




Prepared in cooperation with the BUREAU OF RECLAMATION

# Comparison of Irrigation Water Use Estimates Calculated From Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season



Water-Resources Investigations Report 03-4155

# Comparison of Irrigation Water Use Estimates Calculated From Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

By Jason R. Masoner<sup>1</sup>, Carol S. Mladinich<sup>2</sup>, Alexandria M. Konduris<sup>2</sup>, and S. Jerrod Smith<sup>1</sup>

Water-Resources Investigations Report 03–4155

Prepared in cooperation with the BUREAU OF RECLAMATION

<sup>1</sup>U.S. Geological Survey–Water Resources Discipline <sup>2</sup>U.S. Geological Survey–Geography Discipline

Masoner, J.R., and others—Comparison of Irrigation Water Use Estimates in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season—USGS/ WRIR 03–4155



#### **U.S. Department of the Interior**

GALE A. NORTON, Secretary

#### **U.S. Geological Survey**

CHARLES G. GROAT, Director

Any use of trade, product, and firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

UNITED STATES GOVERNMENT PRINTING OFFICE: OKLAHOMA CITY 2003

For additional information write to:

District Chief U.S. Geological Survey Water-Resources Division 202 NW 66 St., Bldg. 7 Oklahoma City, OK 73116 Copies of this publication can be purchased from:

U.S. Geological Survey Information Services Box 25286 Federal Center Denver, CO 80225

Additional information about water resources in Oklahoma is available on the World Wide Web at http://ok.water.usgs.gov

## Contents

| Abstract                                                                                                                                                                               | 1  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Introduction                                                                                                                                                                           | 1  |
| Purpose and scope                                                                                                                                                                      | 1  |
| Description of study area                                                                                                                                                              | 3  |
| Previous study                                                                                                                                                                         | 3  |
| Historical freshwater withdrawals                                                                                                                                                      | 4  |
| Acknowledgments                                                                                                                                                                        | 4  |
| Determination of land use and irrigated crop acres by remote sensing                                                                                                                   | 7  |
| Preprocessing                                                                                                                                                                          | 9  |
| Accuracy assessment                                                                                                                                                                    | 10 |
| Suggestions to increase accuracy                                                                                                                                                       | 10 |
| Limitations of landsat                                                                                                                                                                 | 11 |
| Remotely sensed irrigated crop acres                                                                                                                                                   | 11 |
| Irrigated crop acres from state water boards                                                                                                                                           | 11 |
| Irrigation water requirements                                                                                                                                                          | 13 |
| Reference evapotranspiration                                                                                                                                                           | 14 |
| Crop evapotranspiration                                                                                                                                                                | 16 |
| Effective precipitation                                                                                                                                                                | 17 |
| Determination of irrigation water requirements                                                                                                                                         | 17 |
| Irrigation water use calculated from remotely sensed irrigated crop acres                                                                                                              | 18 |
| Irrigation water use calculated from state reported irrigated acres.                                                                                                                   | 18 |
| Comparison of irrigation water use calculated from remotely sensed irrigated acres                                                                                                     |    |
| with irrigation water use calculated from state reported irrigated acres                                                                                                               |    |
| Summary                                                                                                                                                                                |    |
| Selected references                                                                                                                                                                    | 25 |
| Appendix                                                                                                                                                                               | 27 |
| 1. Remote sensing classification categories shown with number of pixels and acres for the                                                                                              |    |
| part of Beckham County, Oklahoma, in the Lake Altus drainage basin during the                                                                                                          |    |
| 2000 growing season                                                                                                                                                                    | 29 |
| <ol><li>Remote sensing classification categories shown with number of pixels and acres for the<br/>part of Carson County, Texas, in the Lake Altus drainage basin during the</li></ol> |    |
| 2000 growing season                                                                                                                                                                    | 30 |
| 3. Remote sensing classification categories shown with number of pixels and acres for the                                                                                              |    |
| part of Donley County, Texas, in the Lake Altus drainage basin during the                                                                                                              |    |
| 2000 growing season                                                                                                                                                                    | 31 |
| 4. Remote sensing classification categories shown with number of pixels and acres for the                                                                                              |    |
| part of Gray County, Texas, in the Lake Altus drainage basin during the                                                                                                                |    |
| 2000 growing season                                                                                                                                                                    | 32 |
| 5. Remote sensing classification categories shown with number of pixels and acres for the                                                                                              |    |
| part of Greer County, Oklahoma, in the Lake Altus drainage basin during the                                                                                                            | 22 |
| 2000 growing season                                                                                                                                                                    | აა |
| 6. Remote sensing classification categories shown with number of pixels and acres for the<br>part of Kiowa County, Oklahoma, in the Lake Altus drainage basin during the               |    |
| 2000 growing season                                                                                                                                                                    | 34 |
|                                                                                                                                                                                        |    |

