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Preface 

Scientists and engineers have been using ground-water flow models to study ground-water flow 
systems for more than 20 years. The basic modeling process seems to be relatively straightfor- 
ward. Initially, a sound conceptual model is formed and is translated into a tractable, mathematical 
model. Contributing to (and following) this conceptualization process is the collection of field in- 
formation, such as (1) location and extent of hydrostratigraphic units, recharge areas, discharge 
areas, and system boundaries; (2) hydraulic head measurements; and (3) pumping discharges. These 
data form the basis for input to the flow model. Finally, the model is run, and the desired informa- 
tion such as head distribution or flux rates is extracted. However, people engaged in modeling 
usually observe that two pervasive problems considerably complicate the situation. One problem 
is that good, general methods of measuring (or computing) some of the variables that characterize 
the flow system and its geologic framework do not exist. One example is measurement of ground- 
water recharge. No direct ways of measuring recharge exist, and the accuracy of indirect methods 
is often unknown. Furthermore, many indirect methods are applicable only to unique situations. 
The second problem relates to errors in the measurements and their propagation into model results. 
No error-free measurement (or computation) methods for obtaining data on the flow system exist. 
Thus, even the variables that can be estimated will contribute to error, so that model results will 
always be unreliable to some extent. As a consequence of these two problems, measurement (or 
computation) of the necessary input variables, application of them to an adequate model, and 
calculation of the desired results to an acceptable accuracy generally are not possible. Other methods 
that recognize and deal with the problems of incompleteness and (or) inaccuracy of data must also 
be applied. The present text has been designed to teach these methods to scientists and engineers 
engaged in ground-water modeling. 

The basic methodology is multiple, nonlinear regression, in which the regression model is some 
type of ground-water flow model. As seen subsequently, this methodology is consistent with known 
aspects of the physical systems to be analyzed and requires relatively few assumptions. Even 
though the present text is directed specifically toward ground-water modeling, the procedures to 
be discussed are applicable to a number of different types of modeling problems. Thus, the methods 
are usually discussed in a general context; in other words, without reference to any specific model. 

Material in the present text evolved from notes developed for training courses in parameter 
estimation for ground-water flow models taught by the authors and others at the U.S. Geological 
Survey National Training Center, Denver Federal Center, Lakewood, Colo. The philosophy of these 
courses, and of this text, is to teach general methods that are applicable to a wide range of prob- 
lems and to teach these methods in sufficient depth so that students can apply them to many 
problem situations not considered in the courses or text. 

The main body of the text is organized into six major sections. The first section is an introduc- 
tion that discusses the general topic of modeling ground-water flow. This section shows that ground- 
water modeling problems are an incomplete combination of direct-type problems (solution for 
hydraulic head given values of flow system and framework variables) and inverse-type problems 
(solution for flow system and framework variables given values of hydraulic head) that commonly 
require solution by optimization procedures which give the best fit between observed and calculati 
results. Because the specific optimization approach employed here is regression and regression 
procedures are based on statistical concepts, the second section is included to provide the student 
with the necessary statistical background material. It is not designed to be an exhaustive review 
of basic statistics; rather, it presents material essential to understanding the following sections. 
The third section presents detailed material on linear and nonlinear regression. Although most 
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of the material on linear regression is fairly standard, some of the material on nonlinear regres- 
sion is not. In particular, specific modifications presented to induce convergence of the iterative 
solution procedure for nonlinear regression have not, to the writers’ knowledge, been presented 
elsewhere in the form given here. The fourth section applies the nonlinear regression method to 
the specific problem of developing a general fini tedifference model of steady-state ground-water 
flow. In the fifth section, statistical procedures are given to analyze and use general linear and 
nonlinear regression models. The tests and analytical procedures presented are not exhaustive; they 
are the ones that the writers have found to be most useful for analyzing the real systems examined 
to date The sixth section is designed to be supplemental to the preceding sections. Specialized 
procedures presented include nonlinear regression for models that cannot be solved directly for 
the dependent variable, a measure of model nonlinearity called Beale’s measure, and a statistical 
test for compatibility of prior information on parameters and parameter estimates derived from 
sample (observed head) information. 

A number of exercises have been included, and a complete discussion of the answers can be found 
in the seventh major section at the end of the text. These problems exercise the student on nearly 
all methods presented. In addition, three computer programs are documented and listed: the pro- 
gram for nonlinear-regression solution of ground-water flow problems of section four, a program 
to calculate Beale’s measure, and a program to calculate simulated errors in computed dependent 
variables such as hydraulic head. 

The mathematical background necessary to use this text includes basic mathematics through 
differential and integral calculus, including partial derivatives, and matrix algebra. A background 
in elementary statistics would be useful but is not essential. In addition, a sound knowledge of 
ground-water hydrology and ground-water flow modeling are needed to effectively apply the 
methods presented. 

References for cited material are given at the end of each major section. Good supplemental 
sources for the unreferenced material not peculiar to this text are presented as “Additional Reading” 
at the end of each reference list. It is expected that students who have difficulty with the material 
in this text will consult the more expanded developments in these supplemental sources. 

Several people, in addition to the writers, contributed extensively to this text. Charles R. Faust 
wrote earlier sections on statistical review and basic regression and contributed several exercises, 
Steven P. Larson wrote an earlier version and documentation of the nonlinearregression flow pro- 
gram of section four and contributed earlier versions of several exercises, James V. Tracy contributed 
to the documentation of the nonlinear-regression flow program, and Thomas Maddock III wrote 
the first version of the statistics review section. In addition, all of these people helped teach the 
training courses from which the present text evolved. Finally, the writers would like to thank the 
technical reviewers, Brent M. ‘Boutman and Allan L. Gutjahr, for their many hours of review work 
and the secretaries, Anita Egelhoff, Evelyn R. Warren, and Patricia A. Griffith, for their patience 
and care in typing the manuscript. 
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REGRESSION MODELING OF 
GROUND-WATER FLOW 

By Richard L. Cooley and Richard L. Naff 

1 Introduction 

1.1 Flow Equation and Bound- 
ary Conditions 

The most general form of the ground-water 
flow equation that we consider here is given as 

and T, and Tyy are continuous functions of x 
and y. 

(1.1-1) 

where 

Ttr (zc,y)= transmissivity (K&) in the 5=x 
or y direction; 

Ktt (x,y)= hydraulic conductivity of the 
aquifer in the 4 direction; 

b(x,y)= thickness of the aquifer; 
I&y)= hydraulic conductance (hydraulic 

conductivity divided by thick- 
ness) of sediments underlying a 
stream or of an aquitard underly- 
ing or overlying the aquifer: 

W(z,y,t)= source-sink term (positive for a 
source), distributed areally; 

N 
&~~~)Npb,)Qp=Dirac delta designation for 

t=l N wells, each one pumping at rate 
Qp (t) (positive for injection) and 
located at (u,,bd; 

S(sy)= storage coefficient; 
h(x,y,t)= hydraulic head in the aquifer; 

H(x,y,t)= head at the stream bottom or at 
the distal side of the aquitard; 

sy = Cartesian coordinates; 
t= time: 

With suitable internal boundary conditions, 
the region can be zoned with respect to T[[. 
Such boundary conditions involve head and 
specific discharge multiplied by thickness 
normal to the boundary (qn) and can be stated 
for a boundary between 5”[[ zones K and 4 as 

(1.1-2) 

(1.1-3) 

where ( .)k indicates that the quantity in paren- 
theses is evaluated just within the k side of the 
boundary and similarly for R Zonation with 
respect to R, IV, or S requires no internal bound- 
ary conditions. 

External boundary conditions applying at the 
periphery of the domain being modeled are 
given as 

(1.1-4) 

where c&,y, t) and &y, t) are given functions, 
and { &,y),n,(x,y)) is the outward-pointing 
unit normal at the boundary. The sum of the 
first two terms is the flux qB normal to the 
boundary (positive for outflow). Equation 1.1-4 

1 
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incorporates the standard boundary conditions 
of specified flux (qB) and specified head (hB) 
but also allows for linear combinations to be 
given. 

1.2 Types of Solutions 

1.2.1 Direct Solution for Head 

The classical problem of mathematical 
physics (and, by assumption, of ground-water 
hydrology) is to directly solve equations 1.1-1 
through 1.1-4 for h=h(~,y,t). Given that any 
specific problem is properly posed, such a solu- 
tion will always exist. The conditions for prop 
erly posing a problem are the following. 

1. The positions of all internal boundaries 
are known exactly. Examples of internal 
boundaries are abrupt changes in TtE, R, 
S, or W; internal known flux (q,) bound- 
aries; and internal known head bound. 
aries. Note that a river is often treated as 
either an internal known head boundary 
where the river is assumed to have no 
width, or a zone of differing R where each 
bank is a zone boundary. 

2. The positions and types of all external 
boundaries are known exactly. External 
boundaries frequently are known flux (qB) 
types or known head (hB) types. Some- 
times some linear combination is known, 

3. Hydrogeologic variables T , R, and S 
and hydrologic variables Iv and Qp are 
known at all points in the region. 

4. All boundary-condition variables H, CY!, 
and /3 are known. The initial head (at t=O) 
is a boundary condition and must also be 
hOWll. 

Obviously, ground-water flow problems are 
not actually of the classical type because none 
of the conditions cited above ever are met ex- 
actly. Conditions 1 and 2 are often most close- 
ly fulfilled, but estimates (often crude) usually 
must suffice for the variables in conditions 3 
and 4. Any errors in these input variables are 
propagated directly into the solution. However, 
reasonable (but incorrect) estimates of the vari- 
ables can be shown to yield errors in predicted 
h(~,y,t) that have the characteristic of being 
bounded (that is, they do not tend to plus or 
minus infinity). Also, as the errors in the input 

variables tend to zero, the errors in computed 
head do also. 

1.2.2 Inverse Solution for 
Parameters 

An inverse solution involves solving equa- 
tions 1.1-1 through 1.1-4 for one or more of the 
variables Ttt, R, S, W, Qp, ar, or 8, over the 
region; these variables are termed parameters 
here. Because R, S, W, Qp, (Y, and fl are not in- 
volved in derivatives, theoretically they may be 
solved for algebraically. Unless Tt is constant, 
it is involved in derivatives and, t ii us, must be 
obtained by solving a differential equation. To 
understand this, note that equation 1.1-1 may 
be rearranged to give 

aL aqy a-+b 
ax 

-+cTz,+dTyy-F=O (1.2-1) 
aY 

where 

ah a(x,y,d= - ah 
ax ' b(sy, d=- 

ay ' 

a2h 
4x&t)= - 

a2h 
ax2 ’ 

4&Y, d=- 
aY2 

, ad 

F(syA=S $ -R(H-hL)- W-&ix-q)S(r-bJg,. 

In general, if T,, and Ty,, are known, condi- 
tions for finding R, S, W, Qot CY, or /3 are: 

1. Conditions 1 and 2 for the classical direct 
solution are met. 

2. Head distribution h(x,y,t) is known 
exactly. 

3. The solution for the desired combination 
of parameters to be obtained is unique. 

The latter condition is completely problem 
dependent. Because solution involves only 
algebraic manipulations, the condition reduces 
to the requirement that the system of algebraic 
equations involving the desired parameters has 
a unique solution. Generally, solution involves 
picking the required number of points spatial- 
ly and through time to yield the necessary 
number of equations. 

To find T,, and Tyy, more conditions are 

c 
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required than for finding R, S, W, Qp a, or 6. 
These conditions are: 

1. Conditions 1 and 2 for finding R, S, W, Qp 
CY, or 0 must be met. 

2. The direction of the velocity vector must 
be known everywhere, or TuclTyy must be 
known everywhere, or quantities a, b, c, 
d, and F in equation 1.2-1 must be known 
at two (or more) points in time to give a 
unique solution to equation 1.2-1 written 
in the form of a pair of simultaneous dif- 
ferential equations. These requirements 
result because 1.2-1 is one equation in 
two unknowns. Hence, an additional rela- 
tionship is required. If the velocity direc- 
tion is known everywhere, then by 
employing Darcy’s law the additional rela- 
tionship is derived as 

do not exist at all points and, where these 
measurements do exist, they are not exact. Fur- 
thermore, some measure of Ttt is virtually 
never available on the required curves, and in- 
formation on directions of flow vectors for even 
scattered locations usually is nonexistent. 
Assumptions concerning zonations in which 
T,/T,, and (or) T,, and T may be considered 
constant simplify the prob fY em, but the fact that 
h must be known still remains. 

Because the head distribution is not known 
exactly, coefficients u, b, c, d, and F in equation 
1.2-1 are in error. Furthermore, head appears 
as a derivative in all of these quantities. Hence, 
any error in h is propagated into the inverse 
solution as a derivative of error. The effects of 
this propagation are often disastrous because, 
if Q is defined as error in head, Q+O does not 
imply that 3~/3[+0. Also, I~Q/~[[>>[Q[ is 
common, and it can happen that ( 3 q/3 ,$ [+a 
even if ‘h is bounded. Therefore, the error in 
computed Ttr (or other parameter) may not ap- 
proach zero as Eh+O, and may, in fact, be quite 
large (Neuman, 1980, p. 342-344). 

T xx 99 -=-- 
T YY QYU 

(1.2-2) 

where e, b, and qnlq, (the ratio of the x 
and y direction fluxes) are known. 

3. 

B 

If either the direction of the velocity vec- 
tor or T,,/T,, is known, then either T,, 

Or TYY must be known on a possibly 
discontinuous curve crossing all flowlines. 
If solution is to be obtained by solving a 
simultaneous pair of differential equa- 
tions, then T,, must be known on a 
possibly discontinuous curve that spans 
the range of y, and Tyy must be known on 
a possibly discontinuous curve that spans 
the range of X. These are extensions of the 
Cauchy boundary condition for a first- 
order differential equation involving a 
single dependent variable and are re- 
quired for solution of the problem. 

4. The function F in equation 1.2-1 must be 
known everywhere. This means that all 
quantities in F must be known or that a 
mathematical form for F can be assumed. 

Ground-water flow modeling does not fit into 
the category of inverse solutions, although a 
significant part of most model studies is to find 
values of the parameters that allow values of 
calculated head to match those observed in the 
field. The difficulty is that the required condi- 
tions are almost never met. Head distribution 

. is never known exactly because measurements 

1.2.3 Solution Using Real Data 

In the previous section, we argued that prob- 
lems involving groundywater flow modeling of 
real field systems are neither of the classical nor 
inverse type, because the data necessary for the 
problems to be classified as either type are 
usually lacking. An estimate of the hydraulic 
head distribution based on measurements (that 
are in error with respect to the model) taken at 
selected points usually exist. Estimates of the 
parameters are usually either completely 
unknown or have been obtained by spot 
measurements, few of which are directly useful 
for construction of appropriate effective values 
for use in equation 1.1-1. That modeling prob- 
lems in ground-water hydrology involve an in- 
complete combination of several types of data 
in which error and error propagation are impor- 
tant considerations is evident. 

1.3 Sources of Error in Ground- 
Water Data 

Uncertainty (or errors) in ground-water data 
may have many sources, and enumeration of all 
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possible sources would be a nearly impossible 
task. However, a consideration of some of the 
more important sources of error serves to il- 
lustrate the importance of the error component. 

1.3.1 Sources of Error in Head Data 

Some major potential sources of random- 
appearing error in head data with respect to the 
model (equations 1.1-1 through 1.1-4) are: 

1. Areal ground-water models assume that 
the head used is the average over the ver- 
tical. However, wells may not be open 
over the entire interval modeled, and if 
they are, they may not measure the 
average. Flow into and (or) out of a well 
distorts the hydraulic head field in the 
vicinity of the well so that the recorded 
water level does not represent the average 
head. 

2. Permeability varies from point to point, 
which causes water levels to vary from 
values they would have if permeability 
were uniform. However, models usually 
do not take this detailed variation into ac- 
count. This phenomenon has been exten- 
sively studied during the last 10 years, 
and literature reviews are contsined in the 
works of Dagan (1986) and Gelhar (1984, 
1986). 

3. Water levels measured in wells in use may 
contain unknown amounts of residual 
drawdown. In addition, unused wells may 
be near wells that are in use, with result- 
ing unknown drawdown in the unused 
well. 

4. Measurement of well-head elevation may 
be in error. 

Actual total error from the above sources is 
highIy problem dependent, but it is easy to im- 
agine errors of several feet. It should be noted 
that measurement error in water levels was not 
mentioned as a major source of error because 
it commonly amounts to one- or two-tenths of 
one foot or less. Finally, major model error in 
equations 1.1-1 through 1.1-4 (for example, 
head dependence in one or more parameters or 
three-dimensional flow) was also not mentioned 
because error resulting from this source is bias 
and should be detected and eliminated by 
analysis of model results. 

1.3.2 Sources of Error in Parameter 8 
Data 

Because there are several different param- 
eters to be considered, and each can be esti- 
mated or measured in several different ways, a 
large number of sources of error exist in 
parameter data. Model error is not considered 
here, but other types of bias are potentially im- 
portant and are often difficult to detect. Some 
examples of errors in parameter data i.lIus- 
trating the nature of the problem are: 

1. Too few estimates of parameters are avail- 
able to compute stable estimates of statis- 
tics, such as mean and variance. 

2. Results of point sampling are often biased 
because a large amount of data does not 
necessarily allow computation of nearly 
true or effective values of a parameter and 
its variance. For example, permeability 
values from core analyses often are not 
representative of regional values, because 
flow through large fractures is not repro- 
duced by core analyses. Also, effective 
values of a parameter and its variability 
are usually not directly given by standard 
mean and variance formulas. c 

3. Transmissivities estimated from specific- 
capacity data collected by drillers are 
subject to numerous sources of error. 
Common sources include (1) mismeasur- 
ing water levels or pumping rates, (2) al- 
lowing the water level to recover after 
bailing, (3) clogging of the slots or screen, 
and (4) inaccurate reporting. There are 
so many sources of error that the errors 
may often appear to be random. A persist- 
ent source of bias results because drillers 
drill wells in favorable locations and 
only screen (or slot) the most productive 
zones. 

4. Transmissivities and storage coefficients 
estimated from pumping-test analysis are 
subject to many of the same errors as 
above, but the more carefully controlled 
tests should reduce their frequency and 
magnitude. In addition, a single test may 
not be representative of an entire hydro- 
stratigraphic unit. 

5. Transmissivities estimated from litholog- 
ical data are usually biased to an un- 
known degree. 1 
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a 1.4 Model Construction 

Ground-water models are constructed by 
using the types of data alluded to in the 
previous section. Hence, measured or estimated 
parameter data, either reliable or complete 
enough to employ directly in a model to 
reproduce measured head data with an accept- 
able model fit, are rare. As a result, adjustment 
of parameter values, and sometimes basic model 
structure, is used to improve model fit. Two 
basic groups of methods currently in use to ac- 
complish this are: (1) trial and error procedures 
and (2) optimization methods that minimize a 
formal objective function. 

1.4.1 Trial and Error Methods 

Trial and error is the method of repeated 
simulation until the calculated head distribution 
obtained with a reasonable set of parameters 
fits closely enough to satisfy the analyst. 
Sometimes an objective measure of goodness of 
fit, such as C(hC~-hobS)2, is used to aid the 
analyst in deciding whether or not a change in 

l parameters (or model structure) has improved 
the overall model fit. However, no matter how 
the method is applied, it has several inherent 
critical deficiencies: 

1. No methodology exists to guarantee that 
the simulations will proceed in a direc- 
tion that could lead to the best set of 
parameters. 

2. Determining when that best set has been 
reached is difficult. 

3. No practical way of determining how 
many other sets of parameters could yield 
similar correspondence between hCh and 
bobs exists. 

4. Deciding whether or not additional pa- 
rameters or a more refined model would 
significantly improve model fit is difficult. 

5. No way of quantitatively assessing 
the predictive reliability of the model 
exists. 

A method of model construction that addresses 
these deficiencies would allow construction and 
use of a model with a much greater degree of 
confidence than that provided by trial and error 
methods. Hence, attention is turned to formal 
optimization procedures. 

1.4.2 Formal Optimization 
Procedures I_ 

Optimization procedures utilize a formal 
criterion of goodness of fit, often called an ob- 
jective function. This function is minimixed (or 
sometimes maximized, depending on the form 
of the function) with respect to the parameters 
to yield an optimum or best-fit solution. Mini- 
mization (or m aximization) sometimes is subject 
to certain other criteria regarding values that 
the parameters, or pertinent functions of the 
parameters related to the model, may take on. 
These criteria are called constraints. 

Examples of objective functions are: 

%&I , 
P=l 

max Ih& , and 
P 

where 

*Fobserved head, 
hp=calculated head, 

p,=observed or prior estimate of a pa- 
rameter, 

&=calculated parameter value th,at, when 
used in the model, produces h,, 

wp=weight related to the reliability of the 
observation h,, 

k?n =similar weight applied to pm, 
n,=number of observations of head, and 
nP=number of observations of parameters. 

The last example is called a compound objective 
function because it contains both head and 
parameters explicitly. Note that minimization 
of each of the functions with respect to the 
parameters of the model produces a solution 
that is overall a best fit to the data, according 
to the objective function. If the signs of the 
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functions were changed, maximization would 
produce the same result. 

Examples of constraints are: 

where a, b, c, and fare constants or known func- 
tions; superscript L refers to a lower limit; and 
superscript Urefers to an upper limit. The best- 
fit solution obtained by minimizing (or maxi- 
mizing) the appropriate objective function 
must simultaneously satisfy the appropriate 
constraints. 

Because the solution obtained by an optimiza- 
tion procedure has known properties, it may be 
analyzed. The exact procedures used and the 
extent to which the model may be analyzed 
depend on the type of optimization method 
selected for use. Statistical regression pro- 
cedures handle, on a probabilistic basis, the 
propagation of data errors (with respect to the 
model) into the estimates of parameters and 
predictive capability of the model. Methods 
have been developed for estimating parameters, 
testing assumptions made during development 

of techniques, testing model fit, determining the 8 
reliability and significance of the model and the 
parameters contained in it, effecting corrective 
measures for violation of some assumptions, 
and estimating the reliability of predictions to 
be made with the model. These procedures and 
the statistical background necessary to apply 
them are detailed in the remainder of the text. 
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Casual observation of our environment in- 
dicates that many phenomena are not strictly 
predictable. We cannot, for instance, exactly 
say what the maximum air temperature at any 
particular location will be tomorrow, although 
we might be able to give a probable range. This 
probable range might be based on our past ex- 
perience, which would enable us to say that 
tomorrow’s high, considering the location and 
season, will probably fall within a specified in- 
terval. A more sophisticated forecasting model 
may enable us to reduce the range within which 
we think tomorrow’s high will fsll, but random 
elements in the forecasting procedure would 
preclude giving an exact answer. As another ex- 
ample of randomness, consider the toss of a 
coin. Prior to the toss, we can only give the 
possible outcomes, either a head or a tail, and, 
if the coin is fair, say that either have equal 
likelihood of occur-kg. However, this ability to 
state precisely that any’future outcome of this 

D 
experiment can, with equal probability, result 
in either a head or a tail is an important advan- 
tage over that offered for predicting tomorrow’s 
maximum temperature. In this latter case, 
because of the complex nature of the processes 
resulting in tomorrow’s maximum, the likeli- 
hood that we could give a precise statement con- 
cerning the probability that it will fall in our 
predicted interval is remote. Instead of attempt- 
ing to untangle these complexities, we might 
opt to study the history of maximum temper- 
atures at the location and annual date in 
question. By assuming that this history will ex- 
trapolate into the future (that is, that weather 
dynamics in future years will remain essentially 
unchanged from those in previous years), we 
could give an estimate of the likelihood that 
tomorrow’s maximum will fall in a particular in- 
terval. However, tools need to be developed to 
carry out this investigation. 

2.1 Basic Concepts 

Randomness itself can be considered to be 
centered around an experiment; the outcome of 
the experiment will have a random quality 

attached to it. For example, in a coin-toss exper- 
iment, the outcome is dominated by the random 
element (either a head or a tail). On the other 
hand, many experiments have a large deter- 
ministic factor. For example, in a chemical titra- 
tion experiment we measure the unknown and 
the amount of titrant used, then calculate the 
amount of a specific substance in the unknown. 
However, measurement error creeps into our 
technique, and results vary from realization to 
realization of the experiment. Some experi- 
ments, such as annual, peak river flows, are not 
ours to perform but only to observe. This ex- 
periment is an example of an event in nature 
that has a large random component which 
nature provides. As we attempt to measure 
these flows, we introduce additional random- 
ness, which we generally ignore. Hydraulic con- 
ductivities measured from core samples are 
similar to peak flows; nature has already pro- 
vided for randomness, which is constrained by 
certain deterministic factors, such as type of 
source material, distance of transport, climate, 
and diagenesis. Again, for every realization of 
this experiment, measurement error is intro- 
duced, which may not be small. 

All possible outcomes of an experiment are 
known as its sample space. The sample space of 
a coin-toss experiment consists of either a head 
(H) or tail (I?: 

S=(H,T}. 

If the experiment consists of the toss of two 
coins, then the sample space consists of 

On the other hand, if we are only interested in 
the total number of heads which might result 
from a single toss of two coins, we could define 
the experiment as this sum, which would result 
in the sample space 

S,={O,1,2}. 

In the case of S,, every member of the sample 
space is equally likely to occur, whereas for S,, 
a one is twice as likely to occur as either zero 
or two, provided that the coin is fair. 

The sample space for a hydraulic-conductivity 
experiment could be defined as all positive real 
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numbers; that is, measurements from cores 
might result in values (outcomes) which could 
be as small as zero or, if we stretch our imagina- 
tions, infinitely large. This space could be con- 
sidered to be a continuous equivalent of the S, 
space for the two-coin experiment. That is, a 
porous medium is an extremely complex 
random process itself. By conducting hydraulic- 
conductivity measurements on cores, we quan- 
tify this randomness in much the same way that 
counting heads quantifies an outcome of the 
two-coin experiment. However, by quantifying 
the randomness of the porous medium in this 
manner, we have never investigated the possi- 
ble existence of more basic, perhaps nonnumeric 
sample spaces similar to S, of the two-coin ex- 
periment for a porous medium. Even if we were 
to discover the existence of such a space, we 
would then need to find a rule, or algorithm, 
which would allow us to connect the two spaces. 
We shall not worry about the possibilities of an 
S1-like space for many processes; however, 
when they are available, they provide an ex- 
cellent mechanism for investigating the charac- 
teristics of &-like spaces. 

An event is defined as any subset of the 
sample space. The investigator is usually inter- 
ested in the relative frequency of occurrence of 
an event. In the case of the S, space and the 
two-coin experiment, it is apparent that half the 
time a realization experiment should result in 
a one. This event is equivalent to the event in 
the S, space corresponding to the union of 
(H,V and (T,H), which occurs with a relative 
frequency of one-half. Thus, the relative f’re 
quency of a head occurrence for the two-coin ex- 
periment is not dependent upon the definition 
of the sample space, but on the basic rsn- 
domness controlling the experiment. 

The investigator is frequently confronted 
with the problem of needing a numerical result 
for the outcome of a random, but not necessarily 
numerical, experiment. In the case of coin-toss 
experiments, the basic outcome is seen to be a 
particular arrangement of heads and (or) tails. 
By assigning a head a value of one and a tail 
a value of zero and then summing, it is possible 
to translate these basic results into something 
measurable. This process of assigning a 
numerical value to a nonnumerical outcome 
leads to the definition of a random variable. 

Definition: A random variable is a function l 
whose value is a real number determined by 
each element in a sample space. 

When the outcome of the experiment is 
numerical, then this result can be considered to 
be the random variable (this statement is merely 
a special case of the above definition). From the 
above definition, we see that a mathematical 
transformation of a random variable is also a 
random variable. (Throughout this review, a 
random variable is indicated by an upper case 
English or Greek letter, whereas a value that 
it may take on is indicated by another letter, 
usually lower case of the same type as used for 
the random variable.) 

The concepts of a random experiment, sample 
space, and random variable are flexible. For in- 
stance, if in the case of the toss of two coins, 
the experiment is defined as the total number 
of heads appearing, then the 23, sample space 
is an automatic result, and the random variable 
can also be considered to be this result. How- 
ever, if the experiment is defined to be the ar- 
rangement of heads and (or) tails resulting from 
a toss (that is, the S, space), then the same ef- 
fect can be obtained by letting the random c 
variable over the S, space be a function that 
assigns a one to a head and a zero to a tail and 
then sums the result. The investigator usually 
defines the sample space, or experiment, to suit 
a particular objective. As a matter of conveni- 
ence, the space is usually selected such that the 
relative frequencies of occurrence of events 
within the space are definable. Access to such 
basic sample spaces as S, for the two-coin ex- 
periment allow for the calculation of relative fre 
quencies for events in both S, and S2 Without 
the existence of a space like S,, determining the 
true relative frequency of occurrence for an 
event in S, is difficult, if not impossible. This 
situation is also evident from the hydraulic- 
conductivity experiment, where only an S$ike 
sample space is available to the investigator. 

A random variable can also be described as 
either being discrete, as in the coin-toss experi- 
ment, or continuous, as represented by the 
hydraulic-conductivity experiment. A discrete 
random variable is defined over a sample space 
whose elements are discrete, although there 
may be as many as there are whole numbers 

4 
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a (mathematicians refer to this phenomenon as 
being countably infinite). A continuous random 
variable is defined over a continuous sample 
space whose elements are infinite in number 
(therefore these elements are uncountably 
infinite). 

2.2 Frequencies and 
Distributions 

2.2.1 Discrete Random Variables 

Although frequencies of occurrence are usual- 
ly associated with events in a sample space, they 
are also associated with values of random vari- 
ables, since random variables are functions of 
the elements in a sample space That is, partic- 
ular values of a random variable correspond to 
particular events in the sample space and, there 
fore, have frequencies of occurrence. Even 
though we will speak of the relative frequency 
of occurrence for particular values of a random 
variable, we are, in reality, speaking of a corm- 

B 

sponding event in the sample space. In fact, we 
frequently use a range of values of a random 
variable to define an event in a sample space, 
thus avoiding the task of describing which 
elements of the sample space compose the event. 

Frequencies of occurrence for events in many 
discrete sample spaces cau be deduced from the 
following axiomatic premise: If an experiment 
can result in any one of N different equally like- 
ly outcomes, and if exactly n of these outcomes 
correspond to event A, then the relative fre 
quency of occurrence of A is n/N. As a simple 
example of employment of this premise, con- 
sider au experiment consisting of a toss of a die. 
The sample space consists of the integers 1 
through 6 and, for any realization of the experi- 
ment, each element of the sample space has 
equal likelihood of occurrence. By considering 
each element of the sample space to be an event, 
one can calculate the frequency of occurrence, 
j&), with which a random variable takes on the 
value xi. For this experiment, only the integer 
values 1 through 6 of Xi have frequencies of oc- 
currence other than 0; Axi) can be graphically 
represented as shown in figure 2.2-l. In this 
case, f(Xi) is referred to as the discrete 

B 

density function of the discrete random variable 

1 2 3 4 5 6 
xi 

Figure 2.2-l 

consisting of the outcome of a toss of a single 
die. 

When two dice are cast, the experiment can 
be defined either as the sum that results from 
the toss or simply as all possible arrangements 
that could appear on the dice. If the sum is 
chosen, then the sample space consists of the 
integers 2-12, which would also be the range of 
values that the random variable could take on. 
The elements of this space, however, are not 
equally likely to occur. The sample space con- 
sisting of all arrangements of the numbers ap- 
pearing on the two dice, presented graphically 
in table 2.2-1, has elements which are equally 
likely to occur. 

Table 2.2-l 

Second 
die 1 

1 (1,l) 
2 (12) 
3 (193) 
4 UP41 
5 (1,s) 
6 (1,6) 

First die 

2 3 4 5 6 

cm (3,l) (4,l) (591) NW 
c&2) (3A (42) 62) (6.2) 
(23) (3,3) (493) (593) (631 
@A (3.4) (494) (5,4) (6,4) 
@X4 (3,s) (4,s) (595) (6.5) 
CWI (3,6) (4-6) (5-6) PM) 

The relative frequency of occurr ence of an event 
corresponding to any subset of elements in this 
space can be calculated by using the premise 
concerning equally likely outcomes. 

A random variable, consisting of the sum that 
results from any outcome of the two dice experi- 
ment, takes on the integer values 2-12 over the 
sample space represented by table 2.2-l. The 
discrete density function for this random 
variable can now be derived from the basic 
premise concerning outcomes that are equally 
likely, since each value for this discrete random 
variable corresponds to a particular event con- 
sisting of a particular subset of elements in the 
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sample space indicated by table 2.2-l. Thus, the 
value of Xi=3 corresponds to the event contain- 
ing the elements (2,l) and (1,2) and has a relative 
frequence of occurrence of 2/36. Letting xi 
represent the integer values that this random 
variable can obtain, its density function, Axi), 
can be represented as shown in figure 2.2-2. 

Note that had the first definition of the ex- 
periment been used, then every element of the 
sample space consisting of the integers 2-12 
would have frequencies of occurrence, when con- 
sidering each element as an event, equivalent 
to those shown in figure 2.2-2. 

Frequencies of occurrence, or deduced fre 
quencies of occurrence as indicated in figures 
2.2-l and 2.2-2, are indications of the future. 
We can make probability statements concem- 
ing the possibility of a random variable taking 
on future values from such knowledge. In a 
craps (two-dice) game, we know that the prob- 
ability of rolling a natural, an outcome of 7 or 
11 on the first cast, is 2/9 simply because these 
values of the random variable for the two-dice 
experiment correspond to elements in the 
sample space which occur with a relative fre 
quency of 2/9. Formally, the statement that this 
discrete random variable X take on the values 
of 7 or 11 with a probability of 2/9 is written 

P(X=7 or X=11)=2/9. 

The probability that this random variable 
takes on any integer value between 2 and 12 is 

obtainable directly from its frequency density, l 
figure 2.2-2. 

A probability statement that is frequently en- 
countered concerns the probability that a ran- 
dom variable is less than or equal to a specific 
value. For the random variable corresponding 
to the sum of outcomes of the cast of two dice, 
we may ask, what is the probability that the 
random variable X is less than or equal to 5? 
The probability of this event is equal to the 
probability that X take on any integer value 2 
through 5: 

P(X<5)=P(X=2 or X=3 or X=4 or X=5). 

This probability is the sum of the probabilities 
of the individual events that X take on the in- 
teger values 2 through 5: 

P(X<5)=1/36+2/36+3/36+4/36=5/18. 

(If the student is not convinced of this relation- 
ship, he or she should examine the elements of 
the sample space represented by table 2.2-l to 
ascertain that it holds.) Note that P(Xsl2) is 
unity; that is, an event which occurs with a prob- 
ability of one will, undoubtedly, take place A 
probability of zero indicates, on the other hand, c 

that the event of concern cannot possibly occur. 
The probability statement P(X+z), where a 

is any real number, is given a special definition 
for both discrete and continuous random vari- 
ables. That is, F(a)=P(XQz) is known as the 

6l36 

5l36 

4l36 

3l36 

2/36 

l/36 

0 

- 

- Ij 
6 7 8 

Figure 2.2-2 



cumulative distribution function of the random 
variable X. For the case of the sum of outcomes 
for two dice, F(a) appears as illustrated in figure 
2.2-3. Because a random variable represents a 
functional mapping from the sample space to 
the real number space, we can be assured that 
the probability of the event X<u exists and is 
equal to the sum of the probabilities of all 
events corresponding to values of the random 
variable which are less than or equal to a. In 
general, for discrete random variables, the 
cumulative distribution function can be 
evaluated by summing the appropriate relative 
frequencies of occurrence: 

The cumulative distribution function for all 
random variables, discrete or continuous, has 
the following properties: 

1. F(a) is a nondecreasing function of a, 

REGRESSION MODELING OF GROUND-WATER FLOW 

2. lim F(a)=l, 
a-- 

3. lim F(a)=O. 
a+-00 

11 

These properties will be demonstrated in detail 
for continuous random variables in a later sec- 
tion. For a discrete random variable, these prop- 
erties reflect the fact that, by definition, the 
discrete density function can never have a nega- 
tive frequency of occurrence and that the sum 
of frequencies must equal one. 

In the next section, an estimator for the den- 
sity function of continuous random variables is 
developed, which will eventually allow us to ex- 
plore the nature of density and cumulative 
distribution functions of continuous random 
variables. 

Problem 2.2-l 

An urn contains one red, one white, and two 
blue balls, all of equal dimensions. A ball is 

819 - 

719 - 

619 - 

519 - 

419 - 

319 - 

219 - 

II9 - 

0 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

a 

Figure 2.2-3 
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drawn from the urn, replaced, and then another 
draw is made. 

a. What possible arrangements (red, white, 
and (or) blue) of the two balls, consider- 
ing order of selection, could occur (see, for 
example, table 2.2-l for two dice)? 

b. What is the frequency of occurrence of 
any of the above events? (Hint: let the 
balls be represented by the symbols R, W, 
Bl, and B2.) 

c. A value of one is assigned to a blue ball, 
two to a red ball, and three to a white. A 
random variable consists of the sum of 
any outcome consisting of two draws with 
replacement. Develop a discrete density 
function for this random variable. 

d. What is the probability that this random’ 
variable takes on a value of 4? What ar- 
rangements of balls correspond to this 
value of the random variable? 

2.2.2 Histograms 

In many cases, we do not have access to all 
values of random variables in a sample space 
(in particular, for many continuous random vari- 
ables). We sample the population consisting of 
ah possible values of the random variable and 
hope to draw inferences from this sample. The 
inferences we draw are usually in the form of 
statistics, which we refer to as sample statistics. 
We like to think that sample statistics estimate 
values of population parameters, which are con- 
stants reflecting the true frequency distribution 
of the random variable.-This is frequently the 
case if the observations composing samples are 
made randomly and without bias. Samples com- 
posed of such observations are referred to as 
random samples and are expected to be repre 
sentative of the population. 

Estimates of density functions for random 
variables are frequently made from random 
samples. Although certain experiments, such as 
a coin toss, allow for the deduction of frequen 
ties of occurrence of events, other experiments 
defy a theoretical calculation, forcing us to 
estimate from a random sample. These esti- 
mates, known as histograms, are generally 
constructed by repeating the experiment a large 
number of times (thus, sampling the population 

of all possible outcomes), dividing the range of a 
these outcomes into class intervals, and calcu- 
lating the relative number of points that fall in 
each interval. We might imagine, for example, 
that we could watch a craps game and note the 
outcome of each roll of dice. After a thousand 
rolls, we would calculate the relative percentage 
of each integer, 2-12, which occurred. If these 
sample frequencies of occurrence were not close 
to that shown previously for the theoretical 
result, we would suspect that the dice had been 
tampered with. 

As an example of a histogram constructed 
from observed values of a continuous random 
variable, consider the transmissivity data 
shown in table 2.2-2. Figure 2.2-4 represents 
a histogram constructed directly from these 
data, which constitute a random sample from 
the population of transmissivities as deter- 
mined from specific capacities of wells in car- 
bonate rocks of central Pennsylvania. A second 
histogram, figure 2.2-5, was constructed from 
a logarithmic transformation of these data as 
shown in table 2.2-3. The first histogram was 
constructed by using a class interval of 50,000 
gal/d/f& and the second is based upon an inter- 
val of onehalf a loglo cycle. The first histogram c 
is not very illustrative because most of the wells 
have transmissivities less than 50,000 gal!d/ft 
(the underlying population frequency is prob- 
ably heavily skewed to the right). By logarith- 
mically transforming of the random variable, we 
scale the abscissa so as to remove the skewness 
in the histogram, causing it to be more bell 
shaped. This type of transformation is fre- 
quently used on random variables that have a 
zero lower bound, causing the transformed 
variable to have tails that tend to infinity in 
both directions. The transformation also tends 
to remove any right skewness in the frequency 
distribution of these random variables. With 
regard to the transformed variate, the histo- 
gram in figure 2.2-5 suggests a bell-shaped 
population frequency distribution. More data 
and smaller class intervals, as suggested in the 
following paragraphs, should cause the histo- 
gram shown in figure 2.2-5 to approach its 
population shape, which we may suspect to 
be a normal distribution; the untransformed 
random variable would then result from a 
log-normal distribution. 
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Table 2.2-2 
porn Siddiqui (1969. p. 433-436)] 

13 

Transmissivfty 
gdmt 

bgi’,T 

15.0 1.176 2,370.O 3.375 
18.0 1.255 2.440.0 3.387 
21.0 
29.0 
32.0 

184.0 

35.0 1.544 

2.265 

50.0 1.699 

202.0 

52.0 1.716 

2.305 

56.0 1.748 

264.0 

62.0 1.792 

2.422 

84.0 1.924 
92.0 1.964 

106.0 2.025 
118.0 2.072 
142.0 2.152 

160.0 2.204 
175.0 2.243 

354.0 2.549 17,700.o 4.248 
370.0 2.568 19,700.o 4.294 
374.0 2.573 23,100.O 4.364 
455.0 2.658 24,200.O 4.384 
463.0 2.666 26,400.O 4.422 

515.0 2.712 33,400.o 4.524 
528.0 2.723 34,700.o 4.540 
615.0 2.789 42,400.O 4.627 
705.0 2.848 46.300.0 4.666 
753.0 2.877 52,000.0 4.716 

800.0 
984.0 

1.150.0 
1,290.o 
1,500.o 

2.903 
2.993 

EY 
3:176 

66,500.O 4.823 
68,400.O 4.835 

132,000.0 5.121 
152,000.0 5.182 
423,000.0 5.626 

1,580.O 3.199 423,000.0 5.626 
1,670.O 3.223 528,000.0 5.723 
1,850.O 3.267 528,000.0 5.723 
2,310.O 3.364 528.000.0 5.723 

Transmissivity : L%lT 
gakvft 

2;54O.b 3.405 
2,800.O 3.447 
2,820.O 3.450 

3,380.O 3.529 
4.410.0 3.644 
4;520.0 3.655 
5.500.0 3.740 
5,650.O 3.752 

6,030.O 3.780 
6.240.0 3.795 
6;340.0 3.802 
7,290.o 3.863 
8,130.O 3.910 

ll,ooo.o 4.041 
13.100.0 
13;700.0 

4.117 
4.137 

14,500.o 4.161 
17.200.0 4.236 

Table 2.2-3 

1.0-1.5 
1.5-2.0 
2.0-2.5 
2.5-3.0 
3.0-3.5 
3.5-4.0 
4.0-4.5 
4.5-5.0 
5.0-5.5 
5.5-6.0 

Total . . . . . . . . . . 

0.051 
.103 
.103 
.154 
.154 
.128 
.128 
.090 
.026 
.064 

.257 

.411 

.565 

.693 

.821 

.911 

.937 
1.001 

‘Based on logloT, table 2.2-2 
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TRANSMISSIVITY GPD/Fl- o(1O-5) 

Figure 2.2-4 

LOGlo (TRANSMISSIVITY/l.O GPD/FT) 

Figure 2.2-5 
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We are now in position to estimate the prob- 
ability of occurmnce of an event associated with 
the log-transformed random variable. Let 
X=log$’ represent the transformed variate 
plotted in figure 2.2-5, and assume that the 
histogram for X is representative of the popula- 
tion frequency. The estimated probability that 
X is less than or equal to 5.0 but greater than 
4.5, P(4.5G<5.0), then, is the sample f’requen- 
cy of occurrence of this event (equal to 0.09). The 
probability that X is less than or equal to 5.0 
can be estimated by summing the frequencies 
of occurrence of all events smaller than 5.0; thus 
P(X<5.0) = 0.911. Thus, the chances are about 
91 in 100 that the transmissivity of the car- 
bonate rocks in central Pennsylvania, as deter- 
mined by any random well, will be less than or 
equal to 1 X105 gal/d/ft. The reader should 
realize that these results are only approximate, 
as the histogram is an approximation of the true 
population frequency distribution. 

An estimate of the cumulative distribution 
function can also be constructed from a random 
sample. Let F,(a) represent this estimate. 

B 

known as the sample distribution function; an 
appropriate estimator for F,(a) is the sum of all 
estimated relative frequencies for values of the 
random variable X less than a: 

P(X<a) = F,(u)= c g 
i<alAz 

(2.2-2) 

where 

fi*= ?Zi/?l=sanlple frequency of occurrence of 
an event represented by the ith class 
interval, 

Az=size of class interval, 
ni=number of outcomes having values in in- 

terval 6 and 
n=size of random sample. 

An application of this procedure for the loga- 
rithmic transformation of transmissivity is 
shown in figure 2.2-6. 

2.2.3 Continuous Random Variables 

The definition of frequency fi’ used in equa- 
tion 2.2-2 suffers from the deficit that it is 
dependent upon the size of the class interval, 
that is, if AZ decreases in size while n remains 
constant, then h* must also decrease, as we are 
also effectively decreasing the value of ni within 
this interval Indeed, even if n were allowed to 
become large as A.r decreases, thus causing ni 
for any arbitrary interval to be large, fi’ could 
still be made arbitrarily small by decreasing the 
interval size sufficiently. However, this phe 
nomenon would prevent us from defining a fre 
quency for a single point in a continuous 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 

LOG,, (TRANSMISSIVITY/l.O GPD/FT) 

Figure 2.2-6 
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random variable, unless we are content to 
associate it with some arbitrary class interval. 
To overcome this problem, probabilists have 
defined a different measure of frequency for con- 
tinuous random variables that consists of the 
frequency of occurrence fi* scaled by its class 
interval: 

fi=fi*iAx .I (2.2-3) 

This normalized frequency, referred to as the 
sample density, should be relatively stable for 
reasonable choices of A.z and n, and in the 
limiting case of n approaching infinity and A.z 
approaching zero, fi should be constant. An ad- 
ditional ordinate has been added to figure 2.2-5 
to show the sample-density distribution of the 
log,oT data. 

The sample distribution function of equation 
2.2-2 can now be redefined in terms of equation 
2.2-3 as follows: 

F,(a)= c fiAx . 
i<alkc 

(2.2-4) 

This definition lends itself to an exploration of 
the population equivalents of F,(a) and fi. If the 
random sample is of sufficient size to sample 
every member of the sample space and AZ is 
taken infinitely small, then the population 
equivalents of F,(a) and fi should be ap- 
proached. By letting n become large and AZ 
small, we see that 

where Ax), the population equivalent of fi, is 
known as the probability density function. 
Because fix) is the population equivalent of fi, 
then the integral representation in equation 
2.2-5 of summing these scaled frequencies must 
be the population equivalent of F,(a), which of 
course is the same cumulative distribution func- 
tion defined earlier in section 2.2.1: 

F(u)=~ajw.z=P(x~u) . (2.2-6) -co 

However, because a random sample, whether it 
be finite or infinite, is countable, equation 2.2-5 
must be given a special interpretation. Note 
that, because fly) is the continuous analog of fi, 
it is always a non-negative quantity. 

A stronger statement than equation 2.2-5 can 
be made concerning the equivalence of F(a) and 
F,(a) for large sample sizes by noting that F,(u), 
prior to sampling, is a random variable. That 
is, if we were to collect different samples of the 
same size n from the same population, we would 
not expect that F,(u), computed from each ran- 
dom sampling, would have the same value. We 
would only hope that, as n becomes large, these 
different values would approach some constant. 
Indeed, probabilists have shown that, with a 
probability of one, F,(u) becomes the constant 
F(u) as n goes to infinity. This result is 
particularly remarkable if we first consider 
that F,(u) can only take on a countable number 
of values k/n, O<k<n, where k is an integer 
(see equation 2.2-2). Thus, although the values 
of F(a) are uncountably infinite (continuous), 
F,(u) can only be, in the case that the random 
sample is infinitely large, at most, countably 
infinite. We will use this result loosely by 
allowing equation 2.2-5 to take on the indicated 

c 

limits, 

lim F,(u)=F(u) (2.2-7) 
Ax-0 
n-- 

and noting that this result only can occur with 
a probability of one. 

Both f(x) and F(x) are continuous functions 
of values of the random variable X. For the pre- 
viously illustrated case of X=log,eT, the den- 
sity function might appear as in figure 2.2-7. 
Figure 2.2-7 represents the population equiva- 
lent of figure 2.2-5, as if all possible outcomes 
of the random variable were available to us. 
Similarly, the cumulative frequency distribu- 
tion, the population equivalent of figure 2.2-6, 
for this random variable might appear as in 
figure 2.2-8. 

Because of equation 2.2-6, the density 
function fix) can be defined in terms of the 
cumulative distribution function F(x) by 
differentiation: 

4 
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dF(a) d a 
Ad- da --=-&x)d2. (2.2-8) 

This result follows directly from the fundamen- 
tal theorem of integral calculus, and is appli- 
cable only to density functions of continuous 
random variables. Equation 2.2-8 is one of three 
concepts which defines density functions of 
continuous random variables. The other two 
state that fix) must be greater than or equal to 
zero for any possible value of the random 
variable and, as will be demonstrated in the 
next section, that the total mass under the fre- 
quency curve must be unity. All density func- 
tions of continuous random variables have these 
concepts in common. 

Figure 2.2-7 

a 

Figure 2.2-8 

Problem 2.2-2 

a. Construct histograms for the following 
specific-conductance data using class intervals 
of 100 and 200 &ro/cm, such that the abscissa 
and ordinate of both histograms are scaled 
equally. What is the effect of changing the class 
interval? 

b. Construct a cumulative frequency distri- 
bution from your 100 pmhokm class-interval 
results. Let X represent the specific-conductance 
random variable: what is 

P(X<600)? 
P(X>400)? 
P( 4OO<x<600)? 
P(X51300)? 
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Ordered specific-conductance data 
KM-a in pmhkm for wells in carbonate rocks of Marylend. F’mm Nuttar. 1973.9. 63-931 

357 469 
359 471 
363 473 

389 477 
407 487 
408 490 

411 492 
413 493 
417 493 
418 499 

63 423 
76 433 

168 439 

278 440 
301 440 
304 440 

310 444 
315 452 
319 452 

452 
456 
462 

501 582 685 836 
504 596 697 839 
509 598 700 876 

512 600 704 882 
518 710 895 
518 

ii::: 
721 897 

527 620 723 904 
529 627 724 906 
533 629 726 915 

537 
538 
542 

948 
968 
969 

552 647 750 982 
562 659 764 997 
564 659 765 1,030 

564 
565 
566 

661 

E 

779 1,080 
783 1,106 
789 1,120 

570 670 808 
575 673 808 
578 675 815 
582 677 820 

1,170 
1,230 

2.2.4 Properties of Cumulative 
Distribution Functions 

In the previous section, the cumulative dis- 
tribution function F(a), defined by the probabili- 
ty statement P(X<u), was noted to have the 
integral form of equation 2.2-6 for continuous 
random variables. We state ail manner of prob- 
ability statements in terms of the cumulative 
distribution function, as this is a standard form. 
For this purpose, properties of cumulative 
distribution functions, with applications to 
other probability statements, are developed in 
this section. 

The probability that a random variable X 
takes on a value in the interval (a,b] can be ex- 
pressed in terms of cumulative distribution 
functions as 

This statement is a direct result of integral 
calculus, whereby integration is used to sum 
all the frequencies of occurrences of values of 
the random variable between a and b. From 

equation 2.2-9 one sees that the cumulative 
distribution function is a nondecreasing func- 
tion of x, because 

That the total mass under the sample density 
curve fi is unity is evident from equation 2.2-4; 
that is, 

linlF,(a)=lim c fiL\x=l . (2.2-10) 
a-- a-- i<alAx 

Because the probability density function fix) of 
a continuous random variable X is a limiting 
form of the sample density fi, the mass under 
its curve is also unity: 

limF(a)=lim ~=fl&7!.z=l . 
a-00 a-00 --oo 

(2.2-11) 

Equation 2.2-11 is a property of ah cumulative 
distribution functions. Similarly, 

c 
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which follows from integral calculus, is also a 
property of cumulative distribution functions. 

Equation 2.2-11 allows one to express pVna) 
as 

P(X>u)= ~&ix=l- jaffr)dx=l-F(u). (2.2-13) a -co 

which is also a result of Riemannian integration. 
An alternate statement of equation 2.2-13 is 
that P(X>u) = 1 -P(X<a). 

By considering equation 2.2-9 in a limit form, 
we can also find the probability that X=u: 

P(X=u)=lim P(uucgz+Ax) ( AX-O 
=lim [F(u+A+F(u)]=O. (2.2-14) AX-0 

This result is unique to continuous random vari- 
ables, in contradistinction to discrete random 
variables. From equation 2.2-14 one sees that 
P(X<u) is equivalent to P(X<u) for continuous 
random variables, as the endpoint, a, of the 
semi-infinite interval does not contribute mass 

B 
to the probability statement. 

Equations 2.2-9, 2.2-11, and 2.2-13 can be 
demonstrated for discrete random variables by 
using the summation form of the cumulative 
distribution function (equation 2.2-l). In con- 
tradistinction to continuous random variables, 
the endpoint in P(X<u) for a discrete random 
variable can contribute significant mass to the 
statement. 

. 

Y 

A number of frequency densities that result 
from randomness in nature, or probabilistic 
models of random events, have been investi- 
gated and published. Cumulative distributions 
of these densities are frequently tabulated 
and are found in many reference books on 
probability and statistics. Equations 2.2-9 
and 2.2-13 are especially useful in evaluating 
probability statements of tabulated random 
variables. 

2.2.5 An Example: The Normal 
Distribution 

Let the random variable Y represent the 
amount of titrant used in a titration experiment 
to neutralize measured amounts of the unknown 
x. A scatter diagram of titrant versus unknown 
might appear as in figure 2.2-9. The solid line 
represents the true stoichiometric balance be- 
tween titrant and unknown. The dots, repre- 
senting repetitions of the experiment, deviate 
from this line by an amount E, which represents 
a value of the measurement error G. These errors 
represent a continuous random variable that 
could theoretically vary from --oo to +a (the 
graphed points only represent a random sam: 
ple from the population). If the experimental ap 
paratus is functioning properly, however, we 
would expect these dots to be concentrated in 
the general vicinity of the solid line. 

A distribution that is frequently used to 
model errors that are symmetrically distrib- 
uted about some common point is the normal 

. 

X 

Figure 2.2-9 
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distribution. The density of the normal distribu- 
tion is a bell-shaped curve, symmetric about its 
mean pE, and with most of the mass concen- 
trated within one standard deviation aa of the 
mean (see figure 2.2-10). In the case of the titra- 
tion experiment, we would hope that the most 
frequently found value of the error would be 
near-zero and expect that pLE would equal zero. 
The standard deviation a& is a measure of the 
dispersion, or spread, of the errors about the 
mean and is equal to the distance from the mean 
to an inflection point on the curve f(e). The mean 
and standard deviation will be formally defined 
in a later section. 

A normal random variable is frequently 
standardized with its mean and standard devia- 
tion by the following transformation: 

Z=(E-pL,)/u, . (2.2-15) 

The cumulative distribution for this standard 
normal random variable is tabulated (table 
2.10-l) for use by the investigator, since its prob- 
ability density function, fdz), is parameter free: 

fdz)=yg . (2.2-16) 

Given the density function for the standard nor- 
mal random variable, it is natural to inquire 
about the form of density, f&), of the unnor- 
malized random variable E. Consider the 
cumulative frequency distribution for 2. By 
making the change of variables z=(s-&/us, 

=& ,&p [ -( ?);2] ds (2.2-17) 

results where e=auE+pE is a value of the unnclr- 
malized random variable. Since differentiation 
is the inverse operator of integration, equation 
2.2-17 is differentiated with respect to E to find 
f&e) (see also equation 2.243): 

1 
=-exp- - 

Js?rac I I 
( 1 

-% y2 . (2.2-18) 
a& 

Figure 2.2-10 

Note that equation 2.2-18 is not parameter free, 
as this density is a function of the parameters 
clg and up 

2.3 Expectation and the 
Continuous Random Variable 

The discussion in this section is largely 
presented with continuous random variables in 
mind. All the results, however, are applicable 
to discrete random variables: whenever a quan- 
tity is defined by an integration over a probabili- 
ty density function for the continuous case, this 
same quantity can almost invariably be defined 
by a summation over the discrete density func- 
tion for the discrete case. The reader should 
demonstrate the veracity of this statement. 

23.1 The Mean 

The mean is a measure of central tendency of 
a population. As an estimator of this central 
tendency, consider a finite random sample con- 
sisting of n values xi of the random variable X. 
If the sample frequency of occurrence f: is 
estimated from this random sample, then a 
logical estimator of the central tendency is to 
sum the product of the central value Zi of each 
class interval and the frequency of occurrence 
for that interval: 

“=i,E,~ ~* pi= C fi Zi ~ (2.3-l) 
-m i<z&x 

4 
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where x, is the upper limit of the largest class 
interval’necessary to construct fi*. The frequen- 
cies of occurrence fi * in equation 2.3-l can be 
looked upon as weights that sum to one, and the 
quantities Zi as equally spaced values of the 
random variable. The values of the random 
variable that occur more frequently, as indi- 
cated by the random sample, receive larger 
weights through equation 2.3-l and will have 
a greater influence on X. 

Equation 2.3-l should be recognized by the 
reader as also being the definition for the center 
of mass of physical weights distributed along 
a line. That is, if mfi* represents the mass of a 
weight located at Xi, where m is the total mass 
of all the weights, then equation 2.3-l would 
give us the center of mass of the line with 
respect to the origin. In the case of a histogram, 
the role of the weights is played by the sample 
frequency of occurrence for an interval, which 
gives us the approximate relative likelihood 
that any future value of the random variable 
will occur in that interval. For calculation pur- 
poses, this distributed weight over any interval 
i is replaced by a point weight having the same 
mass as the distributed weight, but located at 
the center Xi of the interval. The sum of the 
products of the relative masses of these point 
weights, fi*, with their relative distances from 
the origin, Ziv gives us the center of mass, which 
is also a measure of the central tendency. Of 
course, if the sample size n were to become very 
large, then &r could be made very small, refin- 
ing equation 2.3-l as an estimator of the cen- 
tral tendency of a random variable. 

Reasoning similar to that leading to X as an 
estimator of the population mean can be applied 
directly to defining this parameter. First, given 
that the density function fix) is known, then the 
approximate frequency of occurrence of an 
event corresponding to an interval of size A.z 
that has as its central value I is Axi)~. Thus, 
assuming that these relative frequencies are 
centered at each 3ei, an approximate measure of 
the population central tendency, px, is 

(2.3-2) 

where the values pi are equally spaced by A.z 

b 
from each other. Of course, by letting A.r 

become smaller, a more accurate measure of px 
is developed, until px, also known as the 
expected value, E[XJ, of the random variable X, 
is defined by the following integral expression: 

This equation is the standard form for the ex- 
pected value of a &variate random variable. 

Equation 2.3-3 can also be developed direct- 
ly from equation 2.3-l by letting rz+= and 
Ax-+o: 

That is, as h becomes smaller and as the 
number of observations becomes very large, Xi 
becomes a unique continuous value of X, fi 
becomes the continuous function Ax), and the 
summation can be replaced by an integration. 
As in the case of equation 2.2-7, we can only 
say that the limit indicated in equation 2.3-4 
is reached with a very high probability as n 
becomes large; however, this probability should 
be unity as n becomes infinite. 

Note that px is a population parameter that 
is characteristic of the random variable X, while 
X, being derived from values of a finite random 
sample from the population of X, is only an 
estimate for pP Estimators such as 5 will be 
developed in greater detail in a later section. 

Problem 2.3- 1 

a. Find 5 from 100 rmholcm histogram of 
problem 2.2-2. 

b . Find px for the random variable of prob- 
lem 2.2-l. 

2.3.2 Generalization and 
Application of the Expectation 
Operator 

The operation of finding an expected value 
can be generalized by considering a function 
g(X) of continuous random variable X. If we 
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wish to find the average effect of the function 
g(x) over the outcomes of a random sampling, 
we again resort to the approximation 

go= iaE,h fi*g(xi) * (2.3-5) 
- m 

That is, we weight g(x), where g(x) is evaluated 
at the center of every class interval, by the fre 
quency of occurrence of that interval and sum 
all the weighted values ofi). To obtain the 
population equivalent of g(x), n is taken to be 
large, while AX is taken to be small; this equiva- 
lent is denoted by the expectation symbol 
EMx)l: 

ElAX)l=~ g(x) = ~mgWjWdx . (2.3-6) 
n*- -00 
AZ-0 

Equation 2.3-6 represents the general form of 
the expectation operator for a univariate distri- 
bution when the random variable is continuous. 
A similar form exists for discrete random vari- 
ables, in which the integration has been replaced 
by summation. 

