science for a changing world

Techniques of Water-Resources Investigations of the United States Geological Survey

A MODULAR THREE-DIMENSIONAL FINITE-DIFFERENCE GROUND-WATER FLOW MODEL

By Michael G. McDonald and
Arlen W. Harbaugh

This chapter supersedes U.S. Geological
Survey Open-File Report 83-875

Book 6

MODELING TECHNIQUES

Module SIP1AP performs one iteration of the Strongly Implicit Procedure (SIP) algorithm for solving the flow equation. To save computational time, all arrays are declared one dimensional. The one-dimensional indexes are calculated from the layer, row, and column indexes normally used to access the arrays in three dimensions. Improvement in computational time is achieved because knowledge of the geometry is used to increase computational efficiency, and because calculations are not repeated for identical indices as would be done by internal FORTRAN addressing routines if three-dimensional subscripts were used.

This module is somewhat complex, partly because the SIP solution process requires that the same calculations be performed with two methods of ordering the equations. This is implemented by a generalized algorithm that uses the same computer statements to handle both ordering schemes. Checks are made to detect which ordering scheme is used, and array indexes are calculated accordingly.

Double precision is used for most calculations in this module in order to allow accurate answers to be calculated for a wide range of problems. Mixed precision arithmetic has been avoided by setting double-precision variables equal to single-precision values and then using the doubleprecision variables to generate fully double-precision expressions, and where necessary by doing the reverse to generate fully single precision expressions.

In the explanations below, no attempt has been made to discuss each use of an assignment statement to change precision, because of the large amount of text this would require. However, when changing this module, care should be used to maintain expressions that have unmixed precision, as mixed precision expressions can cause erroneous results with some compilers.

Module SIP1AP performs its functions in the following order:

1. If the user has specified (IPCALC $\neq 0$) that iteration parameters should be calculated by the program, CALL submodule SSIP1I to calculate both the seed and the parameters.
2. Assign values to fields that are constant during an iteration.
3. Initialize the variables that track maximum head change curing an iteration.
4. Clear SIP work arrays.
5. Determine the ordering of equations and set the ordering flag (IDIR) accordingly. This flag alternates between 1 and -1 each iteration. Calculate indexes IDNRC and IDNCOL which are used when calculating locations of neighboring cells.
6. Calculate the matrix [U] and intermediate vector \{V\} using forward substitution. The elements in matrix [L] are used as they are calculated; therefore, they are not saved. In the explanation of SIP concepts, the diagonals in the matrix [U] were designated "e," "f," and "g." The corresponding field names in the program are EL (e lower case), FL (f lower case),
and GL (g lower case). Similarly, the diagonals in the [L] array which are "a," "b," "c," and "d" in the explanation are "AL," "BL," "CL," and "DL" in the program. The codes for the diagonals in matrix [A] in the explanation are the same in the program. The codes for diagonals in $[A+B]$ in the explanation are followed by a "P" in the program. Hence, Z ' in the explanation is ZP (Z prime) in the program. The intermediate vector $\{V\}$ in the explanation is the array " V " in the program.
(a) Set current cell indexes, II, JJ, KK. For normal ordering, the equation order is the same as the order of the loop indexes I, J, K. For reverse ordering, loop indexes I and K are inverted to produce the proper sequence of cells.
(b) Calculate the one-dimensional subscript of the current cell. If this cell is constant head or no flow, skip calculations for this cell and go on to the next.
(c) Calculate the one-dimensional subscripts for the six neighboring cells.
(d) Calculate the one-dimensional subscripts for conductance to each of the six neighboring cells. Since conductances between cells are assigned to array elements at specific cells (for example, CR(I,J,K) stores conductance between cells I, J, K and $I, J+1, K)$, the four or five conductance subscripts are not simply the cell locations of the six neighboring cells as calculated in step 6(c). Also, the subscripts depend on equation ordering.
(e) Calculate or assign variables that are required for forward substitution and involve neighboring cells. Whenever a neighboring cell is outside of the grid, the variables are set to zero.
(1) Neighboring cell is one row back.
(2) Neighboring cell is one row ahead.
(3) Neighboring cell is one column back.
(4) Neighboring cell is one column ahead.
(5) Neighboring cell is one layer back.
(6) Neighboring cell is one layer ahead.
(f) Calculate the components of the upper and lower triancular matrices [U] and [L], which are the factors of matrix $[A+B]$.
(g) Calculate the residual \{RES\}. The calculation of HNW times HC:OF is done in single precision so that the calculation will have precision comparable to similar calculations made in the formulation modules, all of which use single precision.
(h) Calculate the intermediate vector $\{V\}$, which is stored in array V. This step completes the forward-substitution process for one cell.
7. Step through the cells solving for head change using back substitution.
(a) Set current cell indexes II, JJ, KK. The ordering is the reverse of that used for forward substitution (step 6(a)).
(b) Calculate the one-dimensional subscript of the current cell. If this cell is constant head or no flow, skip calculations for this cell and go to the next.
(c) Calculate the one-dimensional subscripts for the three neighboring cells behind (relative to the direction of the back-substitution ordering) the current cell.
(d) Back substitute, solving for head change. Store head change in array V in place of the intermediate values of vector $\{V\}$. This doubling up of storage is used to save the cost of additional computer storage.
(e) Save the value of head change whose absolute value is largest during this iteration. Also, save the cell location where this head change occurred and the absolute value of the head change.
(f) Add the head change this iteration to head from the previous iteration to get a new estimate of head.
8. Store the head change whose absolute value is greatest this iteration and its cell location in arrays HDCG and LRCH. These may be printed in step 10 at the end of the time step. Set the convergence flag to one if the convergence criterion is met.
9. If the iteration is complete, print the number of iterations for the step; otherwise, RETURN.
10. Print the maximum head change and cell location each iteration if the SIP printout interval (IPRSIP) is reached. Printout occurs at the end of a stress period regardless of the interval.
11. RETURN.

