Appendix A. Correlation of U.S. Geological Survey and Oregon Water Resources Department Identifiers for Selected Wells.

			Depth drilled, in feet below land
Location	OWRD name	USGS name	surface
01N/02W-03AAD01	WASH 5090	453613122542901	305
01N/02W-03ABA	WASH 14	453618122544701	405
01N/02W-08BCA	WASH 5173	453514122575801	60
01N/02W-17ACC	WASH 5382	453417122572901	70
01N/02W-17DAB	WASH 5377	453414122571001	760
02N/03W-35CDD	WASH 5956	453628123012101	618
03N/01W-06BAA1	COLU 3379	454645122512201	92
01S/01E-24BBC01	MULT 63238	452827122382401	27
01S/01E-24BBC02	MULT 63239	452827122382402	98
01S/02E-13CDA1	None	452840122302202	17
01S/02E-13CDA2	None	452840122302201	54
01S/02E-16BAA01	MULT 63388	452921122340401	129
01S/02E-16BDA01	MULT 50871	452912122340401	437
01S/01W-17CBD	WASH 8862	452845122502301	414
01S/01W-21CDD2	WASH 8988	452751122485401	800
01S/01W-21DAD2	WASH 8976	452757122482001	395
01S/01W-21DDD	WASH 8986	452751122466001	145
01S/01W-33CBC	WASH 9205	452619122492401	325
01S/02W-23ACB	WASH 10143	452817122561501	805
02S/01E-20CBD1	CLAC 12346	452249122430801	238
02S/01E-20CBD2	CLAC 3165	452249122430901	40
02S/01E-21CCC	CLAC 3246	452234122415901	330
02S/02E-29DD	CLAC 4396	None	560
02S/04E-05CBB	CLAC 5535	452528122205501	205
02S/04E-29DAD	CLAC 6388	452033122195901	190
02S/01W-04ACC	WASH 11449	452534122485101	494
02S/01W-04BAD	WASH 11436	452551122485801	600
02S/01W-32ADD	WASH 51903	452113122493001	1,030
02S/02W-34ACD	WASH 3443	452118122545001	277
02S/02W-34ADB	WASH 13210	452119122544001	160
03S/01E-16DDD	CLAC 9327	451815122405401	202
03S/01E-17ACA	CLAC 9340	451845122423101	292
03S/01W-15CAC	CLAC 8184	451747122484801	920
03S/01W-24BAA01	CLAC 8491	451804122451201	620
03S/02W-36ABA	YAMH 2703	451626122522001	282

Appendix A. Correlation of U.S. Geological Survey and Oregon Water Resources Department Identifiers for Selected Wells—Continued.

Location	OW/PD name	USCS name	Depth drilled, in feet below land surface
		451611122522601	5/5
035/02 W-30ACA	IAMII 2003	451447122522001	120
045/01W-05CDC	MARI 508	451514122502101	120
045/01W-06ADD	MARI 50403	451514122504401	365
045/01W-11ADA01	MARI 53023	451429122455301	1,097
045/01W-15BDD	CLAC 1952	451333122474901	245
04S/01W-19ACA01	MARI 56530	451237122510601	613
04S/01W-19ACD01	MARI 54896	451235122510401	350
04S/02W-01CDD01	None	451444122524701	12.6
04S/02W-01CDD02	None	451444122524601	3.9
04S/02W-02BBD	MARI 1044	451528122541301	166
05S/01W-28CCD01	None	450603122491601	2.83
05S/01W-28CCD02	None	450603122491602	17.7
05S/02W-01DDA	MARI 2218	450939122520901	200
05S/02W-08CBC01	MARI 18414	450856122580201	270
05S/02W-08CCA2	MARI 52504	450851122575801	106
05S/02W-08CCB1	MARI 52597	450851122580101	203
05S/02W-19DCC	MARI 2541	450758122590201	130
05S/03W-34CBB	YAMH 50041	450531123025901	57
05S/03W-36DAA	MARI 17239	450535122593201	109
06S/01W-06CCC	MARI 3054	450423122514701	165
06S/01W-08DAC01	MARI 55014	450341122493701	49
06S/01W-08DAC03	MARI 55016	450341122493702	35
06S/01W-08DAD01	MARI 53920	450340122493401	115
06S/01W-08DAD02	MARI 54951	450340122493403	53.6
06S/01W-08DAD03	MARI 54952	450340122493402	69.5
06S/01W-08DAD04	MARI 54953	450339122492801	55.1
06S/01W-08DAD05	MARI 55015	450339122492802	68.9
06S/01W-08DAD06	MARI 55017	450340122493404	45.2
06S/01W-09DCA	MARI 50456	450332122483801	850
06S/01W-15ABD01	MARI 3179	450313122472401	700
06S/01W-16AAB01	MARI 3197	450324122482801	830
06S/01W-16ABC01	MARI 51339	450312122484401	188
06S/01W-21CAD	MARI 3266	450200122485301	120
06S/01W-21CDC01	MARI 3280	450140122490701	323
06S/01W-21CDC02	MARI 51006	450141122490601	566
06S/01W-22AAA01	MARI 19510	450231122470401	630
06S/01W-36BBC	MARI 3653	450036122454101	176
06S/01W-36DBC1	MARI 3657	450013122450001	226

Appendix A. Correlation of U.S. Geological Survey and Oregon Water Resources Department Identifiers for Selected Wells—Continued.