A trivial but useful property of the expecta- 
tion operator is that the expected value of any 
constant c is that constant; for the continuous 
case, this is easily demonstrated as 

E[cj=!~flx)~~=~-~z)dz=c (2.3-7) 

where equation 2.2-11 has been invoked. A 
more important property of E is that it is a 
linear operator; that is, 

E[agl(X)+bgs(X)1=aE[gl(X)1+bE[g2(X)1. (2.3-8) 

This property results because in the continuous 
case, integration itself is a linear operator: 

As a practical example of finding the expected a 
value of a random variable, consider the prob- 
lem of finding the mean of X where X is a 
normal random variable with mean c(~ and 
standard deviation ax: 

E[X’j=&Exexp[-1: 12]ck (2.3-10) 

By a change of variable z=(x-~~)/u~, we see 
that equation 2.3-10 becomes 

-- E[XJ- & _~~x+~xf)e-z2'2~~=~x'x, (2.3-11) PO 

because z *exp(-z2/2) is an odd function of z in 
the interval (-~,a), and equation 2.3-7 holds 
(px, being a population parameter, is constant). 
Equation 2.3-11 is the reason why px is defined 
to be E[XJ. 

2.3.3 The Variance, Standard 
Deviation, and Coefficient of 
Variation 

Although the mean px is a measure of the 
central tendency of a random variable, it gives 
no information as to how frequently a random 
variable will be encountered in its vicinity. The 
variance gx, defined as the expected value of 
the function g(X)=(X-px)2, is a population pa- 
rameter that quantifies this concept. The vari- 
ance can also be looked upon as an operator that 
is defined in terms of another operator (the 
expectation operator) as follows: 

+VW~=EW-P~)~~ , 

=jLPx~%~,~ (2.3-12) 
-00 

where Var[x] represents an operator that 
operates on X. The intuitive sense of ~7% is that 
it is the sum of the frequency weighted devia- 
tions, which have been squared, from the mean. 
As such, a$ represents the amount of disper- 
sion of the random variable about the mean: 
when ug is relatively large, then a random 
variable is less likely to have values in the 



By exer&ing the l&ear property of the ex- 
pectation operator, equation 2.3-12 can be ex- 
pressed in an alternate form: 

u~Var[X]=E[(X-~~)2]=E[X2-~~~+~~] ) 

=E[X2]-pg. (2.3-13) 

The variance operator, like the expectation 
operator, can be generalized to operate on any 
function g(X): 

Vark(X)l=E[g2(X)l-(Ek(X)1)2 . (2.3-14) 

The variance operator, however, is not a linear - 
operator, as demonstrated with the function 
g(x)=a+bX: 

Var[g(X)]=E[(a+bX)2]-(E[u+b~)2, 

= b2E[X2]-b2+ b2cri , (2.3-15) 

because E[u+bX]=a+bpA-. By letting b=O in 

B 
the above example, one can demonstrate that 
the variance of a constant, as expected, is zero. 

When the standard deviation is normalized by 
the mean of the random variable (pX#O), it is 
referred to as the coefficient of variation V,: 

v,=u,lp~ . (2.3-16) 

Estimators for this population parameter, as 
well as the variance and standard deviation, are 
discussed in a later section of this report. 

As an example of an application of the vari- 
ance operator, consider an application on the 
standard normal random variable 2=(X-~,)/,: 

Var[(X-,)lu,l=var[x]/~~ 1 (2.3-17) 

which results by analogy with equation 2.3-15. 
Thus, if X is a normal random variable with 
mean px and variance 2x, then 2 is a zero-mean 
random variable with a variance of unity, which 
is commonly denoted N(O,l). 

Problem 2.3-2 

S 
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immediate vicinity of the mean. The standard i. Plot fix). 
deviation ax is simply the square root of the 
variance: u w=(Varlxl)%. 

ii. Derive and plot F(x). 
iii. Calculate E[X] and Var[x]. 

b. An estimator of the variance u%of the 
random variable X can be developed 
directly from equation 2.3-12. First, 
fiz)dx is estimated by f: of equation 
2.2-2. Then x is replaced by Xi, the center 
of each class interval corresponding to fi*. 
Finally, px is estimated by X from equa- 
tion 2.3-l. Then 

S;=.<xc,&fi* 
- m 

gives an estimate of u$ Apply this esti- 
mator to the log-transmissivity data of 
table 2.2-3. 

2.4 Jointly Distributed Random 
Variables 

The investigator frequently encounters the 
problem that he or she has to deal with two (or 
more) random variables in the same probabil- 
ity statement. As an example, in the case of 
random variables X and Y, where X and Y are 
possibly correlated, one might desire the prob- 
ability that X is less than or equal to a, and Y 
is less than or equal to b. If the investigator 
should know the form of the joint probability 
density function flx,y) for these two random 
variables, then this probability statement is 
definable: 

P(X$.z and Y<b) 

where F(u, b) is the equivalent cumulative 
distribution function. (The statement P(X+z 
and Y<b) is also denoted frequently as P(X+z, 
Y<b); the more explicit form will be used in this 
discussion.) As in the univariate case, it is re- 
quired that the mass under the joint probabili- 
ty density function equal unity: 

j= ~fl&2miy=l . (2.4-2) -09 -co 

23 
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The concept of joint probability density func- 
tions applies to any number of multiple random 
variables; the following discussion, however, is 
largely restricted to the bivariate case. 

As an example of an experiment yielding 
jointly distributed random variables, consider 
the results from a simple nonsteady-state pump- 
ing test of a confined aquifer: When the Theis 
equation is used to evaluate data from these 
tests, information concerning the storativity 
and transmissivity of the aquifer results. In- 
deed, we can easily imagine that these quanti- 
ties am random variables, varying from location 
to location in response to the local distribution 
of materials composing the aquifer. More impor 
tant, however, would be the manner in which 
they vary with regard to each other: Should the 
clay content of the aquifer increase at some 
point, it might be expected that the transmis- 
sivity will decrease while the storativity, mflect- 
ing the compressibility of the aquifer, would 
increase Thus, quite possibly these quantities, 
with regard to the aquifer in question, could be 
treated as jointly distributed random variables 
which are, in some manner, interdependent. 

Assume for the moment that we have deter- 
mined the form of the joint density function of 
storativity and transmissivity. For argument’s 
sake, let X represent the transmissivity random 
variable (or its logarithmic transformation) and 
Y represent the storativity (or a functional 
transformation thereof) and then denote the 
joint density as @,y). Now assume that we are 
interested in the probability that X is less than 
or equal to a, regardless of the value of Y; that 
is, we wish to evaluate the probability that our 
measure of the transmissivity will take on a spe- 
cific range of values, whereas the exact value of 
storativity is unimportant to us. For our pmb- 
ability statement regarding X to be meaningful 
all values of Y which influence the joint density 
function must be taken into consideration, for 
different values of Y would surely influence a 
statement on X alone !lb obtain the total con 
tribution of Y to the joint density function, we 
allow that Y may take on any value in the inter 
val (-09 00) and write our probability statement as 

P(X<u and -=J<Y<=q= jl Imfflx, y )czydz -co--o3 

=jlfx(2,& (2.4-3) -co 

in which the evaluation of the inner integral 
with respect to y results in a function fx(z) that 
meets all requirements to be a probability 
density function. Thus, in general, univariate 
density functions can be recovered from joint 
density functions by integration, and this in- 
tegration has the effect of summing the total 
contribution of one random variable in the 
bivariate joint density onto the axis of the other 
variate, the second variate giving the relative 
frequency of occurrence of the event in question. 
These densities are referred to as marginal 
probability density functions and, with respect 
to the bivariate joint density flay), they are 
defined as 

(2.4-5) 

where fx(x) is the marginal density for the X 
random variable and similarly fy(y) for the Y 
random variable. The marginal-density concept 
is easily extended to multiple random variables 
when they are jointly distributed. 

2.4.1 Expectation of Jointly 
Distributed Random Variables 

The expectation operator for jointly distrib- 
uted random variables is defined in the same 
manner as in the univariate case. Thus, ifX and 
Y are jointly distributed, and g(X, Y) is a func- 
tion of these two random variables, then a 
general definition of the expectation operator is 

If on the other hand, we desire the expected 
value of h(X), which is a function of X only, we 
set g(z,y) equal to h(x) and proceed as in equa- 
tion 2.4-6). The result, 

(2.4-7) 

4 
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1) shows that, in such cases, finding the expected 
value reduces to finding the marginal density 
and integrating. By letting h(X) equal .Xx; one 
realizes that the mean px is equal to the in- 
tegral of the product of x and the marginal den- 
sity ~J&x), as might be expected. 

Consider the case where g(X, y) equals the 
product (X-cr,)(Y-).Q$ The expected value of 
this product gives an indication of how X and 
Y vary together. If the absolute value of the ex- 
pected value of this product is exceptionally 
large, then one would expect that X and Y are 
highly correlated. This expected value of X and 
Y is referred to as the covariance of X and Y, 
and is denoted Cov[X, y1 or uxy: 

covtx Yl=~tw-P~wPy)l 

=EWl-ccyccx . (2.4-8) 

Note that the covariance of X with itself is 
cov[x,xJ=var[x]. 

Returning to the example of transmissivities 
and storativities of the previous section, we see 
that the covariance provides a measure of the 

B 
degree of interdependence between random 
variables. That is, because X and Y are both 
random, we would not expect observations of 
X and Y to show a perfect relationship; rather, 
the relationship will be clouded with noise. 
Because the expected value implies a frequency- 
weighted average of the function in question, 
and because the frequency distribution will 
reflect the amount of relationship between X 
and Y, su mming the product of these frequen- 
cy weights with (X-px)(Y-py) over the total 
variate space will give the average relationship 
between X and Y. It will be demonstrated in the 
next section that if X, the measure of transmis- 
sivity, and Y, the measure of storativity, were 
independent, then the covariance would theo- 
retically be zero. However, if our intuition is cor- 
rect, we would not expect’this; rather we might 
expect, should the aquifer have a rather high 
clay content, that the two variables will be 
negatively correlated. 

If the covariance is normalized with the stand- 
ard deviations of the two random variables, then 
it is referred to as the correlation coefficient 
PXYZ 

Pxy=CwLYJlbxay) . (2.4-9) 

The correlation coefficient, as a measure of the 
linear relationship between X and Y, has the 
property that its absolute value is less than or 
equal to unity: 

IPXYlJl * (2.4-10) 

That is, when X and Y are precisely linearly 
related, then Ipxy( will equal unity. If there is 
no relationship between X and Y, as shown in 
the next section, Cov[X, yl and therefore pxy 
will be zero. This property is demonstrated in 
appendix 2.11.1, but this appendix requires 
some knowledge of the next section. 

2.4.2 Independent Random 
Variables 

Two random variables X and Y are said to be 
independent if, for all a and b, 

P(X<u and Y<b) 

=P(X$z)P( Y<b) 

= I” I” fxwfy(Y)~Y~ , (2.4-11) 
-co -00 

where fx(3t) and fr(y) are the densities of X and 
Y, respectively. Equation 2.4-11 implies that 
the joint density function of two independent 
random variables is the product of their individ- 
ual densities, that is, 

AsY)=f+#y(Y) - (2.4-12) 

Of course, an event corresponding to X<u and 
Y<b would be expected to occur with equalor 
less frequency than an event corresponding to 
either X<a or Y<b separately. Only in the 
case of a complete lack of dependence between 
these events can we say that P(Xsu and Y<b) 
=P(X<u)P(Y<b). This is a somewhat intuitive 
result that has already been used in connection 
with the two-dice experiment; if X is an outcome 
of the first die and Y the second, then P(X=l 
and Y=2)=P(X= l)P( Y=2)= l/36. 

A random sample is, ideally, a collection of 
independent random variables. That is, prior to 
their observation, each element of a random 
sample is a random variable; its value is not 
known until after the observation process is 
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completed. These outcomes should not have any 
interdependence which might affect the sample 
density. This generally requires careful design 
of the experiment from which the observations 
result so that all Xi,i=l, . . . . n, are independent. 

The question of independence of two random 
variables X and Y has important implications 
on their covariance, for if X and Y are independ- 
ent, then 

=E[X-j4JJ E[Y-Fy]=O . (2.4-13) 

However, if the covariance of two random 
variables is zero, it does not necessarily follow 
that they are independent. One may only 
suspect that independence is the cause of a zero 
covariance. 

When an experiment which results in a bivar- 8 
iate random variable is conditioned over a range 
other than (-00, m), a reduction of the potential 
sample space available to the experiment re- 
sults. In the previous example of jointly vary- 
ing transmissivities X and storativities Y, if we 
were interested in the conditioned results that 
X is less than a, given that we are only in- 
terested in a specific range of values (b,c) for 
storativities, then the specific value which Y 
takes on does not interest us, as long as it falls 
between b and c. One could proceed as in equa- 
tion 2.4-3 to evaluate this probability, except 
for an obvious pitfalk The resulting probability 
statement over X, where X can take on any 
value less than a, would not necessarily have the 
property of cumulative distribution functions 
noted in equation 2.2-11. That is, as X is the 
remaining active random variable in the prob- 
ability statement, its probability of occurrence 
over the interval (-00, 00) should be unity: 

2.4.3 Conditional Probabilities 

The marginal probability density function, as 
developed in equation 2.4-3, can be considered 
to be a special case of a more general concept 
referred to as conditioning. Generally speaking, 
a multivariate probability statement is subject 
to conditioning when a subset of the random 
variables pertaining to an experiment falls 
under some restriction, causing the remaining 
variables to be conditioned by this restriction. 
In the case of the marginal density function, we 
examined the probability that X is less than a, 
given that Y can take on any value in the in- 
terval (-a,~+ Thus, the restriction that Y take 
on a specific set of values conditions the prob- 
ability that X is less than a. Formally, we state 
this as 

P(X<up<Y<q . 

In general, the restriction can be applied to any 
intxs-val (b,c), where b<c, and need not be limited 
to the interval (-00, 00). However, as in the case 
of the marginal density, the variable or 
variables subject to restriction are effectively 
removed from the probability statement: the 
variable or variables being conditioned are the 
ones over which the frequency of occurrence of 
a specific event may be questioned. 

lim P(X<a( b<y<c) = 1 . 
a-- 

However, by restricting Y to a specific interval 
(b,c), then as a goes to infinity, an integral of the 
form of equation 2.4-3 will most probably have 
a lesser value than unity when the inner integral 
over y is restricted to a range of something less 
than (-00, 00). Thus, an integration with the form 
of equation 2.4-3 alone will not produce a form 
suitable to serve as a cumulative distribution 
function for the conditioned variable X. 

So that a probability statement resulting 
from conditioning has the limiting value of 
unity, these statements must be appropriately 
normalized. If, as in the bivariate case, we desire 
P(X<u(b<Y<c), then we must normalize by 
P(-cKX<= and b<Y<c); that is, 

P(X<uJb<Y<c)= P(X<u and b<Y<c) 
P(--cX<c= and b<Y<c) 

ia_ [ flx,y)dydx 

i: [ Asy)dy~ 

r”, [ AwWy~ = (2.4-14) 



variable X may be defined as 

which of course gives the limiting value of unity 
when integrated with respect to zc over the in- 
terval (-00, =). Note that when b=-a and c=m, 
then flxIb<Y<c)=f+), as indicated by the 
previous discussion of marginal densities. 

Remarkably, the conditional density exists 
even when the restriction is that, ‘in the exam- 
ple of the bivariate case, Y take on a specific 
value. To see this easily, consider P(X<a 1 Y=c); 
then equation 2.4-15 may be written as 

c+6 
1 f(xaWy 

fixIY=c)=lim ’ - 
a-+0 c+a 

1 f&WY c 

=firn vb,~++m41~~ 
6-+0 [Fyfc + 6) -Fy(c)]/S 

=dF(s y WY 
dFyCyVdy y=c 

-fkc) 
fy(4 * (2.4-16) 

Thus, we may recover the density function for 
X for any particular slice, Y=c, through the 
joint density function f(x,y). If flx,y) were de- 
fined for the example of transmissivity and 
storativity random variables, equation 2.4-16 
would enable us to predict the probability of 
events concerning transmissivity X for any 
given value of storativity Y. 

The student should also note that some 
remarkable simplifications result if X and Y are 
independent random variables. That is, if X and 
Y are independent, then from equations 2.4-12 
and 2.4-14 we see that 

P(X<a ) b<Y<c) =P(X<u) . (2.4-17) 
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Thus, the conditional probability density func- 
t&i, flxl b<Y<c), for the conditioned random 

Indeed, this is yet another way in which we can 
define independence of random variables. 
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The following problem is intended to familiar- 
ize the student with the concept of condition- 
ing; it is not intended to be rigorous. The key 
to understanding conditioning, especially for 
discrete random variables, is to understand how 
it restricts the sample space and realize that the 
probability of occurrence of an event which con- 
tains the entire remaining sample space must 
be unity. 

Problem 2.4- 1 

a. 

b. 

C. 

d. 

e. 

Given two dice that are thrown sequen- 
tially, what is the probability that the 
first is a three and the second is a two? 
That is, 

P(X=3 and Y=2)? 
What is the probability that the sum of 
the dice is five? That is, 

P(x+ Y=5)? 
Given that the first die is three, what is 
the probability that the second is two? 
That is, 

P( Y=2lX=3)? 
Given that the first die is three, what is 
the probability that the sum of the two 
dice is five? That is, 

F(x+Y=5Ix=3)? 
Given that the first die is three, what is 
the probability that the sum of the two 
dice is less than or equal to five? That is, 

P(x+ Y<5IX=3)? 
Parts c, d, and e are conditional probability 

statements; that is, the probability statement 
is conditioned by prior information. 

2.4.4 Variance of a Column Vector 

Our purpose in this section is to develop a 
representation for the variance of a column 
vector. As a vehicle to this end, consider the 
linear equation 

Y=alX1+a&~+a& (2.4-18) 

where Y, X1, X,, and X3 are random variables 
and al, a2 and a3 are constants. The variance 
of Y is 
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+2ala2uX,X,+2ala3uX,X3 

+2a2a3uX$3 (2.4-19) 

where correlations between X,, X2, and X3 
have been allowed for. A vector representation 
for equation 2.4-19 is1 

Var[Y]=E[Y2]-(E[Yj)2=E[aXXTaT] 

-EW[aXj (2.4-20) 

where 

Xl 
a=[al,a2,a3] and X_= X2 I I X3 * 

Because expectation is a linear operator, the 
right side of equation 2.4-20 can be expressed 
as 

=@WZ-E[~)(&-E[X])TjgT (2.4-W 

where aX=XTaT. The expected value of a -- 
matrix %he matrix of expected values of each 
element. Thus, 

4 uxlxz ux1x3 
l 2 uxlxz -3 -2x3 (2.4-22) 

%x3 “52x3 43 

This matrix is defined to be the variance of a 
3 X 1 column vector &, and allows one to express 
equation 2.4-19 in matrix notation as 

Var[~=@arlXjgT . (2.4-23) 

‘Throughout this text singly underlined symbols repro 
sent vectors and doubly underlined symbols represent 
matrices. 

If the variances u$~, o&, and gx are all 
3 

equal, the matrix 2.4-22 becomes 

1 pxlxz px1x3 

vfexl= px,x, 1 pxzx3 
a2 (2.4-24) 

px1x3 pxp3 1 

where px.x. is the correlation coefficient for Xi 
and Xi, & a2 is the common variance. A fur- 
ther reduction in equation 2.4-22 occurs if X,, 
X2, and X3 are uncorrelated, causing the cor- 
relation coefficients in equation 2.4-24 to be 
zero. In this case, 

varpg=@ (2.4-25) 

where L is a 3X3 identity matrix. These forms 
have practical importance in regression. 

Problem 2.4-2 

a. Carry out the expectation indicated and 
show that equation 2.4-19 holds. 

b. Demonstrate that equation 2.4-21 holds 
and that 

T Var~=gbr~~ . 

C. Let Yi=% & where &ail,ai+iJ, and &, 
defined as in equation 2.4-20, is a column 
vector of random variables. Further, let 
_Y=AX, where 

_Y= 

Yl 
y2 
. 

tP 

and A_= 

That is, A, is a p X 3 matrix composed of 
the row vectors ai, i=l,...,p. Show that 
Var~=Var[A~=A_Var[XlA_T. (Hint: 
Equation 2.4-22 still defines the variance 
of a column vector; 

u,yi=E[YiYjl-EtYi~[Yjl 
=EhXXTuT] -E&CJE@z~]., - 4 

4 
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2.5 Estimators of Population 
Parameters 

A statistic is defined as any computation 
from a random sample resulting in a specific 
value. As such, a statistic is considered to be a 
random variable, since it is highly probable that 
the computed value would change from random 
sampling to random sampling. Note that this 
definition precludes that a statistic contain any 
unknown parameters. Estimators of population 
parameters are considered to be statistics and, 
therefore, random variables. Consider equation 
2.3-l as an estimator of the mean: 

F= C foci . 
i~,lAx 

(2.5-l) 

The estimated frequency fi* is computed from 
values of observations xi originating from a 
random sampling of the sample space. However, 
prior to sampling, a random sample is merely 
an abstract collection of random variables 
Xi. i= l,..., n. Any function of random variables, 

3 
as equation 2.5-l would be prior to sampling, 
is also a random variable, perhaps having a com- 
pletely different distribution than those individ- 
uals composing the collection. 

Our discussion of statistics will largely be 
from the a priori viewpoint; that is, in the case 
of equation 2.5-1, Z is the value of the random 

* variable X, which is an estimator for the popula- 
tion mean, as developed from some arbitrary 
random sample. 

2.5.1 Mean Estimator 

As an estimator for the population mean, 
equation 2.5-1, in addition to being cumber- 
some to compute, has the debility that it is 
dependent upon an arbitrary selection of a class 
interval. That is, since $ is dependent upon AZ, 
the value of X will depend upon the choice of 
llix used in the computation. As a means of pur- 
suing this problem, assume that we have at our 
disposal a random sample consisting of n obser- 
vations, and at some point their distribution ap- 
pears as in figure 2.5-l. Because AZ is arbitrary, 
it can be reduced to d, the minimum of all dif- 

1 
ferences in neighboring values of the random 

variable. Then fi* would take on only two 
values, l/n or 0, and would have the ragged saw- 
toothed shape shown in figure 2.5-2. The teeth 
in figure 2.5-2 will be concentrated in regions 
where fi* in figure 2.5-l is larger. Of course, 
that a repeat value of a random variable could 
occur is highly unlikely, as the probability of 
such an occurrence is essentially zero for a con- 
tinuous random variable (see equation 2.2-14). 
By using the class interval 6 of figure 2.5-2 in 
our computation, we see that the problem of 
estimating frequency weights for pi, the central 
location in each class interval, from a discrete 
data set has essentially been removed, as these 
weights now take on only two specific values for 
this and any other smaller class interval. 

The use of the smaller class interval, 6, is ex- 
pected to produce a better estimator of the 
population mean because a value of X would 
contain less measurement error associated with 
the arbitrary selection of the class interval. It 
is still cumbersome, however, to calculate the 
central value pi of these possibly very small 
class intervals, especially when one considers 
that many do not contribute to the estimator. 
We ask ourselves if it is not possible to use the 
observations xi in their place. By reducing &r 
even further until every observation is isolated 
in the center of its own infinitesimally small 
class interval, in which case $ would remain at 
the l/n level, observations Xi can be used in 
place of jEi in equation 2.5-l without significant- 
ly altering the basis of our estimator. Using 
future observations Xi of the process in place 
of central-interval values, Zi, an estimator 
based on an infinitesimally small interval would 
appear as 

x= + i,Xi (2.5-2) 
i- 

where n is the size of the random sample, and 
xi, i=l,..., n, is the collection of random 
variables from the random sample. Equation 
2.5-2 is the preferred estimator for the popula- 
tion mean. 

A sample statistic is said to be unbiased if its 
expected value is equal to the population param- 
eter that it estimates. Consider the expected 
value of the sample mean, derived from random 
variables Xi, i=l,...,n. Since E[Xi]=ccx, 
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Figure 2.5-l 

Figura 2.5-2 

(2.5-3) 

Hence, x is an unbiased estimator of pP Al- 
though ex amining an estimator for unbiased 
qualities is important, it does not necessarily in- 
sure that the estimator is the most efficient (or 
best) in the sense that the variance of the 
estimator is the smallest. It is, however, an im- 
portant quality, and the variance estimator is 
examined for this quality in the next section. 

Problem 2.5- 1 

a. Recompute the sample mean for the data 
set in problem 2.2-2 using equation 2.5-2 
as the mean estimator. How does this 
result vary from that of problem 2.3-l? 

Iii, . . 
How do you, in light of equation 2.2-14, 
explain the repeat values in the data set 
(note that this data set represents a ran- 
dom sampling of a continuous random 
variable)? 
With regard to a large regional aquifer, 
well data such as that in table 2.2-2 repre- 
sent point estimates of transmissivities. 
The best estimate of the effective trans- 
missivity (the one to use in modeling the 
flow field) is generally considered to be the 
geometric mean of these point estimates. 
The statistic for the geometric mean is 
defined as 

where Ti, id,..., n, is a random sample 
from the sample space of the T random 
variable. Letting Xi=loglOTi, we see that 

c 

4 
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= ~ i~lXi=X . 
Therefore, 

Fg=l@ . 

What is the geometric mean of the trans- 
missivity data in table 2.2-2? 

As a measure of the dispersion about 
the geometric mean, one could use the 
estimator 

What is the dispersion D about the geo- 
metric mean? Use resu ts i of problem 
2.3-2, part b, as values for X and S:. 
Considering the dispersion, how do you 
feel about Fg being the effective transmis- 
sivity of the carbonate rocks of central 
Pennsylvania? 

2.5.2 Variance Estimator 

As an estimator of the variance 2X, consider 
using an estimator S$ whose value s;r” is calcu- 
lated from the equation 

(2.5-4) 

which is analogous to equation 2.3-12 for the 
population parameter. If the class interval is 
taken to be small enough so as to isolate every 
future observation Xi in a class interval, then 
equation 2.5-4 can be rewritten in terms of ran- 
dom observations Xi, i= l,..., n, as 

G= ; i=l ’ ’ (xi-pX)2 , 

because $=1/n and Xi=Xi prior to sampling. 
When the underlying population Xi, i=l ,...,n, 
is normally distributed, it can be shown that 

1 
equation 2.5-5 is the most efficient, unbiased 

estimator of the variance o$in the sense that 
its variance is the least of all possible unbiased 
estimators for u$. 

On occasion, the population mean px can be 
determined from other considerations, as 
was done in the titration experiment in section 
2.2.5. However, usually px is also unknown, re 
quiring that px be replaced by X in equation 
2.5-5: 

s!Fz~i=l i l i(X-X)2. 

To test whether equation 2.5-6 is an unbiased 
estimator of gx, the expected value of S$ is 
determined. The actual mechanics of this opera- 
tion are presented in appendix 2.11.2; only the 
result is presented here: 

(2.5-7) 

Thus, S$ is a biased estimator of o$~ To pro- 
duce an unbiased estimator of gx, S$ is multi- 
plied by the ratio nl(n-1): 

. (2.5-8) 

This estimator is unbiased but less efficient 
than equation 2.5-6. However, it is the pre- 
ferred estimator for small sample sizes. 

Heuristically, one can argue that this adjust- 
ment to the estimator is necessary, because the 
population mean PL is being estimated by the 
sample statistic X. The sample mean will be 
located at the centroid of the random sample, 
regardless of whether its value is near that of 
the population mean. Thus, an equation that 
estimates the variance about this centroid will 
produce a smaller value than if the estimate 
were made about the population mean. The ad- 
justment, then, merely compensates for the 
smaller deviates produced by using X in place 
of P.T(. 

Equation 2.5-8 can be rewritten, with the aid 
of some algebraic manipulation, to produce a 
slightly more useful form for hand calculations: 
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si= _ _ 5 jl tximx12 

= 5 
-I 

j, x+i?z E 
i=l 

xi+& 
I 

=--qi, x+q . (2.5-9) 

The estimator for the standard deviation is 
taken to be the square root of the variance 
estimator. Values xi, i=l,..., n, obtained by 
sampling the population of X randomly, are 
used in place of Xi in equation 2.5-9 to obtain 
a value sj?j for the sample statistic S$ 

2.5.3 Estimator of Correlation 
Coefficient 

In a manner analogous to the variance, an 
estimator for the covariance, and therefore the 
correlation coefficient, can be derived. Let Rxy 
represent the estimator for the correlation coef- 
ficient pxy; then, for paired data, 

~ 
i=l 

(Xi-~)( Yi- P) 

RXY’ 
(2.5-10) 

I 
~ (Xi-~2i~l (Yi-E)2 

l/n 

i=l 
I 

or, provided that Sx and Sy originate from the 
paired data, 

1 
Rxy’ (n-l)SXSy i=l i 

~ (X-X)(Yi-E) t (2.5-11) 

which can be written, for purposes of hand 
calculation, as 

Rx,’ 
I 

(2.5-12) 

where Sx and Sy are calculated by taking the 
square root of either equations 2.5-8 or 2.5-9. 
The actual value rxy of Rxy is obtained by 

using values xi, i=l,..., n, from a random SCUII- 

ple in place Of Xi. 

2.5.4 Summary 

In summary, population parameters and 
equivalent sample statistics can be tabulated as 
folIows: 

Poptllation 
oarameter 

CL a=$ i xi 
i-l 

VX c,= SXIX 

PXY Rx,= ’ ( i XiY&-nPX/ 
(?Z-l)S#y i=l 

c 

These estimators can also be stated in matrix 
form. For instance, let di=x& then a value for 
S$ is 

(2.5-13) 

where d is a column vector of deviates and @ 
is its transpose. If ei=Yi+, then a value for 
Rxy is 

eTd -- 
‘jr’= (n-l)sxsy * 

(2.5-14) 

Forms simiIar to equations 2.5-13 and 2.5-14 
are commonly encountered in linear regression. 

Problem 2.5-2 

Using the following data set, calculate the 
sample mean, variance, and standard deviation 
of both dissolved solids and specific conduct- 
ance; then calculate their correlation coefficient. 

4 
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Specific conductance and dissolved solids data for 
wells in carbonate rocks of Maryland 

(From Nutter, 1973. p. 63-661 

Dissolved solids 

@Pm) 

278 257 
1.120 610 

533 338 
723 458 

462 264 
1,030 562 

357 231 
304 175 

469 268 
641 388 
969 638 
876 532 

721 405 
895 610 
501 304 
323 171 

310 201 
1,230 736 

604 290 
319 208 

704 464 
1,130 688 

600 342 

2.6 Transformation of Random 
Variables 

As we have noted previously, statistics are 
combinations of random variables and, as such, 
must be random variables themselves. If the 
population from which the random sample is 
selected can be identified, then one can frequent- 
ly identify the probability density functions of 
statistics, which are estimators of the popula- 
tion parameters. If a density function is iden- 
tified, then one should be able to develop criteria 
for testing the accuracy of these estimators. 
With these objectives in mind, we proceed to 
identify density functions that result from the 
several types of transformations that produce 
statistics. 

Before proceeding with this identification 
process, we make note of two general results 
from expectation which are applicable to all 

random variables, regardless of their distribu- 
tion. In general, if Xl, X2,...& are independent 
variables with identical mean px and identical 
standard deviation ax, then 

x2. ; xi (2.6-l) 
n i=l 

is also a random variable with mean 

ppqfij= 1 n j, E[xil’PX (2.6-2) 

and variance 

a~2=Var~ji]= ~ ill Var[Xi]=U~/n . (2.6-3) 
= 

Equation 2.6-2 was used previously to show 
that X is an unbiased estimator of px, and 
equation 2.6-3 is demonstrated more fully in ap- 
pendix 2.11.2. Note that equation 2.6-3 only 
succeeds because COV[Xi,Xj]=O, i Zj; that is, 
the Xi’s are independent. 

The square root of equation 2.6-3,az, is also 
known as the standard error of X. The standard 
deviation of any statistical measure is referred 
to as the standard error of that statistic. 

2.6.1 Sum of Independent Normal 
Random Variables 

Let Xl and X2 be independent normal random 
variables, Xl with mean zero and variance one 
(N(O,l)) and X2 with mean zero and variance k 
(N(O,k)). How, then, is their sum distributed? To 
answer this question, consider 

P( Y<y ) =mx, +x&J 1 , 

where Y=X,+X,. By noting that P(X,+X,< 
y)=P(X,<y-X2 and -mG2<m), comparison 
with equation 2.4-11 shows that 

=y 
,-r2,/(2k) 

--oo 
Fx, (y-x2) J2*~ d+ . (2.6-41 
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To find the probability density function of Y, 
we differentiate Fy(y) with respect to y; that is 

03 e-(y-“2)2/2 

5 
e-z;/(2k) 

= 
--OD .pT $5z dx2 

1 =- 
27rjx 

I 
exp[-(y2-2yx2+(k+l)x&)/2]cEx2 (2.6-5) 

which, after some algebraic manipulation, yields 

fyw= 
exp[-y2/(2k+2)1 

2?& 

&p[-( X2J5 -Y J2*2)'] &2* (2’6-6) 

By letting u=fi x ( 2/F -YJg$ then 

fYw= exp[-y2/(2k +2)] 1 U 2/2du 
Jm J%F-” 

= ew[-y21(2k +2)1 
&Go 

(2.6-7) 

which follows from equation 2.2-11. Thus, the 
sum of two independent zero-mean normal ran- 
dom variables, one with variance unity and the 
other with variance k, is a normal random 
variable with variance k + 1; that, is, N(O,k + 1). 

If, in the previous problem, k were to equal 
one, then we see that the sum of two iV(O.l) in- 
dependent random variables is a N(0,2) random 
variable. By adding yet another independent 
N(O,l) random variable to the previous two 
N(O,l) random variables, induction tells us that 
a N(0,3) random variable results. Thus, in 
general, the sum of n independent N(O,l) ran- 
dom variables results in a N(O,n) random 
variable. 

We are now in a position to determine the dis- 
tribution of the statistic X, as shown in equation 

2.6-1, if X is determined from a random sam- 
ple in which all the observations Xi, i=l,...,n, 
are independent normal random variables with 
common mean px and variance & that is, 
N(~X,& We note from equation 2.6-3 that X 
has the standard deviation ox/& If we stand- 
arize X by its mean and standard deviation, and 
multiply this result by & then 

results. We see that this new statistic is the sum 
of n normal random variables, each with mean 
zero and variance one. From the previous para- 
graph, equation 2.6-8 must be a normal random 
variable with mean zero and variance n. To ob- 
tain a random variable with mean zero and 
variance unity, one would divide equation 2.6-8 
by the square root of n. By inspection, then, the 
quantity (X-ax)/ must be a standard 
normal random variable, and X must be normal 
with mean px and variance &n. Thus, if one 
knew that a random sample were composed of 
normal random variables with a particular mean 
and variance, then one could investigate the 
probability that a future determination of the 
sample mean could take on a particular range 
of values. 

2.6.2 The Chi-Square Distribution 

We are frequently concerned with the square 
of a random variable and may wish to know its 
density function. Assuming that the random 
variable X is normally distributed with mean 
zero and variance one (N(O,l)), we may inquire 
as to the nature of the distribution of its square, 
Y=X2. Proceeding as in the previous section, 
we find the cumulative distribution of Y: 

I 
5 &I2 

-dx . 
=-i-T J% 

(2.6-9) 

c 

By taking the derivative of F&J), one finds the 
density function of E 

4 
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(2.6-10) 

which is the &i-square density function with 1 
degree of freedom. 

Chi-square random variables have a useful ad- 
ditive property similar to that exhibited by in- 
dependent normals. Namely, if Y, and Y2 are 
independent &i-square random variables with 
degrees of freedom y1 and y2, then Y, + Y2 is a 
&i-square random variable with degrees of 
freedom y1 + v2. Consequently, if Y1, Yz ,..., Y, are 
independent &i-square random variables each 
with 1 degree of freedom, then Y, + Y2 is a chi 
square with 2 degrees of freedom, ( Y1 + Y2) + Ys 
is a chi square with 3 degrees of freedom and, 
in general, $, Yi is a chi square with n degrees 
of freedom. Values for the cumulative distribu- 
tion function of the &i-square distribution with 
v degrees of freedom are to be found in table 
2.10-2. 

If xi, i=l ,...,n, are independent normal ran- 
dom variables, each with mean px and variance 

B 

4, theniil((X+x)/p)2 must be a &i-square 
random variable with n degrees of freedom. This 
follows from the previous argument by letting 
Yi=(Xi-px)2/$xand noting that Yi is the square 
of N(O,l) random variable Furthermore, because 

= 
- (2.6-11) 

the statistic Sican be written in terms of this 
sum as 

(n-1)Si n fxi-PX12 (x-PX)2 -cc --- 
0% i=l 2 

. (2.6-12) 
X b,l.B2 

Under the condition that the underlying popula- 
tion is independent and normal, it was demon- 
strated in section 2.6.1 that X is normal with 
mean px and standard deviation ax/h Thus, 
(X-~~)~/(g~/n), under this condition, is chi 
square with 1 degree of freedom. One might 
reasonably expect, then, that 

(n-1)s; 

4 
-x2(4 (2.6-13) 

is a &i-square random variable with v=n-1 
degrees of freedom, which is indeed the case 
when the underlying population of Xi ‘s are in- 
dependent normal random variables. 

2.6.3 The F Distribution 

The density function for the ratio of two in- 
dependent &i-square random variables can be 
calculated rather easily by the method used in 
the previous sections. However, because we 
have little need of the actual form of this densi- 
ty function, known as the F distribution, we 
relieve the student of working through the ac- 
tual calculation if he or she wilI accept the 
following statement: If X, is a &i-square ran- 
dom variable with v1 degrees of freedom, and 
X2 is a &i-square random variable with v2 
degrees of freedom, and X, and X2 ere inde- 
pendent, then 

defines the F distribution with v1 and v2 degrees 
of freedom. 

Table 2.10-3 is a tabulation of values of 
F(v,,v,) which satisfies the probability 
statement 

P(F(vl,v2)~,(vl,v2))=l-ol , (2.6-15) 

where CY equals 0.05; the meaning of equation 
2.6-15 is illustrated in figure 2.6-l. Note that 
the reciprocal of an entry Fa(v1,v2) in table 
2.10-3 is equal to Fl-a(v2,v1). That is, if equa- 
tion 2.6-15 holds, then 

P(F(v2,vl)>Fp(v2,vl)) 
=~(1/F(v2,vl)<llFB(v2,vl)) 
=P(F(vl,v2)<11Fp(v2,yl)) 
= 09 (2.6-16) 

as, by equation 2.6-14, 1/F(v2,vl) is an F(v,,v,) 
random variable. By comparing equation 2.6-15 
with the third line in equation 2.6-16, we see 
that, when 0 equals l-a, 

Fcyb1.v2)= 
1 . 

FI-,b24 
(2.6-17) 
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Figure 2.6-l 

Thus, if we wish to evaluate F,-,(n,, n2) for the 
statement 

where 01 is the relative mass indicated in figure 
2.6-2, then we need only find F&,Y~), where 
v1=n2 and u2- -nl, in a table of values for the 
F distribution and calculate its reciprocal. 

As an example of a practical statistic associ- 
ated with the F(IQ,v~) random variable, consider 
two random samples of size nl and n2, which 
have been selected from two normal populations 
with variances 4 and 4, respectively. Let 

X1=(nl-l)S;luf (2.6-19) 

X2=(n2-l)S$7$ (2.6-20) 

where Sq and Sg are sample variances that are 
independent, because they originate from sepa- 
rate random samples. From equations 2.6-13 
and 2.6-14, we see that 

(2.6-21) 

is an F(v1,y2) random variable with vr=nr-1 and 
v2=n2-1 degrees of freedom. 

If 6 were to equal c$, then equation 2.6-21 
would undergo an obvious simplification. 
As a case in point, consider the ratio of 
(~-p~)2/(&/n), which is the square of a N(O,l) 
random variable, and (n-l)S$/& which is a 

X2(n-1) random variable, where x and S$are 
statistics developed from the same population. 
One can show (rather arduously) that x and S$ 
are independent, even though they originate 
from the same random sample. Thus, 

The square root of equation 2.6-22 is also 
known as a T random variable with n-l degrees 
of freedom. However, as the T random variable 
is, in general, equal to the square root of an 
F(vl, v2) random variable with vl=L, no addi- 
tional time will be devoted to it. 

Problem 2.6 1 

Residuals & from a titration experiment (sec- 
tion 2.2.5) have the following values in moles of 
acid: 

-0.011, +0.003, +0.004, -0.01, +0.005, 

+0.014, +0.004, +0.001, -0.01, +0.003. 

Calculate F and ~8 from this random sample. 
Assume cc& =O; from equation 2.6-22 derive the 
probability statement 

p(- j2QiFi-l <E/(S,/fi)< JFgcYi3n-l) ) = 1 -cr. 

(Hint: &b is equivalent to -&Qz<&). Find the 
interval corresponding to this statement when 
ar=O.O5 (that is, go to table 2.10-3 and find 
F,(l,n-1) and then calculate -&,(l,n-1) and 
J’F,o). How does the value of the statistic 

d 



REGRESSION MODELING OF GROUND-WATER FLOW 37 

X 

Figure 2.6-2 

c/(S,/,@, calculated from the above random 
sample, compare with this interval? Would you 
expect this result? Would it bother you if the 
value fell outside the interval? 

2.7 Central limit Theorem 

An interesting and difficult-to-prove theorem 
of statistics and probability, known as the 
Central Limit Theorem, concerns the sum of 
random variables: 

Let XIXz,...,Xn be a sequence of identically 
distributed, independent random variables each 
with mean px and variance o$. Then, the dis- 
tribution of 

X-TX 

tends to a standard normal random variable as 
n goes to infinity. That is, 

regardless of the distribution of Xi, i=l,...,n. 
The key to understanding the impact of this 

theorem is to realize that the underlying distri- 
bution of the Xi random variables can be that 
of any random variable. Thus, for instance, a 
&i-square random variable with n degrees of 
freedom is the sum of other &i-square random 
variables, and, if n becomes large enough, the 
&i-square random variable approaches the 

normal random variable (in fact, the normal 
tables are used to approximate the &i-square 
random variable for large values of n). 

Another result of this theorem concerns the 
robustness of some of the distributions devel- 
oped in the previous section. In particular, if the 
underlying distribution of Xi’s was not normal 
in equation 2.6-22, this statistic would still be 
approximately an F(l,n-1) random variable, 
provided the sample size n were large. The argu- 
ment for this statement proceeds as follows: 
Because the numerator of equation 2.6-22 is, 
when n is large, the square of an approximate- 
ly normal random variable (by the central limit 
theorem), it will tend to be a &i-square distrib- 
uted random variable with 1 degree of freedom. 
The denominator, on the other hand, will ap- 
proach unity for large n, because another law 
of probability dictates that, as n becomes large, 
Si approaches gx (this phenomenon occurs 
regardless of the underlying distribution). The 
netresult is that, regardless of the distribution 
of the Xi random variables, equation 2.6-22 
tends, for large n, to be a &i-square distributed 
random variable with 1 degree of freedom. How- 
ever, one can show that, for large v2, the F(v~,zJ~) 
random variable (equation 2.6-14) tends to a 
&i-square random variable whose value has 
been diminished by a factor of l/v,. Thus, 
regardless of the underlying distribution of the 
Xi random variables, we say that equation 
2.6-22 behaves asymptotially as an F(l,n-1) 
random variable when n is large, as both equa- 
tions 2.6-22 and 2.6-14 have the same distribu- 
tion for the limiting case where the degrees of 
freedom in the denominator become large. 
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2.8 Confidence Limits 

We have already noted that statistics are ran- 
dom variables themselves. Now we wish to use 
the information developed in the previous sec- 
tions concerning the form of these random 
variables to make a statement about the reli- 
ability of these statistics as estimators. We at- 
tempt to define an interval, based upon the 
statistic, such that a certain percentage of all 
such intervals, as constructed from different 
random samples, contain the population param- 
eter that the statistic is thought to estimate. 
For example, if 5/6 of all possible intervals con- 
structed from repeated sampling contain the 
population parameter 8, then there is a prob- 
ability of 5/6 that the interval we construct from 
any given random sample actually contains 8 
(see figure 2.8-l). 

As an example of the interval-construction 
process, consider the statistic x and the popula- 
tion parameter px. We know, from the central 
limit theorem, that this statistic is approximate- 
ly normally distributed with mean px and 
standard deviation ax/& and that 

is approximately true. Of course, when jE is 
based on a random sampling of a normal popula- 
tion, then equation 2.8-l is exactly true. This 
standard normal random variable will be used 
to devise a (l-ar)lOO% confidence interval for 

px. This objective is achieved by first looking 
at the probability statement 

P(-~,/~(O,l)<N(O,l)<N,2(o,1))=1-a (2.8-2) 

and finding the values +N,/&O,l) which corre 
spond to 1-a. This probability statement says 
that, (l-cz)lOO% of the time, a value of N(O,l), 
obtained from a repetition of the experiment, 
will fall between -NU12(0,1) and N,l,(O,l). As- 
suming that ax is known, and with a little help 
from equation 2.8-1, equation 2.8-2 can be 
rewritten as 

=1-ar . (2.8-3) 

This probability statement says that, (l-(r)lOO% 
of the time, the interval (~-N,,~(O,l)~xl,k, x 
+~,,&M)~xm n constructed with a value of 
xi=2 from a particular random sample will con- 
tain /Jo. Thus, 

~-N,/&l) “x <py&.?+Na,&l) sn- F (2.8-4) 
n 

is a (l-ar)lOO% confidence interval for a random 
sample of size n, whose variance is known and 
whose sample mean E can be calculated. The in- 
vestigator would be able to say that the prob- 
ability is l-a! that this interval contains px; 
however, in interpreting this statement, one 

$1 I I I I I I I I 
0 1 2 3 4 5 6 etc. 

RANDOM SAMPLES 

Figure 2.8-l c 
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s should realize that the interval is random, not 
PX* 

As an actual numeric example of an applica- 
tion of equation 2.8-4, consider the following 
data: ux=0.3, X=2.6, n=36. Find a 95% confi- 
dence interval From table 2.10-1, for o/2=0.025, 
we see that iV,l,(0,1)=1.96. Hence a 95% con- 
fidence interval is 

or 

2.5O</~fi2.70 . 

Thus, as 95 of 100 intervals so constructed con- 
tain the mean, there is a 95% probability that 
this one contains px. 

If ax is not known, equation 2.8-4 cannot be 
used. However, if the underlying population is 
nearly normal, then a2,ca.n be estimated by Si 
as discussed in section 2.6.2 and one can use 
either the T distribution (with n-l degrees of 
freedom) or the F distribution as given in equa- 

D 

tion 2.6-22 to make an appropriate probability 
statement that can be converted to an interval 
on PX. 

Problem 2.8- 1 

a. Seven gold assays from stockpiled ore are: 
9.8, 10.2, 10.4, 9.8, 10.0, 10.2, and 9.6 
grams per metric ton. Find a 95% confi- 
dence interval for the mean grade of the 
ore assuming an approximate normal dis- 
tribution (hint: use equation 2.6-22; 
why?). 

b. Write an interpretation of this interval, 

2.9 Hypothesis Testing 

Assume that you have determined by a 
method which you consider to be very good that 
a population parameter 8 should take on a par- 
ticular range of values. On the other hand, 
another independent source suggests that the 
parameter 8 should take on a value b , which lies 
outside this range. This discrepancy is discon- 
certing, and you need some method of testing 
this independent estimate of 8. You construct 

b 
a hypothesis, referred to as the null hypothesis, 

Ho, that b is the true value of the parameter: 
symbolically this may be stated: 

H&=b. 

Ideally, of course, you wish to reject this 
hypothesis, but a procedure is needed whereby 
you can approach the problem objectively. 
When a random sample is available to the in- 
vestigator, hypothesis tests can provide this 
procedure. 

If, from a random sample X,, X, ,... ,X,, a test 
statistic $ can be constructed which, in some 
manner, is a measure of 0, then often a statis- 
tical method can be devised to test the probable 
veracity of the null hypothesis. It is assumed 
that the distribution of the test statistic is 
known under the assumption of the null hypoth- 
esis or at least can be approximated. Of course, 
by definition a statistic cannot contain any 
unknown parameters. Any population param- 
eters which it may contain must be known 
either by hypothesis or some other means; 
otherwise JI would cease to be a statistic. The 
statistical test will consist of finding a critical 
interval with a low probability of occurrence 
under the null hypothesis such that, should a 
value of $ as determined from a random sam- 
ple fall into this interval, the null hypothesis 
would be rejected and the alternate hypothesis 
H,, which usually consists of one of the follow- 
ing, would be accepted: 

H1:O>b 

H$<b 

H+#b. 

The alternate hypothesis chosen depends on the 
nature of the test. A method of intelligently 
selecting critical intervals must be devised 
before the test can be completed, for not any ar- 
bitrary interval with a small probability of oc- 
currence will do. 

2.9.1 Type I Error 

In hypothesis-testing procedures, one is ulti- 
mately concerned with the possibility of reject- 
ing the null hypothesis when it is true. The 
objective of hypothesis testing is to make as 
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small as possible the probability of committing 
this error, referred to as a type I error. That is, 
the probability statement 

(2.9-2) l 

P(reject HOIHo true)=o (2.9-l) 

is constructed, and cr, the level of significance 
of the test, is chosen as small as the investigator 
deems reasonable. For continuous random vari- 
ables, the probability a! must be associated with 
some interval about the test statistic J/, the 
statistic fulfilling the requirements of the null 
hypothesis. Generally speaking1 the test statis- 
tic + will contain an estimator 8 of the popula- 
tion parameter 8. If 8, as evaluated from 
some arbitrary random sampling of the experi- 
ment, were to have a value close to b, the as- 
sumed value of 8 under the null hypothesis, we 
would not expect to reject the n$.l hypothesis. 
Rather, only when this value of 8 was distant 
from b would the null hypothesis be rejected. 
Thus, the logical choice of an interval irk $ would 
be one in which all possible values of 8 used in 
the calculation of $ would be as distant as possi- 
ble from b. When the distribution of $ has in- 
finite tails, then this procedure will cause the 
interval to include one or both tails, depending 
on the nature of the test. This interval, whose 
exact starting and (or) ending point(s) will be 
determined by the significance level (Y of the 
test, will correspond to the critical region where 
Ho will be rejected should a calculated value of 
$I fall into this region. In most cases, this pro- 
cedure will cause the critical interval to obtain 
its maximum length at the chosen significance 
level (Y. 

When transforming equation 2.9-l into a 
probability statement over the test statistic $, 
it is often preferable to first conside! the impact 
of the alternate hypothesis on 8. Consider 
again the null hypothesis where e=b; then, 
should B>b properly represent the alternate 
hypothesis, it is useful to consider that, heuris- 
tically if not exactly, the probability offommit- 
ting a type I error can be, stated P(e>alHo), 
where a is some value of 8 such that b,<a<=, 
thus giving one an understanding that 8 must 
take on, relatively, a large positive value in 
order for Ho to be rejected. For this alternate 
hypothesis, a more accurate statement of equa- 
tion 2.9-l usually takes the form 

as the distribution of $ is always assumed to 
be known. 

To complete the above test, a value for c corv 
responding to CY is obtained from a table of 
cumulative probabilities. Values of $ less than 
c correspond to a region where the probability 
of committing a type I error may not be small. 
Therefore, if a value of $ is less than c, we are 
forced to accept the null hypothesis to avoid 
committing a type I error. If this value is larger 
than c, then the probability of committing this 
error is considered small, and we can confidently 
reject Ho at the (Y significance level. 

Examples of hypothesis testing, which should 
clarify the actual mechanics of the procedure, 
are presented subsequently; however, before 
proceeding to these examples, note that we are 
frequently required to play the role of the devil’s 
advocate in hypothesis testing. Often, we really 
desire to test the acceptability of a hypothesized 
value of a parameter. To accomplish this task, 
we first attempt to reject this value by making 
it the subject of the null hypothesis. If we can- 
not reject the null hypothesis, then we must ad- 
mit that the hypothesized value is indeed a 
candidate for the true value of the parameter 
in question. 

2.9.2 One-Tailed Test 

As an example of developing the probability 
statement associated with equation 2.9-2, 
assume that we wish to test the hypothesis that 
the mean of a population is c(~, versus the alter- 
nate hypothesis that the population mean is 
greater than p. (assume that the standard 
deviation ax is known): 

Ho:crx=ro 

versus 

This test is referred to as a one-tailed test 
because the alternate hypothesis only allows for 
a mean greater than that indicated by Ho. 

A random variable is needed whereby we may 
build a probability statement around the type 
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I error. Assume that data in the form of a ran- 
dom sample X1,X,,..., X, from the population 
exist; a natural random variable for this purpose 
would be the estimator of the mean X. As X is 
an estimator of px, and as the alternate hypoth- 
esis presupposes that px is large, one would re 
ject Ho if a value of X, as determined from a 
random sample, were significantly larger than 
pP From the central limit theorem, assume that 
X is approximately normally distributed with 
mean px and standard deviation ax/&. Equa- 
tion 2.9-2 can be represented in terms of the 
statistic X as 

P(~>u~Ho)=a. (2.9-3) 

Although the distribution of X is known, a 
statistic which will allow us to incorporate the 
null hypothesis that px=ro is needed. A 
statistic meeting this requirement and for which 
values of all the parameters can be supplied is 
(%-~x)/(~x/&). With this test statistic, equa- 
tion 2.9-3 can be restated as 

B I P 
T-CL, 
- >cJpx=po 
qJSn 1 I 

GO 
=P ~ 

U&i 
>ivJO,l) =(Y 

1 
(2.9-4) 

where p. is used in place of px to satisfy the 
null hypothesis. Note that under the null 
hypothesis (~-ro)/(axl&) is a normal random 
variable with mean zero and variance unity; 
thus, N,(O,l) becomes the lower limit c of the 
critical region for this test. 

All possible values of the test statistic greater 
than N,(O,l), where 01 is the level of significance 
of the test, constitute the critical region where 
Ho would be rejected. In other words, N,(O,l) 
is the critical value, corresponding to the limit 
c in equation 2.9-2, which determines whether 
we accept or reject the null hypothesis. If a 
value of the test statistic is greater than 
N,(O,l), we would reject Ho at the CY significance 
level. If the value were less, then we would be 
forced to accept the null hypothesis for fear of 
making a type I error. 

As a sample application of this procedure, 
consider the data used to construct the con- 
fidence interval at the end of section 2.8: 
ux=0.3, X=2.6 and n=36. We are told that the 

population mean is really zero, a statement that 
seems rather dubious to us as we believe it to 
be some positive real number. We set the null 
hypothesis that px is indeed zero, Ho:px=O, 
and hope that we can confidently disallow it. 
Our alternate hypothesis consists of our own 
belief, H1:pxX. As we wish to be very sure 
that we do not commit a type I error, we set the 
level of significance of our test at (r=O.O25. We 
determine the critical value of our test statistic 
from table 2.10-l: N,(O,1)=1.96. We evaluate 
the test statistic under the assumption of the 
null hypothesis: X/(ax/$z)=52. Because this 
value of the test statistic is considerably larger 
than the critical value, we reject Ho at the 0.025 
significance level, realizing that, although we 
may have committed a type I error, it is highly 
unlikely. 

2.9.3 Two-Tailed lest 

Suppose that gxis unknown, but we are 
given a random sample X,,X,,...,X, from a nor- 
mal population. We wish to test the hypothesis 

HO:PX=PO 

versus 
H,:PJ&o 

at a significance level CL This is referred to as 
a two-tailed test: We reject Ho if a measure of 
px is either significantly greater or less than b. 

To construct this test, recall the statistic from 
equation 2.6-22: 

(hx)2 
- mF(1, n-l) 

S$z 
(2.94) 

which is the F&n-l) random variable. This 
statistic fulfills our requirement for a test sta- 
tistic; it can be used to satisfy the null hypoth- 
esis, and the remaining statistics or parameters 
are either known or can be evaluated from a ran- 
dom sample. Now consider the probability of a 
type I error: 

P(reject HolHo true) 

=P(x<a)Ho,+P(x>blHo) 

=a I (2.9-6) 
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where two critical values are necessary as it is 
possible to reject the null hypothesis if a value 
of x is either larger or smaller than m In terms 
of the test statistic, under the condition that the 
null hypothesis holds, we see that 

=p - 
1 

%@o 

S,lSn 
<- JqJijq 

1 
%Q) 

+P - 
S,G 

>@pFV 

=CY (2.9-7) 

which is equivalent to equation 2.9-6. 
To complete the test, we need only to evaluate 

the test statistic with a random sample. If 
(Z-p,J2/(&n) be greater than F&n-l), we 
would reject the null hypothesis at the (Y signif- 
icance level. 

2.9.4 Type II Error 

A test statistic is commonly selected for its 
ability to determine the probability of commit- 
ting a type II error, as well as a type I error. 
A type II error is committed by accepting the 
null hypothesis when the alternate is true. By 
calculating the probability that the test statistic 
does not fall in the critical region, given that 8 
takes on any value other than that assumed 
under the null hypothesis, the probability 6 of 
committing this error can be evaluated. Thus, 
for tests indicated previously, ,4 is a continuous 
function of possible values of the population 
parameter 8, other than the value b assumed 
under the null hypothesis. For a critical region 
corresponding to a given Q, a good test statistic 

should produce small values of /3 for hypothet- 
ical values of 0 rather distant from b. However, 
6 should increase sharply in value as possible 
values of 0 approach b and obtain a value as 
close to one as feasible in the immediate vicini- 
ty of b. Means are available for determining test 
statistics which, for certain tests, excel at the 
above characteristics, but a presentation of 
these methods is beyond the scope of this 
course. In most cases, a statistic which contains 
an estimator of the population parameter being 
tested and for which all other parameters are 
either known, or estimators of said parameters 
are contained in the statistic, will suffice as a 
test statistic; however, it may not be the best 
test statistic. 

Note that if CY, the probability of committing 
a type I error, were made extremely small, then 
the null hypothesis would almost always be ac- 
cepted. At first glance, one would assume that 
something was amiss in the hypothesis testing 
procedure, as it is apparently possible to bias 
the test by selecting an extreme value for CY. 
However, when the value of CY is decreased, the 
probability of committing a type II error, P(0), 
is increased for all values 0. Thus, an investi- 
gator who seeks to avoid committing a type I 
error by intentionally selecting a small value for 
a! runs an increased risk of committing a type 
II error, which is equally as damaging. If need 
be, a plot of 6(C) can be made for various 
hypothetical values of a! and 8; this can often 
be a rather complicated task. A rule-of-thumb 
value for CY is 0.05, which appears to serve 
hypothesis test users well in most cases. 

2.9.5 Summary of Method 

To summarize, the steps for testing a hypoth- 
esis concerning a population parameter 8 are: 

1. Define the null hypothesis I&,:8=8,. 
2. Decide upon the nature of the test; that 

is, N1:8<8u, W1:8>0u or H,:e # 8,. 
3. Choose a level of significance 01. 
4. Select an appropriate test statistic and 

establish the critical region. 
5. Compute the value of the statistic from 

a random sample of size n. 
6. Draw conclusion of test: reject He if the 

statistic has a value in the critical region; 
otherwise accept Ho. 