IPCALC is a flag. If it is set equal to one, the program cal culates a seed from which iteration parameters are cal culated. It may be set by the user at the beginning of the simulation. It is cleared during the first iterations. SSIP1I will never be called more than once. If IPCALC is not set equal to zero, the user specifies the seed for the iteration parameters.

IDIR indicates whether the ordering of equations is normal (1) or reverse (-1).

SSIP1I is a submodule which calculates iteration parameters.

Single Cell Index: In this module, a single index is used to identify each cell. This is in opposition to the three indices (I, J, K) used in most other modules.


```
c
C6B-----CALCULATE L DIMENSIONAL SUBSCRIPT OF CURRENT CELL AND
C6B-----SKIP CALCULATIONS IF CELL IS NOFLOW OR CONSTANT HEAD
    122 N=JJ+(II-1)*NCOL+(KK-1)*NRC
        IF(IBOUND(N).LE.O)GO TO 150
C
C6C-----CALCULATE 1 DIMENSIONAL SUBSCRIPTS FOR LOCATING THE 6
C6C-----SURROUNDING CELLS
    NRN=N+IDNCOL
    NRL=N-IDNCOL
    NCN=N+1
    NCL=N-1
    NLN=N+IDNRC
    NLL=N-IDNRC
C
C6D-~---CALCULATE 1 DIMENSIONAL SUBSCRIPTS FOR CONDUCTANCE TO THE 6
C6D-----SURROUNDING CELLS. THESE DEPEND ON ORDERING OF EQUATIONS.
    IF(IDIR.LE.O)GO TO 124
    NCF=N
    NCD=NCL
    NRB=NRL
    NRH=N
    NLS=N
    NLZ=NLL
    GO TO 126
    124 NCF=N
        NCD=NCL
        NRB=N
        NRH=NRN
        NLS=NLN
        NLZ=N
C
C6E-----ASSIGN VARIABLES IN MATRICES A & U INVQLVING AOJACENT CELLS
C6EI----NEIGHBOR IS 1 ROW BACK
    126 B=OZERO
        ELNRL=DZERO
        FLNFR=DZERO
        GLNRL=DZERO
        BHNEW=DZERO
        VNRL=DZERO
        IF(I.EQ.1) GO TO 128
        B=CC(NRB)
        ELNRL=EL(NRL)
        FLNRL=FL(NRL)
        GLNRL=GL(NRL)
        BHNEW=B*HNEW(NRL)
        VNRL=V(NRL)
C
C6E2----NEIGHBOR IS 1 ROW AHEAD
    128 H=DZERO
        HHNEW=DZERO
        IF(I.EQ.NROW) GO TO }13
        H=CC(NRH)
        HHNEW=H*HNEW (NRN)
C
C6E3--_-NEIGHBOR IS I COLUMN BACK
    130 D=DZERO
            EL NCL=DZERO
            FLNCL=DZERO
            GLNCL=DZERO
            DHNEW=OZERO
            VNCL=DZERO
            IF(J.EQ.1) GO TO 132
            D=CR(NCD)
            ELNCL=EL (NCL)
            FLNCL=FL(NCL)
            GLNCL=GL(NCL)
            DHNEW=D*HNEW (NCL)
            VNCL=V(NCL)
```

```
C
C6E4----NEIGHBOR IS 1 COLUMN AHEAD
    132 F=DZERO
        FHNEW=DZERO
        IF(J.EQ.NCOL) GO TO 134
        F=CR(NCF)
        FHNEW=F*HNEW (NCN)
C
C6E5----NEIGHBOR IS 1 LAYER BEHIND
    134 Z=DZERO
        ELNLL=DZERO
        FLNLL=DZERO
        GLNLL=DZERO
        ZHNEW=DZERO
        VNLL=DZERO
        IF(K.EQ.1) GO TO 136
        Z=CV(NLZ)
        ELNLL=EL(NLL)
        FLNLL=FL(NLL)
        GLNLL=GL(NLL)
        ZHNEW=Z*HNEW(NLL)
        VNLL=V(NLL)
C
C6E6----NEIGHBOR IS 1 LAYER AHEAD
    136 S=DZERO
        SHNEW=DZERO
        IF(K.EQ.NLAY) GO TO 138
        S=CV(NLS)
        SHNEW=S*HNEW(NLN)
C
C6E7----CALCULATE THE NEGATIVE SUM OF ALL CONDUCTANCES TO NEIGHBORING
C6E7----CELLS
    138 E=-Z-B-D-F-H-S
C
C6F-----CALCULATE COMPONENTS OF THE UPPER AND LOWER MATRICES, WHICH
C6F-----ARE THE FACTORS OF MATRIX (A+B)
        AL=Z/(DONE+DI TPAR*(ELNLL+FLNLL))
