

Techniques of Water-Resources Investigations of the United States Geological Survey

Chapter A3

A <u>MOD</u>ULAR <u>FINITE-ELEMENT MODEL</u> (MODFE) FOR AREAL AND AXISYMMETRIC GROUND-WATER-FLOW PROBLEMS, PART 1: MODEL DESCRIPTION AND USER'S MANUAL

By Lynn J. Torak

Book 6 MODELING TECHNIQUES

Click here to return to USGS Publications

condition zone 2 begin with values for KZ (= 2), NOS (= 16), and IZIN (= 0). The zero value for IZIN indicates that distinct values for α and q_B will be input for each boundary side in zone 2. These inputs are made on the same line as inputs for the boundary-side number, nodes defining the side, and boundary heads. Program variables ALPH(J) and QBND(J) are used to represent α and q_B , respectively, for these inputs to boundary-side J. Note that for the example-aquifer problem, QBND(J) is set to zero or left blank.

Input Instructions

Inputs to MODFE follow a sequential order according to the Input-Type number and particular version of the main program that is used. Because the user can create versions containing only the simulation capabilities that are pertinent to the aquifer problem to be solved, all inputs listed here may not be required for a particular version of MODFE. Inputs are omitted if they correspond to simulation capabilities that are not contained in the version of MODFE that has been created for the aquifer problem. Specific instructions are given in this section about input types that can be omitted when using certain versions of MODFE, and about input types that are required for all versions. Additional information about inputs for a particular hydrologic feature is given in the corresponding sections preceding the input instructions and in the section "Examples of Model Input." The versions of MODFE are listed in tables 4-6, and program structures for these versions are given in the section "Program Structures and Lists of Main Programs," in Torak (1993).

Table 4. – Linear versions of MODular Finite-Element model (MODFE) and simulation capabilities

Simulation capabilities of linear versions of MODFE				
Nonhomogeneous, anisotropic having changing directions anisotropy within model reg Steady vertical leakage (no storage effects) Point and areally distribut sources and sinks Specified head (Dirichlet specified flux (Neumann), head-dependent (Cauchy-ty boundary conditions	s of gion ted	Axisymmetric (radial) flow Zoned input of hydraulic properties and boundary conditions Nonsteady-state or steady-state conditions Vertical cross sections Changing stresses and boundary conditions with time		
boundary conditions	boundary conditions		Solver options	
Simulation options	Simulation options Directions Direction		Iterative, MICCG method	
Steady vertical leakage (no storage effects)	Steady vertical leakage (no storage effects)		LMFE2	
Vertical leakage having storage effects (transient leakage)	Vertical leakage having storage effects (transient leakage)		LMFE4	

Table 5.—Nonlinear versions of MODular Einite-Element model (MODFE) and simulation capabilities

Simulation capabilities of nonlinear versions of MODFE				
Nonhomogeneous, anisotropic having changing directions anisotropy within model reg Steady vertical leakage (no storage effects) Point and areally distribut sources and sinks Specified head (Dirichlet) specified flux (Neumann), a head-dependent (Cauchy-typ boundary conditions	s of gion ted), and	Zoned input of hydraulic properties and boundary conditions Nonsteady-state conditions Unconfined (water-table) conditions Partial drying and resaturation of a water-table aquifer Conversion between confined- and unconfined-aquifer conditions		
Axisymmetric (radial) flow	Axisymmetric (radial) flow		Change stresses and boundary conditions with time	
Simulation options	Dire	Solver op ct, triangular-	Iterative, MICCG	
	deco	mposition method	methód	
Steady vertical leakage (no storage effects)		NLMFE1	NLMFE2	
Vertical leakage having storage effects (transient leakage)	NLMFE3		NLMFE4	
Nonlinear steady vertical leakage	NLMFE5		NLMFE6	
Nonlinear head-dependent (Cauchy-type) boundaries		NLMFE7	NLMFE8	

Table 6.—Nonlinear steady-state versions of <u>MOD</u>ular <u>Finite-Element</u> model (MODFE) and simulation capabilities

