	280	5.43	10.8	423	478	. 4
DEC													
01	0930	13	4130	12.8	1020	235	105	500	6.81	11.6	786	816	. 4
JAN													_
25	1545	14	4260	9.4	951	227	93.0	496	7.00	14.3	806	837	.5
MAR	1000	1.0	4400	10 5	1000	0.40	100	F 2 1		14.0	0.77	001	_
30	1200	13	4400	12.7	1030	249	100	531	7.19	14.2	876	881	.5
SEP	1200	1.40	670	05.4	150	20.0	10.4	70.3	0.40	F 00	00.0	110	n 1
07	1300	149	678	25.4	152	38.8	13.4	70.3	2.48	5.29	89.9	117	E.1

DATE	(MG/L AS	CONSTI- TUENTS, DIS- SOLVEI (MG/L)
OCT 06 19 DEC	7.8 2.5	3010 1400
01	4.0	2550
JAN 25	1.3	2560
MAR 30	1.7	2750
07	3.7	376

87

08126380 Colorado River near Ballinger, TX--Continued


SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

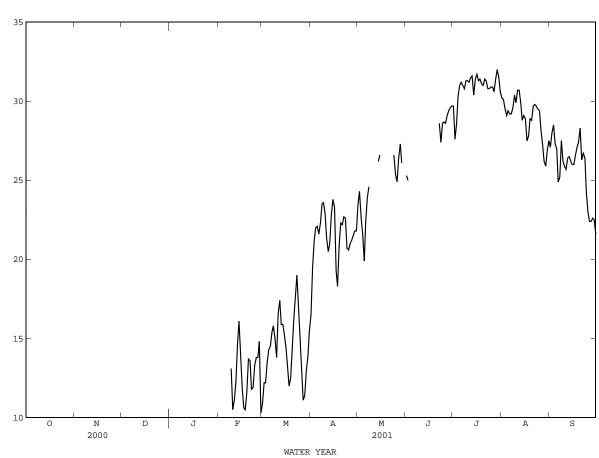
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		1	NOVEMBER		D	ECEMBER			JANUARY	
1												
2												
3 4												
4 5												
6												
7												
8												
9 10												
10												
11												
12 13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24 25												
23												
26												
27 28												
29												
30												
31												
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX			MAX		MEAN	MAX		MEAN	MAX		MEAN
DAY	MAX	MIN FEBRUARY		MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1		FEBRUARY		2250	MARCH 2090	2170	4570	APRIL 4500	4530		MAY	4280
1 2		FEBRUARY		2250 2210	MARCH 2090 2090	2170 2160	4570 4540	APRIL 4500 4440	4530 4490		MAY 	4280 4180
1 2 3		FEBRUARY		2250 2210 2390	MARCH 2090 2090 2170	2170 2160 2270	4570 4540 4490	APRIL 4500 4440 4420	4530 4490 4460	 4210	MAY 4100	4280 4180 4140
1 2	 	FEBRUARY		2250 2210	MARCH 2090 2090	2170 2160	4570 4540	APRIL 4500 4440	4530 4490		MAY 	4280 4180
1 2 3 4 5	 	FEBRUARY	 	2250 2210 2390 2800 3320	MARCH 2090 2090 2170 2380 2690	2170 2160 2270 2630 3050	4570 4540 4490 4470 4460	APRIL 4500 4440 4420 4410 4420	4530 4490 4460 4440 4450	 4210 4340 2900	MAY 4100 1680 1770	4280 4180 4140 3600 2300
1 2 3 4 5		FEBRUARY		2250 2210 2390 2800 3320	MARCH 2090 2090 2170 2380 2690 3290	2170 2160 2270 2630 3050 3440	4570 4540 4490 4470 4460	APRIL 4500 4440 4420 4410 4420 4430	4530 4490 4460 4440 4450	 4210 4340 2900	MAY 4100 1680 1770 2440	4280 4180 4140 3600 2300
1 2 3 4 5	 	FEBRUARY	 	2250 2210 2390 2800 3320 3570 3730	MARCH 2090 2090 2170 2380 2690 3290 3380	2170 2160 2270 2630 3050 3440 3600	4570 4540 4490 4470 4460	APRIL 4500 4440 4420 4410 4420	4530 4490 4460 4440 4450	 4210 4340 2900	MAY 4100 1680 1770	4280 4180 4140 3600 2300 2860 3600
1 2 3 4 5 6 7 8 9	 3960	FEBRUARY 3830	 3890	2250 2210 2390 2800 3320 3570 3730 3690 3820	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590	2170 2160 2270 2630 3050 3440 3600 3630 3710	4570 4540 4490 4470 4460 4480 4470	APRIL 4500 4440 4420 4410 4420 4430 4280	4530 4490 4460 4440 4450 4450	 4210 4340 2900 3300 3830	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300
1 2 3 4 5	 	FEBRUARY		2250 2210 2390 2800 3320 3570 3730 3690	MARCH 2090 2090 2170 2380 2690 3290 3380 3520	2170 2160 2270 2630 3050 3440 3600 3630	4570 4540 4490 4470 4460 4480 4470 4440	4500 4440 4420 4410 4420 4430 4280 4240	4530 4490 4460 4440 4450 4450 4410 4370	4210 4340 2900 3300 3830 3970	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910
1 2 3 4 5 6 7 8 9	 3960	FEBRUARY 3830	 3890	2250 2210 2390 2800 3320 3570 3730 3690 3820	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590	2170 2160 2270 2630 3050 3440 3600 3630 3710	4570 4540 4490 4470 4460 4480 4470 4440 4460	APRIL 4500 4440 4420 4410 4420 4430 4280 4240 4400	4530 4490 4460 4440 4450 4450 4410 4370 4440	4210 4340 2900 3300 3830 3970	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910 3900
1 2 3 4 5 6 7 8 9 10	 3960 4050 4120	FEBRUARY 3830 3840 3910 3960	 3890 3950 3990 4040	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 3880	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810	4570 4540 4490 4470 4460 4480 4470 4440 4460 4320 4400	APRIL 4500 4440 4420 4410 4420 4430 4280 4240 4400 3840 4320	4530 4490 4460 4440 4450 4450 4410 4370 4440 4170 4350	4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910 3900
1 2 3 4 5 6 7 8 9 10	 3960 4050 4120 4120 4150	FEBRUARY 3830 3840 3910 3960 4030	 3890 3950 3990 4040 4090	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 3980 4200 4320	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3880 4050	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810 3920 4050 4190	4570 4540 4490 4470 4460 4480 4470 4440 4460 4320 4400 4450	4500 4440 4440 4420 4410 4420 4430 4240 4240 4400 3840 4320 4400	4530 4490 4440 4440 4450 4410 4370 4440 4170 4350 4420	 4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910 3900
1 2 3 4 5 6 7 8 9 10 11 12 13 14	 3960 4050 4120 4150 4140	FEBRUARY 3830 3840 3910 3960 4030 4030	 3890 3950 3990 4040 4090 4090	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 3980 4200 4320 4380	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 3880 4050 4150	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810 3920 4050 4190 4260	4570 4540 4490 4470 4460 4480 4470 4440 4460 4320 4400 4450 4450	4500 4440 4420 4410 4420 4430 4240 4240 4400 3840 4320 4400 4410	4530 4490 4460 4440 4450 4450 4470 4370 4440 4170 4350 4420 4430	4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910 3900 4050
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	 3960 4050 4120 4150 4140 4090	FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3800	 3890 3950 3990 4040 4090 3970	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 3980 4200 4320 4380 4410	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810 3920 4050 4190 4260 4300	4570 4540 4490 4470 4460 4480 4470 4440 4460 4320 4400 4450 4450 4440	4500 4440 4420 4410 4420 4430 4240 4240 4240 4400 4320 4400 4410 4370	4530 4490 4440 4440 4450 4410 4370 4410 4170 4350 4420 4430 4410	4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910 3900 4050 4050
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	 3960 4050 4120 4150 4140 4090	FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580	 3890 3950 3950 3990 4040 4090 4090 3970	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 3980 4200 4320 4380 4410	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 3880 4050 4150 4210	2170 2160 2270 2630 3050 3440 3630 3710 3810 3920 4050 4190 4260 4300	4570 4540 4490 4470 4460 4480 4470 4440 4460 4320 4400 4450 4450 4450 4440	4500 4440 4420 4410 4420 4430 4240 4240 4400 3840 4370 4390	4530 4490 4460 4440 4450 4450 4410 4370 4440 4170 4350 4420 4430 4410	4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910 3900 4050 4050
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	 3960 4050 4120 4120 4140 4140 4090 4110 3930	FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3800 3580 2660	 3890 3950 3950 4040 4090 3970 3870 3130	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 3980 4200 4320 4310 4310 4250	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 3880 4050 4150 4210 4220 4130	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810 3920 4050 4190 4260 4300	4570 4540 4490 4470 4460 4470 4440 4460 4320 4400 4450 4450 4450 4440 4440 4450	4500 4440 4420 4410 4420 4430 4280 4280 4400 3840 4320 4400 4370 4390 4410 4390 4410	4530 4490 4460 4440 4450 4410 4370 4440 4170 4350 4420 4430 4410 4420 4460	4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910 4050 4050
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	 3960 4050 4120 4150 4140 4090 4110 3930 3180	FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3800 3580 2660 2860	 3890 3950 3950 4040 4090 4090 3970 3870 3130 3030	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 3980 4200 4320 4380 4410	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810 3920 4050 4190 4260 4300 4270 4200 4060	4570 4540 4490 4470 4460 4480 4470 4440 4460 4320 4400 4450 4450 4440 4440 4510 4510 451	4500 4440 4420 4410 4420 4430 4280 4240 4240 4400 4320 4400 4370 4370 4390 4410 4460	4530 4490 4440 4440 4450 4410 4370 4440 4170 4350 4420 4430 4410 4420 4460 4490	4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910 3900 4050 4050
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	 3960 4050 4120 4120 4140 4140 4090 4110 3930	FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3800 3580 2660	 3890 3950 3950 4040 4090 3970 3870 3130	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 3980 4200 4320 4310 4310 4250	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 3880 4050 4150 4210 4220 4130	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810 3920 4050 4190 4260 4300	4570 4540 4490 4470 4460 4470 4440 4460 4320 4400 4450 4450 4450 4440 4440 4450	4500 4440 4420 4410 4420 4430 4280 4280 4400 3840 4320 4400 4370 4390 4410 4390 4410	4530 4490 4460 4440 4450 4410 4370 4440 4170 4350 4420 4430 4410 4420 4460	4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910 3900 4050 4050 4020
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	 3960 4050 4120 4150 4140 4090 4110 3930 3180 3220 2770	FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2730 2360	 3890 3950 3950 4040 4090 4090 4090 3970 3870 3130 3030 3040 2610	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 4200 4320 4310 4250 4150 4040 4300	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810 3920 4050 4190 4260 4300 4270 4060 4000 4150	4570 4540 4490 4470 4460 4480 4470 4440 4460 4320 4400 4450 4450 4440 4510 4510 4480 4320	4500 4440 4420 4410 4420 4430 4280 4240 4400 3840 4320 4400 4370 4370 4390 4410 4460 4320 4220	4530 4490 4440 4440 4450 4410 4370 4440 4170 4350 4420 4430 4410 4420 4490 4390 4270	4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910 3900 4050 4050
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	 3960 4050 4120 4150 4140 4090 4110 3930 3180 3220 2770 2390	FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2860 2730 2360	 3890 3950 3950 3990 4040 4090 4090 3970 3870 3130 3030 3040 2610	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 3980 4200 4320 4380 4410 4310 4250 4150 4040 4300	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140	2170 2160 2270 2630 3050 3440 3630 3710 3810 3920 4050 4190 4260 4300 4270 4200 4060 4000	4570 4540 4490 4470 4460 4480 4470 4440 4460 4320 4400 4450 4450 4450 4450 4450 4450 44	4500 4440 4420 4420 4420 4430 4240 4240 4400 427 4400 4370 4370 4390 4410 4360 4420 4220 4200	4530 4490 4460 4440 4450 4450 4410 4370 4440 4170 4350 4420 4430 4410 4420 4460 4490 4390	4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910 3900 4050 4050 4020
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	 3960 4050 4120 4150 4150 4110 3930 3180 3220 2770 2390 2020 2120	FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310	 3890 3950 3950 4040 4090 4090 4090 3970 3870 3130 3030 3040 2610	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 3980 4200 4320 4310 4250 4150 4040 4300	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810 3920 4050 4190 4260 4300 4270 4200 4060 4000 4150 4330 4440 4440	4570 4540 4490 4470 4460 4480 4470 4440 4460 4320 4400 4450 4450 4440 4510 4510 4480 4320	4500 4440 4420 4420 4420 4420 4430 4280 4240 4400 3840 4320 4400 4370 4390 4410 4460 4320 4220 4220 4230 4310	4530 4490 4460 4440 4450 4450 4450 4470 4440 4170 4350 4420 4430 4410 4420 4460 4490 4270 4220	 4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3910 3900 4050 4050 4020
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	 3960 4050 4120 4150 4140 4090 4110 3930 3180 3220 2770 2390 2020 2120 21560	FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310 1250	 3890 3950 3950 3990 4040 4090 4090 3970 3870 3130 3030 3040 2610 2030 1930 1800 1930	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 3980 4200 4320 4380 4410 4310 4250 4150 4040 4300 4480 4560 4580 4551	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 4320	2170 2160 2270 2630 3050 3440 3630 3710 3810 3920 4050 4190 4260 4300 4270 4200 4000 4150 4330 4440 4490 4490	4570 4540 4490 4470 4460 4480 4470 4440 4460 4320 4400 4450 4450 4450 4450 4450 4450 44	4500 4440 4420 4410 4420 4430 4240 44400 4400 4410 4370 4390 4410 4460 4320 420 420 420 420 420 420 420 420 420 4	4530 4490 4460 4440 4450 4450 4450 4470 4370 4440 4170 4350 4420 4460 4490 4490 4270 4280 4280 4380 4380 4380 4380 4380 4380 4380 43	4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3600 3910 3900 4050 4050 4050 4020 3800
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	 3960 4050 4120 4150 4150 4110 3930 3180 3220 2770 2390 2020 2120	FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310	 3890 3950 3950 3990 4040 4090 4090 3970 3870 3130 3030 3040 2610 2030 1930 1800	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 3980 4200 4320 4310 4250 4150 4040 4300	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810 3920 4050 4190 4260 4300 4270 4200 4060 4000 4150 4330 4440 4440	4570 4540 4490 4470 4460 4480 4470 4440 4460 4320 4400 4450 4450 4450 4450 4450 4450 44	4500 4440 4420 4420 4420 4420 4430 4280 4240 4400 3840 4320 4400 4370 4390 4410 4460 4320 4220 4220 4230 4310	4530 4490 4460 4440 4450 4410 4370 4410 4350 4420 4420 4410 4420 4490 4390 4270 4220 4280 4380	 4210 4340 2900 3300 3830 3970 	MAY 4100 1680 1770 2440 3300 3830	4280 4180 4140 3600 2300 2860 3910 3900 4050 4050 4020
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	 3960 4050 4120 4150 4140 4090 4110 3930 3180 3220 2770 2390 2020 2120 21560 1590	FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310 1250 1270	 3890 3950 3950 3990 4040 4090 4090 3970 3870 3130 3030 3040 2610 2030 1930 1840 1420	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 4200 4310 4250 4150 4150 4410 4310 4250 4150 4560 4560 4580 4510 4590	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 4320 4440	2170 2160 2270 2630 3050 3440 3630 3710 3810 3920 4050 4190 4260 4300 4270 4260 4300 4400 4440 4490 4460 4490	4570 4540 4490 4470 4460 4470 4440 4460 4320 4400 4450 4450 4450 4450 4450 4450 44	4500 4440 4420 4410 4420 4430 4240 4240 4400 427 4410 4370 4370 4390 4410 4460 4320 4220 420 4230 4210 4210 4210 4210 4210 4210 4210 421	4530 4490 4460 4440 4450 4450 4410 4370 4440 4170 4350 4420 4460 4490 4490 4270 4280 4390 4270	4210 4340 2900 3300 3830 3970 -	MAY 4100 1680 1770 2440 3300 3830 3700	4280 4180 4140 3600 2300 2860 3600 3910 3900 4050 4050 4050 4020 3800 3760
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27	 3960 4050 4120 4120 4120 4140 4090 4110 3930 3180 22770 2390 2020 2120 21560 1590 1970 2170	FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310 1250 1270 1530 1950	 3890 3950 3950 4040 4090 3970 3870 3130 3030 2610 2030 1930 1840 2402 1840 2070	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 4200 4310 4250 4150 4150 4560 4580 4580 4590 4580	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 4370 4320 4440 4400 4460	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810 3920 4050 4190 4260 4300 4270 4260 4300 4060 4000 4150 4440 4440 4490 4460 4490 4460 4490 4460	4570 4540 4490 4470 4460 4480 4470 4460 4320 4400 4450 4450 4450 4450 4450 4450 44	4500 4440 4420 4410 4420 4430 4240 4440 4400 3840 4320 4410 4370 4320 4410 4320 4220 4200 4220	4530 4490 4440 4440 4450 4410 4370 4440 4170 4350 4420 4460 4490 4390 4270 4280 4380 	4210 4340 2900 3300 3830 3970 -	MAY 4100 1680 1770 2440 3300 3830 3700	4280 4180 4140 3600 2300 2860 3600 3910 4050 4050 4050 4020 3800 3760 3780 3920
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	3960 4050 4120 4120 4120 4140 4090 4110 3930 3180 3220 2770 2390 2020 2120 1560 1590 1970 2170 2250	FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3580 2660 2860 2730 2360 1880 1850 1310 1250 1270 1530 1950 2130	 3890 3950 3950 3990 4040 4090 3970 3870 3130 3030 3030 3030 2610 2030 1340 1420 2070 2190	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 4200 4320 4150 4150 4150 4150 4560 4580 4510 4590 4590 4610	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 4320 4440 4400 4460 4470	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810 3920 4050 4190 4260 4300 4060 4000 4050 4150 4340 4490 4400 4460 4490 4460 4530 4540	4570 4540 4490 4470 4460 4470 4440 4440 4460 4320 4400 4450 4450 4450 4450 4450 4450 44	4500 4440 4420 4410 4420 4430 4280 4240 4400 3840 4320 4400 4410 4370 4390 4410 4460 4320 4200 4200 4210	4530 4490 4460 4440 4450 4410 4370 4440 4170 4350 4420 4430 4410 4420 4490 4270 4280 4380 	 4210 4340 2900 3300 3830 3970 3790	MAY 4100 1680 1770 2440 3300 3830 3700 3690	4280 4180 4140 3600 2300 2860 3910 3900 4050 4050 4020 3800 3760 3780 3920 4280
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	 3960 4050 4120 4120 4120 4140 4090 4110 3930 3180 22770 2390 2020 2120 21560 1590 1970 2170	FEBRUARY 3830 3840 3910 3960 4030 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310 1250 1270 1530 1950	 3890 3950 3950 4040 4090 3970 3870 3130 3030 2610 2030 1930 1840 2402 1840 2070	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 4200 4310 4250 4150 4150 4410 4300 4450 4560 4560 4560 4560 4580 4510 4580 4580 4610 4680	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4210 4220 4130 3980 3970 3980 4140 4290 4370 4440 4460 4470 44520	2170 2160 2270 2630 3050 3440 3630 3710 3810 3920 4050 4190 4260 4300 4270 4260 4300 4400 4440 4490 4440 4490 4450 4530 4540 4590	4570 4540 4490 4470 4460 4480 4470 4460 4320 4400 4450 4450 4450 4450 4450 4450 44	4500 4440 4420 4410 4420 4430 4240 4440 4400 3840 4320 4410 4370 4320 4410 4320 4220 4200 4220	4530 4490 4440 4440 4450 4410 4370 4440 4170 4350 4420 4460 4490 4390 4270 4280 4380 	4210 4340 2900 3300 3830 3970 -	MAY 4100 1680 1770 2440 3300 3830 3700	4280 4180 4140 3600 2300 2860 3910 3910 3900 4050 4050 4050 4020 3800 3760 3780 3920 4289 4890
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	3960 4050 4120 4150 4140 4090 4110 3930 3180 3220 2770 2390 2020 2120 11560 1590 1970 2170 2250	FEBRUARY 3830 3840 3910 3960 4030 4030 3800 3580 2660 2860 2730 2360 1880 1850 1310 1250 1270 1530 1950 2130	 3890 3950 3950 3990 4040 4090 4090 3970 3870 3130 3040 2610 2030 1930 1840 1420	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 4200 4320 4150 4150 4150 4150 4560 4580 4510 4590 4590 4610	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 4320 4440 4400 4460 4470	2170 2160 2270 2630 3050 3440 3600 3630 3710 3810 3920 4050 4190 4260 4300 4060 4000 4050 4150 4340 4490 4400 4460 4490 4460 4530 4540	4570 4540 4490 4470 4460 4480 4470 4440 4460 4320 4400 4450 4450 4450 4450 4450 4450 44	4500 4440 4420 4410 4420 4430 4240 4400 3840 4370 4410 4370 4390 4410 4460 4320 4220 420 420 4210 4210 4210 4210 4210	4530 4490 4460 4440 4450 4450 4410 4370 4440 4170 4350 4420 4460 4490 4270 4220 4280 4390 4270	4210 4340 2900 3300 3830 3970 3790	MAY 4100 1680 1770 2440 3300 3830 3700 3690	4280 4180 4140 3600 2300 2860 3910 3900 4050 4050 4050 4020 3800 3760 3780 3920 4280
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	 3960 4050 4120 4120 4120 4140 4090 4110 3930 3180 2770 2390 2020 2120 2120 2170 2250 	FEBRUARY 3830 3840 3910 3960 4030 4030 4030 2360 2860 2730 2360 1880 1850 1310 1250 1270 1530 1950 2130	 3890 3950 3950 3990 4040 4090 3970 3870 3130 3030 2610 2030 1930 1840 1420 1840 2070 2190 	2250 2210 2390 2800 3320 3570 3730 3690 3820 3910 4200 4320 4310 4250 4150 4150 4560 4560 4580 4510 4590 4580 4610 4680 4680	MARCH 2090 2090 2170 2380 2690 3290 3380 3520 3590 3740 3830 4050 4150 4210 4220 4130 3980 3970 3980 4140 4290 4370 4320 4370 4320 4440 4400 4460 4470 4520 4510	2170 2160 2270 2630 3050 3440 3630 3710 3810 3920 4050 4190 4260 4300 4270 4260 4300 4490 4490 4490 4490 4460 4490 4530 4540 4590 4550	4570 4540 4490 4470 4460 4480 4470 4460 4320 4400 4450 4450 4450 4450 4450 4450 44	4500 4440 4420 4410 4420 4430 4240 4400 3840 4320 4410 4370 4390 4410 4320 4220 4200 4210 4210 4210 4210 4210 42	4530 4490 4460 4440 4450 4410 4370 4440 4170 4350 4420 4460 4490 4270 4220 4280 4380 4220 4480 4490 4490 4490 4490 4490 4490 449	4210 4340 2900 3300 3830 3970 3790	MAY 4100 1680 1770 2440 3300 3830 3700 3690	4280 4180 4140 3600 2300 2860 3600 3910 3900 4050 4050 4050 4020 3800 3760 3780 3920 4289 4890 3670

08126380 Colorado River near Ballinger, TX--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	6360 	5380 	6250 6500 6500 	4910 5160 5620 5650 5580	4710 4400 5160 5530 5480	4780 4810 5510 5590 5530	4670 4680 4700 4720 4730	4490 4480 4450 4590 4580	4620 4600 4620 4660 4660	3280 3130 3120 3030 3390	2830 2980 2900 2360 1880	3090 3050 3060 2730 2270
6 7 8 9 10			 	5530 5540 5580 5570 5610	5440 5480 5500 5470 5470	5500 5510 5540 5520 5540	4710 4620 4680 4680 4720	4530 4420 4570 4540 4600	4650 4520 4630 4640 4650	3480 882 954 1030 1100	325 327 882 938 1030	1340 647 932 992 1060
11 12 13 14 15	 	 	 	5600 5580 5560 5500 5420	5440 5430 5400 5350 5230	5510 5500 5480 5430 5330	4670 4660 4660 4650 6970	4530 4500 4540 4520 4550	4600 4580 4610 4590 5970	1160 1200 1240 1270 1320	1100 1160 1200 1210 1220	1130 1180 1220 1250 1270
16 17 18 19 20	 	 	 	5340 5260 5150 5010 4890	5160 5060 4930 4800 4710	5240 5150 5030 4900 4800	6960 6710 6500 5520 3640	6650 6370 5520 3510 3350	6800 6540 6280 4300 3470	1360 1480 1500 1600 1800	1290 1360 1360 1500 1590	1340 1400 1480 1550 1670
21 22 23 24 25	5280 5360 5370 5380	4800 5270 5260 5250	4600 5060 5320 5320 5320	4800 4730 4680 4660 4640	4630 4480 4480 4520 4530	4720 4640 4610 4590 4590	4300 4340 4460 4480 4490	3640 4140 4180 4220 4260	3970 4290 4360 4420 4420	1910 1750 2430 2920 3000	1290 1490 1750 2430 2870	1760 1570 2080 2610 2930
26 27 28 29 30 31	5370 5360 5370 5340 5050	5240 5240 5220 5000 4730	5310 5310 5300 5180 4890	4650 4640 4660 4660 4660 4660	4500 4400 4490 4460 4530 4530	4590 4590 4600 4590 4600 4610	4500 4480 4510 4520 4380 3980	4100 4120 4240 4180 3940 3100	4360 4430 4400 4370 4170 3510	2940 2980 3120 3400 3610	2830 2860 2970 3110 3380	2880 2920 3030 3250 3510
MONTH				5650	4400	5060	6970	3100	4670	3610	325	1970

> 08126380 Colorado River near Ballinger, TX--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001


DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		1	NOVEMBER			DECEMBER			JANUARY	
1												
2												
3												
4												
5												
6												
7												
8												
9 10												
11												
12 13												
14												
15												
16												
17 18												
19												
20												
21												
22 23												
23												
25												
26												
27 28												
29												
30												
31												
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUARY		MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1		FEBRUARY		13.3	MARCH 8.7	10.9	19.1	APRIL	16.5	26.8	MAY 20.9	23.5
1 2		FEBRUARY		13.3 13.0	MARCH 8.7 11.4	10.9 12.2	19.1 23.3	APRIL 14.2 16.7	16.5 19.5	26.8	MAY 20.9	23.5 24.3
1		FEBRUARY		13.3	MARCH 8.7	10.9	19.1	APRIL	16.5	26.8	MAY 20.9	23.5
1 2 3		FEBRUARY	 	13.3 13.0 13.4	MARCH 8.7 11.4 11.4	10.9 12.2 12.2	19.1 23.3 23.8	APRIL 14.2 16.7 18.9	16.5 19.5 21.2	26.8 23.5	MAY 20.9 21.8	23.5 24.3 22.7
1 2 3 4 5	 	FEBRUARY	 	13.3 13.0 13.4 16.8 17.2	8.7 11.4 11.4 11.0 11.3	10.9 12.2 12.2 13.5 14.3	19.1 23.3 23.8 24.3 23.1	APRIL 14.2 16.7 18.9 20.0 21.2	16.5 19.5 21.2 22.0 22.1	26.8 23.5 23.7 21.1	MAY 20.9 21.8 19.7 19.1	23.5 24.3 22.7 21.6 19.9
1 2 3 4 5	 	FEBRUARY		13.3 13.0 13.4 16.8 17.2	MARCH 8.7 11.4 11.4 11.0 11.3	10.9 12.2 12.2 13.5 14.3	19.1 23.3 23.8 24.3 23.1	APRIL 14.2 16.7 18.9 20.0 21.2	16.5 19.5 21.2 22.0 22.1	26.8 23.5 23.7 21.1	MAY 20.9 21.8 19.7 19.1	23.5 24.3 22.7 21.6 19.9
1 2 3 4 5	 	FEBRUARY	 	13.3 13.0 13.4 16.8 17.2	8.7 11.4 11.4 11.0 11.3	10.9 12.2 12.2 13.5 14.3	19.1 23.3 23.8 24.3 23.1	APRIL 14.2 16.7 18.9 20.0 21.2	16.5 19.5 21.2 22.0 22.1	26.8 23.5 23.7 21.1	MAY 20.9 21.8 19.7 19.1	23.5 24.3 22.7 21.6 19.9
1 2 3 4 5 6 7 8 9	 14.5	FEBRUARY 11.3	 13.1	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6	MARCH 8.7 11.4 11.4 11.0 11.3 12.5 12.7	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 15.0	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6
1 2 3 4 5	 	FEBRUARY		13.3 13.0 13.4 16.8 17.2	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3	10.9 12.2 12.2 13.5 14.3 14.5 15.4	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6
1 2 3 4 5 6 7 8 9	 14.5 11.9	FEBRUARY 11.3 8.6	 13.1 10.5	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6 14.9	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 15.0 13.8	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6
1 2 3 4 5 6 7 8 9	 14.5	FEBRUARY 11.3	 13.1	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 15.0	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6	26.8 23.5 23.7 21.1 26.3 26.4 27.9 	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6
1 2 3 4 5 6 7 8 9 10	 14.5 11.9 13.2 12.9 16.7	FEBRUARY 11.3 8.6 8.8 11.4 12.7	 13.1 10.5 11.1 12.3 14.5	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 14.9 19.9 20.4 17.1	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 15.8 15.0 13.8	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14	 14.5 11.9 13.2 12.9 16.7 17.9	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4	 13.1 10.5 11.1 12.3 14.5 16.1	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6 14.9 19.9 20.4 17.1 17.9	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1	10.9 12.2 12.2 13.5 14.3 14.5 15.8 15.0 13.8 16.6 17.4 15.9	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8	26.8 23.5 23.7 21.1 26.3 26.4 27.9 	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2
1 2 3 4 5 6 7 8 9 10	 14.5 11.9 13.2 12.9 16.7	FEBRUARY 11.3 8.6 8.8 11.4 12.7	 13.1 10.5 11.1 12.3 14.5	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 14.9 19.9 20.4 17.1	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 15.8 15.0 13.8	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0	26.8 23.5 23.7 21.1 26.3 26.4 27.9 	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	 14.5 11.9 13.2 12.9 16.7 17.9	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9	 13.1 10.5 11.1 12.3 14.5 16.1 14.3	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 14.9 19.9 20.4 17.1 17.9 17.1	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 15.0 13.8 16.6 17.4 15.9 15.9	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8	26.8 23.5 23.7 21.1 26.3 26.4 27.9 	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14	 14.5 11.9 13.2 12.9 16.7 17.9	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4	 13.1 10.5 11.1 12.3 14.5 16.1	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6 14.9 19.9 20.4 17.1 17.9	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1	10.9 12.2 12.2 13.5 14.3 14.5 15.8 15.0 13.8 16.6 17.4 15.9	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8	26.8 23.5 23.7 21.1 26.3 26.4 27.9 	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	 14.5 11.9 13.2 12.9 16.7 17.9 17.9 13.0 12.2 12.8	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5	 13.1 10.5 11.1 12.3 14.5 16.1 14.3	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 14.9 19.9 20.4 17.1 17.9 17.1	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 13.1	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 15.0 13.8 16.6 17.4 15.9 15.9 15.9	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 26.9	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	14.5 11.9 13.2 12.9 16.7 17.0 13.0 12.2 12.8 13.0	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0	 13.1 10.5 11.1 12.3 14.5 16.1 14.3 11.9 10.6 10.5	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6 14.9 19.9 20.4 17.1 17.9 17.1	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 13.1	10.9 12.2 12.2 13.5 14.3 14.5 15.8 15.0 13.8 16.6 17.4 15.9 15.9 15.2 14.4 13.3 12.0 12.5	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 23.9 25.5 23.9	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	 14.5 11.9 13.2 12.9 16.7 17.9 17.9 13.0 12.2 12.8	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5	 13.1 10.5 11.1 12.3 14.5 16.1 14.3	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 14.9 19.9 20.4 17.1 17.9 17.1	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 13.1	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 15.0 13.8 16.6 17.4 15.9 15.9 15.9	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 26.9	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	 14.5 11.9 13.2 12.9 16.7 17.0 13.0 12.2 12.8 13.9 16.6	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5	 13.1 10.5 11.1 12.3 14.5 16.1 11.9 10.6 10.5 11.6 13.7	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 19.9 20.4 17.1 17.9 17.1 16.8 14.6 12.5 14.5	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 13.1 11.7 12.2 11.5 10.9 10.3	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 15.0 13.8 16.6 17.4 15.9 15.9 15.9 14.4 13.3 12.0 12.5 14.1	19.1 23.3 24.3 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 26.9 21.5 23.9 24.2	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8 23.8 23.8 23.9	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	14.5 11.9 13.2 12.9 16.7 17.0 13.0 12.2 12.8 13.0	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0	 13.1 10.5 11.1 12.3 14.5 16.1 14.3 11.9 10.6 10.5	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6 14.9 19.9 20.4 17.1 17.9 17.1	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 13.1	10.9 12.2 12.2 13.5 14.3 14.5 15.8 15.0 13.8 16.6 17.4 15.9 15.9 15.2 14.4 13.3 12.0 12.5	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 23.9 25.5 23.9	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	 14.5 11.9 13.2 12.9 16.7 17.0 13.0 12.2 12.8 13.9 16.6	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5	 13.1 10.5 11.1 12.3 14.5 16.1 14.3 11.9 10.6 10.5 11.6 13.7	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 19.9 20.4 17.1 17.9 17.1 16.8 14.6 12.5 14.5 18.0	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.1 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 15.0 13.8 16.6 17.4 15.9 15.9 15.2 14.4 13.3 12.0 12.5 14.1	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 26.9 21.5 23.9 24.2 22.4 23.6	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8 23.8 23.3 19.3 19.3 20.9 22.3	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	14.5 11.9 13.2 12.9 16.7 17.0 13.0 12.2 12.8 13.9 16.6	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5	 13.1 10.5 11.1 12.3 14.5 16.1 14.3 11.9 10.6 10.5 11.6 13.7	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6 14.9 19.9 20.4 17.1 17.9 17.1 16.8 14.6 12.5 18.0	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.0 13.8 16.6 17.4 15.9 15.9 15.2 14.4 13.3 12.0 12.5 14.1	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 23.9 21.5 23.9 24.2 22.4 23.4 23.9	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 18.2	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8 23.8 23.3 19.3 18.3 20.9 22.3	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	 14.5 11.9 13.2 12.9 16.7 17.0 13.0 12.2 12.8 13.9 16.6	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5	 13.1 10.5 11.1 12.3 14.5 16.1 14.3 11.9 10.6 10.5 11.6 13.7	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 19.9 20.4 17.1 17.9 17.1 16.8 14.6 12.5 14.5 18.0	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.1 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 15.0 13.8 16.6 17.4 15.9 15.9 15.2 14.4 13.3 12.0 12.5 14.1	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 26.9 21.5 23.9 24.2 22.4 23.6	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8 23.8 23.3 19.3 19.3 20.9 22.3	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	13.2 12.9 16.7 17.0 13.0 12.2 12.8 13.9 16.6 15.1 13.0 12.9 15.2 16.8	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 12.9 11.1 11.0 12.3 11.3	 13.1 10.5 11.1 12.3 14.5 16.1 14.3 11.9 10.6 10.5 11.6 13.7	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 19.9 20.4 17.1 17.9 17.1 16.8 14.6 12.5 14.5 18.0	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.1 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8 13.0	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.0 13.8 16.6 17.4 15.9 15.9 15.2 14.4 13.3 12.0 12.5 14.1	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 23.9 21.5 23.9 24.2 22.4 23.6 24.3 24.3 23.1	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 18.2 17.8	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	14.5 11.9 13.2 12.9 16.7 17.0 13.0 12.2 12.8 13.9 16.6	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5	 13.1 10.5 11.1 12.3 14.5 16.1 14.3 11.9 10.6 10.5 11.6 13.7	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6 14.9 19.9 20.4 17.1 17.9 17.1 16.8 14.6 12.5 18.0	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.0 13.8 16.6 17.4 15.9 15.9 15.2 14.4 13.3 12.0 12.5 14.1	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 23.9 21.5 23.9 24.2 22.4 23.4 23.9	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 18.2	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8 23.8 23.3 19.3 18.3 20.9 22.3	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	13.2 12.9 16.7 17.0 13.0 12.2 12.8 13.0 15.1 13.0 12.9 15.2 16.8 15.1 16.6 13.4	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 12.9 11.1 11.0 12.3 11.3 12.1 13.4 8.9	 13.1 10.5 11.1 12.3 14.5 16.1 14.3 11.9 10.6 10.5 11.6 13.7 13.6 11.8 11.9 13.3 13.8 14.8 10.3	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 19.9 20.4 17.1 17.9 17.1 16.8 14.6 12.5 14.5 14.5 12.5 14.5 14.5 14.5 14.5 14.6 12.5 14.5 14.6 15.6 16.9 17.1 17.1 17.1 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 13.0 11.8 13.0 11.8 10.6 10.2	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.0 13.8 16.6 17.4 15.9 15.9 15.2 14.4 13.3 12.0 12.5 14.1 16.3 17.5 19.0 16.4 14.4	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 23.9 21.5 23.9 24.2 22.8 25.3 23.9 24.2 22.3 23.1	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 18.2 17.8 18.6 18.9 19.3	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8 23.8 23.8 22.9 22.7 22.6 20.7 20.6	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6 26.6 25.4 24.9 26.4 27.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	14.5 11.9 13.2 12.9 17.0 13.0 12.2 12.8 13.9 16.6 15.1 13.0 12.2 16.8	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 12.9 11.1 11.0 12.3 11.3 12.1 13.4 8.9	13.1 10.5 11.1 12.3 14.3 14.3 11.9 10.6 10.5 11.6 13.7 13.6 11.8 11.9 13.3 13.8 14.8 10.3	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6 14.9 19.9 20.4 17.1 17.9 17.1 16.8 14.6 12.5 14.5 18.0 19.9 21.2 22.0 20.1 15.9	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8 13.0 11.8 10.6 10.2 11.4	10.9 12.2 12.2 13.5 14.3 14.5 15.8 15.0 13.8 16.6 17.4 15.9 15.9 15.2 14.4 13.3 12.0 12.5 14.1 16.3 17.5 19.0 10.1 10.1 10.1 10.1 10.1 10.1 10.1	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 23.9 24.2 22.4 23.9 24.2 22.4 23.9 24.2 22.4 23.9 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 18.4 20.9 21.6 20.5 20.4 18.2 17.8 18.6 18.9 19.3 19.4	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.3 19.3 18.3 20.9 22.3 20.5 21.0 21.0 21.0 21.2 21.5	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6 25.4 24.9 26.4 27.3 26.1
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	14.5 11.9 13.2 12.9 16.7 17.0 13.0 12.2 12.8 16.6 15.1 13.0 12.9 16.8	FEBRUARY 11.3 8.6 8.8 11.4 11.9 11.1 9.3 8.5 9.0 10.5 12.9 11.1 11.0 12.3 11.3 12.1 13.4 8.9	13.1 10.5 11.1 12.3 14.5 16.1 14.3 11.9 10.6 10.5 11.6 13.7	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6 14.9 19.9 20.4 17.1 17.9 17.1 16.8 14.6 12.5 14.5 18.0 19.9 21.2 22.0 20.1 15.9	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8 13.0 11.8 10.6 10.2 11.8	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 16.6 17.4 15.9 15.9 15.2 14.4 13.3 12.0 14.1 16.3 17.5 19.0 16.4 11.1 11.4 12.6 11.1 11.3 13.9	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 23.9 24.2 22.8 23.9 24.2 22.8 23.6 24.2 23.6 24.3	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 18.2 17.8 18.6 18.9 19.3 19.4 20.0	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8 23.3 19.3 18.3 20.9 22.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6 26.2 26.6 25.4 24.9 26.4 27.3 26.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	14.5 11.9 13.2 12.9 17.0 13.0 12.2 12.8 13.9 16.6 15.1 13.0 12.2 16.8	FEBRUARY 11.3 8.6 8.8 11.4 12.7 14.4 11.9 11.1 9.3 8.5 9.0 10.5 12.9 11.1 11.0 12.3 11.3 12.1 13.4 8.9	13.1 10.5 11.1 12.3 14.3 14.3 11.9 10.6 10.5 11.6 13.7 13.6 11.8 11.9 13.3 13.8 14.8 10.3	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6 14.9 19.9 20.4 17.1 17.9 17.1 16.8 14.6 12.5 14.5 18.0 19.9 21.2 22.0 20.1 15.9	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8 13.0 11.8 10.6 10.2 11.4	10.9 12.2 12.2 13.5 14.3 14.5 15.8 15.0 13.8 16.6 17.4 15.9 15.9 15.2 14.4 13.3 12.0 12.5 14.1 16.3 17.5 19.0 10.1 10.1 10.1 10.1 10.1 10.1 10.1	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 23.9 24.2 22.4 23.9 24.2 22.4 23.9 24.2 22.4 23.9 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 18.4 20.9 21.6 20.5 20.4 18.2 17.8 18.6 18.9 19.3 19.4	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.3 19.3 18.3 20.9 22.3 20.5 21.0 21.0 21.0 21.2 21.5	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6 25.4 24.9 26.4 27.3 26.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30	14.5 11.9 13.2 12.9 16.7 17.0 13.0 12.2 12.8 16.6 15.1 13.0 12.9 16.8	FEBRUARY 11.3 8.6 8.8 11.4 11.9 11.1 9.3 8.5 9.0 10.5 12.9 11.1 11.0 12.3 11.3 12.1 13.4 8.9	13.1 10.5 11.1 12.3 14.5 16.1 14.3 11.9 10.6 10.5 11.6 13.7	13.3 13.0 13.4 16.8 17.2 16.5 17.6 16.9 16.6 14.9 19.9 20.4 17.1 17.9 17.1 16.8 14.6 12.5 14.5 18.0 19.9 21.2 22.0 20.1 15.9	MARCH 8.7 11.4 11.0 11.3 12.5 12.7 14.3 13.6 12.6 14.3 14.6 14.1 13.1 11.7 12.2 11.5 10.9 10.3 12.8 14.1 16.2 13.8 13.0 11.8 10.6 10.2 11.8	10.9 12.2 12.2 13.5 14.3 14.5 15.4 15.8 16.6 17.4 15.9 15.9 15.2 14.4 13.3 12.0 14.1 16.3 17.5 19.0 16.4 11.1 11.4 12.6 11.1 11.3 13.9	19.1 23.3 23.8 24.3 23.1 22.7 24.9 26.4 25.3 23.9 24.2 22.4 23.6 24.5 26.9 25.5 23.9 24.2 22.8 23.9 24.2 22.8 23.6 24.2 23.6 24.3	APRIL 14.2 16.7 18.9 20.0 21.2 20.3 20.1 21.5 21.9 21.4 18.3 18.2 18.7 20.9 20.8 20.7 16.9 15.9 18.4 20.9 21.6 20.5 20.4 18.2 17.8 18.6 18.9 19.3 19.4 20.0	16.5 19.5 21.2 22.0 22.1 21.6 22.3 23.5 23.6 22.9 21.3 20.5 21.0 22.8 23.8 23.8 23.3 19.3 18.3 20.9 22.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8	26.8 23.5 23.7 21.1 26.3 26.4 27.9	MAY 20.9 21.8 19.7 19.1 19.6 22.0 21.7	23.5 24.3 22.7 21.6 19.9 22.4 23.9 24.6 26.2 26.6 26.2 26.6 25.4 24.9 26.4 27.3 26.1

DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE

08126380 Colorado River near Ballinger, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	27.7 	23.3	25.3 25.0 	33.2 29.2 32.6 34.2 34.1	26.8 26.2 25.5 27.3 28.2	29.7 27.6 28.6 30.3 31.0	34.4 34.5 35.1 33.5 35.1	26.6 26.6 24.8 25.0 24.4	30.2 30.1 29.5 29.1 29.4	28.9 31.2 32.0 30.2 28.7	25.5 25.3 26.8 24.5 26.1	27.1 28.0 28.5 27.3 27.0
6 7 8 9 10	 	 	 	35.0 34.7 34.6 36.2 36.3	28.1 28.1 27.7 27.6 26.6	31.2 31.0 30.8 31.3 31.3	33.5 35.1 34.4 35.8 35.6	25.1 24.7 25.5 26.3 25.8	29.2 29.2 29.6 30.4 29.9	27.3 26.9 29.5 27.8 28.6	23.6 23.8 25.8 24.8 23.9	24.9 25.2 27.5 26.2 25.9
11 12 13 14 15	 	 	 	36.1 37.5 37.9 34.1 36.9	26.5 26.7 26.7 27.2 27.2	31.2 31.5 31.6 30.4 31.4	36.3 36.3 34.8 33.3 31.9	26.4 26.5 26.4 26.4 26.5	30.7 30.7 29.9 28.8 29.1	27.8 29.0 28.6 27.6 26.7	23.3 23.8 24.4 24.6 25.2	25.7 26.4 26.5 26.2 26.0
16 17 18 19 20	 	 	 	37.2 36.8 36.8 36.2 36.0	27.4 27.1 27.4 27.4 27.2	31.7 31.3 31.4 31.1 31.0	30.6 29.2 30.1 32.0 31.8	27.3 26.8 26.1 26.3 25.8	28.9 27.5 27.8 28.9 28.8	28.3 29.1 30.7 30.4 31.3	24.1 24.5 24.6 24.8 26.2	26.0 26.6 27.1 27.4 28.3
21 22 23 24 25	32.9 29.8 33.9 33.4	25.8 25.3 25.1 25.0	28.6 27.4 28.6 28.7	37.0 36.6 36.3 36.1 36.6	27.1 26.8 26.4 26.6 27.0	31.4 31.3 30.8 30.8 30.9	32.5 33.4 33.5 33.9 33.0	27.9 27.4 27.3 26.4 26.9	29.7 29.8 29.7 29.5 29.4	28.2 29.0 28.4 26.2 25.4	24.3 24.8 24.7 22.1 20.6	26.3 26.7 26.4 24.2 23.0
26 27 28 29 30 31	33.7 34.1 34.5 34.1 33.6	24.8 25.3 25.0 26.4 26.6	28.6 29.1 29.4 29.6 29.7	36.4 35.4 36.8 37.2 36.2 36.0	26.9 27.4 27.6 28.1 28.0 26.6	30.9 30.6 31.4 32.0 31.5 30.6	30.6 28.5 27.4 27.1 30.2 29.6	25.8 26.1 25.2 24.9 25.0 26.1	28.1 27.2 26.2 25.9 26.9 27.5	24.6 24.6 24.6 24.3 22.8	19.8 20.2 20.7 20.8 20.2	22.4 22.4 22.6 22.5 21.6
MONTH				37.9	25.5	30.9	36.3	24.4	29.0	32.0	19.8	25.7

THIS PAGE IS INTENTIONALLY LEFT BLANK.

08127000 Elm Creek at Ballinger, TX

LOCATION.--Lat 31°44′57", long 99°56′51", Runnels County, Hydrologic Unit 12090101, on right bank 1,000 ft upstream from storage dam at Ballinger and 1.9 mi upstream from mouth.

DRAINAGE AREA.--450 mi^2 , of which 63.5 mi^2 is above Lake Winters Dam.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Apr. 1932 to current year.

REVISED RECORDS.--WSP 1442: 1935, 1946, 1954. WDR TX-81-3: Drainage area. WDR TX-96-3.

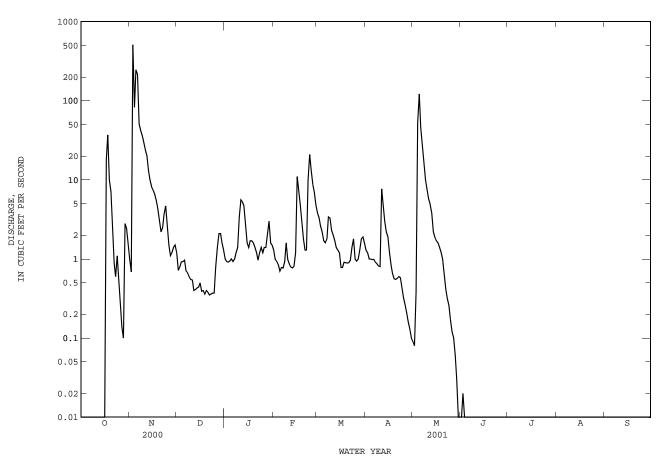
GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,617.72 ft above sea level. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good except those below 10 ft³/s, which are fair. The stage-discharge relation during periods of low flow are affected by wind action and by occasional accumulation of drift on dam. Since water year 1983 at least 10% of contributing drainage area has been regulated. Prior to June 1982, capacity of Old Lake Winters (just upstream from new dam) was 3,060 acre-ft. No flow at times many years.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--50 years (water years 1933-82) prior to completion of New Lake Winters, $47.6 \text{ ft}^3/\text{s}$ (34,490 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1933-82).--Maximum discharge, 50,000 ft³/s Oct. 13, 1957 (gage height, 14.20 ft, from floodmark); no flow at times. Highest stage not affected by backwater from the Colorado River since at least 1904, was that of Oct. 13, 1957, from information by local residents.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in Aug. 1906 reached a stage of 14.5 ft, affected by backwater from Colorado River.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCHA	RGE, CUE	IC PEEL PI		Y MEAN VA		SR 2000 IC	SEPIEMBE.	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	1.0 .69 510 83 247	1.2 .72 .79 .92 .93	1.0 .93 .91 .94	1.3 .98 .93 .85	3.8 3.3 2.6 2.2 1.7	1.3 1.2 1.0 1.0	.09 .08 .38 53	.01 .02 .01 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9 10	.00 .00 .00 .00	214 51 42 36 30	.97 .71 .67 .60	.93 1.0 1.2 1.4 3.4	.78 .77 .93 1.6 .98	1.6 1.8 3.4 3.3 2.3	.99 .91 .87 .82	46 27 17 10 7.6	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	24 20 13 10 8.2	.54 .40 .41 .43	5.6 5.3 4.7 2.6 1.6	.86 .79 .77 .81	2.0 1.7 1.4 1.3	7.7 4.6 3.0 2.2 1.9	5.8 4.9 3.8 2.2 1.9	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.00 18 37 10 7.1	7.4 6.5 5.4 4.3 3.1	.50 .39 .40 .36	1.4 1.7 1.7 1.6 1.4	11 7.0 4.9 3.0 1.8	.78 .78 .91 .90 .89	1.2 .83 .65 .56	1.7 1.6 1.4 1.2	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	2.2 .89 .60 1.1 .58	2.2 2.5 3.7 4.7 2.5	.38 .35 .36 .37	1.2 .97 1.2 1.4	1.3 1.3 10 21 13	.90 .96 1.4 1.8	.57 .60 .58 .43	.65 .41 .31 .26	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	.29 .14 .10 2.8 2.4 1.5	1.5 1.1 1.2 1.4 1.5	.81 1.4 2.1 2.1 1.6 1.3	1.4 1.4 2.1 3.0 1.6 1.5	8.7 7.0 4.8 	.94 .99 1.3 1.8 1.9	.26 .21 .16 .13 .10	.12 .10 .06 .03 .01	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT CFSM IN.	84.70 2.73 37 .00 168 .01	1338.89 44.6 510 .69 2660 .10	23.47 .76 2.1 .35 47 .00	57.28 1.85 5.6 .91 114 .00	109.05 3.89 21 .70 216 .01	52.45 1.69 3.8 .78 104 .00	36.42 1.21 7.7 .10 72 .00	310.77 10.0 122 .01 616 .02 .03	0.04 .001 .02 .00 .08 .00	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00 .00
STATIST	CICS OF	MONTHLY ME	AN DATA	FOR WATER	YEARS 198	3 - 2001z	, BY WATI	ER YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	22.8 165 1987 .000 1984	15.2 59.7 1987 .000 1989	41.2 576 1992 .000 1999	18.5 164 1992 .000 2000	65.9 911 1992 .000 2000	34.2 268 1992 .000 2000	19.0 76.4 1992 .000 2000	71.1 655 1994 .000 1984	111 770 1997 .001 2001	6.87 42.5 1997 .000 1984	10.9 90.1 1995 .000 1983	56.7 760 1996 .000 1983

08127000 Elm Creek at Ballinger, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEA	AR :	FOR 2001 WAT	ER YEAR	WATER YEAR	S 1983 - 2001z
ANNUAL TOTAL	4749.22		2013.07			
ANNUAL MEAN	13.0		5.52		39.2	
HIGHEST ANNUAL MEAN					188	1992
LOWEST ANNUAL MEAN					.96	1984
HIGHEST DAILY MEAN	2790 Jun	3	510	Nov 3	12400	Sep 15 1996
LOWEST DAILY MEAN	.00 Jan	1	.00	Oct 1	.00	Jul 20 1983
ANNUAL SEVEN-DAY MINIMUM	.00 Jan	1	.00	Oct 1	.00	Jul 20 1983
MAXIMUM PEAK FLOW			1420	Nov 3	16700	Jun 23 1997
MAXIMUM PEAK STAGE			5.01	Nov 3	9.06	Jun 23 1997
ANNUAL RUNOFF (AC-FT)	9420		3990		28370	
ANNUAL RUNOFF (CFSM)	.029		.012		.087	
ANNUAL RUNOFF (INCHES)	.39		.17		1.18	
10 PERCENT EXCEEDS	2.2		5.5		56	
50 PERCENT EXCEEDS	.00		.60		1.8	
90 PERCENT EXCEEDS	.00		.00		.00	

z Period of regulated streamflow.

08127000 Elm Creek at Ballinger, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --

CHEMICAL DATA: Oct. 1957 to Sept. 1991, Mar. 2001.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Oct. 1967 to Sept. 1991 (local observer), Feb. 2001 to current year. WATER TEMPERATURE: Oct. 1967 to Sept. 1997 (local observer), Feb. 2001 to current year.

INSTRUMENTATION. -- Water-quality monitor since Feb. 9, 2001.

REMARKS.--Records fair. Interruptions in the record were due to no flow. No flow June 4 to Sept. 30. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous years using daily (or continuous) records of specific conductance and regression relations between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 4,220 microsiemens/cm, Sept. 12, 17, 1970; minimum daily, 244 microsiemens/cm, Aug. 4, 1978.

WATER TEMPERATURE: Maximum daily, 35.0°C, July 19, 1986; minimum daily, 0.0°C, Jan. 8, 1968, Jan. 10, 13, 1973, and Jan. 11, 14, 1982.

EXTREMES FOR CURRENT YEAR . --

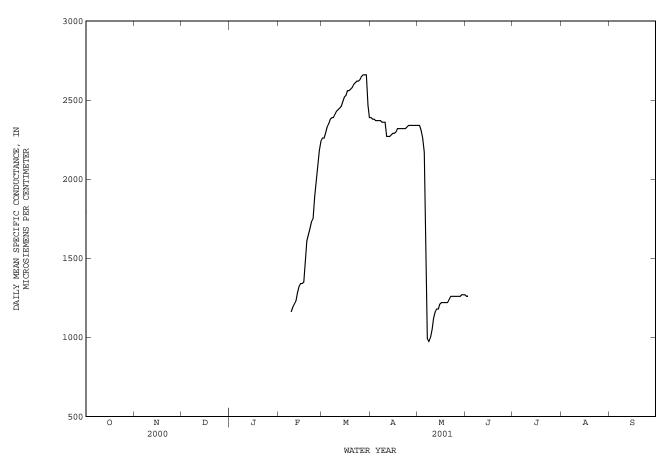
SPECIFIC CONDUCTANCE: Maximum, 2,690 microsiemens/cm, Mar. 28; minimum, 958 microsiemens/cm, May 8. WATER TEMPERATURE: Maximum, 30.6° C, May 18, June 2; minimum, 9.4° C, Feb. 18.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIS-											
		CHARGE,	SPE-		HARD-		MAGNE-		SODIUM		POTAS-		CHLO-
		INST.	CIFIC		NESS	CALCIUM	SIUM,	SODIUM,	AD-		SIUM,	SULFATE	RIDE,
		CUBIC	CON-	TEMPER-	TOTAL	DIS-	DIS-	DIS-	SORP-		DIS-	DIS-	DIS-
		FEET	DUCT-	ATURE	(MG/L	SOLVED	SOLVED	SOLVED	TION		SOLVED	SOLVED	SOLVED
DATE	TIME	PER	ANCE	WATER	AS	(MG/L	(MG/L	(MG/L	RATIO	SODIUM	(MG/L	(MG/L	(MG/L
		SECOND	(US/CM)	(DEG C)	CACO3)	AS CA)	AS MG)	AS NA)		PERCENT	AS K)	AS SO4)	AS CL)
		(00061)	(00095)	(00010)	(00900)	(00915)	(00925)	(00930)	(00931)	(00932)	(00935)	(00945)	(00940)
MAR													
30	1450	2.0	2340	13.5	773	172	83.2	174	2.73	32.7	5.39	511	350

| FLU0- SILICA, | RIDE, | DIS- | DIS- | SOLVED | SOLVED | (MG/L | AS | AS F) | SIO2) | (00950) | (00955)

MAR 30... .5 2.0

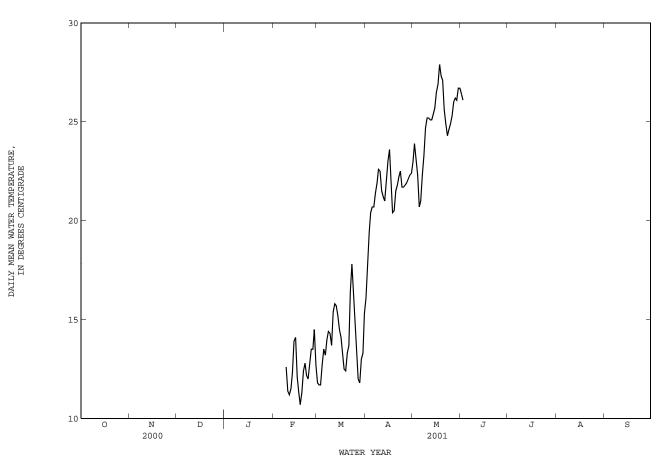

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER		ō	ANUAR?	ď
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
MONTH												

08127000 Elm Creek at Ballinger, TX--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

							MAN.					MUDDI
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2				2290 2280	2120 2210	2260 2260	2400 2430	2380 2370	2390 2380	2350 2350	2300 2320	2340 2340
3				2320	2240	2290	2400	2360	2380	2350	2280	2310
4 5				2360 2380	2290 2320	2330 2350	2380 2370	2350 2340	2370 2370	2370 2390	2010 2030	2260 2170
6				2400	2360	2380	2370	2340	2370	2250	1030	1480
7				2430	2370	2390	2370	2350	2370	1040	969	993
8 9	1180	1130	 1160	2410 2420	2360 2330	2390 2410	2370 2370	2330 2350	2360 2360	996 1040	958 980	974 999
10	1200	1170	1190	2440	2410	2430	2370	2300	2360	1090	1030	1050
11	1220	1200	1210	2470	2410	2440	2320	2240	2270	1150	1090	1120
12 13	1260 1310		1230 1280	2470 2490	2420 2420	2450 2460	2280 2280	2250 2240	2270 2270	1170 1190	1150 1170	1160 1180
14	1340	1270	1320	2500	2480	2490	2280	2230	2280	1200	1170	1180
15	1360	1320	1340	2540	2460	2520	2300	2260	2290	1230	1200	1210
16 17	1350 1380	1310 1330	1340 1350	2550 2560	2510 2550	2530 2560	2300 2330	2250 2270	2290 2300	1220 1240	1200 1200	1220 1220
18	1600		1470	2580		2560	2330		2320	1240	1210	1220
19 20	1650 1690	1580 1630	1610 1650	2590 2620	2550 2560	2570 2580	2340 2330	2310 2300	2320 2320	1220 1230	1210 1220	1220 1220
21 22	1730 1740	1650 1720	1690 1730	2620 2630	2570 2570	2600 2610	2330 2330	2300 2300	2320 2320	1250 1270	1230 1240	1240 1260
23	1770	1740	1750	2660	2580	2620	2330	2310	2320	1270	1250	1260
24 25	1970 2020	1760 1940	1890 1980	2640 2650	2590 2580	2620 2630	2350 2350	2320 2310	2330 2340	1260 1260	1250 1240	1260 1260
26 27	2150 2200	2010 2040	2080 2180	2670 2670	2570 2540	2650 2660	2360 2350	2320 2320	2340 2340	1270 1290	1250 1240	1260 1260
28	2260	2180	2240	2690	2520	2660	2350	2280	2340	1260	1240	1260
29 30				2680 2680	2590 2340	2660 2470	2350 2350	2300 2320	2340 2340	1270 1280	1230 1250	1270 1270
31				2400	2370	2390				1280	1250	1270
MONTH				2690	2120	2490	2430	2230	2330	2390	958	1380
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
1	1280	JUNE 1240	1260		JULY			AUGUST			SEPTEMBE	IR
1 2 3		JUNE 1240			JULY			AUGUST			SEPTEMBE	R
1 2 3 4	1280 1270 	JUNE 1240 1250	1260 1260 		JULY	 	 	AUGUST	 		SEPTEMBE	ER
1 2 3 4 5	1280 1270 	JUNE 1240 1250	1260 1260 	 	JULY	 	 	AUGUST	 	 	SEPTEMBE	ER
1 2 3 4 5	1280 1270 	JUNE 1240 1250	1260 1260 		JULY	 	 	AUGUST	 	 	SEPTEMBE	ER
1 2 3 4 5	1280 1270 	JUNE 1240 1250	1260 1260 	====	JULY	 		AUGUST		 	SEPTEMBE	
1 2 3 4 5	1280 1270 	JUNE 1240 1250	1260 1260 	=== === === ===	JULY	 	 	AUGUST		 	SEPTEMBE	
1 2 3 4 5 6 7 8 9	1280 1270 	JUNE 1240 1250	1260 1260 		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9	1280 1270 	JUNE 1240 1250	1260 1260 		JULY	 		AUGUST		 	SEPTEMBE	
1 2 3 4 5 6 7 8 9 10	1280 1270 	JUNE 1240 1250	1260 1260 		JULY			AUGUST		======================================	SEPTEMBE	
1 2 3 4 5 6 7 8 9 10	1280 1270 	JUNE 1240 1250	1260 1260 		JULY			AUGUST			SEPTEMBE	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1280 1270 	JUNE 1240 1250	1260 1260 		JULY			AUGUST			SEPTEMBE	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1280 1270 	JUNE 1240 1250	1260 1260 		JULY			AUGUST			SEPTEMBE	PR
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1280 1270 	JUNE 1240 1250	1260 1260 		JULY			AUGUST			SEPTEMBE	
1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18	1280 1270 	JUNE 1240 1250	1260 1260 		JULY			AUGUST			SEPTEMBE	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1280 1270 -	JUNE 1240 1250	1260 1260 		JULY			AUGUST			SEPTEMBE	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1280 1270 	JUNE 1240 1250	1260 1260 		JULY			AUGUST			SEPTEMBE	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1280 1270 -	JUNE 1240 1250	1260 1260 		JULY			AUGUST			SEPTEMBE	
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1280 1270 -	JUNE 1240 1250	1260 1260 -		JULY			AUGUST			SEPTEMBE	
1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1280 1270 -	JUNE 1240 1250	1260 1260		JULY			AUGUST			SEPTEMBE	
1 2 3 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1280 1270 -	JUNE 1240 1250	1260 1260		JULY			AUGUST			SEPTEMBE	
1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	1280 1270 -	JUNE 1240 1250	1260 1260		JULY			AUGUST			SEPTEMBE	
1 2 3 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1280 1270 -	JUNE 1240 1250	1260 1260		JULY			AUGUST			SEPTEMBE	
1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	1280 1270 -	JUNE 1240 1250	1260 1260		JULY			AUGUST			SEPTEMBE	

08127000 Elm Creek at Ballinger, TX--Continued


TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	CEMBER		i	JANUARY	
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
51												
MONTH												

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

08127000 Elm Creek at Ballinger, TX--Continued

DAY	MAX	MIN	MEAN	MAX	MIN			MIN	MEAN	MAX	MIN	MEAN
DAI	MAA			MAA		MEAN	MAA		MEAN	MAA		MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2				13.2 12.3	10.8 11.2	11.8 11.7	17.1 20.4	15.2 16.6	16.1 17.6	25.0 25.8	21.6 22.4	23.0 23.9
3 4				12.1 14.7	11.3 11.2	11.7 12.7	23.0 22.3	18.2	19.4 20.4	24.1	22.6	23.1
5				16.6	12.3	13.5	21.1	19.3 20.3	20.4	23.1 21.9	21.6 20.1	22.3 20.7
6				14.0	12.5	13.2	21.1	20.2	20.7	23.4	19.7	21.0
7 8				15.8 15.4	12.7 13.9	14.0 14.4	23.7 23.7	20.3 21.0	21.4 21.9	23.8 26.2	21.4 22.1	22.3
9 10	13.6 12.2	11.9 10.9	12.6 11.4	15.2 13.9	13.9 13.3	14.3 13.7	23.8 23.0	21.7 21.9	22.6 22.5	25.7 27.2	23.9 24.1	24.7 25.2
11 12	$12.1 \\ 12.4$	$10.4 \\ 11.1$	11.2 11.5	18.9 16.6	13.5 14.9	15.4 15.8	22.4 22.5	20.4 20.4	21.5 21.2	27.3 27.1	24.3 24.3	25.2 25.1
13 14	13.6 15.1	11.5 13.4	12.3 13.9	16.7 15.9	15.0	15.7 15.2	22.9 23.0	20.0	21.0 22.1	27.9 27.4	24.1 24.2	25.1
15	15.0	12.8	14.1	15.0	14.7 14.0	14.5	24.2	21.5 21.9	23.0	27.5	24.5	25.4 25.7
16	12.8	11.2	12.1	15.5	13.1	14.1	24.8	22.6	23.6	28.0	25.1	26.5
17 18	12.8 12.0	10.5	11.3	13.8 13.0	13.0	13.3	23.6	20.5	21.7	29.4	25.8	26.9 27.9
19	12.1	9.4 10.4	10.7 11.3	13.4	12.0 11.6	$12.5 \\ 12.4$	21.4 21.9	$19.4 \\ 19.4$	20.4 20.5	30.6 28.0	26.3 26.9	27.3
20	15.7	10.9	12.4	16.5	11.7	13.3	22.9	20.6	21.5	28.3	26.0	27.1
21	13.1	12.5	12.8	15.5 20.5	12.4	13.7	22.2 23.8	21.5	21.8	27.2	24.5	25.6 24.9
22 23	$12.7 \\ 12.2$	12.0 11.8	12.2 12.0	20.5	13.5 16.5	16.4 17.8	23.8	21.1 21.6	22.2 22.5	27.3 26.1	23.3 22.8	24.9
24 25	13.4 15.9	12.1 12.4	12.7 13.5	17.5 15.2	15.0 14.1	16.2 14.6	22.8 24.0	20.9 20.2	21.7 21.7	25.8 26.2	23.6 23.8	24.6 24.9
26 27	14.1 16.5	12.8 13.8	13.5 14.5	14.1 12.6	12.6 11.4	13.3 12.0	23.7 23.3	20.5 20.6	21.8 21.9	27.8 29.8	23.8 24.4	25.3 26.0
28	14.1	11.4	12.7	12.7	11.3 11.4	11.8	23.8 24.0	20.8	22.1	28.3	25.5	26.2
29 30				15.5 15.4	12.1	13.0 13.3	24.0	21.1 21.3	22.3 22.4	28.5 29.8	25.1 24.9	26.1 26.7
31				18.6	12.9	15.3				29.7	24.3	26.7
MONTH				20.6	10.8	13.9	24.8	15.2	21.3	30.6	19.7	24.9
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
1	28.2	JUNE 25.2	26.4		JULY			AUGUST			SEPTEMBE	ER
1 2		JUNE			JULY			AUGUST			SEPTEMBE	ER
1 2 3 4	28.2 30.6 	JUNE 25.2 24.5	26.4 26.1 	 	JULY	 	 	AUGUST	 	 	SEPTEMBE	ER
1 2 3 4 5	28.2 30.6 	JUNE 25.2 24.5	26.4 26.1 	 	JULY	 	 	AUGUST	 	 	SEPTEMBE	ER
1 2 3 4 5	28.2 30.6 	JUNE 25.2 24.5	26.4 26.1 	 	JULY	 	 	AUGUST	 	 	SEPTEMBE	ER
1 2 3 4 5 6 7 8	28.2 30.6 	JUNE 25.2 24.5	26.4 26.1 	 	JULY		 	AUGUST	==== ==== ====	 	SEPTEMBE	
1 2 3 4 5	28.2 30.6 	JUNE 25.2 24.5	26.4 26.1 	 	JULY	 	 	AUGUST	 	 	SEPTEMBE	
1 2 3 4 5 6 7 8 9	28.2 30.6 	JUNE 25.2 24.5	26.4 26.1 	 	JULY	 	 	AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10	28.2 30.6 	JUNE 25.2 24.5	26.4 26.1 		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10	28.2	JUNE 25.2 24.5	26.4 26.1 	======================================	JULY			AUGUST	==== ==== ==== ==== ==== ====		SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	28.2	JUNE 25.2 24.5	26.4 26.1		JULY			AUGUST			SEPTEMBE	ER

THIS PAGE IS INTENTIONALLY LEFT BLANK.

08128000 South Concho River at Christoval, TX

LOCATION.--Lat 31°11'13", long 100°30'06", Tom Green County, Hydrologic Unit 12090102, on left upstream side of U.S. Highway 277 bridge, 9.5 mi upstream from Twin Buttes Dam, and 23.7 mi upstream from mouth.

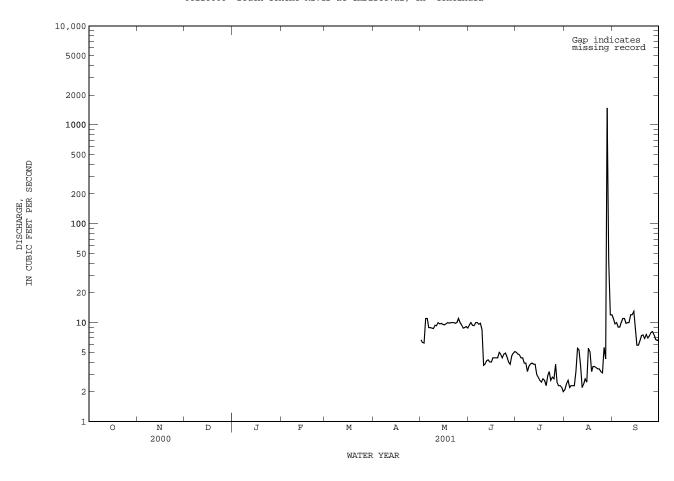
DRAINAGE AREA.--413 mi², of which 58.6 mi² probably is noncontributing.

PERIOD OF RECORD.--Feb. 1930 to Sept. 1995, Oct. 1995 to Apr. 2001 (peak discharges greater than base discharge), May 2001 to current year.

REVISED RECORDS.--WSP 1118: 1943(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,010.22 ft above sea level. Prior to July 17, 1930, nonrecording gage at same site and datum. Water-stage recorder at same site and datum from July 17, 1930, to Nov. 15, 1977, at site 160 ft downstream at same datum from Nov. 16, 1977, to May 5, 1987. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. No known regulation. Low flow is affected by diversions to the South Concho Irrigation Company canal 800 ft upstream from station. No flow Feb. 28 and Mar. 1, 1955.


EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since 1882, about 23 ft Aug. 6, 1906 (discharge, 115,000 ft^3/s), from rating curve extended above 15,100 ft^3/s on basis of slope-area measurement of 80,100 ft^3/s , from information by local residents.

		DISCHARG	E, CUBIC	FEET PER			YEAR OCTOBE VALUES	R 2000 TO	SEPTEMBE	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								6.7	9.5	5.0	2.1	11
2								6.3	10	4.8	2.4	9.7
3								6.2	9.4	4.7	2.6	10
4								11	9.3	4.4	2.2	9.0
5								11	10	4.4	2.3	9.0
6								8.9	10	3.9	2.3	10
7								8.9	9.6	3.9	2.3	11
8								8.8	9.8	3.2	3.2	11
9 10								8.7 9.4	8.5 3.7	3.6 3.8	5.5 5.3	9.8 10
10								9.4	3.1	3.0	5.5	10
11								9.3	3.8	3.9	3.7	10
12								10	4.1	3.8	2.2	12
13								9.7	4.2	3.8	2.4	12
14 15								9.8 9.6	4.0 4.0	3.0 2.8	2.7 2.5	13 9.1
13								9.0	4.0	2.0	2.3	9.1
16								9.5	4.4	2.6	5.5	5.9
17								9.7	4.4	2.5	5.1	5.9
18								10	4.4	2.7	3.2	6.6
19 20								9.9 10	4.4 5.0	2.6 2.3	3.6 3.6	7.4 7.5
20								10	5.0	2.3	3.0	7.5
21								10	4.8	2.9	3.5	6.9
22								10	4.4	3.2	3.4	7.6
23								9.8	4.8	2.6	3.4	7.0
24 25								10 11	4.9 4.5	2.8 2.7	3.2 3.1	7.3 7.9
23								11	1.5	2.,	3.1	,.,
26								10	4.0	3.8	5.6	8.1
27								9.5	3.8	2.5	4.3	7.5
28 29								8.8 8.9	4.6 4.9	2.3	1480 42	6.7 6.6
30								9.1	5.1	2.3	12	6.6
31								8.8		2.0	12	
TOTAL								289.3	178.3	101.0	1637.2	262.1
MEAN MAX								9.33 11	5.94 10	3.26 5.0	52.8 1480	8.74 13
MTN								6.2	3.7	2.0	2.1	5.9
AC-FT								574	354	200	3250	520
STATIST		NTHLY MEAN	DATA FO		EARS 1930	- 200	lh, BY WATE	CR YEAR (WY	(1)			
MEAN	47.7	21.8	21.4	20.0	20.7	20.3		41.9	27.1	40.4	20.3	64.8
MAX (WY)	851 1931	146 1975	126 1975	100 1975	91.5 1975	88.4 1992		1116 1957	189 1958	1445 1938	162 1971	2352 1936
MIN	.54	.51	.57	.40	.35	.39		2.83	1.08	1.08	1.08	.85
(WY)	1955	1955	1955	1955	1955	1955		1954	1954	1952	1952	1954
SUMMARY	STATISTIC	CS	FOR 2	000 CALEN	DAR YEAR		FOR 2001 W	ATER YEAR		WATER Y	EARS 1930) - 2001h
A NITHITAT I	MEAN									21 /		
LOWEST A HIGHEST LOWEST I ANNUAL S MAXIMUM MAXIMUM ANNUAL I 10 PERCS	MEAN ANNUAL M ANNUAL M DAILY ME DAILY MEA SEVEN-DAY PEAK FLOI PEAK STA RUNOFF (AI ENT EXCEE ENT EXCEE ENT EXCEE	AN AN N MINIMUM GE C-FT) DS		2.4	Feb 26		1480 2.0 2.3 10400 a10.5 10 5.5 2.5	3 Jul 27 Aug 28 64 Aug 28		31.4 207 3.2 29500 .1 .1 c100000 a21.9 22770 40 14 3.6	Jul 0 Feb 9 Feb Jul 95 Jul	1936 1952 23 1938 27 1955 25 1955 23 1938 23 1938

h See PERIOD OF RECORD paragraph.

c From rating curve extended above 15,100 ${\rm ft^3/s}$ on basis of slope-area measurement of 80,100 ${\rm ft^3/s}$. a From floodmark.

08128000 South Concho River at Christoval, TX--Continued

08128400 Middle Concho River above Tankersley, TX

LOCATION.--Lat 31°25'38", long 100°42'39", Irion County, Hydrologic Unit 12090103, on left bank 0.3 mi upstream from East Rocky Creek, 0.5 mi southwest of Tullos Ranch Headquarters, 6.7 mi northwest of Tankersley, and 20.9 mi upstream from mouth.

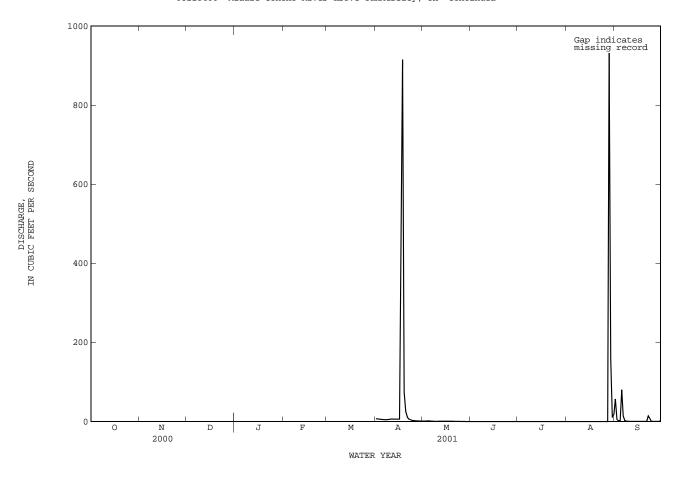
DRAINAGE AREA.--2,084 mi², of which 968 mi² probably is noncontributing.

PERIOD OF RECORD.--Mar. 1961 to Sept. 1995, Oct. 1995 to Mar. 2001 (peak discharges greater than base discharge), Apr. 2001 to current year.
Water-quality records.--Chemical data: Aug. 1964 to Apr. 1965.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,986.47 ft above sea level. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. No known regulation or diversions. No flow at times most years.


EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since 1900, 29.5 ft Sept. 26, 1936. A flood in 1900 reached the same stage, from information by local resident.

		DISCHARG	E, CUBIC	FEET PER			YEAR OCTOBER VALUES	2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							6.6	1.1	.03	.00	.00	57
2							6.7	1.0	.03	.00	.00	5.1
3							0.0	1.0	.02	.00	.00	2.0
4							5.5	1.5	.02	.00	.00	1.9
5							5.0	1.6	.01	.00	.00	80
6							4.8	1.0	.01	.00	.00	14
7							1.5	.65	.01	.00	.00	2.4
8							1.0	.52	.00	.00	.00	.80
9							3.0	.45	.00	.00	.00	.48
10							5.4	.44	.00	.00	.00	.36
11							6.2	.48	.00	.00	.00	.32
12								.56	.00	.00	.00	. 29
13							5.0	.55	.00	.00	.00	.26
14							5.7	.53	.00	.00	.00	.22
15							6.0	.49	.00	.00	.00	.18
16							5.9	.54	.00	.00	.00	.18
17								.55	.00	.00	.00	.18
18							2 - 2	.63	.00	.00	.00	.16
19								.66	.00	.00	.00	.18
20							25	.57	.00	.00	.00	.16
21							11	.43	.00	.00	.00	.13
22								.38	.00	.00	.00	14
23							4.3	.31	.00	.00	.00	7.6
24							2.8	.17	.00	.00	.00	.67
25							2.1	.08	.00	.00	.00	.33
26							1.7	.06	.00	.00	.00	. 26
27								.07	.00	.00	.00	.21
28							1.4	.06	.00	.00	932	.19
29							1.1	.05	.00	.00	159	.18
30								.04	.00	.00	10	.18
31								.04		.00	18	
TOTAL							1416.2	16.51	0.13	0.00	1119.00	189.92
MEAN							47.2	.53	.004	.000	36.1	6.33
MAX								1.6	.03	.00	932	80
MIN								.04	.00	.00	.00	.13
AC-FT							2810	33	.3	.00	2220	377
STATIST	ICS OF MOI	NTHLY MEAN	DATA FO	R WATER Y	EARS 1961	- 200	1h, BY WATER	YEAR (WY	.)			
MEAN	26.5	8.82	8.17	8.33	13.7	11.6	16.0	19.0	19.0	3.19	9.34	55.0
MAX	363	107	59.4	44.3	169	86.7		134	375	27.2	115	1181
(WY)	1975	1975	1975	1975	1992	1987	1992	1965	1986	1992	1974	1974
MIN	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000
(WY)	1962	1962	1962	1962	1962	1962	1961	1961	1962	1961	1961	1962
SUMMARY	STATISTIC	CS	FOR 2	000 CALENI	DAR YEAR		FOR 2001 WAS	TER YEAR		WATER	YEARS 196	1 - 2001h
LOWEST A HIGHEST LOWEST I ANNUAL S MAXIMUM MAXIMUM ANNUAL F 10 PERCE 50 PERCE	MEAN ANNUAL MEA ANNUAL MEA DAILY MEA SEVEN-DAY PEAK FLOV PEAK STAC RUNOFF (AG ENT EXCEE ENT EXCEE	AN AN N MINIMUM SE C-FT) OS		.01	Mar 11		932 .00 .00 10200 a21.15 6.1 .06	Jun 8 Oct 24		12900 c15500 24. 12060 20 1.	000 Sep 00 Apr 00 Apr Sep 98 Sep	1974 1962 21 1974 1 1961 1 1961 21 1974 21 1974

h See PERIOD OF RECORD paragraph. c From rating curve extended above 12,400 ${\rm ft}^3/{\rm s}.$

From floodmark.

08128400 Middle Concho River above Tankersley, TX--Continued

08129300 Spring Creek above Tankersley, TX (Flood-hydrograph partial-record station)

- LOCATION.--Lat 31°19'48", long 100°38'24", Tom Green County, Hydrologic Unit 12090102, on right bank at downstream side of bridge on Farm Road 2335, 1.4 mi south of Tankersley, 2.5 mi upstream from Dove Creek, and 10.4 mi upstream from mouth.
- DRAINAGE AREA.--425 mi^2 , of which 19.7 mi^2 probably is noncontributing.
- PERIOD OF RECORD.--Oct. 1960 to Sept. 1995 (daily mean discharge), Oct. 1995 to current year (peak discharges greater than base discharge).

 Water-quality records.--Chemical data: Sept. 1964 to May 1967.
- REVISED RECORDS. -- WDR TX-81-3: Drainage area.
- GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,964.72 ft above sea level. Prior to Nov. 10, 1960, nonrecording gage at same site and datum. Satellite telemeter at station.
- REMARKS.--Records good except those for Dec. 1 to May 30, which are fair. No known regulation. There are many small diversions above station for irrigation.
- AVERAGE DISCHARGE.--35 years (water years 1961-95), 13.1 ft³/s (9,490 acre-ft/year).
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 30,400 ft³/s Aug. 12, 1971 (gage height, 16.57 ft); prior to Oct. 1, 1995, no flow at times most years.
- EXTREMES OUTSIDE PERIOD OF RECORD.--Notable floods since at least 1853 occurred in 1882 and 1884. Flood of Oct. 3, 1959, reached a stage of 18.4 ft, from floodmarks. At former gage near Tankersley 8.0 mi downstream, the flood of Oct. 3, 1959, had a discharge of 82,100 ft³/s and was found to be about 3.0 ft lower than the 1882 flood, the greatest at that location since at least 1853.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $250~\mathrm{ft}^3/\mathrm{s}$:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Aug. 28	1215	8,770	a10.52	No other p	eak greate	er than base disc	harge.

a From floodmark.

THIS PAGE IS INTENTIONALLY LEFT BLANK.

08130500 Dove Creek at Knickerbocker, TX (Flood-hydrograph partial-record station)

LOCATION.--Lat 31°16′26", long 100°37′50", Tom Green County, Hydrologic Unit 12090102, on left downstream end of bridge on Farm Road 2335, 0.5 mi west of Knickerbocker, and 5.7 mi upstream from mouth.

DRAINAGE AREA.--226 mi^2 , of which 8.4 mi^2 probably is noncontributing.

PERIOD OF RECORD.--Oct. 1960 to Sept. 1995 (daily mean discharge), Oct. 1995 to current year (peak discharges greater than base discharge).

REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,001.45 ft above sea level. Prior to Nov. 10, 1960, nonrecording gage, Nov. 10, 1960, to Mar. 17, 1986, water-stage recorder, both at site 278 ft to the right at present datum. Satellite telemeter at station.

REMARKS.--Records good except those for Nov. 14 to Dec. 1, Aug. 28, which are fair. No known regulation. Flow is affected by diversions from two small upstream channel dams, and by small upstream diversions (for irrigation). Flow is sustained by springflow from Dove Creek Spring about 9.0 mi upstream.

AVERAGE DISCHARGE.--35 years (water years 1961-95), $16.2~{\rm ft}^3/{\rm s}$ ($11,740~{\rm acre-ft/year}$).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $17,500 \text{ ft}^3/\text{s}$ Aug. 12, 1971 (gage height, 20.66 ft); prior to Oct. 1, 1995, no flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, 30.4 ft in 1906 and Oct. 3, 1959; floods in 1882 and 1884 reached about the same stage, from information by local resident.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 100 ft³/s:

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Aug. 28	1330	1,050	a8.78	No other p	eak greate	er than base disc	harge.

a From floodmark.

THIS PAGE IS INTENTIONALLY LEFT BLANK.

08131200 Twin Buttes Reservoir near San Angelo, TX

LOCATION.--Lat 31°22′55", long 100°32′17", Tom Green County, Hydrologic Unit 12090102, in outlet control tower at Twin Buttes Dam on Middle Concho River, Spring Creek, and South Concho River, 3.8 mi upstream from Lake Nasworthy Dam, 8.1 mi southwest of San Angelo, and 75.0 mi upstream from mouth.

DRAINAGE AREA. -- 3,868 mi², of which 1,055 mi² probably is noncontributing.

PERIOD OF RECORD. -- Oct. 1962 to current year.

Water-quality records.--Chemical data: May 1965 to Nov. 1966 and July 1970 to Apr. 1984.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and nonrecording gage on Middle Concho-Spring Creek pool and nonrecording gage on South Concho pool.

Datum of gage is sea level. Satellite telemeter at station.

REMARKS.--No estimated daily contents. Records good except those for Oct. 1-24 and July 9 to Aug. 29, which are fair. Records good except those for Oct. 1-24 and July 9 to Aug. 29, which are fair when water-stage recorder was isolated at an elevation of 1,888.08 ft. The reservoir is formed by a rolled earthfill dam 8.1 mi long, including a 200-foot-wide uncontrolled off-channel concrete gravity spillway with ogee weir section. Outlet works consist of three 15.5-foot concrete conduits, each controlled by a 12.0- by 15.0-foot fixed-wheel gate and a 12.0- by 15.0-foot radial gate, located in the Middle Concho-Spring Creek pool. Low-flow releases are made through 2.0- by 2.0-foot gates located in the center of three fixed- wheel gates. The South Concho and Middle Concho-Spring Creek pools are connected by a 3.22-mile equalizing channel. The South Concho and Middle Concho-Spring Creek pools were not equalized at an elevation of 1,926.5 ft during the year. Daily contents were obtained from capacity tables for South Concho and Middle Concho-Spring Creek pools and summed to obtain combined daily contents. Lake level elevations below 1,926.5 ft represent Middle Concho-Spring Creek pool only. Deliberate impoundment of water began on Dec. 1, 1962; dam was completed Feb. 13, 1963. In June 1999, construction of a cutoff wall to stop seepage was completed. Capacity curve is based on a survey made in 1958. Reservoir was built for flood control, irrigation, and municipal uses. Conservation pool storage is 177,800 acre-ft. Data regarding the dam are given in the following table:

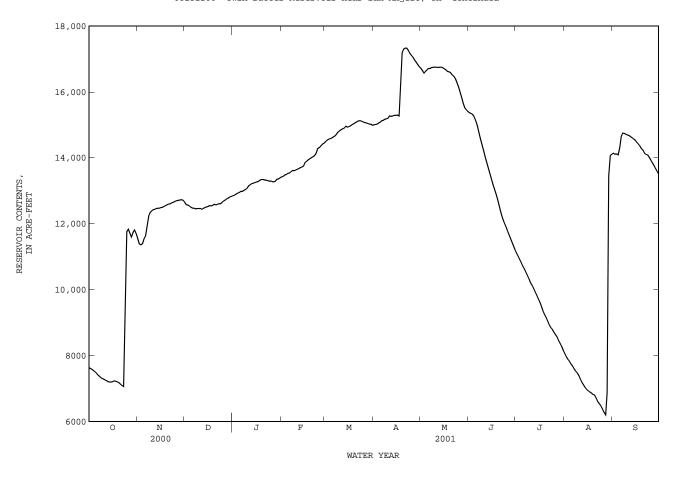
	Elevation
	(feet)
Top of dam	
Crest of spillway	
Bottom of equalizing channel (Middle Concho-Spring Creek pool	L) 1,926.5
Dead storage in South Concho pool	
Lowest gated outlet (invert at Middle Concho-Spring Creek poor	1,885.0

COOPERATION. -- Capacity curve dated Mar. 1964 furnished by the U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 205,200 acre-ft, May 12, 1975, elevation, 1,942.20 ft; minimum since first appreciable storage, 2,120 acre-ft, Apr. 15, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum combined daily mean contents, 17,330 acre-ft, Apr. 21, 22; minimum combined daily mean contents, 6,200 acre-ft, Aug. 27.

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7630	11550	12650	12850	13420	14490	15000	16710	15370	11120	8060	14140
2	7600	11390	12580	12870	13440	14530	15010	16650	15340	11030	7960	14110
3	7570	11360	12570	12900	13480	14560	15020	16570	15320	10930	7880	14120
4	7540	11390	12540	12930	13490	14580	15050	16630	15250	10840	7820	14090
5	7500	11530	12500	12950	13530	14600	15080	16680	15130	10730	7740	14310
6	7440	11620	12470	12980	13540	14630	15130	16710	14970	10640	7680	14640
7	7390	11920	12470	12980	13580	14660	15140	16710	14790	10540	7590	14750
8	7350	12230	12450	13010	13620	14710	15170	16740	14580	10430	7520	14740
9	7310	12350	12460	13040	13610	14780	15180	16750	14400	10340	7460	14710
10	7290	12390	12460	13080	13630	14820	15200	16750	14220	10210	7390	14690
11	7260	12430	12460	13150	13650	14850	15270	16750	14040	10140	7280	14680
12	7240	12440	12440	13180	13670	14880	15260	16740	13880	10040	7180	14640
13	7210	12460	12460	13220	13700	14900	15270	16750	13710	9940	7100	14610
14	7200	12470	12490	13230	13720	14960	15290	16750	13530	9840	7030	14570
15	7200	12470	12510	13250	13750	14930	15290	16730	13360	9730	6970	14530
16	7210	12490	12520	13270	13860	14950	15300	16700	13200	9620	6930	14470
17	7230	12500	12550	13280	13900	14970	15270	16670	13050	9480	6890	14410
18	7220	12530	12540	13310	13940	15000	16350	16620	12900	9360	6860	14350
19	7200	12550	12560	13340	13970	15030	17190	16610	12730	9250	6820	14280
20	7180	12580	12590	13340	14000	15060	17300	16580	12540	9160	6800	14230
21	7130	12600	12570	13330	14030	15090	17330	16520	12360	9050	6710	14140
22	7090	12610	12590	13320	14060	15120	17330	16480	12190	8940	6600	14100
23	7060	12640	12610	13310	14130	15130	17260	16400	12060	8850	6540	14080
24	8710	12650	12610	13290	14280	15110	17170	16290	11950	8790	6480	14010
25	11760	12680	12650	13300	14310	15090	17100	16160	11830	8710	6380	13930
26 27 28 29 30 31	11830 11720 11600 11730 11810 11700	12700 12710 12720 12730 12710	12690 12720 12760 12780 12810 12830	13280 13270 13290 13350 13360 13390	14360 14410 14440 	15070 15060 15040 15020 15020 14990	17040 16970 16900 16830 16760	15990 15830 15650 15520 15460 15400	11710 11590 11460 11340 11230	8630 8570 8460 8370 8270 8160	6280 6200 6870 13460 14070 14110	13840 13760 13670 13590 13500
MEAN	8350	12310	12580	13180	13840	14890	15980	16440	13330	9620	7760	14260
MAX	11830	12730	12830	13390	14440	15130	17330	16750	15370	11120	14110	14750
MIN	7060	11360	12440	12850	13420	14490	15000	15400	11230	8160	6200	13500
(+)	1890.33	1890.60	1890.31	1890.86	1891.96	1892.66	1894.58	1893.26	1889.02	1886.02	1890.62	1891.20
(@)	+4050	+1010	+120	+560	+1050	+550	+1770	-1360	-4170	-3070	+5950	-610

CAL YR 2000 MAX 16720 MIN 7060 (@) -2300 WTR YR 2001 MAX 17330 MIN 6200 (@) +5850

⁽⁺⁾ Elevation, in feet, at end of month of Middle Concho and Spring Creek pool.

^(@) Change in combined contents, in acre-feet.

08131200 Twin Buttes Reservoir near San Angelo, TX--Continued

08131400 Pecan Creek near San Angelo, TX

LOCATION.--Lat 31°18'32", long 100°26'44", Tom Green County, Hydrologic Unit 12090102, on left bank 200 ft upstream from U.S. Highway 277, 3.7 mi upstream from mouth, and 10.5 mi south of San Angelo.

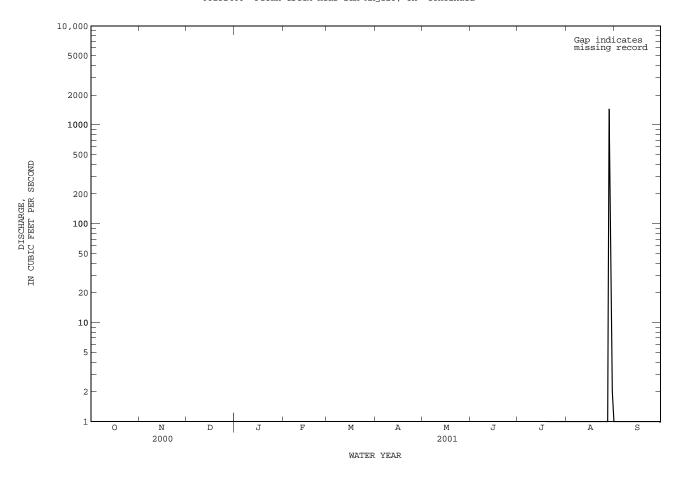
DRAINAGE AREA. -- 81.1 mi².

PERIOD OF RECORD.--June 1961 to Sept. 1986, July 2001 to current year.

REVISED RECORDS.--WDR TX-75-3: 1971, 1972(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,930.72 ft above sea level. Prior to Apr. 30, 1968, at site 1.2 mi downstream at datum 20.21 ft lower. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair except those for daily discharges below $5.0~{\rm ft}^3/{\rm s}$, which are poor. No known regulation or diversions. No flow many days each year.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1908, 14.36 ft, Sept. 15, 1936, former site and datum, (discharge, 30,500 ${\rm ft}^3/{\rm s}$) by slope-area measurement.

		DISCHAR	GE, CUBIC	FEET PER		WATER YEA	AR OCTOBER LUES	2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1											.00	.00
2											.00	.00
3											.00	.00
4											.00	.00
5											.00	.00
6											.00	.00
7											.00	.00
8											.00	.00
9											.00	.00
10											.00	.00
11											.00	.00
12											.00	.00
13											.00	.00
14 15											.00	.00
15											.00	.00
16											.00	.00
17											.00	.00
18											.00	.00
19										.00	.00	.00
20										.00	.00	.00
21										.00	.00	.00
22										.00	.00	.00
23										.00	.00	.00
24										.00	.00	.00
25										.00	.00	.00
26										.00	.00	.00
27										.00	.00	.00
28										.00	1450	.00
29										.00	21	.00
30 31										.00	2.0	.00
31										.00	.00	
TOTAL											1473.00	0.00
MEAN											47.5	.000
MAX											1450	.00
MIN AC-FT											.00 2920	.00
AC-FI											2920	.00
STATIST	ICS OF MC	NTHLY MEA	N DATA FO	R WATER Y	EARS 1961	- 2001h	, BY WATER	YEAR (WY	")			
MEAN	2.61	1.66	1.68	1.21	.94	.75	1.87	1.52	.91	.50	2.73	9.75
MAX	37.7	24.9	16.0	12.6	9.25	7.84	29.8	12.5	6.57	3.46	47.5	189
(WY)	1975	1975	1975	1975	1975	1975	1977	1975	1986	1971	2001	1980
MIN	.000 1963	.000 1962	.000 1962	.000 1962	.000 1962	.000 1962	.000 1962	.000 1962	.000	.000 1961	.000 1961	.000 1962
(WY)	STATISTI		1902	1902		1902 001 WATER		1902	1962		1901 YEARS 1961	
DUMMINI	SIMILSII	.03			FOR ZO	OI WAIEK	ILAK			WAIER.	IEARS 1901	- 200111
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC	MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY PEAK FLC PEAK STA RUNOFF (A ENT EXCEE	CAN CAN CAN MINIMUM OW CGE CC-FT) CDS			1410 6	.00 Ji .00 Ji .00 Ai	ug 28 ul 19 ul 19 ul 19 ug 28 ug 28			3940 .(c25600 10.6 1510 2.7	7 0000 Sep 00 Jul 00 Jul Sep 53 Sep	1980 1969 8 1980 1 1961 1 1961 8 1980 8 1980
	ENT EXCEE					.00					00	

h See PERIOD OF RECORD paragraph. c From rating curve extended above $17,300~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of $30,500~{\rm ft}^3/{\rm s}$.

