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PREFACE 

The series of manuals on techniques describes procedures for plan- 
ning and executing specialized work in water-resources investigations. 
The material is grouped under major headings called books and further 
subdivided into sections and chapters ; section C of Book 7 is on computer 
programs. 

This chapter presents a digital computer model for calculating 
changes in the concentration of a dissolved chemical species in flowing 
ground water. The computer program represents a basic and general 
model that may have to be modified by the user for efficient application to 
his specific field problem. Although this model will produce reliable cal- 
culations for a wide variety of field problems, the user is cautioned that in 
some cases the accuracy and efficiency of the model can be affected sig- 
nificantly by his selection of values for certain user-specified options. 

III 
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COMPUTER MODEL OF TWO-DIMENSIONAL SOLUTE TRANSPORT 
AND DISPERSION IN GROUND WATER 

By L. F. Konikow and J. D. Bredehoeft 

Abstract 

This report presents a model that simulates solute 
transport in flowing ground water. The model is 
both general and flexible in that it can be applied 
to a wide range of problem types. It is applicable 
to one- or two-dimensional problems involving 
steady-state or transient flow. The model computes 
changes in concentration over time caused by the 
processes of convective transport, hydrodynamic 
dispersion, and mixing (or dilution) from fluid 
sources. The model assumes that the solute is non- 
reactive and that gradients of fluid density, viscos- 
ity, and temperature do not affect the velocity dis- 
tribution. However, the aquifer may be hetero- 
geneous and (or) anisotropic. 

The model couples the ground-water flow equa- 
tion with the solute-transport equation. The digital 
computer program uses an alternating-direction im- 
plicit procedure to solve a finite-difference approxi- 
mation to the ground-water flow equation, and it 
uses the method of characteristics to solve the 
solute-transport equation. The latter uses a particle- 
tracking procedure to represent convective transport 
and a two-step explicit procedure to solve a finite- 
difference equation that describes the effects of hy- 
drodynamic dispersion, fluid sources and sinks, and 
divergence of velocity. This explicit procedure has 
several stability criteria, but the consequent time- 
step limitations are automatically determined by the 
program. 

The report includes a listing of the computer pro- 
gram, which is written in FORTRAN IV and con- 
tains about 2,000 lines. The model is based on a 
rectangular, block-centered, finitedifference grid. It 
allows the specification of any number of injection 
or withdrawal wells and of spatially varying diffuse 
recharge or discharge, saturated thickness, trans- 
missivity, boundary conditions, and initial heads and 
concentrations. The program also permits the desig- 
nation of up to five nodes as observation points, for 
which a summary table of head and concentration 
versus time is printed at the end of the calculations. 
The data input formats for the model require three 
data cards and from seven to nine data sets to de- 

scribe the aquifer properties, boundaries, and 
stresses. 

The accuracy of the model was evaluated for two 
idealized problems for which analytical solutions 
could be obtained. In the case of one-dimensional 
flow the agreement was nearly exact, but in the 
case of plane radial flow a small amount of nu- 
merical dispersion occurred. An analysis of several 
test problems indicates that the error in the mass 
balance will be generally less than 10 percent. The 
test problems demonstrated that the accuracy and 
precision of the numerical solution is sensitive to 
the initial number of particles placed in each cell 
and to the size of the time increment, as determined 
by the stability criteria. Mass balance errors are 
commonly the greatest during the first several time 
increments, but tend to decrease and stabilize with 
time. 

Introduction 
This report describes and documents a 

computer model for calculating transient 
changes in the concentration of a nonreac- 
tive solute in flowing ground water. The 
computer program solves two simultaneous 
partial differential equations. One equation 
is the ground-water flow equation, which de- 
scribes the head distribution in the aquifer. 
The second is the solute-transport equation, 
which describes the chemical concentration 
in the system. By coupling the flow equation 
with the solute-transport equation, the model 
can be applied to both steady-state and tran- 
sient flow problems. 

The purpose of the simulation model is to 
compute the concentration of a dissolved 
chemical species in an aquifer at any speci- 
fied place and time. Changes in chemical 
concentration occur within a dynamic 
ground-water system primarily due to four 

1 



2 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

distinct processes : (1) convective transport, 
in which dissolved chemicals are moving 
with the flowing ground water; (2) hydro- 
dynamic dispersion, in which molecular and 
ionic diffusion and small-scale variations in 
the velocity of flow through the porous media 
cause the paths of dissolved molecules and 
ions to diverge or spread from the average 
direction of ground-water flow; (3) fluid 
sources, where water of one composition is 
introduced into water of a different composi- 
tion ; and (4) reactions, in which some 
amount of a particular dissolved chemical 
species may be added to or removed from the 
ground water due to chemical and physical 
reactions in the water or between the water 
and the solid aquifer materials. The model 
presented in this report assumes (1) that no 
reactions occur that affect the concentration 
of the species of interest, and (2) that gra- 
dients of fluid density, viscosity, and tem- 
perature do not affect the velocity distribu- 
tion. 

This model can be applied to a wide 
variety of field problems. However, the user 
should first become aware of the assumptions 
and limitations inherent in the model, as 
described in this report. The computer pro- 
gram presented in this report is offered as a 
basic working tool that may have to be 
modified by the user for efficient application 
to specific field problems. The program is 
written in FORTRAN IV and is compatible 
with most high-speed computers. The data 
requirements, input format specifications, 
program options, and output formats are all 
structured in a general manner that should 
be readily adaptable to many field problems. 

This report includes a detailed description 
of the numerical method used to solve the 
solute-transport equation. The reader is as- 
sumed to have (or can obtain elsewhere) a 
moderate familiarity with finite-difference 
methods and ground-water flow models. 

Theoretical Background 
Flow equation 

By following the derivation of Pinder and 
Bredehoeft (1968), the equation describing 

the transient two-dimensional area1 flow of 
a homogeneous compressible fluid through a 
nonhomogeneous anisotropic aquifer can be 
written in Cartesian tensor notation as 

$& ax? =s$+ w i,j = 1,2 (1) 
% J 

where 
Tij is the transmissivity ten- 

sor, L?/T; 
h is the hydraulic head, L ; 
S is the storage coefficient, 

(dimensionless) ; 
t is the time, T; 
W = W (x,y,t) is the volume flux per unit 

area (positive sign for 
outflow and negative 
for inflow), L/T ; and 

xi and xj are the Cartesian coordi- 
nates, L. 

If we only consider fluxes of (1) direct with- 
drawal or recharge, such as well pumpage, 
well injection, or evapotranspiration, and 
(2) steady leakage into or out of the aquifer 
through a confining layer, streambed, or 
lakebed, then W (x,y,t) may be expressed 
as 

W(X,Y,-a =Q(x,zl,t) -m K”(H,-h) (2) 

where 
Q is the rate of withdrawal (posi- 

tive sign) or recharge (negative 
sign), L/T; 

K, is the vertical hydraulic conductiv- 
ity of the confining layer, stream- 
bed, or lakebed, L/T ; 

m is the thickness of the confining 
layer, streambed, or lakebed, L ; 
and 

H, is the hydraulic head in the source 
bed, stream, or lake, L. 

Lohman (1972) shows that an expression 
for the average seepage velocity of ground 
water can be derived from Darcy’s law. This 
expression can be written in Cartesian ten- 
sor notation as 

(3) 

c 
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where 
Vc is the seepage velocity in the direc- 

tion of x4, L/T; 
K&j is the hydraulic conductivity tensor, 

L/T; and 
c is the effective porosity of the aqui- 

fer, (dimensionless). 

Transport equation 
The equation used to describe the twsdi- 

mensional area1 transport and dispersion of 
a given nonreactive dissolved chemical spe- 
cies in flowing ground water was. derived by 
Reddell and Sunada (1970)) Bear (1972)) 
Bredehoeft and Pinder (1973)) and Konikow 
and Grove (1977): The equation may be 
written as 

where 
i,j=1,2 (4) 

C is the concentration of the dissolved 
chemical species, M/L3 ; 

Ddj is the coefficient of hydrodynamic 
dispersion (a second-order ten- 
sor), LZ/T; 

b is the saturated thickness of the 
aquifer, L ; and 

C’ is the concentration of the dissolved 
chemical in a sourceor, sink fluid, 
M/LS. 

The first term on the right side of equa- 
tion 4 represents the change in concentra- 
tion due to hydrodynamic dispersion. The 
second term describes the effects of convec- 
tive transport, while the third term repre- 
sents a fluid source or sink. 