        BL=B/(DONE+DITPAR*(ELNRL+GLNRL))
        CL=D/(DONE+DITPAR*(FLNCL+GLNCL))
        AP=AL*ELNLL
        CP=BL*ELNRL
        GP=CL*FLNCL
        RP=CL*GLNCL
        TP=AL*FLNLL
        UP=BL*GLNRI
        HHCOF=HCOF(N)
        DL=E+HHCOF+DITPAR*(AP+TP+CP+GP+UP+RP)-AL*GLNLL-BL*FLNRL-CL*ELNCL
        EL(N)=(F-DITPAR*(AP+CP))/DL
        FL(N)=(H-DITPAR*(TP+GP))/DL
        GL(N)=(S-DITPAR*(RP+UP))/DL
C
C6G-----CALCULATE THE RESIDUAL
    RRHS=RHS(N)
    HNN=HNEW (N)
    HCFHNN=HNN*HCOF (N)
    RES=RRHS-ZHNEW-BHNEW-DHNEW-E*HNEW (N)-HCFHNW-FHNEW-HHNEW-SHNEW
C
C6H----CALCULATE THE INTERMEDIATE VECTOR V
    V(N)=(AC*RES-AL*VNLL-BL*VNRL-CL*VNCL)/DL
C
    150 CONTINUE
C
C7------STEP THROUGH EACH CELL AND SOLVE FOR HEAD CHANGE BY BACK
C7------SUBSTITUTION
            DO 160 K=1,NLAY
    DO 160 I=1,NROW
    DO 160 J=1,NCOL
C
```

```
C7A-----SET UP CURRENT CELL LOCATION INDEXES. THESE ARE DEPENDENT
C7A-----ON THE DIRECTION OF EQUATION ORDERING.
    IF(IDIR.LT.O) GO TO }15
    KK=NLAY-K+1
    II=NRON-I+1
    JJ=NCOL-J+1
    GO TO 154
    152 KK=K
        II=I
        JJ=NCOL-J+1
C
C7B-m---CALCULATE }1\mathrm{ DIMENSIONAL SUBSCRIPT OF CURRENT CELL AND
C7B----SKIP CALCULATIONS IF CELL IS NOFLOW OR CONSTANT HEAD
    154 N=J.I+(II-1)*NCOL+(KK-1)*NRC
            IF(IBOUND(N).LE.O)GO TO }16
C
C7C---m-CALCULATE 1 DIMENSIONAL SUBSCRIPTS FOR THE 3 NEIGHBORING CELLS
C7C-----BEHIND (RELATIVE TO THE DIRECTION OF THE BACK SUBSTITUTION
C7C-----ORDERING) THE CURRRENT CELL.
        NC=N+1
        NR}=\textrm{N}+\mathrm{ IDNCOL
        NL=N+IDNRC
C
C7D-m---BACK SUBSTITUTE, STORING HEAD CHANGE IN ARRAY V IN PLACE OF
C7D-----INTERMEDIATE FORWARD SUBSTITUTION VALUES.
        ELXI=DZERO
        FLXI=OZERO
        GLXI=DZERO
        IF(JJ.NE.NCOL) ELXI=EL(N)*V(NC)
        IF(I.NE.1) FLXI=FL(N)*V(NR)
        IF(K.NE.1) GLXI=GL(N)*V(NL)
        VN=V(N)
        V(N)=VN-ELXI-FLXI-GLXI
C
C7E-----GET THE ABSOLUTE HEAD CHANGE. IF IT IS MAX OVER GRID SO FAR.
C7E-----THEN SAVE IT ALONG WITH CELL INDICES AND HEAD CHANGE.
            TCHK=ABS(V(N))
            IF (TCHK.LE.BIGG) GO TO 155
            BIGG=TCHK
            BIG=V(N)
            IB=II
            JB=JJ
            KB=KK
C
C7F-----ADD HEAD CHANGE THIS ITERATION TO HEAD FROM THE PREVIOUS
C7F-m---ITERATION TO GET A NEW ESTIMATE OF HEAD.
    155 XI=V(N)
        HNEW(N)=HNEW(N)+XI
C
    160 CONTINUE
C
C8-_----STORE THE LARGEST ABSOLUTE HEAD CHANGE (THIS ITERATION) AND
C8-m----AND ITS LOCATION.
            HDCG(KITER)=BIG
            LRCH(1,KITER)=KB
            LRCH(2,KITER)=IB
            LRCH(3,KITER)=JB
            ICNVG=0
            IF(BIGG.LE.HCLOSE) ICNVG=1
C
C9-_----IF END OF TIME STEP, PRINT : OF ITERATIONS THIS STEP
    IF(ICNVG.EQ.O .AND. KITER.NE.MXITER) GO TO }60
            IF(KSTP.EQ.1) WRITE(IOUT,500)
        500 FORMAT(IHO)
            WRITE(IOUT,501) KITER,KSTP,KPER
        501 FORMAT(IX,I5,' ITERATIONS FOR TIME STEP',I4,' IN STRESS PERIOD',
            1 I3)
C
C10-----PRINT HEAD CHANGE EACH ITERATION IF PRINTOUT INTERVAL IS REACHED
            IF(ICNVG.EQ.0 .OR. KSTP.EQ.NSTP .OR. MOD(KSTP,IPRSIP).EQ.0)
            1 CALL SSIPIP(HDCG,LRCH,KITER,MXITER,IOUT)
C
CII-----RETURN
600 RETURN
C
    END
```