Simulation capabilit	ies of	nonlinear ve	rsions of MODFE
Nonhomogeneous, anisotropic having changing direction anisotropy within model re	flow s of gion	Zoned input of hydraulic properties and boundary conditions	
Steady vertical leakage (no storage effects)		Unconf	y-state conditions ined (water-table)
Point and areally distribut sources and sinks	ted		conditions
Specified head (Dirichlet Specified flux (Neumann), head-dependent (Cauchy-typ boundary conditions Axisymmetric (radial) flow		Partial drying and resaturation of a water-table aquifer Conversion between confined- and unconfined-aquifer conditions	
		Solver options	
Simulation options	Iter	terative, MICCG Direct, triangul method decomposition me	
Water-table conditions only	nditions		NSSFE2
Nonlinear steady vertical leakage		NSSFE3	NSSFE4
Nonlinear head-dependent (Cauchy-type) boundaries		NSSFE5	NSSFE6

v

Input-Types	1	and 2:	Title	and	Problem	Specifications

Required for all versions of MODFE. Replace MBW by NIT, the maximum number of iterations, if the conjugate-gradient method, MICCG, is used for solution.

Input Type	Number of Records	Format	Program Variable	Definition
1	3	20A4	TITLE	Title of simulation problem.
2	1	1615	NELS	Number of triangular elements or element pairs for which element incidences will be input (see section "Combined-Element Incidences").
			NNDS	Number of nodes.
			MXSTPS	Maximum number of time steps in any stress period. (Number of time steps in first stress period is input later as NTMP.)
			NPER	Number of stress periods. See section "Selecting Stress Periods and Time-Step Sizes" for establishing stress periods.
			NZNS	Number of aquifer-property zones.
			NWELS	Initial number of point sources or sinks (wells).
			NQBND	Total number of element sides on Cauchy-type boundaries, includes specified-flux and head-dependent (Cauchy-type) flux boundaries.
			NBCZ	Number of zones for Cauchy-type boundaries (see section "Grouping Element Sides into Zones").
			NHDS	Number of specified-head nodes.
			MBWC	Maximum condensed-matrix bandwidth (see section "Node Numbering and Determining Bandwidth").
			MBW	Reduced-matrix bandwidth.

		2A IF DIRECT- TINE BAND)	METHOD OF TH	RIANGULAR DECOMPOSITION IS USED FOR
2A	1	F10.0	TOL	Closure tolerance for conjugate gradient solution.
Inpu conditio		B is required	for simulat	ting nonlinear steady-state
	113.			
OMIT INF STEADY-S	PUT TYPE			STEADY-STATE CONDITIONS AND LINEAR inear Conditions and Nonlinear
OMIT INF	PUT TYPE			
OMIT INF STEADY-S Conditio	PUT TYPE STATE CON ons.")	DITIONS (See	sections "L	inear Conditions and Nonlinear Maximum number of water-table

Sinks.")

OMIT	INPUT-TYPE	2C IF NONLINEAR	HEAD-DEPENDE	NT FLUXES ARE NOT SIMULATED
20	1	1615		Number of element sides on nonlinear head-dependent (Cauchy- type) flux boundaries.
				Number of zones for nonlinear head-dependent (Cauchy-type) boundaries.
				Number of nonlinear point sinks.

Input-Type 2D is required for simulating nonlinear steady vertical leakage (see subsection "Steady Vertical Leakage and Evapotranspiration" of section "Nonlinear Head-Dependent Flux").

OMIT INPUT-TYPE 2D IF NONLINEAR STEADY VERTICAL LEAKAGE IS NOT SIMULATED

2D	1	1615	NVNZ	Number of nonlinear steady
				vertical-leakage zones.

In "Verti	Input-Type 2E is required for simulating transient leakage (see section "Vertical Leakage of Water Stored Elastically in a Confining Bed").					
OMIT I	NPUT-TYPE 21	E IF TRANSIE	ENT LEAKAGE IS	S NOT SIMULATED		
2E	1	215	NCBZ	Number of transient-leakage zones.		
			MCBN	Maximum number of nodes where transient-leakage is simulated.		
Input-	Input-Type 3: Indicator Variables for Axisymmetric-Cylindrical Flow, Scaled					
Coordi	nates, and	Steady-State	e Simulations			
Re	quired for	all versions	s of MODFE.			
Input Type	Number of Records	Format	Program Variable	Definition		
3	1	1615	IRAD	Indicator for coordinate system: = 0 for Cartesian (x-y), = 1 for axisymmetric cylindrical.		
			IUNIT	Indicator for scaling units of nodal coordinates: = 0 for no scaling, = 1 for scaling (see definition of SCALE below).		
			ISTD	Indicator for steady-state simulations: = 0 for nonsteady state, = 1 for steady state.		