From floodmark.

08131400 Pecan Creek near San Angelo, TX--Continued

08132000 Lake Nasworthy near San Angelo, TX

LOCATION.--Lat 31°23′19", long 100°28′41", Tom Green County, Hydrologic Unit 12090102, on left bank 250 ft upstream from Nasworthy Dam on South Concho River, 3.8 mi downstream from Twin Buttes Dam, 6.0 mi southwest of San Angelo, and 68.9 mi upstream from mouth.

DRAINAGE AREA.--3,975 mi², of which 3,868 mi² is above Twin Buttes Reservoir and 1,055 mi² probably is noncontributing.

PERIOD OF RECORD.--Mar. 1930 to Sept. 2001 (discontinued). Prior to Oct. 1969, end of month contents only. Water-quality records.--Chemical data: Mar. 1964 to May 1965 and Nov. 1969 to Apr. 1984.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to Oct. 1, 1996, datum was 1,840.00 ft. Satellite telemeter at station.

REMARKS.--No estimated daily contents. Records good. The lake is formed by a 6,090-foot dam with a 5,590-foot earthen section that has an earthen spillway 300 ft long, a concrete spillway 475 ft long with a bank of fifteen 25.0- by 18.0-foot tainter gates, and a 25.0- by 3.0-foot collapsible floodgate. The dam was completed and storage began Mar. 28, 1930. Since July 1966, West Texas Utilities Co. has operated a steam generating powerplant on the lake. Since Sept. 1962, the lake has been almost totally controlled by releases or pumpage from Twin Buttes Reservoir (station 08131200). Siltation surveys in Dec. 1938 and May 1953 by the Natural Resources Conservation Service (formerly the Soil Conservation Service) show that 1,191 acre-ft of silt was deposited from Mar. 1930 to Dec. 1938 and an additional 1,023 acre-ft was deposited from Dec. 1938 to May 1953, totaling 2,214 acre-ft. The dam is owned by the city of San Angelo. Water is used for part of San Angelo municipal supply and for irrigation east of San Angelo. The capacity curve is based on a survey by the Texas Water Development Board in Aug. and Sept. 1993 and has been used since Oct. 1995. The city of San Angelo began dredging Lake Nasworthy July 11, 2000, and was approximately 67% complete on Sept. 30, 2001. Conservation pool storage is 9,615 acre-ft. Data regarding the dam are given in the following table:

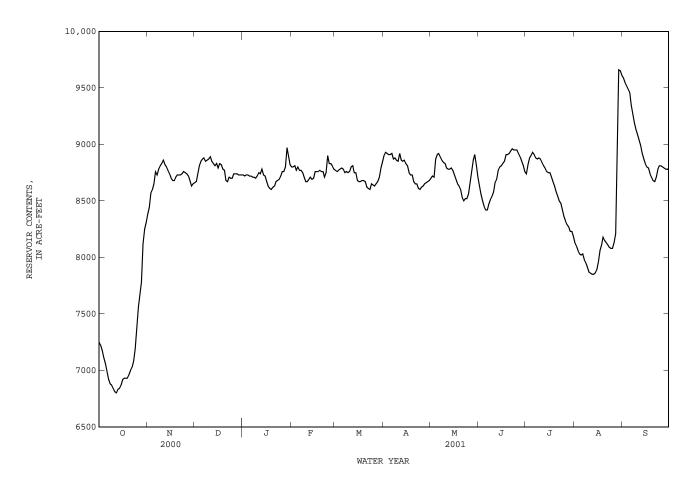
	Elevation (feet)
Top of dam	1,883.5
Crest of spillway (300 ft)	1,879.1
Top of gates	
Top of collapsible floodgate	1,872.2
Lowest outlet to canal (invert)	1,867.5
Crest of spillway (tainter gates sill)	1,855.3
Lowest gated outlet (invert)	1,836.0

COOPERATION.--Capacity curve dated Dec. 2, 1993, furnished by city of San Angelo.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 26,900 acre-ft, Sept. 15, 1936, elevation, 1,878.36 ft; minimum contents, 209 acre-ft, Aug. 22, 1964, elevation, 1,853.21 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 9,670 acre-ft, Aug. 29, elevation, 1,871.97 ft; minimum contents, 6,800 acre-ft, Oct. 11, 12, elevation, 1,869.58 ft.

PESERVOIR STORAGE (ACRE-FEET) WATER YEAR OCTORER 2000 TO SERTEMBER 2001


RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7250	8380	8660	8730	8800	8770	8900	8700	8630	8740	8130	9590
2	7220	8440	8670	8720	8800	8760	8930	8720	8560	8820	8100	9550
3	7170	8570	8740	8730	8810	8770	8920	8710	8500	8880	8060	9520
4	7110	8600	8810	8730	8770	8780	8910	8870	8450	8900	8030	9490
5	7060	8650	8850	8720	8800	8790	8910	8910	8420	8930	8020	9490
6	6990	8760	8870	8720	8770	8780	8920	8920	8420	8910	8030	9350
7	6920	8730	8880	8710	8770	8750	8870	8890	8470	8880	7980	9270
8	6880	8780	8850	8710	8750	8760	8880	8860	8510	8870	7950	9190
9	6870	8810	8860	8700	8710	8750	8860	8840	8540	8880	7910	9130
10	6840	8830	8870	8720	8670	8760	8850	8830	8580	8870	7870	9090
11	6810	8860	8890	8750	8670	8800	8920	8790	8660	8840	7860	9040
12	6800	8820	8850	8740	8690	8810	8860	8780	8690	8810	7850	8990
13	6830	8800	8830	8780	8710	8750	8850	8780	8770	8790	7850	8920
14	6840	8770	8810	8730	8690	8750	8860	8790	8800	8760	7860	8870
15	6870	8740	8830	8720	8700	8680	8830	8770	8810	8750	7890	8830
16	6920	8700	8790	8670	8760	8670	8810	8730	8830	8750	7960	8800
17	6930	8680	8830	8630	8760	8670	8750	8690	8850	8710	8060	8790
18	6930	8680	8820	8610	8760	8680	8730	8650	8910	8670	8110	8740
19	6930	8710	8780	8600	8770	8680	8730	8630	8910	8630	8180	8710
20	6960	8730	8770	8620	8760	8670	8670	8600	8920	8580	8150	8680
21	7000	8730	8680	8630	8760	8620	8650	8530	8940	8540	8130	8670
22	7030	8730	8670	8670	8710	8610	8650	8500	8960	8500	8110	8710
23	7080	8740	8710	8680	8750	8600	8610	8520	8950	8480	8090	8780
24	7190	8760	8700	8690	8900	8650	8600	8520	8950	8420	8080	8810
25	7370	8750	8700	8720	8830	8640	8620	8560	8950	8360	8080	8810
26 27 28 29 30 31	7560 7660 7780 8120 8250 8310	8740 8720 8680 8630 8650	8740 8740 8740 8730 8730 8730	8760 8760 8800 8970 8890 8820	8830 8810 8780 	8630 8650 8670 8710 8790 8840	8630 8650 8660 8670 8680	8660 8760 8860 8910 8820 8710	8920 8890 8850 8810 8760	8320 8290 8270 8230 8230 8190	8130 8210 8820 9660 9650 9610	8800 8790 8780 8780 8780

08132000 Lake Nasworthy near San Angelo, TX--Continued

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	7180	8710	8780	8720	8760	8720	8780	8740	8740	8640	8210	8990
MAX	8310	8860	8890	8970	8900	8840	8930	8920	8960	8930	9660	9590
MIN	6800	8380	8660	8600	8670	8600	8600	8500	8420	8190	7850	8670
(+)	1870.88	1871.16	1871.22	1871.30	1871.27	1871.31	1871.18	1871.21	1871.25	1870.78	1871.92	1871.26
(@)	+1050	+340	+80	+90	-40	+60	-160	+30	+50	-570	+1420	-830

CAL YR 2000 WTR YR 2001 MAX 9140 MAX 9660 MIN 6800 (@) 0 MIN 6800 (@) +1520

- (+) Elevation, in feet, at end of month.(@) Change in contents, in acre-feet.

2.1

08133250 North Concho River above Sterling City, TX (Partial-record station)

LOCATION.--Lat 31°53′50", long 101°06′17", Sterling County, Hydrologic Unit 12090104, on left bank 0.2 mi southwest of U.S. Highway 87, 2.1 mi upstream from Willow Creek, 3.3 mi upstream from Chalk Creek, 5.0 mi above State Highway 158, 5.5 mi downstream from Sand Bluff Draw, and 8.0 mi northwest of Sterling City.

DRAINAGE AREA. -- 201 mi².

AC-FT

PERIOD OF RECORD.--Feb. 2000 to current year (daily mean discharges less than 10 ft³/s).

GAGE.--Water-stage recorder and concrete dam. Datum of gage is 2,353.99 ft above sea level (Texas Department of Transportation benchmark). Satellite telemeter at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. No flow many days.

EXTREMES FOR WATER YEAR 2000.--Maximum gage height, 13.88 ft, Mar. 23, 2000, from floodmark (maximum discharge not determined); minimum, no flow many days.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 0.13 ft³/s, Apr. 10, gage height, 3.55 ft; minimum, no flow many days.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY NUL JUL AUG SEP .08 .17 .00 .00 .00 .00 2 ___ ___ ___ ___ ___ .07 1.1 .16 .00 .00 .00 .00 ---___ ---------.44 .06 .14 .00 .00 .00 .00 .32 .06 .12 .00 .00 .00 .00 5 ___ ___ ---___ ___ .06 .33 .12 .00 .00 .00 .00 6 7 .10 .00 .00 .06 .32 .00 .00 .07 .32 .00 ___ ___ ___ ___ ___ .10 .00 .00 .00 8 ------___ .08 .00 .00 .00 .06 .33 .00 .00 .00 10 ___ ___ ___ ___ ___ .06 .32 .09 .00 .00 .00 .00 11 .06 .37 .06 .00 .00 .00 .36 12 ___ ___ ___ ___ ___ .06 .04 .00 0.0 .00 .00 13 .06 .02 .00 .00 .00 .00 .06 .31 .02 .00 .00 15 ___ ___ ___ ___ ___ .06 .31 03 .00 .00 .00 .00 16 .06 .30 .02 .00 .00 .00 .00 .00 ___ .08 .30 17 ___ ___ ___ 0.5 .01 0.0 0.0 0.0 18 .09 .04 .01 .00 .00 .00 .00 19 ---------.07 .04 .22 .06 .00 .00 .00 .00 ___ 20 ___ ___ ___ 0.7 0.4 19 06 .00 0.0 0.0 .00 21 .09 .04 .21 .04 .00 .00 .00 .00 ___ ___ ___ ___ 22 .11 .04 .26 .02 .00 .00 .00 .00 23 ---___ ___ ___ .07 .24 .01 .00 .00 .00 .00 24 ---------.11 ---.24 .00 .00 .00 .00 .00 25 ------------.21 .07 ---.00 .00 .00 .00 .00 26 .06 1.6 .20 .00 .00 .00 .00 .00 ------------.54 27 .07 .19 .00 .00 .00 .00 .00 28 ------------.08 .35 .20 .00 .00 .00 .00 .00 ---------29 ---.07 .29 .20 .00 .00 .00 .00 . 00 30 .17 .00 .28 .00 .00 .00 .00 31 ---.29 .00 .00 .00 TOTAL 1.04 4.59 8.87 1.56 0.00 0.00 0.00 0.00 ------MEAN ------.080 .16 .31 .050 .000 .000 .000 .000 MAX ------.11 1.6 1.1 .17 .00 .00 .00 .00 .17 MIN .06 .04 .00 .00 .00 .00

9.1

18

3.1

.00

.00

.00

.00

08133250 North Concho River above Sterling City, TX--Continued (Partial-record station)

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9 10	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.01 .00 .00 .01	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .01 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	.00 .00 e.00 e.00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00	.00	.00 .00 .00 .00	.00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	0.04 .001 .01 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00

e Estimated

08133500 North Concho River at Sterling City, TX (Flood-hydrograph partial-record station)

- LOCATION.--Lat 31°49'48", long 100°59'36", Sterling County, Hydrologic Unit 12090104, on right bank 100 ft upstream from bridge on State Highway 163, 0.5 mi south of Sterling City, 4.0 mi upstream from Sterling Creek, 5.1 mi downstream from Lacy Creek, and at mile 57.2.
- DRAINAGE AREA.--588 mi^2 , of which 19.6 mi^2 probably is noncontributing.
- PERIOD OF RECORD.--Sept. 1939 to Sept. 1985, Oct. 1985 to Sept. 1995 (daily discharges greater than 100 $\rm ft^3/s$), Oct. 1995 to current year (peak discharges greater than base discharge).
- REVISED RECORDS.--WSP 1512: 1945, 1948. WDR TX-81-3: Drainage area.
- GAGE.--Water-stage recorder. Datum of gage is 2,242.36 ft above sea level. Prior to Dec. 6, 1939, nonrecording gage at same site and datum. Satellite telemeter at station.
- AVERAGE DISCHARGE.--46 years (water years 1940-85), 7.80 ft³/s (5,650 acre-ft/year).
- REMARKS. -- Records good. No known regulation. There are several small diversions above station for irrigation.
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,300 ft³/s July 6, 1948 (gage height, 23.70 ft); prior to Oct. 1, 1985, no flow at times each year. Maximum stage since at least 1891, that of July 6, 1948.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ${\rm ft}^3/{\rm s}$:

Discharge Gage height Date Time (ft^3/s) (ft) Date Time (ft^3/s) (ft) Date Time (ft^3/s) (ft)

No peak greater than base discharge.

THIS PAGE IS INTENTIONALLY LEFT BLANK.

08134000 North Concho River near Carlsbad, TX (Hydrologic index station)

LOCATION.--Lat 31°35′33", long 100°38′12", Tom Green County, Hydrologic Unit 12090104, near left bank at downstream side of bridge on county road, 0.6 mi southeast of Carlsbad, 1.5 mi upstream from Mule Creek, 2.5 mi upstream from Grape Creek, 16.2 mi upstream from O.C. Fisher Dam, and 21.3 mi upstream from mouth.

DRAINAGE AREA.--1,266 mi^2 , of which 75.1 mi^2 probably is noncontributing.

PERIOD OF RECORD. -- Mar. 1924 to current year.

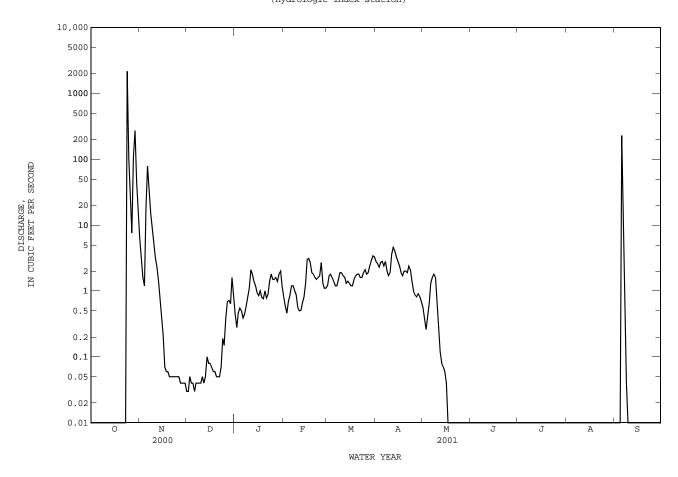
Water-quality records.--Chemical data: Apr. 1980 to July 1982. Biochemical data: Apr. 1980 to July 1982.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

REVISED RECORDS.--WSP 1512: 1924(M), 1925, 1926(M), 1928, 1930, 1932(M), 1935, 1937-38(M), 1941(M), 1945(M), 1947-49(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,968.02 ft above sea level. Prior to Feb. 4, 1925, and Sept. 27, 1936, to Feb. 7, 1937, nonrecording gage; Feb. 4, 1925, to Sept. 26, 1936, and Feb. 8, 1937, to Nov. 6, 1955, water-stage recorder, all at site 2.5 mi upstream at datum 32.76 ft higher. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. No known regulation. There are several diversions (by pumping) upstream from station. No flow at times.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since June 1853, that of Sept. 26, 1936.

		DISCHAI	KGE, CUBI	C FEEL PE	DAILY	MEAN VA		C 2000 10 i	DE LI EMDI	5R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		6.5 3.1 1.6 1.2								.00 .00 .00 .00		.00 .00 .00 .00
6 7 8 9 10		78 31 15 8.8 5.4										6.9 .84 .04 .00
11 12 13 14 15	.00 .00 .00 .00	3.2 2.3 1.4 .75 .42	.05 .04 .05 .10	2.1 1.8 1.4 1.2	.50 .51 .66 .81	1.7 1.6 1.3 1.4	3.6 4.6 4.1 3.3 2.8	.31 .12 .08 .07	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20			.08 .07 .06 .06	.85 1.0 .80 .76 1.0	3.0 3.1 2.7 1.9	1.2 1.5 1.7 1.8	2.4 1.9 1.7 2.0 2.0	.04 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	.00 .00 .00 2150 103	.05 .05 .05 .05	.05 .05 .07 .19	.78 .88 1.4 1.8 1.5	1.6 1.5 1.6 1.7 2.7	1.8 1.6 1.6 1.9 2.1	1.9 2.4 2.1 1.4 .99	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	24 7.6 109 272 45 16	.05 .04 .04 .04	.38 .69 .72 .64 1.6	1.5 1.6 1.4 1.8 2.0	1.3 1.1 1.1 	1.8 1.9 2.4 2.9 3.4 3.3	.86 .81 .91 .82 .68	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
										0.00 .000 .00 .00		
STATI		MONTHLY ME										
MEAN MAX (WY) MIN (WY)	36.2 1463 1958 .000 1934	3.99 65.2 1935 .000 1934	4.04 20.1 1931 .000 1953	3.87 16.0 1937 .000 1953	6.59 85.0 1935 .000 1953	12.1 307 1926 .000 1953	34.4 631 1925 .000 1963	76.6 1355 1925 .000 1967	26.1 252 1937 .000 1934	38.6 1195 1948 .000 1924	16.0 255 1953 .000 1929	80.4 4019 1936 .000 1930
SUMMA	RY STATIS	TICS	FOR	2000 CALE	NDAR YEAR	F	OR 2001 WA	ATER YEAR		WATER YE	ARS 1924	- 2001
ANNUA HIGHE LOWES' HIGHE LOWES' ANNUA MAXIM MAXIM ANNUA 10 PE 50 PE	UM PEAK F UM PEAK S'	MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) EEDS		8215.6 22.4 4540 .0 .0 16300 4.5 .0	Mar 24 0 Jan 1 0 Jan 1		3345.74 9.17 2150 .00 7030 p16.60 6640 2.5 .05	Oct 24 Oct 1 Oct 1 Oct 1 Oct 24 Oct 24		28.4 336 .000 62900 .00 .00 c94600 a29.10 20600 12 1.4 .00		1936 1970 17 1936 20 1924 20 1924 26 1936 26 1936

c From rating curve extended above $15,000 \text{ ft}^3/\text{s}$ on basis of slope-area measurements of $55,200 \text{ and } 94,600 \text{ ft}^3/\text{s}$ at former site. D Observed.

a From floodmark at present site.

08134000 North Concho River near Carlsbad, TX--Continued (Hydrologic index station)

08134250 North Concho River near Grape Creek, TX

LOCATION.--Lat 31°32′33", long 100°33′17", Tom Green County, Hydrologic Unit 12090104, on left bank at downstream side of bridge on FM 2288, 1.2 mi upstream from Bald Eagle Creek, 1.3 mi south of U.S. Hwy 87 at community of Grape Creek, 2.8 mi downstream from Grape Creek, and 6.0 mi upstream from O.C. Fisher Dam.

DRAINAGE AREA.--1,400 mi^2 , of which 75.1 mi^2 probably is noncontributing.

PERIOD OF RECORD. -- Feb. 2000 to current year.

MIN

AC-FT

.00

5090

.00

237

.00

.00

.00

.00

.00

.00

GAGE.--Water-stage recorder. Datum of gage is 1,895.83 ft above sea level (Texas Department of Transportation benchmark). Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. No known regulation. There are several diversions (by pumping) upstream from station

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,400 ft³/s Mar. 24, 2000 (gage height, 24.50 ft, observed); no flow at times.

 $\hbox{\it EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,660 ft}^3/s \hbox{\it Oct. 24 (gage height, 21.20 ft, observed); no flow at times. } \\$

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY NUTL JUL AUG SEP .00 8.1 .00 .00 .00 .00 .68 .00 .00 .00 .00 .00 2.6 .00 .00 2 .00 .00 .00 .00 .60 .00 .00 .00 .00 .00 .00 .00 .00 .40 .00 .00 .00 .00 .00 . 25 .00 .00 .00 .00 .30 .00 .00 .00 .00 .00 5 .00 .71 .00 .00 .00 .00 .16 .00 .00 .00 .00 72 6 7 .00 .00 .00 .00 .00 .00 44 .00 .15 .00 .00 8.3 .00 34 15 .00 .00 .00 .00 .00 .13 .00 .00 .00 1.1 8 .00 .11 .00 .00 .01 .00 .04 .00 .00 .00 .00 .18 10 .00 3.6 .00 .00 .00 .06 .04 .00 .00 .00 .00 .00 11 .00 .00 .00 .00 .21 .00 .00 .00 .00 1.4 .00 .00 .38 .16 12 .00 .00 0.0 .16 .00 .00 0.0 .00 13 .00 .00 .00 .00 .05 .00 .00 .00 .00 .00 .00 .00 15 .00 .02 0.0 .00 .04 .87 .00 .00 0.0 .00 .00 16 .00 .00 .00 .00 .00 .00 .76 .00 .00 .00 .00 .00 .00 17 0.0 0.0 00 0.0 .00 0.0 44 0.0 0.0 .00 00 18 .00 .00 .00 .00 .00 .13 .00 .00 .00 .00 .00 .00 19 .00 .00 .00 .00 .00 .00 .04 .00 .00 .00 .00 .00 20 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 .00 0.0 0.0 .00 21 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 22 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 23 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 24 1990 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 25 149 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 26 30 .00 .00 .00 .00 .00 . 00 .00 .00 .00 .00 .00 27 12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 28 6.5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 29 304 .00 .00 .03 nn .00 .00 .00 .00 . 00 30 55 .00 .00 .00 .00 .20 .00 .00 .00 .00 .00 18 .00 .00 .56 .00 .00 .00 TOTAL 2564.50 119.55 0.00 0.00 0.00 1.59 5.76 0.00 0.00 0.00 0.00 81.41 3.99 .19 MEAN 82.7 .000 .000 .000 .051 .000 .000 .000 .000 2.71 .00 MAX 1990 44 .00 .00 .56 . 87 .00 .00 .00 .00 72

.00

3.2

.00

11

.00

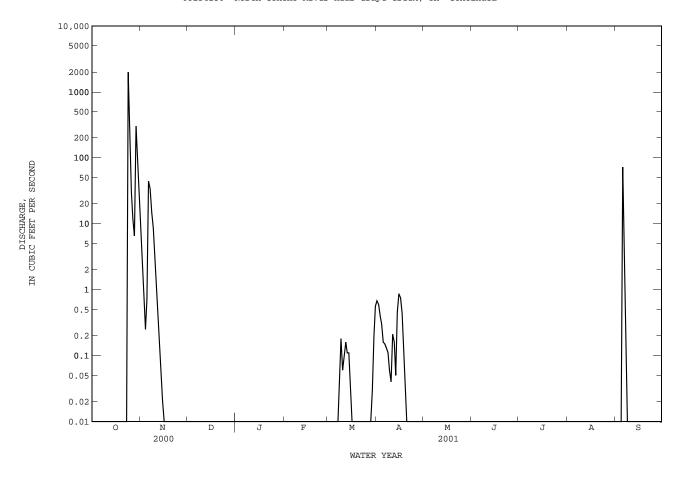
.00

.00

.00

.00

.00


.00

.00

.00

161

08134250 North Concho River near Grape Creek, TX--Continued

08134500 O.C. Fisher Lake at San Angelo, TX

LOCATION.--Lat 31°29'04", long 100°28'53", Tom Green County, Hydrologic Unit 12090104, at intake structure of O.C. Fisher Dam on North Concho River, 0.1 mi west of Glenna Drive, 3.1 mi northwest of center of San Angelo, and 6.6 mi upstream from mouth.

DRAINAGE AREA. -- 1,488 mi², of which 105 mi² probably is noncontributing.

PERIOD OF RECORD.--Feb. 1952 to Sept. 2000 (U.S. Army Corps of Engineers furnished contents), Oct. 2000 to current year. Published as "San Angelo Reservoir" prior to Oct. 1970, and as "San Angelo Lake", Oct. 1970 to Sept. 1974.

REVISED RECORDS. -- WSP 1922: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to May 12, 1953, nonrecording gage at same site and datum. Prior to Aug. 16, 2001, water-stage recorder inside intake structure at same datum. Satellite telemeter at station.

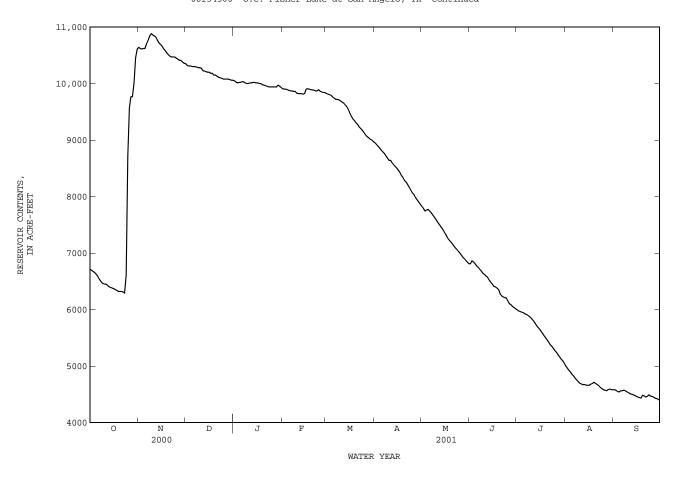
REMARKS.--No estimated daily contents. Records fair. The lake is formed by a rolled earthfill dam 40,885 ft long, including spillway. Closure was completed Mar. 7, 1951, and the dam was completed May 3, 1951. Deliberate impoundment began Feb. 1, 1952. The dam is owned by the U.S. Army Corps of Engineers. The lake is operated for flood control and recreation with part as municipal supply for the city of San Angelo. The spillway is an uncontrolled off-channel concrete gravity dam with ogee weir section 1,150 ft wide located to the right and upstream from the right end of dam. The spillway is designed to discharge 356,000 ft³/s at maximum design flood level. The control outlet works consist of six gate-controlled outlets, 7.5 by 14.5 ft, opening into two 18.0-foot-diameter concrete conduits, and two 2.5-foot gate-controlled outlets for water-supply outlets. Since Feb. 1973, the capacity is based on a survey made in 1962. Prior to 1973, the capacity was based on a survey made in 1944. Conservation pool storage is 115,743 acre-ft. Data regarding the dam are given in the following table:

	Elevation
	(feet)
Top of dam	1,964.0
Design flood	1,958.0
Crest of spillway	
Top of conservation pool	
Lowest gated outlet (invert)	1,840.0

COOPERATION. -- The capacity table dated 1972 was furnished by the U.S. Army Corps of Engineers and is based on a resurvey of the lake in 1962.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 174,100 acre-ft, Oct. 14, 1957, elevation, 1,916.47 ft; minimum since first appreciable storage, lake dry July 16, 1970, to Apr. 15, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 10,880 acre-ft, Nov. 8, 9, elevation, 1,870.67 ft; minimum contents, 4,380 acre-ft, Sept. 30, elevation, 1,861.43 ft.


RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	6710 6690	10640 10620	10350 10320	10050 10030	9910 9900	9820 9810	8950 8920	7820 7790	6810 6860	5990 5970	5000 4960	4580 4570
3	6670	10610	10310	10010	9900	9800	8890	7740	6840	5960	4920	4550
4	6650	10620	10310	10020	9890	9790	8860	7760	6810	5950	4890	4540
5	6620	10620	10300	10020	9880	9760	8820	7770	6770	5940	4850	4560
6	6580	10700	10300	10030	9870	9740	8790	7740	6740	5920	4820	4560
7 8	6530 6490	10760 10840	10300 10290	10030 10010	9870 9860	9720 9720	8760 8720	7710 7670	6710 6680	5910 5890	4780 4750	4570 4560
9	6460	10880	10280	10010	9860	9710	8680	7630	6640	5870	4720	4540
10	6450	10860	10280	10000	9830	9690	8640	7590	6620	5840	4690	4530
11	6450	10840	10270	10010	9820	9670	8640	7550	6590	5810	4680	4510
12	6430	10820	10230	10010	9820	9650	8590	7510	6570	5770	4670	4500
13	6400	10760	10220	10020	9820	9620	8560	7470	6520	5730	4670	4490
14	6390	10720	10210	10020	9810	9590	8530	7430	6480	5690	4660	4480
15	6380	10690	10200	10010	9820	9540	8500	7390	6450	5660	4660	4460
16	6370	10660	10200	10010	9900	9470	8460	7340	6410	5620	4660	4450
17	6350	10610	10180	10000	9910	9420	8420	7290	6400	5580	4680	4440
18	6340	10580	10180	10000	9900	9370	8370	7240	6380	5540	4690	4430
19	6320	10540	10150	9980	9890	9340	8330	7210	6350	5500	4710	4480
20	6320	10510	10150	9970	9890	9300	8280	7180	6270	5460	4690	4470
21	6320	10480	10130	9960	9880	9270	8250	7140	6240	5420	4670	4450
22	6310	10470	10110	9950	9870	9230	8210	7100	6220	5380	4650	4460
23	6290	10470	10100	9940	9870	9200	8160	7070	6210	5350	4620	4490
24	6610	10470	10090	9940	9890	9170	8110	7040	6200	5310	4600	4470
25	8710	10450	10080	9940	9860	9130	8060	7010	6150	5270	4580	4460
26	9570	10430	10080	9940	9850	9090	8030	6970	6100	5240	4570	4450
27	9760	10410	10080	9940	9840	9060	7980	6930	6080	5200	4560	4430
28	9770	10410	10080	9940	9840	9040	7940	6900	6050	5160	4580	4420
29	10010	10380	10070	9970		9010	7900	6870	6030	5120	4590	4410
30 31	10460 10610	10360	10060 10060	9950 9930		9000 8970	7860	6840 6810	6010	5090 5050	4580 4580	4390
31												
MEAN	7230	10610	10190	9990	9870	9440	8440	7340	6440	5590	4700	4490
MAX	10610	10880	10350	10050	9910	9820	8950	7820	6860	5990	5000	4580
MIN	6290	10360	10060	9930	9810	8970	7860	6810	6010	5050	4560	4390
(+)	1870.39	1870.12	1869.78	1869.63	1869.53	1868.50	1867.07	1865.55	1864.29	1862.65	1861.82	1861.45
(@)	+3790	-250	-300	-130	-90	-870	-1110	-1050	-800	-960	-470	-190

CAL YR 2000 MAX 14720 MIN 6290 (@) +2040 WTR YR 2001 MAX 10880 MIN 4390 (@) -2430

⁽⁺⁾ Elevation, in feet, at end of month.
(@) Change in contents, in acre-feet.

08134500 O.C. Fisher Lake at San Angelo, TX--Continued

08136000 Concho River at San Angelo, TX

LOCATION.--Lat 31°27′16", long 100°24′37", Tom Green County, Hydrologic Unit 12090105, on left bank 0.4 mi downstream from confluence of North and South Concho Rivers, 1.8 mi southeast of Tom Green County Courthouse, in San Angelo at Rio Concho Sports Complex on Rio Concho Dr. below Bell St. bridge, and 61.9 mi upstream from mouth.

DRAINAGE AREA.--5,542 mi², of which 1,131 mi² probably is noncontributing.

PERIOD OF RECORD. -- Sept. 1915 to current year. Prior to Oct. 1969, published as "near San Angelo".

REVISED RECORDS.--WSP 568: 1915-16, 1919-22. WSP 1148: 1916-22(M), 1924(M), 1925-26, 1929(M), 1930-32, 1935-37. WSP 1512: 1917-18. WSP 1712: 1936. WDR TX-81-3: Drainage area.

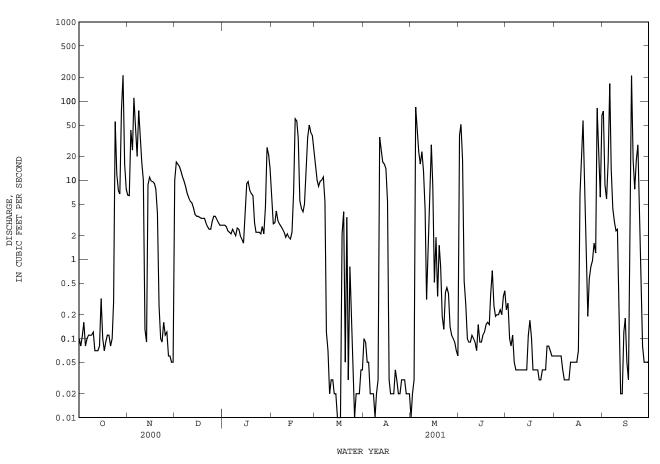
GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,776.79 ft above sea level. Prior to Aug. 11, 1917, nonrecording gage at same site and datum. Aug. 11, 1917, to May 15, 1963, water-stage recorder on right bank at same datum. Satellite telemeter at station.

REMARKS.--Records fair except those for estimated daily discharges and those above 500 ft³/s, which are poor. Since water year 1931 at least 10% of contributing drainage area has been regulated. There are many diversions upstream from station for irrigation, industrial, and municipal supply. No flow at times.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--15 years (water years 1916-30) prior to completion of Lake Nasworthy, $142 \text{ ft}^3/\text{s}$ (102,600 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS, 1916-30).--Maximum discharge, 92,000 ft³/s Apr. 26, 1922 (gage height, 36.8 ft, from floodmarks), on basis of slope-area measurements of 167,000 and 230,000 ft³/s in 1936; no flow at times in 1921

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1853, 47.5 ft Aug. 6, 1906 (discharge, about 246,000 ft³/s), from information by local resident. Other large floods are known to have occurred in June 1853, Aug. 1882, and Apr. 1900.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		2100111	102, 0021	0 1221 12	DAIL	Y MEAN V	ALUES	2000 1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.10 .08 .11 .16 .08	6.5 6.4 43 24 110	10 17 16 15 13	2.7 2.7 2.6 2.3 2.2	6.6 2.8 2.9 4.1 3.1	16 10 8.4 9.7	.10 .09 .05 .05	.01 .02 .03 84 46	37 51 18 .53 .27	.23 .28 .10 .08	.06 .06 .06 .06	75 8.8 5.8 17 167
6 7 8 9 10	.10 .11 .11 .11	48 20 76 34 17	11 9.8 8.3 6.8 6.0	2.1 2.4 2.2 2.0 2.5	2.8 2.6 2.4 2.2 1.9	11 5.3 .12 .07 .02	.02 .02 .01 .02	23 16 23 13 4.2	.10 .09 .09 .11 .10	.05 .04 .04 .04	.04 .03 .03 .03	14 4.4 3.0 2.3 2.4
11 12 13 14 15	.07 .07 .07 .08	10 .13 .09 8.8	5.4 5.2 4.5 3.7 3.5	2.4 2.0 1.8 1.6 3.9	2.1 1.9 1.8 2.2 7.0	.03 .03 .02 .02	35 24 17 16 14	.31 2.0 10 28 8.4	.09 .07 .15 .09	.04 .04 .04 .04	.05 .05 .05 .05	.44 .02 .02 .12 .18
16 17 18 19 20	.10 .07 .09 .11	9.8 9.6 9.1 7.7 3.8	3.5 3.4 3.3 3.3	9.0 9.6 7.5 6.8 6.4	60 56 34 5.5 4.4	.01 .01 2.1 4.0 .05	5.4 .03 .02 .02	.51 1.9 .34 1.5	.11 .12 .15 .16	.17 .10 .04 .04	.07 6.6 23 57 9.3	.05 .03 1.5 211 18
21 22 23 24 25	.08 .10 .29 55	.26 .10 .09 .16	2.9 2.6 2.4 2.4 3.0	2.9 2.2 2.2 2.2 2.1	4.0 e5.0 15 35 50	3.4 .03 .81 .17	.04 .03 .02 .02	.19 .13 .38 .44	.37 .72 .26 .19 .20	.04 .03 .03 .04	2.5 .19 .57 .81	7.7 18 28 6.9 1.3
26 27 28 29 30 31	7.4 6.7 76 212 16 7.7	.12 .06 .06 .05 .05	3.5 3.5 3.2 2.9 2.7 2.7	2.6 2.1 4.6 26 21 14	40 37 24 	.01 .02 .02 .02 .04	.03 .03 .02 .02 .02	.14 .11 .10 .09 .07	. 20 . 23 . 20 . 34 . 40	.04 .08 .08 .07 .06	1.6 1.2 82 23 6.1	.08 .05 .05 .05
TOTAL MEAN MAX MIN AC-FT	395.44 12.8 212 .07 784	455.98 15.2 110 .05 904	183.8 5.93 17 2.4 365	156.6 5.05 26 1.6 311	416.3 14.9 60 1.8 826	81.48 2.63 16 .01 162	112.16 3.74 35 .01 222	265.11 8.55 84 .01 526	111.58 3.72 51 .07 221	2.24 .072 .28 .03 4.4	281.61 9.08 82 .03 559	593.24 19.8 211 .02 1180
STATIS	TICS OF I	MONTHLY ME	AN DATA F	OR WATER	YEARS 193	1 - 20012	z, BY WATI	ER YEAR (WY)			
MEAN MAX (WY) MIN (WY)	119 2659 1960 .051 2000	32.4 434 1975 .047 2000	33.2 274 1975 .095 1974	29.7 205 1938 .055 1974	35.1 213 1975 .034 2000	28.3 242 1941 .050 1971	92.4 1604 1949 .042 2000	185 3984 1957 .083 1971	84.2 1132 1941 .090 1971	102 2137 1938 .069 1969	39.6 900 1942 .040 1999	252 13190 1936 .034 1999

08136000 Concho River at San Angelo, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1931 - 2001z
ANNUAL TOTAL	1570.40	3055.54	
ANNUAL MEAN	4.29	8.37	86.1
HIGHEST ANNUAL MEAN			1132 1936
LOWEST ANNUAL MEAN			1.55 2000
HIGHEST DAILY MEAN	212 Oct 29	212 Oct 29	128000 Sep 17 1936
LOWEST DAILY MEAN	.00 May 26	.01 Mar 15	.00 Sep 14 1952
ANNUAL SEVEN-DAY MINIMUM	.00 May 26	.02 Mar 11	.00 Sep 16 1952
MAXIMUM PEAK FLOW		1070 Sep 19	c230000 Sep 17 1936
MAXIMUM PEAK STAGE		4.47 Sep 19	a46.60 Sep 17 1936
ANNUAL RUNOFF (AC-FT)	3110	6060	62410
10 PERCENT EXCEEDS	9.7	22	67
50 PERCENT EXCEEDS	.05	.57	6.9
90 PERCENT EXCEEDS	.02	.03	.10

- Estimated Period of regulated streamflow. From floodmark. From rating curve extended above 105,000 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurements of 167,000 and 230,000 ${\rm ft}^3/{\rm s}$. e z a c

08136500 Concho River at Paint Rock, TX

LOCATION.--Lat 31°30′57", long 99°55′09", Concho County, Hydrologic Unit 12090105, near left bank at downstream end of pier of bridge on U.S. Highway 83, 0.5 mi north of Concho County Courthouse in Paint Rock, 2.7 mi downstream from Kickapoo Creek, and 20.0 mi upstream from mouth.

DRAINAGE AREA.--6,574 mi², of which 1,131 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Sept. 1915 to current year. Prior to Oct. 1970, published as "near Paint Rock".

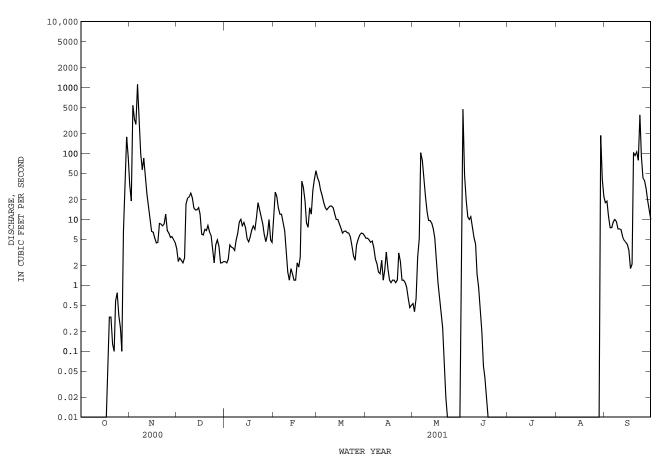
REVISED RECORDS.--WSP 458: 1915-16. WSP 568: 1919-20. WSP 1712: 1922(M). WSP 1732: 1918(M), 1923(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,574.36 ft above sea level. See WSP 1922 for history of changes prior to Jan. 15, 1940. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. Since water year 1931 at least 10% of contributing drainage area has been regulated. Flow affected at times by discharge from the flood-detention pools of two floodwater-retarding structures. These structures control runoff from 16.5 mi² in the Willow Creek drainage basin. No flow at times.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--15 years (water years 1916-30) prior to construction of Lake Nasworthy, 186 ft³/s (134,700 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1916-30).--Maximum discharge, 76,500 ft³/s Apr. 27, 1922 (gage height, 27.50 ft); no flow at times.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in Aug. 1882 reached a stage of about 39.9 ft, and flood in Aug. 1906 reached a stage of 39.5 ft, from information by local resident. Maximum stage since at least 1853, 43.4 ft Sept. 17, 1936.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY TITIN JUL AUG SEP 5.2 .00 34 3.6 11 43 .00 18 2.3 5.2 4.9 .40 2 0.0 19 2.2 26 37 469 00 .00 19 3 537 2.5 22 28 .00 47 .00 .00 11 4.5 2.7 .00 330 23 20 5 .00 277 2 2 3.8 12 18 5.2 11 .00 0.0 7.5 6 .00 1120 2.6 12 103 10 .00 .00 9.1 0.0 268 17 3.4 8.9 6.7 14 2.5 79 11 7.7 00 0.0 10 9.3 21 4.8 15 .00 8 .00 99 43 .00 .00 57 22 22 . 00 10 0.0 85 25 9 1 1.6 16 1 5 13 4 2 00 0.0 7 2 11 .00 45 21 10 15 2.4 9.7 1.5 .00 .00 7.0 8 0 1.8 1.5 1.2 12 0.0 24 15 12 9 6 .93 00 0.0 5 5 13 .00 15 14 9.0 10 8.8 .45 .00 .00 4.8 14 .00 10 10 3.2 .20 .00 .00 4.5 6.6 8.5 15 .00 15 5.1 1.2 1.8 5.2 .06 .00 .00 4.2 6.4 7.3 16 .00 12 4.6 2.2 1.2 2.6 .04 .00 .00 3.4 6.0 5.2 5.4 6.9 17 .00 1.9 6.2 1.1 1.1 .02 .00 .00 1.8 18 .04 4.4 5.8 2.7 6.6 1.2 .65 .00 .00 .00 2.1 19 .33 4.5 8.7 7.1 8.0 38 1.2 .36 .00 .00 . 00 104 20 .33 6.8 7.1 30 6.3 1.1 .23 .00 .00 .00 93 8.5 21 .13 8.1 11 19 6.2 1.2 .07 ΛN . 00 .00 106 8.9 22 .10 18 5.5 .02 .00 .00 6.5 3.1 .00 79 23 .58 8.5 5.7 14 7.6 4.0 2.3 .01 .00 .00 .00 386 3.4 24 . 77 12 11 15 2.8 1.2 .01 .00 . 00 .00 92 1.2 25 6.8 8.5 12 2.4 .35 .00 .00 .00 .00 43 26 .23 6.2 4.1 5.9 28 4.1 1.1 .00 .00 . 00 .00 39 5.3 4.9 27 .10 4.6 40 5.0 .94 .00 29 .00 .00 .00 28 6.5 5.5 3.9 5.9 55 5.8 .64 .00 .00 .00 .00 19 29 32 5.0 2.2 10 ---6.2 .46 .00 .00 . 00 188 14 2.2 30 179 4.5 4.9 .00 .00 40 .50 .00 10 31 2.3 4.5 ___ 5.7 .00 .00 22 88 TOTAL 308.46 3026.1 262.9 211.9 385.9 367.4 64.64 314.91 623.40 0.00 250.00 1153.1 9.95 8.48 MEAN 101 6.84 13.8 11 9 2.15 10.2 20.8 .000 8.06 38 4 MAX 179 1120 25 18 55 43 5.2 103 469 .00 188 386 .00 4.4 .00 .00 .00 MIN 46 .00 AC-FT 612 6000 521 420 765 729 128 625 1240 .00 496 2290 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 2001z, BY WATER YEAR (WY) MEAN 52.2 195 56.3 52.3 65.4 134 292 134 148 57.1 367 17220 3805 615 367 274 318 2131 4756 MAX (WY) 1931 1975 1975 1975 1992 1992 1949 1957 1941 1938 1942 1936 .000 .000 .000 .000 .000 .000 .000 .000 .000 MTN .000 .000 .000 1935 1955 (WY) 2000

08136500 Concho River at Paint Rock, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1931 - 2001z
ANNUAL TOTAL	6365.45	6968.71	
ANNUAL MEAN	17.4	19.1	134
HIGHEST ANNUAL MEAN			1470 1936
LOWEST ANNUAL MEAN			7.56 2000
HIGHEST DAILY MEAN	1120 Nov 6	1120 Nov 6	134000 Sep 17 1936
LOWEST DAILY MEAN	.00 Jan 1	.00 Oct 1	.00 Sep 28 1931
ANNUAL SEVEN-DAY MINIMUM	.00 Jan 1	.00 Oct 1	.00 Sep 28 1931
MAXIMUM PEAK FLOW		2100 Nov 6	c301000 Sep 17 1936
MAXIMUM PEAK STAGE		14.81 Nov 6	a43.40 Sep 17 1936
ANNUAL RUNOFF (AC-FT)	12630	13820	97420
10 PERCENT EXCEEDS	14	28	126
50 PERCENT EXCEEDS	.00	3.8	24
90 PERCENT EXCEEDS	.00	.00	.10

- Period of regulated streamflow. From floodmark. From rating curve extended above $98,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurements of $144,000~{\rm and}~301,000~{\rm ft}^3/{\rm s}$.

08136500 Concho River at Paint Rock, TX--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. --

CHOW OF RECORD.-CHEMICAL DATA: Apr. 1946 to Oct. 1949, Mar. 1964 to current year.
BIOCHEMICAL DATA: Mar. 1964 to current year.
PESTICIDE DATA: Apr. 1968 to Oct. 1981.
SEDIMENT DATA: Feb. 1978 to Sept. 1981.

INSTRUMENTATION. -- Water-quality monitor since Feb. 6, 2001.

REMARKS.--Records fair. Interruptions in the record was due to no flow. No flow May 25-31, June 19 to Aug. 28. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous years using daily (or continuous) records of specific conductance and regression relations between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request.

PERIOD OF DAILY RECORD. -

SPECIFIC CONDUCTANCE: Apr. 1946 to Oct. 1949, Oct. 1967 to Sept. 1990 (local observer), Feb. 2001 to current year. WATER TEMPERATURE: Apr. 1946 to Oct. 1949, Oct. 1967 to Sept. 1990 (local observer), Feb. 2001 to current year. SUSPENDED SEDIMENT DISCHARGE: Feb. 1978 to Sept. 1981 (local observer).

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum daily, 3,690 microsiemens/cm, June 28, Aug. 12, 1984; minimum daily, 268 microsiemens/cm, Sept. 9, 1980.

WATER TEMPERATURE: Maximum daily, 35.0°C, on several days during summer months; minimum daily, 0.0°C, on many days during winter months.

SEDIMENT CONCENTRATION: Maximum daily mean, 4,190 mg/L, Sept. 9, 1980; minimum daily mean, 3 mg/L, Feb. 2, 1979. SEDIMENT LOADS: Maximum daily, 269,000 tons Sept. 9, 1980; minimum daily, 0.0 tons on several days during Sept. 1980.

EXTREMES FOR CURRENT YEAR.-

SPECIFIC CONDUCTANCE: Maximum, 3,150 microsiemens/cm, Sept. 21; minimum, 391 microsiemens/cm, June 2. WATER TEMPERATURE: Maximum, 33.2° C, Sept. 2; minimum, 9.7° C, Mar. 1.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
NOV	1230	896	349	8.1	16.8	9.1	101	3.1	110	43	30.2	8.35	21.3
06 JAN	1230	896	349	8.1	10.8	9.1	101	3.1	110	43	30.2	8.35	21.3
12	1200	6.7	1750	7.7	8.0	10.7	94.0	2.3	620	466	147	60.3	127
MAR 07 APR	1330	15	2440	8.1	15.4	9.3	99.1	3.9	698	517	156	74.8	215
26	1120	.62	2390	8.2	21.3	10.7	128	2.8	674	536	143	76.9	230
JUN 07	1600	11	542	9.0	32.5	11.0	163		170	86	46.7	12.8	37.9
AUG 30	1440	33	349	8.1	27.5	6.6	89.5	4.5	125	51	34.6	9.21	22.4
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
NOV 06 JAN	.886	5.51		67	29.6	41.8	.2	7.7	187	.336	.016	.352	.047
12	2.22	6.02	154		311	299	.4	6.8	1070	3.08	.037	3.12	<.041
MAR 07 APR	3.54	6.77	181		327	496	.5	5.8	1400	1.40	.034	1.43	E.032
26	3.86	7.13	138		329	491	.4	2.7	1360	.124	.010	.134	<.041
JUN 07	1.27	6.64	84		57.1	81.2	.3	9.4	304	.237	.033	.270	<.040
AUG 30													

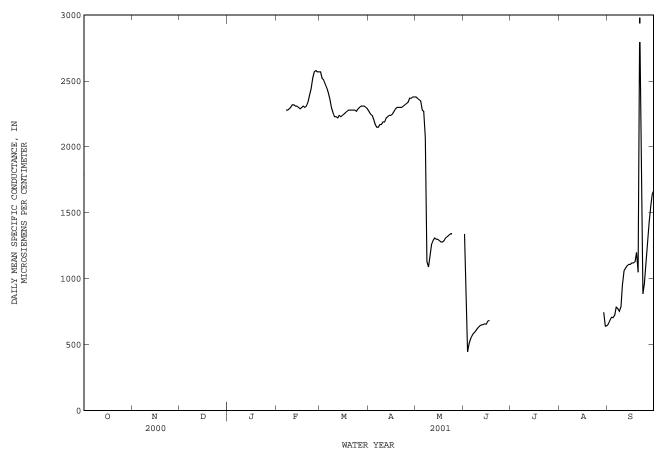
08136500 Concho River at Paint Rock, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)
NOV													
06 JAN	.298	.34	E.059	.053	.163	2	.24	6.5	64.3	<.06	<.04	<.8	.22
12		.51	E.031	<.018		<1	.31	3.0	163	<.06	<.04	<.8	.46
MAR 07		.54	<.060	<.018									
APR 26		.54	<.060	<.018				3.2	175		<.14	<.8	
JUN									175		<.14	<.0	
07 AUG		.41	<.060	<.020				17.3					
30		.72	E.030	E.029				3.8					
DATE	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
NOV													
					_								
06 JAN	.9	<10	E.05	11.4	.8	<.23	1.2	.61	<2.4	<1.0	343	15.0	<1
JAN 12	.9 2.2	<10 <10	E.05	11.4 39.1	.8 2.7	<.23 <.23	1.2	.61 1.72	<2.4	<1.0 <1.0	343 2580	15.0 E6.2	<1 2
JAN 12 MAR 07													
JAN 12 MAR 07 APR 26	2.2	<10	<.08	39.1	2.7	<.23	4.3	1.72	3.0	<1.0	2580	E6.2	2
JAN 12 MAR 07 APR	2.2	<10	<.08	39.1	2.7	<.23	4.3	1.72	3.0	<1.0	2580	E6.2	2

DATE	URANIUI NATURAI DIS- SOLVEI (UG/L AS U) (22703
NOV	
06	.54
JAN	
12	3.74
MAR	
07	
APR	
26	
JUN	
07	
AUG	
30	

08136500 Concho River at Paint Rock, TX--Continued


SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

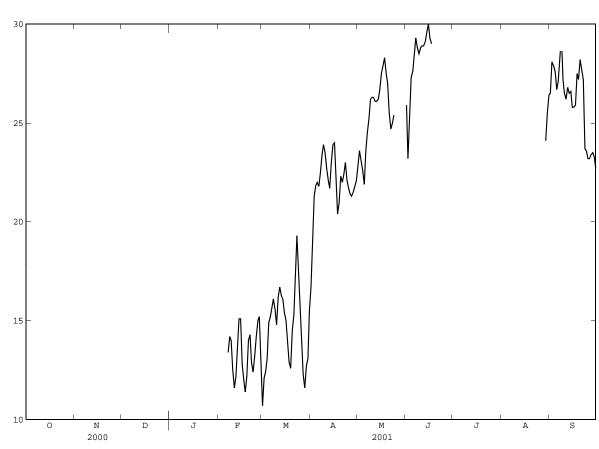
DAY	MAX	MIN	MEAN	MAY	MIN			MIN		MAX		MEAN
DAI	MAA		MEAN	MAX		MEAN	MAX		MEAN	MAA	MIN	MEAN
		OCTOBER			OVEMBER		Di	ECEMBER			JANUARY	
1 2												
3												
4 5												
6 7												
8												
9 10												
11 12												
13												
14 15												
16 17												
18												
19												
20												
21												
22 23												
24												
25												
26												
27 28												
29												
30 31												
31												
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1												
2				2500	2550	2570	2200	2250	2270	2200	2270	2200
				2590 2550	2550 2510	2570 2520	2280 2270	2250 2220	2270 2250	2390 2380	2370 2340	2380 2370
3				2550 2520	2510 2500	2520 2510	2270 2240	2220 2220	2250 2240	2380 2370	2340 2350	2370 2360
				2550	2510	2520	2270	2220	2250	2380	2340	2370
3 4 5	 	 	 	2550 2520 2520 2470	2510 2500 2460 2430	2520 2510 2480 2450	2270 2240 2230 2180	2220 2220 2160 2150	2250 2240 2210 2170	2380 2370 2380 2320	2340 2350 2300 2250	2370 2360 2350 2280
3 4				2550 2520 2520	2510 2500 2460	2520 2510 2480	2270 2240 2230	2220 2220 2160	2250 2240 2210	2380 2370 2380	2340 2350 2300	2370 2360 2350
3 4 5 6 7 8	 2290 2290	 2260 2280	 2280 2280	2550 2520 2520 2470 2430 2390 2360	2510 2500 2460 2430 2380 2340 2270	2520 2510 2480 2450 2410 2360 2300	2270 2240 2230 2180 2170 2170 2180	2220 2220 2160 2150 2120 2120 2130	2250 2240 2210 2170 2150 2150 2170	2380 2370 2380 2320 2340 2600 1340	2340 2350 2300 2250 2220 1340 1020	2370 2360 2350 2280 2270 2070 1130
3 4 5 6 7	 2290	 2260	 2280	2550 2520 2520 2470 2430 2390	2510 2500 2460 2430 2380 2340	2520 2510 2480 2450 2410 2360	2270 2240 2230 2180 2170 2170	2220 2220 2160 2150 2120 2120	2250 2240 2210 2170 2150 2150	2380 2370 2380 2320 2340 2600	2340 2350 2300 2250 2220 1340	2370 2360 2350 2280 2270 2070
3 4 5 6 7 8 9	 2290 2290 2300 2310	 2260 2280 2280 2280	 2280 2280 2290 2300	2550 2520 2520 2470 2430 2390 2360 2280 2240	2510 2500 2460 2430 2380 2340 2270 2230 2230	2520 2510 2480 2450 2410 2360 2300 2260 2230	2270 2240 2230 2180 2170 2170 2180 2190 2200	2220 2220 2160 2150 2120 2120 2130 2150 2170	2250 2240 2210 2170 2150 2150 2170 2170 2190	2380 2370 2380 2320 2340 2600 1340 1150 1240	2340 2350 2300 2250 2220 1340 1020 1040 1150	2370 2360 2350 2280 2270 2070 1130 1090 1180
3 4 5 6 7 8 9	 2290 2290 2310 2330	 2260 2280 2280 2280	 2280 2280 2290 2300	2550 2520 2520 2470 2430 2390 2360 2280	2510 2500 2460 2430 2380 2340 2270 2230	2520 2510 2480 2450 2410 2360 2300 2260 2230	2270 2240 2230 2180 2170 2170 2180 2190	2220 2220 2160 2150 2120 2120 2130 2150 2170	2250 2240 2210 2170 2150 2150 2170 2170	2380 2370 2380 2320 2340 2600 1340 1150 1240	2340 2350 2300 2250 2220 1340 1020 1040	2370 2360 2350 2280 2270 2070 1130 1090 1180
3 4 5 6 7 8 9 10 11 12 13	 2290 2290 2300 2310 2330 2320 2320	 2260 2280 2280 2280 2280 2310 2300 2290	 2280 2280 2290 2300 2320 2320 2310	2550 2520 2520 2470 2430 2390 2360 2280 2240 2240 2230 2250	2510 2500 2460 2430 2380 2340 2270 2230 2230 2210 2220 2230	2520 2510 2480 2450 2410 2360 2300 2260 2230 2230 2220 2240	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250	2220 2220 2160 2150 2120 2120 2130 2150 2170 2160 2210 2210	2250 2240 2210 2170 2150 2150 2170 2170 2190 2190 2220 2230	2380 2370 2380 2320 2340 2600 1340 1150 1240 1280 1300 1310	2340 2350 2300 2250 2250 2220 1340 1020 1040 1150 1240 1280 1300	2370 2360 2350 2280 2270 2070 1130 1090 1180 1260 1290 1310
3 4 5 6 7 8 9 10 11 12 13 14	 2290 2290 2300 2310 2330 2320 2320 2320 2320	 2260 2280 2280 2280 2310 2300 2300 2300	 2280 2280 2290 2300 2320 2320 2310 2310	2550 2520 2520 2470 2430 2390 2360 2280 2240 2240 2230 2250 2250	2510 2500 2460 2430 2380 2340 2270 2230 2230 2210 2220 2230 2200	2520 2510 2480 2450 2410 2360 2300 2260 2230 2220 2240 2230	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2250	2220 2220 2160 2150 2120 2120 2130 2150 2170 2160 2210 2210 2230	2250 2240 2210 2170 2150 2150 2170 2170 2190 2190 2220 2230 2240	2380 2370 2380 2320 2340 2600 1340 1150 1240 1280 1300 1310	2340 2350 2300 2250 2220 1340 1020 1040 1150 1240 1280 1300	2370 2360 2350 2280 2270 2070 1130 1090 1180 1260 1290 1310 1300
3 4 5 6 7 8 9 10 11 12 13 14 15	 2290 2300 2310 2320 2320 2320 2320 2310	 2260 2280 2280 2280 2280 2310 2300 2290 2300 2290	 2280 2280 2290 2300 2320 2320 2310 2310 2300	2550 2520 2520 2470 2430 2390 2360 2280 2240 2240 2250 2250 2250 2260	2510 2500 2460 2430 2380 2270 2230 2230 2210 2220 2230 2200 2200	2520 2510 2480 2450 2410 2360 2300 2260 2230 2230 2230 2240 2230 2240	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2250 2250	2220 2220 2150 2150 2120 2130 2150 2170 2160 2210 2210 2230 2220	2250 2240 22170 2170 2150 2150 2170 2170 2190 2220 2230 2240 2240	2380 2370 2380 2320 2340 2600 1340 1150 1240 1300 1310 1310	2340 2350 2300 2250 2220 1340 1020 1040 1150 1240 1280 1300 1300 1290	2370 2360 2350 2280 2270 2070 1130 1090 1180 1260 1290 1310 1300 1300
3 4 5 6 7 8 9 10 11 12 13 14 15	2290 2290 2300 2310 2320 2320 2320 2320 2320 232	 2260 2280 2280 2280 2280 2310 2300 2290 2300 2290	 2280 2280 2290 2300 2320 2310 2310 2300 2290	2550 2520 2520 2470 2430 2390 2360 2280 2240 2240 2230 2250 2250 2260	2510 2500 2460 2430 2380 2340 2270 2230 2230 2210 2220 2230 2200 2200	2520 2510 2480 2450 2410 2360 2300 2260 2230 2230 2220 2240 2230 2240 2250	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2250 2260	2220 2220 2160 2150 2120 2130 2150 2170 2160 2210 2230 2220 2240	2250 2240 2210 2170 2150 2150 2170 2170 2190 2220 2230 2240 2240 2250	2380 2370 2380 2320 2340 2600 1340 1150 1240 1280 1300 1310 1310 1300	2340 2350 2300 2250 2220 1340 1020 1040 1150 1240 1280 1300 1300 1290	2370 2360 2350 2280 2270 2070 1130 1090 1180 1260 1290 1310 1300 1300
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	2290 2290 2310 2310 2320 2320 2320 2320 2320 232	 2260 2280 2280 2280 2280 2310 2300 2290 2300 2290 2280 2280 2280 2280	2280 2280 2280 2300 2310 2310 2310 2310 2310 2300 230	2550 2520 2520 2470 2430 2390 2360 2280 2240 2250 2250 2250 2260 2260 2270 2280	2510 2500 2460 2430 2380 2340 2270 2230 2230 2220 2230 2200 2200 2240 2210	2520 2510 2480 2450 2410 2360 2300 2260 2230 2230 2240 2240 2240 2250 2260 2270	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2250 2260 2260 2290 2300	2220 2220 2160 2150 2120 2130 2170 2170 2210 2210 2230 2220 2240 2260 2290	2250 2240 2210 2170 2150 2170 2170 2190 2290 2230 2240 2240 2250 2270 2270 2290	2380 2370 2380 2320 2340 2600 1340 1150 1240 1300 1310 1310 1300 1300 1300 1300	2340 2350 2300 2250 2220 1340 1020 1040 1150 1240 1300 1300 1290	2370 2360 2350 2280 2270 2070 1130 1090 1180 1290 1310 1300 1300 1290 1280
3 4 5 6 7 8 9 10 11 12 13 14 15	2290 2290 2300 2310 2320 2320 2320 2320 2320 232	 2260 2280 2280 2280 2280 2310 2300 2290 2300 2290 2280 2280 2280 2280	2280 2280 2290 2300 2310 2310 2310 2300 2290 2310 2310 2300 2300 2300	2550 2520 2520 2470 2430 2390 2360 2280 2240 2250 2250 2250 2260 2270 2280 2280 2290	2510 2500 2460 2430 2380 2340 2270 2230 2230 2220 2230 2200 2200 220	2520 2510 2480 2450 2410 2360 2300 2230 2230 2230 2220 2240 2230 2240 2250 2260	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2250 2260 2290 2300 2300	2220 2220 2160 2150 2120 2120 2130 2170 2170 2160 2210 2210 2220 2220 2240 2260	2250 2240 2210 2170 2150 2150 2170 2170 2190 2220 2230 2240 2240 2250 2270	2380 2370 2380 2320 2340 2600 1340 1150 1240 1300 1310 1310 1300 1300 1300 1300 13	2340 2350 2300 2250 2220 1340 1020 1040 1150 1240 1280 1300 1300 1290	2370 2360 2350 2280 2270 2070 1130 1090 1180 1290 1310 1300 1290 1280 1280 1290
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2290 2290 2310 2310 2320 2320 2320 2320 2320 232	 2260 2280 2280 2280 2310 2300 2290 2300 2290 2280 2280 2280 2280 2280	2280 2280 2280 2300 2310 2310 2310 2310 2310 2300 2310 2300 2310 2300 2310	2550 2520 2520 2470 2430 2390 2360 2280 2240 2230 2250 2250 2260 2260 2270 2280 2290	2510 2500 2460 2430 2380 2340 2270 2230 2230 2200 2200 2200 2200 220	2520 2510 2480 2450 2410 2360 2300 2260 2230 2240 2240 2240 2250 2240 2250 2260 2270 2280 2280	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2250 2260 2260 2300 2300 2300	2220 2220 2160 2150 2120 2130 2170 2170 2210 2210 2230 2240 2260 2290 2280 2280	2250 2240 2210 2170 2150 2170 2170 2190 2290 2220 2230 2240 2240 2250 2270 2290 2300 2300 2300	2380 2370 2380 2320 2340 2600 1340 1150 1240 1300 1310 1310 1300 1300 1300 1390 1300 1310	2340 2350 2300 2250 2220 1340 1020 1040 1150 1240 1300 1300 1290 1270 1270 1270 1290 1300	2370 2360 2350 2280 2270 2070 1130 1090 1180 1290 1310 1300 1290 1280 1290 1310
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2290 2290 2300 2310 2320 2320 2320 2320 2320 232	 2260 2280 2280 2280 2280 2310 2300 2290 2300 2290 2280 2280 2280 2280 2280	2280 2280 2290 2300 2310 2310 2310 2310 2300 2310 2300 2310 2300 2310 2300 2310	2550 2520 2520 2470 2430 2390 2360 2280 2240 2250 2250 2250 2260 2270 2280 2290 2290	2510 2500 2460 2430 2380 2340 2270 2230 2230 2210 2220 2240 2240 2260 2240 2230	2520 2510 2480 2450 2410 2360 2300 2260 2230 2220 2240 2230 2240 2250 2260 2270 2280 2280 2280	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2250 2250 2250 2260 2290 2300 2300 2300	2220 2220 2160 2150 2150 2120 2130 2170 2170 2210 2210 2230 2220 2240 2260 2280 2280	2250 2240 2210 2170 2150 2170 2170 2190 2220 2230 2240 2240 2250 2270 2290 2300 2300 2300	2380 2370 2380 2320 2340 2600 1340 1150 1240 1300 1310 1310 1300 1300 1300 1300 13	2340 2350 2300 2250 2220 1340 1020 1040 1150 1280 1300 1300 1290 1270 1270 1270 1270 1290 1300	2370 2360 2350 2280 2270 2070 1130 1090 1180 1290 1310 1300 1290 1280 1290 1310
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	2290 2290 2300 2310 2320 2320 2320 2320 2320 232	2260 2280 2280 2280 2280 2310 2300 2290 2300 2290 2380 2280 2280 2380 2280 2380 2280 2360 2400	2280 2280 2280 2300 2310 2310 2310 2310 2310 2310 2300 2310 2300 2310 2390 2340 2340	2550 2520 2520 2470 2430 2390 2360 2280 2240 2250 2250 2250 2260 2270 2280 2290 2290	2510 2500 2460 2430 2380 2340 2270 2230 2230 2220 2230 2200 2200 2240 2210 2260 2240 2240 2250	2520 2510 2480 2450 2410 2360 2300 2260 2230 2240 2230 2240 2230 2240 2250 2260 2270 2280 2280 2280	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2250 2260 2260 2300 2300 2300 2310 2310	2220 2220 2160 2150 2120 2130 2170 2170 2210 2210 2220 2240 2290 2280 2280 2280 2290 2290 2290 2300	2250 2240 2210 2170 2150 2170 2170 2190 2290 2230 2240 2240 2250 2270 2290 2300 2300 2300 2300 2300 2310	2380 2370 2380 2320 2320 2340 2600 1340 1150 1240 1300 1310 1310 1300 1300 1300 1300 13	2340 2350 2300 2250 2220 1340 1020 1040 1150 1240 1300 1300 1270 1270 1270 1270 1300 1310 1310 1330	2370 2360 2350 2280 2270 2070 1130 1090 1180 1260 1310 1300 1300 1280 1290 1310
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	2290 2290 2300 2310 2320 2320 2320 2320 2320 232	 2260 2280 2280 2280 2280 2310 2300 2290 2300 2290 2300 2280 2280 2280 2280 2280 2280 228	2280 2280 2290 2300 2310 2310 2310 2310 2300 2310 2300 2310 2300 2310 2300 2310 2300 2310 2300 2310 2300 2310	2550 2520 2520 2470 2430 2390 2360 2280 2240 2250 2250 2250 2270 2280 2290 2290 2290 2290 2290	2510 2500 2460 2430 2380 2270 2230 2230 2200 2200 2200 2240 2210 2260 2240 2250 2250 2260 2250 2260	2520 2510 2480 2450 2410 2360 2300 2260 2230 2240 2240 2240 2250 2260 2270 2280 2280 2280 2280 2280 2280 228	2270 2240 2230 2180 2170 2180 2170 2180 2190 2200 2210 2240 2250 2250 2260 2260 2300 2300 2310 2310 2330	2220 2220 2160 2150 2120 2130 2170 2170 2210 2210 2230 2220 2240 2260 2290 2280 2290 2280 2290 2300 2300	2250 2240 2210 2170 2150 2170 2170 2190 2290 2230 2240 2240 2250 2270 2300 2300 2300 2300 2300 2310 2320	2380 2370 2380 2320 2340 2600 1340 1150 1240 1300 1310 1310 1300 1300 1300 1300 13	2340 2350 2300 2250 2220 1340 1020 1040 1150 1280 1300 1290 1270 1270 1270 1270 1270 1270 1270 1300	2370 2350 2250 2280 2270 2070 1130 1090 1180 1290 1310 1300 1280 1280 1280 1290 1310
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	2290 2290 2300 2310 2320 2320 2320 2320 2320 232	 2260 2280 2280 2280 2280 2300 2290 2300 2290 2280 2280 2280 2280 2280 2280 22	2280 2280 2280 2300 2320 2310 2310 2310 2310 2300 2310 2300 2310 2300 2310 2300 2310 2300 2310 2300 2310 2300 2310	2550 2520 2520 2470 2430 2390 2360 2280 2240 2250 2250 2260 2270 2280 2290 2290 2290 2290 2290 2290	2510 2500 2460 2430 2380 2340 2270 2230 2230 2200 2200 2200 2240 2210 2260 2240 2250 2260 2250 2250 2250	2520 2510 2480 2450 2410 2360 2300 2260 2230 2240 2220 2240 2230 2240 2250 2260 2270 2280 2280 2280 2280 2280 2290	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2250 2260 2260 2300 2300 2310 2310 2330 2340	2220 2220 2160 2150 2120 2130 2170 2170 2210 2210 2220 2240 2290 2280 2280 2280 2280 2280 2300 2300 2310	2250 2240 2210 2170 2150 2170 2170 2190 2190 2220 2230 2240 2240 2250 2270 2290 2300 2300 2300 2300 2310 2320 2330	2380 2370 2380 2320 2320 2340 2600 1340 1150 1240 1300 1310 1310 1300 1300 1300 1310 1300 1310 1300 1310 1300 1300 1300 1310	2340 2350 2300 2250 2220 1340 1020 1040 1150 1240 1280 1300 1270 1270 1270 1270 1290 1310 1330 1330 1330 1330	2370 2350 2250 2280 2270 2070 1130 1090 1180 1290 1310 1300 1280 1290 1310 1280 1290 1310
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	2290 2290 2300 2310 2320 2320 2320 2320 2320 232	2260 2280 2280 2280 2280 2310 2300 2290 2300 2290 2380 2280 2380 2280 2360 2440 2560	2280 2280 2290 2300 2310 2310 2310 2310 2310 2300 2310 2300 2310 2300 2310 2300 2310 2300 2310 2357 2360 2370 2370 2380 2380 2380 2380 2380 2380 2380 238	2550 2520 2520 2470 2430 2390 2360 2280 2240 2250 2250 2250 2260 2270 2280 2290 2290 2290 2290 2290 2300	2510 2500 2460 2430 2380 2270 2230 2230 2230 2200 2200 2240 2210 2260 2240 2250 2260 2250 2250 2260 2270	2520 2510 2480 2450 2410 2360 2300 2260 2230 2240 2240 2250 2240 2250 2260 2270 2280 2280 2280 2280 2280 2280 2290 2280 2290	2270 2240 2230 2180 2170 2180 2170 2180 2190 2200 2210 2240 2250 2250 2260 2260 2300 2300 2300 2310 2310 2310 2330 2340 2360	2220 2220 2160 2150 2120 2130 2170 2170 2210 2210 2230 2220 2240 2260 2290 2280 2280 2290 2300 2310 2310	2250 2240 2210 2170 2150 2170 2170 2190 2290 2230 2240 2240 2250 2270 2290 2300 2300 2300 2300 2300 2300 230	2380 2370 2380 2320 2340 2600 1340 1150 1240 1300 1310 1310 1300 1300 1300 1300 13	2340 2350 2300 2250 2220 1340 1020 1040 1150 1280 1300 1290 1270 1270 1270 1290 1310 1330 1330 1330	2370 2360 2350 2280 2270 2070 1130 1090 1180 1290 1310 1300 1280 1280 1290 1310
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	2290 2290 2300 2310 2320 2320 2320 2320 2320 232	2260 2280 2280 2280 2310 2300 2290 2300 2290 2380 2380 2380 2380 2380 2380 2400 2440 2560 2570 2560	2280 2280 2280 2300 2320 2310 2310 2310 2310 2310 231	2550 2520 2520 2470 2430 2390 2360 2280 2240 2250 2250 2260 2270 2280 2290 2290 2290 2290 2290 2300 2310 2320 2320 2320	2510 2500 2460 2430 2380 2340 2270 2230 2230 2220 2230 2200 2240 2210 2260 2240 2250 2260 2270 2280 2250 2250 2250 2250 2250 2260 2270	2520 2510 2480 2450 2410 2360 2300 2260 2230 2240 2240 2250 2240 2250 2260 2270 2280 2280 2280 2280 2280 2290 2310 2310	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2260 2260 2300 2300 2310 2310 2330 2340 2360 2360 2360 2380 2380	2220 2220 2160 2150 2120 2130 2170 2170 2210 2210 2210 2220 2240 2290 2280 2280 2280 2300 2310 2300 2310 2300 2300 2360 2360 2360	2250 2240 2210 2170 2150 2150 2170 2190 2190 2220 2230 2240 2250 2270 2290 2300 2300 2300 2310 2320 2330 2320 2330 2370 2370 2370	2380 2370 2380 2320 2320 2340 2600 1340 1150 1240 1300 1310 1310 1300 1310 1300 1310 1300 1310 1340 134	2340 2350 2300 2250 2220 1340 1020 1040 1150 1240 1280 1300 1270 1270 1270 1270 1270 1290 1300 1330 1330 1330	2370 2360 2350 2280 2270 2070 1130 1090 1180 1260 1290 1310 1300 1280 1280 1290 1310 1340 1340
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	2290 2290 2300 2310 2320 2320 2320 2320 2320 232	 2260 2280 2280 2280 2280 2300 2290 2300 2290 2300 2280 2280 2300 2280 2300 2400 2440 2560 2570 2560	2280 2280 2290 2320 2310 2310 2310 2310 2310 2310 2300 2310 2300 2310 2300 2310 2300 2310 23570 2570 2570	2550 2520 2520 2470 2430 2390 2360 2280 2240 2250 2250 2250 2260 2270 2280 2290 2290 2290 2290 2290 2300 2310 2320 2320 2330 2320 2330	2510 2500 2460 2430 2380 2270 2230 2230 2200 2200 2200 2240 2210 2260 2240 2250 2260 2250 2260 2270 2280 2300 2290	2520 2510 2480 2450 2410 2360 2300 2260 2230 2240 2240 2250 2240 2250 2260 2270 2280 2280 2280 2280 2280 2280 228	2270 2240 2230 2180 2170 2180 2170 2180 2190 2200 2210 2240 2250 2250 2260 2300 2300 2310 2310 2310 2310 2330 2340 2360 2380 2380 2380 2380 2380	2220 2220 2160 2150 2120 2130 2170 2170 2210 2210 2230 2220 2240 2280 2280 2280 2300 2300 2310 2300 2300 2300 2300 230	2250 2240 2210 2170 2150 2170 2170 2190 2290 2230 2240 2240 2250 2270 2290 2300 2300 2300 2300 2300 2300 230	2380 2370 2380 2320 2340 2600 1340 1150 1240 1300 1310 1310 1300 1310 1300 1310 1300 1310	2340 2350 2300 2250 2220 1340 1020 1040 1150 1280 1300 1290 1270 1270 1270 1270 1300 1310 1330 1330 1330 	2370 2360 2350 2280 2270 2070 1130 1090 1180 1290 1310 1300 1290 1280 1290 1310 1340 1340
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	2290 2290 2300 2310 2320 2320 2320 2320 2320 232	2260 2280 2280 2280 2310 2300 2290 2300 2290 2380 2380 2380 2380 2380 2380 2400 2440 2560 2570 2560	2280 2280 2280 2300 2320 2310 2310 2310 2310 2310 231	2550 2520 2520 2470 2430 2390 2360 2280 2240 2250 2250 2260 2270 2280 2290 2290 2290 2290 2290 2300 2310 2320 2320 2320	2510 2500 2460 2430 2380 2340 2270 2230 2230 2220 2230 2200 2240 2210 2260 2240 2250 2260 2270 2280 2250 2250 2250 2250 2250 2260 2270	2520 2510 2480 2450 2410 2360 2300 2260 2230 2240 2240 2250 2240 2250 2260 2270 2280 2280 2280 2280 2280 2290 2310 2310	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2260 2260 2300 2300 2310 2310 2330 2340 2360 2360 2360 2380 2380	2220 2220 2160 2150 2120 2130 2170 2170 2210 2210 2210 2220 2240 2290 2280 2280 2280 2300 2310 2300 2310 2300 2300 2360 2360 2360	2250 2240 2210 2170 2150 2150 2170 2190 2190 2220 2230 2240 2250 2270 2290 2300 2300 2300 2310 2320 2330 2320 2330 2370 2370 2370	2380 2370 2380 2320 2320 2340 2600 1340 1150 1240 1300 1310 1310 1300 1310 1300 1310 1300 1310 1340 134	2340 2350 2300 2250 2220 1340 1020 1040 1150 1240 1280 1300 1270 1270 1270 1270 1270 1290 1300 1330 1330 1330	2370 2350 2280 2270 2070 1130 1090 1180 1260 1290 1310 1300 1280 1290 1310 1340 1340
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	2300 2310 2320 2320 2320 2320 2320 2320	 2260 2280 2280 2280 2310 2300 2290 2300 2290 2380 2280 2380 2280 2360 2400 2400 2400 2560	280 2280 2290 2300 2310 2310 2310 2310 2310 2310 231	2550 2520 2470 2430 2390 2360 2280 2240 2250 2250 2250 2250 2250 2250 225	2510 2500 2460 2430 2380 2340 2270 2230 2230 2220 2230 2200 2240 2210 2260 2240 2250 2260 2250 2260 2250 2250 2250 225	2520 2510 2480 2450 2410 2360 2230 2230 2220 2240 2230 2240 2250 2260 2270 2280 2280 2280 2280 2280 2290 2310 2310 2310 2310 2310 2300	2270 2240 2230 2180 2170 2170 2180 2190 2200 2210 2240 2250 2250 2260 2260 2300 2300 2310 2310 2310 2330 2340 2380 2380 2380 2380 2390	2220 2220 2160 2150 2120 2130 2170 2170 2160 2210 2220 2220 2280 2280 2280 2280 2290 2300 2310 2310 2320 2300 2370 2370 2370	2250 2240 2210 2170 2150 2150 2170 2170 2190 2290 2230 2240 2240 2250 2270 2290 2300 2300 2300 2310 2320 2320 2320 2330 2320 232	2380 2370 2380 2320 2340 2600 1340 1150 1240 1300 1310 1310 1300 1300 1300 1310 1300 1310	2340 2350 2350 2250 2220 1340 1020 1040 1150 1280 1300 1290 1270 1270 1270 1270 1270 1270 1270 127	2370 2360 2280 2270 2070 1130 1090 1180 1260 1290 1310 1300 1280 1280 1290 1310 1340 1340 1340

08136500 Concho River at Paint Rock, TX--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		I	AUGUST			SEPTEMBE	lR.
1	1360	1290	1340							665	650	656
2	1670	391	821							704	665	684
3	489	400	446							728	694	708
4	542	489	511							718	695	705
5	564	541	547							759	705	724
6	590	560	571							800	759	785
7	594	584	589							799	738	774
8	615	593	601							770	736	754
9	635	606	618							856	737	789
10	646	620	634							1030	856	955
11	656	636	645							1070	1030	1060
12	658	641	650							1100	1070	1080
13	663	631	653							1100	1080	1100
14	666	647	658							1110	1100	1110
15	678	641	657							1120	1100	1110
16	684	672	679							1120	1100	1120
17	689	676	684							1140	1120	1120
18										1150	1110	1130
19										1540	1040	1200
20										2490	928	1050
0.1										21.50	0.400	0000
21										3150	2490	2980
22										2930	1860	2390
23										1870	695	885
24										1050	839	963
25										1230	1050	1130
26										1350	1220	1280
26 27										1510	1340	1430
28										1610	1480	1550
28 29							975	648	747	1660	1610	1640
29 30							975 651	634		1690	1640	1670
30 31							651 652	634	641 645	1690	1640	1670
ΣI							052	039	045			
MONTH										3150	650	1150
MONTH										3130	050	1130

08136500 Concho River at Paint Rock, TX--Continued


TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

				WAIER (DEC								
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		1	NOVEMBER			DECEMBER			JANUARY	
1												
2												
4												
5												
6												
7 8												
9												
10												
11												
12												
13 14												
15												
16												
17												
18 19												
20												
21												
22												
23 24												
25												
26												
27												
28 29												
30												
31												
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		MIN FEBRUARY		MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
					MARCH			APRIL			MAY	
1 2		FEBRUARY	 	11.7 12.7	MARCH 9.7 11.6	10.7 12.1	18.8 22.7	APRIL 15.1 17.4	16.7 19.2	25.1 25.5	MAY 21.4 22.1	22.9 23.6
1 2 3		FEBRUARY		11.7 12.7 13.5	MARCH 9.7 11.6 12.0	10.7 12.1 12.4	18.8 22.7 24.6	APRIL 15.1 17.4 19.5	16.7 19.2 21.3	25.1 25.5 23.8	MAY 21.4 22.1 22.7	22.9 23.6 23.1
1 2		FEBRUARY	 	11.7 12.7	MARCH 9.7 11.6	10.7 12.1	18.8 22.7	APRIL 15.1 17.4	16.7 19.2	25.1 25.5	MAY 21.4 22.1	22.9 23.6
1 2 3 4 5	 	FEBRUARY		11.7 12.7 13.5 14.8 18.9	9.7 11.6 12.0 11.7 12.7	10.7 12.1 12.4 13.1 14.9	18.8 22.7 24.6 23.6 22.8	APRIL 15.1 17.4 19.5 20.5 21.6	16.7 19.2 21.3 21.8 22.0	25.1 25.5 23.8 23.5 23.2	MAY 21.4 22.1 22.7 22.1 21.0	22.9 23.6 23.1 22.6 21.9
1 2 3 4	 	FEBRUARY		11.7 12.7 13.5 14.8	9.7 11.6 12.0 11.7	10.7 12.1 12.4 13.1	18.8 22.7 24.6 23.6	APRIL 15.1 17.4 19.5 20.5	16.7 19.2 21.3 21.8	25.1 25.5 23.8 23.5	MAY 21.4 22.1 22.7 22.1	22.9 23.6 23.1 22.6
1 2 3 4 5 6 7 8	 14.9	FEBRUARY 12.0 13.6	 13.4 14.2	11.7 12.7 13.5 14.8 18.9 16.5 17.4 17.4	9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0	15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2
1 2 3 4 5	 14.9	FEBRUARY 12.0	 13.4	11.7 12.7 13.5 14.8 18.9	9.7 11.6 12.0 11.7 12.7 14.3 14.2	10.7 12.1 12.4 13.1 14.9	18.8 22.7 24.6 23.6 22.8 22.3 24.8	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1	16.7 19.2 21.3 21.8 22.0 21.8 22.5	25.1 25.5 23.8 23.5 23.2 26.3 25.3	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7	22.9 23.6 23.1 22.6 21.9 23.5 24.5
1 2 3 4 5 6 7 8 9	 14.9 14.6 13.4	FEBRUARY 12.0 13.6 13.2 11.8	 13.4 14.2 14.0 12.5	11.7 12.7 13.5 14.8 18.9 16.5 17.4 17.4 16.5	9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.2
1 2 3 4 5 6 7 8 9	 14.9 14.9	FEBRUARY 12.0 13.6 13.2	 13.4 14.2 14.0	11.7 12.7 13.5 14.8 18.9 16.5 17.4 17.4	9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4	15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.2 26.3 26.3
1 2 3 4 5 6 7 8 9 10	14.9 14.9 14.6 13.4 12.4 13.4 15.1	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3	13.4 14.2 14.2 12.5 11.6 12.2 13.4	11.7 12.7 13.5 14.8 18.9 16.5 17.4 17.4 16.5 15.3	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.2 26.3 26.3 26.1
1 2 3 4 5 6 7 8 9 10	 14.9 14.6 13.4	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5	 13.4 14.2 14.0 12.5	11.7 12.7 13.5 14.8 18.9 16.5 17.4 17.4 16.5 15.3	9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.2 26.3 26.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	14.9 14.9 14.6 13.4 12.4 15.1 16.8 16.2	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6	13.4 14.2 14.2 12.5 11.6 12.2 13.4 15.1	11.7 12.7 13.5 14.8 18.9 16.5 17.4 17.4 16.5 15.3 19.2 17.5 17.8 17.6 16.2	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.7 16.3 16.1 15.4	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.4 23.5 22.9 24.7 26.3	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 29.0	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.0 24.8 24.8	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.3 26.3 26.1 26.1 26.2 26.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14	 14.9 14.6 13.4 12.4 13.4 15.1 16.8	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9	13.4 14.2 14.0 12.5 11.6 12.2 13.4 15.1	11.7 12.7 13.5 14.8 18.9 16.5 17.4 16.5 15.3	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.7 16.3 16.1	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.5 23.4 23.5 22.9	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.0 24.8	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.2 26.3 26.3 26.1 26.1 26.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	14.9 14.9 14.6 13.4 12.4 13.4 15.1 16.8 16.2	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.2	13.4 14.2 14.0 12.5 11.6 12.2 13.4 15.1 15.1 12.8 12.0 11.4	11.7 12.7 13.5 14.8 18.9 16.5 17.4 17.4 17.5 15.3 19.2 17.5 17.8 17.6 16.2	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.7 16.3 16.1 15.4	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.4 23.5 22.9 24.7 26.3	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 29.0	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.0 24.8 24.8	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.3 26.3 26.1 26.1 26.2 26.7 27.5 27.9 28.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	14.9 14.6 13.4 12.4 13.5.1 16.8 16.2 13.6 14.3 12.7 14.1	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.8	13.4 14.2 14.0 12.5 11.6 12.2 13.4 15.1 15.1 12.8 12.0 11.4 12.2	11.7 12.7 13.5 14.8 18.9 16.5 17.4 16.5 15.3 19.2 17.5 17.8 17.6 16.2	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.7 16.3 16.1 15.4	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.4 23.5 22.9 24.7 26.3 25.3 24.1 21.6 23.4	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4 21.0	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 29.0	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.3 25.3 25.3 25.3 25.3	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.2 26.3 26.1 26.1 26.1 26.7 27.5 27.5 27.5 27.5 27.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	14.9 14.9 14.9 14.6 13.4 15.1 16.8 16.2 13.6 14.3 12.7 14.1 16.7	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.2 10.7 12.0	13.4 14.2 14.0 12.5 11.6 12.2 13.4 15.1 15.1 12.8 12.0 11.4 12.2 14.0	11.7 12.7 13.5 14.8 18.9 16.5 17.4 17.4 17.5 17.8 17.5 17.8 17.6 16.2	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.7 16.3 16.1 15.4 15.0 14.1 12.9 12.6 14.5	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.4 23.5 22.9 24.7 26.3 25.3 24.1 21.6 23.4 24.4	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4 21.0 22.3	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 29.0 30.0 30.8 31.7 28.1 28.0	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.0 24.8 24.8 25.5 26.1 26.4 27.0 26.2	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.3 26.3 26.1 26.1 26.2 26.7 27.9 28.3 27.5 27.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	14.9 14.6 13.4 12.4 13.5.1 16.8 16.2 13.6 14.3 12.7 14.1 16.7	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.8 10.7 12.0 13.6	13.4 14.2 14.0 12.5 11.6 12.2 13.4 15.1 15.1 12.8 12.0 11.4 12.2 14.0	11.7 12.7 13.5 14.8 18.9 16.5 17.4 16.5 15.3 19.2 17.5 17.8 17.6 16.2	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.3 16.1 15.4 15.0 14.1 12.6 14.5	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.4 24.5 23.4 24.7 26.3 25.3 24.1 21.6 23.4 24.4	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4 21.0 22.3	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 29.0 30.0 30.8 31.7 28.1 28.0	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.3 25.3 25.6 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.2 26.3 26.1 26.1 26.1 26.7 27.5 27.9 28.3 27.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	14.9 14.9 14.9 14.6 13.4 12.4 13.4 15.1 16.8 16.2 13.6 14.3 12.7 14.1 16.7	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.2 10.7 12.0 13.6 12.4 12.1	13.4 14.2 14.0 12.5 11.6 12.2 13.4 15.1 15.1 12.8 12.0 11.4 12.2 14.0 11.4 12.2 14.0	11.7 12.7 13.5 14.8 18.9 16.5 17.4 17.4 16.5 15.3 19.2 17.5 17.8 17.6 16.2 17.7 14.8 13.6 13.8 18.8	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.7 16.3 16.1 15.4 15.0 14.1 12.9 12.6 14.5	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.5 22.9 24.7 26.3 25.3 24.1 21.6 23.4 24.4	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.8	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4 21.0 22.3	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 30.0 30.8 31.7 28.1 28.0	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.0 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.6	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.3 26.1 26.1 26.1 26.2 27.5 27.9 28.3 27.5 27.9 28.3 27.5 27.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	14.9 14.6 13.4 12.4 13.5.1 16.8 16.2 13.6 14.3 12.7 14.1 16.7	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.8 10.7 12.0 13.6 12.4 12.1	13.4 14.2 14.0 12.5 11.6 12.2 13.4 15.1 15.1 12.8 12.0 11.4 12.2 14.0 14.3 12.9 12.4	11.7 12.7 13.5 14.8 18.9 16.5 17.4 16.5 15.3 19.2 17.5 17.6 16.2 17.7 14.8 13.6 13.8 18.8 18.8	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 15.6	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.3 16.1 15.4 15.0 14.1 12.6 14.5 15.3 17.4 19.3 17.4	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.4 24.5 23.4 24.7 26.3 25.3 24.1 21.6 23.4 24.4	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.7 20.8	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4 21.0 22.3	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 29.0 30.8 31.7 28.1 28.0 27.2 27.2	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.3 25.6 24.8 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.8 22.8	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.2 26.3 26.1 26.1 26.2 27.5 27.5 27.5 27.0 28.3 27.0 25.5 24.7 25.5 25.5 27.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	14.9 14.9 14.9 14.6 13.4 12.4 13.4 15.1 16.2 13.6 14.3 12.7 14.1 16.7	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.2 10.7 12.0 13.6 12.1 12.4 12.1	13.4 14.2 14.0 12.5 11.6 12.2 13.4 15.1 15.1 12.8 12.0 11.4 12.2 14.0 12.2 14.0	11.7 12.7 13.5 14.8 18.9 16.5 17.4 17.4 16.5 15.3 19.2 17.5 17.8 17.6 16.2 17.7 14.8 13.6 13.8 18.8 18.2 21.0 21.6 18.9	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 15.6 14.9	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.7 16.3 16.1 15.4 15.0 14.1 12.9 12.6 14.5 15.3 17.4 19.3 17.2	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.5 22.9 24.7 26.3 25.3 24.1 21.6 23.4 24.4 24.5	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.8 20.9 20.1	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 24.0 22.3 22.3	25.1 23.8 23.5 23.2 26.3 25.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 29.0 30.0 30.8 31.7 28.1 28.0 27.2 27.4 28.1	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.0 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.6 23.9	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.3 26.1 26.1 26.2 26.7 27.5 27.9 28.3 27.5 27.5 27.5 27.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	14.9 14.6 13.4 12.4 13.5.1 16.8 16.2 13.6 14.3 12.7 14.1 16.7	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.2 10.7 12.0 13.6 12.4 12.1 12.4 12.3 14.3	13.4 14.2 14.0 12.5 11.6 12.2 13.4 15.1 15.1 12.8 12.0 11.4 12.2 14.0 14.3 12.9 12.4	11.7 12.7 13.5 14.8 18.9 16.5 17.4 16.5 15.3 19.2 17.5 17.6 16.2 17.7 14.8 13.6 13.8 18.8 18.8	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 15.6 14.9 13.1	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.3 16.1 15.4 15.0 14.1 12.6 14.5 15.3 17.4 19.3 17.2 15.5	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.4 24.5 23.4 24.7 26.3 25.3 24.1 21.6 23.4 24.4 24.4 24.6 23.8 24.2	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.9 22.1 21.9 22.3	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4 21.0 22.3 22.0 22.4 23.0 22.4 23.0 22.4 23.0 22.4 23.0 22.4 23.0 22.4	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 29.0 30.8 31.7 28.1 28.0 27.2 27.2	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.3 25.6 24.8 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.8 22.8	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.2 26.3 26.1 26.1 26.2 27.5 27.5 27.5 27.0 28.3 27.0 25.5 24.7 25.5 25.5 27.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	14.9 14.9 14.9 14.6 13.4 12.4 13.4 15.1 16.2 13.6 14.3 12.7 14.1 16.7 15.2 13.6 12.9 14.1 17.4 15.6 15.9 14.9	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.2 10.7 12.0 13.6 12.4 12.1 12.4 12.3 14.3 14.8 10.7	13.4 14.2 14.0 12.5 11.6 12.2 13.4 15.1 15.1 12.8 12.0 11.4 12.2 14.0 14.3 12.9 12.4 13.2 14.0	11.7 12.7 13.5 14.8 18.9 16.5 17.4 16.5 15.3 19.2 17.5 17.8 17.6 16.2 17.7 14.8 13.6 13.8 18.2 21.0 21.6 18.9	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 15.6 14.9 13.1 11.6	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.7 16.3 16.1 15.4 15.0 14.1 12.9 12.6 14.5 15.3 17.4 19.3 17.2 15.5	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.5 22.9 24.7 26.3 25.3 24.1 21.6 23.4 24.4 24.4 24.6 23.8 24.1 22.9 22.9	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.9 20.9	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 22.0 24.0 22.0 24.0 22.3 22.1 21.7 21.7 21.7 21.7 21.7 21.7 21.7	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 29.0 30.8 31.7 28.1 28.0 27.2	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.0 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.6 23.9	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.3 26.1 26.1 26.1 26.2 26.7 27.5 27.9 28.3 27.5 27.0 25.5 24.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	14.9 14.6 13.4 12.4 13.4 15.1 16.8 16.2 13.6 14.3 12.7 15.2 13.6 12.9 14.1 17.4	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.2 10.7 12.0 13.6 12.4 12.1 12.4 12.3 14.8 10.7	 13.4 14.2 14.0 12.5 11.6 12.2 13.4 15.1 15.1 12.8 12.0 11.4 12.2 14.0 14.3 12.9 12.4 13.2 14.0	11.7 12.7 13.5 14.8 18.9 16.5 17.4 16.5 15.3 19.2 17.5 17.6 16.2 17.7 14.8 13.6 13.8 18.8 18.8 18.2 21.0 21.6 18.9 16.4	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 11.9 11.8 13.0 14.7 17.5 15.6 14.9 13.1 11.6 11.0 11.3	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.3 16.1 15.4 15.0 14.1 12.6 14.5 17.4 19.3 17.4 19.3 17.2 15.5	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.4 24.7 26.3 25.3 24.1 21.6 23.4 24.4 24.4 24.0 24.6 23.8 24.2	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.9 22.1 19.9 22.3	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4 21.0 22.3 22.0 22.4 23.0 22.4 23.0 22.1 21.7	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 29.0 30.0 30.8 31.7 28.1 28.0 27.2 27.8 28.1	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.0 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.6 23.9	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.3 26.3 26.1 26.1 26.2 27.5 27.5 27.0 28.3 27.5 27.0 25.5 24.7 25.5 24.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	14.9 14.6 13.4 12.4 13.5.1 16.8 16.2 13.6 14.3 12.7 14.1 16.7 15.2 13.6 12.9 14.1 17.4	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.2 10.7 12.0 13.6 12.4 12.1 12.4 12.3 14.3 14.3 14.8 10.7	13.4 14.2 14.0 12.5 11.6 12.2 13.4 15.1 15.1 12.8 12.0 11.4 12.2 14.0 14.3 12.9 12.4 13.2 14.2	11.7 12.7 13.5 14.8 18.9 16.5 17.4 16.5 15.3 19.2 17.5 17.8 17.6 16.2 17.7 14.8 13.6 13.8 18.2 21.0 21.6 18.9	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 15.6 14.9 13.1 11.6	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.7 16.3 16.1 15.4 15.0 14.1 12.9 12.6 14.5 15.3 17.4 19.3 17.2 15.5	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.5 22.9 24.7 26.3 25.3 24.1 21.6 23.4 24.4 24.4 24.6 23.8 24.1 22.9 22.9	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.7 20.8 21.9 20.9	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 22.0 24.0 22.0 24.0 22.3 22.1 21.7 21.7 21.7 21.7 21.7 21.7 21.7	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 29.0 30.8 31.7 28.1 28.0 27.2 27.8 28.1 28.0	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.3 25.0 24.8 24.8 24.8 25.5 26.1 26.2 24.3 22.8 22.8 22.8 23.9	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.2 26.3 26.1 26.1 26.2 26.7 27.5 27.9 28.3 27.5 27.5 27.5 27.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	14.9 14.6 13.4 12.4 13.4 15.1 16.8 16.2 13.6 14.3 12.7 15.2 13.6 12.9 14.1 17.4 15.6 12.9 14.9	FEBRUARY 12.0 13.6 13.2 11.8 11.0 11.5 12.3 13.9 13.6 11.8 10.8 10.2 11.7 12.0 13.6 12.4 12.1 12.4 12.1 12.4 12.3 14.8 10.7	11.6 12.5 11.6 12.2 13.4 15.1 15.1 12.8 12.0 11.4 12.2 14.0 14.3 12.9 12.4 13.2 14.2	11.7 12.7 13.5 14.8 18.9 16.5 17.4 16.5 15.3 19.2 17.5 17.8 17.6 16.2 17.7 14.8 13.6 13.8 18.8 18.8	MARCH 9.7 11.6 12.0 11.7 12.7 14.3 14.2 15.3 15.1 14.4 14.5 15.7 15.2 15.1 14.7 13.5 13.6 12.4 11.9 11.8 13.0 14.7 17.5 15.6 14.9 13.1 11.6 11.0 11.3 11.7	10.7 12.1 12.4 13.1 14.9 15.2 15.7 16.1 15.6 14.8 16.2 16.7 16.1 15.4 15.0 14.1 12.9 14.5 17.4 19.3 17.2 15.5 17.4 19.3 17.2 15.5 17.3 17.2 17.2 17.3 17.2 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3	18.8 22.7 24.6 23.6 22.8 22.3 24.8 26.0 25.4 24.5 23.5 22.9 22.9 24.7 26.3 25.3 24.1 21.6 23.4 24.4 22.4 24.2 22.4 24.2 22.9 22.9 22	APRIL 15.1 17.4 19.5 20.5 21.6 21.2 21.1 21.9 22.9 22.7 21.6 21.4 20.7 21.9 22.3 22.7 20.5 19.4 19.5 20.8 21.7 20.8 21.8 20.9 20.1	16.7 19.2 21.3 21.8 22.0 21.8 22.5 23.4 23.9 23.5 22.7 22.1 21.7 23.0 23.9 24.0 22.0 20.4 21.0 22.3 22.0 22.1 21.7 21.7 21.4 21.3 21.5 21.8 22.1	25.1 25.5 23.8 23.5 23.2 26.3 25.3 27.4 28.9 28.0 27.6 27.2 27.8 28.0 29.0 30.0 30.8 31.7 28.1 28.0 27.2 27.8 28.1	MAY 21.4 22.1 22.7 22.1 21.0 21.4 23.7 23.6 24.9 25.0 25.3 25.3 25.3 25.3 25.0 24.8 24.8 25.5 26.1 26.4 27.0 26.2 24.3 22.8 22.6 23.9	22.9 23.6 23.1 22.6 21.9 23.5 24.5 25.2 26.2 26.3 26.1 26.1 26.2 27.5 27.9 28.3 27.5 27.0 25.5 24.7 25.0 25.0

08136500 Concho River at Paint Rock, TX--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	lR.
1	26.3	24.4	25.9							28.8	25.2	26.5
2	24.9	20.9	23.2							33.2	25.5	28.1
3	29.0	23.1	25.6							30.9	26.5	27.9
4	29.8	25.8	27.3							31.5	25.6	27.6
5	29.3	26.3	27.6							28.5	25.7	26.7
6	31.7	26.6	28.5							30.5	25.4	27.1
7	32.0	27.5	29.3							32.0	25.7	28.2
8	30.1	27.7	28.8							33.0	27.2	29.4
9	31.5	27.1	28.5							29.5	26.1	27.2
10	32.0	26.8	28.8							29.0	25.4	26.5
11	31.9	27.2	28.9							27.2	25.4	26.2
12	30.9	27.6	28.9							30.5	25.1	26.8
13	31.9	27.4	29.1							29.4	24.9	26.5
14	32.2	27.4	29.6							28.4	25.5	26.6
15	32.0	28.8	30.0							26.4	25.3	25.8
16	32.4	27.8	29.3							27.8	24.8	25.8
17	31.6	27.5	29.0							27.9	24.6	25.9
18										32.4	24.9	27.5
19										29.8	25.8	27.2
20										31.3	26.5	28.2
21										29.4	26.0	27.7
22										29.4	26.2	27.2
23										26.3	22.1	23.7
24										24.9	22.6	23.6
25										26.5	21.7	23.2
26										25.7	21.6	23.2
27										25.7	21.8	23.4
28										25.9 25.6	21.8	23.4
29							26.1	22.6	24.1	25.5	22.2	23.3
30							31.8	22.6	25.5	25.5 24.6	22.0	23.3
30 31							31.8 28.6	23.9	25.5 26.4	24.6	21.7	22.7
3±							∠8.0	24.8	∠0.4			
MONTH										33.2	21.6	26.1

DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE

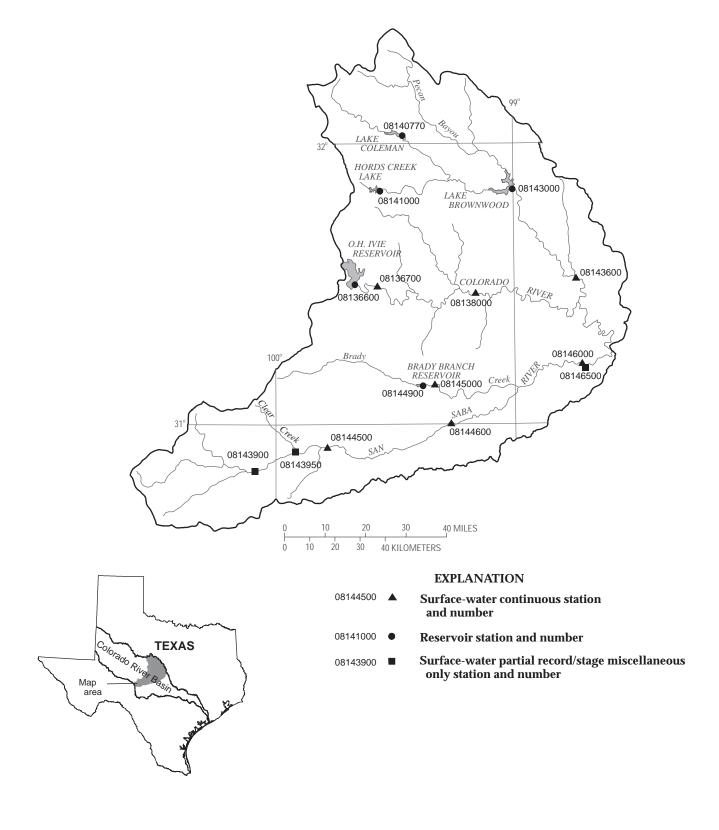


Figure 5.--Map showing location of gaging stations in the third section of the Colorado River Basin

08136600	O.H. Ivie Reservoir near Voss, TX	136
08136700	Colorado River near Stacy, TX	138
08138000	Colorado River at Winchell, TX	140
08140770	Lake Coleman near Novice, TX	142
08141000	Hords Creek Lake near Valera, TX	144
08143000	Lake Brownwood near Brownwood, TX	146
08143600	Pecan Bayou near Mullin, TX	148
08143900	Springs at Fort McKavett, TX	321
08143950	Clear Creek near Menard, TX	323
08144500	San Saba River at Menard, TX	150
08144600	San Saba River near Brady, TX	152
08144900	Brady Creek Reservoir near Brady, TX	154
08145000	Brady Creek at Brady, TX	156
08146000	San Saba River at San Saba, TX	158
08146500	Can Caha Chringe at Can Caha TV	2 2 1

08136600 O.H. Ivie Reservoir near Voss, TX

DRAINAGE AREA.--24,038 mi², of which 11,391 mi² probably is noncontributing.