Variable	Range	Definition
AC	Module	Double-precision acceleration parameter (ACCL).
ACCL	Package	Acceleration parameter.
AL	Module	Diagonal from the lower factor. (AL stands for A-lower case.)
AP	Module	Diagonal element in the modified coefficient matrix. (AP stands for A-prime.)
B	Module	Diagonal label in the coefficient matrix--conductance from the adjacent node which is in the last row.
BHNEW	Module	Head in the adjacent cell which is in the last row.
BIG	Module	Largest head change for an iteration.
BIGG	Module	Largest absolute value of head change for an iteration.
BL	Module	Diagonal from the lower factor. (BL stands for B-lower case.)
CC	Global	DIMENSION (NCOL, NROW, NLAY), Conductance in the c:olumn direction. CC(J,I,K) contains conductance between nodes (J, I, K) and ($\mathrm{J}, \mathrm{I}+1, \mathrm{~K}$).
CL	Module	Diagonal from the lower factor. (CL stands for C-lower case.)
CP	Module	Diagonal element in the modified coefficient matrix. (CP stands for C-prime.)
CR	Global	DIMENSION (NCOL, NROW, NLAY), Conductance in the row direction. CR(J, I, K) contains conductance between nodes ($\mathrm{J}, \mathrm{I}, \mathrm{K}$) and ($\mathrm{J}+\mathrm{I}, \mathrm{I}, \mathrm{K}$)
CV	Global	DIMENSION (NCOL, NROW, NLAY-1), Conductance in the vertica direction. CV(J,I,K) contains conductance between nodes (J, I, K) and ($\mathrm{J}, \mathrm{I}, \mathrm{K}+1$).
D	Module	Diagonal label in the coefficient matrix. Conductance from the adjacent node which is in the last column.
DHNEW	Module	Head in the adjacent cell which is in the last column.
DITPAR	Module	Double-precision iteration parameter.
DL	Module	Diagonal from the lower factor. (DL stands for D-lower case.)
DONE	Module	Double-precision field containing a one.
DZERO	Module	Double-precision field containing a zero.
E	Module	Main diagonal in the coefficient matrix.
EL	Module	DIMENSION (NODES), Diagonal from the upper factor. (EL stands for E-lower case.)
ELNCL	Module	EL (E-lower case) from the cell in the last column.
ELNLL	Module	EL (E-lower case) from the cell in the last layer.
ELNRL	Module	EL (E-lower case) from the cell in the last row.
ELXI	Module	Intermediate result. .
F	Module	Diagonal label in the coefficient matrix--conductance from the adjacent node which is in the next column.
FHNEW	Module	Head in the adjacent cell which is in the next column.
FL	Module	DIMENSION (NODES), Diagonal from the upper factor. (FL stands for F-lower case.)
FLNCL	Module	FL (F-lower case) from the cell in the last column.
FLNLL	Module	FL (F-lower case) from the cell in the last layer.
FLNRL	Module	FL (F-lower case) from the cell in the last row.