Depth drilled, in feet below land **OWRD** name **USGS** name surface Location 06S/01W-36DDC MARI 3652 445959122445001 526 120 06S/02W-06DAD MARI 17263 450432122582001 06S/02W-17DAD **MARI 4160** 450246122564801 136 06S/02W-17DBC **MARI 4092** 450248122572601 315 06S/03W-04ACD MARI 4816 450451123031901 70 205 06S/03W-06CBC YAMH 1907 450435123063101 06S/04W-03ABD YAMH 3189 450502123092501 382 07S/01W-02CAA01 **MARI 5904** 445923122462501 583 07S/02W-28ADD **MARI 7883** 445606122554101 130 07S/02W-28ADD01 **MARI 55258** 445604122554501 304 07S/03W-18AB1 POLK 841 445808123055601 440 07S/03W-18BAD POLK 1777 303 445803123060701 07S/03W-18BAD01 POLK 1781 323 445804123061201 **MARI 8999** 445032122505001 08S/01W-30DDB1 40 08S/01W-30DDB2 **MARI 8971** 445033122505101 160 MARI 9917 08S/02W-12CDB01 445306122524501 248 08S/02W-12CDB02 MARI 56786 445307122524701 425 08S/02W-13BAD01 MARI 10176 445244122523701 105 08S/03W-10DC MARI 19624 332 None 08S/03W-11CCC MARI 11727 445304123014101 270 08S/03W-35DDD MARI 12984 444935123003701 264 09S/01W-14DCA LINN 2705 444700122460701 326 09S/01W-15DCB01 LINN 50629 444704122473001 141 09S/01W-15DCB03 LINN 51763 444704122472801 406 11S/04W-28BDD1 LINN 4146 443512123105001 54 11S/04W-28CAA 60 LINN 14280 443500123105001 11S/04W-34CDA LINN 8753 443358123093601 60 11S/04W-34DDC LINN 8756 443352123090401 104 11S/05W-35DDD LINN 10841 443349123150501 45 12S/02W-19CCB1 LINN 8054 443028122590901 47.5 12S/03W-07BCC2 LINN 50852 443234123063101 51 12S/03W-07CCB LINN 50103 443211123062901 80 12S/03W-09BDC2 LINN 10510 443232123034501 80 12S/03W-12BAA LINN 10391 443252122595301 65 12S/04W-01ABB LINN 50097 443343123070501 65 12S/04W-35CDC LINN 10817 442838123083001 115 12S/05W-02AAA LINN 12120 443348123150201 260 15S/03W-19ACD1 LINN 14047 441508123053001 98

Appendix A. Correlation of U.S. Geological Survey and Oregon Water Resources Department Identifiers for Selected Wells—Continued.

Location	OWRD name	USGS name	Depth drilled, in feet below land surface
16S/05W-26AAD	LANE 8725	440915123145601	30
17S/01W-29ACC	LANE 10127	440354122495501	43
17S/02W-30CAA1	LANE 10761	440341122584001	249
17S/02W-30CAA2	LANE 10762	440341122584002	50
17S/05W-02BAC1	LANE 12676	440736123154701	105
17S/05W-02BAC2	LANE 3203	440735123154601	25

Appendix B. Chlorofluorocarbon-Based Model Ages for Ground Water in the Willamette Basin, Oregon

By Stephen R. Hinkle

Introduction

Twenty-one wells were sampled for chlorofluorocarbons (CFCs) in October 1996 as part of the Willamette Ground-Water Project. Samples were analyzed for three CFCs: CCl_3F , CCl_2F_2 , and $C_2Cl_3F_3$. Measurement of CFCs allows determination of CFC-model ages for ground water, where a CFC-model age is defined to be an estimate of the time-of-travel for water particles from their points of recharge at the water table to the open or screened interval of a well. CFC-dating techniques allow water recharged as far back as 1940 to be dated. CFC-dating theory, techniques and limitations are described in Busenberg and Plummer (1992), Busenberg and others (1998), and Plummer and Busenberg (2000).

Methods

Methods of CFC sample collection and analysis in this project were essentially identical to those used by Hinkle and Snyder (1997), with one important exception. Many wells chosen for sampling by Hinkle and Snyder (1997) had long open or screened intervals, and the resulting samples often probably represented mixtures of water of widely varying age. In contrast, in the present work, particular emphasis was placed on sampling wells with short open or screened intervals to minimize well-bore mixing of ground-water components. The resulting CFC-model ages are more meaningful than are CFC-model ages determined from wells with long open or screened intervals.

CFC-model ages are based upon CFC concentrations, temperature of water at the time of recharge, and the altitude of the water table at the time of recharge. The mean recharge temperature in the Portland Basin (which lies at the mouth of the Willamette Basin) was determined to be 8°C (degrees Celsius) (Hinkle and Snyder, 1997). Thus, the mean recharge temperature used in this study was assumed to be 8°C. A 2°C error in the estimate of recharge temperature would result in an error of 0 to 1 years for water recharged in the 1940s-1970s and 2 years for water recharged in the early to mid-1980s. The temperature dependence of CFC-model ages becomes more significant for water recharged since the late 1980s (errors of several years), but as will be seen later, none of the wells sampled in this project were open or screened close enough to the water table to yield such young water. Thus, uncertainty in recharge temperatures are not a significant source of error for these samples.