PERIOD OF RECORD. -- Sept. 1990 to current year.

GAGE.--Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station.

REMARKS.--No estimated daily contents. Records good. The lake is formed by a concrete dam and spillway with six 50- by 40-foot tainter gates, and a 6,000 ft overflow spillway with a 2,000 ft tapered fuse plug release feature. Total length of the dam is 12,000 ft. The dam was completed and storage began Mar. 15, 1990. Recording equipment was installed May 30, 1990, but water did not reach the sensing point until Sept. 21, 1990 (at an elevation of 1,502.05 ft). The dam is owned by the Colorado River Municipal Water District. Water is utilized for municipal use for several West Texas communities, the city of San Angelo being the largest user. The capacity curve is based on a survey made in 1989 by Freese and Nichols, Consulting Engineers, Fort Worth, TX. Conservation pool storage is 554,340 acre-ft. Data regarding the dam are given in the following table:

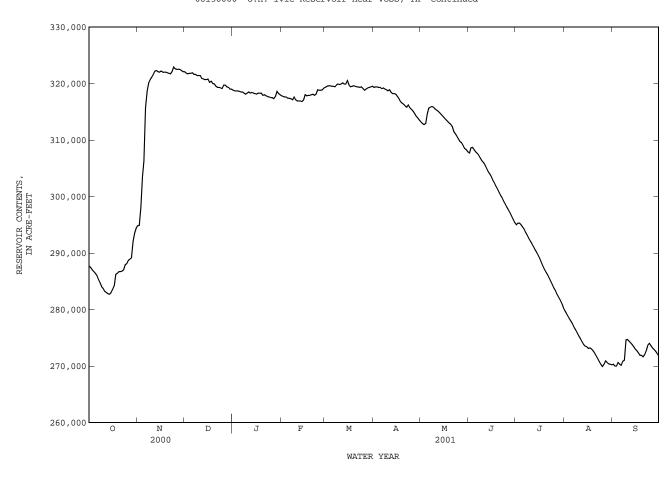
Top of dam	evation
Top of dam	feet)
	584.0
Crest of overflow spillway	563.0
Top of conservation storage	551.5
Crest of spillway (tainter gates sill)	528.0
Lowest gated outlet (service outlet)	440.0

COOPERATION. -- The capacity table dated Sept. 15, 1990 was furnished by the Colorado River Municipal Water District.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 574,700 acre-ft, June 26, 1997, elevation, 1,552.55 ft; minimum contents after initial filling, 269,500 acre-ft, Aug. 26, 2001, elevation, 1,532.93 ft.

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

EXTREMES FOR CURRENT YEAR.--Maximum contents, 323,600 acre-ft, Nov. 24, elevation, 1,537.25 ft; minimum contents, 269,500 acre-ft, Aug. 26, elevation, 1,532.93 ft.


	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	287700	294800	322100	318800	317800	319300	319300	313200	307700	295000	279800	270300
2	287400	294900	321800	318700	317700	319500	319400	312900	308600	295300	279300	270000
3	287000	298100	321700	318700	317600	319600	319400	312700	308700	295300	278800	270000
4	286700	303500	321800	318700	317600	319600	319300	312900	308300	295000	278300	270600
5	286400	306300	321800	318600	317400	319500	319300	314600	307900	294600	277900	270300
6	286000	315700	321900	318500	317400	319500	319100	315600	307600	294200	277400	270100
7	285300	318600	321600	318500	317300	319400	319200	315800	307300	293600	276800	270800
8	284700	320100	321600	318300	317100	319700	319000	315900	306800	293100	276300	271000
9	284000	320700	321400	318100	317600	319900	318900	315800	306300	292600	275800	274600
10	283700	321100	321400	318300	317100	319800	318700	315500	306000	292100	275300	274700
11	283200	321600	321400	318500	316900	319900	318900	315300	305600	291600	274800	274400
12	283000	322200	320900	318300	316900	320100	318400	315100	305000	291100	274300	274100
13	282800	322300	320800	318400	316900	319900	318200	314800	304400	290600	273800	273800
14	282700	322100	320700	318300	316800	319900	318200	314500	304000	290100	273500	273400
15	283000	322000	320700	318200	317100	320500	318100	314200	303500	289600	273400	273000
16	283600	322200	320800	318100	318000	319700	317700	313900	302900	289000	273100	272700
17	284200	322000	320200	318300	317800	319400	317300	313600	302400	288300	273200	272300
18	286200	322000	320400	318300	317900	319500	316800	313300	301800	287700	273000	271900
19	286400	322000	320000	318300	317900	319600	316500	313000	301300	287100	272700	271900
20	286700	321900	319900	317900	318000	319500	316300	312800	300700	286600	272300	271600
21	286700	321800	319500	318000	318100	319400	316000	312400	300200	286100	271800	272000
22	286800	321700	319300	317800	317900	319400	315800	311500	299700	285600	271300	272700
23	287000	322100	319300	317700	318100	319300	316200	311100	299100	285000	270800	273700
24	287900	322900	319200	317600	318900	319400	315700	310700	298600	284400	270300	274000
25	288100	322600	319100	317500	318800	319100	315400	310200	298100	283800	269900	273600
26	288700	322500	319700	317500	318800	318800	315100	309700	297600	283300	270300	273200
27	288900	322500	319700	317300	318900	319000	314700	309500	297100	282700	270900	272900
28	289100	322500	319400	317700	319200	319200	314200	309000	296500	282200	270600	272600
29	292000	322300	319300	318600		319300	313900	308500	295900	281700	270400	272200
30	293500	322100	319000	318200		319400	313500	308300	295400	281100	270300	271800
31	294400		319000	318000		319500		307900		280400	270200	
MUAN	286600	217000	220502	210000	217000	210500	217200	212700	202000	200702	073000	070200
MEAN		317900	320500	318200	317800	319500	317300	312700	302800	288700	273800	272300
MAX	294400	322900	322100	318800	319200	320500	319400	315900	308700	295300	279800	274700
MIN	282700	294800	319000	317300	316800	318800	313500	307900	295400	280400	269900	270000
(+)	1534.99	1537.14	1536.90	1536.83	1536.92	1536.94	1536.49	1536.05	1535.07	1533.84	1532.99	1533.12
(@)	+6400	+27700	-3100	-1000	+1200	+300	-6000	-5600	-12500	-15000	-10200	+1600

CAL YR 2000 MAX 337500 MIN 280000 (@) -3200 WTR YR 2001 MAX 322900 MIN 269900 (@) -16200

⁽⁺⁾ Elevation, in feet, at end of month.

^(@) Change in contents, in acre-feet.

08136600 O.H. Ivie Reservoir near Voss, TX--Continued

08136700 Colorado River near Stacy, TX

LOCATION.--Lat 31°29'37", long 99°34'25", Coleman County, Hydrologic Unit 12090106, on left bank at downstream side of bridge on Farm Road 503, 1.2 mi upstream from Bois d'Arc Creek, 1.8 mi northeast of Stacy, 10.5 mi downstream from O.H. Ivie Reservoir, 24 mi downstream from Concho River, and at mile 604.8.

DRAINAGE AREA.--24,193 mi^2 , of which approximately 11,391 mi^2 probably is noncontributing.

PERIOD OF RECORD.--Mar. 1968 to current year. Prior to Oct. 1970, published as "at Stacy".

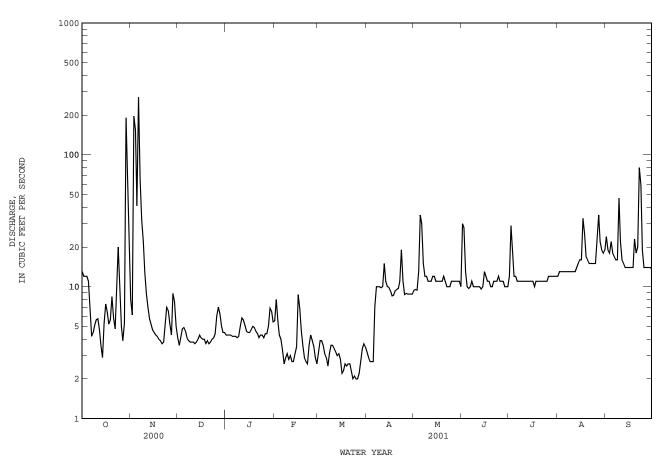
Water-quality records.--Chemical data: Dec. 1961 to July 1994. Biochemical data: Oct. 1974 to Aug. 1977. Pesticide data:

Apr. 1975 to Aug. 1977. Sediment data: Oct. 1974 to Oct. 1977. Specific conductance: Apr. 1968 to Sept. 1994. Water temperature: Apr. 1968 to Sept. 1994.

REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,394.66 ft above sea level (Texas Department of Transportation bridge plans). Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. Since installation of gage in Mar. 1968, at least 10% of contributing drainage area has been regulated by upstream reservoirs, and since Mar. 15, 1990, flow completely regulated by O.H. Ivie Reservoir (station 08136600, conservation pool storage 554,340 acre-ft), 10.5 mi upstream. There are many diversions above station for irrigation, municipal, and oil field operations. Wastewater effluent is returned to the river from numerous wastewater plants above station. At times flow may be slightly affected by discharge from the flood-detention pools of 42 floodwater-retarding structures with a combined detention capacity of 56,730 acre-ft. These structures control runoff from 277 mi² above this station. No flow at times.


EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum discharge since at least 1882, 356,000 ft³/s Sept. 18, 1936 (gage height, 64.59 ft), by slope—area measurement of peak flow. The flood of Sept. 18, 1936, was 4 ft higher than the 1906 flood and 7 to 8 ft higher than the 1882 flood, from information by local resident.

		DISCHA	RGE, CUB	IC FEET PI	ER SECOND, DAILY	WATER YE MEAN VA		R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	13 12 12 12 11	8.0 6.1 197 154 41	4.1 3.6 4.1 4.8 4.9	4.3 4.3 4.3 4.3	5.5 8.0 5.5 4.3 4.0	3.2 3.9 3.9 3.6 3.1	3.2 2.9 2.7 2.7 2.7	9.4 9.5 9.4 13 35	30 28 13 10 9.7	12 29 19 12	12 13 13 13 13	24 19 18 22 18
6 7 8 9 10	6.8 4.2 4.5 5.1 5.6	273 65 32 22 13	4.6 4.1 3.9 3.8 3.8	4.2 4.2 4.1 4.2 5.0	3.3 2.6 2.9 3.1 2.8	2.9 2.5 3.1 3.6 3.6	7.1 10 10 10 9.8	30 15 12 12 11	10 11 10 10	11 11 11 11	13 13 13 13 13	17 16 16 47 22
11 12 13 14 15	5.7 4.7 3.6 2.9 5.3	8.9 7.0 5.7 5.2 4.7	3.8 3.7 3.8 4.0 4.3	5.8 5.6 5.1 4.6 4.5	3.0 2.7 2.7 3.1 3.5	3.4 3.2 3.0 3.1 2.8	10 15 11 10 9.9	11 11 12 12 11	10 10 9.6 10	11 11 11 11	13 13 14 15 16	16 15 14 14
16 17 18 19 20	7.4 6.4 5.2 5.6 8.4	4.5 4.3 4.2 4.0 3.9	4.1 4.0 4.0 3.7 3.9	4.5 4.7 5.0 4.9 4.6	8.7 6.8 4.7 3.6 2.9	2.2 2.3 2.6 2.5 2.6	9.3 8.5 8.6 9.3 9.5	11 11 11 11 12	12 11 11 10 10	11 10 11 11	16 33 25 17 16	14 14 14 23 18
21 22 23 24 25	5.8 4.8 11 20 9.2	3.7 3.8 5.1 7.0 6.6	3.7 3.8 4.0 4.1 4.4	4.4 4.1 4.3 4.3	2.7 2.6 3.6 4.3 3.9	2.6 2.3 2.0 2.1 2.0	9.7 11 19 11 8.7	11 10 10 10	11 11 11 12 11	11 11 11 11	15 15 15 15 15	20 80 59 19 14
26 27 28 29 30 31	5.0 3.9 5.3 191 64 17	5.2 4.3 8.9 7.7 5.0	6.0 7.0 6.2 5.0 4.5 4.5	4.4 4.4 5.0 6.9 6.5 5.4	3.5 2.9 2.6 	2.0 2.2 2.7 3.4 3.7 3.5	8.9 8.8 8.8 8.8	11 11 11 11 11	11 11 10 10 10	12 12 12 12 12 12	22 35 22 19 18 19	14 14 14 14 14
TOTAL MEAN MAX MIN AC-FT	478.4 15.4 191 2.9 949	920.8 30.7 273 3.7 1830	134.2 4.33 7.0 3.6 266	146.2 4.72 6.9 4.1 290	109.8 3.92 8.7 2.6 218	89.6 2.89 3.9 2.0 178	265.7 8.86 19 2.7 527	386.3 12.5 35 9.4 766	356.3 11.9 30 9.6 707	375 12.1 29 10 744	517 16.7 35 12 1030	637 21.2 80 14 1260
STATIST	rics of M	MONTHLY ME	AN DATA	FOR WATER	YEARS 1968	3 - 2001,	BY WATER	YEAR (WY	.)			
MEAN MAX (WY) MIN (WY)	221 1475 1987 4.42 1999	114 1344 1975 4.57 1999	96.9 562 1975 2.07 1999	97.9 470 1975 2.09 1999	99.9 666 1975 2.19 1999	138 732 1987 2.78 2000	135 873 1977 .41 1986	314 1440 1987 .000 1984	357 1783 1996 .000 1984	111 623 1987 .000 1974	163 1516 1978 2.24 1983	257 2953 1980 .000 1983

08136700 Colorado River near Stacy, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1968 - 2001
ANNUAL TOTAL	6734.5	4416.3	
ANNUAL MEAN	18.4	12.1	174
HIGHEST ANNUAL MEAN			719 1987
LOWEST ANNUAL MEAN			12.1 2001
HIGHEST DAILY MEAN	1480 Jun 15	273 Nov 6	31300 Sep 10 1980
LOWEST DAILY MEAN	1.6 Mar 30	2.0 Mar 23	.00 Jun 22 1974
ANNUAL SEVEN-DAY MINIMUM	2.0 Mar 26	2.2 Mar 21	.00 Jun 22 1974
MAXIMUM PEAK FLOW		635 Nov 6	c45000 Sep 10 1980
MAXIMUM PEAK STAGE		6.22 Nov 6	28.00 Sep 10 1980
ANNUAL RUNOFF (AC-FT)	13360	8760	125800
10 PERCENT EXCEEDS	17	18	358
50 PERCENT EXCEEDS	8.9	9.5	42
90 PERCENT EXCEEDS	3.2	3.1	6.1

c From rating curve extended above $36,600 \text{ ft}^3/\text{s}$.

08138000 Colorado River at Winchell, TX

LOCATION.--Lat 31°28'04", long 99°09'43", McCulloch-Brown County line, Hydrologic Unit 12090106, near left bank at downstream end of pier of old abandoned bridge, 300 ft upstream from bridge on U.S. Highway 377, 0.3 mi south of Winchell, 5.9 mi downstream from Home Creek, and at mile 560.7.

DRAINAGE AREA.--25,179 mi², approximately, of which 11,391 mi² probably is noncontributing.

PERIOD OF RECORD.--Nov. 1923 to Sept. 1934 published as "near Milburn", June 1939 to Sept. 1993, and Oct. 1997 to current year.
Water-quality records.--Chemical data: Nov. 1967 to Sept. 1985, Dec. 1990 to Sept. 1993. Biochemical data: Dec. 1990 to Aug.
1993. Specific conductance: Feb. 1991 to Sept. 1993. Water temperature: Feb. 1991 to Sept. 1993.

REVISED RECORDS.--WDR TX-81-3: Drainage area. WDR TX-88-3: 1985.

GAGE.--Water-stage recorder. Datum of gage is 1,264.86 ft above sea level. Nov. 1923 to Sept. 1934, nonrecording gage at site 4.2 mi downstream at datum 10.14 ft lower. Jan. 13, 1939, to Mar. 24, 1940, nonrecording gage at present site and datum. Radio telemeter at station

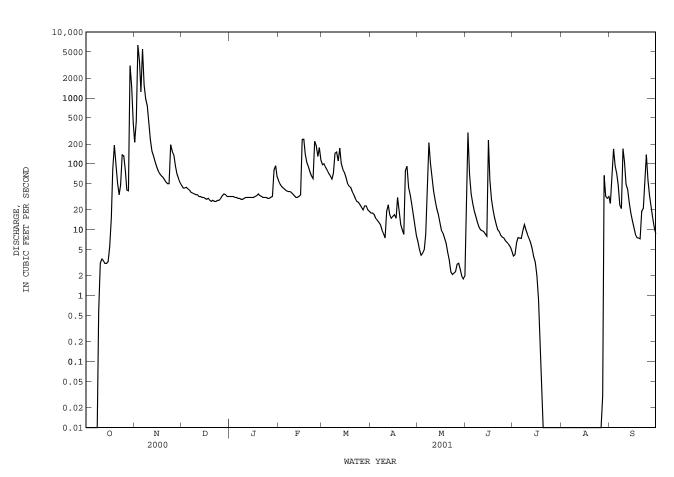
REMARKS.—Records good except those for estimated daily discharges, which are poor. Since water year 1931, at least 10% of contributing drainage area has been regulated. At times, flow may also be affected by discharge from the flood-detention pools of 89 floodwater-retarding structures. These flood-detention structures control runoff from 512 mi² above this station. There are many diversions above station for irrigation, municipal supply, and for oil field operation. No flow at times.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--6 years (water years 1925-30) prior to construction of Lake Nasworthy, 798 ft³/s (578,400 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1925-30).--Maximum discharge, $42,300 \text{ ft}^3/\text{s}$ June 15, 1930 (gage height, 38.3 ft, at site 4.2 mi downstream at datum 10.14 ft lower); no flow Aug. 8-10, Sept. 1-5, 1929.

EXTREMES OUTSIDE PERIOD OF RECORD.--Highest stages since 1882 were 62.2 ft Sept. 19, 1936, and 56.2 ft Aug. 8, 1906, at railway bridge 1,000 ft upstream and converted to present site and datum, from information by Gulf, Colorado, and Santa Fe Railway Co.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAILY MEAN VALUES DAY OCT DEC JAN FEB APR JUL NOV MAR MAY AUG 6 5 4 0 0.0 5.0 4.2 .00 .00 .00 4.1 6.4 .00 7.6 7.5 4 4 0.0 .00 e5.0 .00 0.0 7 4 0.0 e8 5 9.7 .00 e30 .00 .00 9.9 e210 .00 .57 8.8 .00 7.4 .00 3.6 9.7 3.4 9.4 .00 3.1 .00 8.7 5.2 8.0 3.9 3.1 .00 3.2 .00 9.9 5.6 2.0 .00 8.5 8.9 .88 .00 35 7.4 6.2 .00 . 31 7.6 .00 .08 4.6 .00 7.3 9.9 .00 .00 3.5 .00 8.5 2.3 9.4 .00 8.2 2.7 2.7 2.1 . 00 .00 2.2 .00 .00 2.3 7.5 .00 .00 3.0 6.8 .00 .00 71 3.1 6.4 .00 .03 2.5 6.0 . 00 2.0 .00 ___ 8.1 1.8 4.8 .00 8.6 ------2.0 . 00 ------TOTAL 6007 77 647 7 617.3 988 1 106 57 161 03 1358 5 MEAN 33.5 35.9 86.5 64.0 21.6 19.9 32.9 3.44 5.19 45.3 7 5 MTN 0.0 1 8 4 8 0.0 7 3 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 2001hz, BY WATER YEAR (WY) MEAN MAX (WY) .074 1.09 .000 .000 .000 .000 .000 (WY)

08138000 Colorado River at Winchell, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1931 - 2001hz
ANNUAL TOTAL	52088.36	39471.97	434
ANNUAL MEAN	142	108	
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN			2070 1957 19.6 1999
HIGHEST DAILY MEAN	6350 Nov 3	6350 Nov 3	67000 Oct 14 1930
LOWEST DAILY MEAN	.00 Mar 16	.00 Oct 1	.00 Aug 15 1934
ANNUAL SEVEN-DAY MINIMUM	.00 Mar 16	.00 Oct 1	.00 Aug 15 1934
MAXIMUM PEAK FLOW		12800 Nov 3	c76100 Oct 15 1930
MAXIMUM PEAK STAGE	103300	a19.68 Nov 3	aa51.80 Oct 15 1930
ANNUAL RUNOFF (AC-FT)		78290	314300
10 PERCENT EXCEEDS	136	131	649
50 PERCENT EXCEEDS	3.6		58
90 PERCENT EXCEEDS	.00	.00	2.6

- e Estimated
 h See PERIOD OF RECORD paragraph.
 z Period of regulated streamflow.
 c From rating curve extended above 8,600 ft³/s at site then in use.
 a From floodmark.
 aa From floodmark at present site and datum.

08140770 Lake Coleman near Novice, TX

LOCATION.--Lat 32°01'48", long 99°27'54", Coleman County, Hydrologic Unit 12090108, 800 ft left of service outlet structure at Coleman Dam on Jim Ned Creek, 2.0 mi upstream from Salt Branch, 2.5 mi west of U.S. Highway 283, 3.0 mi south of Coleman and Callahan County line, 10.0 mi northeast of Novice, and 14.0 mi north of Coleman.

DRAINAGE AREA. -- 292 mi².

PERIOD OF RECORD. -- Feb. 1999 to current year.

GAGE.--Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station.

REMARKS.--No estimated daily contents. Records good except those for June 26 through Sept. 30, which are fair. The lake is formed by a rolled earthfill dam 3,200 ft long. Impoundment began Apr. 1966 and dam was completed in May 1966. The top of the dam was raised 2.0 ft in 1975. The dam and reservoir are owned and operated by the city of Coleman. The uncontrolled emergency spillway is 1,500 ft long across natural earth. The uncontrolled morning glory service spillway is 28 ft wide at the crest. A service outlet is provided for small releases through a 24-inch conduit. Water may be pumped from reservoir for municipal and industrial use. Conservation pool storage is 40,000 acre-ft. Data regarding the dam are given in the following table:

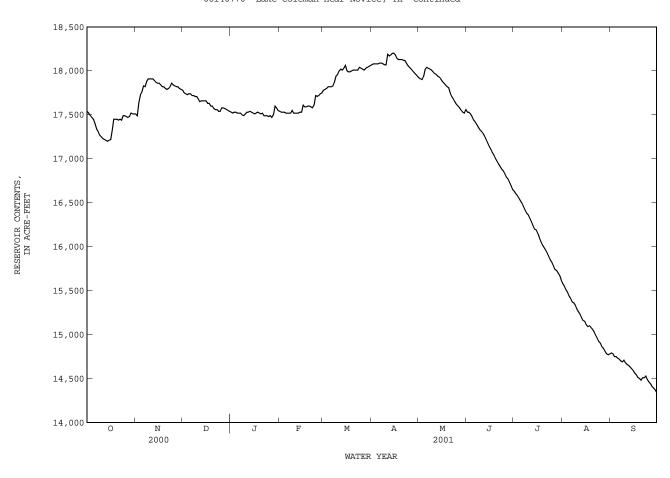
	Elevation
	(feet)
Top of dam	1,742.0
Crest of emergency spillway	1,726.0
Crest of service spillway	1,717.5
Lowest gated outlet (invert)	1,662.5

COOPERATION.—The capacity table based on area and capacity table furnished by city of Coleman was revised to reflect topography from recent quadrangle maps east of longitude $99^{\circ}30'$. Record of diversions may be obtained from city of Coleman.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 29,670 acre-ft, Feb. 27, 1999, elevation, 1,712.25 ft; minimum contents, 14,320 acre-ft, Sept. 30, 2001, elevation, 1,700.28 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 18,250 acre-ft, Apr. 11, elevation, 1,704.06 ft; minimum contents, 14,320 acre-ft, Sept. 30, elevation, 1,700.28 ft.

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	17540	17510	17780	17530	17540	17780	18070	17920	17530	16630	15580	14790
2	17520	17490	17750	17520	17530	17790	18080	17910	17530	16600	15550	14780
3	17490	17640	17740	17530	17530	17800	18080	17900	17510	16580	15510	14750
4	17470	17730	17730	17530	17530	17820	18080	17940	17480	16550	15480	14750
5	17450	17760	17740	17520	17520	17820	18080	18020	17440	16520	15440	14730
6	17400	17830	17740	17520	17520	17820	18090	18040	17420	16490	15410	14720
7	17340	17820	17720	17520	17520	17830	18090	18030	17390	16450	15370	14700
8	17310	17880	17720	17500	17520	17870	18080	18020	17360	16410	15360	14690
9	17270	17910	17710	17490	17550	17940	18070	18010	17330	16380	15330	14710
10	17250	17910	17710	17510	17520	17960	18070	17990	17310	16360	15290	14680
11	17230	17910	17680	17530	17520	18000	18190	17970	17290	16320	15260	14660
12	17220	17910	17650	17530	17520	18020	18170	17960	17260	16280	15230	14650
13	17210	17890	17660	17540	17520	18010	18180	17940	17220	16240	15190	14630
14	17200	17870	17660	17530	17530	18030	18200	17930	17180	16200	15160	14610
15	17210	17860	17660	17520	17530	18060	18200	17910	17140	16190	15150	14590
16	17220	17860	17660	17510	17610	18000	18180	17880	17110	16150	15110	14560
17	17330	17840	17630	17520	17590	17990	18140	17860	17070	16100	15090	14540
18	17450	17820	17630	17530	17590	17990	18130	17840	17040	16060	15100	14510
19	17450	17820	17600	17520	17600	18000	18130	17820	17000	16020	15080	14500
20	17450	17800	17600	17510	17600	18010	18130	17810	16970	15990	15060	14480
21	17440	17790	17570	17520	17590	18010	18120	17750	16940	15960	15030	14510
22	17450	17800	17560	17490	17580	18010	18120	17710	16910	15930	14990	14510
23	17440	17820	17560	17490	17610	18010	18090	17680	16880	15890	14960	14530
24	17490	17860	17540	17490	17720	18040	18060	17650	16860	15850	14920	14490
25	17490	17840	17540	17480	17710	18030	18040	17620	16830	15820	14900	14460
26	17480	17830	17580	17490	17720	18020	18020	17600	16790	15780	14860	14440
27	17470	17820	17580	17470	17740	18010	18000	17580	16770	15740	14840	14410
28	17480	17820	17570	17500	17750	18030	17980	17550	16730	15730	14810	14390
29	17520	17800	17560	17600		18040	17960	17530	16690	15700	14780	14370
30	17510	17790	17550	17580		18050	17940	17520	16650	15670	14770	14340
31	17510		17540	17550		18060	1/940	17560		15620	14780	14340
MEAN	17400	17810	17640	17520	17580	17960	18090	17820	17120	16140	15140	14580
MAX	17540	17910	17780	17600	17750	18060	18200	18040	17530	16630	15580	14790
MIN	17200	17490	17540	17470	17520	17780	17940	17520	16650	15620	14770	14340
(+)	1703.39	1703.64	1703.42	1703.42	1703.61	1703.89	1703.78	1703.44	1702.59	1701.60	1700.75	1700.30
(@)	-30	+280	-250	+10	+200	+310	-120	-380	-910	-1030	-840	-440

CAL YR 2000 MAX 22350 MIN 17200 (@) -4790 WTR YR 2001 MAX 18200 MIN 14340 (@) -3200

(@) Change in contents, in acre-feet.

⁽⁺⁾ Elevation, in feet, at end of month.

08140770 Lake Coleman near Novice, TX--Continued

08141000 Hords Creek Lake near Valera, TX

LOCATION.--Lat $31^{\circ}49'58$ ", long $99^{\circ}33'38$ ", Coleman County, Hydrologic Unit 12090108, at outlet-works structure near right end of dam on Hords Creek, 5.6 mi north of Valera, and 8.8 mi west of Coleman.

DRAINAGE AREA. -- 48 mi², approximately.

PERIOD OF RECORD.--Apr. 1948 to Sept. 2000 (U.S. Army Corps of Engineers furnished contents), Oct. 2000 to current year. Prior to Oct. 1970, published as "Hords Creek Reservoir".

Water-quality records.--Chemical data: Oct. 1969 to Aug. 1982.

GAGE. -- Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station.

REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by a rolled earthfill dam 6,800 ft long, including spillway. Deliberate impoundment of water began Apr. 7, 1948, and the dam was completed in June 1948. The spillway is an excavated channel through natural ground, 500 ft wide, located about 600 ft from the right end of dam. The spillway consists of three concrete conduits; two controlled by 5.0- by 6.0-foot slide gates, and a third uncontrolled ogee spillway 4.0 ft wide and 19.5 ft high. The dam is owned by the U.S. Army Corps of Engineers. The lake is operated for flood control and municipal water supply for the city of Coleman. The capacity table of Aug. 1974 based on a sedimentation survey was made in 1948. Flow is affected at times by discharge from the flood-detention pool of one floodwater-retarding structure with a detention capacity of 1,370 acre-ft. This structure controls runoff from 6.82 mi² in the Jim Ned Creek drainage basin. Conservation pool storage is 8,112 acre-ft. Data regarding the dam are given in the following table:

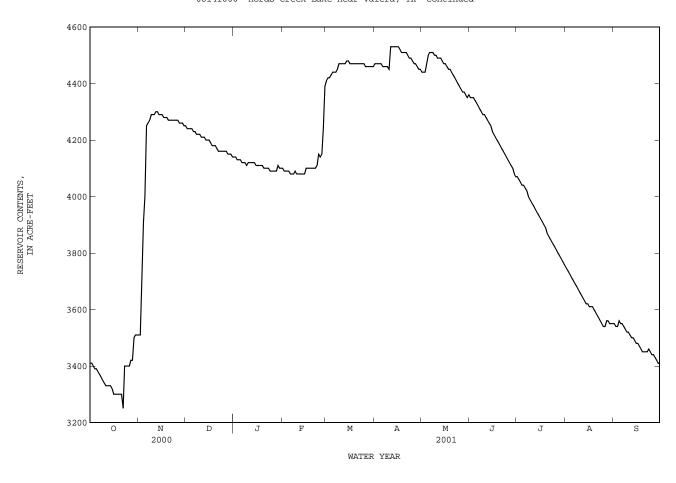
	Elevation
	(feet)
Top of dam	1,939.0
Design flood	
Crest of spillway	1,920.0
Crest of spillway (top of conservation pool)	1,900.0
Lowest gated outlet (invert)	1,856.0

COOPERATION.--Capacity table dated May 2, 1990 was furnished by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 12,790 acre-ft, May 1, 1956, elevation, 1906.86 ft; maximum elevation, Mar. 4, 1992, elevation, 1907.31 ft; minimum since first appreciable storage in June 1951, 1,550 acre-ft, Sept. 2, 1984, elevation, 1878.01 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 4,540 acre-ft, Apr. 11, elevation, 1,891.25 ft; minimum estimated daily contents, 3,250 acre-ft, Oct. 22.

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001


	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3410	3510	4250	4140	4100	4410	4470	4440	4350	4070	3750	3550
2	3410	3510	4240	4140	4090	4420	4470	4440	4350	4060	3740	3540
3	3400	3750	4240	4130	4090	4420	4470	4440	4350	4050	3730	3540
4	3390	3910	4240	4130	4090	4430	4470	4470	4340	4040	3720	3560
5	3390	4000	4240	4130	4090	4440	4470	4500	4330	4040	3710	3550
6	3380	4250	4230	4120	4080	4440	4460	4510	4320	4030	3700	3550
7	3370	4260	4230	4120	4080	4440	4460	4510	4310	4020	3690	3540
8	3360	4270	4220	4120	4080	4450	4460	4510	4300	4000	3680	3530
9	3350	4290	4220	4110	4090	4470	4460	4500	4290	3990	3670	3520
10	3340	4290	4220	4120	4080	4470	4450	4500	4290	3980	3660	3520
10	3310	1250	1220	1120	1000	1170	1150	1500	1250	3,000	3000	3320
11	3330	4290	4210	4120	4080	4470	4530	4490	4280	3970	3650	3510
12	3330	4300	4210	4120	4080	4470	4530	4490	4270	3960	3640	3500
13	3330	4300	4210	4120	4080	4470	4530	4490	4260	3950	3630	3500
14	3330	4290	4200	4120	4080	4480	4530	4480	4250	3940	3620	3490
15	3320	4290	4200	4110	4080	4480	4530	4470	4230	3930	3620	3480
1.0	2222	4000	4000	4110	4100	4.450	4500	4.450	4000	2000	2610	2400
16	e3300	4290	4200	4110	4100	4470	4530	4470	4220	3920	3610	3480
17	e3300	4280	4190	4110	4100	4470	4520	4460	4210	3910	3610	3470
18	e3300	4280	4180	4110	4100	4470	4510	4450	4200	3900	3610	3460
19	e3300	4280	4180	4110	4100	4470	4510	4450	4190	3890	3600	3450
20	e3300	4270	4180	4100	4100	4470	4510	4440	4180	3870	3590	3450
21	e3300	4270	4170	4100	4100	4470	4510	4430	4170	3860	3580	3450
22	e3250	4270	4160	4100	4100	4470	4500	4420	4160	3850	3570	3450
23	e3400	4270	4160	4100	4110	4470	4490	4410	4150	3840	3560	3460
24	e3400	4270	4160	4090	4150	4470	4490	4400	4140	3830	3550	3450
25	e3400	4270	4160	4090	4140	4470	4480	4390	4130	3820	3540	3440
26	e3400	4270	4160	4090	4150	4460	4470	4380	4120	3810	3540	3440
27	3420	4260	4160	4090	4240	4460	4470	4370	4110	3800	3560	3430
28	3420	4260	4150	4090	4390	4460	4460	4370	4100	3790	3560	3420
29	3500	4260	4150	4110	4550	4460	4450	4360	4080	3780	3550	3410
30	3510	4250	4150	4100		4460	4450	4350	4070	3770	3550	3410
31	3510		4140	4100		4460		4360		3760	3550	3410
31	3310		4140	4100		4400		4300		3700	3330	
MEAN	3370	4190	4190	4110	4110	4460	4490	4440	4220	3920	3620	3480
MAX	3510	4300	4250	4140	4390	4480	4530	4510	4350	4070	3750	3560
MIN	3250	3510	4140	4090	4080	4410	4450	4350	4070	3760	3540	3410
(+)	1887.67	1890.32	1889.96	1889.80	1890.77	1891.01	1890.95	1890.66	1889.72	1888.60	1887.82	1887.28
(@)	+100	+740	-110	-40	+290	+70	-10	-90	-290	-310	-210	-140
/	00	., 10			. 250	.,0			2,0	510	220	

CAL YR 2000 MAX 4500 MIN 2600 (@) +740 WTR YR 2001 MAX 4530 MIN 3250 (@) 0

⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet.

e Estimated

08141000 Hords Creek Lake near Valera, TX--Continued

08143000 Lake Brownwood near Brownwood, TX

LOCATION.--Lat 31°50′13", long 99°00′13", Brown County, Hydrologic Unit 12090107, on abandoned service outlet structure near center of dam on Pecan Bayou, 0.2 mi downstream from Jim Ned Creek, 8.0 mi north of Brownwood, and 57.1 mi upstream from mouth.

DRAINAGE AREA. -- 1,565 mi².

PERIOD OF RECORD.--July 1933 to May 1941, Nov. 1944 to Sept. 1986, and Feb. 1999 to current year. Fragmentary records July 1934 to Apr. 1935 and Oct. 1940 to May 1941. Prior to Oct. 1970, published as "Brownwood Reservoir".

Water-quality records.--Chemical data: Oct. 1970 to Apr. 1984.

REVISED RECORDS.--WSP 1212: 1948-50. WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. From July 1933 to May 1941, July 23, 1946 to May 12, 1948, non-recording gage at irrigation outlet structure near right end of dam, Nov. 21, 1944 to July 22, 1946, water-stage recorder on irrigation outlet structure near right end of dam, May 13, 1948 to June 30, 1949, water-stage recorder in right downstream corner of outlet control tower, July 1, 1949 to Sept. 30, 1986, non-recording gage at irrigation outlet structure near right end of dam all at datum 0.50 ft higher. Satellite telemeter at station.

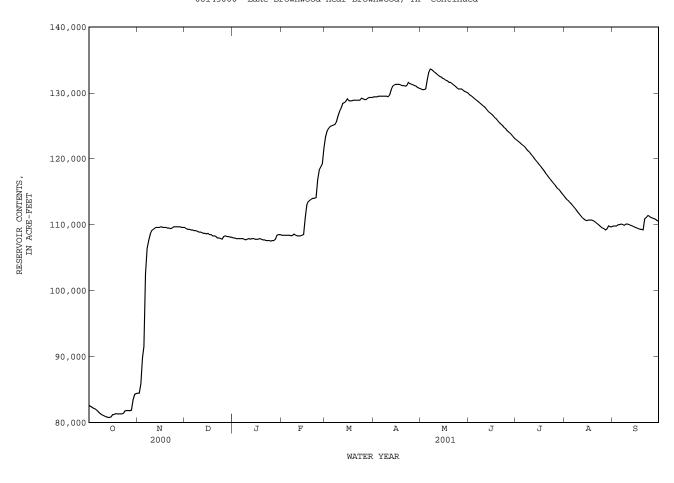
REMARKS.--No estimated daily contents. Records good. The lake is formed by a rolled earthfill dam, 1,580 ft long. The dam was completed in 1933 and deliberate impoundment began in July 1933. In Aug. 1983, work was completed to reinforce backside of dam and dam was raised 20 ft. The uncontrolled emergency spillway is a broad-crested weir 479 ft long located 800 ft to left of dam. The controlled service spillway consists of two 48-inch horseshoe-shaped concrete conduits. Water is used for irrigation, municipal, and industrial supply. Flow is affected at times by discharge from the flood-detention pools of 59 floodwater-retarding structures with a combined capacity of 73,310 acre-ft. These structures control runoff from 353 mi² in the Jim Ned Creek and Pecan Bayou drainage basins. The dam is owned by Brown County WID No. 1. Conservation pool storage is 131,428 acre-ft. Data regarding the dam are given in the following table:

	Elevation
	(feet)
Top of dam	1,470.0
Crest of spillway	1,424.6
Lowest gated outlet (invert)	1,329.5

COOPERATION.--The capacity table dated Feb. 23, 1999, was furnished by Brown County Water Improvement District No. 1 and is based on a volumetric survey of Apr. 1997 by Texas Water Development Board. Records of diversions may be obtained from the city of Brownwood.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 192,300 acre-ft, May 2, 1956, elevation, 1,430.9 ft; minimum contents observed, 11,900 acre-ft, July 15, 1934, elevation, 1,389.0 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 133,700 acre-ft, May 7, elevation, 1,424.83 ft; minimum contents, 80,650 acre-ft, Oct. 15, elevation, 1,415.65 ft.


RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	82580	84440	109600	108000	108400	123300	129400	130600	129700	122900	114200	109800
2	82420	84460	109400	108000	108400	124200	129400	130500	129600	122700	113900	109800
3	82270	85880	109300	107900	108400	124600	129400	130500	129400	122500	113700	109800
4	82140	89800	109300	107900	108400	124900	129500	130600	129200	122300	113400	110000
5	82020	91530	109200	107900	108400	125000	129500	132000	129000	122100	113200	110000
6	81840	102600	109200	107900	108400	125100	129500	133100	128800	121900	112900	110100
7	81570	106400	109100	107900	108300	125200	129500	133600	128600	121600	112600	110000
8	81340	107600	109100	107800	108400	125600	129500	133500	128400	121300	112300	109900
9	81180	108600	109000	107700	108600	126500	129500	133300	128200	121100	112000	110100
10	81060	109100	108900	107800	108400	127200	129400	133100	128000	120800	111700	110100
11	80940	109300	108900	107900	108300	127700	129700	132900	127800	120500	111400	110000
12	80850	109500	108800	107800	108300	128400	130500	132700	127500	120200	111100	109900
13	80790	109600	108700	107900	108300	128500	131000	132500	127200	119900	110900	109800
14	80740	109600	108700	107900	108400	128700	131200	132400	127000	119600	110700	109700
15	80830	109600	108600	107800	108500	129100	131300	132200	126800	119300	110600	109600
16	81180	109700	108700	107800	111000	128800	131300	132100	126600	119000	110700	109500
17	81230	109600	108500	107800	113000	128800	131300	131900	126300	118700	110700	109400
18	81320	109600	108500	107900	113500	128800	131200	131800	126100	118400	110700	109300
19	81300	109600	108300	107800	113700	128900	131100	131600	125800	118100	110600	109300
20	81310	109500	108300	107700	113900	128900	131100	131600	125500	117700	110500	109200
21	81300	109500	108200	107700	114000	128900	131000	131400	125300	117400	110300	110900
22	81310	109400	108000	107600	114000	128900	131100	131200	125100	117100	110100	111100
23	81400	109500	108000	107600	114100	128900	131600	131000	124800	116800	109900	111400
24	81760	109700	107900	107600	116800	129200	131400	130800	124600	116500	109700	111300
25	81810	109700	107800	107500	118300	129100	131300	130600	124300	116200	109500	111100
26 27 28 29 30 31	81820 81790 81850 83410 84230 84380	109700 109700 109700 109600 109600	108200 108300 108200 108200 108100 108100	107600 107600 107800 108400 108500	118800 119200 121600 	129000 129000 129200 129300 129300 129300	131200 131100 131000 130800 130700	130600 130600 130400 130200 130100 130000	124100 123900 123600 123300 123100	115900 115600 115400 115100 114800 114500	109400 109200 109400 109800 109700 109700	111000 110900 110800 110600 110500
MEAN	81740	105400	108600	107900	111700	127700	130500	131600	126600	118900	111100	110200
MAX	84380	109700	109600	108500	121600	129300	131600	133600	129700	122900	114200	111400
MIN	80740	84440	107800	107500	108300	123300	129400	130000	123100	114500	109200	109200
(+)	1416.41	1420.99	1420.74	1420.81	1422.96	1424.18	1424.39	1424.28	1423.19	1421.81	1421.02	1421.15
(@)	+1740	+25220	-1500	+400	+13100	+7700	+1400	-700	-6900	-8600	-4800	+800

CAL YR 2000 MAX 109700 MIN 73190 (@) +23510 WTR YR 2001 MAX 133600 MIN 80740 (@) +27860

⁽⁺⁾ Elevation, in feet, at end of month.
(@) Change in contents, in acre-feet.

08143000 Lake Brownwood near Brownwood, TX--Continued

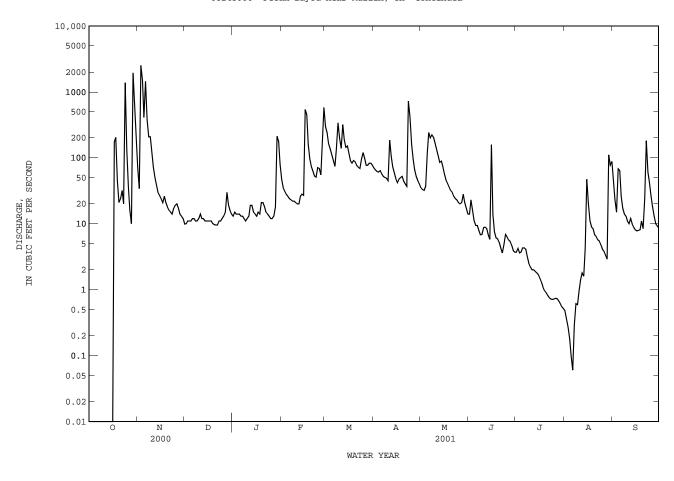
08143600 Pecan Bayou near Mullin, TX

LOCATION.--Lat $31^{\circ}31'02$ ", long $98^{\circ}44'25$ ", Mills County, Hydrologic Unit 12090107, on right bank 44 ft downstream from bridge on Farm Road 573, 0.6 mi downstream from Blanket Creek, 5.5 mi southwest of Mullin, and 13.6 mi upstream from mouth.

DRAINAGE AREA. -- 2,073 mi².

PERIOD OF RECORD.--Oct. 1967 to current year.

Water-quality records.--Chemical data: Oct. 1967 to Aug. 1996. Biochemical data: Nov. 1991 to Aug. 1996. Specific conductance: Oct. 1967 to Sept. 1991. Water temperature: Oct. 1967 to Sept. 1991.


REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,202.93 ft above sea level. Radio telemeter at station. Satellite telemeter at

REMARKS.--No estimated daily discharges. Records good. Since installation of gage in water year 1968, at least 10% of contributing drainage area has been regulated. In addition, flow from 152 mi² (from an intervening drainage area of 641 mi²) above this station and below Lake Brownwood is partly controlled by 41 floodwater-retarding structures. No flow at times many years.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	72 34 2530 1500 407	9.9 10 11 11	13 15 14 14 14	47 35 31 28 26	297 240 164 137 111	70 65 62 61 64	35 33 32 37 118	14 23 16 11 9.4	3.7 4.2 3.6 3.7 4.3	.48 .36 .27 .18	45 23 15 68 64
6 7 8 9 10	.00 .00 .00 .00	1440 377 208 208 128	12 12 11 11 12	13 13 12 11 12	24 23 22 22 21	90 74 138 339 198	57 52 50 49 45	241 201 223 205 166	9.4 7.9 6.8 6.9 8.7	4.3 4.1 3.1 2.5 2.2	.06 .29 .61 .59	26 17 14 13 11
11 12 13 14 15	.00 .00 .00 .00	72 50 38 30 27	14 12 12 11 11	13 19 19 15 14	20 20 26 28 27	139 318 190 144 152	185 104 73 59 48	134 106 85 89 74	8.9 8.5 6.8 5.8	2.0 2.0 1.9 1.8 1.7	1.4 1.8 1.6 4.2	10 12 9.9 8.8 8.1
	.00 174 204 45 21	24 21 26 21 18	11 11 11 10 9.7	13 15 14 21 21	538 448 159 96 73	115 90 83 91 87	42 48 50 52 44	57 46 41 36 32	14 7.5 6.1 5.9 5.2	1.5 1.3 1.1 .96	20 11 8.9 8.4 6.8	7.8 7.9 8.1 11 8.4
	24 32 20 1370 130	16 15 14 17 19	9.6 9.6 11 11	18 15 14 13 12	62 53 51 71 69	76 72 69 96 120	40 37 722 412 161	30 26 24 23 21	4.3 3.6 4.8 6.9 6.4	.82 .76 .72 .71	6.4 5.7 5.5 4.8 4.1	24 181 61 43 27
	36 16 10 1940 754 201	20 17 14 13 12	13 15 30 19 16 14	12 13 18 212 176 80	55 177 581 	99 77 77 83 83 77	95 66 52 45 40	20 21 28 21 17 14	5.7 5.4 4.7 3.9 3.7	.74 .73 .68 .62 .55	3.8 3.3 2.9 111 77 88	18 13 10 9.3 8.6
TOTAL 4 MEAN MAX MIN AC-FT	161 1940 .00 9870	7388 246 2530 12 14650	383.8 12.4 30 9.6 761	878 28.3 212 11 1740	2833 101 581 20 5620	4126 133 339 69 8180	2950 98.3 722 37 5850	2236 72.1 241 14 4440	389.2 13.0 158 3.6 772	58.43 1.88 4.3 .52 116	427.47 13.8 111 .06 848	782.9 26.1 181 7.8 1550
							BY WATER			50.0	05.4	EC 0
MEAN MAX (WY) MIN (WY)	147 987 1975 .59 1989	85.1 1227 1975 4.79 1989	183 4741 1992 3.90 1984	138 1965 1968 4.57 1986	230 4416 1992 6.52 2000	236 2361 1992 5.45 1996	220 3510 1990 3.63 1984	279 1975 1994 .12 1984	341 2898 1997 .000 1984	52.3 434 1997 .000 1974	25.4 195 1971 .000 1980	76.8 980 1991 .000 2000
SUMMARY	STATIST	CICS	FOR	2000 CALEN	DAR YEAR	F	OR 2001 WAS	TER YEAR		WATER Y	EARS 1968	- 2001
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS			19594.56 53.5 2530 .00 .00 38870 33 4.8 .00	Nov 3 Aug 24		27429.80 75.2 2530 .00 4760 12.27 54410 160 17	Nov 3 Oct 1 Oct 1 Nov 3 Nov 3		167 1245 9.0 37000 .0 38300 42.1 121200 253 14 2.7	Apr : 00 Jun : 00 Jun : Apr :	1992 1984 27 1990 29 1974 29 1974 27 1990 27 1990	

08143600 Pecan Bayou near Mullin, TX--Continued

08144500 San Saba River at Menard, TX

LOCATION.--Lat 30°55′08", long 99°47′07", Menard County, Hydrologic Unit 12090109, at downstream side of bridge on U.S. Highway 83 in Menard, 1.1 mi downstream from Las Moras Creek, 1.9 mi upstream from Volkmann Draw, and 116.3 mi upstream from mouth.

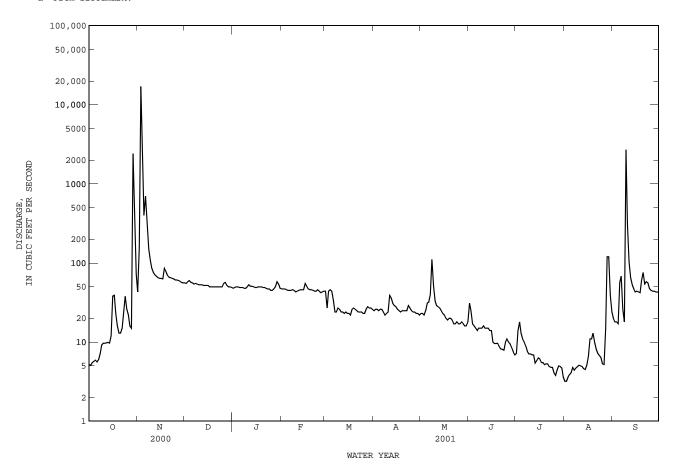
DRAINAGE AREA.--1,135 mi², of which 6.6 mi² probably is noncontributing.

PERIOD OF RECORD.--Sept. 1915 to Sept. 1993, Oct. 1997 to current year. Water-quality records.--Chemical data: Nov. 1964 to July 1967.

REVISED RECORDS.--WDR TX-81-3: Drainage area. WSP 1512: 1918-20, 1922-25, 1926(M), 1927-32, 1934(M), 1936, 1938(M).

GAGE.--Water-stage recorder. Datum of gage is 1,863.05 ft above sea level. Sept. 14, 1915, to Mar. 12, 1924, nonrecording gage at site 635 ft downstream at datum 2.20 ft lower. Mar. 13, 1924, to Feb. 21, 1939, nonrecording gage at site 1,000 ft upstream at datum 2.00 ft higher. Feb. 22, 1939, to Jan. 25, 1940, nonrecording gage at present site and datum. Jan. 26, 1940, to Sept. 19, 1957, water-stage recorder at site 240 ft to right at present datum. Feb. 8, 1962, to Jan. 22, 1963, nonrecording gage at site 600 ft downstream at present datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair. Since about 1890, low flow regulated during irrigation season by diversions to Noyes Canal at Menard (discontinued station 08144000) 4.6 mi upstream and diversions by pumping at several locations upstream. No flow at times.


COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage-discharge relation at medium to high stages and computes and publishes streamflow record.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, 23.3 ft June 6, 1899, present site and datum, from information by local resident.

		DISCHAR	GE, CUBIC	FEET PER		WATER Y MEAN	YEAR OCTOBER VALUES	2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.2 5.1 5.5 5.7 5.9	43 156 17100 2970 400	56 55 58 60 57	48 49 50 50 49	47 47 47 46 45	44 27 44 46 44	26 26 25	23 23 22 25 31	31 25 17 16 15	7.2 14 18 13 11	3.2 3.2 3.6 3.9 4.1	20 18 18 17 57
6 7 8 9 10	5.6 6.0 7.2 9.2 9.7	700 320 152 109 86	56 54 55 54 53	49 49 48 48 50	45 45 46 45 43	34 24 24 27 26	24 22 23	32 40 111 52 33	14 15 15 15 16	10 8.9 7.6 7.1 7.1	4.8 4.4 4.7 4.9 5.1	68 26 18 2690 309
11 12 13 14 15	9.7 9.8 9.9 9.7	76 71 68 65 64	53 53 52 52 52	53 51 51 50 49	44 45 46 46 46	24 24 23 24 23	36 31 29	29 28 27 25 23	15 15 15 14 14	6.9 6.9 5.4 5.8 6.3	5.0 4.9 4.6 4.5 5.1	105 65 53 47 43
16 17 18 19 20	38 39 23 16 13	64 63 86 79 70	52 50 50 50 50	49 50 50 50 49	55 51 47 46 46	23 22 26 27 26	25 24 25	22 20 19 20 20	10 9.6 9.6 9.7 8.8	6.1 5.5 5.5 5.2 5.3	6.6 11 11 13 9.9	44 43 42 60 76
21 22 23 24 25	13 15 24 38 26	66 65 64 63 61	50 50 50 50 50	49 48 47 47 45	45 44 44 46 44	25 24 24 24 23	25 29 27	19 17 17 18 17	8.2 8.1 7.9 10	5.3 4.9 4.8 4.8 4.1	8.1 7.2 6.8 6.4 5.3	54 58 56 48 45
26 27 28 29 30 31	22 16 15 2410 532 72	61 60 59 57 56	55 57 52 50 50 49	45 47 50 58 54 48	42 43 44 	23 26 28 27 27 26	24 23 23 22	17 18 17 16 16	10 9.5 8.5 7.5 6.9	3.8 4.4 5.0 4.9 4.7 3.6	5.2 15 120 120 39 24	44 44 43 43 42
TOTAL MEAN MAX MIN AC-FT	3428.2 111 2410 5.1 6800	23354 778 17100 43 46320	1635 52.7 60 49 3240	1530 49.4 58 45 3030	1280 45.7 55 42 2540	859 27.7 46 22 1700	26.1 39 22	815 26.3 111 16 1620	387.3 12.9 31 6.9 768	213.1 6.87 18 3.6 423	474.5 15.3 120 3.2 941	4296 143 2690 17 8520
STATIS	TICS OF	MONTHLY MEA	N DATA FO	R WATER Y	EARS 191	6 - 200	1h, BY WATER	YEAR (WY	()			
MEAN MAX (WY) MIN (WY)	88.3 914 1942 .000 1957	45.5 778 2001 .000 1957	31.9 152 1985 .000 1955	32.0 80.4 1985 .035 1957	38.1 261 1958 .82 1955	32.9 251 1922 .99 1956	1206 1922 .89	76.3 1631 1957 1.22 1964	56.7 667 1958 .000 1953	101 5140 1938 .000 1952	42.2 869 1974 .000 1952	134 2870 1936 .000 1954

08144500 San Saba River at Menard, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YE	EAR WATER YEARS 1916 - 2001h
ANNUAL TOTAL	31449.60	39054.1	
ANNUAL MEAN	85.9	107	62.3
HIGHEST ANNUAL MEAN			485 1938
LOWEST ANNUAL MEAN			6.12 1952
HIGHEST DAILY MEAN	17100 Nov 3	17100 Nov	3 53300 Jul 23 1938
LOWEST DAILY MEAN	.56 Aug 13	3.2 Aug	1 .00 Jul 12 1918
ANNUAL SEVEN-DAY MINIMUM	.97 Aug 12	3.8 Jul	30 .00 Jul 19 1918
MAXIMUM PEAK FLOW		47000 Nov	3 c130000 Jul 23 1938
MAXIMUM PEAK STAGE		a18.00 Nov	3 a22.20 Jul 23 1938
ANNUAL RUNOFF (AC-FT)	62380	77460	45140
10 PERCENT EXCEEDS	56	61	59
50 PERCENT EXCEEDS	14	26	22
90 PERCENT EXCEEDS	2.9	5.6	2.2

See PERIOD OF RECORD paragraph. From rating curve extended above $56,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of $130,000~{\rm ft}^3/{\rm s}$. From floodmark.

08144600 San Saba River near Brady, TX

LOCATION.--Lat 31°00′14", long 99°16′07", McCulloch County, Hydrologic Unit 12090109, on right bank at downstream side of bridge on U.S. Highways 87 and 377, 0.4 mi upstream from Hudson Branch, and 8.4 mi southeast of Brady, and 72.9 mi upstream from mouth.

DRAINAGE AREA.--1,633 mi^2 , of which 6.60 mi^2 probably is noncontributing.

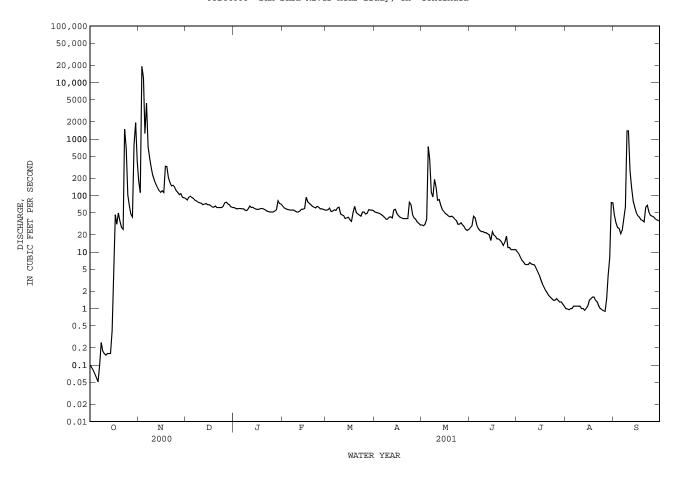
PERIOD OF RECORD. -- July 1979 to Sept. 1993, Oct. 1997 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,530.98 ft above sea level. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. No known regulation. Since about 1890, water diverted to Noyes Canal at Menard (discontinued station 08144000) during irrigation season.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record.

EXTREMES OUTSIDE PERIOD OF RECORD.--Highest stage since June 1899, 33.8 ft July 23, 1938, from floodmark on left bank 150 ft upstream from present site.


		DISCHAR	GE, CUBIC	FEET PER		WATER YE. MEAN VA	AR OCTOBER LUES	2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.10 .09 .08 .07	182 112 19300 12000 1250	88 83 92 97 92	61 59 58 59	65 60 58 57 56	55 56 60 52 53	51 50 49 48 46	30 29 31 38 736	27 29 43 40 30	10 9.2 8.0 7.1 6.6	1.0 .98 .95 1.0	45 33 27 26 21
6 7 8 9 10	.05 .10 .25 .18	4310 728 454 305 227	88 82 80 76 74	58 58 55 54 58		56 54 60 62 47	44 41 38 38 41	434 113 94 193 139	26 24 23 23 22	6.0 e6.0 e6.0 6.5 6.1	1.1 1.1 1.1 1.1	24 38 63 1390 1390
11 12 13 14 15	.15 .16 .16 .16 .40	185 159 138 123 114	76 74 73 69 70 72 69	65 61 62 59 57	51 53 57 57 59	45 44 39 40 41	42 40 55 57 48	82 85 67 56 52	22 21 20 16 23	6.0 5.9 5.2 4.5 3.9	1.0 1.0 .93 1.0	273 136 79 61 50
16 17 18 19 20	3.0 46 31 49 35	121 113 329 324 206	69 66 63 62 65	57 57 59 59 57	93 77 73 69 64	37 35 50 64 50	44 41 40 39 39	48 46 43 42 43	20 19 17 17 16	3.2 2.7 2.4 2.1 1.9	1.4 1.5 1.6 1.6	44 41 37 36 34
21 22 23 24 25	27 25 1500 698 103	168 148 152 140 121	61 61 61 61 64	55 53 52 51 51	62 60 64 62 58	47 45 43 51 51	39 39 76 69 46	41 38 36 31 31	15 13 15 19 12	1.7 1.6 1.5 1.4	1.3 1.1 1.0 .96	62 67 51 45 43
26 27 28 29 30 31	65 47 42 797 1940 404	113 103 108 93 91	74 76 71 68 63 61	51 53 56 81 72 70	58 57 55 	47 48 56 55 55	40 38 34 32 30	33 30 28 25 24 25	12 11 11 11 11	1.5 1.4 1.3 1.3 1.2	7.9	42 39 37 36 35
TOTAL MEAN MAX MIN AC-FT	5814.17 188 1940 .05 11530	41917 1397 19300 91 83140	2251 72.6 97 61 4460	1817 58.6 81 51 3600	1694 60.5 93 51 3360	1552 50.1 64 35 3080	1334 44.5 76 30 2650	2743 88.5 736 24 5440	608 20.3 43 11 1210		191.32 6.17 75 .89 379	4305 144 1390 21 8540
							, BY WATER					
MEAN MAX (WY) MIN (WY)	54.0 188 2001 3.35 2000	118 1397 2001 16.5 2000	83.0 516 1985 22.6 1986	65.0 282 1985 24.0 2000	71.6 400 1992 23.3 2000	61.1 160 1992 18.3 2000	49.3 144 1992 16.3 1986	61.1 167 1987 6.35 1984	90.9 511 1987 .75 1984	73.6 901 1990 .49 1998	50.2 543 1990 .13 2000	182 1631 1980 .074 1984
SUMMAI	RY STATIST	CICS	FOR 2	000 CALENI	DAR YEAR	F	OR 2001 WAT	TER YEAR		WATER Y	ZEARS 1979	- 2001h
ANNUAL HIGHES LOWES HIGHES LOWES ANNUAL MAXIM MAXIM ANNUAL 10 PEI 50 PEI	L TOTAL L MEAN T ANNUAL T ANNUAL T ANNUAL T DAILY ME L SEVEN-DA M PEAK FI M PEAK SI L RUNOFF (RCENT EXCE RCENT EXCE RCENT EXCE	MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN		54262.37 148 19300 .02 .04 107600 104 17	Nov 3 Sep 3 Aug 30		19300 .05 .08 43800 a20.10 127600 113 47 1.2	Nov 3 Oct 6 Oct 1 Nov 3 Nov 3		80.3 256 15.4 23900 .0 66000 25.5 58190 39 4.4	Sep	1990 2000 8 1980 6 1999 6 1999 8 1980 8 1980

e Estimated

h See PERIOD OF RECORD paragraph.

a From floodmark.

08144600 San Saba River near Brady, TX--Continued

08144900 Brady Creek Reservoir near Brady, TX

LOCATION.--Lat 31°08'17", long 99°23'07", McCulloch County, Hydrologic Unit 12090110, at mouth of Bear Creek on Brady Creek, 280 ft upstream from Farm Road 3022 over Brady Creek Dam, 3.0 mi west of Brady, and 34.1 mi upstream from mouth.

DRAINAGE AREA. -- 523 mi².

PERIOD OF RECORD.--May 1963 to Sept. 1983, Jan. 1999 to current year.
Water-quality records.--Chemical data: Sept. 1964 to Apr. 1983.

REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station.

REMARKS.--Records good except those for estimated daily contents, which are fair. The reservoir is formed by a compacted earthfill dam 8,400 ft long. The dam was completed and storage began in May 1963. The dam was built by the city of Brady in cooperation with the Natural Resources Conservation Service and the Farmers Home Administration for flood control, municipal, and industrial water supply. The spillway is a cut channel through natural ground 1,000 ft wide located at right end of dam. The service spillway is an uncontrolled concrete drop-inlet structure that discharges through a 7.0 by 7.0-foot concrete box conduit and is designed to discharge 4,000 ft³/s at a 19.4-ft head. The gated outlet is a 36-inch pipe that extends through the embankment and is equipped with three sluice gates for controlled releases downstream. Flow into reservoir is affected at times by discharge from the flood-detention pools of 35 floodwater-retarding structures with a combined detention capacity of 77,950 acre-ft. These structures were built during the period Feb. 1955 to July 1962 and control runoff from 263 mi² in the Brady Creek watershed above this station. Conservation pool storage is 30,430 acre-ft. Data regarding the dam are given in Brady Creek watershed above this station. Conservation pool storage is 30,430 acre-ft. Data regarding the dam are given in the following table:

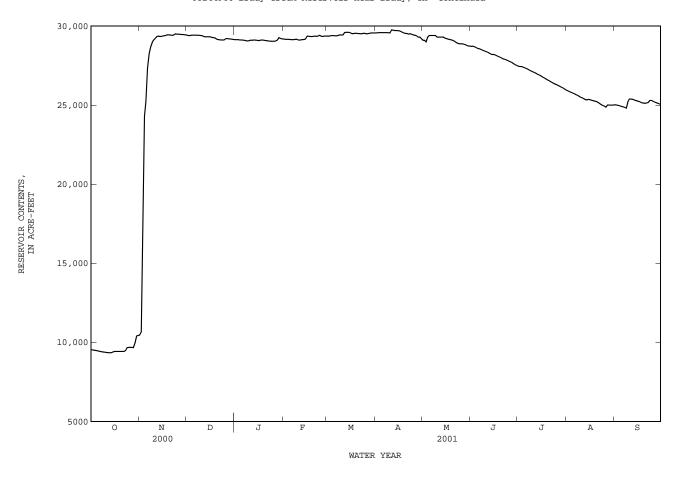
	Elevation
	(feet)
Top of dam	1,783.0
Crest of emergency spillway	1,762.4
Crest of service spillway	1,743.0
Lowest gated outlet (invert)	1,712.0

COOPERATION. -- The capacity table dated May 22, 1963, was prepared from curve obtained from the city of Brady. The capacity curve is based on U.S. Geological Survey topographic map but was not adjusted for earth material that might have been moved. Records of diversions may be obtained from the city of Brady.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 40,880 acre-ft, Sept. 24, 1971, elevation, 1,747.70 ft; minimum contents, 1,030 acre-ft, Sept. 18, 1964, elevation, 1,710.40 ft.

EXTREMES FOR CURRENT YEAR. -- Maximum contents, 29,860 acre-ft, Apr. 11, elevation, 1,742.71 ft; minimum contents, 9,350 acre-ft, Oct. 11, elevation, 1,728.31 ft.

> RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9540	10460	29430	29140	29180	29360	29560	29100	28710	27460	25930	25020
2	9520	10650	29400	29140	29160	29360	29570	e29100	28720	27440	25880	25000
3	9510	17920	29390	29140	29160	29380	29580	e29000	28680	27440	25830	24980
4	9490	24300	29420	29120	29160	29400	29580	e29300	28630	27400	25790	24940
5	9470	25250	29420	29120	29150	29390	29580	e29400	28580	27360	25750	24920
6	9450	27340	29420	29110	29140	29380	29580	e29400	28560	27320	25710	24890
7	9420	28230	29420	29100	29140	29380	29580	e29400	28520	27270	25650	24850
8	9410	28680	29420	29070	29150	29410	29580	e29400	28470	27200	25610	24810
9	9390	28970	29410	29060	29170	29440	29570	e29400	28430	27150	25540	25220
10	9380	29120	29400	29080	29130	29430	29560	e29300	28390	27110	25490	25380
11	9360	29230	29380	29110	29110	29440	29750	e29300	28360	27060	25440	25380
12	e9350	29340	29330	29100	29130	29590	29730	e29300	28310	27020	25390	25360
13	e9350	29360	29320	29120	29140	29600	29710	e29300	28250	26960	25330	25320
14	e9350	29340	29320	29110	29150	29600	29710	e29300	28200	26910	25330	25290
15	e9400	29340	29320	29100	29180	29590	29700	29240	28210	26870	25360	25260
16	9430	29380	29320	29080	29360	29540	29690	29210	28180	26800	25330	25230
17	9430	29380	29280	29100	29350	29510	29640	29180	28130	26740	25300	25180
18	9430	29420	29270	29120	29340	29530	29590	29150	28080	26690	25270	25140
19	9430	29440	29250	29110	29330	29540	29550	29130	28030	26630	25250	25130
20	9430	29440	29180	29090	29350	29530	29530	29100	27980	26570	25220	25110
21	9430	29420	29150	29080	29360	29520	29520	29050	27930	26520	25160	25140
22	9430	29410	29130	29060	29350	29510	29490	28980	27900	26460	25090	25160
23	9480	29440	29120	29050	29360	29510	29510	28920	27860	26410	25030	25290
24	9670	29500	29120	29040	29410	29540	29460	28880	27820	26350	24970	25290
25	9680	29480	29120	29040	29350	29530	29440	28870	27770	26310	24930	25240
26 27 28 29 30 31	9690 9680 9670 9960 10400 10440	29480 29470 29460 29460 29440	29200 29210 29190 29180 29170 29150	29040 29060 29110 29260 29210 29190	29340 29360 29370 	29500 29520 29540 29560 29560 29560	29410 29380 e29300 e29300 e29200	28870 28850 28810 28770 28730 28730	27730 27680 27610 27550 27500	26250 26210 26150 26100 26050 25980	24870 25010 25000 25000 25000 25010	25190 25150 25120 25080 25030
MEAN MAX MIN	9550 10440 9350	27300 29500 10460	29290 29430 29120	29110 29260 29040 1742.37	29250 29410 29110	29490 29600 29360 1742.56	29540 29750 29200	29110 29400 28730	28160 28720 27500	26780 27460 25980	25340 25930 24870 1740.15	25140 25380 24810 1740.16
(@)	+900	+19000	-290	+40	+180	+190	-360	-470	-1230	-1520	-970	+20

CAL YR 2000 MAX 29500 MIN 7470 (@) +20140 WTR YR 2001 MAX 29750 MIN 9350 (@) +15490

e Estimated

⁽⁺⁾ Elevation, in feet, at end of month.
(@) Change in contents, in acre-feet.

08144900 Brady Creek Reservoir near Brady, TX--Continued

08145000 Brady Creek at Brady, TX

LOCATION.--Lat 31°08'17", long 99°20'05", McCulloch County, Hydrologic Unit 12090110, on left bank 60 ft upstream from bridge on U.S. Highway 377 on North Bridge Street in Brady, 0.4 mi downstream from Live Oak Creek, and 30.4 mi upstream from mouth.

DRAINAGE AREA. -- 588 mi².

PERIOD OF RECORD.--May 1939 to Sept. 1986, Apr. 2001 to current year.

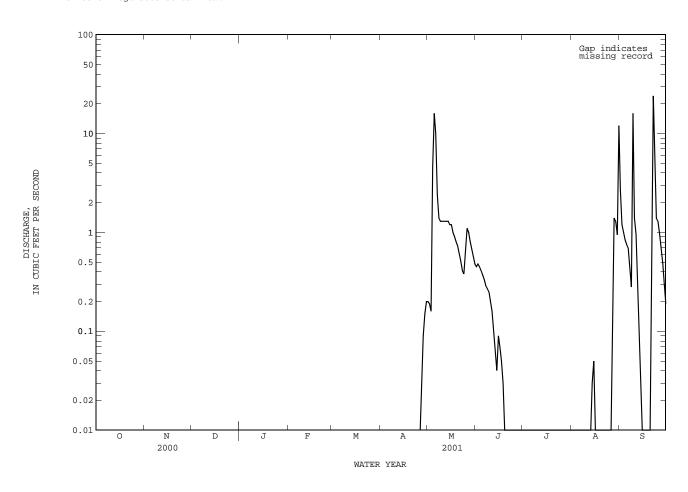
REVISED RECORDS.--WSP 1512: 1941(M), 1951(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,646.50 ft above sea level. Prior to July 9, 1940, nonrecording gage at site 3,600 ft upstream at datum 8.24 ft higher. Satellite telemeter at station.

REMARKS.--Records poor. The city of Brady returns sewage effluent downstream from the gage. Since water year 1962 at least 10% of contributing drainage area has been regulated. Flow is also affected at times by discharge from the flood-detention pools of several flood-retarding structures above this station. No flow at times most years.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--23 years (water years 1940-62) prior to completion of Brady Creek Reservoir, $25.2~{\rm ft}^3/{\rm s}$ ($18,260,000~{\rm acre-ft/yr}$).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1939-62).--Maximum discharge, 39,100 ft 3 /s Sept. 10, 1952 (gage height, 24.80 ft); no flow at times most years.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1882, 29.1 ft July 23, 1938, present site and datum (discharge at site 5.0 mi downstream, 86,000 ft 3 /s), by slope-area measurement. Flood of Oct. 6, 1930 (second highest since 1882), reached a stage of 25.9 ft (discharge, 50,300 ft 3 /s, present site and datum), from information by local residents.

DAY			DISCHAR	GE, CUBIC	C FEET PER		WATER YEA MEAN VAI		R 2000 TO	SEPTEMBE	R 2001		
2	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2	1								.20	.45	.00	.00	2.7
##													
The second color of the	3								.16	.45	.00	.00	1.0
The second color of the	4								4.6	.41	.00	.00	.84
7 2.4 .29 .00 .00 .00 .44 8 1.4 .27 .00 .00 .00 .28 9 1.3 .25 .00 .00 .00 .16 10 1.3 .20 .00 .00 .00 .14 11 1.3 .20 .00 .00 .00 .00 1.4 11 1.3 .20 .00 .00 .00 .00 .96 12 1.3 .11 .00 .00 .00 .39 13 1.3 .07 .00 .00 .00 .39 13 1.3 .07 .00 .00 .00 .00 .39 13 1.3 .00 .00 .00 .00 .00 .39 15 1.3 .00 .00 .00 .00 .00 .00 .15 .14 14 1.3 .00 .00 .00 .00 .00 .00 .00 .15 .10 .00 .00 .00 .00 .00 .00 .00 .15 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	5								16	.37	.00	.00	.75
7 2.4 .29 .00 .00 .00 .44 8 1.4 .27 .00 .00 .00 .28 9 1.3 .25 .00 .00 .00 .16 10 1.3 .20 .00 .00 .00 .14 11 1.3 .20 .00 .00 .00 .00 1.4 11 1.3 .20 .00 .00 .00 .00 .96 12 1.3 .11 .00 .00 .00 .39 13 1.3 .07 .00 .00 .00 .39 13 1.3 .07 .00 .00 .00 .00 .39 13 1.3 .00 .00 .00 .00 .00 .39 15 1.3 .00 .00 .00 .00 .00 .00 .15 .14 14 1.3 .00 .00 .00 .00 .00 .00 .00 .15 .10 .00 .00 .00 .00 .00 .00 .00 .15 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	6								10	.33	. 00	.00	. 70
9 1.3 .25 .00 .00 16 10 1.3 .20 .00 .00 1.4 11 1.3 .20 .00 .00 .00 .00 .00 12 1.3 .11 .00 .00 .00 .39 13 1.3 .11 .00 .00 .00 .39 13 1.3 .07 .00 .00 .00 .11 15 1.2 .07 .00 .01 .03 16 1.2 .09 .00 .05 .00 16 1.2 .07 .00 .01 .00 17 1.0 .05 .00 .00 .00 18 1.0 .05 .00 .00 .00 19 1.0 .05 .00 .00 .00 20 1.80 .01 .00 .00 .00 20 1.73 .00 .00 .00 .00 21 1.51 .00 .00 .00 .00 .00 22 1.51 .00 .00 .00 .00 .00 22 1.51 .00 .00 .00 .00 .00 22 1.51 .00 .00 .00 .00 .00 24 23 1.51 .00 .00 .00 .00 .00 22 1.38 .00 .00 .00 .00 .14 25 1.51 .00 .00 .00 .00 .13 26 1.51 .00 .00 .00 .00 .00 .13 26 1.51 .00 .00 .00 .00 .00 .14 27 1.56 .00 .00 .00 .00 .14 28 1.56 .00 .00 .00 .00 .14 29 1.56 .00 .00 .00 .00 .14 29 1.50 .58 .00 .00 .00 .14 MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1975 1986 1971 1971 1971 MINN 1000 .000 .000 .000 .000 .000 .000 .0	7												.44
10 1.3 .20 .00 .00 .00 1.4 11 1.3 .16 .00 .00 .96 12 1.3 .11 .00 .00 .99 13 1.3 .11 .00 .00 .00 .31 14 1.3 .07 .00 .00 .01 15 1.3 .04 .00 .03 .03 15 1.2 .09 .00 .05 .00 16 1.2 .07 .00 .01 .00 17 1.2 .07 .00 .01 .00 18 1.0 .05 .00 .00 .00 19 1.0 .05 .00 .00 .00 19 80 .01 .00 .00 .00 .00 20 80 .01 .00 .00 .00 .00 21 80 .01 .00 .00 .00 .00 21 551 .00 .00 .00 .00 .00 22 551 .00 .00 .00 .00 .00 2351 .00 .00 .00 .00 .00 2451 .00 .00 .00 .00 .00 .00 2251 .00 .00 .00 .00 .00 .00 2351 .00 .00 .00 .00 .00 .00 2451 .00 .00 .00 .00 .00 .00 2551 .00 .00 .00 .00 .00 .00 .00 2651 .00 .00 .00 .00 .00 .00 .00 2751 .00 .00 .00 .00 .00 .00 .00 2851 .00 .00 .00 .00 .00 .00 .00 2951 .00 .00 .00 .00 .00 .00 .00 2051 .00 .00 .00 .00 .00 .00 .00 2155 .00 .00 .00 .00 .00 .00 .00 2455 .00 .00 .00 .00 .00 .00 .00 .00 2500 .11 .00 .00 .00 .00 .00 .00 .00 2655 .75 4.13 .00 .00 .00 .00 .00 2703 1.0 .00 .00 .00 .00 .00 2803 1.0 .00 .00 .00 .00 .00 2918 .00 .00 .00 .00 .00 .00 2003 1.0 .00 .00 .00 .00 .00 2103 1.0 .00 .00 .00 .00 .00 2203 1.0 .00 .00 .00 .00 .00 23													
11 1.3													
Total Tota	10								1.3	.20	.00	.00	1.4
13													
14 1.3 .04 .00 .03 .03 15 1.2 .09 .00 .05 .00 16 1.2 .07 .00 .01 .00 17 1.0 .05 .00 .00 .00 18 .90 .03 .00 .00 .00 20 .90 .03 .00 .0													
15 1.2 .09 .00 .05 .00 16 1.2 .07 .00 .01 .00 17 1.0 .05 .00 .00 .00 18 1.0 .05 .00 .00 .00 1990 .03 .00 .00 .00 2080 .01 .00 .00 .00 e.00 2151 .00 .00 .00 .00 e.00 2251 .00 .00 .00 .00 24 2351 .00 .00 .00 .00 .45 2438 .00 .01 .00 .00 .00 .00 .45 2551 .00 .00 .00 .00 .00 .13 2651 .00 .00 .00 .00 .00 .13 2651 .00 .00 .00 .00 .00 .13 2651 .00 .00 .00 .00 .00 .13 2751 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0													
16													
17	15								1.2	.09	.00	.05	.00
18 90 .03 .00 .00 .00 19 80 .01 .00 .00 .00 e.00 21 .73 .00	16								1.2	.07	.00	.01	.00
19	17								1.0	.05	.00	.00	.00
2073 .00 .00 .00 .00 e.00 2161 .00 .00 .00 .00 .00 .80 2251 .00 .00 .00 .00 .00 .24 2341 .00 .00 .00 .00 .00 .45 2438 .00 .00 .00 .00 .14 2561 .00 .00 .00 .00 .00 .13 2661 .00 .00 .00 .00 .00 .13 2600 1.1 .00 .00 .00 .00 .00 .97 2703 1.0 .00 .00 .00 .04 .68 2809 .80 .00 .00 .00 .14 .49 2999 .80 .00 .00 .00 1.3 .31 3015 .69 .00 .00 .00 1.3 .31 3020 .58 .00 .00 .00 .95 .19 3120 .58 .00 .00 .00 .95 .19 3115 .69 .00 .00 .00 .95 .19 TOTAL15 .69 .00 .00 .00 .95 .19 TOTAL15 .69 .00 .00 .00 .95 .19 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1975 1975 1986 1971 1971 1971 MINN .000 .000 .000 .000 .000 .000 .000 .	18								.90	.03	.00	.00	.00
21	19								.80	.01	.00	.00	e.00
22	20								.73	.00	.00	.00	e.00
2341 .00 .00 .00 .00 4.5 2438 .00 .00 .00 .00 1.4 2561 .00 .00 .00 .00 1.3 2600 1.1 .00 .00 .00 .00 .97 2703 1.0 .00 .00 .00 .04 .68 2809 .80 .00 .00 .00 1.4 .49 2915 .69 .00 .00 .00 1.3 .31 3015 .69 .00 .00 .00 1.3 .31 3120 .58 .00 .00 .00 .95 .19 314800 12 TOTAL4800 12 TOTAL 1.80 .14 .000 .51 2.05 MAX 1.6 .48 .00 12 24 MIN 1.6 .48 .00 .12 24 MIN 1.11 8.2 .00 .31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000	21								.61	.00	.00	.00	
2438 .00 .00 .00 .00 1.4 25561 .00 .00 .00 .00 1.3 3 2600 1.1 .00 .00 .00 .00 .97 2703 1.0 .00 .00 .00 .04 .68 2809 .80 .00 .00 .00 1.4 .49 2915 .69 .00 .00 .00 1.3 .31 3020 .58 .00 .00 .00 .95 .19 314800 12 TOTAL4800 12 TOTAL 1.80 .14 .000 .51 MEAN 1.80 .14 .000 .51 MEAN 1.80 .14 .000 .51 MEAN 1.6 .00 .00 .00 .00 .00 AC-FT 1.11 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 1971 MIN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.										.00	.00	.00	
2561 .00 .00 .00 .00 .00 1.3 2600 1.1 .00 .00 .00 .00 .97 2703 1.0 .00 .00 .00 .04 .68 2809 .80 .00 .00 .00 1.4 .49 2915 .69 .00 .00 .13 .31 3020 .58 .00 .00 .00 1.3 .31 3120 .58 .00 .00 .00 .95 .19 314800 12 TOTAL4800 12 TOTAL 1.80 .14 .000 .51 2.05 MAX 1.80 .14 .000 .51 2.05 MAX 1.6 .48 .00 12 24 MIN 1.6 .00 .00 .00 .00 AC-FT 111 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1988 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000	23									.00	.00	.00	4.5
2600 1.1 .00 .00 .00 .04 .68 2809 .80 .00 .00 .00 1.4 .49 2915 .69 .00 .00 .00 1.3 .31 3020 .58 .00 .00 .00 .95 .19 314800 12 TOTAL 55.75 4.13 0.00 15.78 61.44 MEAN 55.75 4.13 0.00 15.78 61.44 MEAN 1.80 .14 .000 .51 2.05 MAX 1.6 .48 .00 12 24 MIN 1.6 .48 .00 .12 24 MIN 1.11 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .005 .005													
27	25								.61	.00	.00	.00	1.3
28	26							.00	1.1	.00	.00	.00	.97
29 1.5	27							.03	1.0	.00	.00	.04	.68
3020 .58 .00 .00 .95 .19 314800 12 TOTAL4800 12 TOTAL 1.80 .14 .000 .51 2.05 MAX 1.80 .14 .000 .51 2.05 MAX 1.6 .48 .00 12 24 MIN 1.6 .48 .00 12 24 MIN 1.16 .00 .00 .00 .00 AC-FT 1.11 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .000 .000 .0	28							.09	.80	.00	.00	1.4	.49
314800 12 TOTAL 55.75 4.13 0.00 15.78 61.44 MEAN 1.80 .14 .000 .51 2.05 MAX 16 .48 .00 12 24 MIN 16 .00 .00 .00 .00 AC-FT 111 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1988 1975 1977 1975 1975 1986 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000	29							.15		.00	.00	1.3	
TOTAL 55.75 4.13 0.00 15.78 61.44 MEAN 1.80 .14 .000 .51 2.05 MAX 1.80 .14 .000 .51 2.05 MAX 1.6 .48 .00 12 24 MIN 1.6 .00 .00 .00 .00 AC-FT 1.11 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .005 .005	30							.20	.58	.00	.00	.95	
MEAN 1.80 .14 .000 .51 2.05 MAX 1.6 .48 .00 12 24 MIN 1.6 .00 .00 .00 .00 .00 AC-FT 1.16 .00 .00 .00 .00 .00 AC-FT 1.11 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000 .000	31								.48		.00	12	
MEAN 1.80 1.4 .000 .51 2.05 MAX 16 .48 .00 12 24 MIN 16 .00 .00 .00 10 AC-FT 111 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000	TOTAL								55.75	4.13	0.00	15.78	61.44
MIN 1.16 .00 .00 .00 .00 .00 AC-FT 111 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000	MEAN								1.80	.14	.000	.51	2.05
AC-FT 111 8.2 .00 31 122 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000	MAX								16	.48	.00	12	24
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2001hz, BY WATER YEAR (WY) MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN 0.000 0.000 0.000 0.000 0.007 0.000 0.035 0.001 0.000 0.000 0.000	MIN								.16	.00	.00	.00	.00
MEAN 13.9 4.13 3.53 4.24 3.13 3.86 5.82 8.21 6.35 16.8 13.6 19.7 MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1975 1975 1986 1971 1971 1971 MIN 0.00 0.000 0.000 0.000 0.007 0.000 0.000 0.35 0.001 0.000 0.000 0.000	AC-FT								111	8.2	.00	31	122
MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000	STATIST	TICS OF MO	ONTHLY MEA	N DATA FO	OR WATER Y	YEARS 1963	3 - 2001hz	z, BY WAT	ER YEAR (WY)			
MAX 134 60.8 32.8 50.4 43.0 26.1 82.2 95.7 90.6 388 300 364 (WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 1971 MIN .000 .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000	MEAN	13.9	4.13	3.53	4.24	3.13	3.86	5.82	8.21	6.35	16.8	13.6	19.7
(WY) 1974 1975 1985 1968 1975 1977 1975 1975 1986 1971 1971 MIN .000 .000 .000 .007 .000 .000 .035 .001 .000 .000													
MIN .000 .000 .000 .000 .007 .000 .000 .035 .001 .000 .000 .000													

08145000 Brady Creek at Brady, TX--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR	WATER YEARS 1963 - 2001hz
ANNUAL MEAN HIGHEST ANNUAL MEAN		8.85 88.4 1971
LOWEST ANNUAL MEAN		.034 1963
HIGHEST DAILY MEAN	24 Sep 22	4580 Jul 26 1971
LOWEST DAILY MEAN	.00 Apr 26	.00 Oct 1 1962
ANNUAL SEVEN-DAY MINIMUM	.00 Jun 20	.00 Oct 1 1962
MAXIMUM PEAK FLOW	198 Sep 22	24700 Jul 26 1971
MAXIMUM PEAK STAGE	7.59 Sep 22	19.80 Jul 26 1971
ANNUAL RUNOFF (AC-FT)		6410
10 PERCENT EXCEEDS	1.3	5.4
50 PERCENT EXCEEDS	.04	.09
90 PERCENT EXCEEDS	.00	.00

- Estimated See PERIOD OF RECORD paragraph. Period of regulated streamflow.