Variable	Range	Definition	

List of Variables for Module SIP1AP (Continued)

Variable	Range
KK	Module
KPER	Global
KSTP	Global
LRCH	Package
MXITER	Package
N	Module
NC	Module
NCD	Module
NCF	Module
NCL	Module
NCN	Module
NCOL	Global
NL	Module
NLAY	Global
NLL	Module
NLN	Module
NLS	Module
NLZ	Module
NODES	Global
NPARM	Package
NR	Module
NRB	Module
NRC	Module
NRH	Module
NRL	Module
NRN	Module
NROW	Global
NSTP	Global
NTH	Module
RES	Module
RHS	G1 obal

Definition

Layer index.
Stress period counter.
Time step counter. Reset at the start of each stress period.
DIMENSION (MXITER), Layer, row, and column of the cell containing the maximum head change (HDCG) for each iteration.
Maximum number of iterations.
Cell index.
Index for the adjacent cell in the last column.
One-dimensional subscript of conductance to the adjacent cell which is in the last column.
One-dimensional subscript of conductance to the adjacent cell which is in the next column.
One-dimensional subscript of the cell index of the adjacent cell which is in the last column.
One-dimensional subscript of the cell index of the adjacent cell which is in the next column.
Number of columns in the grid.
Index for the adjacent cell in the last layer.
Number of layers in the grid.
One-dimensional subscript of the cell index of the adjacent cell which is in the last layer.
One-dimensional subscript of the cell index of the adjacent cell which is in the next layer.
One-dimensional subscript of conductance to the adjacent cell which is in the next layer.
One-dimensional subscript of conductance to the adjacent cell which is in the last layer.
Number of cells (nodes) in the finite-difference grid.
Number of iteration parameters.
Index for the adjacent cell in the last row.
One-dimensional subscript of conductance to the adjacent cell which is in the last row.
Number of cells in the layer.
One-dimensional subscript of conductance to the adjacent cell which is in the next row.
One-dimensional subscript of the cell index of the adjacent cell which is in the last row.
One-dimensional subscript of the cell index of the adjacent cell which is in the next row.
Number of rows in the grid.
Number of time steps in the current stress period.
Index for iteration parameters.
Residual.
DIMENSION (NCOL,NROW,NLAY), Right hand side of the finite-difference equation. RHS is an accumulation of terms from several different packages.

Variable	Range	Definition
RP	Module	Diagonal element in the modified coefficient matrix. (RP stands for R-prime.)
RRHS	Module	Double-precision right hand side of the equation.
S	Module	Diagonal label in the coefficient matrix--conductance from the adjacent node which is in the next layer.
SHNEW	Module	Head in the adjacent cell which is in the next layer.
TCHK	Module	Absolute value of head change for a single cell.
TP	Module	Diagonal element in the modified coefficient matrix. (TP stands for T-prime.)
UP	Module	Diagonal element in the modified coefficient matrix. (UP stands for U-prime.)
V	Package	DIMENSION (NODES), Intermediate result.
VN	Module	Temporary double-precision $V(N)$.
VNCL	Module	Element in the intermediate vector for the cell in the last column.
VNLL	Module	Element in the intermediate vector for the cell in the last layer.
VNRL	Module	Element in the intermediate vector for the cell in the last row.
W	Package	DIMENSION (NPARM), Iteration parameters.
XI	Module	Double-precision V(N).
Z	Module	Diagonal label in the coefficient matrix--conductance from the adjacent node which is in the last layer.
Z HNEW	Module	Head in the adjacent cell which is in the last layer.

Submodule SSIP1P prints the largest value of head change (HDCG) out of all cells for each iteration of a time step. Also printed is the cell location (LRCH) where the change occurs. The submodule is so short that no numbered comments are used and no flow chart is provided.