4 
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Problem 2.9- 1 
n 

I 
a. Set up problem 2.6-l as a hypothesis test 

(do not complete the test). 
b. Given two random samples from inde- 

pendent normal populations with the fol- 
lowing sample statistics: 

a; 
Hoz 02 =l 2 

StatiStiC 

n 
Ii 

sz 

Random sample 1 Random sample 2 

25 16 
82 78 

8 7 

test the following hypotheses at a signif- 
icance level of a=O.O5: 

43 

4 
H1:B’l * 2 

c. An outside source informs you that the 
stockpiled ore of problem 2.8-l actually 
only assays an average of 9.8 grams per 
metric ton. Can you refute this claim at 
a significance level of 0.05? (Construct a 
hypothesis test for this purpose.) 
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2.10 Tables of Probability Distributions 
[All tables modified from Wdpole and Myera (1972). with permission from the publisher] 

Table 2.10-l 

Arex 1 -n I h-k., thr Un,mr, f-at,". 
0 Na(0.1) 

I .._““, . -, _..“_. . ..” ..- . . . . “. -I..- 

1,IO.l I 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 009 

-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 o.lm3 o.caO3 00003 0.0003 o.culo2 
-3.3 o.ooo5 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 O.OOQ4 0.0004 o.m3 
-3.2 0.0007 O.ooo? 0.0006 O.ooO6 O.OVD6 O.OOiI6 00K16 0.0005 O.WU5 
-3.1 0.0010 0.0009 O.ooo9 O.WO9 0.0008 
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 

“0%: 0.0008 8:%-i 0.0007 o.c@07 
0.001 I 0.001 I 0.0010 0.0010 

-2.9 0.0019 0.0018 0.0017 0.0017 0.0016 00016 0.0015 ’ 0.0014 0.0014 
-2.8 0.0026 0.0025 0.0024 0.0023 0 0023 0.0022 0.002 I 

8%: 
0.0019 

-2.7 0.0035 0.0034 0.0033 0.0032 0.003 I 0.0030 0.0029 0.0028 
“02% 

0.0026 
-26 0.0047 0.0045 0.0044 00043 0.0041 o.lw4o 0.0039 0.0038 0.0037 0.0036 
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.005 I 0.0049 0.0048 

-2.4 0.0082 E% 0 0078 0.0075 0.0073 00071 0.0069 0.0068 0.0066 0.0064 
-2.3 00107 88% 8.% 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 
- 2.2 0.0139 00136 

0.0170 0.0166 

0.0125 0.0122 0.01 I9 0.01 16 0.01 I3 0.01 IO 

-2.1 0.0179 00174 0.0162 0.0 I 58 0.0154 - 2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 El;; . 00:00148: 8:0012 

I ; :; 0.0287 0.028 I 0 0274 0.0256 
0.0359 0.0352 0.0344 

0.0268 0 
0336 

0.0262 0.0329 
0.0322 

0.0314 0.0250 0.0307 0.0244 0.0239 0.0233 
0.0301 0.0294 

- 1.7 0.0446 0.0436 0 0427 00418 0.0409 0.0401 0.0392 0.03 4 0.0375 0.0367 
- I .6 0.0548 0.0537 “,“oz 0.05 I6 0.0505 0.0495 0.0485 0.04 7 5 0 0465 0.0455 
- I.5 0.0668 0 0655 0.0630 0.06 I 8 00646 0.0594 0.0582 0.057 I 0 0559 

- 1.4 0.0808 0.0793 if%:: 0.0764 %4 0.0735 0.0722 0.0708 0.0694 0.068 I 
-1.3 00968 o.oY5 I 0.0918 0.0885 0.0853 0.0838 
-I 2 O.IISI 0.1131 0.1 I I2 0 1093 0:1075 0.1056 8% 0 I020 0.1003 %Z: 
- I.1 0. I357 0. I335 0. I292 0.1271 0. I25 I 
-1.0 0.1587 0. I562 %:9’ O.ISlS 0.1492 0.1469 t14’:: . ::i::i :I::: ;.:::9” 

-09 0.1841 0.1814 0. ,788 0.1762 0. ,736 0 1711 0.1685 0.1660 0.1635 0.161 I 
-0.8 0.2119 0 2090 0.2061 0.2033 cl.2005 0 1977 0.1949 :.:% l%: 0. I867 
-0.7 0.2420 0.2358 0.2327 0.2296 0.2266 0.2236 0.2148 
-06 0.2743 

%% 
0.2676 0.261 I 0.2578 0:2483 0.2451 

-0 5 0.3085 0.3050 0.3015 
00%: 

0.2946 0.2912 
i% “0% 

0.2810 0.2776 

- 0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3228 0.3192 0.3 I56 0.3121 
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 

EZ 
0.3557 0.3520 0.3483 

- 0.2 0.4207 
-0 I 0.4602 

Et: 0.4 I 29 0.4090 0.4052 0.4013 
i%: 

0.3897 0.3859 
0.4522 0.4483 0.4443 0.4404 0.4364 

8%; 
0 4286 0.4247 

-0.0 0 5ooo 0.4960 0 4920 0.4880 0.4840 0.4801 0.4761 0 4721 0.468 I 0.4641 

0.0 0.5cao o.so40 0.5080 

0.1 0.5398 OS438 “o.:z 

“0 :::v 8:::: 0.5199 0.5239 OS279 0.5319 0.5359 

0:5910 
0.5596 0.5636 0.5675 0.5714 

::: 8% 0.5832 0.5948 0.633 I 0.5987 0.6368 0.6026 
z%: 8.Z %Z 8%~ 

0.6064 0.6443 0.6103 0.6480 
“0::::: 

04 0.6554 0.6700 0.6736 0.61108 0.6844 8% 

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 07123 0.7 I57 0 7190 0.7224 
0 6 0.1251 0.7291 0.7357 0.7422 0.7454 0.7486 0.7517 0.7549 
07 0.7580 0.761 I “o::iz 0.7673 “o:::Fii 0.7734 0.7764 0.7794 0.7823 0.7852 
0.8 0 7881 0.7910 0 7939 0.7967 0.7995 0.8023 0.805 I 0.8078 0.B IO6 0.8133 
09 0.8159 0.8186 08212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

I.0 08413 0.8461 
1.1’ 0.8643 

8:% 
0.8686 

E% :88:2 0.8531 0.8554 0.8577 0.8599 0.8621 
0.8749 0.8770 0.8790 08810 0 8830 

I 2 0.8849 0.8869 
i%Z 

0.8907 0.8925 0 8980 0.8997 O.YOI5 
I.3 0.9032 0.9049 0.9082 0.9099 !.l.;.l.f’: tMf;f 09147 0.9162 09177 
1.4 0.9192 0.9207 0.9222 0.9236 0.925 I 0.9265 0.9278 0.9292 0.9306 0.9319 

I.5 0.9332 0.9345 0.9357 0 9370 EZ 0.9394 0 9406 0.94 I 8 0.9429 0.944 I 
I.6 0.9452 0.9463 0 9474 0.9484 0 9505 09515 0.9525 0.9545 
I.7 0.9554 00:99% 0.9573 0 9582 09591 0.9599 0.9608 09616 

8%: 
0.9633 

1.8 0.9641 0.9656 0.9664 09671 0.9678 0.9686 0 9693 0.9699 
1.9 0.9713 0.97 I 9 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 EE . 

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 

:: %1 0.9864 0.9826 0.9830 0 9868 0.9834 Z:! 0.9878 0.9842 09881 0.9846 0.9884 0.9850 0.9854 8% 0.9890 
2.3 0.9893 0.9896 0.9898 %i I 0.9904 0 9906 0.9909 0.991 I ii%: 0.99 I 6 
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.993 I 0.9932 0.9934 0.9936 

2.5 09938 0.9940 0.994 I 0.9943 0.9945 0.9946 0 9949 0.995 I 0.9952 

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 

EE 

0.9962 0.9963 2.7 0.9965 0.9966 0.9967 0.9968 
2 8 0.9974 0.9975 0.9976 0.9977 8.9’;;; 

0.9970 0.997 I 0.9972 0.9973 “o:% 
0.9978 0.9979 0.9979 0.9980 0.9981 

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3 0 0.9987 oop2: 8:ZE 0.9988 0.9988 0.9989 0.9990 0.9990 
31 0 9590 0.9991 0.9992 

22; 
X:E: 

EE 
0.5993 0.9993 

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 

3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 3.4 0.9997 0.9997 z% . 0.9997 0.9997 0.9997 z%;;; . 0 9997 0.9997 FiXi;;: 
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Table 2.10-2 

ritical dues of the Chi-Square Distribution Vi 

T- 
c4 

V 

- - 
0.995 0.99 0.975 0.95 0.05 

-- 
I 0.0.393 0.0’157 0.0'982 o.0239: 3.841 
2 0.0100 0.0201 0.0506 0.103 5.991 
3 0.0717 0.115 0.216 0.352 7.815 
4 0.207 0.297 0.484 0.711 9.488 
5 0.412 0.554 0.831 1.145 11.070 

t 
0.676 0.872 1.237 1.635 12.592 
0.989 1.239 1.690 2.167 14.067 

8 1.344 I .646 2.180 2.133 15.507 
9 1.735 2.088 2.700 3.325 16.919 

10 2.156 2.558 3.247 3.940 18.307 

11 2.603 3.053 3.816 4.515 19.675 
12 3.074 3.571 4.404 5.226 21.026 
13 3.565 4.107 5.009 5.892 22.362 
14 4.075 4.660 5.629 6.571 23.685 
15 4.601 5.229 6.262 7.261 24.996 

16 5.142 5.812 6.908 7.962 26.296 
17 5.697 6.408 7.564 8.672 27.587 
18 6.265 7.015 8.231 9.390 28.869 

:z 
6.844 7.633 8.907 I IO.117 30.144 
7.434 8.260 9.591 I 10.851 31.410 

21 8.034 8.897 ,0.283 I Il.591 32.671 
22 8.643 9.542 10.982 1 12.338 33.924 
23 9.260 IO.196 I I .689 I 13.091 35.172 

I’: 
9.886 0.856 12.401 I 13.848 36.415 

10.520 I .524 3.120 1 14.61 I 31.652 

5.024 6.635 7.819 
7.378 9.210 10.597 
9.348 1 I .345 12.838 

11.143 13.277 14.860 
12.832 15.086 16.750 

14.449 16.812 18.548 
16.013 18.475 20.278 
17.535 20.090 21.955 
19.023 21.666 23.589 
20.483 23.209 25.188 

21.920 24.725 26.757 
23.337 26.217 28.300 
24.736 27.688 29.819 
26.119 29.141 31.319 
27.488 30.578 32.801 

28.845 32.000 34.267 
30.191 33.409 35.718 
31.526 34.805 37.156 
32.852 36.191 38.582 
34.170 37.566 39.997 

35.419 38.932 41.401 
36.781 40.289 42.796 
38.076 41.638 44.181 
39.364 42.980 45.558 
40.646 44.314 46.928 

E 
11.160 .2.198 h3.844 1 15.379 38.885 
1 I .808 2.879 14.573 I 16.151 40.113 

ii 
12.461 3.565 ,5.308 I 16.928 41.337 
13.121 4.256 6.047 1 t7.708 42.557 

30 13.787 4.953 6.791 I 18.493 43.773 
-- 

Abridged from.Table 8 of Biomcrrika Tub/es for Sftr/ic/icicrm. 
E. S. Pearson and. the Riometrika Twtees. 

41.923 
43.194 
44.461 
45.122 
46.919 

0.025 

Vol. 

0.01 0.005 

45.642 48.290 
46.963 49.645 
48.278 50.993 
49.588 52.336 
50.892 53.672 

I. 

1 

permission of 
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2.10 Tables of Probability Distributions-Continued 

Table 2.10-3 

Critical Values of the F Distributvm 

l- 

yz 
- 

: 
3 
4 

1 2 3 4 

VI 

5 6 8 

161.4 199.5 215.7 
18.51 19.00 19.16 
10.13 9.55 9.28 
7.71 6.94 6.59 

-- 
224.6 

19.25 
9.12 
6.39 

230.2 234.0 236.8 238.9 240.5 
19.30 19.33 19.35 19.37 19.38 
9.01 8.94 8.89 8.85 8.81 
6.26 6.16 6.09 6.04 6.00 

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 
6 5.99 5.14 4.16 4.53 4.39 4.28 4.21 4.15 4.10 
7 5.59 4.74 4.35 4.12 3.91 3.87 3.19 3.73 3.68 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 
9 5.12 4.26 3.86 3.63 3.48 3.31 3.29 3.23 3.18 

10 
11 
12 
13 
14 

4.96 

:.z 
4167 
4.60 

4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 
3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 
3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 
3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 
3.14 3.34 3.11 2.96 2.85 2.76 2.70 2.65 

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 
16 4.49 3.63 3.24 3.01 2.85 2.14 2.66 2.59 2.54 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 

E 

f f 
24 

4.35 
4.32 
4.30 
4.28 
4.26 

3.49 
3.47 

:2! 
3:40 

3.10 2.87 2.71 2.60 2.51 2.45 2.39 
3.07 2.84 2.68 2.51 2.49 2.42 2.37 
3.05 2.82 2.66 2.55 2.46 2.40 2.34 
3.03 2.80 2.64 2.53 2.44 2.37 2.32 
3.01 2.18 2.62 2.51 2.42 2.36 2.30 

4.24 
4.23 
4.21 
4.20 
4.18 

3.39 2.99 2.76 
3.31 2.98 2.74 
3.35 2.96 2.13 
3.34 2.95 2.71 
3.33 2.93 2.10 

2'ti 
2157 
2.56 
2.55 

2.49 
2.47 
2.46 
2.45 
2.43 

z 
2137 
2.36 
2.35 

2.34 2.28 
2.32 2.27 
2.31 2.25 
2.29 2.24 
2.28 2.22 

30 
40 
60 

120 
03 

A 
permi 

4.17 
4.08 
4.00 
3.92 
3.84 

3.32 2.92 2.69 2.53 2.42 2.33 2.21 2.21 
3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 
3.15 2.16 2.53 2.37 2.25 2.17 2.10 2.04 
3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 
3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 

mducc 
ion of 

from 
s. 

Riomeftika Tables for 
Biometrika Trustees. 

Stalislicians, 11. I, by 

a 

c 



REGRESSION MODELING OF GROUND-WATER FLOW 

Table 2.10-3 continued 

47 

V1 

: 
3 
4 

141.9 
19.40 
8.79 
5.96 

4.74 
4.06 

E 
3:14 

10 
11 
12 
13 
14 

2.98 
2.85 
2.75 
2.67 
2.60 

15 2.54 
16 2.49 
17 2.45 
18 2.41 
19 2.38 

20 
21 

f : 
24 

2.35 
2.32 
2.30 
2.27 
2.25 

25 

f t 

ii 

30 
40 
60 

120 
al 

2.24 
2.22 
2.20 
2.19 
2.18 

2.16 
2.08 
1.99 
1.91 
1.8.f 

T 
10 12 15 20 24 

143.9 
19.41 
8.74 
5.91 

!45.9 !48.0 !49.1 
19.43 19.45 19.45 
8.70 8.66 8.64 
5.86 5.80 5.77 

4.68 
4.00 
3.57 
3.28 
3.07 

4.62 4.56 4.53 
3.94 3.87 3.84 
3.51 3.44 3.41 
3.22 3.15 3.12 
3.01 2.94 2.90 

2.91 
2.79 
2.69 
2.60 
2.53 

2.85 2.77 2.74 
2.72 2.65 2.61 
2.62 2.54 2.51 
2.53 2.46 2.42 
2.46 2.39 2.35 

2.48 
2.42 
2.38 
2.34 
2.31 

I 
1 

, 

2.40 2.33 2.29 
2.35 2.28 2.24 
2.31 2.23 2.19 
2.27 2.19 2.15 
2.23 2.16 2.11 

2.28 
2.25 
2.23 
2.20 
2.18 

2.20 2.12 
2.18 2.10 
2.15 2.07 
2.13 2.05 
2.11 2.03 

2.16 
2.15 
2.13 
2.12 
2.10 

2.09 
2.07 
2.06 

::: 

2.01 
1.99 
I .97 
1.96 
1.94 

2.09 
2.00 
1.92 
1.83 
1.7: 

2.01 1.93 
1.92 1.84 
1.84 1.75 
1.75 1.66 
1.67 1.57 

2.08 2.04 I .99 1.95 i .9a 
2.05 2.01 1.96 1.92 1.87 
2.03 1.98 I .94 1.89 I .84 
2.01 I .96 1.91 1.86 1.81 
1.98 1.94 1.89 1.84 I .79 

1.96 1.92 1.87 1.82 1.77 
1.95 1.90 1.85 1.80 1.75 
1.93 1.88 1.84 1.79 1.73 
1.91 1.87 I .82 1.77 1.71 
1.90 1.85 1.81 1.75 1.7c 

1.89 1.84 1.79 1.74 1.68 
1.79 1.74 1.69 1.64 1.58 
1.70 1.65 1.59 1.53 1.47 
1.61 1.55 1.50 1.43 1.35 
1.52’ 1.46 1.39 1.32 1.2: 

VI 1 
250.1 251.1 252.2 253.3 

19.46 19.47 19.48 19.49 
8.62 8.59 8.57 8.55 
5.75 5.72 5.69 5.66 

4.50 4.46 4.43 4.40 
3.81 3.77 3.74 3.70 
3.38 3.34 3.30 3.27 
3.08 3.04 3.01 2.97 
2.86 2.83 2.79 2.75 

2.70 2.66 2.62 2.58 
2.57 2.53 2.49 2.45 
2.47 2.43 2.38 2.34 
2.38 2.34 2.30 2.25 
2.31 2.27 2.22 2.18 

2.25 2.20 2.16 2.11 
2.19 2.15 2.11 2.06 
2.15 2.10 2.06 2.01 
2.11 2.06 2.02 1.97 
2.07 2.03 1.98 1.93 

a3 

254.3 
19.50 
8.53 
5.63 

4.36 
3.67 
3.23 
2.93 
2.71 

2.54 
2.40 
2.30 
2.21 
2.13 

2.07 
2.01 
1.96 
1.92 
1.88 

1.84 
1.81 
1.78 
1.76 
1.73 

1.71 
1.69 
1.67 
1.65 
1.64 

1.62 
1.51 
1.39 
1.25 
1.00 
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By taking expected values of both sides, one 2.11 Appendices 
sees that 

2.11.1 Correlation of Two linearly 
Related Random Variables 

Consider a linear relationship between two 
random variables X and Y such that 

Y=a+bX+& (2.11-1) 

where & represents a zero-mean random error 
(independent of X). Then 

c+ b2c++c$ (2.11-2) 

because u,,=E[(X-~~)&]=0. By direct calcula- 
tion of uxy from equation 2.11-1, one obtains 

uxy=Ew-P~)( Y-Py)l 
=JWX-t(,)(W-cL,)+E)1 
=bgx . (2.11-3) 

Upon squaring both sides of equation 2.11-3 
and dividing by gxgy, one obtains 

“2x pgy= b2 $ (2.11-4) 
Y 

which, from equation 2.11-2, can be put in the 
form 

4 psy=l-- . 
“2y 

(2.11-5) 

Again from equation 2.11-2, it is seen that 

b%++-4 (2.11-6) 

and as b2gxis a nonnegative quantity, gymust 
be greater than or equal to o$. This shows that, 
for a linear relationship, psy is either less than 
unity or equal to one if f~$ is equal to zero. 

2.11.2 Expected Value of Variance 
Estimator 

The sample statistic Sg is defined as 

G= nix1 ’ ~ (Xi-~)2 . (2.11-7) 

= $ I i~~EWz-~x)21-EP(~-~x)21 1 (2.11-B) 

where use is made of the fact that t (Xi-fix) 
i=l 

=ng-px). Now the second expected value in 
equation 2.1 l-8 becomes 

E[P~.&~)~]= $ E iE, Urr~x) jE, (+-ccx) 1 

= $E jl ,E,~~,P~W+~~ I - - 1 c 
=; j, ,E,Cov[X$$. (2.11-9) 

- - 

AS Xi and Xi are randomly selected and 
therefore independent, 

1 2X i=j 
COV[Xi,Xj]= 0 iy . (2.11-10) 

Thus, equation 2.11-9 becomes 

E[4.hx)“l=~x (2.11-11) 

which allows us to write equation 2.11-8 as 

n-l =-& (2.11-12) 
n 

and demonstrates the desired result. Note 
that equation 2.11-11 also demonstrates that - 

4 - 
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a~2=2~lln 

as f~x~=E[(X-p~)~] . 

(2.11-13) 
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3 Regression Solution of 
Modeling Problems 
3.1 Introduction and 
Background 

(Kitanidis and Vomvoris, 1983). Stochastic- l 
process models are not considered further here. 

Ground-water flow models are members of a 
class of models known as mathematical models, 
in which the physical model of the flow system 
is replaced by mathematical expressions con- 
taining mathematical variables, parameters, 
and constants (Krumbein and Graybill, 1965, 
p. 15). Mathematical models always involve 
simplification of the actual (true) physical 
system. Krumbein and Graybill (1965, p. 15) 
argued that mathematical models can be classi- 
fied into several types, including deterministic 
models, statistical models, and stochastic- 
process models. 

A deterministic model is one in which the de 
pendent variable(s) can be exactly computed 
from an expression involving independent vari- 
ables, parameters, and constants. Note that de 
terministic models do not have to be physicahy 
based but may instead be completely empirical. 
The classical and inverse flow models discussed 
in section 1 are of the physically based 
deterministic type. In contrast, a statistical 
model is a deterministic model that has one or 
more random components added. These random 
components frequently involve measurement or 
other errors, but may involve separate sources 
of random variability as well. Incorporation of 
the errors in both observed heads and estimated 
parameters discussed in section 1 converts the 
deterministic flow model into a statistical 
model. 

The term “stochastic model” can be consid- 
ered to be synonymous with the term “statis- 
tical model” (Krumbein and Graybill, 1965, 
p. 19). A stochastic-process model may consider 
random effects such as those contained in the 
statistical model but in addition has a sto- 
chastic process built into it. Generation of a 
spatially varying permeability field in an aquifer 
has been considered to be a stochastic process 
by Bakr and others (1978), Gutjahr and others 
(1978), and Smith and Freeze (1979a, 1979b). 
Recently, this type of process has been in- 
corporated into a parameter estimation scheme 
for a steady-state ground-water flow model 

3.1.1 Assumed Model Structure 

Consider an experiment where two variables, 
5 and Y, are measured repeatedly. The inde 
pendent variable, [, is considered to be a pre- 
cisely defined quantity, whereas the dependent 
variable, Y, whose values depend upon values 
of the independent variable, contains some error 
resulting from the experimental process. A 
scatter diagram of the data might appear as in 
figure 3.1-1. 

From the scatter diagram or from physical 
considerations, the experimentalist may decide 
that an appropriate model equation for the data 
is 

Y,=& +P&+Q (3.1-1) 

where Pa and & are the intercept and slope of 
the equation for a straight line, subscript i 
represents the ith observation of ([,Y), and ei 
is the true error in Y for observation i. The 
quantity & +&[ is the deterministic part of the 
equation (the computed value of the dependent 
variable), and, because ci is the true error, c 
parameters & and & are the true parameters 
representing the deterministic part of the model 
response. True error ‘i, often called a disturb- 
bance, is a random variable and, thus, repre 
sents the stochastic part of the model response. 
Note that if the model is correct and no other 
source of bias in Ei exists, E(Ei)=O. 

Equation 3.1-1 is linear in parameters /3r and 
&. Another example of a model equation that 
is linear in the parameters is 

Yi=81+825i+P35f+Ei (3.1-2) 

which is the equation for a second degree poly- 
nomial. In equation 3.1-2 there is still only one 
independent variable, t, although the equation 
has two terms containing [. An alternate form 
for equation 3.1-2 is 

Yi=Xi,P,+Xi2P2+Xi3P3+Ei 9 

where 

(3.1-3) 

x,=1 
X,=E 

I 
(3.1-4) 

X3=E2 . 
( 
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Figure 3.3- 1 

In general, any equation that is. linear in 
parameters &, &, . . .,P,, where there are p 
parameters for the system, can be written in the 
form 

yi=xi181+Xi2f12+. . .+Xi,13,+~i (3.1-5) 

where 

Xij=Xij(tilrli21s - *vtik) (3.1-6) 

is a function of k independent variables that 
multiplies thejth parameter and does not con- 
tain the parameters. Because 

a - 
apj ( Xilpl+Xi2p2+. . . +X;Pl3p)=Xij ) (3.1-7) 

the X terms are often called sensitivity coeffi- 
cients or, simply, sensitivities. They indicate the 
change in the model response (the computed 
value of the dependent variable) at observation 
point i for a unit change in parameter ~j. Equa- 
tion 3.14 can be written compactly in matrix 
form as 

where 

‘3 
y2 . 
y?’ 

_y=xJ+g (3.1-8) 

(3.1-9) 

x11 x12 - - - Xl, 

z= 21 x22 - * - x2, 
. I i (3.1-10) . . 

4il **- xnp 

81 

e= 82 
. 

El 

c= 9, 
. . 

% 

(3.1-11) 

(3.1-12) 

and n observations are assumed. 
Often we are faced with models where the 

equation is no longer linear in the parameters, 
6. For example, suppose that the model equa- 
tion is 

Yi’ J+p, taXI (F Pi)+Ci * (3*1-13) 

Equation 3.1-13 cannot be reduced to the form 
of equation 3.1-5, and, thus, is not linear in the 
parameters. Equations of this type are written 
in the general vector form 

or, in more compact form, 

_y=f(.g) +g 
(3.1-15) 

where fis an n-vector, each element fi of which 
is a general function of the k independent vari- 
ables, EIP (P=l,2, . . .,k), and p parameters, 
Pj ti=192s . . .,p). Equation 3.1-15 incorporates 
equation 3.1-8 because 3.1-8 is simply the 
special case where fl@) =X(&)/j. 

Some equations may be nonlinear in @ but 
linear in some transformation of @. For exam- 
ple, the model 

x. 
yi=P1&) “i (3.1-16) 
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in which the error pi is multiplicative, is non- 
linear in & and &. However, equation 3.1-16 
may be written as 

log Yi=log 81+XilOg P,+lOg pi (3.1-17) 

which is linear in log p1 and log & and has an 
additive error term. Thus, it is of the standard 
linear form. Equations such as 3.1-16 are fre- 
quently best utilized in their transformed, thus 
linearized, form. However, all model analyses (to 
be discussed further on) would probably be 
made in terms of the transformed variables, and 
this would have to be remembered when results 
were interpreted. 

Types of models other than the linear and 
nonlinear ones discussed above also exist. Some 
types involve a complex model equation that 
cannot be solved explicitly for the dependent 
variable. In other cases the function f(k,@, 
which is assumed to be a known function of f, 
and & cannot be obtained and, therefore, must 
be replaced by a numerical formulation. How- 
ever, the basic model structure of equation 
3.1-15, where the error g in _Y is assumed to be 
additive to a deterministic dependent variable 
vector, is always assumed. Additional complex- 
ities of the other types of models are handled 
by auxiliary equations appended to equation 
3.1-15. The other models are introduced at ap- 
propriate places further on. 

3.1.2 Least-Squares Estimation 

Because the true parameter set @ and true 
error set c are generally unknown, the true 
model equation 3.1-15 must be regarded as 
unknown, even though the form of the model 
is known (or. at least assumed). Wado. however, 
have measurements to make up the independent 
variable set f and observation set 1. We would 
like to use these measurements and the form of 
the model to obtain estimates of @ and 5. The 
method explained in the following paragraphs 
is based on the idea that, if estimates of @ and 
E can be found such that the error structure of 
the true model is duplicated as closely as possi- 
ble, then the resulting model should, in some 
sense, be the best possible approximation of the 
true model. 

Assume that all pi (iz1.2,. . .,n) as random 

Var(g)=La2 . 

variables have finite common variance C? and 
that Ei and 4, i#j, are uncorrelated. Then 

The scalar variance aZ can be solved for by tak- 
ing the trace of both sides of equation 3.1-18: 

tr[Var(r)]= tr(i)a2 

or 

or 

E[(g-I.-Q)) T(~-~(~))l=~~ 
from which 

2 m@(g)) T(r-Jw)l (I= 
n 

(3.1-19) 

Ordinarily the assumptions would be made 
that the model being used is the correct one and 
that no other source of bias in c exists, so that 
E(g)=Cj and c 

(3.1-20) 

Equation 3.1-20 indicates that the sum of 
squared disturbances over all observations, 
averaged over many sets of observations, di- 
vided by n yields u2. 

As indicated previously, the investigator only 
has available the data and the form of the 
model, so that 5, u2, and B must all be con- 
sidered as unknowns. However, a good approx- 
imation of the true model would produce 
estimates of c that, for many observations, 
would yield a variance approaching 9. Let b be 
an estimator of & Then a linear model incor- 
porating & is 

_Y=g+e (3.1-21) 

where the vector e is an estimate of 5 cslled the 
residual vector. From equations 3.1-20 and 
3.1-21, an estimate of a2 is 

(3.1-22) 
i 
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Most arbitrary parameter sets are expected 
to yield values of g2 that are larger than a2 
because they would yield models that do not fit 
the data well. Of all possible parameter sets b, 
the one that fits the data the best and at the 
same time minimizes a2 is the set that mini- 
mizes the sum of squares function S(b), 

with respect to b. The process of finding esti- 
mates of a2 and fi by minimizing S(b) is termed 
least squares estimation. It is developed fully 
in sections 3.2 and 3.3. 

Recall that equation 3.1-18 and, hence, equa- 
tions 3.1-22 and 3.1-23 assume that the Q all 
come from the same distribution having 
variance a2 and that Q and Ej, i#j, are uncor- 
related. In some instances Ei and e. have dif- 
ferent variances, say C$ and #, and they may 
even be correlated so that they have nonzero 
covariance Uij . In this case, equation 3.1-18 
must be written in the more general form 

Var(g)=&2 (3.1-24) 

where vu2 is a symmetric, positive definite 
variance-covariance matrix defined as 

&v= 021 4 u23 a - * u2n (3.1-25) 

. . . 

unl un2 un3 * * * 4 . 

In equation 3.1-24, a2 is no longer the common 
variance of alI Ei but is instead another type of 
common variance. Its exact meaning can be 
discerned as follows. Define xX as the nonsin- 
gular symmetric matrix suck that VGVs=y. 

= = Then, from equation 3.1-24, 

pi var(~)p= v-‘/vv-?&2 
-- 

or 

Vaq-“g)=_Iu2 (3.1-26) 

from which a2 is seen to be the constant or com- 
mon variance of the transformed disturbances 

V% Equation 3.1-26 shows that these dis- 
&b-&es are uncorrelated. 

The more general conditions represented by 
equation 3.1-24 may easily be incorporated into 
the least squares procedure. All developments 
through equation 3.1-20 are repeated using 
E-X5 instead of e. The result is 

= Jw-yg) 
n 

(3.1-27) 

which suggests that 

S(b)=eW-‘e - -- - 

be minimized instead of equation 3.1-23. 
If equation 3.1-23 is minimized to find the 

parameter estimates when the more general 
error structure given by equation 3.1-24 is cor- 
rect, then the incorrect error structure will be 
reflected in parameter estimates that are less 
precise than if equation 3.1-28 were used. The 
proper sum of squares function to minimize 
when equation 3.1-24 represents the correct 
error structure is equation 3.1-28. 

Even more general cases can be postulated to 
yield S(b) in the form 

(3.1-29) 

where ; is a general symmetric positive definite 
weight matrix that subsumes 1-l. To apply 
equation 3.1-29,~ does not necessarily reflect 
the error structure of E. Instead it may reflect 
the investigator’s de&e to emphasize (or de 
emphasize) certain components of S(b). Equa- 
tion 3.1-29 is used in all developments to follow 
in which the general form is applicable. 

As a final note, least-squares estimation 
should be viewed as more than simply a 
parameter estimation procedure. The develop 
ment given in this section is intended to show 
that the procedure is an attempt to reproduce 
the true model structure: the variance, u2, the 
distribution of 5, and e. Although it is possi- 
ble to use least-squares estimation as just 
an algebraic process, making no assumptions 
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about structure, considerably more information 
can be gained by taking the more general ap 
preach to make model analysis, including anal- 
ysis of assumptions initially made concerning 
model structure, an integral part of the regres- 
sion process. 

3.1.3 Inclusion of Prior Information 

The model structure given by equation 3.1-15 
is general. Nothing is implied about the nature 
of &’ except that it is a dependent variable 
vector, in error by the amount 5. A very general 
interpretation of equation 3.1-15 is to assume 
that x, f, and E are each composed of two parti- 
tions, one g&g sample information and one 
giving prior information on parameters. This 
viewpoint amounts to sn expansion of the 
original formulation given in the previous sec- 
tion where only sample information was consid- 
ered (The& 1963). 

For example, suppose that an investigator 
collects data (&Y) on a process for which the 
model equation is given by equation 3.1-2. 
However, suppose that he or she also has 
developed methods to collect some data direct- 
ly on parameters P1 and OS and suppose that 
these data can be represented by the equations 

where aij is a constant and Ui is a random error. 
If all=l, then P, is a direct observation, sub- 
ject to error uI, of &. The entire set of equa- 
tions representing the system, then, can be 

(3.1-31) 

If x, &, and c are augmented to include the prior 
information, then equation 3.1-31 is of the form 
3.1-8 where 

Yl 

y2 

_u= - * * 

yn 

Pl 

p2 

1 
1 

X_= 
1 

3 

El 

e2 

‘ , 

% 

Ul 

u2 

Note that the number of observations is now the 
number of equations giving sample information 
(n) plus the number of equations giving prior in- 
formation (2). 

Although the equations giving prior informa- 
tion are often linear, they do not need to be. 
Hence, a general form of equation 3.1-15 to in- 
clude the prior information may be assumed: (I 

x=AQ)+E (3.1-32) 

where 

and subscripts s andp indicate partitions of the 
respective vectors pertaining to sample and 
prior information, respectively. Corresponding 
to these partitions, it is convenient to redefine 
n as the total number of observations, 
n=?z,+n where n, is the number of items 
(or equa&ns) of sample information and nP is 
the number of items (or equations) of prior 
information. 

To apply the least squares procedure to equa- 
tion 3.1- 15 as augmented by the prior informa- 
tion, it is assumed for now that 

Var(s)=v&f (3.1-34) 

var($)=_v,2 (3.1-35) 

C 
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Cov(g.$, cpP,=g (3.1-36) 

where L is symmetric, positive definite and of 
order n,, and 5 is symmetric, positive definite 
and of order n . Equation 3.1--36 indicates that 
sample distur 73 antes 5 and prior information 
disturbances 4 are not correlated with each 
other. With use of equations 3.1-34 through 
3.1-36, equation 3.1-24 becomes 

= &J2 . (3.1-37) 

With use of equation 3.1-37, 3.1-28 becomes 

S(b)=eWle -- - 

=eTV1e +eTV1e -sps --s -P-P -P (3.1-38) 

where the residual vector is defined as 

and 

(3.1-39) 

(3.1-40) 

The least-squares procedure may be general- 
ized even further by using equation 3.1-29 in- 
stead of equation 3.1-28 to define S(b). In this 
case the weight matrix 0 is defined by 

2ss Cd= I I = 03 (3.1-41) 

where s is a symmetric positive definite sub- 
matrix of order n, that pertains to the sample 
information and 3 is a symmetric positive 
definite submatrix of order np that pertains to 
the prior information. Because equation 3.1-41 
is of block diagonal form like equation 3.1-37, 
zero correlation of sample and prior information 
is again assumed. Thus, S(b) may be written in 
the same form as equation 3.1-38, or as 

s@)=eJ&?&+~&&gp . (3.1-42) 

Problem 3.1- 1 

You are charged with a ground-water study 
in the vicinity of Lake Ohpupu (figure 1). Esti- 
mates of transmissivity and recharge for the 
confined aquifer surrounding the lake are neces- 
sary for the completion of your report. Taking 
advantage of the unusually colinear equipoten- 
tiai contours on the west side of the lake (con- 
structed from an unbiased source, of course), 
you decide that estimates based on a uniform 
stream tube will suffice. Recharge to the aquifer 
is largely from precipitation and is uniform over 
the region. Assume that the boundary heads at 
the range front and the lake are imprecisely 
known; estimates of these parameters wiIl also 
be necessary. Your project has limited funds to 
bore n, holes along the stream tube and obtain 
measurements of head at n, locations of dis- 
tance, s, from the range front. 

The steady-state flow equation for a stream 
tube is 

+lg)+wD=o (1) 

where 

T=transmissivity (ftzld); 
W=recharge (ftld); 
D=width of stream tube (ft); 
h=hydrauiic head (ft); and 
s=distance along tube from the range front 

w. 

The boundary conditions are taken to be 

h=h, at s=O 
h=h, at s=sb 
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POTENTIOMETRIC SKETCH MAP FOR THE VICINITY OF 
LAKE OHPUPU 

EXPLANATION 

I SKETCH EQUIPOTENTIAL LINE 
SHOWING DIRECTION 
OF EQUAL HEAD. 

w--m 

STREAMTUBE 
---- 

t\ 
N 

LAKE OHPUPU 

Figure 1 
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By integrating the flow equation twice with 
respect to s (assuming T, D, and W to be con- 
stant) and using the above boundary conditions, 
the solution for hydraulic head h along the 
stream tube is found to be: 

h= $s*-s)s+hb ; +h, F . 1 I (3) 

Let 

P1=ho &= W/T X2=; 

sb-s 
&=hb X,=- 

(sb-Sk 

Sb 
x”=y- 1 (4) 

and write the above solution (equation 3) to the 
flow equation using the definitions of & and Xi 
(i=1,2,3). Then write the system of n, linear 
regression equations in the three unknown 
parameters using matrix notation and indicate 
the contents of each matrix. Identify dependent 
variable(s), independent variable(s), sensitivi- 
ties, and parameters. 

Let bi be an estimate of Pi, and: 
a. Assume that Var(f)=L~?. Write S(b) using 

the matrix form of the model equation 
3.1-21 with the estimated parameters bi. 
Write a few terms of S(b) using algebraic 
notation. 

b. Assume that a unique estimate of the 
variance of the error associated with 
every head observation is available 
and that these errors are uncorrelated. 
Indicate the contents of the resulting 
weight matrix z=rl. Write S(b) using 
the matrix form of the model equation 
with parameters bi. Write a few terms of 
S(bJ using weights wjj and algebraic 
notation. 

c. Assume case a above, except that there 
is a prior estimate of h, having a stand- 
ard deviation of ahb. Indicate the con- 
tents of the resulting weight matrix 
w= V-l. Write S(b) using t.he matrix form 
zf t& model equkon with parameters bi. 
Write a few terms of S(b) using algebraic 
notation. Include the term involving the 
prior information. 

3.2 Regression When the 
Model is Linear 

3.2.1 Derivation of Solution 

The linear model assumed is 

Y=x,p,+x,p,+. . . +xppp+’ (3.2-l) 

where the Xi are not functions of the 
parameters. If n observations are used, then an 
equation of the form of equation 3.2-l is writ- 
ten for each observation, so that the system can 
be written in matrix form as 

_y=xJ+c . (3.2-2) 

To find estimates of @ and 5, the weighted 
error sum of squares S(k),, 

S(b)=eToe - 

=(y->b)%(Y-Xb) (3.2-3) -(_r_ --- 

is minimized with respect to b. 
To minimize S(b) with respect to k means to 

take the derivative of S(b) with respect to each 
element of 4 bj u=1,2 ,..., p), and set the results 
to zero, or 

[(Y-Xb)T~(Y-Xb)llb=$ - - 

=O, j=1,2 ,..., p, (3.2-4) 

where I& signifies that L is the set of 
parametGrsFthat causes the derivatives of S(b) 
to be zero. By employing the rule of differen- 
tiating a product and noting that 2 is independ- 
ent of b, it can be seen that 

k [( Y-Xb)?JY-Xb)]= [5 (Y-Xb,qE( Y-Xb) 
j i 

+( Y-Xb)% +b (Y-Xb). (3.2-5) --- 
i 

To evaluate &( Y-Xb)T, note that taking the 

derivative of a v&or, x-g, with respect to a 
scalar, 9, means taking the derivative of each 
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entry of the vector and, thus, yields a new 
vector. Therefore, because observations _Y are 
independent of &, 

&-- (Y-Xb)T= $g 
i j 

(3.2-6) 

where ~j is the jth column vector of matrix &. 
Also, the first and second terms on the right 
side of equation 3.2-5 are equal because the 
transpose of a scalar is the scalar, and 2.k sym- 
metric so that z=wT. Hence, transposmg the 
second term on the%ght side of equation 3.2-5 
gives 

( Y-Xb)To --- &4 Y-Xb) =I( Y-XblTz &y ( Y-Xb)lT 
i i 

= [ k (Y-Xb)q$Y-Xb). (3.2-7) 
i 

The combination of equstions 3.2-4 through 
3.2-7 yields 

-2x%( Y-X&)=0 --I-- c (3.24) 

or 

X&Xb=X,%Y, j=1,2 ,..., p. (3.2-9) 

The system of equations implied by equation 
3.2-9 can be written as 

x_l: xz - . . 
i; 

rrT 
c.oxk= x,T OY. (3.2-10) - -s 

. 

Each vector &F in equation 3.2-10 is a row 
vector, so that, by definition, 

XT 
XT -2 =x,’ 
. . 

k 

and equation 3.2-10 becomes 

(3.2-11) 

(3.2-12) 

The set of equations symbolized in matrix form 
by equation 3.2-12 are c$led the normal equa- 
m, and parameters fi are called the esti- 
mates of @. The estimates are found from 

~=(XT6&XTwr . (3.2-13) -- -- 

Students not comfortable with the preceding 
development should read Draper and Smith 
(1981, p. 5-17, 70-80, 85-87). This material 
covers fitting a straight line without and with 
matrix nomenclature, and then extends the 
results to the general linear situation. Weighted 
least squares (where o#I) is covered in Draper 
and Smith (1981, p. TO:-116). 

Elements of X are often of vastly differing 
magnitudes. f%s, when working with a 
calculator or computer, round-off error can 
cause serious errors to develop when solving 
equation 3.2-13. It is often useful to scale equa- 
tion 3.2-12 with respect to a matrix c, which 
is a diagonal matrix defined as follows: Let 
XToX=‘-;4. Then c=diag{ 1/A~I,1/A~2,. . ., -- - 
1/A;; , where Aii is a diagonal entry of A,. 
Thus, equation 3.2-12 can be transformed to 
become 

cTxTuxcclG=cTxTwY (3.2-14) II- - --- 

or 

STt.&=STwY (3.2-15) -- -- 

where 

a 

;=c-‘g . (3.2-17) 
d 
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The effect of the scaling is to preserve the sym- 
metry of XTwX while at the same time to pro- 
duce a maTaaving all diagonal entries equal 
to unity. Thus, variability from entry to entry 
of the ST& matrix is usually reduced con- 
siderably Gr that of XTwX. 

It is also sometimes uG&iZo transform equa- 
tion 3.2-2 and equation 3.2-12 to incremental 
form. By definition 

3. Solve equation 3.2-15 (or q.2-21) for 4. 
4. Solve equation 3.2-17 for b. 

Problem 3.2- 1 

flgJ.j=g * (3.2-18) 

Then, subtracting equation 3.2-18 from equa- 
tion 3.2-2 results in 

E-fl&, &) =X(&b) +g --- (3.2-19) 

which is an incremental linear model. To obtain 
the analog to equation 3.2-12, premultiply equa- 
tion 3.2-18 by XTw and subtract the result 
from equation 3,?-i2 to obtain 

a. By using g from case c, problem 3. l-l, 
write out the normal equations used to 
estimate parameters fi explicitly in sum- 
of-product (algebraic) form. (Use equation 
3.2-12.) 

b. By using either data set 1 (table 1) or 2 
(table 2). generate the least squares coef- 
ficient matrix @GJX) and then compute -- 
its inverse. Do not round off any inter- 
mediate calculations or the final inverse. 
To aid in the calculations, table 3 gives 
the sums of products for the sample in- 
formation from the two data sets. You 
must add the prior information to com- 
plete the sums of products. 

c. Find the vector b. Do not round off the 
results. 

XToX(~-b)=XTw(Y-~~b)) . ----- --- (3.2-20) Table l.-Data set 1 

3 
Equation 3.2-20 can be transformed to obtain 
a result analogous to equation 3.2-15: 

*j (ft) 41 X 12 xi3 

s%s&=s%( Y-fit b)) -- mm- d- (3.2-21) 

where 

j=c-l(&, . (3.2-22) 

If 4 as calculated initially using equations 
3.2-15 and 3.2-17 is in error because of round- 
off, then & can be used to calculate fl&k) which 
then can be substituted into equation 3.2-21 to 
calculate 6 By using equation 3.2-22, a new 
improved-estim.ate of s can be obtained. 
Writing equation 3.2-2 in kcremental foL-m also 
provides a basis for procedures, involving sta- 
tistical analysis of the model, that apply for 
both linear and (with restrictions) nonlinear 
models. These are discussed later on. 

50 0.95 0.05 23,750 48.33 
150 .85 .15 63,750 45.76 
250 .75 .25 ' 93,750 42.08 
350 .65 .35 113,750 38.34 
450 .55 .45 123,750 35.30 
550 .45 .55 123,750 31.00 
650 .35 .65 113,750 25.85 
750 .25 .75 93,750 21.76 
850 .15 .85 63,750 16.11 

950 .05 .95 23,750 12.48 

Assume $=0.25 ft2, sb= 1,000 ft, and prior information 
as follows: hb=ll ft and oh =l.l ft. 

b 

Table 2.-Data set 2 

sj (ft) xjl xj3 xj3 

3.2.2 Solution Algorithm 

Sequential steps to follow are: 
1. Form XT& and XTw Y. P -- 

1 

2. Transform equatiG?%12 to 3.2-15. 

100 0.9 0.1 45,000 47.13 
200 .8 .2 80,000 44.14 
300 .7 .3 105,000 39.89 
400 .6 .4 120,000 36.36 
,500 .5 .5 125,000 32.48 
600 .4 .6 120,000 29.70 
700 .3 .7 105,000 24.33 
800 .2 .8 80.000 19.10 
900 .l .9 45,000 14.96 

Assume c?=O.25 ft2, s,=l,OOO ft, and prior information 
as follows: h,=m ft and crh =0.95 ft. 

b 

Obmrvedhaad, 
Y, (fi) 

Obeervedhead. 
Y, (ft) 
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Table 3.--Sums of products of sample informotion 

Data Set 1 DataSat - 

,vj lxj 1 

cxjlxj2 i 
Ex. x. 

j JI Ja 

i”xiSj2 

Jmj&j2 

i"xSj2 

Jmj 1 'j 

=j2yi i 

3.3250 2.8500 

1.6750 1.6500 

418,750 412,500 

3.3250 2.8500 

418,750 412.500 

83,340,625.000 83,325,000,000 

192.18350 168.2030 

124.82650 119.8870 

26,879,687.5 26,583,550 

3.23 Singularity and Conditioning 

Singularity of the least-squares coefficient 
matrix occurs whenever columns of the sen- 
sitivity matrix, & are linearly dependent 
because this causes rows (or columns) of the 
coefficient matrix XToX to be linearly depend- 
ent. Linear dependencein & may be stated as 

xc=0 -- (3.2-23) 

where not all components of the vector c of 
order p are zero. By premultiplying equation 
3.2-23 by J(rw - -’ 

xTuxc=o --- (3.2-24) 

which shows that columns of flwX (or rows 
since flwX is symmetric) are gexy depend- 
ent. N~k~at transformation of XT&C to ST& -- -- 
alters only the form of c. 

Near-singularity, also referred to as ill- 
conditioning, occurs whenever the columns of 
X (or g) are almost linearly dependent. Often, 
zs condition is indicated by a high degree of 
correlation among two or more parameter esti- 
mates. This correlation reflects the redundancy 
in the problem. As a result of ill-conditioning, 
computed parameters can be affected greatly by 
accumulation of round-off error generated by 
solving the normal equations. Also, computed 
variances of the parameters, which are propor- 
tional to the diagonal elements of w&)-l, will I- 
be large. 

A common form of ill-conditioning results if 

a column of z approaches zero so that 
c=[O,O, . . .,l,O, . . .,OJT, where the one appears 

a 

k the row corresponding to the zero column in 
X. This condition indicates that the model is in- 
znsitive to the parameter corresponding to the 
zero cohmm in X, and that the parameter should 
be eliminated from the model. The problem is 
readily detected by examining the X matrix. 
Another readily detected form of ill-co~ditioning 
results if two columns of z are nearly propor- 
tional, or 

&X %lCj (3.2-25) 

so that c=[O,O, . . .,cy,O,. . .,-l,O,. . .,OIT, where 
cr appears in row i and -1 appears in row j of 
c. In this case 

so that 

n+1 (3.2-26) 

Thus, to detect this problem, one need only ex- 
amine the ST& matrix for an off-diagonal 
entry nearly ezal to -t 1. This type of linear 
dependence indicates that parameters bi, and 
bj should be combined because the model can 
be written as 

Y=Xlbl+ . . . +Xibi+ . . . +Xjbj+ . . . +Xpbp 

sx,b,+ . . . +Xi(bi+abj)+ . . . +Xpbp 

=Xlbl+ s s a +XibT+ a . a +Xp-lbpp-1 (3.2-27) 

where bf replaces bi++, and all subsequent 
variables are shifted by one so that the last 
variable number is p-l. 

An excellent way to detect general ill- 
conditioned (or completely linearly dependent) 
problems is to orthogonalize the columns of the 
scaled sensitivity matrix, g (Draper and Smith, 
1981, p. 275-278). If the columns are all linear- 
ly independent, then they can all be transformed 

4 
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so as to be orthogonal to one another; that is, 
such that 

i2Tiil=Li (3.2-28) 

where $ is the nonzero transformation of S, and 
&J is a full-rank diagonal matrix. If iinear 
dependence exists in S, then equation 3.2-28 is 
replaced by a similar &gonal form except that 
one or more diagonal entries will be zero. The 
technique is to successively transform columns 
such that each new column is orthogonal to all 
of the previously transformed columns. If 
column dependence exists, then eventually a 
column will be calculated that exists entirely of 
very small numbers (theoretically all zeros for 
a linearly dependent problem). This column, 
then, is almost (or completely) linearly depend- 
ent on one or more of the previous columns. 

The transformation procedure is called Gram- 
Schmidt orthogonalization and takes the follow- 
ing form: 

81=S1 

j-l 

I 

(3.2-29, 
~j=s,- J1 Cij&9 .i=Z 39 * * -9 P 

where 

&=the transformed vector orthogonal to 
vectors already in 2, 

$=the next column vector of 8 to be 
transformed. 

3.3 Regression When the 
Model is Nonlinear 

3.3.1 Modified Gauss-Newton 
Method 

If the model is nonlinear in the parameters 
but is linear in the dependent variable, then the 
model may be written in the standard form for 
nonlinear regression: 

Y=f(S1, E21 - - &: Pl, Pz, * * .a,,+E * (3.3-U 

Because of the nonlinearity, f cannot be writ- 
ten in the form f=X1P1+X2/32+ . . . +X$$,. 
The case more complicated than equation 3.3-1, 
where the model is nonlinear in both the param- 
eters and the dependent variable, is treated in 
section 6.1. When there are n observations, 
equation 3.3-l may be written in matrix form as 

_y=fC&fi, +’ (3.3-2) 

or, in terms of general estimate b of @ and esti- 
mate e of f, 

_Y=&,b,+g * (3.3-3) 

As for the linear case, the regression solution 
,of equation 3.3-3 is obtained by minimizing the 
weighted error sum of squares: 

S@)=eToe -- 
=cy-fcb~),TwcY-fc~,b,) * (3.3-4) 

However, because equation 3.3-3 is nonlinear, 
solution of the problem is not as direct as it was 
for the linear case. 

A convenient and robust solution method is 
obtained by linearizing equation 3.3-3 around 
an initial estimate of parameters, then pro- 
ceeding as if the problem were linear. This yields 
a new set of parameters that minimizes equa- 
tion 3.3-4 where f is replaced by the linear ap- 
proximation. The new parameters are then 
substituted for the initial set, and the process 
is repeated to yield a better set of parameters. 
The iterative process stops whenever the 
change in calculated parameters from one itera- 
tion to the next is small. At that point the 
minimum of equation 3.3-4 has been found. 

To derive the method, first f(&@ is expanded 
about the initial set of parameters &-, by using 
a truncated Taylor series to obtain a linear ap 
proximation for f(f,&): 

(3.3-6) 



62 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

3.3-8 in the same manner as for linear regres- 8 and fi is f calculated at the ith observation 
point. The components of 5 are recognized as 
sensitivity coefficients, or simply sensitivities. 

sion (equations 3.2-14 through 3.2-17), 
although another type of scaling that is useful 
for some types of problems is introduced in 
problem 3.3-l. Scaling equation 3.3-8 produces 

By using equation 3.3-5, equation 3.3-3 may 
be written as 

g(g,z&o) 2 g&-&)o)+g (3.3-7) 

which is of the form of the incremental linear 
model of section 3.2. Note that if the model is 
linear so that f(&&)=~($Jb, then the truncated 
Taylor series and hence equation 3.3-7 are 
exact. In this case expansion in a Taylor series 
is another way of deriving the incremental linear 
model. If the model is nonlinear, equation 3.3-7 
is the approximate (linearized) model for param- 
eters in the vicinity of kc, as illustrated by a 
simple one-parameter example in figure 3.3-l. 

An approximate best estimate of @ (which is 
exact for a linear model) can be obtained bv 
minimizing S(~)=eTwe~~~-f(i,~o)-X,(~-~)jT 
*w(&‘-f(&,&XJ&,)~th respect to &. This 
process is carried out exactly like it was for the 
linear model and yields the set of normal 
equations 

X,Twx,d~ =x&4 Y-&Q) -I- (3.3-8) 

where subscript 1 indicates the first approx- 
imate solution and 

cz,=ty~. (3.3-9) 

To reduce round-off error in nonlinear regres- 
sion, it is generally useful to scale equation 

f(E, bl) 

bi 

Figure 3.3- 1 

bl 

EO=Z0GO (3.3-11) 

fi =cJ31 (3.3-12) 

~=diag(cA~1)-'/4,(A~z)-'/',...,~~~)-~}(3.3-13) 

&=X$,&) (3.3-14) 

and Afi is a diagonal component of do. 
Because equation 3.3-8 is not exact, equation 

3.3-4 is not truly minimized, and b1 is not ac- 
tually the optimal set. Hence, &, is substituted 
for &,, and the entire process is repeated to 
yield another, hopefully improved, estimate. As 
a general iteration equation, 3.3-10 may be writ- a 

ten in the form 

S&=&c, (3.3-16) 

and Ali is defined analogously to Ayi. As the 
process conver 
becomes Y-f(L,-)=g. At the same point 6 min- f 

es, $+l+O and equation 3.3-7 

imizes S(b) in equation 3.3-4, or S&~-f 
(&&))T~(~&&)), which is a minimum for the 
nonl&ar equation. This process for finding the 
minimum of S(b) is known as the Gauss-Newton 
method. 

A sketch of progression of the iterations to the 
minimum for a hypothetical two-parameter 
problem is given in figure 3.3-2. As diagrammed 

4 
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bz 

Figure 3.372 

in figure 3.3-2, the solution often does not 
progress directly toward the minimum. 

Modifications to the Basic Procedure. It is 
well known that the Gauss-Newton method as 
defined by equation 3.3-15, does not always 
converge. To help induce convergence, a damp 
ing parameter, p, is introduced by modifying 
equation 3.3-17 to give 

br+1=&+1+br * (3.3-19) 

where c&+~=C&+~. If O<p<l, the changes in 
computed parameters are less than would result 
for p=l; thus the method is an interpolation 
method. Similarly, if p>l, the method is an ex- 
trapolation method. 

Inspection of equation 3.3-19 reveals that p 
changes the magnitude of the displacement 
from & to &+1. However, because all com- 
ponents of the displacement vector &+1 are 
scaled by the same multiplier p, the direction of 
the displacement vector is not altered. If the dis- 
placement vector &+ 1 is oriented in a direction 
nearly parallel to a contour in the sum of 
squares surface (S(b)), then little, if any, im- 
provement (in terms of reducing S(b)) can result 
from solution of equation 3.3-15. In this case 
it would be desirable to alter the direction of 
d -r+l to point closer to a down-gradient direc- 

B 
tion. For example, in figure 3.3-3 vector &+1 

yields no improvement in estimates &,, but vec- 
tor %+I Y ields a significant improvement in 
the estimates. 

A modification that accomplishes the desired 
alteration of direction of &+1, and reduces its 
magnitude as well, consists of adding a positive 
parameter cl, known as the Marquardt param- 
eter (Marquardt, 1963), to the main diagonal of 
thecoefficient matrix S,Tws, of equation 3.3-15. 
Scaling is needed so that ~1 can have the same 
effect on each entry of the main diagonal of the 
coefficient matrix. The scaling accomplishes 
this effect because each entry of the main 
diagonal of the scaled matrix S~US, is unity. 
Mathematically, the Marquardt modification 
can be stated as follows. 

Solution Algorithm. The sequential steps 
implementing the modified Gauss-Newton pro- 
cedure are: 

1. Calculate f(&&) and 5 using initial 
parameters & and the combination of 
equation 3.3-6 (with index r replacing 0) 
and equation 3.3-16. 

2. Solve equation 3.3-20 for &+1. 
3. Solve equation 3.3-17 for &+1. 
4. Solve equation 3.3-19 for &+1. 
5. Test to determine if Idi+‘/cJ>E, where E is 
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bz 

Figure 3.3-3 

a small number such as 0.01, c=bf for 
bf 20, and c=l for b{=O. 

6. If J@%\>E, increment r by one and 
return to 1. If not, then the process has 
converged. 

Problem 3.3- 1 

The Theis equation for flow to a well in a con- 
fined, nonleaky aquifer is 

(1) 

where t=time (d); 
s=drawdown (ft); 

r,,=radial distance to observation well 
(ft); 

Q=discharge (ftals); 
T= transmissivity (ft%); and 
S=storage coefficient. 

The integral can be evaluated by summing the 
infinite series 

Q, p? 
5 u 

z dz=-0.577216-lnu+u 

u2 + u3 -- - - - . . (2) u4 + 
2*2! 3.3! 4*4! * 

where n!=n*(n-l)*(n-2). . .3*2*1. 

The Theis equation is nonlinear in the param- 
eters T and S. Using the information in section 
3..3.1, develop an algorithm for solving this 
equation for T and S, given time and drawdown 
data. 

a. Let 

f(t, ro; T, S)= & W(u) (3) 

where u=r$!zV4Tt and W(u) is the integral 
in equation 2. Find the sensitivities for T 
and S. (See equation 3.3-6. Hint: 

b. Assume that initial estimates of trans- 
missivity and storage coefficient, To 
and So, exist. In equation 3.3-6 let j=T 
indicate the sensitivity for T, and j=S 
indicate the sensitivity for S. Then 
note that X$ can be scaled to become 
Z~~=X~~T,-,, 
become 20 

and Xys can be scaled to 

‘8 
=Xf’&,. Modify the func- a 

tions for X,, and Xg computed in step 
a to become the scaled functions Zio, 
and Zio,. Do you see any resulting sim- 
plifications in arithmetic? Do you think 
that the scaled sensitivities Zio, and Zfs 
might be more nearly uniform in value 
for any fixed i than X& and X$? What 
do you think this uniformity in value 
accomplishes? 

c. Construct, for n time observations at a 
single spatial location, the incremental 
linear model (equation 3.3-7). Then trans- 
form this model so that scaled sensitiv- 
ities Zi, and Zis are used instead of Xi, 
and Xi9 How does the parameter dis- 
placement vector d transform? How can 
you recover @ from the transformed 
displacement vector? (Hint: equations 
3.3-10 through 3.3-14 are analogous to 
the present scaling problem.) 

Figure 1 is a flow diagram for programming 
the steps indicated in section 3.3.1. Obtain a 
coding sheet and proceed to write code accord- 
ing to this flow diagram. Helpful hints, 
numbered on the flow diagram, follow: 

4 
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Let dmw= ~+l 
andr=l 

T,= To 
s,=so 

(61 

Calculate 

(7) 

T,,=Tr(l+pA+ 
r 

S,,=S,(l+&j 
s 

/J 

(2) 
Compute 
iho& T,, SJ 4 r+r+l 

Compute scaled sensitivities 

b 

I 

(8) 

No Is f = rmx? 

-2- 
Yes 

I 

Yes 

(4) Form g:g 
a~d&~~r,,~;T,, S, 1) 

Fiaure 1 
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1. n=number of observations: 
r,,=radial distance to observation well; 
q=time of each observation; 
si=observed drawdown for each time ti; 

To=initial guess, transmissivity; 
So=initial guess, storage coefficient; 
Q=discharge; 
p=damping parameter; 
E =convergence criterion; 

r ,2=maximum number of iterations. 

2. fi(r~,ti;T~SJ= ~ W(r,, ti;T,,S,) . 
-r r 

You will have to program a finite number 
of terms of the infinite series to evaluate 
W(r,,ti;T,,S,). Note that one computation 
of fi wiII occur for every time observation 
ti. These computations form the column 
vector fi 

3. The sensitivities wiI.I form an nX2 array 
(one sensitivity for each parameter T and S; 
sensitivities are evaluated for each observa- 
tion). Use the information in parts a and b 
above. 

4. Matrix multiplication is done with the basic 
algorithm 

Cij= ii aikbkj 
k=l 

where aik, bk -, and Cij are elements of 
matrices A_, -, d and c, respectively, and 

. If A_=gT, then 

Cij= kilbkibkj 
= 

because b: = bki. simildy, if b=gT, then 
_C=As becomes 

cij= kildk#kj . 

Note that the model error variance Var(c) is 
assumed to be 12. 

5. Use the defir&on of the inverse to con- 
struct the inverse. 

SB3 part c above. Also, note that &+, 
=D~r+#,+,l. 

7. Include the damping parameter p in your 
calculation of the new regression param- 
eters. If convergence does not occur, then 
you may be best advised to set p to a value 
less than one. 

8. This is the end of the iteration loop. 
9. You may wish to compute the final estimate 

of residuals e=f-2, then print them also. 

Because convergence problems may arise, Iimit 
the number of passes that can be made through 
the algorithm. Test your code using the follow- 
ing data. 

36-Hour Pumping Test 
Test starts: 12 February 1976, 0805 h. 
Test ends: 13 February 1976, 2005 h. 
Production weII was pumped varying between 
517 gal/min and 530 gaI/min. Time and draw- 
down data at observation well 175 ft from pro- 
duction well appear in table 1. 