08146000 San Saba River at San Saba, TX

LOCATION.--Lat 31°12′47", long 98°43′09", San Saba County, Hydrologic Unit 12090109, on left bank near left downstream end of bridge on State Highway 16, 1.2 mi north of San Saba, 2.7 mi upstream from Mill Creek, 4.8 mi downstream from China Creek, and 16.8 mi upstream from mouth.

DRAINAGE AREA. -- 3,046 mi², of which 6.6 mi² probably is noncontributing.

PERIOD OF RECORD.--Dec. 1904 to Dec. 1906 (gage heights only), Sept. 1915 to Sept. 1993, and Oct. 1997 to current year. Published as "near San Saba" Dec. 1904 to Dec. 1906 and Sept. 1915 to Aug. 1930.

Water-quality records.--Chemical data: Sept. 1947 to Feb. 1949, Nov. 1958 to Sept. 1969. Water temperature: Sept. 1962 to Sept. 1969.

REVISED RECORDS.--WSP 458: 1915-16. WSP 1282: WDR TX-81-3: Drainage area. WSP 1512: 1918-19(M), 1922, 1931(M), 1935. WSP 1922: 1917. WDR TX-00-4: 1992.

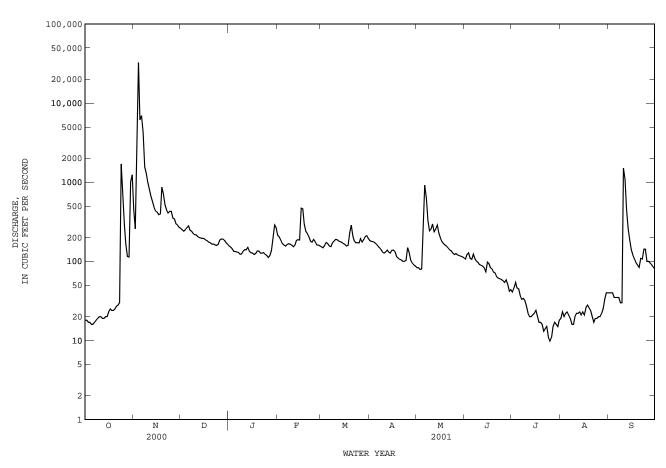
GAGE.--Water-stage recorder. Datum of gage is 1,162.16 ft above sea level. See WSP 1922 for brief history of changes prior to July 8, 1953. From Oct. 1956 to Sept. 1993, at site 250 ft to right and supplementary water-stage recorder 2,780 ft to right of main channel gage used for floodflows at same datum. Radio telemeter at station. Satellite telemeter at station.

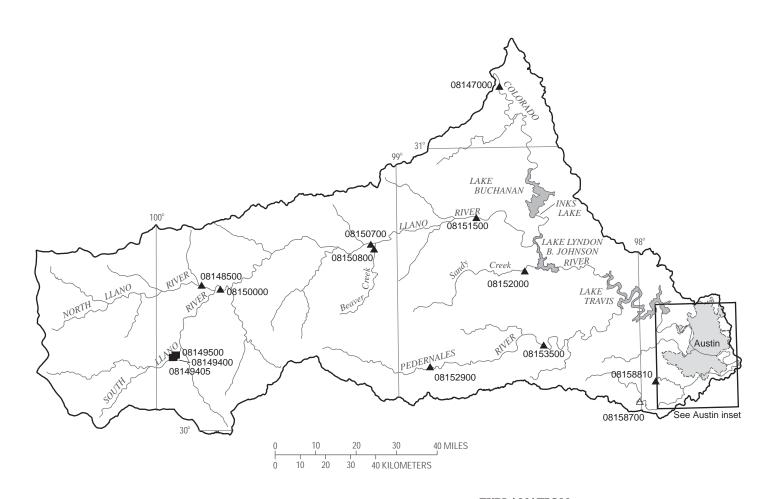
REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since water year 1963, at least 10% of contributing drainage area has been regulated. Many diversions above station for irrigation and municipal use affect low flows. No flow at times.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--47 years (water years 1916-1962) prior to completion of Brady Creek Reservoir, 248 ft³/s (179,900 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1916-1962).--Maximum discharge, 203,000 ft 3 /s July 23, 1938 (gage height, 39.30 ft, from floodmarks, at site then in use, adjusted to present datum), from rating curve extended above 40,600 ft 3 /s on basis of slope-area measurement of 203,000 ft 3 /s; no flow at times in 1918, 1930, 1954-56.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 6, 1899, reached a stage of 36.7 ft, present site and datum, from information by local residents.


		DISCH	IARGE, CUI	BIC FEET P		, WATER Y LY MEAN V		ER 2000 TO) SEPTEMBE	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18	462	261	156	213	152	182	83	107	41	19	e40
2	18	258	250	151	204	148	179	83	122	46	23	e40
3	17	4520	240	144	185	158	177	79	128	54	20	e40
4	17	32700	252	134	169	173	173	80	109	46	22	e35
5	16	6150	266	133	161	168	166	275	106	45	23	e35
6	16	6960	280	131	156	156	157	914	123	37	21	e35
7	17	4280	247	129	163	153	149	640	109	33	19	e35
8	18	1560	240	123	167	171	141	330	101	34	16	e30
9	19	1290	225	124	165	180	132	243	97	32	16	e30
10	20	1000	217	135	160	e190	127	257	91	27	20	1510
11	20	811	216	141	153	188	131	297	89	22	22	1090
12	19	660	204	140	161	180	139	236	87	20	22	434
13 14	19 20	568 485	200 196	150 134	183 188	177 174	131 127	255 287	83 74	20 21	23 21	254 183
15	20	434	196	128	186	168	138	228	98	22	23	141
16	23	418	194	127	471	163	139	198	94	24	21	120
17	25	389	186	127	459	156	131	178	83	20	26	108
18	24	397	182	125	295	159	115	167	80	17	28	96
19	24	868	174	135	239	229	110	160	73	17	26	90
20	25	705	171	135	224	287	106	155	71	16	24	84
21	27	517	165	127	203	208	104	147	64	13	20	109
22	28	444	166	127	180	180	100	139	61	14	17	107
23	30	409	161	129	174	172	100	135	60	15	19	143
24	1700	429	159	122	189	172	102	127	59	11	19	143
25	713	429	163	119	177	171	149	122	57	9.8	20	100
26	289	353	185	112	161	194	129	125	54	11	20	100
27	164	342	191	118	161	175	105	120	58	15	22	95
28	115	299	191	137	157	188	95	118	51	17	25	e90
29	113	288	184	194		206	90	116	42	16	33	e85
30	1010	269	173	289		211	87	114	44	15	e40	e80
31	1240		165	269		194		111		18	e40	
TOTAL	5824	68694	6300	4440	5704	5601	3911	6519	2475	748.8	710	5482
MEAN	188	2290	203	143	204	181	130	210	82.5	24.2	22.9	183
MAX	1700	32700	280	289	471	287	182	914	128	54	40	1510
MIN	16	258	159	112	153	148	87	79	42	9.8	16	30
AC-FT	11550	136300	12500	8810	11310	11110	7760	12930	4910	1490	1410	10870
STATIST	rics of	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	63 - 2001	hz, BY WAT	TER YEAR	(WY)			
MEAN	214	184	154	159	179	165	156	201	164	144	164	305
MAX	1716	2290	935	896	1542	635	777	1195	695	1201	1768	2144
(WY)	1974	2001	1992	1968	1992	1992	1977	1965	1992	1971	1971	1974
MIN	17.6	32.7	47.8	46.1	44.9	34.7	23.4	10.3	5.31	.32	9.43	11.1
(WY)	1964	2000	1964	1964	1984	1986	1986	1984	1984	1964	1980	1984

08146000 San Saba River at San Saba, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 19	963 - 2001hz
ANNUAL TOTAL ANNUAL MEAN	93755.8 256	116408.8 319	182	
HIGHEST ANNUAL MEAN	230	319	493 29.2	1974 1984
HIGHEST DAILY MEAN	32700 Nov 4		32700 No	ov 4 2000
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	6.2 Aug 4 7.9 Jul 31	13 Jul 21	.00 Ji	ul 17 1963 ul 25 1963
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE		c46200 Nov 4 29.72 Nov 4	29.94 Se	ov 4 2000 ep 18 1990
ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS	186000 303	230900 346	132100 272	
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	37 13	131 20	89 26	

- Estimated See PERIOD OF RECORD paragraph. Period of regulated streamflow. From rating curve extended above $40,600~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of 203,000 ${\rm ft}^3/{\rm s}$. e h z c

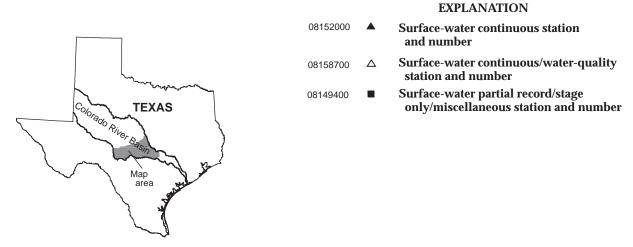


Figure 6.--Map showing location of gaging stations in the fourth section of the Colorado River Basin

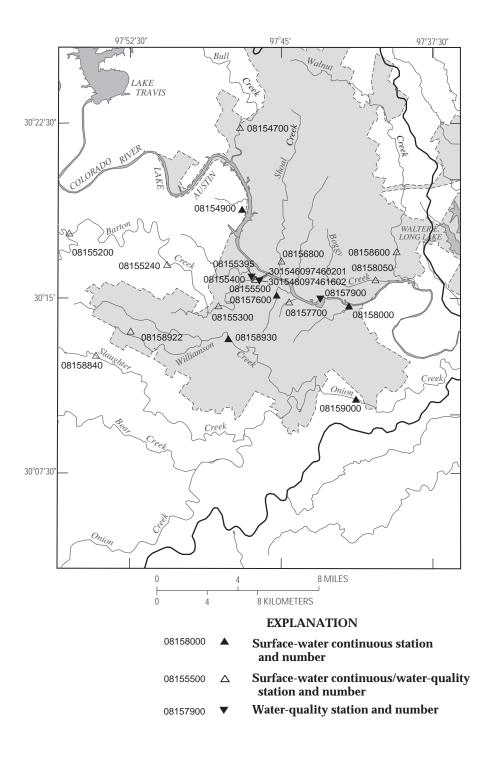


Figure 7.--Map showing location of gaging stations in the Austin inset of the Colorado River Basin

08147000	Colorado River near San Saba, TX	164
08148500	North Llano River near Junction, TX	166
08149400	South Llano River near Telegraph, TX	321
08149405	Tanner Springs near Telegraph, TX	323
08149500	Seven Hundred Springs near Telegraph, TX	321
08150000	Llano River near Junction, TX	168
08150700	Llano River near Mason, TX	170
08150800	Beaver Creek near Mason, TX	172
08151500	Llano River at Llano, TX	174
08152000	Sandy Creek near Kingsland, TX	176
08152900	Pedernales River near Fredericksburg, TX	178
08153500	Pedernales River near Johnson City, TX	180
08154700	Bull Creek at Loop 360 near Austin, TX	182
08154900	Lake Austin at Austin, TX	186
08155200	Barton Creek at State Highway 71 near Oak Hill, TX	192
08155240	Barton Creek at Lost Creek Boulevard, Austin, TX	196
08155300	Barton Creek at Loop 360, Austin, TX	200
08155395	Upper Barton Springs at Austin, TX	318
08155400	Barton Creek above Barton Springs, Austin, TX	318
08155500	Barton Springs at Austin, TX	318
08156800	Shoal Creek at 12th Street, Austin, TX	214
08157600	East Bouldin Creek at South 1st Street, Austin, TX	218
08157700	Blunn Creek at Little Stacy Park, Austin, TX	220
08157900	Town Lake at Austin, TX	224
08158000	Colorado River at Austin, TX	232
08158050	Boggy Creek at U.S. Highway 183, Austin, TX	234
08158600	Walnut Creek at Webberville Road, Austin, TX	238
08158700	Onion Creek near Driftwood, TX	242
08158810	Bear Creek below Farm Road 1826 near Driftwood, TX	246
08158840	Slaughter Creek at Farm Road 1826 near Austin, TX	248
08158922	Williamson Creek at Brushy Country Blvd., Oak Hill, TX	250
08158930	Williamson Creek at Manchaca Road, Austin, TX	254
08159000	Onion Creek at U.S. Highway 183, Austin, TX	256
301546097460201	Old Mill Spring at Austin, TX	318
301548097461602	Eliza Spring at Austin, TX	318

THIS PAGE IS INTENTIONALLY BLANK.

08147000 Colorado River near San Saba, TX

LOCATION.--Lat 31°13′04", long 98°33′51", San Saba-Lampasas County line, Hydrologic Unit 12090201, on left bank at downstream side of bridge on U.S. Highway 190, 5.2 mi downstream from San Saba River, 9.2 mi east of San Saba, and at mile 474.3.

DRAINAGE AREA. -- 31,217 mi², approximately, of which 11,398 mi² probably is noncontributing.

PERIOD OF RECORD.--Oct. 1915 to Oct. 1922, published as "near Chadwick", Oct. 1923 to Aug. 1930, published as "near Tow", Sept. 1930 to current year. Monthly discharge only for some periods, published in WSP 1312.

Water-quality records.--Chemical data: Aug. 1941, Sept. 1947 to Sept. 1967, Jan. 1968 to Aug. 1993. Biochemical data: Jan. 1968 to Aug. 1993. Pesticide data: Jan. 1968 to Apr. 1982. Sediment data: May 1951 to Oct. 1962 and Oct. 1977 to Aug. 1993. Suspended sediment discharge: Dec. 1950 to Sept. 1962. Specific conductance: Sept. 1947 to Sept. 1992. Water temperature: Sept.

REVISED RECORDS.--WSP 458: 1916. WSP 858: 1900(M), 1936(M). WDR TX-81-3: Drainage area. WSP 1512: 1916-18(M), 1936. WSP 1732: 1925-26(M)

GAGE.--Water-stage recorder. Datum of gage is 1,096.22 ft above sea level. See WSP 1922 for brief history of changes prior to May 23, 1940. From May 1940 to Nov. 1996, at site 150 ft right at same datum. Radio telemeter at station. Satellite telemeter at station.

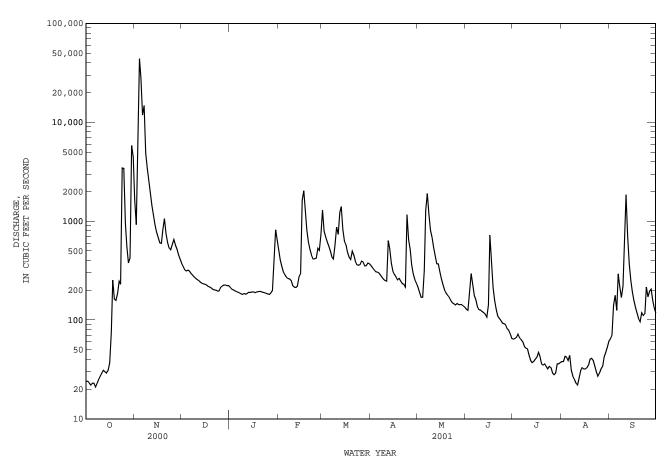
REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since water year 1931 at least 10% of contributing drainage area has been regulated. Flow is also affected at times by discharge from the flood-detention pools of 187 floodwater-retarding structures. These flood-detention structures control runoff from an 944 mi² area above this station. There are many diversions above station for irrigation, municipal use, and for oil field operations. No flow at times.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation of low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record.

AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--12 years (water years 1917-19, 1921-22, 1924-30) prior to completion of Lake Nasworthy, 1,440 ft³/s (1,040,000 acre-ft/yr).

EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1917-19, 1921-22, 1924-30).--Maximum discharge, 130,000 ft³/s Apr. 26, 1922 (gage height about 54.0 ft, present site), from information by local residents; minimum observed discharge, 1.5 ft³/s Aug. 22, 23, 1918.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1878 to July 22, 1938, 58.4 ft Sept. 25, 1900 (discharge, 184,000 ft³/s, present site), from floodmarks at former site.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAILY MEAN VALUES DAY OCT NOV DEC JAN MAR APR JUN JUL AUG SEP MAY 2.7 ___ ---e135 ---___ ___ TOTAL. MEAN 44.5 35.6 MTN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 2001z, BY WATER YEAR (WY) MEAN MAX (WY) 2.06 MIN 29.5 39.3 31.8 41.5 40.5 24.4 33.6 11.2 4.16 2.68 11.9 (WY)

08147000 Colorado River near San Saba, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1931 - 2001z
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	206090.0 563	236842 649	1023 3880 1938 84.1 1984
HIGHEST DAILY MEAN	43900 Nov 4 3.4 Aug 1	43900 Nov 4 21 Oct 7	191000 Jul 23 1938 .00 Aug 27 1954
ANNUAL SEVEN-DAY MINIMUM	5.4 Aug 1 5.4 Jul 31	23 Oct 2	.00 Aug 3 1963
MAXIMUM PEAK FLOW		58300 Nov 4	c224000 Jul 23 1938
MAXIMUM PEAK STAGE		a35.06 Nov 4	aa62.24 Jul 23 1938
ANNUAL RUNOFF (AC-FT)	408800	469800	741200
10 PERCENT EXCEEDS	681	806	1590
50 PERCENT EXCEEDS	72	214	221
90 PERCENT EXCEEDS	8.0	34	52

- e Estimated z Period of regulated streamflow. c From rating curve extended above 215,000 ft³/s. a From floodmark. aa From floodmarks at site then in use adjusted to present datum.

08148500 North Llano River near Junction, TX

LOCATION.--Lat 30°31′02", long 99°48′21", Kimble County, Hydrologic Unit 12090202, on left bank 50 ft south of Ranch Road 1674, 600 ft west of county road KC 171, 1.7 mi northwest of Junction, and 3.7 mi upstream from confluence with South Llano River.

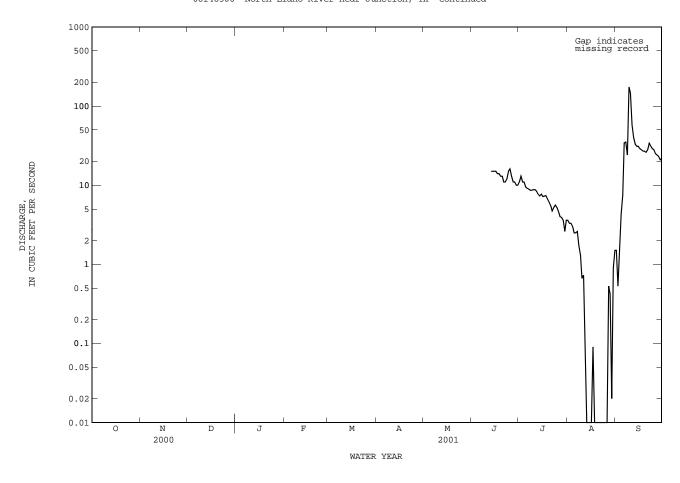
DRATNAGE AREA. -- 914 mi².

PERIOD OF RECORD.--Sept. 1915 to Sept. 1977, June 2001 to current year.

REVISED RECORDS.--WSP 568: 1920, 1922. WSP 1512: 1915, 1918-19, 1923(M), 1924-26, 1928, 1930(M), 1931-33, 1934(M), 1935. WDR TX-76-3: 1942(M), 1948(M), 1957(M), 1958(P), 1959(M), 1961(M), 1964(M), 1970-71(M), 1974(P).

GAGE.--Water-stage recorder. Datum of gage is 1,709.92 ft above sea level. Prior to Aug. 1925, nonrecording gage at site 1,450 ft upstream at datum 10 ft lower. Aug. 1925 to Sept. 1936, water-stage recorder 1,450 ft upstream at datum 10 ft lower. Sept. 1936 to June 1940, nonrecording gages at various sites at datum 10 ft lower. June 1940 to Sept. 1977, water-stage recorder at site 2,000 ft upstream at datum 10 ft lower. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair. No known regulation. Low flow affected by diversions from irrigation. No flow at times most years.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875, that of Sept. 16, 1936; maximum stage during period 1875 to Sept. 15, 1936, 27 ft in 1889, from information by local resident.

		DISCHARGE	E, CUBIC	C FEET PER		WATER YEA Y MEAN VAI		2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										11	3.6	1.5
2										13	3.3	.53
3										11	3.3	1.3
4										11	3.0	4.3 7.5
5										9.5	2.5	7.5
6 7										9.1 8.9	2.5	34 35
8										8.6	1.7	24
9										8.6	1.3	174
10										8.8	.66	146
11										8.8	.73	58
12										8.4	.05	40
13									15	7.7	.00	33
14									15	7.3	.00	31
15									15	7.7	.00	31
16									15	7.2	.00	29
17									14	7.3	.09	28
18									14	7.4	.01	27
19									13	6.7	.00	27
20									13	6.1	.00	26
21									11	5.5	.00	28
22									11 11	4.7	.00	34
23									12	5.2	.00	31
24									15	5.6	.00	29
25									16	5.2	.00	28
26									13	4.6	.00	25
27									11	4.0	.53	24
28									11	3.9	.42	23
29									10	3.6	.02	21
30									10	2.6	.90	22
31										3.6	1.5	
TOTAL										222.6	28.71	1023.13
MEAN										7.18	.93	34.1
MAX										13	3.6	174
MIN										2.6	.00	.53
AC-FT										442	57	2030
STATIST	ICS OF MO	NTHLY MEAN	DATA FO	OR WATER Y	EARS 191	6 - 2001h,	BY WATER	YEAR (WY	()			
MEAN	85.2	43.4	30.9	29.6	34.7	30.3	62.4	112	112	82.2	61.0	161
MAX	944	662	203 1924	124 1924	450	134	886	1524	1938	2924	1456	2730
(WY) MIN	1931 .000	1924 .000	.000	.000	1958 .000	1941 .18	1918 .35	1925 4.67	1935 .46	1938 .000	1974	1932 .000
(WY)	1935	1918	1955	1955	1955	1957	1955	1927	1953	1953	1917	1934
	STATISTI					001 WATER						6 - 2001h
ANNUAL N										70.8		1020
	ANNUAL M									298		1938 1954
	ANNUAL ME DAILY ME				1	74 Se	ep 9			.80 42400	Morr	29 1925
	DAILY MEA				1		ig 13			.00		16 1917
	SEVEN-DAY						ig 19			.00		16 1917
	PEAK FLO				cc7					c94800		16 1936
	PEAK STA					9.77 Se	_			g29.20		16 1936
	RUNOFF (A									51290	-	
	ENT EXCEE					31				72		
	ENT EXCEE					8.0				20		
90 PERCE	ENT EXCEE	DS				.00				.80		

h See PERIOD OF RECORD paragraph. cc From rating curve extended above 146 $\rm ft^3/s$ on basis of slope-area measurements of 94,800 $\rm ft^3/s$. c From rating curve extended above 68,000 $\rm ft^3/s$ on basis of slope-area measurement of 94,800 $\rm ft^3/s$.

g At former site and datum based on gage-height relation curve.

08148500 North Llano River near Junction, TX--Continued

08150000 Llano River near Junction, TX

LOCATION.--Lat 30°30′15", long 99°44′03", Kimble County, Hydrologic Unit 12090204, on right bank 960 ft upstream from abandoned low-water crossing, 1.0 mi east of Junction, 2.6 mi downstream from bridge on Interstate Highway 10, 2.8 mi downstream from confluence of North and South Llano Rivers, 5.3 mi upstream from Johnson Fork, and 114.8 mi upstream from mouth.

DRAINAGE AREA.--1,854 mi², of which 5.1 mi² probably is noncontributing.

PERIOD OF RECORD. -- Sept. 1915 to May 1993, Oct. 1997 to current year.

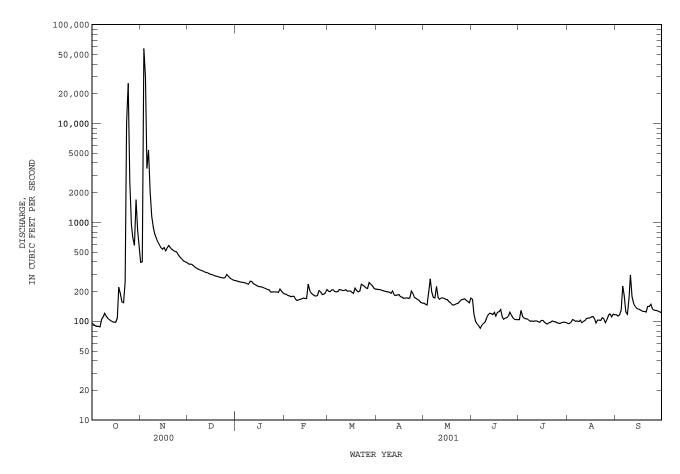
REVISED RECORDS.--WSP 568: 1915-16, 1918-20, 1922. WDR TX-81-3: Drainage area. WSP 1922: 1920, 1923.

GAGE.--Water-stage recorder. Datum of gage is 1,634.32 ft above sea level. Prior to Aug. 14, 1925, nonrecording gage, and Aug. 14, 1925, to May 17, 1940, and Aug. 18, 1944, to Oct. 12, 1981, water-stage recorder at site 5,330 ft downstream at datum 6.0 ft lower, designated as regular gage (destroyed by flood of Oct. 13, 1981). Prior to June 13, 1990, at datum 2.0 ft higher. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair. No known regulation. There are diversions above station for irrigation.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, and computes and publishes streamflow record.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1875, that of June 14, 1935. A major flood in 1889 was the highest known prior to June 14, 1935.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCI	AKGE, COL	JIC FEET F		LY MEAN V		EK 2000 1	O DEFIEMD	ER ZOUI		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	95	394	388	257	189	202	212	153	167	104	95	117
2	93	400	378	255	188	200	210	149	118	129	95	113
3	90	57500	379	252	183	207	210	146	100	112	98	116
4	89	29200	373	250	181	209	206	202	94	108	104	129
5	89	3510	361	248	177	200	204	269	90	106	103	228
6	88	5400	350	246	179	199	202	198	85	106	100	183
7	105	2060	343	244	179	200	200	175	91	103	101	125
8	111	1160	336	240	167	210	199	172	95	100	99	118
9	121	891	331	238	162	208	197	226	98	101	103	170
10	113	765	326	255	165	205	192	175	108	100	97	294
11	107	690	321	253	167	205	203	167	116	101	100	177
12	104	634	315	241	169	209	185	172	121	101	102	152
13	101	593	313	236	172	202	183	173	120	99	107	141
14	99	557	308	231	170	203	185	170	117	98	108	135
15	98	536	301	226	170	203	187	167	123	102	108	133
16	98	558	299	224	238	196	177	166	113	102	111	131
17	108	516	295	223	205	192	176	158	123	98	112	128
18	221	556	290	220	193	217	171	154	125	95	106	126
19	190	585	287	217	187	205	172	147	131	94	96	126
20	157	554	285	214	182	198	173	146	111	97	103	124
21	154	533	280	210	180	203	171	148	105	98	103	142
22	251	518	278	209	183	237	172	151	108	101	102	141
23	10200	510	276	198	205	232	202	153	109	99	109	148
24	25500	505	274	198	199	226	191	160	114	99	106	134
25	2600	473	277	199	187	218	174	166	124	97	97	130
26 27 28 29 30 31	952 698 587 1700 833 568	448 430 414 402 397	298 286 274 267 262 259	198 198 195 212 201 194	188 193 210 	215 247 237 229 216 211	170 166 163 155 153	167 169 163 159 154 172	115 108 105 104 104	96 95 97 98 98	105 116 119 111 118 117	129 128 126 124 124
TOTAL MEAN MAX MIN AC-FT CFSM IN.	46320 1494 25500 88 91880 .81 .93	111689 3723 57500 394 221500 2.01 2.25	9610 310 388 259 19060 .17 .19	6982 225 257 194 13850 .12 .14	5168 185 238 162 10250 .10	6541 211 247 192 12970 .11 .13	5561 185 212 153 11030 .10	5247 169 269 146 10410 .09	3342 111 167 85 6630 .06	3131 101 129 94 6210 .05	3251 105 119 95 6450 .06	4292 143 294 113 8510 .08
STATIST	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	16 - 2001h	n, BY WAT	ER YEAR (WY)			
MEAN	274	185	142	125	132	118	171	239	288	203	183	332
MAX	2708	3723	1229	641	816	428	1222	2395	5797	4236	2299	4298
(WY)	1924	2001	1985	1968	1958	1992	1977	1925	1935	1938	1974	1932
MIN	15.8	21.5	25.3	26.2	27.9	27.0	21.3	30.3	12.4	10.5	11.4	13.1
(WY)	1957	1957	1957	1957	1954	1954	1955	1954	1953	1956	1956	1956

08150000 Llano River near Junction, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YE	CAR	FOR 2001 WAT	TER YE	AR	WATER YEAR:	3 1916	-	2001h
ANNUAL TOTAL	192960			211134						
ANNUAL MEAN	527			578			199			
HIGHEST ANNUAL MEAN							708			1935
LOWEST ANNUAL MEAN							29.8			1953
HIGHEST DAILY MEAN	57500	Nov	3	57500	Nov	3	124000	Jun 1	L4	1935
LOWEST DAILY MEAN	69	Sep	7	85	Jun	6	3.7	Aug 1	L7	1956
ANNUAL SEVEN-DAY MINIMUM	70	Sep	3	93	Oct	1	4.2	Aug 1	1	1956
MAXIMUM PEAK FLOW				cc158000	Nov	3	c319000	Jun 1	L4	1935
MAXIMUM PEAK STAGE				a35.08	Nov	3	a43.30	Jun 1	L4	1935
ANNUAL RUNOFF (AC-FT)	382700			418800			144500			
ANNUAL RUNOFF (CFSM)	.29			.31			.11			
ANNUAL RUNOFF (INCHES)	3.88			4.25			1.47			
10 PERCENT EXCEEDS	401			401			221			
50 PERCENT EXCEEDS	97			175			99			
90 PERCENT EXCEEDS	74			99			43			

h See PERIOD OF RECORD paragraph. cc From rating curve extended above $144,000~\rm{ft}^3/s$ on basis of slope-area measurements of $154,000~\rm{and}~319,000~\rm{ft}^3/s$. c From rating curve extended above $54,000~\rm{ft}^3/s$ on basis of slope-area measurements of $154,000~\rm{and}~319,000~\rm{ft}^3/s$. a From floodmark.

08150700 Llano River near Mason, TX

LOCATION.--Lat 30°39'38", long 99°06'32", Mason County, Hydrologic Unit 12090204, on right bank 98 ft downstream from downstream bridge on U.S. Highway 87, 1.0 mi upstream from Beaver Creek, 9.1 mi southeast of Mason, 10.2 mi downstream from James River, and 61.1 mi upstream from mouth.

DRAINAGE AREA.--3,247 mi^2 , of which 5.1 mi^2 probably is noncontributing.

PERIOD OF RECORD. -- Mar. 1968 to May 1993, Oct. 1997 to current year.

REVISED RECORDS.--WDR TX-75-3: 1968(P). WDR TX-81-3: Drainage area.

TOTAL

GAGE.--Water-stage recorder. Datum of gage is 1,230.36 ft above sea level. Prior to Jan. 19, 1971, at site 190 ft upstream at same datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records good except those for estimated daily discharges, which are poor. No known regulation or diversion.

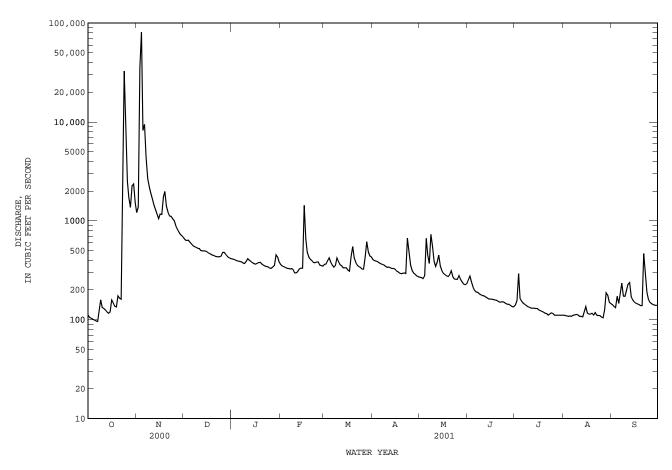
COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage-discharge relation at medium to high stages and computes and publishes streamflow record.

EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since at least 1875, about 46 ft June 14, 1935 (discharge, about 380,000 ${\rm ft}^3/{\rm s}$), from information by Texas Department of Transportation; at site 17.0 mi downstream discharge was 388,000 ${\rm ft}^3/{\rm s}$ by slope-area measurement. Discharges for other floods are 258,000 ${\rm ft}^3/{\rm s}$, 1952; 218,000 ${\rm ft}^3/{\rm s}$, 1889.

REVISIONS.--The maximum discharge for calendar and water year 1980 has been revised to 215,000 ft³/s, Sept. 8, 1980, gage height, 37.00 ft, from floodmark; daily mean discharge for Sept. 8, 1980 has been revised to 64,800 ft³/s. These figures supersede those published in the report for 1980.

ANNUAL RUNOFF (AC-FT)

MIN


MAX

SEPT. 198 CAL YR 198 WTR YR 198	0	98,395 143,539 131,879	3,280 392 360	64,800 64,800 64,800	26 26 26		195,200 284,700 261,600					
		DISCHA	ARGE, CUBI	C FEET PER		WATER Y MEAN	YEAR OCTOBER VALUES	2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	111 105 103 101 99	1210 1380 35600 80800 8180	672 641 632 637 607	412 408 401 394 391	362 349 343 337 331	363 366 392 421 383	395 391 386	269 267 260 278 664	254 276 239 212 197	141 156 293 165 154	111 110 109 108 109	142 136 132 172 146
6 7 8 9	97 96 125 159 132	9430 4330 2680 2200 1910	584 560 548 537 528	389 384 374 370 388	330 326 328 321 297	356 340 354 423 387	367 362 356 347	450 370 730 552 388	190 189 182 178 175	147 143 139 135 133	108 111 112 113 112	183 234 173 172 196
11 12 13 14 15	130 125 120 116 120	1670 1440 1290 1170 1050	523 500 497 496 493	413 399 389 377 369	298 308 326 332 332	359 350 334 334	334 330 330	346 381 449 347 315	174 170 166 162 162	131 131 131 e130 e130	108 108 107 119 135	228 237 171 158 151
16 17 18 19 20	159 148 137 134 174	1170 1160 1740 1980 1400	485 471 463 453 447	364 371 378 380 365	1430 656 482 429 408	316 309 432 549 419	305 296 292	295 286 278 273 284	161 160 158 157 153	e125 123 121 119 116	116 114 114 116 111	147 144 142 139 139
21 22 23 24 25	165 161 2950 32700 6600	1220 1120 1110 1050 1000	440 434 432 432 439	355 349 345 342 332	394 379 377 383 384	379 356 343 337 325	294 667 485	312 272 258 257 256	150 151 152 149 145	115 111 114 117 115	118 111 110 110 106	467 300 190 162 e150
26 27 28 29 30 31	2500 1720 1370 2240 2350 1520	890 822 770 726 703	480 479 454 434 423 416	331 342 354 452 430 385	357 353 349 	325 429 614 484 439 431	297 287 277 272	280 255 240 229 225 232	143 143 139 135 135	111 111 111 111 111 111	104 127 187 177 150 145	145 142 140 140 139
TOTAL MEAN MAX MIN AC-FT	56767 1831 32700 96 112600	171201 5707 80800 703 339600	15637 504 672 416 31020	11733 378 452 331 23270	11301 404 1430 297 22420	11983 387 614 309 23770	348 667 272	10298 332 730 225 20430	5157 172 276 135 10230	4101 132 293 111 8130	3696 119 187 104 7330	5317 177 467 132 10550
STATIS	TICS OF	MONTHLY MI	EAN DATA F	OR WATER Y	EARS 196	8 - 200	lh, BY WATER	YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	549 3222 1974 72.9 1984	422 5707 2001 105 1969	303 1929 1985 108 1984	241 1053 1985 118 1984	262 1530 1992 98.5 1984	238 875 1992 89.0 1984	2097 1977 71.5	361 1559 1990 66.0 1984	339 1791 1987 49.1 1984	233 1439 1988 38.4 1980	392 3331 1974 31.2 1980	390 3280 1980 38.1 1984

08150700 Llano River near Mason, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	ER YEAR	WATER YEARS	1968 - 2001h
ANNUAL TOTAL	274316		317618			
ANNUAL MEAN	749		870		337	
HIGHEST ANNUAL MEAN					870	2001
LOWEST ANNUAL MEAN					77.7	1984
HIGHEST DAILY MEAN	80800	Nov 4	80800	Nov 4	80800	Nov 4 2000
LOWEST DAILY MEAN	59	Aug 22	96	Oct 7	10	Jul 17 1984
ANNUAL SEVEN-DAY MINIMUM	61	Aug 17	102	Oct 1	18	Jul 12 1984
MAXIMUM PEAK FLOW			c170000	Nov 4	c215000	Sep 8 1980
MAXIMUM PEAK STAGE			a32.00	Nov 4	a37.00	Sep 8 1980
ANNUAL RUNOFF (AC-FT)	544100		630000		244400	
10 PERCENT EXCEEDS	842		849		425	
50 PERCENT EXCEEDS	119		325		176	
90 PERCENT EXCEEDS	67		115		90	

Estimated
See PERIOD OF RECORD paragraph.
From rating curve extended above 145,000 ft³/s.
From floodmark. e h c a

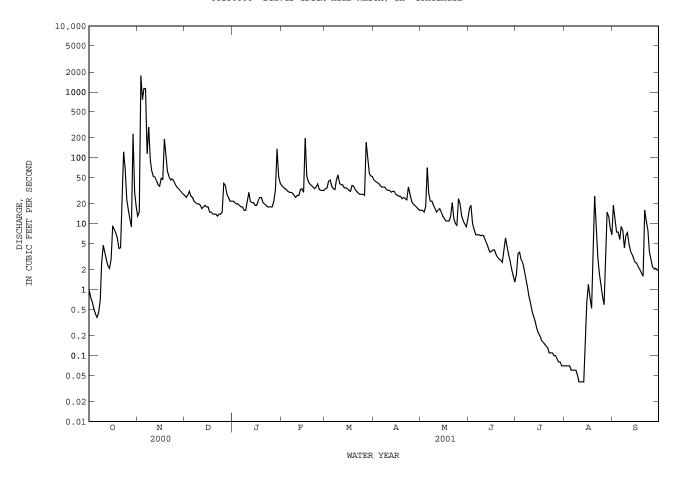
08150800 Beaver Creek near Mason, TX

LOCATION.--Lat 30°38′36", long 99°05′44", Mason County, Hydrologic Unit 12090204, on left bank at downstream side of downstream bridge on U.S. Highway 87, 1.8 mi upstream from Llano River, 6.4 mi downstream from Spring Creek, and 11.1 mi southeast of

DRAINAGE AREA.--215 mi².

PERIOD OF RECORD. -- July 1963 to current year.

REVISED RECORDS.--WSP 2122: 1964-65. WDR TX-81-3: Drainage area.


GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,253.24 ft above sea level. Prior to Aug. 3, 1978, at site 300 ft upstream at same datum. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good except those for Nov. 3-6, which are fair. No known regulation or diversions. No flow at times.

		DISCHAR	GE, CUBIC	FEET PER		WATER YE MEAN VA	AR OCTOBER LUES	2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.97 .75 .64 .51	13 15 1760 764 1130	27 25 27 31 26	22 21 20 20 19	38 36 34 33 31	34 35 44 46 37	46 44 42 41 38	16 16 15 18 71	17 19 10 8.1 6.8	1.7 3.5 3.7 2.9 2.6	.07 .07 .07 .07 .06	19 12 7.5 7.5 5.8
6 7 8 9 10	.38 .45 .69 2.6 4.7	1130 115 292 92 63	25 22 21 20 20	18 18 16 16 22	30 30 29 27 25	34 33 46 55 41	36 36 36 33 32	29 22 22 19 17	6.8 6.8 6.6 6.7	2.0 1.5 1.1 .80 .63	.06 .06 .06 .05	9.1 8.0 4.3 6.7 7.3
11 12 13 14 15	3.6 2.8 2.3 2.1 2.9	52 51 45 39 37	19 17 18 19 18	30 22 21 21 19	27 27 33 34 30	39 39 35 35 34	32 30 31 31 28	15 16 17 15	5.8 5.1 4.3 3.7 3.8	.47 .39 .33 .26	.04 .04 .04 .14	4.9 3.8 3.4 2.9 2.6
16 17 18 19 20	9.3 8.2 7.3 6.0 4.2	49 47 193 113 62	18 15 15 14 14	19 22 25 25 21	198 53 44 40 38	32 31 38 37 33	27 26 26 24 25	12 11 11 11 13	4.0 4.0 3.4 3.1 2.9	.20 .17 .16 .15	1.2 .76 .52 2.5 26	2.5 2.2 2.0 1.8 1.6
21 22 23 24 25	4.3 18 123 67 23	52 46 48 45 40	14 13 14 14	20 19 18 18	36 34 36 40 33	31 29 28 28 28	24 23 36 28 22	21 12 10 9.4 24	2.8 2.6 4.1 6.1 4.6	.13 .11 .11 .11	8.3 3.1 1.8 1.2 .80	16 11 7.9 3.8 2.9
26 27 28 29 30 31	16 12 9.0 230 30 18	36 34 32 30 28	41 38 28 25 22 22	18 22 33 136 52 42	32 32 32 	27 172 104 58 53 52	20 19 18 17 16	20 13 11 10 9.0	3.4 2.7 2.0 1.6 1.3	.10 .09 .08 .08 .07	.59 2.3 15 13 8.4 6.8	2.2 2.1 2.1 2.0 1.9
TOTAL MEAN MAX MIN AC-FT CFSM IN.	611.12 19.7 230 .38 1210 .09	6453 215 1760 13 12800 1.00	657 21.2 41 13 1300 .10	813 26.2 136 16 1610 .12	1112 39.7 198 25 2210 .18 .19	1368 44.1 172 27 2710 .21 .24	887 29.6 46 16 1760 .14	530.4 17.1 71 9.0 1050 .08 .09	165.7 5.52 19 1.3 329 .03	23.97 .77 3.7 .07 48 .00	93.78 3.03 26 .04 186 .01	166.8 5.56 19 1.6 331 .03
STATIS	TICS OF M	ONTHLY MEA	N DATA FO	R WATER YI	EARS 1963	- 2001,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	29.6 329 1997 .37 1983	13.4 215 2001 .91 1980	14.4 220 1992 1.44 1983	13.3 183 1968 1.84 1971	23.2 285 1992 1.41 1984	22.8 164 1997 1.29 1967	19.3 132 1977 .49 1984	28.5 197 1975 .72 1996	27.0 327 1987 .21 1971	3.68 24.3 1997 .003 1964	19.0 443 1978 .000 1985	10.5 167 1964 .021 1977
SUMMAR	Y STATIST	ics	FOR 2	000 CALENI	DAR YEAR	F	OR 2001 WAT	TER YEAR		WATER YE	EARS 1963	- 2001
LOWEST HIGHES' LOWEST ANNUAL MAXIMU ANNUAL ANNUAL ANNUAL 10 PER- 50 PER-	MEAN T ANNUAL ANNUAL M T DAILY ME	MEAN MEAN MAN MAN MINIMUM MAGE AC-FT) CFSM) MINCHES) MEDS MEDS MEDS		.00	Nov 3 Jul 19 Jul 19		.04 .05 8600			18.8 91.5 1.97 12800 .00 c66900 a24.00 13590 .08 1.15 24 3.2	Aug Aug Aug Aug Aug Aug Aug	1997 1967 3 1978 3 1963 3 1963 3 1978

c From rating curve extended above 7,430 ${\rm ft}^3/{\rm s}$ based on slope-area measurements of 20,100 and 66,900 ${\rm ft}^3/{\rm s}$. a From floodmark.

08150800 Beaver Creek near Mason, TX--Continued

08151500 Llano River at Llano, TX

LOCATION.--Lat 30°45′04", long 98°40′10", Llano County, Hydrologic Unit 12090204, on right bank in Llano, 0.4 mi downstream from bridge on State Highway 16, 7.0 mi upstream from Little Llano River, and 29.3 mi upstream from mouth.

DRAINAGE AREA. -- 4,197 mi², of which 5.1 mi² probably is noncontributing.

PERIOD OF RECORD.--Sept. 1939 to current year.

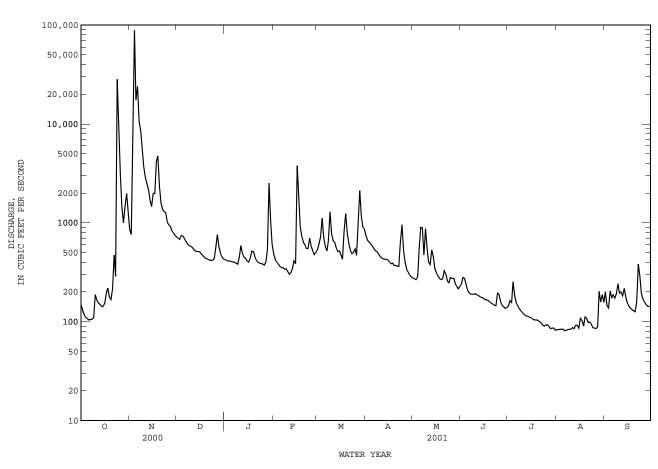
Water-quality records.--Chemical data: Apr. 1948 to Oct. 1967, Apr. 1979 to Sept. 1986. Biochemical data: Apr. 1979 to Sept. 1986. Sediment data: Sept. 1964, Apr. 1979 to Sept. 1986. Specific conductance: Apr. 1979 to Sept. 1980. Water temperature: Apr. 1979 to Sept. 1980.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 970.01 ft above sea level. Radio telemeter at station. Satellite telemeter at

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes streamflow record.

REMARKS.--Records fair. No known regulation or diversions. Part of low flow of the Llano River disappears into various formations, many of which are faulted, between this station and Llano River near Junction (station 08150000). No flow at


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1879, 41.5 ft June 14, 1935 (discharge, 380,000 ft³/s), from information by local resident.

		DISCH	IARGE, CUI	BIC FEET P		, WATER YE LY MEAN VA		R 2000 TO) SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	147 129 117 110 107	856 760 18200 88500 17400	718 696 680 747 732	423 416 410 410 406	484 426 398 382 363	536 619 717 1110 704	739 665 639 612 585	276 272 266 284 565	242 280 274 236 206	143 163 156 253 184	83 83 84 84	201 146 138 204 175
6	104	24000	691	401	353	575	552	903	195	156	81	187
7	105	10600	649	398	351	520	522	891	190	145	82	
8	106	8510	611	390	340	662	511	472	189	135	83	192
9	110	5290	587	381	342	1290	488	872	190	129	84	242
10	187	3670	576	448	321	773	460	551	192	123	84	194
11	165	2890	564	590	303	655	440	402	186	118	87	201
12	154	2470	537	495	314	631	433	378	183	115	85	183
13	150	2160	518	453	343	558	428	532	178	114	92	217
14	143	1700	513	434	414	514	426	452	175	112	92	176
15	142	1460	511	412	386	519	420	345	173	110	86	155
16	153	1990	505	400	3770	472	402	313	167	108	108	144
17	194	1980	479	435	1730	428	384	290	166	105	103	137
18	219	4180	463	515	916	819	391	274	164	104	90	132
19	179	4730	440	512	727	1240	371	266	159	104	112	129
20	167	2360	434	454	636	787	368	272	154	103	108	126
21	215	1570	427	416	596	614	366	328	151	100	98	160
22	472	1370	419	399	550	534	362	304	147	97	99	383
23	287	1300	417	391	552	488	640	257	145	92	95	285
24	28200	1270	419	387	701	500	955	247	194	90	87	193
25	10800	1020	429	382	572	543	519	279	190	92	86	169
26 27 28 29 30 31	e3000 1470 1000 1470 1980 1290	954 914 829 792 747	558 760 569 492 452 431	373 395 537 2520 1050 612	517 477 501 	468 954 2110 1150 900 861	394 340 318 295 282	274 275 244 228 215 226	160 147 141 136 139	93 89 85 86 86 82	85 89 202 158 188 157	158 149 143 143 144
TOTAL	53072	214472	17024	16245	17765	23251	14307	11753	5449	3672	3139	5206
MEAN	1712	7149	549	524	634	750	477	379	182	118	101	180
MAX	28200	88500	760	2520	3770	2110	955	903	280	253	202	383
MIN	104	747	417	373	303	428	282	215	136	82	81	126
AC-FT	105300	425400	33770	32220	35240	46120	28380	23310	10810	7280	6230	10330
STATIS	TICS OF	MONTHLY M	IEAN DATA	FOR WATER	YEARS 193	39 - 2001,	BY WATER	YEAR (WY	")			
MEAN	541	343	296	286	386	332	376	512	560	225	313	444
MAX	3700	7149	3179	2483	3754	2798	3115	3350	4620	1796	3605	3891
(WY)	1974	2001	1992	1968	1992	1997	1977	1957	1997	1988	1974	1952
MIN	18.0	20.7	27.5	31.7	37.7	23.7	20.9	41.0	7.93	.000	.087	.56
(WY)	1952	1957	1955	1957	1954	1954	1955	1984	1953	1956	1952	1954

08151500 Llano River at Llano, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	ER YEAR	WATER YEAR	S 1939 - 2001
ANNUAL TOTAL	313492					
ANNUAL MEAN	857				373	
HIGHEST ANNUAL MEAN					1308	1997
LOWEST ANNUAL MEAN					50.0	1954
HIGHEST DAILY MEAN	88500	Nov 4	88500	Nov 4	88500	Nov 4 2000
LOWEST DAILY MEAN	14	Sep 6	81	Aug 6	.00	Aug 5 1952
ANNUAL SEVEN-DAY MINIMUM	23	Sep 3	83	Jul 31	.00	Aug 27 1952
MAXIMUM PEAK FLOW			151000	Nov 4	260000	Jun 23 1997
MAXIMUM PEAK STAGE			29.05	Nov 4	38.86	Jun 23 1997
ANNUAL RUNOFF (AC-FT)	621800				269900	
10 PERCENT EXCEEDS	837		1130		541	
50 PERCENT EXCEEDS	112		380		156	
90 PERCENT EXCEEDS	35		104		41	

e Estimated

08152000 Sandy Creek near Kingsland, TX

DRAINAGE AREA. -- 346 mi².

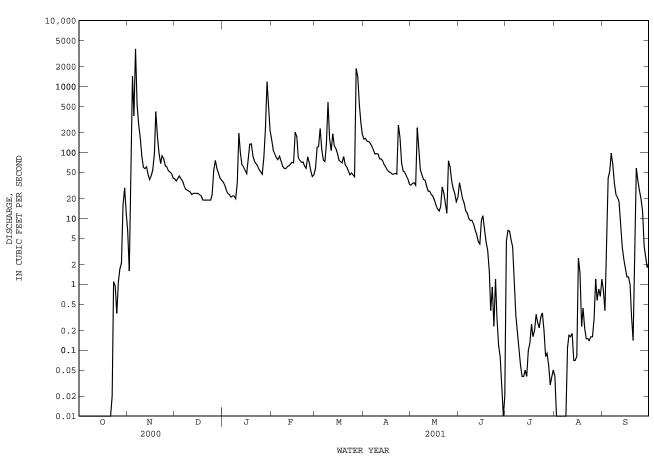
PERIOD OF RECORD.--Oct. 1966 to Mar. 1993, Oct. 1997 to current year. Water-quality records.--Sediment data: Jan. 1968 to Sept. 1975.

REVISED RECORDS.--WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 862.31 ft above sea level. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair except those for daily discharges below 1 ${\rm ft}^3/{\rm s}$ which are poor. No known regulation. There are several small diversions above station for irrigation. No flow at times.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes streamflow record.


EXTREMES OUTSIDE PERIOD OF RECORD.—The flood of Sept. 11, 1952, the highest since at least 1881, reached a stage of 34.2 ft (discharge, $163,000 \text{ ft}^3/\text{s}$), from slope-area measurement at gage site.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	6.5 1.6 37 1430 359	40 37 40 44 40	36 32 27 24 23	157 109 95 84 78	58 120 123 232 112	159 164 148 147 138	32 34 35 32 238	35 27 20 17 13	4.6 6.6 6.4 4.8 3.7	.04 .01 .00 .00	.82 .40 5.0 41 52
6 7 8 9 10	.00 .00 .00 .00	3720 524 262 164 91	37 32 28 27 26	21 22 22 20 35	88 74 62 58 57	77 73 135 579 162	126 110 95 96 95	110 55 46 39 38	12 10 9.3 9.4 8.2	1.1 .34 .19 .11 .06	.00 .01 .01 .11	98 66 34 23 21
11 12 13 14 15	.00 .00 .00 .00	60 57 61 47 39	25 23 24 24 24	197 102 65 61 54	61 63 66 71 70	107 193 128 116 97	80 80 75 65 60	31 26 26 23 22	6.8 5.7 4.5 4.1 9.4	.04 .04 .05 .04	.16 .18 .07 .07	18 8.8 3.7 2.4 1.8
16 17 18 19 20	.00 .00 .00 .00	44 55 96 418 175	24 23 22 19 19	48 78 134 135 88	203 177 84 76 71	76 73 70 87 65	54 51 50 47 47	19 16 14 13 15	11 6.8 4.4 3.3 1.6	.13 .25 .16 .20 .35	2.5 1.5 .23 .44 .22	1.3 1.3 1.0 .33
21 22 23 24 25	.00 .02 1.1 .96 .36	98 68 90 81 63	19 19 19 19 23	73 68 63 55 51	72 63 58 86 70	60 53 46 49 46	48 47 262 168 70	30 24 17 12 75	.40 .91 .23 1.2	. 26 . 22 . 32 . 37 . 20	.15 .15 .14 .16	5.5 58 37 27 20
26 27 28 29 30 31	1.1 1.7 2.1 16 29 12	61 53 51 48 41	54 76 57 48 41 38	47 84 230 1190 492 217	52 43 46 	43 1880 1420 531 274 186	52 51 45 40 33	61 37 28 24 18 21	.12 .08 .03 .01 .02	.08 .09 .06 .03 .04	.30 1.2 .57 .85 .66	13 3.8 2.6 1.8 2.1
TOTAL MEAN MAX MIN AC-FT CFSM IN.	64.34 2.08 29 .00 128 .01	8301.1 277 3720 1.6 16470 .80 .89	991 32.0 76 19 1970 .09	3794 122 1190 20 7530 .35 .41	2294 81.9 203 43 4550 .24 .25	7271 235 1880 43 14420 .68 .78	2703 90.1 262 33 5360 .26	1211 39.1 238 12 2400 .11 .13	221.81 7.39 35 .01 440 .02 .02	30.98 1.00 6.6 .03 61 .00	11.34 .37 2.5 .00 22 .00	550.79 18.4 98 .14 1090 .05 .06
STATIS	TICS OF 1	MONTHLY ME	AN DATA FO	OR WATER	YEARS 196	7 - 2001h	, BY WATE	R YEAR (V	WY)			
MEAN MAX (WY) MIN (WY)	63.0 306 1972 .045 1990	42.1 277 2001 .045 1989	76.6 1074 1992 1.10 1990	59.2 511 1968 1.06 1990	89.4 936 1992 4.19 1967	85.6 425 1992 1.86 1967	59.7 528 1977 1.41 1984	122 510 1975 .71 1984	113 862 1987 .055 1971	22.5 258 1976 .10 1980	22.2 358 1974 .000 1989	27.3 188 1976 .000 1989

08152000 Sandy Creek near Kingsland, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1967 - 2001h
ANNUAL TOTAL	11812.56	27444.36	
ANNUAL MEAN	32.3	75.2	65.7
HIGHEST ANNUAL MEAN			279 1992
LOWEST ANNUAL MEAN			3.62 1984
HIGHEST DAILY MEAN	3720 Nov 6	3720 Nov 6	14200 Dec 21 1991
LOWEST DAILY MEAN	.00 Jul 12	.00 Oct 1	.00 Jul 16 1967
ANNUAL SEVEN-DAY MINIMUM	.00 Jul 12	.00 Oct 1	.00 Jul 16 1967
MAXIMUM PEAK FLOW		9620 Nov 6	39500 Dec 20 1991
MAXIMUM PEAK STAGE		10.92 Nov 6	17.63 Jun 16 1987
ANNUAL RUNOFF (AC-FT)	23430	54440	47590
ANNUAL RUNOFF (CFSM)	.093	.22	.19
ANNUAL RUNOFF (INCHES)	1.27	2.95	2.58
10 PERCENT EXCEEDS	41	130	96
50 PERCENT EXCEEDS	2.9	27	11
90 PERCENT EXCEEDS	.00	.04	.09

h See PERIOD OF RECORD paragraph.

08152900 Pedernales River near Fredericksburg, TX

LOCATION.--Lat 30°13'13", long 98°52'10", Gillespie County, Hydrologic Unit 12090206, on left bank at downstream side of bridge on U.S. Highway 87, 2.0 mi upstream from Mueseback Creek, 3.8 mi south of Fredericksburg, and 88.7 mi upstream from mouth.

DRAINAGE AREA. -- 369 mi².

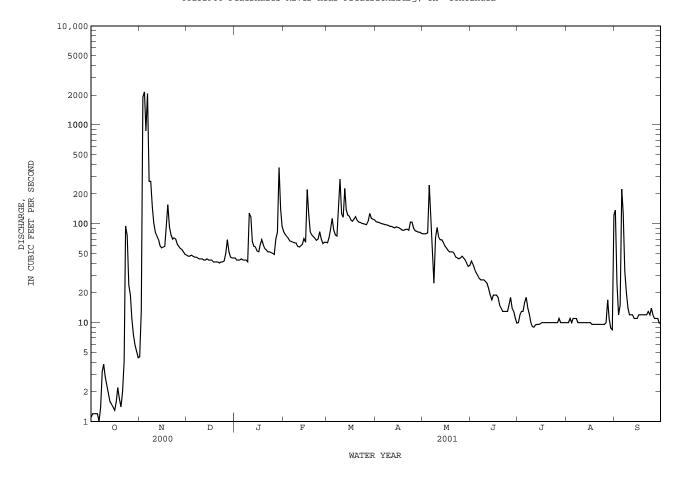
PERIOD OF RECORD. -- July 1979 to May 1993, Mar. 1998 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,564,96 ft above sea level. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records fair except those for daily discharges below 5.0 ft³/s, which are poor. No known regulation or diversion above station. No flow at times some years.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes streamflow record.

EXTREMES OUTSIDE PERIOD OF RECORD.—The flood of Aug. 2, 1978, which is the highest since 1907, reached a stage of 41.6 ft (discharge not determined). The highest known discharge was $64,000 \text{ ft}^3/\text{s}$ June 1, 1979 (gage height, 34.4 ft, from floodmark), from rating curve extended above a discharge measurement of $42,300 \text{ ft}^3/\text{s}$.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCHAR	GE, CUBIC	FEET PER		MEAN VA	AR OCTOBER LUES	2000 10	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.1	4.5	48	45 43 43 43 44	83	64	105	79	42	10	10	137
2 3	1.2	13 1910	47 47	43	78 74	73 88	104 103	79 79	39 35	12 13	10 11	25 12
4	1.2	2150	48	43	71	113	101	81	32	13	10	15
5	1.2	871	47	44	74 71 67	73 88 113 86	100	246	30	16	11	223
6	1.0	2070	46	43	66	77	99	102	28	18	11	128
7	1.4 3.2	269 269	46 45	43 43	65 64	75 154	98 97	e49 e25	27 27	14 12	11 10	33 20
8 9	3.2	148	45	43	64	283	97 96	72	27	10	10	14
10	2.8	102	44	128	59	127	94	92	26	9.1	10	12
11	2.3	82	44	118	58	116	94	74	25	9.0	10	12
12	1.9	75	43	66 59	60	227	92 91	69	22	9.5	10	12
13 14	1.6 1.5	69 60	43 44	59 58	62 71	138 122	91	69 65	19 17	9.6 9.6	10 10	11 11
15	1.4	57	43	53	65	119	92	60	19	9.7	10	11
16	1.3	58	43 43	52	221	109	90	57	19	10	10	12
17	1.6	59	43	61	221 122 83 77	106	88	57 54 52 52	19	10	9.6	12
18 19	2.2 1.7	96 156	41 41	69 61	83 77	111 118	86 86	52 52	18 15	10 10	9.6 9.6	12 12
20	1.4	93	41	52 61 69 61 56	77 74	108	88	52	14	10	9.6	12
21	2.0	77	41	54	71	104	88	50 46 45	13	10	9.6	12
22	4.1	70	41 40 41 41	52	68	103	86	46	13	10	9.6	13
23 24	95 76	72 70	41	52 51	70	101 100	104 104	45 44	13 13	10 10	9.6 9.6	12 14
25	24	62	42	52 52 51 50	71 68 70 83 70	99	90	45	15	10	9.6	12
26	19	59	50			98	85 84 82 82 80	47	18	10	10	11
27	11	56	69	70	65	98 106 127 113	84	45	14	11	17	11
28	7.5	55	52	82	65	127	82	43	13	10	11	11
29 30	5.9 5.1	52 49	50 69 52 46 45	370 141		113	82 80	40 37	11 9.9	10 10	8.8 8.5	9.9 10
31	4.4		45	94		110		38		10	122	
TOTAL	289.0	9233.5	1400	2234 72.1 370	2139	3586	2782	1988 64.1	632.9	335.5 10.8 18 9.0	427.7	851.9
MEAN	9.32	308	45.2	72.1	76.4	3586 116	92.7	64.1	21.1	10.8	13.8	28.4
MAX MIN	95 1.0	2150 4.5	69 40	370 41	221 58	283 64	105 80	246 25	42 a a	8 U	122 8 5	223 9.9
AC-FT	573	18310	2780	4430	4240	7110	5520	3940	1260	665	848	1690
STATIST	ICS OF N	MONTHLY MEA	N DATA FO	R WATER Y	EARS 1980	- 2001h	, BY WATER	YEAR (W	Y)			
MEAN	60.9	45.2	97.5	42.3	73.1	65.8	49.5	85.5	103	35.6	13.8	16.6
MAX	408	308	993	173	631	370	224	261	635	191	48.2	48.8
(WY)	1986	2001	1992	1992	1992	1992	1992	1990	1987	1987	1987	1981
MIN (WY)	3.25 2000	5.70 2000	7.18 1990	8.78 1990	8.32 1984	9.77 1984	5.96 1984	2.95 1984	2.33 1984	.78 2000	.23 1985	.31 1984
	STATIST			000 CALENI			OR 2001 WAT				EARS 1980	- 2001h
ANNUAL	TOTAL			13662.26			25899.5					
ANNUAL				37.3			71.0			59.0		1000
	'ANNUAL ANNUAL N									244 5.3	1	1992 1984
	DAILY N			2150	Nov 4		2150	Nov 4		14800	Dec	20 1991
	DAILY ME			.00	Sep 2 Sep 2		1.0 1.2	Oct 6		.0	0 Jul	13 1984
	SEVEN-DA I PEAK FI	AY MINIMUM		.00	sep 2		1.2 8880	Nov 3		14800 .00 49900	u Sep Dec	2 2000 20 1991
	PEAK ST						15.07	Nov 3		32.0	9 Dec	20 1991
	RUNOFF			27100			51370			42770		
	ENT EXC			54 8.6			107 45			88 21		
	ENT EXC			.51			9.6			3.1		

e Estimated

h See PERIOD OF RECORD paragraph.

08152900 Pedernales River near Fredericksburg, TX--Continued

08153500 Pedernales River near Johnson City, TX

LOCATION.--Lat 30°17'30", long 98°23'57", Blanco County, Hydrologic Unit 12090206, near left downstream end of bridge on U.S. Highway 281, 0.2 mi downstream from Towhead Creek, 1.1 mi northeast of Johnson City, 3.4 mi downstream from Buffalo Creek, and 48.0 mi upstream from mouth.

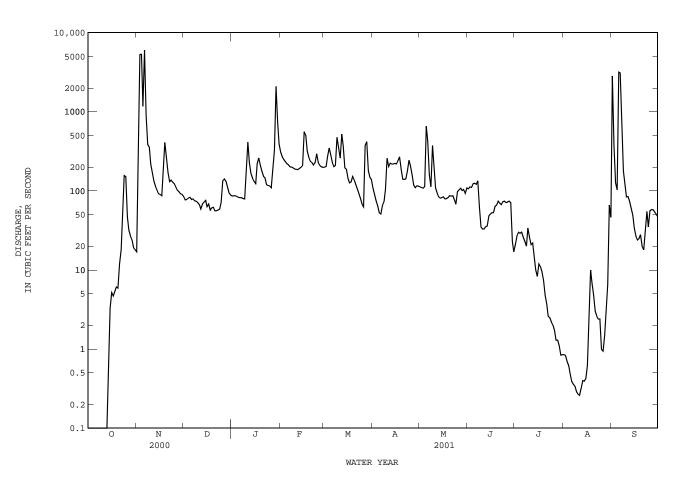
DRAINAGE AREA. -- 901 mi².

PERIOD OF RECORD.--May 1939 to current year.
Water-quality records.--Chemical data: Apr. 1948 to Sept. 1950, Oct. 1971 to Sept. 1985.

REVISED RECORDS.--WSP 1632: 1953(M), 1957, 1958(M). WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,096.70 ft above sea level. May 4 to Sept. 13, 1939, nonrecording gage, and Sept. 14, 1939, to Sept. 10, 1952, water-stage recorder at upstream side of bridge at same datum. Sept. 11, 1952, to June 29, 1953, nonrecording gage, and June 30, 1953, to Oct. 7, 1954, water-stage recorder at site 360 ft downstream at same datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair. There are diversions above station for irrigation. During the year, the city of Fredericksburg discharged varying amounts of wastewater effluent into the river upstream from station. The city of Johnson City diverts varying amounts of water from the pool at gage and discharges wastewater effluent into river below the gage. Flow is affected at times by discharge from the flood-detention pools of four floodwater-retarding structures. These structures control runoff from 15.6 mi² in the Williamson Creek drainage basin. No flow at times.


COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes and publishes streamflow record.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of July 1869, reached a stage of 33 ft from information by local residents.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY .TTTN JUL AUG SEP 78 .83 127 0.0 .00 .00 .49 .00 .39 0.0 73 .36 .34 179 .00 .00 .29 0.0 2.7 .00 .26 0.0 .00 .40 .39 8.3 3.3 .42 5.2 4.7 3.4 5.3 6.1 6.8 5.9 4.8 4.8 18 3.7 3.0 2.6 2.6 2.5 2.4 2.2 2.4 2.0 .99 1.7 1.5 1.3 1.3 3.2 ---1.1 6.5 .84 .85 TOTAL 597.18 407.09 168.08 MEAN 19.3 78.6 69.6 13.1 5.42 MAX .00 .84 MIN .26 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 - 2001, BY WATER YEAR (WY) 97.6 MEAN MAX (WY) 2.51 2.44 4.83 2.07 .060 2.05 .000 MTN .44 1.68 . 52 .001 .000 (WY)

08153500 Pedernales River near Johnson City, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1939 - 2001
ANNUAL TOTAL	31483.94	70583.35	100
ANNUAL MEAN HIGHEST ANNUAL MEAN	86.0	193	193 840 1992
LOWEST ANNUAL MEAN			4.12 1956
HIGHEST DAILY MEAN	6000 Nov 6	6000 Nov 6	129000 Sep 11 1952
LOWEST DAILY MEAN	.00 Jul 20	.00 Oct 1	.00 Aug 8 1951
ANNUAL SEVEN-DAY MINIMUM	.00 Jul 20	.00 Oct 1	.00 Aug 8 1951
MAXIMUM PEAK FLOW		16400 Sep 5	441000 Sep 11 1952
MAXIMUM PEAK STAGE		15.13 Sep 5	42.50 Sep 11 1952
ANNUAL RUNOFF (AC-FT)	62450	140000	140000
10 PERCENT EXCEEDS	94	270	280
50 PERCENT EXCEEDS	17	85	51
90 PERCENT EXCEEDS	.00	1.3	4.5

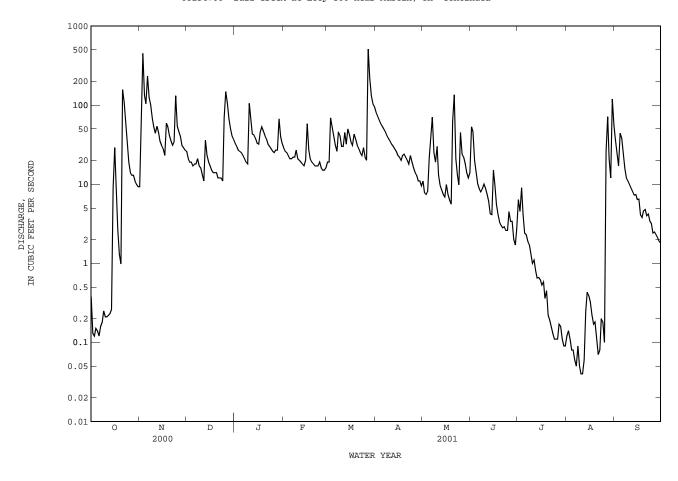
08154700 Bull Creek at Loop 360 near Austin, TX

LOCATION.--Lat 30°22′19", long 97°47′04", Travis County, Hydrologic Unit 12090205, on right bank at downstream side of bridge at Loop 360, 1.0 mi upstream from West Fork Bull Creek and Farm Road 2222, and 7.1 mi northwest of the State Capitol Building in Austin.

DRAINAGE AREA.--22.3 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Apr. 1976 to July 1978 (peak discharge greater than base discharge), July 1978 to current year.


GAGE.--Water-stage recorder, concrete control, and crest-stage gage. Datum of gage is 534.08 ft above sea level (levels from city of Austin benchmark). Satellite telemeter at station.

REMARKS.--Records good. No known regulation or diversions. No flow at times.

		DISCHAR	GE, CUBIC	FEET PER		VATER YE MEAN VA	AR OCTOBER	R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.38 .13 .12 .15	9.3 43 451 133 104	26 21 19 19 17	33 30 27 26 25	29 26 25 23 21	19 19 69 52 40	82 73 65 59 54	11 7.8 7.4 8.1 22	53 46 20 14 10	6.4 4.5 9.0 4.2 2.4	.12 .14 .11 .08	37 25 17 44 38
6 7 8 9 10	.12 e.16 e.18 e.25 .21	233 125 100 68 53	18 18 21 17 16	23 21 19 18 105	21 22 22 27 21	31 26 46 41 30	50 46 41 38 35	37 70 25 19 30	8.7 8.0 8.8 10 8.8	2.3 1.9 1.7 1.3	.06 .05 .09 .05	26 16 12 11 10
11 12 13 14 15	.23 .26 8.9						32 30 28 26 23			1.1 .80 .65 .66	.04 .06 .25 .43	9.0 8.1 7.3 7.4 6.4
18 19	29 8.8 2.7 1.3 .98	28 23 59 53 41					22 20 23 24 22					6.5 4.1 3.8 4.6 4.8
21 22 23 24 25	157 109 65 33 19		12 12 12 11 69				20 18 23 19 16				.07 .08 .20 .18	4.0 4.2 3.4 3.2 2.4
	14 13 13 11 9.9 9.3	46 40 31 29 27	148 106 67 50 41 37	25 27 27 67 40 33	15 15 16 	20 511 219 131 104 96	14 13 11 11 9.5	24 22 18 14 12	3.4 3.4 2.0 1.7 2.8	.11 .17 .16 .11 .09	21 12	2.5 2.3 2.1 1.9 1.8
	507.64			1139 36.7 105 18 2260		1956 63.1 511 19 3880	947.5 31.6 82 9.5 1880	701.6 22.6 135 5.6 1390	9.29	42.09 1.36 9.0 .09 83	308.62 9.96 119 .04 612	325.8 10.9 44 1.8 646
		MONTHLY MEA										
MEAN MAX (WY) MIN (WY)	16.6 120 1999 .17 2000	13.1 73.0 2001 .061 2000	16.8 130 1992 .64 1990	13.7 55.9 1992 1.08 1990	17.2 114 1992 1.92 1996	17.3 64.7 1992 2.06 1996	12.4 69.4 1997 1.28 1984	24.4 58.9 1992 .33 1984	25.7 141 1987 .57 1998	3.98 22.6 1997 .043 1994	4.00 26.3 1991 .006 2000	3.99 15.3 1987 .009 1999
SUMMAR	Y STATIST	rics	FOR 2	000 CALEN	DAR YEAR	F	OR 2001 WA	ATER YEAR		WATER Y	EARS 1978	- 2001
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL 10 PER 50 PER	T ANNUAL M ANNUAL M T DAILY M DAILY ME	MEAN MEAN EAN AY MINIMUM LOW FAGE AC-FT) EEDS		4333.42 11.8 451 .00 .00 8600 31 1.9 .00	Nov 3 Aug 6 Aug 6		9936.15 27.2 511 .04 1570 5.88 19710 55 18	Mar 27 4 Aug 10 5 Aug 6 Mar 27 3 Mar 27		1180 .0 .0 13700	00 Jul 00 Jul 00 Jul May 1	17 1998 4 1984 4 1984 13 1982

e Estimated

08154700 Bull Creek at Loop 360 near Austin, TX--Continued

08154700 Bull Creek at Loop 360 near Austin, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Apr. 1978 to current year.
BIOCHEMICAL DATA: Apr. 1978 to current year.
RADIOCHEMICAL DATA: Jan. to Apr. 1980.
PESTICIDE DATA: June 1978 to Sept. 1986, Jan. 1993 to June 1995.

INSTRUMENTATION. -- Stage-activated automatic sampler.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			WAILK	QUALITI L	MIM, WAIL	IC TEARCOC	TODER 200	O TO DEFT	EMDER 200	_			
DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
OCT 15-16 DEC	2115	30		413	7.9		25	26				26	94000
05	1330		16	767	8.4	13.0	<1	.5		11.5	110	<10	E14
MAY 06-07	2130	168		434	7.6		12	56				38	17000
SEP 17	1115		3.7	737	7.8	24.5	<1		1.4	7.5	92.3	<10	27
DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 15-16 DEC	32000	99	61	.416	.011	.427	.047	1.21	.734	.78	.099	<.060	<.018
05	30	244	<10		<.006	1.32	<.041	1.61		.30	<.060	<.060	<.018
MAY 06-07	22000	145	175	.514	.011	.525	E.022	1.90		1.4	.153	<.060	<.018
SEP 17	17	210	<10		E.004	.060	<.040	.316		.26	<.060	<.060	<.020
		DA	TE	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)			
		OCI 1 DEC	5-16	9.4			E.05	3.0	2	E18			
		0	5	2.9	.1	<.1	<.11	E.8	<1	4			
			6-07	15			E.08	3.6	3	17			
		SEP 1	7	3.1	.3	<.1	<.10	E.8	<1	<1			

THIS PAGE IS INTENTIONALLY LEFT BLANK.

08154900 Lake Austin at Austin, TX

LOCATION.--Lat $30^{\circ}18'55$ ", long $97^{\circ}47'10$ ", Travis County, Hydrologic Unit 12090205, at city of Austin Waterplant No. 2 and 1.5 mi upstream from Tom Miller Dam on the Colorado River at Austin.

DRAINAGE AREA.--38,846 mi², of which 11,403 mi² probably is noncontributing.

PERIOD OF RECORD.-CHEMICAL DATA: Oct. 1978 to Aug. 1990, Oct. 1990 to current year.
BIOCHEMICAL DATA: Oct. 1978 to Aug. 1990, Oct. 1990 to current year.
PESTICIDE DATA: Oct. 1978 to Aug. 1990.

REMARKS.--Trace metal and pesticide analyses of bottom sediments at selected sites June 2001.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

301739097471601 -- Lk Austin Site AR

	301/3505/1/1001 Extrapelli Bicc fac										
DATE	TIME	SAM- PLING DEPTH (FEET) (00003)		PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)		, ,	ATION)				
OCT 22 22 22 22 22 22 MAR 28	0845 0847 0851 0932 0934	1.00 10.0 25.0 10.0 20.0	483 482 498 483 479 451	7.8 7.7 7.4 7.9 7.8	21.7 21.6 21.1 21.8 21.6	5.8 5.8 3.6 7.2 6.8 9.5	67 67 41 83 78 92 92				
28	0930	25.0 25.0	453	7.9	13.5	9.5	92				
ANS-	SPE-	PH WATER					OXYGEN, DIS-				

DATE	TIME	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)
OCT													
22	0855	3.00	1.00	482	7.9	21.7	1.0	1.2	6.8	78	E48	E36	146
22	0857		10.0	484	7.8	21.6			6.5	75			
22	0859		20.0	497	7.8	21.6			6.5	75			
22	0901		30.0	496	7.5	20.7			4.0	45			
22	0903		40.0	498	7.5	20.6			20.6	232			
22	0905		50.0	500	7.4	20.6	1.7	5.4	3.1	35			
MAR													
28	0948	2.10	1.00	451	7.9	13.5		5.7	9.4	91	E41	E29	141
28	0950		10.0	450	7.9	13.5			9.5	92			
28	0952		20.0	451	7.9	13.5			9.5	92			
28	0954		30.0	450	7.9	13.5			9.4	91			
28	0956		40.0	450	7.9	13.5			9.4	91			
28	0958		50.0	453	7.9	13.5		7.1	9.4	91			142
JUN													
21	0940												

301739097471201	 Lik	Austin	Site	AC.

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)
OCT													
22	267	<10		E.003	E.028	<.041			.26	<.060	<.060	<.018	3.4
22													
22													
22													
22													
22	278	<10	.049	.013	.062	.104	.45	.29	.39	<.060	<.060	<.018	3.8
MAR													
28	261	<10		E.003	.456	E.023	.75		.29	<.060	<.060	<.018	5.7
28													
28													
28													
28													
28	262	<10		<.006	.428	E.022	.69		.26	<.060	<.060	<.018	3.9
JUN													
21													

08154900 Lake Austin at Austin, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

301739097471201 -- Lk Austin Site AC

	CHLOR-A	CHLOR-B	BED	BED	BED	BED	BED	CADMIUM	CHRO-			COPPER,	
	PHYTO-	PHYTO-	MAT.	MAT.	MAT.	MAT.	MAT.	RECOV.	MIUM,	COPPER,		RECOV.	
	PLANK-	PLANK-	SIEVE	SIEVE	SIEVE	SIEVE	SIEVE	FM BOT-	RECOV.	TOTAL	COPPER,	FM BOT-	IRON,
	TON	TON	DIAM.	DIAM.	DIAM.	DIAM.	DIAM.	TOM MA-	FM BOT-	RECOV-	DIS-	TOM MA-	SEDIMT,
	CHROMO	CHROMO	% FINER	TERIAL	TOM MA-	ERABLE	SOLVED	TERIAL	BED MA-				
DATE	FLUOROM	FLUOROM	THAN	THAN	THAN	THAN	THAN	(UG/G	TERIAL	(UG/L	(UG/L	(UG/G	TERIAL
	(UG/L)	(UG/L)	.062 MM	.125 MM	.250 MM	.500 MM	1.00 MM	AS CD)	(UG/G)	AS CU)	AS CU)	AS CU)	AS FE)
	(70953)	(70954)	(80164)	(80165)	(80166)	(80167)	(80168)	(01028)	(01029)	(01042)	(01040)	(01043)	(01170)
OCT													
OCT											0 0		
22											2.8		
22													
22													
22													
22													
22											3.4		
MAR	_	_											
28	.3	<.1								E1.6	1.4		
28													
28													
28													
28													
28										E1.5	1.7		
JUN													
21			95	98	100	100	100	.3	13			18	15000

301739097471201 -- Lk Austin Site AC

DATE	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01053)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
OCT					
22		<1.00			
22					
22					
22					
22					
22		<1.00			
MAR					
28					
28					
28					
28					
28					
28					
JUN					
21	24		1500	.03	60

301739097470901 -- Lk Austin Site AL

				PH			OXYGEN,
			SPE-	WATER			DIS-
			CIFIC	WHOLE			SOLVED
		SAM-	CON-	FIELD	TEMPER-	OXYGEN,	(PER-
		PLING	DUCT-	(STAND-	ATURE	DIS-	CENT
DATE	TIME	DEPTH	ANCE	ARD	WATER	SOLVED	SATUR-
		(FEET)	(US/CM)	UNITS)	(DEG C)	(MG/L)	ATION)
		(00003)	(00095)	(00400)	(00010)	(00300)	(00301)
OCT							
22	0915	1.00	483	7.9	21.7	7.2	83
22	0917	10.0	486	7.8	21.6	6.2	71
22	0919	24.0	497	7.4	21.0	3.8	43
MAR							
28	1010	1.00	451	7.9	13.5	9.5	92
28	1012	10.0	453	7.9	13.5	9.4	91
28	1014	23.0	457	7.9	13.5	9.3	90

08154900 Lake Austin at Austin, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

302043097472401 -- Lk Austin Site BC

	302043097472401 Lk Austin Site BC												
DATE	TIME	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)
OCT 22 22	0930 0936	2.00	1.00 30.0	482 459	7.9 7.6	21.8 21.1	1.0 15	1.8 23	7.0 5.9	81 67	400	E280	142 133
MAR 28 28 28 21 21	1034 1036 1038 1040	2.40 	1.00 10.0 20.0 30.0	444 446 446 435	8.0 8.0 8.0 8.0	13.0 13.0 12.5 12.0	 	4.0 17	9.6 9.6 9.8 9.8	92 92 93 92	44 	58 	142 149
21	1015												
				30	204309747	'2401 L	k Austin	Site BC					
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)
OCT 22 22	266 259	<10 26	 .289	E.004 .008	.055	<.041 E.038	.33		.27	<.060 E.040	<.060 <.060	<.018 <.018	
MAR 28 28	260	<10		<.006	.404	E.021	.74		.34	<.060	<.060	<.018	
28 28	254	 10		E.004	.746	.041	1.2	.39	.43	 E.050	E.048	.025	.077
JUN 21													
				30	204309747	'2401 L	k Austin	Site BC					
DATE	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01029)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)
OCT 22 22	3.9 4.9											2.6 3.5	
MAR 28 28	3.6	.2	<.1								E1.5	1.5	
28 28	 4.0										 E1.7	 1.4	
JUN 21				93	98	100	100	100	.2	7.8			14
				30	204309747	'2401 L	k Austin	Site BC					
			DATE	IRC SEDI BED TERI AS (011	MT, TOM MA- TER AL (UG FE) AS	OV. BOT- LEA MA- DI IAL SOL B/G (UG PB) AS	NESD, RECD, RECD FM EVED TOM (VED TERD)	OV. FM B OT- TOM MA- TER IAL (UG	OV. REC OT- FM B MA- TOM IAL TER I/G (UG HG) AS	OV. OT- MA- IAL /G ZN)			
			OCT 22 22 MAR 28 28 28	- -	 		00 – – – – –	 	 	-			
			28 JUN	-									

189

08154900 Lake Austin at Austin, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

302044097472301 -- Lk Austin Site BL

		DA		TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)			
		2	2 2 2	0950 0952 0954	1.00 10.0 19.0	480 481 481	7.8 7.9 7.9	21.8 21.8 21.8	6.9 7.2 7.2	80 83 83			
		2 2	8 8 8	1024 1026 1028	1.00 10.0 20.0	444 447 440	7.9 7.9 7.9	13.0 13.0 13.0	9.4 9.4 9.5	90 90 91			
				30	192609750	2201 L	k Austin	Site CC					
DATE	TIME	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)
OCT 22 22 22 MAR	1015 1017 1019	3.00	1.00 10.0 22.0	484 484 491	7.8 7.8 7.5	21.6 21.5 21.4	.9 5.2	1.4 8.3	6.8 6.8 5.0	 78 57	E84 	E22 	148 145
28 28 28 JUN	1100 1102 1104	2.10	1.00 10.0 23.0	439 441 439	7.9 7.8 7.8	11.5 11.5 11.5	 	8.2 5.7	8.9 8.8 8.8	83 82 82	46 	56 	138 140
21	1050												
				30	192609750	2201 L	k Austin	Site CC					
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
OCT 22	266	<10	<.006	E.038	E.026		.38	<.060	<.060	<.018	3.5		
22 22	273	31	<.006	.070	E.021	.42	.35	<.060	<.060	<.018	4.4		
MAR 28	256	<10	<.006	.473	<.041	.77	.30	<.060	<.060	E.011	4.0	.2	<.1
28 28	253	<10	<.006	.463	<.041	.77	.31	<.060	<.060	E.011	5.3		
JUN 21													
				30	192609750	2201 L	k Austin	Site CC					
DATE	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01029)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)	IRON, SEDIMT, BED MA- TERIAL AS FE) (01170)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT 22									2.4				<1.00
22									2.4				<1.00
MAR 28								E1.4	E1.3				
28 28								E1.4 E1.3	1.4				
JUN 21	37	46	 75	100	100	.1	3.3	 E1.3		<10	4900	4.4	
	٠,	10	, ,	100	-50	• -	5.5			-10	1000		

SPE-CIFIC CON-DUCT-ANCE

(US/CM)

(00095)

495 495

506

439

438

437

DATE

OCT
22...
22...
MAR
28...
28...
28...
JUN
21...

TRANS-PAR-

ENCY

(SECCHI DISK)

(M) (00078)

.60

--

1.70

TIME

1100 1102

1142

1144

SAM-

PLING DEPTH

(FEET) (00003)

1.00

1.00

9.00

440

443

7.9 7.9

12.0

12.0

SAM-PLING DEPTH

(FEET)

(00003)

1.00 10.0

17.0

10.0 19.0

1.00

TIME

1040 1042

1044

1124

1126

1128

1130

DATE

OCT 22... 22...

MAR 28...

22...

28...

28...

21...

DATE

OCT 22... 22...

MAR 28...

28...

08154900 Lake Austin at Austin, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

301926097502201 -- Lk Austin Site CC

30	192009750	12201 L	K AUSTIII	SILE CC					
DA	TE		MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG) (71921)						
OCT									
	2								
	2								
MAR	2								
	8								
	8								
JUN	8								
	1	540	<.01	20					
30	202109754	10001 L	k Austin	Site DC					
									~~~~~
PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L) (00300)		THAN .062 MM	THAN .125 MM	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	THAN .500 MM	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)
7.6	22.6	5.5	64						
7.6	22.5	5.3	62						
7.3	22.2	1.6	19						
7.8	11.5	8.4	78						
7.8	11.5	8.4	78						
7.8	11.5	8.4	78						
				26	32	51	95	100	.1
30	202109754	10001 L	k Austin	Site DC					
MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)		SEDIMT, BED MA- TERIAL AS FE)	FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01053)	TOM MA- TERIAL (UG/G AS HG)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)			
4.0	<10	4700	4.6	410	<.01	<20			
30	231409754	14901 L	k Austin	Site EC					
SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)
508 492	7.6 7.5	22.1 21.8	4.5 25	10 29	3.6 3.2	42 37	560 	720 	149

9.0

8.9

3.5

85

84

E33

E52

137

## 08154900 Lake Austin at Austin, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

## 302314097544901 -- Lk Austin Site EC

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)
OCT													
22	281	<10	.043	.017	.060	.127	.53	.34	.47	<.060	<.060	<.018	4.1
22	269	29	.070	.019	.089	.101	.65	.46	.56	E.038	<.060	<.018	4.6
MAR													
28	256	<10		<.006	.478	<.041	.98		.51	<.060	<.060	E.014	3.8
28													

### 302314097544901 -- Lk Austin Site EC

DATE	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT					
22				2.7	<1.00
22				3.1	E.61
MAR					
28	.9	<.1	E1.3	1.6	
28					

### 08155200 Barton Creek at State Highway 71 near Oak Hill, TX

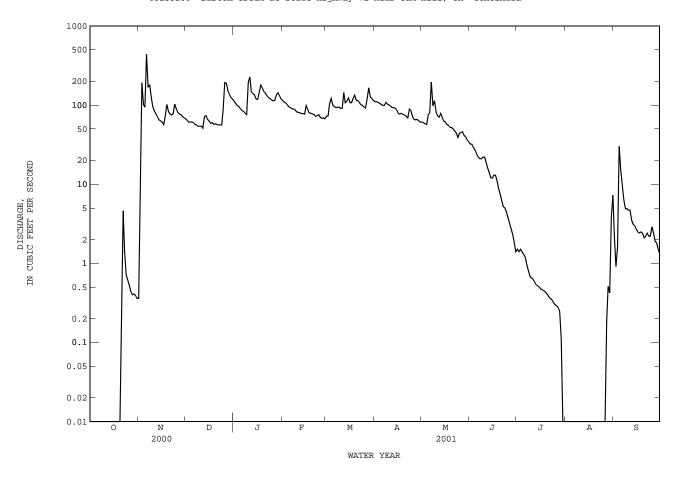
LOCATION.--Lat 30°17′46", long 97°55′31", Travis County, Hydrologic Unit 12090205, at upstream side of bridge on State Highway 71, 0.1 mi downstream from Little Barton Creek, and 5.8 mi northwest of Oak Hill.

DRAINAGE AREA. -- 89.7 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Aug. 1975 to Feb. 1978 (peak discharge greater than base discharge), Feb. 1978 to Sept. 1982, Jan. 1989 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 737.04 ft above sea level. Satellite telemeter at station.


REMARKS.--Records fair except those below 15.0  $\mathrm{ft}^3/\mathrm{s}$ , which are poor. No known regulation or diversions. No flow at times.

		DISCHAR	GE, CUBIC	FEET PER		WATER YEA MEAN VAI	AR OCTOBER LUES	2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.36 14 191 102 94	67 64 61 61	112 105 99 96 90	114 109 106 101 95	72 73 104 121 100	110 110 108 105 102	61 60 58 57 76	32 32 29 27 24	1.5 1.4 1.5 1.4	.00 .00 .00 .00	2.2 .91 1.6 30 15
6 7 8 9 10	.00 .00 .00 .00	440 170 179 125 96	60 57 56 54 54	85 83 79 76 194	93 90 89 87 82	96 93 94 94 91	99 99 108 103 100	80 196 97 114 82	22 21 21 22 22	1.2 .95 .80 .69	.00 .00 .00 .00	10 6.4 4.9 4.9 4.7
11 12 13 14 15	.00 .00 .00 .00	84 78 71 65 63	54 51 71 74 66	226 147 139 135 120	81 80 78 78 77	91 144 107 112 123	97 93 93 91 86	74 70 78 69 63	19 16 14 12 12	.63 .58 .54 .52 .50	.00 .00 .00 .00	4.7 3.5 3.1 3.0 2.7
16 17 18 19 20	.00 .00 .00 .00	61 57 75 102 83	63 59 60 57 58	118 145 180 165 148	99 88 80 79 77	107 107 121 133 115	e78 77 79 76 75	61 57 55 52 52	13 13 11 8.7 7.4	. 47 . 46 . 45 . 43 . 41	.00 .00 .00 .00	2.5 2.4 2.5 2.4 2.1
21 22 23 24 25	.27 4.6 1.4 .71 .61	77 75 77 103 90	57 56 56 56 88	140 131 124 120 116	76 72 73 76 70	114 108 101 99 94	72 69 89 84 71	50 47 44 39 44	6.2 5.2 5.0 4.4 3.8	.38 .36 .35 .32 .30	.00 .00 .00 .00	2.2 2.4 2.2 2.2 2.9
26 27 28 29 30 31	.52 .44 .40 .41 .39	81 77 76 72 69	193 188 152 136 125 119	113 115 134 143 131 120	68 69 67 	92 121 165 127 120 115	66 65 66 63 61	e45 e46 41 40 36 34	3.2 2.7 2.3 1.8 1.4	.29 .28 .25 .11 .00	.01 .18 .51 e.42 3.8 7.3	2.4 1.9 1.8 1.5 1.3
TOTAL MEAN MAX MIN AC-FT CFSM IN.	10.11 .33 4.6 .00 20 .00	2947.36 98.2 440 .36 5850 1.10	2434 78.5 193 51 4830 .88 1.01	3929 127 226 76 7790 1.41 1.63	2354 84.1 114 67 4670 .94	3354 108 165 72 6650 1.21 1.39	2595 86.5 110 61 5150 .96 1.08	1978 63.8 196 34 3920 .71 .82	414.1 13.8 32 1.4 821 .15 .17	19.02 .61 1.5 .00 38 .01	12.22 .39 7.3 .00 24 .00	130.31 4.34 30 .91 258 .05
STATIST	rics of	MONTHLY MEA	N DATA FO	R WATER Y	EARS 1978	- 2001h	, BY WATER	YEAR (W	()			
MEAN MAX (WY) MIN (WY)	21.7 192 1999 .000 1991	22.1 156 1999 .000 2000	51.6 520 1992 .000 2000	49.5 293 1992 .000 2000	63.2 465 1992 .000 2000	63.6 338 1992 .000 2000	47.4 196 1979 .040 2000	66.5 226 1992 .001 1996	95.7 613 1981 .000 1996	11.7 56.5 1997 .000 1978	2.64 15.2 1991 .000 1996	2.25 24.2 1991 .000 1999
SUMMAR	Y STATIS	TICS	FOR 2	000 CALEN	DAR YEAR	FO	OR 2001 WA	TER YEAR		WATER Y	EARS 1978	3 - 2001h
LOWEST HIGHEST LOWEST ANNUAL MAXIMUI ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN I ANNUAL ANNUAL I DAILY DAILY M SEVEN-D M PEAK F M PEAK S RUNOFF RUNOFF	MEAN MEAN EAN EAN AY MINIMUM LOW TAGE (AC-FT) (CFSM) (CINCHES) EEDS		.00	Nov 6 Jan 1 Jan 1		.00 .00 905	Nov 6 Oct 1 Oct 1 Nov 6 Nov 6		43.9 182 .1' 4960 .00 14900 18.10 31830 .4! 6.66 94 4 3.8	Dec 0 Feb 0 Feb Dec 0 Dec	1992 1996 21 1991 7 1978 7 1978 20 1991 20 1991

e Estimated

h See PERIOD OF RECORD paragraph.

08155200 Barton Creek at State Highway 71 near Oak Hill, TX--Continued



### 08155200 Barton Creek at State Highway 71 near Oak Hill, TX--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Apr. 1978 to Sept. 1982, Feb. 1989 to current year.
BIOCHEMICAL DATA: Apr. 1978 to Sept. 1982, Feb. 1989 to current year.
RADIOCHEMICAL DATA: Oct. 1979 to Sept. 1980.
PESTICIDE DATA: Apr. 1978 to Sept. 1982, Jan. 1998 to current year.

 ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$ 

	WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001												
DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
NOV 02-03	2030	57		354	8.0		250	340				35	E8000
DEC 04	0925		61	626	8.1	11.0	<1	.4		10.2	93.1	<10	E14
APR 16 MAY	0855		79	592	7.6	23.0	<1	2.0		6.6	78.4	<10	41
06-07 JUN	2320	204		433	7.6		100	280				31	E4200
04 JUL	1130		26	573	7.8	27.5	<1		2.5	7.0	91.0	<10	45
10	0920		.73	557	7.8	26.5	<1		6.1	4.8	61.0	<10	49
DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
NOV 02-03 DEC	14000	124		780	.330	.011	.341	<.041	2.46	2.1	.551	E.030	<.018
04 APR	48	254		<10		<.006	.251	E.033	.510	.26	<.060	<.060	<.018
16 MAY	23	214		<10		<.006	.070	E.023	.270	.20	<.060	<.060	<.018
06-07 JUN	5000		150	221	.222	.009	.231	E.034	1.62	1.4	.231	<.060	<.018
04 JUL	40	185		<10		<.006	<.050	<.040		.12	<.060	<.060	<.020
10	36	211		<10		.010	E.024	E.025		.11	<.060	<.060	<.020
		DA	TE	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)			
		NOV	, 12-03	20			.18	9.2	12	35			
		DEC		1.7	.1	<.1	<.11	<1.2	<1	1			
		APR		1.8	.1	<.1	<.11	<1.8	<1	14			
		MAY 0	6-07	14			E.10	4.1	6	21			
		JUN 0	f  4	1.9	<.1	<.1	<.10	<1.0	<1	1			
		JUL 1	0	1.6	.1	<.1	<.10	<1.0	<1	4			

THIS PAGE IS INTENTIONALLY LEFT BLANK.

### 08155240 Barton Creek at Lost Creek Boulevard, Austin, TX

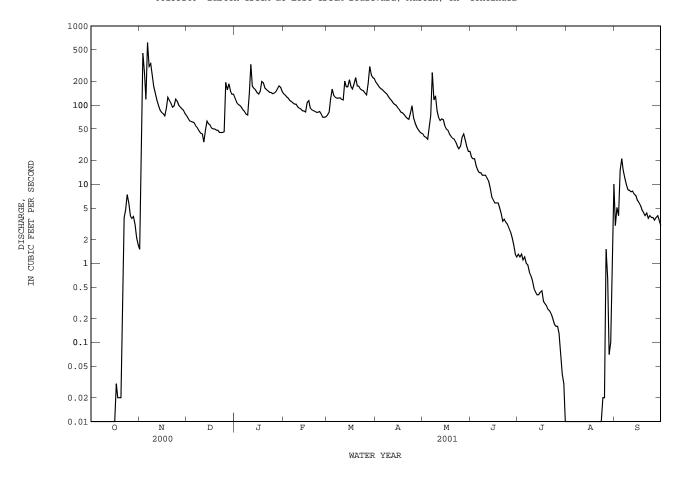
LOCATION.--Lat  $30^{\circ}16'26$ ", long  $97^{\circ}50'40$ ", Travis County, Hydrologic Unit 12090205, 1.4 mi southwest of intersection of Lost Creek Boulevard and Loop 360, and 6.2 mi west of State Capitol Building in Austin.

DRAINAGE AREA. -- 107 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Jan. 1979 to Sept. 1980 (periodic gage heights and discharge measurements only), Dec. 1988 to current year.

GAGE.--Water-stage recorder. Datum of gage is 600 ft above sea level, from topographic map. Satellite telemeter at station.


REMARKS.--Records fair except those below 15.0 ft³/s, which are poor. No known regulation or diversions. No flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--The flood of May 28, 1929, was probably the highest since that date (discharge 39,400 ft³/s), based on slope-area measurement of peak flow at a site about 2.1 mi downstream.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00	1.5 8.6 454 255 118	73 68 63 62 61	122 107 102 99 94	139 134 126 122 114	75 81 118 159 132	195 182 170 162 157	43 40 39 37 52	22 21 21 17 15	1.3 1.2 1.3 1.1	.00 .00 .00 .00	3.0 5.1 4.0 15 21
6 7 8 9 10	.00 .00 .00 .00	619 307 334 232 171	59 54 51 47 44	87 83 77 75 137	111 106 103 103 95	125 122 123 124 118	150 143 137 128 120	74 257 116 131 84	14 14 13 13	1.0 .95 .77 .70 .60	.00 .00 .00 .00	15 12 9.8 8.5 8.4
11 12 13 14 15	.00 .00 .00 .00	140 115 98 87 81	43 34 48 63 58	326 174 163 156 144	91 89 85 84 82	116 201 170 171 209	114 106 102 99 92	70 64 67 65 55	12 11 8.9 6.9 6.3	.48 .43 .40 .40 .43	.00 .00 .00 .00	8.0 8.2 7.5 7.2 6.3
16 17 18 19 20	.00 .03 .02 .02	78 73 92 126 115	56 51 50 50 48	138 148 199 191 164	108 114 92 87 85	171 160 185 223 175	87 81 80 76 71	50 48 43 40 38	5.8 5.8 5.8 5.0 4.2	.45 .33 .31 .29 .26	.00 .00 .00 .00	5.9 5.4 4.7 4.4 4.0
21 22 23 24 25	.26 3.8 4.7 7.4 5.8	e105 94 97 119 112	48 45 45 45 46	157 151 145 144 139	83 81 81 83 77	173 161 154 151 141	68 66 79 98 69	37 34 30 28 30	3.4 3.6 3.3 3.1 2.8	.25 .23 .20 .17 .16	.01 .01 .01 .02	4.3 3.7 4.0 3.8 3.8
26 27 28 29 30 31	4.0 3.7 3.9 3.1 2.1	99 94 90 86 78	e194 156 186 e150 137	142 147 160 175 168 149	70 70 71 	134 188 307 240 222 216	59 53 49 46 44 	39 43 36 30 26 26	2.5 2.1 1.7 1.3 1.2	.16 .13 .07 .04 .03	1.5 .64 .07 .10 1.2	3.5 3.8 4.0 3.5 3.0
TOTAL MEAN MAX MIN AC-FT	40.55 1.31 7.4 .00 80	4479.1 149 619 1.5 8880	73.3 194 34 4510	144 326 75 8850	2686 95.9 139 70 5330	163 307 75 10010	195 44 6120	57.2 257 26 3510	8.66 22 1.2 515	15.35 .50 1.3 .01 30	13.58 .44 10 .00 27	200.8 6.69 21 3.0 398
		MONTHLY MEA								10.1	2.05	2 05
MEAN MAX (WY) MIN (WY)	28.4 269 1999 .025 2000	33.5 188 1999 .23 2000	76.1 627 1992 .22 1990	69.5 307 1992 .40 1990	92.9 581 1992 .96 1996	80.0 381 1992 .81 1996	61.2 247 1997 .84 1996	87.1 264 1992 .42 1996	105 701 1997 .93 1998	12.1 67.8 1997 .17 1996	3.25 23.2 1991 .005 1998	3.27 25.6 1991 .001 2000
SUMMARY	Y STATIS	rics	FOR 2	000 CALENI	DAR YEAR	F	OR 2001 WA	TER YEAR		WATER Y	EARS 1989	- 2001
					Nov 6 Aug 30 Aug 30					55.6 212 1.1. 7000 .0 16400 12.9 40320 127 5.6	Dec Dec Dec Dec	1992 1996 21 1991 24 1993 24 1993 21 1991 21 1991

e Estimated

08155240 Barton Creek at Lost Creek Boulevard, Austin, TX--Continued



### 08155240 Barton Creek at Lost Creek Boulevard, Austin, TX--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Dec. 1988 to current year. BIOCHEMICAL DATA: Dec. 1988 to current year. PESTICIDE DATA: Jan. 1993 to May 1995.

INSTRUMENTATION.--Stage-activated automatic sampler.

WATER-OUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001													
DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
NOV 02-03	2235	120		571	8.1		13	18				11	16000
DEC 06 APR	1100		61	652	8.1	12.7	<1	.4		9.5	90.2	<10	100
16	1035		86	589	7.7	23.0	2	1.8		6.1	72.0	<10	27
MAY 06-07 JUN	2135	228		471	7.7		18	46				14	E3200
04	1250		17	582	7.8	27.5	2		3.1	6.8	87.8	<10	96
JUL 10	1015		.72	653	7.9	27.5	<1		5.2	5.5	70.8	<10	30
DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
NOV 02-03	8000	145	34	.783	.010	.793	E.037	1.48		.68	.099	E.041	.036
DEC 06	84	225	<10		<.006	.410	<.041	.702		.29	<.060	<.060	<.018
APR 16 MAY	26	194	<10		<.006	.116	<.041	.313		.20	<.060	<.060	<.018
06-07	E4200	162	68		E.004	.136	<.041	.977		.84	.074	<.060	<.018
JUN 04 JUL	21	181	<10		E.003	.066	<.040	.252		.19	<.060	<.060	<.020
10	30	213	<10		<.006	E.041	.049		.224	.27	<.060	<.060	<.020
		NOV 02-03 DEC 06	(MG AS P (006	TE, HO, CARE S- ORG#2 VED TOT L/L (MG 04) AS 60) (006  10 6 1.	80N, PL# ANIC TO FAL CHRC G/L FLUC C) (UG 880) (709	TTO- PHY NK- PLA NK- P	TO- CADM NK- WAT N UNFIL MO TOT PROM (UG 54) (010 - <.1 1 <.1	TER TOTAL TO	TAL TOTO COV- REC BBLE ERA G/L (UG CU) AS 042) (010	TAL TOT RECURS R	CAL COV- BLE E/L ZN) 92)		
		16 MAY	_	- 2.	. 1	2 <.	1 <.1	.1 <1.	.8 <1	. 2			

6.4

MAY 06-07

06-0, JUN 04... JUL 10...

1.9 <.1

<.11

<.1 <.10

3.0 .3 <.1 <.10 <1.0

E1.2

<1.0

1

<1

<1

7

2

1

THIS PAGE IS INTENTIONALLY LEFT BLANK.

### 08155300 Barton Creek at Loop 360, Austin, TX

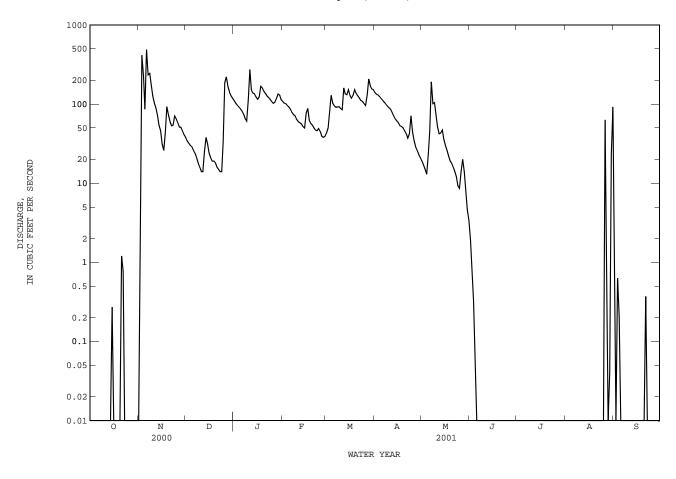
LOCATION.--Lat 30°14′40", long 97°48′07", Travis County, Hydrologic Unit 12090205, on Loop 360, 0.9 mi west of the intersection of Ben White and Lamar Boulevards, and 4.3 mi southwest of the State Capitol Building in Austin.

DRAINAGE AREA. -- 116 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1975 to Jan. 1977 (peak discharge greater than base discharge), Feb. 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 510.32 ft above sea level (Texas Department of Transportation bench mark). Satellite telemeter at station.


 $\textit{REMARKS.--} \textit{Records fair except those below 5.0 ft}^3/\textit{s, which are poor. No known regulation or diversions. No flow at times. } \\$ 

EXTREMES OUTSIDE PERIOD OF RECORD.—The flood of May 28, 1929, was probably the highest since that date (discharge 39,400  ${\rm ft}^3/{\rm s}$ ), based on a slope-area measurement of peak flow at a site about 2 mi upstream.

		DISCHAR	GE, CUBIC	FEET PER	SECOND, N	WATER Y	YEAR OCTOBER	2000 TO	SEPTEMBER	2001		
					DAILY	MEAN V	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	.00	.00 16	38 34	111 103	108 103	43 50	140 133	19 17	1.9 .91	.00	.00	.63 .00
3 4	.00	415 228	32 30	103 97 92 87	103 101 96 92	82 129 103	130 124	15 13	.32 .04	.00	.00	.63 .21
5	.00	86						23	.00	.00	.00	.00
6 7	.00	487 235	26 24	82 75 66 61 113	86 78 73 71 64	95 91	111 105 99 94 90	45 191	.00	.00	.00	.00
8 9	.00	245 176	21 18	66 61	73 71	92 93	99 94	101 104	.00	.00	.00	.00
10	.00	127						71	.00	.00	.00	.00
11 12	.00	103 89	14 14	273 152 138 135 123	60 58	85 160 134 131 151	86 78	51 42 43 47	.00	.00	.00	.00
13 14	.00	71 54	25 38	138 135	58 56 52 50	134	71 65	43 47	.00	.00	.00	.00
15	.27	46						36	.00	.00	.00	.00
16 17	.00	31 26	24 21	115 122 168 160	77 88 63 57 54	128 119 129 153 136	58 53	30 26	.00	.00	.00	.00
18 19	.00	45 93	19 19	160 145	57	153	52 50	22 19	.00	.00	.00	.00
20	.00	73						18	.00	.00	.00	.00
21 22 23	1.2 .77 .00	60 53 54	16 15 14	136 127	50 47 46 49 45	127 120 111 108 101	42 37	16 14 12	.01	.00	.00	.37 .00 .00
24 25	.00	71	14	121 115 107	49	108	37 42 71 44	9.3 8.6	.00	.00	.00 .00 .00	.00
26	.00	e65 e58						14	.00	.00	63	.00
27 28		e51 e51	221 167	102 105 117 134 130 114	38 39	96 130 208 169	34 29 26 23 21	20 14	.00	.00	5.9	.00
29 30	.00	46 41	141 128	134		169 155	23	8.0 4.6	.00	.00	.04	
31	.00					152		3.4		.00	92	
TOTAL MEAN	072	3196.00 107	1545 49.8 221 14 3060 .43	3726 120	1840 65.7 108 38 3650	3669 118	71 1	1056.9 34.1	3.18 .11 1.9 .00 6.3	0.00	183.94 5.93	1.84
MAX MIN	1.2	487 .00 6340	221 14	273 61	108 38	208 43	140 21 4230	191 3.4 2100	1.9	.00	92	.63
AC-FT CFSM	4.4	6340 .92	3060 . 43	7390 1.04	3650 .57	7280 1.02	4230 .61	2100 .29	6.3	.00	92 .00 365 .05	3.6
IN.	.00	1.02	.50	1.19	.59	1.18	.68	.34	3.18 .11 1.9 .00 6.3 .00	.00	.06	.00
STATIST	ICS OF I	MONTHLY MEA	N DATA FO	R WATER YI	EARS 1977	- 2001	1, BY WATER	YEAR (WY	)			
MEAN MAX	26.3 282	20.1 204	69.1 865	42.6 281	61.7 609	55.2 342	319	75.0 321	145 1142	7.62 73.1	.93 13.9	.48 7.57
(WY) MIN	1999 .000	204 1999 .000	865 1992 .000	1992 .000	1992 .000	1992 .000	1977 .000	1992 .000	1987 .000	1981 .000	1991 .000	1983
(WY)	1978	1978	1978	1978	1978	1978	1978	1978	1978	1977	1977	1977
SUMMARY		TICS	FOR 2		DAR YEAR		FOR 2001 WA			WATER Y	YEARS 1977	- 2001
ANNUAL I	MEAN			5433.82 14.8			17356.10 47.6			45.4	1	
HIGHEST LOWEST	ANNUAL I	MEAN								229		1992 1978
HIGHEST LOWEST	DAILY M	EAN		.00	Nov 6 Jan 1		.00	Nov 6 Oct 1		10800	Dec 00 Apr 00 Jun	21 1991 11 1977
MAXIMUM	PEAK F			.00	Jan 9		1080	Oct 1 Aug 26		18100	May	25 1981
	RUNOFF	(AC-FT)		10780			34430			32920		45 1981
	RUNOFF	(INCHES)		.13 1.74			.41 5.57			5.3	32	
10 PERC	ENT EXC	EEDS		.00			129 21			98	00	
90 PERC	EMI EXC	FEDS		.00			.00			. (	00	

e Estimated

## 08155300 Barton Creek at Loop 360, Austin, TX--Continued



### 08155300 Barton Creek at Loop 360, Austin, TX--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Jan. 1979 to current year. BIOCHEMICAL DATA: Jan. 1979 to current year. RADIOCHEMICAL DATA: Apr. 1980. PESTICIDE DATA: Jan. 1979 to Sept. 1986.

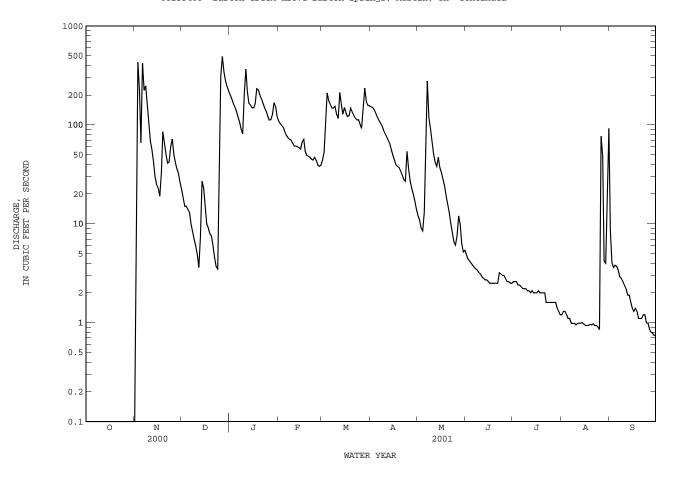
			WIIIDIC	QUILLII D	21111, 111111	iic illine oc	TODER 200	O IO DELI	DI-IDDIC 200	_			
DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
MOTA													
NOV 02-03 DEC	1420	110		221	7.6		50	20				13	120000
04 APR	1050		30	629	8.2	10.5	<1	.7		10.5	93.6	<10	E1
16 MAY	1235		59	572	8.1	24.0	<1	1.7		6.9	82.7	<10	80
06-07	2150	205		306	7.8		12	26				<10	92000
30 AUG	0915		4.7	533	7.8	27.0	5	.6		5.3	67.3	<10	E85
26	1915	177		92	7.1		70		83			57	72000
DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)
NOV													
02-03	74000		69	41	.334	.008	.342	.051	.846	.453	.50	.431	E.052
DEC 04	E9	4	212	<10		<.006	.400	<.041	.630		.23	<.060	<.060
APR 16	44		197	<10		<.006	.093	E.026	.285		.19	<.060	<.060
MAY 06-07 30	68000 64		103 169	145 <10	.182	.010 E.004	.192 E.039	<.041 E.023	.733		.54 .20	E.042 <.060	<.060 <.060
AUG 26	60000		30	280	.711	.042	.753	.215	2.91	1.94	2.2	.416	.195
	DA	TE	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)		
	NOV	,											
	DEC	2-03	.044	.135	6.9			<.11	2.0	3	18		
	0	4	<.018		1.9	<.1	<.1	<.11	<1.2	<1	5		
	APR 1 MAY	6	<.018		2.1	.1	<.1	<.11	<1.8	<1	2		
	0	6-07	<.018 <.020		7.6 2.0	.2	<.1	<.11 <.10	1.7 <1.0	2 <1	36 <1		
		6	E.154		30			.16	6.7	9	38		

THIS PAGE IS INTENTIONALLY LEFT BLANK.

### 08155400 Barton Creek above Barton Springs, Austin, TX

DRAINAGE AREA.--125 mi².

### WATER-DISCHARGE RECORDS


PERIOD OF RECORD.--Sept. 1981 to Oct. 1984 (daily mean discharge less than base discharge), Sept. 1998 to current year.

GAGE.--Water-stage recorder. Datum of gage is 430.5 ft above sea level. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records poor except those for daily discharges after May 10, which are fair. No known regulation or diversions. No flow at times.

		DISCHA	ARGE, CUBIO	C FEET PER		WATER YE MEAN VA		ER 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 20 429 224 66	22 18 15 15	202 183 166 152 137	109 103 98 94 85	44 53 95 210 175	152 150 143 133 121	12 11 9.1 8.5 13	4.8 4.4 4.2 4.0 3.8	2.6 2.6 2.6 2.4 2.4	1.2 1.3 1.3 1.2	8.5 4.0 3.6 3.8 3.7
6 7 8 9 10	.00 .00 .00 .00	421 223 248 148 100	13 10 8.3 6.9 5.9	120 106 91 81 204	71	162 148 148 154 128	112 105 98 89 82	58 277 117 91 66	3.6 3.5 3.4 3.2 3.1	2.3 2.2 2.2 2.2 2.1	1.1 .98 .98 .98	3.4 2.9 2.8 2.6 2.4
11 12 13 14 15	.00 .00 .00 .00	69 56 42 30 25	4.8 3.6 7.4 27 23	366 219 165 159 149	61 60 59 57	116 213 164 128 150	76 70 65 56 49	51 42 38 47 37	2.9 2.8 2.7 2.7 2.6	2.1 2.0 2.1 2.0 2.0	.98 .99 .99 1.0 .97	2.2 1.9 1.9 1.6 1.4
16 17 18 19 20	.00 .00 .00 .00	23 19 33 85 65	16 10 9.1 7.9 7.5	149 163 233 226 199	67 71 54 49 48	132 121 124 148 135	44 39 38 37 34	16	2.5 2.5 2.5 2.5 2.5	2.0 2.1 2.0 2.0 2.0	.94 .93 .94 .96	1.3 1.4 1.3 1.1
21 22 23 24 25	.00 .00 .00 .00	50 41 42 60 72	6.1 4.6 3.7 3.5 23	183 165 149 138 122	47 45 44 47 44	125 117 112 113 101	31 28 27 54 36	13 10 8.1 6.6 6.1	2.5 3.2 3.1 3.0 3.0	2.0 1.6 1.6 1.6	.97 .93 .94 .91	1.1 1.2 1.2 1.0 .99
26 27 28 29 30 31	.00 .00 .00 .00	50 41 36 32 26	309 492 343 277 245 222	112 113 127 168 153 122	39 38 39 	92 144 235 171 158 156	27 23 20 17 14	7.6 12 9.7 6.3 5.2 5.4	2.8 2.6 2.6 2.5 2.5		77 48 4.2 4.0 30 92	.86 .80 .78 .74
TOTAL MEAN MAX MIN AC-FT	0.00 .000 .00 .00	2776.00 92.5 429 .00 5510	2173.3 70.1 492 3.5 4310	5022 162 366 81 9960	1777 63.5 109 38 3520	4272 138 235 44 8470	1970 65.7 152 14 3910	1087.6 35.1 277 5.2 2160	92.0 3.07 4.8 2.5 182	61.0 1.97 2.6 1.2 121	280.54 9.05 92 .85 556	62.32 2.08 8.5 .74 124
STATIST	CICS OF I	MONTHLY MI	EAN DATA FO	OR WATER Y	EARS 1998	- 2001,	BY WATER	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	141 422 1999 .000 2000	220 566 1999 .000 2000	70.4 141 1999 .000 2000	57.9 162 2001 .000 2000	21.7 63.5 2001 .000 2000	46.5 138 2001 .000 2000	22.5 65.7 2001 .000 2000	13.8 35.1 2001 .31 2000	13.6 32.5 2000 3.07 2001	1.25 1.97 2001 .001 2000	3.08 9.05 2001 .000 2000	.69 2.08 2001 .000 2000
SUMMARY	STATIS	TICS	FOR :	2000 CALEN	DAR YEAR	F	OR 2001 W	ATER YEAR		WATER :	YEARS 1998	- 2001
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC	MEAN ANNUAL ANNUAL DAILY DAILY M	MEAN MEAN EAN AY MINIMUI LOW TAGE (AC-FT) EEDS EEDS	4	5932.56 16.2 644 .00 .00 11770 25 .00	Jun 10 Jan 1 Jan 1		19573.7 53.6 492 .0 1000 9.9 38820 155 14	Dec 27 00 Oct 1 00 Oct 1 Aug 26 08 Nov 3		51.0 96.5 2.6 2040  7300 144.3 36970 142 1	00 Sep 00 Sep 00 Oct	1999 2000 17 1998 4 1999 6 1999 17 1998 17 1998

08155400 Barton Creek above Barton Springs, Austin, TX--Continued



### 08155400 Barton Creek above Barton Springs, Austin, TX

DRAINAGE AREA. -- 125 mi².

PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1998 to current year. BIOCHEMICAL DATA: Oct. 1998 to current year. PESTICIDE DATA: Oct. 1998 to current year.

INSTRUMENTATION.--Stage-activated automatic sampler.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)
NOV 02-03	1940	194		163			60	30			18	38000	53000
DEC			1.5		7.0	12.0			0.0	02.4			
04 MAR	1240		15	626	7.8	13.0	<1	.8	9.9	93.4	<10	E13	56
12-12 APR	0130	244		434	7.7		100	65			26	5000	E750
16 MAY	1400		44	572	8.0	24.0	2	2.4	6.9	82.6	<10	46	28
03	2315		8.6										
MAY 06-07	2135	323	25	313	7.4		20	68			32	28000	60000
06	2245		682										
07	1700		368										
07	1702		369										
08	1940		78										
10	1505		114										
30	0950		5.4	616	7.2	23.0		.5	4.7	55.4	<10	110	41
DATE	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)
NOV 02-03	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	GEN, NITRATE DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
NOV 02-03 DEC 04	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, TOTAL (MG/L AS N) (00600)	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)
NOV 02-03 DEC 04 MAR 12-12	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, TOTAL (MG/L AS N) (00600)	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)
NOV 02-03 DEC 04 MAR 12-12 APR 16	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 58 <10	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)  .041 <.041	GEN, TOTAL (MG/L AS N) (00600)	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS TOTAL (MG/L AS P) (00665) .164 <.060	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)
NOV 02-03 DEC 04 MAR 12-12 APR 16 MAY 03	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  66 222 134	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)  58 <10 134	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .952	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)  .009 <.006	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .961 .630	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)  .041 <.041 E.038	GEN, TOTAL (MG/L AS N) (00600) 1.64 .905	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .68 .28	PHORUS TOTAL (MG/L AS P) (00665) .164 <.060	PHORUS DIS- SOLVED (MG/L AS P) (00666) .071 <.060 E.032	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .056 <.018	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .172 
NOV 02-03 DEC 04 MAR 12-12 APR 16 MAY 03	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  66 222 134 198	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)  58 <10 134 <10	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)  .952313	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)  .009 <.006 .006 <.006	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .961 .630 .319 .206	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)  .041 <.041 E.038 <.041	GEN, TOTAL (MG/L AS N) (00600) 1.64 .905 1.29 .404	GEN, ORGANIC TOTAL (MG/L AS N) (00605) .634	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)  .68 .28 .97 .20	PHORUS TOTAL (MG/L AS P) (00665) .164 <.060 .164 <.060	PHORUS DIS- SOLVED (MG/L AS P) (00666) .071 <.060 E.032 <.060	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .056 <.018 .021 <.018	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .172  .064
NOV 02-03 DEC 04 MAR 12-12 APR 16 MAY 03 MAY	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  66 222 134 198 104	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)  58 <10 134 <10 150	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)  .952313278	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)  .009 <.006 .006 <.006010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .961 .630 .319 .206	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)  .041 <.041 E.038 <.041 E.029	GEN, TOTAL (MG/L AS N) (00600) 1.64 .905 1.29 .404 	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .68 .28 .97 .20	PHORUS TOTAL (MG/L AS P) (00665) .164 <.060 .164 <.060	PHORUS DIS- SOLVED (MG/L AS P) (00666) .071 <.060 E.032 <.060	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .056 <.018 .021 <.018	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .172  .064  .071
NOV 02-03 DEC 04 MAR 12-12 APR 16 MAY 03 MAY 06-07	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  66 222 134 198 104	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)(00530)  58 <10 134 <10 150	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)  .952313278	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)  .009 <.006 .006 <.006	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)  .961 .630 .319 .206288	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)  .041 <.041 E.038 <.041 E.029	GEN, TOTAL (MG/L AS N) (00600) 1.64 .905 1.29 .404	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)  .68 .28 .97 .20 1.2	PHORUS TOTAL (MG/L AS P) (00665)  .164 <.060 .164 <.060230	PHORUS DIS- SOLVED (MG/L AS P) (00666) .071 <.060 E.032 <.060	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .056 <.018 .021 <.018	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .172  .064  .071
NOV 02-03 DEC 04 MAR 12-12 APR 16 MAY 03 MAY 06-07 06 07	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  66 222 134 198 104	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)  58 <10 134 <10 150	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)  .952313278278	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)  .009 <.006 .006 <.006010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)  .961 .630 .319 .206288	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)  .041 <.041 E.038 <.041 E.029	GEN, TOTAL (MG/L AS N) (00600) 1.64 .905 1.29 .404 	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)  .68 .28 .97 .20 1.2	PHORUS TOTAL (MG/L AS P) (00665)  .164 <.060 .164 <.060230	PHORUS DIS- SOLVED (MG/L AS P) (00666) .071 <.060 E.032 <.060  <.060	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .056 <.018 .021 <.018	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .172  .064  .071
NOV 02-03 DEC 04 MAR 12-12 APR 16 MAY 03 MAY 06-07 06 07	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  66 222 134 198 104	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)  58 <10 134 <10 150	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)  .952313278	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)  .009 <.006 .006 <.006010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)  .961 .630 .319 .206288	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)  .041 <.041 E.038 <.041 E.029	GEN, TOTAL (MG/L AS N) (00600) 1.64 .905 1.29 .404  1.45 	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)  .68 .28 .97 .20 1.2	PHORUS TOTAL (MG/L AS P) (00665) .164 <.060 .164 <.060	PHORUS DIS- SOLVED (MG/L AS P) (00666)  .071 <.060 E.032 <.060 <.060	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .056 <.018 .021 <.018  .023 	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .172  .064  .071 
NOV 02-03 DEC 04 MAR 12-12 APR 16 MAY 03 MAY 06-07 06 07 07	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  66 222 134 198 104	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)  58 <10 134 <10 150	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)  .952313278	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)  .009 <.006 .006 <.006010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)  .961 .630 .319 .206288	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)  .041 <.041 E.038 <.041 E.029	GEN, TOTAL (MG/L AS N) (00600) 1.64 .905 1.29 .404  1.45  	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)  .68 .28 .97 .20 1.2	PHORUS TOTAL (MG/L AS P) (00665)  .164 <.060 .164 <.060230	PHORUS DIS- SOLVED (MG/L AS P) (00666)  .071 <.060 E.032 <.060 <.060	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .056 <.018 .021 <.018	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .172  .064  .071 
NOV 02-03 DEC 04 MAR 12-12 APR 16 MAY 03 MAY 06-07 06 07	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  66 222 134 198 104	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)  58 <10 134 <10 150	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)  .952313278	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)  .009 <.006 .006 <.006010	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)  .961 .630 .319 .206288	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)  .041 <.041 E.038 <.041 E.029	GEN, TOTAL (MG/L AS N) (00600) 1.64 .905 1.29 .404  1.45 	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)  .68 .28 .97 .20 1.2	PHORUS TOTAL (MG/L AS P) (00665) .164 <.060 .164 <.060	PHORUS DIS- SOLVED (MG/L AS P) (00666)  .071 <.060 E.032 <.060 <.060	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .056 <.018 .021 <.018  .023 	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .172  .064  .071 

207

# 08155400 Barton Creek above Barton Springs, Austin, TX--Continued

DATE	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)
NOV 02-03	9.8			E.05	2.4	3	37						
DEC 04	2.7	.2	<.1	<.11	1.9	<1	5						
MAR 12-12	9.8			E.06	3.1	9	27						
APR 16	2.2	.2	<.1	<.11	<1.8	<1	7						
MAY 03								<.002	<.004	<.002	<.005	.015	<.050
MAY 06-07	13			<.11	3.6	10	30						
06							 	<.002 <.002	<.004 <.004	<.002 <.002	<.005 <.005	.583 .173	<.050 <.050
07								<.002 <.002	<.004	<.002 <.002	<.005 <.005	<.007	<.050 <.050
10	 1.5	 .5	 <.1	 <.10	 <1.0	 M	 1	<.002	<.004	<.002	<.005	.058	<.050
30	1.5	.5	<.⊥	<.10	<1.0	141	1						
DATE	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)
NOV 02-03													
DEC 04													
MAR 12-12													
APR 16													
MAY 03	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003	E.005	<.005	<.005	<.021	<.002
MAY 06-07													
06	<.010 <.010	<.002 <.002	E.062	<.020 <.020	E.003	<.006 <.006	<.018 <.018	<.003 <.003	E.015 E.015	.104	<.005 <.005	<.021 <.021	<.002 <.002
07	<.010 <.010	<.002 <.002	<.041 <.041	<.020 <.020	<.005 <.005	<.006 <.006	<.018 <.018	<.003 <.003	<.006 E.010	<.005	<.005 <.005	<.021 <.021	<.002 <.002
10	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003	E.012	E.002	<.005	<.021	<.002
DATE	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLIRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)
NOV 02-03													
DEC 04													
MAR 12-12													
APR 16													
MAY 03	<.009	<.005	<.003	<.004	<.035	<.027	<.013	<.006	<.002	<.007	<.003	<.007	<.006
MAY 06-07													
06	<.009 <.009	<.005 <.005	<.003 <.003	<.004 <.004	<.035 <.035	E.003	E.004 E.003	<.006 <.006	<.002 <.002	<.007 <.007	<.003 <.003	<.007 <.007	<.006 <.006
07 07 10 30	<.009 <.009 <.009 <.009	<.005 <.005 <.005 <.005	<.003 <.003 <.003 <.003	<.004 <.004 <.004 <.004	<.035 <.035 <.035 <.035	<.027 <.027 <.027 <.027	<.013 <.013 <.013	<.006 <.006 <.006 <.006	<.002 <.002 <.002 <.002	<.007 <.007 <.007 <.007	<.003 <.003 <.003 <.003	<.007 <.007 <.007 <.007	<.006 <.006 <.006 <.006

## 08155400 Barton Creek above Barton Springs, Austin, TX--Continued

DATE	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO-BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)
NOV													
02-03													
DEC													
04													
MAR													
12-12													
APR													
16													
MAY 03	<.002	<.010	<.011	<.015	<.010	<.011	<.023	<.004	<.011	<.016	<.034	<.017	<.005
MAY	<.002	<.010	<.011	<.015	<.010	<.011	<.023	<.004	<.011	<.010	<.034	<.017	<.005
06-07													
06	<.002	<.010	<.011	<.015	<.010	<.011	<.023	< .004	E.009	<.016	<.034	<.017	<.005
07	<.002	<.010	<.011	<.015	<.010	<.011	<.023	< .004	.268	<.016	<.034	<.017	<.005
07	<.002	<.010	<.011	<.015	<.010	<.011	<.023	< .004	<.011	<.016	<.034	<.017	<.005
08	<.002	<.010	<.011	<.015	<.010	<.011	<.023	< .004	.043	<.016	<.034	<.017	<.005
10	<.002	<.010	<.011	E.002	<.010	<.011	<.023	< .004	.030	<.016	<.034	<.017	<.005
30													

DATE	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	(UG/L)
	, ,	, ,
NOV 02-03		
DEC		
04		
MAR		
12-12		
APR		
16 MAY		
03	<.002	<.009
MAY	<.002	<.009
06-07		
06	<.002	<.009
07	<.002	<.009
07	<.002	<.009
08	<.002	<.009
10	<.002	<.009
30		

THIS PAGE IS INTENTIONALLY LEFT BLANK.

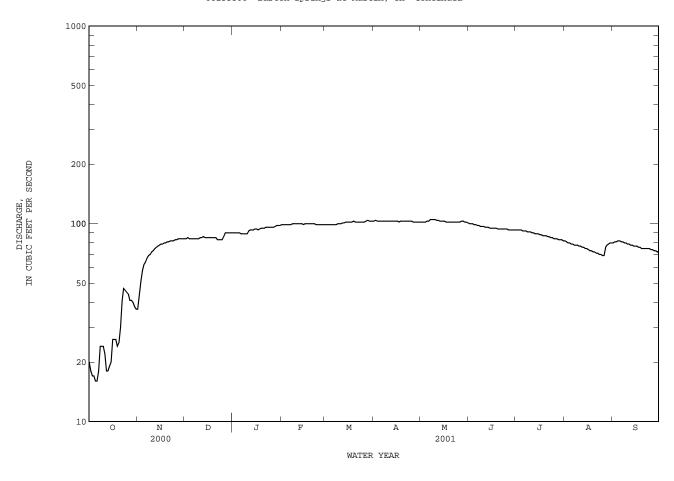
### 08155500 Barton Springs at Austin, TX

LOCATION.--Lat 30°15′48", long 97°46′16", Travis County, Hydrologic Unit 12090205, at ground-water well (YD 58-42-903), on right bank 0.4 mi upstream from Barton Springs Road bridge over Barton Creek, 0.7 mi upstream from mouth, and 1.8 mi southwest of the State Capitol Building in Austin.

DRAINAGE AREA.--Not applicable. Only springflow is published for this station.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Nov. 1894 to Apr. 1917, and Oct. 1918 to Feb. 1978 (discharge measurements only), May 1917 to Sept. 1918 (published as "Barton Creek at Austin, TX"), Mar. 1978 to Sept. 1994 (daily mean discharge), Oct. 1994 to Sept. 1999 (discharge at 1200 hours), Oct. 1999 to current year.


GAGE.--Water-stage recorder. Datum of gage, at ground-water well (YD-58-42-903), is 462.34 ft above sea level. May 1917 to Sept. 1918, nonrecording gage at site 1,000 ft downstream at different datum. Satellite telemeter at station.

REMARKS.--Records poor. Only springflow from the Edwards and associated limestones in the Balcones Fault Zone is published for this station. Operation of Barton Springs pool significantly affects level recorded in well. Pool is drained at closing and allowed to fill after cleaning operations. Under normal conditions gage height is in direct relation with discharge. Determination of flow from spring is considered best when pool/well level has stabilized at 1200 hrs. From Oct. 1, 1994, to Sept. 30, 1999, daily flow has been determined using the recorded level at 1200 hrs. Beginning Oct. 1, 1999, flow is determined from daily mean.

		DISCHARG	E, CUBIC	C FEET PER		WATER YE MEAN VA	EAR OCTOBER	2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	20 18 17 17 16	37 e44 e51 e58 e62	84 84 85 84 84	90 90 90 90	99 99 99 99	e99 e99 e99 99	103 104 103 103 103	102 102 102 102 103	100 100 100 99 99	93 93 93 93 92	82 81 80 80 79	e80 e81 e81 e82 82
6 7 8 9 10	e16 18 24 24 24	e64 e67 e69 e70 e72	84 84 84 84	89 89 89 89	99 99 100 100	99 99 99 100 100	103 103 103 103 103	103 105 105 105 105	98 98 97 97 97	92 92 91 91 91	79 78 78 78 77	81 80 80 79
11 12 13 14 15	22 18 e18 19 20	e73 e75 e76 e77 e78	85 85 86 85 85	e92 e93 e93 e93 e94	100 100 100 100 99	100 101 101 102 102	103 103 103 103 103	104 104 103 103	96 96 96 95 95	90 90 89 89	77 76 76 75 75	79 78 78 77 77
16 17 18 19 20	26 26 26 24 25	e79 e79 e80 e80 e81	85 85 85 85	e94 93 94 95 95	100 100 100 100 100	102 102 102 103 102	103 102 103 103 103	103 102 102 102 102	95 95 95 94 94	88 88 87 87	74 73 73 72 72	77 76 76 75 75
21 22 23 24 25	30 41 47 46 45	e81 e82 e82 e82 e83	85 83 83 83	95 96 96 96	100 100 99 99	102 102 102 102 102	103 103 103 103 103	102 102 102 102 102	94 94 94 94	86 86 85 85	71 71 70 70 69	75 75 75 75 74
26 27 28 29 30 31	44 41 41 40 38 37	e83 e84 e84 e84	86 90 90 90 90	96 96 97 98 98	e99 e99 e99 	102 103 104 103 103 103	102 102 102 102 102	102 103 103 102 102 101	93 93 93 93 93	84 84 83 83 83	69 e76 e78 e79 e80 e80	74 73 73 72 72
TOTAL MEAN MAX MIN AC-FT	868 28.0 47 16 1720	2201 73.4 84 37 4370	2645 85.3 90 83 5250	2893 93.3 98 89 5740	2786 99.5 100 99 5530	3137 101 104 99 6220	3085 103 104 102 6120	3185 103 105 101 6320	2871 95.7 100 93 5690	2730 88.1 93 82 5410	2348 75.7 82 69 4660	2313 77.1 82 72 4590
STATIST	CICS OF MO	NTHLY MEAN	DATA FO	OR WATER Y	EARS 1978	- 2001,	BY WATER Y	EAR (WY)				
MEAN MAX (WY) MIN (WY)	53.6 116 1993 18.5 1990	55.6 104 1999 20.6 1990	55.8 105 1999 18.2 1990	58.9 102 1999 15.8 1990	61.7 120 1992 16.8 1990	64.0 106 1993 21.6 1990	65.8 108 1993 25.2 1996	68.9 108 1993 20.7 1996	72.2 106 1987 26.2 1996	67.3 112 1997 21.0 1996	60.8 126 1992 21.5 1996	55.4 123 1992 21.1 2000
SUMMARY	STATISTI	CS	FOR 2	2000 CALEN	DAR YEAR	F	FOR 2001 WAT	ER YEAR		WATER YE	ARS 1978 -	- 2001
LOWEST HIGHEST LOWEST ANNUAL ANNUAL 10 PERC 50 PERC		AN AN N MINIMUM C-FT) DS DS		13875 37.9 90 16 17 27520 83 28 21	Dec 27 Oct 5 Oct 1		31062 85.1 105 16 17 61610 103 90 63	May 7 Oct 5 Oct 1		62.6 99.3 26.8 130 14 15 45340 100 60 26	Dec 24 Dec 30 Jan 9	1989

e Estimated

08155500 Barton Springs at Austin, TX--Continued



### 08155500 Barton Springs at Austin, TX--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Oct. 1903, June 1941 to Feb. 1959, Dec. 1978 to current year.
BIOCHEMICAL DATA: Dec. 1978 to current year.
RADIOCHEMICAL DATA: Jan. to Sept. 1980.
PESTICIDE DATA: Dec. 1978 to Nov. 1994, Aug. 1998 to current year.

					,					_			
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)
DEC													
06 MAY	1240	84	637	7.1	20.0	<1	.5		6.2	68.2	<10	20	E10
03	2320	102											
07	1430	105	614	6.9		<1	2.1				<10	E280	600
08 10	1950 1440	105 105											
10	1442	105											
13	1955	103											
18 JUN	2100	104											
04 AUG	1430	99	642	6.9	21.0			1.2	7.0	79.8	<10	E73	49
28	0830	4.7	575	6.5	21.0	<1		5.4	6.4	72.4	<10	560	1500
DATE	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
DEC													
06 MAY	262	<10	<.006	1.16	E.024	1.27	.10	<.060	<.060	<.018	2.0	<.1	<.1
03	254	<10	<.006	1 04	<.041		 				1 4		
07 08	254	<10	<.006	1.04	<.041		E.06	<.060	<.060	<.018	1.4		
10													
10													
13 18													
JUN													
04 AUG	250	<10	<.006	1.25	<.040		E.05	<.060	<.060	<.020	E.42	<.1	<.1
28	242	<10	<.006	1.52	<.040	1.63	.11	<.060	<.060	<.020	2.3		
DATE	CADMIUM WATER UNFLITED TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)
DEC 06 MAY	<.11	<1.2	<1	<1									
03					<.002	<.004	<.002	<.005	.017	<.050	<.010	<.002	<.041
07	<.11	<1.2	<1	1									
08 10					<.002 <.002	<.004 <.004	<.002 <.002	<.005 <.005	.207 .104	<.050 <.050	<.010 <.010	<.002 <.002	<.041 <.041
10					<.002	<.004	<.002	<.005	.091	<.050	<.010	<.002	<.041
13					<.002	<.004	<.002	< .005	.028	<.050	<.010	<.002	<.041
18 JUN					<.002	<.004	<.002	<.005	.020	<.050	<.010	<.002	<.041
04 AUG	<.10	<1.0	<1	<1									
28	<.10	<1.0	<1	<1									

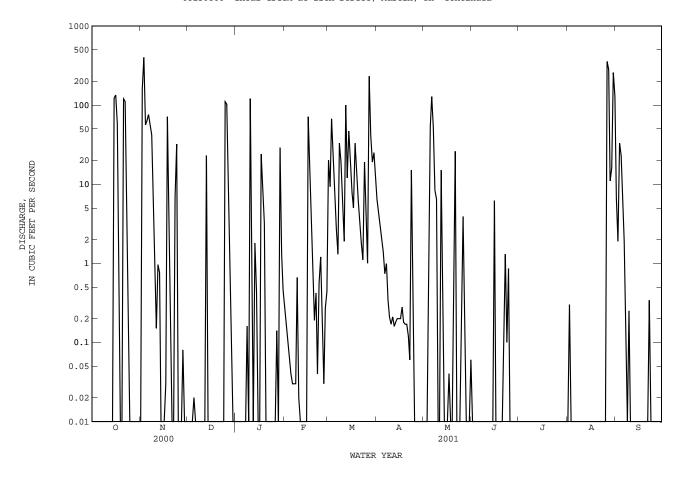
## 08155500 Barton Springs at Austin, TX--Continued

			MAIDIC	QUALITIE	MIN, WALL	IC TEARCOC	TODER ZUC	JO TO DEFT	ENDER 200	, _			
DATE	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)
DEC 06													
MAY													
03 07	<.020	<.005	<.006	<.018	<.003	E.011	<.005	<.005	<.021	<.002	<.009	<.005	<.003
08 10	<.020 <.020	<.005 <.005	<.006 <.006	<.018 <.018	<.003 <.003	E.022 E.018	E.005	<.005 <.005	<.021 <.021	<.002 <.002	<.009 <.009	<.005 <.005	<.003 <.003
10	<.020	<.005	<.006	<.018	<.003	E.019	<.005	<.005	<.021	<.002	<.009	<.005	<.003
13 18	<.020 <.020	<.005 <.005	<.006 <.006	<.018 <.018	<.003 <.003	E.011 E.010	<.005 <.005	<.005 <.005	<.021 <.021	<.005 <.002	<.009 <.009	<.005 <.005	<.003 <.003
JUN 04 AUG													
28													
DATE	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PHORATE WATER FLITRD 0.7 U GF, REC (UG/L) (82664)
DEC													
06 MAY													
03 07	<.004	<.035	<.027	<.013	<.006	<.002	<.007	<.003	<.007	<.006	<.002	<.010	<.011
08	<.004	<.035	<.027	<.013	<.006	<.002	<.007	<.003	<.007	<.006	<.002	<.010	<.011
10 10	<.004 <.004	<.035 <.035	<.027 <.027	<.013 <.013	<.006 <.006	<.002 <.002	<.007 <.007	<.004 <.003	<.007 <.007	<.006 <.006	<.002 <.002	<.010 <.010	<.011 <.011
13 18	<.004 <.004	<.035 <.035	<.027 <.027	<.013 <.013	<.006 <.006	<.002 <.002	<.007 <.007	<.003 <.003	<.007 <.007	<.006 <.006	<.002 <.002	<.010 <.010	<.011 <.011
JUN 04													
AUG													
28													
DATE	PRO MET WAT DIS REC (UG/ (040	ON, CHL ER, WAT S, DIS E REC L) (UG/	OR, WAT ER, FLT S, 0.7 GF, L) (UG/	IL PARGER WATER WA	TER WAT TRD FLT 7 U 0.7 REC GF, (L) (UG/	DE SI- ER MAZI RD WAT U DIS REC REC L) (UG/	NE, WATER, FLTSS, 0.7 S, 0.7 S, GF, L) (UG/	JRON BAC FER WAT FRD FLT 7 U 0.7 REC GF, /L) (UG/	EIL BUF ER WAT RD FLT 'U 0.7 REC GF, 'L) (UG/	TER WATERD FLTVU 0.7 REC GF, (L) (UG/	CARB LAT CER WAT CRD FLT U 0.7 REC GF, (L) (UG/	E FLU ER ALI RD WAT U 0.7 REC GF, L) (UG/	N FLT U REC L)
DEC 06 MAY	_												-
03	<.0			11 <.0	023 <.0	04 E.O							
07 08	<.0	15 <.0				04 E.0	05 <.0	 016 <.0			005 <.0	02 <.0	09
10 10	E.0 E.0	02 <.0	10 <.0	11 <.0	23 <.0	04 E.0	08 <.0	016 <.0	34 <.0	17 <.0	005 <.0	02 <.0	09
13	<.0	15 <.0	10 <.0	11 <.0	23 <.0	04 E.0	04 <.0	016 <.0	34 <.0	17 <.0	005 <.0	02 <.0	09
18 JUN	<.0	15 <.0	10 <.0	11 <.0			06 <.0	016 <.0	134 <.0	)17 <.0	005 <.0		
04 AUG	-												-
28	-												-

### 08156800 Shoal Creek at 12th Street, Austin, TX

DRATNAGE AREA. -- 12.3 mi².

#### WATER-DISCHARGE RECORDS


PERIOD OF RECORD.--Nov. 1974 to Mar. 1975 (periodic discharge measurement, and associated peak discharges along with annual maximum), Apr. 1975 to Sept. 1984 (peak discharges greater than base discharge), Oct. 1984 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 455.33 ft above sea level. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. No flow at times.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .00 .00 OΩ 0020 6.4 0.0 OΩ ΛN ΛN 6.7 2 159 .00 .00 .00 .15 9.3 4.6 .00 .00 .00 .30 1.9 .00 400 .00 .00 .09 3.2 .00 .00 .00 .00 .00 56 . 00 ΛN .06 19 2.2 .84 . 00 .00 .00 23 5 53 5.9 .00 63 .02 .00 .04 7.6 1.4 .00 .00 .00 2.7 1.3 6 7 0.0 76 ΛN  $\cap$ UЗ 128 ΛN  $\cap \cap$  $\cap$ 1 9 .99 .00 56 .00 .00 .03 52 .00 .00 .00 .09 8.4 8 .00 42 .00 .16 .03 .34 .00 .00 .00 .00 0.0 9.2 00 .00 66 19 21 6.5 00 0.0 0.0 25 1.9 .17 10 5.6 .01 .00 .00 .02 .00 .00 .00 .00 11 0.0 15 0.0 3.3 01 1.9 21 .00 0.0 0.0 0.0 0.0 12 .01 100 .16 .00 .96 .00 .01 .00 .00 .00 .00 .00 23 1.8 1.1 .01 12 .18 .00 .00 .43 .00 .00 .01 14 .00 00 47 20 00 0.0 0.0 00 122 .20 15 .00 .00 .00 .01 18 .00 6.2 .00 .00 .00 7 8 00 0.0 0.0 16 134 0.0 .00 71 20 0.0 0.0 0.0 17 6.5 .28 .04 .00 58 .03 .00 5.0 .00 .00 .00 2.4 .00 8.5 33 .18 .00 .00 .00 .00 19 0.0 18 0.0 3.2 .48 14 17 0.0 0.0 0.0 0.0 00 .01 6.1 .17 2.4 20 .00 2.3 .00 .00 .19 .00 .00 .00 00 42 12 21 120 01 0.0 3 4 23 0.0 0.0 0.0 26 22 1.8 .00 .00 .00 .00 .04 .06 1.3 .00 .00 .34 23 35 6.9 .00 .00 .56 1.1 15 .00 .10 .00 .00 .00 3 6 19 1 6 24 32 0.0 0.0 1 2 0.0 86 0.0 0.0 00 .01 25 110 .00 4.8 .01 .69 .00 .00 26 .00 .00 103 .00 .03 1.0 .01 3.9 .00 .00 357 .00 27 231 .00 .00 16 .00 .00 284 28 .00 .08 .60 .00 .44 41 .01 .00 .00 .00 11 .00 29 19 29 .00 .00 .04 .00 .00 .00 .00 16 .00 30 .00 .01 1.3 ___ 25 .00 .00 .00 257 31 .00 .01 .46 ---12 .06 .00 129 39.02 TOTAL 586.00 995.30 252.68 193.31 84.32 788.4 298.28 8.69 0.00 1054.30 73.08 MEAN 18.9 33.2 8.15 6.24 3.01 25.4 1.30 9.62 .29 .000 34.0 2.44 231 134 400 110 121 71 128 6.2 .00 357 33 MAX 15 MIN .00 .00 .00 .00 .01 1.0 .00 .00 .00 .00 .00 .00 77 AC-FT 1160 1970 501 383 167 1560 592 17 .00 2090 145 CFSM 2.70 2.07 2.77 1.54 .51 .24 .78 .02 .00 .66 .20 IN. 1.77 3.01 .76 .58 .12 .03 .00 .22 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2001, BY WATER YEAR (WY) 7.38 13.9 7.36 9.71 6.24 15.9 MEAN 5.30 5.55 5.14 10.4 2.24 5.04 67.6 33.2 70.8 22.6 29.2 25.4 18.2 1997 38.7 46.1 11.9 38.9 12.5 MAX (WY) 1999 2001 1992 1991 1992 2001 1995 1987 1987 1996 1986 MTN . 2.2 .000 .065 .000 .000 .012. 41 .11 . 29 .000 .000 .000 (WY) 1997 2000 1996 1996 1999 1996 1998 1998 2001 1989 1993 1999 FOR 2001 WATER YEAR FOR 2000 CALENDAR YEAR SUMMARY STATISTICS WATER YEARS 1985 - 2001 ANNUAL TOTAL 3076.83 4373.38 7.87 ANNUAL MEAN 8.41 12.0 HIGHEST ANNUAL MEAN 15.7 LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 3.26 1988 1030 Oct. 17 1998 400 Nov 3 400 Nov .00 Jan LOWEST DAILY MEAN Oct Oct May 6 1985 ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW .00 Jan 10 .00 Oct 1 .00 5680 16000 Aug 26 May 24 1981 MAXIMUM PEAK STAGE 15.97 23.11 May 24 1981 Aug 26 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 8670 5700 6100 .68 .64 ANNUAL RUNOFF (INCHES) 9.31 13.23 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 19 25 13 .00 .00 .01 90 PERCENT EXCEEDS .00 .00 .00

08156800 Shoal Creek at 12th Street, Austin, TX--Continued



### 08156800 Shoal Creek at 12th Street, Austin, TX--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Feb. 1943, Nov. 1974 to current year.
BIOCHEMICAL DATA: Feb. 1943, Nov. 1974 to current year.
RADIOCHEMICAL DATA: Apr. 1980.
PESTICIDE DATA: Jan. 1975 to Sept. 1985, Jan. 1993 to May 1996, Dec. 1997 to current year.

 ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$ 

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)
OCT 15-16 MAR 27-27	1950 1035	355 481	137 165	7.9 7.5	22.0	55 80	400 200	71 17	E140000 12000	55000 30000	42 51	960 <10	.410
DATE	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
OCT 15-16 MAR 27-27	.015	.425	.099	2.73	2.21	2.3	.864	E.059	.051	.156	32 17	.45	15.9 9.6

DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
OCT 15-16	32	111
MAR 27-27	22	63

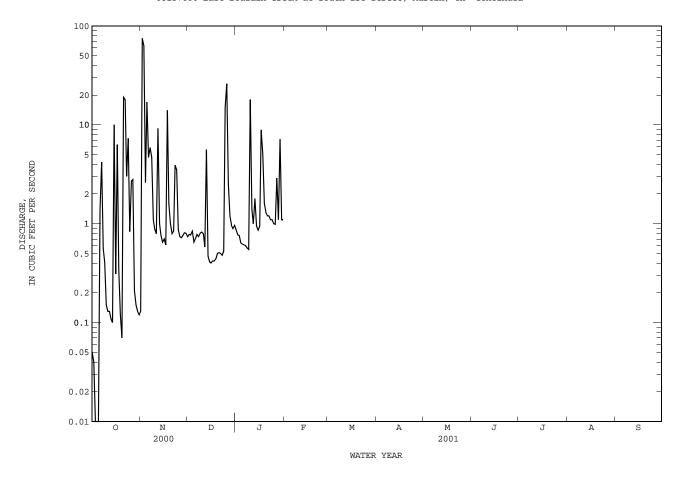
THIS PAGE IS INTENTIONALLY LEFT BLANK.

### 08157600 East Bouldin Creek at South 1st Street, Austin, TX

LOCATION.--Lat 30°15′07", long 97°45′14", Travis County, Hydrologic Unit 12090205, at bridge on South 1st Street, and 1.75 mi south of State Capitol Building in Austin.

DRAINAGE AREA. -- 2.4 mi².

PERIOD OF RECORD.--Apr. 1997 to Jan. 2001 (discontinued).
Water-quality records.--Chemical data: June 1997 to June 2001. Biochemical data: June 1997 to June 2001.


GAGE.--Water-stage recorder. Satellite telemeter at station.

REMARKS.--Records fair. No known regulation or diversion. No flow at times.

		DISCHAF	RGE, CUBI	C FEET PER		NATER YEA MEAN VAI		2000 TO 3	SEPTEMBE	R 2001			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	.05	.13	.74	.86									
2	.04	75	.78	.77									
3	.01	63	.77	.76									
4 5	.01	2.6	.84	.64									
Э	.00	17	.65	.62									
6	1.4	4.7	.71	.61									
7	4.2	5.9	.78	.60									
8 9	.56 .41	4.7 1.1	.74 .80	.57 .55									
10	.15	.88	.82	18									
11 12	.13 .13	.79 9.2	.79 .58	1.4									
13	.13	1.0	5.6	1.8									
14	.10	.76	.47	.95									
15	10	.65	.41	.86									
16	21	70	40	.94									
16 17	.31 6.3	.70 .61	.40 .42	8.9									
18	.35	14	.42	5.1									
19	.12	1.6	.44	1.6									
20	.07	1.0	.50	1.3									
21	19	.79	.51	1.2									
22	18	.84	.50	1.2									
23	3.0	3.9	.48	1.1									
24	7.3	3.5	.53	1.1									
25	.83	.87	15	1.0									
26	e2.7	.74	26	.99									
27	e2.8	.72	2.5	2.9									
28	e.21	.76	1.2	1.1									
29 30	e.15	.81 .80	.96 .89	7.2 1.1									
31	.13 .12	.00	.96	1.1									
TOTAL	78.69	219.05	67.19	67.82									
MEAN	2.54	7.30	2.17	2.19									
MAX MIN	19 .00	75 .13	26 .40	18 .55									
AC-FT	156	434	133	135									
STATIST	rics of M	MONTHLY MEA	AN DATA F	OR WATER Y	EARS 1997	- 2001,	BY WATER Y	YEAR (WY)					
MEAN	2.70	2.49	1.29	1.24	.72	1.35	1.07	1.89	2.68	.65	.51	.52	
MAX	6.17	7.30	2.17	2.19	1.07	2.03	2.58	4.07	6.12	1.80	.81	1.52	
(WY) MIN	1999 .55	2001 .37	2001 .76	2001 .52	1998 .31	1999 .50	1997 .30	1997 .21	1997 .24	1999 .11	1997 .075	1998 .11	
(WY)	2000	2000	1999	1999	1999	2000	1999	1998	1998	1998	2000	2000	
	Y STATIST			2000 CALEN			OR 2001 WAT			WATER YEARS 1997 - 2001			
7 7 TATA T	TOTAT			E00 17									
ANNUAL ANNUAL				598.17 1.63						1.05			
	r annual	MEAN								1.50		1999	
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN										.81	.81 2		
				75	Nov 2	75 Nov 2 .00 Oct 5				110			
LOWEST DAILY MEAN				.00 May 15 .00 Jun 29					.00 Sep 14 1997 .00 Sep 14 1997				
ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW				.00	Juli 29	.23 Oct 8 818 Nov 2				943		7 1998	
MAXIMUM PEAK STAGE								Nov 2		7.01		7 1998	
ANNUAL RUNOFF (AC-FT)				1190									
10 PERCENT EXCEEDS				2.9			8.3		2.1				
50 PERCENT EXCEEDS				.19			.82		. 26				
JU PERC	90 PERCENT EXCEEDS .00 .13 .01												

e Estimated

08157600 East Bouldin Creek at South 1st Street, Austin, TX--Continued

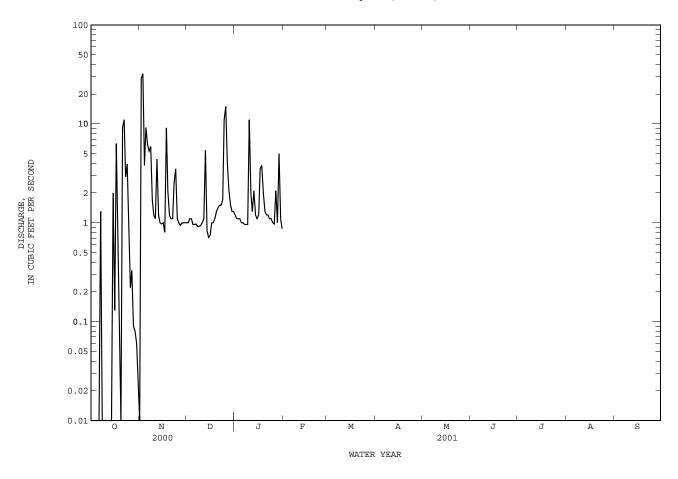


### 08157700 Blunn Creek near Little Stacy Park, Austin, TX

LOCATION.--Lat 30°14′50", long 97°44′37", Travis County, Hydrologic Unit 12090205, on right bank near intersection of Sunset Lane and Eastside Drive.

DRAINAGE AREA.--1.2 mi².

### WATER-DISCHARGE RECORDS


PERIOD OF RECORD. -- Apr. 1997 to Jan. 2001 (discontinued).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 490 ft above sea level. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair except those below  $0.50~{\rm ft}^3/{\rm s}$ , which are poor. No known regulation or diversions. No flow at times.

		DISCHA	RGE, CUBI	C FEET PER		WATER YE	AR OCTOBER LUES	2000 TO	SEPTEMBE	R 2001				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	.00	.00	1.0	1.2										
2	.00	29	1.0	1.1										
3 4	.00	32	1.1	1.1										
4 5	.00	3.8 9.2	1.1 .96	1.1 1.0										
3	.00	٥.2		1.0										
6	.00	6.2	.96	1.0										
7 8	1.3	5.3 5.9	.97 .92	.96 .96										
9	.00	1.7	.92	.96										
10	.00	1.2	.94	11										
	0.0	1 1	1 0	0.0										
11 12	.00	$\frac{1.1}{4.4}$	1.0 1.1	2.0 1.3										
13	.00	1.2	5.4	2.1										
14	.00	1.0	.82	1.2										
15	2.0	.97	.71	1.1										
16	.13	1.0	.74	1.2										
17	6.3	.80	.99	3.5										
18	.57	9.1	1.0	3.8										
19 20	.05 .00	2.1 1.2	1.1 1.3	2.0										
20	.00	1.2	1.3	1.3										
21	9.2	1.1	1.4	1.2										
22	11	1.1	1.5	1.2										
23 24	2.9 3.9	2.5 3.5	1.5 1.7	1.1 1.1										
25	1.4	1.1	11	1.0										
26	.22	.99 .94	15 4.0	.97										
27 28	.33 .09	.94	2.1	2.1 1.0										
29	.08	1.0	1.5	5.0										
30	.06	1.0	1.3	1.1										
31	.02		1.3	.87										
TOTAL	39.55	131.39	66.33	56.52										
MEAN	1.28	4.38	2.14	1.82										
MAX	11	32	15	11										
MIN AC-FT	.00 78	.00 261	.71 132	.87 112										
110 11	, 0	201	132											
STATIST	TICS OF N	MONTHLY ME	AN DATA F	OR WATER Y		- 2001,	BY WATER Y	YEAR (WY)						
MEAN	2.08	2.01	1.02	.88	.39	1.65	.33	.78	1.39	.53	.20	.42		
MAX (WY)	6.32 1999	4.38 2001	2.14 2001	1.82 2001	.44 2000	3.71 1999	.41 2000	1.50 1999	2.57 1999	1.79 1999	.51 1998	1.51 1998		
MIN	.21	.003	.14	.27	.35	.21	.27	.097	.086	.067	.000	.000		
(WY)	2000	2000	2000	1998	1999	2000	1999	1998	1998	2000	2000	2000		
SUMMAR	Y STATIST	rics	FOR	2000 CALEN	DAR YEAR	F	OR 2001 WAT	TER YEAR		WATER YEA	ARS 1997	- 2001		
ANNUAL	TOTAL.			390.02										
ANNUAL				390.02 1.07						.91				
	T ANNUAL									1.65		1999		
LOWEST ANNUAL MEAN			32 Nov 3 .00 Jan 1			20			.45 200 96 Oct 17 199 .00 Apr 19 199					
HIGHEST DAILY MEAN LOWEST DAILY MEAN							32 .00	Nov 3 Oct 1						
ANNUAL SEVEN-DAY MINIMUM				.00		.00 Oct 8				.00 May 3 1998				
MAXIMUM PEAK FLOW							245	Nov 3		827	Oct 1	7 1998		
MAXIMUM PEAK STAGE				771			4.21	Nov 3		6.65 Oct 17 1998				
ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS				774 2.6			5.7				660 2.0			
50 PERCENT EXCEEDS				.03			1.1			.15				
90 PER	CENT EXC	EEDS		.00			.00			.00				

08157700 Blunn Creek near Little Stacy Park, Austin, TX--Continued



## 08157700 Blunn Creek near Little Stacy Park, Austin, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Mar. 1999 to June 1999. BIOCHEMICAL DATA: Mar. 1999 to Feb. 2001 (discontinued).

INSTRUMENTATION. -- Stage-activated automatic sampler.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
OCT 15-15	2005	9.8	207	8.0	50	200	120	E140000	92000	56	668	.700	.024
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)
OCT 15-15	.724	.276	5.23	4.23	4.5	1.35	.115	.102	.313	54	.66	21.7	59

ZINC, TOTAL RECOV-ERABLE (UG/L AS ZN) (01092) DATE

OCT 15-15

190

THIS PAGE IS INTENTIONALLY LEFT BLANK.

#### 08157900 Town Lake at Austin, TX

LOCATION.--Lat  $30^{\circ}14'56$ ", long  $97^{\circ}43'03$ ", Travis County, Hydrologic Unit 12090205, at Longhorn Dam on the Colorado River at Austin, 1.5 mi downstream from Interstate Highway 35, and 2.3 mi southeast of the State Capitol Building in Austin.

DRAINAGE AREA.--39,003  $\mathrm{mi}^2$ , approximately, of which 11,403  $\mathrm{mi}^2$  probably is noncontributing.

PERIOD OF RECORD.-CHEMICAL DATA: Feb. 1975 to Aug. 1990, Oct. 1990 to current year.
BIOCHEMICAL DATA: Feb. 1975 to Aug. 1990, Oct. 1990 to current year.
PESTICIDE DATA: Feb. 1975 to Aug. 1990, Feb. 1991 to current year.

REMARKS.--Trace metal and pesticide analyses of bottom sediments at selected sites Feb. 1991 to current year.

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			MILLIE	2012211 2	3015590	97424801	Twn Lk	: AR	200	-			
		DA	TE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)			
		1 1	6 6 6	0905 0907 0909 0911	1.00 10.0 20.0 27.0	509 516 517 522	8.2 7.8 7.5 7.5	25.9 23.1 20.9 21.3	7.6 6.2 3.0 2.6	94 73 34 30			
		0	7 7 7	0823 0825 0827	1.00 10.0 22.0	451 450 472	7.7 7.7 7.6	20.5 20.5 19.5	7.6 7.5 6.3	85 84 69			
					3015000	97424801	Twn Lk	AC					
DATE	TIME	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	
OCT 16 16 16	0840 0842 0844 0846	2.10   	1.00 10.0 20.0 27.0	512 507 509 516	8.2 8.0 7.9 7.5	26.0 23.9 23.4 21.0	.8   .6	.9   .8	7.8 7.1 7.0 4.4	97 85 83 50	<10   	390   	480   
MAY 07 07 07 07	0757 0759 0801 0803 0805	.82    	1.00 10.0 20.0 25.0 28.0	444 454 470 470 477	7.7 7.7 7.6 7.4 7.4	20.5 20.0 19.5 19.0 19.0	  	10    7.9	7.7 7.4 6.4 4.8 4.2	86 82 70 52 46	   	3800    	5400    
JUN 21	1335												
					3015000	97424801	Twn Lk	AC AC					
DATE	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	GEN,	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 16 16	153	289	<10  	.042	.006	.048	<.041	.33	  	.28	<.060	<.060	<.018
16 MAY 07	176 135	284 267	<10 <10	.126	.010	.136	.060	.50 .77	.30	.36	<.060 E.031	<.060 <.060	<.018
07 07													
07 07	 147	 278	 <10	.340	.013	.353	.065	 .79	.37	.44	E.031	<.060	<.018
JUN 21													

### 08157900 Town Lake at Austin, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

## 301500097424801 -- Twn Lk AC

DATE	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01029)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)
OCT													
16	3.7	5.9	E.2									5.1	
16													
16													
16	3.9											4.5	
MAY													
07	6.0	.8	<.1								2.5	E1.3	
07													
07													
07													
07	4.5										3.0	2.5	
JUN													
21				87	90	95	100	100	.5	12			22

### 301500097424801 -- Twn Lk AC

DATE	IRON, SEDIMT, BED MA- TERIAL AS FE) (01170)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01053)		RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
OCT						
16			<1.00			
16						
16						
16			<1.00			
MAY						
07						
07						
07						
07						
07						
JUN						
21	8700	52		500	.06	90

### 301503097424701 -- Twn Lk AL

				PH			OXYGEN,
			SPE-	WATER			DIS-
			CIFIC	WHOLE			SOLVED
		SAM-	CON-	FIELD	TEMPER-	OXYGEN,	(PER-
		PLING	DUCT-	(STAND-	ATURE	DIS-	CENT
DATE	TIME	DEPTH	ANCE	ARD	WATER	SOLVED	SATUR-
		(FEET)	(US/CM)	UNITS)	(DEG C)	(MG/L)	ATION)
		(00003)	(00095)	(00400)	(00010)	(00300)	(00301)
OCT							
16	0915	1.00	512	8.1	26.7	6.9	87
16	0917	10.0	485	7.8	23.4	6.2	73
16	0919	17.0	521	7.4	21.8	2.5	29

## 301504097440901 -- Twn Lk BC

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
OCT							
16	0925	1.00	498	8.3	25.0	8.3	101
16	0927	10.0	402	8.1	23.7	7.0	83
16	0929	20.0	524	7.4	21.0	2.2	25
16	0931	29.0	525	7.3	21.2	1.3	15

### 08157900 Town Lake at Austin, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

301503097424701 -- Twn Lk AL

		MAY 0 0	TE 7 7	TIME 0832 0834 0836	SAM- PLING DEPTH (FEET) (00003) 1.00 10.0 18.0	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 422 460 460	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)  7.7 7.7 7.6	TEMPER-ATURE WATER (DEG C) (00010)  20.5 20.5 20.0	OXYGEN, DIS- SOLVED (MG/L) (00300) 7.5 7.2 7.0	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)			
					3015000	97440801	Twn Lk	BR.					
		DA OCT	TE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)			
		1 1 1	6 6 6	0935 0937 0939 0941	1.00 10.0 20.0 26.0	498 412 524 526	8.3 8.0 7.4 7.3	24.8 23.6 21.0 21.2	8.0 6.4 2.6 1.9	97 76 29 22			
		0	7 7 7	0855 0857 0859	1.00 10.0 20.0	330 336 331	7.8 7.7 7.8	21.0 20.5 20.5	7.3 7.3 7.3	82 82 82			
					3015040	97440901	Twn Lk	BC BC					
DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)
MAY 07 07 07 07 JUN	0844 0846 0848 0850	1.00 10.0 20.0 29.0	307 310 320 367	7.8 7.8 7.8 7.7	20.5 20.5 20.5 20.5	7.3 7.3 7.3 7.3	82 82 82 82	  	  	  	  	  	  
21	1355							95	98	100	100	100	.4
					3015040	97440901	Twn Lk	BC BC					
		DA	TE	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01029)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)	IRON, SEDIMT, BED MA- TERIAL AS FE) (01170)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01053)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG) (71921)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)			
		0	7 7 7 7	  	  	  	  	  	  	  			
			1	8.5	24	6300	52	390	.06	110			
					3015440	97445201	Twn Lk	CR.					
		DA	TE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)			
		0	7 7 7	0938 0940 0942	1.00 10.0 14.0	270 402 408	7.7 7.7 7.6	21.0 20.0 20.0	7.6 7.3 7.3	86 81 81			

### 08157900 Town Lake at Austin, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

301546097445101 -- Twn Lk CC

					3015460	97445101	Twn Lk	CC					
DATE	TIME	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)
OCT 16 16 16 MAY	1000 1002 1004	.30	1.00 10.0 18.0	419 441 313	8.2 7.8 7.8	23.6 22.4 22.2	30  58	32  .3	7.3 6.9 6.4	87 80 74	13  	E32000  	22000  
07 07 07	0918 0920 0922	.31	1.00 10.0 16.0	327 424 422	7.6 7.6 7.6	20.0 20.0 20.0	  	51  30	7.6 7.3 7.3	84 81 81	  	22000  	17000  
JUN 21	1415												
					3015460	97445101	Twn Lk	CC					
DATE	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 16 16 16 MAY	126  136	232  194	32  76	.155  .219	.009	.164  .226	E.036  .071	.75  .81	  .51	.59  .58	.109  .133	<.060  <.060	.018  E.014
07 07	92 	187	45	.476	.012	.488	.088	1.0	.45	.54	.109	.065	.050
07 JUN	141	248	22	.459	.006	.465	E.040	.92		.45	.072	<.060	.022
21													
					3015460	97445101	Twn Lk	CC					
DATE	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	THAN	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01029)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)
OCT 16	.055	5.1	10.8	E.4									3.6
16 16		5.1											2.9
MAY 07 07	.153	5.8	.3	<.1								3.0	1.6
07 JUN	.067	6.8										2.5	1.3
21					85	92	98	100	100	.5	16		
					3015460	97445101	Twn Lk	CC					
		DA	TE	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)	IRON, SEDIMT, BED MA- TERIAL AS FE) (01170)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01053)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG) (71921)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)			
		1	6 6 6	  	  	  	<1.00  <1.00	  	  	  			
		0	7										
		JUN											
		2	1	22	12000	55		370	.04	130			

### 08157900 Town Lake at Austin, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

301556097452301 -- Twn Lk DR

		OCT	.TE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)			
			6	1100	13.0	524	7.6	21.4	5.6	64			
		0	7	1012 1014	1.00 13.0	458 462	7.4 7.6	21.0 20.0	6.9 6.8	78 75			
					3015580	97452201	Twn Lk	DC					
DATE	TIME	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)
OCT 16 16 16 MAY	1045 1047 1049	.80  	1.00 10.0 19.0	512 528 525	8.0 7.6 7.4	22.5 21.7 21.1	1.6  2.5	6.4  2.4	7.9 6.4 2.7	92 73 31	<10  	10000	7500  
07 07	0953 0955	.61	1.00 10.0	464 456	7.6 7.7	20.0		21	7.5 7.5	83 83		9200	8000
07 JUN	0957		20.0	440	7.8	19.8		7.3	7.3	80			
21	1435												
					3015580	97452201	Twn Lk	DC					
	ALKA- LINITY	SOLIDS, RESIDUE	RESIDUE TOTAL	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,		NITRO-	NITRO- GEN,AM-		PHOS-	PHOS- PHORUS
DATE	WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	DIS- SOLVED (MG/L AS N) (00618)	DIS- SOLVED (MG/L AS N) (00613)	NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 16	TOT IT FIELD MG/L AS CACO3 (39086)	DEG. C DIS- SOLVED (MG/L) (70300)	DEG. C, SUS- PENDED (MG/L) (00530)	DIS- SOLVED (MG/L AS N) (00618)	DIS- SOLVED (MG/L AS N) (00613)	DIS- SOLVED (MG/L AS N) (00631)	DIS- SOLVED (MG/L AS N) (00608)	GEN, TOTAL (MG/L AS N) (00600)	ORGANIC TOTAL (MG/L AS N) (00605)	ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS TOTAL (MG/L AS P) (00665)	DIS- SOLVED (MG/L AS P) (00666)	DIS- SOLVED (MG/L AS P)
OCT 16 16	TOT IT FIELD MG/L AS CACO3 (39086)	DEG. C DIS- SOLVED (MG/L) (70300)	DEG. C, SUS- PENDED (MG/L) (00530)	DIS- SOLVED (MG/L AS N) (00618)	DIS- SOLVED (MG/L AS N) (00613)	DIS- SOLVED (MG/L AS N) (00631)	DIS- SOLVED (MG/L AS N) (00608)	GEN, TOTAL (MG/L AS N) (00600)	ORGANIC TOTAL (MG/L AS N) (00605)	ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS TOTAL (MG/L AS P) (00665)	DIS- SOLVED (MG/L AS P) (00666)	DIS- SOLVED (MG/L AS P) (00671)
OCT 16 16 16 MAY 07	TOT IT FIELD MG/L AS CACO3 (39086) 161  161 158	DEG. C DIS- SOLVED (MG/L) (70300)	DEG. C, SUS- PENDED (MG/L) (00530) <10  <10	DIS- SOLVED (MG/L AS N) (00618)	DIS- SOLVED (MG/L AS N) (00613) E.005  .006	DIS- SOLVED (MG/L AS N) (00631) .220  .165	DIS- SOLVED (MG/L AS N) (00608) <.041  .158 E.023	GEN, TOTAL (MG/L AS N) (00600)	ORGANIC TOTAL (MG/L AS N) (00605)	ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS TOTAL (MG/L AS P) (00665) E.037  E.038	DIS- SOLVED (MG/L AS P) (00666)  <.060  <.060	DIS- SOLVED (MG/L AS P) (00671) <.018  E.017
OCT 16 16 16 MAY	TOT IT FIELD MG/L AS CACO3 (39086)	DEG. C DIS- SOLVED (MG/L) (70300)	DEG. C, SUS- PENDED (MG/L) (00530)	DIS- SOLVED (MG/L AS N) (00618)	DIS- SOLVED (MG/L AS N) (00613) E.005	DIS- SOLVED (MG/L AS N) (00631)	DIS- SOLVED (MG/L AS N) (00608) <.041  .158	GEN, TOTAL (MG/L AS N) (00600)	ORGANIC TOTAL (MG/L AS N) (00605)	ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS TOTAL (MG/L AS P) (00665) E.037  E.038	DIS- SOLVED (MG/L AS P) (00666) <.060	DIS- SOLVED (MG/L AS P) (00671) <.018
OCT 16 16 MAY 07 07	TOT IT FIELD MG/L AS CACO3 (39086)  161 161 158	DEG. C DIS- SOLVED (MG/L) (70300)	DEG. C, SUS- PENDED (MG/L) (00530) <10  <10	DIS- SOLVED (MG/L AS N) (00618)	DIS- SOLVED (MG/L AS N) (00613) E.005  .006	DIS- SOLVED (MG/L AS N) (00631) .220  .165	DIS- SOLVED (MG/L AS N) (00608) <.041  .158 E.023	GEN, TOTAL (MG/L AS N) (00600)	ORGANIC TOTAL (MG/L AS N) (00605)	ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS TOTAL (MG/L AS P) (00665) E.037  E.038	DIS- SOLVED (MG/L AS P) (00666) <.060  <.060	DIS- SOLVED (MG/L AS P) (00671) <.018  E.017
OCT 16 16 MAY 07 07 UN	TOT IT FIELD MG/L AS CACO3 (39086) 161  161 158  138	DEG. C DIS- SOLVED (MG/L) (70300) 282  290 267  260	DEG. C, SUS- PENDED (MG/L) (00530) <10  <10 15  14	DIS- SOLVED (MG/L AS N) (00618)	DIS- SOLVED (MG/L AS N) (00613) E.005  .006 E.005  E.005	DIS- SOLVED (MG/L AS N) (00631) .220  .165 .518  .380	DIS- SOLVED (MG/L AS N) (00608) <.041  .158 E.023  .052	GEN, TOTAL (MG/L AS N) (00600) .55  .60 .87  .78	ORGANIC TOTAL (MG/L AS N) (00605)	ORGANIC TOTAL (MG/L AS N) (00625) .33  .43 .35  .40	PHORUS TOTAL (MG/L AS P) (00665) E.037  E.038	DIS- SOLVED (MG/L AS P) (00666) <.060  <.060	DIS- SOLVED (MG/L AS P) (00671) <.018  E.017 E.013  E.012
OCT 16 16 MAY 07 07 UN	TOT IT FIELD MG/L AS CACO3 (39086) 161  161 158  138	DEG. C DIS- SOLVED (MG/L) (70300) 282  290 267  260	DEG. C, SUS- PENDED (MG/L) (00530) <10  <10 15  14	DIS- SOLVED (MG/L AS N) (00618)	DIS- SOLVED (MG/L AS N) (00613) E.005  .006 E.005  E.005	DIS- SOLVED (MG/L AS N) (00631) .220  .165 .518  .380	DIS- SOLVED (MG/L AS N) (00608) <.041  .158 E.023  .052	GEN, TOTAL (MG/L AS N) (00600) .55  .60 .87  .78	ORGANIC TOTAL (MG/L AS N) (00605)	ORGANIC TOTAL (MG/L AS N) (00625) .33  .43 .35  .40	PHORUS TOTAL (MG/L AS P) (00665) E.037  E.038	DIS- SOLVED (MG/L AS P) (00666) <.060  <.060	DIS- SOLVED (MG/L AS P) (00671) <.018  E.017 E.013  E.012
OCT 16 16 16 MAY 07 07 21	TOT IT FIELD MG/L AS CACO3 (39086)  161 161  158 138  CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	DEG. C DIS- SOLVED (MG/L) (70300)  282 290  267 260  CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	DEG. C, SUS- PENDED (MG/L) (00530)  <10 <10 15 14  CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	DIS- SOLVED (MG/L AS N) (00618) 159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159159	DIS- SOLVED (MG/L AS N) (00613) E.005  E.005  E.005  SIEVE DIAM. % FINER THAN .125 MM	DIS- SOLVED (MG/L AS N) (00631) .220  .165 .518  .380  .97452201 BED MAT. SIEVE DIAM. * FINER THAN .250 MM	DIS- SOLVED (MG/L AS N) (00608) <.041  .158 E.023  .052  Twn Lk BED MAT. SIEVE DIAM. * FINER THAN	GEN, TOTAL (MG/L AS N) (00600)  .5560 .8778 EDC  BED MAT. SIEVE DIAM. \$ FINER THAN 1.00 MM	ORGANIC TOTAL (MG/L AS N) (00605) 28 34 CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	ORGANIC TOTAL (MG/L AS N) (00625)  .3343 .3540  CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	PHORUS TOTAL (MG/L AS P) (00665) E.037  E.038 E.041  E.044  COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (MG/L AS P) (00666)  <.060 E.030  <.060  <.060  (UG/L AS CU)	DIS- SOLVED (MG/L AS P) (00671) <.018  E.017 E.013  E.012  COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)
OCT 16 16 MAY 07 07 UN 21	TOT IT FIELD MG/L AS CACO3 (39086)  161 161 158 138 CARBON, ORGANIC TOTAL (MG/L AS C)	DEG. C DIS- SOLVED (MG/L) (70300)  282 290  267 260  CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	DEG. C, SUS- PENDED (MG/L) (00530)  <10 <10 15 14 CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	DIS- SOLVED (MG/L AS N) (00618)  .159     BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	DIS- SOLVED (MG/L AS N) (00613) E.005  E.005  E.005  SIEVE DIAM. % FINER THAN .125 MM (80165)	DIS- SOLVED (MG/L AS N) (00631) .220  .165 .518  .380  .97452201 BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	DIS- SOLVED (MG/L AS N) (00608) <.041  .158 E.023  .052  Twn Lk BED MAT. SIEVE DIAM. \$ FINER THAN .500 MM (80167)	GEN, TOTAL (MG/L AS N) (00600)  .5560 .8778TOC  BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	ORGANIC TOTAL (MG/L AS N) (00605) 2834  CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)	ORGANIC TOTAL (MG/L AS N) (00625)  .3343 .3540  CHRO- MIUM, RECOV. FM BOT- TOM MA- TERTAL (UG/G) (01029)	PHORUS TOTAL (MG/L AS P) (00665)  E.037 E.038  E.041 E.044  COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	DIS- SOLVED (MG/L AS P) (00666)  <.060 E.030  <.060  <.060  (UG/L AS CU) (01040)	DIS- SOLVED (MG/L AS P) (00671) <.018  E.017 E.013  E.012  COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)
OCT 16 16 MAY 07 07 UNN 21  DATE  OCT 16 16 16 16 MAY 07	TOT IT FIELD MG/L AS C) (00680)  CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	DEG. C DIS- SOLVED (MG/L) (70300)  282 290  267 260 CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)  6.02	DEG. C, SUS- PENDED (MG/L) (00530)  <10 <10 15 14  CHLOR-B PHYTO- PLANK- TON CHCOMO FLUOROM (UG/L) (70954)  E.2 <11	DIS- SOLVED (MG/L AS N) (00618)  .159  .159   .159  .159 MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	DIS- SOLVED (MG/L AS N) (00613) E.005  E.005  E.005  3015580 BED MAT. SIEVE DIAM. * FINER THAN .125 MM (80165)	DIS- SOLVED (MG/L AS N) (00631) .220 .165 .518  .380  .97452201 BED MAT. SIEVE DIAM. * FINER THAN .250 MM (80166)	DIS- SOLVED (MG/L AS N) (00608) <.041  .158 E.023  .052  TWN Lk BED MAT. SIEVE DIAM. * FINER THAN .500 MM (80167)	GEN, TOTAL (MG/L AS N) (00600)  .5560 .8778  EDC  BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	ORGANIC TOTAL (MG/L AS N) (00605) 2834  CADMIUM RECOV. FM BOT- TOM MA- TERTAL (UG/G AS CD) (01028)	ORGANIC TOTAL (MG/L AS N) (00625)  .33	PHORUS TOTAL (MG/L AS P) (00665)  E.037	DIS- SOLVED (MG/L AS P) (00666)  <.060 <.060 E.030 <.060 <.060 <.060 3.0 1.4	DIS- SOLVED (MG/L AS P) (00671) <.018  E.017 E.013  E.012  COPPER, RECOV. FM BOT- TOM MA- TERTAL (UG/G AS CU) (01043)
OCT 16 16 16 MAY 07 07 UNN 21  DATE  OCT 16 16 16 16	TOT IT FIELD MG/L AS CACO3 (39086)  161 161 158 138 138 1000 CTOTAL (MG/L AS C) (00680)  3.7 3.5	DEG. C DIS- SOLVED (MG/L) (70300)  282 290  267 260 CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)  6.0	DEG. C, SUS-PENDED (MG/L) (00530)  <10 <10 15 14 CHLOR-B PHYTO-PLANK-TON CHROMO FLUOROM (UG/L) (70954)  E.2	DIS- SOLVED (MG/L AS N) (00618)  .159  .159    BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	DIS- SOLVED (MG/L AS N) (00613) E.005  E.005  E.005  3015580 BED MAT. SIEVE DIAM. * FINER THAN 1.25 MM (80165)	DIS- SOLVED (MG/L AS N) (00631) .220 .165 .518  .380  .97452201 BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	DIS- SOLVED (MG/L AS N) (00608) <.041  .158 E.023  .052  TWN Lk BED MAT. SIEVE DIAM. FINER THAN .500 MM (80167)	GEN, TOTAL (MG/L AS N) (00600)  .55	ORGANIC TOTAL (MG/L AS N) (00605) 2834 CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)	ORGANIC TOTAL (MG/L AS N) (00625)  .3343 .3540  CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01029)	PHORUS TOTAL (MG/L AS P) (00665)  E.037 E.038  E.041 E.044 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	DIS- SOLVED (MG/L AS P) (00666) <.060 E.030  <.060  COPPER, DIS- SOLVED (UG/L AS CU) (01040) 2.8  3.0	DIS- SOLVED (MG/L AS P) (00671) <.018  E.017 E.013  E.012  COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043)

#### 08157900 Town Lake at Austin, TX--Continued

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

### 301558097452201 -- Twn Lk DC

DATE

OCT 16... 16...

MAY 07...

DATE

OCT 16... 16...

16... MAY 07...

07... 07...

16...

07...

16... MAY 07...

07...

		DATE	IRO SEDI BED TERI AS (011	N, FM E MT, TOM MA- TER AL (UG FE) AS	OV. BOT- LEA MA- DI LIAL SOL B/G (UG PB) AS	NESAD, REC S- FM E VED TOM G/L TEF PB) (UG	COV. FM E BOT- TOM MA- TEF RIAL (UC G/G) AS	COV. REC BOT- FM B MA- TOM RIAL TER B/G (UG HG) AS	OV. OT- MA- IAL J/G ZN)			
		OCT 16 16	- - -		<1. <1.			 				
		MAY 07 07 07 JUN 21	- - - 98					.04 7	-			
				3017120	97470701	Twn Lk	EC EC					
TIME	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)
1125 1127 1129	2.60	1.00 10.0 18.0	513 634 676	7.8 7.0 6.9	22.2 21.3 21.0	.7  .4	1.0	7.3 6.2 6.0	85 71 68	10  	410  	370  
1036 1038 1040	1.84	1.00 10.0 20.0	476 476 467	7.7 7.6 7.7	19.5 19.5 19.5	  	4.0  5.6	7.7 7.6 7.6	84 83 83	  	210  	330  
				3017120	97470701	Twn Lk	EC EC					
ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)
158	282	<10	E.003	.101	<.041	.39	.29	<.060	<.060	<.018	3.2	2.0
273	387	<10	<.006	1.48	<.041		E.07	<.060	<.060	<.018	3.2	
152	276	<10 	E.005	.378	<.041	.67 	.29	<.060	<.060	<.018	3.9	.9
152	274	<10	E.004	.398	<.041	.70	.30	<.060	<.060	<.018	3.7	
			DATE	CHLC PHY PLA TC CHRC FLUC	OR-B TO- COPE NK- TOT ON REC MO ERA OROM (UG	CAL COPE COV- DIS ABLE SOI G/L (UG CU) AS	PER, LEAS- DI LVED SOI E/L (UC CU) AS	IS- LVED B/L PB)				
			OCT 16 16 MAY			3. 5.						

1.3

<.1 1.5 E1.2

1.7

----

MANGA- MERCURY

### 08157900 Town Lake at Austin, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

## 301601097454001 -- Twn Lk FC

				PH			OXYGEN,
			SPE-	WATER			DIS-
			CIFIC	WHOLE			SOLVED
		SAM-	CON-	FIELD	TEMPER-	OXYGEN,	(PER-
		PLING	DUCT-	(STAND-	ATURE	DIS-	CENT
DATE	TIME	DEPTH	ANCE	ARD	WATER	SOLVED	SATUR-
		(FEET)	(US/CM)	UNITS)	(DEG C)	(MG/L)	ATION)
		(00003)	(00095)	(00400)	(00010)	(00300)	(00301)
OCT							
16	1110	2.00	541	7.2	22.3	4.3	50
MAY							
07	1020	1.50	475	7.4	21.5	7.7	88

THIS PAGE IS INTENTIONALLY LEFT BLANK.

#### 08158000 Colorado River at Austin, TX

LOCATION.--Lat 30°14′40", long 97°41′39", Travis County, Hydrologic Unit 12090205, on right bank 1,000 ft upstream from upstream bridge on U.S. Highway 183 in Austin, 1.4 mi downstream from Longhorn Dam, and at mile 290.3.

DRAINAGE AREA. -39,009 mi², approximately, of which 11,403 mi² probably is noncontributing.

PERIOD OF RECORD.--Feb. 1898 to current year. Records of daily discharge for Dec. 13-26, 1914, and Feb. 9-17, 1915, published in WSP 408, have been found unreliable and should not be used.

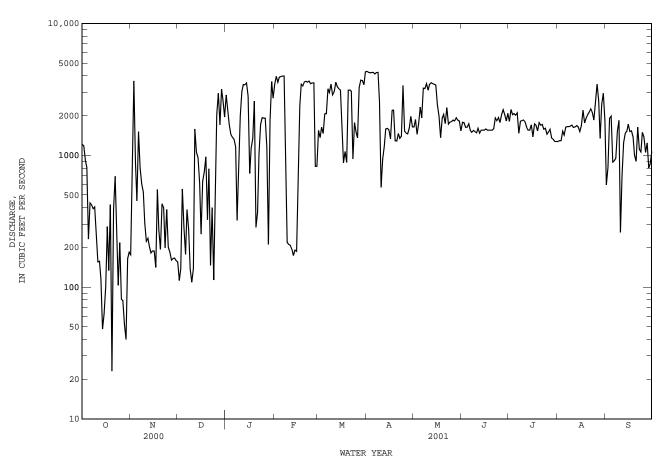
Water-quality records.--Chemical data: Oct. 1947 to Sept. 1993. Specific conductance: Oct. 1947 to Sept. 1991. Water temperature: Oct. 1947 to Sept. 1991.

REVISED RECORDS.--WSP 508: 1915(m). WSP 528: 1900(M), 1918(m). WSP 548: 1901-16. WSP 1342: Drainage area. WSP 1562: 1908, 1929(M), 1936.

GAGE.--Water-stage recorder. Datum of gage is 402.27 ft above sea level. Prior to June 19, 1939, all records collected at or near Congress Avenue bridge 3.9 mi upstream at datum 19.6 ft higher; prior to June 18, 1915, nonrecording gages, recording gages thereafter; June 20, 1939, to Oct. 16, 1963, at site 1,000 ft downstream from present site at datum 5.0 ft higher. Satellite telemeter at station.

REMARKS.--Records fair. Since installation of gage in 1898, at least 10% of contributing drainage area has been regulated by Town Lake, Lake Austin, Lake Travis, and other reservoirs. The city of Austin diverts water for municipal use upstream from station and returns wastewater effluent downstream. There are many other diversions above Lake Buchanan for irrigation, municipal supplies, and oil field operations.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage-discharge relation at medium to high stages, computes and publishes streamflow record.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1833, 51 ft July 7, 1869, present site and datum (adjusted to present site on basis of record for flood of June 15, 1935), determined from information concerning stage at former site furnished by Dean T.U. Taylor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC TAN FEB MAR APR MAY TITIN JUL ATTG SEP 1.250 e63 e2410 e1550 e1550 e1550 ---___ TOTAL MEAN MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1898 - 2001. BY WATER YEAR (WY) MEAN MAX (WY) 57.5 43.9 46.2 49.7 55.0 MIN 38.7 70.3 (WY) 

### 08158000 Colorado River at Austin, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1898 - 2001
ANNUAL TOTAL	347660		587035			
ANNUAL MEAN	950		1608		2183	
HIGHEST ANNUAL MEAN					7535	1914
LOWEST ANNUAL MEAN					590	1917
HIGHEST DAILY MEAN	4030	Jul 22	4320	Apr 1	323000	Jun 15 1935
LOWEST DAILY MEAN	23	Oct 20	23	Oct 20	.00	Sep 29 1914
ANNUAL SEVEN-DAY MINIMUM	105	Oct 24	105	Oct 24	18	Oct 25 1990
MAXIMUM PEAK FLOW			15600	Aug 26	481000	Jun 15 1935
MAXIMUM PEAK STAGE			14.20	Aug 26	a50.00	Jun 15 1935
ANNUAL RUNOFF (AC-FT)	689600		1164000		1581000	
10 PERCENT EXCEEDS	1960		3440		3860	
50 PERCENT EXCEEDS	894		1550		1140	
90 PERCENT EXCEEDS	144		190		175	

Estimated From floodmark.



#### 08158050 Boggy Creek at U.S. Highway 183, Austin, TX

LOCATION.--Lat 30°15'47", long 97°40'20", Travis County, Hydrologic Unit 12090205, on U.S. Highway 183, 1.6 mi south of the intersection of Webberville Road and U.S. Highway 183, and 4.1 mi east of the State Capitol Building in Austin.