Dispersion coefficient 
Bear (1972, p. 580681) states-that hydro- 

dynamic dispersion is the macroscopic out- 
come of the actual movements of individual 
tracer particles through the pores and that 
it includes two processes. One process is 
mechanical dispersion, which depends upon 
both the flow of the fluid and the nature of 

the pore system through which the flow takes 
place. The second process is molecular and 
ionic diffusion, which because it depends on 
time, is more significant at low flow veloci- 
ties. Bear (1972) further states that the 
separation between the two processes is arti- 
ficial. In developing our model we assume for 
flowing ground-water systems that the de- 
finable contribution of molecular and ionic 
diffusion to hydrodynamic dispersion is 
negligible. 

The dispersion coefficient may be related 
to the velocity of ground-water flow and to 
the nature of the aquifer using Scheidegger’s 
(1961) equation : 

TI T, 

where 
%jmtt is the dispersivity of the 

aquifer, L ; 
V, and V,, are components of velocity 

in the m and n directions, 
respectively, L/T ; and 

IV is the magnitude of the ve- 
locity, L/T. 

Scheidegger (1961) further shows that 
for an isotropic aquifer the dispersivity ten- 
sor can be defined in terms of two constants. 
These are the longitudinal and transverse 
dispersivities of the aquifer (aL and aT, re- 
spectively). These are related to the longi- 
tudinal and transverse dispersion coefficients 
by 

DL=aLlVI (6) 

and 
DT=aTIV(. (7) 

After expanding equation 5, substituting 
Scheidegger’s identities, and eliminating 
terms with coefficients that equal zero, the 
components of the dispersion coefficient for 
two-dimensional flow in an isotropic aquifer 
may be stated explicitly as 

TIv(3 (9) 
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vmv, D##=Dv;lr= (DL-DT)-. 
w 

(10) 

Note that while D, and D,, must have 
positive values, it is possible for the cross- 
product terms (eq 10) to have negative 
values if V, and V, have opposite signs. 

Review of assumptions 
A number of assumptions have been made 

in the development of the previous equa- 
tions. Following is a list of the main assump- 
tions that must be carefully evaluated before 
applying the model to a field problem. 
1. Darcy’s law is valid and hydraulic-head 

gradients are the only significant driv- 
ing mechanism for fluid flow. 

2. The porosity and hydraulic conductivity 
of the aquifer are constant with time, 
and porosity is uniform in space. 

3. Gradients of fluid density, viscosity, and 
temperature do not affect the velocity 
distribution. 

4. No chemical reactions occur that affect 
the concentration of the solute, the 
fluid properties, or the aquifer proper- 
ties. 

5. Ionic and molecular diffusion are negli- 
gible contributors to the total disper- 
sive flux. 

6. Vertical variations in head and concen- 
tration are negligible. 

7. The aquifer is homogeneous and isotropic 
with respect to the coefficients of longi- 
tudinal and transverse dispersivity. 

The nature of a specific field problem may 
be such that not all of these underlying as- 
sumptions are completely valid. The degree 
to which field conditions deviate from these 
assumptions will affect the applicability and 
reliability of the model for that problem. If 
the deviation from a particular assumption 
is significant, the governing equations will 
have to be modified to account for the ap- 
propriate processes or factors. 

Numerical Methods 
Because aquifers have variable properties 

and complex boundary conditions, exact ana- 

lytical solutions to the partial differential 
equations of flow (eq 1) and solute trans- 
port (eq 4) cannot be obtained directly. 
Therefore, approximate numerical methods 
must be employed. 

The numerical methods require that the 
area of interest be subdivided by a grid into 
a number of smaller subareas. The model 
developed here utilizes a rectangular, uni- 
formly spaced, block-centered, hnite-differ- 
ence grid, in which nodes are defined at the 
centers of the rectangular cells. 

Flow equation 
Pinder and Bredehoeft (1968) show that 

if the coordinate axes are alined with the 
principal directions of the transmissivity 
tensor, equation 1 may be approximated by 
the following implicit finite-difference equa- 
tion : 

where 

i,j,k are indices in the x, g, and 
time dimensions, respec- 
tively ; 

Ax,Ag,At are increments in the x, 2/, 
and time dimensions, re- 
spectively ; and 

Go is the volumetric rate of with- 
drawal or recharge at the 
(i,j) node, L3/T. 

Note that k represents the new time level 
and k-l represents the previous time level. 
To avoid confusion between tensor sub- 
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scripts and nodal indices, the latter are sep- 
arated by commas. 

The finite-difference equation (eq 11) is 
solved numerically for each node in the grid 
using an iterative alternating-direction im- 
plicit (ADI) procedure. The derivation and 
solution of the finite-difference equation and 
the use of the iterative AD1 procedure have 
been previously discussed in detail in the 
literature. Some of the more relevant refer- 
ences include Pinder and Bredehoeft (1968)) 
Prickett and Lonnquist (1971)) and Tres- 
cott, Pinder, and Larson (1976). 

After the head distribution has been com- 
puted for a given time step, the velocity of 
ground-water flow is computed at each node 
using an explicit finite-difference form of 
equation 3. For example, the velocity in the 
x direction at node (i,j) would be computed 
as 

V Km(C,j, (hi-t,i,a- j2J+1,j,d 
m(iA = - (12) c ZAX * 

The velocity in the x direction can also be 
computed on the boundary between node 
(i,j) and node (i+l,j) using the following 
equation : 

V 
K ~z(~+%J) tF, We -Jci+l,j,k ) 

z(i+%,i) I 
AX (13) c 

where the hydraulic conductivity on the 
boundary is computed as the harmonic mean 
of the hydraulic conductivities at the two 
adjacent nodes. 

Expressions similar to equations 12 and 13 
are used to compute the velocities in the y 
direction at (i,j) and (i,j+ l/2) respectively. 
Note that equation 13, which computes the 
head difference over a distance Ax, is more 
accurate than equation 12, which computes 
the head difference over 2Ax. 

Transport equation 

Method of characteristics 

The method of characteristics is used in 
this model to solve the solute-transport equa- 
tion. This method was developed to solve 
hyperbolic differential equations. If solute 

transport is dominated by convective trans- 
port, as is common in many field problems, 
then equation 4 may closely approximate a 
hyperbolic partial differential equation and 
be highly compatible with the method of 
characteristics. Although it is difficult to 
present a rigorous mathematical proof for 
this numerical scheme, it has been success- 
fully applied to a variety of field problems. 
The development of this technique for prob- 
lems of flow through porous media has been 
presented by Garder, Peaceman, and Pozzi 
(1964)) Pinder and Cooper (1970)) Reddell 
and Sunada (1970)) and Bredehoeft and 
Pinder (1973). Garder, Peaceman, and 
Pozzi (1964) state that this technique does 
not introduce numerical dispersion (artifi- 
cial dispersion resulting from the numerical 
calculation process). They and Reddell and 
Sunada (1970) also compared solutions ob- 
tained using the method of characteristics 
with those derived by analytical methods 
and found good agreement for the cases in- 
vestigated. Applications of the method to 
field problems have been documented by 
Bredehoeft and Pinder (1973)) Konikow 
and Bredehoeft (1974)) Robertson (1974)) 
Robson (1974)) and Konikow (1977). 

The approach taken by the method of char- 
acteristics is not to solve equation 4 directly, 
but rather to solve an equivalent system of 
ordinary differential equations. Konikow and 
Grove (1977, eq 61) show that by consider- 
ing saturated thickness as a variable and by 
expanding the convective transport term, 
equation 4 may be rewritten as 

~=g-&hg)-vg 

C(P -+ w- 
+ at 

c$) -~c’w 

cb 
* (14) 

Equation 14 is the form of the solute-trans- 
port equation that is solved in the computer 
program presented in this report. For con- 
venience we may also write equation 14 as 



6 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

where 

C(Sah -+w- 2) -C’W 
F= at at . 

cb 
(16) 

Next consider representative fluid par- 
ticles that are convected with flowing ground 
water. Note that changes with time in prop 
erties of the fluid, such as concentration, may 
be described either for fixed points within 
a stationary coordinate system as successive 
fluid particles pass the reference points, or 
for reference fluid particles as they move 
along their respective paths past fixed points 
in space. Aris (1962, p. 78) states that “as- 
sociated with these two descriptions are two 
derivatives with respect to time.” Thus 
aC/at is the rate of change of concentration 
as observed from a fixed point, whereas 
dC/dt is the rate of change as observed when 
moving with the fluid particle. Aris (1962) 
calls the latter the material derivative. 

The material derivative of concentration 
may be defined as 

dC aC aC dx aC dy -=-++-+--* (17) 
dt at ax dt ay dt ’ ‘ 

Note the correspondence of the second and 
third terms on the right side of equation 15 
with the second and third terms on the right 
side of equation 17. The latter includes the 
material derivatives of position, which are 
defined by velocity. Thus for the 2 and 2/ 
components, respectively, of position and 
velocity we have 

dx -= 
dt 

V* 

and 

dy v -= 
dt ’ 

(18) 

(19) 

If we next substitute the right sides of 
equations 15, 18, and 19 for the correspond- 
ing terms in equation 17, we obtain 

-$=;&(bD$&) +F. (20) 

The solutions of the system of equations 
comprising equations 18-20 may be given as 

x=x(t) ; y=y(t) ; and C=C(t) (21) 

and are called the characteristic curves of 
equation 15. 