Table 1 
@ata from S.P. Larson, presently of S.S. Papadopulos and 

Associates (formerly U.S. Geological Survey). 19781 

480 1.71 
1,020 2.23 
1,500 2.54 
2,040 2.17 
2.700 3.04 
3,720 3.25 
4,920 3.56 

To aid in debugging your computer program, 
some example calculations follow. Assume that 
To=O.l ft2/s, S,=O.O005, Q=1.16 ft3/s, and 
r,,=175 ft. Then 

(L r30 
%-- = 

(175)2(0.0005) =38 28125,t 

4Toti 4(O.l)ti ’ 
i 

f+ & W(l@= $&w(up=o.923099w(u~ 
0 a . 

Use of these values for z$ and f p allows for 
calculation of the following data. 

4 
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‘i up 

480 0.0797526 2.02980 1.87371 
1.020 .0375306 2.74256 2.53165 
1,500 .0255208 3.11640 2.87675 
2,040 .0187653 3.41721 3.15442 
2,700 .0141782 3.69296 3.40897 
3,720 .0102907 4.00957 3.70123 
4,920 .00778074 4.28665 3.95700 

Data for ZA! and fi are used to compute $‘T and 
zo! 

2$*=-e+ & &=-ff+0.923099 e-u: 

P+& pL()g23()gge-UP 
0 

Note that 2$!!=X$To and 2$,=X$$So are calcu- 
lated directly, without first calculating sen- 
sitivities @! and X& then formally making the 
multiplication. These scaled sensitivities result 
from the following scaled linearized model. 

The computed values for 2$!! and Z$ are: 

-1.02137 -0.852339 
-1.64255 -.889097 
-1.97691 -.899839 
-2.24848 -.905938 
-2.49887 -.910103 
-2.78758 -.913648 
-3.04106 -.915944 

Use of the computed values for L?$~ and 9, 
yields the entries in the ZTZ matrix: a- 

~(@=35.96800209 ~(@s)2=5.649402682 i i 

~Z$Z&=13.75336059 

b 
i 

Elements of the gT(g-&) vector are computed 
in the following manner. 