Input-Type 4: Title and Scale Factor for Scaling Map Units into Field Units

OMIT INPUT-TYPE 4 IF IUNIT = 0

Input Type	Number of Records	Format	Program Variable	Definition
4	1	20A4	TITLE	Title for scaling factor. Example, "1 inch (map unit) equals 1,000 feet (field unit)."
	1	8F10.0	SCALE	Scale (multiplication) factor for converting map units of length to field units. Used to scale nodal coordinates, lengths, and areas. In above example, SCALE = 1000.

Re	quired for	all version	s of MODFE.	
Input Type	Number of Records	Format	Program Variable	Definition
5	1	1615	IPXY	Indicator for nodal coordinates: = 0 to print coordinates, = 1 to suppress printout.
			IPH	Indicator for aquifer heads: = 0 to print initial heads, = 1 to suppress printout.
			IPHR	Indicator for source-bed heads: = 0 to print source-bed heads, = 1 to suppress printout.
			IPQW	Indicator for point sources and sinks: = 0 to print sources and sinks, = 1 to suppress printout.
			IPCB	Indicator for specified-flux and head-dependent (Cauchy-type) flux: = 0 to print boundary input, = 1 to suppress printout.
			IPHB	Indicator for initial values on specified-head boundaries: = 0 to print specified heads, = 1 to suppress printout.
			IPND	<pre>Indicator for element incidences (node numbers for each element): = 0 to print incidence list, = 1 to suppress printout.</pre>

Input-Type 6: Node Coordinates and Head Data

Re	equired for	all versions	s of MODFE.	
Input Type	Number of Records	Format	Program Variable	Definition
6	NNDS	15, 7F10.0	I	Node number.
		7F10.0	XG(I)	X coordinate of node [length].
			YG(I)	Y coordinate of node [length].
			H(I)	Initial hydraulic head [length].
			HR(I)	Source-bed head [length].

Input-Types 7-9: Boundary Conditions

For steady-state simulations, at least one specified-head boundary, Input-Type 9, or one head-dependent (Cauchy-type) boundary with ALPHZ or ALPH(J) > 0, Input-Type 8, is required to obtain a unique solution. A nonlinear head-dependent (Cauchy-type) boundary with GCZ or GC(I) > 0, Input-Types 13C or 13D may replace Input-Type 8 for this requirement.

Input-Type 7: Point Sources and Sinks

OMIT INPUT-TYPE 7 IF NWELS = 0

Input Type	Number of Records	Format	Program Variable	Definition
7	7 NWELS	15, 7F10.0	I	Node number of point source/sink.
			QWEL	Volumetric flow rate [length ³ / time] of point source/sink.

Input-Type 8: Specified-Flux and Head-Dependent (Cauchy-Type) Flux

Input-Type 8A is followed by either Input-Type 8B or Input-Type 8C for each zone (see section "Grouping Element Sides into Zones" for details).

OMIT INPUT-TYPES 8A-8C IF NQBND = 0

Input Type	Number of Records	Format	Program Variable	Definition
8A	NBCZ	1615	KZ	Zone number for specified flux or head-dependent (Cauchy-type) flux boundary.
			NOS	Number of element sides in zone.
			IZIN	Indicator for zone input of a and/or qg: = 0 for inputting unique values for each side in zone, = 1 for inputting one value for all sides in zone.

		follows Inp B IF IZIN =	ut-Type 8A fo O	or each zone.
Input Type	Number of Records	Format	Program Variable	Definition
8B	NBCZ	8F10.0	ALPHZ	α term for head-dependent (Cauchy-type) boundary [length/ time]. See section "Head- Dependent (Cauchy-Type) Flux" for applications.
			QBNZ	q _B term for specified-flux boundary [length ² /time]. See section "Specified Flux" for applications.
	NOS	315, 4F10.0	J	Number of the boundary side.
		4710.0	KQB(J)	Node k of element side J on boundary.
			LQB(J)	Node 1 of element side J on boundary.
			HK(J)	Boundary or external head, H _B [length], at node k on boundary (see fig. 16).
			HL(J)	Boundary or external head, H _B [length], at node 1 on boundary (see fig. 16).