Given solutions to equations 18-20, a solu- 
tion to the partial differential equation (eq 
15) may be obtained by following the char- 
acteristic curves. This is accomplished nu- 
merically by introducing a set of moving 
points (or reference particles) that can be 
traced within the stationary coordinates of 
the finite-difference grid. Garder, Peaceman, 
and‘Pozzi (1964, p. 27) state, “Each point 
corresponds to one characteristic curve, and 
values of x, y, and C are obtained as func- 
tions of t for each characteristic.” Each point 
has a concentration and position associated 
with it and is moved through the flow field 
in proportion to the flow velocity at its loca- 
tion. Intuitively, the method may be visual- 
ized as tracing a number of fluid particles 
through a flow field and observing changes 
in chemical concentration in the fluid par- 
ticles as they move. 

Particle tracking 

The first step in the method of character- 
istics involves placing a number of trace- 
able particles or points in each cell of the 
finite-difference grid to form a set of points 
that are distributed in a geometrically uni- 
form pattern throughout the area of inter- 
est. It was found that placing from four to 
nine points per cell provided satisfactory re- 
sults for most two-dimensional problems. 
The location or position of each particle is 
specified by its x- and y- coordinates in the 
finite-difference grid. The initial concentra- 
tion assigned to each point is the initial con- 
centration associated with the node of the 
cell containing the point. 

For each time step every point is moved a 
distance proportional to the length of the 
time increment and the velocity at the loca- 
tion of the point. (See fig. 1.) The new posi- 
tion of a point is thus computed with the fol- 
lowing finite-difference forms of equations 
18 and 19: 

%,k= zp.k-1 + 8% = %,k--1 + AtVz[zt,,,,.vo,,,l 

(22) 
and 
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EXPLANATION 
0 Initial location of p&tick 

0 New location of particle 
+ Flow line and direction of flow 
---Computed path of particle 

Figure 1 .-Part of hypothetical finite- 
difference grid showing relation of 
flow field to movement of points. 

%‘,k=?h>k--l+% =7dp,k-lfAtVYrZ~p,l).v~p,*)l 
(23) 

where 
P is the index number for 

point identification ; and 
8x, and 6~~ are the distances moved in 

the x and 2/ directions, re- 
spectively. 

The x and 2/ velocities at the position 
of any particular point p, indicated as 
‘v~[%k,.% ?$,I9 for time k are calculated through 
bilinear interpolation over the area of half 
of a cell using the x and 2/ velocities com- 
puted at adjacent nodes and cell boundaries. 
For example, figure 2 illustrates that the 
velocity in the x direction of point p, located 
in the southeast quadrant of cell (i,i) , would 
be computed using bilinear interpolation be- 
tween the x velocities computed with equa- 
tions 12 and 13 at (i,i), (i,i+l), (i+1/,j), 
and (i+ r/&j+ 1). Similarly, the velocity in 
the II direction of point p would be based on 
the 2/ velocities computed at (i,i), (i+l,j), 
(i,i+$) and (i+l,j+1/2). 

After all points have been moved, the con- 
centration at each node is temporarily as- 
signed the average of the concentrations of 

x- 

'i-l,j-1 / l l i,j-1 j l i+l,j-1 1 

Y 

I 

. I . 1 . 1 . 

EXPLANATION 
. Node of finite-difference grid 
0 Location of particle p 

-----C Xor Y Component of velocity 

Area of influence for interpolating velocity 
in X direction at particle p 

Area of influence for interpolating velocity 
in Y direction at particle p 

Figure P.-Part of hypothetical finite-difference grid 
showing areas over which bilinear interpolation is 
used to compute the velocity at a point. Note that 
each area of influence is equal to one-half of the 
area of a cell. 

all points then located within the area of that 
cell ; \this average concentration is denoted 
as Ci,j,k** The time index is distinguished 
with an asterisk here because this tempo- 
rarily assigned average concentration rep- 
resents the new time level only with respect 
to convective transport. The moving points 
simulate convective transport because the 
concentration at each node of the grid will 
change with each time step as different 
points having different concentrations enter 
and leave the area of that cell. 

Finite-difference approximations 

The total change in concentration in an 
aquifer may be computed by solving equa- 
tions M-20. Equations 18 and 19, which are 
related to changes in concentration caused 
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by convective transport alone, are solved 
by the movement of points as described 
previously. The changes in concentration 
caused by hydrodynamic dispersion, fluid 
sources, divergence of velocity, and changes 
in saturated thickness are calculated using 
an explicit finite-difference approximation to 
equation 20, which can be expressed as 

AC,,j,,k = At ‘“(bD& +F ac -I . (24) 
Lb 3% -axj J 

Note that a solution to equation 20 re- 
quires the computation of the change in con- 
centration at the tracer particles. However, 
primarily because of the difficulty in comput- 
ing the concentration gradient at a large 
number of moving points, the change in con- 
centration represented by equation 20 is 
solved at each node of the grid rather than 
directly at the location of each pomt. The 
material derivative of concentration on any 
characteristic curve (or for any tracer par- 
ticle) is then related to the change in con- 
centration for a node during one time step, 
which was computed with the solution to 
equation 24. 

The right side of equation 24 can be con- 
sidered as the sum of two separate terms, 
as follows : 

AC,,,,, = (AC&,,,) I+ (AC4,j,e) II (25) 
where 

(aC,,,,,) I is the change in concentration 
caused by hydrodynamic 
dispersion, and is defined 
as 

(26) 

and 
(ACa,j,e) II is the change in concentra- 

tion resulting from an ex- 
ternal fluid source and 
changes in saturated thick- 
ness, and from equation 16 
is defined as 

(A’%,,d,,=At 8’ 

=At 
C(S$+W-p, -C’W 

at 

L cb 1 * (27) 

First we will examine the change in con- 
centration due to dispersion, partly follow- 
ing the development of Reddell and Sunada 
1(19’70). The right side of equation 26 can he 
expanded according to the summation con- 
vention of tensor notation to obtain 

Gm 
A finite-difference approximation for the 

derivative in the x direction at (i,j) may be 
written as 

AX 
(29) 

In the following expansion of equation 29 
it is implied that concentrations (C) are 
known from the previous (k-l) time level ; 
hence, equation 29 is an explicit finite-differ- 
ence equation. The spatial derivatives of con- 
centration at (i+ l/&j) may be approximated 
by 

(36) 

and 

8 
( > 

c i+w+1 -‘i+lA,j-I 

ZF i+W.j= 2A1/ ’ 
(31) 

Because concentrations are defined only at 
nodes, we must express the right side of 
equation 31 in terms of concentrations at 
nodes. Assuming that the concentration at a 
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cell boundary is approximately equal to the 
average (arithmetic mean) of the concentra- 
tions at adjacent nodes, we have 

C 
C ij+l +‘i+l,j+l 

i+w+1 = (32) 
2 

and 

C 
63-l *‘i+l.j-1 

c = i+%,j-1 . 
2 (33) 

Substitution of equations 32 and 33 into After substituting equations 30, 34, 35, and 
equation 31 results in : 36 into equation 29, we have 

~,j+l+Ci+l.j+l -Ci,j--l-Ci+l.j--l 
. 

4&V 
(34) 

Similarly, the spatial derivatives of con- 
centration at (i - l/zJ) are 

and 

c&j-G-1 
(35) 

Ax 

‘i-l,j+l +‘i.j+l -ci-l,j-l -ciej-l 

4W 
. 

(36) 

bD ~=ri+W.jl(Ci+l.j-Cij) bDzzIi-%,il “i,i -ci-l.i) 
= 

(Ax)’ - (AxI 

bDzy[i+$$.j] (ci,j+l+ci+l,j+l-c~~ M-1 -ci+I,j-l) 

I 
4AxAy 

bD 
*u[j-$$,j](Ci-l,j+l +’ i,j+l-Ci-l,j--l -’ G-1) 

. (37) 
4AxAy 

A finite-difference approximation for the 
I 

may be developed for node (i,i) in an analo- 
derivative in the g direction in equation 28 gous manner to equation 37 to produce 

$(bDuu$+ bQ,m$$ 

( bDug)i,j+g -( bDu$)j,j-n ( bDuE)j,j+$4 - ( bDux$)i,j--K 

= + 

A2/ AlI 

bD,rij+~l (C~j+l -C~j> bD,rij_ul (C,j-C.. . W-1 
) 

= 

(AY)' - (AY)2 

bD~[i,j+~](ci+lj+ci+l~+l-ci-IJ -ci-l,i+l) , 

4AxAy 

bDuz[j,j,x] (‘i+*,j-1 +‘i+l j-Ct-l,j-*-Ci-l,j) , 
. (38) 

4AxAy 

Equation 28 may then be solved explicitly 
I 

by equations 3’7 and 38 for the terms within 
by substituting the relationships expressed brackets on the right side of equation 28. 
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Next we will examine the change in con- 
centration denoted by equation 27. Substi- 
tuting explicit finite-difference approxima- 
tions for the terms in equation 27, we have 

(ACM) II = $[ G,,,*.+ (s[ ~J~k---$J+l ] 

+ wS,,,k - l 

b ha-1 bbnG - 

At I) 
-qj,w, ik . *. ,. I (39) 

Equations 28, 37, 38, and 39 together pro- 
vide a solution to equation 24, which in turn 
allows us to solve equation 20 and complete 
the definition of the characteristic curves of 
equation 15. 