-1.02137 1.71 1.87371 0.1672084827 
-1.64255 2.23 2.53165 .4954752075 
-1.97691 2.54 2.87675 .6657244425 
-2.24048 2.77 3.15442 .8643606816 
-2.49887 3.04 3.40897 .9220080639 
-2.78758 3.25 3.70123 1.257839723 
-3.04106 3.56 3.95700 1.20730082 

~~~ Si-~)= 5.579917421 
i 

-0.852339 1.71 1.87371 0.1395364177 
-.889097 2.23 2.53165 .2681961101 
-.899839 2.54 2.87615 .3030207833 
-.905938 2.71 3.15442 .3462606860 
-.910103 3.04 3.40897 .3358007039 
-.913648 3.25 3.70123 .4122653870 
-.915944 3.56 3.95700 .3636297680 

c@S ki-$)= 2.170709856 
i 

Finally, the two elements of the scaled displace 
ment vector (AT,/T,, AS&So) are computed and 
used to compute Tl and S,, the new estimates 
for T and S. 

+f! = (2.170709856-(13.75336059) 
SO * (5.579917421)/35.96800209) 

/(5.649402682-(13.75336059)2 
135.96800209) 

= o’03707407158 =() 09495829097 
0.3904247981 ' 

AT1 -=(5.579917421 
TO 

- (0.09495829097)(13.75336059)) 
135.96800209 

=0.1188256660 

S, = (1+0.0949583)(0.0005)=0.000547479 

Tl = (1+0.118826)(0.1)=0.111883 
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Some similar calculations for’the second iter- 
ation are: 

1 (175)2(o.ooo54747g) =37 4645/t. z&i = 
4(0.111883)ti ’ ’ 

f+ 1.16 
41r(O.111883) 

W(u;)=O.S25057W(u~) 

480 0.0780510 2.04973 1.69114 
1020 .0367299 2.76334 2.27991 
1500 .0249763 3.13743 2.58856 
2040 .0183650 3.43838 2.83686 
2700 .0138757 3.71423 3.06445 
3720 .0100711 4.03091 3.32573 
4920 .00761474 4.30805 3.55439 

Z&=-f: +0.825057&i 

Z&=- 0.825057P1i 

-0.928031 -0.763109 
-1.48461 -.795303 
-1.78385 -.804705 
-2.02682 -.810043 
-2.25076 -.813688 
-2.50894 -.816789 
-2.73559 -.818798 

3.3.2 Nonlinear Regression When 
the Model Is Numerical 

The basic model equations assumed in all 
previous developments have been of the closed 
form or analytical type where the dependent 
variable f is a known function of k and 8. In 
many cases such models may either not exist 
or be too complicated for practical use. In these 
cases the basic equation relating the dependent 
variable to the independent variables and 
parameters may be a numerical solution that 
can be stated in the general form 

Equation 3.3-21 is a nonlinear matrix equation 
in which b is the solution (dependent variable) 
vector of order m; 0, is a nonsingular coefficient 
matrix of order m that is a function of h, k, and 
@; and p is a vector of order m that is a function 

Order m is not related to the 
number of observations n, but instead is sim- 
ply the order required to give a good numerical 
alpproximation to the solution of the problem. 

If equation 3.3-21 is linear in & so that 0, and 
4 are not functions of &, then equation 3.3-21 
may be solved directly for &. In this case the 
Grauss-Newton method may be used to obtain 
the regression solution. (The nonlinear case is 
considered in section 6.1.2.) The procedure is as 
follows. First write equation 3.3-21 in the form 

(3.3-22) 

which is explicit in the dependent variable h. 
Next, note that & in equation 3.3-22 and f g 
equation 3.3-2 (or, as an estimate, equation 
3.3-3) are expressions of the same quantity, the 
only difference between them being that 
elements of b are values of the dependent 
variable computed at points defined by the 
numerical solution, and elements of fare values 
of the dependent variable computed at obser- 
vation points. If all n, observation points are 
contained in the set of points required for the 
numerical solution, which implies that m&z,, 
then fis obtained from & simply by eliminating 
those entries in & not corresponding to obser- 
vation points. In other instances the points in 
nz may not correspond to those in n,. For these 
instances an interpolation scheme would be 
used to obtain f from b. In either case, the 
vector f(&, &) is obtained by using & computed 
from equation 3.3-22 in which 4 was used to 
evaluate 0, and p. 

The final step in forming the Gauss-Newton 
solution is to derive the sensitivity matrix g. 
To accomplish this step, write equation 3.3-21 
in terms of a general parameter set b, then dif- 
ferentiate it with respect to b to yield 

+Eh = f% ,j=1,2,. . .,p (3.3-23) 
a bj- abj 

or 

8 =P-‘(f$ - %),j=1,2,. . ~~(3.3-24) 

The quantity a&/a bj forms a column of the sen- 
sitivity matrix for points in m. Sensitivity 

4 
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matrix 5 would be found by first computing 
3bla bj using equation 3.3-24 written in terms 
of & and b then following one of the two pro- 
cedures described above for obtaining f from &. 
By incorporating the procedures to compute 
numerical estimates of f&b,) and X, the 
algorithm given for the Gauss-Newton method 
may be followed exactly to find the regression 
solution of equation 3.3-22. 

By studying the sequence of calculations in 
the solution algorithm carefully, it will be noted 
that to calculate fir and X,, g g computed 
using &) must already have been computed. 
This requires one of two possible calculation 
schemes. Either 0, and p matrices of the form 
( ~D/ZJ b jr must be formed at the same time and 
stzed -h efore & and X, are calculated, or 3 
must be formed before & is calculated and then 
each matrix ( ~D/ZI bj)r formed as needed to 
calculate each c&mn (that is, gj) of XX’ The 
first alternative could require a considerable 
amount of computer memory or the use of 
scratch files, whereas the second alternative 
could require repetitive calculation because 

3 

many arithmetic operations could be the same 
for forming both 3 and (32/a bj)r Often, 
however, matrices ( ag/3 bj)~ can be written in 
a condensed or decomposed form to conserve 
computer memory. In this way 0, and the 
decomposed form of (ag/a bj)r GUI be computed 
together without using a significant amount of 
extra memory. Then each matrix (ag/a bj)~ 
may be assembled as needed without perform- 
ing numerous repetitive calculations. 

A significant amount of computer memory 
can also be wasted unless care is taken when 
forming X,. The general procedure is to form 
the CO~UIIUI vector (ag/abj)r-(ag/abj)& then 
use equation 3.3-24 to form the vector 
(ah/a bj)l, which replaces the first vector in cen- 
tral computer memory. From this, vector 3 is 
immediately formed and stored. The matrix 
composed of vectors (3&/a bj)r should not be 
stored in central computer memory because it 
is often large. If desired, it may be stored col- 
umn by column on a scratch file for later 
retrieval and printing. 

Problem 3.3-2 

Assume the finite difference representation of 

b 
a flow problem shown in figure 1. 

%=O 
h =hsl 

7 

48’ 0 

4 

qs=o L T,,w, 

1 

qs=o 

8 q8=o 9 

%= %l 

6 Ax=Ay=a 

qL?=o 

3 

a=0 
Figure 1 

Finite difference equations for this problem can 
be written as follows. 

1. ~AyTl(h2-hl)lllX+‘/z~Tl(hr-hl)lAy 
=-l/aAdhAyWl. 

2. %AyT2(h3-h2)lAr ?4zAyTl(h2-hl)lAx 
+%AxTl(h5-h2)/Ay+YizhzT2(h5-h2)/Ay 
=-1/AxY~AyW1-1hAxY~AyW2. 

3. -%AyT2(h3-h2)1Ax+%AxT2(h6-h3)lAy 
=-1hAx1%AyW2. 

4. AyTl(h5-h4)1Ax+I/AxTl(hB1-h4)lAy 
-‘%&T~(h4-hl)/Ay=-WAixAy WI. 

5. AyTz(hg-h&lx-AyTl(h5-h4)/Aix 
+ %A.rT~(hg-hs)/Ay + %AzT2(h8-h5)/Ay 
-%AxTl(h5-hz)/Ay-‘AxT2(h5-h2)/Ay 
=-1hAxAyW,-1hAxAyW2, 

6. -AyTz(hg-h&k+ %AxT2(hg-h,$Ay 
-‘/zhxTz(h6-h3)iAy=-‘/zhzAyW2-‘/2AyqB1. 

7. hT=hBl. 
8. %AyT~(hg-h&x-%AyTl(h~-h~l)/A.z 

-%AxTl(ha-hS)/Ay-%AxT2(h8-h5)/Ay 
=-%Axl/zAyWI-%Ax1hAyW2. 

9. -%AyTz(hg-h&x-‘/zAxT2(hg-h6)/Ay 
=-‘%A&AyW&zAyqB1. 

Or, by assuming that Ax=Ay=u, 

1. Tl(h2-h1)+Tl(h4-hl)=-%&WI. 
2. Tdhrhd-Tl(hz-hd+(Tl+T2)(h5-hz) 

=-Yhq WI+ W,). 
3. -T2(h3-hz)+Tz(hg-h3)=-%u2W2. 
4. 2Tl(h5-h4)+Tl(hBl-h4)-Tl(h4-hl) 

=-a2 w,. 
5. 2T2(h6-h5)-2Tl(h5-h4)+(Tl+T2)(htrh5) 

-(T1+T2)(h5-h2)=-u2( WI+ W2). 
6. -2T2(hG-h5)+T2(hg-h6)-T2(hg-h$ 

=-122W2-i29Bl. 
7. hT=hBl. 
8. T2(hg-h8)-Tl(h8-hsl)-(Tl+T2)(h8-h5) 

=-%u2( WI+ W2). 
9. -Ts(hg-hg)-Tz(hg-he)=-%u2W2-uqB1. 
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a. Verify the finite difference equations so that 
you understand their physical basis. (Hint: 
read appendix, section 4.3.1.) 

b. Write the equations in matrix form: 

by explicitly writing out g, 4, and p. 
C. Let vectors ( 3~/L/a bj)~- ( 3~/a bj),h,=~, and 

develop JJ(j=1,2,3,4) for the parameters 
B1=T,,, P2= T,, &=w,, and 04=qsl. 

d. Using the modified Gauss-Newton method, 
develop the algorithm (not computer pro- 
gram) to solve for the parameters. Assume 
that all nodes except number 7 are obser- 
vation points. 

In general, the rate of convergence has been 8 
found to be related to the number of parameters 
being estimated, as predicted by theory. That 
is, the greater the number of parameters, the 
slower the rate, alI other things being equal. It 
is also related to the conditioning of the problem 
and to the nearness of the initial set of param- 
eters to the optimum set, in that the rate of con- 
vergence is usually much faster near a minimum 
of S(b). As a rule of thumb, one may often ex- 
pect convergence within a number of iterations 
equal to either 5 or twice the number of param- 
eters, whichever is greater. Fewer iterations are 
required for well-conditioned problems. 

3.3.3 Convergence and Conditioning 

A value of p, O<&l, can be shown to exist for 
which the Gauss-Newton procedure, as modified 
using equation 3.3-19, will converge to the 
global minimum value of S(b) provided that: 

1. An initial estimate of the parameters can 
be found such that they lie within a 
parameter region R bounded by sets of 
parameters b* defined by 

(3.3-25) 

and the global minimum point lies within 
this region. 

2. For ail b belonging to R, X is a continuous 
and u&que matrix func3on. 

3. The matrix ST& is nonsingular and is a 
continuous &Zion of b. 

Condition 2 is almost always met. Condition 
1 requires that the system be well enough 
understood that intelligent initial estimates of 
parameters can be made. Difficulties frequent- 
ly arise in connection with condition 3. Unless 
the problem is correctly specified, the least 
squares coefficient matrix (for example, ST&) 
can be singular. Moreover, problems ofteg& 
because of ill-conditioning (that is, near- 
singularity) of the matrix. Although the addi- 
tion of the Marquardt parameter, ~1, is intended 
to help these cases, convergence can be difficult 
to obtain. In the following paragraphs, the 
general question of convergence is considered 
first. This is followed by discussions of singu- 
larity and ill-conditioning. 

A problem that frequently retards the con- 
vergence rate, or even causes divergence, is 
overshoot. This happens when the parameter 
correction vector &+ 1 has a favorable orienta- 
tion but is much longer than an ideal value. The 
result is that the new set of parameters &+l is 
almost as far as (or even further than) the old 
set 5 from the optimum value. A two- 
parameter example is illustrated in figure 3.3-4. 

Overshoot is detected as large oscillations 
with accompanying changes in sign of com- 
ponents of &+I from one iteration to the next. 
The remedy is to decrease the value of p such a 

that o<p<l. In figure 3.3-4, a good value would 
be p=O& which would give &+1 at point 1. 

Care must be taken not to make p too smaIl 
so that undershoot becomes a problem. Under- 
shoot occurs when p&+1 is too small, and it 
manifests itself as small steps P&,+~, the com- 
ponents of which usually do not change sign. 
The remedy is to increase the value of p, in rare 
occasions such that p>l. As a practical guide, 
the best value of p is one that causes some 

Figure 3.3-4 
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oscillations in sign of a few components of &+I 
from one iteration to the next. 

Sometimes the solution may converge to a 
local minimum instead of the global minimum. 
Most commonly this can occur (1) if p is too 
large and the overshoot causes the search 
vector &,+r to escape from the region defined 
by equation 3.3-25, or (2) if the initial estimate 
&, is not in the region defined by equation 
3.3-25. Detection of this problem is accom- 
plished through adequate knowledge of the 
system so that the wrong solution can be ryg- 
nixed. If the computed parameter vector b is 
physically illogical or the model analysis 
discussed in section 5 suggests that the model 
is not correct, then one might suspect that a 
local minimum has been reached. The remedy 
to the problem is to decrease p and (or) choose 
another initial estimate &. If be is changed, 
vsually the distance between h and the vector 
b computed for the local minimum should be 
&creased. Thus, if some components of 6 are 
far too large to be realistic, then the same-corn- 
ponents of be should be reduced in value. If 

3 

several attempts at than * g p and (or) b do 
not produce a change in 77 , then the cause of 
the poor results is probably not a local 
minimum. 

As for the linear case, singularity of the least- 
squares coefficient matrix occurs whenever col- 
umns of the sensitivity matrix are linearly 
dependent. Near-singularity, caused by near 
linear dependence, is a more frequent occurrenca 
As a result of ill-conditioning, step sizes %+1 
can be highly erratic, appearing to head toward 
no well-defined point and can be dominated by 
overshoot. In addition, some problems may start 
fairly well conditioned for the initial parameters 
but may become progressively more poorly con- 
ditioned during the iterative solution process. 

The same techniques for analysis of poorly 
conditioned problems as are used for linear 
problems may be used for nonlinear problems 
as well. Whenever a problem is poorly condi- 
tioned, the sensitivity matrix g may be exam- 
ined for a near-zero column, and ST& may be 
examined for off-diagonal cornlkiits near 
unity. Also, the orthogonal transformation may 
be used to indicate that ill-conditioning exists 
and to point out possible columns where linear 

B 
dependency occurs. 

Use of the Marquardt parameter, p, is in- 
tended to improve conditioning by adding a 
small quantity to the main diagonal of the least- 
squares coefficient matrix. Although condition- 
ing is always artificially improved by employ 
ing ~1. the parameters resulting from applying 
the least squares process to a very poorly con- 
ditioned problem may be considerably in error 
unless the actual causes of the poor condition- 
ing are discovered and the conditioning im- 
proved without using )L. 

3.3.4 Computation of p and p 

For best efficiency, both ~1 and p should be 
recomputed at each iteration, r. A number of 
schemes exist in the literature for making these 
computations, but virtually all schemes involve 
assuming several trial values of p and p, then 
performing all of the calculations for iteration 
r for each of the trial values. The best values 
to use are then computed so as to minimize or 
substantially decrease S(b). The problem with 
these schemes is that they require so much time 
that one is often much better off settling for ap- 
proximate values of p and p computed by using 
a much simpler scheme. 

The scheme adopted here is derived from the 
considerations discussed in section 3.3.3. 
Parameter p is used only when the problem is 
so poorly conditioned that the search direction 
S must be altered. Overshoot and undershoot 
are controlled primarily through use of p. 

Because the Marquardt parameter is used 
with a scaled problem formulation, computa- 
tions must be made using scaled quantities (see 
equation 3.3-16). By direct computation, it can 
be verified that the scaled gradient ( 3 S(b)/ 3 bi) 
.Cjj (j=1,2,...,p) of the sum of squares S(b) 1~ 

given by 

as(b) 
c’ a(, ,4! L =-g=-ST (x-&g) . (3.3-26) 

- 

Thus, by definition (Spiegel, 1959, p. 16), the 
angle between g, which points directly down the 
sum of squares surface, and displacement 
vector 6 is given for the rth iteration by 

case= !?+1& 
,J@ar+1)~) * 

(3.3-27) 
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For two parameters, b, and b,, the relation- 
ships given by equation 3.3-27 are illustrated 
in figure 3.3-5, (Note the use of scaled param- 
eters; see equation 3.3-17.) 

If 0=90”, then, as discussed in section 3.3.1, 
no improvement in parameters is likely to result 
from application of the Gauss-Newton pro- 
cedure. However, application of the Marquardt 
parameter, +O, will result in 8<90” (Mar- 
quardt, 1963) because vector 4 is shifted pro- 
gressively toward g as p increases. Thus, a 
viable scheme for choosing p is to define a max- 
imum value of 0, 8,,<90°, and compute p so 
that 8 never exceeds C,,. This can be ac- 
complished rather simply. At the beginning of 
the regression set pe=O. Then at each iteration 
r, check and recompute p as necessary: 

/+=I$ 

if ~+l~O~emkf+l~+l)&~ or 

&+&~~+0.001 
(3.3-28) 

At the beginning of iteration r, P=l and 
Pp=Ppl- Then equation 3.3-20 is solved and 
equation 3.3-28 is applied. If the second part 
of equation 3.3-28 is employed, equation 3.3-20 
is resolved using pp+ r, P is incremented by one, 
and equation 3.3-28 is used again. This process 
is continued until the first part of equation 
3.3-28 is used, at which point the appropriate 
value of ~1 for iteration r has been found. The 
formula for computing pp+ 1 from crp is empirical 
but gives what experience has shown to be a 
good range in values of p. For each resolution 
of equation 3.3-20, S& & and gr are not recom- 
puted. Thus, the calculations are not extensive. 

Computation of p is designed to prevent 
disastrous overshoot and to keep p4 within the 
region R defined by equation 3.3-25. A simple 
but usually effective scheme is to estimate the 
maximum fraction that any of the parameters 
could change and still remain within R and then 
to prevent any parameter from changing any 
more than this amount over any iteration. ILet 
t, be this maximum fractional change. Then 
at iteration r, p is calculated as follows: 

t=max)d~+%J (3.3-,29) 
i 

w22 

Figure 3.3-5 

p=l if t<t- or 

p = t-It if t>tmz 

where c=bfif b:P 0 and c=l if bI=O. 

3.4 Regression Including Prior 
Information a 

3.4.1 Model Structure 

Recall that the standard nonlinear regression 
model including prior information on the param- 
eters may be written in the form (equation 
3.1-32) 

X=&B +s (3.4-l) 

where 

41, 
_Y= 

XIJ 

53 
E= 

4 

(3.4-2) 

(3.4-3) 

(3.4-4) 

4 
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and subscripts s andp indicate sample and prior 
information, respectively. To correspond with 
the above partitions into sample and prior in- 
formation, the sensitivity matrix should be writ- 
ten in the form 

x= n -zP 
(3.4-5) 

where g is a function of @ for a nonlinear model. 
The transformation of X_ to S_ used to control 
round-off error is defined analogously. Finally, 
recall that the weight matrix is partitioned as 

2.2 ;I I (3.4-6) 

where f?s and 3 correspond to sample and prior 
information, respectively. 

Often partition X will be obtained in a dif- 
ferent manner than 4. 2 For example, the model 
for the sample information may be numerical of 
the type in equation 3.3-22, whereas the model 
for the prior information may be of the ana- 
lytical linear or nonlinear form. Thus, X, would 
be obtained as described in section 3.3.2, and 
X would be obtained as described in section 
-5 3. .l. Other types of differences are handled in 
a similar fashion. Obviously, if sample and prior 
models are of the same type, then X, and & 
are obtained in the same manner. 

Despite the possibilities for combinations of 
linear, nonlinear, analytical, and numerical 
models, remember that all models have the 
general form of the incremental linear model 
when expanded in the Taylor series. Because all 
models resolve to the incremental linear form, 
for simplicity subsequent discussions in this 
section are based on this model only. 

3.4.2 Solution Procedures 

Whenever s and s are both known, solution 
for both linear and nonlinear models is unaltered 
from that given in the previous sections. How- 
ever, recall that, because of the block diagonal 
form of equation 3.4-6, S(b) and, hence, the nor- 
mal equations can be written in a special form. 

By applying the standard minimization tech- 
nique to S(Zj as given by equation 3.1-42, which 
can be written in the form 

the normal equations for the incremental linear 
model become 

(3.4-8) 

. 

where ,f&&) and ,$,(&i) are for sample and prior 
information, respectively. Equation 3.4-9 is of 
the same form, and thus applies, as the equa- 
tion for each iteration of solution of a nonlinear 
regression problem. 

Frequently, the weight matrix is constructed 
from variancecovariance matrices for 5 and r, 
that are given in the form 

var(&)=lg (3.4-10) 

Vm(E,)=_v (3.4-11) 

where the usual form V L? for equation 3.4-11 
cannot be used because +v a++,) is not known as 
a function of 2. Thus, with z defined as 

. Iv=(~,)l-l 0 
Cd= 2 
- 2 war&Jr1 

(3.4-12) 
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then equation 3.4-9 becomes 

(3.4-13) 

Hence, 02 apparently would have to be known 
to form the regression solution, whereas C? is 
considered to be an unknown. 

Theil(l963) showed that, for a linear model, 
02 may be estimated for use in equation 3.4-13 
by its ordinary least squares estimate (that is, 
the estimate obtained when prior information 
is not used). Bias produced by this estimate was 
shown by Theil(1963) to be of the order of n;“. 
The procedure to be followed is to first solve the 
ordinary least squares problem by omitting all 
prior information; then find the estimate of C? 
(to be given further on); finally use this estimate 
of b in the normal equations to solve the com- 
plete problem, including prior information. 
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l 4 Numerical Nonlinear 
Regression Solution of 
General Steady-State 

Ground-Water Flow 
Problems 

4.1 Assumed Model and 
Solution Procedure 

A model to solve fairly general steady-state 
ground-water flow problems by using the 
regression procedures presented in section 3 is 
given in this section. A complete description of 
the method is given first. Documentation and 
listing of the computer program are given in the 
appendix, section 4.3.4. 

4.1.1 Problem Specification 

The equation assumed to govern ground- 
water flow for the class of problems to be ana- 
lyzed is derived from equation 1.1-l by letting 

3 
3 h/3 t-+0, which results in 

z (T,, :)+a (T q+R(.H-h)+W 
ay ,yy ay 

+~~6(1-o&4~(Y-b,K?f=o , (4.1-1) 

where the symbols are defined the same as for 
equation 1.1-1. 

Functions TrE (that is, T,, and Tyy), R, and 
W are each formulated within the region being 
modeled as the product of a parameter and a 
given (or known) function. To provide for spatial 
variability of parameters, the region is sub- 
divided into a number of discrete zones within 
each of which the parameters are assumed 

constant. Hence, known spatial variability 
(often, but not necessarily, smooth or contin- 
uous) is superimposed upon the discontinuous 
spatial variability dictated by the parameter 
zonation. As an example, hydraulic conductiv- 
ity K[ E may often be considered to be constant 
within particular rock types, each of which may 
be considered to be a discrete zone. Thus K[[ 
may be considered to be a parameter. Thickness 
b may be known from measurements and may 
vary continuously. The function Ttt is, of 
course, given as Kgtb. Finally, because the con- 
trols that dictate a particular zonation may 
vary from parameter to parameter, zones for 
one type of parameter (for example, the 
parameter contained in Tt [) do not necessarily 
correspond to zones for another type (for exam- 
ple, the parameter contained in N’). An exam- 
ple of zonation is given iu figure 4.1-1 where the 
given function is unity so that the parameters 
are TEE and W. 

Internal boundary conditions applying at 
discontinuities in T 
charge normal to t h 

E are that the specific dis- 
e boundary and the hy 

draulic head both remain unchanged as the 
boundary is crossed. External boundary condi- 
tions applying on the periphery of the region be 
ing modeled include specified specific discharge 
normal to the boundary, specified hydraulic 
head at the boundary, or a mixture of the two 
types along the boundary. 

Specific discharge qB normal to the boundary 
is assumed to vary along the boundary in a 
manner similar to that of Tt 5. It may have dis- 
continuities and may vary smoothly between 
discontinuities. Discontinuities in qB might 
often be expected to correspond to discontinui- 
ties in Tt . 

Hydrau ‘c head variation along a specified fi 
head boundary is a continuous function, hB, 
although the boundary may be subdivided into 
segments within each of which head hB may 
vary linearly or curvilinearly with distance. 

Dashed lines separate 
Wzones, and solid 
lines separate Tzones 

Figure 4.1- 1 
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Subdivision into segments is often based on the 
causes of the known head conditions along 
various segments of the boundary. 

Unknown quantities to be determined are 
Ttt, R, w, qB, and hB. Single VShleS Of T,, Or 

T 
Ity; 

R, and W (or multipliers such as K,, or 
are assumed to be parameters in each 

zo%i, although any of these parameters may be 
held constant (assumed known as exact prior 
information) in each zone. Separate zones (or 
segments) are specified for the values of qB, and 
single multipliers for the fluxes in each flux zone 
are assumed to be parameters. Within each of 
the separate segments (zones) of a specified 
head boundary the heads are adjusted as a 
linear function of distance by the regression 
procedure so that the parameters are the values 
of head at each end of each segment. Even 
though the adjustment is linear, the actual 
shape of the head profile along the boundary 
may be curvilinear. 

4.1.2 Matrix Form of Regression 
Model 

For most field problems, equation 4.1-1 with 
its attendant boundary conditions cannot be 
solved analytically. Thus, the regression solu- 
tion must be based on a numerical solution of 
equation 4.1-1, which is expressed as a matrix 
equation. The particular numerical solution 
method is given in the appendix, section 4.3.1. 

The matrix equation comprising the 
numerical solution is given as 

where 

D&=q (4.1-2) 

D_=the square coefficient matrix of order m, 
the number of nodes used to discretize the 
modeled region; 

&= the hydraulic head vector of order m; and 
q=the known vector of order m. 

Matrix 0, contains parameters for Ttt and R, 
whereas vector p can contain ah parameter 
types. To express any specified head value, say 
hj'hBj, 

Djj=l Dji=Dij=O, i#j (4.1-3) 

Qj=hBj (4.1-4) 

where Djj, Dij, and Dji are components of O,, 
and qj is a component of 4. To accomplish the 
condition that Dij=O in equation i, i#j, the term 
DijhB~ is transferred to the right-hand side of 
equation i SO that qi contains the term -DijhBj 
Then Dij in 0, is set to zero. 

The known head value is computed from 

hBj’ 
h$j[LjH,+(l-Lj)H,l 

Lj~+(l-Li)~ 
(4.1-5) 

where 

s=node at one end of the boundary segment 
within which node j lies; 

t=node at the other end; 
H,=head (parameter) at node s; 
H,=head (parameter) at node t; 
LiEratio of distance along the boundary from 

node s to node j, to distance along the 
boundary from node s to node t; and 

superscript O= an initial or reference value. 

Indices s and t can be equal so that j=s=t for 
the case where only one specified head is pres- 
ent. Also, H, and Ht can represent the same 
parameter, so that the entire specified head 
boundary behaves as a unit. 

Because equation 4.1-2 is a linear matrix 
equation, the modified Gauss-Newton pro- 
cedure is employed to solve the regression prob- 
Iem. Equation 4.1-2 is the same as equation 
3.3-21, except that in equation 4.1-2 the coef- 
ficient matrix 0, and right-side vector p are not 
functions of dependent variable vector fi. Hence, 
sensitivities may be calculated using equation 
3.3-24. 

Prior information is assumed to be given (if 
available) on each parameter individually so 
that 

(4.1-6) 

where & is the identity matrix of order np. 
Thus, in equation 4.1-6, direct prior information 
is assumed to be given on the first n. param- 
eters. Placement of these parameters first in the 
vector @ simplifies theoretical statement of 
equation 4.1-6 but is not necessary in practice. 
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The linearized regression model assumed, 
then, is of the form of equation 3.3-7 partitioned 
as suggested by equations 3.4-2 through 3.4-5: 

where s is the vector of heads at observation 
points, ,fJf,&) is the vector of computed heads 
at observation points for iteration r, 5 is the 
vector of prior estimates of the first nP param- 
eters, f,(.&) is the vector of the first nP 
elements of the computed parameter vector (on 
which there is prior information) for iteration 
r, and, from equation 4.1-6, Xr=& ,OJ. 

No correlation or other coup -&I g i& assumed 
to exist among components of either 5 or 5. 
Matrix 2 is assumed to be of the form 

‘El 0 
CO= 
- 0 g-v 

(4.1-8) 

where 

~1=pbir(cJ-12 (4.1-9) 

p2=pkr(~)]-12 (4.1-10) 

and both s’ and g’ are diagonal. 

4.1.3 Nonlinear Regression Solution 

Nonlinear-regression solution for the model 
given in section 4.1.2 is accomplished by using 
the algorithm at the end of section 3.3.1. Nodal 
sensitivities are calculated as illustrated in the 
appendix, section 4.3.2. We assume that obser- 
vation points may be located anywhere within 
the flow region, so that computed heads, &(,$&) 
and sensitivities, zi, at observation points in 
general must be obtained by interpolation from 
surrounding nodal values. Standard bilinear 
interpolation using the four adjacent nodes sur- 
rounding an observation is used as the inter- 
polation method (Wang and Anderson, 1982, 
p. 153-155). 

The normal equations used are equation 
3.3-20, as modified to include prior information 
also (see equation 3.4-13): 

+4!%+1 =tg*~‘c~-f&JQ) 

+tg*~‘s2(J&$&,q (4.1-11) 

where subscripts s and p refer to sample and 
prior information, respectively; 

s=the matrix [In ,OJ from equation 
4.1-6, transformed using equation 
3.3-16; 

,$&&)=a vector composed of the rth esti- 
mate of those parameters on which 
there is prior information; and 

s2 = the ordinary least-squares estimate 
of C? (to be developed later). 

4.2 Singularity and 
Conditioning 

Singularity of the least-squares coefficient 
matrix can occur whenever (1) no measured flow 
rates (such as well or spring discharges) are in 
the model and (2) an attempt is made to com- 
pute aII parameters. To understand how this oc- 
curs, consider first the case where there are no 
specified head parameters and no prior informa- 
tion, but ah other parameters are to be com- 
puted. Also, assume for simplicity that ah 
observation points correspond to node points. 
In this case it can be shown (appendix, section 
4.3.3) that 

Jb=Q (4.2-l) 

where subscripts T were omitted to simplify no- 
menclature, and~={~j}={ap/abj-(a~/abj)h}. 
By using equation 3.3-23, 

(4.2-2) 

so that 

Jb= “c Job-D i ah b 
_ j=1” J ‘--j=la i ’ 

(4.2-3) 
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Because 0, is nonsingular, c.=O for those columns resulting from specified 
head parameters and Cj=bj for the remaining 

l 
columns, then equation 4.2-5 holds for the 
entire sensitivity matrix, which indicates that 
the problem is again singular. Because addition 
of specified head parameters has no influence 
on this type of singularity, it is assumed for sim- 
plicity for the remainder of this section that 
there are no specified head parameters. 

Singularity caused by attempting to find all 
parameters in the absence of known flow rates 
can be rectified by using prior information. For 
the case of prior information, equation 4.2-5 can 
be written 

o,-@ ‘c i&j.=0 -j=labj J - 

or, by eliminating those nodes not correspond- 
ing to observation points from ah/a bjt 

jilX,a,=C * (4.2-4) 

Equation 4.2-4 can also be written in the form 

where 

X&=0 (4.2-5) 

c=&=[b,,b, ,..., bplT . (4.2-6) 

Recall that equation 4.2-5 implies that the least- 
squares coefficient matrix is singular. 

If a known flow rate Qi is at node i, then 
equation 4.2-l becomes 

Jb=Q (4.2-7) 

where 

4=[O,O,...,Q,...~O]T,, (4.2-8) 

so that, all other things being equal, 

x c#O as- -- (4.2-9) 

In the case where at least one parameter j is 
fixed, then Jb has column j of z and element j 
of b deleted. Thus, equation 4.2-l no longer 
holds, so that equation 4.2-9 will hold, if no 
other source of singularity exists. 

Whenever there are specified head param- 
eters, < and X, both contain columns resulting 
from these parameters, andJb#O. However, for 
those columks not involvingTh;specified head 
parameters, C Jjbj=o, where j denotes all pa- 
rameters ex&% specified head parameters. If 

zs 
c=o . (4.2-10) 

$J - 

The only way for equation 4.2-10 to hold is if 
X,g=Q and X+,c=O. If the only cause of the 
singularity is given by equation 4.2-1, then c=b 
is the only linearly independent solution of equa- 
tion 4.2-10, and, if & is derived from equation 
4.1-6, X,,, . .=O (i=1,2, . . ..p) is the only way that a 
equation 4.2-10 can hold. Hence,prior informa- 
tion on any parameter can theoretically condi- 
tion the problem so that all parameters can be 
found. 

The maximum number of parameters that can 
be found for any problem can also be obtained 
through nondimensionalization (or partial non- 
dimensionalization) to find the smallest number 
of independent groups. In addition, nondimen- 
sionalization also illustrates the idea that solu- 
tion is actually often best expressed in terms 
of ratios of the parameters. As an example, con- 
sider the case where a region is composed of two 
zones where Tl,T2,W1, and Wz are parameters. 
Then the flow equations for each zone are 

(4.2-11) 

and the boundary conditions between zones are 
4 
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1 , 1 I 

(4.2-12) 
m, =ud, 

where the notation ( *)1 indicates that the quan- 
tity in parentheses is evaluated just within the 
1 side of the boundary and similarly for ( .)2. If 
equations 4.2-11 and 4.2-12 are written in the 
alternative forms 

a2h a2h 
-+- 
ax2 ay2 

(Ml =W2 , 

W2 +-=o 
T2 

(4.2-13) 

ah 
- 

I an 2 

\ 

(4.2-14) 

/ 

instead of four independent parameters, there 
are only three written as ratios: WI/T,, W21T2, 
T,/T,. A known flow rate in zone 1, Q1, would 
add the term Q,/T, to the first part of equation 
4.1-13. In this case WlIT2, W2/T2, Tl/T2, and 
Q1/T2 could all be considered parameters. 
Knowing Ql (either exactly or with uncertain- 
ty) would provide unique estimates of the four 
original parameters. Another approach would 
be to find T,, T2, W,, W2 as parameters, know- 
ing that the problem is not singular because 
there are four independent ratios for the 
problem. 

Another common way for singularity to oc- 
cur is if a column of X, is zero: sj=O. This 
results if measurements are taken at points 
where there is no sensitivity to the parameter, 
bj. corresponding to the column. If this is the 
only source of singularity, then C=[O,O,...,bjl 
O,...,OIT is the only linearly independent solution 
of equation 4.2-5. In this case if X is derived 
from equation 4.1-6 and there is p%r informa- 
tion on bj’ then X+.,c#& so that the prior infor- 
mation solves the singularity problem. Addition 

of prior information on any other parameter 
alone obviously will not help. 

TWO sources Of singularity result if X,j=O 
and Jb=& In this case one solution of equation 
4.2-cs, as before, given by equation 4.2-6. 
However, because X,j=4 cj GUI be any ar- 
bitrary value less than infinity and so can be 
set to zero. Hence, c=[b,,b, )..., O,bj+l)...( b ITI 
where the zero appears in rowj of c, is anot i er 
solution to equation 4.2-5. Addition of prior in- 
formation on parameter j alone does not solve 
the singularity problem because, even though 
Xpjj does not equal zero, cj and Xpip i#j, do 
equal zero so that X c=g. A third solution of 
equation 4.2-5 is c= 0,O ,..., bj,O ,..., 01’. In this in- -r 
stance addition of prior information on any or 
all parameters except parameter j yields 
X,c=O. Thus, if X,j=O and Jb+ then the 
problem is singular unless prioFmformation is 
added on parameter j and at least one other 
parameter. 

If the columns of X, are almost linearly 
dependent, then the problem is ill-conditioned. 
Thus, if either Qi in equation 4.2-8 is almost 
zero or X _ij~~, then an ill-conditioned problem 
can result. However, ill-conditioning can occur 
in a number of ways. The techniques given in 
section 3.2.3 can be used to detect conditioning 
problems. 

Problem 4.2- 1 

Solve problem 3.2-l with the regression com- 
puter program (appendix 4.3.4). Assume that 
the stream tube is one foot wide and that trans- 
missivities are unity. Place a row of nodes along 
each side of the stream tube, but specify ob- 
served heads only along one row or down the 
center of the tube (number of observed heads 
should be the same as in problem 3.2-l). Allow 
two iterations. What would happen if you were 
to attempt to estimate both W and T? 

Problem 4.2-2 

Figure 1 gives the zone map for a steady-state 
ground-water flow system in a hypothetical 
region. The finite difference mesh and types of 
boundary conditions also are shown on the map. 
Use the regression program (appendix 4.3.4) to 
construct a regression flow model for the region. 
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Prior information exists on the following 
parameters: 

standard 
T2=420 ft21d deviation = 84 
W, =0.0004 ftld 0.00012 
W3=0.00017 ftld 0.000051 
R,=O.OS d-l 0.008 
Q,=-97,000 ft3/d 1940 
92 =-51,000 ft31d 1020 
h, at (15,16)=10.4 ft 1.04 
hi at (15,7)=4.8 ft 0.48 
hB at (15,6)=4.8 ft One parameter 0.48 
h, at (15,5)=5.4 ft 0.54 

Assume that hB varies linearly between the 
estimated values. For one reason or another, the 
estimates of hB at the four nodes are not obser- 
vations. (They may have been interpolated from 
a contour map, for example.) 

There is no prior information on the remain- 
ing parameters, but probable limits of variation 
for these parameters are 

3O<T,<SO 
10<T3<40 

-0.0003<w,<-0.0000~ 
0.2<qB,<0.8 

0.15<q,,<o.4 

From these ranges, initial estimates of the 
parameters may be determined. 

The observed head data in table 1 were col- 
lected. They are of uniform reliability. 

Table 1. 

(8,2) 
(142) 
(12.3) 
(10.4) 

(7.5) 
(11,5) 
(13.5) 
(1595) 

(10.7) 
(8,s) 
U-&8) 
(1598) 

(7.91 
(4,lO) 
WO) 
(11,lO) 

60.70 (7,111 6.68 
75.64 (13W -15.32 
60.27 (3,121 16.88 
29.67 (5.12) 15.87 

4.22 (9,121 4.48 
4.37 (11,12) -18.34 
6.07 (13,13) -2.47 
5.81 (15.13) 8.10 

4.57 
5.21 

-44.89 
7.01 

6.95 (7,151 8.30 
12.21 (14,15) 4.54 
4.04 C&16) 85.82 

-89.36 Ul,W 2.26 

13,141 54.12 
(5914) 38.27 
mu4) 0.053 
W&14 -2.92 

The .river stage is about 4.5 ft everywhere. 
Assuming that r~‘=l, find all possible 

parameters for the model. First, however, de- 
termine how many parameters you can find! 

Examine the sensitivity maps. Are there data 
in relatively high sensitivity areas for all param- 
eters? Do you think that there are places where 
new data points would improve the results? 

4.3 Appendices 

4.3.1 Integrated Finite Difference 
Model 

The numerical solution of equation 4.1-1 is 
obtained by using integrated finite difference 
methods. A rectangular grid of nodes is as- 
sumed as indicated in figure 4.3-l. Each node 
point is enclosed by a subdomain, which is a rec- 
tangular region bounded by sides located half 
way between adjacent node points. 

The coordinates of a typical node (U) are 
given as (xiyj). With the nomenclature shown 
in figure 4.3-1, equation 4.1-1 can be integrated 
over a subdomain enclosing node (ij) to produce 

+j,, (T ah). I YY ay I+‘/ 

Nii 

+h.,JAy Wd++CQp=O a i p=l 
(4.3-1) 

where 

AXi=%(AXi+l/p+AXi-1/9) 
(4.3-2) 

AYj=1/2(AYj+w+AYj-~) 

and Nti is the number of pumping wells in sub- 
domain ~iAyj. 

If TEE, R, and W are assumed to be constant 
in each cell (A,& C,D ) adjacent to node (ij), then 
a valid numerical approximation of equation 
4.3-l is 
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T 
h. -hij Z+lJ 

zzi+%sj’Yj &i+Yz 

-Txxisl/ jAyj hzhi-li 
i-W 

h 
+Tyyti+&q ij+1-hij 

AYj+% 

-TYYk.i- 4% 
hij-h~j_, 

Ayj- ‘/9 

+R~~iAy~H~--hi) 

+W~~iAyj+Qij=O 

where 

(4.3-3) 

T zzi+lh j= 
Ayj-%TxzB+A~j+%Txd’ (4.3-4) 

2L\yi 

T xxi-% j= 
AYj-?hTxxA+A~j+%TxaD (4 3-5) . 

2AYj 

T yyiJ+ ‘/a = 
&-sTyyD+&. Z+‘/‘YYc (4.3-G) 

2~i 

T yyij-1% = 
bi-‘/2TyyA+b. z+gTruB (4.3-7) 

2~i 

Nti 

Qtiy$$ - (4.3-10) 

Because of the way that the cells are desig- 
nated, ah zone boundaries are assumed to pass 
through node points; for example, see figure 
4.3-2. 

If the node points in equation 4.3-3 are desig- 
nated as 

k=i+NC&l) (4.3-11) 

where NC is the number of columns (in the i 
direction), then the grid is renumbered as in 
figure 4.3-3. Equation 4.3-3 then becomes 

h 
+Tyy,+dL\xi k+NC-hk -Tyyhz~i 

hk-hk-NC 

‘Yj+?h AYj-‘/ 

+Rk&AYJHk-hk )+ WkhxiAyj+Qk=O (4.3-12) 

where 

T xxk, 1 =Txxi-ti/nj pTyyk,2=TyyG-l/* 

T =L3 =Txxi+,j 9 and 

T yyk?4=TyyiJ+% * 

In matrix form the numerical solution is 

Dh=q (4.3-13) 

0 

a 
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Figure 4.3-3 

where, from equation 4.3-12 for node k not on 
a specified head boundary, 

Axj 
-- 9 Dk,k-NC=-Ty,k.2 Ay . , 

J-1 P 
(4.3-14) 

AYj 
Dk,k-l=-Txrk,l G ’ 

(4.3-15) 

+Rk&AYj 9 (4.3-16) 

AYj 
Dk,k+l=-Td,3 c ’ 

i+% 
(4.3-17) 

Dk,k+NC=-T 
hi 
- ’ YYkp4 AYj+s 

(4.3-M) 

qk’Rk~iAYjH,+ Wk~iAYj+Qk . (4.3-19) 

For node k on a specified head boundary, 
D~k-Nc=D~k-,=D~k+l=D~k+Nc=o,D~,k=lr 
and qk=hBk, the specified head. AII remaining 
Dkp=O for equation k in both cases. To 
preserve symmetry of g, equations P, &‘#k, are 
modified as indicated just after equation 4.1-4. 

The flow across specified flow boundaries is 
incorporated by using the Qk term, so that the 
total flow crossing the specified flow boundary 
of the subdomain around node k is added into 
Qk. If Qk=O on a boundary node and the head 
at the node is not specified, then the boundary 
for the node is automatically a no-flow type. 
When computing the total flow to add into a 
specified flow node, remember that nodes are 
on boundaries so that subdomains for boundary 
nodes are only fractions of the fuII subdomains. 
For example, see figure 4.3-4. 

4.3.2 Computation of Nodal 
Sensitivities for the Integrated 
Finite Difference Model 

Partial derivatives 4, defined by 

ap aD 
Je= z- = & e=1, 2,...,p 

e abe 
(4.3-20) 

Dashed lines 
enclose 
subdomains 

Figure 4.3-4 
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are employed in equation 3.3-24 to compute 
sensitivities for the nonlinear regression solu- 
tion of the numerical model given in section 
4.3.1. Using the definitions of the elements of 
D and p given in section 4.3.1, partial deriva- 
%es for the various parameters are computed 
as follows: 

1. bp Tzd at node k 

aDk,k-NC 
=o (4.3-21) 

a be 

aDk,k-l AYj a 

ab, =-- Ax i-% aTzxA 

AYj-%TzxA +AYj+%TzxD 
I 

AYj-l/l 

2AYj 
=- =(4.3-22) 

i-l% 

_ Ayj-% aDk,k -- 
a be 2&i--1/ 

(4.3-23) 

aDk,k+l 
=o (4.3-24) 

abe 

aDk,k+NC =. 

ab, . 
(4.3-25) 

Similar expressions result for b~TzzB,Tz,~ 
and Tzti. If more than one of the cells A, . . ..D 
lie in the same zone, then derivatives for the in- 
dividual expressions are summed to form the 
final value. For example, if bp=TyyA=TyyB 
= Trrc= TyuD, then 

aDk,k-NC = aDk,k-NC + aDk,k-NC 

abe a TYYA a TYYB 

+ 
aDk,k-NC 

+ 
aDk,k-NC 

a TYYc a TYYD 

4 4-W 4+X =-- 
I 
-+ +o+o 

AYj-‘/1 2AXi 2AXi I 

4 =-- (4.3-26) 
AYj-l/ . 

Derivatives for any configuration of zone 
boundary are handled by combinations of the 
form of equations 4.3-21 through 4.3-26. 

An example of application of equations 4.3-21 
through 4.3-26 for an irregular zone boundary 
is given in figure 4.3-5. Let T,,=T =T for 
simplicity. Then, for a two-zone pro z;T em, the 
two transmissivities are Tl and T2. 

For node 7: 

aD7,2 k2 aD7,6 AY2 

aT1 
=--,-=m-, ao7,7 

AYl% a? 4% aT1 

AY2 k2 AY2 b2 
=- 

b2vn 
+- 

AY2% 
+- -9 

4% 
+ 

AYl% 

aD7,8 AY2 

-w=--’ 

&2 aD7,12 

b21/n aT1 =--* @21/n 

For node 7 the derivatives of the Di .‘s with 
respect to T2 are alI zero because T2 d oes not 
appear in any of the Dij’S. For node 8: 

aD8,3 &3 - =- - , aD&7 =_%,, aD8 8 

aT1 AYl% a? b2% aT1 

AYl% +&2?h AY2 h3 =- 
2&3% 

-+- -9 
2AY2% Ax,% 

+ 
AYl% 

a D8,9 

aT1 

aD&9 _ AY2?h , aD8,13 &3% -- =-- 

aT2 2&3% aT2 2AY2% 

16 17 18 19 20 

2 

1 

/ 
/’ 
.’ 

T2 
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/ 

Tl 
I' 

/ 
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,// MM,- ,, ,. 
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Figure 4.3-S 
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bp=RA at node k 

aDk,k-NC = aDk,k-l = aD,k+l 

a be a be abe 

(4.3-27) 

(4.3-28) 

aqk 
- =1AAx 
a be 

i-l/AYj-1. ?Hk * 

Derivatives for R,, Rc, and R. are similar. 

3. bp=WA at node k 

(4.3-30) 

B AU derivatives of Dii are zero. 

4. bFqBlr boundary fhrx 1 in Qk, where, for 
example, Qk=QB2.1/2Ay~-‘/a+QB1.~AYj+’ 
(see figure 4.3-6). 

(4.3-31) 

A similar expression results for bQ=qB2, and if 
qB1=qB2, the derivative is the sum of two 
parts, of equation 4.3-31 and its analog for qB2. 

5. bFH, or Ht 

The specified head at any node k along a speci- 
fied head boundary is given as 

hBk=AktLkH,+(l-Lk)H,l (4.3-32) 

where 

A,= 
hiik (4.3-33) 

L,~+(l-L,)@ 

Dashed line 
encloses the 
subdomain for 
node k 

Fl k-NC 

Figure 4.34 

md the meanings of the symbols are defined 
after equation 4.1-5. 

If node m (here only m indicates an arbitrary 
lode number) is adjacent to a boundary seg- 
nent bounded by nodes s and t, and node k lies 
n the segment so that it appears in equation 
rt, then for bpH,, 

a%n ahBk 
-=-D,k aH 
abe 

- =-D,&ki,(l-L,) . (4.3-34) 
s 

Similarly, for bFH, , 

a%n ahBk 
-=-Dngk aH, 
a be 

- =-D,,,@&k . (4.3-35) 

If node k lies on the boundary, then the equa- 
tion for node K in equation 4.3-13 becomes 

hk=hBk 

=Ak[LkH,+(l-Lk)Hs] 

and, for bp=HS , 

(4.3-36) 

aqk 
- =/i&l-L,) 

abe 
(4.3-37) 

and similarly for bp=H, . 

43.3 Derivation of Equation 4.2-l 

By careful examination of equations 4.3-12 
through 4.3-19 it can be seen that, if there are 
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no specified head parameters, q-Dd=Q can be 
written in the form 

a,bl+ai,bz+...+aipbp-Qi=O, 

i=l, 2,...,m 
where 

(4.3-38) 

a@=coefficient containing AZ, Ay, and head 
differences; 

+=any parameter except a specified head 
parameter; and 

Qi=term not containing parameters in b. 

Define 

J 
ag ag .=--- 

-J abj abj ” 
(4.3-39) 

Then, by carrying out the differentiations in- 
dicated in equation 4.3-39 and comparing the 
result with equation 4.3-38 it can be seen that 

so that 

JGbj=aGbj (4.3-40) 

(4.3-41) 

If b contains all possible parameters (except 
specified head parameters) and there are no 
~OWII fluxes, then Qi=O and 

j~~J~ bj=O (4.3-42) 

or 

Jb=g . (4.3-43) 

4.3.4 Documentation of Program for 
Nonlinear Regression Solution of 
Steady-State Ground-Water Flow 
Problems 

Introduction.-This program is designed to 
obtain a nonlinear regression solution to the 

finite-difference model of steady-state ground- 
water flow given in section 4.3.1. Basic calcula- 
tion methods are given in sections 4.1 and 4.3.2. 

The program was developed using the 
Microsoft’ Fortran Compiler, Version 3.3, with 
the DOS’ 2.0 operating system on an IBM’ 
PC/XT computer with the IBM’ 8088 Math 
Coprocessor and 256 KB memory. Except for 
the OPEN statements near the beginning of the 
code, Fortran 66 was used throughout to make 
the code as machine independent as possible. 
The source code is contained in files 
INVFD.FOR and INVSUB.FOR in the 5% in. 
diskette accompanying this report. These two 
files must be linked or compiled together. 

The computer program is composed of a main 
program and eight subroutines. The main pro- 
gram controls input-output and performs all 
computations that cannot be accomplished 
more effectively with subroutines. The eight 
subroutines (D4SOLV, COEF, LSTSQ, 
PRTOT, ORDER, ARRAY, ARRAYI, HOBS) 
perform the following specialized tasks: 
D4SOLV 

COEF 

LSTSQ 

PRTOT 

ORDER 

ARRAY 

ARRAY1 

Obtains an LDU factorization solu- 
tion of the set of linear algebraic 
equations resulting from application 
of the finite difference methods, 
assuming the equations are ordered 
in an alternating diagonal fashion 
(Price and Coats, 1974). 
Computes coefficients necessary for 
the determination of sensitivities 
and heads. 
Computes the coefficients of the 
normal equations and solves the 
system of equations to determine 
the vectors of parameter changes 
and parameters. 
Prints matrices or vectors in a col- 
umn configuration. 
Computes equation numbers at grid 
points corresponding to the alter- 
nating diagonal ordering scheme. 
Reads and (or) prints l- and 
2dimensional real array variables. 
Reads and (or) prints l- and 2- 
dimensional integer array variables. 

‘Use of the trade names in this report is for identification 
purposes only and does not constitute endorsement by the 
U.S. Geological Survey. 
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HOBS Reads and prints observed heads 
and weighting values; computes 
coefficients for bilinear interpolation 
of computed heads and sensitivities 
at observation points. 

The basic flow of the program can be de- 
scribed as follows: 

A. Data are input and variables are initial- 
ized. 

B. Using coefficients generated in COEF, an 
initial solution corresponding to the initial 
parameter estimates is computed by D4SOLV. 

C. In an iterative fashion, the following four 
steps are taken until the regression technique 
converges or until the number of iterations ex- 
ceeds the maximum allowed. 

(1) Sensitivities are calculated using coef- 
ficients computed in COEF and in the main 
program. 
(2) LSTSQ is employed to form and solve 
the normal equations. 
(3) Parameters are updated in LSTSQ us- 
ing the parameter change vector generated. 
(4) Various coefficients involving the up 

B 

dated parameters are computed in COEF, 
and current estimates of head are computed 
using D4SOLV. 

D. Various statistics associated with the 
regression analysis are computed. 

Aquifer Property Zonation and Variable 
Definition.-Basic model geometry is defined by 
the finite difference grid that is constructed 
over the region to be modeled. Nodes, consisting 
of grid intersections, are numbered from the 
lower left-hand comer of the grid (columns from 
left to right and rows from bottom to top). w, 
consisting of intragrid areas bounded by four 
adjacent nodes, are numbered similarly (figure 
4.3-7). 

The finite difference grid is divided into 
aquifer property zones, which define zonal 
values for the aquifer properties T,,, T,,,,, R, 
and W. Each z0na.l value is-constant-&t& the 
zone. Variation of a property within a zone is 
accomplished by assigning cell values. The 
aquifer property at any particular cell is com- 
puted as the product of the zonal value and the 
cell value of the property. Thus, if all cell values 
for a property within a zone are given a value 
of unity, the zonal value becomes the value of 
the property for each cell within that zone. 

row’ 

, 2 3 4 5 
1 2 3 4 

CAlI 5Nlde 
Column Column 

Figure 4.3-7 

Zones are created by subdividing the grid in- 
to groups of cells having distinct combinations 
of zonal values. Cells belonging to these zones 
are accordingly assigned distinct zone numbers 
(IZN), reserving IZN=O to indicate groups of 
cells outside of the model area. 

All zonal values are either regarded as regres- 
sion parameters to be determined by the pro- 
cedure or are held constant and, thus, are not 
regarded as regression parameters to be deter- 
mined, as specified in the input. From a concep- 
tual viewpoint there is no difference between 
these two designations because zonal values 
that are held constant can be regarded as 
regression parameters having exact prior infor- 
mation. However, from a computational view- 
point it is most efficient to eliminate parameters 
being held constant from the calculations. 
Hence, these types of parameters do not appear 
in the normal equations or any of the vectors 
and matrices derived from them. To simplify 
nomenclature, in subsequent discussions the 
term regression parameter refers only to those 
regression parameters to be determined. 

Cell values for an aquifer property are input 
using rectangular blocks of cells, which are 
defined for each property for convenience of in- 
put only. These blocks need not bear any rela- 
tionship to the zones. Cell values may be 
constant or variable within each block. Cell 
values of a property are unaffected by the 
regression procedure. 

Boundary Conditions and Boundary 
Parameters.-Two types of boundary condi- 
tions may be used: specified flow and (or) speci- 
fied head. Nonzero specified-flow boundaries 
where the flow rate is known can be imposed 
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by assigning the appropriate value of the 
specified flow rate to the nodal value of variable 
WELL. Because the no-flow boundary is the 
default condition, zeros do not have to be 
assigned to WELL to simulate this condition. 
Specified-head boundaries where the head is 
known can be imposed by assigning the value 
of the known head at the boundary nodes to 
variable HC, which also describes nodal values 
of computed head. A negative one must be 
assigned to variable IN corresponding to each 
node that is to be considered a specified head 
node. Segments of the boundary that will be 
considered as either flow or head regression 
parameters must not be entered into WELL or 
HC arrays. 

Different variables are used if specified-flow 
or specified-head boundary conditions are to be 
considered as regression parameters. Variable 
QB is used to indicate the zonal value for 
discharge across groups of nodes that form a 
specified-flow segment (or zone). The specified 
volumetric flow per unit width for each cell 
boundary within a zone is the product of QB for 
that zone and a multiplier for the cell boundary. 
By restricting a flow-boundary zone to a single 
node, point recharge and discharge can be 
simulated. QB can be a regression parameter 
and, therefore, can be modified by the regres- 
sion procedure; the multiplier is unaffected. If 
the variable IP that specifies the regression 
parameter number for the boundary zone is set 
to zero, then QB is held constant, and the seg- 
ment is treated as a known-flow boundary, thus 
giving two possible ways (via WELL and via 
QB) to designate known-flow boundaries. 

Specified-head boundary nodes that are to be 
considered regression parameters are defined by 
segments composed of a sequence of nodes 
(variables ILOC and JLOC) along portions of 
the boundary. The specified heads at the first 
and last nodes in the sequence can be either dif- 
ferent regression parameters or a single regres- 
sion parameter or held constant, depending on 
the nature of the problem. Adjustments to 
heads at these nodes computed by the regres- 
sion procedure are apportioned to other nodes 
in the sequence. The proportion is the ratio of 
the distance (along the sequence of nodes) be 
tween the end node and the node of interest, to 
the distance between the two end nodes. These 

factors (PLA and PLB) are computed by the 
program for a given segment. As in the case 
with flow-boundary parameters, if the regres- 
sion parameter number is set to zero, then that 
parameter is held constant. If the parameter 
numbers at both ends of the segment are set to 
zero, then the segment is treated as a known- 
head boundary, thus giving two possible ways 
to designate known-head boundaries. A nega- 
tive one must be entered into IN for all nodes 
on the specified-head boundary, whether or not 
the boundary involves regression parameters. 

The definition of some of the more important 
variables related to aquifer properties and 
boundary conditions in the computer program 
are given below. 

variable name Ddinition 

PAR(l), PAR(B), Zonal value for transmissivity (T, 
PAR(S), PAR(4) and T ), hydraulic conductance 

(R). an~distributed recharge 05% 
respectively. 

IZN . . . . . . . . . . An integer array that indicates the 
zone number of each cell. 

CX, CY, VL, QR Cell values for x-direction transmis- 
sivity, y-direction transmissivity, 
hydraulic conductance, and distrib 
uted recharge, respectively. a 

HR . . . . . . . . . . . . . Ncdal values of head on the boumky 
of the confining had opposite the 
aquifer. 

WELL . . . . . Nodal (or point) values of known 
volumetric discharge (or recharge) 
from a well or other known-rata 
sourcx&nk phenomena. 

QBF . . . . . , , . . . , Cell-boundary multipliers for speci- 
fied flow. 

PLA, PLB . . . Arrays, which give the proportional 
distances from any point to either 
end of a segment where the speci- 
fied heads at one (or both) end(s) of 
the segment is a (or are) regression 
parameter(s). 

Numbering of Regression Parameters.-The 
three types of regression parameters (aquifer 
parameters, specified-flow parameters, and 
specified-head parameters) are numbered con- 
secutively and in any order. Also, any of the 
zonal values for aquifer properties or specified- 
flows and segment-end values for specified head 
zones can be given a single regression param- 
eter number. In this case the zonal or segment- 
end values sharing the same number must have 
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a identical regression parameter values. Any dif- 
ferences in property values must be specified by 
differences in multipliers. A common example 
is to use only one regression parameter for both 
the x- and y-direction zonal transmissivity 
values and to fix the degree of anisotropy for 
the zone by using the CX and CY arrays. As 
another example, if good estimates of the 
hydraulic gradient across cell boundaries form- 
ing a specified-flow boundary for an aquifer 
property zone were available, and if transmis- 
sivity were isotropic, then these gradient values 
could be used as multipliers so that the regres- 
sion parameter QB for the specified-flow zone 
comprising the specified-flow boundary would 
be transmissivity. Thus, the x- and y-direction 
transmissivities for the aquifer property zone 
and QB for the specified-flow zone could all be 
the same regression parameter. A high degree 
of flexibility for distributing aquifer properties 
and boundary conditions while, at the same 
time, keeping the number of regression param- 
eters to a minimum is achieved with these types 
of schemes. 

Prior Information on Regression Param- 

B 
eters.- If estimates of the regression param- 
eters and their (less than infinite) reliability are 
available from other sources (for example, 
aquifer tests), it is desirable to introduce this 
information into the regression analysis. For 
this case, initial values for the parameters are 
taken to be the prior information. The reliabili- 
ty of each estimate is represented by a standard 
deviation. Array WP is used to store these 
values for the regression parameters. However, 
only the standard deviations for the aquifer 
regression parameters are read directly into 
WP. The standard deviations for boundary 
regression parameters are read in through tem- 
porary variables (SDQB for specified-flow 
regression parameters, and SDHA and SDHB 
for specified-head regression parameters) and 
are only subsequently placed into the WP array. 

The use of prior information of known reli- 
ability requires sn estimate of the error variance 
of the heads (variable, EV) computed using or- 
dinary least squares. If the estimate differs 
substantially from the value computed by the 
analysis using prior information, the problem 
should be resolved using the latter computed 
value as the estimate of error variance. 

In some instances prior information of 
unknown reliability may be available. Use of 
this type of information is an advanced topic 
and is not covered in this report. The papers by 
Cooley (1982,1983) cover the method in detail. 
Variables RP and BP are used to input the ad- 
ditional information needed for this method. 

Solution-Only Mode.-To facilitate the 
calculation of certain statistical measures, the 
program is capable of bypassing the regression 
analysis and computing only head distributions 
for various combinations of parameter values. 
This is accomplished by specifying the solution- 
only option (variable ISO) and providing the 
various combinations of parameter values for 
which solutions are desired. 