	NPUT-TYPE 8	6 IF IZIN -		
Input Mype	Number of Records	Format	Program Variable	Definition
80	NOS	315, 4F10.0	J	Number of the boundary side (see figs. 15-18, 20).
			KQB(J)	Node k of element side J on boundary.
			LQB(J)	Node 1 of element side J on boundary.
			ALPH(J)	α term for head-dependent Cauchy-type boundary [length/ time]. See section "Head- Dependent (Cauchy-Type) Flux" for applications.
			QBND(J)	q _B term for specified-flux boundary [length ² /time]. See section "Specified Flux" for applications.
			HK(J)	Boundary or external head, H _B [length], at node k on boundary (see fig. 16).
			HL(J)	Boundary or external head, H _B [length], at node l on boundary (see fig. 16).

Input-Type	9:	Specified	Heads

OMIT I	NPUT-TYPE 9	IF NHDS = 0		
Input Type	Number of Records	Format	Program Variable	Definition
9	NHDS	I5, 7F10.0	J	Node number of specified-head boundary.
			НВ	Initial value of specified head at node J [length].

or ea	ch hydrauli	c-property :	s of MODFE. zone, KZ (see Zones" for det	Enter input-types 10 and 11 together section "Combined-Element Incidences" tails).
nput ype	Number of Records	Format	Program Variable	Definition
10	NZNS	215,	KZ	Hydraulic-property-zone number.
	6F10.0	NO	Number of elements or element pairs in zone.	
			XTR	X transmissivity, T _{xx} [length ² / time], for confined flow or x hydraulic conductivity, K _{xx} [length/time], for unconfined flow in areal dimensions; radial hydraulic conductivity, K _{rr} , [length/time], for axisymmetric (radial) flow, or horizontal hydraulic conductivity K _{xx} or K _{yy} for cross-sectional flow.
			YTR	Y transmissivity, T _{yy} [length ² / time], for confined flow or y hydraulic conductivity, K _{yy} [length/time], for unconfined flow in areal dimensions; verti- cal hydraulic conductivity K _{zz} , [length/time], for radial or cross-sectional flow.
			ANG	Rotation angle (in degrees) for transforming global x-y coordi- nates to the local x-y system for varying directions of anisotropy.
			VLC	Hydraulic conductance (vertical hydraulic conductivity divided by thickness) of confining bed [time ⁻¹].
			STR	Storage coefficient [dimension- less] for confined conditions; specific yield [dimensionless] for unconfined conditions without conversion between confined and unconfined aquifer conditions, or specific storage [length ⁻¹] for cross-sectional or radial flow
			QD	Unit rate of areally distributed stress [length/time].
11	NO	1615	IEL	Element number.
			ND(I)	Element incidences. Four values required for each element or element pair. Element pair is counted as one element and is divided along first and third entries of incidences (see section "Combined-Element Incidences" for details.

Input-Type 12: Unconfined (Water-Table) Conditions

Required for the following nonlinear, nonsteady-state simulations: water-table conditions, conversion between confined and unconfined aquifer conditions, drying and resaturation of aquifer material, and nonlinear head-dependent fluxes. See appropriate sections pertaining to these hydrologic conditions for information on additional inputs. The value for * appearing in the "Number of Records" column of Input-Types 12B and 12C is computed as (NNDS+7)/8 by using integer math.