Because the processes of convective trans- 
port, hydrodynamic dispersion, and mixing 
are occurring continuously and simultane- 
ously, equations 18, 19, and 20 should be 
solved simultaneously. However, equations 
18 and 19 are solved by particle movement 
based on implicitly computed heads while 
equation 20 is solved explicitly with respect 
to concentrations. Because the change in con- 
centration at a source node due to mixing is 
proportional to the difference in concentra- 
tion between the node and the source fluid 
(see eq 27)) the accuracy of estimating the 
concentration at the node during a time in- 
crement will clearly affect the computed 
change. Similarly, because the change in con- 
centration due to dispersion is proportional 
to the concentration gradient at a point, the 
accuracy of estimating the concentration 

gradient will clearly affect the accuracy of 
the numerical results. As the position of a 
front or breakthrough curve advances with 
time, say from the k-l to k time level, the 
concentration gradient at any fixed reference 
point and the concentration differences at 
sources are continuosly changing. The con- 
sequent limitations imposed by estimating 
nodal concentrations in a strict explicit man- 
ner can be minimized by using a two-step 
explicit procedure in which equation 24 is 
solved at each node by giving equal weight 
to concentration gradients computed from 
the concentrations at the previous time level 
(k-l) and to concentration gradients com- 
puted from concentrations at time level (k*) , 
which represents the convected position of 
the front at the new time level (k) prior to 
adjustments of concentration for dispersion 
and mixing. Figure 3 illustrates the sequence 
of calculations to solve equations 18-20 over 
a given time increment. First the concentra- 
tion gradients at the previous time level 
(k- 1) are determined at each node. Then 
the front is convected to a new position for 
time level k* based on the velocity of flow 
and length of the time increment. Next the 
concentration gradients at each node are re- 
computed for the new position of the front. 
The concentrati& distribution for the new 
frontal position is then adjusted at each node 
in two steps: first based on concentration 
gradients at k-l and second based on con- 
centration gradients at k*. 

The finite-difference approximation to 
equation 24 may thus be expressed as 

1 

&,,,k = 

ah c(k-I) (s-+ w- $) -C’W 
+ at 

ah c,k.,(s--+ w- 
+ at 

2) -C’W 

c 

in which the appropriate finite-difference ap- 
proximations for the terms within brackets 
are indicated by equations 37, 38, and 39. 

(40) 

The new nodal concentrations at the end 
of time increment k are computed as 

Cd,i,~= Ci,j,k* + ACi,j,k (41) 

c 



MODEL OF SOLUTE TRANSPORT IN GROUND WATER 11 

i- 

D 

RELATIVE DISTANCE 

Figure J.-Representative change in breakthrough curve from time level k-l to k. Note that concentration 
changes are exaggerated to help illustrate the sequence of calculations. 

where C I,f,k. is the average of the concentra- 
tions of all points in cell (i,j) after equations 
22 and 23 were solved for all points for time 
step k, and ACs,j,, is the change in concentra- 
tion caused by hydrodynamic dispersion, 
sources, and sinks, as calculated in equation 
40. 

Because the concentrations of points in a 
cell vary about the concentration of the node, 
the change in concentration computed at a 
node using equation 40 cannot be applied 
directly in all cases to the concentrations of 
the points. If the change in concentration at 
the node (AC& is positive, the increase is 
simply added to the point concentrations. 
But if the concentration change is negative, 
it is applied to points in that cell as a per- 
centage decrease in concentration at each 
point that is equal to the percentage decrease 

at the node. This technique preserves a mass 
balance within each cell, but when a decrease 
in concentration is computed for a node, it 
will also prevent a possible but erroneous 
computation of negative concentrations at 
those points that had a concentration less 
than that at the node. 

Stability criteria 
The explicit numerical solution of the 

solute-transport equation has a number of 
stability criteria associated with it. These 
may require that the time step used to solve 
the flow equation be subdivided into a num- 
ber of smaller time increments to accurately 
solve the solute-transport equation. 

First, Reddell and Sunada (1970, p. 62) 
show that for an explicit finite-difference 
solution of equation 26 to be stable, 
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D,a At + D, AtL 1 
---. 

(AxI (AYj2 2 
(42) 

Solving equation 42 for At, we see that 

Substituting equation 47 into equation 45 
results in 0 

AS * (43) 

Because the solution to equation 26 is ac- 
tually written as a set of iV equations for N 
nodes, the maximum permissible time incre- 
ment is the smallest At computed for any in- 
dividual node in the entire grid. The smallest 
At will then occur at the node having the 
largest value of 

Next consider the effects of mixing ground 
water of one concentration with injected or 
recharged water of a different concentra- 
tion, as represented by the source terms in 
equation 39. The change in concentration in 
a source node cannot exceed the difference 
between the source concentration (C: j ) and 
the concentration in the aquifer (C,;) , and 
the maximum possible change occurs when 
a source completely flushes out the volume 
of water in an aquifer cell at the start of a 
time step. Therefore 

AcijbdCijk--l -cij,. (44) 
. l . . 

After rearranging teims in equation 44, we 
have 

A&k 41.0. 
CC*,,,-1 - c’W,k) 

(45) 

We may isolate the effects of mixing rep- 
resented in equation 39 by assuming steady- 
state flow in which ah&t=0 and ah/at =O. 
Then we can rewrite equation 39 as 

At wij,k (&,k--1- C’&,,k) 

(&,j,d II = . 
b 

(46) 
l iJ,k 

After rearranging terms in equation 46, we 
have 

(ACw.) II At W&j,k 

tc :. 
ij,k-I-C;jk) = ‘Qk * (47) 

At W4,j.k L1.O. (48) 

Solving equation 48 for At at all nodes 
yields the following criterion : 

Ai% Min b f di,k 
(over grid) c [ 1 ’ (49) 

A third type of stability check involves the 
movement of points computed by equations 
22 and 23 to simulate convective transport. 
The distance a particle moves is defined as 

and 
6x = At VZ[~~~,~~.Y~,,~,I (56) 

6Y = At vtlrqp,gcp,~,~ . (51) 
In effect, this constitutes a linear spatial 
extrapolation of the position of a particle 
from one time step to the next. Where 
streamlines are curvilinear, the extrapolated 
position of a particle will deviate from the 
streamline on which it was previously lo- 
cated. .This deviation introduces an error 
into the numerical solution that is propor- 
tional to At. Thus, it is thought that an ac- 
curate computation of concentration changes 
caused by convective transport requires the 
maintenance of a relatively uniformly spaced 
field of marker particles that are moving 
along relatively smooth and continuous path- 
lines. Also, if ax is greater than Ax, or 6~ is 
greater than Ay, it might be possible for par- 
ticles to move beyond the boundaries of the 
grid during one time increment. Thus, for 
a given velocity field and grid, some restric- 
tion must be placed on the size of the time 
increment to assure that neither 8x nor Sy 
exceed some critical distances, called Sx*and 
Sz/*. Therefore 

sx4x* (52) 
and 

ayay*. (53) 
These critical distances can be related to 

the dimensions of the finite-difference grid 
by 

8x* = yAx (54) 
and 
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&*=yAy (55) 
where y is the fraction of the grid dimen- 
sions that particles will be allowed to move 
(0 < y& 1). 

If we replace the terms in equations 52 
and 53 with the corresponding terms from 
equations 50, 51,54, and 55, we have 

and 
At vz[z cp,r,%.,sJ LYAX (56) 

At VYr2,p.*,.r(,,*,l --LYAY- (57) 
Because these criteria are governed by the 
maximum velocities in the system, and since 
the computed velocity of a tracer particle 
will always be less than or equal to the 
maximum velocity computed at a node or celh 
boundary, we have to check only the latter. 
Substituting the grid velocities and solving 
equations 56 and 57 for At results in 

and 

Ai% $; (53) 
a max 

(59) 

If the time step used to solve the flow 
equation exceeds the smallest of the time 
limits determined by equations 43, 49, 58, or 
59, then the time step will be subdivided into 
the appropriate number of smaller time in- 
crements required for solving the solute- 
transport equation. 