Recharge elevations were approximated by assuming that they were equal to the elevations of the static water levels in the wells. A 2,000-foot error in recharge elevation generally results in a difference of 0 to 1 year. Thus, although recharge elevations will be higher than elevations of static water levels in wells, the uncertainty associated with this approximation is negligible.

Degradation of CFCs will affect the CFC-based model ages. Degradation may occur in reducing environments. To evaluate redox conditions, dissolved oxygen and methane in ground-water samples were measured. Dissolved oxygen was measured electrometrically in a flow-through chamber in the field. Probes were calibrated daily and were periodically checked against anoxic solutions (deionized water with sodium sulfite added to chemically reduce oxygen). Dissolved methane was measured by gas chromatography (Busenberg and others, 1998).

Results

For each site, two to three samples were analyzed for CFCs. CFC concentrations, CFC-model recharge dates, dissolved-oxygen (DO) concentrations, selected physical data, and assigned CFC-model ages are presented in table **B1**. Figure **B1** shows the CFC-model ages of water from the sampled wells.

Reducing conditions were widespread. DO concentrations at 16 sites were less than 0.3 mg/L (milligrams per liter), and even the site with the highest DO concentration (3.3 mg/L) cannot be assumed to represent only oxic water, as a sample with such a low DO concentration could represent a mixture of well-oxygenated and anoxic water. CFC dating in reducing environments requires consideration of redox conditions because microbial degradation of CFCs can occur in reducing environments. Degradation of CCl₂F is considerably faster (generally by at least an order of magnitude) than degradation of CCl₂F₂, and measurable degradation of CCl₂F₂ apparently does not occur until methanogenic conditions become well established (Plummer and Busenberg, 2000). Observed CCl₂F-model recharge dates generally are older than CCl₂F₂-model recharge dates (table B1), suggesting that some microbial degradation of CCl₂F

has occurred. Dissolved-methane concentrations were measured in samples from 10 of the 21 sites; all concentrations were <0.05 mg/L, indicating non-methanogenic or minimally methanogenic conditions. Thus, although CCl₃F-model recharge dates appear to be biased low (too old), CCl₂F₂-model recharge dates are reliable.

 $C_2Cl_3F_3$ data are difficult to interpret in reducing environments. C₂Cl₂F₂, like CCl₂F, tends to undergo biodegradation in anoxic environments. Also, the abundant organic carbon that likely serves as an electron donor in these reducing environments also may serve to sorb $C_2Cl_2F_2$; $C_2Cl_2F_2$ sorbs to a much greater extent than do CCl₂F and CCl₂F₂ (Plummer and Busenberg, 2000). For these reasons, C₂Cl₃F₃-model recharge dates can be biased too old. C₂Cl₃F₃ is a liquid at common environmental temperature, whereas CCl₃F and CCl₂F, are gases; so in some respects, C₂Cl₃F₃ contamination can more easily occur than contamination by CCl_3F and CCl_3F_3 . The result is that $C_2Cl_3F_3$ -model recharge dates can be biased young due to contamination. Thus, for the data for this study area, CCl₂F₂-model recharge dates were considered more reliable than C₂Cl₃F₃-model recharge dates, and C₂Cl₃F₃-model recharge dates were not interpreted.

For 17 of the 21 sites sampled, the oldest CCl_2F_2 -model recharge date for each site was used to assign the CFC-model age. The oldest CCl_2F_2 -model recharge date was chosen to minimize potential influence of any minor contamination during sampling or analysis, and is consistent with the approach used by Hinkle and Snyder (1997). Assigned CFC-model ages ranged from 23 to >57 years.

Assignment of CFC-model ages for 3 of the 21 sites was complicated by the presence of contaminant-level concentrations of CFCs. For samples collected in 1996, a contaminantlevel concentration of a CFC is defined to be a concentration greater than the concentration that would be in equilibrium with 1996 air. Contaminant-level concentrations result from introduction of CFCs to the aquifer by processes other than air-water equilibrium. Where contaminant-level concentrations of CFCs were detected in one or more samples for a given site, the water was considered to have been recharged earlier than the oldest apparent CCl_2F_2 -model recharge date, but more recently than 57 years (limit of method for samples collected in late 1996). Thus, for each of the three sites with contaminant levels of CFCs, ranges of ages were assigned.

Assignment of a CFC-model age for the remaining site (well 06S/04W-03ABD) was less straightforward than it was for the other sites. The oldest CCl_3F -model recharge date for site 06S/04W-03ABD was more recent than the oldest CCl_2F_2 -model recharge date. This pattern was observed at only two other sites (wells 06S/01W-36DDC and 06S/02W-06DAD). Water from these two wells is estimated to be older than 57 years because ages from CCl_2F_2 and $C_2Cl_3F_3$ analysis indicate the water is old and does not contain those CFCs. (In the case of 06S/01W-36DDC and 06S/02W-06DAD, small concentrations (few pg/kg or less) of CCl_3F detected in samples of

EXPLANATION

Figure B1. CFC-model ages for ground-water along two

See Table of Contents for mapping sources

transects and water-table contours in the basin-fill sediments, Willamette Basin, Oregon.

