

In cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality

Hydrologic, Water-Quality, and Biological Data for Three Water Bodies, Texas Gulf Coastal Plain, 2000–2002

Open-File Report 03-459

Hydrologic, Water-Quality, and Biological Data for Three Water Bodies, Texas Gulf Coastal Plain, 2000–2002

By Jeffery W. East and Jennifer L. Hogan

U.S. GEOLOGICAL SURVEY Open-File Report 03-459

In cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality

Austin, Texas 2003

U.S. DEPARTMENT OF THE INTERIOR

Gale A. Norton, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For additional information write to

District Chief U.S. Geological Survey 8027 Exchange Dr. Austin, TX 78754–4733 E-mail: dc_tx@usgs.gov

Copies of this report can be purchased from

U.S. Geological Survey Information Services Box 25286 Denver, CO 80225–0286

E-mail: infoservices@usgs.gov

CONTENTS

Abstrac	t
Introduc	ction
F	Purpose and Scope
Ι	Description of Water Bodies
	Dickinson Bayou
	Armand Bayou
	San Bernard River
	Acknowledgments
	bllection
	Hydrologic Data
1	Water-Quality Data
	Continuously Monitored Water-Quality Properties
	Periodically Collected Water-Quality Properties and Constituents
	Biological Data
•	ogic Data
	Quality Data
	Continuously Monitored Water-Quality Properties
ŀ	Periodically Collected Water-Quality Properties and Constituents
	Nutrients
	Chlorophyll-a and Pheophytin
	Indicator Bacteria
D: 1 :	Nutrient Yields
_	cal Data
	Fish Data
	Benthic Macroinvertebrate Data
	Habitat Data
	ry
Referen	ices
FIGUR	EC .
1–3.	Maps showing location of: 1. Dickinson Bayou, Armand Bayou, and San Bernard River, Texas Gulf Coastal Plain, and rain gages
	in the area
	 Sampling stations in Dickinson and Armand Bayous, Texas Gulf Coastal Plain, 2000–2002 Sampling stations in San Bernard River and three tributaries, Texas Gulf Coastal Plain, 2000–2002
4.	Graphs showing rainfall at (a) National Weather Service station, League City, Texas, and (b) National
	Atmospheric Deposition Program station, Attwater Prairie Chicken National Wildlife Refuge near Sealy,
	Texas, July 2000–September 2002
5.	·
٥.	Dickinson Bayou at State Highway 3, Dickinson, Texas, and (b) station 293546095052701 Armand
	Bayou at Bay Area Boulevard, Pasadena, Texas, July 2000–September 2001
(
6.	
7–25.	
7–25.	

9.	Distribution of continuously recorded (15-minute interval) pH in (a) Dickinson Bayou, (b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, November 2000–August 2001	17
10.	Distribution of continuously recorded (15-minute interval) dissolved oxygen in (a) Dickinson Bayou, (b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, November 2000–August 2001	18
11.	Distribution of continuously recorded (15-minute interval) (a) water temperature, (b) specific	
	conductance, (c) pH, and (d) dissolved oxygen at three depths in Dickinson Bayou, Texas Gulf	
10	Coastal Plain, December 2000–August 2001	19
12.	Distribution of periodically collected (a) ammonia nitrogen, (b) ammonia plus organic nitrogen,	
	(c) nitrite plus nitrate nitrogen, and (d) orthophosphorus concentrations in Dickinson Bayou,	21
12	Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–2002	21
13.	Distribution of periodically collected (a) ammonia nitrogen, (b) ammonia plus organic nitrogen, (c) nitrite plus nitrate nitrogen, and (d) orthophosphorus concentrations during high- and low-flow	
	conditions in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–2002	22
14.	Seasonal distribution of periodically collected (a) ammonia nitrogen, (b) ammonia plus organic	22
17.	nitrogen, (c) nitrite plus nitrate nitrogen, and (d) orthophosphorus concentrations in Dickinson	
	Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–2002	23
15.	Distribution of periodically collected (a) chlorophyll-a and (b) pheophytin concentrations in	23
	Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–	
	2002	24
16.	Distribution of periodically collected (a) chlorophyll-a and (b) pheophytin concentrations during	
	high- and low-flow conditions in Dickinson Bayou, Armand Bayou, and the San Bernard River,	
	Texas Gulf Coastal Plain, 2000–2002	24
17.	Seasonal distribution of periodically collected (a) chlorophyll-a and (b) pheophytin concentrations	
	in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000-	
	2002	25
18.	Distribution of periodically collected (a) fecal coliform bacteria and (b) <i>E. coli</i> bacteria densities	
	in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–	25
10	2002	25
19.	Distribution of periodically collected (a) fecal coliform bacteria and (b) <i>E. coli</i> bacteria densities during high- and low-flow conditions in Dickinson Bayou, Armand Bayou, and the San Bernard	
	River, Texas Gulf Coastal Plain, 2000–2002	26
20.	Seasonal distribution of periodically collected (a) fecal coliform bacteria and (b) <i>E. coli</i> bacteria	20
20.	densities in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain,	
	2000–2002	26
21.	Yields of periodically collected ammonia nitrogen for selected sites in (a) Dickinson Bayou,	
	(b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, July 1999–September	
	2001	28
22.	Yields of periodically collected ammonia plus organic nitrogen for selected sites in (a) Dickinson	
	Bayou, (b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, July 1999–	
	September 2001	29
23.	Yields of periodically collected nitrite plus nitrate nitrogen for selected sites in (a) Dickinson	
	Bayou, (b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, July 1999–	
	September 2001	30
24.	Yields of periodically collected orthophosphorus for selected sites in (a) Dickinson Bayou,	
	(b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, July 1999–September	21
25	2001	31
25.	(c) nitrite plus nitrate nitrogen, and (d) orthophosphorus during high-flow (above base flow) and	
	low-flow (base flow) conditions in Dickinson Bayou, Armand Bayou, and the San Bernard River,	
	Texas Gulf Coastal Plain, 2000–2002	32
	13 Can Court I min, 2000 2002	52

TABLES

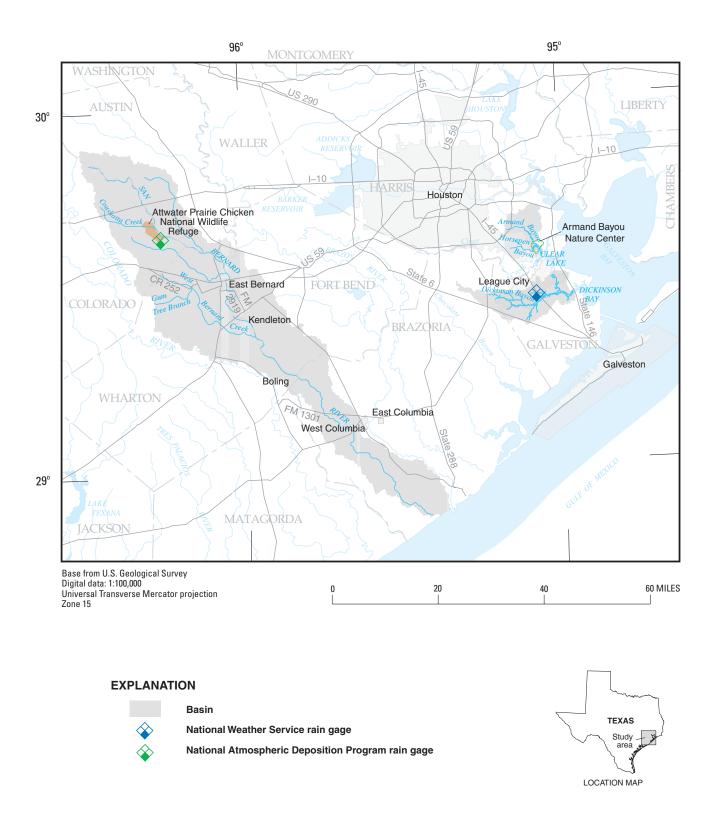
1.	Data-collection sites in Dickinson Bayou, Armand Bayou, and San Bernard River, Texas Gulf Coastal	
	Plain, 2000–2002	. 7
2.	Laboratories responsible for analyses of samples collected from Dickinson Bayou, Armand Bayou, and	
	San Bernard River, Texas Gulf Coastal Plain, 2000–2002	. 10
3.	Biological sampling frequency in Dickinson Bayou, Armand Bayou, and San Bernard River, Texas	
	Gulf Coastal Plain	. 10
4.	Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July	
	2000–August 2001	. 36
5.	Periodically collected water-quality properties and constituents at four sites in Armand Bayou, August	
	2000–July 2001	. 48
6.	Periodically collected water-quality properties and constituents at six sites in the San Bernard River,	
	January 2001–August 2002	. 53
7.	Screening levels for selected nutrients	. 20
8.	Fish species collected in Dickinson Bayou, Texas Gulf Coastal Plain, 2000–2001	. 65
9.	Fish species collected in Armand Bayou, Texas Gulf Coastal Plain, 2000–2001	. 66
10.	Fish taxa and counts of individual fish collected in the San Bernard River, Texas Gulf Coastal Plain,	
	2000–2002	. 67
11.	Fish community data (metrics) for sites in Dickinson Bayou, Armand Bayou, and the San Bernard River,	
	Texas Gulf Coastal Plain, 2000–2002	. 68
12.	Benthic macroinvertebrate taxa and counts of individual taxa collected in the San Bernard River, Texas	
	Gulf Coastal Plain, 2000–2002	. 69
13.	Benthic macroinvertebrate data (metrics) for sites in Dickinson Bayou, Armand Bayou, and the San	
	Bernard River, Texas Gulf Coastal Plain, 2000–2001	. 73
14.	Physical-habitat data for stream reaches at sites in the San Bernard River, Texas Gulf Coastal Plain,	
	2000–2001	. 74

VERTICAL DATUM

Vertical coordinate information is referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29).

Hydrologic, Water-Quality, and Biological Data for Three Water Bodies, Texas Gulf Coastal Plain, 2000–2002

By Jeffery W. East and Jennifer L. Hogan


Abstract

During July 2000-September 2002, the U.S. Geological Survey collected and analyzed site-specific hydrologic, water-quality, and biological data in Dickinson Bayou, Armand Bayou, and the San Bernard River in the Gulf Coastal Plain of Texas. Segments of the three water bodies are on the State 303(d) list. Continuous monitoring showed that seasonal variations in water temperature, specific conductance, pH, and dissolved oxygen in all three water bodies were similar to those observed at U.S. Geological Survey stations along the Texas Gulf Coast. In particular, water temperature and dissolved oxygen are inversely related. Periods of smallest dissolved oxygen concentrations generally occurred in the summer months when water temperatures were highest. Waterquality monitors were deployed at three depths in Dickinson Bayou. For periodically collected nutrients, the median concentration of ammonia nitrogen was largest in Dickinson Bayou and smallest in the San Bernard River. Median concentrations of ammonia plus organic nitrogen, nitrite plus nitrate nitrogen, and orthophosphorus were largest in Armand Bayou. The median concentration of each of the four nutrients was larger for high-flow samples than for low-flow samples. The largest individual nutrient concentrations occurred during spring and summer. Both median and individual concentrations of chlorophyll-a were largest for Armand Bayou; median concentrations of pheophyton were similar for all three water bodies, and individual concentrations were largest for Armand Bayou. Median densities of fecal coliform bacteria and E. coli bacteria were similar for all three water bodies. Flow conditions had minimal effect on concentrations of chlorophyll-a and pheophytin, but the largest bacteria densities were in samples collected during high flow. Yields of most nutrients tended to increase with distance downstream. Yields in the San Bernard River and tributaries were less than yields in Dickinson and Armand Bayous. For Dickinson and Armand Bayous, the most individuals and species of fish were collected at the most downstream main stem site; for the San Bernard River, the fewest individuals and species of fish were collected at the most downstream main stem site.

INTRODUCTION

From July 2000 through September 2002, the U.S. Geological Survey (USGS) conducted a study in cooperation with the Houston-Galveston Area Council (H–GAC) and the Texas Commission on Environmental Quality (TCEQ) (formerly the Texas Natural Resource Conservation Commission) as a part of the Clean Rivers Program. The study involved collection and analysis of site-specific hydrologic, water-quality, and biological data in three water bodies in the Gulf Coastal Plain of Texas—Dickinson Bayou, Armand Bayou, and the San Bernard River and three of its tributaries (hereinafter referred to as the San Bernard River) (fig. 1).

Such data are of interest because segments of the three water bodies are on the State 303(d) list. Section 303(d) of the Clean Water Act requires states to submit to the U.S. Environmental Protection Agency annual listings of water bodies that are impaired—that is, they do not meet or are not expected to meet applicable TCEQ water-quality standards based on designated uses of the water bodies. The TCEQ uses water-quality data collected by several agencies to determine whether a water body meets the water-quality standards for its designated use.

Figure 1. Location of Dickinson Bayou, Armand Bayou, and San Bernard River, Texas Gulf Coastal Plain, and rain gages in the area.

2

Section 303(d) further requires states to develop total maximum daily loads (TMDLs) for impaired water bodies. TMDLs set maximum amounts of pollutants that a water body can receive and still meet water-quality standards. Site-specific data thus are needed to define spatial and temporal variations in water-quality properties and constituents and in biological indicators of water quality. These data can contribute to a more complete understanding of water-quality conditions in a given water body and can indicate how appropriate State criteria are for that water body.

Purpose and Scope

The purpose of this report is to present hydrologic, water-quality, and biological data collected from Dickinson Bayou, Armand Bayou, and the San Bernard River during July 2000-September 2002. Tables and graphs present hydrologic data and water-quality properties that were collected at one site (station) in each of the three study areas at 15-minute intervals. Tables and graphs present water-quality properties and constituents sampled monthly at six sites in Dickinson Bayou, every other month at four sites in Armand Bayou, and every other month at six sites in the San Bernard River. Tables present fish, benthic macroinvertebrate, and stream-habitat data that were collected in or computed for each of the three water bodies. Biological data for Dickinson and Armand Bayous presented previously in Hogan (2002) is referred to but not repeated in this report.

Description of Water Bodies

Dickinson Bayou

Dickinson Bayou is about 25 miles (mi) southeast of Houston (fig. 2). The bayou is about 24 river miles long and is within Galveston County, although the westernmost part of the 106-square-mile (mi²) drainage area (watershed) is in Brazoria County. All or parts of the cities of Dickinson, Alvin, Friendswood, Santa Fe, League City, and Texas City are in the watershed.

Dickinson Bayou flows eastward toward Dickinson Bay, a secondary bay of the Galveston Bay system. Dickinson Bayou is part of the San Jacinto-Brazos Coastal Basin and comprises two stream segments as defined by TCEQ. Stream segment 1104 is the Dickinson Bayou above-tidal reach, which flows 7.3 mi from Farm Road 528 to 1.2 mi downstream of Farm Road 517. Segment 1103 is the Dickinson Bayou tidal reach,

which starts 1.2 mi downstream of Farm Road 517 and flows 16.4 mi to the Dickinson Bayou confluence with Dickinson Bay. Flow regimes in the two reaches are markedly different. The above-tidal reach is a relatively shallow stream (about 1 to 3 feet [ft] deep) with moving water, whereas the tidal reach is a predominantly deep channel (about 5 to 20 ft deep) with very sluggish flow. Streamside vegetation also is different. The above-tidal reach is characterized by dense, riparian vegetation that limits sunlight exposure, whereas vegetation in the tidal reach is less dense, which allows more exposure to sunlight. The topography of the watershed slopes gently toward the bayou. Land-surface altitude varies from about 50 ft above sea level in the west to sea level at the mouth of the bayou. Soils primarily are clays or loams with low permeability.

Land use varies from farmland and rangeland to concentrated residential and commercial development. The areas with the largest percentage of development are those near Dickinson and League City. About 10 percent of the basin is urban, 15 percent is pasture, and the remaining 75 percent is rural (East and others, 1998). Field inspections during the current study indicate that appreciable urban development near Dickinson has occurred since 1990, so it is likely that the percentage of the basin that is urban is greater than 10 percent.

In 1992, Dickinson Bayou was designated as "water-quality limited" by the Texas Water Commission (1992, p. 391). This designation means that streammonitoring data indicated that surface-water-quality standards are not being met. In 2002, both stream segments were on the State 303(d) list because of elevated bacteria levels; segment 1103 (Dickinson Bayou tidal) also was listed because of small dissolved oxygen concentrations (Texas Commission on Environmental Quality, 2002).

Armand Bayou

Armand Bayou is about 20 mi southeast of Houston, north of Dickinson Bayou (fig. 2). Armand Bayou is about 14 river miles long and has a drainage area of about 63 mi², which includes the drainage area of Horsepen Bayou, a major tributary to Armand Bayou. The watershed, which is within Harris County, contains parts of the cities of Pasadena and Clear Lake, as well as the National Aeronautics and Space Administration (NASA) Johnson Space Center, Ellington Air Field, and the Bayport petrochemical complex.

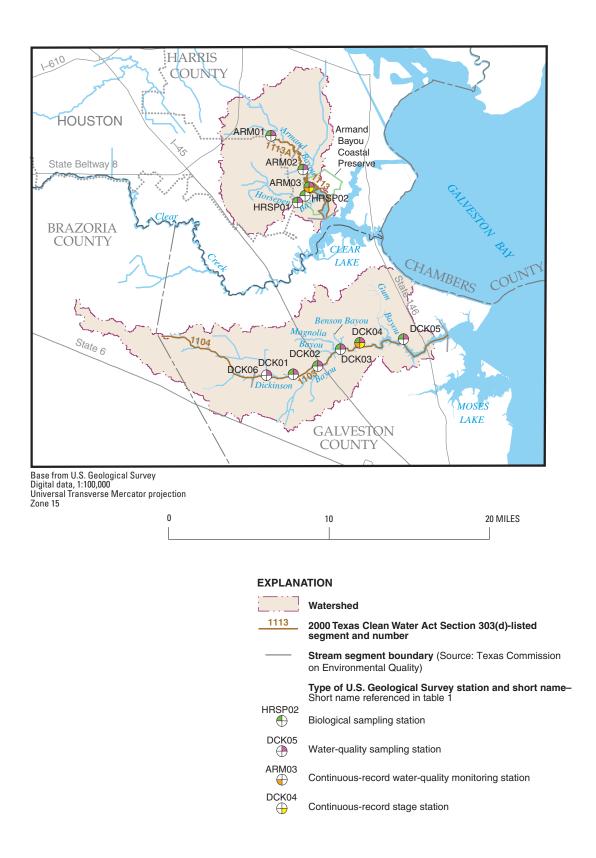


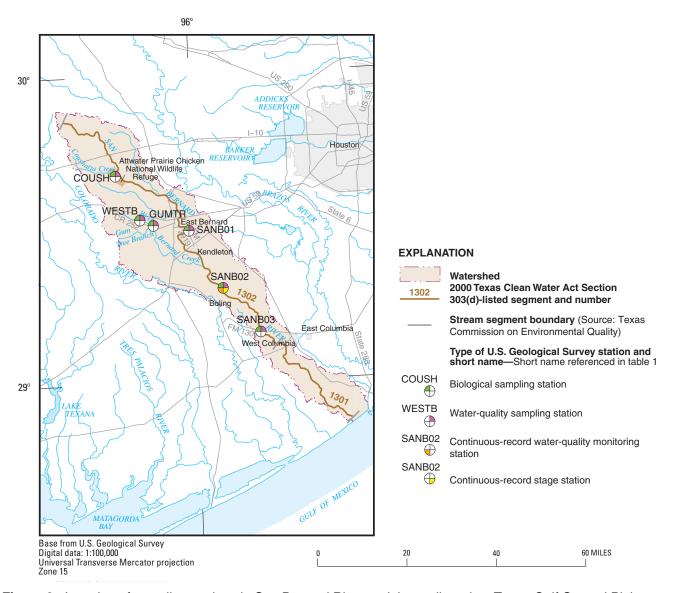
Figure 2. Location of sampling stations in Dickinson and Armand Bayous, Texas Gulf Coastal Plain, 2000–2002.

4 Hydrologic, Water-Quality, and Biological Data for Three Water Bodies, Texas Gulf Coastal Plain, 2000–2002

Armand Bayou flows southward through Mud Lake, then into Clear Lake (fig. 2). Armand Bayou is part of the San Jacinto-Brazos Coastal Basin and comprises two stream segments as defined by TCEQ. Stream segment 1113-A is the Armand Bayou abovetidal reach, which flows from the headwaters to a point 0.5 mi downstream of Genoa-Red Bluff Road. Segment 1113 is the Armand Bayou tidal reach, which flows from 0.5 mi downstream of Genoa-Red Bluff Road to the confluence with Clear Lake, at the NASA Road 1 bridge crossing. Flow regimes in the two reaches are similar to those in Dickinson Bayou. The above-tidal reach is a relatively shallow stream (about 1 to 2 ft deep) with moving water, whereas the tidal reach is much wider, with deep holes (about 5 to 10 ft) and very sluggish flow. The topography of the watershed slopes gently toward the bayou. Land-surface altitude varies from about 40 ft above sea level in the north to sea level at the mouth of the bayou. Coplin and Lanning-Rush (2002) show that land-surface subsidence of about 1 ft occurred in the Armand Bayou watershed during 1973-2001. It is likely that additional subsidence occurred prior to 1973, when monitoring equipment was installed. The effects of this physiographic change on the freshwater marsh system of Armand Bayou currently (2003) are unknown. However, it is anticipated that in this low-gradient watershed, land-surface subsidence of this magnitude could alter hydrodynamics (flow patterns, velocity, and so forth). Soils primarily are clays or loams with low permeability. Land use in the watershed has been categorized as residential, commercial, industrial, and undeveloped bottomland hardwood forest and coastal prairie (Parsons Engineering Science, Inc., 2000).