Using the Program. -The computer code has 
been designed to be as machine independent as 
possible. Also, to minimize confusion, all arrays 
have been dimensioned explicitly. The following 
list summarizes the minimum dimensions re 
quired for the program to operate properly for 
a specific problem. If 

N is the number of node points (N,XN,,), 
if’ n IS the number of node columns, 
N is the number of node rows, 
2. e 1s the number of active (nonspecified head) 
nodes in the grid, 
N, is the number of observed heads, 
NoT is the total number of observed heads 
plus the number of parameters on which there 
is prior information, 
N, is the number of aquifer property zones in 
the model grid, 
Np is the number of regression parameters 
associated with aquifer property zones, 
iV, is the number of z&ml aquifer properties 
that are not regression parameters, 
Nhs is the number of specified-head zones (or 

j segments), 
Npp is the total number of nodes on bound- 
arres where flow is a regression parameter, 
Nhp is the total number of nodes along boun- 
daries where head is composed of one or more 
specified-head regression parameters, 
Nmh is the maximum number of nodes in any 
specified-head zone, and 
NR is the total number of regression 
parameters; 

then the array variables should be dimensioned 
as in table 4.3-l. 
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Tabla 4.3-l 0 
WELL,HR,HC.XV,ILOC.JLOC,IN .......... 
CX,CY,VL,QR,CXS,CYS,VLS,QRS,IZN ...... 
DX ........................................ 
DY,JPOS .................................. 
HCI,BK,BL,BM,BN,HO,W,KOBS .............. 
PAR,XS,KN ................................ 
IPRM ..................................... 
QBF,IBNA,IBNB ........................... 
PLA,PLB,IBHN ............................ 
CXHR,CXHL,CYHT,CYHB ................... 
IHSN ...................................... 
IBPA, IBPB ................................ 
IBZN ...................................... 
P.WP,NCBA,NCEA,NCBF,NCEF,NCBH,NCEH 
x ......................................... 
s .......................................... 
A ......................................... 
B . . . . . . . . . ..__.............._..........._. 
v ..................................... 
AU,IC ................................. . 

. 

. 
. 

. 
. . 
. . 

. 
. 
. 

. 
. 

. . 
. 
. 
. 

. 
. 
. 

. . 

NpP 
Nhp Or Nmh’ whichever is larger. 

3 
N,“’ 
Npp+%S 
NR 
NRNO 
NRNOT 

NR NR 

NR+N, 
N, or 3N,, whichever is larger. 
5JJp 
‘N&I2 AL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

‘These dimensioaa am approximate. The exact sizea mqdred are calculated and printed in subroutine ORDER. N,,, in Nz+3 
or NY-M, wbicbeve~ is smaller. 

Note that array variables that have a single 
dimension (CX, CY, QBF, HO, etc.) and are 
passed to subroutines are dimensioned as unity 
within the subroutines (only the initial address 
of an array is actually passed to a subroutine). 
This unit dimension should not be changed in 
subroutines when the dimension of the variable 
is changed in the main program. A similar 
system is used for multidimensional arrays, and 
their dimensions within subroutines should not 
be changed either. To accompany any change 
in program dimensions, variable NVD must be 
set equal to the dimensions of A and the first 

dimension of X, and variable NAD must be set 
equal to the first dimension of AL. These 
variables are defined near the beginning of the 
main program. 

Input&k-The input is arranged into data 
sets, each data set being composed of one or 
more lines of logically related input data, such 
as cell-by-cell multipliers for x-direction trans- 
missivity or zone-by-zone initial parameter 
values. Each input line in a data set is a max- 
imum of 80 columns, or characters, long. The 
formats for the data applying for each line are 
given with the discussions of the data sets. 

c 
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Data Set A. 
Three title lines of user’s choice (format, 20A4). 
Data Set B. 
Problem size information: one line (format, 1615). 

Line columns Variable DdidiOIl 

l-5 ID ,..... 
6-10 JD 
11-15 NZNS 
16-20 NOBS . . 
21-25 NPAR . 

26-30 NVAR 
31-35 NWELS 
36-40 NQBZ 
41-45 NHBZ . 
46-50 NUM . . 

51-55 IPRX . 

56-60 IPO . 

61-65 IS0 . 

Number of node columns. 
Number of node rows. 
Number of aquifer property zones. 
Number of observations of head. 
Number of regression parameters associated with aquifer prop- 

erty zones. 
Total number of regression parameters. 
Number of known point flows. 
Number of specified-flow boundary zones. 
Number of specified-head boundary zones. 
Maximum number of iterations allowed for the regression 

analysis. 
Additional print sensitivities and orthogonahzesensitivities 

option. Code 1 to select the option. 
Additional printout option, 

Code 1 to select the option. _ 
Head-solutions only option. 

Code 1 to select the option. 

Data Set C. 
Special input parameters; one line (format, 8FlO.O). 

Line columns 

l-10 

11-20 

21-30 

31-40 

41-50 

Variable DdIliti0n 

DMX . . Maximum fractional change, t,+, allowed any regression 
parameter over any iteration. 

CSA . . . Cosine, co&,, of the maximum angle ahowed between the 
gradient direction and the search direction (normally set to 
0.08). 

RP . Ridge parameter for regression analysis using prior informa- 
tion of unknown reliability. Code 0.0 if not used. 

BP . . . . . Bias parameter for regression using prior information of 
unknown reliability. Code 0.0 if not used. 

EV . . . . . . . . . . Estimated error variance for problems using prior information 
of known reliability. Code 0.0 if not used. 

Data Sets D through K. 
A number of variables are input into the code by first subdividing the grid 

into rectangular regions (blocks) and then reading the variables for each block. 
Blocking can be applied to either cells or nodes, depending upon the variable 
being input. Blocking allows considerable flexibility in the input of certain 
variables and, once understood, can speed the construction of a model. Block 
and zone boundaries do not necessarily have to coincide; blocking is basical- 
ly a convenient way of assigning variable values to every node or cell in the 
grid. 

Data sets D through K represent the real (floating-point) variables sub- 
ject to blocking. These variables, in the order they must appear, are listed 
next. 
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Data& Variable TypeofVariable Df!fblition 

D DX Cell array 
E DY Cell array 
F cx Cell array 
G CY Cell array 
H VL Cell array 

. 

I 
J 
K 

:i 
HC 

Nodal array . 
Cell array . . 
Nodal array 

Distance ‘between node points in z or I direction. 
Distance between node points in y or J direction. 
MuItipIier @II value) for z&rection transmissivity. 
MuItipIier (cell value) for y-direction transmissivity. 
MuItipIier (cell value) for hydraulic conductance of confining 

bed. 
Head on ‘boundary of confining bed opposite the aquifer. 
MuItipIier (cell value) for recharge rate per unit area. 
Initial head at active node or fised head at specified-head 

node. 

Each data set D through K consists of an initial line defining the number 
of blocks (NOBL) into which the grid has been subdivided, and then a subse 
quent line or set of lines that define the blocks and the value or values of 
the variable to be input. The initial line, read with a A4, IX, 215 format, has 
the following form: 

Line columns Variable Definition 

l-4 

6-10 

11-15 

NME . , . . , . , . Array name for the variable. 
NOBL . . Number of rectangular input blocks into which the variable 

has been subdivided. 
IPRN . . Print option for fuII array. Set to 0 for print. Set to 1 for no 

output. 

The initial line directs the program to seek NOBL blocks of information 
for a particular variable. If the variable is uniform over the block, then a single 
line suffices to define the block location and the uniform value to be assigned 
to every node or cell. If the variable is nonuniform over the block, then by 
specifying a value of IVAR equal unity on this line the program can be 
directed to seek additional lines specifying values of the variable for each 
node or cell in the block. This information is input through the format 415, 
F10.0,15 as follows: 

l-5 IB . . . 
6-10 IE . . . 
11-15 JB . 
16-20 JE . . 
21-30 FACT 

31-35 IVAR 

Beginning column of the rectangular input hloch. 
Final cohmm of the rectangular input block 
Beginning row of the rectangukr input block. 
Final row of the rectangular input block 
If the array set is uniform for the entire block, FACT is the 

ceII or nodal value that is assigned to each element. If the 
array set is not uniform, each cell or nodal value on the subse 
quent data lines wiR be multiplied by FACT. 

Code 0 if the array set is uniform. Code 1 if it is not 
unifornl. 

If a value of IVAR equal to unity is specified, then the program will seek 
subsequent node or cell data sufficient to define the variable at every node 
or cell in the block. This information is input through the temporary variable 
A(I,J) with an 8FlO.O format in the following manner: 
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A(IB,JB) 
A(IB+l,JB) 

Temporary variable specifying nodal or celi values for the 
arrays in data sets D through K. Note that the information 
is read in row by row for the grid, each new row beginning 

A(IE;JB) 
l-10 A(IB,JB+l) 

A(IB+l,JB+l) 

A(IE,JB+l) 

a new line. 

Any variable that is not defined by blocking over a particular part of the 
grid will be automatically set to zero on that part. 

Data sets D and E, representing the internal spatial dimensions of the grid, 
are read in by blocking for convenience to the programmer. Because both 
the horizontal spacing DX and vertical spacing DY (as measured from the 
lower left comer of the grid) are, in reality, singly dimensioned arrays, it is 
necessary to set JB and JE equal to unity for both variables. The variable 
IE then equals ID-l in the case of DX, and JD-1 in the case of DY (IB equals 
one, of course, in both cases). Variable grid spacing can be input by specify- 
ing a value of WAR equal to unity and following this with the necessary 
array information in an 8FlO.O format. 

Note that only cell values of x- and y-direction transmissivities, hydraulic 
conductance, and recharge (data sets F, G, H, and J) are read in through the 
blocking scheme. Data set P contains the zonal values by which these cell 
values are multiplied. A typical example of usage would be to form 
transmissivity as the product of hydraulic conductivity and thickness. Data 
sets F and G would contain the variable thickness of the aquifer, and the 
variable in data set P would represent the hydraulic conductivity zone by 
zone. Their product would be the transmissivity. 

Data Set L. 
Two integer variables also are input by blocking. Both are defined below, 

as read in by a 1615 format, although only that variable associated with data 
set L is input at this location. 

Data Set Variable Type of Variable Definition 

L IZN Celi array Zone number of each cell. Each cell having a nonzero zone 
number must have CX or CY>o. 

S IN Nodal array Denotes specified head. Set to -1 at nodes where head is 
specified. including nodes in segments involving specified- 
head regression parameters, and leave as zero at ail remain- 
ing nodes. 

The initial line for these data is identical to that of the real variable case. 
The line defining blocks into which integer variables are divided is similar 
to that of the real variable case with the exception of the variable IFACT, 
as noted subsequently (format, 615): 
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Line wlumlls Variable D&llitiOll 

l-5 
6-10 
11-15 
16-20 
21-25 

26-30 

IB . . . . 
IE . . . . . . . . . . . 
JB . . . . . . . 
JE . . . . . . 
IFACT . . . 

IVAR . . . . . . . . 

Beginning column of the rectanguhu input block. 
Final cohmm of the rectanguhxr input block. 
Beginning row of the rectangular input block. 
Final row of the rectangular input block. 
If the array set is uniform for the entire block, IFACT is the 
celI or nodal value that is assigned to each grid point. If the 
array set is not uniform, each ceII or nodal value on the subse 
quent data lines wiII not be multiplied by IFACT. 
Code 0 if the array setisuniform. Code 1 if it is not uniform. 

The nonuniform integer input is identical to the real variable case, except 
that the temporary variable INT(I,J) input with format 1615 is used in place 
of A(I,J). 

Data set M. 
Observed head data; set contains NOBS lines (format 315,4FlO.O). 

l-5 N . . . . . 
6-10 IL . . . . . 
11-15 JL . . . . . 
16-25 XL . 
26-35 YL . . . . 
36-45 HO(N) 
46-55 W(N) . 

. . 

Observation number. 
. CeR column in which observation lies. 
. CeII row in which observation lies. 
. x location of observation. 

y Iocation of observation. 
Observed value of head. 
Reliability weight, w. 

Observations are numbered from 1 through NOBS but may be read in any 
order. Observation N is assumed to lie in cell (IL.JL) at z and y location (XL,YL). 
If the observation lies on a node point, it may be assigned to any adjacent cell 
bounded by the node. The origin for x and y is assumed to be node (1,l). m 
this data set if NOBS=O. 

Data Set N. 
Aquifer regression parameter numbers; set contains NZNS lines (format, 

1615). 

l-5 
6-10 

11-15 

16-20 

21-25 

I 
IPI&;.;; . : : : : 

Zone number. 
Parameter number of x-transmissivity in zone I. Code 0 if it 

is not a regression parameter. 
IPRM(2,I) . . Parameter number of y-transmissivity in zone I. Code 0 if it 

is not a regression parameter. 
IPRM(3.1) . Parameter number for hydraulic conductance in zone I. Code 

0 if it is not a regression parameter. 
IPRM(4,I) . . Parameter number for distributed recharge in zone I. Code 0 

if it is not a regression parameter. 

a 

Lines may appear in any order with respect to zone number, but there must 
be NZNS lines. Parameters may have any number from 1 through NVAR. 
Note that parameters of the same (or even different) property in different 
zones may have identical parameter numbers. Omit this data set if NPAR 
equals zero. c 
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Data Set 0. 
Standard deviations for aquifer regression parameters; one value per line 

for a total of NPAR lines (format, 15,FlO.O). 

Line columne Variable Dl3fhitiOll 

l-5 K . . . . 
6-15 WP(W 

. Aquifer parameter number. 
Standard deviation of each aquifer regression parameter. Code 

0.0 if no prior information exists for the parameter. 

m data set if NPAR equals zero. 

Data Set P. 
ZonaI aquifer property values; set contains NZNS lines (format, 15,4FlO.O). 

Line columns Variable Definitions 

1-5 I ..,.. 
6-15 PAR(l) 
16-25 PAR(P) 
26-35 PAR( 3) 
36-45 PAR( 4) 

. 

Zone number. 
ZonaI x-transmissivity value for zone I. 
Zonal y-transmissivity value for zone I. 
Zonal hydraulic conductance value for zone I. 
ZonaI distributed recharge value for zone I. 

(PAR(4)*QR has units of volumetric rate per unit area.) 

Lines may appear in any order with respect to zone number, but there must 
be NZNS lines. 

Data Set Q. 
Known point flow rates; set contains NWELS lines (format, 215,FlO.O). 

Line columns Variable D&lition 

1-5 
6-10 
11-20 

I Column location of point flow. 
J . . ..__...... Row location of point flow. 
WELL(1.J) . Total volumetric flow to or from node, negative for withdrawal 

If a point flow is located between node points, the total rate can be appor- 
tioned among the four adjacent nodes using bilinear or similar interpolation. 
The apportioned flow rates must be supplied by the user. Omit data set if 
NWELS equals zero. 

Data Set R. 
Specified boundary-flow zones and flow-zone parameters; set contains 

NQBZ lines, one line for each zone (format, 515,3FlO.O). 

l-5 IA Column location of the A end of the segment (zone). 
6-10 JA Row location of the A end of the segment (zone). 
11-15 IB . . . Column location of the B end of segment (zone). 
16-20 JB Row location of the B end of segment (zone). 
21-25 IP Regression parameter number. Set equal to zero if QB is not a regres- 

26-35 QB .._ 
36-45 SDQB 

46-55 QBM 

sion parameter. 
ZonaI flow value. 
Standard deviation for regression parameter. Code as 0.0 if no prior 

information exists on the parameter. 
Multiplier for zonal flow value. 
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Note that IA<IB and JA<JB, which define the A and B ends of the segment. 
If IA equals IB and JA equals JB, the flow is restricted to a single node. 
In this case, the product QB*QBM equals total volumetric flow into or out 
of the node. Otherwise, the product is a volumetric rate per unit cell width. 
When data set is used to model flow boundary conditions, zone must follow 
either a row or column. Regression parameters can have any numbers from 
1 to NVAR. Note that by setting IP equal to zero, a fixed specified-flow con- 
dition is simulated. Omit data set when NQBZ equals zero. 

Data Set S. 
Specified-head boundary designation; see data set L. This data set, when 

used in conjunction with data set K or T (following), can be used to construct 
specified-head boundaries. In particular, nodes designated in this data set 
by -1 are forced to take on values specified in data set K or T. In addition 
to peripheral boundary conditions, this data set, in conjunction with data 
set K or T, can be used to model other constant head conditions such as bodies 
of open water. 

Data Set T. 
This data set defines specified-head boundary parameter zones. Each zone 

is associated with a subset of the T data and the number of subsets will equal 
NHBZ. The initial line in each subset contains size and descriptive informa- 
tion about the zone and appears as follows (format, 415.2FlO.O). 

l-5 IZ . 
6-10 NN . . . 
11-15 IBPA . 

16-20 IBPB . 

21-30 SDHA 

31-40 SDHB 

. . 

Segment or zone number. 
Number of nodes in the segment. 
Regression parameter number for A end of segment. Set equal 

to zero if head at the A end is not a regression parameter. 
Regression parameter numbsr for B end of segment. Set equal 

to zero if head at the Bend is not a regression parameter. 
Standard deviation of head at A end of segment. Code as 0.0 

if no prior information exists on the parameter. 
Standard deviation of head at B end of segment. Code as 0.0 

if no prior information exists on the parameter. 

The A and B ends are arbitrary. Segments are numbered from 1 through 
NHBZ, and regression parameters may have any number from 1 through 
NVAR. A single head change can be found for alI the intermediate specified 
head nodes by allowing IBPA to equal IBPB. 

After reading the initial line, the program then seeks NN subsequent lines 
in each subset that define the heads along the boundary segment (format, 
215,FlO.O). 

c 

1-5 ILOC . . . . Column location of node. 
6-10 JLOC . . . . Row location of node. 
11-20 v . . . . . . . . . Estimated head at node ILGC, JLOC. 

Note that any shape of head surface can be input along a boundary segment. 
Because heads at the segment ends are the only regression parameters in 
each segment, their influence is distributed to the intermediate nodes by linear 
interpolation. The linear interpolation is based upon distance from the c 
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parameter in question, with a weight of one assigned at the end node occupied 
by the parameter and zero at the node of the opposite end of the segment. 
If zeros are assigned to the head variables V at intermediate nodes in a bound- 
ary segment, then the program automatically assumes that the head surface 
along the segment is simply a straight line between the heads specified at 
the end nodes. Omit the entire data set if NHBZ equals zero. 

The following data sets are required only if the solution-only option (ISO, 
data set B) is specified. In the following description input variables are loosely 
termed parameters for convenience, but it must be realized that they are not 
actually regression parameters because no regression is performed. Also, data 
set V requires that the parameters being varied have nonzero numbers cor- 
responding to regression parameter numbers defined for the initial solution. 
Hence, the input for the initial solution must be coded as if it were to be a 
regression for these parameters although no regression will actually be 
performed. 

Data Set U. 
Additional solution specification, one line (format, 15). 

97 

l-5 N . . . . . Number of solutions mquired using alternative parameter sets. 
Code 0 if a solution is desired only for the initial set of 
parameters. 

Data Set V. 
New set of parameters;. the set contains NVAR lines (format 15,FlO.O). 

l-5 
6-15 

I ............ 
B(1) .......... 

Parameter number. 
Parameter value. 

Parameters are numbered in the same order as used for the initial solution. 
This data set is repeated N times, and the program will compute and print 
the solution corresponding to each set of parameters. 
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Output.-The following discussion gives the 
content and order of the output obtained from 
the program. It should be noted that some of 
the output is only obtained under certain speci- 
fied conditions. All output is clearly labeled. 
However, order numbers in the following discus- 
sion do not appear in the output; they are for 
convenience in listing the order of output only. 
The statistical measures cited below are de 
scribed in section 5. 

CELL (i,j), IZN >O, CX=O, AND 0 

1. 
2. 
3. 
4. 

5. 
6. 

7. 

8. 
9. 

10. 

11. 

12. 

13. 

Three title lines (data set A). 
Problem size information (data set B). 
Special input parameters (data set C). 
Array sets (data sets D through L). For 
each variable, input information (vari- 
able name, block number, IB, IE, JB, 
JE, and value of FACT or IFACT) for 
each block is listed block by block. If 
specified, this information is then fol- 
lowed by the values of all entries in the 
array. 
Observed head data (data set M). 
Aquifer regression parameter numbers 
(data set N). This input is printed only 
if NPAR is greater than zero. 
Coefficients of variation for aquifer 
regression parameters (data set 0). This 
input is printed only if NPAR is greater 
than zero. 
Zonal aquifer properties (data set P). 
Known point-flow rates (data set Q). 
This input is printed only if NWELS is 
greater than zero. 
Specified boundary-flow information 
(data set R). This input is printed only 
if NQBZ is greater than zero. 
Specified boundary-head distribution 
(data set S). This input is printed in the 
same manner as indicated under 4. 
Specified boundary-head information 
(data set T). For each segment, input in- 
formation (segment number, number of 
nodes in the segment, IBPA, IBPB, 
SDHA, and SDHB) is printed followed 
by a listing of node locations and input 
values of specified heads. This input is 
printed only if NHBZ is greater than 
zero. 
Error message. If IZN >o, CXSO, and 
CY<O occur at the same cell, then the 
following error message is printed: “AT 

14. 

15. 

16. 

17. 
18. 

19. 

20. 

21. 

22. 

23. 

CY =O.” 
Error message. If the error in 13 hap 
pens at one or more cells, then the follow- 
ing message is printed: “PROGRAM 
ABORTED BECAUSE OF CONFLICT 
BETWEEN IZN, CX, AND CY.” Ex- 
ecution then terminates. 
Error message. If an active node is 
isolated from other active nodes, then 
the following message is printed: AC- 
TIVE NODE (&j) CANNOT BE ISO- 
LATED.” Execution then terminates. 
Information on matrix solution pro- 
cedure used to compute heads. Message 
that solution is by LDU factorization is 
followed by the computed minimum re 
quired dimensions of arrays used in the 
solution. 
Initial solution for heads. 
Program branch. If the solution-only 
option is specified, then output skips 
to 35. 
Number of parameters having prior 
information. 
Sensitivity matrix g. This is printed 
only if optional print-out was selected. 

c 

Error message. If any diagonal term of 
the coefficient matrix &%l$+gu-l 
e&s2 of the normal equations is smaller 
than lo-lo, then the following mes- 
sage is printi “SENSITIVITIES FOR 
PARAMETER i EFFECTIVELY 
ZERO.” If this error occurs, the current 
weighted residuals 4 (section 5.5.1) 
are then printed. If the sensitivity print 
and orthogonalization option was 
selected, the sensitivities and ortho- 
gonalized sensitivities are also printed in 
the forms given in 33 and 34. Execution 
then terminates. 
Coefficient matrix &%lS,+gU-l&s2 
+g and the gradient vector &d - V(Y 
-~(Sb))+~~l~~(~-~(P.b)!. This yt- 
put is printed only i the optional prmt- 
out was selected. (Note: If prior informa- 
tion of unknown reliability was used, 
then the matrix and vector will be 
modified to include this information.) 
Error message. If, during solution of the 
normal equations, it becomes evident 

c 



24. 

25. 

D 

26. 

27. 

28. 

29. 

30. 

b 
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that the problem is singular, then the 
following message is printed: “LEAST 
SQUARES COEFFICIENT MATRIX 
SINGULAR; SOLUTION FOR PA- 
RAMETERS NOT UNIQUE.” The 
course of action is then the s,ame as that 
given under 21. 
Iteration number, current sum of 
weighted, squared deviations of com- 
puted from observed heads, determinant 
of the current least squares coefficient 
matrix defined in 22 above, current value 
of cc, current value of p, followed by the 
current parameter vector &+1 defined 
by equation 3.3-19. 
Error message. If a parameter is more 
than one thousand times smaller in 
magnitude than initially specified, then, 
the message “PARAMETER i EFFEC- 
TIVELY ZERO” is printed. If this prob- 
lem occurs, then further iterations are 
aborted, the current solution is taken as 
the final one, and the course of action 
given in 21 is taken. 
Solution converged message and final 
number of iterations. If the solution did 
not converge in the allotted number of 
iterations, then a message to this effect 
is written instead, and output skips to 
32. 
Error message. If the coefficient matrix 
of the normal equations (see 22) is 
singular when p=O, and this status has 
not been detected because +O has been 
computed and used by the program, 
then the message given in 23 is printed. 
In this case the subsequent course of ac- 
tion is the same as in 21. 
Error variance (s2) (section 5.4.1), 
final total sum of squares (sum of 
weighted, squared deviations of com- 
puted from observed heads plus sum of 
weighted, squared deviations of com- 
puted from prior estimates of param- 
eters), and correlation coefficient (.R,) 
(section 5.4.2). 
Final parameter estimates and their 
estimated standard errors (section 
54.3). 
Estimated variance-covariance matrix, 
(sv>1X,+&&‘&s2)-1s2 (section 

5.4.3). The ordering of rows and columns 
matches that for b in 24. 

31. Correlation matrix for parameters, { ~~j} 
={ COV(b,bi)/(Var(bi)‘Var(bj))YZ} (section 
5.4.4). Again, the ordering matches that 
for b. 

32. Computed and observed heads, and 
weighted residuals, 4 (section 5.5.1). 

33. Nodal sensitivities printed parameter by 
parameter. These are printed only if the 
sensitivity print and orthogonalization 
option was selected or if the solution did 
not converge. 

34. Orthogonalized, scaled sensitivities, 9, 
with the sensitivities for the prior infor- 
mation forming the last np rows. These 
are printed only if the sensitivities in 33 
above are printed. This completes the 
output for regression solutions. 

35. New parameters (data set V), all in se 
quential order; the solution number, and 
the solution for heads. These are printed 
for all solutions when the solution-only 
option is invoked. 

Example Problem.-The following example 
problem illustrates use of most of the program 
options. As illustrated in figure 4.3-8, the 
modeled area consists of three aquifer zones 
bounded by three specified boundary-flow zones 
containing three boundary-flow regression 
parameters, a no-flow boundary, and two speci- 
fied boundary-head segments containing 
three boundary-head regression parameters. 
Initial values for the regression parameters 
are: 

Qsl’8 
f&2=0.8 
qB3=l 

pc;; 
hB3=16 
TI =4,000 
T,=‘ioo 

Ts=l,OOO 
w, =0.0001 
w,=o.ooo~ 
w3=-0.0001 
R,=O.OOl 
R,=0.0007 
R,=0.0015. 

Parameter qB1 has prior information with a 
standard deviation of 0.8 on it. Because all 
aquifer properties and boundary flows are con- 
stant within their respective zones, multipliers 
for these parameters may be assigned values of 
unity. Assume that the estimated error variance 
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Figure 4.34 

for use with the prior information ha8 a value 
of unity, t-=1.5, and CO80,=0.08. 

Locations of observed heads are indicated by 
the small open circles on figure 4.3-8. Values 
corresponding to these locations are given in 
table 4.3-2. All observations have a weight Oii 
of unity. 

Table 4.3-2 

Node- Value 

(1,l) 29.51 (10.4) 22.46 
(3,l) 26.38 WA 17.16 
(5,l) 25.16 (14,4) 15.74 
(7,l) 26.81 (16,4) 14.69 
W) 23.82 (1,5) 36.05 

ULl) 23.59 (395) 31.64 
(13,l) 16.68 (5,5) 32.91 
(15,l) 15.31 (795) 25.05 
w.4 28.27 KG) 25.47 
(4.2) 25.17 (11.5) 20.39 

(6,2) 26.94 (13.5) 14.40 
(W 23.59 (15.5) 14.37 
(102) 22.53 633 38.66 
vu) 17.89 (4,6) 34.51 
u4,2) 15.87 (6.6) 27.81 

WV3 15.98 0383) 25.98 
(1,3) 31.25 W-46) 22.16 
(3.3) 27.50 WW 15.73 
(5.3) 26.22 (14,6) 14.79 
(7*3) 25.65 ww 10.48 

(93) 24.35 
(11,3) 22.48 
(13,3) 15.85 
(15,3) 15.71 
(2.4 29.36 

41.28 
34.82 
32.00 
26.97 
25.67 

(4.4) 27.76 
(6.4) 25.51 
@A 24.43 

(1,7) 
(3,7) 
(597) 
(797) 
(9,7) 

(11,7) 
(1397) 
(15.7) 

18.12 
18.40 
11.90 

Node Value 

Heads H on the distal side of the aquitard are 
computed by first assigning constant values to 
all cells in an aquifer property zone, then com- 
puting nodal values as the average of all adja- 
cent cell values, Cell values are 25 for zone 1, 
35 for zone 2, and 15 for zone 3. 

Input data for the example problem are coded 
on figure 4.3-9 and are contained in file EX- 
PROB.DAT in the diskette accompanying this 
report. These data should be compared with the 
data input instructions given above. 

Output is given in figure 4.3-10. Sta- 
tistical measures listed are described in sec- 
tion 5. 
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EXAMPLE PROBLEM FOR DATA INPUT 

3 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
1 
4 
4 
5 
5 
1 
Y 
0 
I 
0 
1 
0 
1 
I. 
4 
1. 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 

56 9 15 0 3 2 20 1 1 0 
.08 0 0 1 

1 1000 

1 1000 

6 1 

6 1 

6 1 

3 25 
7 25 
4 30 
4 27.5 
7 30 
7 35 
7 20 
7 15 

6 

7 

1 

10 

1 
1 
2 
3 
0 0 

2000 0 
4000 0 
6000 0 
8000 0 

10000 0 
12000 0 
14000 0 

1000 1000 
3000 1000 
5000 1000 
7000 1000 
9000 1000 

11000 1000 
13000 1000 
15000 1000 

0 2000 
2000 2000 
4000 2000 
6000 2000 

29.51 1 
26.38 1 
25.16 1 
26.81 1 
23.82 1 
23.59 1 
16.68 1 
15.31 1 
28.27 1 
25.17 1 
26.94 1 
23.59 1 
22.53 1 
17.89 1 
15.87 1 
15.98 1 
31.25 1 
27.50 1 
26.22 1 
25.65 1 
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Figure 4.3-9 
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21 9 
22 11 
23 13 
24 15 
25 2 
26 4 
27 6 
28 8 
29 10 
30 12 
31 14 
32 15 
33 1 
34 3 
35 5 
36 7 
37 9 
38 11 
39 13 
40 15 
41 2 
42 4 
43 6 
44 8 
45 10 
46 12 
47 14 
48 15 
49 1 
50 3 
51 5 
52 7 
53 9 
54 11 
55 13 
56 15 

1 1 
2 2 
3 3 
1 
2 
3 
4 
5 
6 
7 
8 
9 

3 8000 2000 24.35 
3 10000 2000 22.48 
3 12000 2000 15.85 
3 14000 2000 15.71 
4 1000 3000 29.36 
4 3000 3000 27.76 
4 5000 3000 25.51 
4 7000 3000 24.43 
4 9000 3000 22.46 
4 11000 3000 17.16 
4 13000 3000 15.74 
4 15000 3000 14.69 
5 0 4000 36.05 
5 2000 4000 31.64 
5 4000 4000 32.91 
5 6000 4000 25.05 
5 8000 4000 25.47 
5 10000 4000 20.39 
5 12000 4000 14.40 
5 14000 4000 14.37 
6 1000 5000 38.66 
6 3000 5000 34.51 
6 5000 5000 27.81 
6 7000 5000 25.98 
6 9000 5000 22.16 
6 11000 5000 15.73 
6 13000 5000 14.79 
6 15000 5000 10.48 
6 0 6000 41.28 
6 2000 6000 34.82 
6 4000 6000 32.00 
6 6000 6000 26.97 
6 8000 6000 25.67 

6" 
10000 6000 18.12 
12000 6000 18.40 

6 14000 6000 11.90 
1 4 7 
2 5 8 
3 6 9 
0 
0 
0 
0 
0 
0 
0 
0 
0 

4000 .OOl .OOOl 
400 .0007 .0005 

1000 .0015 -.OOOl 
4 10 8 .8 
7 11 .8 0 

1 4000 
2 400 
3 1000 
1 1 1 
1 4 1 
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Figure 4.3~q-continued 
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Figure 4.3-9-Continued 
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C FINITE DIFFERENCE PROGRAM FOR NONLINEAR REGRESSION SOLUTION 
C OF TWO-DIMENSIONAL, STEADY-STATE, GROUND-WATER FLOW PROBLEMS 
C BY R. L. COOLEY, USGS, DENVER, COLO. 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION TITLE(20),DX(30),DY(3O),CX(5OC),CY(5OO),VL(5OO) 

1,QR(500),WELL(500),HR(500),HC(500),HC1(70),BK(70),BL(70) 
2,BM(70),BN(70),H0(70),W(70),P~(4),QBF(50),P~(50),P~(50) 
3,C~(50),C~L(50),C~T(50),CYHB(50),AU(5,25O),AL(20,250) 
4,v(500),X(20,7a),s(20,90),XV(500),xs(4),P(20),wP(20) 
5,A(20,20),B(50) 
DIMENSION JPOS(30),IZN(500),IBZN(50),IPRM(4,2O),IBNA(5O) 

l,IBNB(5O),IBPA(lO),IBPB(lO),IBHN(50),IHSN(lOO),KOBS(7O) 
2,LN(4),NCBA(20),NCE(20),NCBF(20),NCEF(2O),NCBH(20) 
3,NCEH(20),ILOC(:500),JLOC(5OO),IN(5OO),IC(5,25O) 

COMMON/INT/NIJ,NEQ,ICR,ICRl,IBl,~l,ID,JD,IM,JM,NOBS,NQSD,NBH 
l,NVAR,NVX2,KOUNT,INDT,IPO 
COMMON/LOC/ILOC,JLOC 
COMMON/TNME/IIN,IOUT 
COMMoN/FLT/CX,CY,VL,QR,WELL,HR,HC,BK,BL,BM,BN,HO,W 
COMMON/SOLV/AU,AL 
COMMON/REG/DMX,ADMX,AP,CSA,AMP,RP,BP,YSQ 
EQUIVALENCE (TITLE(l),A(l,l),S(l,l),AU(l,l)),(HC(l),XV(l)) 

1,(CX(1>,HCI(1)),(I~oc(1),Ico) 
OPEN (5,FILE-'INVFD.DAT',STATUS-'OLD',ACCESS-'SEQUENTIAL' 

l,FORM='FORMATTED') 
OPEN (6,FILE-'INVFD.OUT',STATUS='NEW',ACCESS-TIAL' 

l,FORM='FORMATTED') 
OPEN (7,STATUS='NEW',ACCESS-'SEQUENTIAL',FORMTTED') 

C**DEFINE INPUT FILE, OUTPUT FILE, SCRATCH FILE, AND ARRAY DIMENSIONS 
IIN- 
IOUT= 
ITA= 
NVD-20 
NAD-20 

C**READ THREE TITLE LINES 
WRITE(IOUT,804) 
DO 5 I-1,3 
READ(IIN,801) (TITLE(J),J-1,20) SET A 

5 WRITE(IOUT,803) (TITLE(J),J-1,20) 
C**READ JOB SPECIFICATION DATA 

READ(IIN,800) ID,JD,NZNS,NOBS,NPAR,NVAR,NWELS,NQBZ,NHBZ,NUM,IPRX 
1,IPo,Iso SET B 
WRITE(IOUT,802) ID,JD,NZNS,NOBS,NPAR,NVAR,NwELS,NQBZ,NHBZ,NUM 

1,IPRX,IPo,Iso 
READ(IIN,820) DMX,CSA,RP,BP,EV SET C 
WRITE(IOUT,806) DMX,CSA,RP,BP,EV 

C**READ INITIAL ARRAY DATA 
IM-=ID-1 
JMJD-1 
CALL ARRAY(DX,IM,l,O) SET D 
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CALL ARRAY(DY,JM,l,O) SET E 
CALL ARRAY(CX,IM,JM,O) SET F 
CALL ARRAY(CY,IM,JM,O) SET G 
CALL AREbiY(VL,IM,JM,O) SET H 
CALL ARRAY(HR,ID,JD,O) SET I 
CALL ARRAY(QR,IM,JM,O) SET J 
CALL ARRAY(HC,ID,JD,O) SET K 

C**READ GRID ZONATION 
CALL ARRAYI(IZN,IM,JM,O) SET L 

C**READ OBSERVED HEAD DATA 
IF(NOBS.LT.l) GO TO 15 
CALL HOBS(DX,DY,V(l),V(ID+l),BK,BL,BM,BN,HO,W,KOBS) SET M 

C**INITIALIZE PARAMETER NUMBERS AND STANDARD DEVIATIONS TO ZERO 
15 DO 25 I-l,NZNS 

DO 20 K-1,4 
20 IPRM(K,I)=O 
25 CONTINUE 

DO 27 I-1,NVAR 
27 UP(I)-0. 

C**READ AQUIFER PARAMETER NUMBERS 
IF(NPAR.LT.1) GO TO 35 
WRITE(IOUT,816) 
DO 30 J-l,NZNS 
READ(IIN,800) I,(IPRM(K,I),K-1,4) SET N 
WRITE(IOUT,818) I,(IPRM(K,I),K-=1,4) 

30 CONTINUE 
C**READ AQUIFER PARAMETER STANDARD DEVIATIONS c 

WRITE(IOUT,822) 
DO 32 J-1,NPAR 
READ(IIN,812) K,WP(K) SET 0 

32 WRITE(IOUT,823) K,WP(K) 
C**READ INITIAL AQUIFER PARAMETERS BY ZONE, AND LOAD THEM INTO THE 
C PARAMETER VECTOR 

35 WRITE(IOUT,810) 
M=NVAR 
DO 45 J=l,NZNS 
READ(IIN,812) I,PAR(l),PAR(2),PAR(3),PAR(4) SET P 
WRITE(IOUT,814) I,PAR(l),PAR(2),PAR(3),PAR(4) 
DO 40 K-1,4 
L==IPRM(K,I) 
IF(L.GT.0) GO TO 40 
M-M+1 
kM 
IPRM(K,I)-L 

40 B(L)-PAR(K) 
45 CONTINUE 

C**DEFINE JPOS ARRAY SUCH THAT COLUMH+JPOS(ROW)-NODE NUMBER 
JFOS(l)-0 
DO 50 J-2,JD 

50 JPOS(J)=JPOS(J-l)+ID 
C**READ POINT FLOW DATA 

NIJ-ID*JD 
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DO 55 N-1,NIJ 
55 WELL(N)=O. 

IF(NWELS.LT.1) GO TO 61 
WRITE(IOUT,824) 
DO 60 K-1,NWELS 
READ(IIN,826) I,J,TMP 
WRITE(IOUT,828) I,J,TMP 
bI+JPOS(J) 

60 WELL(L)-TMP 
C**READ AND FORM ARRAYS FOR SPECIFIED POINT OR LINE FLOWS 

61 NQSD-0 
IF(NQBZ.LT.1) GO TO 85 
WRITE(IOUT,830) 
N-O 
DO 80 J-l,NQBZ 
READ(IIN,832) IA,JA,IB,JB,IP,QB,SDQB,QBM 
WRITE(IOUT,831) IA,JA,IB,JB,IP,QB,SDQB,QBM 
M-1 
K-IA-1 
IF(JA.EQ.JB) GO TO 62 
M-ID 
K-JA-1 

62 MA=IA+JPOS(JA) 
MB-IB+JPOS(JB)-M 
IF(MB.GE.MA) GO TO 64 
IF(IP.LT.l) GO TO 63 
N-N+1 
IBNA(N)=MA 
IBNB(N)==MA 
QBF(N)-.5*QBM 
IBZN(N)-IP 
GO TO 68 

63 WELL(MA)=QB*QBM 
GO TO 80 

64 QBM=.5*QBM 
IF(IP.LT.l) GO TO 70 
DO 66 L=MA,MB,M 
N-N+1 
IBNA(N)-L 
IBNB(N)-L+M 
K-K+1 
TEMP-DX(K) 
IF(M.EQ.ID) TEMP-DY(K) 
QBF(N)==QBM*TEMP 

66 IBZN(N)-IP 
68 B(IP)=QB 

WP(IP)=SDQB 
GO TO 80 

70 TMP==QB*QBM 
DO 75 L-MA,MB,M 
K-K+1 
TEMP-DX(K) 

135 
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IF(M.EQ.ID) TEMP=DY(K) 
TEMP-TMP*TEMP 
WELL(L)=WELL(L)+TEMP 

75 WELL(L+M)-WELL(L+M)+TEMP 
80 CONTINUE 

NQSD-N 
C**READ SPECIFIED BOUNDARY HEAD POSITIONS AS -1'S 

85 CALL ARRAYI(IN,ID,JD,O) 
C**READ DATA AND FORM ARRAYS FOR SPECIFIED HEADS AND PARAMETERS 

IF(NHBZ.LT.l) GO TO 110 
WRITE(IOUT,833) 
NBH-0 
DO 108 KK=l,NHBZ 
READ(IIN,834) IZ,NN,M,N,SDHA,SDHB 
WRITE(IOUT,836) IZ,NN,M,N,SDHA,SDHB 
DO 95 J-1,NN 
READ(IIN,826) ILOC(J),JLOC(J),V(J) 

95 WRITE(IOUT,840) ILOC(J),JLOC(J),V(J) 
IBPA(IZ)=M 
IBPB(IZ)-N 
IF(M.LT.l) GO TO 97 
BOO-V(l) 
WP(M)-SDHA 

97 IF(N.LT.l) GO TO 98 
B(N)-V(NN) 
WP(N)=SDHB 

98 JJLOC(1) 
K-ILOC(l)+JPOS(J) 
M==M+N 
NBHS-NBH 
IF(IN(K).LT.-1) GO TO 100 
NBH-NBH+l 
IF(M.GT.0) IN(K)--NBH-1 
IBZN(NBH+NQSD)-IZ 
IBHN(NBH)==K 
PLA(NBH)-1. 
PLB(NBH)-0. 

100 IF(NN.LT.2) GO TO 107 
DIST-0. 
DO 102 KNT-2,NN 
J==JLOC(KNT) 
L=ILOC(KNT)+JPOS(J) 
NBH=NBH+l 
IF(M.GT.0) IN(L)--NBH-1 
IBZN(NBH+NQSD)=IZ 
IBHN(NBH)-L 
JMl-JLOC(KNT-1) 
IF(J.EQ.JMl) GO TO 101 
J=MINO(J,JMl) 
DIST-DIST+DY(J) 
GO TO 102 

101 I=MINO(ILOC(KNT),ILOC(KNT-1)) 

SET S 

SET T 

SET T 
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DIST-DIST+DX(I) 
102 PLB(NBH)-DIST 

N=NBH-NN+l 
DO 106 KNT-2,NN 
J=JLOC(KNT) 
L=ILOC(KNT)+JPOS(J) 
N-N+1 
TMPA-PLB(N)/DIST 
TMPB-l.-TMPA 
TMPC-TMPA*V(NN)+TMPB*V(l) 
IF(DABS(V(KNT)).LE.O.) GO TO 104 
TMP=V(KNT)/TMPC 
TMPA=TMPA*TMP 
TMPB=TMPB*TMP 
TMPC=V(KNT) 

104 PLA(N)=TMPB 
PLB(N)=TMPA 

106 HC(L)-TMPC 
107 IF(M.LT.l) NBH-NBHS 
108 HC(K)-V(1) 

C**COMPARE CX AND CY WITH IZN FOR CONFLICT 
110 IER=O 

N-O 
DO 115 J=l,JM 
DO 115 I=l,IM 
N-N+1 
IF(IZN(N).LT.l) GO TO 115 
IF(CX(N).GT.O..OR.CY(N).GT.O.) GO TO 115 
IER-1 
WRITE(IOUT,842) 1,J 

115 CONTINUE 
IF(IER.LT.l) GO TO 120 
WRITE(IOUT,844) 
STOP 

C**TRANSFER DOMAIN GEOMETRY TO IN(M) AND COMPUTE CELL FLOW-COEFFICIENTS 
120 N=O 

DO 122 J-l,JM 
DYN-.5*DY(J) 
DO 122 I-l,IM 
N-N+1 
IF(IZN(N).LT.l) GO TO 122 
M=N+J 
IF(IN(M).GT.-1) IN(M)=1 
IF(IN(M-l).GT.-1) IN(M-l)=l 
IF(IN(M+ID-l).GT.-1) IN(M+ID-l)=l 
IF(IN(M+ID).GT.-1) IN(M+ID)=l 
CX(N)-CX(N)*DYN/DX(I) 
DXN=.5*DX(I) 
CY(N)=CY(N)*DXN/DY(J) 
AREA-DXN*DYN 
VL(N)-VL(N)*AREA 
QR(N>-QRW*~JU 

137 
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122 CONTINUE 
C**SET UP D4 ORDERING 

CALL ORDER(JPOS,IN,IC) 
C**COMPUTE INITIAL SOLUTION 

CALL COEF(WELL,HR,HC,CX,CY,VL,QR,CxHR,CxHL,Cy,AL 
1,V,IZN,IBZN,IPRM,IBNA,IBNB,IN,IC,NAD) 
CALL D4SOLV(HC,AU,AL,V,IN,IC,NAD) 
WRITE(IOUT,846) 
CALL ARRAY(HC,ID,JD,l) 
IF(ISO.EQ.l) GO TO 640 

C**COMPUTE AND COUNT PRIOR INFORMATION DATA 
NPRIR-0 
DO 137 I=l,NVAR 
P(I)-B(I) 
IF(WP(I).LE.O.) GO TO 137 
WP(I)-EV/(WP(I)*WP(I)) 
NPRIR=NPRIR+l 

137 CONTINUE 
WRITE(IOUT,848) NPRIR 

C**INITIALIZE BEGINNING AND END POINT ARRAYS 
DO 148 I=l,NVAR 
NCBA(I)=O 
NCEA(I)-0 
NCBF(I)=O 
NCEF(I)=O 
NCBH(I)-0 

148 NCEH(I)-0 
C**DEFINE BEGINNING AND END POINT ARRAYS FOR AQUIFER PARAMETERS 

IF(NPAR.LT.l) GO TO 154 
N-O 
DO 152 J-l,JM 
DO 152 I-l,IM 
N-N+1 
GIZN(N) 
IF(L.LT.l) GO TO 152 
DO 150 M-1,4 
K-IPRM(M,L) 
IF(K.GT.NVAR) GO TO 150 
NCEA(K)-N 
IF(NCBA(K).LT.l) NCBA(K)=N 

150 CONTINUE 
152 CONTINUE 

C**ORDER IBZN AND CORRESPONDING ARRAYS FOR LINE FLOW PARAMETERS 
C FROM SMALLEST TO LARGEST 

154 IF(NQSD.LT.l) GO TO 162 
DO 158 I=l,NQSD 
DO 156 J=I,NQSD 
IF(IBZN(J).GE.IBZN(I)) GO TO 156 
ITMP=IBZN(I) 
IBZN(I)-IBZN(J) 
IBZN(J)=ITMP 
ITMP-IBNA(1) 

c 
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IBNA(I)-IBNA(J) 
IBNA(J)-ITMP 
ITMP=IBNB(I) 
IBNB(I)-IBNB(J) 
IBNB(J)-ITMP 
TMP=QBF(I) 
QWIb=QBF(J) 
QBF(J)-TMP 

156 CONTINUE 
158 CONTINUE 

C**DEFINE BEGINNING AND END POINT ARRAYS FOR LINE FLOW PARAMETERS 
DO 160 I-l,NQSD 
K-IBZN(1) 
NCEF(K)-I 
IF(NCBF(K).LT.l) NCBF(K)-I 

160 CONTINUE 
C**DEFINE SEQUENCE NUMBERS, AND BEGINNING AND END POINT ARRAYS 
C FOR SPECIFIED HEAD PARAMETERS 

162 IF(NBH.LT.1) GO TO 174 
DO 164 I=l,NBH 
J-IBZN(I+NQSD) 
K=IBPA(J) 
IF(K.EQ.0) GO TO 163 
NCEH(K)-I 
IF(NCBH(K).LT.l) NCBH(K)-I 

163 K-IBPB(J) 
IF(K.EQ.0) GO TO 164 
NCEH(K)-I 
IF(NCBH(K).LT.l) NCBH(K)-I 

164 CONTINUE 
k0 
DO 172 K-1,NVAR 
IF(NCBH(K).LT.l) GO TO 172 
JB=NCBH(K) 
JE-NCEH(K) 
NCBH(K)-L+l 
DO 170 J=JB,JE 
I=IBZN(J+NQSD) 
IF(IBPA(I).EQ.K.OR.IBPB(I).EQ.K) GO TO 168 
GO TO 170 , 

168 L-L+1 
IHSN(L)=J 

170 CONTINUE 
NCEH(K)=L 

172 CONTINUE 
C**BEGIN ITERATIONS 

174 INDT-0 
ER-.Ol 
ERP-.OOl 
AMP-O. 
Nvx2=NvAR+NvAR 
KOUNT-0 

139 
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176 KOUNT-KOUNT+l 
REWIND ITA 

C**SOLVE FOR SENSITIVITIES: 
DO 260 N-1,NVAR 
DO 178 I-1,NEQ 

178 V(I)-0. 
IF(NCBA(N).LT.l) GO TO 208 

C**ASSEMBLE R.H.S. FOR AQUIFER PARAMETERS 
LB-NCBA(N) 
LE-NCEA(N) 
DO 200 L=LB,LE 
J-IZN(L) 
IF(J.LT.l) GO TO 200 
NA==L+(L-l)/IM 
NB-NA+l 
NC-NB+ID 
ND=NA+ID 
INA-IN(NA) 
INB-IN(NB) 
INC-IN(NC) 
IND-IN(ND) 
IF(IPRM(l,J).NE.N) GO TO 180 
IF(INA.GT.0) V(INA)=V(INA)+CX(L)*(HC(NB)-HC(NA)) 
IF(INB.GT.0) V(INB)=V(INB)+CX(L)*(HC(NA)-HC(NB)) 
IF(INC.GT.0) V(INC)-V(INC)+CX(L)*(HC(ND)-HC(NC)) 
IF(IND.GT.0) V(IND)-V(IND)+CX(L)*(HC(NC)-HC(ND)) 

180 IF(IPRM(2,J).NE.N) GO TO 185 
IF(INA.GT.0) V(INA)=V(INA)+CY(L)*(HC(ND)-HC(NA)) 
IF(INB.GT.0) V(INB)-V(INB)+CY(L>*(HC(NC)-HC(NB)) 
IF(INC.GT.0) V(INC)-V(INC)+CY(L)*(HC(NB)-HC(NC)) 
IF(IND.GT.0) V(IND)-V(IND)+CY(L)*(HC(NA)-HC(ND)) 

185 IF(IPRM(3,J).NE.N) GO TO 190 
IF(INA.GT.0) V(INA)-V(INA)+VL(L)*(HR(NA)-HC(NA)) 
IF(INB.GT.0) V(INB)=V(INB)+VL(L)*(HR(NB)-HC(NB)) 
IF(INC.GT.0) V(INC)-V(INC)+VL(L)*(HR(NC)-HC(NC)) 
IF(IND.GT.0) V(IND)-V(IND)+VL(L)*(HR(ND)-HC(ND)) 

190 IF(IPRM(4,J).NE.N) GO TO 200 
IF(INA.GT.0) V(INA)-=V(INA)+QR(L) 
IF(INB.GT.0) V(INB)=V(INB)+QR(L) 
IF(INC.GT.0) V(INC)=V(,INC)+QR(L) 
IF(IND.GT.0) V(IND)-V(IND)+QR(L) 

200 CONTINUE 
C**ASSEMBLE R.H.S. FOR SPECIFIED LINE FLOW PARAMETERS 

208 IF(NCBF(N).LT.l) GO TO 212 
LB-NCBF(N) 
LE==NCEF(N) 
DO 210 L==LB,LE 
I-IBNA(L) 
J-IN(I) 
IF(J.GT.O) V(J)-V(J)+QBF(L) 
I-IBNB(L) 
J-IN(I) 

c 

c 
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IF(J.GT.0) V(J)-V(J)+QBF(L) 
210 CONTINUE 

C**ASSEMBLE R.H.S. FOR SPECIFIED HEAD PARAMETERS 
212 IF(NCBH(N).LT.l) GO TO 216 

LB-NCBH(N) 
LE=NCEH(N) 
DO 214 L-LB,LE 
K-IHSN(L) 
I-IBZN(K+NQSD) 
TMP-0. 
IF(IBPA(I).EQ.N) TMP-PLA(K) 
IF(IBPB(I).EQ.N) TMP-TMP+PLB(K) 
I=IBHN(K)+l 
IF(I.LE.NIJ) J-IN(I) 
IF(J.GT.0) V(J)==V(J)+CXHR(K)*TMP 
I-IBHN(K)-1 
IF(I.GT.0) J-IN(I) 
IF(J.GT.0) V(J)-V(J)+CXHL(K)*TMP 
I-IBHN(K)+ID 
IF(I.LE.NIJ) J-IN(I) 
IF(J.GT.0) V(J)-V(J)+CYHT(K)*TMP 
I-IBHN(K)-ID 
IF(I.GT.0) J-IN(I) 
IF(J.GT.0) V(J)-V(J)+CYHB(K)*TMP 

214 CONTINUE 
C**MODIFY R.H.S.--UPPER HALF 

216 DO 220 J-1,ICRl 
II-IC(l,J) 
DO 218 I-2,11 
LR==IC(I,J) 
V(LR)=V(LR)-AU(I,J)*V(J) 

218 CONTINUE 
220 V(J)=V(J)/AU(l,J) 

C**MODIFY R.H.S.--LOWER HALF 
JJ-NEQ-ICR 
DO 224 J-l,JJ 
JR==J+ICRl 
LR=JR 
DO 222 I-2,IBl 
LR=LR+l 
IF(AL(I,J).NE.O.) V(LR)=V(LR)-AL(I,J)*V(JR) 

222 CONTINUE 
224 V(JR)-V(JR)/AL(l,J) 

C**BACK SOLVE--LOWER HALF 
V(NEQ)-V(NEQ)/AL(l,NEQ-ICRl) 
DO 230 J-1,JJ 
KK-NEQ-J 
KL-KK-ICRl 
L==KK 
DO 226 I-2,IBl 
L-L+1 
IF(AL(I,KL).NE.O.) V(KK)-=V(KK)-AL(I,KL)*V(L) 

141 



142 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

Program Listing-Continued 

226 CONTINUE 
230 CONTINUE 

C**BACK SOLVE--UPPER HALF 
DO 250 J-1,ICRl 
KK=ICR-J 
II-IC(1,KK) 
DO 240 I-2,11 
L=IC(I,KK) 
V(KK)==V(KK)-AU(I,KK)*V(L) 

240 CONTINUE 
250 CONTINUE 

WRITE(ITA) (V(I),I=l,NEQ) 
C**COMPUTE SENSITIVITIES AT OBSERVATION POINTS 

DO 255 I=l,NOBS 
K=KOBS(I) 
LN(l)-IN(K) 
LN(2)=IN(K+l) 
LN(3)-IN(K+ID) 
LN(4)-IN(K+ID+l) 
DO 253 J-1,4 
L.=-m(J) 
IF(L.GT.0) GO TO 252 
XS(J)-0. 
IF(L.GT.-2) GO TO 253 
L-=-L-l 
IZ=IBZN(L+NQSD) 
TMP-0. 
IF(IBPA(IZ).EQ.N) TMP=PLA(L) 
IF(IBPB(IZ).EQ.N) TMP=TMP+PLB(L) 
XS(J)-TMP 
GO TO 253 

252 XS(J)-V(L) 
253 CONTINUE 
255 X(N,I)-BK(I)*XS(l)+BL(I)*XS(2)+BM(I)*XS(3)+BN(I)*XS(4) 
260 CONTINUE 

IF(IPO.NE.l) GO TO 270 
WRITE(IOUT,850) 
DO 265 N=l,NOBS 
WRITE(IOUT,852) N,(X(K,N),K==l,NVAR) 

265 CONTINUE 
C**CALL LEAST SQUARES 

270 CALL LSTSQ(HC,BK,BL,BM,BN,HO,W,P,WP,X,A,B,V,KOBS,IN,~D) 
IF(INDT.GT.0) GO TO 515 

C**COMPUTE NEW SPECIFIED HEADS 
IF(NBH.LT.l) GO TO 310 
DO 300 N-1,NBH 
M=IBZN(N+NQSD) 
K=IBPA(M) 
TMPA-0. 
IF(K.GT.0) TMPA=PLA(N)*V(K) 
bIBPB(M) 
TMPB-0. 

c 

c 
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IF(L.GT.0) TMPB-PLB(N)*V(L) 
J=IBHN(N) 
HC(J)=HC(J)+TMPA+TMPB 

300 CONTINUE 
C**CHECK FOR CONVERGENCE 

310 IF(ADMX.LT.ER) GO TO 350 
C**CHECK FOR PARAMETERS GOING TO ZERO 

IND=O 
DO 335 I=l,NVAR 
IF(DABS(B(I)).GT.DABS(ERP*P(I))) GO TO 335 
WRITE(IOUT,858) I 
IND=l 

335 CONTINUE 
IF(IND.GT.0) GO TO 515 
IF(KOUNT.EQ.NUM) GO TO 340 

C**COMPUTE NEW HEADS AT GRID POINTS 
CALL COEF(WELL,HR,HC,CX,CY,VL,QR,CXHR,CXHL,CY,AL 

1,V,IZN,IBZN,IPRM,IBNA,IBNB,IN,IC,NAD) 
CALL D4SOLV(HC,AU,AL,V,IN,IC,NAD) 
GO TO 176 

340 WRITE(IOUT,860) NUM 
GO TO 515 

350 WRITE(IOUT,862) KOUNT 
C**COMPUTE FINAL ESTIMATES OF HEAD 

REWIND ITA 
DO 366 K=l,NVAR 
READ(ITA) (CX(I),I=l,NEQ) 
DO 364 J=l,NIJ 
L-IN(J) 
IF(L.GT.0) HC(J)=HC(J)+CX(L)*V(K) 

364 CONTINUE 
366 CONTINUE 

C**CORRECT A FOR MARQUARDT PARAMETER 
IF(NVAR.EQ.l) GO TO 420 
IF(AMP.LE.0.) GO TO 385 
DO 380 I=l,NVAR 
A(I,I)=l.+RP 
DO 375 J=I,NVAR 

375 A(J,I)=A(I,J) 
380 CONTINUE 

AMP=-1. 
CALL LSTSQ(HC,BK,BL,BM,BN,HO,W,P,WP,X,A,B,V,KOBS,IN,~D) 
IF(INDT.GT.0) GO TO 515 

C**COMPUTE A-INVERSE 
385 A(NVAR,NVAR)-l./A(NVAR,NVAR) 

NMl-NVAR-1 
DO 410 K=l,NMl 
KPl-K+l 
DO 395 I=KPl,NVAR 
SUM=O. 
IMl-I-1 
DO 390 J=K,IMl 

143 
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390 SUM-SUM+A(I,J)*A(J,K) 
A(K,I)--SUM 

395 A(I,K)=-SUM*A(I,I) 
DO 405 I-l,K 
SUM-A(K,I) 
DO 400 J=KPl,NVAR 

400 SUM=SUM+A(J,K)*A(I,J) 
A(K,I)=SUM 

405 A(I,K)=A(K,I) 
410 CONTINUE 

DO 415 J-l,NVAR 
415 A(J,NVAR)-A(NVAR,J) 

GO TO 425 
420 A(l,l)-l./(l.+RP) 

C**COMPUTE TR((A-INVERSE)**2) AND A-INVERSE - RP*(A-INVERSE)**2 
425 TRACE=O. 

IF(RP.LE.O.) GO TO 448 
DO 445 N-1,NVAR 
DO 430 J-1,NVAR 

430 V(J)==A(J,N) 
SUMA-0. 
DO 440 J=N,NVAR 
SUM=0 . 
DO 435 I-1,NVAR 

435 SUM=SUM+V(I)*A(I,J) 
V(J+NVAR)-SUM 

440 A(J,N)=A(J,N)-RP*SUM 
445 TRACE-TRACE+V(N+NVAR) 

C**COMPUTE SUM OF SQUARED ERRORS 
448 YSQ-0. 

DO 450 N-1,NOBS 
K=KOBS(N) 
HCI(N)-BK(N)*HC(K)+BL(N)*HC(K+1)+BM(N)*HC(K+ID)+BN(N)*HC(K+ID+l) 

450 YSQ-YSQ+(HO(N)-HCI(N))*W(N)*(HO(N)-HCI(N)) 
DO 455 I-1,NVAR 

455 YSQ-YSQ+(P(I)-B(I))*WP(I)*(P(I)-B(1)) 
C**COMPUTE ERROR VARIANCE 

TEMP-NPRIR-NVAR 
OBS-NOBS 
VAR=YSQ/(OBS+TEMP+RP*RP*TRACE) 

C**COMPUTE CORRELATION COEFFICIENT 
SUM&-O. 
SUMB=O. 
SUMC-0 . 
SUMD-0. 
SUM-O. 
DO 460 N-l,NOBS 
TMP=W(N)**.S 
W(N)=TMP 
TEMP=TMP*HO(N) 
TMP-TMP*HCI(N) 
SUMA=SUMA+TEMP 

c 

c 
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SUMB-SUMB+TMP 
SUMC-SUMC+TEMP*TEMP 
SUMD-SUMD+TMP*TMP 
SUM=SUM+TEMP*TMP 

460 CONTINUE 
R-(OBS*SvM-SvMA*SvMB)/((OBS*SUMC-S~*SU~)*(OBS*SU~D-SUMB~SUMB)) 

1**.5 
C**PRINT ERROR VARIANCE, ESTIMATED SUM OF SQUARED ERRORS, AND 
C CORRELATION COEFFICIENT 

WRITE(IOUT,864) VAR,YSQ,R 
C**COMPUTE VARIANCE-COVARIANCE MATRIX 

DO 463 J-1,NVAR 
TEMP-V(J+NVXP) 
DO 462 I==J,NVAR 
A(I,J)-VAR*A(I,J)/(V(I+NVX2)*TEMP) 

462 A(J,I)=A(I,J) 
463 V(J)-A(J,J)**.5 

C**PRINT PARAMETERS AND STANDARD ERRORS 
WRITE(IOUT,870) 
DO 480 J=l,NVAR 

480 WRITE(IOUT,856) J,B(J),V(J) 
C**PRINT VARIANCE-COVARIANCE MATRIX 

490 WRITE(IOUT,874) 
CALL PRTOT(A,NVAR,NVD,O) 

C+*COMPUTE AND PRINT CORRELATION MATRIX 
DO 510 J-l,NVAR 
TEMP=V(J) 
DO 500 I-J,NVAR 
A(I,J)-A(I,J)/(V(I)*TEMP) 

500 A(J,I)-A(I,J) 
510 CONTINUE 

WRITE(IOUT,876) 
CALL PRTOT(A,NVAR,NVD,O) 

C**PRINT COMPUTED AND OBSERVED HEADS, AND COMPUTE AND PRINT RESIDUALS 
GO TO 518 

515 DO 516 N-1,NOBS 
K-KOBS(N) 
HCI(N)-BK(N)*HC(K)+BL(N)*HC(K+l)+BM(N)*HC(K+ID)+BN(N)*HC(K+ID+l) 

516 W(N)-W(N)**.5 
518 WRITE(IOUT,878) 

DO 520 N-1,NOBS 
RES-W(N)*(HCI(N)-HO(N)) 
WRITE(IOUT,880) N,HCI(N),HO(N),RES 

520 CONTINUE 
C**PRINT HYDRAULIC HEADS FOR EACH NODE 

WRITE(IOUT,881) 
CALL ARRAY(HC,ID,JD,l) 

C**PRINT SENSITIVITIES FOR EACH NODE 
IF(IPRX.LT.l.AND.KOUNT.LT.NUM) STOP 
WRITE(IOUT,882) 
REWIND ITA 
DO 530 KK==l.NVAR 
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READ(ITA) (CX(I),I-1,NEQ) 
WRITE(IOUT,884) KK 
DO 525 N-1,NIJ 
L-IN(N) 
IF(L.GT.0) GO TO 523 
XV(N)-0. 
IF(L.GT.-2) GO TO 525 
k-L-1 
IZ-IBZN(L+NQSD) 
TMP-0. 
IF(IBPA(IZ).EQ.KK) TMP=PLA(L) 
IF(IBPB(IZ).EQ.KK) TMP-TMP+PLB(L) 
XV(N)-TMP 
GO TO 525 

523 XV(N)-CX(L) 
525 CONTINUE 
530 CALL ARRAY(XV,ID,JD,l) 

IF(NVAR.LT.2) STOP 
C**SCALE AND ORTHOGONALIZE COLUMNS OF SENSITIVITY MATRIX, X: 
C**SCALE X AND AUGMENT X TO INCLUDE PRIOR 

DO 535 N=l,NOBS 
DO 535 K=l,NVAR 

535 S(K,N)=X(K,N)*W(N)/V(K+NVX2) 
IF(NPRIR.LT.1) GO TO 539 
N==NOBS 
DO 538 I=l,NVAR 
IF(WP(I).LT.l.E-10) GO TO 538 
N-N+1 
DO 537 J-1,NVAEt 

537 S(J,N)-0. 
S(I,N)=WP(I)**.5/V(I+NVX2) 

538 CONTINUE 
C**ORTHOGONALIZE S 

539 NTMP=NOBS+NPRIR 
DO 540 I-1,NTMP 

540 CY(I)=S(l,I) 
DO 600 N-2,NVAR 
NMl-N- 1 
SUM-O. 
DO 550 I-1,NTMP 
sUMdJM+cY(I)*cY(I) 
S(NMl,I)-CY(1) 

550 CONTINUE 
IF(SUM.LT.l.E-20) GO TO 610 
V(NMl)-l./SUM 
DO 570 J-1,NMl 
SUM-O. 
DO 560 K-l,NTMP 

560 SUM=SUM+V(J)*S(J,K)*S(N,K) 
570 CX(J)-SUM 

DO 590 K==l,NTMP 
SUM=0 . 

c 

c 
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DO 580 I-1,NMl 
580 SUM=SUM+S(I,K)*CX(I) 
590 CY(K)=S(N,K)-SUM 
600 CONTINUE 

C**PRINT ORTHOGONALIZED S 
610 WRITE(IOUT,886) 

K-l 
k8 
DO 630 M-l,NVAR,8 
IF(L.GT.NVAR) bNVAR 
WRITE(IOUT,888) (I,I=K,L) 
DO 620 J=l,NTMP 
S(NVAR,J)-CY(J) 
WRITE(IOUT,890) J,(S(I,J),I-K,L) 

620 CONTINUE 
WRITE(IOUT,890) 
K-K+8 
L-L+8 

630 CONTINUE 
STOP 

C**READ. PRINT. AND EXECUTE FOR ALTERNATE SOLUTIONS 
640 

D 
670 

680 
685 

RiAD(IIN;800) N 
IF(N.LT.l) STOP 
DO 690 KNT-l,N 
WRITE(IOUT,891) KNT 
DO 670 kl,NVAR 
READ(IIN,812) 1,PR 
V(I)-PR-B(1) 
B(I)-PR 
WRITE(IOUT,892) 
CALL PRTOT(B,NVAR,O,l) 
IF(NBH.LT.1) GO TO 685 
DO 680 N=l,NBH 
M=IBZN(N+NQSD) 
K=IBPA(M) 
TMPA-0. 
IF(K.GT.0) TMPA=PLA(N)*V(K) 
kIBPB(M) 
TMPB=O. 
IF(L.GT.0) TMPB-PLB(N)*V(L) 
J-IBHN(N) 
HC(J)-HC(J)+TMPA+TMPB 
CALL COEF(WELL,HR,HC,CX,CY,VL,QR,CXHR,CXHL,CY,AL 

1,V,IZN,IBZN,IPRM,IBNA,IBNB,IN,IC,NAD) 
CALL D4SOLV(HC,AU,AL,V,IN,IC,NAD) 
WRITE(IOUT,898) 
CALL ARRAY(HC,ID,JD,l) 

690 CONTINUE 
STOP 

C 
800 FORMAT (1615) 
801 FORMAT (20A4) 

SET U 

SET V 
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802 FORMAT (56HONUMBER OF COLUMNS (ID) _____--___-_-____------------- 
$-,I5 
$/56H NUMBER OF ROWS (JD) -_-______----__-_---------------- -, 15 
$/56H NUMBER OF AQUIFER ZONES (NZNS) ________------__------ = ,I5 
$/56H NUMBER OF OBSERVATIONS (NOBS) _______________________ -,I5 
$156~ NUMBER OF AQUIFER PARAMETERS (NPAR) e---m------------ = ,I5 
$156~ TOTAL NUMBER OF PARAMETERS (NEAR) ________--_------__ =, 15 
$/56H NUMBER OF KNOWN POINT FLOWS (NWELS) --__------------- =, 15 
$/56H NUMBER OF SPECIFIED FLOW ZONES' (NQBZ) _______________ -,I5 
$/56~ NUMBER OF SPECIFIED HEAD ZONES' (NHBZ) --------------- =,I5 
$156~ MAXIMUM NUMBER OF ITERATIONS (NI~M) --___------------- E ,I5 
$/56H SENSITIVITY PRINT AND ORTHOGONALIZATION OPTION (IPRX) =,I5 
$/56H ADDITIONAL PRINTOUT OPTION (IPO) _________---_____-__ =,I5 
$/56H SOLUTION ONLY OPTION (ISO) -________------_---------- =,15) 

803 FORMAT (1H ,2OA4) 
804 FORMAT (1Hl) 
806 FORMAT (50H MAXIMUM ALLOWABLE PARAMETER CORRECTION (DMX) - = 

$,G11.5 
$/50H SEARCH DIRECTION ADJUSTMENT PARAMETER (CSA) -- = ,G11.5 
$/50H RIDGE PARAMETER FOR REGRESSION (RP) -_____---_ = ,G11.5 
$/50H BIAS PARAMETER FOR REGRESSION (BP) ----------- = ,G11.5 
$/50H ESTIMATED ERROR VARIANCE (EV) __--_____------_ = ,G11.5) 

810 FORMAT (lHo,l2X,34HINITIAL AQUIFER PARAMETERS BY ZONE/6H ZONE 
1,5X,5HTRANX,8X,5HTRANYANY,8X,5HVLEAK,8X,5HQDIST) 

812 FORMAT (15,4FlO.O) 
814 FORMAT (1H ,14,2X,4(2X,G11.5)) 
816 FORMAT (lHO,llX,25HAQUIFER PARAMETER NUMBERS/lH ,5X,4HZONE,4X 

1,5HTRANX,3X,5HTRANY,3X,5HVLEAK,3X,5HQDIST) 
818 FORMAT (1H ,818) 
820 FORMAT (8FlO.O) 
822 FORMAT (lH0,4X,lgHSTANDARD DEVIATIONS/lH ,3X,22HFOR AQUIFER PARAME 

lTERS/lH ,6X,4HPAR.,6X,4HSTD./lH ,7X,3HN0.,6X,4HDEV.) 
823 FORMAT (1H ,5X,I4,4X,G11.5) 
824 FORMAT (lHO,12X,llHPOINT FLOWS/lH ,7X,lHI,7X,lHJ,4X,9HVOL. RATE) 
826 FORMAT (215,FlO.O) 
828 FORMAT (1H ,218,4X,G11.5) 
830 FORMAT (lH0,22X,27HINITIAL SPECIFIED FLOW DATA/lH ,6X,9HNODE N0.S 

1,7X,4HPAR.,6X,4HFLOW,lOX,4HSTD./lH ,19H IA JA IB JB,4X 
~,~HNO.,~X,~HPARAMETER,~X,~HDEV.,~X,~OHMLJLTIPLIER) 

831 FORMAT (1H ,4(1X,I3,lX),2X,I3,3X,3(2X,Gll.5)) 
832 FORMAT (515,3FlO.O) 
833 FORMAT (lHo,18X,27HINITIAL SPECIFIED HEAD DATA) 
834 FORMAT (415,2FlO.O) 
836 FORMAT (lH0,22H NO. OF NODES IN ZONE,I4,3H = ,13/1H 

1,20H PAR. NO. HEAD A - ,13,12X,18HPAR. NO. HEAD B - ,13/1H 
2,21H STD. DEV. HEAD A - ,G11.5,22H STD. DEV. HEAD B - ,G11.5 
3/1H ,20X,22HINITIAL VALUES OF HEAD/lH ,21X,lHI,5X,lHJ,8X,4HHEAD) 

840 FORMAT (1H ,19X,2(13,3X),2X,G11.5) 
842 FORMAT (9HOAT CELL ,lH(,I3,1H,,I3,lH),23H, IZN>O, CX-0, AND CY=O) 
844 FORMAT (60HOPROGRAM ABORTED BECAUSE OF CONFLICT BETWEEN IZN, CX, A 

1ND CY) 
846 FORMAT (18H0 INITIAL SOLUTION) 

c 

c 
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848 FORMAT (46HON0. OF PARAMETERS HAVING PRIOR INFORMATION - ,14) 
850 FORMAT (lH0,3X,55HOBSERVATION NUMBER AND SENSITIVITIES FOR EACH PA 

1RAMETER) 
852 FORMAT (1H ,lX,I4,7(1X,G11.5)/(1H ,(5X,7(1X,G11.5)))) 
856 FORMAT (1H ,lX,I4,3X,4(G11.5,4X)) 
858 FORMAT (11HOPARAMETER ,13,17H EFFECTIVELY ZERO) 
860 FORMAT (//32HOSOLUTION FAILED TO CONVERGE IN ,13,11H ITERATIONS) 
862 FORMAT (//23HOSOLUTION CONVERGED IN ,13,11H ITERATIONS) 
864 FORMAT (18HOERROR VARIANCE - ,G11.5/35H ESTIMATED SUM OF SQUARED E 

1RRORS - ,G11.5/27HeCORRELATION COEFFICIENT = ,G11.5) 
870 FORMAT (lH0,5X,24HESTIMATED PARAMETER DATA/lH ,6H PAR. 

l/lH ,6H N0.,5X,4HPAR.,9X,9HSTD. DEV.) 
874 FORMAT (28H0 VARIANCE-COVARIANCE MATRIX) 
876 FORMAT (20H0 CORRELATION MATRIX) 
878 FORMAT (lH0,21X,14HHEAD RESIDUALS/lH ,7H OBS.,5X,9HPREDICTED 

1,7X,8HOBSERVED,8X,8HWEIGHTED/lH ,4X,3HN0.,7X,5HVALUE,lOX 
2,5HVALUE,lOX,8HRESIDUAL) 

880 FORMAT (1H ,2X,I4,1X,3(5X,G11.5)) 
881 FORMAT (33H0 FINAL COMPUTED NODAL HEAD ARRAY) 
882 FORMAT (26H0 NODAL SENSITIVITY ARRAYS) 
884 FORMAT (19HO PARAMETER NUMBER ,IS) 
886 FORMAT (lH0,3X,44HSCALED AND ORTHOGONALIZED SENSITIVITY MATRIX 

l/lH ,49H OBSERVATION NUMBER AND VALUES FOR EACH PARAMETER) 
888 FORMAT (7H OBS.,13X,14HPARAMETER NOS./lH ,3X,3HNO.,4X,8(?3,9X)) 
890 FORMAT (1H ,lX,I4,8(1X,G11.5)) 
891 FORMAT (24HOADDITIONAL SOLUTION NO.,I5) 
892 FORMAT (lH0,30X,14HNEW PARAMETERS/lH ,3(4X,3HN0.,8X,5HVALUE,4X)) 
898 FORMAT (16H0 COMPUTED HEADS) 

END 
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SUBROUTINE ARRAY(A,IND,JND,IT) 
IMPLICIT DOUBLE PRECISION (A-H,O-2) 
DIMENSION A(IND,JND) 
COMMON/TNME/IIN,IOUT 

C**IF IT=O, LOAD 1 AND 2 DIMENSIONAL ARRAYS 
C**IF IT=l, PRINT 2 DIMENSIONAL ARRAYS 

IF(IT.EQ.1) GO TO 55 
DO 5 J=l,JND 
DO 5 I=l,IND 

5 A(I,J)=O. 
READ(IIN,65) NME,NOBL,IPRN 
WRITE(IOUT,75) NME 
DO 50 K=l,NOBL 
READ(IIN,70) IB,IE,JB,JE,FACT,IVAR 
WRITE(IOUT,80) K,IB,IE,JB,JE,FACT 
IF(IVAR.GT.0) GO TO 20 
DO 10 J=JB,JE 
DO 10 I=IB,IE 

10 A(I,J)=FACT 
GO TO 50 

20 DO 40 J=JB,JE 
READ(IIN,90) (A(I,J),I=IB,IE) 
DO 40 I=IB,IE 

40 A(I,J)=A(I,J)*FACT 
50 CONTINUE 

IF(IPRN.GT.O) RETURN 
WRITE(IOUT,lOO) NME 

55 DO 60 K=l,IND,lO 
IlO=K+9 
IF(IlO.GT.IND) IlO=IND 
WRITE(IOUT,llO) (I,I=K,IlO) 
WRITE(IOUT,105) 
DO 60 J=l,JND 
JR=JND-J+l 

60 WRITE(IOUT,120) JR,(A(I,JR),I=K,IlO) 
RETURN 

C 
65 FORMAT (A4,1X,215) 
70 FORMAT (415,F10.0,315) 
75 FORMAT (lHO,A4) 
80 FORMAT (1H ,13,2X,5HIB = ,15,2X,5HIE = ,15,2X,5HJB = ,15,2X 

1,5HJE = ,15,2X,7HFACT = ,G11.5) 
90 FORMAT (8F10.0) 

100 FORMAT (lHO,lX,A4,6H ARRAY) 
105 FORMAT (1H ) 
110 FORMAT (lH0,10(9X,I3)) 
120 FORMAT (1H ,13,1X,lO(lX,G11.5)) 

END 
SUBROUTINE ARRAYI(INT,IND,JND,IT) 
DIMENSION INT(IND,JND) 
COMMON/TNME/IIN,IOUT 

C**IF IT=O, LOAD 1 AND 2 DIMENSIONAL INTEGER ARRAYS 
C**IF IT=.l, PRINT 2 DIMENSIONAL INTEGER ARRAYS 

c 

c 
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IF(IT.EQ.l) GO TO 45 
DO 5 J=l,JND 
DO 5 I=l,IND 

5 INT(I,J)=O 
READ(IIN,55) NME,NOBL,IPRN 
WRITE(IOUT,65) NME 
DO 40 K=l,NOBL 
READ(IIN,60) IB,IE,JB,JE,IFACT,IVAR 
WRITE(IOUT,70) K,IB,IE,JB,JE,IFACT 
IF(IVAR.GT.0) GO TO 20 
DO 10 J=JB,JE 
DO 10 I=IB,IE 

10 INT(I,J)=IFACT 
GO TO 40 

20 DO 30 J=JB,JE 
READ(IIN,60) (INT(I,J),I=IB,IE) 

30 CONTINUE 
40 CONTINUE 

IF(IPRN.GT.O) RETURN 
WRITE(IOUT,80) NME 

45 DO 50 K=l,IND,30 
130=K+29 
IF(I30.GT.IND) I30=IND 
WRITE(IOUT,90) (I,I=K,I30) 
WRITE(IOUT,lOO) 
DO 50 J=l,JND 
JR=JND-J+l 

50 WRITE(IOUT,llO) JR,(INT(I,JR),I=K,I30) 
RETURN 

C 
55 FORMAT (A4,1X,2I5) 
60 FORMAT (1615) 
65 FORMAT (lHO,A4) 
70 FORMAT (1H ,13,2X,5HIB = ,15,2X,5HIE = ,15,2X,5HJB = ,15,2X 

1,5HJE = ,15,2X,8HIFACT = ,15) 
80 FORMAT (lHO,lX,A4,6H ARRAY) 
90 FORMAT (lH0,3X,30(1X,I3)) 

100 FORMAT (1H ) 
110 FORMAT (1H ,31(I3,1X)) 

END 
SUBROUTINE ORDER(JPOS,IN,IC) 
DIMENSION JPOS(l),IN(l),IC(5,1) 
COMMON/INT/NIJ,NEQ,ICR,ICRl,IBl,LH1,ID,JD,IM,JM,NOBS,NQSD,NBH 

1,NVAR,NVX2,KOUNT,INDT,IPO 
COMMON/TNME/IIN,IOUT 

C**COMPUTE EQUATION NUMBERS FOR D4 ORDERING: 
NXP=ID+JD-1 
K=O 

C**ORDER--LEFT TO RIGHT, BOTTOM TO TOP 
DO 20 I=l,NXP,2 
DO 20 J=l,JD 
IK=I-J+l 
IF(IK.LT.l.OR.IK.GT.ID) GO TO 20 

151 
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N=IK+JPOS(J) 
IF(IN(N).LT.l) GO TO 20 
K=K+l 
IN(N)=K 

20 CONTINUE 
ICR=K+l 
DO 30 1=2,NXP,2 
DO 30 J=l,JD 
IK=I-J+l 
IF(IK.LT.l.OR.IK.GT.ID) GO TO 30 
N=IK+JPOS(J) 
IF(IN(N).LT.l) GO TO 30 
K=K+l 
IN(N)=K 

30 CONTINUE 
C**COMPUTE BAND WIDTH AND DETERMINE CONNECTING EQUATION NUMBERS: 

MNo=9999 
Mxo=o 
N=O 
IND=O 
DO 80 J=l,JD 
DO 80 I=l,ID 
N=N+l 
JR=IN(N) 
IF(JR.LT.l.OR.JR.GE.ICR) GO TO 80 
IU=l 

C**BELOW 
IF((J-l).LT.l.OR.IN(N-ID).LT.l) GO TO 40 
1u=1u+1 
IC(IU,JR)=IN(N-ID) 
MM=IN(N-ID)-JR 
Mxo=MAxo(MM,mo) 
MNO=MINO(MM,MNO) 

C**LEFT 
40 IF((I-l).LT.l.OR.IN(N-l).LT.l) GO TO 50 

1u=1u+1 
IC(IU,JR)=IN(N-1) 
MM=IN(N-l)-JR 
MNO=MINO(MM,MNO) 
Mxo=MAxo (MM,MxO) 

C**RIGHT 
50 IF((I+l).GT.ID.OR.IN(N+l).LT.1) GO TO 60 

1u=1u+1 
IC(IU,JR)=IN(N+l) 
MM=IN(N+l)-JR 
Mx0=MAx0(MM,Mx0) 
MNO=MINO(MM,MNO) 

C**ABOVE 
60 IF((J+l).GT.JD.OR.IN(N+ID).LT.l) GO TO 70 

1u=1u+1 
IC(IU,JR)=IN(N+ID) 
MM=IN(N+ID)-JR 
Mxo=MAxo (MM,M.xO) 

c 

c 
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B 

B 

Progmm Listing-Continued 

MNO=MINO(MM,MNO) 
70 IC(l,JR)=IU 

IF(IU.GT.l) GO TO 80 
WRITE(IOUT,llO) 1,J 
IND-1 

80 CONTINUE 
IF(IND.GT.0) STOP 
NEQ=K 
ICRl=ICR-1 
IBl=MXO-MNO+l 
LHl=NEQ-ICRl 
WRITE(IOUT,90) 
WRITE(IOUT,lOO) ICRl,IBl,LHl,ICRl,NEQ 
RETURN 

90 FORMAT (51HOSOLUTION BY LDU FACTORIZATION ASSUMING D4 ORDERING) 
100 FORMAT (65H MIN'IMUM DIMENSIONS FOR ARRAYS USED BY THIS METHOD ARE 

1AS FOLLOWS/lH ,12H AU: 5 BY,I5/1H ,4H AL:,I5,3H BY,I5/1H 
2,12H IC: 5 BY,I5/1H ,4H V:,I5) 

110 FORMAT (lHO,13HACTIVE NODE (,13,1H,,I3,20H) CANNOT BE ISOLATED) 
END 
SUBROUTINE COEF(WELL,HR,HC,CX,CY,VL,QR,CXHR,CXHL,CYHT,CYHB,QBF 

1,B,AU,AL,V,IZN,IBZN,IPRM,IBNA,IBNB,IN,IC,NAD) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION WELL(1),HR(1),HC(1),CX(1),CY(l),VL(l),QR(l),CXHR(l) 

l,CXHL(1>,CYHT(1),CYHB(l),QBF(1),B(1),AU(5,l),AL(N~,l),V(l) 
DIMENSION IZN(1),IBZN(l),IP~(4,1),IBNA(1),IBNB(1),IN(l),IC(5,l) 
COMMON/INT/NIJ,NEQ,ICR,ICRl,IB1,LH1,ID,JD,IM,JM,NOBS,NQSD,NBH 

1,NVAR,NVX2,KOUNT,INDT,IPO 
C**INITIALIZE ARRAYS 

DO 10 J=l,ICRl 
DO 10 1=1,5 

10 AU(I,J)=O. 
DO 20 J=l,LHl 
DO 20 I=l,IBl 

20 AL(I,J)=O. 
DO 40 I=l,NIJ 
N=IN(I) 
IF(N.GT.0) V(N)=WELL(I) 

40 CONTINUE 
IF(NBH.LT.1) GO TO 45 
DO 42 I=l,NBH 
CXHR(I)=O. 
CXHL(I)=O. 
CYHT(I)=O. 

42 CYHB(I)=O. 
C**CALCULATE V FOR SPECIFIED FLOW PARAMETERS 

45 IF(NQSD.LT.l) GO TO 52 
DO 50 I=l,NQSD 
IZ=IBZN(I) 
TMP=B(IZ)*QBF(I) 
INA=IBNA(I) 
L=IN(INA) 
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Program Listing-Continued 

IF(L.GT.O) V(L)=V(L)+TMF 
INB=IBNB(I) 
L=IN(INB) 
IF(L.GT.O) V(L)=V(L)+TMP 

50 CONTINUE 
C**BEGIN MAIN LOOP 

52 N=O 
DO 150 J=l,JM 
DO 150 I=l,IM 
N=N+l 
M=IZN(N) 
IF(M.LT.1) GO TO 150 
LTX=IPRM(l,M) 
LTY=IPRM(2,M) 
LVL=IPRM(3,M) 
LQD=IPRM(4,M) 
NB=N+J 
NA=NB-1 
NC=NB+ID 
ND=NA+ID 
INA=IN(NA) 
INB=IN(NB) 
INC=IN(NC) 
IND=IN(ND) 
CXT=B(LTX)*CX(N) 
CYT=B(LTY)*CY(N) 
VLT=B(LVL)*VL(N) 
QRT=B(LQD)*QR(N) 
E=CXT+CYT+VLT 

C**CALCULATE AU, AL, V, AND COEFFICIENT ARRAYS FOR SPECIFIED HEAD 
C PARAMETERS 

K=-INA- 
IF(K) 60,75,53 

53 CXHR(K)=CXHR(K)+CXT 
CYHT(K)=CYHT(K)+CYT 
GO TO 75 

60 IF(INA.GE.ICR) GO TO 65 
AU(l,INA)=AU(l,INA)+E 
AU(4,INA)=AU(4,INA)-CXT 
AU(5,INA)=AU(5,INA)-CYT 
GO TO 70 