Table B1. Chlorofluorocarbon data for ground-water samples collected October 7–24, 1996

[Duplicate or triplicate samples were run for samples from each site. OWRD, Oregon Water Resources Department; ft NGVD 29, feet above NGVD 29; pg/kg, picograms per kilogram; mg/L, milligrams per liter; yrs, years; *, samples contain chlorofluorocarbon (CFC) concentrations greater than would be found in water at equilibrium with average global 1996 air; <, less than; >, greater than]

Location	OWRD name	USGS name	Sample date	Dis- solved oxygen (mg/L)	Recharge elevation ¹ (ft NGVD 29)	CCI ₃ F concen- tration (pg/kg)	CCI ₂ F ₂ concen- tration (pg/kg)	C ₂ Cl ₃ F ₃ con- centra- tion (pg/kg)	CCI₃F model recharge date	CCI ₂ F ₂ model recharge date	C₂CI₃F₃ model recharge date	CFC model age of water (yrs)
05S/03W-34CBB	YAMH 50041	450531123025901	10/15/1996	1.8	90	235.6	146.7	36.0	1971.0	1974.0	1981.0	23
05S/03W-34CBB	YAMH 50041	450531123025901	10/15/1996		90	246.0	149.8	39.6	1971.5	1974.0	1981.5	
05S/03W-34CBB	YAMH 50041	450531123025901	10/15/1996		90	250.4	149.2	37.0	1971.5	1974.0	1981.0	
05S/03W-36DAA	MARI 17239	450535122593201	10/7/1996	<0.1	104	0.0	1.6	0.0	<1945.0	1946.0	<1954.5	51
05S/03W-36DAA	MARI 17239	450535122593201	10/7/1996		104	2.4	4.3	0.0	1950.5	1949.0	<1954.5	
06S/01W-06CCC	MARI 3054	450423122514701	10/8/1996	<0.1	128	2.0	0.4	0.0	1950.0	1941.5	<1954.5	>57
06S/01W-06CCC	MARI 3054	450423122514701	10/8/1996		128	0.0	0.0	0.0	<1945.0	<1940.0	<1954.5	
06S/01W-06CCC	MARI 3054	450423122514701	10/8/1996		128	0.6	0.0	0.0	1947.5	<1940.0	<1954.5	
06S/01W-21CAD	MARI 3266	450200122485301	10/8/1996	<0.1	142	0.0	0.0	0.0	<1945.0	<1940.0	<1954.5	>57
06S/01W-21CAD	MARI 3266	450200122485301	10/8/1996		142	0.0	0.0	0.0	<1945.0	<1940.0	<1954.5	
06S/01W-36BBC	MARI 3653	450036122454101	10/9/1996	0.1	210	34.2	100.5	4.3	1960.0	1970.5	1965.5	27
06S/01W-36BBC	MARI 3653	450036122454101	10/9/1996		210	18.3	95.2	0.0	1956.5	1970.0	<1954.5	
06S/01W-36BBC	MARI 3653	450036122454101	10/9/1996		210	17.5	88.4	6.9	1956.5	1969.5	1969.0	
06S/01W-36DBC1	MARI 3657	450013122450001	10/11/1996	<0.1	339	7.6	12.4	0.0	1953.5	1955.0	<1954.5	42
06S/01W-36DBC1	MARI 3657	450013122450001	10/11/1996		339	7.1	14.1	0.0	1953.0	1955.5	<1954.5	
06S/01W-36DBC1	MARI 3657	450013122450001	10/11/1996		339	6.0	14.2	0.0	1952.5	1955.5	<1954.5	
06S/01W-36DDC	MARI 3652	445959122445001	10/11/1996	<0.1	233	2.8	0.0	0.0	1950.5	<1940.0	<1954.5	>57
06S/01W-36DDC	MARI 3652	445959122445001	10/11/1996		233	3.4	4.3	0.0	1951.5	1949.0	<1954.5	
06S/01W-36DDC	MARI 3652	445959122445001	10/11/1996		233	2.4	0.0	0.0	1950.5	<1940.0	<1954.5	

Table B1. Chlorofluorocarbon data for ground-water samples collected October 7–24, 1996—Continued.

[Duplicate or triplicate samples were run for samples from each site. OWRD, Oregon Water Resources Department; ft NGVD 29, feet above NGVD 29; pg/kg, picograms per kilogram; mg/L, milligrams per liter; yrs, years; *, samples contain chlorofluorocarbon (CFC) concentrations greater than would be found in water at equilibrium with average global 1996 air; <, less than; >, greater than]