The Armand Bayou watershed is an important nursery and breeding habitat for fish and wildlife of the Galveston Bay estuarine system. The area also supports numerous nesting birds, mammals, reptiles, and amphibians. According to the Texas Parks and Wildlife Department (1997), "The Bayou and its watershed support biota and remnant habitats that were present during a more pristine era. It also functions as a flood control system, riparian habitat, and water quality mitigation area. The Bayou's uniqueness is that of a remnant natural system still existing within a heavily developed, densely populated region." Because of the ecological significance of Armand Bayou, in 1991 the Texas Parks and Wildlife Department established the 2,800-acre Armand Bayou Coastal Preserve.

In 1998, Armand Bayou was listed on the State 303(d) list because of elevated bacteria levels and small dissolved oxygen concentrations (Texas Natural Resource Conservation Commission, 1998). In 2002, additional data showed that the stream met criteria for contact recreation use, so the listing for elevated bacteria was removed. However, the stream was still listed for small dissolved oxygen concentrations (Texas Commission on Environmental Quality, 2002).


San Bernard River

The San Bernard River, which drains an appreciably larger watershed (more than 900 mi²) than Dickinson Bayou (106 mi²) and Armand Bayou (63 mi²), is in the Brazos-Colorado Coastal Basin (fig. 3). The river flows southeast, forming the boundary between Austin and Colorado Counties, then into Wharton and Fort Bend Counties, before eventually flowing into the Gulf of Mexico. Total length of the river is about 125 mi. The San Bernard River comprises two stream segments as defined by TCEQ. Stream segment 1302 is the San Bernard River above-tidal reach, which flows from the city of New Elm in Austin County to a point 2.0 mi upstream of State Highway 35 in Brazoria County. Stream segment 1301 is San Bernard River tidal reach, which flows from 2.0 mi upstream of State Highway 35 in Brazoria County to the confluence with the Intracoastal Waterway in Brazoria County. Land use in the watershed primarily is rural and agricultural, with scattered areas of urbanization.

In 2002, segment 1302 (San Bernard River above tidal) was on the 303(d) list for not supporting contact recreation use because of elevated bacteria levels, not supporting general use because of elevated water temperature, and concerns that fish and benthic macroinvertebrate communities were impaired in the stream segment (Texas Commission on Environmental Quality, 2002). All designated stream uses for segment 1301 (San Bernard River tidal) were fully supported, thus that segment was not on the 303(d) list.

Acknowledgments

The authors thank Todd Running, Patrick Horton, and Karen Brettschneider, H–GAC, and Laurie Curra, TCEQ, for providing assistance throughout the study. Jim McLaughlin and Chuck Wemple, formerly of H–GAC, assisted during the planning and datacollection stages of the study. Also, Jean Wright and Roy Drinnen, Galveston County Health District

Figure 3. Location of sampling stations in San Bernard River and three tributaries, Texas Gulf Coastal Plain, 2000–2002.

(GCHD), and others from GCHD and TCEQ provided invaluable assistance during field data-collection activities. Staff of the University of Texas Memorial Museum assisted by identifying unknown fish species. Additionally, the authors gratefully acknowledge the City of Pasadena, City of Dickinson, and Texas Department of Transportation for permission to install and operate equipment during the study.

DATA COLLECTION

A variety of data were collected during the 26-month study period to characterize water-quality

and biological conditions in the three water bodies, both spatially and temporally. The data were hydrologic properties (rainfall, stage, and streamflow), continuously monitored water-quality properties (water temperature, specific conductance, pH, and dissolved oxygen), periodically monitored water-quality properties and constituents (nutrients, phytoplankton, indicator bacteria, suspended sediment, and biochemical oxygen demand [BOD]), and biological properties (fish, benthic macroinvertebrates, and stream habitat). The data-collection activities are summarized in table 1. In addition to environmental samples, quality assurance (QA) samples also were collected during the study.

Table 1. Data-collection sites in Dickinson Bayou, Armand Bayou, and San Bernard River, Texas Gulf Coastal Plain, 2000–2002

[IH, Interstate Highway; SH, State Highway; CR, County Road; FM, Farm Road]

Station	Station name	Short name	Location		Drainage area	Population density ¹	Data-collection
number		(fig. 2 or 3)	Latitude	Longitude	1000000	(people per square mile)	activity
			Dic	kinson Bay	ou		
0807764230	Dickinson Bayou at Ginger Rd., near Alvin, Tex.	DCK06	29°25'39"	95°07'54"	31.2	291	Monthly water-quality sampling
08077643	Dickinson Bayou at Cemetary Rd. near Dickinson, Tex.	DCK01	29°25'45"	95°06'56"	43.6	296	Monthly water-quality sampling Biological sampling
08077645	Dickinson Bayou near IH–45, Dickinson, Tex.		29°26'40"	95°04'23"	57.3	296	Monthly water-quality sampling Biological sampling
0807764550	Dickinson Bayou up- stream of Benson Bayou, Dickinson, Tex.	DCK03	29°27'18"	95°03'42"	67.4	337	Monthly water-quality sampling Biological sampling
08077647	Dickinson Bayou at SH 3, Dickinson, Tex.	DCK04	29°27'23"	95°02'52"	75.0	402	Continuous stage Continuous water-quality monitoring Monthly water-quality sampling Biological sampling
0807764915	Dickinson Bayou below Gum Bayou, near Texas City, Tex.	DCK05	29°27'40"	94°59'59"	93.5	502	Monthly water-quality sampling Biological sampling
			Ar	mand Bayo	u		
293847095074501	Armand Bayou at Fairmont Pkwy., Pasadena, Tex.	ARM01	29°38'47"	95°07'45"	7.71	3,160	Bimonthly water-quality sampling Biological sampling
293645095054601	Armand Bayou at Oil Field Rd., Pasadena, Tex.	ARM02	29°36'45"	95°05'46"	25.4	2,190	Bimonthly water-quality sampling Biological sampling
293546095052701	Armand Bayou at Bay Area Blvd., Pasadena, Tex.	ARM03	29°35'46"	95°05'27"	35.3	1,940	Continuous stage Continuous water-quality monitoring Bimonthly water-quality sampling Biological sampling
08077630	Horsepen Bayou at Bay Area Blvd., Houston, Tex.	HRSP01	29°35'00"	95°06'12"	16.7	2,240	Bimonthly water-quality sampling Biological sampling
293444095055101	Horsepen Bayou at Middlebrook Dr., Pasadena, Tex.	HRSP02	29°34'44"	95°05'51"	17.4	2,190	Biological sampling
		S	an Bernard	d River and	tributarie	s	
294036096165001	Coushatta Creek at Attwater Prairie Chicken National Wildlife Refuge, Tex.	COUSH	29°40'36"	96°16'50"	39.9	10	Bimonthly water-quality sampling Biological sampling
293211096110301	West Bernard Creek at CR 252, near East Bernard, Tex.	WESTB	29°32'11"	96°11'03"	22.1	39	Bimonthly water-quality sampling Biological sampling

Table 1. Data-collection sites in Dickinson Bayou, Armand Bayou, and San Bernard River, Texas Gulf Coastal Plain, 2000–2002—Continued

04-41	Station name	Short	Location		J	Population	Data calledian
Station number		name (fig. 2 or 3)	Latitude	Longitude	` •	density ¹ (people per square mile)	Data-collection activity
-		San Ber	nard Rive	and tributa	aries—Co	ntinued	
293123096073001	Gum Tree Branch at CR 252, near East Bernard, Tex.	GUMTR	29°31'23"	96°07'30"	35.1	29	Bimonthly water-quality sampling Biological sampling
292939096014001	San Bernard River at FM 2919 near Kendleton, Tex.	SANB01	29°29'39"	96°01'40"	375	24	Bimonthly water-quality sampling Biological sampling
08117500	San Bernard River near Boling, Tex.	SANB02	29°18'48"	95°53'37"	727	30	Continuous streamflow Continuous water-quality monitoring Bimonthly water-quality sampling Biological sampling
290935095455601	San Bernard River at FM 1301 near East Columbia, Tex.	SANB03	29°09'35"	95°45'56"	825	32	Bimonthly water-quality sampling Biological sampling

¹ See text, page 27.

Depending on the constituent type, QA samples consisted of equipment blanks, field blanks, laboratory blanks, split samples, replicate samples, and laboratory matrix spikes.

Hydrologic Data

All precipitation during the study was rainfall. Rainfall data were obtained from two sources: (1) the National Weather Service (NWS) station at League City (National Weather Service, 2003) (fig. 1)—data from this station are representative of conditions for both Dickinson Bayou and Armand Bayou; and (2) the National Atmospheric Deposition Program (NADP) station at the Attwater Prairie Chicken National Wildlife Refuge near Sealy (National Atmospheric Deposition Program [NRSP–3]/National Trends Network, 2003) (fig. 1)—data from this station were assumed to be representative of the San Bernard study area.

Gage height (stage) was continuously monitored in each of the three water bodies (figs. 2, 3; table 1). Gage height at the Dickinson Bayou and Armand Bayou gages is tidally influenced. Gage height (stage) is defined as the water surface measured in feet above a local reference point, or "gage datum." For the Dickinson Bayou and Armand Bayou gages, the gage datum was arbitrarily chosen and not referenced to a particular

datum. Gage height data for the San Bernard River gage were referenced to NGVD 29.

Gage height data were measured using pressure transducers. The data were electronically recorded at 15-minute intervals by data-collection platforms (DCPs) and transmitted by a geostationary operational environmental satellite (GOES) at 4-hour intervals to the USGS National Water Information System database. Streamflow was computed from gage height data for the San Bernard River station by using a pre-existing rating curve, which relates gage height to instantaneous streamflow. This rating curve was developed using standard USGS procedures (Rantz and others, 1982). Stage-discharge relations could not be developed for the Dickinson Bayou and Armand Bayou gages because they are tidally influenced.

In addition to continuous hydrologic data collected at the three stations, instantaneous measurements of streamflow were made during each site visit using standard USGS procedures (Rantz and others, 1982; Simpson (2001). Depending on site conditions, velocities were measured using either Price pygmy velocity meters, Price type AA velocity meters, or acoustic Doppler current profilers (ADCPs). When conditions allowed, wading measurements were made and topsetting wading rods were used to measure the depth of flow and to suspend the velocity meter in the water column. When depths of flow or velocities were too great,

measurements were made by suspending instruments from nearby bridges or by deploying a boat-mounted ADCP.

Water-Quality Data

Continuously Monitored Water-Quality Properties

Water temperature, specific conductance, pH, and dissolved oxygen were measured using multi-probe water-quality meters and electronically recorded at 15-minute intervals by the DCPs. In each application, the meters were installed near the center of flow and were operated as documented in Wagner and others (2000).

The continuous monitoring station in Dickinson Bayou (fig. 2; table 1) was located in a relatively deep (about 20 ft) section of the bayou. Because flow reverses with tidal fluctuations, the potential for stratification of water-quality properties associated with density differences between saltwater (heavier) and freshwater (lighter) existed. During field reconnaissance, the occurrence of a "salt-wedge" along the bottom was verified by measured differences in specific conductance with depth. The occurrence of such a wedge can lead to small dissolved oxygen concentrations at depths. Because of the stratification, three multi-probe water-quality monitors were deployed at the State Highway 3 bridge station, one near the bottom (depth about 18 ft), one near the center (depth about 10 ft), and one near the top (depth about 2 ft). The meter was operational during December 2000-September 2001.

The continuous monitoring station in Armand Bayou (fig. 2; table 1) was installed in a relatively wide (greater than 300 ft) and shallow (about 3 ft) section of the bayou. As was the case in Dickinson Bayou, the station was in the tidal segment of Armand Bayou. Because of the shallow depth, deployment of instruments at multiple depths was not practical. R.S. Burgess (Texas Commission on Environmental Quality, written commun., 2003) indicates that "density stratification due to both temperature and salinity" does occur in Armand Bayou and that "pronounced vertical gradients of dissolved oxygen" also have been observed at locations in the bayou. The multi-probe water-quality meter was set to a depth of about 2 ft. The meter was operational during December 2000–August 2001.

The continuous monitoring station in the San Bernard River (fig. 3; table 1) was installed in a riverine setting, with typical water depths of 3 ft and constant flow. The multi-probe water-quality meter was deployed at a depth of about 2 ft, although the exact depth of the meter was dependent upon water depth at any given time. The range in stage at this station (about 3 to 33 ft) during the study was greater than the ranges at the stations in Dickinson and Armand Bayous. The meter was in place during December 2000–August 2002. However, because of vandalism, it was not operational from mid-July 2001 to mid-December 2001.

Periodically Collected Water-Quality Properties and Constituents

Selected water-quality properties and constituents were collected periodically and measured by laboratory analysis. Principally, these were nutrients (ammonia nitrogen, ammonia plus organic nitrogen, nitrite nitrogen, nitrite plus nitrate nitrogen, orthophosphorus), phytoplankton (chlorophyll-a, pheophytin), and indicator bacteria (fecal coliforms, fecal streptococci, *E. coli*, and enterococci). Five-day BOD and suspended sediment also were collected periodically at Armand Bayou and the San Bernard River. Laboratories responsible for each type of analysis are listed in table 2.

The GCHD and TCEQ collected samples at Dickinson Bayou monthly during July 2000-August 2001 following TCEQ methods (Texas Natural Resource Conservation Commission, 1999). The GCHD laboratory analyzed the samples for ammonia nitrogen, nitrite plus nitrate nitrogen, orthophosphorus, fecal coliform bacteria, E. coli bacteria, and enterococci bacteria. The TCEQ laboratory analyzed the samples for ammonia plus organic nitrogen, chlorophyll-a, and pheophytin. All data were collected in conformance with a detailed Quality Assurance Project Plan (QAPP) that specified rigorous cleaning and sampling procedures and included the collection and analysis of appropriate QA samples. Analytical results for the monthly samples were obtained in electronic format from the GCHD and TCEO.

The USGS collected water samples at Armand Bayou in August 2000 and in January, March, May, and July 2001. Water samples for Armand Bayou were collected and processed using standard USGS methods (U.S. Geological Survey, 1997–present).

The USGS collected water samples every other month at six sites in the San Bernard River during January 2001–August 2002. Again, water samples were collected and processed using standard USGS procedures.

Table 2. Laboratories responsible for analyses of samples collected from Dickinson Bayou, Armand Bayou, and San Bernard River, Texas Gulf Coastal Plain, 2000–2002

[GCHD, Galveston County Health District; TCEQ, Texas Commission on Environmental Quality; USGS-NWQL, U.S. Geological Survey National Water Quality Laboratory; USGS-HOU, U.S. Geological Survey Houston Subdistrict; EcoAnalysts, EcoAnalysts Inc. contract laboratory]

	Laboratory responsible for analysis					
Water body	Nutrients	Phytoplankton	Indicator bacteria	Benthic macroinvertebrate		
Dickinson Bayou	GCHD/TCEQ	TCEQ	GCHD	USGS-NWQL		
Armand Bayou	USGS-NWQL	USGS-NWQL	USGS-HOU	USGS-NWQL		
San Bernard River	USGS-NWQL	USGS-NWQL	USGS-HOU	EcoAnalysts		

Note: Five-day biochemical oxygen demand for Armand Bayou and San Bernard River analyzed by USGS Houston Subdistrict; suspended sediment for Armand Bayou and San Bernard River analyzed by USGS Louisiana District.

QA samples were collected at the same time that environmental samples were collected. Equipment blanks and field blanks were used to verify the adequacy of cleaning procedures. Split samples were used to determine the analytical precision (reproducibility) for various constituents. Concurrent samples were used to provide a measure of sampling precision (reproducibility) and to indicate spatial or temporal inhomogeneities in the system being sampled. Results of concurrent samples also can reflect differences in sampling, processing, and laboratory analysis. In the QAPP, the stated QA objective for sampling and analytical precision was a relative percent difference (RPD) of less than 20 percent. The RPDs of all split and concurrent samples were less than 20 percent. If equipment blanks or field blanks were greater than QA limits (two times the minimum reporting level or 10 percent of the environmental value), a remark code of "V" (indicating contamination) precedes the values listed in the associated tables.

Biological Data

Prior to biological sampling, appropriate stream reaches were selected. Potential reaches were identified using geographic information system (GIS) maps of the three water bodies. Final reaches were selected after onsite reconnaissance. A primary selection criterion was that a reach must contain a full meander (s-shaped curve) of the channel. The sampling sites are located within the selected stream reaches adjacent to the station locations listed in table 1, and the frequency of each type of sampling in each water body is listed in table 3.

Table 3. Biological sampling frequency in Dickinson Bayou, Armand Bayou, and San Bernard River, Texas Gulf Coastal Plain

[QMH, qualitative multi-habitat method; DTH, depositional-targeted habitat method; RTH, richest-targeted habitat method]

Water body	Data-collection activity	Sampling frequency
Dickinson	Stream habitat	Summer 2000
Bayou		
	Fish survey	Summer 2000
		Winter 2001
		Summer 2002
	Benthic macroinvertebrate	Summer 2000
	sampling (QMH and	Winter 2001
	DTH methods)	Summer 2002
Armand Bayou	Stream habitat	Summer 2000
·	Fish survey	Summary 2000
		Winter 2001
	Benthic macroinvertebrate	Summer 2000
	sampling (QMH, DTH, and RTH methods)	Winter 2001
San Bernard River	Stream habitat	Spring 2001
	Fish survey	Summer 2000
		Spring 2001
		Summer 2002
	Benthic macroinvertebrate	Summer 2000
	sampling (QMH and	Spring 2001
	RTH methods)	Spring 2002

Fish, benthic macroinvertebrate, and streamhabitat data-collection methods used in Dickinson and Armand Bayous are summarized in Hogan (2002). The same methods were used to collect biological data in the San Bernard River.

HYDROLOGIC DATA

Figure 4a shows rainfall data collected at the NWS station at League City, and figure 4b shows rainfall data collected at the NADP station at the Attwater Prairie Chicken National Wildlife Refuge near Sealy. Rainfall distributions for the two locations were similar in terms of timing and magnitude. However, in June 2001, more than 20 inches (in.) of rain was recorded at League City (Dickinson and Armand Bayous), most of which was associated with Tropical Storm Allison. The NADP station (San Bernard River) received much less rainfall (less than 2 in.) from this storm.

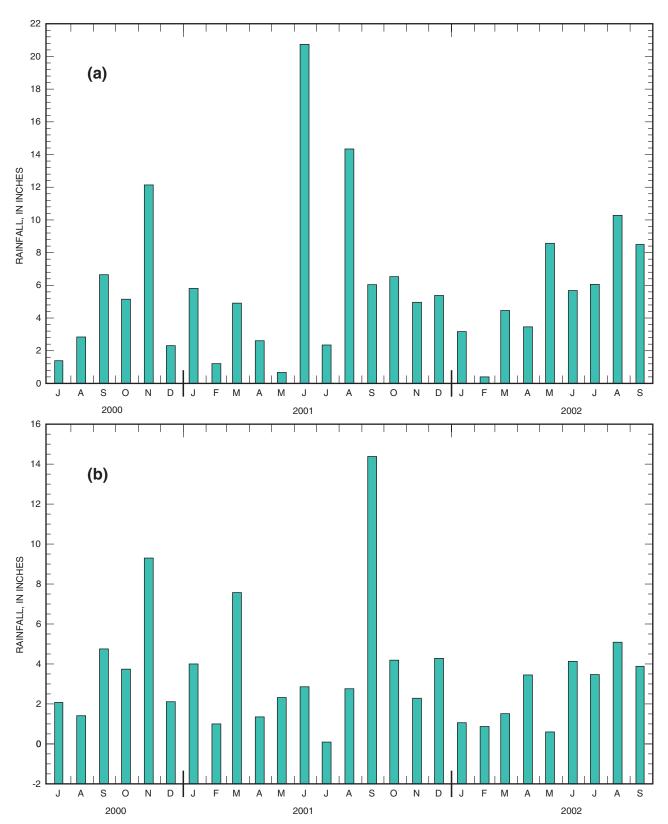
Figures 5a and 5b show comparable gage height fluctuations between the Dickinson Bayou and Armand Bayou gages. The gage height timing and pattern were essentially the same at the two sites, but the magnitudes of tidal fluctuation were different. The dates of waterquality sample collection for the two sites also are shown.

Streamflow data were computed for the continuous monitoring station on the San Bernard River. Figure 6 shows the range in daily mean streamflow at the San Bernard River gage during the study period. The dates of water-quality sample collection also are shown.

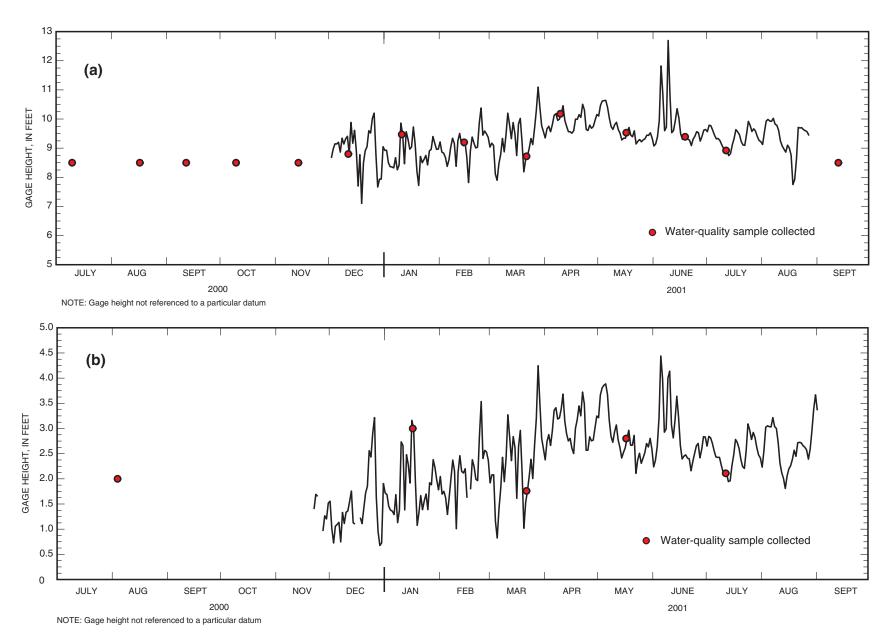
WATER-QUALITY DATA

Continuously Monitored Water-Quality Properties

In addition to hydrologic data (stage and discharge) that were collected at one station in each of the three water bodies, water temperature, specific conductance, pH, and dissolved oxygen also were collected at these three stations using multi-probe water-quality monitors. Boxplots show these data, grouped by month, for each of the three water bodies (figs. 7–10). Data are presented during November 2000–August 2001 because this was the only period when all three monitors were operational at the same time.