| 7. Remote sensing classification categories shown with number of pixels and acres for the part of Potter County, Texas, in the Lake Altus drainage basin during the         |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2000 growing season                                                                                                                                                         | 35 |
| 8. Remote sensing classification categories shown with number of pixels and acres for the part of Roger Mills County, Oklahoma, in the Lake Altus drainage basin during the |    |
| 2000 growing season                                                                                                                                                         | 36 |
| 9 Remote sensing classification categories shown with number of pixels and acres for the part of Washita County, Oklahoma, in the Lake Altus drainage basin during the      |    |
| 2000 growing season                                                                                                                                                         | 37 |
| 10. Remote sensing classification categories shown with number of pixels and acres for the part of Wheeler County, Texas, in the Lake Altus drainage basin during the       |    |
| 2000 growing season                                                                                                                                                         | 38 |
|                                                                                                                                                                             |    |

## Figures

| 1. Map showing the location of the Lake Altus drainage basin                                                                                                           | 2  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. Landsat image showing an example of a ratio-classified image. The brightness of pixels                                                                              |    |
| represents values for the ratio of band 4 to band 3. The brighter the pixel, the higher the                                                                            |    |
| ratio and the healthier and greener the vegetation                                                                                                                     | 8  |
| 3. Schematic showing locations and names of Landsat scenes used to acquire Landsat 7                                                                                   |    |
| Enhanced Thematic Mapper Plus imagery                                                                                                                                  | 9  |
| 4. Landsat image showing example of ground-reference data used to overlay and                                                                                          |    |
| classify imagery                                                                                                                                                       | 10 |
| 5-10. Graphs showing:                                                                                                                                                  |    |
| 5. Irrigated crop acres in the Lake Altus drainage basin during the 2000 growing season,                                                                               |    |
| determined using remote-sensing techniques and Landsat imagery                                                                                                         | 12 |
| 6. Irrigated crop acres in the Lake Altus drainage basin during the 2000 growing season,                                                                               |    |
| reported from the Oklahoma Water Resources Board and the Texas Water                                                                                                   |    |
| Development Board                                                                                                                                                      | 14 |
| <ol> <li>Irrigation water use for crops in the Lake Altus drainage basin during the 2000 growing<br/>season, calculated from remotely sense irrigated acres</li> </ol> | 10 |
| 8. Irrigation water use for crops in the Lake Altus drainage basin during the 2000 growing                                                                             | 15 |
| season, calculated from irrigated acres reported from the Oklahoma Water                                                                                               |    |
| Resources Board and the Texas Water Development Board                                                                                                                  | 20 |
| 9. Comparison of irrigation water use calculated from remotely sensed irrigated acres                                                                                  |    |
| with irrigation water use calculated from irrigated acres reported from the Oklahoma                                                                                   |    |
| Water Resources Board and Texas Water Development Board in the Lake Altus                                                                                              |    |
| drainage basin during the 2000 growing season, shown by county                                                                                                         | 22 |
| 10. Comparison of irrigation water use calculated from remotely sensed irrigated crop acres                                                                            |    |
| with irrigation water use calculated from irrigated acres reported from the Oklahoma                                                                                   |    |
| Water Resources Board and Texas Water Development Board in the Lake Altus                                                                                              |    |
| drainage basin during the 2000 growing season, shown by crop                                                                                                           | 23 |
|                                                                                                                                                                        |    |