				Dis-		CCI ₃ F	CCI ₂ F ₂	C ₂ Cl ₃ F ₃ con-	CCI ₃ F	CCI ₂ F ₂	C ₂ Cl ₃ F ₃	
			Comula	solved	Recharge	concen-	concen-	centra-	model	model	model	CFC model
Location	OWRD name	USGS name	date	(mg/L)	(ft NGVD 29)	(pg/kg)	(pg/kg)	(pg/kg)	date	date	date	age of water (yrs)
06S/02W-06DAD	MARI 17263	450432122582001	10/7/1996	<0.1	144	0.9	1.0	0.0	1948.5	1944.0	<1954.5	>57
06S/02W-06DAD	MARI 17263	450432122582001	10/7/1996		144	0.5	0.0	0.0	1947.0	<1940.0	<1954.5	
06S/02W-17DBC	MARI 4092	450248122572601	10/21/1996	<0.1	137	1.0	16.6	0.0	1948.5	1957.0	<1954.5	43
06S/02W-17DBC	MARI 4092	450248122572601	10/21/1996		137	0.9	10.6	0.0	1948.5	1954.0	<1954.5	
06S/02W-17DBC	MARI 4092	450248122572601	10/21/1996		137	1.1	16.8	0.0	1949.0	1957.0	<1954.5	
06S/03W-06CBC	YAMH 1907	450435123063101	10/15/1996	3.3	282	42.9	44.9	8.2	1961.0	1964.0	1970.0	33-57 ²
06S/03W-06CBC	YAMH 1907	450435123063101	10/15/1996		282	523.9	851.7	181.1	1979.0	*	*	
06S/03W-06CBC	YAMH 1907	450435123063101	10/15/1996		282	2825.4	305.8	84.7	*	1986.5	1988.0	
06S/04W-03ABD	YAMH 3189	450502123092501	10/10/1996	<0.1	739	5.6	5.8	0.0	1952.5	1950.5	<1954.5	<57&>57 ³
06S/04W-03ABD	YAMH 3189	450502123092501	10/10/1996		739	3.5	3.6	0.0	1951.5	1948.5	<1954.5	
06S/04W-03ABD	YAMH 3189	450502123092501	10/10/1996		739	3.2	3.1	0.0	1951.0	1948.0	<1954.5	
11S/04W-28BDD1	LINN 4146	443512123105001	10/24/1996	1.0	194	110.9	114.9	18.3	1966.5	1971.5	1976.0	26
11S/04W-28BDD1	LINN 4146	443512123105001	10/24/1996		194	96.3	106.1	11.1	1965.5	1971.0	1972.0	
11S/04W-28BDD1	LINN 4146	443512123105001	10/24/1996		194	98.6	106.8	12.7	1965.5	1971.0	1973.0	
11S/04W-28CAA	LINN 14280	443500123105001	10/17/1996	0.2	197	9.6	26.3	0.0	1954.0	1960.0	<1954.5	37
11S/04W-28CAA	LINN 14280	443500123105001	10/17/1996		197	9.1	27.2	0.0	1954.0	1960.5	<1954.5	
11S/04W-28CAA	LINN 14280	443500123105001	10/17/1996		197	9.8	28.2	0.0	1954.0	1960.5	<1954.5	
11S/04W-34CDA	LINN 8753	443358123093601	10/16/1996	<0.1	215	1.3	17.0	0.0	1949.0	1957.0	<1954.5	40
11S/04W-34CDA	LINN 8753	443358123093601	10/16/1996		215	1.4	17.5	0.0	1949.5	1957.0	<1954.5	
11S/04W-34CDA	LINN 8753	443358123093601	10/16/1996		215	0.0	16.6	0.0	<1945.0	1957.0	<1954.5	
11S/04W-34DDC	LINN 8756	443352123090401	10/17/1996	<0.1	209	0.0	0.0	0.0	<1945.0	<1940.0	<1954.5	>57
11S/04W-34DDC	LINN 8756	443352123090401	10/17/1996		209	0.0	0.0	0.0	<1945.0	<1940.0	<1954.5	
11S/04W-34DDC	LINN 8756	443352123090401	10/17/1996		209	0.0	0.0	0.0	<1945.0	<1940.0	<1954.5	

Table B1. Chlorofluorocarbon data for ground-water samples collected October 7–24, 1996—Continued.

[Duplicate or triplicate samples were run for samples from each site. OWRD, Oregon Water Resources Department; ft NGVD 29, feet above NGVD 29; pg/kg, picograms per kilogram; mg/L, milligrams per liter; yrs, years; * samples contain chlorofluorocarbon (CFC) concentrations great than would be found in water at equilibrium with average global 1996 air; <, less than; >, greater than]