Seasonal variations in water-quality properties for all three sites are typical of those observed at USGS stations along the Texas Gulf Coast. In particular, water temperature (fig. 7) and dissolved oxygen (fig. 10) are inversely related. Periods of smallest dissolved oxygen concentrations generally occurred in the summer months when water temperatures were highest.

Because water-quality conditions were stratified during field reconnaissance, monitors were deployed at three depths at the Dickinson Bayou continuous monitoring station. Distributions of these water-quality parameters are shown in figure 11a-d. The boxplots indicate that water temperature was slightly higher near the surface than at mid-depth and near bottom; specific conductance increased with depth, particularly near bottom; pH was less variable near the surface; and dissolved oxygen concentrations decreased with depth. Examination of specific conductance data indicates that substantial stratification occurs through the water column. A salinity gradient that exceeded 6,000 microsiemens per centimeter at 25 degrees Celsius occurred at one station in summer months during periods of limited freshwater inflow. During these same periods, dissolved oxygen concentrations typically were much smaller in the bottom depths than at the middle and top depths. During periods of elevated streamflow (after rainfall), mixing occurred, and stratification was less prevalent.


Periodically Collected Water-Quality Properties and Constituents

Selected water-quality properties and constituents were analyzed for six sites in Dickinson Bayou (table 4, at end of report), four sites in Armand Bayou (table 5, at end of report), and six sites in the San Bernard River (table 6, at end of report). Graphical comparisons were made to show differences in selected waterquality constituents collected from the three water bodies. For these comparisons, data were grouped by water body, by flow condition, and by season. In addition, constituent yields were computed for selected constituents. Only water-quality constituents that were analyzed for all three water bodies were used for these comparisons and computations. The constituents are ammonia nitrogen, ammonia plus organic nitrogen, nitrite plus nitrate nitrogen, orthophosphorus, chlorophyll-a, pheophytin, fecal coliform bacteria, and E. coli bacteria.

The TCEQ has developed thresholds, or screening levels, for selected water-quality constituents that indicate elevated concentrations for constituents for which water-quality standards have not been adopted (Texas Commission on Environmental Quality, 2003). When sample concentrations exceed screening levels, they indicate a potential water-quality concern.

Figure 4. Rainfall at (a) National Weather Service station, League City, Texas, and (b) National Atmospheric Deposition Program station, Attwater Prairie Chicken National Wildlife Refuge near Sealy, Texas, July 2000–September 2002.

Figure 5. Hydrographs showing daily mean gage height and time of water-quality sampling at (a) station 08077647 Dickinson Bayou at State Highway 3, Dickinson, Texas, and (b) station 293546095052701 Armand Bayou at Bay Area Boulevard, Pasadena, Texas, July 2000–September 2001.

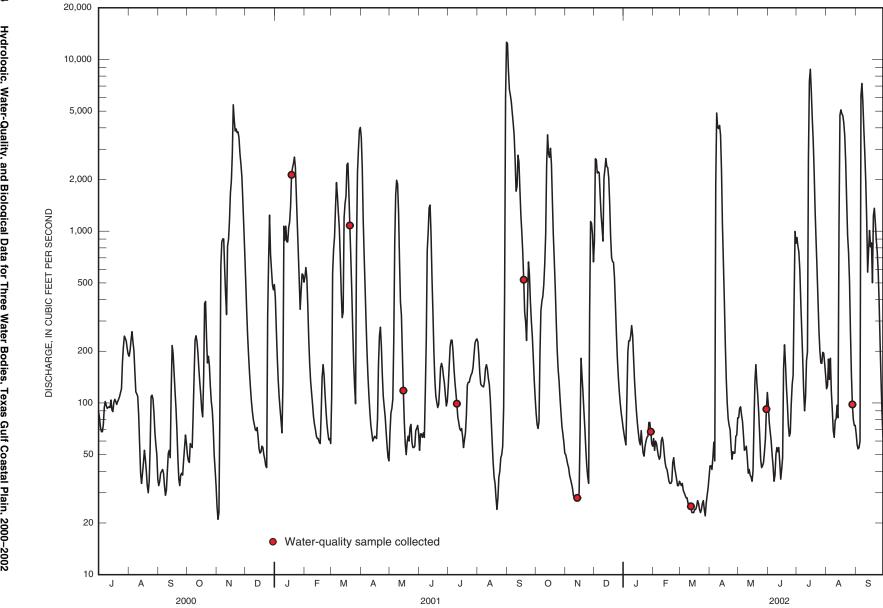
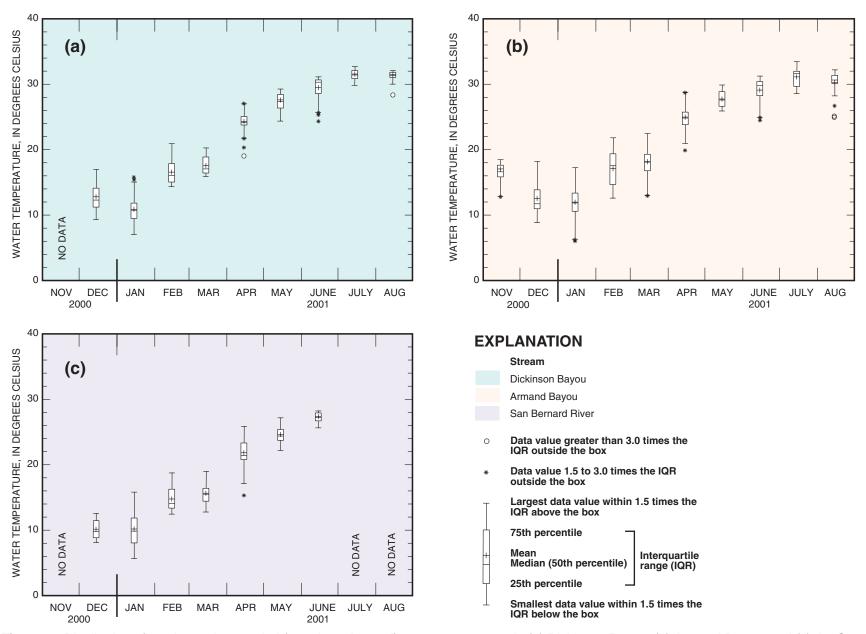
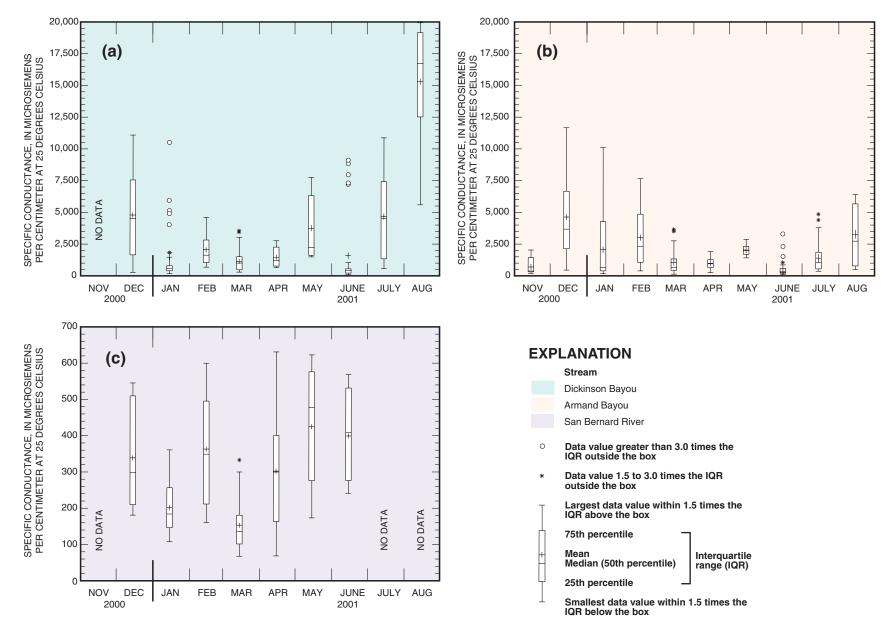
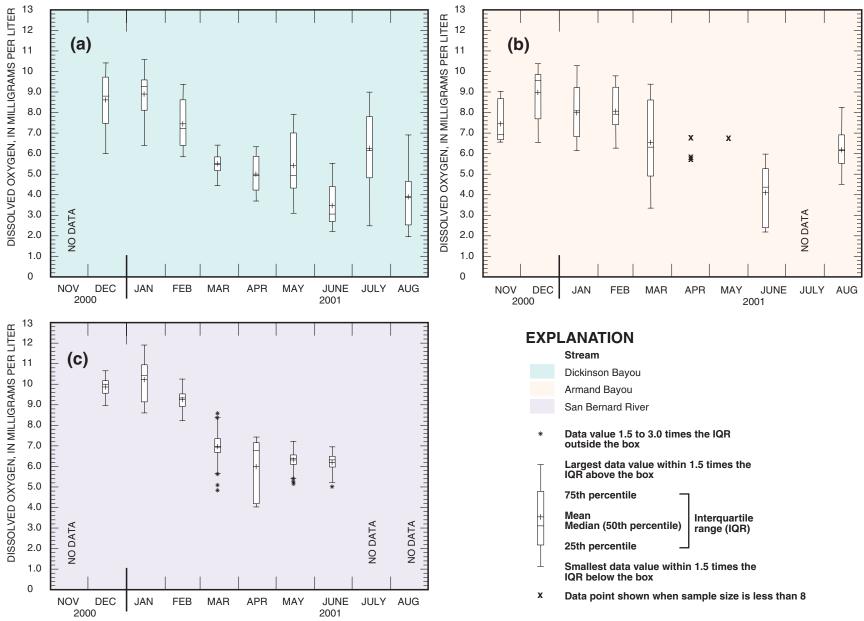




Figure 6. Hydrographs showing daily mean discharge and time of water-quality sampling at station 08117500 San Bernard River near Boling, Texas, July 2000–September 2002.


Figure 7. Distribution of continuously recorded (15-minute interval) water temperature in (a) Dickinson Bayou, (b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, November 2000–August 2001.

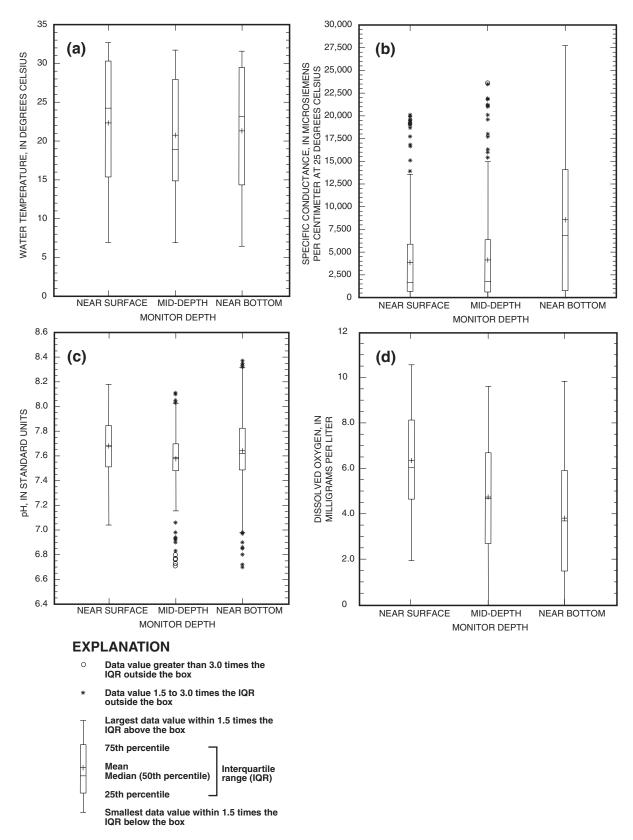

Figure 8. Distribution of continuously recorded (15-minute interval) specific conductance in (a) Dickinson Bayou, (b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, November 2000–August 2001.

Figure 9. Distribution of continuously recorded (15-minute interval) pH in (a) Dickinson Bayou, (b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, November 2000–August 2001.

WATER-QUALITY DATA

Figure 10. Distribution of continuously recorded (15-minute interval) dissolved oxygen in (a) Dickinson Bayou, (b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, November 2000–August 2001.

Figure 11. Distribution of continuously recorded (15-minute interval) (a) water temperature, (b) specific conductance, (c) pH, and (d) dissolved oxygen at three depths in Dickinson Bayou, Texas Gulf Coastal Plain, December 2000–August 2001.

Table 7. Screening levels for selected nutrients (Texas Commission on Environmental Quality, 2003) $[mg/L, milligrams per liter; <math>\mu g/L, micrograms per liter]$

	Screening level						
Stream type	Ammonia nitrogen (mg/L)	Nitrite plus nitrate nitrogen (mg/L)	Orthophosphorus (mg/L)	Chlorophyll-a (μg/L)			
Freshwater	0.17	2.76	0.80	11.6			
Tidal	.58	1.83	.71	19.2			

Screening levels for selected nutrients have been developed for freshwater streams, tidal streams (table 7), reservoirs, and estuaries.

Nutrients

Distributions of ammonia nitrogen, ammonia plus organic nitrogen, nitrite plus nitrate nitrogen, and orthophosphorus concentrations are shown by boxplots grouped by water body (fig. 12). Dickinson Bayou had the largest median ammonia nitrogen concentration; the San Bernard River had the smallest median concentration but the largest range in concentration. Armand Bayou had the largest median concentrations of ammonia plus organic nitrogen, nitrite plus nitrate nitrogen, and orthophosphorus.

The effect of variations in stream discharge on nutrient concentrations is evident when these data are grouped by flow condition (fig. 13). Samples collected during base-flow conditions were designated low flow, and samples collected during above base flow conditions were designated high flow. The median concentration of each of the four nutrients was larger for high-flow samples than for low-flow samples. However, the largest individual concentrations and ranges in concentration occurred in low-flow samples.

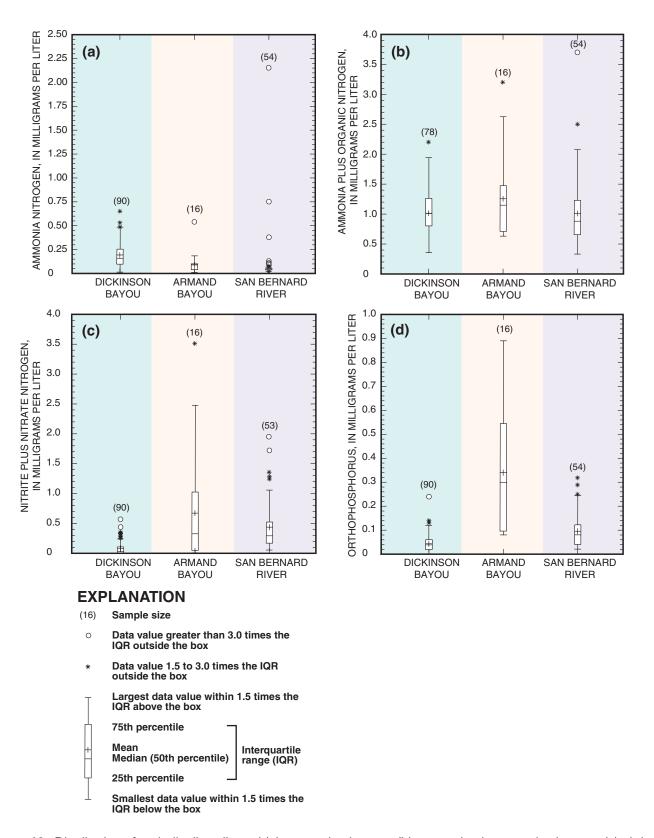
Seasonality was reflected by grouping data from all three water bodies by the time of the year they were collected (fig. 14). Samples collected during September–November were designated fall; December–February, winter; March–May, spring; and June–August, summer. Although no discernible pattern of seasonality was evident, the largest individual concentrations and ranges in concentration occurred during spring and summer (growing seasons).

Chlorophyll-a and Pheophytin

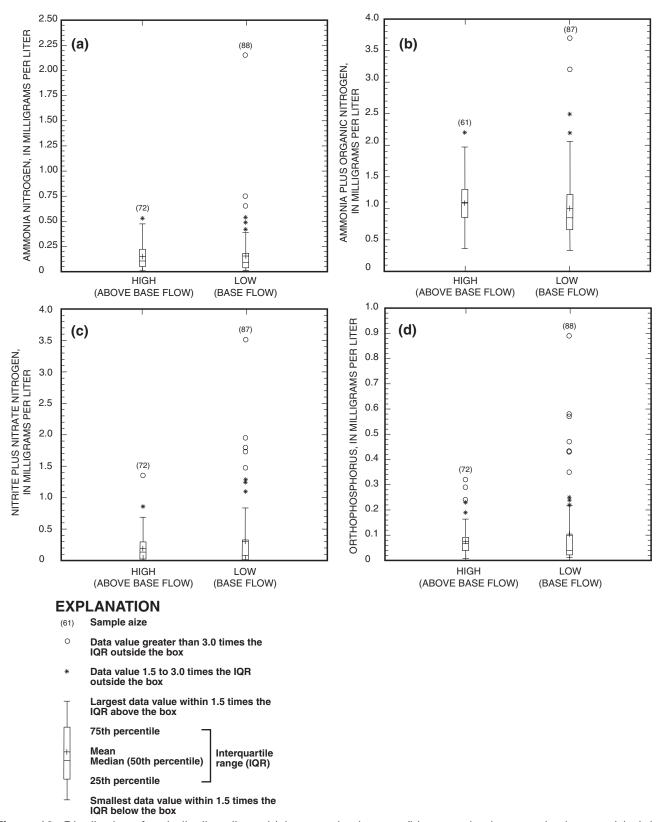
Both the median and individual concentrations of chlorophyll-a were largest for Armand Bayou (fig. 15).

Median concentrations of pheophytin were similar for all three water bodies (all less than 5 micrograms per liter $[\mu g/L]$). The largest individual pheophytin concentrations were from Armand Bayou.

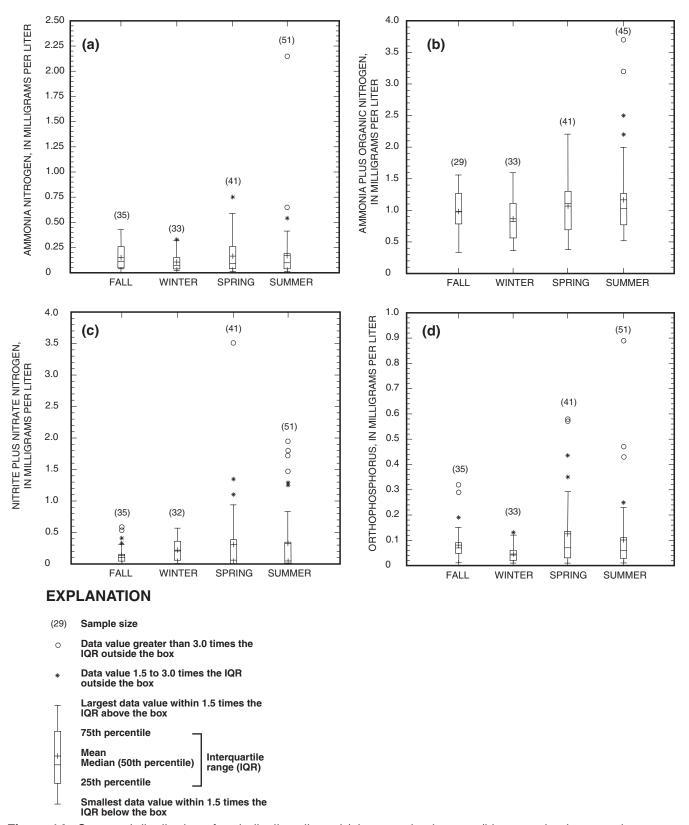
Chlorophyll-a and pheophytin concentrations were grouped by flow condition (low flow and high flow, as per nutrients) in boxplots (fig. 16). The median concentrations of low-flow and high-flow samples were similar, less than 5 μ g/L for both. However, the largest individual concentrations of each were measured in low-flow samples. The distributions are similar to those of nutrient concentrations grouped by flow condition (fig. 13).


Seasonal distributions of chlorophyll-a and pheophytin are shown in figure 17. The largest median concentration of chlorophyll-a is in summer, and the largest median concentration of pheophytin is in spring. Similar to seasonally grouped nutrient concentrations (fig. 14), the largest individual concentrations of chlorophyll-a and pheophytin occurred in the spring and summer, during the growing seasons.

Indicator Bacteria


Median densities of fecal coliform bacteria and *E. coli* bacteria were similar in all three water bodies (fig. 18). However, densities of both bacteria varied over wide ranges, particularly in Dickinson Bayou.

Fecal coliform bacteria and *E. coli* bacteria densities grouped by flow condition in boxplots (fig. 19) show that the largest median and individual bacteria densities were in samples collected during high flow. High flows contain a larger proportion of surface runoff, which can transport bacteria.


Seasonal distribution of fecal coliform bacteria and *E. coli* bacteria is shown in figure 20. The median densities for both bacteria were largest during winter. The largest individual densities for both bacteria occurred during fall and winter. Seasonal distribution

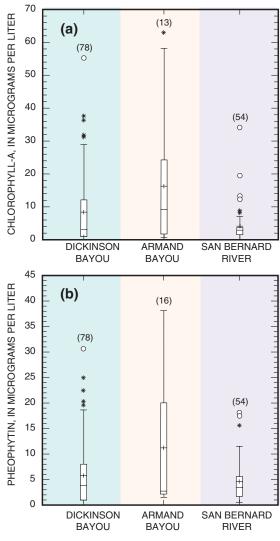

Figure 12. Distribution of periodically collected (a) ammonia nitrogen, (b) ammonia plus organic nitrogen, (c) nitrite plus nitrate nitrogen, and (d) orthophosphorus concentrations in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–2002.