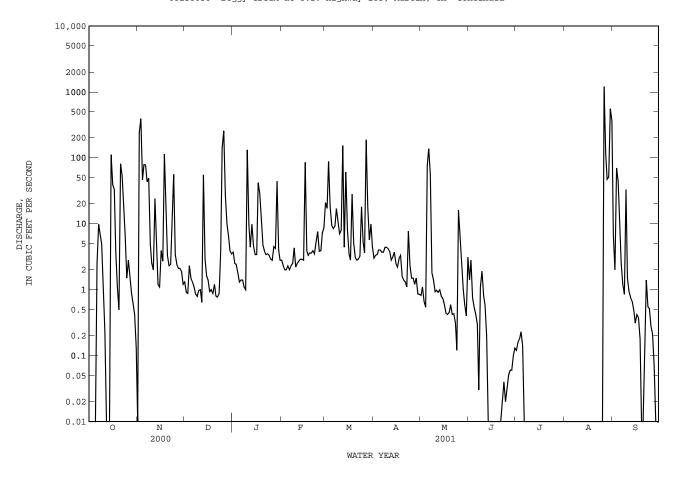
DRAINAGE AREA. -- 13.1 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Jan. to July 1975 (periodic discharge measurements only), Aug. 1975 to June 1977 (peak discharge greater than base discharge), June 1977 to Sept. 1986, (daily mean discharge), Oct. 1986 to May 1994 (annual maximum discharge), May 1994 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 411.29 ft sea level (levels from city of Austin benchmark). Satellite telemeter at station.

REMARKS.--Records fair. No known regulation or diversions. No flow at times.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge 4,370 ft³/s May 17, 1989, gage height, 14.79 ft, from floodmark.

		DISCHA	RGE, CUBIC	C FEET PER		WATER YEA MEAN VAL		R 2000 TO	SEPTEMBER	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 244 392 46 79	1.3 .91 .88 2.3 1.5	3.7 2.5 2.4 1.8 1.3	2.8 2.3 2.0 2.0 2.3	21 17 88 18 9.5	3.0 3.3 3.4 4.0 4.0	.82 1.1 .66 .54	1.4 2.8 .75 .54	.12 .16 .18 .23 .14	.00 .00 .00 .00	6.5 2.0 70 44 13
6 7 8 9 10	2.5 9.8 6.8 4.9	78 43 49 4.9 2.5	1.3 1.1 .86 .79 .97	1.4 1.4 1.1 1.0	2.0 2.3 2.5 4.3 2.2	8.4 9.2 17 11 7.0	3.7 3.7 4.4 4.2	137 56 1.8 1.4 .93	.30 .03 1.1 1.9	.00 .00 .00 .00	.00 .00 .00 .00	2.5 1.2 .85 33 1.5
11 12 13 14 15	.23 .00 .00 .00	2.0 24 4.6 1.2 1.1	1.0 .64 55 2.9 1.6	9.7 4.4 9.8 4.6 3.4	2.5 2.7 2.9 2.9 2.8	7.9 153 4.4 61 8.1	3.8 2.8 3.1 3.7 2.5	.98 .91 .99 .79	.58 e.20 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.93 .76 .66 .48
16 17 18 19 20	39 33 3.8 1.1 .49	3.9 2.7 114 15 3.3	1.4 .93 1.0 .88 1.2	3.4 42 29 13 4.7	85 3.9 3.3 3.6 3.6	3.5 2.8 28 5.1 3.1	2.2 3.0 3.3 1.6 1.4	.59 .44 .42 .45	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.42 .38 .18 .01
21 22 23 24 25	81 53 17 6.5 1.5	2.3 2.4 14 56 3.4	.80 .77 .87 3.9	3.8 3.4 3.5 3.3 2.9	3.9 3.5 5.3 7.6 3.8	2.8 2.9 3.2 18 5.3	1.3 1.1 7.7 2.3 1.5	.42 .43 .31 .12	.00 .02 .04 .02	.00 .00 .00 .00	.00 .00 .00 .00	.06 1.4 .55 .52
26 27 28 29 30 31	2.8 1.6 .91 .63 .42	2.4 2.1 2.1 1.9 1.2	257 27 10 6.4 3.9 3.5	2.8 4.5 4.2 44 4.0 2.8	3.9 7.2 8.7 	3.6 187 18 5.7 9.9 4.5	1.5 1.2 1.5 .86 .85	7.0 2.4 1.0 .59 .40 3.1	.05 .06 .06 .10 .13	.00 6 .00 .00 .00	1200 117 47 51 556 363	.21 .07 .00 .00
TOTAL MEAN MAX MIN AC-FT CFSM IN.	379.88 12.3 112 .00 753 .94 1.08	1198.00 39.9 392 .00 2380 3.05 3.40	534.60 17.2 257 .64 1060 1.32 1.52	11.3	181.8 6.49 85 2.0 361 .50	743.9 24.0 187 2.8 1480 1.83 2.11	85.31 2.84 7.7 .85 169 .22 .24	10.2	11.35 .38 2.8 .00 23 .03	1.6	2334.00 75.3 1200 .00 4630 5.75 6.63	181.77 6.06 70 .00 361 .46 .52
STATIS	TICS OF	MONTHLY ME	CAN DATA FO	OR WATER YE	EARS 1977	- 2001h,	BY WATE	R YEAR (WY	)			
MEAN MAX (WY) MIN (WY)	11.5 60.4 1999 .44 1979	8.02 39.9 2001 .10 1980	5.71 17.2 2001 .027 1978	3.25 11.3 2001 .055 1996	97.4 1580 1977 .28 1996	7.10 24.0 2001 .31 1986	4.41 18.5 1997 .063 1984	15.4 48.7 1979 .39 1984	10.9 55.2 1981 .025 1994	4.96 54.5 1979 .025 1986	9.70 75.3 2001 .002 1984	6.26 20.2 1998 .000 1999
SUMMAR	Y STATIS	TICS	FOR 2	2000 CALENI	DAR YEAR	FC	OR 2001 W	ATER YEAR		WATER Y	YEARS 197	7 - 2001h
LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL ANNUAL ANNUAL 10 PER 50 PER	MEAN T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D M PEAK F M PEAK S RUNOFF RUNOFF	MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS	ī	3285.11 8.98 392 .00 .00 6520 .69 9.33 15 .11	Nov 3 Jan 1 Jan 15		.0 .0 3310	Aug 26 0 Oct 1 0 Jun 13 Aug 26 0 Aug 26		7.8 17.1 1.2 1660 .( 6100 17.2 5660	3 29 Feb 00 Jul 00 Jul May 24 Oct	2001 1984 11 1977 13 1978 13 1978 23 1975 17 1998

e Estimated

h See PERIOD OF RECORD paragraph.

08158050 Boggy Creek at U.S. Highway 183, Austin, TX--Continued



#### 08158050 Boggy Creek at U.S. Highway 183, Austin, TX--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Jan. 1975 to Sept. 1986, Apr. 1994 to current year. BIOCHEMICAL DATA: Jan. 1975 to Sept. 1986, Apr. 1994 to current year. RADIOCHEMICAL DATA: Jan. 1980. PESTICIDE DATA: Jan. 1975 to Dec. 1984.

INSTRUMENTATION.--Stage-activated automatic sampler.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)
OCT 15-16	2105	481		106	7.9		50	350			61	E150000	110000
DEC 05	0855		1.3	679	7.9	11.0	10	1.4	9.5	86.5	12	4900	5900
JAN 10-10	0940	380		219	6.6	6.5	60	130			43	E1600	2800
MAY 30	0820		.40	601	7.2	26.0	8	3.3	6.5	81.1	16	92	E72
DATE	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)
OCT 15-16	37	940	.421	.014	.435	.096	3.08	2.55	2.6	.958	.081	.070	.215
DEC 05	244	<10	.142	.013	.155	.062	.774	.557	.62	E.042	<.060	E.013	
JAN 10-10	70	344	.529	.023	.552	<.041	2.04		1.5	.453	.090	.028	.086
MAY 30	198	<10		.010	E.029	<.040			.25	<.060	<.060	<.020	
		DA	TE	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)			
			5-16	30			.54	14.9	48	108			
			5	5.1	3.2	.2	<.11	1.8	<1	6			
			0-10	16			.75	9.0	20	60			
		MAY 3	0	4.7	1.1	.2	<.10	E.6	<1	2			

THIS PAGE IS INTENTIONALLY LEFT BLANK.

#### 08158600 Walnut Creek at Webberville Road, Austin, TX

LOCATION.--Lat 30°16′59", long 97°39′17", Travis County, Hydrologic Unit 12090205, on left bank 190 ft downstream from bridge on Farm Road 969, 0.8 mi downstream from Little Walnut Creek, 2.8 mi upstream from Colorado River, 5.2 mi east of the State Capitol Building in Austin, and 2.8 mi upstream from mouth.

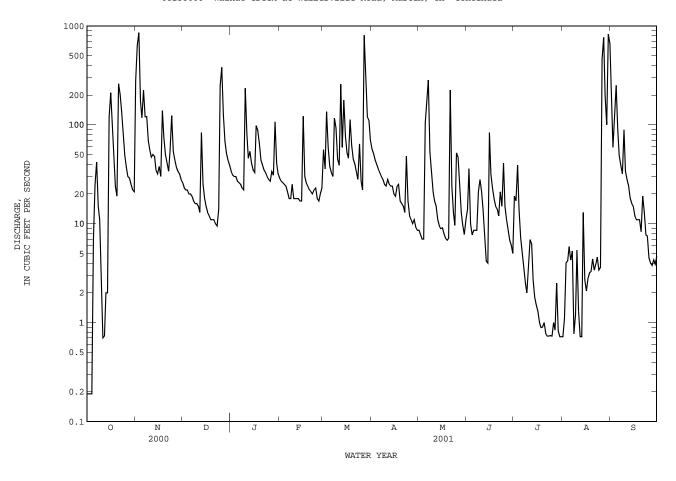
DRAINAGE AREA.--51.3 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

REVISED RECORDS.--WDR TX-00-4: daily mean discharge, Feb. 11, 1999.

GAGE.--Water-stage recorder. Datum of gage is 425.96 ft above sea level. Satellite telemeter at station.


REMARKS.--Records fair except those for estimated daily discharges and those above 150  ${\rm ft}^3/{\rm s}$ , which are poor. No known regulation or diversions. No flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 15, 1935, reached a stage of 24 ft, backwater from Colorado River. A flood in 1919 reached a stage of 22 ft, from information by local residents. Maximum stage since at least 1891, that of May 25, 1981.

	J	DISCHA	RGE, CUBIC	FEET PER		VATER Y	YEAR OCTOBER	2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.19 .19 .19 e.19 e7.0	e280 e640 854 173 118	26 23 22 22 20	34 31 30 30 27	29 27 26 25 24	e56 e36 e136 60 38	57 51 44 40 36	8.6 7.8 7.0 7.0	14 36 10 7.7 8.6	19 17 39 14 7.3	.72 1.1 4.0 4.2 5.9	167 59 109 251 89
6 7 8 9 10	e25 e42 15 11 e4.0	224 121 121 69 56	20 19 17 16 16	26 25 23 22 234	21 18 18 25 18	33 30 117 93 45	33 30 28 25 24	163 283 53 35 21	8.6 8.6 21 28 21	5.0 3.6 2.5 2.0 3.9	4.3 5.3 .77 1.2 5.4	49 39 32 89 34
11 12 13 14 15	.70 .73 2.0 2.0	47 50 48 35 32	15 13 83 25 18	81 46 54 41 35	18 18 18 17 17	39 257 59 177 77	28 25 24 24 20	17 15 11 9.5 8.9	14 7.4 4.2 4.0 83	6.9 6.2 2.7 1.8 1.5	1.3 .72 .72 13 2.7	28 24 18 16 15
16 17 18 19 20	211 100 46 24 19	38 30 139 75 50	15 13 12 11	33 98 88 65 44	122 30 e26 e24 e22	52 46 113 62 45	19 24 25 17 16	9.1 7.9 7.1 6.8 7.1	32 23 18 15 14	1.3 1.0 .89 .90	2.1 2.8 3.2 3.3 4.4	12 11 11 11 8.3
21 22 23 24 25	e260 203 138 78 e49	41 34 55 124 54	11 10 9.5 14 248	39 35 33 30 28	e21 e20 e22 e23 e18	40 34 28 64 27	15 13 48 17 12	225 24 13 9.6 52	12 21 15 41 15	.78 .73 .73 .74	3.4 3.9 4.6 3.4 3.6	19 13 7.7 7.5 4.5
26 27 28 29 30 31	e37 e30 e29 e25 22 e21	44 37 34 32 28	382 127 68 51 44 39	27 34 31 107 41 32	e17 e20 e23 	22 804 277 121 111 70	11 10 11 9.2 8.6	47 27 13 9.7 7.8	11 8.6 6.8 6.0 5.0	1.0 .84 2.5 .82 .72	462 768 196 100 830 662	4.0 3.8 4.3 3.9 4.7
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1521.19 49.1 260 .19 3020 .96 1.10	3683 123 854 28 7310 2.39 2.67	1420.5 45.8 382 9.5 2820 .89 1.03	1504 48.5 234 22 2980 .95 1.09	707 25.2 122 17 1400 .49 .51	3169 102 804 22 6290 1.99 2.30		1229.9 39.7 283 6.8 2440 .77 .89	519.5 17.3 83 4.0 1030 .34 .38	147.80 4.77 39 .72 293 .09	3104.03 100 830 .72 6160 1.95 2.25	1144.7 38.2 251 3.8 2270 .74 .83
STATIS	STICS OF M	ONTHLY ME	AN DATA FO	R WATER Y	EARS 1966	- 2001	L, BY WATER	YEAR (WY)	)			
MEAN MAX (WY) MIN (WY)	33.5 215 1999 1.37 1979	24.7 161 1975 1.03 1967	33.8 367 1992 1.22 1967	29.8 237 1968 1.07 1967	31.3 203 1992 1.88 1967	28.9 121 1992 1.06 1967	24.5 90.0 1977 1.79 1971	57.8 170 1981 .58 1971	42.0 435 1981 .23 1967	11.1 55.7 1987 .052 1971	13.5 100 2001 .32 1977	13.8 51.7 1973 .59 1999
SUMMAR	RY STATIST	ICS	FOR 2	000 CALENI	DAR YEAR		FOR 2001 WA	ATER YEAR		WATER	YEARS 1966	5 - 2001
ANNUAI HIGHES LOWEST ANNUAI MAXIM MAXIM ANNUAI ANNUAI ANNUAI 10 PER	TOTAL MEAN TANNUAL TANNUAL TANNUAL TANNUAL TOALLY ME SEVEN-DA JM PEAK TL M PEAK TL RUNOFF ( L RUNOFF ( L RUNOFF ( CENT EXCE RCENT EXCE	EAN EAN AN Y MINIMUM OW AGE AC-FT) CFSM) INCHES) EDS EDS	ſ		Nov 3 Aug 14 Aug 9		18895.42 51.8 854 .19 .79 4640 17.64 37480 1.01 13.70 117 22 2.6	Nov 3 Oct 1 O Jul 21 Aug 26 Aug 26		28. 94. 1. 4330 14300 27. 20910 7. 45 7.	6 91 Dec 00 Jun 00 Jun May 24 May 56 64	1992 1967 21 1991 17 1967 17 1967 25 1981 25 1981

e Estimated

08158600 Walnut Creek at Webberville Road, Austin, TX--Continued



#### 08158600 Walnut Creek at Webberville Road, Austin, TX--Continued

#### WATER-QUALITY RECORDS

OCT 15-16

DEC 05...

MAR 27...

SEP 17...

.037 21

.082 39

3.1

.2

.141 3.5 .1 <.1 <.10

PERIOD OF RECORD.--CHEMICAL DATA: Apr. 1976 to current year. BIOCHEMICAL DATA: Apr. 1976 to current year. RADIOCHEMICAL DATA: Jan. 1980. PESTICIDE DATA: Nov. 1976 to Sept. 1986. SEDIMENT DATA: Dec. 1977 to July 1982.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			WILLIAM	QUILLII D	21111, 111111	iic illinic oc	TODDIC 200	O TO DELL	DINDBIC 200	-			
DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
OCT 15-16 DEC	2100	528		176	8.0		40	380				35	44000
05	1050		20	700	8.1	11.5	5	.6		10.5	96.8	<10	94
MAR 27 SEP	0950	1260		236	7.7		120	480				10	24000
17	1250		11	535	7.9	24.5	<1		9.2	7.8	95.8	<10	30
DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 15-16 DEC	24000	66	904	.291	.016	.307	.089	2.22	1.83	1.9	.996	.060	.012
05	150	219	<10	1.87	.009	1.88	<.041	2.23		.35	<.060	<.060	<.018
MAR 27 SEP	19000	77	2110	.578	.010	.588	.124	5.20	4.49	4.6	1.81	.060	.027
17	11	154	<10	.451	.039	.490	.061	.816	.265	.33	.076	E.055	.046
		DATE	PHO PHA ORT DI SOL (MG AS P	TE, HO, CARB S- ORGA VED TOT /L (MG O4) AS	PHY ON, PLA NIC TO AL CHRO (L) FLUC C) (UG	MO CHRO ROM FLUO (UG	TO- CADM NK- WAT N UNFL MO TOT ROM (UG	ER TOT TRD REC AL ERA /L (UG CD) AS	TAL TOT COV- REC ABLE ERA E/L (UG CU) AS	AL TOT OV- REC BLE ERA J/L (UG PB) AS	PAL POV- BLE F/L ZN)		

-- -- .37 8.9

<.1

-- -- .48

<.11 E1.0

19.1

15

<1

26

E1.2 <1 1

80

2

91

THIS PAGE IS INTENTIONALLY LEFT BLANK.

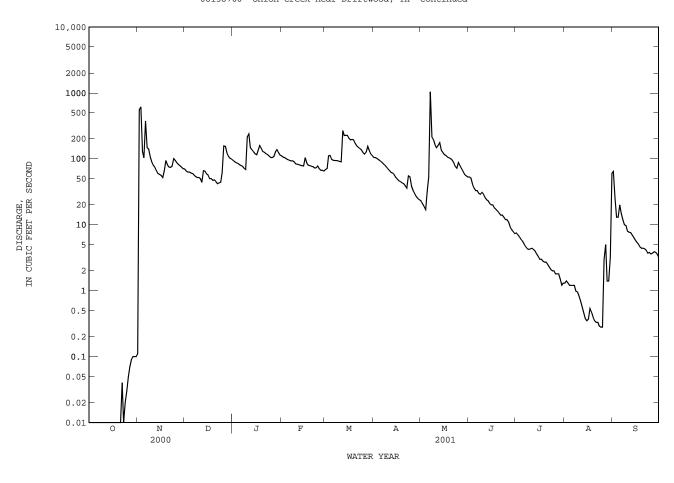
#### 08158700 Onion Creek near Driftwood, TX

LOCATION.--Lat 30°04′58", long 98°00′27", Hays County, Hydrologic Unit 12090205, on left bank, 160 ft left of the upstream side of bridge at low-water crossing on Farm Road 150, 3.2 mi southeast of Driftwood, and 10 mi west of Buda.

DRAINAGE AREA. -- 124 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Apr. 1958, Nov. 1961 to June 1979 (periodic discharge measurements only), July 1979 to current year.


GAGE.--Water-stage recorder. Datum of gage is 878.13 ft above sea level. Satellite telemeter at station.

 ${\tt REMARKS.--Records}$  fair. No known regulation or diversions. No flow at times.

		DISCHAR	GE, CUBIC	FEET PER		WATER YE. MEAN VA	AR OCTOBER LUES	2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.11 551 615 129 103	70 65 63 63	95 90 87 85 82	110 106 104 100 97	69 71 111 113 98	105 104 101 97 93	23 21 19 17 33	53 51 41 36 33	7.5 7.0 6.5 6.0 5.6	1.3 1.4 1.3 1.2	64 26 13 13 20
6 7 8 9 10	.00 .00 .00 .00	374 148 140 106 90	60 57 54 52 52	79 77 72 69 214	95 93 93 90 84	95 94 94 93 91	89 84 80 75 70	53 1040 215 195 162	33 30 29 31 29	5.1 4.6 4.3 4.2 4.3	1.2 1.2 .98 .95	15 12 10 9.7 8.0
11 12 13 14 15	.00 .00 .00 .00	80 74 66 60 58	50 44 66 65 59	239 149 137 128 119	83 81 80 79 78	90 268 225 228 227	66 62 61 57 52	147 159 175 135 125	26 24 23 21 20	4.4 4.2 4.0 3.6 3.3	.70 .57 .46 .38	7.7 7.6 7.0 6.4 5.9
16 17 18 19 20	.00 .00 .00 .00	56 52 67 94 81	57 50 50 47 48	115 135 159 144 128	104 86 80 79 77	205 194 197 194 171	49 46 45 43 42	116 112 106 103 101	20 18 17 16 15	3.0 3.0 2.8 2.7 2.7	.37 .54 .47 .40	e5.4 e5.1 e4.6 e4.4 e4.4
21 22 23 24 25	.00 .04 .01 .02 .03	75 74 77 101 95	45 42 43 44 62	125 119 116 110 105	76 73 73 78 71	157 150 143 136 124	39 36 55 53 38	96 87 76 72 88	14 14 13 12 12	2.5 2.3 2.1 2.0 2.0	.33 .33 .29 .28	e4.3 e4.1 e3.7 e3.8 e3.6
26 27 28 29 30 31	.05 .07 .09 .10 .10	87 82 79 75 71	157 155 123 109 102 99	104 108 127 138 124 114	67 67 65  	118 126 154 133 118 111	33 30 27 25 24	79 71 64 58 55	11 9.3 8.4 7.8 7.3	1.8 1.8 1.5 e1.2 e1.3	3.0 5.0 1.4 1.4 3.2	3.7 3.9 3.8 3.6 3.2
TOTAL MEAN MAX MIN AC-FT CFSM IN.	0.61 .020 .10 .00 1.2 .00	3760.11 125 615 .11 7460 1.01	2114 68.2 157 42 4190 .55	3693 119 239 69 7330 .96	2369 84.6 110 65 4700 .68	4398 142 268 69 8720 1.14 1.32	1781 59.4 105 24 3530 .48 .53	3856 124 1040 17 7650 1.00 1.16	674.8 22.5 53 7.3 1340 .18 .20	109.1 3.52 7.5 1.2 216 .03	91.66 2.96 60 .28 182 .02	286.9 9.56 64 3.2 569 .08
		MONTHLY MEA						·				
MEAN MAX (WY) MIN (WY)	33.7 391 1999 .020 2001	34.8 320 1999 .10 1989	67.6 548 1992 .10 1989	56.5 316 1992 .25 2000	69.1 506 1992 .26 2000	73.1 356 1992 .40 2000	50.7 231 1997 .25 2000	72.3 202 1992 .27 1996	140 792 1987 .089 1996	24.6 109 1997 .13 1996	5.33 22.0 1987 .055 1996	7.32 49.8 1998 .006 1994
SUMMARY	STATIS	TICS	FOR 2	000 CALEN	DAR YEAR	F	OR 2001 WA	TER YEAR		WATER YE	ARS 1979	- 2001
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN ANNUAL DAILY M SEVEN-D PEAK F RUNOFF RUNOFF	MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS		.00	Nov 3 Sep 6 Sep 6		.00 .00 4800			52.7 196 1.11 5060 .00 15800 25.10 38200 43 5.78 123 8.9	Aug 2 Sep 1 Oct 1 Oct 1	1992 2000 21 1991 21 1984 14 1984 17 1998 17 1998

e Estimated

08158700 Onion Creek near Driftwood, TX--Continued



#### 08158700 Onion Creek near Driftwood, TX--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Jan. 1974 to current year. BIOCHEMICAL DATA: Jan. 1974 to current year. RADIOCHEMICAL DATA: Jan. 1980. PESTICIDE DATA: Jan. 1978 to Sept. 1986.

 ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$ 

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			WAIDK	QUALITI L	MIM, WAIL	ik IBAK OC	TOBER 200	O IO SEPI	EMBER 200	1			
DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
NOV 02-03 DEC	1910	1750		115	7.6		150	280				110	14000
06	0835		61	550	8.1	13.5	<1	. 4		9.7	94.9	<10	180
SEP 17	1005		5.0	S495	7.9	25.0	<1		1.4	5.5		<10	<1
DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)
NOV 02-03 DEC	21000		47	1060	.218	.008	.226	.124	5.25	4.90	5.0	.666	<.060
06 SEP	180	24	230	<10		<.006	.543	<.041	.641		.10	<.060	<.060
17	6		195	<10		<.006	.052	<.040	.190		.14	<.060	<.060
		DATE	PHC PHOR ORT DIS SOLV (MG/ AS P	US HO, CARE - ORGA ED TOT L (MG ) AS	PHY SON, PLA NIC TO 'AL CHRO S/L FLUC C) (UG	NK- PLA N TO MO CHRO ROM FLUC (J/L) (UG	TO- CADM NK- WAT N UNFL MO TOT ROM (UC	TRD REC TAL ERA E/L (UC CD) AS	CAL TOT COV- REC ABLE ERA G/L (UG CU) AS	AL TOTO OV- RECORDE ERA /L (UG PB) AS	PAL POV- BLE F/L ZN)		
		NOV 02-03 DEC	E.0				2						
		06 SEP	<.0	18 1.	5 .	2 <.	1 .1	.1 1.	2 1	3			
		17	<.0	20 3.	0 <.	1 <.	1 <.1	.0 <1.	0 <1	<1			

THIS PAGE IS INTENTIONALLY LEFT BLANK.

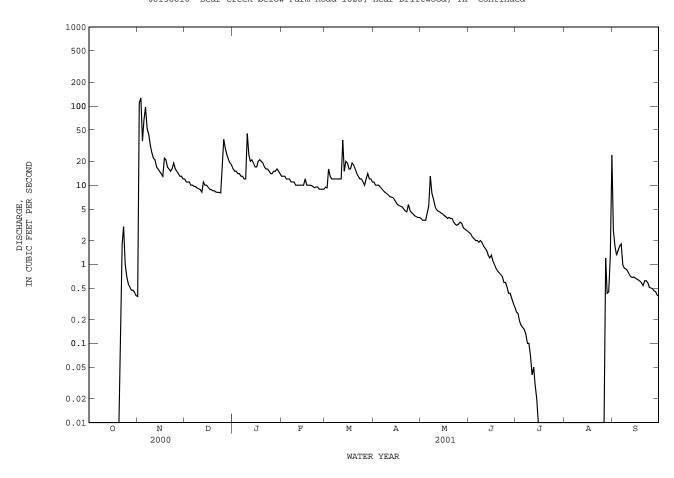
#### 08158810 Bear Creek below Farm Road 1826, near Driftwood, TX

 $\label{location.--Lat 30^09'19", long 97^56'23", Hays County, Hydrologic Unit 12090205, 0.8 \ \mbox{mi southeast of Farm Road 1826 and 5.9 mi northeast of Driftwood. }$ 

DRAINAGE AREA. -- 12.2 mi².

PERIOD OF RECORD.--Mar. 1978 to July 1979 (periodic discharge measurements only), Oct. 1978 to June 1979 (peak discharges greater than base discharge), July 1979 to current year. Water-quality records.--Chemical data: Mar. 1978 to June 1997. Biochemical data: Mar 1978 to June 1997. Radiochemical data: Jun. 1980. Pesticide data: June 1978 to Sept. 1986.

GAGE.--Water-stage recorder. Elevation of gage is 860 ft above sea level from topographic map. Satellite telemeter at station.


REMARKS.--Records fair except those for estimated daily discharges and those below  $0.50~{\rm ft}^3/{\rm s}$ , which are poor. No known regulation or diversions. No flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 9, 1939, reached a stage of 16.2 ft; discharge,  $14,200 \text{ ft}^3/\text{s}$ , and is the highest since at least 1924, from information by local resident. A flood in 1915 was reported to be 2.0 ft higher than the 1939 flood, from information by local resident.

		DISCHAR	GE, CUBIC		SECOND, DAILY		CAR OCTOBER	2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00	.39 109 127 36 66	12 11 11 11 10	16 15 15 14 14	13 13 13 12 12	9.4 9.3 16 13 12	11 10 10 10 9.5	3.8 3.6 3.6 3.6 4.5	2.5 2.4 2.2 2.1 2.0	e.25 e.24 e.19 e.17 e.16	.00 .00 .00 .00	2.7 1.7 1.3 1.5
6 7 8 9 10	.00		10 9.7 9.6 9.2 9.0			12 12 12			2.0 1.9 2.0 1.9 1.7	e.15 e.13 e.10 .10		
11 12 13 14 15	.00	22 21 17 16 15	8.8 8.2 11 10 10	24 20 21 19 17	10 10 10 10 10	12 37 15 20 19	7.2 7.1 7.0 6.6 6.1	4.9 4.7 4.6 4.4 4.3	1.6 1.5 1.3 1.2	.04 .05 .03 .02	.00 .00 .00 .00	
16 17 18 19 20	.00 .00 .00 .00	14 13 22 21 17	9.4 8.9 8.8 8.5 8.5	17 20 21 20 e19	12 10 10 10 9.9	16 16 19 18 16	5.7 5.5 5.4 5.3 5.0	4.1 4.0 3.8 3.9 3.8	1.1 1.0 .89 .82 .78	.00 .00 .00 .00	()()	.63 .61 .58
21 22 23 24 25	.08 1.8 3.0 1.0	16 15 16 19 16	8.2 8.1 8.1 8.0	e17 e16 16 15 14	9.6 9.3 9.5 9.5 8.9	14 13 12 12 11	4.7 4.6 5.7 4.8 4.5	3.8 3.4 3.2 3.1 3.2	e.74 e.70 e.59 e.59 e.52	.00 .00 .00 .00	0.0	.62
26 27 28 29 30 31	.44 .40	12	19 18	15 14		12 11	4.3 4.1 4.0 3.9 3.9	2.7 2.6	e.29	.00 .00 .00 .00	1.2 .43 .45 1.3	. 46 . 45 . 41 . 39
TOTAL MEAN MAX MIN AC-FT CFSM IN.	9.43 .30 3.0 .00 19 .02	916.39 30.5 127 .39 1820 2.50 2.79	392.0 12.6 38 8.0 778 1.04 1.20	534 17.2 45 12 1060 1.41 1.63	293.4 10.5 13 8.9 582 .86	440.7 14.2 37 9.3 874 1.17 1.34	197.0 6.57 11 3.9 391 .54	134.3 4.33 13 2.6 266 .36 .41	37.17 1.24 2.5 .29 74 .10	1.71 .055 .25 .00 3.4 .00	27.38 .88 .24 .00 .54 .07	25.82 .86 2.7 .39 51 .07
							BY WATER					
MEAN MAX (WY) MIN (WY)	4.25 46.3 1999 .000 1989	4.42 30.5 2001 .000 1989	9.11 91.8 1992 .000 1989	6.64 33.3 1992 .000 1989	8.20 49.4 1992 .017 1990	7.74 32.3 1992 .053 1996	5.88 26.2 1991 .048 1996	7.85 23.7 1992 .013 1996	17.3 144 1981 .001 1984	2.15 8.22 1997 .000 1984	.69 3.59 1979 .000 1984	.54 2.71 1991 .000 1984
SUMMARY	STATIST	rics	FOR 2	000 CALEN	DAR YEAR	F	OR 2001 WA	TER YEAR		WATER YE	ARS 1979	- 2001
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL AND	MEAN MEAN EAN AY MINIMUM LOW FAGE (AC-FT) (CFSM) (CINCHES) EEDS		.00	Nov 3 Jan 1 Jan 1		.00 .00 1790			6.19 22.3 .10 1000 .00 .00 10200 14.23 4490 .51 6.89 14 1.1 .00	Dec 2 Aug 2 Aug 2 Dec 2	1992 1996 20 1991 28 1980 28 1980 20 1991 20 1991

e Estimated

08158810 Bear Creek below Farm Road 1826, near Driftwood, TX--Continued



# 08158840 Slaughter Creek at Farm to Market Road 1826 near Austin, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: June 1983 to current year. BIOCHEMICAL DATA: June 1983 to current year. PESTICIDE DATA: June 1983 to Sept. 1986.

 ${\tt INSTRUMENTATION.--Stage-activated\ automatic\ sampler.}$ 

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			WAIER-	QUALITY D	AIA, WAIE	R YEAR OC	TOBER 200	JU TO SEPI	EMBER 200	11			
DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
NOV 02-03 DEC	1940	53		162	7.7		75	42				26	34000
06	0945		4.4	861	8.0	14.0	<1	.5		9.0	88.8	<10	55
JUN 04	1013		1.0	818	7.6	26.5	2		2.3	6.8	87.3	<10	40
DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
NOV 02-03 DEC	44000		57	94	.178	.007	.185	<.041	1.18	.99	.157	E.043	.035
06 JUN	58	340	278	<10		<.006	.601	<.041	.722	.12	<.060	<.060	<.018
04	25		249	<10		E.003	E.023	<.040		.18	<.060	<.060	<.020
		DATE	ORT DI	TE, HO, CARB S- ORGA VED TOT (MG	PHY SON, PLA NIC TO 'AL CHRO S/L FLUC C) (UG	NK- PLA N TO MO CHRO ROM FLUC (/L) (UG	TO- CADM NK- WAT NN UNFI NMO TOT OROM (UC	TRD REC TAL ERA E/L (UC CD) AS	TAL TOT COV- REC ABLE ERA E/L (UG CU) AS	CAL TOT COV- REC BLE ERA C/L (UG PB) AS	PAL POV- BLE F/L ZN)		
		NOV 02-03	1	07 14	_		- E.O	08 2.	.3 3	16			
		DEC 06		- 2.		1 <.							
		JUN 04		- 2.		·							
		U4	_	- 2.	э.	٠	1 <.1	.0 <1.	.0 <1	. <1			

THIS PAGE IS INTENTIONALLY LEFT BLANK.

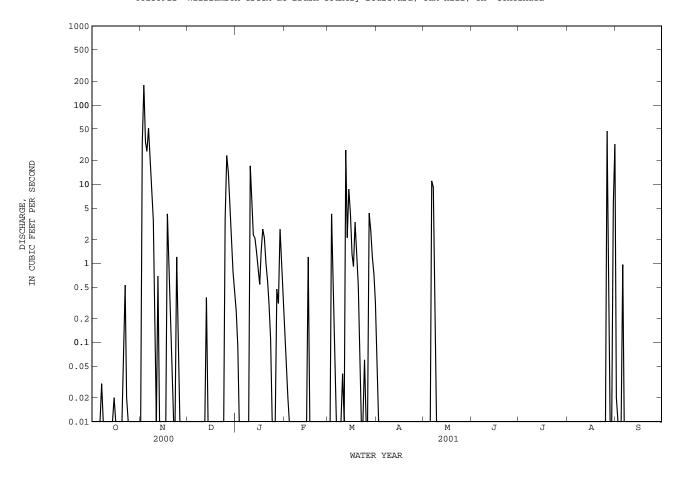
#### 08158922 Williamson Creek at Brush Country Boulevard, Oak Hill, TX

LOCATION.--Lat 30°13′34", long 97°50′28", Travis County, Hydrologic Unit 12090205, at downstream side of bridge on Brush Country Boulevard near Oak Hill, and 7.7 mi southwest of the State Capitol Building in Austin.

DRAINAGE AREA. -- 6.79 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Mar. 1993 to current year.


GAGE.--Water-stage recorder. Datum of gage is 740.25 ft above sea level, city of Austin bench mark. Satellite telemeter at station.

REMARKS.--Records poor. No known regulation or diversions. No flow at times.

		DISCHA	RGE, CUBI	C FEET PER		WATER YE		R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 33 179 34 26		.25 .09 .00 .00			.00		.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.02 .00 .00 .00
6 7 8 9 10				.00 .00 .00 .00						.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	.00	.00 .00 .37 .01	5.3 2.3 2.1 1.4 .86	.00 .00 .00 .00	.00 27 2.1 8.6 4.2	.00 .00 .00 .00				.00 .00 .00 .00	.00
16 17 18 19 20	.00 .00 .00 .00			.54 1.4 2.7 2.1 1.0	1.2 .00 .00 .00	1.3 .91 3.3 1.3 .53				.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	.12 .53 .02 .00	.11 .00 .01 1.2 .17	.00 .00 .00 .00 3.7	.60 .31 .11 .00	.00 .00 .00 .00	.10 .00 .00 .06	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00 .00	23 14 5.1 1.8 .79 .46	.00 .47 .31 2.7 1.0	.00	.00 4.3 2.6 1.2 .72 .32	.00 .00 .00 .00	.00	.00 .00 .00 .00	.00 .00 .00 .00	e47 .41 .00 .00 5.7 32	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	.00	.00	49.23 1.59 23 .00 98	42.90 1.38 17 .00 85	1.42 .051 1.2 .00 2.8	63.89 2.06 27 .00 127	0.05 .002 .05 .00	21.06 .68 .11 .00 42	.00	0.00 .000 .00 .00	85.11 2.75 47 .00 169	0.98 .033 .96 .00
				OR WATER Y								
MEAN MAX (WY) MIN (WY)	3.73 24.8 1999 .000 1997	2.14 12.2 2001 .000 2000	.66 2.38 1995 .000 1996	.41 1.76 1998 .000 1994	2.00 15.9 1998 .000 1999	.92 4.88 1998 .000 1996	.43 3.48 1997 .000 1999	2.29 10.3 1997 .004 1998	2.36 13.1 1997 .000 2001	.003 .014 1999 .000 1993	.37 2.75 2001 .000 1999	.029 .14 1994 .000 1993
SUMMARY	STATIST	rics	FOR	2000 CALEN	DAR YEAR	F	OR 2001 W	ATER YEAR		WATER Y	EARS 1993	- 2001
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC	MEAN ANNUAL MAILY MEALLY MEALL	MEAN MEAN EAN AY MINIMUM LOW (AC-FT) EEDS EEDS		521.50 1.42 179 .00 .00 1030 .03 .00 .00	Nov 3 Jan 1 Jan 9		631.48 1.73 179 .00 510 4.44 1250 1.4	Nov 3 Oct 1 Oct 24 Nov 3 Nov 3		1.3 2.5 .0 455 .0 2700 7.1 962 .0	1 39 Oct 1 0 Mar 1 0 Oct 1 0 Oct 1 0 Oct 1 4 0	1999 1996 7 1998 1 1993 1 1993 7 1998 7 1998

e Estimated

08158922 Williamson Creek at Brush Country Boulevard, Oak Hill, TX--Continued



## 08158922 Williamson Creek at Brush Country Boulevard, Oak Hill, TX--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1993 to current year. BIOCHEMICAL DATA: Oct. 1993 to current year.

INSTRUMENTATION. -- Stage-activated automatic sampler.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
NOV													
02-03 MAY	1630	95	140	7.4	100	65	27	110000	130000	50	136	.431	.011
06-07	2205	85	150	7.7	50	91	39	E9400	16000	55	191	.313	.011
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L	NITRO- GEN, TOTAL (MG/L	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CARBON, ORGANIC TOTAL (MG/L AS C)	CADMIUM WATER UNFLTRD TOTAL (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L
	AS N) (00631)	AS N) (00608)	AS N) (00600)	AS N) (00625)	(00665)	(00666)	(00671)	(00660)	(00680)	AS CD) (01027)	AS CU) (01042)	AS PB) (01051)	AS ZN) (01092)
NOV 02-03 MAY													

THIS PAGE IS INTENTIONALLY LEFT BLANK.

#### 08158930 Williamson Creek at Manchaca Road, Austin, TX

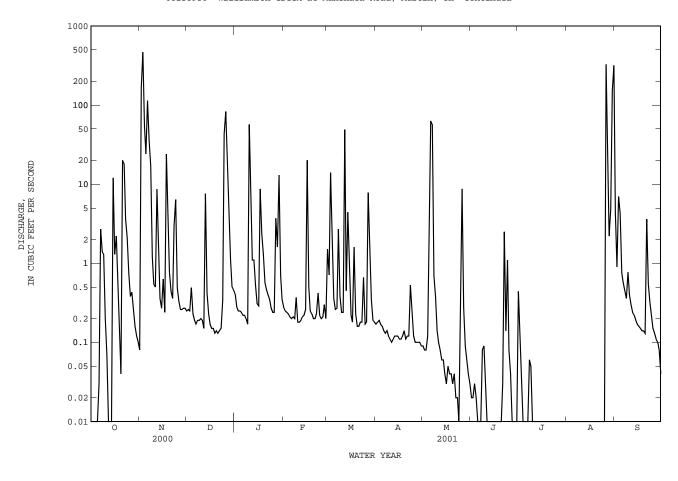
LOCATION.--Lat 30°13′16", long 97°47′36", Travis County, Hydrologic Unit 12090205, on downstream side of the bridge on Manchaca Road, 0.7 mile south of the intersection of Ben White Boulevard and Manchaca Road, and 4.9 miles southwest of the State Capitol Building in Austin.

DRAINAGE AREA. -- 19.0 mi².

PERIOD OF RECORD. -- May 1975 to Sept. 1985 (discharge measurements and annual maximum), Jan. 2000 to current year.

GAGE.--Water-stage recorder. Datum of gage is 618.39 ft above sea level. Satellite telemeter at gage.

REMARKS. -- No estimated daily discharges. Records fair. No known regulation or diversions.


EXTREMES FOR PERIOD OF RECORD.--Maximum discharge,  $8,490~{\rm ft}^3/{\rm s}$  June 11, 1981 (gage height,  $16.00~{\rm ft}$ ); minimum discharge, no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,220 ft³/s Aug. 26 (gage height, 9.42 ft); minimum discharge, no flow many days.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAILY MEAN VALUES FEB DAY OCT NOV DEC MAR MAY JUN JUL AUG SEP JAN APR ΛN .08 25 .41 . 28 1.5 17 0.9 0.2 . 44 ΛN 4.4 2 168 .25 .08 .10 .90 .00 .26 .28 .71 .18 .02 .00 7.0 .00 466 .25 .25 .24 14 .19 .08 .03 .03 .00 1.5 54 24 .23 4 5 .00 .49 25 .17 .12 02 .00 .00 4.3 10 .00 .23 .24 .36 .16 .00 .00 .00 .76 6 7 .03 114 19 22 20 26 .14 63 0.0 0.0 0.0 57 .17 .22 .21 .27 .13 . 45 36 .00 .00 .00 8 1.4 17 .19 .20 2.7 .70 .20 .14 .08 .06 .00 .36 .19 .38 .00 1.3 1.2 .17 .37 .38 .12 09 05 77 10 .11 .20 . 55 .20 .18 .24 .14 .03 .00 .00 .40 11 0.7 50 19 11 18 .24 10 1.0 0.1 0.0 0.0 30 1.1 49 .11 12 .01 8.6 .19 . 24 .15 .08 .00 .00 .00 .00 1.4 7.6 .45 .00 1.1 .12 .00 .42 .53 .36 14 .00 .22 4 4 12 06 0.0 0.0 0.0 19 15 .26 1.0 .12 .23 .31 .04 .00 .17 .00 .00 . 63 16 1.3 17 29 20 22 11 03 0.0 0.0 0.0 16 17 8.7 .11 .15 .18 .05 .00 .00 .00 .15 . 24 1.6 18 .78 24 .15 2.4 .25 .12 .04 .00 .00 .00 .14 6.3 .77 .23 19 16 13 1.3 23 14 0.4 0.0 0.0 0.0 14 .11 20 .04 .20 .16 .03 .00 .00 .00 .13 21 20 44 .13 46 20 16 12 0.4 03 0.0 0.0 3 6 22 18 .23 .12 .02 2.5 .36 .40 .18 .00 .00 .55 .14 23 3.6 3.0 .15 .35 .42 .18 .53 .02 .00 .00 .32 24 2.1 6.4 .34 .27 .22 .66 .24 .01 .00 .00 .23 .74 .49 43 .24 .39 .08 .00 8.7 26 83 .24 .21 .18 .10 .04 .13 .38 .33 .00 326 .27 27 .43 .26 3.7 .30 7.8 .10 .01 .00 34 .11 28 .27 .26 4.3 1.6 .20 1.5 .10 .09 .00 .00 2.2 .10 .27 13 .35 29 .16 1.1 .10 .06 .00 .00 4.8 .08 30 .12 .27 .51 .69 ---.19 .09 .04 .00 .00 153 31 .10 .46 .35 ---.18 ---.03 .00 317 ---TOTAL 68.09 935.98 168.88 107.84 26.59 90.95 4.29 141.79 4.20 0.68 837.00 27.06 .14 2.5 .90 7.0 MEAN 2.20 31.2 5.45 3.48 .95 2.93 .14 4.57 .022 27.0 57 .53 63 20 83 20 326 466 49 .44 MAX MIN .00 .13 .17 .16 .09 .01 .00 .00 .00 .04 AC-FT 135 1860 335 214 53 180 8.5 281 8.3 1.3 1660 54

08158930 Williamson Creek at Manchaca Road, Austin, TX--Continued



#### 08159000 Onion Creek at U.S. Highway 183, Austin, TX

LOCATION.--Lat 30°10'40", long 97°41'18", Travis County, Hydrologic Unit 12090205, on right bank at downstream side of downstream bridge on U.S. Highway 183, 2.4 mi downstream from Williamson Creek, 3.2 mi southwest of Del Valle, and 7.5 mi southeast of the State Capitol Building in Austin.

DRAINAGE AREA. -- 321 mi².

PERIOD OF RECORD.--May 1924 to Mar. 1930 station was published as "near Del Valle", Mar. 1976 to current year.
Water-quality records.--Chemical data: Oct. 1976 to Sept. 1988. Biochemical data: Oct. 1976 to Sept. 1988. Radiochemical data: Jan. 1980. Pesticide data: Oct. 1976 to Sept. 1986. Sediment data: Oct. 1976 to Sept. 1982.

GAGE.--Water-stage recorder. Datum of gage is 442.85 ft above sea level (Texas Department of Transportation datum). May 15, 1924, to Mar. 15, 1930, nonrecording gage at highway bridge 1,700 ft upstream at 6.42 ft higher datum. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good except those for daily discharges below  $4.0~{\rm ft}^3/{\rm s}$ , which are poor. No known regulation or diversions. Flow is slightly affected by several small ponds on main channel and tributaries above station. No flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1869 occurred about July 3, 1869, stage about 38 ft, from newspaper accounts, and Sept. 9, 1921, stage 38.0 ft, from floodmark, present site and datum.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCHAR	GE, CUBIC	: FEET PER		MEAN VAI		R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 161 5260 566 139	18 16 15 15	68 59 51 46 42	60 50 49 46 40	22 26 99 114 78	52 46 41 37 31	9.9 9.5 8.9 8.3	12 11 9.3 7.6 7.2	3.7 5.9 4.8 3.9 3.0	.00 .00 .00 .00	125 37 19 37 21
6 7 8 9 10	.00 .00 .00 .00	864 321 234 103 71	14 13 12 12	36 34 29 25 189	36 36 33 30 24	54 48 47 49 45	29 26 23 21 20	71 2030 322 222 153	7.1 6.7 9.7 12 7.8	2.3 1.7 1.1 .37	.00 .00 .00 .00	13 8.7 6.4 31 15
11 12 13 14 15	.00 .00 .00 .00	41 30 27 18 14	12 11 40 26 20	423 199 145 134 109	24 22 21 21 20	42 259 176 164 198	19 18 18 18 16	75 57 80 79 48	6.6 5.7 4.8 4.4 4.1	.00 .00 .00 .00	.00 .00 .00 .00	8.1 6.0 5.0 4.6 4.4
16 17 18 19 20	.00 26 15 1.7 .25	13 12 87 82 38	15 13 12 11 11	97 117 155 192 137	168 66 41 30 25	113 94 110 135 108	20 18 19 18 16	36 28 24 20 18	4.1 4.0 3.9 3.8 3.0	.00 .00 .00 .00	.00 .00 .00 .00	4.1 3.9 3.7 3.5 3.4
21 22 23 24 25	27 130 37 8.6 6.7	25 21 20 345 91	11 10 10 12 72	115 103 99 93 79	24 23 23 26 22	93 81 74 70 55	15 14 16 20 16	15 13 11 11 13	16 41 19 23 7.8	.00 .00 .00 .00	.00 .00 .00 .00	3.6 121 56 22 12
26 27 28 29 30 31	1.9 1.3 .76 .43 .19	48 33 29 24 21	382 392 190 124 89 75	70 55 51 182 111 74	20 21 22 	50 86 98 94 73 60	14 12 12 11 10	53 27 21 19 15	4.7 3.5 2.9 2.3 2.0	.00 .00 .00 .00	.00 283 76 39 488 948	8.3 6.8 5.8 5.1 4.8
TOTAL MEAN MAX MIN AC-FT CFSM IN.	256.87 8.29 130 .00 510 .03	8738.00 291 5260 .00 17330 .91 1.01	1680 54.2 392 10 3330 .17	3319 107 423 25 6580 .33 .38	1023 36.5 168 20 2030 .11	2815 90.8 259 22 5580 .28 .33	646 21.5 52 10 1280 .07	3558.6 115 2030 8.3 7060 .36 .41	257.0 8.57 41 2.0 510 .03 .03	26.87 .87 5.9 .00 53 .00	1834.00 59.2 948 .00 3640 .18 .21	605.2 20.2 125 3.4 1200 .06
STATIS	TICS OF	MONTHLY MEA	N DATA FO	R WATER Y	EARS 1924	- 2001h	, BY WATE	R YEAR (W	ď)			
MEAN MAX (WY) MIN (WY)	79.5 1346 1999 .000 1929	45.1 400 1999 .27 1994	91.5 1526 1992 .000 1990	53.3 487 1992 .002 1990	77.5 908 1992 1.65 1925	82.0 576 1992 1.80 1996	100 847 1926 1.39 1994	173 1767 1929 1.40 1984	230 2305 1981 .010 1925	31.2 133 1981 .000 1925	8.61 59.2 2001 .000 1925	8.83 48.0 1986 .000 1988
SUMMAR	Y STATIS	TICS	FOR 2	000 CALEN	DAR YEAR	FO	OR 2001 W	ATER YEAR		WATER Y	ZEARS 1924	- 2001h
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL ANNUAL ANNUAL 10 PER 50 PER	T ANNUAL 'ANNUAL T DAILY 'DAILY M	MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS			Nov 3 May 29 Jul 1		9550	Nov 3 0 Oct 1 0 Oct 1 Nov 3 6 Nov 3		80.7 379 1.4 30500 .( 76000 32.3 58440 .2 125 6.2	May May Jun 00 Jun May Oct 0ct 0ct 0ct 0ct 0ct 0ct 0ct 0ct 0ct 0	1992 1925 28 1929 3 1925 3 1925 28 1929 17 1998

h See PERIOD OF RECORD paragraph.

08159000 Onion Creek at U.S. Highway 183, Austin, TX--Continued



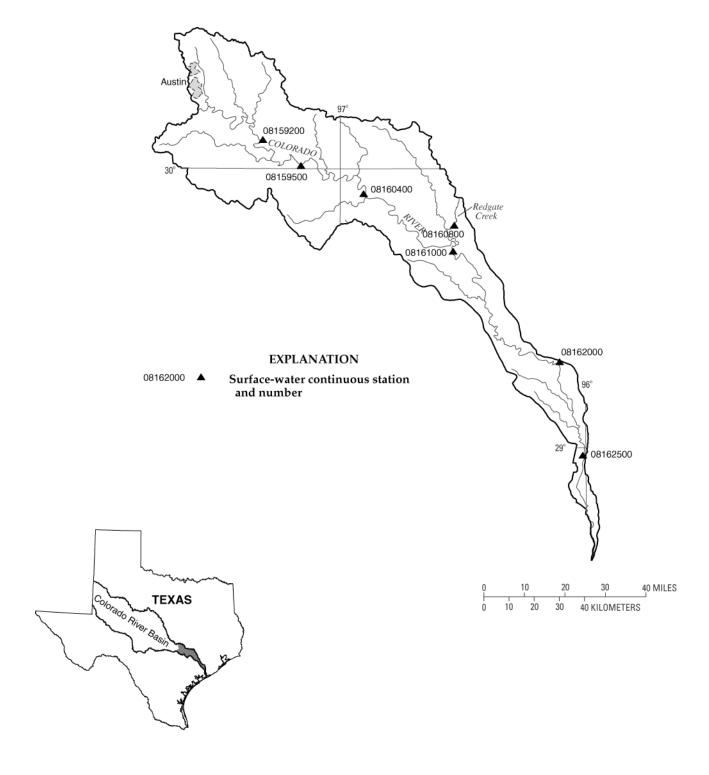



Figure 8.--Map showing location of gaging stations in the fifth section of the Colorado River Basin

08159200	Colorado River at Bastrop, TX	260
08159500	Colorado River at Smithville, TX	262
08160400	Colorado River above LaGrange, TX	264
08160800	Redgate Creek near Columbus, TX	266
08161000	Colorado River at Columbus, TX	268
08162000	Colorado River at Wharton, TX	270
08162500	Colorado River near Bay City, TX	272

#### 08159200 Colorado River at Bastrop, TX

LOCATION.--Lat 30°06′16", long 97°19′09", Bastrop County, Hydrologic Unit 12090301, at the downstream side of bridge on State Highway 71 bridge, at Bastrop, 0.3 mi upstream from Gills Branch, 1.2 mi downstream from Piney Creek, and at mile 236.6.

DRAINAGE AREA.--39,979 mi², approximately, of which 11,403 mi² probably is noncontributing.

PERIOD OF RECORD.--Mar. 1960 to current year. Oct. 1973 to Sept. 1975, daily discharges estimated by hydrographic comparison with Colorado River at Austin (station 08158000) and Colorado River near Smithville (station 08159500).

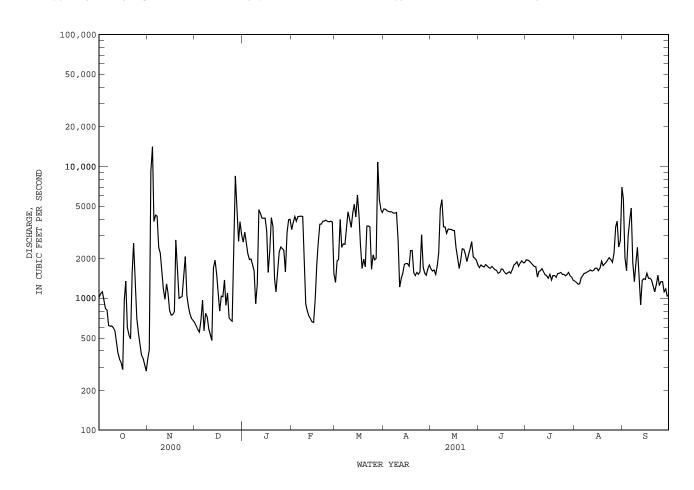
Water-quality records.--Chemical data: Mar. 1944, Feb. 1968 to Sept. 1994. Biochemical data: Feb. 1968 to Sept. 1994. Specific conductance: Nov. 1986 to Sept. 1994. pH: Nov. 1986 to Sept. 1994. Water temperature: Nov. 1986 to Sept. 1994. Dissolved oxygen: Nov. 1986 to Sept. 1994.

REVISED RECORDS. -- WDR TX-81-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 307.38 ft above sea level. Prior to May 10, 1960, nonrecording gage at a site 400 ft upstream from present site and at same datum. May 10, 1960, to Sept. 30, 1973, Oct. 1, 1975, to Oct. 28, 1986, at a site 400 ft upstream from present site and at same datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair. Since installation of gage in 1960, at least 10% of contributing drainage area has been regulated. There are many diversions above station for irrigation and for municipal supply. The city of Austin diverts water into Decker Lake (by pumpage) upstream from this station. The Lower Colorado River Authority also diverts water from the Colorado into Lake Bastrop (by pumpage) upstream from this station.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes, and publishes streamflow record.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1845, 60.3 ft July 7 or 8, 1869. Flood of June 16, 1935, reached a stage of 57.0 ft, and flood of Dec. 4, 1913, reached a stage of 53.3 ft, from information by local resident.

		DISCH	ARGE, CUI	SIC PEEL P		LY MEAN V		ER 2000 I	) SEPIEMB	ER ZUUI		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1020	344	655	2670	3320	1320	4770	1670	1710	1960	1350	5700
2	1090	407	617	3180	3770	1930	4740	1610	1790	1950	1320	2030
3	1120	9280	583	2640	4170	1970	4610	1640	1750	1910	1280	1620
4	981	14100	555	2180	3850	3960	4560	1520	1730	1860	1290	2970
5	839	3820	683	1970	4170	2440	4530	1770	1800	1800	1430	3950
6	814	4280	968	1990	4190	2590	4530	2220	1760	1750	1480	4840
7	621	4210	568	1780	4200	2570	4430	4830	1710	1740	1550	1860
8	615	2430	773	1620	4180	3410	4430	5600	1690	1450	1560	1340
9	618	2190	727	910	1860	4540	4470	3500	1750	1600	1590	1890
10	600	1590	585	1280	903	3990	2780	3480	1690	1620	1610	2440
11	570	1180	528	4710	799	3460	1220	3120	1650	1680	1640	1380
12	470	983	479	4460	733	4470	1420	3350	1630	1590	1610	893
13	386	1290	1700	4070	704	5170	1540	3340	1550	1510	1630	1370
14	347	1100	1950	4060	664	4160	1800	3330	1570	1480	1690	1410
15	326	809	1530	4070	656	6080	1840	3280	1670	1420	1700	1390
16	288	748	1100	3230	982	4220	1840	3270	1660	1520	1620	1550
17	977	753	802	1570	1810	2520	1760	2430	1580	1380	1690	1420
18	1350	792	1040	2280	2640	1690	2300	2010	1530	1490	1910	1420
19	602	2770	1030	4090	3660	1980	2310	1690	1560	1490	1770	1380
20	529	1640	1380	3520	3670	1740	1570	1930	1590	1440	1830	1240
21	492	1000	885	1400	3860	3540	1490	2380	1550	1540	1880	1120
22	1560	1020	1100	1120	3860	3550	1570	2360	1650	1550	1960	1270
23	2620	1030	708	1580	3920	3480	1520	2150	1790	1570	2030	1500
24	1300	1450	685	2240	3830	1660	1590	1900	1830	1520	1970	1250
25	706	2070	672	2450	3810	2140	3030	2130	1890	1520	1880	1340
26 27 28 29 30 31	550 456 373 352 316 281	1050 864 763 702 679	3320 8470 4530 2710 3810 3050	2390 2320 1590 3150 3950 3980	3850 3790 1540 	1960 2010 10800 5590 4710 4490	1720 1560 1500 1670 1790	2370 2690 2060 2020 1950 1790	1750 1850 1920 1860 1870	1480 1510 1570 1480 1450 1370	2230 3490 3840 2450 2740 6970	1340 1120 1180 1040 1060
TOTAL	23169	65344	48193	82450	79391	108140	78890	79390	51330	49200	62990	54313
MEAN	747	2178	1555	2660	2835	3488	2630	2561	1711	1587	2032	1810
MAX	2620	14100	8470	4710	4200	10800	4770	5600	1920	1960	6970	5700
MIN	281	344	479	910	656	1320	1220	1520	1530	1370	1280	893
AC-FT	45960	129600	95590	163500	157500	214500	156500	157500	101800	97590	124900	107700
STATIST	rics of	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	60 - 2001	, BY WATE	R YEAR (W	Y)			
MEAN	1412	1255	1465	1695	2140	2335	2505	3403	4398	2563	1883	1719
MAX	6380	11330	14770	17490	29140	16910	11080	10420	23620	12750	3705	4930
(WY)	1974	1975	1992	1992	1992	1992	1977	1975	1987	1997	1961	1974
MIN	291	94.6	111	109	138	131	565	1471	1489	1302	1125	1003
(WY)	1965	1964	1964	1964	1964	1964	1962	1962	1993	1967	1999	1999

### 08159200 Colorado River at Bastrop, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR	YEAR	FOR 2001 WAT	TER YEAR	WATER YEARS	1960 - 2001
ANNUAL TOTAL	450253		782800			
ANNUAL MEAN	1230		2145		2230	
HIGHEST ANNUAL MEAN					9073	1992
LOWEST ANNUAL MEAN					828	1964
HIGHEST DAILY MEAN	14100 No	ov 4	14100	Nov 4	65800	Dec 22 1991
LOWEST DAILY MEAN	218 Fe	eb 20	281	Oct 31	75	Apr 1 1964
ANNUAL SEVEN-DAY MINIMUM	254 Fe	b 17	361	Oct 27	84	Oct 19 1964
MAXIMUM PEAK FLOW			16800	Nov 4	79600	Oct 29 1960
MAXIMUM PEAK STAGE			15.01	Nov 4	37.48	Dec 22 1991
ANNUAL RUNOFF (AC-FT)	893100		1553000		1615000	
10 PERCENT EXCEEDS	1900		4160		4170	
50 PERCENT EXCEEDS	1080		1690		1550	
90 PERCENT EXCEEDS	326		703		257	



#### 08159500 Colorado River at Smithville, TX

LOCATION.--Lat 30°00'45", long 97°09'42", Bastrop County, Hydrologic Unit 12090301, on right bank 28 ft downstream from bridge on Business State Highway 71 in Smithville, 500 ft below mouth of Gazley Creek, 3.9 mi below mouth of Alum Creek, and at mile 212.1.

DRAINAGE AREA.--40,371  $\min^2$  approximately, of which 11,403  $\min^2$  probably is noncontributing.

PERIOD OF RECORD.--July 1930 to Sept. 1975, Oct. 1997 to current year. Gage-height records collected in this vicinity since 1920 are contained in reports of the National Weather Service.

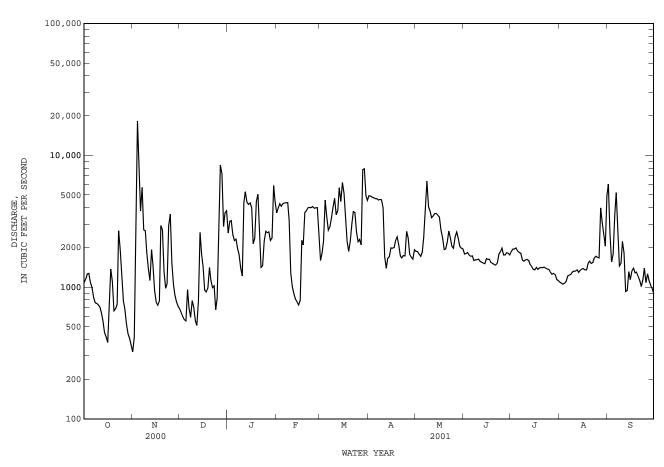
Water-quality records.--Chemical data: Oct. 1973 to Sept. 1975. Biological data: Oct. 1973 to Sept. 1975.

REVISED RECORDS.--WSP 1342: Drainage are. WSP 1562: 1934. WSP 1712: 1953, 1954(M), 1957-58.

GAGE.--Water-stage recorder. Datum of gage is 270.14 ft above sea level. Prior to Apr. 9, 1931, nonrecording gage at same site and datum. Apr. 9, 1931, to Sept. 2, 1971, water-stage recorder at site 360 ft downstream at same datum. Radio telemeter at station.

REMARKS.--Records fair. Since installation of gage in 1930, at least 10% of contributing drainage area has been regulated. At times, low-flow releases from Lake Travis are made for generation of electric power and to fulfill downstream water contracts. There are many diversions above station for irrigation and municipal supply.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes, and publishes streamflow record.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1860, occurred July 8, 1869, and was several feet higher than flood of Dec. 4, 1913, which reached a stage of 47.4 ft and was the highest since 1869, from information by local residents.

		DISCH	ARGE, CUB	IC FEET PEF		, WATER LY MEAN	YEAR OCTOBE VALUES	R 2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1080 1150 1260 1270 1080	323 415 3710 18200 8190	684 639 601 566 554	2570 3150 3190 2500 2250	3650 3980 4300 4100 4280	1590 1820 2240 4570 3420	4900 4800 4770	1860 1860 1780 1710 1840	1780 1790 1830 1750 1710	1860 1940 1940 1980 1880	1090 1070 1050 1070 1100	6050 2560 1550 1780 3510
6 7 8 9	990 833 759 752 734	3780 5700 2710 2670 1830	956 696 590 788 698	2310 1950 1760 1400 1210	4350 4360 4370 3200 1280	2690 2870 3320 4030 4710	4570 4620 4590	2390 3770 6380 4060 3760	1720 1590 1610 1610 1630	1830 1800 1600 1570 1600	1210 1230 1250 1300 1320	5200 2420 1440 1510 2220
11 12 13 14 15	706 635 557 451 418	1380 1120 1920 1450 941	552 510 782 2600 1760	4390 5280 4400 4240 4350	1000 885 811 776 733	3530 3810 5670 4450 6210	1390 1650 1700	3360 3450 3600 3610 3500	1570 1540 1520 1500 1640	1620 1590 1480 1430 1360	1320 1350 1290 1340 1370	1810 923 942 1310 1140
16 17 18 19 20	379 655 1370 1100 658	767 728 781 2930 2700	1430 946 917 982 1410	3980 2130 2340 4450 5070	789 2260 2080 3680 3790	5130 3480 2230 1870 2230	1990 2240 2400	3400 2700 2360 1920 1940	1620 1630 1530 1510 1480	1350 1410 1360 1400 1410	1380 1350 e1350 e1500 e1570	1320 1390 1280 1300 1210
21 22 23 24 25	682 738 2680 1930 1170	1310 978 1060 2930 3570	1120 990 1020 674 823	2410 1410 1450 2230 2650	4000 4020 4000 4070 3960	3020 3740 3660 2610 2200	1660 1730 1720	2190 2660 2340 2040 1970	1470 1520 e1780 e1850 e1970	1400 1420 1390 1370 1360	1510 1530 1660 1710 1680	1120 1010 1140 1390 1080
26 27 28 29 30 31	783 682 526 441 406 361	1520 1040 868 770 714	2020 8430 7210 2880 3640 3780	2580 2620 2250 2350 5880 4470	4000 4010 2590 	2290 2080 7770 7870 4920 4540	1780 1690 1630 1920	2390 2610 2340 2040 1970 1950	1750 1750 1820 1800 1750	1290 1250 1270 1240 1140 1120	e1660 e3980 e3130 2540 2040 4940	1260 1110 1030 973 886
TOTAL MEAN MAX MIN AC-FT	27236 879 2680 361 54020	77005 2567 18200 323 152700	51248 1653 8430 510 101700	93220 3007 5880 1210 184900	85324 3047 4370 733 169200	114570 3696 7870 1590 227200	84480 2816 4930 1390	83750 2702 6380 1710 166100	50020 1667 1970 1470 99210	46660 1505 1980 1120 92550	51890 1674 4940 1050 102900	51864 1729 6050 886 102900
STATIST	CS OF	MONTHLY M	EAN DATA	FOR WATER Y	EARS 193	30 - 200	lh, BY WATE	R YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	2835 20380 1931 117 1935	1919 13480 1975 133 1964	1678 5738 1941 129 1964	1894 7823 1968 133 1964	2174 8516 1958 145 1964	2043 7292 1958 176 1964	11300 1941 471	4426 27980 1957 1088 1942	4132 31510 1935 391 1934	3424 31310 1938 852 1933	1915 7303 1938 240 1930	2960 38090 1936 337 1934

### 08159500 Colorado River at Smithville, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENDA	R YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR:	3 1930 - 2001h
ANNUAL TOTAL	473957		817267		0550	
ANNUAL MEAN HIGHEST ANNUAL MEAN	1295		2239		2668 6780	1935
LOWEST ANNUAL MEAN					794	1952
HIGHEST DAILY MEAN		Nov 4	18200	Nov 4	219000	Jun 16 1935
LOWEST DAILY MEAN		Feb 21	323	Nov 1	79	Nov 1 1934
ANNUAL SEVEN-DAY MINIMUM	355	Feb 17	451	Oct 27	84	Oct 27 1934
MAXIMUM PEAK FLOW			21000	Nov 4	305000	Jun 16 1935
MAXIMUM PEAK STAGE			13.46	Nov 4	42.50	Jun 16 1935
ANNUAL RUNOFF (AC-FT)	940100		1621000		1933000	
10 PERCENT EXCEEDS	1940		4360		4700	
50 PERCENT EXCEEDS	1100		1750		1620	
90 PERCENT EXCEEDS	415		774		342	

Estimated
See PERIOD OF RECORD paragraph. e h



#### 08160400 Colorado River above LaGrange, TX

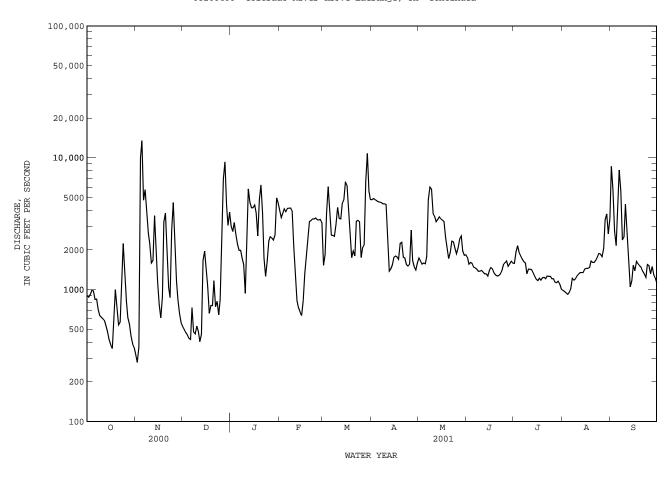
DRAINAGE AREA. --40,874 mi², of which 11,403 mi² probably is noncontributing.

PERIOD OF RECORD.--Dec. 1979 to Sept. 1982 (discharge measurements only), Apr. 1988 to current year.

GAGE.--Water-stage recorder. Datum of gage is 210.04 ft above sea level. Dec. 12, 1979, to Sept. 30, 1982, discharge measurements only were made at old State Highway 71 bridge, 1.0 mi downstream and at different datum. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records fair. Since installation of gage in 1988, at least 10% of contributing drainage area has been regulated. At times, low-flow releases from Lake Travis are made for generation of electric power and to fulfill downstream water contracts. There are many diversions above station for irrigation and municipal supply.

COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage discharge relation at low stages. U.S. Geological Survey maintains stage discharge relation at medium to high stages, computes, and publishes streamflow record.


EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since at least 1869, about 56.7 ft on July 9, 1869 (from marble high-water marker in LaGrange). Stages of other floods are as follows: Dec. 5, 1913, 56.4 ft, from floodmark; June 17, 1935, 50.84 ft, from floodmarks (discharge 255,000 ft³/s) from rating curve extended above 200,000 ft³/s); July 27, 1938, 42.95 ft (discharge, 200,000 ft³/s). These data were collected at a site 2.6 mi downstream at streamflow station and published as Colorado River at LaGrange at datum different than at present site.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCHA	RGE, CUB	BIC FEET PI		WATER Y Y MEAN V		ER 2000 TO	SEPTEME	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	901	323	526	3020	3990	1530	4810	1740	1750	1580	988	8600
2	877	281	498	2760	3520	1850	4910	1660	1560	1930	970	5690
3	919	367	474	3240	3820	3810	4810	1560	1610	2150	945	2780
4	989	9990	455	2640	4100	e6040	4730	1590	1580	1930	921	2160
5	975	13500	428	2220	3900	e4110	4640	1570	1480	1810	949	4310
6	844	4770	419	1990	4140	2590	4610	1780	1460	1710	1010	8070
7	847	5740	730	1990	4150	2580	4560	4830	1430	1630	1220	5650
8	704	4090	477	1740	4160	2540	4480	6000	1380	1590	1180	2380
9	637	2690	461	1550	3960	3130	4470	5780	1380	1320	1210	2510
10	618	2230	528	939	2130	4210	4430	3780	1400	1430	1270	4440
11	601	1590	481	2690	e1400	3470	2660	3610	1360	1430	1310	2960
12	581	1660	403	5800	827	e3440	1380	3270	1320	1420	1350	1840
13	533	3640	458	4590	734	4490	1430	3400	1320	1350	1350	1050
14	480	2110	1670	4170	680	4800	1540	3560	1270	1270	1350	1170
15	417	1150	1960	4180	636	6590	1760	3450	1400	1200	1430	1530
16	382	773	1470	4380	822	6170	1800	3370	1470	1170	1450	1390
17	357	609	1060	3830	1330	4020	1770	3280	1440	1220	1450	1640
18	562	880	662	2550	1810	2540	1700	2490	1340	1180	1470	1570
19	1000	3260	758	4810	2490	1750	2240	2050	1290	1230	1650	1520
20	730	3810	758	6230	3280	1960	2280	1720	1270	1240	1610	1480
21	539	1840	1170	3800	3340	1800	e1760	1910	1280	1210	1610	1380
22	566	1040	741	1740	3440	3290	e1740	2330	1310	1270	1670	1320
23	1050	870	815	1260	3430	3360	1550	2300	1390	1260	1760	1240
24	2240	2820	645	1640	3490	3280	1510	2070	1550	1260	1880	1550
25	1260	4580	842	2330	3390	1750	1560	1870	1600	1210	1860	1520
26	823	2520	2050	2520	3370	2070	2830	2070	1650	1210	1780	1320
27	613	1170	6920	2470	3410	2190	1660	2420	1500	1140	2060	1500
28	546	838	9320	2380	3230	6650	1490	2550	1570	1130	3370	1300
29	445	660	4380	2600		10800	1410	1960	1640	1160	3750	1230
30	389	562	3070	4960		5570	1600	1820	1590	1100	2650	1120
31	362		3870	4560		4830		1840		1010	3480	
TOTAL	22787	80363	48499	95579	78979	117210	82120	83630	43590	42750	50953	76220
MEAN	735	2679	1564	3083	2821	3781	2737	2698	1453	1379	1644	2541
MAX	2240	13500	9320	6230	4160	10800	4910	6000	1750	2150	3750	8600
MIN	357	281	403	939	636	1530	1380	1560	1270	1010	921	1050
AC-FT	45200	159400	96200	189600	156700	232500	162900	165900	86460	84790	101100	151200
STATIST	rics of i	MONTHLY MEA	AN DATA	FOR WATER	YEARS 198	8 - 2001	, BY WATE	R YEAR (WY)				
MEAN	1876	965	2199	2722	3701	3862	2838	3327	4292	2742	1664	1619
MAX	10510	4762	16350	18640	31160	18080	7333	8290	15180	12900	2096	2541
(WY)	1999	1999	1992	1992	1992	1992	1997	1992	1997	1997	1992	2001
MIN	476	244	248	247	356	380	984	1771	1453	1379	1177	939
(WY)	1997	1989	1990	1990	1990	2000	2000	2000	2001	2001	2000	1999
SUMMARY	Y STATIS	TICS	FOR	2000 CAL	ENDAR YEAR		FOR 2001	WATER YEAR		WATER Y	ZEARS 1988	3 - 2001
ANNUAL	TOTAL.			456823			822680					
ANNUAL				1248			2254			2670		
	r annual									9913		1992
	ANNUAL I									930		2000
	r daily i			13500	Nov 5		13500	Nov 5 Nov 2		84000		23 1991
LOWEST	DAILY M	EAN		234	Feb 22		281	Nov 2		167		21 1989
ANNUAL	SEVEN-DA	AY MINIMUM		283	Feb 18		388 16000	Oct 28 Nov 5		170 89800		16 1989
	M PEAK FI M PEAK S'						17.	46 Nov 5		45.4		20 1998 20 1998
ANNITAT.	RIMORF	(AC-ET)		906100			1632000	40 MOA 2		1934000	ı, OCL	20 1220
10 PERG	TENT EXC	(AC-FT) EEDS		1890			4480			4580		
50 PERC	CENT EXC	EEDS		1020			1640			1470		
	CENT EXC			339			654			375		

e Estimated

### 08160400 Colorado River above LaGrange, TX--Continued



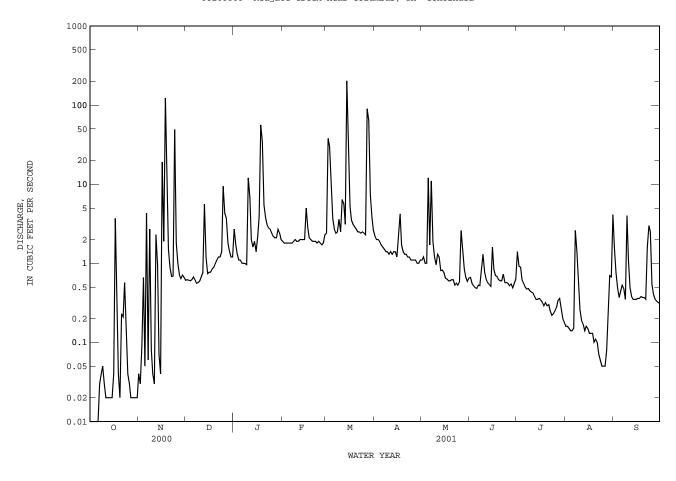
#### 08160800 Redgate Creek near Columbus, TX

LOCATION.--Lat 29°47′56", long 96°31′55", Colorado County, Hydrologic Unit 12090301, on left bank at downstream side of bridge on Farm Road 109, 1.9 mi upstream from Cummins Creek, and 7.0 mi north of Columbus.

DRAINAGE AREA. -- 17.3 mi².

PERIOD OF RECORD.--Apr. 1962 to current year.

REVISED RECORDS.--WSP 2122: Drainage area.


GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 210.82 ft above sea level. Prior to Oct. 1, 1975, datum 10.00 ft higher. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. No flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1860, about 33.4 ft in late June or early July 1940, from information by Texas Department of Transportation and local resident.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.04 .03 .09 .66	.61 .62 .61 .60	2.7 1.7 1.3 1.1	1.9 1.8 1.8 1.8	2.4 38 30 8.7 3.7	2.2 2.0 2.0 1.9 1.7	1.1 1.2 1.0 1.0	.66 .56 .52 .49	1.4 .92 .89 .62	.16 .16 .15 .14	1.6 .77 .49 .37 .45
6 7 8 9 10	.00 .03 .04 .05	4.3 .06 2.7 .08 .04	.67 .62 .56 .57	1.0 1.0 .99 .96	1.8 1.8 1.9 2.0	2.7 2.4 2.5 3.6 2.5	1.6 1.5 1.4 1.4	1.7 11 1.9 1.2 .96	.53 .52 .81 1.3 .78	.50 .47 .48 .45 .43	.15 2.6 1.4 .56 .26	.53 .48 .35 4.0 1.1
11 12 13 14 15	.02 .02 .02 .02 .02	.03 2.3 .95 .07	.68 .76 5.6 1.2 .74	6.8 2.0 1.6 1.9	1.9 2.0 2.0 2.0 2.0	6.4 5.7 3.1 202 19	1.4 1.3 1.4 1.4	1.3 1.2 .81 .82	.64 .57 .54 .51	.42 .38 .35 .35	.19 .17 .14 .16 .15	. 49 . 38 . 35 . 35 . 35
16 17 18 19 20	.04 3.7 .85 .04	19 1.9 123 10 1.5	.77 .77 .85 .89	2.2 3.9 56 34 5.5	5.0 2.8 2.1 2.0 1.9	5.2 3.5 3.1 2.9 2.7	2.1 4.2 1.7 1.4 1.3	.65 .63 .60 .60	.83 .70 .68 .62	.34 .32 .29 .32 .29	.13 .13 .13 .10	.36 .36 .38 .37
21 22 23 24 25	.23 .21 .57 .19	.88 .68 .69 49	1.1 1.2 1.2 1.4 9.4	3.8 3.1 2.8 2.7 2.4	1.9 1.9 1.8 1.9	2.5 2.5 2.4 2.5 2.4	1.3 1.2 1.2 1.1	.62 .53 .56 .53	.60 .73 .57 .57	.30 .25 .22 .23 .25	.10 .07 .06 .05	.35 1.6 3.0 2.5 .54
26 27 28 29 30 31	.03 .02 .02 .02 .02	.99 .71 .64 .71 .66	4.3 3.7 1.8 1.4 1.2	2.2 2.1 2.1 2.7 2.4 2.0	1.7 1.8 2.3 	2.3 90 64 7.3 3.8 2.6	1.1 1.0 1.0 1.1	2.6 1.5 .85 .67 .59	.52 .55 .49 .56 .63	.28 .34 .36 .27 .20	.05 .08 .21 .70 .67	.40 .35 .33 .32 .31
TOTAL MEAN MAX MIN AC-FT CFSM IN.	6.27 .20 3.7 .00 12 .01	223.60 7.45 123 .03 444 .43 .48	47.24 1.52 9.4 .56 94 .09	167.45 5.40 56 .96 332 .31	57.3 2.05 5.0 1.7 114 .12	532.4 17.2 202 2.3 1060 .99 1.14	45.6 1.52 4.2 1.0 90 .09	50.74 1.64 12 .53 101 .09	19.72 .66 1.6 .48 .39 .04	13.02 .42 1.4 .18 26 .02	13.27 .43 4.1 .05 26 .02 .03	23.60 .79 4.0 .31 47 .05
				FOR WATER Y								
MEAN MAX (WY) MIN (WY)	6.38 69.3 1999 .000 1964	4.99 98.4 1999 .070 1967	4.71 25.4 1992 .25 1967	6.58 31.9 1974 .24 1967	7.69 67.5 1992 .21 1967	6.51 38.1 1973 .19 1967	7.13 39.9 1991 .24 1971	11.5 55.5 1979 .33 1971	9.33 83.4 1993 .065 1990	1.04 4.44 1993 .007 1971	1.19 17.4 1974 .000 1970	3.21 38.5 1974 .040 1963
SUMMARY	STATIST	rics	FOR	2000 CALEN	NDAR YEAR	F	OR 2001 W	ATER YEAR		WATER Y	EARS 1962	- 2001
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS			0.0	Nov 18 ) Sep 1 ) Sep 27		.00 .00 1290	Mar 14 0 Oct 1 0 Oct 1 Mar 14 1 Mar 14		5.8i 20.7 .8: 1180 .00 5360 27.1: 4260 .3: 4.6: 5.1	Jun 100 Aug 100 Aug 100 May 10	1992 1964 13 1973 7 1962 7 1962 22 1979 22 1979	

08160800 Redgate Creek near Columbus, TX--Continued



#### 08161000 Colorado River at Columbus, TX

LOCATION.--Lat 29°42′22", long 96°32′12", Colorado County, Hydrologic Unit 12090301, near right bank at downstream side of pier of bridge on U.S. Highway 90 at eastern edge of Columbus, 340 ft downstream from Texas and New Orleans Railroad Co. bridge, 2.6 mi downstream from Cummins Creek, and at mile 135.1.

DRAINAGE AREA.--41,640 mi², approximately, of which 11,403 mi² probably is noncontributing.

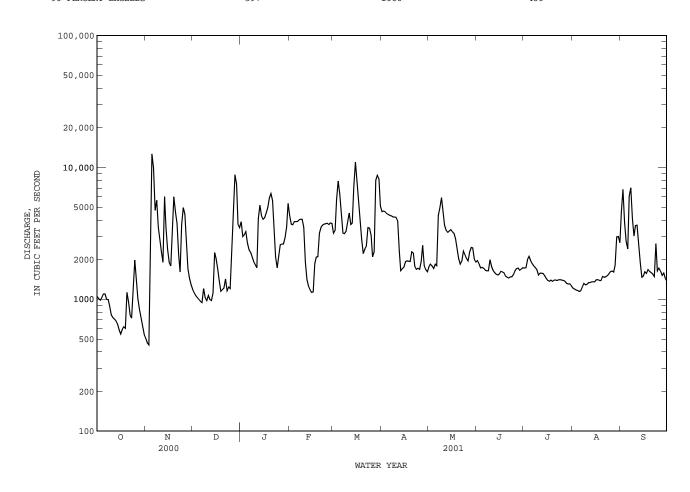
PERIOD OF RECORD.--Jan. 1903 to Dec. 1911 (gage heights only), May 1916 to current year. Discharge records for 1902-11, published in WSP 84, 99, 132, 174, 210, 288, and 308, have been found to be unreliable and should not be used. Records collected at site 23 mi downstream Oct. 1930 to May 1939, published as "near Eagle Lake". Gage-height records collected in this vicinity since 1903 are contained in reports of the National Weather Service.

Water-quality records.--Chemical data: Oct. 1967 to Sept. 1981. Biochemical data: Feb. 1968 to Sept. 1981. Sediment data: Mar. 1957 to Sept. 1973.

REVISED RECORDS.--WSP 1562: 1920-21(M), 1922. WDR TX-81-3: Drainage area. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 145.52 ft above sea level. Prior to May 1, 1919, various nonrecording gages at sites in the immediate vicinity at datum 7.00 ft higher. May 1, 1919, to Nov. 23, 1930, water-stage recorder at site about 300 ft downstream at datum 7.00 ft higher. Sept. 17, 1930, to June 12, 1939 (Oct. 1, 1930, to May 31, 1939, used herein), water- stage recorder at site 23 mi downstream at different datum. May 17 to Nov. 14, 1939, nonrecording gage at present site and datum 10.00 ft higher; Nov. 15, 1939, to Dec. 31, 1988, water-stage recorder at present site and at datum 10.00 ft higher Gage-height telemeter at station. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. Since installation of gage in May 1916, at least 10% of contributing drainage area has been regulated. There are many other diversions above this station for irrigation and for municipal supply. Low-flow releases from Lake Travis, 251 mi upstream, are made for the generation of electric power to fulfill downstream water contracts.


COOPERATION.--Lower Colorado River Authority provides operation and maintenance of the gage and verification of stage-discharge relation at low stages. U.S. Geological Survey maintains stage-discharge relation at medium to high stages, computes, and publishes streamflow record.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1852, 51.6 ft, present datum, in July 1869 and Dec. 6, 1913, from information by local resident. River divided each time and left city of Columbus on an island.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC TAN FEB MAR APR MAY .TTTN .TITT. ATTG SEP ---___ TOTAL MEAN MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1916 - 2001. BY WATER YEAR (WY) MEAN MAX (WY) MIN (WY) 

### 08161000 Colorado River at Columbus, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALEND	AR YEAR	FOR 2001 WAT	ER YEAR	WATER YEAR	S 1916 - 2001
ANNUAL TOTAL	497248		926272			
ANNUAL MEAN	1359		2538		3108	
HIGHEST ANNUAL MEAN					10810	1992
LOWEST ANNUAL MEAN					653	1917
HIGHEST DAILY MEAN	12700	Nov 5	12700	Nov 5	164000	Jun 19 1935
LOWEST DAILY MEAN	291	Feb 22	452	Nov 3	93	Sep 1 1918
ANNUAL SEVEN-DAY MINIMUM	335	Mar 24	594	Oct 28	106	Aug 22 1917
MAXIMUM PEAK FLOW			15100	Mar 15	190000	Jun 18 1935
MAXIMUM PEAK STAGE			22.18	Mar 15	48.50	Jun 18 1935
ANNUAL RUNOFF (AC-FT)	986300		1837000		2252000	
10 PERCENT EXCEEDS	2230		4600		5910	
50 PERCENT EXCEEDS	1120		1850		1620	
90 PERCENT EXCEEDS	397		1060		400	



#### 08162000 Colorado River at Wharton, TX

LOCATION.--Lat 29°18'32", long 96°06'13", Wharton County, Hydrologic Unit 12090302, near left bank at downstream side of downstream bridge on U.S. Highway 59 in Wharton, 1,100 ft downstream from Texas and New Orleans Railroad Co. bridge, 12 mi upstream from Jones Creek, and at mile 66.6.

DRAINAGE AREA.--42,003 mi², approximately, of which 11,403 mi² probably is noncontributing.

PERIOD OF RECORD.--July 1916 to Aug. 1918 (intermittent periods), Mar. 1919 to Sept. 1925, July and Aug. 1938 (flood discharge measurements only), Oct. 1938 to current year. June to Nov. 1901, May to Sept. 1902, daily records published in U.S. measurements only), Oct. 1938 to current year. June to Nov. 1901, May to Sept. 1902, daily records published in U.S. Department of Agriculture, Office of Experiment Stations, Bulletin Nos. 119 and 133. Gage-height records collected in this vicinity since 1935 are contained in reports of the National Weather Service.

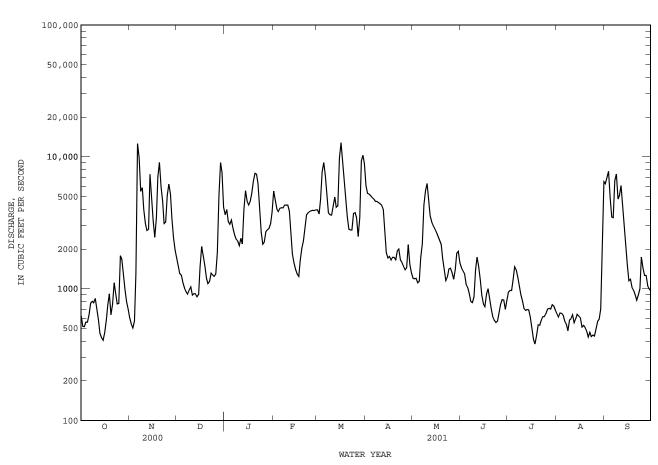
Water-quality records.—Chemical data: Apr. 1944 to Sept. 1995. Biochemical data: Jan. 1968 to Sept. 1995. Radiochemical data: Dec. 1973 to Sept. 1995. Pesticide data: Oct. 1967 to June 1982. Sediment data: Oct. 1974 to Sept. 1995.

REVISED RECORDS.--WSP 878: 1938(M). WDR TX-81-3: Drainage area. WDR TX-88-3: 1985.

GAGE.--Water-stage recorder. Datum of gage is 52.42 ft above sea level. Prior to Oct. 1, 1938, various types of recording and nonrecording gages 800 ft upstream at different datum. Oct. 1, 1938, to June 1, 1956, nonrecording gage 100 ft upstream at datum 13.00 ft higher. June 1, 1966, to Sept. 30, 1975, water-stage recorder at present site at datum 13.00 ft higher. Oct. 1, 1975, to Mar. 1, 1983, water-stage recorder at present site at datum 10.00 ft higher. Satellite telemeter at station.

REMARKS.--Records good. Since installation of gage in Oct. 1938, at least 10% of contributing drainage area has been regulated. There are many diversions above station for irrigation, municipal supply, cooling water for thermal-electric power plant, and for oil field operations.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1869, 51.9 ft Dec. 8, 1913, present datum, from information by local residents; below Wharton floodwater combined with that of the Brazos River. Flood of about July 12, 1869, reached about same height. Flood of June 20, 1935, reached a stage of 51.2 ft, present datum, furnished by National Weather Service (discharge, 159,000 ft³/s), from rating curve defined by current-meter measurements below 145,000 ft³/s. Flood of July 30, 1938, reached a stage of 50.4 ft, present datum, observed by U.S. Geological Survey personnel (discharge, 145,000 ft³/s).


DISCURDED CIDIO DEPT DED CECOND MATER VEAD COTODER 2000 TO CEDTEMBER 2001

		DISCH	IARGE, CUE	BIC FEET P		, WATER Y LY MEAN V	ZEAR OCTOBE VALUES	ER 2000 TO	O SEPTEMB	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	623	601	1690	3640	5510	3970	6040	1200	1440	e940	650	6260
2	517	540	1470	3980	4680	3690	5280	1190	1370	e971	610	6960
3	516	504	1300	3240	4030	4760	5200	1200	1300	971	654	7760
4	557	569	1270	3090	3850	7730	5090	1110	1080	1160	650	4900
5	557	1310	1110	3320	4070	9060	4910	1140	1020	1470	630	3490
6	634	12600	1010	2860	4110	7200	4800	1720	913	1390	568	3450
7	778	9890	953	2550	4100	5170	4600	2190	800	1220	539	6610
8	803	5480	909	2380	4320	3770	4590	4330	784	1040	480	7400
9	783	5830	976	2300	4300	3640	4500	5530	864	900	579	4790
10	843	3990	1030	2120	4310	3620	4410	6270	1400	807	591	5110
11	702	3140	895	2410	3880	4240	4300	4820	1740	706	635	6070
12	578	2760	917	2180	2530	4970	4010	3570	1480	682	552	4470
13	459	2820	915	3990	1830	4150	2680	3210	1180	695	591	3080
14	425	7360	868	5540	1570	4260	1870	3000	890	692	640	2170
15	406	4680	905	4630	1400	9810	1710	2860	766	608	620	1530
16	465	3250	1470	4310	1290	12800	1760	2690	731	500	600	1150
17	578	2460	2090	4580	1240	9200	1650	2500	906	411	511	1180
18	750	3460	1760	5290	1640	6600	1730	2330	1000	380	528	1020
19	915	7040	1490	6520	2030	4840	1730	2170	840	441	510	975
20	635	9090	1200	7500	2310	3520	1660	1700	701	531	478	903
21	762	5950	1090	7390	2960	2820	1940	1390	617	529	430	817
22	1110	4620	1130	6270	3610	2790	2000	1150	576	574	466	895
23	931	3120	1310	4020	3760	2790	1660	1230	554	614	434	996
24	767	3210	1270	2690	3850	3720	1580	1410	568	615	445	1740
25	774	5130	1240	2170	3900	3770	1480	1430	652	648	437	1440
26	1780	6220	1290	2250	3940	3460	1390	1320	758	699	496	1260
27	1670	5190	1890	2700	3910	2490	1440	1180	827	709	565	1260
28	1280	3400	5110	2800	3960	3450	2160	1400	820	700	584	1050
29	979	2440	9060	2870		9300	1530	1850	698	757	701	1000
30	793	1960	7640	3120		10300	1320	1920	e810	737	1820	956
31	696		4150	3810		8900		1570		692	6500	
TOTAL	24066	128614	59408	116520	92890	170790	89020	70580	28085	23789	24494	90692
MEAN	776	4287	1916	3759	3318	5509	2967	2277	936	767	790	3023
MAX	1780	12600	9060	7500	5510	12800	6040	6270	1740	1470	6500	7760
MIN	406	504	868	2120	1240	2490	1320	1110	554	380	430	817
AC-FT	47730	255100	117800	231100	184200	338800	176600	140000	55710	47190	48580	179900
STATIS	TICS OF	MONTHLY M	IEAN DATA	FOR WATER	YEARS 19	39 - 2001	, BY WATER	R YEAR (W	Y)			
MEAN	2280	2414	2239	2503	2965	2806	3081	4103	4663	2479	1350	1882
MAX	14590	13870	15060	21810	35520	21550	13730	27300	30910	15010	3916	9394
(WY)	1999	1975	1992	1992	1992	1992	1977	1957	1987	1997	1945	1961
MIN	296	220	253	224	268	328	566	825	838	706	406	436
(WY)	1957	1957	1990	1964	1967	1952	1951	1962	1948	1967	1964	1954

### 08162000 Colorado River at Wharton, TX--Continued

SUMMARY STATISTICS	FOR 2000 CALENI	DAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1939 - 2001
ANNUAL TOTAL	442401		918948			
ANNUAL MEAN	1209		2518		2726	
HIGHEST ANNUAL MEAN					11120	1992
LOWEST ANNUAL MEAN					615	1964
HIGHEST DAILY MEAN	12600	Nov 6	12800	Mar 16	90600	Jul 3 1940
LOWEST DAILY MEAN	102	Aug 20	380	Jul 18	42	Aug 22 1964
ANNUAL SEVEN-DAY MINIMUM	161	Aug 18	455	Aug 20	110	Dec 11 1956
MAXIMUM PEAK FLOW			14500	Mar 16	100000	Jul 3 1940
MAXIMUM PEAK STAGE			23.06	Mar 16	48.99	Jul 3 1940
ANNUAL RUNOFF (AC-FT)	877500		1823000		1975000	
10 PERCENT EXCEEDS	2450		5490		5470	
50 PERCENT EXCEEDS	693		1570		1320	
90 PERCENT EXCEEDS	368		577		467	

### e Estimated



#### 08162500 Colorado River near Bay City, TX

LOCATION.--Lat 28°58′26", long 96°00′44", Matagorda County, Hydrologic Unit 12090302, on left bank, 6,300 ft downstream from bridge on State Highway 35, 7,100 ft downstream from Texas and New Orleans Railroad Co. bridge, 2.8 mi west of Bay City, and at mile 32.5.