### Tables

| 1. Portions of counties in Oklahoma and Texas in the Lake Altus drainage basin      | 4 |
|-------------------------------------------------------------------------------------|---|
| 2. 1995 estimated freshwater withdrawals for cataloging units 11120301 and 11120302 | 5 |

| 3. Categories of pixel classes used to define land use and irrigated crop acres in the Lake Altus | _  |
|---------------------------------------------------------------------------------------------------|----|
| drainage basin during the 2000 growing season                                                     |    |
| 4. Irrigated crop acres derived from remote sensing techniques and Landsat imagery for portions   |    |
| of counties in the Lake Altus drainage basin during the 2000 growing season                       | 12 |
| 5. Irrigated crop acres reported from the Oklahoma Water Resources Board and Texas                |    |
| Water Development Board for portions of Oklahoma and Texas Counties in the Lake                   |    |
| Altus drainage basin during the 2000 growing season                                               | 13 |
| 6. Weather stations used in study, climate data from September 1999 to October 2000               | 15 |
| 7. Reference evapotranspiration (ET $_{0}$ ) for crop growing seasons in the Lake Altus drainage  |    |
| basin during the 2000 growing season                                                              | 16 |
| 8. Crop evapotranspiration (ETc) for major crops in the Lake Altus drainage basin during the      |    |
| 2000 growing season                                                                               | 17 |
| 9. Irrigation water requirements (U) for major crops in the Lake Altus drainage basin during the  |    |
| 2000 growing season                                                                               | 18 |
| 10. Irrigation water use for portion of counties in the Lake Altus drainage basin during the 2000 |    |
| growing season, calculated from remotely sensed irrigated acres                                   | 19 |
| 11. Irrigation water use for portion of counties in the Lake Altus drainage basin during the 2000 |    |
| growing season, calculated from irrigated acres reported from Oklahoma Water                      |    |
| Resources Board and the Texas Water Development Board                                             | 20 |
|                                                                                                   |    |

### **Conversion Factors and Datum**

| Multiply                         | Ву          | To obtain                                       |
|----------------------------------|-------------|-------------------------------------------------|
|                                  | Length      |                                                 |
| inch (in.)                       | 2.54        | centimeter (cm)                                 |
| foot (ft)                        | 0.3048      | meter (m)                                       |
| mile (mi)                        | 1.609       | kilometer (km)                                  |
|                                  | Area        |                                                 |
| acre                             | 4,047       | square meter (m <sup>2</sup> )                  |
| acre                             | 0.004047    | square kilometer (km <sup>2</sup> )             |
| square mile (mi <sup>2</sup> )   | 2.590       | square kilometer (km <sup>2</sup> )             |
|                                  | Volume      |                                                 |
| gallon (gal)                     | 0.003785    | cubic meter (m <sup>3</sup> )                   |
| acre-foot (acre-ft)              | 43,560      | cubic feet (ft <sup>3</sup> )                   |
| acre-foot (acre-ft)              | 1,233       | cubic meter (m <sup>3</sup> )                   |
|                                  | Flow rate   |                                                 |
| cubic foot (ft <sup>3</sup> )    | 7.48        | gallon (gal)                                    |
| million gallons per day (Mgal/d) | 0.003785    | cubic meter per day $(m^3/d)$                   |
|                                  | Watts       |                                                 |
| langleys per day (lang/day)      | 1,004,140.8 | watts per meter squared (watts/m <sup>2</sup> ) |

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

$$^{\circ}$$
F = (1.8  $\times$   $^{\circ}$ C) + 32

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).

Horizontal coordinate information is North American Datum of 1983 (NAD 83).

## Comparison of Irrigation Water Use Estimates Calculated From Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

By Jason R. Masoner, Carol S. Mladinich, Alexandria M. Konduris, and S. Jerrod Smith

#### Abstract

Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs.

Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.

#### Introduction

Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. Agriculture is the primary land use in the drainage basin. Ninety-one percent of water use in the drainage basin in 1995 was for irrigation purposes (R.L. Tortorelli, USGS, written commun., 2001). Lake Altus supplies water to the Lugert-Altus Irrigation District using a 270-mile system of canals downstream from the dam (Oklahoma Water Resources Board, 2000). Lake Altus was built by the Bureau of Reclamation from 1941 to 1948 for flood control, water supply for the City of Altus, and irrigation of about 46,000 acres (A. Ensley, Lugert-Altus Irrigation District, oral commun., 2002). The Lugert-Altus Irrigation District annually supplies more than 85,000 acre-feet of water for agricultural purposes (Oklahoma Water Resources Board, 2000).

The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, investigated new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin (fig. 1). Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for alfalfa, corn, cotton, hay, peanuts, sorghum, soybeans, sunflowers, and wheat were calculated on a monthly and seasonal basis from September 1999 to October 2000 using an evapotranspiration model by Doorenbos and Pruitt (1977). The model is commonly referred to as the radiation method and is accurate in arid and sub-humid areas and less accurate near the ocean in cooler climates (U.S. Department of Agriculture, 1993). These empirical estimates of irrigation water use were used with estimated irrigated acres to calculate irrigation water use in the Lake Altus drainage basin in Oklahoma and Texas.