Location	OWRD name	USGS name	Sample date	Dis- solved oxygen (ma/L)	Recharge elevation ¹ (ff NGVD 29)	CCI ₃ F concen- tration (ng/kg)	CCI ₂ F ₂ concen- tration (na/ka)	C ₂ Cl ₃ F ₃ con centra- tion (ng/kg)	CCI ₃ F model recharge date	CCI ₂ F ₂ model recharge date	C2CI3F3 model recharge date	CFC model age of water (vrs)
12S/02W-19CCB1	LINN 8054	443028122590901	10/23/1996	<0.1	315	3.1	44.0	0.0	1951.0	1964.0	<1954.5	33
12S/02W-19CCB1	LINN 8054	443028122590901	10/23/1996		315	7.2	42.5	0.0	1953.5	1964.0	<1954.5	
12S/02W-19CCB1	LINN 8054	443028122590901	10/23/1996		315	5.1	47.6	0.0	1952.5	1964.5	<1954.5	
12S/03W-07BCC2	LINN 50852	443234123063101	10/22/1996	< 0.1	231	0.0	231.5	0.0	<1945.0	1981.0	<1954.5	16-57 ²
12S/03W-07BCC2	LINN 50852	443234123063101	10/22/1996		231	1.0	352.9	0.0	1948.5	1990.0	<1954.5	
12S/03W-07BCC2	LINN 50852	443234123063101	10/22/1996		231	8.1	456.1	0.0	1953.5	*	<1954.5	
12S/03W-07CCB	LINN 50103	443211123062901	10/22/1996	<0.1	231	9.9	41.3	0.0	1954.0	1963.5	<1954.5	36
12S/03W-07CCB	LINN 50103	443211123062901	10/22/1996		231	15.4	37.2	0.0	1956.0	1963.0	<1954.5	
12S/03W-07CCB	LINN 50103	443211123062901	10/22/1996		231	6.5	29.4	0.0	1953.0	1961.0	<1954.5	
12S/03W-09BDC2	LINN 10510	443232123034501	10/23/1996	< 0.1	250	6.0	127.6	0.0	1952.5	1972.5	<1954.5	24
12S/03W-09BDC2	LINN 10510	443232123034501	10/23/1996		250	6.1	129.0	0.0	1953.0	1972.5	<1954.5	
12S/03W-09BDC2	LINN 10510	443232123034501	10/23/1996		250	5.9	133.0	0.0	1952.5	1973.0	<1954.5	
12S/03W-12BAA	LINN 10391	443252122595301	10/17/1996	2.7	271	169.2	124.6	115.6	1969.0	1972.5	1993.5	25
12S/03W-12BAA	LINN 10391	443252122595301	10/17/1996		271	177.4	131.9	126.7	1969.5	1973.0	*	
12S/03W-12BAA	LINN 10391	443252122595301	10/17/1996		271	173.3	119.8	121.3	1969.0	1972.0	*	
12S/04W-01ABB	LINN 50097	443343123070501	10/23/1996	2.8	223	5616.5	870.6	14.7	*	*	1974.0	$0-57^{2}$
12S/04W-01ABB	LINN 50097	443343123070501	10/23/1996		223	5546.9	842.4	9.3	*	*	1971.0	

¹Recharge elevation, assumed equal to elevation of static water level above NGVD29 in feet.

²Range of age for water given because sample contaminated with CFC by process other than air-water equilibrium.

³Mixture of water, one part < 57 yrs old and one part > 57 yrs old.

apparently old water lead to more recent CCl₂F-model recharge dates than CCl₂F₂-model recharge dates. Synthetic components in water pumps have been shown to be a source of CCl₂F contamination to water samples (Plummer and Busenberg, 2000), and may have been the source of the observed small amounts of CCl₂F in these two water samples.) In the case of site 06S/04W-03ABD, mixing of water from different contributing zones in the aquifer is the most likely explanation for the differences between CCl₂F and $CCl_{2}F_{2}$ -model recharge dates. The atmospheric ratio of CCl₂F to CCl₂F₂ increased steadily between the late 1940s and late 1970s (Plummer and Busenberg, 2000). A mixture of CFC-free (pre-1940) water with CFC-containing (post-1940) water frequently results in different CCl₂F- and CCl₂F₂-model recharge dates, with CCl₂F-model recharge dates being more recent than CCl₂F₂-model recharge dates (Plummer and Busenberg, 2000). This was observed with site 06S/04W- 03ABD (CCl₃F-model recharge date of 1951 and CCl₂F₂-model recharge date of 1948). If no processes other than air-water equilibrium and mixing have affected CFC concentrations in the water at this site, the ratios of CCl₂F to CCl₂F₂ could be interpreted as being a mixture of 22 percent water recharge in 1955 with 78 percent water recharged prior to 1940. These calculations would not be valid for conditions where both mixing of water and significant biodegradation of CCl₂F occurred. In the presence of significant biodegradation, it would be safest to simply state that the water from this site contains a mixture of pre- and post-1940 water. It is worth noting that the contributing interval of this site (77 feet) was longer than at any of the other 20 sites, and, unlike any of the other sites, this site contained three distinct contributing zones. These well-construction data are consistent with the interpretation of a mixture of water at this site.

References Cited

- Busenberg, Eurybiades, and Plummer, L.N., 1992, Use of chlorofluorocarbons (CCl_3F and CCl_2F_2) as hydrologic tracers and age-dating tools—The alluvium and terrace system of central Oklahoma: Water Resources Research, v. 28, p. 2257–2283.
- Busenberg, Eurybiades, Plummer, L.N., Bartholomay, R.C., and Wayland, J.E., 1998, Chlorofluorocarbons, sulfur hexafluoride, and dissolved permanent gases in ground water from selected sites in and near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994-97: U.S. Geological Survey Open-File Report 98–274, 72 p.
- Hinkle, S.R., and Snyder, D.T., 1997, Comparison of chlorofluorocarbon-age dating with particle-tracking results of a regional ground-water flow model of the Portland Basin, Oregon and Washington: U.S. Geological Survey Water-Supply Paper 2483, 47 p.
- Plummer, L.N., and Busenberg, Eurybiades, 2000, Chlorofluorocarbons, in Cook, P.G., and Herczeg, A.L., eds., Environmental Tracers in Subsurface Hydrology: Boston, Kluwer Academic Publishers, p. 441–478.