Boundary and initial conditions 

Obtaining a solution to the equations that 
describe ground-water ilow and solute trans- 
port requires the specification of boundary 
and initial conditions for the domain of the 
problem. Specifications for solving the flow 
equation must be compatible with the solu- 
tion of the solute-transport equation. Several 
different types of boundary conditions can 
be incorporated into the solute-transport 
model. Two general types are incorporated 
in this model ; these are constant-flux and 
constant-head conditions. These can be used 
to represent the real boundaries of an 
aquifer as well as to represent artificial 

3 
boundaries for the model.- The use of the 

latter can help to minimize data require- 
ments and the area1 extent of the modeled 
part of the aquifer. 

A constant-flux boundary can be used to 
represent aquifer underflow, well with- 
drawals, or well injection. A finite flux is 
designated by specifying the flux rate as a well 
discharge or injection rate for the appro- 
priate nodes. A no-flow boundary is a spe- 
cial case of a constant-flux boundary. The 
numerical procedure used in this model re- 
quires that the area of interest be sur- 
rounded by a no-flow boundary. Thus the 
model will automatically specify the outer 
rows and columns of the finite-difference grid 
as no-flow boundaries. No-flow boundaries 
can also be located elsewhere in the grid to 
simulate natural limits or barriers to 
ground-water flow. No-flow boundaries are 
designated by setting the transmissivity 
equal to zero at appropriate nodes, thereby 
precluding the flow of water or dissolved 
chemicals across the boundaries of the cell 
containing that node. 

A constant-head boundary in the model 
can represent parts of the aquifer where the 
head will not change with time, such as re- 
charge boundaries or areas beyond the in- 
fluence of hydraulic stresses. In this model 
constant-head boundaries are simulated by 
adjusting the leakage term (the last term on 
the right side of equation 11) at the appro- 
priate nodes. This is accomplished by setting 
the leakance coefficient (Z&/m) to a suffi- 
ciently high value (such as 1.0 s-l) to allow 
the head in the aquifer at a node to be im- 
plicitly computed as a value that is essen- 
tially equal to the value of H,, which in this 
case would be specified as the desired con- 
stant-head altitude. The resulting rate of 
leakage into or out of the designated con- 
stant-head cell would equal the flux required 
to maintain the head in the aquifer at the 
specified constant-head altitude. 

If a constant+flux or constant-head bound- 
ary represents a fluid source, then the chemi- 
cal concentration in the source fluid (C’) 
must also be specified. If the boundary rep- 
resents a fluid sink, then the concentration 
of the produced fluid will equal the concen- 
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tration in the aquifer at the location of the 
sink. 

Because solute transport directly depends 
upon hydraulic and concentration gradients, 
the head and concentration in the aquifer at 
the start of the simulation period must be 
specified. The initial conditions can be deter- 
mined from field data and (or) from previ- 
ous simulations. It is important to note that 
the simulation results may be sensitive to 
variations or errors in the initial conditions. 
In discussing computed heads, Trescott, 
Pinder, and Larson (1976, p. 30) state: 

If initial conditions are specified so that transient 
flow is occurring in the system at the start of the 
simulation, it should be recognized that water levels 
will change during the simulation, not only in re- 
sponse to the new pumping stress, but also due to 
the initial conditions. This may or may not be the 
irkent of the user. 

Mass balance 
Mass balance calculations are performed 

after specified time increments to help check 
the numerical accuracy and precision of the 
solution. The principle of conservation of 
mass requires that the cumulative sums of 
mass inflows and outflows (or net flux) must 
equal the accumulation of mass (or change 
in mass stored). The difference between the 
net flux and the mass accumulation is the 
mass residual (R,) and is one measure of 
the numerical accuracy of the solution. Al- 
though a small residual does not prove that 
the numerical solution is accurate, a large 
error in the mass balance is undesirable and 
may indicate the presence of a significant 
error in the numerical solution. 

The model uses two methods to estimate 
the error in the mass balance. Both are based 
on the magnitude of the mass residual, R,, 
which is computed from 

where 

R,=AM,-M, (60) 

AM, is the change in mass stored in the 
aquifer, M; and 

Mt is the net mass flux, M. 

The two mass terms, AM, and MI, are 
evaluated using the following equations : 

where C,j,, is the initial concentration at 
node (i,j) , M/L3 ; and 

M,=888Wc,j,khXayatk cij k 
Cjk ,I . (6lb) 

The percent error (E) in the mass bal- 
ance is computed first by comparing the 
residual with the average of the net flux and 
net accumulation, as 

E JOO.O(M,--a,) 
1 

O.~(M,+AMJ ' 
(62) 

This is a good measure of the accuracy of 
the numerical solution when the flux and the 
change in mass stored are relatively large. 
However, equation 62 does not account for 
the initial mass of solute in the aquifer. If 
total fluxes are very small compared to the 
initial mass of solute in the aquifer, then 
equation 62 might indicate a relatively large 
error when the numerical solution is actually 
quite accurate. Therefore, the error may also 
be computed a second way by comparing the 
residual with the initial mass of solute 
(Mo) present in the aquifer, as 

E 
2 
=lOO.O (M,-AM,) 

Mo * 
(63) 

Equation 63 provides a good measure of the 
accuracy of the numerical solution when 
fluxes are zero or relatively small. But when 
M, is zero or very small in comparison to 
AM,, then E, becomes meaningless. This 
problem can be overcome by correcting M, 
in the denominator of equation 63 for the 
net mass flux, resulting in 

E =lOO.W,-alM,) 
3 

M,,-M, * 
(64 

Note that as M, becomes very small, equa- 
tion 64 approaches equation 63, and as M. 
becomes very small, E, becomes just a com- 
parison of the residual with the net flux. In 
the latter case E, is a mass balance indicator 
similar to E, in equation 62. Thus, E, is con- 
sidered a more reliable and versatile indi- 
cator of numerical accuracy than is Ez. 
Either one or both of E, and E, are computed 
by the model, as appropriate. 



MODEL OF SOLUTE TRANSPORT IN GROUND WATER 15 

Special problems 

There are a number of special problems 
associated with the use of the method of 
characteristics to solve the solute-transport 
equation. Some of these problems are asso- 
ciated with the movement and tracking of 
particles, while other problems are related to 
the computational transition between the 
concentrations of particles within a cell and 
the average concentration at that node. We 
will next describe the more significant prob- 
lems and the procedures used to minimize 
errors that might result from them. 

One possible problem is related to no-flow 
boundaries. Neither water nor dissolved 
chemicals can be allowed to cross a no-flow 
boundary. However, under certain conditions 
it might be possible for the interpolated 
velocity at the location of a particle near a 
no-flow boundary to be such that the particle 
will be convected across the boundary during 
one time increment. Figure 4 illustrates such 
a possible situation, which arises from the 
deviation between the curvilinear flow line 
and the linearly projected particle path. If 
a particle is convected across a no-flow 
boundary, then it is relocated within the 
aquifer by reflection across the boundary, as 
also shown in figure 4. This correction thus 
will tend to relocate the particle closer to the 
true flow line. 

Fluid sources and sinks also require special 
treatment. Because they tend to represent, 
singularities in the velocity field, the use of 
a central difference formulation (eq 12) to 
compute the velocity at a node may indicate 
zero or very small velocities at the nodes. 
Therefore, the velocity components at a 
source or sink node cannot be used for in- 
terpolation of the velocity at a point within 
or adjacent to that cell. To help maintain 
radial flow to or from a sink or source, re- 
spectively, the velocities computed on the 
boundaries of source or sink cells are as- 
signed to that node. The appropriate bound- 
ary velocities are determined on the basis of 
the quadrant of interest. This can be illus- 
trated by referring again to figure 2. If a 
point is located in the southeast quadrant of 
cell (i,i), the x velocity at node (iJ) would 

. 

EXPLANATION 
. Node of finite-difference grid 
a Previous location of particle p 

0 Computed new location of particle p 
A Corrected new location of particle p 

b Flow line and direction of flow 
--- Computed path of flow 

N 
Zero transmissivity (or no-f low boundary) 

Figure 4.-Possible movement of particles near 
an impermeable (no-flow) boundary. 

be set equal to V 

V7/(ii+M) * 

z(i+M j,and the 9 velocity to 
Corresponding adjustments are 

made for points in other quadrants, so that 
the magnitude and direction of velocity at 
the node are not fixed for a given time in- 
crement, but depend on the relative location 
of the point of interest within the cell. A 
similar approximation is made when a point 
of interest is located in a cell adjacent to a 
source or sink. Thus, if the same point, p, in 
figure 2 were located in an unstressed cell 
but the adjacent cell (i+l,j) represented a 
source or sink, then the y velocity at 
node (i+ l,i) would be approximated by 

%+1 i+ 5) 
in order to estimate the y velocity 

at point p. A corresponding approximation 
for the x velocity at node (i,i+ 1) would be 
made using Vsci+‘A j+l)if a source or sink 
were located at (i,ii 1). 