SUBROUTINE SSIPIP(HDCG,LRCH,KITER,MXITER,IOUT)
C C
C-----VERSION 1636 24JUL1987 SSIPIP
C $\quad * ~$
C PRINT MAXIMUM HEAD CHANGE FOR EACH ITERATION DURING A TIME STEP

C
C SPECIFICATIONS:
C
C
DIMENSION HDCG(MXITER), LRCH(3,MXITER)
C
C
WRITE(IOUT,5)
5 FORMAT(IHO,'MAXIMUM HEAD CHANGE FOR EACH ITERATION: $/ /$
1 1HO,5(' HEAD CHANGE LAYER,ROW,COL')/1X,132('-'))
WRITE (IOUT,10) (HDCG(J),(LRCH(I,J),I=1,3),J=1,KITER)
10 FORMAT((1X,5(G12.4,' (1,13,1,1,I3,1,1,I3,')'))) WRITE (IOUT,11)
11 FORMAT(1HO)
C
RETURN
C
END

List of Variables for Module SSIP1P

Variable	Range	Definition
HDCG	Package	DIMENSION (MXITER), Maximum head change for each iteration.
I	Module	Index for cell location.
IOUT	Gl obal	Primary unit number for all printed output. IOUT $=6$.
J	Module	Index for iterations.
KITER	Global	Iteration counter. Reset at the start of each time step.
LRCH	Package	DIMENSION (MXITER), Layer, row, and column of the cell containing the maximum head change (HDCG) for each iteration.
MXITER	Package	Maximum number of iterations.

Narrative for Module SSIP1I

Submodule SSIP1I calculates an iteration-parameter seed using modelconductance values and grid dimensions. Although a single seed is required, the method of calculation requires that three-directional seeds be calculated for each active cell. Then a cell seed, the minimum of the three, is selected. Finally, all the cell seeds are averaged to give the grid seed. This grid seed is then used to calculate the iteration parameters. The minimum cell seed is also printed.

Submodule SSIP1I performs its functions in the following order:

1. Calculate constants and initialize variables. In order to calculate the average cell seed, accumulators AVGSUM (sum of the cell seeds) and NODES (sum of the active cells for which a seed is calculated) are required. These are initialized to zero. WMINMN is used to store the smallest cell seed. Since this value must always be less than one, it is initialized to 1.0. The three coefficients, CCOL, CROW, and CLAY are set equal to $\pi^{2} / 2(\text { NCOL })^{2}, \pi^{2} / 2(\text { NROW })^{2}$, and $\pi^{2} / 2(\text { NLAY })^{2}$, respectively.
2. Loop through all cells, calculating a cell seed for each active cell.
(a) Find the conductances from the cell to each of the six adjacent cells. Conductance across the grid boundary is set equal to zero.
(b) Find the maximum and minimum of the two conductances in the row direction (DFMX, DFMN), in the column direction (BHMX, BHMN), and in the vertical direction (ZSMX, ZSMN). If the minimum is zero (which indicates that a neighbor is no flow), set the minimum equal to the maximum.
(c) Calculate three-directional seeds (WCOL, WROW, WLAY) using the relations

$$
\begin{aligned}
& \text { WCOL }=\text { CCOL/(} 1 .+(\text { BHMX }+ \text { ZSMX }) / D F M N) ; \\
& \text { WROW }=\text { CROW } /(1 .+(D F M X+Z S M X) / B H M N) ; \text { and } \\
& \text { WLAY }=C L A Y /(1 .+(D F M X+B H M X) / Z S M N)
\end{aligned}
$$

If the minimum conductance is zero (that is, both the minimum and the maximum are zero), set the seed equal to 1.0 . This value will be ignored when the cell seed (the minimum-directional seed) is selected in step 2(d) because any valid seed will be less than 1.0 .
(d) Select the minimum of the three-directional seeds as the cell seed. If it is the smallest cell seed used so far, store it in WMINMN. Accumulate the sum of the cell seeds and the total number of active cells so that the average of all cell seeds can be calculated in step 3.
3. Calculate the grid seed (the average cell seed) and print it along with the minimum seed.
4. Calculate and print iteration parameters using the grid seed with the relation

$$
I_{i}=1-(\text { SEED }) \frac{i-1}{\text { NPARM }-1}
$$

where
I_{i} is the \boldsymbol{i}-th iteration parameter, and
NPARM is the number of iteration parameters.
5. RETURN.

Seed: the "grid seed" is the single parameter used to calculate the iteration parameters. To calculate the grid seed, several intermediate variables, called "cell seeds," are used. For each cell, three "directional seeds" are calculated. The minimum directional seed for a cell is the "cell seed." The "grid seed" is the average of the cell seeds.

AVGSUM is an accumul ator to which each cell seed is added. It is then divided by the number of cells to obtain the average cell seed which is used as the grid seed.