78 Ground-Water Hydrology of the Willamette Basin, Oregon

[Data source refers to source of seepage measurements; ft³/s, cubic feet per second; RM, river mile; MF, Middle Fork; bold numbers indicate seepage exceeds measurement uncertainty]

Stream name	Beach	Date	Estimated gain (+) or loss (-) (ff³/s)	Gain/loss as % of streamflow	Cumulative gain/loss (ff³/s)	Cumulative gain/loss as % of streamflow	Data source
Butte Creek	RM 10.3-5.9	6/30/99	-9.1	-19%			
	RM 5.9-1.0	6/30/99	8.2	15%	-0.9	-2%	This study
	RM 10.3-5.9	9/16/99	-2	-52%			
	RM 5.9-1.0	9/16/99	-2.2	-132%	4.2	-253%	This study
	RM 10.3-5.9	5/30/00	0	0%			
	RM 5.9-1.0	5/30/00	2	2%	2	2%	This study
	RM 10.3-5.9	9/12/00	-1.8	-17%			
	RM 5.9-1.0	9/12/00	2.2	17%	0.4	3%	This study
Drift Creek	RM 6.5-3.2	6/23/99	2.09	22%			
	RM 3.2-0.6	6/23/99	-0.17	-2%	1.9	20%	This study
	RM 6.5-3.2	9/15/99	0.07	11%			
	RM 3.2-0.6	9/15/99	-0.05	-8%	0.02	3%	This study
	RM 6.5-3.2	6/2/00	2.34	13%			
	RM 3.2-0.6	6/2/00	1.97	10%	4.31	21%	This study
	RM 6.5-3.2	9/11/00	-0.18	-11%			
	RM 3.2-0.6	9/11/00	0.01	1%	-0.17	-10%	This study
Abiqua Creek	RM 5.8-2.4	6/1/00	9	6%			
	RM 2.4-0.4	6/1/00	-1	-1%	8	6%	This study
	RM 5.8-2.4	9/13/00	-3.8	-37%			
	RM 2.4-0.4	9/13/00	1.2	10%	-2.6	-23%	This study

[Data source refers to source of seepage measurements; ft³/s, cubic feet per second; RM, river mile; MF, Middle Fork; bold numbers indicate seepage exceeds measurement uncertainty]

Stream name	Reach	Date	Estimated gain (+) or loss (-) (ft³/s)	Gain/loss as % of streamflow	Cumulative gain/loss (ft³/s)	Cumulative gain/loss as % of streamflow	Data source
Pudding River	RM 49.7-45.5	5/2/96	5	1%			
8	RM 45.5-40.7	5/2/96	26	3%	31	4%	Lee and Risley, 2002
	RM 26.8-22.3	5/3/96	38	4%	38	4%	Lee and Risley, 2002
	RM 22.3-17.5	5/3/96	44	4%	82	7%	Lee and Risley, 2002
	RM 17.5-8.1	5/3/96	75	5%	157	11%	Lee and Risley, 2002
	RM 49.7-45.5	9/24/96	-2.6	-5%			Lee and Risley, 2002
	RM 45.5-40.7	9/24/96	-5.8	-12%	-8.4	-18%	Lee and Risley, 2002
	RM 26.8-22.3	9/25/96	32.6	29%	32.6	29%	Lee and Risley, 2002
	RM 22.3-17.5	9/25/96	-23.2	-22%	9.4	9%	Lee and Risley, 2002
	RM 17.5-8.1	9/25/96	11.8	9%	21.2	16%	Lee and Risley, 2002
	RM 49.7-45.5	9/16-17/1999	0.83	3%	0.83	3%	This study
	RM 45.5-40.7	9/20/99					
	RM 40.7-26.8	9/20/99	4.7	17%	4.7	17%	This study
	RM 26.8-23.4	9/20-21/1999	0	0%	4.7	17%	This study
	RM 23.4-17.5	9/21/99	3.87	11%	8.57	25%	This study
	RM 17.5-8.1	9/21-22/1999	5.03	12%	13.6	33%	This study
	RM 8.1-5.1	9/22/99	1.22	3%	14.82	31%	This study
	RM 49.7-45.5	9/16-17/2000	-0.7	-3%			This study
	RM 45.5-40.7	9/20/00	0.1	0%	-0.6	-3%	This study
	RM 40.7-23.4	9/20/00	0.8	2%	0.2	1%	This study
	RM 23.4-17.5	9/21/00	-1.3	-3%	-1.1	-3%	This study
	RM 17.5-8.1	9/21-22/2000	8.3	16%	7.2	14%	This study
	RM 8.1-5.1	9/22/00	1.1	2%	8.3	14%	This study

[Data source refers to source of seepage measurements; ft³/s, cubic feet per second; RM, river mile; MF, Middle Fork; bold numbers indicate seepage exceeds measurement uncertainty]]