The maintenance of a reasonably uniform 
and continuous spacing of points requires 
special treatment in areas where sources and 
sinks dominate the flow field. Points will con- 
tinually move out of a cell that represents a 
source, but few or none will move in to re- 
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place them and thereby maintain a continuous 
stream of points. Thus, whenever a point 
that originated in a source cell moves out of 
that source cell, a new point is introduced 
into the source cell to replace it. Placement 
of new points in a source cell is compatible 
with and analogous to the generation of fluid 
and solute mass at the source. 

The procedure used to replace points in 
source cells that are adjacent to no-flow 
boundaries is illustrated in figure 5. Here a 
steady, uniformly spaced stream of points is 
maintained by generating a new point at the 
same relative position in the source cell as 
the new position in the adjacent cell of the 
point that left the source cell. As an example, 
point ‘7 was convected from cell (i- l,i) to 
cell (i,i) . So the replacement point (22) was 
placed at a location within cell (i-1,j) that 
is identical to the new location of point 7 
within cell (i,j) . 

The procedure used to replace points in 
source cells that lie within the aquifer and 
not adjacent to a no-flow boundary is illus- 
trated in figure 6. Here a steady, uniformly 
spaced stream of particles is maintained by 
generating a new point in the source cell at 
the original location of the point that left 
the source cell. When a relatively strong 

time k-l 

source is imposed on a relatively weak re- 
gional flow field, as illustrated in figure 6a, 
then radial flow will be maintained in the 
area of the source, and all initial and replace- 
ment points will move symmetrically away 
from node (i,j). For example, after point 7 
moves from cell (i,i) to (i+l, i-l), the re- 
placement point (18) is positioned at time k 
in cell (i,i) at the same location as the ini- 
tial position of point ‘7. Although the re- 
placement procedure illustrated earlier by 
figure 5 would work just as well for the case 
illustrated in figure 6a, it would not be satis- 
factory for the situation presented in figure 
6b, which illustrates the imposition of a rela- 
tively weak source in a relatively strong 
regional flow field. In this case the velocity 
distribution within the source cell does not 
possess radial symmetry, and the velocity 
within the upgradient part of the source cell 
is much lower than the velocity within the 
d,owngradient part of the source cell. Re- 
placement of points at original locations in 
source cells, as illustrated in figure 6b, will 
maintain a steady stream of points leaving 
the source cell in proportion to the velocity 
field. However, the use of the procedure illus- 
trated in figure 5 for the case presented in 
figure 6b would result in the accumulation of 

time k 
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Figure &-Replacement of points in source cells adjacent to a no-flow boundary. c 
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Figure 6.-Replacement of points in source cells not adjacent to a 
no-flow boundary for negligible regional flow (a) and for relatively 
stroyg regional flow (b). 

points in the low-velocity area of the source 
cell (i,i) , with few points being replaced into 
the high-velocity area, where convective 
transport is the greatest. 

Although we normally expect points to be 
convected out of source cells, figure 6b also 
demonstrates the possibility that points may 
sometimes enter a source cell. This can also 
occur when two or more source cells of dif- 
ferent strengths are adjacent to each other. 
An erroneous multiplication of points might 
then result if points that did not originate 
in a particular source cell are replaced when 

they in turn are convected out of that source 
cell. Therefore, points leaving a source cell 
are replaced only if they had originated in 
that source cell. 

Hydraulic sinks also require some special 
treatment. Points will continually move into 
a cell representing a strong sink, but few or 
none will move out. To avoid the resultant 
crowding and stagnation of tracer points, 
any point moving into a sink cell is removed 
from the flow field after the calculations for 
that time increment have been completed. 

i The numerical removal of points which enter 
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sink cells is analogous to the withdrawal of 
fluid and solute mass through the hydraulic 
sink. The combination of creating new points 
at sources and destroying old points at sinks 
will tend to maintain the total number of 
points in the flow field at a nearly constant 
value. 

Both the flow model and the transport 
model assume that sources and sinks act 
over the entire cell area surrounding a 
source or sink node. Thus, in effect, heads 
and concentrations computed at source or 
sink nodes represent average values over the 
area of the cell. Part of the total concentra- 
tion change computed at a source node repre- 
sents mixing between the source water at 
one concentration and the ground water at a 
different concentration (eq 39). It can be 
shown from the relationship between the 
source concentration ( C,:i,k ) and the aquifer 
concentration (Ci,j,k-1) , as indicated by 
equation 44, that the following constraints 
generally must be met in a source cell: 

c ti.k 
LC’ 

ijk * 9 for ‘:jk >Ci,j,k--l VW * . 

and 
cijk~C’ijk for Cijk <Cijkel. (65b) * . . , , . 9 . 

If it is assumed that the sources act over 
the area of the source cell and that there is 
complete vertical mixing, then these same 
constraints should also apply to all points 
within the cell. Because of the possible devia- 
tion of the concentrations of individual 
points within a source cell from the average 
concentration, the change in concentration 
cqmputed at a source node (AC,,& should 
not be applied directly to each of the points 
in the cell. Rather, at the end of each time 
increment the concentration of each point in 
a source cell is updated by setting it equal 
to the final nodal concentration. Although 
this may introduce a small amount of nu- 
merical dispersion by eliminating possible 
concentration variations within the area of a 
source cell, it prevents the adjustment of the 
concentration at any point in the source cell 
to a value that would violate the constraints 
indicated by equation 65. 

In areas of divergent flow there may be a 
problem because some cells can become void 

of points where pathlines become spaced a 
widely apart. This would result in a calcula- 
tion of zero change in concentration at a 
node due to convective transport, although 
the nodal concentration would still be ad- 
justed for changes caused by hydrodynamic 
dispersion (eq 28). Also, some numerical 
dispersion is generated at nodes in and ad- 
jacent to the cells into which the convective 
transport of solute was underestimated be- 
cause of the resulting error in the concentra- 
tion gradient. This might not cause a serious 
problem if only a few cells in a large grid 
‘became void or if the voiding were transitory 
(that is, if upgradient points were convected 
into void cells during later or subsequent 
time increments). Figure 6a illustrates 
radial flow, which represents the most severe 
case of divergent flow. Here it can be seen 
that when four points per cell are used to 
simulate convect,ive transport, then in the 
numerical procedure four of the eight sur- 
rounding cells would erroneously not receive 
any solute by convection from the adjacent 
source. If eight points per cell were used 
initially, then at a distance of two rows or 
columns from the source only 8 of 16 cells 
would be on pathlines originating in the 
source cell. So, while increasing the initial 
number of points per cell would help, it is 
obvious that for purely radial flow, an im- 
practically large initial number of points 
per cell would be required to be certain that 
at least one particle pathline passes from the 
source through every cell in the grid. 

The problem of cells becom,ing void of par- 
ticles can be minimized by limiting the num- 
ber of void cells to a small percentage of the 
total number of cells that represent the 
aquifer. If the limit is exceeded, the numeri- 
cal solution to the solute-transport equation 
is terminated at the end of that time incre- 
ment and the “final” concentrations at that 
t,ime are saved. Next the problem is reini- 
tialized at the time of termination by re- 
generating the initial particle distribution 
throughout the grid and assigning the “final” 
concentrations at the time of termination as 
new “initial” concentrations for nodes and 
particles. The solution to the solute-transport 
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equation is then simply continued in time 
from this new set of “initial” conditions until 
the total simulation period has elapsed. This 
procedure preserves the mass balance within 
each cell but also introduces a small amount 
of numerical dispersion by eliminating vari- 
ations in concentration within individual 
cells. 

To help minimize the amount of numer,i- 
cal dispersion resulting from the regenera- 
tion of points, the program also includes an 
optimization routine that attempts to main- 
tain an approximation of the previous con- 
centration gradient within a cell. The opti- 
mization routine aims to meet the following 
constraints : 

SC; 
n=l 

-=G,j 
NP 

(6W 

c, ,Ic*Lc ’ n t,m for C&G,,,, (66b) 
and 

Cl mLCn*IC4,1 I for C$Cl,m (66c) 
where 

C,* is the concentration of the nth 
point in cell (i,j) , M/L3 ; 

NP is the total number of points ini- 
tially placed in a cell ; and 

C Lm is the concentration at node (Z,m), 
which represents a cell adjacent 
to (i,j) and on a line that starts 
at (i,j) and extends through the 
coordinates of the point (n) of 
interest, as illustrated in figure 
7, M/L3. 