OMIT INPUT-TYPE 12 FOR SIMULATION OF CONFINED CONDITIONS

OMIT INPUT-TYPE 12D FOR NONLINEAR, STEADY-STATE SIMULATIONS

Input Type	Number of Records	Format	Program Variable	Definition
12A	1	1615	ІРТК	Indicator to suppress printout of aquifer thickness at each node: = 0 to print thickness values, = 1 to suppress printout.
			IPTP	Indicator to suppress printout of altitude of top of aquifer or bottom of overlying confining bed at each node: = 0 to print altitude values, = 1 to suppress printout.
12B	*	8F10.0	THK(I)	Nodal value of aquifer thickness [length].
12C	*	8F10.0	TOP(I)	Nodal value for altitude of top of water-table aquifer or bottom of overlying confining bed [length].
12D	NZNS	215,	ΚZ	Zone number for specific yield.
		F10.0	NO	Number of elements in zone.
			SY	Specific yield [dimensionless].

Input-Types 13-15: Nonlinear Head-Dependent Flux

Input requirements vary depending on the program structure of MODFE and type of nonlinear conditions that are simulated. For details about inputs, refer to instructions at the beginning of each Input Type and in corresponding sections of this report. See sections "Nonlinear Head-Dependent Flux" and "Program Structures and Lists of Main Programs" in Torak (1992) for programming details.

OMIT INPUT-TYPES 13-15 FOR SIMULATION OF LINEAR-FLOW CONDITIONS

Input-Type 13: Nonlinear Head-Dependent (Cauchy-Type) Flux and Point Sinks

Input-Type 13A required for simulating nonlinear head-dependent (Cauchy-type) flux and nonlinear point sinks.

Input Type	Number of Records	Format	Program Variable	Definition
13A	1	215	IPNC	Indicator to suppress printout of input for nonlinear head-dependent (Cauchy-type) boundaries: = 0 to print boundary values, = 1 to suppress printout.
			IPNP	Indicator to suppress printout of input for nonlinear point-sink boundaries: = 0 to print boundary values, = 1 to suppress printout.

Input-Type 13B: Nonlinear Head-Dependent (Cauchy-Type) Flux

Input-Type 13B is followed by either Input-Type 13C or Input-Type 13D for each zone (see section "Grouping Element Sides into Zones" for details).

OMIT INPUT-TYPES 13B-13D IF NBNC = 0

Input Type	Number of Records	Format	Program Variable	Definition
13B	NLCZ	1615	KZ	Zone number for nonlinear head- dependent (Cauchy-type) boundary.
			NOS	Number of sides in zone.
			IZIN	Indicator for zone input of α terms: = 0 for inputting unique values for each side in zone, = 1 for inputting one value for all sides in zone.

Input-Type 13C: Nonlinear Head-Dependent (Cauchy-Type) Flux
Input-Type 13C follows Input-Type 13B for each zone. The value of GCZ for zone KZ is followed, on separate lines, by inputs for the boundary-side number, J; nodes on the boundary side, KR(J) and LR(J); and boundary and controlling heads, in a manner similar to Input-Type 8B (see section "Cauchy Type" for applications of this boundary condition and descriptions of inputs).

OMIT INPUT-TYPE 13C IF IZIN = 0

Input Type	Number of Records	Format	Program Variable	Definition
130	NLCZ	F10.0	GCZ	α term for nonlinear head- dependent (Cauchy-type) boundary zone [length/time].
	NOS	3I5, 5F10.0	J	Number of the boundary (element side) in zone KZ.
			KR(J)	Node k of element side J on boundary.
			LR(J)	Node 1 of element side J on boundary.
			HRK(J)	Boundary or external head H _r at node k on boundary [length].
			HRL(J)	Boundary or external head H _r at node 1 on boundary [length].
			ZRK(J)	Controlling head or altitude z, at node k on boundary [length].
			ZRL(J)	Controlling head or altitude z, at node 1 on boundary [length].

Input-Type 13D: Nonlinear Head-Dependent (Cauchy-Type) Flux

Input-Type 13D follows Input-Type 13B for each zone. See section "Cauchy Type" for applications of this boundary condition and descriptions of inputs. OMIT INPUT-TYPE 13D IF IZIN = 1

Input Type	Number of Records	Format	Program Variable	Definition
13D	NOS	315, 5F10.0	J	Number of boundary (element side) in zone KZ.
			KR(J)	Node k of element side J on boundary.
			LR(J)	Node 1 of element side J on boundary.
			GC(J)	α term for nonlinear head- dependent (Cauchy-type) boundary side [length/time].
			HRK(J)	Boundary or external head H _r at node k on boundary [length].
			HRL(J)	Boundary or external head H _r at node 1 on boundary [length].
			ZRK(J)	Controlling head or altitude z _r at node k on boundary [length].
			ZRL(J)	Controlling head or altitude z _r at node l on boundary [length].