#### **Purpose and Scope**

The purpose of this report is to present the techniques and results of an effort to map irrigated crop acres in the Lake Altus drainage basin using satellite imagery and remote sensing tech2 Comparison of Irrigation Water Use Estimates Calculated From Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

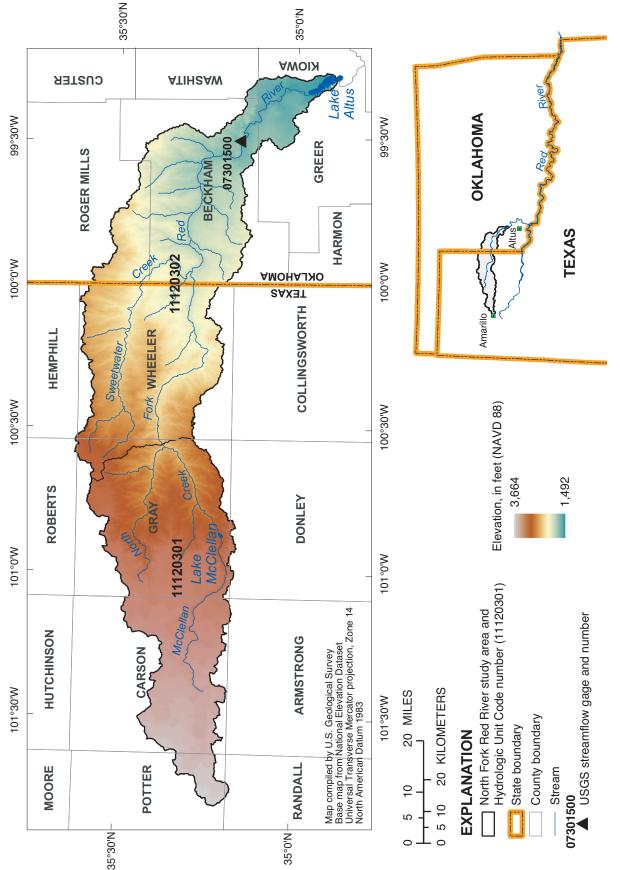



Figure 1. Map of the Lake Altus drainage basin.

niques, and compare irrigation water use estimates calculated from the remotely sensed irrigated acres with those calculated from state reported irrigated crop acres for the 2000 growing season. This report presents: (1) mapping of land use and irrigated crop acres from multiple dates of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery; (2) reported irrigated crop acres from Oklahoma Water Resources Board (OWRB) and Texas Water Development Board (TWDB); (3) seasonal estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements; (4) seasonal estimates of irrigation water use for alfalfa, corn, cotton, hay, peanuts, sorghum, soybeans, sunflowers, and wheat; and (5) a comparison of irrigation water use estimates calculated from remotely sensed irrigated acres and irrigation water use estimates calculated from the state reported irrigated acres.

Seasonal irrigation water use, referred to in this report as irrigation water use during the 2000 growing season, was calculated for each crop on a countywide basis for major crops by multiplying seasonal irrigation requirements by the number of irrigated crop acres in each county. Irrigation water use was calculated using two sources of irrigated crop acres: (1) irrigated crop acres derived from remote sensing techniques and Landsat 7 ETM+ imagery, referred to as remotely sensed irrigated acres; and (2) irrigated acres reported by the OWRB and the TWDB, referred to as state reported irrigated acres. Irrigation water use estimates calculated from remotely sensed irrigated crop acres were compared with irrigation water use estimates calculated from state reported irrigated acres for the 2000 growing season.

Estimates of water use for irrigation provided in this report will facilitate better management of water resources in the Lake Altus drainage basin. Methodologies described in this report to calculate estimates of reference evapotranspiration, crop evapotranspiration, crop irrigation water requirements, and irrigation water use, may be transferable to other areas that may have similar water management needs. The irrigation water requirements presented in this report can be used with estimates of irrigated acres from anywhere in the drainage basin to calculate irrigation water use.