Note that equation 66a simply indicates 
that a mass balance must be preserved in a 
cell regardless of the range in variation of 
point concentrations within the cell. Equa- 
tions 66b and c indicate that the concentra- 
tion of any point must lie between Ct,, and 
the concentration at the node adjacent to 
particle n. The coordinates of the adjacent 
node would take on values of l=i or l=i+ 1 
and m= i or m= j f 1. For example, figure 7 
shows that for point 2, the coordinates (I+) 
would equal (i,i - 1)) while for point 3, (Z,m) 
would equal (i+ 1,j - 1) . The optimization 
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Figure 7.-Relation between possible ini- 
tial locations of points and indices of ad- 
jacent nodes. 

routine is written so that if equations 66a-c 
cannot be satisfied simultaneously for node 
(i,j) within two iterations, then to avoid fur- 
ther computational delay all C: are simply 
set equal to C4+ 

Computer Program 
The computer program serves as a means 

of translating the numerical algorithm into 
machine executable instructions. The pur- 
pose of this chapter is to describe the overall 
structure of the program and to present a 
detailed description of its key elements, 
thereby providing a link between the numeri- 
cal methods and the computer code. We hope 
that this link will make it easier for the 
model user to understand and, if necessary, 
modify the program. The FORTRAN IV 
source program developed for this model is 
listed in attachment I and includes almost 
2,000 lines. For reference purposes columns 
73-80 of each line contain a label that is 
numbered sequentially within each sub- 
routine. The definition of selected variables 
used in the program is presented in attach- 
ment II ; this glossary therefore also serves 
as a key for relating the program variables 
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to their corresponding mathematical terms. 
The computer program is compatible with 
many scientific computers ; it has been suc- 
cessfully run on Honeywell, IBM, DEC, and 
CDC computers. 

General program features 

The program is segmented into a main 
routine and eight subroutines. The name and 
primary purpose of each segment are listed 
in Table 1. Each program segment will be 
described in more detail in later sections of 
this chapter. 

Table l.-List of subroutines for solute-transport model 

NMIle Purpose 

MAIN ----Control execution. 
PARLOD --Data input and initialization. 
ITERAT ---Compute head distribution. 
GENPT --Generate or reposition particles. 
VELO ---Compute hydraulic gradients, velocities, 

dispersion equation coefficients, and 
time increment for stable solution to 
transport equation. 

MOVE -----Move particles. 
CNCON ___ Compute change in chemical concentra- 

tions and compute mass balance for 
transport model. 

OUTPT ---Print head distribution and compute 
mass balance for flow model. 

CHMOT ---Print concentrations, chemical mass 
balance, and observation well data. 

The major steps in the calculation pro- 
cedures are summarized in figure 8, which 
presents a simplified flow chart of the over- 
all structure of the computer program. The 
flow chart illustrates that the tracer particles 
may have to be moved more than once to 
complete a given time step. In other words, 
the time step used to implicitly solve the flow 
equation may have to be subdivided into a 
number of smaller time increments for the 
explicit solution of the solute-transport 
equation. The maximum time increments al- 
lowable for the explicit calculations are com- 
puted automatically by the model. Thus, the 
model user cannot specify an erroneously 
large increment or an inefficiently small in- 

crement for solving the solute-transport 
equation. For transient flow problems, some 
discretion is still required in the specifica- 
tion of the initial time step and of the time- 
step multiplier, as discussed by Trescott, 
Pinder, and Larson (1976, p. 38-40). 

The general program presented here is 
written to allow a grid having up to 20 rows 
and 20 columns. Because the numerical pro- 
cedure requires that the outer rows and col- 
umns represent no-flow boundaries, the 
aquifer itself is then limited to maximum 
dimensions of 18 rows and 18 columns. If a 
problem requires a larger grid, then the ap- 
propriate arrays must be redimensioned ac- 
cordingly. These arrays are contained 
in COMMON statements PRMK, HEDA, 
HEDB, CHMA, CHMC, and DIFUS, and in 
DIMENSION statements on lines C170, 
G200, H140, and 1160. 

The program allows the specification of 
one pumping well per node. The wells can 
represent injection (recharge) or withdrawal 
(discharge). If more than one well exists 
within the area of a cell, then the flux spe- 
cified for that node should represent the net 
rate of injection or withdrawal of all wells 
in that cell. The model assumes that stresses 
are constant with time during each pumping 
period (NPMP) . But the total number of 
wells, as well as their locations, flux rates, 
and source concentrations, may be changed 
for successive pumping periods. The pro- 
gram also allows the specification of obser- 
vation wells at as many as five nodes in the 
grid. For nodes that are designated as ob- 
servation wells, at the end of the simulation 
period or after every 50 time increments the 
model will print a summary table of the head 
and concentration at the previous time in- 
crements. 

The program also includes a node identi- 
fication array (NODEID), which allows cer- 
tain nodes or zones to be identified by a 
unique code ,number. This feature can save 
much time in the preparation of input data 
by easily equating each code number with a 
desired boundary condition, flux, or source 
concentration. 



MODEL OF SOLUTE TRANSPORT IN GROUND WATER 21 

READ GEOLOGIC, 
HYDROLOGIC,& 

I GENERATE UNIFORM COMPUTE HYDRAULIC 
DISTRIBUTION OF GRADIENTS FOR 

TRACER PARTICLES l-4 ONE TIME STEP l- c , k 

+ 

, 

, 
COMPUTE DISPERSION COMPUTE 

EQUATION COEFFICIENTS GROUND- WATER 

A 
VELOCITIES 

COMPUTE AVERAGE 
CONCENTRATION IN EACH 
FINITE-DIFFERENCE CELL 

c 
COMPUTE EXPLICITLY 

THE CHEMICAL 
CONCE(;:RDA;CSlON AT 

c 
ADJUST CONCENTRATION 

OF EACH PARTICLE 

I 

+ 
COMPUTE 

MASS BALANCE 1 

NO 

I I +YES 
T 

SUMMARIZE AND 
PRINT RESULTS 

I 

c 

STOP 

Flgure &-Simpllfied flow chart illustrating the major steps in the calculation 
procedure. 

Program segments of the program. Subroutines for input, ex- 

MAIN 
ecution, and output are called from MAIN 
and the elapsed time simulated is compared 

The primary purpose of the MAIN routine with the desired total simulation period. 
is to control the overall execution sequence Also, lines ASOO-A580 serve to store (or 
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record) observation well data for transient 
flow problems. 

Subroutine PARLOD 

All input data are read through subroutine 
PARLOD. These data define the properties, 
boundaries, initial conditions, and stresses 
for the aquifer, as well as spatial grid and 
time-step factors. The values of many vari- 
ables are also initialized here. After the data 
are read, some preliminary calculations are 
made, such as (1) determining time incre- 
ments for the flow model (lines B780-B890), 
(2) computing the harmonic mean trans- 
missivities in the 2 and 2/ directions (B1670- 
BMOO) , (3) adjusting transmissivity for 
anisotropy (B1810-B1820), (4) computing 
iteration parameters (B1840-B1910 and 
B2880-B2980), and (5) checking for possible 
inconsistencies among the i n p u t data 
(B3140-B3290). A printout is also provided 
of all input data so that the data may be re- 
checked and each run identified. 

Subroutine ITERAT 

This subroutine solves a finite-difference 
approximation of the flow equation (eq 11) 
using an iterative AD1 procedure. The ma- 
trix generated by the finite-difference ap- 
proximation is solved using the Thomas 
algorithm, as described by von Rosenberg 
(1964, p. 113). Row calculations are made in 
lines C270-C610, and column calculations are 
made in lines C630-C970. The calculations 
are assumed to have converged on a solution 
if the maximum difference at all nodes be- 
tween heads computed along rows and heads 
computed along columns is less than the spec- 
ified tolerance. Convergence is checked on 
lines C940-C960. Note that here (for ex- 
ample, lines C380, C700, C930, and C1150) 
and in other subroutines the thickness array 
(THCK) is used to check whether a node is 
in the aquifer. 

It should also be noted here that the flow 
model, as written, assumes that the trans- 
missivity of the aquifer is independent of the 
head (or saturated thickness) and remains 
constant with time. If this assumption is not 

to the particular aquifer system 
‘being-modeled, then the solution algorithm 
presented in this subroutine should be modi- 
fied accordingly. For example, flow models 
published by Prickett and Lonnquist (1971, 
p. 43-45) and Trescott, Pinder, and Larson 
(1976) include such a modification. 

All parameters involved in the calculation 
of heads are defined as double precision vari- 
ables and all calculations involving these 
parameters are performed in double pre- 
cision. The number of double precision vari- 
ables and operations can be reduced sig- 
nificantly if the program is to be executed on 
a high-precision scientific computer, thereby 
improving the efficiency of the model by re- 
ducing computer storage requirements and 
execution time. 