65 AL(l,INA-ICRl)=AL(l,INA-ICRl)+E 
70 V(INA)=V(INA)+QRT+VLT*(HR(NA)-HC(NA))+CXT*(HC(NB)-HC(NA)) 

~+CYT*(HC(ND)-HC(NA)) 
75 K=-INB-1 

IF(K) 85,100,77 
77 CXHL(K)=CXHL(K)+CXT 

CYHT(K)=CYHT(K)+CYT 
GO TO 100 

85 IF(INB.GE.ICR) GO TO 90 
AU(l,INB)=AU(l,INB)+E 
AU(3,INB)=AU(3,INB)-CXT 
AU(5,INB)=AU(5,INB)-CYT 

a 

c 
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Program Listing-Continued 

GO TO 95 
90 AL(1,INB-ICR1)=AL(1,INB-ICR1)+E 
95 V(INB)=V(INB)+qRT+VLT*(HR(NB)-HC(NB))+CXT*(HC(NA)-HC(NB)) 

l+CYT*(HC(NC)-HC(NB)) 
100 K=-INC-1 

IF(K) 110,125,102 
102 CXHL(K)=CXHL(K)+CXT 

CYHB(K)=CYHB(K)+CYT 
GO TO 125 

110 IF(INC.GE.ICR) GO TO 115 
AU(l,INC)=AU(l,INC)+E 
AU(2,INC)=AU(2,INC)-CYT 
AU(3,INC)=AU(3,INC)-CXT 
GO TO 120 

115 AL(l,INC-ICRl)=AL(l,INC-ICRl)+E 
120 V(INC)=V(INC)+QRT+~T*(HR(NC)-HC(NC))+CXT*(HC(~)-HC(NC)) 

~+CYT*(HC(NB)-HC(NC)) 
125 K=-IND-1 

IF(K) 135,150,127 
127 CXHR(K)=CXHR(K)+CXT 

CYHB(K)=CYHB(K)+CYT 
GO TO 150 

135 IF(IND.GE.ICR) GO TO 140 

B 

AU(l,IND)=AU(l,IND)+E 
AU(2,IND)=AU(2,IND)-CYT 
AU(4,IND)=AU(4,IND)-CXT 
GO TO 145 

140 AL(l,IND-ICRl)=AL(l,IND-ICRl)+E 
145 V(IND)=V(IND)+QRT+VLT*(HR(ND)-HC(ND))+CXT*(HC(NC)-HC(M))) 

l+CYT*(HC(NA)-HC(ND)) 
150 CONTINUE 

C**COMFWXS AU 
N=O 
DO 190 J=l,JD 
DO 190 I=l,ID 
N=N+l 
K-IN(N) 
IF(K.LT.l.OR.K.GT.ICRl.OR.IC(l,K).EQ.5) GO TO 190 
IU-1 
IF((J-l).LT.l.OR.IN(N-ID).LT.l) GO TO 160 
IU=IU+l 
AU(IU,K)=AU(2,K) 

160 IF((I-l).LT.l.OR.IN(N-l).LT.l) GO TO 170 
1u=1u+1 
AU(IU,K)=AU(3,K) 

170 IF((I+1).GT.ID.OR.IN(N+1).LT.1) GO TO 180 
1u=1u+1 
AU(IU,K)=AU(4,K) 

180 IF((J+l).GT.JD.OR.IN(N+ID).LT.l) GO TO 190 
1u=1u+1 
AU(IU,K)=AU(5,K) 

190 CONTINUE 
RETURN 

155 
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Program Listing-Continued 

END 
SUBROUTINE D4SOLV(HC,AU,AL,V,IN,IC,NAD) 
IMPLICIT DOUBLE PRECISION (A-~,0,-2) 
DIMENSION HC(l),AU(5,1),AL(NAD,l),V(l) 
DIMENSION IN(l),IC(5,1) 
COMMON/INT/NIJ,NEQ,ICR,ICR1,IBl,LHl,ID,JD,~,~,NOBS,NQSD,NBH 

1,NVAR,NVX2,KOUNT,INDT,IPO 
C**DECOMPOSE TO FILL AL 

DO 280 J=l,ICRl 
II=IC(l,J) 
DO 270 1=2,11 
LR=IC(I,J) 
L=LR-ICRl 
C=AU(I,J)/AU(l,J) 
DO 260 K=I,II 
KL=IC(K,J)-LR+l 
AL(KL,L)=AL(KL,L)-C*AU(K,J) ,,,, 

260 CONTINUE 
AU(I,J)=C 
V(LR)=V(LR)-C*V(J) 

270 CONTINUE 
280 V(J)=V(J)/AU(l,J) 

C**DECOMPOSE AL 
JJ=NEQ-ICR 
DO 310 J=l,JJ 
JR=J+ICRl 
L=J 
DO 300 I-2,IBl 
L=L+l 
IF(AL(I,J).EQ.o.) GO TO 300 
LR=L+ICRl 
C=AL(I,J)/AL(l,J) 
KL=o 
DO 290 K=I,IBl 
KL=KL+l 
IF(AL(K,J).NE.o.) AL(KL,L)=AL(KL,L)-C*AL(K,J) 

290 CONTINUE 
AL(I,J)=C 
v(LR)=v(LR)-REV 

300 CONTINUE 
310 V(JR)=V(JR)/AL(l,J) 

C**BACK SOLVE--LOWER HALF 
V(NEQ)=V(NEQ)/AL(l,NEQ-ICRl) 
DO 330 J=l,JJ 
K=NEQ-J 
KL=K-ICRl 
L=K 
DO 320 1=2,IBl 
L=L+l 
IF(AL(I,KL).NE.O.) V(K)=V(K)-AL(I,KL>*V(L) 

320 CONTINUE 
330 CONTINUE 

C**BACK SOLVE--UPPER HALF 
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DO 350 J=l,ICRl 
K=ICR-J 
II=IC(l,K) 
DO 340 1=2,11 ..t 

L=IC(I,K) 
V(K)=V(K)-AU(I,K)*V(L) 

340 CONTINUE 
350 CONTINUE 

C**COMPUTE HC+DELTHC 
DO 360 N=l,NIJ 
L=IN(N) 
IF(L.LT.l) GO TO 360 
HC(N)=HC(N)+V(L) 

360 CONTINUE 
RETURN 
END 
SUBROUTINE LSTSQ(HC,BK,BL,BM,BN,HO,W,P,WP,X,C,B,V,KOBS,IN,N~) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION HC(1),BK(1),BL(1),BM(1),BN(1),HO(1),W(l),P(l),~(l) 

l,X(NVD,l),C(NVD,l),B(l),V(3) 
DIMENSION KOBS(l),IN(l) 
COMMON/INT/NIJ,NEQ,ICR,ICR1,IB1,LHl,ID,JD,IM,JM,NOBS,NQSD,NBH 

l,NVAR,NVX2,KOUNT,INDT,IPO 
COMMON/TNME/IIN,IOUT 
COMMON/REG/DMX,ADMX,AP,CSA,AMP,RP,BP,YSQ 

C**CHECK FOR NONZERO MARQUARDT PARAMETER 
NMl=NVAR-1 
IF(AMP.LT.- .5) GO TO 105 

C**INITIALIZE 
DO 20 J=l,NVAR 
DO 10 I=l,NVAR 

10 C(I,J)=O. 
20 V(J)=O. 

YSQ=O. 
C**FORM COEFFICIENT MATRIX AND R.H.S. VECTOR 

DO 70 N=l,NOBS 
K=KOBS(N) 
TEMP=HO(N)-BK(N)*HC(K)-BL(N)*HC(K+l)-BM(N)*HC(K+ID)-BN(N) 

l*HC(K+ID+l) 
DO 60 J=l,NVAR 
TMP=W(N)*X(J,N)' 
DO 50 I=J,NVAR 

50 C(I,J)=X(I,N)*TMP+C(I,J) 
60 V(J)=TMP*TEMP+V(J) 

YSQ=YSQ+TEMP*W(N)*TEMP 
70 CONTINUE 

IF(NVAR.EQ.l) GO TO 190 
DO 80 I=l,NVAR 
TEMP=C(I,I)+WP(I) 
IF(TEMP.GT.l.E-10) GO TO 78 
WRITE(IOUT,260) I 
INDT=l 
GO TO 80 
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Program Listing-Continued 

78 C(I,I)=TEMP**.S 
80 CONTINUE 

IF(INDT.GT.0) RETURN 
DO 100 J=l,NMl 
Tl%P=C(J,J) 
JPl=Jfl 
DO 90 I=JPl,NVAR 
C(I,J)=C(I,J)/(C(I,I)*TEMP) 

90 C(J,I)=C(I,J) 
V(J)=(V(J)+WP(J)*(P(J)-B(J)))/TEMP+RP*T~*(BP*P(J)-B(J)) 
V(J+NVAR)=V(J) 
V(J+NVXZ)=TEMP 

100 C(J,J)=l.+RP+AMP 
TEMP=C(NVAR,NVAR) 
V(NVAR)=(V(NVAR)+WP(NVAP.)*(P(NVAR)-B(NVAR)))/TEMP 

l+RP*TEMP*(BP*P(NVAR)-B(NVAR)) 
V(NVX2)=V(NVAR) 
V(NVAR+NVX2)=TEMP 
C(NVAR,NVAR)=l.+RP+AMp 
IF(IPO.NE.1) GO TO 105 
WRITE(IOUT,250) 
CALL PRTOT(C,NVAR,NVD,O) 
WRITE(IOUT,255) 
WRITE(IOUT,230) (V(I),I=l,NVAR) 

C**SOLVE FOR V USING LDU FACTORIZATION: 
C**DECOMPOSITION AND FORWARD SUBSTITUTION 

105 DET=l. 
DO 140 K=l,NMl 
pIv=c(~,K) 
DET=DET*PIV 
IF(DABS(PIV).GT.l.E-10) GO TO 110 
WRITE(IOUT,210) 
INDT=l 
RETURN 

110 PIV=l./PIV 
KPl=K+l 
DO 130 J=KPl,NVAR 
TMP=C(J,K)*PIV 
DO 120 I=J,NVAR 

120 C(I,J)=C(I,J>-TMP*C(I,K) 
130 V(J)=V(J)-TMP*V(K) 

C(K,K)=PIV 
140 CONTINUE 

DET=DET*C(NVAR,NVAR) 
IF(DABS(C(NVAR,NVAR)).GT.l.E-10) GO TO 150 
WRITE(IOUT,210) 
INDT=l 
RETURN 

150 IF(AMP.LT.-.5) RETURN 
C**BACK SUBSTITUTION 

v(Nv~)=v(NvAR)/c(NvAR,NVAR) 
I=NVAR 

160 1=1-1 

a 

c 
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IF(I.LT.l) GO TO 175 
1p1=1+1 
suM=o. 
DO 170 J=IPl,NVAR 

170 SUM=SUM+C(J,I)*V(J) 
V(I>=(V(I)-sUM)*c(I,I) 
GO TO 160 

C**CHECK SOLUTION AND ADD MARQUARDT PARAMETER IF NEEDED 
175 

176 

178 
180 

TMPA=O. 
TMPB=O. 
TMPC=O. 
DO 176 I=l,NVAR 
TMPA=TMPA+V(I)*V(I) 
TMPB=TMPB+V(I+NVAR)*V(I+NVAR) 
TMPC=TMPC+V(I)*V(I+NVAR) 
IF(TMPC.GT.CSA*DSQRT(TMPA*TMPB)) GO TO 200 
AMP=1.5*AMP+.oo1 
IF(AMP.GT.l.) GO TO 200 
DO 180 I=l,NVAR 
V(I)=V(I+NVAR) 
C(I,I)=l.+RP+AMP 
DO 178 J=I,NVAR 
C(J,I)=C(I,J) 
CONTINUE 
GO TO 105 

C**SOLUTION WHEN NVAR=l 
190 TEMP=C(l,l)+WP(l) 

IF(TEMP.GT.l.E-10) GO TO 195 
I=1 
WRITE(IOUT,260) I 
INDT=l 
RETURN 

195 V(3)=TEMP**.5 
V(2)=(V(1)+WP(1)*(P(l)-B(1)))/V(3)+RP*V(3)*(BP*P(l)-B(l)) 
C(l,l)=l.+RP 
DET=C(l,l) 
V(l)=V(2)/DET 
IF(IPO.NE.l) GO TO 200 
WRITE(IOUT,250) 
CALL PRTOT(C,l,NVD,O) 
WRITE(IOUT,255) 
WRITE(IOUT,230) V(1) 

C**COMPUTE AND PRINT PARAMETERS 
200 

201 
202 

B 203 

ADMX=O. 
DO 203 J=l,NVAR 
V(J)=V(J)/V(J+NVX2) 
TMPA=l. 
IF(B(J)) 201,202,201 
TMPA=B(J) 
TMF=DABS(V(J)/TMPA) 
IF(TMP.GT.ADMK) ADMK=TMP 
CONTINUE 
AP=l. 
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IF(ADMX.GT.DMX) AP=DMX/ADMX 
DO 204 J=l,NVAR 
V(J)=AP*V(J) 

204 B(J)=V(J)+B(J) 
WRITE(IOUT,220) KOUNT,YSQ,DET,AMP,AP 
w~1~~(1ouT,230) (B(J),J=~,NVAR) 
RETURN 

C 
210 FORMAT (42HOLEAST SQUARES COEFFICIENT MATRIX SINGULAR 

1/35H SOLUTION FOR PARAMETERS NOT UNIQUE) 
220 FORMAT (lHo,14HITERATION NO. ,13/1H ,6HYSQ = ,G11.5,2X 

1,9HDET(C) = ,G11.5,2X,6HAMF = ,G11.5,2X,5HAP = ,G11.5 
2/1H ,21HREGRESSION PARAMETERS) 

230 FORMAT ((1H ,8(G11.5,2X))) 
250 FORMAT (29Ho SCALED LEAST SQUARES MATRIX) 
255 FORMAT (24H0 SCALED GRADIENT VECTOR) 
260 FORMAT (29HoSENSITIVITIES FOR PARAMETER ,14,17H EFFECTIVELY ZERO) 

END 
SUBROUTINE PRTOT(C,NO,NOD,IT) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION C(1) 
COMMON/TNME/IIN,IOUT 

C**IF IT=O, PRINT SYMMETRIC MATRIX DIVIDED VERTICALLY INTO TEN-COLUMN 
C BLOCKS 
C**IF IT-l, PRINT VECTOR IN THREE COLUMNS 

IF(IT.EQ.l) GO TO 25 
DO 20 L=l,NO,lO 
JlO=L+9 
IF(JlO.GT.NO) JlO=NO 
NRITE(IOUT,~~) (J,J=L,J~~) 
WRITE(IOUT,50) 
K=-NOD 
DO 10 I=l,NO 
K=K+NOD 

10 WRITE (IOUT,40) I,(C(J+K),J=L,Jlo) 
WRITE(IOUT,60) 

20 CONTINUE 
RETURN 

25 NR=N0/3 
IF((3*NR).NE.N0) NR=NR+l 
DO 26 K=l,NR 

26 WRITE(IOUT,80) (L,C(L),L=K,NO,NR) 
RETURN 

C 
30 FORMAT (lH0,8X,I3,9(9X,I3)) 
40 FORMAT (1H ,13,10(1X,G11.5) 
50 FORMAT (1H ) 
60 FORMAT (1Ho) 
80 FORMAT (1H ,3X,3(13,7X,G11.5,3X)) 

END 

c 

c 
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SUBROUTINE HOBS(DX,DY,X,Y,BK,BL,BM,BN,HO,W,KOBS) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION DX(l),DY(1),X(1),Y(1),BK(1),BL(1),BM(l),BN(l),HO(l) 

l,W(l) 
DIMENSION KOBS(1) 
COMMON/INT/NIJ,NEQ,ICR,ICRl,IBl,LH1,ID,JD,IM,JM,NOBS,NQSD,NBH 

1,NVAR,NVX2,KOUNT,INDT,IPO 
COMMON/TNME/IIN,IOUT 

C**COMPUTE X-LOCATIONS OF NODE POINTS 
X(1)=0. 
DO 10 1=2,ID 

10 X(1)=X(1-l)+DX(I-1) 
C**COMPUTE Y-LOCATIONS OF NODE POINTS 

Y(l)=O. 
DO 20 J=2,JD 

20 Y(J)=Y(J-l)+DY(J-1) 
WRITE(IOUT,40) 
DO 30 I=l,NOBS 

C**READ OBSERVED HEAD DATA 
READ(IIN,50) N,IL,JL,XL,YL,HO(N),W(N) 
WRITE(IOUT,60) N,IL,JL,XL,YL,HO(N),W(N) 

C**COMPUTE LOCATION OF FIRST NODE IN CELL (IL,JL) 
K=IL+IM*(JL-1) 
KOBS(N)=K+(K-l)/IM 

C**COMPUTE WEIGHTS FOR BILINEAR INTERPOLATION 
AREA=DX(IL)*DY(JL) 
BK(N)=(X(IL+l)-XL)*(Y(JL+l)-YL)/AREA 
BL(N)=(XL-X(IL))*(Y(JL+l)-YL)/AREA 
BM(N)=(x(IL+l)-XL)*(YL-Y(JL))/AREA 

30 BN(N)=(XL-X(IL))*(YL-Y(JL))/AREA 
C 

40 FORMAT (lH0,25X,L8HOBSERVED HEAD DATA/lH ,6H OBS.,2X,9HCELL LOC. 
1,3X,6HX LOC.,7X,6HY LOC.,8X,4HOBS.,8X,6HWEIGHT/lH ,6H N0.,4X 
2,1HI,5X,lHJ,30X,4HHEAD) 

50 FORMAT (315,4FlO.O) 
60 FORMAT (1H ,lX,3(14,2X),4(G11.5,2X)) 

RETURN 
END 
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5 Elementary Analysis 
and Use of the 

Regression Model 

5.1 Assumed Forms of Model 
Equations 

As a purely algebraic process, regression con- 
tains no assumptions other than those already 
mentioned. However, to statistically analyze 
results of, and predictions to be made by, the 
method, additional assumptions must be made. 
Based on these assumptions, an effective meth- 
odology has been developed (see, for example, 
Draper and Smith, 1981) to analyze and use a 
linear regression model. 

The statistical methods also may be applied 
to a nonlinear model, provided the model is close 
enough to being linear. Fortunately, whether or 
not the model is close enough can usually be 
determined. All statistics and procedures are, 
accordingly, derived for a linear, or effectively 
linear, model. To make the equations applicable 
for both a linear and nonlinear model, the basic 
types of models assumed are the incremental 
linear model and the nonlinear model as linear- 
ized using the Taylor series expansion. 

The model assumed, then, is of the form 

r~-foqe-~oo, (5.1-1) 

where strict equality applies for a linear model 
and, for a nonlinear model, X is assumed to be 
evaluated at kP Also, for simpplicity of notation, 
define 

fs=r(ia) (5.1-2) 

Based on equation 5.1-1, the true regression 
model is 

~-)px(~-bo)+~ (5.1-4) --- 

where strict equality only holds for a linear 
model because g is the true vector of disturb- 
ances. The estimated regression model derived 
from equation 5.1-4 is 

I-@gb-bo) +e (5.1-5) 

where, as for equation 5.1-4, strict equality only 
holds for a linear model because e is assumed 
to be the true vector of residuals defined by 
g=‘-fQ9 b). 

By mi&nizing S(b)=eToe with respect to & -- 
using the @ndardprocedure, Aexact best-fit 
estimates b of @ and $=Y-fl&&) of 5 are ob- 
tained. For a linear model2 is obtained exact- 
ly by using equation 5.1-i as the estimated 
regression model. For a nonlinear model, use of 
the linearized model Ifads to an approximate 
relationship to find b. Thus, by minimizing 
S(b) using equation 5.1-5 as the estimated 
regression model, normal equations 

xTux(k-~o)~xTo(Y-fo) (5.1-6) --- - -- 

that are approximate for a nonlinear model are 
derived. The regression model obtained by 
replacing general estimates b yd e in equation 
5.1-5 with best-fit estimates b and $ is 

y-fo~x(S-bJ-J+~ . (5.1-7) -- 

yy utiJizing the definition of e^ (&Y-f, where -- 
f=&@), in equation 5.1-7, a predictive model 

is obtained. 
A final point is the establishment of the gen- 

eral condition for a minimum in S(b). If b is set 
equal to $ in equation 5.1-6, then to=1 and 

XQ Y-f)=2 . (5.1-9) - -- 

Because any approximation Qrherent in equa- 
tion 5.1-6 is removed as bo+&, equation 5.1-9 
is exact for both linear and nonlinear models. 
The left side of equation 5.1-9 is the negative 
of the gradient of S(&. Thus, equation 5.1-9 
states that the gradient of S(b) is zero at a min- 
imum point of S(b). 

From here on, for simplicity the approximate 
equality sign in regression models and normal 
equations (for example, 5.1-L 5.1-4 through 
5.1-8) is replaced by an equal sign. However, 
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remember that all relationships derived by 
using the linearized model are approximate for 
a nonlinear model. 

5.2 Assumptions of Regression 
Modeling 

Some of-the assumptions listed below have 
already been mentioned; they are discussed 
more completely here. 

1. A true model exists: 

Y=f(t&& . ..&.@)+E . (5.2-l) 

The model response, Y, consists of two parts, 
a deterministic part, f, and an additive sto- 
chastic part, c. 

2. The disturbances, 5, have the following 
properties 

E(g) =Q (5.2-2) 

Var(,) =I2 (5.2-3) 

where the structure, x, of the variance 
covariance matrix Vu 2 is assumed to be sym- 
metric positive deGte and known. Alternative 
forms for equations 5.2-2 and 5.2-3 are ob- 
tained by premultiplying equation 5.2-2, and 
pre- and postmultiplying equation 5.2-3, by 
I-‘/ to obtain 

E(l/y’g)=cj (5.2-4) 

Var(py =$ . (5.2-5) 

The assumptions given by equations 5.2-2 
through 5.2-5 indicate that 5 is considered to 
be a vector of random variables with zero mean 
and variancecovariance matrix V$. Further- 
more, weighted disturbances V -% have con- 
stant variance 12 and are u&orrelated. To 
require the expezted value of p to be zero is to 
require that equation 5.2-l be the true (or un- 
biased) model and to require in addition that 5 
be unbiased. Although imperfections in most 
physical theories prevent the former assump 
tion from holding strictly true, a model should 
be constructed so that the absolute value of any 
E(Ej) is as small as possible. From the practical 

point of view, it is required that the bias not be 
significant. Criteria for this are developed later 
on. 

The full form of ,V is usually very difficult to 
obtain from the type of data usually available. 
However, if ,V is assumed to be diagonal so that 
there is no correlation among the E., then ,V can 
often be found by using graphic *ai methods of 
analyzing residuals, to be discussed later on. 

3. The matrices g and E” are equivalent; 
that is, 

g=p . (5.2-6) 

For a linear model at least, the Gauss-Markov 
theorem (Beck and Arnold, 1971, p. 233-234) 
establishes that the variance of bil V~(bj)l is a 
minimum if equatipn 5.2-6 is true. Furthermore, 
to compute Var(Zj correctly, whether or not 
equation 5.2-6 is true, Imust be known. Hence, 
assumption of another form for 2 (such as L, for 
example) would not avoid the problem of hav- 
ing to know ,V to analyze the model. However, 
for a linear model, equation 5.2-6 is not essen- 
tial to compute an unbiased estimate of e. This 
fact may be demopstrated as follows. Solve 
equation 5.1-6 for b-&, and take the expected 
value of it to obtain:. 

E&h) = (XTwX)-lXTuE( Y-to) -- II - 
=(XTwX)-lXT,X(P-~~)=-~~ (5.2-7) -- --- 

where the fact that E(g)=0 was used. From 
equation 5.2-7 it is seen that 

(5.2-8) 

If 1 is diagonal, then 

I 
1lWl I 

l/O2 

,v- ‘..llw (5.2-9) 
n 

where the double subscripts on w have been 
replaced by single subscripts to indicate the 
diagonal nature of 1. 

4. The disturbances are normally distrib- 
uted: 
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g-q0 V2) -‘- (5.2-10) 

or 

p+4v(~,.g) . (5.2-11) 

Assumption of either equation 5.2-10 or 5.2-11 
is only necessary if investigations using the F 
distribution are to be performed. 

That 5 (or KY’,) be normally distributed im- 
plies that the elements of E%c are neither 
systematic nor constant but are equally likely 
to be positive or negative. In addition, small er- 
rors are more frequent than large ones. Many 
types of models are subject to a number of 
sources of error, any one of which may or may 
not be normally distributed. However, in the 
case where a resultant error is the sum of a 
number of components, Central Limit Theorem 
implies that E (or V%) could be normally dis- 
tributed even-if itsyomponent vectors were not. 

Because 5 and @ are unknown, the assump 
tions (1 through 4) discussed cannot be checked 
directly. However, they may often be checked 
indirectly, which is a subject of model analysis. 

5.3 Relationships Between 
Residuals and Disturbances 

Many of the investigations involving the 
regression model are based either directly or in- 
directly on relationships between residuals 2 
and disturbances E. Residuals may be written 
in terms of disturbances by employing equa- 
tions 5.1-6 and 5.1-7. First, equation 5.1-7 is 
written in the form 

~=y-f~-x(~-~~, . -- (5.3-l) 

Then equation 5.1-6 is solved for &-, and 
substituted into equation 5.3-l to obtain 

~=y-fo-x(xT~x,-lxTu( Y-f,) --- --- 

=(I-X(XTuX)-lXTo)( Y-to) . (5.3-2) P-P- -a- 

If ZJ~ is set equal to 0, then ~-[e=I/-fa=~ and 
equation 5.3-2 gives 

fj=(I-x(xTux)-lxTw)E p--E_ PP- * (5.3-3) 

It is frequently more convenient to work with 
weighted residuals, o”e”, and weighted disturb- 
ances, 0%. In this c&e-equation 5.3-3 becomes -- 

w’/?e^=(~-w”x(xTwx)-lxT,%),‘/n, a- w--m- -- a-- (5.3-4) 

An interesting and useful property of the 
matrix appearing in either equation 5.3-3 or 
5.3-4 is displayed, for equation 5.3-4 for exam- 
ple, as follows: 

In other words, the matrix times itself yields 
the original matrix. This result is true for both 
equations 5.3-3 and 5.3-4. For equation 5.3-4 
it is also true that the matrix is symmetric (as 
can be seen in the derivation of equation 5.3-5), 
so that the matrix times its transpose yields the 
original matrix. This type of matrix is known 
as a symmetric idempotent matrix. 

Another useful property can be derived based 
on the idempotency discussed above. For con- 
venience let 

+,“1x(~&,~-lxT,~ PP-- -- 

Then because R, is idempotent, 

(5.3-6) 

(I-R)(I-R) =I-R-R +R S-P- w-- - 

=I-R . -- (5.3-7) 

Hence, I-R is also idempotent. PP 

5.4 Some Statistical Measures 

The first step in model analysis should always 
be to examine some statistical measures that 
indicate (1) goodness of fit of the model to the 
data and (2) model conditioning as it affects 
reliability of the computed parameters. With 
the background given above, useful statistical 
measures can be derived. 
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5.4.1 The Error Variance, s2 

For a linear model this measure is an unbiased 
estimate of 8. For a nonlinear model, s2 is 
biased. A sketch of jhe derivation follows: The 
sum of squares, S(b), is defined as 

s(~,=e”Tc4Je^ -- 

=(w % A T ‘/a A e) (w e) . (5.4-l) a- a- 

Using equations 5.3-4,5.3-7, and the fact that 
tr(scaler)=scaler, equation 5.4-l becomes 

s(~)=(w’/pE)T(I-R)T(I-R)(wl/‘E) -- a- S-P- 

= tr[(W”E)T(l-R)(W”E)] P- e-m- 

=tr[(l-R)(o”E)(W”E)T] . (5.4-2) B-B -a - 

The expected value of equation 5.4-2 is 

E(S($))= tr{ (~-R)E[(o”E)(w”~)~]} a- P-B- 

=tr[(l-R)Var(w%)] P- a- 

= tr[(l-R)$] P- 

=(n-p)2 (5.4-3) 

from which 

Ed)) 
2=--q . (5.4-4) 

The fact that tr@=p can be demonstrated by 
. rearran 

mate, s P 
g the matrices within R,. The esti- 

, of B is 

(5.4-5) 

A useful modification of equation 5.4-5 that 
is exact for a linear model and almost exact for 
a nonlinear one is obtained by choosing b in 
equation 5.1-7 to be very near b. Then 

2 
(y-fo-x(G-~,),Tw(Y-fo-x(~-~~)) --- -- -- 

S= 
n-p 

= 
n-p (5.4-6) 

where use was made of equation 5.1-6. For a 
linear model be may be chosen to be 0. For a 
nonlinear model a bias exists in equations 5.4-5 
or 5.4-6 that results from the fact that develop- 
ment is based on assumption of a linear model. 

Even when biased, s2 gives a useful measure 
of overall goodness of fit of the model. The 
standard deviation or scatter is given by s. In 
general, s/AY, should be small, where AY, is the 
difference between maximum and minimum 
values of Y,. 

5.4.2 The Correlation, R, Between 
~“1 and ~~1 

I 

This measure is defined as 

my=! oh&% 
i-l 

(5.4-7) 

(5.4-8) 
a 

(5.4-9) 

(5.4-10) 

(5.4-11) 

i=vector of ones, 
and C$ is row i of gS. The correlation R, is 
another measure of goodness of fit. Usually it 
should be greater than about 0.9 to indicate a 
good fit to the reliable data. 

5.4.3 The yariance-Covariance 
Matrix for b 

This measure may be derived directly from 
equation 5.1-6 and is 

= (Y-fo)Tw(Y-fo)-2(~-~~)~~~~(~-~)+(~-~)TXT~(~-~) 
n-p a 
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Var(~)=Var[(XTwX)-lXTw(Y-fO)+bOl -- --- 

=(xGx)-lxT&u( Y)cdx(xTdQ-l a- -a -E_-- 

=(x%.x)-12 -- (5.4-12) 

where assumptions from equations 5.2-3 and 
5.2-6 and the fact that Var(&‘)=Var(~-,$)=g%s 
were employed. The estimate of Var(6, is 

var(~)=(xTux)-1s2 . (5.4-13) - -P 

The standard error of the estimate for the ith 
parameter is given by the square root of the ith 
diagonal component of (XTwx)-‘s2. This esti- 
mate is a measure of they’aF over which the 
respective parameter may be varied to produce 
a similar solution for $he dependent variable as 
that obtained using b. 

5.4.4 The Correlatiop, rip Fetween 
any Two Parameters bi and bi 

By definition 

r. .= 
COV&,~j) 

” [var( ~;)Var( ~j~ 

(5.4-14) 

where the variance and covariance terms are 
components of either (X’L&)%~ or (XT&)%?. 
This measure gives an?&tGate of thydrpe of 
linear dependence of one parameter on another 
throughout the course of repeated experiments 
if such experiments were to be carried out. As 
discussed earlier, it is an indication of the degree 
of linear dependency in the sensitivity matrix. 

Problem 5.4-l 

This problem is concerned with preliminary 
analysis of the linear regression solution of prob- 
lem 3.2-l. The measures (except s/AY,), to be 
computed in a, b, and c below, also are calculated 
by the computer model of problem 4.2-l. Check 
your computations against the computer 
generated results. 

a. Using equation 5.4-6, compute s2. Com- 
pute slAY,. Would you say that the fit is 
very good? 

b. Using equation 5.4-13, compute Va&. 
Are the parameters determined very 
precisely? 

c Using,equation 5.4-14, determine r, the 
correlation matrix. Are there any eGdent 
problems with conditioning? 

5.5 Analysis of Residuals 

Examination of the statistics discussed in the 
previous section should give a preliminary in- 
dication of general model conditioning and 
model fit to the data. However, a thorough 
analysis of residuals is necessary in order to ex- 
amine the validity of the assumptions given in 
section 5.2. Interest is focused primarily on in- 
dications of nonrandomness of the residuals and 
on indications that the residuals are not distrib- 
uted normally. The analysis should include both 
sample and prior information partitions of the 
residuals so that any incompatibility between 
the two partitions can be detected as differences 
between the two partitions. Although the tech- 
niques given in the present section are usually 
adequate to detect any incompatibility, a formal 
test given in section 6.3 also can be applied if 
desired. 

Analytical methods used here are graphical. 
Draper and Smith (1981, p. 141-192) give a 
number of methods for examining residuals, and 
they emphasize that graphical procedures in- 
volving visual analysis are the most valuable 
tools because violations of assumptions serious 
enough to require corrective action generally am 
apparent on the various plots. However, to use 
the procedures effectively it is necessary to de 
termine the properties that the residuals should 
be expected to exhibit under ideal conditions. 

5.5.1 Distribution of Residuals 

Investigation of the distribution of weighted 
residuals $$, where ov is a row of We, made 
in order to infer the &tribution ofkeighted 
disturbances $$, is difficult because, even if 
the assumption given by equation 5.2-5 holds 
so that the elements W% are uncorrelated and 
have equal variance, e ements of 0% are cor- I - 
related and have unequal variance. &how this 
for the linearized model, equations 5.3-4 and 
5.3-6 can be combined to give 
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(p&(I-RpJE (5.5-l) -- WI-- 

from which 

E(o%)=(I-R)c.Alz(~) a- *I- 

=g (5.5-2) 

and 

Var(w%)=Var[(I-R)w%J w- -II 
=(I-R)var(w”e)(I-R)T *- m-m- 

=(I-R)(14QT2 m-s- 
=(I-R)2 . (5.5-3) -- 

Hence, if assumptions given by equations 5.2-4 
through 5.2-6, and 5.2-11 hold, 

c&=12 l-v Iv@,(I-R)2) (5.5-4) a- - w- 

where for convenience, the definition is made 
that o’/pe^=h. 

It & be shown that I-R+1 as n-p*-. 
Whenever n-p becomes srr&.i.i c&relation and 
unequal variance become significant. Most tests 
for distribution of residuals assume equal (or, 
a common) variance and no correlation because 
all residuals are assumed to have come from the 
same univariate distribution. Therefore, correla- 
tion and unequal variance of the hj are serious 
problems with regard to testing for normality 
when the number of parameters is not small 
compared to the number of observations. 

Another difficulty concerns the determination 
of whether or not the model fits the data. If the 
model fits the data and correlation of the values 
of ~j is not significant, then these residuals 
should appear to be nearly random. However, 
if correlation is significant, then the correlation 
will be reflected in the residual values. Patterns 
could develop in some of the plots (to be dis- 
cussed), and these patterns could be mistaken- 
ly attributed to lack of model fit. 

5.5.2 Graphical Procedures 

The first step in using graphical procedures 
is to develop a control group. Several sets of 

simulated residuals distributed as in equation 
5.5-4 form the control group. These sets are 
then compared graphically with the true 
weighted residuals 12 to help decide whether 
the distribution of c differs to a visually de- 
tectable extent from a normal distribution and 
whether correlation could cause an apparently 
nonrandom (or non-normal) pattern of residuals 
to develop in the residual plots. 

A set of simulated residuals may be generated 
by generating a set of uncorrelated random 
normal deviates d so that E(d)=0 and Var(d) 
=Is2, then forming linear coml&aGons of these 
de%ates that have the covariance given by 
equation 5.5-3. The method of generating the 
simulated residuals from the uncorrelated 
random deviates can be derived as follows. 
Assume, as a working hypothesis, that 

g=g (5.5-5) 

where g is the set of simulated residuals, and 
fi is a symmetric and nonstochastic matrix to 
be determined. Vector g must be generated so 
that E(g)=e and Var(g)=(J-g)s (equations 
5.5-2 and 5.5-3). From equation 5.5-5 

mg)=gQg 

=g (5.5-6) 

as required. By definition 

where the definition of Var@ and the symmetry 
of fi were used. Hence, g must be defined so that 

fi2=I-R . (5.543) w- 

However, because 1-R is idempotent, (I-R) 
=(I-R)2, and equati&?.5-8 may be simplipfi~ 
to PbeTome 

g=I-R (5.5-9) w- 

so that equation 5.5-5 assumes as its final form 

g=(I-R)d . s-- (5.5-10) 
c 
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To generate a set of simulated residuals, g, 
it is a simple matter to generate a set of uncor- 

where mi is the number of values of 4 (for 

related random normal deviates, d, then use 
example) smaller than or equal to pi, and n is 
the number of observations. Use of n + 1 in the 

equation 5.5-10. This procedure is followed for 
the number of sets (usually at least three) 

denominator adjusts for the fact that F, can- 
not be equal to 1 because the tail of the normal 

desired to form the control group. distribution extends to infinity. An example of 
Normalprobability p&S.-These are graphs a normal probability plot for i is illustrated in 

of cumulative frequency, F, versus values of the 
elements of vectors p, d, or g. Cumulative fre- 

figure 5.5-l. 
To determine the effects of correlation and 

quency corresponding to the ith element of one 
of the vectors (4, for example) is computed 

unequal variance, normal probability plots for 
the sets d and the sets g may be compared. If 

from the formula the plots for d and R are very similar, then a 
normal probability plot of & would not be 

Fi=mi/(n+l),i=l,2, . . . . n (5.5-11) expected to be affected to a great extent by 
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correlation and unequal variance. Other types 
of plots involving i probably would not be af- 
fected much by correlation and unequal vari- 
ance either. Significant departures of the plots 
for g from those for d suggest serious correla- 
tion and unequal variance effects in 4 also. 

Whether or not i departs to a visually 
detectable extent (which is considered to be 
synonymous with significant here) from a nor- 
mal distribution can be determined by compar- 
ing plots for the generated set g with the plot 
for & If the plot for i has a trend similar to 
the set of curves for g, then the distribution for 
% probably does not differ enough from equa- 
tion 5.5-4 to consider abandoning the normali- 
ty assumption. When examining the plots, it 
must be remembered that, because of correla- 
tion and unequal variance, the plots will not 
necessarily exhibit the linear trend expected for 
a univariate normal distribution. 

Other residualplots.-In the following discus- 
sion it is assumed that the effects of correlation 
and unequal variance resulting from equation 
5.5-3 are negligible so that other effects may 
be investigated. This assumption might hold 
true even if a normal probability plot is affected 
by correlation and unequal variance. However, 

if one or more patterns (or trends) appear to be 
present in one or more of the residual plots, then 
analogous plots using g instead of i also 
should be prepared and examined. If the 
suspicious patterns also are present in the plots 
using g, then the patterns probably result from 
correlation and unequal variance inherent in 
(I-R)s2 and not from model error. 
-see tpes of plot are often useful: (1) Plot 
of 4 VS. fi; (2) plots of 2. VS. independent vti- 

rl ables (Q; (3) plot of u. vs. Cartesian coor- 
dinates of point j. If o=- was employed in the i 
regression, then ~j=~~ Additional discussion 
of the first two types of plots may be found in 
Draper and Smith (1981, p. 147-148). 

1. Plot of z$ vs. fi. This type of plot is il- 
lustrated in figure 5.5-2. Under the given 
assumptions, the plot should display a roughly 
horizontal band of residuals having no apparent 
trend as sketched in figure 5.5-3. In this and 
succeeding figures 5.5-4 through 5.5-6, the 
dashed line outlines the limits of the data. A 
standard runs test (Draper and Smith, 1981, 

Figure 5.5-2 

+I 
1 __---- __---- --- 

“‘c------” 
Figure 5.3-3 

p. 157-162) could be used to te,gt for ran- 
domness of signs of 1;j along the fi axis. 

Three principal types of abnormalities in the 
plot Of ~j vs. fi are often apparent: 

a. Unequal band width (figure 5.5-4). 
This type of trend (or one opposite to it) general- 
ly indicates that the variance of 11, is not con- 
stant. In figure 5.5-4 the oblervations would 
appear to be less reliable as fi increases. 

If the abnormal plot resulted from a least 
squares analysis where E!=I had been assumed, 

then a diagonal form of o #L might be in- 
dicated. In the illustration,-uj should decrease 
with 4. However, if some form of 2 # L had 
originally been assumed, then an abnormal plot, 
of the form shown in figure 5.5-4, involving ~j 
would suggest the 4 are not of equal reliability 
and that o is not correct. Hence, ; should be 
modified, &d the regression performed again. If 
a full form of g is required by the true model, 
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this form cannot generally ,be discovered 
type of analysis. Before a weighted least 
squares is performed, the underlying cause of 
the variable reliability problem should be in- 
vestigated so that the diagonal weights can be 
added according to a rational criterion. 

b. Sloping band (figure 5.5-5). This type of 
problem often indicates model error. Typically, 
it is caused by omitting an intercept from the 
m:del. For a linear model having an intercept, 
CU,fi=O always. Hence in this case an overall 
slope such as depicted in figure 5.5-5 cannot 
result from correlation and unequal variance in 
(I-E)s2. Also, if the model is linear (or effec- 
t&zy so) and E(c)=& then Cov(&i=O even if 
there is no intercept. Thus, it might be zxpected 
that a plot such as shown in figure 5.5-5 would 
usually not result from correlation and unequal 
variance if the model is correct and if the observ- 
ed data are adequate. 

c. Curved or irregularly shaped band (figure 
5.5-6). This is another indication of model error. 
The model is inadequate because it does not ac- 
count for all of the sources of variability in the 

D 
observed data. More, or different, terms should 
be added to the regression equation. For the 
plot shown, it is possible that a quadratic term 
should be added. 

2. Plots of I;j VS. independent variables (&). 
These plots are interpreted in much the same 
way as the first type of plot; they simply pro- 
vide a different viewpoint. 

3. For trend surface types of regression: 
plot Of hj VS. Cartesian coordinates of point j 
(for one or two-dimensional systems). Three- 
dimensional systems can sometimes be reduced 
to two dimensions by using cross sections. 
Systematic highs and lows in the residual pat- 
tern usually suggest that the model does not fit 
the data well. In general, the easier it is to con- 
tour the residual map, the more nonrandom the 
residuals are likely to be. 

Problem 5.5-l 

To the program for computing T and S using 
the Theis equation (problem 3.3-l), add the 
code necessary 10 compute s2 using equation 
5.4-5 and %i@) using equation 5.4-13. You 
will have to unscale the entries of (ZTZ)-l to P_p 

3 
obtain G(6). Examination of the calculation - 
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procedures for obtaining ZTZ and (ZTZ)-’ 
will indicate how the unsF&g shozd-be 
accomplished. 

Conduct a graphical analysis of residuals p 
resulting from the Theis equation problem 
(problem 3.3-l). Compute five sets of random 
normal deviates d and simulated residuals g 
using the residuals analysis program (appendix 
5.31). Plot d and g on normal probability paper. 
Does the plot of 1 differ significantly from the 
plots of g? What can you conclude about the 
distribution of & Does the Theis model appear 
to be adequate? 

The code given in appendix 5.8.1 is designed 
to read COV(I,J) (which is (XT&Y)-‘s2), W(l) 
(which is 5) and X(&J) (whi&‘iX,) in unfor- 
matted form from a file labeled ITB. Normally, 
these data would be read to file ITB from the 
numerical nonlinear regression program of ap- 
pendix 4.3.4. However, the Theis data are not 
obtained from the numerical nonlinear regres- 
sion program. The easiest way to read the Theis 
data is to modify the residuals analysis program 
by replacing READ(ITB) in statements reading 
data sets B, C, and D with READ(IIN,B). Data 
for the program should then be coded as ex- 
plained in appendix 5.8.1, except that the data 
for data sets B, C, and D will now be coded in 
format 8FlO.O. 
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Problem 5.5-2 

Use the output from the two-dimensional flow 
model to analyze the model results of problem 
4.2-2. 

a. What is the value of s2? R,? Compute 
s/AY,. 

b. Is there any evidence of ill-conditioning 
in the results? If there is, what is the 
problem? Which parameters are well- 
determined and which are not? Why? 

c. Conduct a graphical analysis of residuals. 
Develop four sets of random normal 
deviates @ and simulated residuals g, com- 
puted by using the residuals analysis pro- 
gram (appendix 5.8.1). Plot d and g on 
normal probability paper using equation 
5.5-11. Are correlation effects evident? 
Plot i (why 4 instead of p?) on normal 
probability paper. Does the plot differ 
signific@ly from the plots of g? Plot h. 

(I versus fi. Is there an abnormal pattern. 
Plot ~j versus Cartesian coordinates Of 
point j (omitting the prior information). 
Again, is there a pattern to the residuals? 
What do you conclude about the ade 
quacy of the model? 

& 
e= & I I 

k!OO= 
ho1 I 1 ko2 

5.6 Investigation of 
Alternative Parameter Sets 

5.6.1 Generalized W Statistic 

Suppose we want to test the null hypothesis 
that some subset ,Q2 of parameter set @ cannot 
be distinguished from some corresponding 
given subset e2. That is, test 

ITJ~:@~=~~ versus HI&#&. 

The linearized model assumed is 

_Y=f,+.&@-bo)+E 

=fo+~~(el-l?ol)+~2(e2-~~2)+~ (5.6-U 

where g, @, and &e are conformably partitioned 
as follows: 

&=&&I (5.6-2) 

(5.6-3) 

. 

Based on equation 5.6-1, we may state a predic- 
tive model of the form 

~=fo+~1~1-~001)+~2(Q2-~2) (5.6-4) 

where & is sn estimate of & and, under the null 
hypothesis, & is assumed to be given by &. 

The W statistic, which is stated explicitly 
later on, is based on a corn ariso_n of the 

-4 restricted sum of squares (x-0 $x-fl and the 
unrestricted sum of squares (Y-fi’~(Y-A. The 
unrestricted sum of squares G obt-&ed from 
the standard least squares analysis. The re 
stricted sum of squares is obtained by 
minimizing 

with respect to & while holding & constant. 
For a linear model this results in the normal 
equations: 

-1 -o1 =(XTWX~,-~XTW(Y-~-~~(~~-~~~,, (5.6-6) 8 -b -- -P- 

where &,, and ho2 can be set to zero if desired. 
If the model is nonlinear, then-equation 5.6-5 
is minimized with respect to &I by-using the 
standard procedures, except that & is held 
constant. 

If many repeat experiments using linear 
normal equation 5.6-6 were performed, and if 
assumptions given by equations 5.2-5, 5.2-6, 
and 5.2-10 held true, then it would be found 
that 

m F(q, n-p) (5.6-7) 
c 
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where q is the order of &, which is the number 
of restrictions in Ho, and equation 5.4-5 was 
used. The symbol W stands for a random 
variable. For each experiment, a value w of the 
random variable W could be computed. Accord- 
ing to equation 5.6-7, by repeating the experi- 
ment many times, the probability of the ratio 
W having a value of w or a smaller value would 
be found to be given by the cumulative density 
function F. 

Because equation 5.6-7 is proportional to the 
difference between the restricted and un- 
restricted sums of squares divided by the 
unrestricted sum of squareslone might suspect 
the null hypothesis Ho:&=& to be true if w is 
small. However, if w is large, then one might 
suspect that Ho is incorrect. The rejection 
region for the hypothesis test is determined by 
the probability statement P(W>F,(q,n-p))=a, 
where a is the significance level of the test and 
F,(q,n-p) is the upper lOOa% point of the F 
distribution with q and n-p degrees of freedom. 
If the ratio w is greater than F,(q,n-p), as 
found in any table of critical values for the F 
distribution, then the null hypothesis is rejected 
because values of w greater than F,(q,n-p) form 
the rejection region. 

An alternative form for the numerator of 
equation 5.6-7 may be derived by manipulating 
the linearized models. The result, after exten- 
sive algebra, is 

(y-f)*td( Y-j-)-&)*g(y-p) a- 

=(e2-~2,T~(~T~,-1~*]-1(~2-~2) (5.6-8) 

where 

!i=b!* LJ(qXp) , (5.6-9) 

&=identity matrix of order q, and 

&=the partition corresponding to & found 
from the standard (unrestricted) least 
squares analysis. (5.6-10) 

Thus, the alternative form for equation 5.6-7 is 

w= (82-~)*~(x*~x)-‘~~-l(~-~~)lq -- 
s2 (5.6-11) 

If the model is linear, either equation 5.6-7 
or equation 5.6-11 may be used to compute w. 
Both equations:equira an unrestricted regres- 
sion to obtain b and f, but equation 5.6-7 re 
quires, in addition, a restri$ed re-gression using 
equation 5.6-6 to obtain b, and fi Hence, for a 
linear model, equation 5.6-11 is often more ef- 
ficient to use than equation 5.6-7 for practical 
computations. If equation 5.6-l is a linearized 
equation system, derived from a nonlinear 
model, then neither equation 5.6-7 nor equa- 
tions 5.6-8 nor 5.6-11 is exact. However, if 
equation 5.6-l behaves in a way that is close 
enough to being linear, then equations 5.6-7, 
5.6-8, and 5.6-11 are good approximations. 
When working with a nonlinear model, w should 
be computed using both equations 5.6-7 and 
5.6-11. If the conclusions reached by using the 
two different expressions for w are different, 
then the model may be too nonlinear for investi- 
gations using the W statistic. Further investi- 
gation of model nonlinearity may be performed 
by employing the modified Beale’s measure, 
which is discussed in section 6.2. 

In summary, the procedure for testing 

Ho:~2=f2 vs. H1:iJ2fiJ2 

in the model _Y=f,+X(&b,)+g is: 
1. Carry out a reE&sion without any re- 

striction to find 6 for the full model. 
2. When using equation 5.6-7, fix B2 and 

use equation 5.6-6 to find 5, for the 
restricted model. When using equation 
5.6-11, ship this step. 

3. Form the ratio w using equation 5.6-7 or 
equation 5.6-11. 

4. Compare w with the appropriate value of 
FJqwp). 

5.6.2 Joint Confidence Region for & 

Equations 5.6-7 or 5.6-11 also may be used 
to obtain a joint confidence region on e2. The 
confidence region interpretation is based on fix- 
ing a probability of occurrence, P(-WCF,(q,n-p)) 
=1-o, then fkling those vectors @, that would 
yield the specified F or a smaller value. The joint 
confidence region may be written as 
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or 

(e2-~)T~(xTwx)-1HT]-1(~-~2) -- - 
<s2q.Fa(q,n-p) * (5.6-13) 

Equation 5.6-13 plots as a family of q dimen- 
sional ellipsoids (which for q = 1 is a line segment 
bounded by two values for &) in parametyr 
space, and these ellipsoids are centered on &. 
All ellipsoids corresponding to probability levels 
smaller than l-a! lie within the outermost ellip- 
soid, which is defined by strict equality in equa- 
tion 5.6-13. Hence, the specified probability is 
the probability that & lies within the ellipsoid. 
An equivalent statement is that, if many experi- 
ments were conducted, then (l-(r)lOO% of the 
ellipsoids would contain the true parameter set 
e2, Hence, the outermost ellipsoid may be con- 
sidered to be a joint confidence region on &. 

Points (in parameter space) on the edge of the 
confidence region corresponding to the max- 
imum and minimum (or extreme) values that 
some parameter sBi may attain and remain in 
the confidence region are given by 

&& &Fa(q+-p) yb, 
- 

‘bi 
(5.6-14) 

where KT- ‘T-T -/b.,,@2] and I& is the ith column of 
~=(xTux)- ‘s2. 

root Z v;. 
Note that sbi is the square 

Equation i in 5.6-14 gives the extreme values 
of p2i. The parameter vector b computed using 
equation 5.6-14 is the same vector that would 
result if (1) p2i were computed using equaticn 
i in 5.6-14, (2) then the remaining values in & 
were computed to satisfy equation 5.6-13 (with 
strict equality applying to give points on the 
edge of the confidence region), and (3) finally, 
partition bl were computed using equation 
5.6-6. 

Parameter sets computed using equation 

this relationship is not exact for a nonlinear 
model. Therefore, if the regression model is 
nonlinear, the parameter sets computed using 
equation 5.6-14 should be substituted into the 

nonlinear model and (y-tiTwcy-h-(~-~T~(~-~ 
should be computed. If this value is different 
enough from s2qF,(q,n-p) to change any conclu- 
sions, then the model is too nonlinear to use to 
generate linearized confidence regions. The 
modified Beale’s measure discussed in section 
6.2 also can be used to gauge nonlinearity. 

Two end-member cases involving the W 
statistic are often considered separately. In one 
case q=p so that &=@. AlI parameters are thus 
included in any test of HO, and the confidence 
region is on all parameters simultaneously. This 
confidence region is called a joint confidence 
region on all parameters. An example for two 
parameters is diagrammed in figure 5.6-l. In 
the other case, q=l and /3,=/3,. Thus, only 
one parameter is considered in any test of H,,, 
and the confidence region is on only one param- 
eter. The confidence region for this case is 
termed an individual confidence interval on 
parameter Pp. 

Problem 5.6- 1 

a. A method for estimating recharge in 
Nevada is known as the Maxey-Eakin 
method. Using this method, recharge rate 
W in the vicinity of Lake Ohpupu (prob- 
lem 3.2-l) was estimated to be 0.0003 
ftlday. Also, by using specific capacity 
estimates from well-log analysis, T was 
found to be 10 ft2/day. Using these 
estimates, test the null hypothesis that 
there is no significant difference at 
ar=O.O5 between W/T as estimated above 

confidence region 

I 

Figure 5.6- 1 c 
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and the regression estimate of W/T. (Hint: 
Use equation 5.6-11.) Based on the result 
of the hypothesis test, would you consider 
using the prior estimate of W/T as prior 
information in the regression model? 
What other information would you need 
if you did use it? 

b. In addition to asking whether or not 
regression estimate W/T is significantly 
different from another, independent, esti- 
mate, one might ask whether or not W/T 
is even a significant variable in the regres- 
sion model. Set up and conduct a test to 
answer this question, then interpret the 
result. 

c. Using equation 5.6-14, find the bounds of 
the confidence interval on W/T for 
cr=O.O5. (Hint: You need only consider the 
equation corresponding to parameter W/T 
in the system implied by equation 5.6-14.) 

Problem 5.6-2 

Use your Theis equation program (problems 

B 

3.3-l and 5.5-l) and equation 5.6-14 to find the 
sets of parameters corresponding to extreme 
values of T and to extreme values of S, assum- 
ing 4’2. 

Problem 5.6-3 

Using equation 5.6-14 and the results of prob- 
lem 4.2-2, find the sets of parameters cor- 
responding to extreme values of T3 and to 
extreme values of qsl with q=2. 

5.7 Investigation of Predictive 
Reliability 

5.7.1 The yariance-Covariance 
Matrix for f 

Equation 5.1-8 is used to obtain 

Var(~)=Var&~~) +&)I 

=xp-ir(S)XT . (5.7-l) -- 

+n analogous measure for weighted values of 

3 
fis 

varc~MA=var~~~(~-~)+OYsfo] 
=c&Var(~)XTu’/2 . (5.7-2) -- --a 

By using equations 5.3-6 and 5.4-12, equation 
5.7-2 can be written 

Var(~‘/‘~)=~r? . (5.7-3) 

Estimates corresponding to equations 5.7-1, 
5.7-2, and 5.7-3 are 

(5.7-4) 

=R_s2 . (5.7-6) 

The standard error of h is given behe 
square root of the ith diagonal entry of Var(fl. 
This estimateA gives a measurxfA potential 
variability in fi resulting from Var(b). 

It is important to note that equations 5.7-1, 
5.7-2, 5.7-4, and 5.7-5 are valid for prediction 
vectors f having entries that are not necessari- 
ly at observation points. This fact may be 
understood by observing thatprediction equa- 
tion 5.1-8 used to derive Var(fl or Var(%%f) (or 
their estimates) is valid for any set of points, 
not just observation points. However, entries 
in X_ and, if either equation 5.7-2 or 5.7-5 if 
used, 0 must be available fx$I points in fi 
Matrix (XTox)-1s2 used for Var(b) is, of course, 
the stan&rxne based on entries in X only at 
the observation points. 

5.7.2 Confidence Interval for far 

If aI.I parameters are ahowed to vary over the 
confidence region given by equation 5.6-12 or 
equation 5.6-13 with q =p, then the maximum 
and minimum values produced for 5 form a cor- 
responding confidence interval fo: fj. In this 
case, because q=p, e2=@ and fj=foT The 
resulting confidence interval for fj is 

foj=h+ W&-a n-p) Syj (5.7-7) 

where 
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Syj=S J~4~TWX)-‘.X,T (5.7-8) 

and ~j is a row of a sensitivity matrix cor- 
responding to the point j. The point j need not 
correspond to an observation point. 

Equation 5.7-8 gives a simultaneous con- 
fidence interval. That is, the probability is 1-a 
that fsj lies within the interval indicated by 
equation 5.7-7, and that fp for all other possi- 
ble points lies within similar intervals simulta- 
neously. If intervals on a number of consecutive 
points are computed and plotted, the result is 
called a confidence band. 

5.7.3 Prediction Interval for 
Predicted Observation Yr’ 

Equation 5.7-7 gives a confidence interval on 
a computed value f or, in other words, the mean 
of Y, which is a fixed, nonrandom quantity. In 
some instances, a corresponding interval on a 
predicted observation, which is a random quan- 
tity, is desired, and this interval is termed a 
prediction interval. Prediction intervals on k 
predicted values of Y simultaneously can be 
readily computed if o=v-l is diagonal, and 
they are given by Lie%er&m (1961): 

YPred=&JqjGy) J’qTiy, .l 
j=l, 2, . . ..k (5.7-9) 

As in equation 5.7-7, point j need not (and, in 
general, probably would not) correspond to an 
observation point. However, wj for the predic- 
tion point has to be known. 

The term S21wj+S~j is the total variance in 
predicted observation y{. This form resr$ts 
because yd= (~d-~)+l’j. where 4’“d_fi is 
statistically independent of 4, so, that, a? an 
estimate, Var( ~“d)=Var(~d-Q+Var(~) or 
Var(~d)=S21Wj+S~j 

Equation 5.7-9 does not give prediction inter- 
vds on d Gred simultaneously. Furthermore, 
as k increases, the prediction interval increases 
without bound. This result is because the nor- 
mal distribution, which the errors in Y are 
assumed to follow, has infinite tails. Hence, 
even though the probability of an error that is 
large in magnitude is small, as the number of 

values of Y considered simultaneously in- 
creases, the probability of an arbitrarily large 
error in at least one of them increases also. 
Usually the prediction interval is computed 
using k=l. 

Problem 5.7- 1 

a. Write out explicitly the form for general 
entry (ij) of X(XTwX)-lXT, which is used 
in equation T.r 13or’pthis exercise let 
(SwX-l =A and write the result in terms 
z&z sim;lify the expression. Select and 
compute a diagonal entry of this matrix 
at an observation point used for the linear 
regression solution of problem 3.2-l. Note 
that you can replace X_ by g in 
X(XTwx)-‘XT and that this replacement 
GaTes%e rzmt unaltered. Can you show 
this? 

b. Using equation 5.7-4 and the diagonal en- 
try fomputed in part a, determine 
Var(fi), where j is the selected diagonal 
entry. 

c. Using equation 5.7-7 and the results of 
b, find the confidence interval on fpj. c 

5.8 Appendix 

5.8.1 Documentation of Program to 
Compute Vectors _d and g of Section 
5.5.2. 

This program computes vector d of random 
normal deviates, vector g of correlated normal 
deviates as defined by equation 5.5-10, and 
other useful information related to the distribu- 
tions of i and %. Sample and direct prior infor: 
mation are assumed to be given in the form of 
equation 3.4-12. The sensitivity matrix for the 
direct prior information is theoretically of the 
form X,=&OJ. However, matrix &,,g may be 
rearranged to conform with any parameter 
ordering. 

The program ‘was developed using the 
Microsoft Fortran Compiler, Version 3.3, with 
the DOS 2.0 operating system on an IBM 
PC/XT computer with the IBM 8088 Math 
Coprocessor and 256 KB memory. Except for 
the OPEN statements near the beginning of the 

c 
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code, Fortran 66 was used throughout to make 
the code as machine independent as possible, 
The source code is contained in file 
RESAN.FOR in the diskette accompanying 
this report. A random (OJ) number generator 
is employed as a function subroutine. This 
routine assumes an integer computer word 
length equal to at least 1,077,109,141. 

As coded, the contents of data sets B, C, 
and D are assumed to be stored in unformatted 
form on file ITB=& This is so that these sets do 
not have to be input manually. The listing 
appended contains the code (file RESINS.FOR 
on the diskette) and instructions for insertion 
into the program of appendix 4.3.4 so that the 
required data are stored in the proper form 
and order for use in the present program. The 
user will have to supply the job control 
language necessary to store the data and 
retrieve them for use. 

Two variables, NVD and NTD defined near 
the beginning of the program, must be redefined 
each time the dimensions of the program are 
changed. NVD must be set equal to dimensions 
of COV and the first dimension of S, ail three 
of which are at least NVAR, and NTD must be 
set equal to the dimensions of R, which are at 
least NTOT=NOBS+NPRIR. 

Input D&U.-Data Set A. 
Problem size information; one line (format 
515, F1O.O). 

Line colw Variable DdhitiOIl 

1-5 NVAR 

6-10 NOBS 

11-15 NPRIR 

16-20 NSETS 

21-25 NRAN 

26-35 VAR . 

Number of parameters, 
P. 

Number of sample obser- 
vations, nJ. 

Number of regression 
parameters having direct 
prior information, np. 

Number of sets of @ and g 
vectors to be computed. 

Seed for random number 
generator: any odd 
number between 1 and 
1,048,575. 

Error variance, s2. 

Data Set B. 
Covariance matrix, w&)-ls2 (unformatted; 
stored in file ITB). - - 

Variable Dl?fillitiO~ 

COV(l,l) 
COV(2,l) 

COV(NVAR,l) 
COV(2,2) 

Covariance matrix, entered se- 
quentially from the diagonal 
element through NVAR for 
each new regression parameter 
number. Each new diagonal 
element begins a new record. 

COV(NVAR,B) 

COV(NVAR,NVAR) 

Data Set C. 
Weight matrix for sample information, E1 
(unformatted; stored in file ITB). 

Variable DfdhitiO~ 

W(l) 
WC3 

W(NOBSI 

Diagonal weight matrix for 
sample information, entered 
seauentiahv from 1 through 
NdBS. - 

Data Set D. 
Sensitivity matrix for sample information, X, 
(unformatted; stored in file ITB). 

Variable Ddinition 

WJ) 
ww 

X(‘NVAR,l) 
xw4 

X(kVAR.2) 

Sensitivity matrix for sample 
information, entered sequen- 
tialIy 1 through NVAR for 
each observation. Each new 
observation begins a new 
record, for a total of NOBS 
observations. 

X&VAR.NOBS) 

Data Set E. 
Estimated error variance used with prior 
information of known reliability; one line 
(format F1O.O). 

Line columns Variable D&litiOIl 

l-10 EV The initial estimate of s2 used 
in conjunction with prior 
information. 

Omit data set if NPRlR=O. 
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Data Set F. 
Parameter numbers having prior information 
(format 1615). 

Output.-Output is all clearly labeled. It is e 
ordered as follows: 

tine c4hmis Variable DditIitiO~ 

1-5 IPR(1) 
6-10 IPR(2) 

Array subscript numbers 

I;R(NPRIR) 
mation. For use with 
the regression ground- 
water program, the 
array subscript numbers 
must be the subscript 
numbers in the parameter 
vector computed by that 
program. 

Omit data set if NPRIR=O. 

Data Set G. 5. 
Standard deviation matrix for prior informa- 
tion ,V% (format 8FlO.O). 

Diagonal standard devia- 
tion matrix for prior in- 
formation, entered in the 
same order as IPR(1) 
from 1 through NPRIR. 

m data set if NPRIR=O. 

1. 
2. 

3. 

4. 

6. 

7. 

Data sets A through G. 
Set number of vectors $ and g. Data for 
numbers 2 through 5 below are printed 
sequentially for each set. 
Vector & This vector is ordered from 
smallest to largest entry, and each en- 
try is paired with its theoretical frequen- 
cy as computed by using equation 
5.5-11. 
Vector g. Each entry is printed in its 
natural position corresponding to its 
position in a row or column of R,. Rows 
and columns of R are ordered by first 
sample observat%n numbers followed 
by prior information numbers, which are 
the subscripts I of IPR(1). 
Vector g. This vector is ordered and 
paired with its theoretical frequency in 
the same way as @ is. 
Covariance matrix (I-R)s2. This matrix, 
which is an estima& 2 the one defined 
by equation 5.5-3, is for weighted msid- 
uals 12 composed of both sample and 
prior&formation, with the prior infor- 
mation occupying the last np rows and 
cohlmns. 
Correlation matrix for i. This matrix is 
derived from (I-R)s2. w- 

c 

c 
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C RESIDUALS ANALYSIS PROGRAM BY R. L. COOLEY, USGS, DENVER, COLO. 
$LARGE: R 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION X(20,70),C0V(20,20>,W(70),WP(20),1PR(20),R(90,90),D(90) 

l,G(90) ,F(90) 
COMMON/ITP/IIN,IOUT 
COMMON/FLT/X,R 
EQUIVALENCE (X(1,1),D(1>>,(W(1),F(1),wp(1)),(cov(1,1~,~~~~~ 
OPEN (5,FILE='RESAN.DAT',STATUS='OLD',ACCESS='SEQUENTIAL' 

l,FORM='FORMATTED') 
OPEN (6,FILE='RESAN.OUT',STATUS='NEW',ACCESS='SEQUENTIAL' 

~,F~RM='F~RMATTED') 
OPEN (~,FILE='RE~AN.IN',STATUS='~LD',ACCESS='SEQUENTIAL' 

l,FORM='UNFORMATTED') 
C**FORMAT LIST 

1 FORMAT (515,FlO.O) 
2 FORMAT (8FlO.O) 
3 FORMAT (9HlNVAR = ,14/9H NOBS = ,14/9H NPRIR = ,I4 

1/9H NSETS = ,14/9H NRAN = ,14/9H VAR = ,G11.5) 
4 FORMAT (lHO,14X,42HRELIABILITY WEIGHTS FOR SAMPLE INFORMATION 

l/lH ,3X,3(3HNO.,llX,lHW,9X)) 
5 FORMAT (1615) 
6 FORMAT (lHO,14X,43HNO.S OF PARAMETERS HAVING PRIOR INFORMATION 

l/lH ,3X,3(3HN0.,8X,3HIPR,lOX)) 
7 FORMAT (lH0,14X,40HSTANDARD DEVIATIONS OF PRIOR INFORMATION 

l/lH ,3X,3(3HNO.,lOX,2HWP,9X)) 
8 FORMAT (19HO COVARIANCE MATRIX) 
9 FORMAT (38Ho SENSITIVITIES FOR OPTIMUM PARAMETERS) 

10 FORMAT (BHOEV = ,G11.5) 
11 FORMAT (lH0,2oX,31HORDERED, RANDOM NORMAL DEVIATES/lH ,3X,2(3HNO. 

l,8X,lHD,l4X,lHF,lOX)) 
12 FORMAT (lH0,18X,35HORDERED, CORRELATED NORMAL DEVIATES/lH ,3X 

1,2(3HN0.,8X,1HG,14X,lHF,lOX)) 
13 FORMAT (33H0 COVARIANCE MATRIX FOR RESIDUALS) 
14 FORMAT (43HODATA GENERATED FROM RANDOM NUMBER SET NO. ,13) 
15 FORMAT (34H0 CORRELATION MATRIX FOR RESIDUALS) 
16 FORMAT (lH0,22X,,26HCORRELATED NORMAL DEVIATES/lH ,3X,3(3HNO.,llX 

l,lHG,gX)) 
C**DEFINE INPUT FILES, OUTPUT FILE, AND ARRAY DIMENSIONS FOR PRTOT 

IIN= 
ITB=8 
IOUT= 
NVD=20 
NTD=90 

C**READ AND PRINT INPUT DATA THEN CONVERT IT INTO FORMS NEEDED 
C FOR CALCULATIONS 
C**NOTE: NRAN MUST BE ODD AND MUST LIE BETWEEN 1 AND 1048575 

READ(IIN,l) NVAR,NOBS,NPRIR,NSETS,NRAN,VAR 
WRITE(IOUT,3) NVAR,NOBS,NPRIR,NSETS,NRAN,VAR 
DO 25 J=l,NVAR 
READ(ITB) (COV(I,J),I=J,NVAR) 
DO 20 I=J,NVAR 

SET A 

SET B 
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Program Listing-Continued 

20 COV(J,I)=COV(I,J) 
25 CONTINUE 

WRITE(IOUT,8) 
CALL PRTOT(COV,NVAR,NVAR,NVD) 
READ(ITB) (W(I),I=l,NOBS) 
WRITE(IOUT,4) 
CALL PRTOT(W,NOBS,l,O) 
DO 35 J=l,NOBS 
READ(ITB) (X(I,J),I=l,NVAR) 

35 CONTINUE 
WRITE(IOUT,9) 
CALL PRTOT(X,NVAR,NOBS,NVD) 
DO 45 J=l,NOBS 
WT=W(J)**.5 
DO 40 I=l,NVAR 

40 X(I,J)=X(I,J)*WT 
45 CONTINUE 

IF(NPRIR.LT.l) GO TO 55 
READ(IIN,2) EV 
WRITE(IOUT,lO) EV 
READ(IIN,S) (IPR(I),I=l,NPRIR) 
WRITE(IOUT,6) 
CALL PRTOTC(IPR,NPRIR) 
READ(IIN,2) (WP(I),I=l,NPRIR) 
WRITE(IOUT,7) 
CALL PRTOT(WP,NPRIR,l,O) 
SIGMA=EV**.5 
DO 50 I=l,NPRIR 

50 WP(I)=SIGMA/WP(I) 
C**COMPUTE (I-R)*VAR MATRIX 

55 DO 80 K=l,NOBS 
DO 70 J=l,NVAR 
suM=o. 
DO 60 I=l,NVAR 

60 SUM=SUM+X(I,K)*COV(I,J) 
70 R(J,K)=SUM 
80 CONTINUE 

IF(NPRIR.LT.l) GO TO 90 
DO 84 K=l,NOBS 
DO 82 I=l,NPRIR 
J=IPR(I) 

82 R(I+NOBS,K)=-WP(I)*R(J,K) 
84 CONTINUE 

DO 88 J=l,NPRIR 
L=IPR(J) 
DO 86 I=J,NPRIR 
K=IPR(I) 

86 R(I+NOBS,J+NOBS)=-W(I)*COV(K,L)"'W(J) 
88 CONTINUE 
90 DO 110 K=l,NOBS 

DO 100 J=K,NOBS 
suM=o. 
DO 95 I=l,NVAR 

SET C 

SET D 

SET E 

SET F 

SET G 

c 

c 
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95 SUM=SUM+X(I,K)*R(I,J) 
100 R(J,K)=-SUM 
110 CONTINUE 

NTOT=NOBS+NPRIR 
DO 130 J=l,NTOT 
DO 120 I=J,NTOT 

120 R(J,I)=R(I,J) 
130 R(J,J)=VAR+R(J,J) 

C**COMPUTE THEORETICAL FREQUENCIES FOR DATA SETS 
TMP=NTOT+l 
DO 135 I=l,NTOT 
TEMP=I 

135 F(I)=TEMP/TMP 
SIGMA=VAR**.5 
DO 180 K=l,NSETS 
WRITE(IOlJT,14) K 

C**COMPUTE RANDOM NORMAL DEVIATES D AND CORRELATED NORMAL DEVIATES G 

181 

140 
150 

D 160 
170 

DO 150 I=l,NTOT 
SUM=-6. 
DO 140 J=1,12 
SUM=SUM+FtANUM(NRAN) 
D(I)=SIGMA*SUM 
DO 170 J=l,NTOT 
suM=o. 
DO 160 I=l,NTOT 
SUM=SUM+R(I,J)*D(I) 
G(J)=SUM/VAR 

C**ORDER AND PRINT RANDOM NORMAL DEVIATES AND CORRELATED NORMAL DEVIATES 
DO 174 I=l,NTOT 
DO 172 J=I,NTOT 
IF(D(J).GE.D(I)) GO TO 172 
TMP=D(I) 
D(I)=D(J) 
D(J)=TMP 

172 CONTINUE 
174 CONTINUE 

WRITE(IOUT,ll) 
CALL PRTOTA(D,F,NTOT) 
WRITE(IOUT,16) 
CALL PRTOT(G,NTOT,l,O) 
DO 178 I=l,NTOT 
DO 176 J=I,NTOT 
IF(G(J).GE.G(I)) GO TO 176 
TMP=G(I) 
G(I)=G(J) 
G(J)=TMP 

176 CONTINUE 
178 CONTINUE 

WRITE(IOUT,12) 
CALL PRTOTA(G,F,NTOT) 

180 CONTINUE 
C**PRINT COVARIANCE MATRIX (I-R)*VAR 

WRITE(IOUT,13) 
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Program Listing-Continued 

CALL PRTOT(R,NTOT,NTOT,NTD) 
C**COMPUTE AND PRINT CORRELATION MATRIX 

DO 210 I=l,NTOT 
210 D(I)=R(I,I)**.5 

DO 230 J=l,NTOT 
TMP=D(J) 
DO 220 I=J,NTOT 
R(I,J)=R(I,J)/(TMP*D(I)) 

220 R(J,I)=R(I,J) 
230 CONTINUE 

WRITE(IOUT,l5) 
CALL PRTOT(R,NTOT,NTOT,NTD) 
STOP 
END 
SUBROUTINE PRTOT(C,NR,NC,NRD) 

C**PRINT MATRICES AND VECTORS 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION C(1) 
COMMON/ITP/IIN,IOUT 
IF(NC.EQ.l) GO TO 25 
DO 20 L=l,NC,lO 
JlO=L+9 
IF(JlO.GT.NC) JlO=NC 
WRITE(IOUT,~~) (J,J=L,J~~) 
WRITE(IOUT,50) 
KBC=(L-l)*NRD 