#### **Description of Study Area**

The study area consists of the Lake Altus drainage basin (fig.1). Lake Altus is located on the border of Greer and Kiowa Counties in southwestern Oklahoma, approximately 20 miles north of the town of Altus. The drainage area for Lake Altus is approximately 2,515 square miles, 399 square miles of which are non-contributing (Blazs and others, 2001). Most of the drainage basin, includes parts of Beckham, Carson, Gray, and Wheeler Counties (table 1).

The North Fork Red River is the major source of surfacewater inflow for Lake Altus. The North Fork Red River is one of five major tributaries of the Red River. U.S. Geological Survey streamflow-monitoring station 07301500, North Fork Red River Near Carter, Oklahoma, recorded a mean annual flow of 93,230 acre-feet from 1945 through 2000 (Blazs and others, 2001). Average annual precipitation in the study area ranges from about 18 inches in the west at the headwaters to 26 inches near Lake Altus in the east (Daly and others, 1994).

Agriculture is the major land use and is mainly supported by water from the High Plains Aquifer, also referred to as the Ogallala Aquifer, and alluvial and terrace deposits along the North Fork Red River.

The High Plains Aquifer is an unconsolidated and semiconsolidated aquifer of Tertiary age and associated alluvial and terrace deposits are of Quaternary age (Havens and others, 1985, p. 348). The High Plains Aquifer consists mostly of fine sand and silts with lesser quantities of clay, gravel, and minor beds of limestone and caliche (Hart and others, 1976). Well yields range from 100 to 1,000 gallons per minute; with some yields exceeding 1,500 gallons per minute (Havens and others, 1985, p. 347).

The North Fork Red River alluvial and Beckham and Tillman terrace deposits consist of silt, clay, and gravel grading downward into fine to coarse sand (Havens and others, 1985, p. 348). Well yields range from 100 - 200 gallons per minute in the alluvium and 200 - 500 gallons per minute in the Beckham and Tillman terrace (Havens and others, 1985, p. 348).

The length of growing season for crops is closely related to temperature and has a substantial effect on the amount of water used by crops. There are two primary growing seasons in the Lake Altus drainage basin. Winter wheat is grown in the first growing season, which occurs from early October through early May (peak greenness), with harvesting in early June (McDaniels, 1960, and U.S. Department of Agriculture, 1998). Corn, cotton, peanuts, sorghum, soybeans, and sunflowers are grown in the second growing season, which occurs from mid-March through late July to mid-August (peak greenness) with harvesting in September or November (McDaniels, 1960, and U.S. Department of Agriculture, 1998).

#### **Previous Study**

Heimes and Luckey (1982) describe a method for estimating historical irrigation water requirements for the High Plains Aquifer from 1949 though 1978. There were two primary components used to estimate irrigation water use; irrigated crop acres and crop irrigation requirements. The report by Heimes and Luckey (1982) acquired estimates of irrigated acres by county from the Census of Agriculture (U.S. Department of Commerce, 1949 to 1978). A modified version of the Blaney-Criddle formula was used to estimate irrigation water requirements for major crops growing above the High Plains Aquifer (U.S. Department of Agriculture, 1970). The Modified Blaney-Criddle differs from the original Blaney-Criddle in that two adjustment factors are used to better estimate crop evapotranspiration. A climate coefficient correlates monthly crop evapotranspiration with the mean monthly temperature, and a growthstage coefficient tracks crop growth development throughout the growing cycle. The Modified Blaney-Criddle method is

| Counties    | State | Portion of county in drainage basin (acres) | Portion of county in drainage basin (percent) |  |  |
|-------------|-------|---------------------------------------------|-----------------------------------------------|--|--|
| Beckham     | Okla. | 365,310                                     | 20.4                                          |  |  |
| Greer       | Okla. | 47,686                                      | 2.7                                           |  |  |
| Kiowa       | Okla. | 32,384                                      | 1.8                                           |  |  |
| Roger Mills | Okla. | 94,737                                      | 5.2                                           |  |  |
| Washita     | Okla. | 2,551                                       | 0.1                                           |  |  |
| Carson      | Tex.  | 264,860                                     | 14.7                                          |  |  |
| Donley      | Tex.  | 7,101                                       | 0.4                                           |  |  |
| Gray        | Tex.  | 471,616                                     | 26.3                                          |  |  |
| Randall     | Tex.  | 1,227                                       | 0.1                                           |  |  |
| Potter      | Tex.  | 40,104                                      | 2.2                                           |  |  |
| Wheeler     | Tex.  | 467,473                                     | 26.1                                          |  |  |

Table 1. Portions of counties in Oklahoma and Texas in the Lake Altus drainage basin

widely used because of the limited climate information needed to calculate crop evapotranspiration and has been widely used historically by federal and state agriculture programs. There are more accurate methods that use solar radiation, wind speed, temperature, and humidity data to estimate crop evapotranspiration (U.S. Department of Agriculture, 1970).