DRAINAGE AREA.--42,240  $\min^2$ , approximately, of which 11,403  $\min^2$  probably is noncontributing.

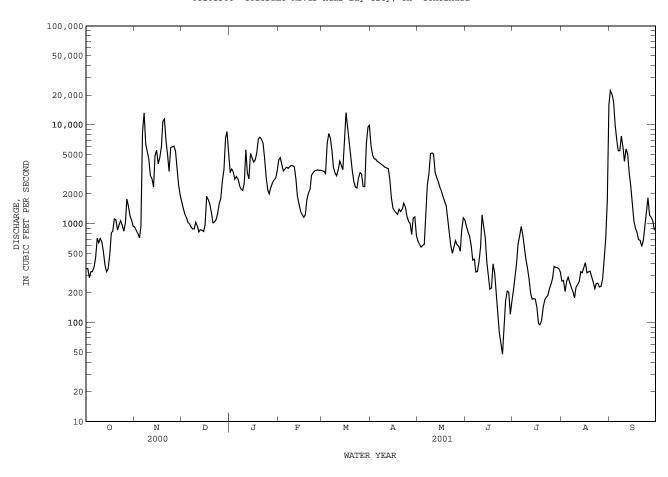
PERIOD OF RECORD.--July 1940 (WSP 1046), Apr. 1948 to current year. Records of elevation collected in this vicinity since 1946 are contained in reports of the National Weather Service.

Water-quality records.--Chemical data: Oct. 1974 to Sept. 1975. Biochemical data: Oct. 1974 to Sept. 1975.

REVISED RECORDS.--WDR TX-81-3: Drainage area. WDR TX-88-3: 1985.

GAGE.--Water-stage recorder. Datum of gage is sea level. July 2-6, 1940, nonrecording gage at highway bridge, 6,300 ft upstream at datum 30.60 ft lower. On Feb. 19, 1992, gage was temporarily moved 6,200 ft upstream at same datum. Gage re-established on left bank 6,300 ft downstream on May 12, 1993. Radio telemeter at station. Satellite telemeter at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since installation of gage in Apr. 1948, at least 10% of contributing drainage area has been regulated. There are many other diversions above this station for irrigation and for municipal supply. No flow at times in 1951-53 and 1956.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation since 1869, 56.1 ft Dec. 10, 1913. Flood in July 1869 probably reached about same elevation. Elevation of other floods are as follows: May 8, 1922, 55.4 ft; June 1929, 55.0 ft; June 22, 1935, 54.6 ft; Oct. 5, 1936, 52.2 ft; Aug. 2, 1938, 53.4 ft; Nov. 27, 1940, 47.6 ft. All above flood data from information by Texas and New Orleans Railroad Co. and adjusted to present site.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCH	ARGE, COB	IC FEET FE		Y MEAN V		EK 2000 10	SEFIEME	ER ZUUI		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	351	930	1670	3290	4390	3420	6180	664	931	e210	263	22300
2	352	e860	1420	3580	4630	3380	4970	625	826	e290	266	20600
3	285	796	1260	3350	3940	3230	4550	580	747	e400	206	17200
4	326	718	1160	2810	3430	6420	4510	602	606	e620	262	9930
5	328	936	1030	3000	3570	8150	4280	619	428	e750	287	7060
6	363	8480	1000	2820	3730	7350 5480	4190	1120	437	e940	255	5470
7	458	13200	932	2430	3640	5480	4060	2460	326	762	227	5480
8	712	6380	885	2240	3770	3730	3940	3210	328	577	207	7720
9	642	5320	889	2170	3880	3260 3060	3840 3720	5120	413	439	178	5900
10	709	4540	1040	2570				5190	586	356	226	4280
11	656	e3100	950	5570	3760	3520	3660 3620 2860 1850	5070	1230	275	241	5700
12	514	2860	823	3280	3760 2820 1910 1580	4300	3620	3280	944	196	259	5080
13	387	e2350	870	2840	1910	3910	2860	2930	724	173	327	3250
14	326	e4870	861	5140	1580	3510	1850	2640	409	175	320	2360
15	348	5530	837	4630	1340	6560	1440	2360	294	173	359	1600
16	483	4030	975	4200	1240	13300	1350	2150	217 224 392 316 203	142	405	1070
17	805	4670	1890	4390	1160 1220 1740 2030	10000	1290	1880	224	98 95	318	897
18	840	6000	1760	5210	1220	7100 4890	1240	1690	392	95	326	812
19	1120	10800	1570	7200	1740		1400	1520	316	104	331	693
20	1090	11400	1290	7490		3440	1330			142	291	679
21	863	6860	1020	7140	2220	2660 2350	1410	846 594 503 575 675	128	170	256	589
22	977	4890	1040	6590	3070	2350	e1620	594	79	180	220	677
23	1070	3390	1100	4600	3270 3430 3470	2300	1480	503	62	188	247	981
24	966	5860	1280	2930	3430	2920	1180	575	48	219	251	1320
25	840	5990	1580	2190			1060		86	245	229	1830
26	1020	6110	1800	2010	3500	3190	e1000 783 1140 1170 755	612	164 208 203 122 162	281	232	1220
27	1770	5440	2700	2340	3460	2380	783	594	208	370	280	1160
28	1500	3750	3530	2580	3470	2380	1140	528	203	e362	432	1080
29	1200	2510	7420	2760		6480	1170	862	122	e359	701	880
30 31	e1080 939	1960	8520 5020	2890 3370		9450	755 	1090	162	e353 328	1750 16100	855
31			5020	3370		9670		1090			16100	
TOTAL	23320	144530	58122	117610	83530	155270	75878 2529	52909	11843	9972	26252	138673
MEAN	752	4818	1875	3794	2983	5009	2529	1707	395	322	847	4622
MAX	1770	13200	8520	7490	4630	13300	6180	5190 503	1230	940	16100	22300
MIN	285	718	823	2010	1160	2300	/55		48		178	589
AC-FT	46260	286700	115300	233300	165700	308000	150500	104900	23490	19780	52070	275100
STATIST	TICS OF I	MONTHLY M	EAN DATA	FOR WATER	YEARS 194	8 - 2001	L, BY WATE	R YEAR (WY)	1			
MEAN	2479	2388	2254	2590	3230	2841	2825	3871	4406	1656	825	1785
MAX	16110	13470	16200	25780	42200	25780	13410	27750	30360	14240	2876	11160
(WY)	1999	1975	1992	1992	1992	1992	1977	1957	1987	1997	1961	1961
MIN	254	226	292	249	246	257	125	227	155	1.00	114	93.9
(WY)	1990	1957	292 1990	1957	1967	1967	1964	1964	1971	1967	1964	1966
SUMMAR	Y STATIS	TICS	FOR	2000 CALE	NDAR YEAR		FOR 2001	WATER YEAR		WATER Y	EARS 1948	3 - 2001
ANNUAL	ΤΟΤΔΙ.			394513.5	;		897909					
ANNUAL				1078	,		2460			2603		
	r annual	MEAN								14270		1992
	ANNUAL I	MEΔN										1964
HIGHES'	T DAILY I	MEAN		13200	Nov 7		22300	Sep 1		79300	Oct	23 1998
	DAILY M	LAIN .		9.5 14	aug 22		48 110	Sep 1 Jun 24 Jun 20 Sep 1 36 Sep 1		.0	0 Jun	1 1951
		AY MINIMU	M	14	Aug 17		110 22800 22.	Jun 20		. 4	4 Oct	4 1969
	M PEAK F						22800	Sep 1		84100	Jun	26 1960
MAXIMUI	M PEAK S'	TAGE		50050°			22.	36 Sep 1		46.4	U Jun	26 1960
ANNUAL	KUNOFF	(AC-FT) EEDS		782500 2820			1781000 5620			1885000 5700		
	CENT EXC			2820 464			1260			899		
	CENT EXC			68			243			240		
	ULLU LIMU	טעעע		00			243			240		

e Estimated

08162500 Colorado River near Bay City, TX--Continued



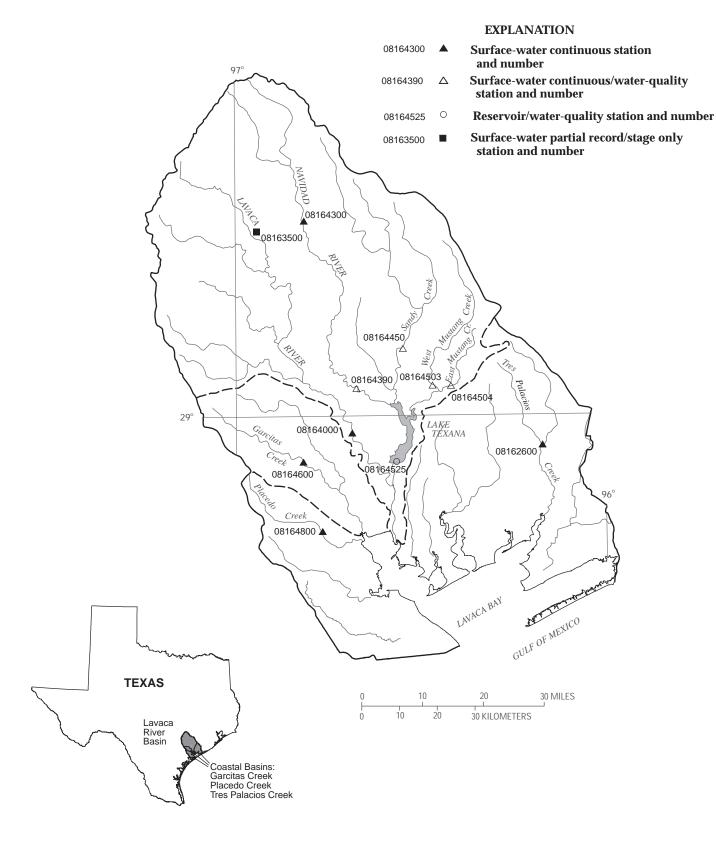



Figure 9.--Map showing location of gaging stations in the Lavaca and Coastal River Basins

08162600	Tres Palacios River near Midfield, TX	276
08163500	Lavaca River at Hallettsville, TX	322
08164000	Lavaca River near Edna, TX	278
08164300	Navidad River near Hallettsville, TX	280
08164390	Navidad River at Strane Park near Edna, TX	282
08164450	Sandy Creek near Ganado, TX	286
08164503	West Mustang Creek near Ganado, TX	290
08164504	East Mustang Creek near Louise, TX	294
08164525	Lake Texana near Edna, TX	298
08164600	Garcitas Creek near Inez, TX	314
08164800	Placedo Creek near Placedo. TX	316

276 TRES PALACIOS RIVER BASIN

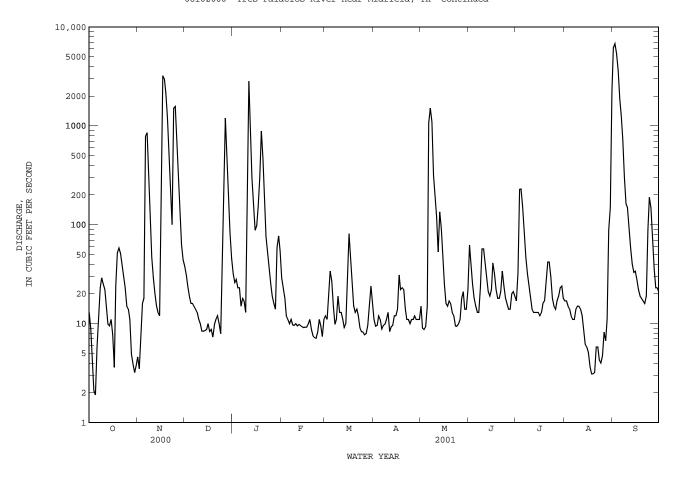
#### 08162600 Tres Palacios River near Midfield, TX

DRAINAGE AREA. -- 145 mi².

PERIOD OF RECORD.--June 1970 to current year. Prior to Oct. 1973, published as "Tres Palacios Creek near Midfield".

Water-quality records.--Chemical data: Oct. 1968 to Sept. 1981. Biochemical data: Oct. 1968 to Sept. 1981. Pesticide data: Oct. 1968 to Sept. 1981.

GAGE.--Water-stage recorder. Datum of gage is 5.38 ft above sea level. June 17, 1970, to Apr. 28, 1988, at same site and datum. Apr. 29, 1988, to Sept. 4, 1991, at right downstream end of bridge at same datum. Satellite telemeter at station.


REMARKS.--Records fair. No known regulation. There are ten known diversions above station, but amounts are unknown. An undetermined amount of water from irrigated rice fields enters the river at various points upstream from station. Extensive channel cleaning upstream and downstream from the gage was begun during the 1983 water year and completed during the 1984 water year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1885, 37 ft in June 1960, and 35 ft in Aug. 1945, from information by local residents.

		DISCHA	ARGE, CUBI	C FEET PEF		WATER YE MEAN V		R 2000 TO	SEPTEMBE	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR		JUN	JUL	AUG	SEP
1 2 3 4 5	13 8.8 3.9 2.1 1.9	7.3	38 31 24 19 16	32 26 28 23 23	29 23 18 12	12 11 19 34 27	11 9.4 9.6 12	15 9.0 8.7 9.3 15	62 39 25 18 15	17 33 228 230 152	17 17 15 14 12	6160 6770 5390 3650 1880
6 7 8 9 10	5.8 11 23 e29 e25	782 855 232 95 47	16 15 14 13	15 18 17 13 290	10 11 9.7 9.6	15 9.8 11 19 13	8.8 9.6 9.9 11 13	1510 1100	13 13 23 57 57	80 47 32 24 18	11 11 14 15 15	1290 723 302 163 149
11 12 13 14 15	22 14 9.9 9.5 11	29 20 15 13 12	9.9 8.4 8.4 8.5 8.7	2820 1130 299 151 88	9.5 9.8 9.6 9.3 9.1	13 11 9.1 10 25	8.3 9.3 9.6 12	122 53 135 90 46	41 29 21 19 22	14 13 13 13 13	14 12 8.5 6.2 5.8	93 58 40 33 34
16 17 18 19 20	7.7 3.6 24 e52 e58	364 e3220 e2990 e2150 e1210	10 8.3 8.7 7.3 9.8	98 151 297 887 466	9.2 9.2 9.9 11 8.7	81 42 24 15 13	14 31 22 23 22	25 16 15 17 16	41 32 22 18 18	12 13 16 17 27	5.1 3.7 3.1 3.1 3.2	28 22 19 18 17
25								13 12 9.5 9.4 9.9				16 19 89 189 148
26 27 28 29 30 31	14 11 4.9 3.9 3.2 3.8	473 191 106 63 44	326 1200 552 179 83 46	19 16 14 59 77 55	9.4 7.4 11 	7.7 7.9 9.6 15 24 17	11 12 11 11 11	11 18 21 14 14 22	14 14 20 21 19	14 17 19 23 24 18	8.2 6.7 11 88 150 2200	67 36 23 23 21
TOTAL MEAN MAX MIN AC-FT	534.0 17.2 58 1.9 1060	16772.4 559 3220 3.5 33270	2754.9 88.9 1200 7.3 5460	7456 241 2820 13 14790	307.4 11.0 29 7.1 610	546.7 17.6 81 7.7 1080	381.5 12.7 31 8.3 757	4941.8 159 1510 8.7 9800	786 26.2 62 13 1560	1274 41.1 230 12 2530	2694.2 86.9 2200 3.1 5340	27470 916 6770 16 54490
								YEAR (WY)				
MEAN MAX (WY) MIN (WY)	246 1375 1985 8.43 2000	152 582 1993 3.66 2000	128 568 1992 5.29 2000	143 542 1991 4.83 1971	149 978 1992 6.66 1976	120 1058 1997 7.79 1996	144 689 1997 10.4 1989	234 1080 1982 14.4 1998	175 699 1996 10.4 1990	105 623 1981 11.1 1998	55.6 166 1998 9.95 2000	265 1308 1979 6.45 2000
SUMMARY	Y STATIS	TICS	FOR	2000 CALEN	IDAR YEAR	I	FOR 2001 W	ATER YEAR		WATER Y	EARS 1970	- 2001
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERCE 50 PERCE	MEAN F ANNUAL ANNUAL F DAILY DAILY M SEVEN-D M PEAK F M PEAK S	MEAN MEAN EAN AY MINIMUN LOW TAGE (AC-FT) EEDS EEDS	1	41696.72 114 3220 .22 1.0 82710 209 12 2.2			65918.9 181 6770 1.9 4.1 6930 28.6 130800 229 17 8.2	Sep 2 Oct 5 Aug 17 Sep 2 55 Sep 2		160 325 42.2 12500 17000 32.4 115900 246 23 8.2		1992 1986 19 1994 18 2000 17 2000 17 1984 17 1984

e Estimated

# 08162600 Tres Palacios River near Midfield, TX--Continued



#### 08164000 Lavaca River near Edna, TX

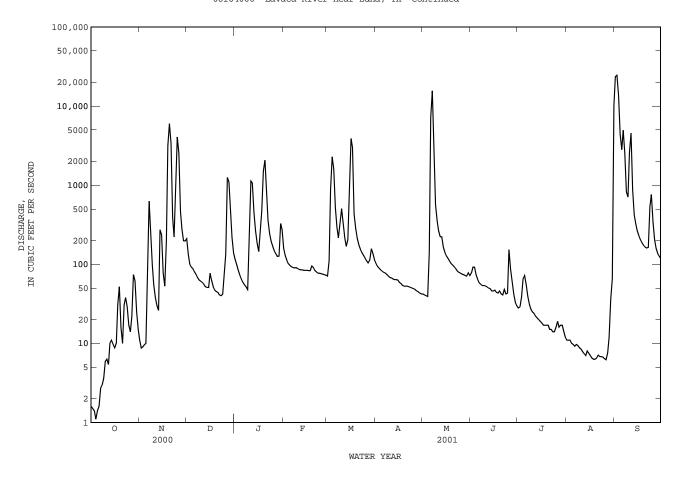
LOCATION.--Lat 28°57′35", long 96°41′10", Jackson County, Hydrologic Unit 12100101, at downstream side near center of upstream bridge of two bridges on U.S. Highway 59, 660 ft upstream from Texas and New Orleans Railroad Co. bridge, and 2.8 mi southwest of Edna.

DRAINAGE AREA. -- 817 mi².

PERIOD OF RECORD.--Aug. 1938 to current year.

Water-quality records.--Chemical data: Aug. 1945 to Aug. 1993. Biochemical data: Feb. 1971 to Aug. 1993. Pesticide data: Jan. 1968 to Aug. 1981. Sediment data: Nov. 1977 to Aug. 1993. Specific conductance: Nov. 1977 to Sept. 1981. Water temperature: Nov. 1977 to Sept. 1981.

REVISED RECORDS.--WSP 1923: 1955. WRD TX-73-1: Drainage area.


GAGE.--Water-stage recorder. Datum of gage is 14.10 ft above sea level. Prior to June 6, 1939, nonrecording gage (property of U.S. Army Corps of Engineers); June 6, 1939 to Apr. 3, 1957, nonrecording gage at site 110 ft downstream; Apr. 4, 1957, to Mar. 21, 1961, nonrecording gage; all at same datum. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records good. No known regulation. Small diversions above station for irrigation. No

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, 33.8 ft May 25, 1936 (discharge, 83,400 ft³/s), from information by local resident.

		DISCHAF	RGE, CUBIC	FEET PER		WATER Y MEAN V	YEAR OCTOBER	2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.6 1.5 1.4 1.1	11 8.7 9.0 9.6	210 133 101 92 88	114 98 84 73 65	159 128 112 102 97	71 111 872 2280 1600	103 94 89 85 82	42 41 40 39 141	78 92 92 73 64	28 29 39 65 72	11 11 11 10 9.7	23600 24600 13600 4410 2810
6 7 8 9 10	1.6 2.7 3.0 3.6 5.9	84 627 254 98 55	80 75 68 63 61	59 55 52 48 160	93 91 90 91 88	520 293 216 334 504	79 77 74 71 68	7150 15600 2680 570 358	58 56 54 54 53	55 39 31 27 25	9.2 9.7 9.4 8.8 8.5	4940 2530 823 705 2580
11 12 13 14 15	6.3 5.4 10 11 9.8	38 30 26 273 235	59 56 52 51 51	1130 1070 459 268 185	86 85 85 84 84	333 215 169 203 918	67 65 64 64 63	266 223 222 164 143	52 50 49 46 46	24 22 21 20 19	7.9 7.4 7.0 8.0 7.5	4540 873 421 321 264
16 17 18 19 20	8.8 10 31 52 16	77 53 201 3170 5980	77 62 52 47 45	145 264 473 1510 2080	84 83 83 95 91	3900 3010 434 286 212	59 57 54 53 53	128 119 110 102 98	47 44 43 46 42	18 17 17 17 17	7.0 6.5 6.3 6.3	230 205 187 174 165
21 22 23 24 25	10 31 38 29 17	3380 389 221 1050 4070	44 41 40 42 78	362 245 194 167	83 80 77 77 76	175 156 141 130 120	53 52 51 50 49	93 88 82 79 77	41 48 42 43 153	15 15 14 14 16	7.1 6.8 6.8 6.7 6.4	160 163 537 764 350
26 27 28 29 30 31	14 22 74 61 25 15	2530 465 281 199 197	135 1250 1090 485 219 138	149 136 126 127 327 274	75 74 73 	111 104 113 157 136 115	48 46 45 43 42	75 74 72 71 78 72	87 61 42 33 30	19 16 17 17 14 12	6.2 7.6 12 36 66 10200	206 158 137 127 118
TOTAL MEAN MAX MIN AC-FT	520.1 16.8 74 1.1 1030	24031.3 801 5980 8.7 47670	5085 164 1250 40 10090	11263 363 2080 48 22340	2526 90.2 159 73 5010	17939 579 3900 71 35580	1900 63.3 103 42 3770	29097 939 15600 39 57710	1719 57.3 153 30 3410	771 24.9 72 12 1530	10530.3 340 10200 6.2 20890	90698 3023 24600 118 179900
STATIST							L, BY WATER Y					
MEAN MAX (WY) MIN (WY)	478 7118 1995 .58 1991	339 3875 1999 .003 1957	245 2400 1977 .19 1991	286 1564 1979 .055 1957	387 5214 1992 13.5 1954	279 2696 1997 6.58 1956	489 5014 1997 4.43 1956	671 3239 1982 8.16 1956	634 5005 1973 .72 1990	204 3999 1940 2.14 1954	90.9 713 1946 .16 1990	391 3023 2001 .13 1989
SUMMARY	STATIS'	TICS	FOR 2	000 CALENI	DAR YEAR		FOR 2001 WAT	TER YEAR		WATER	YEARS 1938	3 - 2001
LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN ANNUAL 10 PERC 50 PERC	MEAN CANNUAL ANNUAL CDAILY DAILY M	MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) EEDS		61805.5 169 5980 1.1 1.4 122600 238 32 4.0	Nov 20 Sep 29 Sep 29		24600 1.1 1.6 29400 28.00 388900 658 74 9.5	Sep 2 Oct 4 Oct 1 Sep 2 Sep 2		374 1385 6. 122000 150000 35. 270900 421 53 9.	12 Oct 00 Nov 00 Jul 0ct 49 Oct	1992 1956 19 1994 10 1954 2 1956 19 1994 19 1994

### 08164000 Lavaca River near Edna, TX--Continued



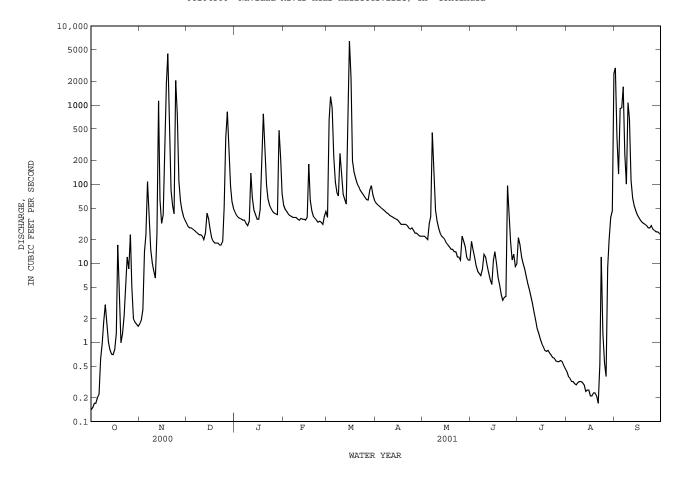
#### 08164300 Navidad River near Hallettsville, TX

LOCATION.--Lat 29°28'00", long 96°48'45", Lavaca County, Hydrologic Unit 12100102, on right bank 28 ft downstream from bridge on U.S. Highway 90-A, 0.8 mi downstream from Mixons Creek, 1.2 mi southwest of Sublime, and 8 mi northeast of Hallettsville.

DRAINAGE AREA. -- 332 mi².

PERIOD OF RECORD. -- Oct. 1961 to current year.

REVISED RECORDS. -- WSP 2123: Drainage area.


GAGE.--Water-stage recorder. Datum of gage is 159.28 ft above sea level. Satellite telemeter at station.

REMARKS .-- No estimated daily discharges. Records fair. No known regulation or diversions. No flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1860, 40 ft in June 1940; flood in July 1936 reached a stage of 39 ft, from information by local residents and Southern Pacific Railroad Company.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES JUL DAY OCT NOV DEC JAN FEB MAR APR MAY NUL AUG SEP .14 .43 .15 1.9 21 12 135 .37 .35 .17 9.3 .32 .20 7.9 8.5 .32 .22 .30 .62 15 32 38 71 7.0 5.5 4.6 .29 100 8.4 1.8 .32 3.0 8.0 3.1 .32 6.5 2.4 7.6 6.2 1.9 .29 53 1.0 .81 .71 .70 1.1 .81 .21 1.3 16 .87 .79 .21 6.6 3.7 5.3 .77 .23 .99 4 0 3.4 .73 .17 .52 12 2 2 3.7 5.3 .64 .63 1.3 8.5 .56 .58 .57 .57 5.0 8.8 2.0 .59 1.8 ___ 9.1 .57 .51 9.8 .47 TOTAL 100.57 401.4 2643.48 11914.7 111.33 3.59 3.24 36.0 37.6 13.4 MEAN 76.1 44.6 85.3 .14 MAX 3.4 .47 MIN AC-FT .11 .04 CFSM .01 1.20 .23 .32 .13 1.39 1.60 .11 .01 .26 .99 .26 .37 .12 .30 1.10 .01 1.34 .14 .01 IN. .13 .04 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1962 - 2001, BY WATER YEAR (WY) MEAN 23.5 27.5 MAX 91.6 (WY) MTN .000 .035 6.38 8.46 9.87 7.17 2.39 (WY) SUMMARY STATISTICS FOR 2000 CALENDAR YEAR FOR 2001 WATER YEAR WATER YEARS 1962 - 2001 ANNUAL TOTAL 20924.98 48385.48 ANNUAL MEAN HIGHEST ANNUAL MEAN 57.2 LOWEST ANNUAL MEAN 11.5 Sep 14 1974 HIGHEST DAILY MEAN Nov 19 Mar 15 .00 LOWEST DATLY MEAN .06 .14 Oct. 1 Aug 5 1964 Sep .00 .00 53500 ANNUAL SEVEN-DAY MINIMUM Aug 31 .22 .07 Aug 15 Sep MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE Mar 15 Sep 13 1974 25.59 36.05 Sep 13 1974 Mar 15 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 2.34 5.42 6.11 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 9 8 .59 1.9 .20

### 08164300 Navidad River near Hallettsville, TX--Continued

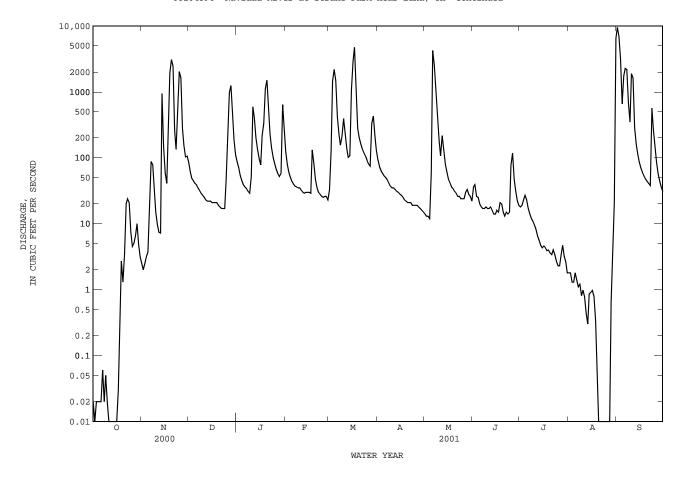


#### 08164390 Navidad River at Strane Park near Edna, TX

 $\texttt{LOCATION.--Lat 29}^\circ 03'55", \ \texttt{long 96}^\circ 40'26", \ \texttt{Jackson County, Hydrologic Unit 12100102}, \ \texttt{on County Road 401, 6.3 mi north of Edna. }$ DRAINAGE AREA.--579 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Oct. 1996 to current year.


GAGE.--Water-stage recorder. Datum of gage is 42.53 ft above sea level. Satellite telemeter at station.

REMARKS.--Records fair. Much of low flow during the irrigation season (Apr. to Sept.) is drainage from rice fields irrigated by water originally diverted from the Colorado River. No known regulation or diversions. No flow at times.

		DISCHAR	GE, CUBIC	C FEET PER		WATER Y	EAR OCTOBER ALUES	2000 TO	SEPTEMBE	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.02 .01 .02 .02	2.5 2.0 2.5 3.2 3.7	85 61 49 45 41	86 70 54 45 39	127 80 60 51 44	33 129 1460 2190 1490	92 73 63 58 53	14 13 13 12 60	36 39 26 25 20	18 19 23 27 23	1.8 1.8 1.3 1.3	9540 6930 3100 655 1750
6 7 8 9 10	.02 .06 .02 .05	15 88 79 30 15	39 35 32 29 27	36 34 31 29 52	40 37 36 35 35	422 229 156 213 394	50 46 41 37 35	4240 2530 1150 431 182	18 17 17 18 17	17 14 12 11 9.6	1.4 1.1 1.2 .81 .98	2270 2180 697 348 1890
11 12 13 14 15	.01 .01 .00 .00	9.8 7.4 7.2 942 147	25 23 22 22 22	593 408 203 135 98	32 30 29 30 30	227 138 102 108 1070	35 33 31 30 28	107 217 135 80 62	17 18 16 14 14	8.1 6.4 5.6 4.7 4.3	.78 .44 .30 .86	1610 285 161 112 86
16 17 18 19 20	.01 .03 .36 2.7 1.3	59 41 437 1940 3080	e21 e21 e21 21 19	78 218 333 1130 1500	30 29 132 83 47	2900 4740 1150 281 200	27 25 23 22 21	48 42 36 34 31	16 15 21 20 15	4.6 4.3 3.9 4.0 3.6	.97 .78 .34 .07	70 60 53 48 44
21 22 23 24 25	3.5 20 24 21 7.6	2460 259 134 683 2030	18 17 17 17 47	515 230 140 101 80	35 30 28 26 25	160 136 120 107 91	21 21 19 19	29 26 26 24 24	13 15 14 15 77	3.4 4.0 3.4 2.7 2.3	.00 .00 .00 .00	41 38 565 271 157
26 27 28 29 30 31	4.5 5.0 6.5 10 4.8 3.1	1630 278 154 103 106	293 973 1250 464 189 110	67 58 52 58 640 314	26 26 23 	81 75 333 428 212 128	19 18 17 16 15	24 30 33 28 26 22	118 48 31 22 19	2.3 3.3 4.7 3.2 2.6 1.8	.00 .01 .65 3.0 21 6480	85 57 44 36 31
TOTAL MEAN MAX MIN AC-FT	114.68 3.70 24 .00 227	14748.3 492 3080 2.0 29250	4055 131 1250 17 8040	7427 240 1500 29 14730	1236 44.1 132 23 2450	19503 629 4740 33 38680	1007 33.6 92 15 2000	9729 314 4240 12 19300	771 25.7 118 13 1530	256.8 8.28 27 1.8 509	6523.60 210 6480 .00 12940	33214 1107 9540 31 65880
STATIS							, BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	794 2636 1999 3.70 2001	624 2334 1999 7.73 2000	193 402 1999 10.8 2000	265 690 1997 16.5 2000	275 904 1998 22.7 2000	527 1540 1997 39.0 2000	452 2030 1997 33.6 2001	360 1038 1997 27.7 1998	482 1632 1997 25.7 2001	36.5 80.5 1999 2.80 2000	64.4 210 2001 .69 2000	397 1107 2001 .041 2000
SUMMAR	Y STATIS	TICS	FOR 2	2000 CALEN	DAR YEAR	1	FOR 2001 WA	TER YEAR		WATER	YEARS 1997	- 2001
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL 10 PER 50 PER	IN 3.70 7.73 WY) 2001 2000			34505.77 94.3 3080 .00 .01 68440 149 15 .02	Nov 20 Sep 23 Oct 10			Sep 1 Oct 13 Aug 20 Sep 1		372 627 44. 23300 c25000 a30. 269500 540 38 5.	8 Oct 00 Sep 00 Aug Oct 08 Oct	1997 2000 19 1998 23 2000 20 2001 19 1998 19 1998

c From rating curve extended above current meter discharge measurement of 9,150  ${\rm ft^3/s.}$  a From floodmark.

08164390 Navidad River at Strane Park near Edna, TX--Continued



# 08164390 Navidad River at Strane Park near Edna, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: June 1998 to current year. PESTICIDE DATA: June 1998 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			WATER-	QUALITY D	ATA, WATE	R YEAR OC	TOBER 200	0 TO SEPT	EMBER 200	1			
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	2,4,5-T DIS- SOLVED (UG/L) (39742)	2,4-D, DIS- SOLVED (UG/L) (39732)	2,4-DB WATER, FLTRD, GF 0.7U REC (UG/L) (38746)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	3HYDRXY CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L) (49308)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)
MAY 23 23	1010 1010	27	8.0	89.6	8.4	712 	21.0	<.04	<.11	<.10	<.002	<.11	<.004
AUG 08 08	0940 0940	1.1	5.4	66.7	8.0	803	26.5	<.04	<.11	<.10	<.002	<.20	<.004
DATE	ACIFL- UORFEN WATER, FLTRD, GF 0.7U REC (UG/L) (49315)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BENTA- ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)	BRO- MACIL, WATER, DISS, REC (UG/L) (04029)	BRO- MOXYNIL WATER, FLTRD, GF 0.7U REC (UG/L) (49311)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49310)
MAY 23 23	<.05	<.002	<.20	<.12	<.21	<.005	.028	<.010	<.04	<.09	<.07	<.002	<.02
AUG 08 08	<.05	<.002	<.20	<.02	<.21	<.005	E.002	<.010	<.04	<.09	<.07	<.002	<.02
DATE	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN, WATER, FLTRD, GF 0.7U REC (UG/L) (49309)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLORO- THALO- NIL, WAT,FLT GF 0.7U REC (UG/L) (49306)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CLOPYR- ALID, WATER, FLTRD, GF 0.7U REC (UG/L) (49305)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DACTHAL MONO- ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	DICHLO- BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303)
MAY 23 23	<.041	<.29	<.020	<.13	<.005	<.42	<.018	<.07	<.003	<.006	<.005	<.04	<.05
AUG 08 08	<.041	<.29	<.020	<.13	<.005	<1.16	<.018	<.07	<.003	<.006	<.005	<.04	<.05
DATE	DICHLOR PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DINOSEB WATER, FLTRD, GF 0.7U REC (UG/L) (49301)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	DIURON, WATER, FLTRD, GF 0.7U REC (UG/L) (49300)	DNOC WAT,FLT GF 0.7U REC (UG/L) (49299)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FEN- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49297)	FLUO- METURON WATER, FLTRD, GF 0.7U REC (UG/L) (38811)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)
MAY 23 23	<.05	<.005	<.14	<.021	<.06	<.25	<.002	<.009	<.005	<.07	<.06	<.003	<.004
AUG 08 08	<.05 	<.005	<.09	<.021	<.06	<.25	<.002	<.009	<.005	<.07	<.06	<.003	<.004
DATE	LINURON WATER, FLTRD, GF 0.7U REC (UG/L) (38478)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	MCPA, WATER, FLTRD, GF 0.7U REC (UG/L) (38482)	MCPB, WATER, FLTRD, GF 0.7U REC (UG/L) (38487)	METHIO- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501)	METH- OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)
MAY 23 23	<.02	<.035	<.027	<.08	<.13	<.07	<.02	<.050	<.006	E.005	<.006	.028	<.007
AUG 08 08	<.02	<.035	<.027	<.08	<.13	<.07	<.02	<.050	<.006	<.013	<.006	<.002	<.007

## 08164390 Navidad River at Strane Park near Edna, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLTRD, GF 0.7U REC (UG/L) (49293)	ORY- ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	OXAMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (38866)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PIC- LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)
MAY													
23 23	<.06	<.04	<.28	<2.97	<.003	<.007	<.002	<.010	<.006	<.011	<.09	<.015	<.004
AUG													
08 08	<.10	<.04	<.28	<.02	<.003	<.007	<.002	<.010	<.006	<.011	<.09	E.003	<.004
08													
DATE	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	PRO- PHAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49236)	PRO- POXUR, WATER, FLTRD, GF 0.7U REC (UG/L) (38538)	SILVEX, DIS- SOLVED (UG/L) (39762)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- CLOPYR, WATER, FLTRD, GF 0.7U REC (UG/L) (49235)
MAY													
23 23	<.010	<.011	<.023	<.28	<.12	<.03	<.011	E.007	<.034	<.017	E.004	<.002	<.07
AUG													
08 08	<.010	<.011	<.023	<.09	<.12	<.03	<.011	<.016	<.034	<.017	<.005	<.002	<.07
08													
		DA	TE	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39787)			
		MAY											
			3	<.009	<.2	<.2	<.2	<.2	<.2	<.2			
		AUG			<.∠	<.∠	<.∠	<.∠	<.∠	<.∠			
			8	<.009	<.2	<.2	<.2	<.2	<.2	<.2			

#### 08164450 Sandy Creek near Ganado, TX

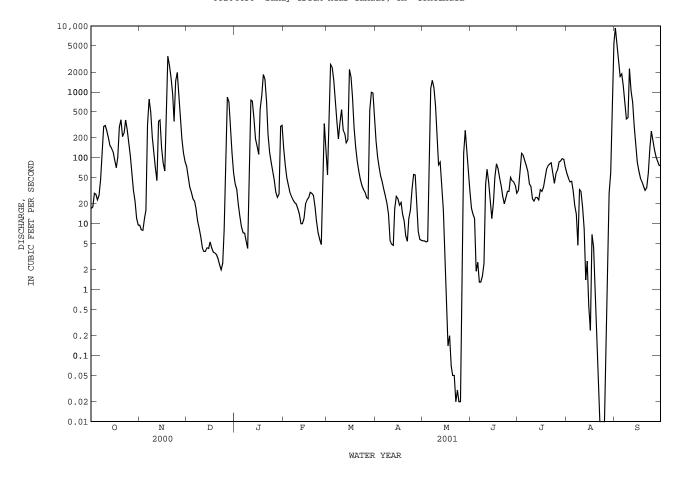
LOCATION.--Lat 29°09'36", long 96°32'46", Jackson County, Hydrologic Unit 12100102, on left bank at downstream end of bridge on Farm Road 710, 0.9 mi upstream from Goldenrod Creek, and 8.0 mi north of Ganado.

DRAINAGE AREA. -- 289 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Oct. 1977 to current year. Prior to Oct. 1997, published as "near Louise."

GAGE.--Water-stage recorder. Datum of gage is 59.72 ft above sea level. Satellite telemeter at station.


REMARKS.--Records fair. Much of the low flow during the irrigation season (Apr. to Sept.) is drainage from rice fields irrigated by water originally diverted from the Colorado River. No known regulation or diversions. No flow at times.

		DISCHA	RGE, CUB	IC FEET PI		WATER Y		BER 2000 TO	SEPTEMBE	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 18 29 28 23	9.5 8.1 7.9 12 16	73 50 36 30 24	40 33 20 13 9.0	139 77 49 39 30	55 479 2630 2370 1510	184 103 71 53 43	5.5 5.5 5.3 5.4	17 14 12 1.9 2.6	32 63 117 110 91	58 49 43 44 32	9350 5360 2960 1710 1870
6 7 8 9 10	27 48 141 299 308	316 782 497 204 123	22 17 11 8.5 6.3	7.3 7.2 5.5 4.2	26 23 21 20 17	785 346 194 346 539	33 26 20 14 5.6	1130 1500 1160 620 199	1.3 1.3 1.6 2.5 39	76 62 40 37 24	19 14 4.7 33 31	1270 730 388 405 2240
11 12 13 14 15	253 198 154 141 123	71 45 359 375 141	4.3 3.8 3.8 4.3 4.2	749 727 400 193 150	14 10 10 12 20	264 233 169 187 2200	4.9 4.7 17 26 24	78 86 36 16 2.7	67 43 23 12 21	22 25 25 23 33	18 8.4 1.4 2.7 .55	1050 699 298 156 86
16 17 18 19 20	92 71 102 293 377	83 63 665 3470 2520		113 552 879 1840 1540	23 25 30 29 27	1670 838 287 145 88	19 21 14 11 6.5	.68 .14 .20 .07	51 81 68 49 37	31 36 49 67 76	.24 6.9 4.4 1.4 .39	63 49 43 37 32
21 22 23 24 25	210 240 375 268 171	355 1470	3.0 2.4 2.0 2.5 8.1	713 229 122 85 62	18 11 7.3 5.8 4.8	62 47 38 33 30	5.4 12 16 33 56	.05 .02 .03 .02	20 25	81 84 58 41 58	.08 .01 .00 .00	35 59 143 254 184
26 27 28 29 30 31	105 57 32 22 12 9.5	924 432 192 117 87	170 831 703 279 120 59	30	42 330 131  	25 24 528 987 960 488	55 21 7.6 5.8 5.6	3.9 118 261 144 68 31	51 45 43 38 29	66 86 89 97 95 72	.60 6.1 29 60 310 5480	130 102 87 76 78
TOTAL MEAN MAX MIN AC-FT	4243.5 137 377 9.5 8420	17903.5 597 3470 7.9 35510	2498.5 80.6 831 2.0 4960	9265.2 299 1840 4.2 18380	1190.9 42.5 330 4.8 2360	18557 599 2630 24 36810	918.1 30.6 184 4.7 1820	5556.58 179 1500 .02 11020	884.2 29.5 81 1.3 1750	1866 60.2 117 22 3700	6257.87 202 5480 .00 12410	29944 998 9350 32 59390
STATIS	TICS OF	MONTHLY ME	AN DATA	FOR WATER	YEARS 1978	- 2001	, BY WATE	CR YEAR (WY)				
MEAN MAX (WY) MIN (WY)	355 2917 1999 18.6 2000	209 1513 1999 .000 2000	134 746 1992 .000 2000	265 956 1992 .022 2000	261 2331 1992 .28 1988	191 1406 1997 .080 1996	211 1316 1997 3.14 1980	304 1150 1993 1.82 1996	351 1866 1993 .030 1990	121 475 1983 7.25 1997	41.7 202 2001 3.21 1991	270 1364 1978 11.8 1988
SUMMAR	Y STATIS	TICS	FOR	2000 CAL	ENDAR YEAR	:	FOR 2001	WATER YEAR		WATER	YEARS 1978	- 2001
LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL 10 PER 50 PER	MEAN T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D M PEAK F M PEAK S	MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) EEDS		. (	Nov 19 00 Jan 1 00 Jan 1		99085. 271  9350  10000 20. 196500 719 43 3.	Sep 1 00 Aug 23 04 May 19 Sep 1 84 Sep 1		459 21		1992 1990 19 1998 5 1978 10 1980 19 1998 19 1998

e Estimated

c From rating curve extended above indirect measurement of 60,000  ${\rm ft^3/s.}$  a From floodmark.

08164450 Sandy Creek near Ganado, TX--Continued



### 08164450 Sandy Creek near Ganado, TX--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Oct. 1977 to current year.
BIOCHEMICAL DATA: Oct. 1977 to Nov. 1992.
PESTICIDE DATA: Nov. 1977 to July 1981, Apr. 1996 to current year.
SEDIMENT DATA: Sept. 1978 to Apr. 1979.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			WATER-	QUALITY D	ATA, WATE	R YEAR OC	TOBER 200	00 TO SEPT	EMBER 200	1			
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	2,4,5-T DIS- SOLVED (UG/L) (39742)	2,4-D, DIS- SOLVED (UG/L) (39732)	2,4-DB WATER, FLTRD, GF 0.7U REC (UG/L) (38746)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	3HYDRXY CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L) (49308)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)
MAY 23 23	1330 1330	.03	8.8	117	7.8	336	30.5	<.04	<.11	<.10	<.002	<.11	<.004
AUG 08 08	1200 1200	4.0	7.1	90.1	8.1	675 	28.0	<.04	<.11	<.10	<.002	<.39	<.004
DATE	ACIFL- UORFEN WATER, FLTRD, GF 0.7U REC (UG/L) (49315)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BENTA- ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)	BRO- MACIL, WATER, DISS, REC (UG/L) (04029)	BRO- MOXYNIL WATER, FLTRD, GF 0.7U REC (UG/L) (49311)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49310)
MAY 23 23	<.12	<.002	<.91	<.18	<.62	<.005	.026	<.010	<.04	<.09	<.07	<.002	<.02
AUG 08 08	<.05 	<.002	<.20	<.06	<.51	<.005	.009	<.010	<.04	<.09	<.07	<.002	<.02
DATE	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN, WATER, FLTRD, GF 0.7U REC (UG/L) (49309)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLORO- THALO- NIL, WAT,FLT GF 0.7U REC (UG/L) (49306)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CLOPYR- ALID, WATER, FLTRD, GF 0.7U REC (UG/L) (49305)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DACTHAL MONO- ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	DICHLO- BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303)
MAY 23 23 AUG	<.041	<.29	<.020	<.13	<.005	<.42	<.018	<.80	<.003	E.005	<.005	<.13	<.17
08	<.041	<.29	<.020	<.13	<.005	<.42	<.018	<.07	<.003	<.006	<.005	<.04	<.05 
DATE	DICHLOR PROP, WATER, FLIRD, GF 0.7U REC (UG/L) (49302)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DINOSEB WATER, FLTRD, GF 0.7U REC (UG/L) (49301)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	DIURON, WATER, FLTRD, GF 0.7U REC (UG/L) (49300)	DNOC WAT,FLT GF 0.7U REC (UG/L) (49299)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FEN- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49297)	FLUO- METURON WATER, FLTRD, GF 0.7U REC (UG/L) (38811)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)
MAY 23 23	<.05 	<.005	<.13	<.021	.11	<.25	<.002	<.009	<.005	<.07	<.30	<.003	<.004
AUG 08 08	<.05 	<.005	<.09	<.021	<.06	<.25	<.002	<.009	<.005	<.14	<.06	<.003	<.004
DATE	LINURON WATER, FLTRD, GF 0.7U REC (UG/L) (38478)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	MCPA, WATER, FLTRD, GF 0.7U REC (UG/L) (38482)	MCPB, WATER, FLTRD, GF 0.7U REC (UG/L) (38487)	METHIO- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501)	METH- OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	AZIN- PHOS	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)
MAY 23 23	<.02	<.035	E.015	<.08	<.57	<.07	<4.90	<.050	<.006	.047	<.006	1.04	<.007
AUG 08 08	<.02	<.035	E.022	<.08	<.13	<.07	<36.4	<.050	<.006	E.008	<.006	.033	<.007

### 08164450 Sandy Creek near Ganado, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLTRD, GF 0.7U REC (UG/L) (49293)	ORY- ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	OXAMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (38866)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PIC- LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676)
MAY 23 23 AUG	<.20	<.04	<.28	<13.6	<.003	<.007	<.002	<.010	<.006	<.011	<.09	<.015	<.004
08	<.12	<.04	<.28	<.10	<.003	<.007	<.002	<.010	<.006	<.011	<.09	<.015	<.004
DATE	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	PRO- PHAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49236)	PRO- POXUR, WATER, FLTRD, GF 0.7U REC (UG/L) (38538)	SILVEX, DIS- SOLVED (UG/L) (39762)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- CLOPYR, WATER, FLTRD, GF 0.7U REC (UG/L) (49235)
MAY 23 23 AUG	<.010	<.011	<.023	<.09	<.12	<.19	E.010	E.014	<.034	<.017	.565 	<.002	<.07
08 08	<.010	<.011	<.023	<.09	<.39	<.03	<.011	E.001	<.034	<.017	.015	<.002	<.07
		D <b>A</b>	TE	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39787)			
		AUG 0	3	<.009  <.009 	 <.2  <.2	 <.2  <.2	 <.2  <.2	 <.2  <.2	 <.2  <.2	 <.2  <.2			

#### 08164503 West Mustang Creek near Ganado, TX

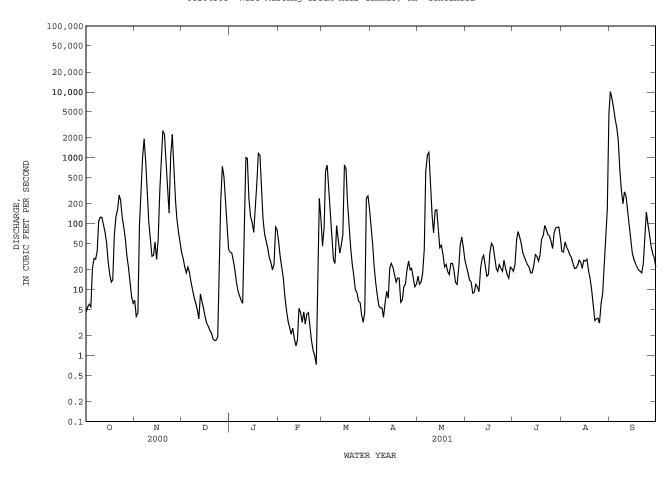
LOCATION.--Lat 29°04'17", long 96°28'01", Jackson County, Hydrologic Unit 12100102, on right bank at downstream end of downstream bridge on U.S. Highway 59, 2.1 mi upstream from Middle Mustang Creek, and 3.6 mi east of Ganado.

DRAINAGE AREA. -- 178 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Oct. 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 40.12 ft above sea level. Satellite telemeter at station.


REMARKS.--No estimated daily discharges. Records fair. Much of low flow during the irrigation season (Apr. to Sept.) is drainage from rice fields irrigated by water originally diverted from the Colorado River. No known regulation or diversions. No flow at times.

		DISCHA	RGE, CUB	IC FEET PE		WATER YE Y MEAN V	EAR OCTOBER ALUES	2000 TO	SEPTEMBE	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.6 5.5 6.0 5.5 21	6.9 3.9 4.4 96 238	36 29 22 18 22	37 36 28 20 13	53 31 21 15 7.8	46 87 629 774 359	96 50 22 13 8.3	16 12 13 18 41	22 18 14 13 8.8	19 24 57 76 63	38 37 53 44 40	10100 7950 5740 3870 2880
6 7 8 9 10	30 29 39 109 126	972 1940 855 244 107	18 13 9.8 7.5 6.2	9.4 8.0 6.9 6.2	4.8 3.3 2.6 2.1 2.6	130 57 29 25 93	5.7 5.3 5.3 3.8 6.3	617 1090 1200 402 133	9.2 12 11 9.3 21	50 36 31 27 24	34 31 25 21 21	1880 678 319 201 304
11 12 13 14 15	125 97 76 53 27	56 32 33 53 29	4.9 3.6 8.6 6.5 5.1	1010 978 240 129 105	1.8 1.4 1.7 5.2 4.5	58 36 47 69 778	9.4 7.4 21 25 22	73 159 163 81 43	29 33 23 16 17	22 18 18 23 34	23 28 26 21 28	260 147 88 55 36
16 17 18 19 20	17 13 14 69 128	59 315 886 2590 2290	3.9 3.1 2.8 2.4 2.2	74 180 394 1170 1090	3.2 4.6 3.0 4.3 4.5	674 216 93 43 24	17 13 15 15 6.4	47 34 22 24 19	36 51 46 31 21	32 27 33 58 65	27 29 19 15 10	29 25 22 20 19
21 22 23 24 25	162 272 227 126 88	830 317 145 1060 2270	1.8 1.7 1.7 1.9 24	293 119 70 54 42	2.7 1.7 1.2 1.0	16 10 9.1 6.7 6.4	7.0 11 12 20 27	17 25 25 20 13	19 24 21 19 28	94 83 69 66 54	5.8 3.4 3.6 3.7 3.1	18 25 69 151 98
26 27 28 29 30 31	58 33 22 13 7.7 6.2	810 229 117 74 51	225 739 516 182 84 41	31 26 20 24 90 82	6.7 242 119 	4.2 3.2 4.5 242 264 175	20 21 15 11 12	12 21 48 63 44 28	21 17 15 22 21	42 71 86 88 89 63	6.1 8.8 20 49 168 4720	68 45 35 31 22
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2009.5 64.8 272 4.6 3990 .36 .42	16713.2 557 2590 3.9 33150 3.13 3.49	2042.7 65.9 739 1.7 4050 .37 .43	6443.5 208 1170 6.2 12780 1.17 1.35	552.43 19.7 242 .73 1100 .11	5008.1 162 778 3.2 9930 .91 1.05	522.9 17.4 96 3.8 1040 .10	4523 146 1200 12 8970 .82 .95	648.3 21.6 51 8.8 1290 .12 .14	1542 49.7 94 18 3060 .28 .32	5561.5 179 4720 3.1 11030 1.01 1.16	35185 1173 10100 18 69790 6.59 7.35
STATIS	TICS OF	MONTHLY ME	AN DATA I	FOR WATER	YEARS 197	8 - 2001,	, BY WATER Y	YEAR (WY)	)			
MEAN MAX (WY) MIN (WY)	252 1746 1995 14.2 1988	159 813 1999 1.32 2000	108 587 1992 .17 1991	182 881 1980 .72 1982	152 1243 1992 .87 1986	119 988 1997 .81 1986	161 1107 1997 12.3 1983	208 702 1993 11.2 1978	201 958 1993 5.56 1990	102 412 1983 38.1 1986	57.6 179 2001 14.0 2000	251 1173 2001 5.33 1988
SUMMAR	Y STATIS	TICS	FOR	2000 CALE	ENDAR YEAR	. E	FOR 2001 WAT	TER YEAR		WATER Y	EARS 1978	- 2001
LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL ANNUAL ANNUAL 10 PER 50 PER	MEAN T ANNUAL ANNUAL T DAILY DAILY M SEVEN-D M PEAK F M PEAK S RUNOFF RUNOFF	MEAN MEAN EAN AY MINIMUM LOW TAGE (AC-FT) (CFSM) (INCHES) EEDS	ı	.0	Nov 19 00 Jan 24 01 Jan 21 72		80752.13 221 10100 .73 2.1 10600 22.52 160200 1.24 16.88 316 28 4.5	Feb 25 Dec 18 Sep 1 Sep 1		162 325 45.2 18700 .0 c20000 a28.3 117600 .9 12.3 299 23 1.5	Oct 1 0 Dec 1 1 Dec 1 0ct 1 9 Oct 1	1997 1990 19 1994 19 1990 19 1990 19 1994

c From rating curve extended above current meter discharge measurement of  $19,000~{\rm ft}^3/{\rm s}$ .

a From floodmark.

08164503 West Mustang Creek near Ganado, TX--Continued



#### 08164503 West Mustang Creek near Ganado, TX--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.-CHEMICAL DATA: Oct. 1977 to current year.
BIOCHEMICAL DATA: Oct. 1977 to Nov. 1992.
PESTICIDE DATA: Nov. 1977 to July 1981, Apr. 1996 to current year.
SEDIMENT DATA: Sept. 1978 to Apr. 1979.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			WAIEK-	QUALITI D	AIA, WAIL	R ILAR OC	IUBER 200	O TO SEPT	EMBER 200	1			
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	2,4,5-T DIS- SOLVED (UG/L) (39742)	2,4-D, DIS- SOLVED (UG/L) (39732)	2,4-DB WATER, FLTRD, GF 0.7U REC (UG/L) (38746)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	3HYDRXY CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L) (49308)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)
MAY 23 23	1120 1120	26 	6.3	72.5	7.8	641	22.5	<.04	<.11	<.10	<.002	<.29	.009
AUG 08 08	1050 1050	25 	6.3	79.3	8.0	745 	27.5	<.04	<.11	<.10	<.002	<.29	<.006
DATE	ACIFL- UORFEN WATER, FLTRD, GF 0.7U REC (UG/L) (49315)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BENTA- ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)	BRO- MACIL, WATER, DISS, REC (UG/L) (04029)	BRO- MOXYNIL WATER, FLTRD, GF 0.7U REC (UG/L) (49311)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49310)
MAY 23 23	<.05	.045	<.20	<.02	<.21	<.005	.218	<.010	<.26	<.14	<.07	<.002	<.02
AUG 08 08	<.05	.007	<.20	<.02	<.47	<.005	.273	<.010	<.04	<.09	<.07	<.002	<.02
DATE	CAR- BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN, WATER, FLTRD, GF 0.7U REC (UG/L) (49309)	CARBO- FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674)	CHLORO- THALO- NIL, WAT,FLT GF 0.7U REC (UG/L) (49306)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CLOPYR- ALID, WATER, FLTRD, GF 0.7U REC (UG/L) (49305)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DACTHAL MONO- ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	DICHLO- BENIL, WATER, FLITRD, GF 0.7U REC (UG/L) (49303)
MAY 23 23	<.041	<.29	<.020	<.13	<.005	<.42	<.018	<3.80	<.003	E.025	<.005	<.14	<.05
AUG 08 08	<.041	<.29	<.020	<.13	<.005	<.42	<.018	<.07	<.003	E.016	<.005	<.04	<.05
DATE	DICHLOR PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DINOSEB WATER, FLTRD, GF 0.7U REC (UG/L) (49301)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	DIURON, WATER, FLTRD, GF 0.7U REC (UG/L) (49300)	DNOC WAT,FLT GF 0.7U REC (UG/L) (49299)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FEN- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49297)	FLUO- METURON WATER, FLTRD, GF 0.7U REC (UG/L) (38811)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)
MAY 23 23	<.05	<.005	<.09	<.021	<.06	<.25	<.002	<.009	<.005	<.07	<.06	<.003	<.004
AUG 08 08	<.05 	<.005	<.09	<.021	<.06 	<.25	<.002	<.009	<.005	<.07	<.06	<.003	<.004
DATE	LINURON WATER, FLTRD, GF 0.7U REC (UG/L) (38478)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	MCPA, WATER, FLTRD, GF 0.7U REC (UG/L) (38482)	MCPB, WATER, FLTRD, GF 0.7U REC (UG/L) (38487)	METHIO- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501)	METH- OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)
MAY 23 23	<.02	<.035	<.027	<.08	<.13	<.07	<.02	<.050	<.006	.566	<.006	5.80	<.007
AUG 08 08	<.21	<.035	<.027	<.08	<.13	<.07	<.02	<.050	.093	.112	<.006	.034	<.007

### 08164503 West Mustang Creek near Ganado, TX--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

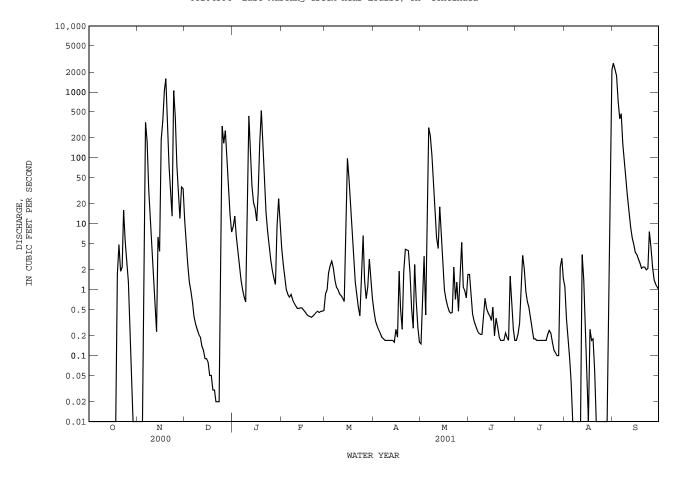
DATE	NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLTRD, GF 0.7U REC (UG/L) (49293)	ORY- ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	OXAMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (38866)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PIC- LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)
MAY 23 23 AUG	<.02	<.04	<.28	<8.34	<.003	<.007	<.002	<.010	<.006	<.011	<.09	<.015	<.004
08 08	<.02	<.04	<.28	<.20	<.003	<.007	<.002	<.010	<.006	<.011	<.09	<.015 	<.004
DATE	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	PRO- PHAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49236)	PRO- POXUR, WATER, FLTRD, GF 0.7U REC (UG/L) (38538)	SILVEX, DIS- SOLVED (UG/L) (39762)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- CLOPYR, WATER, FLTRD, GF 0.7U REC (UG/L) (49235)
MAY 23 23	<.010	E.008	<.023	<.09	<.89	<.03	.029	E.004	<.034	<.017	.548	<.002	<.63
AUG 08 08	<.010	<.011	<.023	<.96 	<.81	<.03	<.011	E.011	<.034	<.017	.029	<.002	<.07
		D#	.TE	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39787)			
		AUG O	 	<.009  <.009	 <.2  <.2	 <.2  <.2	 <.2  <.2	 <.2  <.2	 <.2  <.2	 <.2  <.2			

#### 08164504 East Mustang Creek near Louise, TX

LOCATION.--Lat 29°04'14", long 96°25'01", Wharton County, Hydrologic Unit 12100102, on right bank, 50 ft downstream from right end of bridge on Farm Road 647, 2.7 mi south of Louise.

DRAINAGE AREA.--90.8 mi².

#### WATER-DISCHARGE RECORDS


PERIOD OF RECORD.--Oct. 1996 to current year. Prior to Oct. 2000, published as "at FM 647 near Ganado".

GAGE.--Water-stage recorder. Datum of gage is 43.02 ft above sea level. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair. Much of the low flow during the irrigation season (Apr. to Sept.) is drainage from rice fields irrigated by water originally diverted from the Colorado River. No known regulation or diversions.

		DISCHA	ARGE, CUB	IC FEET PER	R SECOND, DAIL			ER 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .00 .00 .01	11 4.9 2.4 1.3 .94	9.0 13 6.6 3.7 2.2	4.3 2.4 1.5 1.0 .84	.86 1.0 1.8 2.3 2.7	.47 .33 .28 .25	.15 .50 3.2 .41 4.9	.95	.17 .21 .31 .90	1.1 .36 .17 .09	2720 2210 1750 721 391
6 7 8 9 10	.00 .00 .00 .00	344 177 33 12 4.1	.63 .39 .30 .25	1.4 .99 .78 .65	.77 .84 .70 .63	2.1 1.4 1.1 1.0	.19 .18 .17 .17	287 215 109 35 15	.21	2.1 .94 .65 .54	.01 .00 .00 .00	466 163 87 48 26
11 12 13 14 15	.00 .00 .00 .00	1.6 .62 .23 6.3 3.8	.19 .14 .12 .09	432 109 38 21 17	.52 .52 .53 .53	.81 .74 .66 17 98	.17 .17 .17 .16	6.2 4.2 18 7.7 2.9	.74 .51 .44 .40	.25 .18 .18 .17	.00 3.4 1.4 .24	15 8.9 6.1 4.8 3.7
18	.00 .00 .00 1.7 4.8	1060	.08 .05 .05 .03	11 29 170 522 121	.46 .42 .40 .39	47 17 6.2 2.7 1.3	.19 1.9 .51 .25	1.0 .71 .56 .47 .44	.54 .20 .37 .27	.17 .17 .17 .17	.01 .25 .17 .18	3.4 2.9 2.5 2.1 2.2
21 22 23 24 25	1.9 2.2 16 5.4 2.5	75 28 13 1050 417	.02 .02 .02 8.5	34 15 7.7 4.5 2.8	.40 .42 .45 .47	.82 .54 .40 1.9 6.6	4.1 4.0 3.9 1.8	.45 2.2 .71 1.3 .47	.17 .17 .17 .22	.21 .24 .22 .16	.00 .00 .00 .00	2.2 2.0 2.1 7.6 4.4
26 27 28 29 30 31	1.3 .27 .06 .00 .00	76 27 12 36 34	167 259 86 32 14 7.5	2.0 1.5 1.2 9.2 24	.47 .47 .48 	1.4 .73 1.1 2.9 1.4 .74	.26 2.4 .67 .27 .16	1.7 5.2 1.1 .97 .75	.17 1.6 .72 .25 .17	.11 .10 .10 2.2 3.0 1.5	.00 .00 .00 1.1 50 2160	2.2 1.4 1.2 1.1 1.0
TOTAL MEAN MAX MIN AC-FT	36.13 1.17 16 .00 72	5910.55 197 1590 .00 11720	901.25 29.1 304 .02 1790	1658.22 53.5 522 .65 3290	21.80 .78 4.3 .38 43	225.06 7.26 98 .40 446	26.18 .87 4.1 .16 52	728.89 23.5 287 .15 1450	12.83 .43 1.7 .17 25	19.24 .62 3.3 .10 38	2218.64 71.6 2160 .00 4400	8658.8 289 2720 1.0 17170
				FOR WATER Y								
MEAN MAX (WY) MIN (WY)	105 371 1998 .21 2000	98.8 235 1999 .063 2000	24.4 61.6 1997 .073 2000	49.6 161 1997 .11 2000	25.4 63.3 1997 .54 1999	84.0 310 1997 7.26 2001	79.1 374 1997 .87 2001	51.9 131 1997 2.32 1998	14.4 39.7 2000 .43 2001	3.58 7.10 1999 .62 2001	32.5 83.5 1998 .26 2000	150 368 1998 .000 2000
SUMMAR	Y STATIS	TICS	FOR	2000 CALEN	IDAR YEAR		FOR 2001 V	VATER YEAR		WATER	YEARS 1997	7 - 2001
LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI ANNUAL 10 PERO 50 PERO	MEAN T ANNUAL	MEAN MEAN EAN AY MINIMUN LOW CTAGE (AC-FT) EEDS	1	11606.85 31.7 1590 .00 .00 23020 33 .17	Nov 19 ) Jul 14 ) Jul 14		20417.5 55.5 2720 .( 3120 21.5 40500 42	Sep 1 00 Oct 1 00 Oct 1 Aug 31 90 Aug 31		59. 104 13. 3640 4100 22. 43340 51 1.	0 Sep 00 Jul 00 Jul Sep 16 Sep	1997 2000 11 1998 14 2000 14 2000 11 1998 11 1998

### 08164504 East Mustang Creek near Louise, TX--Continued



### 08164504 East Mustang Creek nr Louise, TX--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Apr. 1996 to current year PESTICIDE DATA: Apr. 1996 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			**********	QUALITY L	21111, 111111	IC IDAIC OC	TODDIC DOO	O TO DEFT	EMBER 200	_			
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	2,4,5-T DIS- SOLVED (UG/L) (39742)	2,4-D, DIS- SOLVED (UG/L) (39732)	2,4-DB WATER, FLTRD, GF 0.7U REC (UG/L) (38746)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	3HYDRXY CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L) (49308)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)
MAY 23 23	1210 1210	.72	5.6	66.3	7.7	299 	24.0	<.04	<.11	<.10	.003	<.76 	<.004
DATE	ACIFL- UORFEN WATER, FLTRD, GF 0.7U REC (UG/L) (49315)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BENTA- ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)	BRO- MACIL, WATER, DISS, REC (UG/L) (04029)	BRO- MOXYNIL WATER, FLTRD, GF 0.7U REC (UG/L) (49311)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49310)
MAY 23 23	<.05 	.483	<.89	<.23	<.21	<.005	2.33	<.010	<.04	<.09	<.07	<.002	<.02
DATE	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN, WATER, FLTRD, GF 0.7U REC (UG/L) (49309)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLORO- THALO- NIL, WAT,FLT GF 0.7U REC (UG/L) (49306)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CLOPYR- ALID, WATER, FLTRD, GF 0.7U REC (UG/L) (49305)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DACTHAL MONO- ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	DICHLO- BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303)
MAY 23 23	<.041	<.28	<.020	<.13	<.005	<.42	<.018	<.07	<.003	E.247	<.005	<.04	<.44
	DICHLOR PROP, WATER, FLTRD,	DI-	DINOSEB WATER, FLTRD,	DISUL- FOTON WATER FLTRD	DIURON, WATER, FLTRD,	DNOC WAT, FLT	EPTC WATER FLTRD	ETHAL- FLUR- ALIN WAT FLT	ETHO- PROP WATER FLTRD 0.7 U	FEN- URON, WATER, FLTRD, GF 0.7U	FLUO- METURON WATER, FLTRD,	FONOFOS WATER	LINDANE DIS-
DATE	GF 0.7U REC (UG/L) (49302)	ELDRIN DIS- SOLVED (UG/L) (39381)	GF 0.7U REC (UG/L) (49301)	0.7 U GF, REC (UG/L) (82677)	GF 0.7U REC (UG/L) (49300)	GF 0.7U REC (UG/L) (49299)	0.7 U GF, REC (UG/L) (82668)	0.7 U GF, REC (UG/L) (82663)	GF, REC (UG/L) (82672)	REC (UG/L) (49297)	GF 0.7U REC (UG/L) (38811)	DISS REC (UG/L) (04095)	SOLVED (UG/L) (39341)
DATE  MAY 23 23	GF 0.7U REC (UG/L)	DIS- SOLVED (UG/L)	GF 0.7U REC (UG/L)	GF, REC (UG/L)	REC (UG/L)	REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	REC (UG/L)	REC (UG/L)	REC (UG/L)	SOLVED (UG/L)
MAY 23	GF 0.7U REC (UG/L) (49302)  <.05  LINURON WATER, FLTRD, GF 0.7U REC (UG/L)	DIS- SOLVED (UG/L) (39381) <.005  LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L)	GF 0.7U REC (UG/L) (49301) <.09  MALA- THION, DIS- SOLVED (UG/L)	GF, REC (UG/L) (82677) <.021  MCPA, WATER, FLTRD, GF 0.7U REC (UG/L)	MCPB, WATER, FLITRD, GF 0.7U REC (UG/L)	REC (UG/L) (49299) <.25  METHIO- CARB, WATER, FLITRD, GF 0.7U REC (UG/L)	GF, REC (UG/L) (82668) <.002  METH- OMYL, WATER, FLITRD, GF 0.7U REC (UG/L)	GF, REC (UG/L) (82663)  <.009  METHYL AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L)	GF, REC (UG/L) (82672)  <.005  METHYL PARA-THION WAT FLT 0.7 U GF, REC (UG/L)	REC (UG/L) (49297) <.20  METO- LACHLOR WATER DISSOLV (UG/L)	REC (UG/L) (38811)	REC (UG/L) (04095) <.003  MOL- INATE WATER FLITED 0.7 U GF, REC (UG/L)	SOLVED (UG/L) (39341)
MAY 23 23	GF 0.7U REC (UG/L) (49302)  <.05  LINURON WATER, FLTRD, GF 0.7U REC (UG/L)	DIS- SOLVED (UG/L) (39381) <.005  LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L)	GF 0.7U REC (UG/L) (49301) <.09  MALA- THION, DIS- SOLVED (UG/L)	GF, REC (UG/L) (82677) <.021  MCPA, WATER, FLTRD, GF 0.7U REC (UG/L)	MCPB, WATER, FLITRD, GF 0.7U REC (UG/L)	REC (UG/L) (49299) <.25  METHIO- CARB, WATER, FLITRD, GF 0.7U REC (UG/L)	GF, REC (UG/L) (82668) <.002  METH- OMYL, WATER, FLITRD, GF 0.7U REC (UG/L)	GF, REC (UG/L) (82663)  <.009  METHYL AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L)	GF, REC (UG/L) (82672)  <.005  METHYL PARA-THION WAT FLT 0.7 U GF, REC (UG/L)	REC (UG/L) (49297) <.20  METO- LACHLOR WATER DISSOLV (UG/L)	REC (UG/L) (38811) <2.70  METRI- BUZIN SENCOR WATER DISSOLV (UG/L)	REC (UG/L) (04095) <.003  MOL- INATE WATER FLITED 0.7 U GF, REC (UG/L)	SOLVED (UG/L) (39341) <.004  NAPROP- AMIDE WATER FLITRD 0.7 U GF, REC (UG/L)
MAY 23 23 DATE  MAY 23	GF 0.7U REC (UG/L) (49302) <.05 LINURON WATER, FLITRD, GF 0.7U REC (UG/L) (38478)	DIS- SOLVED (UG/L) (39381) <.005  URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035  NORFLUR AZON, WATER, FLTRD, GF 0.7U REC (UG/L)	GF 0.7U REC (UG/L) (49301) <.09  MALA- THION, DIS- SOLVED (UG/L) (39532) <.027  ORY- ZALIN, WATER, FLIRD,	GF, REC (UG/L) (82677)  <.021  MCPA, WATER, FLTRD, GF 0.7U REC (UG/L) (38482)  <.08	MCPB, WATER, FLITRD, GF 0.7U REC (UG/L) (38487)	REC (UG/L) (49299) <.25  METHIO- CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501)	GF, REC (UG/L) (82668)  <.002  METH-OMYL, WATER, FLITED, GF 0.7U REC (UG/L) (49296)  <.02	GF, REC (UG/L) (82663)  <.009  METHYL AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)  <.050  PENDI-METH-ALIN	GF, REC (UG/L) (82672)  <.005  METHYL PARA-THION WAT FLT 0.7 U GF, REC (UG/L) (82667)  <.006	METO- LACHLOR WATER DISSOLV (UG/L) (39415)  8.81  PHORATE WATER FLTRD 0.7 U	REC (UG/L) (38811) <2.70  METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006	REC (UG/L) (04095) <.003  MOL- INATE WATER FLITED 0.7 U GF, REC (UG/L) (82671)	SOLVED (UG/L) (39341) <.004  NAPROP- AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007

### 08164504 East Mustang Creek nr Louise, TX--Continued

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	PRO- PHAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49236)	PRO- POXUR, WATER, FLTRD, GF 0.7U REC (UG/L) (38538)	SILVEX, DIS- SOLVED (UG/L) (39762)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- CLOPYR, WATER, FLTRD, GF 0.7U REC (UG/L) (49235)
MAY 23 23	<.010	<.011	<.023	<10.2	<.12	<.18	<.011	E.010	<.034	<.017	2.11	<.002	<.31
		DA	TE	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39787)			
			3	<.009	 <.2	 <.2	 <.2	 <.2	 <.2	 <.2			

#### 08164525 Lake Texana near Edna, TX

LOCATION.--Lat 28°53'30", long 96°34'39", Jackson County, Hydrologic Unit 12100102, on river outlet works structure on upstream side of Palmetto Bend Dam on the Navidad River, 4.0 mi north of Lolita, 4.9 mi upstream from confluence with Lavaca River, and 7.2 mi southeast of Edna.

DRAINAGE AREA. -- 1,370 mi².

#### WATER-CONTENT RECORDS

PERIOD OF RECORD. -- July 1999 to current year.

REVISED RECORDS. -- WSP 1923: 1953(M), Drainage area.

GAGE. -- Water-stage recorder. Datum of the gage is sea level. Satellite telemeter at station.

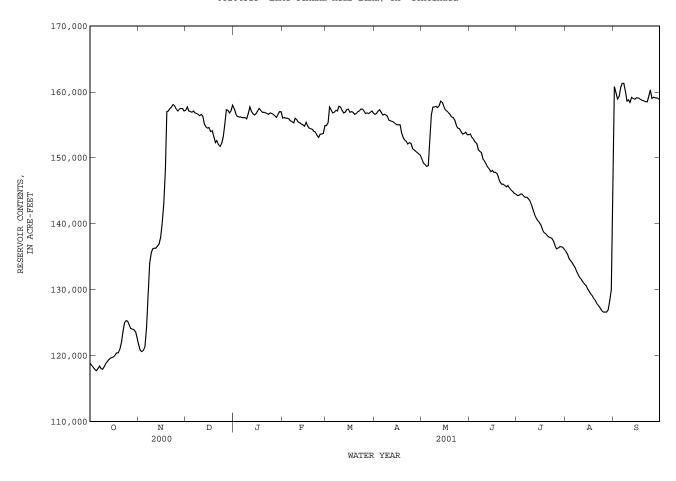
REMARKS.--No estimated daily contents. Records good. The lake is formed by a rolled earthfill dam 1.3 mi long, a concrete spillway 464 ft wide, and 6.6 mi of earthen dikes. The dam was completed and storage began May 1980. The spillway has twelve 35 ft wide by 22.5 ft high radial gates to discharge flood flows to the river channel downstream. Dual level municipal and industrial outlet works structures are located on each side of the spillway. These concrete structures provide for access to a conduit through the dam and for connecting a water delivery system. The river outlet works, a concrete structure with multi-level intake gates, discharge into the Navidad River through an 8 ft by 10 ft downstream conduit. The dam is owned by the Lavaco-Navidad River Authority. The primary purpose of Lake Texana is to provide dependable municipal and industrial water supply of 75,000 acre-ft annually, and to provide recreational, fish and wildlife facilities for the public. The lake is not designed to store floods; therefore, flooding both downstream and upstream remains approximately the same as conditions were before construction. Conservation pool storage is 153,137 acre-ft. Data regarding the dam are given in the following table: following table:

	Elevation
	(feet)
Top of dam	55.0
Top of gate	45.3
Crest of spillways (tainter gates sill)	23.0

COOPERATION. -- Capacity table computed Apr. 1, 1992, by Bureau of Reclamation was provided by Lavaca-Navidad River Authority. Basic data for the table was obtained in the Lake Texana sediment resurvey completed in June 1991, by personnel from Bureau of Reclamation and from Lavaca-Navidad River Authority.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 162,300 acre-ft Sept. 24, 2001, elevation, 44.66 ft; minimum contents, 105,200 acre-ft Feb. 22, 2000, elevation, 38.33 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 162,300 acre-ft, Sept. 24, elevation, 44.66 ft; minimum contents, 117,400 acre-ft, Oct. 8, elevation, 39.85 ft.


> RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	118800	121600	157200	157500	156000	154900	156600	149800	153600	144300	135800	160800
2	118500	120800	157700	156700	156100	155300	156700	149200	153100	144300	135400	159900
3	118200	120600	157100	156300	156000	157700	157100	149000	152800	144500	134700	158900
4	117900	120800	157000	156200	156000	157300	157300	148700	152400	144500	134400	159300
5	117700	121300	156900	156200	155900	156800	156900	148800	152200	144200	134100	160700
6 7 8 9	118000 118400 118000 117900 118300	124200 129300 134100 135600 136200	157100 156800 156700 156600 156400	156100 156100 156100 155900 156700	155600 155500 155300 156000 155800	156900 157200 157100 157800 157700	156500 156600 156500 156300 155700	152900 156500 157700 157700 157800	151200 151000 150800 149800 149500	144000 144000 143800 143500 142900	133700 133300 132700 132200 131800	161300 161300 160100 158600 158800
11	118800	136300	156600	157700	155400	157200	155600	157600	149100	142100	131500	158400
12	119100	136300	156300	157100	155300	156800	155500	157900	148600	141400	131100	159200
13	119400	136600	155100	156700	155100	156900	155400	158600	148300	140900	130800	159000
14	119600	136900	154700	156500	155000	157300	155200	158400	147900	140500	130600	158900
15	119700	137900	154500	156700	154800	157400	155000	157800	148100	140200	130100	159100
16	119800	140100	154600	157100	155400	156900	155000	157300	147800	139800	129700	159100
17	120100	143100	154000	157500	154800	157000	155000	157100	147800	139100	129300	159000
18	120400	148200	154100	157200	154500	156900	153800	156800	147600	138700	129000	158800
19	120400	157000	153200	156900	154400	156600	153100	156600	146900	138500	128600	158700
20	121000	157100	152300	156900	154300	156700	152700	156200	146300	138200	128300	158600
21	122100	157500	152600	156800	154000	157000	152500	156100	146000	138000	127800	158500
22	123800	157700	152000	156700	153900	157100	152100	155700	146000	137900	127500	158500
23	125000	158100	151700	156600	153400	157400	152300	154900	145800	137800	127200	159400
24	125300	157900	152200	156800	153100	157400	152200	154500	145600	137400	126800	160300
25	125200	157400	153100	156700	153600	157100	151400	154400	145800	136700	126600	159000
26 27 28 29 30 31	124600 124100 124000 123900 123600 122600	157100 157400 157500 157500 157100	155000 157300 157200 156800 157100 158000	156600 156400 156100 156600 157000	153600 153700 154900 	156700 156800 156700 156900 157100 156800	151200 151000 150800 150600 150400	154000 153600 153700 153900 153500 153500	145400 145100 144900 144600 144500	136200 136300 136500 136500 136400 136100	126600 126600 126900 128300 130000 149600	159200 159100 159100 159000 158800
MEAN	120800	142300	155400	156700	154900	156900	154200	154800	148300	140200	131000	159300
MAX	125300	158100	158000	157700	156100	157800	157300	158600	153600	144500	149600	161300
MIN	117700	120600	151700	155900	153100	154900	150400	148700	144500	136100	126600	158400
(+)	40.47	44.16	44.24	44.14	43.93	44.13	43.48	43.80	42.88	41.99	43.38	44.32
(@)	+3500	+34500	+900	-1000	-2100	+1900	-6400	+3100	-9000	-8400	+13500	+9200

CAL YR 2000 WTR YR 2001 MAX 158400 MIN 105800 (@) +44100 MAX 161300 MIN 117700 (@) +39700

⁽⁺⁾ Elevation, in feet, at end of month.
(@) Change in contents, in acre-feet.

08164525 Lake Texana near Edna, TX--Continued



#### 08164525 Lake Texana near Edna, TX--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--CHEMICAL DATA: Jan. 1988 to current year. BIOCHEMICAL DATA: Jan. 1988 to Sept. 1993. PESTICIDE DATA: May 1994 to current year.