Input-	Type 14: No	onlinear Po	int Sinks	
	e section "I ptions of in		for applica	tions of this boundary condition and
OMIT I	NPUT-TYPE 14	IF NPNB =	0	
Input Type	Number of Records	Format	Program Variable	Definition
14	NPNB	215,	I	Number of the point boundary.
		2F10.0	KP(I)	Node number at point boundary.
			GCP	Discharge coefficient Cp, for point boundary [length ² /time].
			ZP(I)	Reference altitude, z _p , for point sink [length].
	<u> </u>			

Input-Type 15: Nonlinear Steady Vertical Leakage

Input-Type 15A is followed by entries of Input-Type 15B for all nonlinear steady vertical-leakage zones. One entry of Input-Type 15A is required; the option to print or suppress printout of zone inputs and nodal values of HS is applied to all nonlinear steady vertical-leakage zones and to all nodes. The value for * appearing in the "Number of Records" column of Input-Type 15C is computed as (NNDS+7)/8 by using integer math. See subsection "Steady Vertical Leakage" under "Nonlinear Head-Dependent Flux" and section "Zones for Nonlinear Steady Vertical Leakage, Transient Leakage, and Specific Yield" for applications of this boundary condition and descriptions of inputs.

OMIT IF NONLINEAR STEADY VERTICAL LEAKAGE IS NOT SIMULATED

Input Type	Number of Records	Format	Program Variable	Definition
15A	1	315	IPNV	Indicator to suppress printout of zone input for all nonlinear steady vertical-leakage zones: = 0 to print zone values, = 1 to suppress printout.
			IPHS	Indicator to suppress printout of controlling head or altitude, HS, by node: = 0 to print HS, = 1 to suppress printout.
15B	NVNZ	315, F10.0	L	Zone number for nonlinear leakage.
			NBE	Beginning element number in zone.
			NO	Number of elements in zone.
			VNCF	Conductance terms, R _a or R _e [time ⁻¹].
15C	*	8F10.0	HS(I)	Controlling head, H_a , or altitude, z_e or z_t , at node I.

Input-Type	16:	Transient-l	Leakage	Approx	imation

See section "Zones for Nonlinear Steady-Vertical Leakage, Transient Leakage, and Specific Yield" for descriptions about establishing zones and program variables.

OMIT INPUT-TYPE 16 IF TRANSIENT LEAKAGE IS NOT SIMULATED

Input Type	Number of Records	Format	Program Variable	Definition
16	NCBZ	315, 2F10.0	L	Transient-leakage-zone number.
			NBE	Beginning element number in zone.
			NO	Number of elements in zone.
			VCON	Vertical hydraulic conductivity of confining bed [length/time].
			SPST	Specific storage of confining bed [length ⁻¹].

Input-Types 17-25: Stress-Period Inputs

Begin inputs for each stress period with Input-Type 17, followed by optional Input-Types 18-25 for each time step when changes in stresses or boundary conditions are to be made. The number of inputs of Input-Type 17 followed by the appropriate entries of Input-Types 18-25 is given by the value entered for the number of stress periods, NPER. Thus, the "1" appearing in the "Number of Records" column for Input-Type 17A implies that the Input Type is used once for a stress period. The value for * appearing in the "Number of Records" column of Input-Type 17B is computed as (NTMP+7)/8 by using integer math (see sections "Changing Stresses and Boundary Conditions with Time" and "Examples of Model Input" for details).