The iterative AD1 procedure used to solve 
the finite-difference equations is not neces- 
sarily the best possible solution technique for 
all problems. For example, it may be difficult 
to obtain a solution using the iterative AD1 
procedure for cases of steady-state flow when 
internal nodes in the grid have zero trans- 
missivity and for cases in which the trans- 
missivity is highly anisotropic. In such cases, 
a strongly implicit procedyre, such as the 
one documented by Trescott, Pinder, and 
Larson (1976)) should ,be substituted for the 
solution algorithm contained in subroutine 
ITERAT. 

Subroutine GENPT 

The primary purpose of subroutine 
GENPT is to generate a uniform initial 
distribution of tracer particles throughout 
the finite-difference grid. This is done either 
at the start of a simulation period or at an 
intermediate time when too many cells have 
become void of particles. In the latter case, 
the program attempts to preserve an ap 
proximation of the previous concentration 
gradient within each cell (lines D1420- 

: D2040). 
The placement of particles is accomplished 

“in lines D!XO-D1410. The program allows 
the placement of either four, five, eight, or 
nine particles per cell. Of course each option 
will result in a slightly different geometry 

c 
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Figure 9.-Parts of finite-difference grids showing 
the initial geometry of particle distribution for the 
specification of four (A), five (B), eight (C), and 
nine (0) particles per cell. 

and density of points, as illustrated by figure 
9. The most regular or uniform patterns are 
produced when four or nine particles per cell 
are specified. If a different number of par- 
ticles per cell or a different placement geom- 
etry are desired, this subroutine could be 
modified accordingly. 

As particles are moved or convected 
through the grid during the calculation pro- 
cedure, there is a need to remove particles at 
fluid sinks and create particles at fluid 
sources. A buffer array (called LIMBO) is 
created on lines D430-D480 that contains 
particles that can be added later to the grid 
at sources and that also contains space to 
store particles removed at sinks or discharge 
boundaries. 

Subroutine VELO 
Subroutine VELO accomplishes three ob- 

jectives. First, it computes the flow velocities 
at nodes and on cell boundaries by solving 
equations having the form of equations 12 
and 13. The velocities are computed on lines 
E420-E680. Second, the dispersion equation 
coefficients are calculated. These coefficients 
represent terms factored out of equations 37 
and 38, as follows : 
DISPUXJYJ) = (bD,J ri+n,j,/(Az)e (67s) 

3 DISP(IX,IY,2) = W,,) cij+w,/(4/)2 t67b) 

DISP(IX,IY,S) = (bD,) ri+nd,/4AXAy (67~) 
DISP(IX,IY,4) = (b&J tii+n,/4AXAy. (67d) 
Note that each dispersion coefficient (Dm, 
D,, D, D,) is computed on cell boundaries 
using the relationships expressed in equa- 
tions 8-10. Therefore, the equation coeffi- 
cients computed by equation 67 are stored 
as forward values from the indicated node in 
the DISP array. Third, this subroutine com- 
putes (on lines E1050-El240 and E1800- 
E1930) the minimum number of particle 
moves (NMOV) required to solve the trans- 
port equation for the given time step so that 
the maximum time increment for the trans- 
port equation solution will not exceed any of 
the criteria indicated by equations 43, 49, 
58, and 69. 

Subroutine MOVE 

Although this subroutine has only one main 
function, which is to move the tracer par- 
ticles in accordance with equations 22 and 
23, it is the longest and perhaps the most 
complex segment of the program. The com- 
plexities are mainly introduced by the treat- 
ment of particles at the various types of 
boundary conditions. To help illustrate the 
calculation procedure followed within sub- 
routine MOVE, a flow chart is presented in 
figure 10. The numbers in the flow chart in- 
dicate the corresponding lines in subroutine 
MOVE where the indicated operation is 
executed. 

If a node represents a fluid source or sink, 
then particles must be respectively created or 
destroyed in these cells. If the value of 
pumpage (REC) at a node does not equal 
zero, then the node is assumed to represent 
either a fluid source (for REC<O) or a fluid 
sink (for REC>O) . Recharge or discharge 
can also be represented by the RECH array. 
But it is assumed that this type of flux is 
sufficiently diffuse so that it does not induce 
areas or points of strongly divergent or con- 
vergent flow and therefore particles need not 
be created or destroyed at these nodes. Note 
that here and in other subroutines the pres- 
ence of a constant-head boundary is tested 
by checking the value of leakance (VPRM) 
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at each node. If VPRM exceeds 0.09, it is as- 
sumed that the node represents a constant- 
head boundary condition and is treated as a 
fluid source or sink accordingly. At a con- 
stant-head node the difference in head be- 
tween the aquifer and the source bed is used 
to determine whether the node represents a 
fluid source or sink (for example, lines 
F2500-F2520). 

Subroutine CNCON 
This subroutine computes the change in 

concentration at each node and at each par- 
ticle for the given time increment. Equation 
39, which denotes the change in concentra- 
tion resulting from sources, divergence of 
velocity, and changes in saturated thickness, 
is solved on lines G350-G610. On the G520 
the value of the storage coefficient is checked 
to determine whether the aquifer is confined 
or unconfined. It assumes that if S<O.O05, 
then the aquifer is confined and ah/at= 0. 
If S10.005, the model assumes that @/at 
=ah/at. If this criterion is not appropriate 
to a particular aquifer system, then line 
G.520 should be modified accordingly. The 
change in concentration caused by hydro- 
dynamic dispersion is computed on lines 
G640-G770 as indicated by equations 37 and 
38. 

The nodal changes in concentration caused 
by convective transport are computed on 
lines G850-G940. The number of cells that 
are void of particles at the new time level 
are also counted in this set of statements on 
lines GBBO-G910, and then compared with 
the critical number of void cells (NZCRIT) 
to determine if particles should be regen- 
erated at initial positions before the next 
time level is started (lines G960-G1020). 

The new (time level k) concentrations at 
nodes are computed on the basis of the previ- 
ous concentration at time k- 1 and the 
change during k - 1 to k. The adjustment at 
nodes is accomplished on lines G1060-Gl180, 
while the concentration of particles is ad- 
justed on lines G1210-G1360. 

A mass balance for the solute is next corn. 
puted (lines G1400-G1730) at the end 01 
each time increment. In computing the mash 

)f solute withdrawn or leaking out of the 
aquifer at fluid sinks, the concentration at 
;he sink node is assumed to equal the nodal 
:oncentration computed at time level k - 1. 

Subroutine OUTPT 
This subroutine prints the results of the 

Row model calculations. When invoked, the 
subroutine prints (1) the new hydraulic 
head matrix (lines H190-H260), (2) a nu- 
meric map of head values (H300-H390), and 
(3) a drawdown map (H510-H710). This 
subroutine also computes a mass balance for 
the flow model and estimates its accuracy 
(H420-H820). A mass balance is performed 
both for cumulative volumes since the initial 
time and for flow rates during the present 
time step. The mass balance results are 
printed on lines H840-H930. 

Subroutine CHMOT 
This subroutine prints (1) maps of con- 

centration (lines 1250-1380)) (2) change in 
concentration from initial conditions (1440- 
1580), and (3) the results of the cumulative 
mass balance for the solute (1670-1860). 
The accuracy of the chemical mass balance is 
estimated on lines 1610-1660 using equations 
62 and 64. The former is not computed if 
there was no change in the total mass of 
solute stored in the aquifer. The latter is not 
computed if the initial concentrations were 
zero everywhere. Lines 1890-11140 serve to 
print the head and concentration data re- 
corded at observation wells. These data are 
recorded after each time step for a transient 
flow problem and after each particle move- 
ment for a steady-state flow problem. The 
data are printed after every 50 time incre- 
ments and at the end of the simulation 
period. 

Evaluation of Model 

Comparison wiih analytical solutions 

The accuracy of the numerical solution to 
the solute-transport equation can be evalu- 


	TWRI 7-C2: Computer model of two-dimensional solute transport and dispersion in ground water
	Contents
	Abstract
	Introduction
	Theoretical background
	Flow equation
	Transport equation
	Dispersion coefficient
	Review of assumptions

	Numerical methods
	Flow equation
	Transport equation
	Method of characteristics
	Particle tracking
	Finite-difference approximations
	Stability criteria
	Boundary and initial conditions
	Mass balance
	Special problems


	Computer program
	General program features
	Program segments
	MAIN
	Subroutine PARLOD
	Subroutine ITERAT
	Subroutine GENPT
	Subroutine VELO
	Subroutine MOVE
	Subroutine CNCON
	Subroutine OUTPT
	Subroutine CHMOT