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

				28	533109634	3501 I	k Texana	Site AC					
DATE	TIME	RESER- VOIR STORAGE (AC-FT) (00054)	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
JAN 31 31 31 31 31 31	0813 0815 0817 0819 0821 0823	158000     	1.00 10.0 20.0 30.0 40.0 50.0 66.0	165 165 165 165 165 166 169	7.8 7.8 7.8 7.8 7.7 7.7	12.0 12.0 12.0 12.0 12.0 12.0 10.5	.15     	7.6 7.8 7.3 7.3 6.6 7.0 9.3	70 72 67 67 61 65 83	58     58	9     7	18.3     18.6	2.86     2.88
JUN 13 13 13 13 13 13 13 13	0815 0817 0819 0821 0823 0825 0827	148000     	1.00 10.0 20.0 30.0 40.0 50.0	191 192 192 192 192 191 190	7.9 7.9 7.9 7.8 7.7 7.5	27.5 27.5 27.5 27.5 27.0 26.5 25.0	.24	6.8 6.8 6.7 6.1 4.9 3.4	86 86 85 77 61 41	69     71	7     7	23.3	2.72     2.77
21 21 21 21 21 21 21	0815 0817 0819 0821 0823 0825 0827 0829	128000      	1.00 10.0 20.0 30.0 40.0 50.0 60.0	217 217 215 215 215 210 215 220	8.1 8.1 7.8 7.7 7.6 7.2 7.1	30.0 30.0 29.0 29.0 28.5 27.5 25.5	.15      	8.6 8.9 7.8 7.2 6.7 1.9	113 117 101 93 86 24 1	79     81	     	26.6     27.4	3.07      3.13
				28	533109634	3501 T	k Texana	Site AC					
DATE	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM PERCENT (00932)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN	DIS- SOLVED (MG/L AS NA) (00930)	AD- SORP- TION RATIO	PERCENT (00932)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31	DIS- SOLVED (MG/L AS NA) (00930)	AD- SORP- TION RATIO (00931)	PERCENT (00932)  25	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31	DIS- SOLVED (MG/L AS NA) (00930)	AD- SORP- TION RATIO (00931)	PERCENT (00932)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31 31	DIS- SOLVED (MG/L AS NA) (00930)	AD- SORP- TION RATIO (00931)	PERCENT (00932)  25	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31	DIS- SOLVED (MG/L AS NA) (00930)	AD- SORP- TION RATIO (00931)	PERCENT (00932) 25  	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31 31 31 JUN	DIS- SOLVED (MG/L AS NA) (00930)	AD- SORP- TION RATIO (00931)	25    25 25	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.67    3.69	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 13.2     12.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1    E.1	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31 31 31 JUN 13 JUN	DIS- SOLVED (MG/L AS NA) (00930) 9.7   9.8	AD- SORP- TION RATIO (00931)	25    25 25 24 	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.67   3.69 3.72	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 49 	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 6.1   6.1 6.8	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 13.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1   E.1	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (70301)  94 96  109	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31 31 31 31 31 31 31 JUN 13 13	DIS- SOLVED (MG/L AS NA) (00930)	AD- SORP- TION RATIO (00931)	25    25 24 	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.67   3.69 3.72	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)  .00 .0	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 6.1   6.1 6.8 	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 13.2    12.9 14.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1   E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 11.1   11.3 9.8	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31 31 31 JUN 13 13 13 13	DIS- SOLVED (MG/L AS NA) (00930) 9.7   9.8 10.6	AD- SORP- TION RATIO (00931)	25 	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.67   3.69 3.72	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 49 	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 6.1   6.1 6.8  	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 13.2 12.9  14.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1   E.1	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (70301)  94 96  109 96	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31 31 31 31 31 31 JUN 13 13 13 13 13	DIS- SOLVED (MG/L AS NA) (00930) 9.7   9.8 10.6	AD- SORP- TION RATIO (00931)	25    25 24   	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.67   3.69 3.72	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 6.1   6.1 6.8  	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 13.2    12.9 14.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1   E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 11.1   11.3 9.8  	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)  94 96  109	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31 31 31 JUN 13 13 13 13	DIS- SOLVED (MG/L AS NA) (00930) 9.7   9.8 10.6	AD- SORP- TION RATIO (00931)	25 	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.67   3.69 3.72	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)  .000	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)  60	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 49 	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 6.1   6.1 6.8  	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 13.2 12.9  14.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1   E.1	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (70301)  94 96  109 96	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31 31 31 JUN 13 13 13 13 13 13 13 13 13 13	DIS- SOLVED (MG/L AS NA) (00930) 9.7   9.8 10.6   10.3 11.6	AD- SORP- TION RATIO (00931) .6  .6 .6  .5	25    25 24   23	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.67   3.69 3.72   3.58 3.62	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)  .0	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)  60 62 76 78	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  49 51 63 64	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)  6.1 6.1 6.8 6.8 7.7	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 13.2    12.9 14.0    13.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1   E.1 .2     2. 2	DIS- SOLVED (MG/L AS SIO2) (00955) 11.1   11.3 9.8   11.0	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)  94 96  109 110	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31 31 31 31 31 31 31 31 31 31 31 31 13 13 13 13 13 2UG 21	DIS- SOLVED (MG/L AS NA) (00930) 9.7 	AD- SORP- TION RATIO (00931)	25 	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.67   3.69 3.72   3.58	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)  .000 .0	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)  60 62  76 78	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  49 51 63 64	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)  6.1 6.1 6.8 6.8	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 13.2   12.9 14.0   13.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1   E.1 .2    E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 11.1   11.3 9.8    11.0	SUM OF CONSTI- TUENTS, DIS- SOLVED (70301)  94 96  109 110	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31 31 31 JUN 13 13 13 13 13 13 13 21 21 21	DIS- SOLVED (MG/L AS NA) (00930) 9.7 	AD- SORP- TION RATIO (00931)	25   25 25 24   23 23	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.67 	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)  .0	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)  60 62 76 78	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  49 51 63 64	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)  6.1 6.1 6.8 6.8 7.7	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 13.2   12.9 14.0   13.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1   E.1 .2    2 .2 .2 .2 .2	DIS- SOLVED (MG/L AS SIO2) (00955) 11.1   11.3 9.8   11.0 11.2	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)  94 96  109 110 110	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31 31 31 31 31 31 31 31 31 31 13 13 13 13 13 21 21 21 21	DIS- SOLVED (MG/L AS NA) (00930) 9.7	AD- SORP- TION RATIO (00931)	25 	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.67   3.69 3.72   3.58 3.62	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)  .0	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)  60	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  49 51 63 64 64	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)  6.1	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 13.2   12.9 14.0   13.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1   E.1 .2    2   2	DIS- SOLVED (MG/L AS SIO2) (00955)  11.1	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)  94 96 109 110	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)
JAN 31 31 31 31 31 JUN 13 13 13 13 13 13 13 21 21 21	DIS- SOLVED (MG/L AS NA) (00930) 9.7 	AD- SORP- TION RATIO (00931)	25	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)  3.67 3.69 3.72 3.58 3.62	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)  .0	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)  60 62 76 78	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)  49 51 63 64 64	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)  6.1 6.1 6.8 6.8 7.7	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 13.2   12.9 14.0   13.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1   E.1 .2    2 .2	DIS- SOLVED (MG/L AS SIO2) (00955)  11.1 11.3 9.8 11.0 11.2	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)  94 96  109 110 110	GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)

### 08164525 Lake Texana near Edna, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
JAN													
31	1	.10	2.1	67.2	<.06	< .04	<.8	.08	2.7	20	.08	E2.4	1.5
31													
31													
31													
31													
31													
31	<1	.10	E1.6	67.0	<.06	E.02	<.8	.11	2.7	20	E.07	E2.5	11.7
JUN													
13	1	.11	E1.7	82.9	<.06	<.04	<.8	.07	2.2	M	<.08	<4.0	. 2
13													
13													
13													
13													
13													
13	<1	.09	E1.5	85.2	<.06	<.04	<.8	.06	2.8	10	<.08	E2.1	2.2
AUG													
21	2	.12	2.3	88.6	<.06	<.04	<.8	.06	2.1	<10	<.08	E2.5	.9
21													
21													
21													
21													
21													
21													
21	<1	.09	13.8	112	<.06	<.04	<.8	1.82	1.7	1130	<.08	<4.0	1540

285331096343501	T.k	Texana	a Site	AC

DATE	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)	URANIUM NATURAL DIS- SOLVED (UG/L AS U)
	(71890)	(01060)	(01065)	(01145)	(01075)	(01080)	(01085)	(01090)	(22703)
JAN									
31	<.23	.5	.83	<2.4	<1.0	69.3	<8.0	2	.16
31									
31									
31									
31									
31									
31	<.23	.5	.85	<2.4	<1.0	69.8	<8.0	3	.15
JUN									
13	<.01	. 6	.79	<2.0	<1.0	80.8	<8.0	1	.21
13									
13									
13									
13									
13	<.01		.92			01 2	<8.0	4	
13 AUG	<.01	.6	.92	<2.0	<1.0	81.3	<8.0	4	.14
21	<.01	.7	.64	<2.0	<1.0	89.7	E4.5	1	.13
21	~.UI		.04	~2.0	~1.0	09.7	E4.5		.13
21									
21									
21									
21									
21									
21	<.01	. 6	1.63	<2.0	<1.0	91.2	<8.0	11	.07

### 08164525 Lake Texana near Edna, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

285326096342101 -- Lk Texana Site AL

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
JAN							
31	0907	1.00	165	7.8	12.5	8.5	79
31	0909	10.0	165	7.8	12.5	8.5	79
31	0911	20.0	165	7.9	12.5	8.6	80
31	0913	30.0	165	7.8	12.5	8.7	81
31	0915	36.0	165	7.8	12.5	8.5	79
JUN							
13	0900	1.00	191	7.9	27.5	6.9	88
13	0902	10.0	192	7.9	27.5	6.8	86
13	0904	20.0	192	7.9	27.0	6.8	86
13	0906	30.0	192	7.8	27.0	6.7	84
13	0908	35.0	192	7.8	27.0	6.5	82
AUG							
21	0850	1.00	217	8.0	29.5	8.8	115
21	0852	10.0	217	8.0	29.5	8.7	114
21	0854	20.0	217	8.0	29.5	8.7	114
21	0856	34.0	217	7.8	29.0	8.1	105

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
JAN							
31	0934	1.00	153	7.7	12.5	8.7	81
31	0936	10.0	153	7.7	12.5	8.8	82
31	0938	20.0	153	7.7	12.5	8.9	83
31	0940	30.0	153	7.7	12.5	8.9	83
31	0942	40.0	154	7.7	12.5	9.1	85
JUN	0000	1 00	104	7.0	00 5	6.0	0.0
13	0922	1.00	194	7.9	28.5	6.9	89
13	0924	10.0	194	7.9	28.5	6.8	88
13	0925	20.0	196	7.7	28.0	6.2	80
13 13	0927 0929	30.0 37.0	196 196	7.7 7.7	28.0 28.0	5.9 6.0	76 77
AUG	0929	37.0	196	/./	28.0	6.0	//
21	0911	1.00	225	8.0	30.0	8.3	109
21	0913	10.0	225	8.0	30.0	8.2	108
21	0915	20.0	224	8.0	30.0	8.2	108
21	0917	30.0	224	7.8	30.0	7.6	100
21	0919	36.0	223	7.8	29.5	7.5	98

### 08164525 Lake Texana near Edna, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	2,4,5-T DIS- SOLVED (UG/L) (39742)	2,4-D, DIS- SOLVED (UG/L) (39732)	2,4-DB WATER, FLTRD, GF 0.7U REC (UG/L) (38746)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	SILVEX, DIS- SOLVED (UG/L) (39762)
JAN 31 JAN	1020	1.00	130	7.4	13.0	.15	8.6	81					
31-31 31 31 31	1020 1022 1024 1026 1028	10.0 20.0 30.0 37.0	130 131 131 133	 7.4 7.4 7.4 7.4	13.0 13.0 13.0 13.0	  	8.7 8.9 9.1 10.0	 82 84 85 94	<.04   	<.11   	<.12    	<.002    	<.03   
JUN 13	0950	1.00	198	7.8	28.5	.21	6.8	88					
JUN 13-13 13 13 13 13	0950 0952 0954 0956 0958 0958	10.0 20.0 30.0 35.0 35.0	198 199 203 203	7.8 7.8 7.4 7.4	28.5 28.5 28.0 28.0	   	 6.6 6.3 4.9 5.0	 85 82 63 64	<.04    	<.11    	<.10    	<.002     	<.04    
AUG 21	0929	1.00	265	8.1	30.0	.30	8.4	111					
AUG 21-21 21 21 21	0929 0931 0933 0935 0937	10.0 20.0 30.0 35.0	263 263 263 263	8.1 8.0 8.0 8.0	30.0 30.0 30.0 30.0	   	8.2 8.0 8.1 7.9	108 105 107 104	<.04   	<.11   	<.10   	<.002    	<.03    
				28	581609632	0201 L	k Tovana	Site CC					
				20	301007032	0201 1	ik icadia	DICE CC					
DATE	3HYDRXY CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L) (49308)	DNOC WAT,FLT GF 0.7U REC (UG/L) (49299)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ACIFL- UORFEN WATER, FLTRD, GF 0.7U REC (UG/L) (49315)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BENTA- ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)
JAN	CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L)	WAT,FLT GF 0.7U REC (UG/L)	CHLOR, WATER FLTRD REC (UG/L)	ACIFL- UORFEN WATER, FLTRD, GF 0.7U REC (UG/L)	ALA- CHLOR, WATER, DISS, REC, (UG/L)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L)	BHC DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)	ZON, WATER, FLTRD, GF 0.7U REC (UG/L)
JAN 31 JAN	CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L) (49308)	WAT,FLT GF 0.7U REC (UG/L) (49299)	CHLOR, WATER FLTRD REC (UG/L) (49260)	ACIFL- UORFEN WATER, FLTRD, GF 0.7U REC (UG/L) (49315)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	BHC DIS- SOLVED (UG/L) (34253)	ZINE, WATER, DISS, REC (UG/L) (39632)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)
JAN 31 JAN 31-31 31	CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L) (49308)	WAT,FLT GF 0.7U REC (UG/L) (49299)	CHLOR, WATER FLTRD REC (UG/L) (49260)	ACIFL- UORFEN WATER, FLTRD, GF 0.7U REC (UG/L) (49315)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	BHC DIS- SOLVED (UG/L) (34253)	ZINE, WATER, DISS, REC (UG/L) (39632)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ZON, WATER, FLITRD, GF 0.7U REC (UG/L) (38711)
JAN 31 JAN 31-31 31 31	CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L) (49308)	WAT,FLT GF 0.7U REC (UG/L) (49299)	CHLOR, WATER FLTR REC (UG/L) (49260)	ACIFL- UORFEN WATER, FLIRD, GF 0.7U REC (UG/L) (49315)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB, WATER, FLIRD, GF 0.7U REC (UG/L) (49312)	ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	BHC DIS- SOLVED (UG/L) (34253)	ZINE, WATER, DISS, REC (UG/L) (39632)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)
JAN 31 JAN 31-31 31 31 31 JUN	CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L) (49308)	WAT,FLT GF 0.7U REC (UG/L) (49299)	CHLOR, WATER FLTRD REC (UG/L) (49260)	ACIFL- UORFEN WATER, FLITRD, GF 0.7U REC (UG/L) (49315)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (49312)	ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	BHC DIS- SOLVED (UG/L) (34253)	ZINE, WATER, DISS, REC (UG/L) (39632)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13 JUN	CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L) (49308)	WAT,FLT GF 0.7U REC (UG/L) (49299)  <.25   	CHLOR, WATER FLTRD REC (UG/L) (49260)  <.004   	ACIFL- UORFEN WATER, FLIRD, GF 0.7U REC (UG/L) (49315)  <.05	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB, WATER, FLIRD, GF 0.7U REC (UG/L) (49312)	ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)  <.28	BHC DIS- DIS- SOLVED (UG/L) (34253)  <.005	ZINE, WATER, DISS, REC (UG/L) (39632)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)
JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 JUN 13-13 13	CARBO- FURAN WAT, FLT GF 0.7U REC (UG/L) (49308)	WAT, FLT GF 0.7U REC (UG/L) (49299)  <.25    <.25	CHLOR, WATER FLITRD REC (UG/L) (49260)  <.004077	ACIFL- UORFEN WATER, FLTRD, GF 0.7U REC (UG/L) (49315) <.05 <.23	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)  <.002     270	ALDI- CARB, WATER, FLIRD, GF 0.7U REC (UG/L) (49312)	ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313)  <.20 <.20	ALDICA- RB SUL- FOXIDE, WAT, FLT GF 0.7U REC (UG/L) (49314)  <.28 <.02	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632)  .291      .733	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)  <.050    <.050	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)  <.010    <.010	ZON, WATER, FITRD, GF 0.7U REC (UG/L) (38711)  <.04     .04 
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13	CARBO- FURAN WAT, FLT GF 0.7U REC (UG/L) (49308)  <.39	WAT,FLT GF 0.7U REC (UG/L) (49299)  <.25   <.25  	CHLOR, WATER FLITRD REC (UG/L) (49260)  <.004077	ACIFL- UORFEN WATER, FLITRD, GF 0.7U REC (UG/L) (49315)  <.05	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)  <.002     270 	ALDI- CARB, WATER, FLIRD, GF 0.7U REC (UG/L) (49312)  <.22 <.21	ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT, FLT GF 0.7U REC (UG/L) (49314)  <.28 <.02	BHC DIS- DIS- SOLVED (UG/L) (34253)  <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)  <.050    <.050	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)  <.010    <.010	ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)  <.040404
JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 13 13 13	CARBO- FURAN WAT, FLT GF 0.7U REC (UG/L) (49308)  <.39	WAT,FLT GF 0.7U REC (UG/L) (49299)  <.25    <.25 	CHLOR, WATER FLITRD REC (UG/L) (49260)  <.004077	ACIFL- UORFEN WATER, FLIRD, GF 0.7U REC (UG/L) (49315)  <.05 <.23	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB, WATER, FLIRD, GF 0.7U REC (UG/L) (49312)	ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)  <.28 <.02 <.02	BHC DIS- DIS- SOLVED (UG/L) (34253)  <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632)  .291     .733	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)  <.050   <.050  	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)  <.010   <.010	ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)
JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 13 13 13 13 13 13 13	CARBO- FURAN WAT, FLT GF 0.7U REC (UG/L) (49308)  <.39	WAT, FLT GF 0.7U REC (UG/L) (49299)  <.25 <.25	CHLOR, WATER FLITRD REC (UG/L) (49260)  <.004	ACIFL- UORFEN WATER, FLITRD, GF 0.7U REC (UG/L) (49315)  <.05 <.23	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)  <.002     270 	ALDI- CARB, WATER, FLIRD, GF 0.7U REC (UG/L) (49312)  <.22 <.21	ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313)  <.20    <.20	ALDICA- RB SUL- FOXIDE, WAT, FLT GF 0.7U REC (UG/L) (49314)  <.28 <.02	BHC DTS- DTS- SOLVED (UG/L) (34253) <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632)  .291     .733	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)  <.050    <.050	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)  <.010   <.010	ZON, WATER, FITRD, GF 0.7U REC (UG/L) (38711)  <.04040404
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 AUG	CARBO- FURAN WAT, FLT GF 0.7U REC (UG/L) (49308)  <.39	WAT,FLT GF 0.7U REC (UG/L) (49299)  <.25 <.25	CHLOR, WATER FLITRD REC (UG/L) (49260)  <.004	ACIFL- UORFEN WATER, FLITRD, GF 0.7U REC (UG/L) (49315)  <.05	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)  <.002 270	ALDI- CARB, WATER, FLIRD, GF 0.7U REC (UG/L) (49312)  <.22	ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313)  <.20	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)  <.28 <.02	BHC DIS- DIS- SOLVED (UG/L) (34253)  <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) 291733	AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)  <.050 <.050	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)  <.010 <.010 <.010	ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)  <.04040404
JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13	CARBO- FURAN WAT, FLT GF 0.7U REC (UG/L) (49308)  <.39	WAT, FLT GF 0.7U REC (UG/L) (49299)  <.25 <.25 <.25 <.25 <.25	CHLOR, WATER FLIRD REC (UG/L) (49260)  <.004077	ACIFL- UORFEN WATER, FLITRD, GF 0.7U REC (UG/L) (49315)  <.05 <.23 <.23 <.05 <.05	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)  <.002270	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)  <.22 <.21 <.21 <.21	ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313)  <.20 <.20 <.20 <.20 <.20	ALDICA- RB SUL- FOXIDE, WAT, FLT GF 0.7U REC (UG/L) (49314)  <.28 <.02 <.02 <.02	BHC DTS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) 291733515	AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)  <.050 <.050 <.050 <.050	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)  <.010 <.010 <.010 <.010 <.010	ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)  <.04040404
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 13 AUG 21 AUG 21-21	CARBO- FURAN WAT, FLT GF 0.7U REC (UG/L) (49308)  <.39 <.11 <.11 <.11 <.11 <.11 <.11	WAT,FLT GF 0.7U REC (UG/L) (49299)  <.25 <.25 <.25 <.25	CHLOR, WATER FLITRD REC (UG/L) (49260)  <.004	ACIFL- UORFEN WATER, FLITRD, GF 0.7U REC (UG/L) (49315)  <.05 <.23 <.23 <.05	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)  <.002 270068	ALDI- CARB, WATER, FLIRD, GF 0.7U REC (UG/L) (49312)  <.22 <.21 <.21 <.21	ALDI- CARB SULFONE WAT, FLT GF 0.7U REC (UG/L) (49313)  <.20 <.20 <.20 <.20 <.20 <.20 <.20 <.20 <.20 <.20 <.20 <.20	ALDICA- RB SUL- FOXIDE, WAT, FLT GF 0.7U REC (UG/L) (49314)  <.28 <.02 <.02 <.02	BHC DTS- SOLVED (UG/L) (34253)  <.005 <.005 <.005 < <.005	ZINE, WATER, DISS, REC (UG/L) (39632) 291733515	AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)  <.050 <.050 <.050 <.050	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)  <.010 <.010 <.010 <.010 <.010 <.010 <.010	ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)  <.0404040404

### 08164525 Lake Texana near Edna, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	BRO- MACIL, WATER, DISS, REC (UG/L) (04029)	BRO- MOXYNIL WATER, FLTRD, GF 0.7U REC (UG/L) (49311)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49310)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN, WATER, FLTRD, GF 0.7U REC (UG/L) (49309)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39787)	CHLORO- THALO- NIL, WAT,FLT GF 0.7U REC (UG/L) (49306)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	CLOPYR- ALID, WATER, FLTRD, GF 0.7U REC (UG/L) (49305)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)
JAN 31													
JAN													
31-31 31	<.09 	<.07	<.002	<.02	<.041	<.29	<.020		<.13	<.005	<.006	<.42	<.018
31 31													
31													
JUN 13													
JUN 13-13	<.17	<.07	<.002	<.02	<.041	<.29	<.020		<.13	<.005	<.006	<.42	<.018
13													
13 13													
13													
13 AUG								< . 4					
21 AUG													
21-21	<.16	<.07	<.002	<.02	<.041	<.29	<.020		<.13	<.005	<.006	<.42	<.018
21 21													
21													
21													
				28	581609632	0201 L	k Texana	Site CC					
DATE	DACTHAL MONO- ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	DICHLO- BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303)	DICHLOR PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DINOSEB WATER, FLTRD, GF 0.7U REC (UG/L) (49301)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	DIURON, WATER, FLTRD, GF 0.7U REC (UG/L) (49300)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)
JAN	MONO- ACID, WAT,FLT GF 0.7U REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	ATRA- ZINE, WATER, DISS, REC (UG/L)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	AZINON, DIS- SOLVED (UG/L)	WATER, FLTRD, GF 0.7U REC (UG/L)	BENIL, WATER, FLTRD, GF 0.7U REC (UG/L)	PROP, WATER, FLTRD, GF 0.7U REC (UG/L)	ELDRIN DIS- SOLVED (UG/L)	WATER, FLTRD, GF 0.7U REC (UG/L)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L)	WATER, FLTRD, GF 0.7U REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)
	MONO- ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	AZINON, DIS- SOLVED (UG/L) (39572)	WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	BENIL, WATER, FLTRD, GF 0.7U REC (UG/L)	PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	ELDRIN DIS- SOLVED (UG/L) (39381)	WATER, FLTRD, GF 0.7U REC (UG/L)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	WATER, FLTRD, GF 0.7U REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L) (82668)
JAN 31 JAN 31-31	MONO- ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)	WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	BENIL, WATER, FLIRD, GF 0.7U REC (UG/L) (49303)	PROP, WATER, FLIRD, GF 0.7U REC (UG/L) (49302)	ELDRIN DIS- SOLVED (UG/L) (39381) <.005	WATER, FLTRD, GF 0.7U REC (UG/L) (49301)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	WATER, FLTRD, GF 0.7U REC (UG/L) (49300)	WATER FLTRD 0.7 U GF, REC (UG/L) (82668)
JAN 31 JAN 31-31 31	MONO- ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	AZINON, DIS- SOLVED (UG/L) (39572)	WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303)	PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	ELDRIN DIS- SOLVED (UG/L) (39381)	WATER, FLTRD, GF 0.7U REC (UG/L) (49301)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	WATER, FLTRD, GF 0.7U REC (UG/L) (49300)	WATER FLTRD 0.7 U GF, REC (UG/L) (82668)
JAN 31 JAN 31-31 31 31	MONO-ACID, WAT,FLT GF 0.7U REC (UG/L) (49304) <.07	WATER FLIRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)	WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	BENIL, WATER, FITRD, GF 0.7U REC (UG/L) (49303)	PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	ELDRIN DIS- SOLVED (UG/L) (39381)	WATER, FLIRD, GF 0.7U REC (UG/L) (49301)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	WATER, FLIRD, GF 0.7U REC (UG/L) (49300)	WATER FLTRD 0.7 U GF, REC (UG/L) (82668)
JAN 31 JAN 31-31 31	MONO- ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)	WATER FLIRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)	WATER, FLIRD, GF 0.7U REC (UG/L) (38442)	BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303)	PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	ELDRIN DIS- SOLVED (UG/L) (39381) <.005	WATER, FLTRD, GF 0.7U REC (UG/L) (49301)	FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677)	WATER, FLIRD, GF 0.7U REC (UG/L) (49300)	WATER FLITRD 0.7 U GF, REC (UG/L) (82668)
JAN 31 JAN 31-31 31 31 31 31 JUN 13	MONO-ACID, WAT,FLT GF 0.7U REC (UG/L) (49304) <.07	WATER FLIRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)	WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	BENIL, WATER, FITRD, GF 0.7U REC (UG/L) (49303)	PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	ELDRIN DIS- SOLVED (UG/L) (39381)	WATER, FLIRD, GF 0.7U REC (UG/L) (49301)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	WATER, FLIRD, GF 0.7U REC (UG/L) (49300)	WATER FLTRD 0.7 U GF, REC (UG/L) (82668)
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13 JUN 13-13	MONO-ACID, WAT,FLT GF 0.7U REC (UG/L) (49304) <.07 <.07	WATER FLITRD 0.7 U GF, REC (UG/L) (82682)  <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)  <.005     <.005	WATER, FLTRD, GF 0.7U REC (UG/L) (38442)  <.04     <.04	BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303)	PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005	WATER, FLITRD, GF 0.7U REC (UG/L) (49301)  <.09     <.09	FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677)	WATER, FLITRD, GF 0.7U REC (UG/L) (49300)	WATER FLIRD 0.7 U GF, REC (UG/L) (82668)  <.002     <.002
JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 JUN 13	MONO-ACID, WAT,FLT GF 0.7U REC (UG/L) (49304) <.07 <.07	WATER FLITRD 0.7 U GF, REC (UG/L) (82682)  <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)  E.010     E.043	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)  <.005    <.005	WATER, FLITRD, GF 0.7U REC (UG/L) (38442)  <.04 <.04 <.04	BENIL, WATER, FITRD, GF 0.7U REC (UG/L) (49303) <.05 <.05 <.05 <.05 <.05 <.05 < < < < < < < < < < < < < < < < < < < < < < <	PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302) <.05 <.05 <.05 <.05 < < < < <	ELDRIN DIS- SOLVED (UG/L) (39381)  <.005    <.005	WATER, FLITRD, GF 0.7U REC (UG/L) (49301)  <.09    <.09	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <.021 <	WATER, FLIRD, GF 0.7U REC (UG/L) (49300)  <.0609	WATER FLITRD 0.7 U GF, REC (UG/L) (82668)  <.002 <.002 <.002
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13	MONO-ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)  <.07 <.07	WATER FLITRD 0.7 U GF, REC (UG/L) (82682)  <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)  E.010     E.043	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)  <.005 <.005 <.005	WATER, FLTRD, GF 0.7U REC (UG/L) (38442)  <.04    <.04  	BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303)  <.05 <.05	PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005	WATER, FLITRD, GF 0.7U REC (UG/L) (49301)  <.09   <.09   <.09	FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677)	WATER, FLIRD, GF 0.7U REC (UG/L) (49300)  <.060909	WATER FLITRD 0.7 U GF, REC (UG/L) (82668)  <.002   <.002  
JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 13 13 13	MONO-ACID, ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)  <.07 <.07	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)  <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)  E.010     E.043	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)  <.005   <.005  	WATER, FLITRD, GF 0.7U REC (UG/L) (38442)  <.04 <.04 <.04 <.04	BENIL, WATER, FLITRD, GF 0.7U REC (UG/L) (49303)  <.05    <.05  	PROP, WATER, FLITED, GF 0.7U REC (UG/L) (49302)  <.05   <.05   <.05	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005	WATER, FLITRD, GF 0.7U REC (UG/L) (49301)  <.09 < < < < <	FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677)	WATER, FLIRD, GF 0.7U REC (UG/L) (49300)  <.060909	WATER FLIRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 AUG	MONO-ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)  <.07 <.07	WATER FLITRD 0.7 U GF, REC (UG/L) (82682)  <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)  E.010     E.043	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)  <.005 < < <.005	WATER, FLTRD, GF 0.7U REC (UG/L) (38442)  <.04    <.04  	BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303)  <.05 <.05	PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005	WATER, FLIRD, GF 0.7U REC (UG/L) (49301)  <.09 <.09 <.09	FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677)	WATER, FLIRD, GF 0.7U REC (UG/L) (49300)  <.060909	WATER FLITRD 0.7 U GF, REC (UG/L) (82668)  <.002   <.002  
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 13	MONO-ACID, ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)  <.07 <.07	WATER FLITRD 0.7 U GF, REC (UG/L) (82682)  <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)  E.010     E.043	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)  <.005 <.005 <.005	WATER, FLITRD, GF 0.7U REC (UG/L) (38442)  <.04 <.04 <.04 <.04	BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303)  <.05 <.05	PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005	WATER, FLITRD, GF 0.7U REC (UG/L) (49301)  <.09   <.09   <.09	FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677)	WATER, FLIRD, GF 0.7U REC (UG/L) (49300)  <.060909	WATER FLIRD 0.7 U GF, REC (UG/L) (82668)  <.002   <.002
JAN 31 JAN 31-31 31 31 31 JUN 13-13 13 JUN 13-13 13 13 13 13 AUG 21 AUG	MONO-ACID, WAT,FIT GF 0.7U REC (UG/L) (49304)  <.07 <.07 <.07 <.07	WATER FLITRD 0.7 U GF, REC (UG/L) (82682)  <.003 <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)  E.010    E.043    E.043	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)  <.005 <.005 <.005 <.005 <.005	WATER, FLTRD, GF 0.7U REC (UG/L) (38442)  <.04    <.04    <.04   <.04	BENIL, WATER, FITTRD, GF 0.7U REC (UG/L) (49303)  <.05 <.05 <.05 <.05 <.05 < <.05	PROP, WATER, FLIRD, GF 0.7U REC (UG/L) (49302)  <.05 <.05 <.05 <.05 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	ELDRIN DIS- SOLVED (UG/L) (39381)  <.005 <.005 <.005 <.005 <.005	WATER, FLIRD, GF 0.7U REC (UG/L) (49301)  <.09 <.09 <.09 <.09 < < < < < < < < <	FOTON WATER FILTRD 0.7 U GF, REC (UG/L) (82677)  <.021 <.021 <.021 <.021 <.021 <.021	WATER, FLIRD, GF 0.7U REC (UG/L) (49300)  <.06	WATER FLITRD 0.7 U GF, REC (UG/L) (82668)
JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13 13 13 13 13 13 13 13 13 13 13 13 13 2MG 21 AUG 21-21 21	MONO-ACID, WAT,FIT GF 0.7U REC (UG/L)(49304)  <.07 <.07	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)  <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)  E.010     E.043   	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)  <.005 <.005	WATER, FLITRD, GF 0.7U REC (UG/L) (38442)  <.04	BENIL, WATER, FLITRD, GF 0.7U REC (UG/L) (49303)  <.05 <.05 <.05 <	PROP, WATER, FLIRP, GF 0.7U REC (UG/L) (49302)  <.05 <.05 <.05 <	ELDRIN DIS- SOLVED (UG/L) (39381)  <.005 < <.005	WATER, FLTRD, GF 0.7U REC (UG/L) (49301)  <.09 <.09 <.09 < <	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)  <.021 < <.021 <.021	WATER, FLIRD, GF 0.7U REC (UG/L) (49300)  <.06	WATER FLIRD 0.7 U GF, REC (UG/L) (82668)  <.002 <.002
JAN 31 JAN 31-31 31 31 31 JUN 13-13 13 JUN 13-13 13 13 13 13 AUG 21 AUG	MONO - ACID, WAT, FLT GF 0.7U REC (UG/L) (49304)	WATER FLITRD 0.7 U GF, REC (UG/L) (82682)  <.003 <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)  E.010       E.043             	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	AZINON, DIS- SOLVED (UG/L) (39572)  <.005 <.005 <.005 <.005 <.005	WATER, FLITRD, GF 0.7U REC (UG/L) (38442)  <.04 <.04 <.04 <.04	BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303)  <.05 <.05 <.05 <.05	PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	ELDRIN DIS- SOLVED (UG/L) (39381)  <.005 <.005 <.005 <.005	WATER, FLITRD, GF 0.7U REC (UG/L) (49301)  <.09 <.09 <.09 <.09 < < < < < < < < <	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)  <.021 <.021 <.021 <.021 <.021 <.021	WATER, FLIRD, GF 0.7U REC (UG/L) (49300)  <.06	WATER FLITRD 0.7 U GF, REC (UG/L) (82668)  <.002 <.002 <.002 <.002

### 08164525 Lake Texana near Edna, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FEN- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49297)	FLUO- METURON WATER, FLTRD, GF 0.7U REC (UG/L) (38811)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LINURON WATER, FLTRD, GF 0.7U REC (UG/L) (38478)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	MALA- THION, DIS- SOLVED (UG/L) (39532)	MCPA, WATER, FLTRD, GF 0.7U REC (UG/L) (38482)	MCPB, WATER, FLTRD, GF 0.7U REC (UG/L) (38487)
JAN													
31 JAN													
31-31	<.009		<.005	<.18	<.18	<.003	<.004	<.02	<.035		<.027	<.08	<.13
31 31													
31													
31 JUN													
13													
13-13	<.009		<.005	<.10	.12	<.003	<.004	<.02	<.035		<.027	<.08	<.13
13 13													
13													
13 13		 <.4								 <.4			
AUG													
21 AUG													
21-21	<.009		<.005	<.07	.08	<.003	<.004	<.02	<.035		<.027	<.08	<.13
21 21													
21													
21													
				28			k Texana						
DATE	METHIO- CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501)	METH- OMYL, WATER, FLIRD, GF 0.7U REC (UG/L) (49296)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684)	NEB- URON, WATER, FLIRD, GF 0.7U REC (UG/L) (49294)	Site CC  NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293)	ORY- ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	OXAMYL, WATER, FLIRD, GF 0.7U REC (UG/L) (38866)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	PARA- THION, DIS- SOLVED (UG/L) (39542)
JAN	CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501)	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684)	NEB- URON, WATER, FLIRD, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293)	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	WATER, FLTRD, GF 0.7U REC (UG/L) (38866)	DDE DISSOLV (UG/L) (34653)	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THION, DIS- SOLVED (UG/L) (39542)
JAN 31	CARB, WATER, FLTRD, GF 0.7U REC (UG/L)	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L)	LACHLOR WATER DISSOLV (UG/L)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L)	NORFLUR AZON, WATER, FLTRD, GF 0.7U REC (UG/L)	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L)	WATER, FLTRD, GF 0.7U REC (UG/L)	DDE DISSOLV (UG/L)	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THION, DIS- SOLVED (UG/L)
JAN 31 JAN 31-31	CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501)	OMYL, WATER, FLIRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293)	ZALIN, WATER, FLIRD, GF 0.7U REC (UG/L) (49292)	WATER, FLTRD, GF 0.7U REC (UG/L) (38866)	DDE DISSOLV (UG/L) (34653)	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)
JAN 31 JAN	CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501)	OMYL, WATER, FLITED, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLTRD, GF 0.7U REC (UG/L) (49293)	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	WATER, FLTRD, GF 0.7U REC (UG/L) (38866)	DDE DISSOLV (UG/L) (34653)	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THION, DIS- SOLVED (UG/L) (39542)
JAN 31 JAN 31-31 31 31	CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501)	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684)	NEB- URON, WATER, FLIRD, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293)	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	WATER, FLITED, GF 0.7U REC (UG/L) (38866)	DDE DISSOLV (UG/L) (34653)	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)
JAN 31 JAN 31-31 31 31 31	CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501)	OMYL, WATER, FLIRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684)	NEB- URON, WATER, FLITED, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLITRD, GF 0.7U REC (UG/L) (49293)	ZALIN, WATER, FLIRD, GF 0.7U REC (UG/L) (49292)	WATER, FLIRD, GF 0.7U REC (UG/L) (38866)	DDE DISSOLV (UG/L) (34653)  <.003	THION, TOTAL IN BOT- TOM MA- TERTAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)
JAN 31 JAN 31-31 31 31 31 31 JUN 13	CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501)	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684)	NEB- URON, WATER, FLIRD, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293)	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	WATER, FLITED, GF 0.7U REC (UG/L) (38866)	DDE DISSOLV (UG/L) (34653)	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13 JUN 13-13	CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501)	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415) 041543	METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630)  <.006 <.006	MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671)  <.002167	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684)  <.007    <.007	NEB- URON, WATER, FLITED, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293)  <.04 <.04	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	WATER, FLITRD, GF 0.7U REC (UG/L) (38866)  <.02     <19.5	DDE DISSOLV (UG/L) (34653)  <.003      <.003	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007      <.007
JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13-13 13	CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501)	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415)	METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630)  <.006	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684)  <.007	NEB- URON, WATER, FLITRD, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293) <.04	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	WATER, FLIRD, GF 0.7U REC (UG/L) (38866)	DDE DISSOLV (UG/L) (34653)  <.003   	THION, TOTAL IN BOT- TOM MA- TERTAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007   
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13	CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501)  <.07 <.07 <.07	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415) 041	METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630)  <.006 <.006	MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671)  <.002167	NAPROP- AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684)  <.007    <.007	NEB- URON, WATER, FLITED, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293)  <.04 <.04	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	WATER, FLITRD, GF 0.7U REC (UG/L) (38866)  <.02	DDE DISSOLV (UG/L) (34653)  <.003   <.003  	THION, TOTAL IN BOT-TOM MA-TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13	CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501)  <.07 <.07 <.07 <.07 <.07 < < < <	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415) 041	METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630)  <.006 <.006	MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671)  <.002      167	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684)  <.007 <.007 <.007	NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLITED, GF 0.7U REC (UG/L) (49293)  <.04 <.04	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)  <.49     <.28 	WATER, FLITRD, GF 0.7U REC (UG/L) (38866)  <.02 <19.5	DDE DISSOLV (UG/L) (34653)  <.003   <.003  	THION, TOTAL IN BOT- TOM MA- TERTAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007    <.007 
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13 13 13 13 13 13	CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501)  <.07 <.07 <.07	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)  <1.68     <.02  	LACHLOR WATER DISSOLV (UG/L) (39415) 041	METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630)  <.006 <.006	MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671)  <.002 167	NAPROP- AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684)  <.007   <.007   <.007	NEB- URON, WATER, FLITED, GF 0.7U REC (UG/L) (49294)  <.02	NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293)  <.04 <.04	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292) <.49 < < < < < 28 < < < < < <	WATER, FLITRD, GF 0.7U REC (UG/L) (38866)  <.02	DDE DISSOLV (UG/L) (34653)  <.003   <.003   	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 13 AUG 21 AUG	CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501)  <.07	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)  <1.68     <.02   	LACHLOR WATER DISSOLV (UG/L) (39415) 041	METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)  <.002167	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684)  <.007 <.007	NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294) <.02 <.12	NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293)  <.04 <.04	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)  <.49	WATER, FLITRD, GF 0.7U REC (UG/L) (38866)  <.02 < < <	DDE DISSOLV (UG/L) (34653)  <.003   <.003   	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007
JAN 31-31 31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 13 AUG 21-21	CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501)  <.07 <.07 <.07	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)  <1.68     <.02  	LACHLOR WATER DISSOLV (UG/L) (39415) 041	METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630)  <.006 <.006	MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671)  <.002 167	NAPROP- AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684)  <.007   <.007   <.007	NEB- URON, WATER, FLITED, GF 0.7U REC (UG/L) (49294)  <.02	NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293)  <.04 <.04	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292) <.49 < < < < < 28 < < < < < <	WATER, FLITRD, GF 0.7U REC (UG/L) (38866)  <.02	DDE DISSOLV (UG/L) (34653)  <.003   <.003   	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 4UG 21 AUG 21-21 21	CARB, WATER, FLITRD, GF 0.7U REC (UG/L) (38501)  <.07	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)  <1.68 <.02 <.02 <.02 <.02	LACHLOR WATER DISSOLV (UG/L) (39415) 041	METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630)  <.006 <.006 <.006	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)  <.002167167002	NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684)  <.007 <.007 <.007	NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294)  <.02 <.12 <.26 <.26	NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293)  <.04 <.04 <.04 <.04	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)  <.49 <.28 <.28 <.28 <.28 <.28 <.28 <.28 <.28 <.28 <.28 < < <	WATER, FLITRD, GF 0.7U REC (UG/L) (38866)  <.02 < < < < < <	DDE DISSOLV (UG/L) (34653)  <.003   <.003   <.003     	THION, TOTAL IN BOT- TOM MA- TERTAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007 <.007
JAN 31 JAN 31-31 31 31 31 31 JUN 13 JUN 13-13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13	CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501)  <.07	OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)  <1.68      <.02             	LACHLOR WATER DISSOLV (UG/L) (39415) 041	METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630)  <.006 <.006 <.006 <.006	MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671)  <.0021671671002	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)  <.007 <.007 <.007 <.007	NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294)  <.02 <.12 <.12 <.26	NORFLUR AZON, WATER, FLIRD, GF 0.7U REC (UG/L) (49293)  <.04 <.04 <.04	ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	WATER, FLITRD, GF 0.7U REC (UG/L) (38866)  <.02 < < < < < <	DDE DISSOLV (UG/L) (34653)  <.003   <.003   <.003   <.003	THION, TOTAL IN BOT-TOM MA-TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007 <.007 <.007 <.007

### 08164525 Lake Texana near Edna, TX--Continued

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

285816096320201 -- Lk Texana Site CC

DATE	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PIC- LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	PRO- PHAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49236)	PRO- POXUR, WATER, FLTRD, GF 0.7U REC (UG/L) (38538)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)
JAN													
31													
JAN													
31-31		<.006	<.002	<.010	<.011	<.09	<.015	<.010	<.011	<.023	<.11	<.12	<.004
31													
31													
31													
31													
JUN													
13													
JUN		. 006	. 000	. 010	. 011	. 00	. 015	. 010	. 011	. 000	.2 00	. 10	. 004
13-13		<.006	<.002	<.010	<.011	<.09	<.015	<.010	<.011	<.023	<3.20	<.12	<.004
13 13													
13													
13													
13	<.4												
AUG	`												
21													
AUG													
21-21		<.006	<.002	<.010	<.011	<.09	<.015	<.010	<.011	<.023	<2.76	<.12	<.004
21													
21													
21													
21													

DATE	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- CLOPYR, WATER, FLTRD, GF 0.7U REC (UG/L) (49235)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)
JAN								
31								
JAN 31-31	<.011	<.016	<.034	<.017	<.005	< .002	< .07	<.009
31	V.011	~.UIU	~.U34	V.U17	~.003	<.002 		·.009
31								
31								
31								
JUN								
13								
JUN 13-13	.045	.017	<.034	<.017	.086	<.002	< .07	< . 009
13	.045	.017	<.U34 	<.U17	.000	<.002		<.009
13								
13								
13								
13								
AUG								
21								
AUG 21-21	.045	E.015	<.034	<.017	<.005	<.002	< .07	<.009
21-21	.045	E.U15	<.034	<.017	<.005	<.002	<.07	<.009
21								
21								
21								

307

### 08164525 Lake Texana near Edna, TX--Continued

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

200042006221401	Tle Torrono	Cita Da

JAN 31 JAN 31-31 31 31 JUN 13 JUN 13-13 13 JUN 13-13 13	TIME  1104 1104 1106 1108 1110 1110 1112 1114	SAM- PLING DEPTH (FEET) (00003) 1.00  10.0 22.0 1.00	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 194  188 205 234  235 235	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)  7.6 7.6 7.6 7.7 7.7 7.6	TEMPER-ATURE WATER (DEG C) (00010)  14.5 14.5 14.0 30.0 29.5 29.5	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300) 8.3  8.4 8.4 6.4	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301) 81  82 81 85  83 79	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) (00556)	2,4,5-T DIS- SOLVED (UG/L) (39742)  <.04   <.04 	2,4-D, DIS- SOLVED (UG/L) (39732)  <.11   <.11	2,4-DB WATER, FLITRD, GF 0.7U REC (UG/L) (38746)  <.12 <.10	2,6-DI- ETHYL ANTLINE WAT FLT 0.7 U GF, REC (UG/L) (82660)  <.002   <.002 
13 AUG 21	1114	18.0	369	8.0	30.0	.37	 7.5	99					
AUG 21-21	1011									<.04	<.11	<.10	<.002
21 21	1013 1015	10.0 18.0	354 356	7.9 7.8	30.0 30.0		6.7 6.2	88 82					
				29	004209633	1401 T	k Texana	Site DC					
		3HYDRXY		2,	ACIFL-		ALDI-	ALDI-	ALDICA-			METHYL	BEN-
DATE	SILVEX, DIS- SOLVED (UG/L) (39762)	CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L) (49308)	DNOC WAT,FLT GF 0.7U REC (UG/L) (49299)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	UORFEN WATER, FLTRD, GF 0.7U REC (UG/L) (49315)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)
JAN 31													
JAN 31-31	<.03	<.28	<.25	<.004	<.05	<.002	<.21	<.20	<.02	<.005	.072	<.050	<.010
31													
JUN 13 JUN													
13-13 13	<.03	<.11	<.25	.030	<.05	.117	<.21	<.20	<.02	<.005	.415	<.050	<.010
13													
AUG 21													
AUG 21-21	<.03	<.11	<.25	<.004	<.05	.028	<.21	<.20	<.02	<.005	.365	<.050	<.010
21 21													
				29	004209633	1401 L	k Texana	Site DC					
DATE	BENTA- ZON, WATER, FLITRD, GF 0.7U REC (UG/L) (38711)	BRO- MACIL, WATER, DISS, REC (UG/L) (04029)	BRO- MOXYNIL WATER, FLTRD, GF 0.7U REC (UG/L) (49311)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49310)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN, WATER, FLTRD, GF 0.7U REC (UG/L) (49309)	CARBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39787)	CHLORO- THALO- NIL, WAT,FLT GF 0.7U REC (UG/L) (49306)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	CLOPYR- ALID, WATER, FLTRD, GF 0.7U REC (UG/L) (49305)
JAN 31													
JAN 31-31	<.04	<.09	<.07	<.002	<.02	<.041	<.29	<.020		<.13	<.005	<.006	<.42
31 31													
JUN 13													
JUN 13-13 13	.05	<.24	<.07	<.002	<.02	<.041	<.29	<.020		<.13	<.005	<.006	<.42
13 13									 <.2				
AUG 21													
AUG 21-21	<.04	<.09	<.07	<.002	<.02	<.041	<.29	<.020		<.13	<.005	<.006	<.50
21 21													

### 08164525 Lake Texana near Edna, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DACTHAL MONO- ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	DICHLO- BENIL, WATER, FLTRD, GF 0.7U REC (UG/L) (49303)	DICHLOR PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DINOSEB WATER, FLTRD, GF 0.7U REC (UG/L) (49301)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	DIURON, WATER, FLTRD, GF 0.7U REC (UG/L) (49300)
JAN 31													
JAN													
31-31 31	<.018	<.07	<.003	<.006		<.005	<.04	<.05 	<.05 	<.005	<.09	<.021	<.06 
JUN													
13 JUN													
13-13 13	<.018	<.07 	<.003	E.024		<.005	<.04	<.05 	<.05 	<.005 	<.12	<.021	.15
13 13					<.2								
AUG 21													
AUG 21-21	<.018	<.40	<.003	E.033		<.005	<.04	<.05	<.05	<.005	<.09	<.021	E.01
21													
21													
				29	004209633	1401 L	k Texana	Site DC					
DATE	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FEN- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49297)	FLUO- METURON WATER, FLTRD, GF 0.7U REC (UG/L) (38811)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LINURON WATER, FLTRD, GF 0.7U REC (UG/L) (38478)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	MALA- THION, DIS- SOLVED (UG/L) (39532)	MCPA, WATER, FLTRD, GF 0.7U REC (UG/L) (38482)
JAN 31													
JAN 31-31													
31	<.002	<.009		<.005 	<.11	<.06 	<.003	<.004	<.02	<.035		<.027	<.08
JUN													
13 JUN													
13-13 13	<.002	<.009		<.005	<.07	.14	<.003	<.004	<.02 	<.035 		<.027	<.08
13 13			<.2								<.2		
AUG 21													
AUG 21-21	<.002	<.009		<.005	<.07	E.04	<.003	<.004	<.02	<.035		<.027	<.08
21 21													
				29	004209633	1401 L	k Texana	Site DC					
DATE	MCPB, WATER, FLTRD, GF 0.7U REC (UG/L) (38487)	METHIO- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501)	METH- OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294)	NORFLUR AZON, WATER, FLTRD, GF 0.7U REC (UG/L) (49293)	ORY- ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)	OXAMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (38866)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)
JAN 31													
JAN 31-31	<.13	<.07	<1.50	<.013	<.006	<.002	<.007	<.02	<.04	<.55	<.02	<.003	
31													
JUN													
13 JUN													
13-13 13	<.22	<.07	<.02	.283	<.006	.686 	<.007	<.02	<.04	<.28	<.02	<.003	
13 13													<.2
AUG 21													
AUG 21-21	<.13	<.07	<.27	.135	<.006	<.002	<.007	<.02	<.04	<.28	<.07	<.003	
21 21													

#### 08164525 Lake Texana near Edna, TX--Continued

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

290042096331401 -- Lk Texana Site DC

	290042096331401 Lk Texana Site DC												
DATE	PARA- THION, DIS- SOLVED (UG/L) (39542)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PIC- LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	PRO- PHAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49236)	PRO- POXUR, WATER, FLITRD, GF 0.7U REC (UG/L) (38538)
JAN													
31													
JAN 31-31	<.007		<.006	<.002	<.010	<.011	<.09	<.015	<.010	<.011	<.023	<.09	<.12
31	<.007 			<.UUZ 									
31													
JUN													
13													
JUN 13-13	<.007		<.006	<.002	<.010	<.011	<.09	<.015	<.010	<.011	<.023	<1.80	- 10
13	<.007		<.006	<.00∠	<.010	<.011	<.09	<.015	<.010	<.011	<.023	<1.80	<.12
13													
13		<.2											
AUG													
21													
AUG 21-21	<.007		<.006	<.002	<.010	<.011	<.09	<.015	<.010	<.011	<.023	<1.13	<.12
21													
21													
				29	004209633	1401 L	k Texana	Site DC					
	PRON- AMIDE WATER N FLIRD 0.7 U DATE GF, REC (UG/L) (82676) (				TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- CLOPYR, WATER, FLTRD, GF 0.7U REC (UG/L) (49235)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)		
	JAN												
	3	1											

<.016 <.034 <.017

--

--

<.034

--

<.034

--

--

--

<.017

---

<.017

--

<.005

.055

<.005

--

<.002

--

<.002

<.002

<.07 <.009

<.009

<.009

--

--

<.07

--

<.07

--

31-31

31...

JUN 13-13

13... 13...

13... AUG 21... AUG 21-21

21...

21...

JUN 13... <.004

--

--

<.004

----

<.004

--

<.011

--

.050

--

.034

--

--

---

E.013

-----

E.019

--

### 08164525 Lake Texana near Edna, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	2,4,5-T DIS- SOLVED (UG/L) (39742)	2,4-D, DIS- SOLVED (UG/L) (39732)	2,4-DB WATER, FLTRD, GF 0.7U REC (UG/L) (38746)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	SILVEX, DIS- SOLVED (UG/L) (39762)
JAN													
31 JAN	1044	1.00	110	7.2	13.5	.15	8.3	79					
31-31	1044								<.04	<.11	<.10	<.002	<.03
31	1046	10.0	110	7.2	13.5		8.3	79					
31 31	1048 1050	20.0 28.0	109 103	7.1 7.0	13.5 13.0		8.1 8.4	77 79					
JUN	1050	20.0	103	7.0	13.0		0.4	79					
13	1030	1.00	199	7.7	30.0	.21	6.5	86					
JUN 13-13	1030								<.04	<.11	<.10	<.002	<.03
13	1032	10.0	200	7.4	29.5		5.5	72					
13	1034	20.0	199	7.1	28.0		3.6	46					
13	1036	26.0	200	7.1	28.0		3.3	42					
13	1036	26.0											
AUG 21	0950	1.00	362	7.8	30.5	.37	7.3	97					
AUG	0930	1.00	302	7.0	30.3	. 37	7.3	91					
21-21	0950								<.04	.74	<.10	M	<.03
21	0952	10.0	399	7.6	30.0		6.0	79					
21	0954	23.0	411	7.5	30.0		5.1	67					
	3HYDRXY CARBO- FURAN	DNOC	ACETO- CHLOR,	ACIFL- UORFEN WATER,	594009631 ALA- CHLOR,	2101 L ALDI- CARB, WATER,	ALDI- CARB SULFONE	Site EC  ALDICA- RB SUL- FOXIDE,	ALPHA	ATRA- ZINE,	METHYL AZIN- PHOS	BEN- FLUR- ALIN	BENTA- ZON, WATER,
DATE	WAT,FLT GF 0.7U REC (UG/L) (49308)	WAT,FLT GF 0.7U REC (UG/L) (49299)	WATER FLTRD REC (UG/L) (49260)	FLTRD, GF 0.7U REC (UG/L) (49315)	WATER, DISS, REC, (UG/L) (46342)	FLTRD, GF 0.7U REC (UG/L) (49312)	WAT,FLT GF 0.7U REC (UG/L) (49313)	WAT,FLT GF 0.7U REC (UG/L) (49314)	BHC DIS- SOLVED (UG/L) (34253)	WATER, DISS, REC (UG/L) (39632)	WAT FLT 0.7 U GF, REC (UG/L) (82686)	WAT FLD 0.7 U GF, REC (UG/L) (82673)	FLTRD, GF 0.7U REC (UG/L) (38711)
JAN													
31													
JAN													
31-31 31	< .34												
		<.25	<.004	<.05	<.002	<.21	<.20	<.02	<.005	.190	<.050	<.010	<.04
31													
31 31													
31 JUN 13													
31 JUN 13 JUN													
31 JUN 13 JUN 13-13	   <.11	  			   .444			   <.04			   <.050		   .09
31 JUN 13 JUN		   <.25	   .112	   <.07		   <.21	   <.20		   <.005	1.03		   <.010	
31 JUN 13 JUN 13-13 13	   <.11	   <.25	.112	   <.07	   .444	   <.21	   <.20	   <.04	   <.005	1.03	   <.050	   <.010	.09
31 JUN 13 JUN 13-13 13 13 13	   <.11	   <.25 	.112	   <.07 	   .444 	   <.21 	   <.20	   <.04	   <.005	1.03	   <.050	   <.010	.09
31 JUN 13 JUN 13-13 13 13 13 AUG 21	<.11 	   <.25  	.112	   <.07  	.444	   <.21  	   <.20  	   <.04  	   <.005  	1.03	   <.050  	   <.010  	.09
31 JUN 13 JUN 13-13 13 13 13 AUG 21 AUG	<.11	   <.25   	.112	<.07	.444	<.21	<.20	<.04	<.005	1.03	<.050	<.010	.09
31 JUN 13 JUN 13-13 13 13 13 21 AUG 21 AUG 21-21	   <.11  	   <.25  	.112	   <.07  	.444	<.21	   <.20  	   <.04  	   <.005  	1.03 	<.050	<.010	.09
31 JUN 13 JUN 13-13 13 13 13 AUG 21 AUG	<.11 <.11 <.11 <.11	   <.25     <.25	.112	  <.07     <.05	.444	<.21	<.20		<.005 <.005	1.03	<.050 <.050	<.010 <.010	.09

### 08164525 Lake Texana near Edna, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	BRO- MACIL, WATER, DISS, REC (UG/L) (04029)	BRO- MOXYNIL WATER, FLTRD, GF 0.7U REC (UG/L) (49311)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49310)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN, WATER, FLTRD, GF 0.7U REC (UG/L) (49309)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39787)	CHLORO- THALO- NIL, WAT,FLT GF 0.7U REC (UG/L) (49306)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	CLOPYR- ALID, WATER, FLTRD, GF 0.7U REC (UG/L) (49305)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)
JAN													
31 JAN													
31-31	<.09	<.07	<.002	<.02	<.041	<.29	<.020		<.13	<.005	<.006	<.42	<.018
31													
31 31													
JUN													
13													
JUN 13-13	<.18	<.07	<.002	<.02	<.041	<.29	<.020		<.13	<.005	<.006	<.42	<.018
13													
13													
13 13								<.4					
AUG													
21 AUG													
21-21	<.14	<.07	<.002	<.02	<.041	<.29	<.020		<.13	<.005	<.006	<.42	<.018
21													
21													
DATE	DACTHAL MONO- ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39571)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	DICHLO-BENIL, WATER, FLIRD, GF 0.7U REC (UG/L) (49303)		DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DINOSEB WATER, FLTRD, GF 0.7U REC (UG/L) (49301)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	DIURON, WATER, FLTRD, GF 0.7U REC (UG/L) (49300)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)
JAN													
31 JAN													
31-31	0.7												
31	<.07	<.003	E.014		<.005	<.04	<.05	<.05	<.005	<.09	<.021	<.05	<.002
21													
31 31													
31 JUN				  									
31 JUN 13													
31 JUN				  									
31 JUN 13 JUN 13-13 13	   <.07	   <.003	   E.100	  	   <.005	   <.04	   <.08	   <.05	   <.005	   <.13	   <.021		   <.002
31 JUN 13 JUN 13-13 13	   <.07	   <.003	   E.100	  	   <.005	   <.04	   <.08	   <.05	   <.005	   <.13	   <.021	   .08	   <.002
31 JUN 13 JUN 13-13 13 13 13	   <.07	   <.003	   E.100	   	   <.005	   <.04	   <.08	   <.05	   <.005	   <.13  	  <.021	.08	  <.002
31 JUN 13 JUN 13-13 13 13 13	<.07	   <.003	E.100	    	   <.005  	   <.04	   <.08  	   <.05  	   <.005  	   <.13  	   <.021  	.08	<.002 
31 JUN 13 JUN 13-13 13 13 13 AUG 21 AUG	<.07	<.003	E.100	       <.4	<.005	  <.04   	<.08	  <.05   	<.005	<.13	<.021	.08	<.002   
31 JUN 13-13 13 13 13 13 21 AUG 21 AUG 21-21	<.07	<.003	E.100 E.038	      <.4	<.005	<.04 <.04	<.08 <.05		<.005 <.005 <.005	<.13 <.13 <.09	<.021 <.021 <.021	.08	<.002 <.002 <.002
31 JUN 13 JUN 13-13 13 13 13 AUG 21 AUG	<.07	<.003	E.100	       <.4	<.005	  <.04   	<.08	  <.05   	<.005	<.13	<.021	.08	<.002   

### 08164525 Lake Texana near Edna, TX--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39399)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FEN- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49297)	FLUO- METURON WATER, FLTRD, GF 0.7U REC (UG/L) (38811)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LINURON WATER, FLTRD, GF 0.7U REC (UG/L) (38478)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39531)	MALA- THION, DIS- SOLVED (UG/L) (39532)	MCPA, WATER, FLTRD, GF 0.7U REC (UG/L) (38482)	MCPB, WATER, FLTRD, GF 0.7U REC (UG/L) (38487)
JAN 31													
JAN													
31-31 31	<.009		<.005	<.32	<.06	<.003	<.004	<.02	<.035		<.027	<.08	<.13
31													
31													
JUN 13													
JUN 13-13	<.009		<.005	<.07	.34	<.003	<.004	<.02	<.035		<.027	<.08	<.13
13 13													
13													
13		< . 4								<.4			
AUG 21													
AUG													
21-21 21	<.009		<.005	<.07	.07	<.003	<.004	<.02	<.035		<.027	<.08	<.13
21													
	METHIO- CARB,	METH- OMYL,		METRI-	594009631 MOL- INATE WATER	2101 L NAPROP- AMIDE	NEB- URON,	Site EC  NORFLUR AZON, WATER,	ORY- ZALIN, WATER,	OXAMYL, WATER,		PARA- THION,	
DATE	WATER, FLTRD, GF 0.7U REC (UG/L) (38501)	WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	FLTRD 0.7 U GF, REC (UG/L) (82671)	WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	WATER, FLTRD, GF 0.7U REC (UG/L) (49294)	WAIER, FLTRD, GF 0.7U REC (UG/L) (49293)	FLTRD, GF 0.7U REC (UG/L) (49292)	FLTRD, GF 0.7U REC (UG/L) (38866)	P,P' DDE DISSOLV (UG/L) (34653)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39541)	PARA- THION, DIS- SOLVED (UG/L) (39542)
JAN	FLTRD, GF 0.7U REC (UG/L) (38501)	FLTRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415)	SENCOR WATER DISSOLV (UG/L) (82630)	FLTRD 0.7 U GF, REC (UG/L) (82671)	FLTRD 0.7 U GF, REC (UG/L) (82684)	FLTRD, GF 0.7U REC (UG/L) (49294)	FLTRD, GF 0.7U REC (UG/L) (49293)	FLTRD, GF 0.7U REC (UG/L) (49292)	FLTRD, GF 0.7U REC (UG/L) (38866)	DDE DISSOLV (UG/L) (34653)	IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)
JAN 31	FLTRD, GF 0.7U REC (UG/L)	FLTRD, GF 0.7U REC (UG/L)	LACHLOR WATER DISSOLV (UG/L)	SENCOR WATER DISSOLV (UG/L)	FLTRD 0.7 U GF, REC (UG/L)	FLTRD 0.7 U GF, REC (UG/L)	FLTRD, GF 0.7U REC (UG/L)	FLTRD, GF 0.7U REC (UG/L)	FLTRD, GF 0.7U REC (UG/L)	FLTRD, GF 0.7U REC (UG/L)	DDE DISSOLV (UG/L)	IN BOT- TOM MA- TERIAL (UG/KG)	THION, DIS- SOLVED (UG/L)
JAN 31 JAN 31-31	FLTRD, GF 0.7U REC (UG/L) (38501)	FLTRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415)	SENCOR WATER DISSOLV (UG/L) (82630)	FLTRD 0.7 U GF, REC (UG/L) (82671)	FLTRD 0.7 U GF, REC (UG/L) (82684)	FLTRD, GF 0.7U REC (UG/L) (49294)	FLTRD, GF 0.7U REC (UG/L) (49293)	FLTRD, GF 0.7U REC (UG/L) (49292)	FLTRD, GF 0.7U REC (UG/L) (38866)	DDE DISSOLV (UG/L) (34653) 	IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)
JAN 31 JAN 31-31 31	FLTRD, GF 0.7U REC (UG/L) (38501)	FLTRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415)	SENCOR WATER DISSOLV (UG/L) (82630)	FLTRD 0.7 U GF, REC (UG/L) (82671)	FLTRD 0.7 U GF, REC (UG/L) (82684)  <.007	FLTRD, GF 0.7U REC (UG/L) (49294)	FLTRD, GF 0.7U REC (UG/L) (49293)	FLTRD, GF 0.7U REC (UG/L) (49292)	FLTRD, GF 0.7U REC (UG/L) (38866)	DDE DISSOLV (UG/L) (34653)  <.003	IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)
JAN 31 JAN 31-31 31 31	FLTRD, GF 0.7U REC (UG/L) (38501)	FLTRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415)	SENCOR WATER DISSOLV (UG/L) (82630)	FLTRD 0.7 U GF, REC (UG/L) (82671)	FLTRD 0.7 U GF, REC (UG/L) (82684)	FLTRD, GF 0.7U REC (UG/L) (49294)	FLTRD, GF 0.7U REC (UG/L) (49293)	FLTRD, GF 0.7U REC (UG/L) (49292)	FLTRD, GF 0.7U REC (UG/L) (38866)	DDE DISSOLV (UG/L) (34653) 	IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)
JAN 31 JAN 31-31 31 31 JUN 13	FLTRD, GF 0.7U REC (UG/L) (38501)	FLTRD, GF 0.7U REC (UG/L) (49296)	LACHLOR WATER DISSOLV (UG/L) (39415)	SENCOR WATER DISSOLV (UG/L) (82630)	FLTRD 0.7 U GF, REC (UG/L) (82671)	FLTRD 0.7 U GF, REC (UG/L) (82684)  <.007	FLTRD, GF 0.7U REC (UG/L) (49294)	FLTRD, GF 0.7U REC (UG/L) (49293)	FLTRD, GF 0.7U REC (UG/L) (49292)	FLTRD, GF 0.7U REC (UG/L) (38866)	DDE DISSOLV (UG/L) (34653)  <.003	IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)
JAN 31 JAN 31-31 31 31 JUN 13 JUN JUN JUN	FLTRD, GF 0.7U REC (UG/L) (38501)  <.07  	FLTRD, GF 0.7U REC (UG/L) (49296)  <.36  	LACHLOR WATER DISSOLV (UG/L) (39415)	SENCOR WATER DISSOLV (UG/L) (82630)	FLTRD 0.7 U GF, REC (UG/L) (82671)  <.002  	FLTRD 0.7 U GF, REC (UG/L) (82684)  <.007   	FLTRD, GF 0.7U REC (UG/L) (49294)  <.02  	FLTRD, GF 0.7U REC (UG/L) (49293)  <.04  	FLTRD, GF 0.7U REC (UG/L) (49292)  <.53  	FLTRD, GF 0.7U REC (UG/L) (38866)  <.17  	DDE DISSOLV (UG/L) (34653)  <.003  	IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007  
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13 JUN 13	FLTRD, GF 0.7U REC (UG/L) (38501)  <.07   <.07 	FLTRD, GF 0.7U REC (UG/L) (49296)  <.36    <1.43 	LACHLOR WATER DISSOLV (UG/L) (39415) 093 1.15	SENCOR WATER DISSOLV (UG/L) (82630)  <.006   <.006 	FLTRD 0.7 U GF, REC (UG/L) (82671)  <.002     .424 	FLTRD 0.7 U GF, REC (UG/L) (82684)  <.007 <.007 <.007 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	FLTRD, GF 0.7U REC (UG/L) (49294)  <.02    <.03 	FLTRD, GF 0.7U REC (UG/L) (49293)  <.04   <.04 	FLTRD, GF 0.7U REC (UG/L) (49292)  <.53   <.33 	FLTRD, GF 0.7U REC (UG/L) (38866)  <.17    <.10 	DDE DISSOLV (UG/L) (34653)  <.003    <.003 	IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007 <.007
JAN 31 JAN 31-31 31 31 JUN 13 JUN 13-13 13 13	FLTRD, GF 0.7U REC (UG/L) (38501)  <.07    <.07	FLTRD, GF 0.7U REC (UG/L) (49296)  <.36    <1.43	LACHLOR WATER DISSOLV (UG/L) (39415)	SENCOR WATER DISSOLV (UG/L) (82630)  <.006    <.006	FLTRD 0.7 U GF, REC (UG/L) (82671)  <.002424	FLTRD 0.7 U GF, REC (UG/L) (82684)  <.007    <.007	FLTRD, GF 0.7U REC (UG/L) (49294)  <.02    <.03	FLTRD, GF 0.7U REC (UG/L) (49293)  <.04    <.04	FLTRD, GF 0.7U REC (UG/L) (49292)  <.53    <.33	FLTRD, GF 0.7U REC (UG/L) (38866)  <.17    <.10	DDE DISSOLV (UG/L) (34653)  <.003    <.003	IN BOT- TOM MA- TERLAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13 13 13 13	FLTRD, GF 0.7U REC (UG/L) (38501)  <.07   <.07  	FLTRD, GF 0.7U REC (UG/L) (49296)  <.36    <1.43 	LACHLOR WATER DISSOLV (UG/L) (39415) 093 1.15	SENCOR WATER DISSOLV (UG/L) (82630)  <.006   <.006 	FLTRD 0.7 U GF, REC (UG/L) (82671)  <.002424	FLTRD 0.7 U GF, REC (UG/L) (82684)  <.007   <.007  	FLTRD, GF 0.7U REC (UG/L) (49294)  <.02    <.03 	FLTRD, GF 0.7U REC (UG/L) (49293)  <.04   <.04 	FLTRD, GF 0.7U REC (UG/L) (49292)  <.53   <.33 	FLTRD, GF 0.7U REC (UG/L) (38866)  <.17   <.10 	DDE DISSOLV (UG/L) (34653)  <.003   <.003 	IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007 <.007
JAN 31 JAN 31-31 31 31 JUN 13 JUN 13 JUN 13-13 13 13 13 AUG 21	FLTRD, GF 0.7U REC (UG/L) (38501)  <.07   <.07  	FLTRD, GF 0.7U REC (UG/L) (49296)  <.366    <1.43	LACHLOR WATER DISSOLV (UG/L) (39415) 093 1.15	SENCOR WATER DISSOLV (UG/L) (82630)  <.006   <.006	FLTRD 0.7 U GF, REC (UG/L) (82671)  <.002424	FLTRD 0.7 U GF, REC (UG/L) (82684)  <.007 <.007 <.007 < < <	FLTRD, GF 0.7U REC (UG/L) (49294)  <.02   <.03  	FLTRD, GF 0.7U REC (UG/L) (49293)  <.04   <.04   <.04	FLTRD, GF 0.7U REC (UG/L) (49292)  <.53   <.33  	FLTRD, GF 0.7U REC (UG/L) (38866)  <.17    <.10  	DDE DISSOLV (UG/L) (34653)  <.003 <.003 <.003	IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007 <-007
JAN 31 JAN 31-31 31 31 31 JUN 13 JUN 13-13 13 13 13 AUG 21 AUG	FLTRD, GF 0.7U REC (UG/L) (38501)  <.07   <.07   <.07  	FLTRD, GF 0.7U REC (UG/L) (49296)  <.366    <1.43   	LACHLOR WATER DISSOLV (UG/L) (39415) 093115	SENCOR WATER DISSOLV (UG/L) (82630)  <.006 <.006	FLTRD 0.7 U GF, REC (UG/L) (82671)  <.002     .424  	FLTRD 0.7 U GF, REC (UG/L) (82684)  <.007 <.007 <.007	FLTRD, GF 0.7U REC (UG/L) (49294)  <.02   <.03   <.03	FLTRD, GF 0.7U REC (UG/L) (49293)  <.04   <.04    <.04	FLTRD, GF 0.7U REC (UG/L) (49292)  <.53   <.33  	FLTRD, GF 0.7U REC (UG/L) (38866)  <.17   <.10  <.10  	DDE DISSOLV (UG/L) (34653)  <.003   <.003   	IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007
JAN 31 JAN 31-31 31 31 JUN 13 JUN 13 JUN 13-13 13 13 13 AUG 21	FLTRD, GF 0.7U REC (UG/L) (38501)  <.07   <.07   	FLTRD, GF 0.7U REC (UG/L) (49296)  <.36   <1.43  	LACHLOR WATER DISSOLV (UG/L) (39415) 093 1.15	SENCOR WATER DISSOLV (UG/L) (82630)  <.006 <.006 <.006	FLTRD 0.7 U GF, REC (UG/L) (82671)  <.002424	FLTRD 0.7 U GF, REC (UG/L) (82684)  <.007 < <.007	FLTRD, GF 0.7U REC (UG/L) (49294)  <.02 <.03	FLTRD, GF 0.7U REC (UG/L) (49293)  <.04   <.04  	FLTRD, GF 0.7U REC (UG/L) (49292)  <.53   <.33  	FLTRD, GF 0.7U REC (UG/L) (38866)  <.17   <.10  <.10 	DDE DISSOLV (UG/L) (34653)  <.003   <.003  	IN BOT- TOM MA- TERIAL (UG/KG) (39541)	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007

#### 08164525 Lake Texana near Edna, TX--Continued

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

285940096312101 -- Lk Texana Site EC

DATE	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) (39601)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PHORATE WATER FLITRD 0.7 U GF, REC (UG/L) (82664)	PIC- LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	PRO- PHAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49236)	PRO- POXUR, WATER, FLTRD, GF 0.7U REC (UG/L) (38538)	PRON- AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676)
JAN													
31													
JAN													
31-31		<.006	<.002	<.010	<.011	<.09	<.015	<.010	<.011	<.023	<.66	<.12	<.004
31													
31													
31													
JUN													
13													
JUN													
13-13		<.006	<.002	<.010	<.011	<.09	<.015	<.010	<.011	<.023	<3.90	<.12	<.004
13													
13													
13													
13	<.4												
AUG 21													
AUG													
21-21		<.006	<.002	<.010	<.011	<.09	<.015	<.010	<.011	<.023	E1.71	<.12	<.004
21-21		<.006	<.002	<.010	<.011	<.09	<.015	<.010	<.011	<.023	E1./1	<.12	<.004
21													
21													

	285940096312101 Lk Texana Site EC												
DATE	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- CLOPYR, WATER, FLTRD, GF 0.7U REC (UG/L) (49235)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)					
JAN													
31													
JAN 31-31	<.011	<.016	<.034	<.017	<.005	<.002	< .16	<.009					
31	V.UII	<.016	<.U34 	<.U17	<.UU5	<.002		<.009					
31													
31													
JUN													
13 JUN													
13-13	.047	.017	<.034	<.017	.122	<.002	<.07	<.009					
13	.047	.017	<.U34 	<.U17	.122	<.002		<.009					
13													
13													
13													
AUG													
21													
AUG													
21-21	.045	E.018	<.034	<.017	<.005	<.002	.24	<.009					
21													
21													

314 GARCITAS CREEK BASIN

#### 08164600 Garcitas Creek near Inez, TX

LOCATION.--Lat 28°53'28", long 96°49'08", Victoria County, Hydrologic Unit 12100402, at right downstream end of bridge on U.S. Highway 59 access road, 0.3 mi upstream from Southern Pacific Railroad bridge, 2.0 mi southwest of Inez, and 3.6 mi upstream from Casa Blanca Creek.

DRAINAGE AREA.--91.7 mi².

PERIOD OF RECORD.--June 1970 to current year.

Water-quality records.--Chemical data: Apr. 1965 to Aug. 1988. Biochemical data: Apr. 1965 to Aug. 1988. Pesticide data: July 1970 to July 1981.

REVISED RECORDS. -- WDR TX-94-3: 1992-93.

GAGE.--Water-stage recorder. Datum of gage is 29.16 ft above sea level. Satellite telemeter at station.

REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. An undetermined amount of return water from irrigation enters the stream above this station. No flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage during period 1903-70, 24.5 ft Oct. 26, 1960. In 1929, a flood nearly as high as the 1960 flood occurred, and a flood in Sept. 1967 reached a stage of 23.4 ft, from information by local resident.

		DISCHA	RGE, CUBI	C FEET PER		WATER YE MEAN VA		ER 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	2.6 2.1 2.0 2.0 2.2	8.7 6.8 5.6 5.1 4.6	15 12 9.5 7.8 6.6	5.3 4.9 4.5 4.3 4.1	2.9 9.1 8.5 22 22	4.2 3.1 2.6 2.3 2.0	.53 .60 .59 .53 9.7	.79 .94 .51 .34	.02 .02 .03 .01	.00 .00 .00 .00	5960 2680 355 164 359
6 7 8 9 10	.06 .00 .00 .03	34 35 15 7.6 4.9	4.4 4.1 4.3 3.8 3.6	5.8 5.4 5.1 4.8 27	3.9 3.8 3.7 3.8 3.7	15 8.6 6.0 4.8 4.0	1.8 1.6 1.5 1.6	167 55 22 12 6.8	.30 .24 .11 .11	.01 .00 .00 .00	.00 .00 .00 .00	542 222 82 136 227
11 12 13 14 15	.01 .01 .01 .02	3.6 3.0 2.7 2.1 2.0	3.3 3.0 3.1 3.2 3.5	581 261 87 60 47	3.5 3.5 3.8 3.7 3.7	3.5 3.3 2.9 18 115	1.5 1.5 1.5 1.4	31 150 40 12 5.8	.08 .08 .07 .07	.00 .00 .00 .00	.00 .00 .00 .00	97 45 27 19 15
16 17 18 19 20	.03 .46 .21 .03	3.0 7.7 48 496 190	3.6 3.4 3.3 3.3 3.4	42 120 188 292 175	3.7 3.5 3.3 3.2 3.3	61 25 14 8.9 6.3	1.2 1.3 1.1 1.4 1.3	3.3 2.1 1.6 1.3 1.1	.07 .07 .06 .05	.00 .00 .00 .00	.00 .00 .00 .00	12 11 9.5 8.6 7.9
21 22 23 24 25	31 10 11 7.2 5.4	65 32 19 188 215	3.1 3.1 3.2 4.6 6.1	69 39 25 17 13	3.3 3.3 3.3 3.1 3.0	4.7 3.7 3.0 2.9 2.5	1.1 1.0 .96 .92 .81	1.0 .79 .73 .59	.05 .05 .05 .52 .46	.00 .00 .00 .00	.00 .00 .00 .00	7.4 10 17 11 6.9
26 27 28 29 30 31	7.2 6.9 6.6 6.3 4.6 3.4	69 35 21 14 10	7.8 421 134 61 34 20	11 8.8 7.5 7.1 6.8 6.0	2.9 3.0 2.9 	2.2 2.1 2.9 5.1 11 6.2	.72 .68 .62 .58 .54	.45 .42 .30 .25 .26	.04 .04 .03 .03 .02	.00 .00 .00 .00	.00 .00 1.3 .14 1.1 2780	5.8 5.4 5.1 4.9 4.7
TOTAL MEAN MAX MIN AC-FT CFSM IN.	100.76 3.25 31 .00 200 .04	1533.5 51.1 496 2.0 3040 .56 .62	782.0 25.2 421 3.0 1550 .28	2162.2 69.7 581 4.8 4290 .76 .88	102.0 3.64 5.3 2.9 202 .04	407.1 13.1 115 2.1 807 .14	43.53 1.45 4.2 .54 86 .02	528.93 17.1 167 .25 1050 .19	5.82 .19 .94 .02 .12 .00	0.10 .003 .03 .00 .2 .00	2782.54 89.8 2780 .00 5520 .98 1.13	11057.2 369 5960 4.7 21930 4.02 4.49
STATIS	STICS OF N	MONTHLY ME.	AN DATA F	OR WATER Y	EARS 1970	0 - 2001,	BY WATER	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	69.2 695 1995 .000 1990	44.3 541 1999 .000 1990	36.1 263 1977 .006 1990	41.1 220 1992 .022 1990	49.5 558 1992 .14 1990	43.2 578 1997 .48 1996	79.8 658 1991 .25 1996	108 503 1979 .045 1996	113 745 1981 .000 1990	19.7 218 1983 .003 2001	9.16 89.8 2001 .056 1988	84.0 789 1978 .000 1988
SUMMAR	RY STATIST	TICS	FOR	2000 CALEN	DAR YEAR	F	OR 2001 W	VATER YEAR		WATER	YEARS 197	0 - 2001
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL ANNUAL ANNUAL ANNUAL 10 PEF 50 PEF	T ANNUAL ANNUAL M T DAILY M DAILY ME	MEAN MEAN CAN MEAN LOW PAGE (AC-FT) (CFSM) (INCHES) EEDS		.00	Jun 11 Sep 4 Sep 4		.0 .0 7370	Sep 1 00 Oct 1 00 Jul 7 Sep 1 92 Sep 1		58. 144 2. 13100 19700 33. 42090 8. 54	65 Oct 00 May 00 May Jun 43 Oct 63 61	1992 1989 19 1994 22 1971 26 1971 12 1981 19 1994

### 08164600 Garcitas Creek near Inez, TX--Continued



316 PLACEDO CREEK BASIN

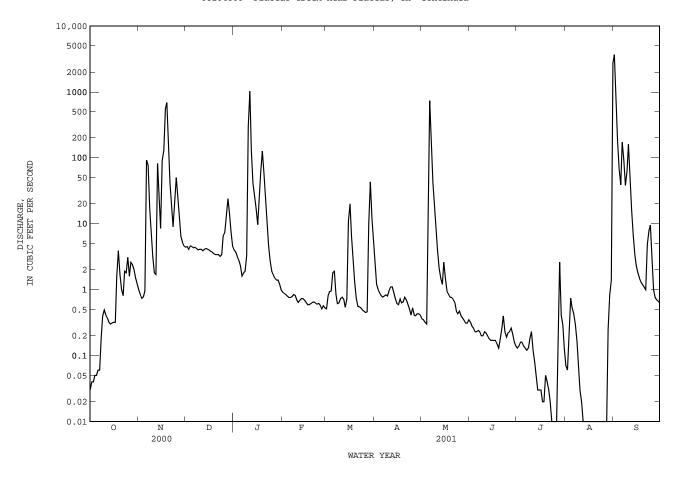
#### 08164800 Placedo Creek near Placedo, TX

LOCATION.--Lat 28°43'30", long 96°46'07", Victoria County, Hydrologic Unit 12100402, on right bank at downstream end of bridge on Farm Road 616, 0.1 mi downstream from confluence of Lone Tree Creek and Arroyo Palo Alto, 1.2 mi upstream from Ninemile Creek, and 4.4 mi northeast of Placedo.

DRAINAGE AREA. -- 68.3 mi².

PERIOD OF RECORD. -- June 1970 to current year.

Water-quality records.--Chemical data: Oct. 1968 to Sept. 1979. Biochemical data: Oct. 1968 to Sept. 1979. Pesticide data: Oct. 1968 to Sept. 1979.


GAGE.--Water-stage recorder. Datum of gage is 5.58 ft above sea level. Satellite telemeter at station.

REMARKS. -- No estimated daily discharges. Records fair. No known regulation or diversions. No flow at times.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1930, 31.9 ft in Sept. 1967 and 30.4 ft in 1960 (probably Oct.), from information by local resident.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR JUN JUL AUG SEP JAN APR MAY 2.4 ΛZ 1.0 4.4 4.0 92 51 36 32 .13 07 3680 2 .85 3.7 .88 .81 .04 4.5 .35 .28 .14 .06 830 .04 .74 4.1 .84 .93 1.0 .32 .26 .16 .20 180 .78 .90 4 5 .05 4.6 2.8 .80 95 30 23 .16 67 2.3 3.9 .05 .96 4.5 .76 1.8 .81 .23 .14 .53 39 6 7 06 92 77 4 3 1 6 .76 .78 1 9 77 733 167 24 13 43 172 .23 1.8 .85 .80 .12 .06 4.4 .30 93 17 8 .19 4.2 .84 .61 .83 42 .20 .13 38 .40 6.6 4.0 3.3 .82 .63 .80 17 20 18 0.7 62 10 8.0 3.2 4.1 303 .70 .73 .23 .23 160 .49 .96 .03 77 11 .41 1 8 4 1 1020 64 1 1 3.9 22 12 0.2 55 .37 1.7 .71 2.1 12 3.9 132 1.1 .20 .69 .08 .01 16 .54 .32 82 42 .91 1.5 .18 .05 73 14 .30 27 4.2 26 .72 73 1 2 17 03 01 4.1 .31 8.5 17 11 .62 2.6 2.3 15 .69 .03 .17 .01 16 32 91 4 0 9 7 64 20 59 1 5 17 03 0.0 1 8 6.6 .72 17 .32 129 3.8 22 .59 .95 .17 .02 .00 1.5 1.6 18 553 3.7 62 .59 2.8 .63 .85 .15 .02 1.3 .77 3.9 1.7 .65 .77 19 689 3 5 127 61 1.3 13 05 0.0 1 2 20 134 3.4 .04 .00 .64 .18 21 40 3 4 20 65 56 70 71 25 03 0.0 1 0 1 0 22 .60 .81 18 3.4 .63 .55 .64 .40 .02 .00 4.8 4.6 23 1.9 9.0 3.2 .60 .53 .51 .47 .23 .01 .00 7.8 23 24 1.8 3.4 2.7 .62 .49 .41 .43 .19 .01 .00 9.5 25 3.1 6.5 .53 7.3 26 22 1.7 .51 .45 .41 .40 .23 .01 .00 1.0 1.6 27 2.6 11 13 1.5 .57 .40 .26 .31 .01 .34 28 2.4 6.4 5.2 24 1.4 .53 1 0 .43 .21 2.6 .25 .70 2.0 .41 .67 29 14 1.4 43 .43 .31 .16 .83 1.4 30 4.6 7.6 1.2 ___ 12 .41 .31 .29 31 1.2 4.6 1.0 ---5.8 ---.35 ---.13 2740 TOTAL 30.87 2106.33 172.3 1890.1 19.34 129.21 23.12 993.16 6.45 5.82 2745.15 5441.06 4.17 .77 2.4 32.0 733 .19 2.6 MEAN 1.00 70.2 5.56 61.0 .69 .21 88.6 181 3.9 689 24 .92 .40 3680 MAX 1020 2740 MIN .03 3.2 1.0 .51 .45 .40 .13 .01 .00 AC-FT 61 4180 342 3750 38 256 46 1970 13 12 5450 10790 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 2001, BY WATER YEAR (WY) MEAN 70.8 70.1 41.2 41.7 52.5 45.0 59.6 90.8 85.3 56.0 14.3 112 MAX 291 593 389 262 455 516 541 354 510 559 107 913 1998 1997 1973 1990 1978 (WY) 1999 1992 1991 1992 1991 1972 1972 MIN .004 .021 .015 .052 .002 .086 .019 .000 .031 .012 .013 1990 1989 1990 1990 1994 1989 1989 1996 1989 1989 1988 1988 (WY) FOR 2000 CALENDAR YEAR FOR 2001 WATER YEAR WATER YEARS 1970 - 2001 SUMMARY STATISTICS 5082.13 13562.91 ANNUAL TOTAL ANNUAL MEAN 13.9 37.2 61.4 HIGHEST ANNUAL MEAN 154 1992 LOWEST ANNUAL MEAN 1.20 1989 HIGHEST DAILY MEAN Sep 689 Nov 19 3680 11400 Nov .00 .00 .01 LOWEST DAILY MEAN Aug 20 Aug 16 Aug 12 1981 Jul 27 1982 ANNUAL SEVEN-DAY MINIMUM .01 Aug 29 .00 Aug 16 .00 MAXIMUM PEAK FLOW 7930 18300 Aug 31 27.51 Aug 31.62 MAXIMUM PEAK STAGE Nov 13 1998 ANNUAL RUNOFF (AC-FT) 10080 26900 44460 10 PERCENT EXCEEDS 23 45 71 .78 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 1.5 .03 .05 .13

### 08164800 Placedo Creek near Placedo, TX--Continued



318 COLORADO RIVER BASIN

### Miscellaneous water quality - Barton Springs Hydrophobics

#### MULTIPLE STATION ANALYSES

STATION NUMBER		LOCAL IDENT- I- FIER		DATE	TIME	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)
08155395 08155400	Upper Bart Barton Ck			05-08-01 05-10-01 05-13-01 05-03-01 05-06-01	1000 1510 1935 2315 2245	<.002 <.002 <.002 <.002 <.002	<.004 <.004 <.004 <.004 <.004	<.002 <.002 <.002 <.002 <.002	<.005 <.005 <.005 <.005 <.005	3.19 .541 .029 .015 .583	<.010 <.010 <.010 <.010 <.010	<.002 <.002 <.002 <.002 <.002
08155500	Barton Spg	s at Aust	in, TX	05-07-01 05-07-01 05-08-01 05-10-01 05-03-01	1700 1702 1940 1505 2320	<.002 <.002 <.002 <.002 <.002	<.004 <.004 <.004 <.004 <.004	<.002 <.002 <.002 <.002 <.002	<.005 <.005 <.005 <.005 <.005	.173 <.007 .068 .058 .017	<.010 <.010 <.010 <.010 <.010	<.002 <.002 <.002 <.002 <.002
301546097460201	Old Mill S	pring at	Austin,	05-08-01 05-10-01 05-10-01 05-13-01 05-03-01	1950 1440 1442 1955 2240	<.002 <.002 <.002 <.002 <.002	<.004 <.004 <.004 <.004 <.004	<.002 <.002 <.002 <.002 <.002	<.005 <.005 <.005 <.005 <.005	.207 .104 .091 .028 E.007	<.010 <.010 <.010 <.010 <.010	<.002 <.002 <.002 <.002 <.002
301548097461602	Eliza Spg	at Austin	ı, TX	05-07-01 05-08-01 05-13-01 05-04-01 05-07-01	1715 2005 2010 0005 1720	<.002 <.002 <.002 <.002 <.002	<.004 <.004 <.004 <.004 <.004	<.002 <.002 <.005 <.002 <.002	<.005 <.005 <.005 <.005 <.005	.017 .063 .023 .008 .028	<.010 <.010 <.010 <.010 <.010	<.002 <.002 <.002 <.002 <.002
				05-08-01 05-08-01 05-10-01 05-13-01	1930 1935 1450 1900	<.002 <.002 <.002 <.002	<.004 <.004 <.004 <.004	<.002 <.002 <.002 <.002	<.005 <.005 <.005 <.005	.112 .110 .064 .026	<.010 <.010 <.010 <.010	<.002 <.002 <.002 <.002
STATION NUMBER	DATE	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)
STATION NUMBER  08155395  08155400	DATE 05-08-01 05-10-01 05-13-01 05-03-01 05-06-01	BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	PYRIFOS DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	ATRA- ZINE, WATER, DISS, REC (UG/L)	AZINON, DIS- SOLVED (UG/L)	ELDRIN DIS- SOLVED (UG/L)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)
08155395	05-08-01 05-10-01 05-13-01 05-03-01	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) E.010 <.041 <.041 <.041	FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.154 E.077 E.010 E.005	AZINON, DIS- SOLVED (UG/L) (39572) .143 E.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) < .021 < .021 < .021 < .021 < .021	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) <.002 <.008 <.005 <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009
08155395 08155400	05-08-01 05-10-01 05-13-01 05-03-01 05-06-01 05-07-01 05-07-01 05-08-01 05-10-01	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) E.010 <.041 <.041 E.062 <.041 <.041 <.041 <.041 <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 E.003 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.154 E.077 E.010 E.005 E.015 <.006 E.015	AZINON, DIS- SOLVED (UG/L) (39572) .143 E.005 <.005 <.005 .104 .055 <.005 .013 E.002	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021	WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.008 <.005 <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009
08155395 08155400 08155500	05-08-01 05-10-01 05-13-01 05-03-01 05-06-01 05-07-01 05-08-01 05-10-01 05-08-01 05-10-01 05-10-01 05-10-01 05-10-01	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) E.010 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 041<br 041<br <	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .020 < .0	PYRIFOS DIS- SOLVED (UG/L) (38933)  <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <018 <018 <018 <018 <018 <018 <018 <018	WATER FLITRD 0.7 U GF, REC (UG/L) (82682)  <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)  E.154 E.077 E.010 E.005 E.015 <.006 E.011 E.012 E.011 E.022 E.011 E.022 E.018 E.019 E.011	AZINON, DIS- SOLVED (UG/L) (39572)  .143 E.005 <.005 .104  .055 <.005 .013 E.002 <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021 < .021	WATER FLITRD 0.7 U GF, REC (UG/L) (82668)  <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009

# COLORADO RIVER BASIN 319

### Miscellaneous water quality - Barton Springs Hydrophobics--Continued

#### MULTIPLE STATION ANALYSES

STATION NUMBER	DATE	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)
08155395 08155400	05-08-01 05-10-01 05-13-01 05-03-01 05-06-01	<.005 <.005 <.005 <.005 <.005	<.003 <.003 <.003 <.003 <.003	<.004 <.004 <.004 <.004 <.004	<.035 <.035 <.035 <.035 <.035 <.035	<.027 <.027 <.027 <.027 E.003	<.050 <.050 <.050 <.050 <.050	<.006 <.006 <.006 <.006 <.006	E.004 <.013 <.013 <.013 E.004	<.006 <.006 <.006 <.006 <.006	<.002 <.002 <.002 <.002 <.002	<.007 <.007 <.007 <.007 <.007
08155500	05-07-01 05-07-01 05-08-01 05-10-01 05-03-01	<.005 <.005 <.005 <.005 <.005	<.003 <.003 <.003 <.003 <.003	<.004 <.004 <.004 <.004 <.004	<.035 <.035 <.035 <.035 <.035 <.035	<.027 <.027 <.027 <.027 <.027	<.050 <.050 <.050 <.050 <.050	<.006 <.006 <.006 <.006 <.006	E.003 <.013 <.013 <.013 <.013	<.006 <.006 <.006 <.006 <.006	<.002 <.002 <.002 <.002 <.002	<.007 <.007 <.007 <.007 <.007
301546097460201	05-08-01 05-10-01 05-10-01 05-13-01 05-03-01	<.005 <.005 <.005 <.005 <.005	<.003 <.003 <.003 <.003 <.003	<.004 <.004 <.004 <.004 <.004	<.035 <.035 <.035 <.035 <.035 <.035	<.027 <.027 <.027 <.027 <.027	<.050 <.050 <.050 <.050 <.050	<.006 <.006 <.006 <.006 <.006	<.013 <.013 <.013 <.013 <.013	<.006 <.006 <.006 <.006 <.006	<.002 <.002 <.002 <.002 <.002	<.007 <.007 <.007 <.007 <.007
301548097461602	05-07-01 05-08-01 05-13-01 05-04-01 05-07-01	<.005 <.005 <.005 <.005 <.005	<.003 <.003 <.003 <.003 <.003	<.004 <.004 <.004 <.004 <.004	<.035 <.035 <.035 <.035 <.035 <.035	<.027 <.027 <.027 <.027 <.027	<.050 <.050 <.050 <.050 <.050	<.006 <.006 <.006 <.006 <.006	<.013 <.013 <.013 <.013 <.013	<.006 <.006 <.006 <.006 <.006	<.002 <.002 <.002 <.002 <.002	<.007 <.007 <.007 <.007 <.007
	05-08-01 05-08-01 05-10-01 05-13-01	<.005 <.005 <.005 <.005	<.003 <.003 <.003 <.003	<.004 <.004 <.004 <.004	<.035 <.035 <.035 <.035	<.027 <.027 <.027 <.027	<.050 <.050 <.050 <.050	<.006 <.006 <.006 <.006	<.013 <.013 <.013 <.013	<.006 <.006 <.006 <.006	<.002 <.002 <.002 <.002	<.007 <.007 <.007 <.007
STATION NUMBER	DATE	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)
STATION NUMBER  08155395  08155400	DATE  05-08-01 05-10-01 05-13-01 05-03-01 05-06-01	DDE DISSOLV (UG/L)	THION, DIS- SOLVED (UG/L)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	METON, WATER, DISS, REC (UG/L)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	CHLOR, WATER, DISS, REC (UG/L)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L)
08155395	05-08-01 05-10-01 05-13-01 05-03-01	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.010 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) E.004 E.006 <.015 <.015	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) < .004 < .004 < .004 < .004 < .004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011	PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) < .023 < .023 < .023 < .023
08155395 08155400	05-08-01 05-10-01 05-13-01 05-03-01 05-06-01 05-07-01 05-07-01 05-08-01 05-10-01	DDE DISSOLV (UG/L) (34653) < .003 < .003 < .010 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) E.004 E.006 <.015 <.015 <.015 <.015 <.015 <.015 <.015	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </td	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023
08155395 08155400 08155500	05-08-01 05-10-01 05-13-01 05-03-01 05-06-01 05-07-01 05-07-01 05-10-01 05-03-01 05-08-01 05-10-01 05-10-01 05-10-01 05-10-01	DDE DISSOLV (UG/L) (34653) < .003 < .003 < .010 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .004 < .003 < .003 < .003 < .003 < .004 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .003 < .	THION, DIS- SOLVED (UG/L) (39542)  <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)  <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)  <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664)  <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037)  E.004 E.006 <.015 <.015 <.015 <.015 <.015 <.015 <.015 <.015 E.002 <.015	AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82676) < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004 < .004	CHLOR, WATER, DISS, REC (UG/L) (04024)  <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </</th <th>PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)  &lt;.011 &lt;.011</th> <th>PARGITE WATER FLITRD 0.7 U GF, REC (UG/L) (82685) &lt; .023 &lt; .023</th>	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)  <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	PARGITE WATER FLITRD 0.7 U GF, REC (UG/L) (82685) < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023 < .023

320 COLORADO RIVER BASIN

Miscellaneous water quality - Barton Springs Hydrophobics--Continued

#### MULTIPLE STATION ANALYSES

STATION NUMBER	DATE	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)
08155395	05-08-01	.027	<.016	<.034	<.017	<.005	<.002	<.009
	05-10-01	.014	<.016	<.034	<.017	<.005	<.002	<.009
	05-13-01	.016	<.016	<.034	<.017	<.005	<.002	<.009
08155400	05-03-01 05-06-01	<.011 E.009	<.016 <.016	<.034	<.017 <.017 <.017	<.005 <.005	<.002 <.002 <.002	<.009 <.009
	05-07-01	.268	<.016	<.034	<.017	<.005	<.002	<.009
	05-07-01	<.011	<.016	<.034	<.017	<.005	<.002	<.009
	05-08-01	.043	<.016	<.034	<.017	<.005	<.002	<.009
	05-10-01	.030	<.016	<.034	<.017	<.005	<.002	<.009
08155500	05-03-01	E.011	<.016	<.034	<.017	<.005	<.002	<.009
301546097460201	05-08-01	E.005	<.016	<.034	<.017	<.005	<.002	<.009
	05-10-01	E.008	<.016	<.034	<.017	<.005	<.002	<.009
	05-10-01	E.007	<.016	<.034	<.017	<.005	<.002	<.009
	05-13-01	E.004	<.016	<.034	<.017	<.005	<.002	<.009
	05-03-01	E.005	<.016	<.034	<.017	<.005	<.002	<.009
301548097461602	05-07-01 05-08-01 05-13-01 05-04-01 05-07-01	E.004 E.006 E.008 <.011 E.003	<.016 <.016 <.016 <.016 <.016	<.034 <.034 <.034 <.034 <.034	<.017 <.017 <.017 <.017 <.017	<.005 <.005 <.005 <.005 <.005 <.005	<.002 <.002 <.002 <.002 <.002	<.009 <.009 <.009 <.009 <.009
	05-08-01	E.005	<.016	<.034	<.017	<.005	<.002	<.009
	05-08-01	E.004	<.016	<.034	<.017	<.005	<.002	<.009
	05-10-01	E.007	<.016	<.034	<.017	<.005	<.002	<.009
	05-13-01	E.004	<.016	<.034	<.017	<.005	<.002	<.009

The U.S. Geological Survey collects limited streamflow data at sites other than continuous stream-gaging stations because the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage of those events. The data collected for special reasons are called measurements at miscellaneous sites.

Streamflow data collected at partial-record stations where water-quality data other than observations of water temperature are not obtained are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations; the second is a table of annual maximum stage and (or) discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low and high flows are given in a third table. Discharge measurements and water-quality data collected at partial-record stations are presented in downstream order in the section of this report entitled "Gaging-station records."

#### Low-flow partial-record stations

Measurements of streamflow at low-flow partial-record stations that are not published in the gaging-station section are given in the following table. Most of the measurements of low flow were made during periods when streamflow was sustained primarily by ground-water discharge. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will indicate the low-flow potential of the stream. The years listed in the column headed "Period of record" identifies the water years in which measurements were made at the same or at practically the same site.

Discharge measurements made at low-flow partial-record station during water year 2001

Station number					Measure	ements
	Station name	Location	Drainage area (mi ² )	Period of record	Date	Dis- charge (ft ³ /s)
		Colorado River Basin				
08129500	Dove Creek Spring near Knickerbocker, TX	Lat 31°11'06", long 100°43'51", Irion County, at headquarters ranch house, 500 ft upstream from Dove Creek, 1.8 mi upstream from Stilson Dam on Dove Creek and 8.5 mi southwest of Knickerbocker.	-	1944-58章, 1959- 2001	10-20-00 12-01-00 02-15-01 04-02-01 05-29-01 07-18-01 09-18-01	6.12 5.28 4.84 5.62 4.87 3.96 7.66
08143900	Springs at Fort McKavett, TX	Lat 30°50'03", long 100°05'37", Menard County, 0.9 mi northwest of Fort McKavett at low-water crossing on Ranch Road 864.		1902, 1905, 1922, 1942, 1948-49, 1951-52, 1955-56, 1958- 2001	10-04-00 12-05-00 01-10-01 03-23-01 05-03-01 06-21-01	8.99 19.4 20.6 19.0 19.3 17.9
08146500	San Saba Springs at San Saba, TX	Lat 31°11'44", long 98°42'42", San Saba County, 150 ft upstream from bridge on U.S. Highway 190 at San Saba and 0.8 mi east of courthouse.		1939, 1952, 1957, 1959- 2001	10-02-00 12-07-00 01-12-01 03-13-01 05-01-01 06-19-01 08-06-01	8.28 12.3 8.96 10.2 11.2 9.37 10.7
08149400	South Llano River near Telegraph, TX	Lat 30°15'43", long 99°56'01", Edwards County, 3.7 mi upstream from Paint Creek, 5.7 mi south of Telegraph, and 18.7 mi southwest of Junction.	508	1939, 1952, 1956, 1959- 2001	10-04-00 12-04-00 01-10-01 03-23-01 05-03-01 06-20-01 08-07-01	24.6 61.6 47.6 40.6 35.7 29.1 30.0
08149500	Seven Hundred Springs near Telegraph, TX	Lat 30°16'12", long 99°55'22", Edwards County, about 3 mi upstream from Paint Creek, about 5 mi south of Telegraph, and about 18 mi southwest of Junction.		1939, 1952, 1955-56, 1959- 2001	10-04-00 12-04-01 01-10-01 03-23-01 05-03-01 06-20-01 08-07-01	24.1 32.7 22.4 31.5 26.4 28.1 24.6

The Operated as a continuous-record station.

## DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

#### Crest-stage partial-record stations

The following table contains annual maximum stage and (or) discharge at partial-record stations operated primarily for the purpose of defining the flooding characteristics of the streams. At stations where discharge is given, or is footnoted "to be determined", a stage-discharge relation has been, or will be, defined by discharge measurements obtained by current meter or by indirect procedures. Water-stage recorders are located at these flood-hydrograph stations to facilitate complete hydrograph definition. At stations where only the maximum stage is given (discharge column is dashed), the data are generally collected for use in stage-frequency studies of flood-profile definition. Gages at these stations usually consist of a device that will register the peak stage occurring between inspection of the gage. The years used in the column "Period of record" identify the years in which the annual maximum has been determined.

Annual maximum stage and (or) discharge during water year 2001

			Water Ye	ear 2001 ma	ıximum	Period o	f record ma	aximum
Station name and number	Location	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	Lavaca R	iver Basin						
Lavaca River at Hallettsville, TX 08163500	Lat 29°26'35", long 96°56'41", Lavaca County, at down- stream side of bridge on U.S. Highway 77 in Hallettsville. Drainage area is 108 mi ² .	1939-92 1993- 2001	03-15-01	16.45		08-31-81	<u>a</u> / 41.1	<u>i</u> / 99,500

**[†]** Operated as a continuous-record station.

a/ From floodmark.

i/ From indirect measurement of peak flow.

# DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Measurements of streamflow at points other than gaging stations or partial-record stations are given in the following table:

Discharge measurements made at miscellaneous sites during water year 2001

			Measur			
Station number	Tributary to	Location	Drainage area (mi ² )	Measured previously (water years)	Date	Dis- charge (ft ³ /s)
		Colorado River Basin				
Clear Creek near Menard, TX 08143950	San Saba River	Lat 30°54'13", long 99°55'27", Menard County, at bridge on U.S. Highway 190, about 9 mi west of Menard.	106	1984- 2001	10-03-00 01-10-01 05-03-01 08-08-01	10.4 16.5 13.3 10.9
Tanner Springs near Telegraph, TX 08149405	South Llano River	Lat 30°15'45", long 99°56'03", Edwards County, about 5.6 mi south of Telegraph, Kimble County, and 18.6 mi southwest of Junction at mouth.		1939, 1962, 1987- 2001	10-04-00 12-04-00 01-10-01 03-23-01 05-03-01 06-20-01 08-07-01	11.5 15.9 16.3 14.0 9.26 14.6 12.6

Operated as a continuous-record station.

THIS PAGE IS INTENTIONALLY LEFT BLANK.

### INDEX

	Page		Pag
Barton Creek, above Barton Springs at Austin	204, 318	Lavaca River, at Hallettsville	32:
at Loop 360, Austin	200-203	near Edna	27
at Lost Creek Boulevard, Austin	196-199	Lavaca River basin, gaging-station records in	274-32
at State Highway 71 near Oak Hill	192-195	crest-stage partial-record stations in	32
Barton Springs at Austin	210, 318	Llano River, at Llano	174
Beals Creek near Westbrook	60-67	near Junction	168
Bear Creek below Farm Road 1826 near Driftwood	246	near Mason	170
Beaver Creek near Mason	172	Low-flow partial-record stations	32
Blunn Creek near Little Stacy Park, Austin	220-223		
Boggy Creek at U.S. Highway 183, Austin	234-237	Middle Concho River above Tankersley	103
Brady Creek at Brady	156	Miscellaneous, partial-record stations	32:
Brady Creek Reservoir near Brady	154	water-quality data	318-320
Bull Creek at Loop 360 near Austin	182-185	Moss Creek Lake near Coahoma	5
•			
Champion Creek Reservoir near Colorado City	56	Navidad River at Strane Park near Edna	282-28:
Clear Creek near Menard	323	near Hallettsville	280
Colorado River, above LaGrange	264	North Concho River, above Sterling City	114
above Silver	70-77	at Sterling City	110
at Austin	232	near Carlsbad	113
at Bastrop	260	near Grape Creek	120
at Colorado City	48-53	North Llano River near Junction	160
at Columbus	268		
at Robert Lee	80	O.C. Fisher Lake at San Angelo	122
at Smithville	262	O.H. Ivie Reservoir near Voss	130
at Wharton	270	Oak Creek Reservoir near Blackwell	82
at Winchell	140	Old Mill Spring at Austin	318-320
near Ballinger	84-91	Onion Creek, at U.S. Highway 183, Austin	250
near Bay City	272	near Driftwood	242-24:
near Cuthbert	40-47		
near Gail	34	Partial-record stations, crest-stage	32
		low-flow	32
near San Saba	164	miscellaneous	323
near Stacy	138	Pecan Bayou near Mullin	143
Colorado River Basin, discharge measurements	222	Pecan Creek near San Angelo	110
at miscellaneous sites	323	Pedernales River, near Fredericksburg	173
gaging-station records in	32-273	near Johnson City	180
low-flow partial-record stations in	321	Placedo Creek near Placedo	31
Concho River, at San Angelo	124		
at Paint Rock	126-133	Redgate Creek near Columbus	26
Deep Creek near Dunn	38		1.54
Definition of terms	16	San Saba River, at Menard	150
Discharge, at low-flow partial-record stations	321	at San Saba	15
measurements at miscellaneous sites	323	near Brady	153
Dove Creek at Knickerbocker	106	San Saba Springs at San Saba	
Dove Creek Spring near Knickbocker	321	Sandy Creek, near Ganado	286-289
Dove creek Spring hear Kinekoocker	321	near Kingsland	170
Eart Davidia Constant Secreta 1-4 Street Associa	210	Seven Hundred Springs near Telegraph	32
East Bouldin Creek at South 1st Street, Austin	218	Shoal Creek at 12th Street, Austin	214-21
East Mustang Creek at FM 647 near Louise	294-297	Slaughter Creek at Farm Road 1826 near Austin	24
Eliza Spring at Austin	318-320	South Concho River at Christoval	100
Elm Creek at Ballinger	92-99	South Llano River near Telegraph	32
E.V. Spence Reservoir near Robert Lee	78	Spring Creek above Tankersley	104
		Springs at Fort McKavett	32
Gaging-station records	32-320		
Garcitas Creek near Inez	316	Tanner Spring near Telegraph	32:
		Town Lake at Austin	224-23
Hords Creek Lake near Valera	144	Tres Palacios River near Midfield	270
		Twin Buttes Reservoir near San Angelo	10
Lake Austin at Austin	186-191	<u> </u>	
Lake Brownwood near Brownwood	146	Upper Barton Springs at Austin	318-320
Lake Coleman near Novice	142	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Lake Colorado City near Colorado City	54	Walnut Creek at Webberville Road, Austin	238-24
Lake J.B. Thomas near Vincent	36	West Mustang Creek near Ganado	290-29
Lake Nasworthy near San Angelo	112	Williamson Creek, at Brush Country Boulevard, Oak Hill	250-25
Lake Texana near Edna	298	at Manchaca Road. Austin	250-25