OMIT INPUT TYPES 17-25 FOR NONLINEAR STEADY-STATE SIMULATIONS

Input-Type 17A: Indicators for Time Varying Stresses and Boundary Conditions

Input Type	Number of Records	Format	Program Variable	Definition				
17A	1	1615	NTMP	Number of time steps in stress period. Exception: set to zero (0) to use time steps from previous stress period; set to one (1) for linear steady-state simulations.				
			NWCH	Time-step number when point sources and sinks are changed.				
			NQCH	Time-step number when areally distributed sources and sinks are changed.				
			NHRCH	Time-step number when source-bed heads, H, are changed for simulating steady vertical leakage (no transient leakage from confining bed).				
			NBQCH	Time-step number when specified flux or head-dependent (Cauchy- type) flux boundaries are changed.				
							NHCH	Time-step number when values for specified-head boundaries are changed.
			NCBCH	Time-step number when source-bed heads, H, are changed for simulating transient leakage.				
			NVNCH	Time-step number when controlling heads or altitudes, H _a , z _e , or z _t , for nonlinear steady vertical leakage are changed.				
			NGNCH	Time-step number when boundary or external heads, H _r , on nonlinear head-dependent (Cauchy-type) boundaries are changed.				

Input-Type 17B: Time Steps

Required for first stress period of nonsteady-state versions of MODFE and subsequent stress periods if NTMP > 0 (see section "Selecting Stress Periods and Time-Step Sizes" for details). Required for linear steady-state versions of MODFE (see definition of DELT(I) below).

OMIT FOR STRESS PERIODS SUBSEQUENT TO STRESS PERIOD 1 IF NTMP = 0

Input Type	Number of Records	Format	Program Variable	Definition
17B	*	8F10.0	DELT(I)	Time-step sizes [time]; any units consistent with hydraulic properties. Exception: set to one (1.) for linear steady-state simulations.

Input-Types 18-25: Changing Stresses and Boundary Conditions with Time

Required on the time step and stress period when changes are to occur. The "1" listed in the "Number of Records" column for Input-Types 18A, 19A, ..., 25A indicates that these inputs are entered once on the time step in which the corresponding change in stress or boundary condition is made. Each of the "A" Input Types is followed by inputs of the corresponding "B" types. Some changes are implemented by inputs on two successive time steps (see section "Changing Stresses and Boundary Conditions with Time" and "Examples of Model Input" for details).

Input-Type 18: Changes to Point Sources and Sinks

OMIT FOR TIME STEPS IN WHICH POINT SOURCES AND SINKS ARE UNCHANGED FROM PREVIOUS VALUES

Input Type	Number of Records	Format	Program Variable	Definition
18A	1	1615	N	Number of point sources and sinks to be changed on this time step.
			NWCH	Time-step number for additional changes to point sources and sinks during present stress period.
18B	N	I5, 4F10.0	J	Node number of point source or sink to be changed.
			QOLD	Old value of stress [length ³ / time] to be changed.
			QNEW	New value of stress [length ³ / time] to replace old value.

Input-Type 19: Changes to Areally Distributed Sources and Sinks

OMIT FOR TIME STEPS IN WHICH AREALLY DISTRIBUTED SOURCES AND SINKS ARE UNCHANGED FROM PREVIOUS VALUES

Input Type	Number of Records	Format	Program Variable	Definition
19A	1	1615	N	Number of zones for areally distributed sources and sinks that are changed on this time step.
			NQCH	Time-step number for additional changes to areally distributed sources and sinks during present stress period.
19B	N	315, 2F10.0	L	Zone number for areally distri- buted source or sink to be changed.
			NBE	Beginning element number in zone.
			NO	Number of elements in zone.
			QOLD	Old value of unit-areal stress [length/time] to be changed.
			QNEW	New value of unit-areal stress [length/time] to replace old value.

Input-Type 20: Changes to Source-Bed Heads for Steady Vertical Leakage

OMIT FOR TIME STEPS IN WHICH SOURCE-BED HEADS FOR STEADY VERTICAL LEAKAGE ARE UNCHANGED FROM PREVIOUS VALUES

Input Type	Number of Records	Format	Program Variable	Definition
20A	1	1615	N	Number of nodes for source-bed heads that are changed on this time step.
			NHRCH	Time-step number for additional changes to source-bed heads during present stress period.
20B	N	I5, F10.0	J	Node number of source-bed head to be changed.
			HR(J)	New value of source-bed head [length].