	SUBROUTINE SSIPII(CR,CC, CV, IBOUND, NPARM, W, NCOL, NROW, NLAY, 1 IOUT)	
C		
C-----VERSION 1417 l2MAY1987 SSIPII		
C	**	
C	CALCULATE AN ITERATION PARAMETER SEED AND USE IT TO CALCULATE SIP ITERATION PARAMETERS	
C		
C	**	
C		
C	SPECIFICATIONS:	
C		
DIMENSION CR(NCOL, NROW, NLAY), CC ($\mathrm{NCOL}, \mathrm{NROW}, \mathrm{NL}$ AY)		
	1 , CV ($\mathrm{NCOL}, \mathrm{NROW}, \mathrm{NL} A Y$) , IBOUND ($\mathrm{NCOL}, \mathrm{NROW}, \mathrm{NL} A Y), W($ NPARM $)$	
C		
	DOUBLE PRECISION DWMIN, AVGSUM	
C		
Cl-----CALCULATE CONSTANTS AND INITIALIZE VARIABLES		
$\mathrm{R}=\mathrm{NROW}$		
$\mathrm{C}=\mathrm{NCOL}$		
ZL=NLAY		
CCOL=PIEPIE/(2.*C*C)		
CROW=PIEPIE/(2.*R*R)		
CLAY=PIEPIE/(2.*ZL*ZL)		
WMINMN=1.		
AVGSUM=0.		
NODES $=0$		
C		
C2------LOOP THROUGH ALL CELLS, CALCULATING A SEED FOR EACH CELL		
C2------THAT IS ACTIVE		
DO $100 \mathrm{~K}=1$, NLAY		
DO $100 \mathrm{I}=1$, NROW		
DO $100 \mathrm{~J}=1$, NCOL		
IF(IBOUND (J, I, K).LE.0) GO TO 100		
C		
C2A-----CONDUCTANCE FROM THIS CELL		
C2A----TO EACH OF THE 6 ADJACENT CELLS		
$\mathrm{D}=0$.		
IF(J.NE.1) $\mathrm{D}=\mathrm{CR}(\mathrm{J}-1, \mathrm{I}, \mathrm{K})$		
$\mathrm{F}=0$.		
IF (J.NE, NCOL) F=CR(J, I, K)		
$\mathrm{B}=0$.		
IF (I.NE,1) $\mathrm{B}=\mathrm{CC}(\mathrm{J}, \mathrm{I}-\mathrm{l}, \mathrm{K})$		
$\mathrm{H}=0$.		
IF (I.NE.NROW) $\mathrm{H}=\mathrm{CC}(\mathrm{J}, \mathrm{I}, \mathrm{K})$		
$\mathrm{Z}=0$.		
IF (K.NE.1) $\mathrm{Z}=\mathrm{CV}(\mathrm{J}, \mathrm{I}, \mathrm{K}-1)$		
$\mathrm{S}=0$.		
	IF(K.NE.NLAY) S=CV(J,I,K)	
C		
C2B-----FIND THE MAXIMUM AND MINIMUM OF THE 2 CONDUCTANCE COEFFICIENTS C2B-m--IN EACH PRINCIPAL COORDINATE DIRECTION		

```
    DFMX=AMAXI (D,F)
    BHMX=AMAXI (B,H)
    ZSMX=AMAXI(Z,S)
    DFMN=AMINL (D,F)
    BHMN=AMINL (B,H)
    ZSMN=AMIN1 (Z,S)
    IF(DFMN.EQ.O.) DFMN=DFMX
    IF (BHMN.EQ.O.) BHMN=BHMX
    IF(ZSMN.EQ.O.) ZSMN=ZSMX
C
C2C--_--CALCULATE A SEED IN EACH PRINCIPAL COORDINATE DIRECTION
    WCOL=1.
    IF(DFMN.NE.0.) WCOL=CCOL/(1.+(BHMX+ZSMX)/DFMN)
    WRON=1.
    IF(BHMN.NE.0.) WROW=CROW/(1.+(DFMX+ZSMX)/BHMN)
    WLAY=1.
    IF(ZSMN.NE.0.) WLAY=CLAY/(1.+(DFMX+BHMX)/ZSMN)
C
C2D-m-m-SELECT THE CELL SEED, WHICH IS THE MINIMUM SEED OF THE 3.
C2D-----SELECT THE MINIMUM SEED OVER THE WHOLE GRID.
    WMIN=AMINI (WCOL, WROW, WLAY)
    WMINMN= AMINI (WMINMN, WMIN)
C
C2E-m---ADD THE CELL SEED TO THE ACCUMULATOR AVGSUM FOR USE
C2E-----IN GETTING THE AVERAGE SEED.
    DWMIN=WMIN
    AVGSUM=AVGSUM+DWMIN
    NODES=NODES+1
C
    100 CONTINUE
C
C3------CALCULATE THE AVERAGE SEED OF THE CELL SEEDS, AND PRINT
C3-mm-m-THE AVERAGE AND MINIMUM SEEDS.
    TMP=NODES
    AVGMIN=AVGSUM
    AVGMIN=AVGMIN/TMP
    WRITE(IOUT,101) AVGMIN,WMINMN
    101 FORMAT(1HO,'AVERAGE SEED =1,F11.8/1X,'MINIMUM SEED =1,F11.8)
C
C4--~---CALCULATE AND PRINT ITERATION PARAMETERS FROM THE AVERAGE SEED
        Pl=-1.
        P2=NPARM-1
        DO 50 I=1,NPARM
        Pl=Pl+1.
        50 W(I)=1.-AVGMIN**(P1/P2)
            WRITE (IOUT, 150) NPARM, (W(J),J=1, NPARM)
    150 FORMAT(1HO,l,I5,' ITERATION PARAMETERS CALCULATED FROM',
        1 I AVERAGE SEED:'//(10X,6E15.7))
C
C5--m---RETURN
    RETURN
    END
```