Figure 13. Distribution of periodically collected (a) ammonia nitrogen, (b) ammonia plus organic nitrogen, (c) nitrite plus nitrate nitrogen, and (d) orthophosphorus concentrations during high- and low-flow conditions in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–2002.

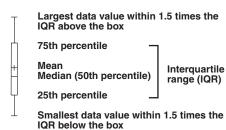
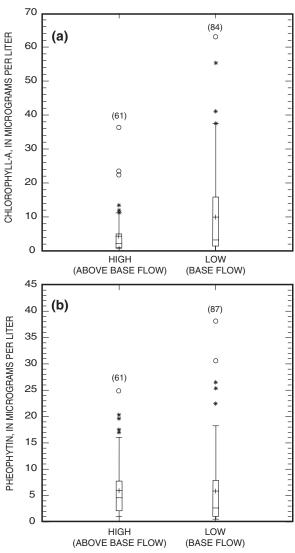


Figure 14. Seasonal distribution of periodically collected (a) ammonia nitrogen, (b) ammonia plus organic nitrogen, (c) nitrite plus nitrate nitrogen, and (d) orthophosphorus concentrations in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–2002.



EXPLANATION

- (16) Sample size
- Data value greater than 3.0 times the IQR outside the box
- Data value 1.5 to 3.0 times the IQR outside the box

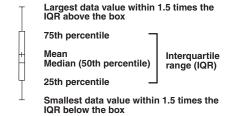


Figure 15. Distribution of periodically collected (a) chlorophyll-a and (b) pheophytin concentrations in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–2002.

EXPLANATION

- (61) Sample size
- Data value greater than 3.0 times the IQR outside the box
- Data value 1.5 to 3.0 times the IQR outside the box

Figure 16. Distribution of periodically collected (a) chlorophyll-a and (b) pheophytin concentrations during high- and low-flow conditions in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–2002.

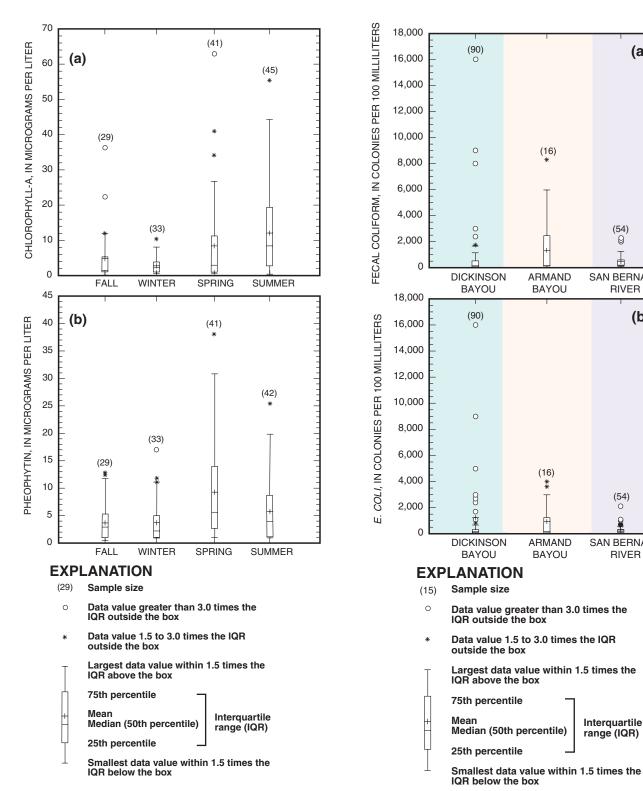


Figure 17. Seasonal distribution of periodically collected (a) chlorophyll-a and (b) pheophytin concentrations in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000-2002.

Figure 18. Distribution of periodically collected (a) fecal coliform bacteria and (b) E. coli bacteria densities in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000-2002.

(a)

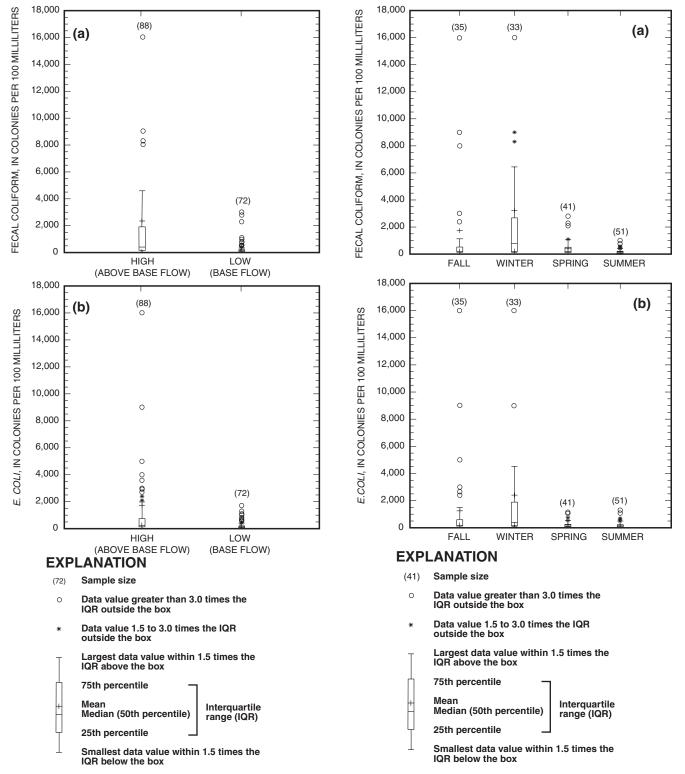
(54)

8

SAN BERNARD

RIVER

(54)


SAN BERNARD

RIVER

Interquartile

range (IQR)

(b)

Figure 19. Distribution of periodically collected (a) fecal coliform bacteria and (b) *E. coli* bacteria densities during high- and low-flow conditions in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–2002.

Figure 20. Seasonal distribution of periodically collected (a) fecal coliform bacteria and (b) *E. coli* bacteria densities in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–2002.

likely is related to flow conditions—the high-flow sampling events occurred during November and January.

Nutrient Yields

A constituent load for a stream is the product of a constituent concentration and streamflow and is the mass of a given constituent that is transported past a site on a stream during a specified period. The instantaneous load for a stream (Terrio, 1995) is computed as

$$LOAD(i) = FLOW(i) \times CONC(i) \times CF,$$
 (1)

where

LOAD = constituent load at time i, in pounds per day;

FLOW = discharge at time i, in cubic feet per second;

CONC = concentration of constituent at time i, in milligrams per liter; and

CF = conversion factor of 5.394.

Yield is a measure of the load-producing characteristics of a subbasin and is computed by dividing load by the area of the contributing subbasin,

$$YIELD = (LOAD) / (DA),$$
 (2)

where

YIELD = constituent yield, in pounds per day per square mile; and

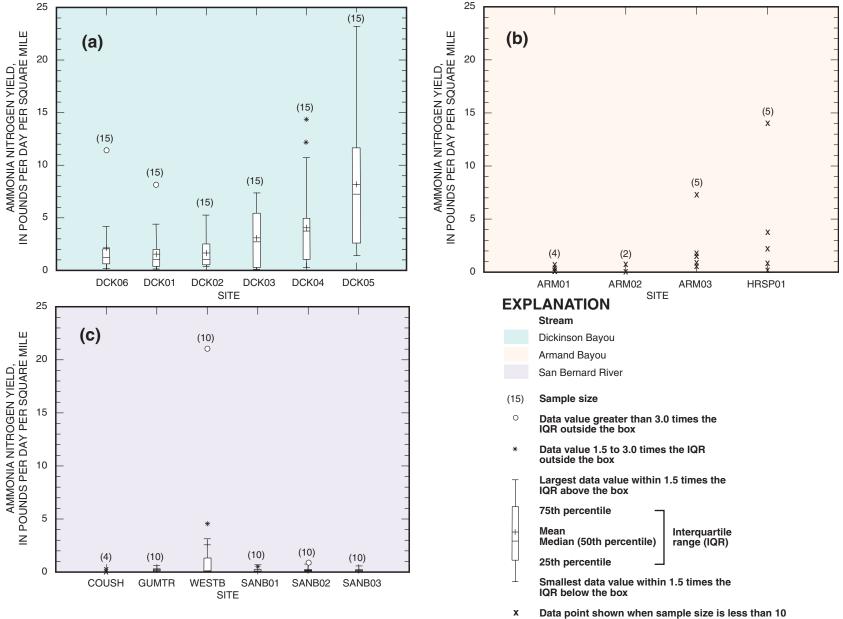
DA = area of contributing subbasin, in square miles.

Constituent yield data can be used to make direct comparisons of constituent contributions between subbasins with different drainage areas, while minimizing differences associated with varying streamflow.

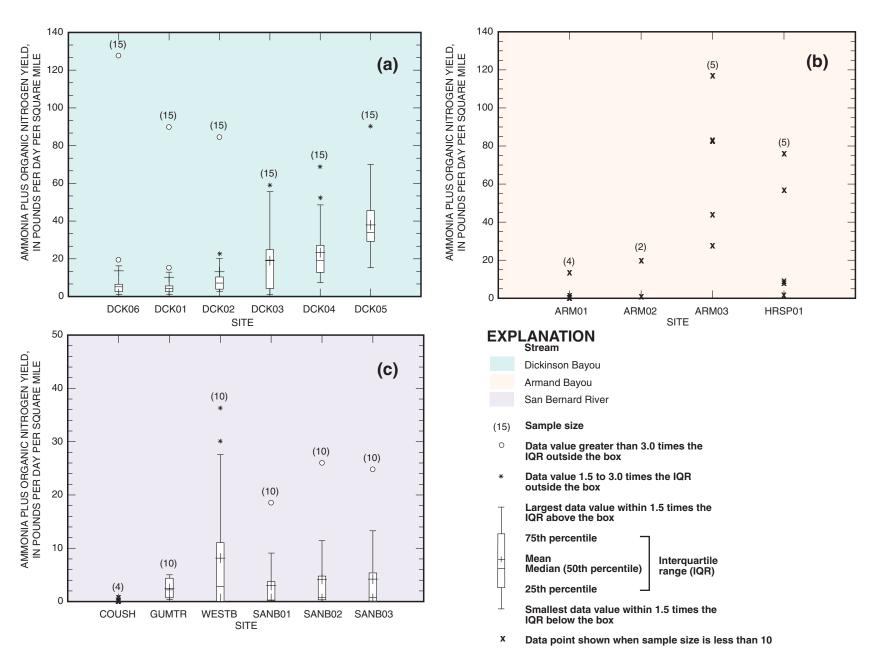
Figures 21–24 show distributions of constituent yields for samples collected at each sampling station in the three water bodies for ammonia nitrogen, ammonia plus organic nitrogen, nitrite plus nitrate nitrogen, and orthophosphorus, respectively. The sampling stations are in downstream order in the boxplots. For most nutrients, the yield tended to increase with distance downstream, although this characteristic applied less to yields at San Bernard River sites than at Dickinson and Armand Bayou sites.

For each of the three water bodies, the yields were grouped by flow condition (low flow and high flow) (fig. 25). Constituent yields for the San Bernard River typically were less than constituent yields for Dickinson and Armand Bayous, during both low-flow and high-flow conditions. Also, median yields of ammonia plus

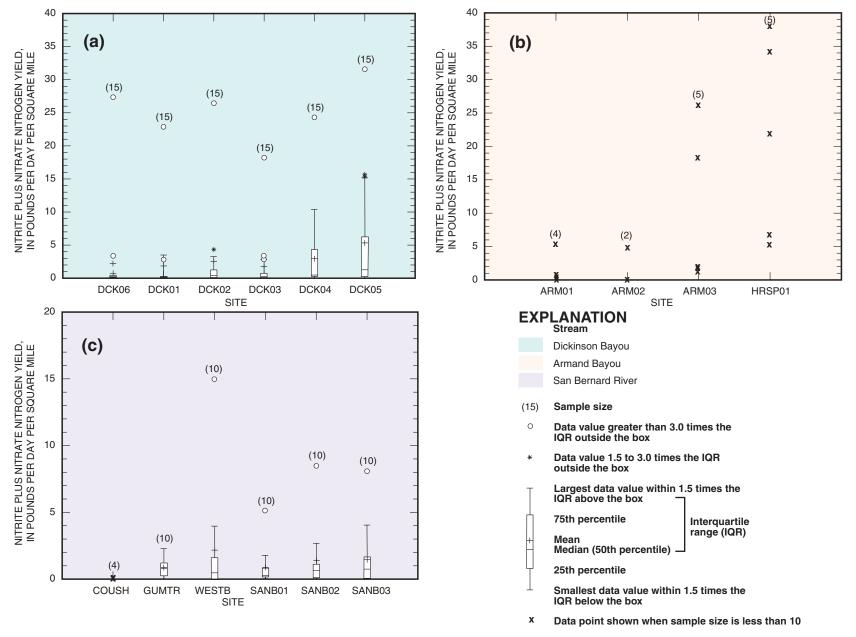
organic nitrogen, nitrite plus nitrate nitrogen, and orthophosphorus were larger for Armand Bayou than for the two other water bodies.


One possible explanation for larger yields for sites in Armand Bayou are anthropogenic effects related to land use in the watershed. Detailed maps of land use in the three water bodies were unavailable at the time of this report. However, a surrogate for land use in a given watershed is population density (number of people per square mile). Population density was computed for the drainage area upstream of each sampling site by overlaying watershed boundaries from 7.5-minute digital elevation model data (Texas Natural Resources Information System, 2003) on 2000 Census block data (U.S. Census Bureau, 2003) using GIS. The computed population density for the most downstream sampling site on the main stem of Armand Bayou (ARM03, fig. 2, table 1) was about 1,940 people per square mile; the population density for the most downstream sampling site in Dickinson Bayou (DCK05, fig. 2, table 1) was about 502 people per square mile. The computed population density for the most downstream sampling site in the San Bernard River (SANB03, fig. 3, table 1) was about 32 people per square mile. A larger population density indicates a more urbanized watershed. East and others (1998) found that nutrient concentrations in a stream that drained an urbanized watershed in Houston were appreciably larger than nutrient concentrations in Dickinson Bayou, which was less urbanized. Similarly, it is likely that some of the differences in the nutrient yields of Dickinson Bayou, Armand Bayou, and the San Bernard River are related to differences in land use in the respective drainage areas.

BIOLOGICAL DATA


To measure the status of in-stream biological resources, selected data were collected from each of the three water bodies to define fish and benthic macro-invertebrate community structure and to define stream-habitat conditions. In general, biological data for Dickinson and Armand Bayous are comparable because of their common hydrologic setting (tidally influenced, brackish water), and biological data for the San Bernard River are less comparable because they are from a riverine setting.

Fish Data


Fish taxa and individual counts of fish for Dickinson and Armand Bayous were presented previously in

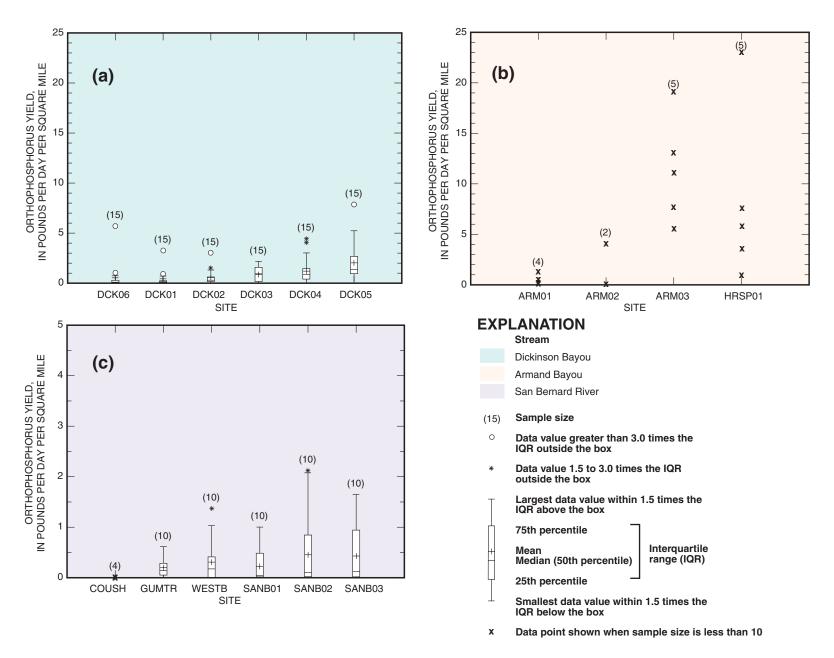

Figure 21. Yields of periodically collected ammonia nitrogen for selected sites in (a) Dickinson Bayou, (b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, July 1999–September 2001.

Figure 22. Yields of periodically collected ammonia plus organic nitrogen for selected sites in (a) Dickinson Bayou, (b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, July 1999–September 2001.

Figure 23. Yields of periodically collected nitrite plus nitrate nitrogen for selected sites in (a) Dickinson Bayou, (b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, July 1999–September 2001.

Figure 24. Yields of periodically collected orthophosphorus for selected sites in (a) Dickinson Bayou, (b) Armand Bayou, and (c) the San Bernard River, Texas Gulf Coastal Plain, July 1999–September 2001.

Figure 25. Yields of periodically collected (a) ammonia nitrogen, (b) ammonia plus organic nitrogen, (c) nitrite plus nitrate nitrogen, and (d) orthophosphorus during high-flow (above base flow) and low-flow (base flow) conditions in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–2002.

Hogan (2002). The distribution of species collected at each sampling reach in Dickinson Bayou and Armand Bayou are listed in tables 8 and 9 (at end of report), respectively. Examination of fish-survey data (Hogan, 2002, tables 3, 2) show that the largest numbers of fish and fish species were collected at the most downstream (brackish) main stem reach in both water bodies (DCK05 and ARM03, respectively).

Fish taxa and individual counts of fish for the San Bernard River are listed in table 10 (at end of report). The fish community structure in the two upstream main stem sites (SANB01 and SANB02) was similar to the community structure in the three tributaries. However, fewer individuals and species were collected at the most downstream main stem site (SANB03), which is opposite to the findings for Dickinson and Armand Bayous.

Fish community metrics were computed for each sampling site (table 11, at end of report). The metrics in the table that are not self-explanatory are Menhinick's richness index, defined as the ratio of the number of species to the square root of the sample size (Menhinick, 1964); and the Shannon-Wiener diversity index, defined as the product of the proportion of the total number of individuals of a given species and \log_{10} of that proportion, quantity summed for all species collected (Brower and Zar, 1977).

Benthic Macroinvertebrate Data

Benthic macroinvertebrate data might provide better site-specific information about a site or reach than fish community data (Cuffney and others, 1993). Moring (2001) states that fish mobility tends to make determinations of accurate species composition and relative abundance more difficult.

Taxonomic classification of benthic macroinvertebrates and counts of individual taxa for sites in Dickinson and Armand Bayous were presented previously in Hogan (2002, tables 5, 4). These data, together with similar data for the San Bernard River (table 12, at end of report), were used to compute benthic macroinvertebrate community metrics (table 13, at end of report). The metrics in the table that are not self-explanatory (or previously defined) are Ephemeroptera Plecoptera Trichoptera (EPT) taxa richness, the sum of the number of families within the insect orders of mayflies (Ephemeroptera), stoneflies (Plecoptera), and caddisflies (Trichoptera); Hilsenhoff's biotic index, an index of pollution based on the presence of specific families of aquatic insects (Hilsenhoff, 1987);

Margalef's richness index, a richness index equal to the number of species minus the reciprocal of log_e of the total number of individuals (Ludwig and Reynolds, 1988); Pielou's evenness index, defined as the Shannon-Wiener diversity index divided by the theoretical maximum of that index if all species in the sample were equally abundant (Menhinick, 1964); and Simpson's heterogeneity index, the probability that two individuals randomly drawn from all individuals collected at a site will be from the same species (Menhinick, 1964).

Habitat Data

Stream-habitat data collected from reaches in Dickinson and Armand Bayous were presented previously in Hogan (2002, table 6). Stream-habitat data from sites (reaches) in the San Bernard River are listed in table 14 (at end of report). The data in the table that might not be self-explanatory are sinuosity, the ratio of curvilinear reach length to linear reach length; mean channel width, the distance from the left high bank to the right high bank; and mean wetted channel width, the distance between the left edge of the water and the right edge of the water.

SUMMARY

During July 2000-September 2002, the USGS collected and analyzed site-specific hydrologic, waterquality, and biological data in Dickinson Bayou, Armand Bayou, and the San Bernard River in the Gulf Coastal Plain of Texas. Such data are of interest because segments of the three water bodies are on the State 303(d) list. Hydrologic data collected during the study consisted of precipitation, gage height, and streamflow. Precipitation data were obtained from two rain gages near the three water bodies. Rainfall distributions for the two sites were similar in terms of timing and magnitude, except during June 2001 when Tropical Storm Allison produced much more rainfall in the area of Dickinson and Armand Bayous than in the area of the San Bernard River. Tidally influenced gage height data were collected at continuous monitoring stations in Dickinson and Armand Bayous. The gage height timing and pattern were essentially the same at the two sites, but the magnitudes of tidal fluctuation were different. Streamflow data were computed for the continuous monitoring station in the San Bernard River.

Water temperature, specific conductance, pH, and dissolved oxygen were recorded at 15-minute intervals at one site in each of the three water bodies during

November 2000–August 2001. Seasonal variations in the water-quality properties for all three sites are typical of those observed at USGS stations along the Texas Gulf Coast. In particular, water temperature and dissolved oxygen are inversely related. Periods of smallest dissolved oxygen concentrations generally occurred in the summer months when water temperatures were highest.

Water-quality monitors were deployed at three depths at the Dickinson Bayou continuous monitoring station. Water temperature was slightly higher near the surface than at mid-depth and near bottom; specific conductance increased with depth; pH was less variable near the surface; and dissolved oxygen concentrations decreased with depth.