KEC=(JlO-l)*NRD 
DO 10 I=l,NR 
KB=KBC+I 
KE=KEC+I 

10 WRITE(IOUT,40) I,(C(K),K=KB,KE,NRD) 
20 CONTINUE 

RETURN 
25 N=NR/3 

IF((3*N).NE.NR) N=N+l 
DO 30 K=l,N 

30 WRITE(IOUT,~O) (L,C(L),L=K,NR,N) 
RETURN 

35 FORMAT (lH0,10(9X,I3)) 
40 FORMAT (1H ,13,1X,lO(lX,G11.5)) 
50 FORMAT (1H > 
80 FORMAT (1H ,2X,3(13,7X,G11.5,3X)) 

END 
SUBROUTINE PRTOTA(VALA,VALB,NO) 

C**PRINT VALUES IN TWO GROUPS OF THREE COLUMNS 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION VALA(NO),VALB(NO) 
COMMON/ITP/IIN,IOUT 
NR=N0/2 
IF(2*NR.NE.N0) NR=NR+l 
DO 10 K=l,NR 
WRITE(IOUT,20) (L,VALA(L),VALB(L),L=K,NO,NR) 

10 CONTINUE 

c 

c 
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RETURN 
20 FORMAT (1H ,2X,2(13,4X,G11.5,4X,Gll.5,4X)) 

END 
SUBROUTINE PRTOTC(IVAL,NO) 

C**PRINT INTEGERS IN THREE GROUPS OF TWO COLUMNS 
DIMENSION IVAL(N0) 
COMMON/ITP/IIN,IOUT 
NR=N0/3 
IF(3"NR.NE.NO) NR=NR+l 
DO lo K=l,NR 
wRITE(IouT,20) (L,IVAL(L),L=K,NO,NR) 

lo CONTINUE 
RETURN 

20 FORMAT (1H ,2X,3(13,8X,14,9X)) 
END 
FUNCTION RANUM(IRAN) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DATA MODU,MULT,NADD/1048576,1027,221589/ 
IRAN=MULT*IRAN+NADD 
IRAN=IRAN-(IRAN/MODU)*MODU 
RANUM=FLOAT(IRAN)/FLOAT(MODU) 
RETURN 
END 

Listing of Inserts to the Regression Ground-Water Flow Program. 

C 
C**INSERT AFTER STATEMENT 480 

OPEN (8,FILE-'RESAN.IN',STATUS-'NEW',ACCESS='SEQUENTIAL' 
l,FORM='UNFORMATTED') 

ITB-8 
REWIND ITB 
DO 1000 J-l,NVAR 

1000 WRITE(ITB) (A(I,J),I=J,NVAR) 
DO 1100 I-1,NOBS 

1100 vL(I)=w(I)*w(I) 
WRITE(ITB) (VL(I),I-1;NOBS) 
DO 1200 J-l,NOBS 

1200 WRITE(ITB) (X(I,J),I-1,NVAR) 
C 
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6 Some Advanced Topics 

6.1 Advanced Models 

6.1.1 Regression When the 
Dependent Variable is Implicit 

In all cases considered in previous sections, 
the assumption has been made that the deter- 
ministic part of the model equation can be 
solved explicitly for the dependent variable. 
However, this may not be true in some cases. 
An example of such a model written in terms 
of the true value for the dependent variable 
f=A4,Pl,,P2) is 

-tan--l g I ill -[=O 

2f-k 0 k&- 

(6.1-1) 

where k =3& +& and f=fl[,&,&) is the exact 
solution of equation 6.1-1. As can be seen, f is 
implicit in the model equation and cannot be 
directly solved for. A general deterministic form 
for an exact model (that is, a model that does 
not contain E) where the dependent variable is 
implicit is 

dfkMMl=o (6.1-2) 

where 4 and @ are defined as usual. 
Based on equation 6.1-2, a true regression 

model can be written in terms of observation 
vector _Y and disturbances 2 in the usual form 

_Y=fc@)+r (6.1-3) 

where f(Q) is the vector of order n that is com- 
puted from 

In equation 6.1-4 vector g of order n represents 
n equations, each of which has the form of equa- 
tion 6.1-2 written for an observation point. As 
an example, equation 6.1-1 would be written in 
the form 

gi’ 

Plk 

a@, +&) 

-5‘i=O, i=1,2 ,..., n . (6.1-5) 

Note that in equation 6.1-5 only f evaluated at 
point i (that is, fi) appears in the equation to 
compute gi. However, in general this equation 
could contain values of f evaluated at any 
number of the possible pointsj=1,2, . . . . n. An 
example of this type of model is the numerical 
model discussed in the next section. 

The estimated regression model derived from 
equations 6.1-3 and 6.1-4 is 

_Y=f(f&)+e (6.1-6) 

and 

g[f(~,!!hQl=!? (6.1-7) 

where 4 and e are, as usual, general estimates 
of fi and 5, respectively. 

The general approach to solving the implicit- 
variable problem is very similar to that followed 
in section 3.3.1. First, the dependent variable 
values are written using a Taylor series expan- 
sion about an initial set of parameters. Then, 
from this, the linearized regression problem is 
set up and solved recursively to give the final 
solution to the nonlinear problem. 

Taylor series expansion of f about an ar- 
bitrary initial set of parameters & can be writ- 
ten in the form of equation 3.3-5, 

f(&b)%)+&@-h)) (6.1-8) 

where 

,&)=f(&b(J (6.1-9) 

(6.1-10) 

By using equation 6.1-6, equation 6.1-8 can be 
modified to give the estimated linearized regres- 
sion model c 
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Y-fo=&&-&J+e (6.1-11) 

which is exactly the same as the model used for 
the standard nonlinear case discussed in section 
3.3.1. 

To solve the linearized regression model based 
on equation 6.1-11, fe can be computed from 
equation 6.1-7 with b=&e,, and X0 can be com- 
puted by implicitly differentizing equation 
6.1-7 with respect to bj(j=l,2,...g), setting 
b=&-,, then solving for &e. To accomplish this 
computation of .X0, note that for any differen- 
tial change dfi in parameter vector b to produce 
a new solution f of g=$ the total differential 
dg must equal zero because g is always zero. 
Hence, by employing the chain rule of caIcuIus, 
there results 

dg= 
I 
dbj=Q,j=1,2,...,p (6.1-12) 

where g=(hQ}={ ZJgilafi}. Note that if gi con- 
tains only fit then g is diagonal. Equation 
6.1-12 can be evaluated using b=b and 
fo=f(&,~oo) to give 

, j=1,2 ,..., p (6.1-13) 

where 

(6.1-14) 

and subscript (or superscript) 0 means that the 
quantity is evaluated using b=bo and f=fo. 
Solution of equation 6.1-7 for fo (using, for ex- 
ample, Newton iteration) followed by solution 
of equation 6.1-13 for z. provides a convenient 
method of obtaining initial values fo and go 
from initial parameter estimates &,. However, 
for subsequent iterations this method can be 
time consuming because it involves solving g=g 
each time a new vector f and a new set of 
sensitivity vectors ~j are to be computed from 
an updated parameter set. 

A good method for computing good approx- 
imate values of f and g corresponding to some 
arbitrary parameter set b that is close to b 

involves approximating g with another Taylor 
series expansion. If & is close enough to b to 
allow dropping ah terms except linear terms, 
then Taylor series expansion of equation 6.1-7 
about initial set of dependent variable values f. 
can be written as 

Qo(b)+&gb)(f-&)) (6.1-15) 

where g~(~~=g(fo,~,& &&(&H agJafil~+J 
and [g&b). By knowing b, equation 6.1-15 
may be solved for 6 Corresponding values of X 
are obtained as follows. If equation 6.1-15 E 
implicitly differentiated with respect to 
bj (j=1,2 ,..., p), there results 

ail,@) af - =-&f&b) z - 
ago(b) 

a bj i 
7 (f-fo, W-16) 

i 

or, 

af 

-  ‘~j=-~~l(b) 

abj 

j=1,2 ,..., p . (6.1-17) 

By using the above results, solution of the 
nonlinear regression problem is obtained by a 
procedure analogous to the procedure followed 
for the standard nonlinear problem. As in- 
dicated previously, to begin the first iteration 
assume an initial set of parameters i. and solve 
equation 6.1-7 for fo=f(&bo). Then solve equa- 
tion 6.1-13 for &. Next, form and solve normal 
equation 3.3-10 by minimizing S(b) (given by 
equation 3.3-4) with respect to b, then scaling 
the resulting equations with C& That is, form 
and solve for Sl 

where 

S&SOosl =gJ&yo, (6.1-M) Pm- 

Eo=So!20 (6.1-19) 

gl=&y(bl-&& (6.1-20) 
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For the second iteration, solve equation 
6.1-15, written using b=br, for f-fo=fr-& The 
result can be stated as 

U~=-&ti1k3 (6.1-21) 

where subscript 1 on g and g indicates evalua- 
tion using the most recent values available for 
f and fi (that is, &, and &), and 

Ul =frfo (6.1-22) 

Next, solve equation 6.1-17 for zl: 

j=1,2,...,p (6.1-23) 

where (.)r indicates evaluation using &;br. 
Finally, form and solve the normal equations, 
written in terms of S, and fr, for &. 

For general iterati& r, the equations to solve 
are 

l&=-A-&& (6.1-24) 

j=1,2,...,p (6.1-25) 

ti=!!r+L1 (6.1-26) 

&TcAs-&+ 1 =&T$@-/$’ (6.1-27) 

!!r+,=s4r+1+!3 (6.1-28) 

where 

&=&G 9 (6.1-29) 

fo=fC&,bo) so that go=!& ad f-l=fo . 

At convergence of the solution &,,z+ and 
g,, ah tend to zero so that ,$=A&&) w)ere 
b=!!r+1-3. “b At this point S(@=(~-f(&&)T~ 
-(x-f($)) is at a minimum, and the nonlinear 
regression problem has been solved. 

The solution procedure given by equations 
6.1-24 through 6.1-29 can actually be con- 
sidered to be a generalization of the Gauss- 
Newton procedure discussed in section 3.3.1, 
because if the standard nonlinear model is 
stated in the form 

g=f($&f=0 (6.1-30) 

then 

&=f(f,&‘-&.-1 (6.1-31) 

( a:;;q=( g=zI (6.1-33) 

and equations 6.1-24 through 6.1-29 become 
the standard Gauss-Newton algorithm. 

Iteration parameters p and p should be ap 
plied to the present method in the same man- 
ner as they are for the Gauss-Newton method. 
Use of p to modify step size &+1 leads to equa- 
tion 3.3-19 (&+1 =pCJ&+,+&) to compute 
&+1. To employ ~1, equation 6.1-27 is trans- 
formed to 

c~~+P&+1=s5w-fr’ * (6.1-34) 

The method for solution of the impkit- 
variable model given here requires the same 
three conditions to guarantee convergence to a 
global minimum as discussed for the modified 
Gauss-Newton method in section 3.3.3. How- 
ever, in addition, the method requires that g 
and ag/abj @1,2, . . . . p) be continuous and 
unique for ah b belonging to region R (see equa- 
tion 3.3-25). 

Solution Algorithm. 
1. Before the first iteration, solve equation 

6.1-7 for fo using an initial estimate &, for 
b, and set fsl=fo. 

2. Solve equation 6.1-24 and equation 
6.1-25 for 3 and z(j=1,2 ,..., p). 

3. Solve equation 6.1-26 for &. 
4. Solve equation 6.1-34 for &+1. 
5. Solve equation 3.3-17 for c&+~. 
6. Solve equation 3.3-19 for &+1. 
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7. Test to determine if Id[+‘/cl>~ (i=1,2 ,..., p). 
(See step 5, Gauss-Newton algorithm.) 

8. If Id;+ /c[>E, increment T by one and 
return to 2. If not, then the process has 
converged. 

6.1.2 Regression When the Implicit- 
Variable Model is Numerical 

If the numerical model assumes the general 
form of equation 3.3-21, which for convenience 
is restated here as 

then the method derived in the previous section 
can be applied. The solution can be conceptual- 
ly developed in two stages, first making the 
assumption that numerical solution points coin- 
cide exactly with observation points, which 
implies m=n, then, second, relaxing the as- 
sumption by foiIowi.ug either of the two pro- 
cedures described to obtain f from h for the 
Gauss-Newton method in section 3.3.2. 

To develop the first stage of the solution, first 
note that because m=n, equation 6.1-35 may 
be written in the form g=Q analogous to equa- 
tion 6.1-7: 

g=g-D>=Q (6.1-36) 

where h=f. Next, expand equation 6.1-36 in a 
Taylor series to give equations exactly anaIo- 
gous to equations 6.1-24 and 6.1-25. Pertinent 
quantities in these equations are given by 

.-I I gi 
abj r 

(6.1-39) 

where subscript i on a matrix denotes column 
i of the matrix. By using equations 6.1-38 and 
6.1-39, an equation analogous to 6.1-25 can be 
written 

*uf 
I 

, j=1,2 ,..., p . (6.1-40) 

The second stage results from using one of the 
two procedures for obtaining f from & described 
in section 3.3.2 to obtain f from h and sj from 
a@ bj in the present case. With f and z de 
fined, the solution aIgorithm of section 6.1.1 can 
be applied directly. 

6.2 Modified Beale’s Measure 
of Nonlinearity 

Most of the methodology discussed here to 
analyze regression models is based on the as- 
sumption that the model is linear in the param- 
eters. In the case that the model is nonlinear, 
BeaIe (1960, p. 54-55) developed au empirical 
measure of degree of nonlinearity with respect 
to the confidence regions on parameters. How- 
ever, Guttman and Meeter (1965, p. 635) showed 
that if the degree of nonlinearity is high, Beale’s 
measure seriously underestimates it. To correct 
for this underestimation problem, Linssen 
(1975) modified Beale’s measure. More recent- 
ly, Bates and Watts (1980) developed measures 
of nonlinearity based on the concepts of dif- 
ferential geometry. Although these measures 
are based on a much more extensive theory than 
Beale’s (1960) measure or Linssen’s (1975) 
modification, they also require extensive com- 
putation. Thus, here Beale’s empirical measure 
as modified by Linssen is extended to give an 
approximate indication of the degree of average 
model nonlinearity. 

To develop the measure, consider a linearized 
model of the form of equation 5.1-1, where, for 
convenience, gener$ estimate &replaces @, and 
b is set equal to & to result in 
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g=f+gbJ-i, (6.2-l) 

where /=fl$). To emphasize that fe” is a 
linearized estimate of f(&&)=fe, a superscript 0 
is appended to fp. If ,$’ is calculated from equa- 
tion 6.2-l for m sets of parameter vectors 
~((4=1,2,...,m), then a measure c2 of model non- 
linearity in the region covered by the varied 
parameter sets is 

(6.2-2) 

Equation 6.2-2 is the sum of squared distances 
(that is, squared len 

P 
hs of vectors) between 

points $$ and w’“b in observation space. 
(Recall that the distance between two points is 
the length of the vector joining the points, and 
that the squared length of a vector is given by 
the sum of squared lengths of its components.) 

As explained further on, the most useful 
measure of nonlinearity is obtained by multiply- 
ing equation 6.2-2 by the quantity 

to obtain 

which is an extension for q<p of Linssen’s (1975) 
modification of Beale’s measure of nonlinearity 
(Beale, 1960, p. 54-55). 

Equation 6.2-3 can be justified as follows (see 
also Guttman and Meek, 1965, and Linssen, 
1975). The weighted distance between g and fe 
is designated Ed so that the geometric relation- 
ships among weighted vectors [, ,$ and $’ can 
be diagrammed in observation space as shown 
in figure 6.2-l. Now, 

(6.2-4) 

c!p f d 
* 

OP f” = -I 

ZEd 
CiP f = -, 

Figure 6.2-l 

where, by definition, 

“T T A 
=(b+) x wx(~-~~ * (6.2-5) -m 

To obtain a more convenient form for d2, note 
that 

=(~-g,TxTux(~-6, -- - (6.2-6) 

where equation 5.1-9 was used. The combina- 
tion of equations 6.2-5 and 6.2-6 shows that 

d2=(~-$)Tt&-j+$-(~-f)To&). (6.2-7) 

If $ is assumed to he on the edge of the con- 
fidence re ‘on given by equation 5.6-12 so that 
@=@Tti & , 4 then from equations 5.6-12 and 
6.2-7 it can be seen that 

d2=qs2F&,n-p) . (6.2-8) 

Hence, if both numerator and denominator of 
equation 6.2-4 are averaged over m sets of 
parameters, there results 

Ep)&&Jq,n-p) . (6.2-9) 

c 
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Based on equation 6.2-9, Beale (1960, p. 60) 
ranked the degrees of nonlinearity as follows: 
The model is highly nonlinear if 

~~>llF,(q,n-p) (6.2-10) 

because in this case E(e2)>1, and the discrepan- 
cy is actually greater than d. If 

&<O.Ol/F&,n-p), (6.2-11) 

then the model is classed as being effectively 
linear because E(~~)<0.01. For points in be 
tween, Beale (1960, p. 60) stated that the linear 
theory is adequate to give a rough idea of sig- 
nificance but may not bring out full implications 
of the analysis. However, Guttman and Meeter 
(1965, p. 636) noted that equation 6.2-11 may 
be overlyAconservative to define a maximum 
value of Nb for an approximately linear model. 
Experiments conducted by the authors indicate 
that, if 

&<O.OS/FJq,n-p), (6.2-12) 

3 
then confidence intervals given by linear theory 
are fairly good approximations of the exact ones 
as given by Vecchia and Cooley (1987). Thus, 
equation 6.8-12 is used to define the maximum 
value of Nb to consider the model to be 
roughly linear. 

Because equation 6.2-9 is justified by assum- 
ing that the points ,$’ lie on the edge of the con- 
fidence region, a reasonable way to obtain the 
points is to choose them from equation 5.6-14, 
although, as noted by Beale (1960, p. 55), the 
points do not have to lie on the edge of the con- 
fidence region. Thus1 on_e could use m<2q sets 
of parameters Z$=& ,&I. Note that whether 
or not the model is linear, hlP and & correspond- 
ing to the partition of b given in equation 5.6-3 
are properly chosen without the necessity of 
performing additional least squares solutions to 
obtain each set &. This fact is true because 
subset hlP is required to lie on the edge of the 
linearized confidence region. 

Rigorous use of equations 6.2-10 through 
6.2-12 theoretically requires that disturbances 
be distributed normally. However, it would be 
convenient to be able to gauge the degree of 

D 
nonlinearity of the model irrespective of the 

properties of g. If the confidence region in equa- 
tion 5.6-12 were large enough to encompass 
virtually all physically plausible sets of param- 
eters, then model nonlinearity as assessed using 
equations 6.2-10 through 6.2-12 would be 
meaningful. Based upon past experience, F 
values generated using (r=O.O5 have been found 
to yield such a confidence region and thus to be 
adequate to gauge nonlinearity. 

Problem 6.2- 1 

Four sets of parameters that correspond to 
four points on the edge of the linearized con- 
fidence region in equation 5.6-13 result from 
problem 5.6-2. These four sets of parameters 
can be subdivided into two groups of two. Pick 
two different parameter sets from the two 
groups and compute two corresponding sets of 
drawdowns at the observation points using the 
nonlinear (Theis) model. Then, using the modi- 
fied Beale’s measure program (appendix 6.4.1), 
find the modified Beale’s measure. Is the model 
nearly linear? 

Problem 6.2-2 

Use the four parameter sets resulting from 
problem 5.6-3 in the nonlinear regression flow 
program of appendix 4.3.4, as augmented by the 
inserts of appendix 6.4.1, to compute the modi- 
fied Beale’s measure. Are the various statistical 
measures obtained from the linearized model ap- 
proximately valid (at least as determined from 
the four parameter sets employed)? 

6.3 Compatibility of Prior 
and Regression Estimates 
of Parameters 

If the regression model contains prior infor- 
mation on the parameters, an important part of 
the analysis to determine whether or not the 
model is correct is to test the null hypothesis 
that the prior and sample information are in 
agreement; in other words, 
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As indicated in section 5.5, graphical analysis 
of residuals can usually detect an incompatibil- 
ity between sample and prior information. 
However, in some cases an additional test might 
be desired. Theil (1963) showed that the test 
statistic 

.(~~-6(6,~~)-~(~-~~0,, (6.3-l) 

where vector b IS the ordinary least squares A* * 
estimate of vector & is Chi square distributed 
with n degrees of freedom (x2(n )) provided 
that dof the assumptions given <y equations 
5.2-1 through 5.2-3, 5.2-6, and 5.2-10 hold 
true, 2 is known, and g is of the form 

itsi! CO= I I (6.3-2) 
- h!p 

where s and s are known and symmetric 
positive definite of order n, and np, respective 
ly. If 2 is of the form 

x1 2 W= 
I I (6.3-3) 

- 2 g-v 

and 2 is unknown, then the test statistic 

P=(~-~(~,4)-x,(~-~~))T 

is asymptotically s2(Q distributed. If the com- 
puted value of P, y, is greater than $Jn ), 
where a! indicates significance level, then tie 
null hypothesis is rejected. 

Problem 6.3- 1 

Using equation 6.3-4, test the compatibility 

OURCES INVESTIGATIONS 

of the prior estimate of the boundary head, f,,s 
and the pure regression estimate, s2*, of prob: 
lem 3.2-l. To conduct this test you will have 
to do an ordinary least-squares regression. The 
model of appendix 4.3.4 may be employed for 
this in the same manner as for problem 4.2-l. 
Use the model output to obtain the necessary 
quantities in equation 6.3-4. 

6.4 Appendix 

6.4.1 Documentation of Program to 
Compute the Modified Beale’s 
Measure 

This program performs a straightforward 
computation of the modified Beale’s measure, 
equation 6.2-3. Vectors fp, $, and f are as- 
sumed to be composed of sample information 
and direct prior information on some or all 
parameters. The weight matrix for sampie and 
prior information is assumed to be given in the 
form of equation 3.4-12, and the sensitivity 
matrix for the prior information is assumed to 
be given by equation 4.1-6. 

There are two versions of the program. One 
is for general use, and all variables needed for 
the calculation must be read in. The other 
version is designed to be an integral part of 
the regression ground-water model documented 
in appendix 4.3.4 and requires only q and the 
extra sets of parameters needed for the Beale’s 
measure calculation as input in addition to 
input already required for the regression 
solution. 

The programs were developed using the 
Microsoft Fortran Compiler, Version 3.3, with 
the DOS 2.0 operating system on an IBM 
PC/XT computer with the IBM 8088 Math 
Coprocessor and 256 KB memory. Except for 
the OPEN statements near the beginniug of 
the general code, Fortran 66 was used through- 
out to make the codes as machine independent 
as possible. The general source code is con- 
tained in file BEALE.FOR, and the version 
designed to be inserted into the regression 
code is contained in file BLEINS.FOR, both of 
which are in the diskette accompanying this 
report. 
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Input data for General Version.-Data Set A. 
Problem size information; one card (format 415, F1O.O). 

Line Columns Variable Definition 

l-5 NVAR . 
6-10 NRES 
11-15 NOBS 
16-20 NPRIR 

21-25 NPTS 

26-35 VAR 

Number of parameters, p. 
Number of restrictions, q. 
Number of sample observations, II . 
Number of regression parameters having direct prior 

information, n . 
Number of dataPsets to compute the modified Beak’s 

measure, m. 
Error variance, s2. 

Data Set B. 
Estimated regression parameters, 6 (format 8FlO.O). 

BOPT(1) 
BOFT(2) 

BO+VAR) 

Estimated regression parameters, entered sequentially 
from 1 through NVAR. 

Data Set C. 
Dependent variable vector for sample information, %, computed using 4 
(format 8FlO.O). 

Line columns Variable Definition 

FOPT(1) 
FOPT(2) 

Computed dependent variable values, entered sequen- 
tialIy from 1 through NOBS. 

FOPT(NOBS) 

Data Set D. 
Weight matrix for sample information, E’ (format 8FlO.O). 

Line columns Variable DdillitiOll 

l-10 
11-20 

W(1) 
W(2) 

W(iOBS) 

Diagonal weight matrix for sample information, 
entered sequentially from 1 through NOBS. 

Data Set E. 
Sensitivity matrix for sample information, X, (format 8FlO.O) 

Variable 

WJ) 
W2A 

X(NVAR.1) 
X(1,2) 

Definition . 

Sensitivity matrix for sample information, entered 88 
quentiaRy 1 through NVAR for each observation. 
Each new observation begins a new line. for a total 
of NOBS observations. 

X&AR,P) 

X(NirAR,NOBS) 
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Data Set F. 
Parameter numbers having prior information (format 1615). 

Line cdumns Variable Defblition 

l-5 
6-10 

IPR(1) 
IPR(2) 

IPR(NPRIR) 

Array subscript numbers for regression parameters in 
BOPT(1.) having prior information, entered in any 
order from 1 through NPRIR. 

Omit data set of NPRIR=O. 

Data Set G. 
Standard deviation matrix for prior information, g’ (format 8FlO.O). 

l-10 ww Diagonal standard deviation matrix for prior informa- 
tion, entered in the same order as IPR(1) from 1 

WP(NPRIR) 
through NPRIR. 

Omit data set if NPRIR=O. 

Data Set H. 
Alternate parameters sets, & (format 8FlO.O). This data set and the next one 
are read in sequence (H, I, H, I, . ..) a total of NITS times. 

Line columns Variable D&n&ion 

l-10 
11-20 

B(1) 
B(2) 

B&AR) 

Alternate parameter sets, entered sequentially 1 
through NVAR. Order must be the same as for 
BOPT(L). 

Data Set I. 
Alternate dependent variable vectors for sample information, fsp, computed 
using & (format 8FlO.O). 

Line columns Variable DdhitiOlI 

l-10 
11-20 

FCW 
FCC3 

FC(;OBS) . 

Alternate sample dependent variable values computed 
using the nonlinear model, entered sequentially 1 
throueh NOBS. Order must be the same as for 
FOP+(I). 



REGRESSION MODELING OF GROUND-WATER FLOW 193 

Output for General Version.-Output is all 
clearly labeled, it is ordered as follows: 

1. Data sets A through G. 
2. Data sets H and I. Data for numbers 2 

through 4 below are printed sequentially 
for each data set &’ (P= 1.2 ,..., m). 

3. Dependent variable vector, g!, for sample 
information, computed using the linear- 
ized model. 

4. Total fums of squared djfferences (b-b’ 
*zl&-fl ad (,$‘-#‘c&‘-f), where 

5. Beale’s measure, kb=BN. 

Use of Version Integral with the Regression 
Grvun&WaterPrvgmm.-This version consists 
of sets of statements to be inserted into the 
program of appendix 4.3.4, as indicated on the 
appended listing. Input is the same as if a 
regression solution were to be obtained, except 
that the initi+ set of parameters must be the 
optimum set &, and extra data relating to the 
modified Beale’s measure is required. After 
entering data set T, use data sets U and V to 
enter the data for P=1,2,...,m alternate solutions. 
Follow these data with a final line to input q and 
s2 with format 15,FlO.O. A complete regression 
solution is not obtained; only computations 
through the calculation of sensitivities on the 
first iteration are completed before proceeding 
to calculate the modified Beale’s measure. Thus, 
output consists of regression output through 
number 19 (see “Gutput” in appendix 4.3.4) plus 
output analogous to numbers 2 through 4 of the 
general version of the modified Beale’s measure 
program. 
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Program Listing for Geneml Version. 

C MODIFIED BEALE'S MEASURE PROGRAM BY R. L. COOLEY, USGS, DENVER, 
C COLO. 

DIMENSION BOPT(20),FOPT(70),B(20),FC(7C),FL(7C),X(2C,7U) 
l,W(7O),IPR(2O),WP(20) 
COMMON/ITP/IIN,IOUT 
COMMON/FLT/X 
OPEN (5,FILE-'BEALE.DAT',STATUS-'OLD',ACCESS='SEQUENTIAL' 

l,FORM='FORMATTED') 
OPEN (6,FILE-'BEALE.OUT',STATUS-'NEW',ACCESS='SEQUENTIAL' 

l,FORM-'FORMATTED') 
C**FORMAT LIST 

1 FORMAT (515,FlO.O) 
2 FORMAT (8FlO.O) 
3 FORMAT (9HlNVAR = ,14/9H NRES = ,14/9H NOBS - ,I4 

1/9H NPRIR = ,14/9H NPTS -,,14/9H VAR = ,G11.5) 
4 FORMAT (lH0,26X,lBHOPTIMUM PARAMETERS 

l/lH ,3X,3(3HN0.,9X,4HBOPT,BX)) 
5 FORMAT (lH0,9X,52HDEPENDENT VARIABLES COMPUTED WITH OPTIMUM PARAME 

lTERS/lH ,3X,3(3HN0.,9X,4HFOPT,BX)) 
$i FORMAT (lH0,21X,26HPARAMETERS FOR SAMPLE NO. ,I3 
'l/lH ,3X,3(3HNO.,llX,lHB,SX)) 

7 FORMAT (lH0,12X,44HDEPENDENT VARIABLES COMPUTED FOR SAMPLE NO. ,I3 
l/lH ,3X,3(3HNO.,lOX,2HFC,9X)) 

8 FORMAT (38H0 SENSITIVITIES FOR OPTIMUM PARAMETERS) 
9 FORMAT (lH0,6X,55HLINEARIZED DEPENDENT VARIABLES COMPUTED FOR SAMP 

1LE NO. ,13/1H ,3X,3(3HNO.,lOX,2HFL,9X)) 
10 FORMAT (lHO,SHBN - ,G11.5) 
11 FORMAT (23HOSS((FC-FOPT)*W**.5) = ,G11.5 

1/23H SS((FL-FOPT)*W**.5) - ,G11.5) 
12 FORMAT (lH0,14X,42HRELIABILITY WEIGHTS FOR SAMPLE INFORMATION 

l/lH ,3X,3(3HNO.,lOX,lHW,lOX)) 
13 FORMAT (1615) 
14 FORMAT (lH0,12X,43HNO.S OF PARAMETERS HAVING PRIOR INFORMATION 

l/lH ,3X,3(3HNO.,BX,3HIPR,lOX)) 
15 FORMAT (lH0,14X,40HSTANDARD DEVIATIONS OF PRIOR INFORMATION 

l/lH ,3X,3(3HNO.,lOX,2HWP,9X)) 
16 FORMAT (6HOEV = ,G11.5) 

C**DEFINE INPUT FILE, OUTPUT FILE, AND ARRAY DIMENSION 
IIN- 
IOUT- 
NVD-20 

C**READ BASE DATA 
READ(IIN,l) NVAR,NRES,NOBS,NPRIR,NPTS,VAR 
WRITE(IOUT,3) NVAR,NRES,NOBS,NPRIR,NPTS,VAR 
READ(IIN,2) (BOPT(J),J-1,NVAR) 
WRITE(IOUT,4) 
CALL PRTOTB(BOPT,NVAR) 
READ(IIN,2) (FOPT(I),I-l,NOBS) 
WRITE(IOUT,5) 
CALL PRTOTB(FOPT,NOBS) 
READ(IIN,2) (W(I),I=l,NOBS) 
WRITE(IOUT,12) 
CALL PRTOTB(W,NOBS) 

SET A 

SET B 

SET C 

SET D 
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Program Listing for General Version-Continued 

DO 20 J-l,NOBS 
READ(IIN,2) (X(I,J),I-l,NVAR) SET E 

20 CONTINUE 
WRITE(IOUT,8) 
CALL PRTOT(X,NVAR,NOBS,NVD) 
IF(NPRIR.LT.l) GO TO 45 
READ(IIN,2) EV SET F 
WRITE(IOUT,16) EV 
READ(IIN,13) (IPR(I),I-1,NPRIR) SET G 
WRITE(IOUT,14) 
CALL PRTOTC(IPR,NPRIR) 
READ(IIN,2) (WP(I),I=l,NPRIR) SET H 
WRITE(IOUT,15) 
CALL PRTOTB(WP,NPRIR) 
DO.40 I-1,NPRIR 

40 WP(I)-EV/(WP(I)*WP(I)) 
C**READ DATA FOR EACH SAMPLE AND COMPUTE MODIFIED BEALE'S MEASURE, BN 

45 SUMA-0. 
SUMB-0. 
DO 80 M-l,NPTS 
READ(IIN,2) (B(J),J-l,NVAR) SET I 
WRITE(IOUT,6) M 
CALL PRTOTB(B,NVAR) 
READ(IIN,2) (FC(I),I-1,NOBS) SET J 
WRITE(IOUT,7) M 
CALL PRTOTB(FC,NOBS) 
SUMC-0. 
SUMD-0. 
DO 60 J-l,NOBS 
SUM-FOPT(J) 
DO 50 I=l,NVAR 

50 SUM-SUM+X(I,J)*(B(I)-BOPT(1)) 
FL(J)=SUM 
TMP-FC(J)-SUM 
SUMA-SUMA+TMP*W(J)*TMP 
TMP-FC(J)-FOPT(J) 
SUMC=SUMC+TMP*W(J)*TMP 
TMP-SUM-FOPT(J) 
SUMD-SUMD+TMP*W(J)*TMP 

60 CONTINUE 
IF(NPRIR.LT.l) GO TO 75 
DO 70 J-l,NPRIR 
I-IPR(J) 
TMP-B(I)-BOPT(1) 
TMP-TMP*WP(J)*TMP 
SUMC-SUMC+TMP 

70 SUMD-SUMD+TMP 
75 WRITE(IOUT,9) M 

CALL PRTOTB(FL,NOBS) 
WRITE(IOUT,ll) SUMC,SUMD 

80 SUMB-SUMB+SUMD*SUMD 
TMP-NRES 
BN-TMP*VAR*SUMA/SUMB 
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Program Listing for General Version-Continued 

WRITE(IOUT,lO) BN 
STOP 
END 
SUBROUTINE PRTOTB(VAL,NO) 

C**PRINT VALUES IN THREE GROUPS OF TWO COLUMNS 
DIMENSION VAL(N0) 
COMMON/ITP/IIN,IOUT 
NR-NO/3 
IF(3*NR.NE.N0) NR-NR+l 
DO 10 K=l,NR 
WRITE(IOUT,20) (L,VAL(L),bK,NO,NR) 

10 CONTINUE 
RETURN 

20 FORMAT (1H ,2X,3(13,7X,G11.5,3X)) 
END 
SUBROUTINE PRTOTC(IVAL,NO) 

C**PRINT INTEGERS IN THREE GROUPS OF TWO COLUMNS 
DIMENSION IVAL(N0) 
COMMON/ITP/IIN,IOUT 
NR==N0/3 
IF(3*NR.NE.N0) NR=NR+l 
DO 10 K=l,NR 
WRITE(IOUT,20) (L,IVAL(L),L-K,NO,NR) 

10 CONTINUE 
RETURN 

20 FORMAT (1H ,2X,3(13,8X,14,9X)) 
END 
SUBROUTINE PRTOT(C,NR,NC,NRD) 

C**PRINT MATRICES DIVIDED VERTICALLY INTO TEN-COLUMN BLCCKS 
DIMENSION C(NRD,NC) 
COMMON/ITP/IIN,IOUT 
DO 60 K=l,NC,lO 
JlO-K+9 
IF(JlO.GT.NC) JlO=NC 
WRITE(IOUT,70) (J,J=K,JlO) 
WRITE(IOUT,90) 
DO 30 I-l,NR 

30 WRITE(IOUT,80) I,(C(I,J),J=K,JlO) 
60 CONTINUE 
70 FORMAT(lHO,lO(SX,I3)) 
80 FORMAT (1H ,13,1X,lO(lX,G11.5)) 
90 FORMAT (1H ) 

RETURN 
END 

c 

c 
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197 

C 
C**INSERT JUST BEFORE EQUIVALENCE STATEMENT FOR MODIFIED BEALE'S MEASURE 

DIMENSION BOPT(2C),HOPT(70) 
EQUIVALENCE (P(l),BOPT(l)),(HO(l),HOPT(l)) 

C 
C 
C**INSERT AFTER STATEMENT LABEL 260 FOR MODIFIED BEALE'S MEASURE 

DO 1000 J-l,NVAR 
1000 BOPT(J)=B(J) 

DO 1100 I-l,NOBS 
K=KOBS(I) 

1100 HOPT(I)=BK(I)*HC(K)+BL(I)*HC(K+1)+BM(I)*HC(K+ID)+BN(I)*HC(K+ID+l) 
suMA=o . 
suMB=o . 
GO TO 640 

C 
C 
C**INSERT JUST BEFORE STATEMENT LABEL 690 FOR MODIFIED BEALE'S MEASURE 

SUMC-0. 
SUMD=O. 
WRITE(IOUT,2000) 

2000 FORMAT (lH0,3X,28HCOMPUTED AND LINEARIZED HEADS/lH ,3X,3HN0.,7X 
1,2HHC,13X,2HHL) 

B 
2100 

2200 

2300 
2400 
2500 

DO 2200 J=l,NOBS 
K-KOBS(J) 
HCJ=BK(J)*HC(K)+BL(J)*HC(K+l)+BM(J)*HC(K+ID)+BN(J)*HC(K+ID+l) 
HL=HOPT(J) 
DO 2100 I-1,NVAR 
HL=HL+X(I,J)*(B(I)-BOPT(1)) 
TMP-HCJ-HL 
SUMA=SUMA+TMP*W(J)*TMP 
TMP-HCJ-HOPT(J) 
SUMC=SUMC+TMP*W(J)*TMP 
TMP=HL-HOPT(J) 
SUMD=SUMD+TMP*W(J)*TMP 
WRITE(IOUT,856) J,HCJ,HL 
CONTINUE 
IF(NPRIR.LT.l) GO TO 2400 
DO 2300 J=l,NVAR 
IF(WP(J).LT.l.E-10) GO TO 2300 
TMP=B(J)-BOPT(J) 
TMP-TMP*WP(J)*TMP 
SUMC=SUMC+TMP 
SUMD-SUMD+TMP 
CONTINUE 
WRITE(IOUT,2500) SUMC,SUMD 
FORMAT (23HOSS((HC-HOPT)*W**.5) = ,G11.5 

1/23H SS((HL-HOPT)*W**.5) = ,G11.5) 
SUMB=SUMB+SUMD*SUMD 

C**INSERT AFTER STATEMENT LABEL 690 FOR MODIFIED BEALE'S MEASURE 
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Listing of Inserts to the Regression Ground-Water Flow Program-Continued 

READ(IIN,812) HEES,VAE 
WRITE(IOUT,2600) NRES,VAR 

2600 FORMAT (8HONRES - ,14/7H VAR - ,Gll. 5) 
TM+NRES 
BLN-=TMP*VAR*SIJHA/SUHEi 
WRITE(IOUT,2700) BIN 

2700 FORMAT (lHO,SHBN = ,G11.5) 
C 
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In this section answers to the exercises from 
the first six sections are given. For brevity, the 
exercises are not restated. 

Problem 2.2- 1 

a. (RR),(RW),(RB),(WW),o,(WB),(BB), 
(BWMW. 

b. R W Bl B2 

P(RR)=1/16 P(WW)=lI16 P(BB)=1/4 
p(RW)=1/16 P(W\R)=1/16 P(BW)=lI8 
P(RB)=1/8 P(WR)=1/8 P(BR)=1/8 

C. 

B 

5/16 

4116 

3/16 
-k 
5 
YI 2/l 6 

l/16 

- 

1 

- 

-i- 

- 

0 
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7 Answers to Exercises 

d. P(X=4)=5/16 

(RR),WBWW. 

Problem 2.2-2 

T 

5 6 7 

a. The effect of increasing the class interval 
size is to increase the frequency value for 
each class. This increase tends to make 
the histogram appear more peaked for 
larger intervals. Increasing the class 
interval also tends to smooth out 
irregularities. 

0.4 

4 0.3 - 
s ; a.2 - Il. 

0.1 

0 200 400 600 800 1000 1200 1400 

CONDUCTANCE, IN /lMHOlCM 

CONDUCTANCE, IN /lMHOICM 

b. P(X<600)=0.53 
P(x>400)=0.88 
P(4OOa<600)=0.41 
P(x~1300)=1.0. 

Problem 2.3- 1 

a. 5;: ~~*=(2X50+1X150+1X250+12 

X3;0+28X450+25X550+21X650+16 
X750+10X850+8X950+2X1050+3 
X1150+1X1250)/130 
=612. 

b. By replacing the integration in equation 
2.3-3 with a summation, it is seen that the 
population mean px for this random 
variabie is represented by 

=(2X1/4+3X1/4+4X5/16+5X1/8 
+6x l/16) 

=3; . 
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Problem 2.3-2 

a. Triangular density problem. 
(4 

2.0 

2 1.0 
z 

I 
-1.0 0.0 

(ii) 

(iii) 
1.0 

X 
1.0 2.0 

I I I 
_ . 

-1.0 0.Q 1.0 2.0 
X 

2~E[X2]-(E[xp+ - $ = +g . 

b. ~=1.25>(0.051+1.75X0.103+2.25X0.103 
+2.75X0.154+3.25X0.154+3.75X0.128 
+4.25X0.128+4.75X0.090+5.25X0.026 
+5.75X0.064=3.36. 

Problem 2.4- 1 

a. p(x=3 and Y=2)=p(x=3)P(Y=2)=1/36. 
b. P(X+Y=5)=1/9. 
c. P(Y=2(X=3)=1/6. 
d. P(X+Y=5IX=3)=1/6. 
e. P(X+Y<5(X=3)=1/3. 

Problem 2.4-2 

c 
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% 

=&Jar&4T 

Problem 2.5- 1 

. 

a. ~=Ri~:i=610 . 

The results differ very little, indicating the 
validity of approximation in equation 2.3-l. The 
repeat values probably result from measure- 
ment errors, indicating that a value of the ran- 
dom variable could not be determined more 
precisely than one @ro/cm. 

b. F=3.36 + 1.43 
t;g-= 1@=2,290 gaI/d/ft 
d 8 =lO(~‘S&f Xl()‘Sx 

=(146,3590$ gai/d/ft. 

The large dispersion strongly suggests that t;P 
may not represent the true geometric mean, 
since there is significant scatter in T in the 
vicinity of Eg. 

Problem 2.5-2 

Let X be the specific conductance random 
variable and Y be the dissolved solids random 
variable. Then 

cxi=14,999 L”yi=9,140 
@=11,743,379 Cy+4,316,966 
cx,Yi=7,095,973 n=23 
Z=652 p=397 
&=89,200 S~~31,300 
sx= 299 s,=176 

rxy=0.98 . 

201 

Problem 2.6- 1 

5=3x10-4 +6.6x10-5 

P(X2/(&n)<F (1 n-l)) - cd ’ 
=P(-J~&Zmx4L~~jQiFi~~ 

=P(-2.26@(S,/jii))<2.26)=0.95 

X/(sX/&)=0.12 . 

The value of the statistic is well within the 
interval (-2.26<0.12<2.26). This result is ex- 
pected, if the titration experiment is valid, as 
95 percent of aII values of. the statistic 
X/@&j& calculated from repeated random 
sampling, would be expected to faiI in this inter- 
val. If the value had fallen outside the interval, 
one should feel uneasy because this should oc- 
cur only 5 percent of the time. One would then 
be obligated to question whether the assump- 
tion pX=O inherent to the titration test is valid. 

Problem 2.8- 1 

a. Z=lO skO.08 n=7 

p 
I 
(%f)2 <F (1 6) 

Z&n - a ’ I 

Therefore, an interval can be constructed from 

where F&,6)=5.99. Thus 

and 

10.26>&9.74 . 
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b. As 95 percent of alI intervals so con- 
structed wilI contain px, there is a 0.95 
probability that this interval contains px. 

Problem 3.1- 1 

Upon substitution of equation 4 into equation 

Problem 2.9- 1 

a. Ho:px=O 

Hl:px#O . 

b. From equation 2.6-21, the statement 
P(reject Ho/H,-, true)=a! becomes 

P( $$ >a1 3 =1)=P(s:,s;>4=0.05 
where S$!z?~ is an F(24,15) random vari- 
able. Because the critical region is defined 
by values of F(24,15) greater than or 
equal to c, c must be equal to Fo,,(24,15) 
(see equation 2.6-15). Thus, c=2.29 and, 
because s~/~=1.31, we accept Ho at 0.05 
significance level. 

c. Hypothesis to be tested for rejection: 

H,,:px=9.8 . 

Alternate hypothesis: 

H1:px#9.8 . 

From equation 2.9-7, 

P 
I 

h-J 
- <-qiqq 
Sxlsn I 

x-/q) 

+p s&ii 1 
->m 

I 

=P(( ~)2>FJl,,-l)) =01 . 

Thus, the critical value for the statistic 
(~-p,)2/(S$$z) is F,(l,n-1), which, at the 
0.05 significance level, has a value of 5.99. 
Because the statistic for the random sam- 
ple in question takes on the value 3.50, we 
are forced to accept the possibility that 
px=O: We cannot safely reject Ho at the 
0.05 significance level. 

3, one obtains 

where Y-h=p, -- 

_Y= 

and 

. 
Yl 

Y; 
9 

For n observations 

_y=xJ+g 

hl 

&= 
h, s 

e = 
01 El 

E= . 

03 % . 

I xnl xn2 xn3 . * 8 * I 

In the regression model: 

_Y=observed dependent variable vector; 
&computed dependent variable vector; 
s=independent variable (distance along 

stream tube); 
z=sensitivities; and 
@=parameters. 

a. S(&)=[Y-gT[Y-Xb] 

where 

I 

4 

fi= b, 

b3 

That is, 

c 

S(b)= [ Y,-(b,Xll+b~,,+b~,,)] 2 

+ [ y2-(blX21+b&22+b&23)] 2 

+. . . 

+ [ Y,~-(b,X,~,+b~n~,+b3Xnp)] 2- 
c 
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b. S(~)=[Y-XZ@E[Y-X~] 

where g=V1 and 

so that 

2 
. 

- -2 
% 

That is, 

w=2 
(1 

L (Y,-(b,X,,+b~,,+b,X,s)) 2 
a1 1 

+ 1. (Y,-(b,X,,+b~2,+b3X23)) 2 
I 02 1 +. . . 

+ & (yn.-(blxn.l+b~n~2+b~n.3)) 
I 

. J 
c. S@)=[Y-Xb]%[Y-Xb] 

where 

WWll +w12 +w13) 

Y-Xb= Y,,-‘blX,,l +b2xn~+b3xns3) -- 

h, 42 

and g=,V-‘, so that 

and 

p= 

D 
That is, 

W=[ Y,-(bl~ll+b~12+b~13)]2 

+. . . 
+[ yns-(blxn~l+b&ns2+b~ns3)]2 

+$ h,-b, 2iG 1 1 b . 
Problem 3.2- 1 

a. Note that if g is diagonal 

and 

where 

6 . .= l ;; l.l 0 i , 

Xl1 X21 x 0 

XT= x,, x2, . . . x2: 1 
xl3 x23 x” 0 

ns3 , 

xll x2l xn,l xn,+l,l 
I 

= xl2 x22 * * exn,2 xn,+1,2 

Xl3 x23 xn,3 xn,+1,3 

1 *. -1 2 W= 
- 2 “‘4, 

I 
1 
Wl i-! 

. 
. = 

2 
wn. 

%z,+1 
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=1 

=2 
_y= . . . 

=7l s 

hb 
1 

= 

=1 

=2 

. . . 

=n 

=ns s-k: . 

Thus, the normal equations 

XToXG=XT,,Y : -- -P 

can be written 

n,+1 

C XikOiYi ( k=l,2,...,p 
i=l 

or 

ns+l 

C XikwiYi t k=1,2,...,p. 
i=l 

As a comparison, the normal equations may 
be derived without using matrix techniques. Let 
n=n,+l so that 

The model equations are given as 

Yi= “c Xijbj+ei 9 i=1,2 ,..., n . 
j=l 

Therefore 

sl~)zi~l =i- jJxijbj 
I I 

2wi. 

derivative with respect to any param- 
eter b, (k=1,2,...g): 

Because the derivative of a sum is the sum of 
derivatives, look at one term: 

a 
ah 

/(yi- ji,xijbj)19 1 

=-2( Yi- j~lXij bj)oiXi, . 

Thus, 

Set z-0 to find the minimum so that 
ab,- 

or 

~ XikWiYi ( k=1,2,...,p. 
i=l 

b. Consider matrix A, such that 

a11 52 a13 

A= a21 a22 a23 

a31 a32 a33 . 
. 

Assume A, is symmetric: its cofactor matrix 4 
is 

‘ta22a33-a23)2 (a13a23-a12a33) (a12a23-a13a22) 

A,= (a13a23-al+33) (alla33-a13)2 (a12a13-alla23) 

(q2a23-al3a22) (al2al3-alla23) (alla22-a12)2 . c 
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The determinant of A, is 

IA,1 =~,,(~,~s3-~~3)+~12(~13~23-~12~33) 

Data Set 1 Data Set 2 

CXi”“j 3.53161157 3.12700831 
i 

+“13(ul~23-a13u22) * I , 
FXj2Ujyi 127.0992273 122.5185789 

The inverse of A, is 

Let d=XTuX where I- 

and, for data set 1, 

I 3.3250 

xTox= 

1.6750 418,750 

3.53161157 
-- 418,750 

symmetric 83,340,625,000 I 

1 2, 
-. 2 

or, for data set 

g= -1 
I! 21fJib 2.8500 1.6500 412,500 

. . xTux= I 3.12700831 -- 412,500 
symmetric 8.3325X lOlo . 

Thus by adding the prior information to the in- 
I 

formation in table 3, there results: Then, for data set 1, 

I 1.18975153X1O’13.5756O1563X1O’o -777,456.0949 
A,= 1.O1756O156X1O11 -690.937.5 I 

1 symmetric 8.93698347 ] 

and 

lXTwXl =1.299239702x 1011 . I- 

Therefore 

I 

0.9157290438 0.2752072275 
[XT&f-p = 0.7831966299 -- 

symmetric 

Similarly, for data set 2 

I 

9.O4O171743X1O1o 3.267X10” 
A,= 6.732X lOlo 

symmetric 

and 

IXTuX( =6.O22819942X1O’o . -- 

Therefore 

I 

1.500986553 
[x%q-‘= 

symmetric 

0.5424369368 
1.117748839 

-5.983931169X1O-6 
-5.318O14O58X1O-6 

I 6.878625596X lo-l1 . 

-609,265.9279 
-495,000 
6.189473684 I 

-1.O11595787X1O-5 
-8.218741466X1O-6 

1.027670384X lo-la )I . 
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0 c. By adding the prior information to the 
information in table 3, we obtain for XTwY- - -* 

Data Set 1 Data Set 2 

61 50.12043881 50.01097198 
A 

9.487418691 9.701194703 

0.00002302475114 0.00002342971729 

Data Set 1 Data Set 2 
I 

CXj pjyi 192.18350 168.2030 
i 

CXj2Wjyj 127.0992273 122.5185789 
i 

cxj20jyi 26,879,687.5 26,583,550 
j 

By evaluating (XT~-lXT~Y, estimates h are 
obtained as: - - - - 

Problem 3.3- 1 

The answers to parts a, b, and c are found in 
the section at the end of the problem where aids 
in debugging the computer code are given. The 
authors’ computer code and output are: 
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0 

C 

B 

DIMENSION T(lO),S(lO),F(lO),Z(2,lO),C(2,2),G(2),D(2) 
10 FORMAT (15,6F10.0,15) 
20 FORMAT (lH1,35HNO. OF OBSERVATIONS (N) -------- E ~7 

$/lH ,35HPUMPING RATE (Q) --------------- = ,G11.5 
$/lH ,35HDISTANCE FROM WELL CENTER (R) -- = ,G11.5 
$/lH ,35HINITIAL TRANSMISSIVITY (TO) ---- = ,G11.5 
$/lH ,35HINITIAL STORAGE COEFFICIENT (SO) = ,G11.5 
$/lH ,35HDAMPING PARAMETER (AP) --------- = ,G11.5 
$71~ ,~~HCLOSURE CRITERION (ER) --------- = ,~11.5 
$/lH ,35HMAXIMUM NO. OF ITERATIONS (ITMX) = ,17) 

30 FORMAT (8FlO.O) 
32 FORMAT (10~0~1~~s (T)) 
34 FORMAT (23HOOBSERVED DRAWDOWNS (S)) 
36 FORMAT (15HOITERATlON NO. ,I4 

$/36~ CURRENT ESTIMATES OF PARAMETERS (B)) 
38 FORMAT (28HOSOLUTION FAILED TO CONVERGE) 
40 FORMAT ((1H ,lO(G11.5,2X))) 
42 FORMAT (19HOSOLUTION CONVERGED) 
44 FORMAT (29HOFINAL COMPUTED DRAWDOWNS (F)) 
46 FORMAT (16HORESIDUALS (F-S)) 
48 FORMAT (18HOERROR VARIANCE = ,G11.5) 
50 FORMAT (lZHOVAR(T) = ,G11.5/12H COV(T,S) = ,G11.5 

$/12H VAR(S) = ,G11.5) 
52 FORMAT (26HOSCALED SENSITIVITIES (Z):/5H TO T) 
54 FORMAT (5H TO S) 

READ AND PRINT INPUT DATA 
READ(5,lO) N,Q,R,TO,SO,AP,ER,ITMX 
WRITE(6,20) N,Q,R,TO,SO,AP,ER,ITMX 
READ(~,~~) (T(I),I=~,N) 
WRITE(6.32) 
WRITE(6,40) (T(I),I=l,N) 
READ(5,30) (S(I),I=l,N) 
WRITE(6,34) 
WRITE(6,40) (S(I),I=l,N) 
FU=R*R/4. 
FW=Q/12.5664 
DMAX=ERtl. 
DO 140 KNT=l,ITMX 
UTMP=F@SO/TO 
WTMP=FW/TO 
DO 80 I=l,N 

COMPUTE NEW DRAWDOWN (F(I)) 
COMPUTE U AND W(U) FIRST 

U=UTMP/T(I) 
WU=W(U) 

THEN F(1) 
F(I)=WTMm 

COMPUTE SCALED SENSITIVITIES (Z(I,J)) 
TMP=EXP(-U) 
Z(l,I)=WTMPk(TMP-WU) 

80 Z(2,1)=-WTMP*xTMP 
CHECK FOR CONVERGENCE 

IF(DMAX.LT.ER) GO TO 150 
ASSEMBLE COEFFICIENT MATRIX (C(I,J)) AND 
GRADIENT VECTOR (G(J)) 

DO 86 J=1,2 
DO 84 I=J,2 
C(I,J)=O. 

84 C(J,I)=O. 
86 G(J)=O. 

DO 110 K=l,N 
TMP=S(K)-F(K) 
DO 100 J=1,2 
DO 90 I=J,2 
C(I,J)=Z(I,K)*Z(J,K)tC(I,J) 
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90 C(J,I)=C(I,J) 
100 G(J)=Z(J,K)*TMP+G(J) 
110 CONTINUE 

C INVERT COEFFICIENT MATRIX 
DET=C(l,l)*C(2,2)-C(l,2)*c(2,1) 
TMP=C(l,l) 
C(l,l)=C(2,2)/DET 
C(2,2)=TMP/DET 
C(1,2)=-C(1,2)/DET 
C(2,1)=C(1,2) 

C COMPUTE PARAMETER DISPLACEMENTS (D(I)), MAX. DISPLACEMENT 
C (DMAX), AND PARAMETERS (TO AND So) 

DMAX=O. 
DO 130 J=1,2 
D(J)=C(l,J)*G(l)+C(2,J)*G(2) 
TMP=ABS(D(J)) 
IF(TMP.GT.DMAX) DMAX-TMP 

130 CONTINUE 
TO=TO*(l.tAP*D(l)) 
SO=SO*(l.+A*D(2)) 

C PRINT PARAMETERS 
WRITE(6,36) KNT 
WRITE(6,40) TO,SO 

140 CONTINUE 
WRITE(6,38) 
GO TO 160 

150 WRITE(6,42) 
C PRINT DRAWDOWNS, RESIDUALS (F(I)-S(I)), AND SCALED 
C SENSITIVITIES 

160 WRITE(6,44) 
WRITE(6,40) (F(I),I=l,N) 
DO 170 I=l,N 

170 F(I)=F(I)-S(1) 
WRITE(6,46) 
WRITE(6,40) (F(I),I=l,N) 
WRITE(6,52) 
WRITE(6,40) (Z(l,I),I=l,N) 
WRITE(6,54) 
WRITE(6.40) (Z(Z,I),I=l,N) 

C COMPUTE AND PRINT ERROR VARIANCE (VAR) AND 
C COVARIANCE MATRIX FOR PARAMETERS 

VAR=O. 
DO 180 I=l,N 

180 VAR=VARtF(I)*F(I) 
VAR=VAR/(N-2.) 
WRITE(6,48) VAR 
C(l,l)=TO*C(l,l)*TO*VAR 
C(1,2)=TO*C(1,2)*SO*VAR 
c(2,2)=so*c(2,2)*so~AR 
WRITE(6.50) C(l,l),C(1,2),C(2,2) 
STOP 
END 
FUNCTION W(X) 

C COMPUTE THE WELL FUNCTION OF X 
w=o . 
IF(X.GT.lO.) GO TO 20 
W=-0.577216-ALOG(X)tX 
TERM=X 
DO 10 J=2.36 
RJ=J 
TERM=-TElU+X/RJ 
TMP=TERM/RJ 
W=WtTMP 
IF(ABS(TMP).LT.l.E-7) GO TO 20 

10 CONTINUE 
20 RETURN 

END 

c 

c 
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1NO. OF OBSERVATIONS (N) --m-v--- E 7 
PUMPING RATE (Q) --------------- = 1.1600 
DISTANCE FROM WELL CENTER (R) -- = 175.00 
INITIAL TRANSMISSIVITY (TO) ---- = .lOOOO 
INITIAL STORAGE COEFFICIENT (SO) = .50000E-03 
DAMPING PARAMETER (AP) --------- I 1.0000 
CLOSURE CRITERION (ER) --------- I .lOOOOE-01 
MAXIMUM NO. OF ITERATIONS (ITMX) = 10 

OTIMES (T) 
480.00 1020.0 1500.0 2040.0 2700.0 3720.0 4920.0 

OOBSERVED DRAWDOWNS (S) 
1.7100 2.2300 2.5400 2.7700 3.0400 3.2500 3.5600 

OITERATION NO. 1 
CURRENT ESTIMATES OF PARAMETERS (B) 

.11188 .54748E-03 
OITERATION NO. 2 

CURRENT ESTIMATES OF PARAMETERS (B) 
.11347 .55219E-03 

OITERATION NO. 3 
CURRENT ESTIMATES OF PARAMETERS (B) 

.11349 .55221E-03 
OSOLUTION CONVERGED 
OFINAL COMPUTED DRAWDOWNS (F) 

1.6715 2.2521 2.5564 2.8012 3.0256 3.2832 3.5086 
ORESIDUALS (F-S) 
-.38538E-01 .22079E-01 .16407E-01 .31217E-01 -.14393E-01 .33213E-01 -.51356E-01 

OSCALED SENSITIVITIES (2): 
TO T 
-.91882 -1.4679 -1.7630 -2.0026 -2.2234 
TO S 
-.75264 -.78421 -.79343 -.79866 -.80223 

OERROR VARIANCE = .14328E-02 
OVAR(T) = .95030E-05 

COV(T,S) = -.11369E-06 
vAR(S) = .14595E-08 

Problem 3.3-2 

b. 

I 2Tl -Tl -Tl 
-Tl 2!g+T2) $2 -VI +T2) 

2 2 -T 2 
-Tl 4T1 -2Tl 

o,= 

hl 
h2 
h3 
h4 

h= h, 
h6 
h7 
h8 
h9 

-U’l +Td 
-T2 

-2Tl 4(Tl+T2) ---T2 -(Tl+Tz 
-2T2 -T2 

-Vl+T2) 
21 

Wl+F,d -T2 
-T2 -T2 ST2 1 

lhu2 w, 
‘ha2( w, + Iv,) 
‘ha2 W2 
a2Wl+TlhBl 

p= a2( w1+ W2) 
a2W2+aQs1 
h 
‘%a2(Wl+W2)+Tlhgj 
‘/za2w2+CZqg1 

-2.4779 -2.7014 

-.80527 -.80724 
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&= 

&= 

J3= 

d. 

/ = 
/ 
/ 
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6. Compute XT& and gg(x-&&)). 0 
7. Define s=(Cri)={ (X,Twx,)i[“}. 
8. Compute ST&, and g~(x-&&)) 

h,+h,-ah, 
h, +&-2/t, 

0 
h,+2h,-4h,+hB, 
h,+2h,+h,-4h, 

0 

where &=X,C, . 

9. !%+1 =csTosr+~,-l~~(k~(~~)) 

10. 4+1=s!r+1. 

11. !?r+1 =&+1+& * 

12. If @l/c(>~ (where c=bi for bF#O, and 
c=l for b{=O) for any i=1,2 ,..., p, then in- 
crement r by one and return to 2. If not 
then: 

0 
h5-2h;+hBl 

h,+h;-2h, 
h,+h,-2h, 

0 
h,+2h,+h,-4h, 
h3+2h5+h,-4h, 

0 
h,+h,-2h, 
h,+h8-2h, 

lha2 
l/a2 
0 

$ 

i 

z4= 

l/au2 
0 

1. Let r=O. 
2. Compute 5 and pr 
3. &=D;l * 
4. Obtain f(& &) from & by deleting node 7. 
5. 

by 
j=1,2,...,p 

Values of p and p can be computed at each 
iteration by using algorithms defined by 
equations 3.3-28 through 3.3-30 if 
desired. 

Problem 4.2- 1 

Data Set 1 

Nodes in columns 2 through 11 have obser- 
vations. Nodes in columns 1 and 12 form 
specified head boundaries. Spacing: CeII row 1, 
1 ti, cell columns 1 and 11, 50 ft; ceII columns 
2 through 10, 100 ft (figure 1). 

Data Set 2. 

Nodes in columns 2 through 10 have obser- 
vations. Nodes in columns 1 and 11 form 
specified head boundaries. Spacing: CeII row 
1,1 ft; cell columns 1 through 10, 100 ft 
(figure 2). The input data to the regression pro- 
gram for the two data sets are shown in figures 
3 and4. 

If both T and W were estimated, the problem 
would be singular because the only unique 
parameter is W/T. 

a 

Row number 

1 Node 
12 3 4 5 6 7 8 9 10 11 12 Column c 

1 2 3 4 5 6 
7 

8 
9 10 11 

Cell 
> 

number 

Figure 1 
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Rowxber 
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1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 9 10 

1 Node 
11 > Column 

Cell number 

Figure 2 

LAKE OHPUPU, DATA SET 1. 

12 

DX 
1 

DY 
1 

cx 
1 

CY 
1 

VI4 
1 

HR 
1 

QR 
1 

HC 
2 

IZN 
1 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 
1 
1 

IN 
1 

12 
1 
1 
1 
2 

12 
12 

2 
50 

1 
11 
50 

LOO 
1 
1 
1 

11 
1 

11 
1 

11 
1 

12 
1 

11 
1 

11 
1 

11 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

0 

2 
1 

12 
2 
1 
2 
2 
1 
2 

1 

0 
1 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
1 
0 
1 
1 
2 

3 

10 1 
0 

1 
100 
100 

1 

1 

1 

1 

2 

1 

2 

1 1 
50 

150 
250 
350 
450 
550 
650 
750 
850 
950 

0 1 

1 

2 -1 
2 -1 
2 

49 
49 

3 
11 
11 

3 0 
0 

1 1 
100 

50 

1 

1 

1 

0 

0 

1 

11 

.5 

.5 

.5 

.5 

.5 

.5 

.5 

.5 

.5 

.5 

0 

0 

1.1 

0 2 2 1 1 
0 .25 

100 100 100 

48.33 1 
45.76 1 
42.08 1 
38.34 1 
35.30 1 
31.00 1 
25.85 1 
21.76 1 
16.11 1 
12.48 1 

.OOl 

0 

1.1 

0 

100 100 

Figure 3 
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LAKE OHPUPU, DATA SET 2. 

11 

DX 
1 

DY 
1 

cx 
1 

CY 
1 

VL 
1 

HR 
1 

QR 
1 

HC 
2 

IZN 
1 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1 
1 
1 

IN 
1 

11 
1 
1 
1 
2 

11 
11 

2 
50 

1 
10 

1 
1 
1 

10 
1 

10 
1 

10 
1 

11 
1 

10 
1 

10 
1 

10 
2 
3 
4 
5 
6 
7 
8 
9 

10 
0 

2 
1 

11 
2 
1 
2 
2 
1 
2 

1 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
1 
0 
1 
1 
2 

3 

9 1 
0 

1 

1 

1 

1 

1 

2 

1 

2 

1 1 
100 
200 
300 
400 
500 
600 
700 
800 
900 

0 1 

1 

2 -1 
2 -1 
2 

49 
49 

3 
9.5 
9.5 

3 0 0 2 2 110 
0 0 .25 

100 

1 

0 

1 

10 

.5 47.13 1 

.5 44.14 1 

.5 39.89 1 

.5 36.36 1 

.5 32.48 1 

.5 29.70 1 

.5 24.33 1 
-5 19.10 1 
.5 14.96 1 

1 .OOl 

0 0 

.95 .95 

Figure 4 

Problem 4.2-2 all parameters. More data points in areas of 
highest sensitivity might improve results for 

Because prior information is available, all parameters having low sensitivity. The input 
parameters can be estimated. Data points are data to the regression program are shown in 
located in areas of relatively high sensitivity for figure 1. 

a 
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Problem 5.4- 1 
g= 9.487418691 

I 50.12043881 
or 

a. Let &=O. Then 0.00002302475114 
I 

2 

.S= 
PuY-~TxTuY 

n-p 

for data 
set 1, or 

for 

1 
1 

. . . 
0= 1 

0.25 

(1.1)2 

or 

1 
1 

. . . 
1 

0.25 

(0.95)2 

I 50.01097198 
9.701194703 

0.00002342971729 
I 

YToY= 11,459.5411 or -- 10.225.4391 

GTXTwY=ll 457 06305 or --- ’ * 10,223.41717 

s2= 0.30975625 or 0.2888471429 

slAY,= 0.55655749931(48.33-12.48)=0.0155 or 
0.5374450138/(47.13-14.96)=0.0167 

The fit is fairly good. 

(xT~-l& -- 
0.9157290438 0.275207227E 

0.30975625 I 0.783196629: 

I symmetric 

i -5.983931169X1O-6 
) -5.318014058><10-6 

6.878625596X lo-l1 

0.2836527946 O.O8524715876-1.85356OO79X1O-6 ’ 
= 0.2426000511 -1.647288O92X1O-6 

symmetric 2.13O69727OX1O-11 
. 

or 

1.500986553 0.5424369368 -1.O11595787X1O-5 
0.2888471429 1.117748839 -8.218741466X1O-6 

symmetric 1.027670384X 10-l’ 
L 

B 

0.4335556774 0.1566813594 -2.921965528X1O-6 
= I 0.3228585586 -2.373959991 X1O-6 

symmetric 2.968396543X10-l’ . 

Because the standard errors (the square roots of the diagonal elements) 
are small, the parameters are well determined. 
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C. 

1 0.3249682531-0.7539668635’ 
r= 1 -0.7245414573 

symmetric 1 

or 

1 0.4187827075 -0.8145011290’ 
1 -0.7668426954 

symmetric 1 . 

The problem is fairly well conditioned. 

Problem 5.5-l 

The plots of d and g (figures 1.2) suggest that 
correlation manifests itself in two ways: The 
variability of g from set to set is smaller than 
the variability of d from set to set, and the plots 
of g do not appear to be linear on normal prob- 
ability paper. The plot of 4 (figure 3) does not 
appear to differ very much from either the plots 
of c or g, although the plot of 4 does show the 
same nonlinear trend as displayed by the plots 
of g. Therefore, one may say that the plot of 4 
does not appear to differ significantly from the 
plot of a IV@,(I-R)s2) random variable. F’urther- I- 
more, this distribution of residuals suggests 
that the Theis model is adequate to describe 
the observeddrawdown data set. Input data for 
the residuals analysis program are shown in 
figure4. 

Problem 5.5-2 

a. s2= 0.98677 
Rv= 0.99964 

slAy,= 0.993362971175.18=0.00567 

b. The problem is not well conditioned. En- 
tries (1,8), (1.9). (8,9), and (12.13) (and their 
symmetric counterparts) of the scaled 
least squares matrix have absolute values 
greater than 0.9, although these large 
values yielded large (absolute value X.9) 
parameter correlations only for entries 
(1,8) and (12,13). The correlation between 

parameters 12 and 13 is exceptionally 0 
large so that these parameters are behav- 
ing as one. Because parameters 12 and 13 
are the transmissivity T3 and recharge 
IV, in zone 3, respectively, the physical 
interpretation is that the ratio W31T3 is 
much more unique than either W, or T3. 
The only poorly determined parameter is 
the flow across boundary zone 2, qgF Be- 
cause of the large value of transmissivity 
in the aquifer zone adjacent to this 
boundary flow zone, the gradient near the 
boundary is low. Hence, the flow across 
the boundary is estimated poorly. Well 
discharges Q1 and Q2 and transmissivity 
T2 sre estimated quite well. The draw- 
down cones provide large gradients that 
serve to determine Q1, Q2, and T, 
precisely. 

c. Effects of correlation within g are not 
large. They may be exhibited as a slight 
steepening of the curves for g (figure 2) 
compared to those for g (figure 1) on the 
normal probability plots. The plot of & 
(ilgure 3) is very similar to those of g, 
which suggests that the distribution of a 
i does not differ significantly from a 
N(Q,(I-R)s2) distribution. Note that 4 
co&n% have been used instead of i to 
make the comparison because the weight 
matrix 4 is not equal to L. The plot of (2i 
versus ifi (figure 4) shows no pattern. 
However, the plot of 4 versus Cartesian 
coordinate (figure 5) shows a group of 
negative residuals in the upper center of 
the area. This sign pattern was inherited 
from the sign pattern of the original 
errors 5 that were generated (recall that 
this exercise is based on a hypothetical 
problem), and the original errors are ran- 
dom N(O,l) deviates. Hence, the sign pat- 
tern occurred entirely by chance. The 
lesson is that apparently nonrandom pat- 
terns can, .and often do, develop by 
chance, and the analyst must learn to 
distinguish true problem areas from ap- 
parent ones. 

The input data for the residuals analysis pro- 
gram are shown in figure 6. 

Crdered residual distribution: (The calculated 
values am prior information residuals &-=6&F, 

c 

where .$h S/(Var(Cpj))Y'.) 
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Figure 4 

1 1 
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0 Problem 5.6- 1 

a. Compute 

H(XTuX)-lHT --- - 

where g=[O 0 11. Then, 

H(XTuX)-‘HT=6&$)ls2 --- - . 

By using equation 5.6-11, 

- A 
w&d2 

=-fz 

H& ‘!$!&x~()-5 

HI:& # 3 X 1O-5 

(3X10-‘-2 3O25X1O-5)2 
ZU= 

2.13O,XlO-1’ 

= 2.273 for data set 1. 

F0,,(1,8)=5.318 . ’ ..He accepted 

Values of the ratio of recharge to trans- 
missivity, &= W/T, computed by the two 
methods are not significantly different. 

7LJ= (3X1O-5-2 343OX1O-5)2 
2.9684X lo-l1 

= 1.454 for data set 2 

Fe.,,(1,7)=5.591 . ’ .He accepted. 

The Maxey-Eakin estimate of W/T could 
be used as prior information in the regres- 
sion model, but an estimate of Var( W/T) 
would also be needed. 

b. This test is the same as the one in a ex- 
cept that 

H&=0 H,$,#O 

= 24.88 for data set 1 

. ’ .He rejected. 

w= (O-2.343OX1O-5)2 
2.9684X lo-l1 

= 18.49 for data set 2 

. ’ .He rejected. 

W/T is significantly different from zero. 
Thus, recharge is a significant variable in 
the regression equation. 

c. ,&+~&kP&,n-p)q,~ 

=2.3025X10-5+~5.318X4.6159X10-6 

=2.3025X 1O-5 
+1.0645X10-’ for data set 1 . 

~,=2.3430X10-5+~5.591X5.4483X10-6 

=2.343OX1O-5 
f 1.2883X10-’ for data set 2. 

Problem 5.6-2 

For T extreme: 

=o 11349+= (0.95030x10-s) . - 
0.0030827 

S&+- &&TS) 
SbT 

f 

=0.00055221+ $zxE%K 
0.0030827 

(-O.11369X1O-6) 
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For S extreme: 

=0.11&&+~ 
3.8203X lo- 

5(-O.11369X1O-6) 

=0.11349i0.010124 

=0.00055221t~~~0.14595X10-8) 
. 

=0.00055221+0.00012996. 

Problem 5.6-3 

Ybi 

where &=(xTwx)-‘s2 . Let (XT&Y)-‘s2=A 
={Aij). Therithzbove equatio; can be wri” 
ten in algebraic form for calculations as 

Calculations: 

For T.&II2 extreme: 

ii$=80.978+9.2811 
t)2=935.15+208.42 
,b3 =-97000+85.314 
!4 =-50961T29.377 
_b.)=10.198f0.11520 
_b6=5.1211+1.3758X10-2 
_b,=5.4730+ 1.2758X1O-2 
_3,=65.754*7.2341 
b,=3.1149X10-4f3.0988X10-5 

Em= 487.89f 2.5660 
_bll =-1.3995x10-%4.9215x10-5 
_b,,=13.288+9.3998 
_b,3=1.3516X10-4f9.3069X10-5 
b,4=8.0716X10-2f3.5370X10-5 

For qsl=P1 extreme: 

h1=80.978+43.911 
_b,=935.15~489.14 
_3,=-97000T222.36 
!4 =-50961773.632 
_b,=10.198+0.27770 
_36=5.1211+3.2747X10-2 
_b,=5.4730~3.22OOXlO-3 
_3,=65.754~25.550 
b,=3.1149X10-4f5.4093x10-5 

!10= 487.89+ 6.2288 
$1 =-1.3995x10-4T1.1701x10-4 
&,=13.288f1.9832 
_b,3=l.3516X10-4+2.0377X10-5 
b,4=8.0716X10-2f1.5001X10-4. 

Problem 5.7- 1 
c 

a. Let &={Xij) 9 (X~~-l=(Aij} . Then 

X(XT4-1={ kflXi~Aad=(C’~) a-- = 

If i=j, then the entry is 

Compute for i=j=l for data set 1. 

gl=[0.95 0.05 23,750] . 
c 
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0 

I 

0.91572904380.2752072275 -5.983931169X1O-6 
(XT&)-l = 0.7831966299 -5.318O14O58X1O-6 I -- 

i 
symmetric 

&(XT;u-1~~=0.95(0.95X0.9157290438 
+0;5z2752072275 
+23,75OX(-5.983931169X1O-6)) 
+0.05(0.95X0.2752072275 
+0.05X0.7831966299 
+23,750X(-5.318O14058X10-6)) 
+23,75OX(O.95X(-5.983931169X1O-6) 
+O.O5X(-5.318O14O58X1O-6) 
+23 750X6 878625596X10-11)) . 
=0.;106927103. 

6.878625596X10-l1 . 
I 

+23,750(2.30248X10-') 
=48.636 

D 

Letj=l, data set 1. 

vii#l,=~l(xTuxr'S2~~ -- 
=0.6106927103X0.30975625 

=0.1891658838 . 

C. fflj=h*msyj 

&J3,~)=4.06f 
fl=0.95b,+0.05B2+23,750~~ 

=0.95(50.1204)+0.05(9.48742) 

fS1=48.636f j-X0.434932 
=48.636+1.519 

for j=l, data set 1. 

Problem 6.2- 1 

Sets of parameters for the modified Beale’s 
measure: 

1. (0.12398,0.00042675) 
2. (0.10300,0.00067767) 
3. (0.10337,0.00068217) 
4. (0.12361,0.00042225) 

Only 2 and 4 need be used because the other two 
are nearly the same. By using 2, drawdown, s, is: 
1.5947, 2.2223, 2.5541, 2.8218, 3.0676, 3.3503, 
3.5979. By using 4, s is: 1.7821,2.3239,2.6058, 
2.8320, 3.0390, 3.2763, 3.4839. 

The resulting value of the modified Beale’s 
measure is 

i$,=O.O27702 

Because F0,05( 2,5)=5.7861,0.09/F=O.O156 and 
l/F=O.173, so that the model is almost roughly 
linear. 

The input data for the modified Beale’s meas- 
ure program are shown in figure 1. 

2 2 7 0 2 .0014328 
.11349 .00055221 
1.6715 2.2521 2.5564 2.8012 3.0256 3.2832 3.5086 

1 1 1 1 1 1 1 
-8.09604 -1362.96 
-12.9342 -1420.13 
-15.5344 -1436.83 
-17.6456 -1446.30 
-19.5912 -1452.76 
-21.8336 -1458.27 
-23.8030 -1461.84 

.10300 .00067767 
1.5947 2.2223 2.5541 2.8218 3.0676 3.3503 3.5979 
. 12361 .00042225 
1.7821 2.3239 2.6058 2.8320 3.0390 3.2763 3.4839 

Figure 1 
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Problem 6.2-2 

From the computer output, the modified 
Beale’s measure is 0.29808. Based on F,,,(2,27) 
=3.359, the modified Beale’s measure indicates 
that the model is at the point of being highly 

nonlinear. Hence, linear theory can be applied 0 
to use the W statistic based on q=2 only as a 
very rough approximation. 

The input data to the regression code, modi- 
fied to compute the modified Beale’s measure, 
are shown in figure 1. 

c 
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0 1 90.259 
2 1143.6 
3 - 97085 
4 -50990 
5 10.313 
6 5.1349 
7 5.4858 
8 72.988 
9 3.4248E-4 

10 490.46 
11-1.89163-4 
12 22.688 
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14 8.07513-2 

1 71.697 
2 726.73 
3 -96915 
4 -50932 
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2 1424.3 
3 -97222 
4 -51035 
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9 3.65583-4 

10 494.12 
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1 36.987 
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446.01 
-96778 

4 -50887 
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11-2.29403-5 
12 11.305 
13 1.14783-4 
14 8.05663-2 

REGRESSIONMODELINGOFGROUND-WATERFLOW 231 

B 
2 .98677 



232 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

Problem 6.3- 1 

Compute 

~=(~-~g*,T[s2~(~~1~)-1~+~]-1 

*(Y+-x,@). 

For data set 1 

‘50.018 

g*= 9.1954 

2.5OO8X1O-5 

For data set 2 

50.055 

p= 9.7914 

2.2766X lo-’ 

For data set 1 

(XTv-lx )-ls2= 44Q 

2.555OX1O-‘8.978OX1O-2 -1.7349X10+ 

2.5550X10-l -1.7349X1O-6 

symmetric 2.O715X1O-11 

~~&(g&~&)-‘g=lX2.555OXlO-~Xl 

=0.25550 

_v=(1.1)2=1.21 

s2XjXX&XJ1~+_U=0.25550+1.21 

=1.46550 

=0.68236 

Y+,-&b--11-9.1954=1.8046 

;=1.8046XO.68236X1.8046=2.222 

&&)=3.841 . ’ .Ho accepted. 

Prior and pure regression estimates of fi2=hb 
are in agreement. 

For data set 2 

(XTl+X ps2= SAA 

5.4121 X10-l 2.6265X 10-l -3.9795X1O-6 

5.4121X10-l -3.9795X1O-6 

symmetric 4.3413x10-1’ 

~~&(X~~~&)-~~=lX5.4121XlO-~Xl 

=0.54121 

_u=(o.95)2=o.9025 

~~~(~~‘~)-~~+_v,0.54121+0.9025 

= 1.44371 

[s2x+&~1xJ1g+uJ’ 

=0.69266 

Y+&=9.5-9.7914=-0.2914 

;=-0.2914X0.69266X(-0.2914) 

=0.5682 

. * .Ho accepted. 

bU.S. GOVERNMENT PRlNTlNGOFFICE:1990-773-047/06033 
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