#### **Historical Freshwater Withdrawals**

Freshwater withdrawal estimates for 1995 were obtained for 8-digit Hydrologic Unit Code (HUC) 11120301 and 11120302 (fig. 1) from the U.S. Geological Survey (R.L. Tortorelli, USGS, written commun., 2001). Total consumptive use from the Lake Altus drainage basin was estimated to be 120,983 acre-feet or 108.15 million gallons per day. Consumptive use for irrigation was estimated to be 109,781 acre-feet or 98.24 million gallons per day (table 2). Ground water supplies about 69 percent of total self-supplied water withdraws in the drainage basin; whereas, surface water accounts for the remaining 31 percent. The western half (11120301) of the study area accounted for 61 percent of the total self-supplied withdrawals in the drainage basin because of greater withdrawals from the High Plains Aquifer for irrigation. Withdrawals in the western half (11120301) are predominantly supplied by ground water (94 percent); whereas, withdrawals in the eastern half (11120302) are predominantly supplied by surface water (72 percent) (table 2).

Irrigation accounts for 82 percent of total self-supplied water withdrawals in the drainage basin. However, the majority of surface-water withdrawals and irrigated acres in the eastern half are utilized downstream in the Altus-Lugert Irrigation District. The distribution of other less prevalent self-supplied withdrawals included 4.9 percent for public use, 4.5 percent for livestock use, 4.4 percent for industrial use, 3.6 percent for mining use, and 0.4 percent for domestic use (calculated from table 2). Detailed explanations of water use terms used in this section can be acquired at URL http://ok.water.usgs.gov/wateruse/definitions.html

#### Acknowledgments

The authors wish to express their appreciation to personnel from U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS) and Farm Service Agency (FSA) offices for providing field maps of croplands and information about agricultural practices that were used to calibrate remote sensing data when determining irrigated croplands. Howard Johnson, Oklahoma Climatological Survey (OCS) and Cleon Napkin, NRCS, provided climate data used in this report. Jerry Walker and Tom Spofford, NRCS, provided technical advice about the evapotranspiration model used for this report. Michael Sughru, U.S. Geological Survey made several suggestions to improve the remote sensing part of this report.

# Table 2. 1995 estimated freshwater withdrawals for cataloging units 11120301 and 11120302 (data source, R.L. Tortorelli, U.S. Geological Survey, written commun., 2001)

| Public supply category                                  | 1120301 | 1120302 | Total<br>basin | Commercial category                                 | 1120301 | 1120302 | Total<br>basin |
|---------------------------------------------------------|---------|---------|----------------|-----------------------------------------------------|---------|---------|----------------|
| Population served by<br>ground water, in thou-<br>sands | 7.64    | 20.21   | 27.85          | Total self-supplied with-<br>drawals, ground water  | 0.07    | 0.25    | 0.32           |
| Population served by sur-<br>face water, in thousands   | 4.64    | 0.00    | 4.64           | Total self-supplied with-<br>drawals, surface water | 0.00    | 0.00    | 0.00           |
| Total population served, in thousands                   | 12.28   | 20.21   | 32.49          | Total self-supplied with-<br>drawals                | 0.07    | 0.25    | 0.32           |
| Total self-supplied with-<br>drawals, ground water      | 1.25    | 4.74    | 5.99           | Consumptive use, total                              | 0.04    | 0.10    | 0.14           |
| Total self-supplied with-<br>drawals, surface water     | 0.00    | 0.00    | 0.00           |                                                     |         |         |                |
| Total self-supplied with-<br>drawals, total             | 1.25    | 4.74    | 5.99           |                                                     |         |         |                |
| Per-capita use, in gal/d                                | 101.79  | 234.53  | 184.36         |                                                     |         |         |                |
| Domestic category                                       | 1120301 | 1120302 | Total<br>basin | Industrial category                                 | 1120301 | 1120302 | Total<br>basin |
| Self-supplied population, in thousands                  | 1.20    | 1.85    | 3.05           | Total self-supplied with-<br>drawals, ground water  | 5.19    | 0.20    | 5.39           |
| Total self-supplied with-<br>drawals, ground water      | 0.26    | 0.21    | 0.47           | Total self-supplied with-<br>drawals, surface water | 0.00    | 0.00    | 0.00           |
| Total self-supplied with-<br>drawals, surface water     | 0.00    | 0.00    | 0.00           | Total self-supplied with-<br>drawals                | 5.19    | 0.20    | 5.39           |
| Total self-supplied with-<br>drawals                    | 0.26    | 0.21    | 0.47           | Consumptive use, total                              | 0.34    | 0.04    | 0.38           |
| Per-capita use, self-sup-<br>plied, in gal/d            | 216.67  | 113.51  | 154.10         |                                                     |         |         |                |
| Per-capita use, public-sup-<br>plied, in gal/d          | 194.63  | 95.99   | 133.27         |                                                     |         |         |                |
| Consumptive use, total                                  | 1.06    | 0.73    | 1.79           |                                                     |         |         |                |
| Mining category                                         | 1120301 | 1120302 | Total<br>basin | Total livestock category                            | 1120301 | 1120302 | Total<br>basin |
| Total self-supplied with-<br>drawals, ground water      | 3.65    | 0.73    | 4.38           | Total self-supplied with-<br>drawals, ground water  | 0.66    | 0.63    | 1.29           |
| Total self-supplied with-<br>drawals, surface water     | 0.00    | 0.00    | 0.00           | Total self-supplied with-<br>drawals, surface water | 1.84    | 2.25    | 4.09           |