Selected water-quality properties and constituents in each of the three water bodies—principally nutrients, phytoplankton, and indicator bacteria—were collected periodically and measured by laboratory analysis. Samples were collected at six sites in Dickinson Bayou, four sites in Armand Bayou, and six sites in the San Bernard River. The median concentration of ammonia nitrogen was largest in Dickinson Bayou and smallest in the San Bernard River. Median concentrations of ammonia plus organic nitrogen, nitrite plus nitrate nitrogen, and orthophosphorus were largest in Armand Bayou. The median concentration of each of the four nutrients was larger for high-flow samples than for lowflow samples. However, the largest individual concentrations and ranges in concentration occurred in lowflow samples. Although no discernible pattern of seasonality was evident, the largest individual nutrient concentrations and ranges in concentration occurred during spring and summer (growing seasons).

Both median and individual concentrations of chlorophyll-a were largest for Armand Bayou. Median concentrations of pheophyton were similar for all three water bodies. The largest individual pheophyton concentrations were from Armand Bayou. Median concentrations of both chlorophyll-a and pheophytin in lowflow and high-flow samples were less than 5 $\mu g/L$. However, the largest individual concentrations of each were measured in low-flow samples. Similar to seasonally grouped nutrient concentrations, the largest individual concentrations of chlorophyll-a and pheophytin occurred in spring and summer.

Median densities of fecal coliform bacteria and *E. coli* bacteria were similar in all three water bodies. However, densities of both bacteria varied over wide ranges, particularly in Dickinson Bayou. The largest

median and individual bacteria densities were in samples collected during high flow, primarily in fall and winter.

Yields of most nutrients tended to increase with distance downstream, although this characteristic applied less to yields at San Bernard River sites than to Dickinson Bayou and Armand Bayou sites. During both low-flow and high-flow conditions, yields for the San Bernard River were less than yields for Dickinson and Armand Bayous. Based on findings of a previous study in the area, it is likely that some of the differences in the nutrient yields of Dickinson Bayou, Armand Bayou, and the San Bernard River are related to differences in land use in the respective drainage areas.

Fish, benthic macroinvertebrate, and streamhabitat data were collected in each of the three water bodies. For Dickinson and Armand Bayous, the most individuals and species of fish were collected at the most downstream main stem site; for the San Bernard River, the fewest individuals and species were collected at the most downstream main stem site.

REFERENCES

- Bower, J.E., and Zar, J.H., 1977, Field and laboratory methods for general ecology: Dubuque, Iowa, W.C. Brown, 193 p.
- Coplin, L.S., and Lanning-Rush, Jennifer, 2002, Water-level altitudes 2002 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973–2001 in the Chicot and Evangeline aquifers, Houston-Galveston Region, Texas: U.S. Geological Survey Open-File Report 02–134, 15 sheets, accessed March 6, 2003, at URL
 - http://water.usgs.gov/pubs/of/ofr02-134/
- Cuffney, T.F., Gurtz, M.E., and Meador, M.R., 1993, Methods for collecting benthic invertebrate samples as part of the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 93–406, 66 p.
- East, J.W., Paul, E.M., and Porter, S.D., 1998, Nutrient loading and selected water-quality and biological characteristics of Dickinson Bayou near Houston, Texas, 1995–97: U.S. Geological Survey Water-Resources Investigations Report 98–4012, 50 p.
- Hilsenhoff, W.L., 1987, An improved biotic index of stream pollution: Great Lakes Entomology, v. 20, p. 31–39.
- Hogan, J.L., 2002, Fish, benthic-macroinvertebrate, and stream-habitat data from two estuaries near Galveston Bay, Texas, 2000–2001: U.S. Geological Survey Open-File Report 02–024, 16 p.

- Linam, G.W., and Kleinsasser, L.J., 1998, Classification of Texas freshwater fishes into trophic and tolerance groups: Texas Parks and Wildlife Department, River Studies Report 14, 6 p., accessed November 5, 2003, at URL http://water.usgs.gov/pubs/wri/wri014010/
- Ludwig, J.A., and Reynolds, J.F., 1988, Statistical ecology— A primer of methods and computing: New York, Wiley, 337 p.
- Menhinick, E.F., 1964, A comparison of some species-individuals diversity indices applied to samples of field insects: Ecology, v. 45, p. 859–861.
- Moring, J.B., 2001, Influence of stream habitat and land use on benthic macroinvertebrate indicators of stream quality of selected above-tidal streams in the Houston-Galveston Area Council service area, Texas, 1997–98: U.S. Geological Survey Water-Resources Investigations Report 01–4010, 22 p., accessed November 5, 2003, at URL
 - http://water.usgs.gov/pubs/wri/wri014010/
- National Atmospheric Deposition Program (NRSP–3)/
 National Trends Network, 2003, Monthly data for site—
 TX10 (Attwater Prairie Chicken National Wildlife
 Refuge): NADP Program Office, Illinois State Water
 Survey, accessed March 6, 2003, at URL
 http://nadp.sws.uiuc.edu/nadpdata/
 monthlyRequest.asp?site=tx10
- National Weather Service, 2003, National Weather Service forecast office, NWS HGX Office/League City climate data: accessed March 6, 2003, at URL: http://www.srh.noaa.gov/hgx/climate/hgx.htm
- Parsons Engineering Science, Inc., 2000, Report for water quality and biological characterization of Armand Bayou, Houston, Texas: [Prepared for] Texas General Land Office GLO contract no. 99–123R and Texas Natural Resource Conservation Commission, 87 p.
- Rantz, S.E., and others, 1982, Measurement and computation of streamflow—Volumes 1 and 2: U.S. Geological Survey Water-Supply Paper 2175, 631 p.
- Simpson, Michael, 2001, Discharge measurements using a broad-band acoustic Doppler current profiler: U.S. Geological Survey Open-File Report 01–01, 123 p.
- Texas Commission on Environmental Quality, 2002, Draft 2002 Texas 303(d) list (October 1, 2002): accessed August 27, 2003, at URL

- http://www.tnrcc.state.tx.us/water/quality/02_twqmar/02_categories/02_303d.pdf
- _____2003, Surface water assessment methodology: accessed June 2, 2003, at URL http://www.tnrcc.state.tx.us/water/quality/02_twqmar/ 02_305b/02_program_summary/12-swass.pdf
- Terrio, P.J., 1995, Water-quality assessment of the Upper Illinois River Basin in Illinois, Indiana, and Wisconsin—Nutrients, dissolved oxygen, and fecal indicator bacteria in surface water, April 1987 through August 1990: U.S. Geological Survey Water-Resources Investigations Report 95–4005, 79 p.
- Texas Natural Resource Conservation Commission, 1998,
 State of Texas 1998 Clean Water Act section 303(d) list
 (06/26/98): accessed August 27, 2003, at URL
 http://www.tnrcc.state.tx.us/water/quality/98_303D.pdf
 _____1999, Surface water quality monitoring procedures
 manual: Texas Natural Resource Conservation Commission, Water Quality Division, GI–252 [variously paged].
- Texas Natural Resources Information System, 2003, Digital elevation models—Data availability and downloads: accessed April 3, 2003, at URL http://www.tnris.state.tx.us/stratmap/dem.htm
- Texas Parks and Wildlife, 1997, GEMS—Armand Bayou Coastal Preserve & Nature Center: accessed April 10, 2000, at URL http://www.tpwd.state.tx.us/conserve/txgems/ armandba/armandba.htm
- Texas Water Commission, 1992, The State of Texas water quality inventory (11th ed.): Austin, Tex., LP 92–16, 671 p.
- U.S. Census Bureau, 2003, United States census 2000: accessed April 1, 2003, at URL http://www.census.gov/main/www/cen2000.html
- U.S. Geological Survey, 1997–present, National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chaps. A1–A7, accessed April 1, 2003, at URL http://water.usgs.gov/owq/FieldManual/
- Wagner, R.J., Mattraw, H.C., Ritz, G.F., and Smith, B.A., 2000, Guidelines and standard procedures for continuous water-quality monitoring—Site selection, field operation, calibration, record computation, and reporting: U.S. Geological Survey Water-Resources Investigations Report 00–4252, 53 p.

Table 4. Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July 2000–August 2001

[Data provided by Galveston County Health District and Texas Commission on Environmental Quality; numbers in parentheses below property and constituent names are USGS National Water Quality Laboratory parameter codes]

0807764230 Dickinson Bayou at Ginger Rd, nr Alvin, TX
WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

Date	Time	DIS- CHARGE INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)
JUL													
10	1634	55					130	130	174	.01	.13	. 63	.01
AUG													
17	1035	-42	28.1	680	2.9	7.6	80	80	142	.06	.17	.84	.01
SEP													
12	1042	29	28.0	1100	3.3	7.3	130	130	418	.01	.20	1.02	.01

Date	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHEO- PHYTIN A, PHYTO- PHYTON (UG/L) (62360)
JUL 10	<1.0	<1.0
AUG 17	<1.0	1.89
SEP 12	<1.0	-1 N

Table 4. Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July 2000– August 2001—Continued

0807764230 Dickinson Bayou at Ginger Rd, nr Alvin, TX-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIS-				PH	COLI-				NITRO-		ORTHO-
		CHARGE		SPE-		WATER	FORM,		ENTERO-	NITRO-	GEN,AM-	NITRO-	PHOS-
		INST.		CIFIC		WHOLE	FECAL,	E COLI,	COCCI,	GEN,	MONIA +	GEN,	PHATE,
		CUBIC	TEMPER-	CON-	OXYGEN,	FIELD	0.7	MTEC MF	ME MF,	AMMONIA	ORGANIC	NO2+NO3	DIS-
		FEET	ATURE	DUCT-	DIS-	(STAND-	UM-MF	WATER	WATER	TOTAL	TOTAL	TOTAL	SOLVED
Date	Time	PER	WATER	ANCE	SOLVED	ARD	(COLS./	(COL/	(COL/	(MG/L	(MG/L	(MG/L	(MG/L
		SECOND	(DEG C)	(US/CM)	(MG/L)	UNITS)	100 ML)	100 ML)	100 ML)	AS N)	AS N)	AS N)	AS P)
		(00061)	(00010)	(00095)	(00300)	(00400)	(31625)	(31633)	(31649)	(00610)	(00625)	(00630)	(00671)
OCT													
10	1106	37	14.3	1000	7.5	7.8	40	40	304	.02	.05	.51	.01
NOV													
14	1032	149	12.0	260	8.6	7.5	8000	2700	6940	.13	.13	.75	.04
DEC													
12	1102	57	9.7	700	8.5	7.8	300	300	336	.01	.17	.36	.01
JAN													
11	1116	656	9.9	190	9.1	7.4	>16000	9000	7900	.24	.10	1.12	.05
FEB													
15	1059	31	20.1	742	5.7	7.8	1700	400	134	.01	.12	.42	.01
MAR	1110		1.5.4	600			200	4.70	000	0.4	2.4		0.0
22	1148	65	16.4	670	7.0	7.6	300	170	280	.01	.34	.58	.03
APR	1100	F.C	24.0	700	2.2	7.4	0.0	0.0	100	0.1	11	C 0	0.3
10 MAY	1129	-56	24.0	700	2.2	7.4	80	80	192	.01	.11	.60	.03
17	1101	41	24.4	500	4.2	7.6	130	130	188	.01	.29	.58	.01
JUN	1101	41	24.4	300	4.2	7.0	130	130	100	.01	. 29	. 30	.01
19	1053	-64	27.0	400	2.6	7.3	80	80	304	.01	.15	.78	.01
JUL	1033	04	27.0	400	2.0	7.5	00	00	304	.01	.13	. 70	.01
12	1041	-24	28.4	518	3.2	7.4	300	300	880	.08	.14	.52	.03
AUG	1041	24	20.4	210	5.2	/ • 4	500	300	000	.00	. + 4	. 52	.03
16	1049	20	27.8	669	1.6	7.5	300	300	720	.04	.33	.75	.02
	1010	~ ~	2	000	1.0		500	500					

Date	PLANK- TON CHROMO FLUOROM	PHEO- PHYTIN A, PHYTO- PHYTON (UG/L)
OCT		
10	<1.0	<1.0
NOV		
14	1.17	<1.0
DEC 12	<1.0	<1.0
JAN	\1.U	\1.U
11	<1.0	<1.0
FEB		
15	<1.0	<1.0
MAR	4.0	6 00
22 APR	<1.0	6.83
10	2.11	<1.0
MAY	2.11	-11.0
17	<1.0	10.8
JUN		
19	3.17	2.38
JUL 12	<1.0	9.30
AUG	<1.0	9.30
16	<1.0	<1.0

Remark codes used in this table: < -- Less than > -- Greater than

Table 4. Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July 2000–August 2001—Continued

08077643 Dickinson Bayou at Cemetary Rd nr Dickinson, TX WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

Date	Time	DIS- CHARGE INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)
JUL 10 AUG 17 SEP	1557 0753	55 -44	 28.4	 3800	4.7	 7.5	40 80	40 80	16 8	.01	.10	.66	.01
12	0748	29	28.1	3500	0.3	7.1	220	220	228	.01	.29	1.21	.04

	CHLOR-A PHYTO- PLANK- TON	PHEO- PHYTIN A,
Date	CHROMO FLUOROM (UG/L) (70953)	PHYTO- PHYTON (UG/L) (62360)
JUL 10	<1.0	<1.0
17 SEP	55.3	7.14
12	5.11	3.51

Table 4. Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July 2000– August 2001—Continued

08077643 Dickinson Bayou at Cemetary Rd nr Dickinson, TX—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIS-				PH	COLI-				NITRO-		ORTHO-
		CHARGE		SPE-		WATER	FORM,		ENTERO-	NITRO-	GEN, AM-	NITRO-	PHOS-
		INST.		CIFIC		WHOLE	FECAL,	E COLI,	COCCI,	GEN,	MONIA +	GEN,	PHATE,
		CUBIC	TEMPER-	CON-	OXYGEN,	FIELD	0.7	MTEC MF	ME MF,	AMMONIA	ORGANIC	NO2+NO3	DIS-
		FEET	ATURE	DUCT-	DIS-	(STAND-	UM-MF	WATER	WATER	TOTAL	TOTAL	TOTAL	SOLVED
Date	Time	PER	WATER	ANCE	SOLVED	ARD	(COLS./	(COL/	(COL/	(MG/L	(MG/L	(MG/L	(MG/L
		SECOND	(DEG C)	(US/CM)	(MG/L)	UNITS)	100 ML)	100 ML)	100 ML)	AS N)	AS N)	AS N)	AS P)
		(00061)	(00010)	(00095)	(00300)	(00400)	(31625)	(31633)	(31649)	(00610)	(00625)	(00630)	(00671)
OCT													
10	0802	37	17.6	4700	1.6	7.1	20	20	300	.04	.05	.82	.04
NOV													
14	0705	149	12.8	260	7.9	7.4	9000	5000	11800	.15	.13	.83	.05
DEC													
12	0757	57	12.4	800	5.0	7.6	170	170	118	.01	.19	.46	.02
JAN													
11	0752	656	9.9	200	9.0	7.4	>16000	>16000	4000	.28	.10	1.10	.04
FEB													
15	0755	30	17.8	800	5.9	7.7	300	300	166	.01	.05	.36	.01
MAR													
22	0739	65	15.7	680	6.7	7.5	230	230	186	.01	.36	.70	.03
APR													
10	0812	-56	24.4	736	1.7	7.4	70	70	118	.01	.17	.72	.04
MAY													
17	0755	41	24.5	500	3.6	7.5	130	130	180	.01	.23	.68	.01
JUN													
19	0759	-64	27.7	400	1.2	7.1	500	500	62	.02	.25	.85	.02
JUL													
12	0803	-24	28.7	566	2.0	7.2	230	230	240	.12	.14	.87	.03
AUG													
16	0733	20	28.8	5140	1.3	7.2	70	70	70	.02	.22	.60	.04

	CHLOR-A	
	PHYTO-	PHEO-
	PLANK-	PHYTIN
	TON	Α,
	CHROMO	PHYTO-
Date	FLUOROM	PHYTON
	(UG/L)	
	(70953)	(62360)
OCT		
10	<1.0	3.78
NOV		
14	<1.0	<1.0
DEC		
12	2.74	<1.0
JAN	6 40	
11	6.42	7.05
FEB 15	<1.0	<1.0
MAR	<1.0	<1.0
22	<1.0	<1.0
APR	\1.0	\1.U
10	<1.0	<1.0
MAY		
17	8.46	4.57
JUN		
19	3.23	<1.0
JUL		
12	10.2	<1.0
AUG	2 00	2 00
16	2.00	2.00

Remark codes used in this table:

< -- Less than
> -- Greater than

Table 4. Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July 2000–August 2001—Continued

08077645 Dickinson Bayou nr Interstate 45, Dickinson, TX WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

Date	Time	DIS- CHARGE INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)
JUL 10	0905	90					20	20	2	.01	.10	1.01	.02
AUG 17 SEP	0733	-49	30.2	16400	0.9	7.2	40	40	4	.05	.09	1.03	.06
12	0731	81	30.1	18600	0.1	7.0	70	40	26	.05	.29	1.35	.08

Date	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHEO- PHYTIN A, PHYTO- PHYTON (UG/L) (62360)
JUL 10	3.20	14.0
AUG 17	17.3	<1.0
SEP 12	36.3	5.06

Table 4. Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July 2000– August 2001—Continued

08077645 Dickinson Bayou nr Interstate 45, Dickinson, TX-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIS-				PH	COLI-				NITRO-		ORTHO-
		CHARGE		SPE-		WATER	FORM,		ENTERO-	NITRO-	GEN, AM-	NITRO-	PHOS-
		INST.		CIFIC		WHOLE	FECAL,	E COLI,	COCCI,	GEN,	MONIA +	GEN,	PHATE,
		CUBIC	TEMPER-	CON-	OXYGEN,	FIELD	0.7	MTEC MF	ME MF,	AMMONIA	ORGANIC	NO2+NO3	DIS-
		FEET	ATURE	DUCT-	DIS-	(STAND-	UM-MF	WATER	WATER	TOTAL	TOTAL	TOTAL	SOLVED
Date	Time	PER	WATER	ANCE	SOLVED	ARD	(COLS./	(COL/	(COL/	(MG/L	(MG/L	(MG/L	(MG/L
		SECOND	(DEG C)	(US/CM)	(MG/L)	UNITS)	100 ML)	100 ML)	100 ML)	AS N)	AS N)	AS N)	AS P)
		(00061)	(00010)	(00095)	(00300)	(00400)	(31625)	(31633)	(31649)	(00610)	(00625)	(00630)	(00671)
OCT													
10	0736	32	18.2	17000	0.6	7.0	20	20	6	.02	.37	1.28	.08
NOV													
14	0712	226	15.3	220	6.5	7.4	>16000	9000	25200	.20	.15	1.06	.07
DEC													
12	0738	161	13.8	3800	5.6	7.6	500	500	186	.08	.23	.68	.03
JAN													
11	0734	797	10.0	340	9.4	7.5	>16000	>16000	12700	.35	.07	1.12	.04
FEB													
15	0731	78	16.7	910	4.6	7.6	220	220	70	.03	.14	.58	.02
MAR													
22	0814	74	15.7	490	4.6	7.3	1100	1100	138	.06	.36	2.20	.05
APR	0.545		00.0	64.4	2 2	- 4	4.0	4.0		4.0	10	0.4	0.4
10	0747	-78	23.2	611	3.3	7.4	40	40	66	.10	.18	.94	.04
MAY	0722	00	25.4	1200	2.0	7 -	120	120	60	2.0	0.0	00	0.4
17	0733	92	25.4	1380	3.2	7.5	130	130	60	.30	.09	.82	.04
JUN	0735	-37	29.5	310	2.6	7.2	130	130	90	.11	.25	1 00	00
19	0735	-37	29.5	310	∠.6	1.2	130	130	90	.11	.25	1.02	.02
JUL	0720	22	20 1	FF.C	2 -	7.2	80	80	76	0.4	.22	1 22	0.3
12	0738	22	29.1	556	2.5	1.2	80	80	70	.04	. 44	1.33	.03
AUG 16	0751	29	29.5	16110	2.8	7.4	230	230	126	.01	.20	1.00	.07
Τ0	0/01	29	49.3	TOTT0	4.8	7.4	230	Z3U	T ⊆ 0	.01	. 40	T.00	. 0 /

Date	PLANK- TON CHROMO FLUOROM	A, PHYTO- PHYTON (UG/L)
OCT		
10	8.01	6.29
NOV	1 0	10.0
14 DEC	<1.0	12.8
12	<1.0	<1.0
JAN	11.0	11.0
11	<1.0	17.0
FEB		
15	1.34	2.40
MAR	.1 0	6 47
22 APR	<1.0	6.47
10	<1.0	6.82
MAY		
17	<1.0	22.4
JUN		
19	11.5	<1.0
JUL 12	7.99	<1.0
AUG	7.99	<1.0
16	<1.0	2.00

Remark codes used in this table: < -- Less than > -- Greater than

Table 4. Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July 2000–August 2001—Continued

0807764550 Dickinson Bayou upstream of Benson Bayou, Dickinson, TX WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

Date	Time	DIS- CHARGE INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)
JUL 10 AUG 17 SEP	1112 0819	120 -264	30.9	 19700	1.3	7.2	20 80	20 80	2 18	.01	.01	1.27	.01
12	0818	-237	30.3	22500	1.7	7.2	500	300	246	.03	.26	1.25	.09

Date	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHEO- PHYTIN A, PHYTO- PHYTON (UG/L) (62360)
JUL 10	31.2	16.3
AUG 17	37.6	7.56
SEP 12	2.80	7.66

Table 4. Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July 2000– August 2001—Continued