List of Variables for Module SSIP1I

Variable	Range	Definition
AVGMIN	Module	Mean WMIN.
AVGSUM	Module	Sum of all of WMIN's.
B	Module	Conductance between this node and the one to the rear.
BHMN	Module	Minimum of B and H (if the minimum is 0 , it is the maximum).
BHMX	Module	Maximum of B and H.
C	Module	Number of columns.
CC	Global	DIMENSION (NCOL,NROW,NLAY), Conductance in the column direction. CC(J,I,K) contains conductance between nodes ($\mathrm{J}, \mathrm{I}, \mathrm{K}$) and ($\mathrm{J}, \mathrm{I}+1, \mathrm{~K}$).
CCOL	Module	Intermediate factor.
CLAY	Module	Intermediate factor.
CR	Global	DIMENSION (NCOL, NROW, NLAY), Conductance in the row direction. CR(J,I,K) contains conductance between nodes ($\mathrm{J}, \mathrm{I}, \mathrm{K}$) and ($\mathrm{J}+1, \mathrm{I}, \mathrm{K}$).
CROW	Module	Intermediate factor.
CV	Global	DIMENSION (NCOL, NROW, NLAY-1), Conductance in the vertical direction. CV(J,I,K) contains conductance between nodes ($\mathrm{J}, \mathrm{I}, \mathrm{K}$) and ($\mathrm{J}, \mathrm{I}, \mathrm{K}+1$).
D	Module	Conductance between this node and the one to the left.
DFMN	Module	Minimum of D and F (if the minimum is 0 , it is the maximum).
DFMX	Module	Maximum of D and F.
DWMIN	Module	Double precision WMIN.
F	Module	Conductance between this node and the one to the right.
H	Module	Conductance between this node and the one to the front.
I	Module	Index for rows.
IBOUND	Global	```DIMENSION (NCOL,NROW,NLAY), Status of each cell. < 0, constant-head cell = 0, inactive cell > 0, variable-head cell```

List of Variables for Module SSIP1I (Continued)

Variable	Range	Definition
IOUT	Global	Primary unit number for all printed output. IOUT $=6$.
J	Module	Index for columns.
K	Module	Index for layers.
NCOL	Global	Number of columns in the grid.
NLAY	Global	Number of layers in the grid.
NODES	Module	Number of variable-head (IBOUND > 0) cells in the grid.
NPARM	Package	Number of iteration parameters.
NROW	Global	Number of rows in the grid.
PIEPIE	Module	PI squared.
P1	Module	Index for the number of parameters.
P2	Module	NPARM-1.
R	Module	Number of rows.
S	Module	Conductance between this node and the one below.
TMP	Module	Temporary field for nodes.
W	Package	DIMENSION (NPARM), Iteration parameters.
WCOL	Module	Seed in the column direction for a cell.
WLAY	Module	Seed in the layer direction for a cell.
WMIN	Module	Minimum of (WCOL, WLAY, WROW).
WMI NMN	Module	Minimum WMIN.
WROW	Module	Seed in the row direction for a cell.
Z	Module	Conductance between this node and the one above.
ZL	Module	Number of 1 ayers.
ZSMN	Module	Minimum of Z and S (if minimum is 0 , it is the maximum).
ZSMX	Module	Maximum of Z and S .