Input-Type 21: Changes to Specified Flux or Boundary Head on Cauchy-Type

Boundaries

OMIT INPUT-TYPE 21 IF CAUCHY-TYPE BOUNDARIES ARE UNCHANGED FROM PREVIOUS VALUES

Input Type	Number of Records	Format	Program Variable	Definition
21A	1	1615	N	Number of boundary sides to be changed on this time step.
			NBQCH	Time-step number for making additional changes to Cauchy-type boundaries in present stress period.
21B	N	15, 4F10.0	J	Number of the boundary side.
			QNEW	New value of unit discharge, q _B [length ² /time], to replace old value.
			HK(J)	New value for boundary or exter- nal head, H _B [length], at node k on boundary side J (see fig. 16).
			HL(J)	New value for boundary or exter- nal head, H _B [length], at node l on boundary side J (see fig. 16).

Input-Type 22: Changes to Specified-Head Boundaries

OMIT INPUT-TYPE 22 IF SPECIFIED HEADS ARE UNCHANGED FROM PREVIOUS TIME STEP

Input Type	Number of Records	Format	Program Variable	Definition
22A	1	1615	N	Number of specified-head boundaries (nodes) to be changed on this time step.
			NHCH	Time-step number for additional changes to specified-head boundaries during present stress period.
22B	N	15, 4F10.0	J	Node number of the specified-head boundary to be changed.
			НВ	New value of the specified head for node J [length].

Input-Type 23: Changes to Source-Bed Heads for Transient Leakage

OMIT INPUT-TYPE 23 IF SOURCE-BED HEADS FOR TRANSIENT LEAKAGE ARE UNCHANGED FROM PREVIOUS TIME STEP

Input Type	Number of Records	Format	Program Variable	Definition
23A	1	215	N	Number of nodes where source-bed heads are to be changed on this time step.
			NCBCH	Time-step number for additional changes to source-bed heads during present stress period.
23B	N	15, F10.0	J	Node number of the source-bed head to be changed.
			HR(J)	New value of the source-bed head for node J [length].

Input-Type 24: Changes to Boundary or External Heads on Nonlinear Head-

Dependent (Cauchy-Type) Boundaries

OMIT INPUT-TYPE 24 IF BOUNDARY OR EXTERNAL HEADS ARE UNCHANGED FROM PREVIOUS TIME STEP

Input Type	Number of Records	Format	Program Variable	Definition			
24A	1	1615	N	Number of boundary sides to be changed on this time step.			
			NGNCH	Time-step number for additional changes to boundary or external heads during present stress period.			
24B	N	15, 2F10.0	J	Number of the nonlinear boundary side to be changed.			
			HRK(J)	New value of the boundary head, H _r , for node k on side J of non- linear boundary [length].			
			HRL(J)	New value of the boundary head, H _r , for node 1 on side J of non- linear boundary [length].			

Input-Type 2	25:	Changes	to	Controlling	Heads	for	Nonlinear	Steady	Vertical

Leakage

OMIT INPUT-TYPE 25 IF CONTROLLING HEADS ARE UNCHANGED FROM PREVIOUS TIME STEP

Input Type	Number of Records	Format	Program Variable	Definition
25A	1	215	N	Number of nodes where controlling heads are to be changed on this time step.
			NVNCH	Time-step number for additional changes to controlling heads during present stress period.
25B	N	15, F10.0	J	Node number of the controlling head to be changed.
÷			HR(J)	New value of the controlling head for node J [length].

References

- Bear, J., 1979, Hydraulics of groundwater: New York, McGraw-Hill, 569 p.
- Cooley, R.L., 1992, A <u>MOD</u>ular <u>F</u>inite-<u>E</u>lement model (MODFE) for areal and axisymmetric ground-water-flow problems, part 2: derivation of finite-element equations and comparisons with analytical solutions: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 6, Chapter A4.
- Moench, A.F., and Prickett, T.A., 1972, Radial flow in an infinite aquifer undergoing conversion from artesian to water-table conditions: Water Resources Research, v. 8, no. 2, p. 494–499.
- Strang, G., and Fix, G.J., 1973, An analysis of the finite-element method: Englewood Cliffs, Prentice-Hall, 306 p.
- Torak, L.J., 1993, A <u>MODular Finite-Element model</u> (MODFE) for areal and axisymmetric ground-water-flow problems, part 3: design philosophy and programming details: U.S. Geological Survey Techniques in Water-Resources Investigations, Book 6, Chapter A5.