0807764550 Dickinson Bayou upstream of Benson Bayou, Dickinson, TX-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIS-				PH	COLI-				NITRO-		ORTHO-
		CHARGE		SPE-		WATER	FORM,		ENTERO-	NITRO-	GEN, AM-	NITRO-	PHOS-
		INST.		CIFIC		WHOLE	FECAL,	E COLI,	COCCI,	GEN,	MONIA +	GEN,	PHATE,
		CUBIC	TEMPER-	CON-	OXYGEN,	FIELD	0.7	MTEC MF	ME MF,	AMMONIA	ORGANIC	NO2+NO3	DIS-
		FEET	ATURE	DUCT-	DIS-	(STAND-	UM-MF	WATER	WATER	TOTAL	TOTAL	TOTAL	SOLVED
Date	Time	PER	WATER	ANCE	SOLVED	ARD	(COLS./	(COL/	(COL/	(MG/L	(MG/L	(MG/L	(MG/L
		SECOND	(DEG C)	(US/CM)	(MG/L)	UNITS)	100 ML)	100 ML)	100 ML)	AS N)	AS N)	AS N)	AS P)
		(00061)	(00010)	(00095)	(00300)	(00400)	(31625)	(31633)	(31649)	(00610)	(00625)	(00630)	(00671)
OCT													
10	0830	90	17.2	17100	2.0	7.0	220	170	60	.05	.43	1.43	.06
NOV													
14	0738	301	15.6	500	5.8	7.4	>16000	>16000	18600	.14	.13	.98	.05
DEC													
12	0822	292	14.1	4500	6.0	7.6	1100	1100	120	.12	.23	.82	.04
JAN													
11	0821	905	9.9	4300	8.1	7.6	300	300	5200	.25	.10	.81	.03
FEB													
15	0832	16	17.1	1000	5.6	7.6	800	800	172	.03	.11	.76	.02
MAR	0044	105		400	4.6		F00		0.5	0.4	2.5	4 20	0.5
22	0844	186	16.6	420	4.6	7.2	500	500	96	.01	.37	1.32	.07
APR 10	0844	-506	25.1	615	5.0	7.5	170	170	108	0.1	.18	1.20	.04
MAY	0844	-506	25.I	012	5.0	7.5	170	170	108	.01	.18	1.20	.04
17	0825	53	26.3	1900	5.8	7.7	80	80	18	.01	.49	1.00	.04
JUN	0023	33	20.5	1900	5.0	/./	80	80	10	.01	.49	1.00	.04
19	0821	-17	30.0	300	3.2	7.2	140	140	34	.01	.11	.98	.03
JUL	0021	1,	30.0	300	3.2	7.2	140	140	34	.01		. 50	.03
12	0828	51	30.2	1220	5.0	7.5	20	20	6	.01	.65	1.22	.14
AUG	3020	31	50.2	1220	5.0	7.5	20	20	0	.01	.03	1.22	.14
16	0812	-280	30.3	17800	5.1	7.9	230	130	56	.03	.11	1.10	.07
													'

Date	PLANK- TON CHROMO FLUOROM	A, PHYTO- PHYTON (UG/L)
OCT		
10	5.29	5.14
NOV 14	<1.0	<1.0
DEC	\1.0	\1.U
12	3.14	<1.0
JAN		
11	<1.0	3.84
FEB	F 24	2 20
15 MAR	5.34	3.38
22	<1.0	9.91
APR		
10	18.8	<1.0
MAY		
17	10.2	30.6
JUN 19	12.6	8.13
JUL	12.0	0.13
12	17.6	<1.0
AUG		
16	3.00	3.00

Remark codes used in this table: < -- Less than > -- Greater than

Table 4. Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July 2000–August 2001—Continued

08077647 Dickinson Bayou at State Hwy 3, Dickinson, TX

WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

Date	Time	DIS- CHARGE INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)
JUL 10 AUG 17 SEP	1237 0836	219 -307	 31.1	 22600	1.5	 7.4	80 70	80 70	18 38	.01	.02	1.24	.01
12	0836	-183	30.0	24700	1.2	7.1	800	220	226	.01	.32	1.56	.11

Date	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHEO- PHYTIN A, PHYTO- PHYTON (UG/L) (62360)
JUL 10	31.8	6.64
AUG 17 SEP	12.0	6.58
12	11.2	5.47

Table 4. Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July 2000– August 2001—Continued

08077647 Dickinson Bayou at State Hwy 3, Dickinson, TX-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIS-				PH	COLI-				NITRO-		ORTHO-
		CHARGE		SPE-		WATER	FORM,		ENTERO-	NITRO-	GEN, AM-	NITRO-	PHOS-
		INST.		CIFIC		WHOLE	FECAL,	E COLI,	COCCI,	GEN,	MONIA +	GEN,	PHATE,
		CUBIC	TEMPER-	CON-	OXYGEN,	FIELD	0.7	MTEC MF	ME MF,	AMMONIA	ORGANIC	NO2+NO3	DIS-
		FEET	ATURE	DUCT-	DIS-	(STAND-	UM-MF	WATER	WATER	TOTAL	TOTAL	TOTAL	SOLVED
Date	Time	PER	WATER	ANCE	SOLVED	ARD	(COLS./	(COL/	(COL/	(MG/L	(MG/L	(MG/L	(MG/L
		SECOND	(DEG C)	(US/CM)	(MG/L)	UNITS)	100 ML)	100 ML)	100 ML)	AS N)	AS N)	AS N)	AS P)
		(00061)	(00010)	(00095)	(00300)	(00400)	(31625)	(31633)	(31649)	(00610)	(00625)	(00630)	(00671)
OCT													
10	0848	180	16.7	18600	3.7	7.2	110	80	36	.33	.05	1.31	.07
NOV													
14	0752	485	15.8	900	5.8	7.4	3000	3000	3320	.13	.14	.85	.05
DEC													
12	0833	344	14.1	4500	6.9	7.8	3000	1700	900	.19	.15	.84	.03
JAN													
11	0838	1120	9.7	5600	8.1	7.7	9000	500	3000	.30	.15	.85	.05
FEB													
15	0851	-200	17.5	1070	6.0	7.7	130	80	130	.03	.11	.86	.02
MAR	0905	178	16.9	450	4.9	7.2	300	300	120	.02	.40	1.49	0.0
22 APR	0905	1/8	16.9	450	4.9	1.2	300	300	120	.02	.40	1.49	.08
10	0903	-472	24.5	825	5.1	7.6	130	80	14	.01	.42	1.53	.13
MAY	0,000	4/2	24.5	025	3.1	7.0	130	00	14	.01	.42	1.55	.13
17	0844	171	26.9	2500	5.8	7.9	130	130	28	.01	.02	1.08	.03
JUN	0011		20.5	2300	3.0		130	130	20	.01	.02	2.00	.05
19	0840	-161	30.2	400	3.8	7.2	80	80	14	.03	.16	1.10	.04
JUL													
12	0848	113	30.5	1950	4.6	7.5	<20	<20	16	.04	.13	1.33	.05
AUG													
16	0832	120	30.0	18500	5.3	7.9	90	90	24	.30	.19	.85	.06

Date	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	A, PHYTO- PHYTON (UG/L)
OCT 10	12.0	2.79
14	<1.0	<1.0
DEC 12	10.4	<1.0
JAN 11	2.26	<1.0
FEB 15	5.61	11.8
MAR 22	<1.0	19.6
APR 10	15.8	<1.0
MAY 17	23.5	24.9
JUN 19	22.6	<1.0
JUL 12	19.2	8.06
AUG 16	3.00	2.00

Remark codes used in this table:

< -- Less than
> -- Greater than

Table 4. Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July 2000–August 2001—Continued

0807764915 Dickinson Bayou below Gum Bayou, nr Texas City, TX WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

Date	Time	DIS- CHARGE INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)
JUL 10 AUG	1433	477					<20	<20	2	.01	.05	1.26	.01
17 SEP	0903	-500	30.5	26400	6.1	8.1	<20	<20	2	.01	.09	1.33	.04
12	0908	-336	29.2	28900	7.2	7.9	<20	<20	14	.01	.35	1.50	.07

Date	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHEO- PHYTIN A, PHYTO- PHYTON (UG/L) (62360)
JUL 10	25.6	9.26
AUG 17	15.6	9.98
SEP 12	22.4	7.44

Table 4. Periodically collected water-quality properties and constituents at six sites in Dickinson Bayou, July 2000– August 2001—Continued

0807764915 Dickinson Bayou below Gum Bayou, nr Texas City, TX—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIS-				PH	COLI-				NITRO-		ORTHO-
		CHARGE		SPE-		WATER	FORM,		ENTERO-	NITRO-	GEN, AM-	NITRO-	PHOS-
		INST.		CIFIC		WHOLE	FECAL,	E COLI,	COCCI,	GEN,	MONIA +	GEN,	PHATE,
		CUBIC	TEMPER-	CON-	OXYGEN,	FIELD	0.7	MTEC MF	ME MF,	AMMONIA	ORGANIC	NO2+NO3	DIS-
		FEET	ATURE	DUCT-	DIS-	(STAND-	UM-MF	WATER	WATER	TOTAL	TOTAL	TOTAL	SOLVED
Date	Time	PER	WATER	ANCE	SOLVED	ARD	(COLS./	(COL/	(COL/	(MG/L	(MG/L	(MG/L	(MG/L
		SECOND	(DEG C)	(US/CM)	(MG/L)	UNITS)	100 ML)	100 ML)	100 ML)	AS N)	AS N)	AS N)	AS P)
		(00061)	(00010)	(00095)	(00300)	(00400)	(31625)	(31633)	(31649)	(00610)	(00625)	(00630)	(00671)
OCT													
10	0911	-467	14.3	26000	6.6	7.5	<20	<20	16	.14	.43	1.15	.05
NOV													
14	0806	895	14.2	2300	6.3	7.3	2400	2400	5900	.12	.22	.94	.04
DEC													
12	0854	612	14.2	7500	7.4	7.9	800	800	96	.44	.33	.92	.05
JAN													
11	0913	1600	10.0	10000	8.7	7.7	>16000	>16000	380	.34	.25	.97	.04
FEB													
15	0915	-463	18.5	2400	7.5	7.8	140	140	26	.57	.27	1.26	.05
MAR													
22	0938	564	16.9	680	6.5	7.3	500	500	60	.04	.53	1.39	.24
APR	0026	601	0.4.4	2000		7 7	4.0	4.0	0	0.1	22	1 00	1.0
10	0936	-691	24.4	3900	6.6	7.7	40	40	2	.01	.23	1.28	.10
MAY	0904	243	27.2	4200	7.6	8.4	40	40	2	.01	.13	1 00	0.1
17 JUN	0904	243	21.2	4200	7.6	8.4	40	40	2	.01	.13	1.09	.01
19	0902	-361	29.6	500	3.8	7.2	70	70	40	.06	.24	1.25	.06
JUL	0902	-301	29.0	300	3.0	1.2	70	70	40	.00	.24	1.25	.06
12	0912	381	31.0	3200	7.6	8.2	<20	<20	32	.01	.08	1.38	.01
AUG	0912	201	51.0	5200	7.0	0.2	~20	~20	22	.01	.00	1.30	.01
16	0857	410	29.0	21000	4.9	7.9	20	20	4	.01	.16	.95	.04
±0	0007	410	20.0	21000	4.7	7.5	20	20	-	.01	. 10	. , ,	.04

Date	PLANK- TON CHROMO FLUOROM	PHEO- PHYTIN A, PHYTO- PHYTON (UG/L)
OCT		
10	<1.0	12.4
NOV	<1.0	1 05
14 DEC	<1.0	1.25
12	4.41	<1.0
JAN		
11	2.40	3.76
FEB		
15	4.45	11.1
MAR 22	<1.0	20.3
APR	<1.0	20.3
10	2.24	3.51
MAY		
17	18.6	5.77
JUN		
19 JUL	19.2	6.13
12	15.5	8.44
AUG	13.3	0.44
16	4.00	3.00

Remark codes used in this table:

< -- Less than
> -- Greater than

Table 5. Periodically collected water-quality properties and constituents at four sites in Armand Bayou, August 2000-July 2001

[Numbers in parentheses below property and constituent names are USGS National Water Quality Laboratory parameter

293847095074501 Armand Bayou at Fairmont Pkwy, Pasadena, TX WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	FECAL STREP, KF STRP MF, WATER (COL/ 100 ML) (31673)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)
JAN 17 MAR	1411	21	247	7.6	12.6	760	9.0	85	5.8	2500	4000	4400	8000
22 MAY	1140	4.0	772	7.7	17.4	760	6.6	69	1.5	2800	550	820	620
17	1029	1.3	698	7.8	25.5	760	7.2	88	8.3	120	84	360	550
JUL 12	0945	1.6	452	7.4	28.1	760	3.2	41	1.5	120	230	320	270
Date	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)
JAN 17	GEN, NITRATE DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, ORGANIC DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHOS- PHATE, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
JAN 17 MAR 22	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, TOTAL (MG/L AS N) (00600)	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)
JAN 17 MAR	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, TOTAL (MG/L AS N) (00600)	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)

Date	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHEO- PHYTIN A, PHYTO- PHYTON (UG/L) (62360)	PLANK- TON BIOMASS ASH WT (MG/L) (81353)	PLANK- TON BIOMASS DRY WT (MG/L) (81354)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
JAN 17 MAR	4.7	2.2	565	575	76	4.3
22 MAY	E.6	E1.7	343	350	40	.43
17	1.6	2.7	436	441	18	.07
12	4.1	2.6	270	273	4.0	.02

Remark codes used in this report: < -- Less than E -- Estimated value

Table 5. Periodically collected water-quality properties and constituents at four sites in Armand Bayou, August 2000–July 2001—Continued

293645095054601 Armand Bayou at Oil Field Rd, Pasadena, TX

WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

Date	Time	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	FECAL STREP, KF STRP MF, WATER (COL/ 100 ML) (31673)	ALKA- LINITY WAT DIS FIX END FIELD CAC03 (MG/L) (39036)
AUG													
04	1217	-76	320	7.9	31.0	760	5.8	78	4.9	100	54	116	300
Date	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)
AUG													
04	.23	.056	.290	.04	1.5	1.2	. 64	.68	1.2	.37	.29	.25	.754

CHLOR-A PHYTO-PLANK-PLANK-SEDI-MENT, SUS-PENDED TON CHROMO TON BIOMASS TON BIOMASS Date FLUOROM ASH WT DRY WT (UG/L) (70953) (MG/L)(MG/L) (80154) (81353) (81354)AUG 04... 24.6 475 485 16

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	FECAL STREP, KF STRP MF, WATER (COL/ 100 ML) (31673)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)
MAY 17	1017	1.3	698	7.8	25.5	760	7.2	88	8.3	88	62	180	400
Date	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHEO- PHYTIN A, PHYTO- PHYTON (UG/L) (62360)	PLANK- TON BIOMASS ASH WT (MG/L) (81353)	PLANK- TON BIOMASS DRY WT (MG/L) (81354)
MAY 17	<.006	<.046	<.010	.60	1.5	.596	.398	.350	1.07	1.6	2.7	435	441

Date SEDI
MENT,
SEDIMENT,
DISMENT,
CHARGE,
SUSPENDED PENDED
(MG/L) (T/DAY)
(80154) (80155)

MAY
17... 18 .06

Remark codes used in this report: < -- Less than

Table 5. Periodically collected water-quality properties and constituents at four sites in Armand Bayou, August 2000-July 2001-Continued

293546095052701 Armand Bayou at Bay Area Blvd, Pasadena, TX WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

Date	Time	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	FECAL STREP, KF STRP MF, WATER (COL/ 100 ML) (31673)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
AUG 04	1423	-169	11700	7.4	29.9	760	4.4	61	1.0	46	32	40	<.010
Date AUG 04	NIT GE NO2+ TOT (MG AS (006	N, AMMO NO3 DI AL SOL (MG N) AS (30) (006	N, GEN, NIA MONI S- ORGA VED DIS J/L (MG N) AS 08) (006	AM- GEN, A + MONI. NIC ORGA TOT. /L (MG N) AS: 23) (006	AM- A + PHOS NIC PHORU AL TOTA /L (MG/ N) AS F 25) (0066	IS DI L SOL L (MG P) AS	US PHA S- DIS VED SOLV /L (MG P) AS 66) (006	S- PHA TE, ORT - DI ED SOL /L (MG P) AS F 71) (006	ATE, PHY CHO, PLA CS- TO LVED CHRO G/L FLUO PO4) (UG 560) (709	TO- INK- PLAN IN TO IMO BION IROM ASH I/L) (MG/	ON TO MASS BION WT DRY (L) (MG/ 853) (813	N MEN IASS SUS WT PEN (L) (MG 554) (801	IT, 5- IDED 5/L) .54)
			WATER-	QUALITY D	ATA, WATER	YEAR OC	TOBER 200	0 TO SEPT	EMBER 200	1			
Date	Time	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	FECAL STREP, KF STRP MF, WATER (COL/ 100 ML) (31673)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)
JAN 17	1135	950	160	7.4	11.4	760	8.4	77	5.5	8300	3600	8700	13000
MAR 22 MAY	1035	151	558	8.0	19.1	760	8.2	89	4.4	820	1000	750	620
17 JUL	1115	285	995	8.8	27.9	760	7.1	91	8.9	32	48	110	430
12	1225	238	554	8.5	31.2	760	4.5	61	4.4	580	700	250	520
Date	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)
JAN 17	.16	.008	.180	.05	.98	.75	.54	.58	.80	.160	.112	.09	.270
MAR 22	.72	.070	.792	<.04	2.0			.79	1.2	.42	.27	.24	.748
MAY 17 JUL		<.006	.046	<.042	1.9			.59	1.9	.626	.403	.435	1.33
12	.04	.012	.047	.04	1.3	1.2	.48	.53	1.2	.144	.25	.21	.647
			Date	CHLO PHY PLA TO CHRO: (UG (709	TO- PHEC NK- PHYTI N A, MO PHYT ROM PHYTC /L) (UG/L	IN PLAN TO TO BIOM N ASH (MG/	N TO ASS BIOM WT DRY L) (MG/	N MEN ASS SUS WT PEN L) (MG	TT, CHAR S- SU NDED PEN G/L) (T/D	TT, S- SGE, IS- IDED DAY)			
			JAN 17		6 2.0	56	6 57	5 45	5 115	i			
			MAR 22	41.	1 38.1	. 137	0 140	0 47	7 19	.2			
			MAY 17 JUL	63.	0 26.5	70	2 71	8 47	36	.2			
			12	19.	9 25.4	. 46	9 48	1 95	61	.0			

Remark codes used in this report: < -- Less than

Table 5. Periodically collected water-quality properties and constituents at four sites in Armand Bayou, August 2000–July 2001—Continued

08077630 Horsepen Bayou at Bay Area Blvd, Houston, TX

WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

Date	Time	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	FECAL STREP, KF STRP MF, WATER (COL/ 100 ML) (31673)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)
AUG 04	0938	85	2000	7.9	30.2	760	5.5	74	3.6	110	54	116	1.29
Date	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)
AUG 04	.161	1.47	.54	3.7	1.7	.91	1.5	2.2	1.08	.98	.89	2.72	22.2
				Date	PLAN TO BIOM ASH (MG/ (813	N TO ASS BIOM WT DRY L) (MG/	N MEN ASS SUS WT PEN L) (MG	IT, CHAR S- SU IDED PEN G/L) (T/D	T, S- GE, S- DED AY)				

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

404

11

2.5

393

AUG 04...