Cumulative Estimated Gain/loss Cumulative gain/loss gain (+) or as % of gain/loss as % of Data Stream name Reach Date loss (-) (ft³/s) streamflow (ft³/s) streamflow source South Yamhill RM 37.7-26.9 06/12-13/96 10.3 0% 10.3 0% Lee and Risley, 2002 RM 26.9-16.7 06/12-13/96 38.7 4% 49 4% Lee and Risley, 2002 RM 16.8-5.6 95.1 06/12-13/96 10% 144.1 13% Lee and Risley, 2002 8 8 RM 37.7-26.9 9/18/96 5% 5% Lee and Risley, 2002 9% South Santiam RM 37.0-33.4 4/30/96 374.2 Lee and Risley, 2002 RM 33.5-27.7 -160.7 -4% 213.5 5% Lee and Risley, 2002 5/1/96 RM 27.7-23.3 -150.7 -4% 62.8 1% Lee and Risley, 2002 5/2/96 RM 23.3-18.2 5/3/96 -427.6 -11% -364.8 -10% Lee and Risley, 2002 RM 37.0-33.4 9/17/96 29 4% 29 Lee and Risley, 2002 Lee and Risley, 2002 RM 33.5-27.7 9/18/96 -77.8 -11% -48.8-7% RM 27.7-23.3 9/19/96 62.7 8% 13.9 2% Lee and Risley, 2002 RM 23.3-18.2 9/20/96 -47.7 -7% -33.8 Lee and Risley, 2002 -5% MF Willamette River RM 195-192.8 4/15/96 -4.7 -0% -4.7 -0% Lee and Risley, 2002 RM 192.8-190.2 4/15/96 -103.4 -5% -108.1-6% Lee and Risley, 2002 2% Willamette River RM 169.6-163.7 5/7/96 117 117 2% Lee and Risley, 2002 3% 307 RM 163.7-161.0 5/8/96 190 4% Lee and Risley, 2002 -1% RM 161.0-156.3 5/9/96 -70 237 3% Lee and Risley, 2002 RM 156.3-149.6 -1% 187 3% Lee and Risley, 2002 5/10/96 -50 RM 134.4-127.5 5/8/96 -307.4-4% -307.4-4% Lee and Risley, 2002 RM 127.5-124.4 5/8/96 60 1% -247.4-3% Lee and Risley, 2002 RM 124.4-119.9 110 1% -137.4 5/8/96 -2% Lee and Risley, 2002

Appendix C 81

[Data source refers to source of seepage measurements; ft³/s, cubic feet per second; RM, river mile; MF, Middle Fork;

bold numbers indicate seepage exceeds measurement uncertainty]

Stream name	Reach	Date	Estimated gain (+) or loss (-) (ft³/s)	Gain/loss as % of streamflow	Cumulative gain/loss (ft³/s)	Cumulative gain/loss as % of streamflow	Data source
Willamette River	RM 94.2-89.1	5/9/96	0	0%	0	0%	Lee and Risley, 2002
	RM 89.1-84.1	5/9/96	321.3	2%	321.3	2%	Lee and Risley, 2002
	RM 84.1-77.8	5/9/96	136.6	1%	457.9	3%	Lee and Risley, 2002
	RM 52.4-46.5	5/10/96	64.1	0%	64.1	0%	Lee and Risley, 2002
	RM 46.5-43.0	5/10/96	-224	-1%	-159.9	-1%	Lee and Risley, 2002
	RM 43.0-39.0	5/10/96	593	4%	433.1	3%	Lee and Risley, 2002
MF Willamette River	RM 195-192.8	7/23/96	-350	-14%	-350	-14%	Lee and Risley, 2002
	RM 192.8-190.5	7/23/96	381.4	14%	31.4	1%	Lee and Risley, 2002
	RM 190.5-187.8	7/23/96	-95.9	-4%	-64.5	-2%	Lee and Risley, 2002
Willamette River	RM 169.6-163.3	7/24/96	370.8	7%	370.8	7%	Lee and Risley, 2002
	RM 163.7-161.0	7/24/96	-50	-1%	320.8	6%	Lee and Risley, 2002
	RM 161.0-156.3	7/24/96	180	3%	500.8	10%	Lee and Risley, 2002
	RM 156.3-149.6	7/24/96	-30	-1%	470.8	9%	Lee and Risley, 2002
	RM 134.4-127.5	7/30/96	-191.7	-4%	-191.7	-4%	Lee and Risley, 2002
	RM 127.5-124.4	7/30/96	-49.1	-1%	-240.8	-5%	Lee and Risley, 2002
	RM 124.4-119.9	7/30/96	42.2	1%	-198.6	-4%	Lee and Risley, 2002
	RM 94.2-89.1	7/31/96	11.7	0%	11.7	0%	Lee and Risley, 2002
	RM 89.1-84.1	7/31/96	-31.3	-0%	-19.6	-0%	Lee and Risley, 2002
	RM 84.1-77.8	7/31/96	-281.8	-4%	-301.4	-4%	Lee and Risley, 2002
	RM 52.4-46.5	8/1/96	-280.5	-4%	-280.5	-4%	Lee and Risley, 2002
	RM 46.5-43.0	8/1/96	-22.7	-0%	-303.2	-4%	Lee and Risley, 2002
	RM 43.0-39.0	8/1/96	219.3	3%	-83.9	-1%	Lee and Risley, 2002

[Data source refers to source of seepage measurements; ft3/s, cubic feet per second; RM, river mile; MF, Middle Fork;

bold numbers indicate seepage exceeds measurement uncertainty]

Stream name	Reach	Date	Estimated gain (+) or loss (-) (ft³/s)	Gain/loss as % of streamflow	Cumulative gain/loss (ft³/s)	Cumulative gain/loss as % of streamflow	Data source
Tualatin River	RM 58.8-51.4	low flow	13.4	12%	13.4	12%	Kelly and others, 1999
	RM 51.5-38.4	low flow	7.2	5%	20.6	14%	Kelly and others, 1999
	RM 38.4-33.3	low flow	15.1	8%	35.7	18%	Kelly and others, 1999
	RM 33.3-1.8	low flow	9.5	5%	45.2	24%	Kelly and others, 1999