[data units in million gallons per day (mgd) unless noted; gal/day, gallon per day]

# 6 Comparison of Irrigation Water Use Estimates Calculated From Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

Table 2. 1995 estimated freshwater withdrawals for cataloging units 11120301 and 11120302 (data source, R.L. Tortorelli, U.S. Geological Survey, written commun., 2001)—Continued.

| Mining<br>category—Continued                        | 1120301 | 1120302 | Total<br>basin | Total livestock<br>category—Continued                 | 1120301 | 1120302 | Total<br>basin |
|-----------------------------------------------------|---------|---------|----------------|-------------------------------------------------------|---------|---------|----------------|
| Total self-supplied with-<br>drawals                | 3.65    | 0.73    | 4.38           | Total self-supplied with-<br>drawals                  | 2.50    | 2.88    | 5.38           |
| Consumptive use, total                              | 2.12    | 0.10    | 2.22           | Consumptive use, total                                | 2.50    | 2.88    | 5.38           |
| Irrigation category                                 | 1120301 | 1120302 | Total<br>basin | Reservoir evaporation category                        | 1120301 | 1120302 | Total<br>basin |
| Total self-supplied with-<br>drawals, ground water  | 59.09   | 6.80    | 65.89          | Reservoir surface area, in thousand acres             | 0.32    | 4.74    | 5.06           |
| Total self-supplied with-<br>drawals, surface water | 2.41    | 31.80   | 34.21          | Reservoir evaporation, in thousand acre-feet per year | 1.59    | 23.16   | 24.75          |
| Total self-supplied with-<br>drawals                | 61.50   | 38.60   | 100.10         |                                                       |         |         |                |
| Consumptive use, total                              | 61.50   | 36.74   | 98.24          |                                                       |         |         |                |
| Conveyance loss                                     | 0.00    | 1.59    | 1.59           | Totals, overall category                              | 1120301 | 1120302 | Total<br>basin |
| Thousand acres irrigated, sprinkler                 | 22.10   | 11.35   | 33.45          | Total self-supplied with-<br>drawals, ground water    | 70.17   | 13.56   | 83.73          |
| Thousand acres irrigated, microirrigation           | 0.01    | 0.13    | 0.14           | Total self-supplied with-<br>drawals, surface-water   | 4.25    | 34.05   | 38.30          |
| Thousand acres irrigated, surface water             | 38.06   | 38.73   | 76.79          | Total self-supplied with-<br>drawals                  | 74.42   | 47.61   | 122.03         |
| Thousand acres irrigated                            | 60.17   | 50.21   | 110.38         | Total consumptive use                                 | 67.56   | 40.59   | 108.15         |
| Reclaimed wastewater                                | 2.69    | 0.08    | 2.77           | Total conveyance losses                               | 0.00    | 1.59    | 1.59           |

[data units in million gallons per day (mgd) unless noted; gal/day, gallon per day]