Date	Time	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	FECAL STREP, KF STRP MF, WATER (COL/ 100 ML) (31673)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)
JAN													
17	1308	312	260	7.6	12.2	760	8.9	83	6.2	2900	2900	2300	7300
MAR 22 MAY	0912	.0	875	7.7	18.0	760	8.6	91	2.9	2300	24	1500	950
17	0934	20	275	8.5	27.8	760	10.5	134	6.2	130	110	120	150
JUL													
12	1328	40	803	8.5	32.1	760	8.8	121	2.7	E160	1300	190	E310
	NITRO-	NITRO-		NITRO-			NITRO-	NITRO-	NITRO-			ORTHO-	PHOS-
Date	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)
JAN 17	NITRATE DIS- SOLVED (MG/L AS N)	NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	AMMONIA DIS- SOLVED (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	ORGANIC DIS- SOLVED (MG/L AS N)	MONIA + ORGANIC DIS. (MG/L AS N)	MONIA + ORGANIC TOTAL (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHATE, DIS- SOLVED (MG/L AS P)	ORTHO, DIS- SOLVED (MG/L AS PO4)
JAN	NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, TOTAL (MG/L AS N) (00600)	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	ORGANIC DIS- SOLVED (MG/L AS N) (00607)	MONIA + ORGANIC DIS. (MG/L AS N) (00623)	MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHATE, DIS- SOLVED (MG/L AS P) (00671)	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)
JAN 17 MAR 22	NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, TOTAL (MG/L AS N) (00600)	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	ORGANIC DIS- SOLVED (MG/L AS N) (00607)	MONIA + ORGANIC DIS. (MG/L AS N) (00623)	MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHATE, DIS- SOLVED (MG/L AS P) (00671)	ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)

Table 5. Periodically collected water-quality properties and constituents at four sites in Armand Bayou, August 2000-July 2001-Continued

08077630 Horsepen Bayou at Bay Area Blvd, Houston, TX-Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHEO- PHYTIN A, PHYTO- PHYTON (UG/L) (62360)	PLANK- TON BIOMASS ASH WT (MG/L) (81353)	PLANK- TON BIOMASS DRY WT (MG/L) (81354)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
JAN 17	2.1	1.5	570	581	27	22.7
MAR 22 MAY	10.1	14.6	462	473	15	
17 JUL	23.2	13.3	678	686	16	.89
12	32.1	12.0	387	397	18	2.0

Remark codes used in this report:

< -- Less than E -- Estimated value

Table 6. Periodically collected water-quality properties and constituents at six sites in the San Bernard River, January 2001–August 2002

[Numbers in parentheses below property and constituent names are USGS National Water Quality Laboratory parameter codes]

294036096165001 Coushatta Creek at Attwater Prairie Chicken National Wildlife Refuge, TX WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal strep- tococci KF MF, col/ 100 mL (31673)	Entero- cocci, m-E MF, water, col/ 100 mL (31649)
JAN 18	0950	4.2	103	6.8	7.6	760	11.2	94	2.8	750	750	650	825
MAR 20	1457	.90	146	7.7	20.4	767	10.1	111	3.3	88	120	180	112
SEP 17	0930	.32	218	6.9	25.8	765	6.2	76	1.4	453	620	550	300
Date	Nitrite water, fltrd, mg/L as N (00613)	Ammonia water, fltrd, mg/L as N (00608)	Total nitro- gen, water, unfltrd mg/L (00600)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Phos- phorus, water, unfltrd mg/L (00665)	Phos- phorus, water, fltrd, mg/L (00666)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Ortho- phos- phate, water, fltrd, mg/L (00660)	Chloro- phyll a phyto- plank- ton, fluoro, ug/L (70953)	Pheo- phytin a, phyto- plank- ton, ug/L (62360)	Biomass plank- ton, ash wgt mg/L (81353)	Biomass plank- ton, dry wgt mg/L (81354)
JAN 18	water, fltrd, mg/L as N	water, fltrd, mg/L as N	nitro- gen, water, unfltrd mg/L	+ org-N, water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	phos- phate, water, fltrd, mg/L	phyll a phyto- plank- ton, fluoro, ug/L	phytin a, phyto- plank- ton, ug/L	plank- ton, ash wgt mg/L	plank- ton, dry wgt mg/L
JAN	water, fltrd, mg/L as N (00613)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	+ org-N, water, fltrd, mg/L as N (00623)	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)	phy11 a phyto- plank- ton, fluoro, ug/L (70953)	phytin a, phyto- plank- ton, ug/L (62360)	plank- ton, ash wgt mg/L (81353)	plank- ton, dry wgt mg/L (81354)

	Sus-	
	pended	Sus-
	sedi-	pended
	ment	sedi-
	concen-	ment
Date	tration	load,
	mg/L	tons/d
	(80154)	(80155)
JAN		
18	189	2.1
MAR		
20	26	.06
SEP		
17	19	.02

Table 6. Periodically collected water-quality properties and constituents at six sites in the San Bernard River, January 2001-August 2002-Continued

294036096165001 Coushatta Creek at Attwater Prairie Chicken National Wildlife Refuge, TX-Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

										Fecal		Fecal	Entero-
			Specif.	pН,				Dis-	BOD,	coli-	E coli,	strep-	cocci,
		Instan-	conduc-	water,		Baro-		solved	water,	form,	m-TEC	tococci	m-E
		taneous	tance,	unfltrd	Temper-	metric	Dis-	oxygen,	unfltrd	M-FC	MF,	KF	MF,
		dis-	wat unf	field,	ature,	pres-	solved	percent	5 day,	0.7u MF	water,	MF,	water,
Date	Time	charge,	uS/cm	std	water,	sure,	oxygen,	of sat-	20 degC	col/	col/	col/	col/
		cfs	25 degC	units	deg C	mm Hg	mg/L	uration	mg/L	100 mL	100 mL	100 mL	100 mL
		(00061)	(00095)	(00400)	(00010)	(00025)	(00300)	(00301)	(00310)	(31625)	(31633)	(31673)	(31649)
		(00001)	(00055)	(00100)	(00010)	(00023)	(00500)	(00501)	(00510)	(31023)	(31033)	(310,3)	(31013)
JAN													
29	1016	.07	227	7.5	19.9	758	8.1	89	1.6	384	150	60	112
23	1010	• • •	22,	,.5	23.3	,50	0.1	0,5	1.0	501	100	00	
		Nitrite		Ammonia	Ammonia			Ortho-	Chloro-	Pheo-			Sus-
		Nitrite		Ammonia +	Ammonia +			Ortho-	Chloro-	Pheo-			Sus-
	Nitrite	+	Δmmonia	+	+	Phos-	Phos-	phos-	phyll a	phytin	Riomass	Riomass	pended
	Nitrite	+ nitrate	Ammonia	+ org-N,	+ org-N,	Phos-	Phos-	phos- phate,	phyll a phyto-	phytin a,	Biomass	Biomass	pended sedi-
	water,	+ nitrate water	water,	+ org-N, water,	+ org-N, water,	phorus,	phorus,	phos- phate, water,	phyll a phyto- plank-	phytin a, phyto-	plank-	plank-	pended sedi- ment
Date	water, fltrd,	+ nitrate water unfltrd	water, fltrd,	+ org-N, water, fltrd,	+ org-N, water, unfltrd	phorus, water,	phorus, water,	phos- phate, water, fltrd,	phyll a phyto- plank- ton,	phytin a, phyto- plank-	plank- ton,	plank- ton,	pended sedi- ment concen-
Date	water, fltrd, mg/L	+ nitrate water unfltrd mg/L	water, fltrd, mg/L	+ org-N, water, fltrd, mg/L	+ org-N, water, unfltrd mg/L	phorus, water, unfltrd	phorus, water, fltrd,	phos- phate, water, fltrd, mg/L	phyll a phyto- plank- ton, fluoro,	phytin a, phyto- plank- ton,	plank- ton, ash wgt	plank- ton, dry wgt	pended sedi- ment concen- tration
Date	water, fltrd, mg/L as N	+ nitrate water unfltrd mg/L as N	water, fltrd, mg/L as N	+ org-N, water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	phyll a phyto- plank- ton, fluoro, ug/L	phytin a, phyto- plank- ton, ug/L	plank- ton, ash wgt mg/L	plank- ton, dry wgt mg/L	pended sedi- ment concen- tration mg/L
Date	water, fltrd, mg/L	+ nitrate water unfltrd mg/L	water, fltrd, mg/L	+ org-N, water, fltrd, mg/L	+ org-N, water, unfltrd mg/L	phorus, water, unfltrd	phorus, water, fltrd,	phos- phate, water, fltrd, mg/L	phyll a phyto- plank- ton, fluoro,	phytin a, phyto- plank- ton,	plank- ton, ash wgt	plank- ton, dry wgt	pended sedi- ment concen- tration
	water, fltrd, mg/L as N	+ nitrate water unfltrd mg/L as N	water, fltrd, mg/L as N	+ org-N, water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	phyll a phyto- plank- ton, fluoro, ug/L	phytin a, phyto- plank- ton, ug/L	plank- ton, ash wgt mg/L	plank- ton, dry wgt mg/L	pended sedi- ment concen- tration mg/L
Date JAN 29	water, fltrd, mg/L as N	+ nitrate water unfltrd mg/L as N	water, fltrd, mg/L as N	+ org-N, water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	phyll a phyto- plank- ton, fluoro, ug/L	phytin a, phyto- plank- ton, ug/L	plank- ton, ash wgt mg/L	plank- ton, dry wgt mg/L	pended sedi- ment concen- tration mg/L

Suspended sediment load, tons/d (80155) Date

JAN

29... .00

Remark codes used in this report:

< -- Less than
E -- Estimated value</pre>

Table 6. Periodically collected water-quality properties and constituents at six sites in the San Bernard River, January 2001–August 2002—Continued

293211096110301 West Bernard Creek at CR 252, nr East Bernard, TX WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal strep- tococci KF MF, col/ 100 mL (31673)	Entero- cocci, m-E MF, water, col/ 100 mL (31649)
JAN 18 MAR	1045	237	133	6.8	8.1	760	9.9	84	4.0	2300	2100	1860	2300
20 MAY	1350	9.2	294	7.2	14.3	767	9.2	89	2.6	600	750	975	675
15	0944	8.3	519	7.6	23.7	763	6.3	75	3.8	1480	1000	775	750
JUL 10 SEP	1017	16	514	7.9	27.5	760	5.9	75	1.0	442	1600	875	147
17	1055	4.3	148	7.4	25.7	765	5.8	71	1.5	525	700	1000	775
Date	Nitrate water, fltrd, mg/L as N (00618)	Nitrite water, fltrd, mg/L as N (00613)	Nitrite + nitrate water unfltrd mg/L as N (00630)	Ammonia water, fltrd, mg/L as N (00608)	Total nitro- gen, water, unfltrd mg/L (00600)	Organic nitro- gen, water, unfltrd mg/L (00605)	Organic nitro- gen, water, fltrd, mg/L (00607)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Phos- phorus, water, unfltrd mg/L (00665)	Phos- phorus, water, fltrd, mg/L (00666)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Ortho- phos- phate, water, fltrd, mg/L (00660)
JAN 18	water, fltrd, mg/L as N	water, fltrd, mg/L as N	+ nitrate water unfltrd mg/L as N	water, fltrd, mg/L as N	nitro- gen, water, unfltrd mg/L	nitro- gen, water, unfltrd mg/L	nitro- gen, water, fltrd, mg/L	+ org-N, water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	phos- phate, water, fltrd, mg/L
JAN 18 MAR 20	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	nitro- gen, water, unfltrd mg/L (00605)	nitro- gen, water, fltrd, mg/L (00607)	+ org-N, water, fltrd, mg/L as N (00623)	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)
JAN 18 MAR 20 MAY 15	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfitrd mg/L as N (00630)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	nitro- gen, water, unfltrd mg/L (00605)	nitro- gen, water, fltrd, mg/L (00607)	+ org-N, water, fltrd, mg/L as N (00623)	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)
JAN 18 MAR 20 MAY 15 JUL 10	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	nitro- gen, water, unfltrd mg/L (00605)	nitro- gen, water, fltrd, mg/L (00607)	+ org-N, water, fltrd, mg/L as N (00623) .70	org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)
JAN 18 MAR 20 MAY 15 JUL	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613) .006 .018	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608) .04 .09	nitro- gen, water, unfltrd mg/L (00600)	nitro- gen, water, unfltrd mg/L (00605)	nitro- gen, water, fltrd, mg/L (00607) .66 .79	+ org-N, water, fltrd, mg/L as N (00623) .70 .89	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666) .103 .058	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660) .239 .113

	Chloro-	Pheo-			Sus-	
	phyll a	phytin			pended	Sus-
	phyto-	a,	Biomass	Biomass	sedi-	pended
	plank-	phyto-	plank-	plank-	ment	sedi-
	ton,	plank-	ton,	ton,	concen-	ment
Date	fluoro,	ton,		dry wgt	tration	load,
	ug/L	ug/L	mg/L	mg/L	mg/L	tons/d
	(70953)	(62360)	(81353)	(81354)	(80154)	(80155)
JAN						
18	3.1	5.4	951	967	82	52
MAR	3.1	3.1	331	50.	02	32
20	4.8	11.1	1420	1450	65	1.6
MAY						
15	13.4	17.5	727	740	86	1.9
JUL						
10	3.0	5.6	320	326	76	3.3
SEP						
17	3.5	3.6	2840	2840	67	.79

Table 6. Periodically collected water-quality properties and constituents at six sites in the San Bernard River, January 2001-August 2002—Continued

293211096110301 West Bernard Creek at CR 252, nr East Bernard, TX-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conductance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal strep- tococci KF MF, col/ 100 mL (31673)	Entero- cocci, m-E MF, water, col/ 100 mL (31649)
NOV 13	1325	.07	1030	7.5	19.2	760	4.1	44	2.2	112	140	379	293
JAN 29	1203	.29	2070	7.7	18.5	758	7.6	82	1.2	153	120	273	310
MAR 12	1300	.21	2360	8.2	16.9	760	10.0	105	2.0	153	28	360	
MAY 29 AUG	1311	49	561	7.5	25.0	759	4.7	57	7.1	173	96	575	
28	1052	40	450	7.2	27.8	765	2.6	34	9.0	750	260		2300
Date	Nitrate water, fltrd, mg/L as N (00618)	Nitrite water, fltrd, mg/L as N (00613)	Nitrite + nitrate water unfltrd mg/L as N (00630)	Ammonia water, fltrd, mg/L as N (00608)	Total nitro- gen, water, unfltrd mg/L (00600)	Organic nitro- gen, water, unfltrd mg/L (00605)	Organic nitro- gen, water, fltrd, mg/L (00607)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Phos- phorus, water, unfltrd mg/L (00665)	Phos- phorus, water, fltrd, mg/L (00666)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Ortho- phos- phate, water, fltrd, mg/L (00660)
NOV 13		E.007	<.10	.05	.95	.83	.75	.81	.88	.199	.139	<.02	
JAN 29		E.006	.095	.05	.64	.50	.43	.48	.55	.062	.036	.02	.058
MAR 12 MAY		<.008	<.050	<.04				.41	.85	.19	.021	<.02	
MAY													
29 AUG	.97	.259	1.25	.38	3.8	2.1	1.7	2.1	2.5	.188	.088	.06	.193

Date	Chloro- phyll a phyto- plank- ton, fluoro, ug/L (70953)	Pheo- phytin a, phyto- plank- ton, ug/L (62360)	Biomass plank- ton, ash wgt mg/L (81353)	ton, dry wgt mg/L	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
NOV						
13 JAN	1.5	.8	282	287	5	.01
29 MAR	1.8	1.7	330	335	12	.01
12 MAY	2.2	1.8			20	.01
29 AUG	8.9	10.8	356	364	84	11
28	E5.5	E6.3	E432	E446	37	4.0

Remark codes used in this report:

< -- Less than E -- Estimated value

56

Table 6. Periodically collected water-quality properties and constituents at six sites in the San Bernard River, January 2001–August 2002—Continued

293123096073001 Gum Tree Branch at CR 252, nr East Bernard, TX WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal strep- tococci KF MF, col/ 100 mL (31673)	Entero- cocci, m-E MF, water, col/ 100 mL (31649)
JAN													
18 MAR	1131	9.3	175	6.9	8.7	760	9.6	82	4.4	700	720	1050	1220
20	1255	25	538	7.3	14.2	767	8.3	80	3.9	575	E34k	340	320
MAY 15	1119	16	695	7.4	23.3	763	5.1	59	2.6	213	400	300	340
JUL 10	1140	44	544	7.9	27.8	760	5.4	69	1.4	525	410	533	207
SEP 17	1202	28	447	7.2	25.8	765	4.0	49	2.5	E280k	E340k	650	900
Date	Nitrate water, fltrd, mg/L as N (00618)	Nitrite water, fltrd, mg/L as N (00613)	Nitrite + nitrate water unfltrd mg/L as N (00630)	Ammonia water, fltrd, mg/L as N (00608)	Total nitro- gen, water, unfltrd mg/L (00600)	Organic nitro- gen, water, unfltrd mg/L (00605)	Organic nitro- gen, water, fltrd, mg/L (00607)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Phos- phorus, water, unfltrd mg/L (00665)	Phos- phorus, water, fltrd, mg/L (00666)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Ortho- phos- phate, water, fltrd, mg/L (00660)
Date JAN 18	water, fltrd, mg/L as N	water, fltrd, mg/L as N	+ nitrate water unfltrd mg/L as N	water, fltrd, mg/L as N	nitro- gen, water, unfltrd mg/L	nitro- gen, water, unfltrd mg/L	nitro- gen, water, fltrd, mg/L	+ org-N, water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	phos- phate, water, fltrd, mg/L
JAN	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	nitro- gen, water, unfltrd mg/L (00605)	nitro- gen, water, fltrd, mg/L (00607)	+ org-N, water, fltrd, mg/L as N (00623)	org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)
JAN 18 MAR 20 MAY 15	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	nitro- gen, water, unfltrd mg/L (00605)	nitro- gen, water, fltrd, mg/L (00607)	+ org-N, water, fltrd, mg/L as N (00623)	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)
JAN 18 MAR 20 MAY	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608) E.04	nitro- gen, water, unfltrd mg/L (00600)	nitro- gen, water, unfltrd mg/L (00605)	nitro- gen, water, fltrd, mg/L (00607)	+ org-N, water, fltrd, mg/L as N (00623)	org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666) .101	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)

	Chloro-	Pheo-			Sus-		
	phyll a	phytin			pended	Sus-	
	phyto-	a,	Biomass	Biomass	sedi-	pended	
	plank-	phyto-	plank-	plank-	ment	sedi-	
	ton,	plank-	ton,	ton,	concen-	ment	
Date	fluoro,	ton,	ash wgt	dry wgt	tration	load,	
	ug/L	ug/L	mg/L	mg/L	mg/L	tons/d	
	(70953)	(62360)	(81353)	(81354)	(80154)	(80155)	
T221							
JAN	F 0	6.4	0.40	0.61	104	0.6	
18	5.0	6.4	942	961	104	2.6	
MAR							
20	3.5	8.3	987	1020	105	7.1	
MAY							
15	3.8	5.6	690	697	66	2.8	
JUL							
10	2.1	3.2	344	352	66	7.8	
SEP							
17	1.9	2.9	334	342	67	5.1	

Table 6. Periodically collected water-quality properties and constituents at six sites in the San Bernard River, January 2001–August 2002—Continued

293123096073001 Gum Tree Branch at CR 252, nr East Bernard, TX-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal strep- tococci KF MF, col/ 100 mL (31673)	Entero- cocci, m-E MF, water, col/ 100 mL (31649)
NOV													
13 JAN	1240	8.2	1620	7.6	19.7	760	4.9	54	1.0	120	210	140	108
29 MAR	1330	6.8	1640	7.6	19.6	758	7.1	78	1.1	147	170	193	213
12 MAY	1446	6.8	1700	7.7	18.5	760	8.0	86	1.7	167	84	68	
29	1152	12	759	7.7	25.2	759	6.7	82	4.0	200	84	236	
AUG 28	1001	8.7	454	7.4	26.8	764	4.7	59	5.5	1000	620		4200
Date NOV 13 JAN 29 MAR 12 MAY	Nitrate water, fltrd, mg/L as N (00618)	Nitrite water, fltrd, mg/L as N (00613) <.008 E.004	Nitrite + nitrate water unfltrd mg/L as N (00630) .13 .175 .052	Ammonia water, fltrd, mg/L as N (00608) <.04 .05 E.02	Total nitro- gen, water, unfltrd mg/L (00600) .75 .66	Organic nitro- gen, water, unfltrd mg/L (00605)	Organic nitro- gen, water, fltrd, mg/L (00607)	Ammonia + org-N, water, fltrd, mg/L as N (00623) .23 .32 .23	+ org-N, water, unfltrd mg/L as N (00625) .62 .48	Phos-phorus, water, unfiltrd mg/L (00665) .150 .088	Phosphorus, water, fltrd, mg/L (00666) .069 .048	Ortho-phos-phate, water, fltrd, mg/L as P (00671)	Orthophos-phate, water, fltrd, mg/L (00660) .153 .104
NOV 13 JAN 29 MAR 12	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613) <.008	nitrate water unfltrd mg/L as N (00630) .13 .175	water, fltrd, mg/L as N (00608) <.04	nitro- gen, water, unfltrd mg/L (00600)	nitro- gen, water, unfltrd mg/L (00605)	nitro- gen, water, fltrd, mg/L (00607)	+ org-N, water, fltrd, mg/L as N (00623)	org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665) .150	phorus, water, fltrd, mg/L (00666) .069	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)

Date	Chloro- phyll a phyto- plank- ton, fluoro, ug/L (70953)	Pheo- phytin a, phyto- plank- ton, ug/L (62360)	Biomass plank- ton, ash wgt mg/L (81353)	Biomass plank- ton, dry wgt mg/L (81354)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
NOV						
13 JAN	2.9	2.9	266	272	119	2.7
29	2.2	2.0	299	306	49	.90
MAR 12 MAY	2.7	4.8	256	263	21	.38
29	19.5	18.1	360	368	131	4.2
AUG 28	E3.7	E9.3	E713	E741	76	1.8

Remark codes used in this report:

< -- Less than

Value qualifier codes used in this report:

k -- Counts outside acceptable range

58

E -- Estimated value

Table 6. Periodically collected water-quality properties and constituents at six sites in the San Bernard River, January 2001–August 2002—Continued

292939096014001 San Bernard River at FM 2919 nr Kendleton, TX WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conductance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal strep- tococci KF MF, col/ 100 mL (31673)	Entero- cocci, m-E MF, water, col/ 100 mL (31649)
JAN													
18 MAR	1337	985	103	6.7	9.8	760	9.3	83	3.7	2000	250	1780	1800
20 MAY	1120	481	89	6.7	13.8	767	7.7	74	4.6	200	110	280	320
15	1337	20	238	7.1	23.6	763	3.6	42	2.3	273	260	187	180
JUL 10 SEP	1340	29	382	7.8	27.8	760	4.7	61	.6	193	290	233	300
18	1022	169	147	7.0	26.3	765	4.3	53	1.9	750	600	600	880
Date	Nitrate water, fltrd, mg/L as N (00618)	Nitrite water, fltrd, mg/L as N (00613)	Nitrite + nitrate water unfltrd mg/L as N (00630)	Ammonia water, fltrd, mg/L as N (00608)	Total nitro- gen, water, unfltrd mg/L (00600)	Organic nitro- gen, water, unfltrd mg/L (00605)	Organic nitro- gen, water, fltrd, mg/L (00607)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Phos- phorus, water, unfltrd mg/L (00665)	Phos- phorus, water, fltrd, mg/L (00666)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Ortho- phos- phate, water, fltrd, mg/L (00660)
JAN 18 MAR	.35	.007		.04			.64	.69			.107	.07	.221
20 MAY	.15	.023		.07	1.3	1.1	. 63	.70	1.1	.23	.103	.08	.233
15	.63	.088		.10	1.7	.91	. 59	.69	1.0	.26	.181	.14	.432
JUL 10 SEP	.44	.018	.463	.07	1.1	.61	.41	.48	.68	.041	.118	.11	.331
18	.20	.018	.244	.06	1.3	.95	.77	.82	1.0	.38	.23	.19	.589
				Chlo	ro- Phe	·0-		Su	IS-				

	Chloro-	Pheo-			Sus-	
	phyll a	phytin			pended	Sus-
	phyto-	a,	Biomass	Biomass	sedi-	pended
	plank-	phyto-	plank-	plank-	ment	sedi-
	ton,	plank-	ton,	ton,	concen-	ment
Date	fluoro,	ton,	ash wgt	dry wgt	tration	load,
	ug/L	ug/L	mg/L	mg/L	mg/L	tons/d
	(70953)	(62360)	(81353)	(81354)	(80154)	(80155)
JAN						
18	3.3	4.6	963	981	107	285
MAR						
20	3.6	3.6	707	724	41	53
MAY						
15	8.2	7.7	464	471	10	.53
JUL						
10	.7	1.7	310	315	24	1.9
SEP						
18	3.7	5.7	302	306	23	10

Table 6. Periodically collected water-quality properties and constituents at six sites in the San Bernard River, January 2001-August 2002—Continued

292939096014001 San Bernard River at FM 2919 nr Kendleton, TX-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal strep- tococci KF MF, col/ 100 mL (31673)	Entero- cocci, m-E MF, water, col/ 100 mL (31649)
NOV													
13 MAR	1050	11	184	7.1	19.0	760	5.2	56	.8	96	130	160	193
13 MAY	1230	9.4	218	7.3	17.3	761	8.9	93	1.8	84	40	70	
31 AUG	0856	27	481	6.4	23.8	759	5.6	67	1.6	132	92	900	
28	1148	18	247	7.2	27.4	764	4.1	52	3.2	340	100		273
			Nitrite		Total	Ammonia +	Ammonia +			Ortho-	Ortho-	Chloro-	Pheo-
	Nitrate water, fltrd,	Nitrite water, fltrd,	+ nitrate water unfltrd	Ammonia water, fltrd,	Total nitro- gen, water,	+ org-N, water, fltrd,	+ org-N, water, unfltrd	Phos- phorus, water,	Phos- phorus, water,	phos- phate, water, fltrd,	Ortho- phos- phate, water,	phyll a phyto- plank- ton,	phytin a, phyto- plank-
Date	water,	water,	+ nitrate water	water,	nitro- gen,	+ org-N, water,	+ org-N, water,	phorus,	phorus,	phos- phate, water,	phos- phate,	phyll a phyto- plank-	phytin a, phyto-
NOV 13	water, fltrd, mg/L as N	water, fltrd, mg/L as N	+ nitrate water unfltrd mg/L as N	water, fltrd, mg/L as N	nitro- gen, water, unfltrd mg/L	+ org-N, water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	phos- phate, water, fltrd, mg/L	phyll a phyto- plank- ton, fluoro, ug/L	phytin a, phyto- plank- ton, ug/L
NOV 13 MAR 13	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	+ org-N, water, fltrd, mg/L as N (00623)	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)	phyll a phyto- plank- ton, fluoro, ug/L (70953)	phytin a, phyto- plank- ton, ug/L (62360)
NOV 13 MAR	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfitrd mg/L as N (00630)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	+ org-N, water, fltrd, mg/L as N (00623)	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)	phyll a phyto- plank- ton, fluoro, ug/L (70953)	phytin a, phyto- plank- ton, ug/L (62360)

			Sus-	
			pended	Sus-
	Biomass	Biomass	sedi-	pended
	plank-	plank-	ment	sedi-
	ton,	ton,	concen-	ment
Date	ash wgt	dry wgt	tration	load,
	mg/L	mg/L	mg/L	tons/d
	(81353)	(81354)	(80154)	(80155)
NOV				
13	288	294	9	.27
MAR				
13	264	269	4	.10
MAY				
31	340	346	9	.66
AUG				
28	E258	E263	8	.40

Remark codes used in this report: < -- Less than

E -- Estimated value

Table 6. Periodically collected water-quality properties and constituents at six sites in the San Bernard River, January 2001–August 2002—Continued

08117500 San Bernard River nr Boling, TX

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal strep- tococci KF MF, col/ 100 mL (31673)	Entero- cocci, m-E MF, water, col/ 100 mL (31649)
JAN 19	1242	2190	155	7.3	8.2	769	10.2	86	2.4	2300	680	4400	5400
MAR 21	1246	1060	102	7.2	14.8	770	7.0	69	2.0	800	240	925	800
MAY 16	1226	116	350	7.7	24.1	763	6.9	82	1.6	140	240	233	750
JUL 11	1545	95	493	7.8	29.2	760	6.3	83	1.2	56	140	510	474
SEP 19	1143	522	167	7.2	26.5	764	4.4	55	1.1	E240k		575	750
Date	Nitrate water, fltrd, mg/L as N (00618)	Nitrite water, fltrd, mg/L as N (00613)	Nitrite + nitrate water unfltrd mg/L as N (00630)	Ammonia water, fltrd, mg/L as N (00608)	Total nitro- gen, water, unfltrd mg/L (00600)	Organic nitro- gen, water, unfltrd mg/L (00605)	Organic nitro- gen, water, fltrd, mg/L (00607)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Phos- phorus, water, unfltrd mg/L (00665)	Phos- phorus, water, fltrd, mg/L (00666)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Ortho- phos- phate, water, fltrd, mg/L (00660)
JAN 19	.51	.007		.04	1.9	1.4	. 62	.67	1.4	.105	.171	.13	.399
MAR 21	.19	.009		E.03	1.3			.66	1.1		.108	.08	.258
MAY 16	.82	.024		<.04	1.9			. 67	1.1	.29	.188	.16	.484
JUL 11		E.005	.305	<.04	.99			.44	.69	.058	.120	.10	.300
SEP 19		.011	.245	.04	1.1	.85	.78	.82	.89	.45	.40	.32	.993
				Chlc phyl	la phy	rtin	ass Biom	Su pen					

Date	Chloro- phyll a phyto- plank- ton, fluoro, ug/L (70953)	plank- ton, ug/L		mg/L	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
JAN						
19 MAR	2.0	8.0	1470	1500	192	1140
21	3.4	4.5	1390	1420	62	177
MAY 16	1.9	4.2	736	749	62	19
JUL 11	3.0	3.2	303	310	60	15
SEP 19	1.2	1.9	457	467	46	65

Table 6. Periodically collected water-quality properties and constituents at six sites in the San Bernard River, January 2001-August 2002-Continued

08117500 San Bernard River nr Boling, TX-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal strep- tococci KF MF, col/ 100 mL (31673)	Entero- cocci, m-E MF, water, col/ 100 mL (31649)
NOV													
14 JAN	1328	28	568	7.7	20.2	760	6.2	68	1.0	100	230	193	80
30 MAR	1209	67	492	7.7	18.9	761	7.8	84	.9	133	80	108	153
13 MAY	1418	24	848	8.1	18.6	761	10.2	110	3.8	147	48	40	
31	1027	90	598	6.8	24.3	759	6.6	79	1.8	160	88	240	
AUG 29	1032	98	294	7.5	28.1	765	4.9	62	2.5	56	350		160
Date	Nitrate water, fltrd, mg/L as N (00618)	Nitrite water, fltrd, mg/L as N (00613)	Nitrite + nitrate water unfltrd mg/L as N (00630)	Ammonia water, fltrd, mg/L as N (00608)	Total nitro- gen, water, unfltrd mg/L (00600)	Organic nitro- gen, water, unfltrd mg/L (00605)	Organic nitro- gen, water, fltrd, mg/L (00607)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Phos- phorus, water, unfltrd mg/L (00665)	Phos- phorus, water, fltrd, mg/L (00666)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Ortho- phos- phate, water, fltrd, mg/L (00660)
NOV		222	1.0	0.4				4.0	50	1.50	101	10	24.2
14 JAN		<.008	<.10	<.04	.57			.40	.50	.160	.121	.10	.313
30 MAR		<.008		E.03	.92			.40	.53	.109	.061	.04	.138
13 MAY	.35	.041	.425	.75	2.5	1.3	.75	1.5	2.0	.21	.130	.10	.300
31 AUG		E.005	1.29	<.04	2.1			.65	.78	.150	.101	.08	.245
29	.61	.091	.715	E.03	1.9			.94	1.2	.35	.24	.22	.671
				Chlc phyl phy pla	la phy to- a	tin	ass Biom nk- pla	pen ass sed	s- ded Su i- pen nt sed	ded			

	Chloro-	Pheo-			Sus-	
	phyll a	phytin			pended	Sus-
	phyto-	a,	Biomass	Biomass	sedi-	pended
	plank-	phyto-	plank-	plank-	ment	sedi-
	ton,	plank-	ton,	ton,	concen-	ment
Date	fluoro,	ton,	ash wgt	dry wgt	tration	load,
	ug/L	ug/L	mg/L	mg/L	mg/L	tons/d
	(70953)	(62360)	(81353)	(81354)	(80154)	(80155)
NOV						
14	.8	1.1	278	284	15	1.1
JAN	.0	1.1	270	204	13	1.1
30	1.4	1.6	320	327	39	7.1
MAR	1.4	1.0	320	327	33	,
13	34.1	15.6	464	477	31	2.0
MAY						
31	3.7	4.6	352	360	43	10
AUG						
29	E1.1	E1.7	E484	E496	42	11

Remark codes used in this report:

< -- Less than
E -- Estimated value</pre>

 $\begin{array}{lll} \mbox{Value qualifier codes used in this report:} \\ \mbox{k -- Counts outside acceptable range} \end{array}$

62

Table 6. Periodically collected water-quality properties and constituents at six sites in the San Bernard River, January 2001–August 2002—Continued

290935095455601 San Bernard River at FM 1301 nr East Columbia, TX

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conductance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	Temper- ature, water, deg C (00010)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Fecal coli- form, M-FC 0.7u MF col/ 100 mL (31625)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal strep- tococci KF MF, col/ 100 mL (31673)	Entero- cocci, m-E MF, water, col/ 100 mL (31649)
JAN 19 MAR	1428	2510	181	7.6	8.7	769	10.4	89	2.4	775	250	2060	2200
21 MAY	1110	1380	107	7.4	14.0	765	7.6	73	2.0	600	210	260	373
16	1115	174	223	7.6	23.4	763	6.9	81	2.2	500	150	400	280
JUL 11	1350	59	648	7.8	28.4	760	8.3	107	1.6	147	210	333	437
SEP 19	1041	684	160	7.3	26.1	764	5.4	67	1.8	160	2900	525	500
			****									Ortho-	
Date	Nitrate water, fltrd, mg/L as N	Nitrite water, fltrd, mg/L as N	Nitrite + nitrate water unfltrd mg/L as N	Ammonia water, fltrd, mg/L as N	Total nitro- gen, water, unfltrd mg/L	Organic nitro- gen, water, unfltrd mg/L	Organic nitro- gen, water, fltrd, mg/L	Ammonia + org-N, water, fltrd, mg/L as N	Ammonia + org-N, water, unfltrd mg/L as N	Phos- phorus, water, unfltrd mg/L	Phos- phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	Ortho- phos- phate, water, fltrd, mg/L
Date	water, fltrd, mg/L	water, fltrd, mg/L	+ nitrate water unfltrd mg/L	water, fltrd, mg/L	nitro- gen, water, unfltrd	nitro- gen, water, unfltrd	nitro- gen, water, fltrd,	+ org-N, water, fltrd, mg/L	+ org-N, water, unfltrd mg/L	phorus, water, unfltrd	phorus, water, fltrd,	phos- phate, water, fltrd, mg/L	phos- phate, water, fltrd,
JAN 19	water, fltrd, mg/L as N	water, fltrd, mg/L as N	+ nitrate water unfltrd mg/L as N	water, fltrd, mg/L as N	nitro- gen, water, unfltrd mg/L	nitro- gen, water, unfltrd mg/L	nitro- gen, water, fltrd, mg/L	+ org-N, water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	phos- phate, water, fltrd, mg/L
JAN 19 MAR 21	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	nitro- gen, water, unfltrd mg/L (00605)	nitro- gen, water, fltrd, mg/L (00607)	+ org-N, water, fltrd, mg/L as N (00623)	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)
JAN 19 MAR 21 MAY 16	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	nitro- gen, water, unfltrd mg/L (00605)	nitro- gen, water, fltrd, mg/L (00607)	+ org-N, water, fltrd, mg/L as N (00623)	org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)
JAN 19 MAR 21 MAY 16 JUL 11	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608) E.03	nitro- gen, water, unfltrd mg/L (00600)	nitro- gen, water, unfltrd mg/L (00605)	nitro- gen, water, fltrd, mg/L (00607)	+ org-N, water, fltrd, mg/L as N (00623)	+ org-N, water, unfltrd mg/L as N (00625) 1.4	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)
JAN 19 MAR 21 MAY 16 JUL	water, fltrd, mg/L as N (00618) .46 .19	water, fltrd, mg/L as N (00613) .007 .010	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608) E.03 E.03	nitro- gen, water, unfltrd mg/L (00600) 1.9 1.3	nitro- gen, water, unfltrd mg/L (00605)	nitro- gen, water, fltrd, mg/L (00607)	+ org-N, water, fltrd, mg/L as N (00623) .64 .65	+ org-N, water, unfltrd mg/L as N (00625) 1.4 1.1	phorus, water, unfltrd mg/L (00665) .116 .24	phorus, water, fltrd, mg/L (00666) .136 .112	phos- phate, water, fltrd, mg/L as P (00671) .10 .09	phos- phate, water, fltrd, mg/L (00660) .319 .273

	Chloro-	Pheo-			Sus-	
	phyll a	phytin			pended	Sus-
	phyto-	a,	Biomass	Biomass	sedi-	pended
	plank-	phyto-	plank-	plank-	ment	sedi-
	ton,	plank-	ton,	ton,	concen-	ment
Date	fluoro,	ton,	ash wgt		tration	load,
	ug/L	ug/L	mg/L	mg/L	mg/L	tons/d
	(70953)	(62360)	(81353)	(81354)	(80154)	(80155)
JAN						
19	1.8	7.8	1450	1480	218	1480
MAR						
21	3.2	4.6			65	242
MAY						
16	1.2	4.7	939	957	141	66
JUL						
11	3.4	1.6	313	318	44	7.0
SEP						
19	6.2	3.1	457	466	51	94

Table 6. Periodically collected water-quality properties and constituents at six sites in the San Bernard River, January 2001–August 2002—Continued

290935095455601 San Bernard River at FM 1301 nr East Columbia, TX-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

										Fecal		Fecal	Entero-
			Specif.	pH,				Dis-	BOD,	coli-	E coli,	strep-	cocci,
		Instan-	conduc-	water,		Baro-		solved	water,	form,	m-TEC	tococci	m-E
		taneous	tance,	unfltrd	Temper-	metric	Dis-	oxygen,	unfltrd	M-FC	MF,	KF	MF,
		dis-	wat unf	field,	ature,	pres-	solved	percent	5 day,	0.7u MF	water,	MF,	water,
Date	Time	charge,	uS/cm	std	water,	sure,	oxygen,	of sat-	20 degC	col/	col/	col/	col/
		cfs	25 degC	units	deg C	mm Hg	mg/L	uration	mg/L	100 mL	100 mL	100 mL	100 mL
		(00061)	(00095)	(00400)	(00010)	(00025)	(00300)	(00301)	(00310)	(31625)	(31633)	(31673)	(31649)
NOV													
14	1118	30	662	7.7	19.8	760	6.6	73	.9	133	500	207	280
JAN													
30	1055	112	745	7.6	18.4	761	8.0	85	.9	88	150	60	193
MAR													
14	1450	31	966	7.8	19.8	757	8.0	89	2.0	116	48	133	
MAY													
31	1145	65	651	7.5	24.5	759	6.5	78	1.6	140	84	193	
AUG													
29	0850	162	308	7.4	27.7	765	5.2	66	2.7	88	680		353
			Nitrite			Ammonia	Ammonia			Ortho-		Chloro-	Pheo-
			Nitrite +		Total	Ammonia +	Ammonia +			Ortho- phos-	Ortho-	Chloro- phyll a	Pheo- phytin
	Nitrate	Nitrite		Ammonia	Total nitro-			Phos-	Phos-		Ortho- phos-		
	water,	Nitrite water,	+ nitrate water	water,		+	+ org-N, water,	Phos- phorus,	Phos- phorus,	phos- phate, water,		phyll a	phytin a, phyto-
	water, fltrd,	water, fltrd,	+ nitrate water unfltrd	water, fltrd,	nitro- gen, water,	+ org-N, water, fltrd,	+ org-N, water, unfltrd	phorus, water,	phorus, water,	phos- phate, water, fltrd,	phos- phate, water,	phyll a phyto- plank- ton,	phytin a, phyto- plank-
Date	water, fltrd, mg/L	water, fltrd, mg/L	+ nitrate water unfltrd mg/L	water, fltrd, mg/L	nitro- gen, water, unfltrd	+ org-N, water, fltrd, mg/L	+ org-N, water, unfltrd mg/L	phorus, water, unfltrd	phorus, water, fltrd,	phos- phate, water, fltrd, mg/L	phos- phate, water, fltrd,	phyll a phyto- plank- ton, fluoro,	phytin a, phyto- plank- ton,
Date	water, fltrd, mg/L as N	water, fltrd, mg/L as N	+ nitrate water unfltrd mg/L as N	water, fltrd, mg/L as N	nitro- gen, water, unfltrd mg/L	+ org-N, water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	phos- phate, water, fltrd, mg/L	phyll a phyto- plank- ton, fluoro, ug/L	phytin a, phyto- plank- ton, ug/L
Date	water, fltrd, mg/L	water, fltrd, mg/L	+ nitrate water unfltrd mg/L	water, fltrd, mg/L	nitro- gen, water, unfltrd	+ org-N, water, fltrd, mg/L	+ org-N, water, unfltrd mg/L	phorus, water, unfltrd	phorus, water, fltrd,	phos- phate, water, fltrd, mg/L	phos- phate, water, fltrd,	phyll a phyto- plank- ton, fluoro,	phytin a, phyto- plank- ton,
Date NOV	water, fltrd, mg/L as N	water, fltrd, mg/L as N	+ nitrate water unfltrd mg/L as N	water, fltrd, mg/L as N	nitro- gen, water, unfltrd mg/L	+ org-N, water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	phos- phate, water, fltrd, mg/L	phyll a phyto- plank- ton, fluoro, ug/L	phytin a, phyto- plank- ton, ug/L
	water, fltrd, mg/L as N	water, fltrd, mg/L as N	+ nitrate water unfltrd mg/L as N	water, fltrd, mg/L as N	nitro- gen, water, unfltrd mg/L	+ org-N, water, fltrd, mg/L as N	+ org-N, water, unfltrd mg/L as N	phorus, water, unfltrd mg/L	phorus, water, fltrd, mg/L	phos- phate, water, fltrd, mg/L as P	phos- phate, water, fltrd, mg/L	phyll a phyto- plank- ton, fluoro, ug/L	phytin a, phyto- plank- ton, ug/L
NOV	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	+ org-N, water, fltrd, mg/L as N (00623)	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)	phyll a phyto- plank- ton, fluoro, ug/L (70953)	phytin a, phyto- plank- ton, ug/L (62360)
NOV 14	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	+ org-N, water, fltrd, mg/L as N (00623)	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)	phyll a phyto- plank- ton, fluoro, ug/L (70953)	phytin a, phyto- plank- ton, ug/L (62360)
NOV 14 JAN 30	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613) <.008	+ nitrate water unfltrd mg/L as N (00630) <.10 .275	water, fltrd, mg/L as N (00608) <.04	nitro- gen, water, unfltrd mg/L (00600)	+ org-N, water, fltrd, mg/L as N (00623)	org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)	phyll a phyto- plank- ton, fluoro, ug/L (70953)	phytin a, phyto- plank- ton, ug/L (62360)
NOV 14 JAN 30 MAR 14	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613)	+ nitrate water unfltrd mg/L as N (00630)	water, fltrd, mg/L as N (00608)	nitro- gen, water, unfltrd mg/L (00600)	+ org-N, water, fltrd, mg/L as N (00623)	+ org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)	phyll a phyto- plank- ton, fluoro, ug/L (70953)	phytin a, phyto- plank- ton, ug/L (62360)
NOV 14 JAN 30 MAR 14	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613) <.008 <.008	+ nitrate water unfltrd mg/L as N (00630) <.10 .275 .050	water, fltrd, mg/L as N (00608) <.04 E.02	nitro- gen, water, unfltrd mg/L (00600) .41 .67	+ org-N, water, fltrd, mg/L as N (00623) .28 .33	+ org-N, water, unfltrd mg/L as N (00625) .33 .40	phorus, water, unfltrd mg/L (00665) .119 .092	phorus, water, fltrd, mg/L (00666) .085 .056	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660) .215 .129	phyll a phyto- plank- ton, fluoro, ug/L (70953) 1.1 2.9	phytin a, phyto- plank- ton, ug/L (62360) .5 1.1
NOV 14 JAN 30 MAR 14 MAY 31	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613) <.008	+ nitrate water unfltrd mg/L as N (00630) <.10 .275	water, fltrd, mg/L as N (00608) <.04	nitro- gen, water, unfltrd mg/L (00600)	+ org-N, water, fltrd, mg/L as N (00623)	org-N, water, unfltrd mg/L as N (00625)	phorus, water, unfltrd mg/L (00665)	phorus, water, fltrd, mg/L (00666)	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660)	phyll a phyto- plank- ton, fluoro, ug/L (70953)	phytin a, phyto- plank- ton, ug/L (62360)
NOV 14 JAN 30 MAR 14	water, fltrd, mg/L as N (00618)	water, fltrd, mg/L as N (00613) <.008 <.008	+ nitrate water unfltrd mg/L as N (00630) <.10 .275 .050	water, fltrd, mg/L as N (00608) <.04 E.02	nitro- gen, water, unfltrd mg/L (00600) .41 .67	+ org-N, water, fltrd, mg/L as N (00623) .28 .33	+ org-N, water, unfltrd mg/L as N (00625) .33 .40	phorus, water, unfltrd mg/L (00665) .119 .092	phorus, water, fltrd, mg/L (00666) .085 .056	phos- phate, water, fltrd, mg/L as P (00671)	phos- phate, water, fltrd, mg/L (00660) .215 .129	phyll a phyto- plank- ton, fluoro, ug/L (70953) 1.1 2.9	phytin a, phyto- plank- ton, ug/L (62360) .5 1.1

			Sus-	
			pended	Sus-
	Biomass	Biomass	sedi-	pended
	plank-	plank-	ment	sedi-
	ton,	ton,	concen-	ment
Date	ash wgt	dry wgt	tration	load,
	mg/L			
	(81353)	(81354)	(80154)	(80155)
NOV				
14	291	297	16	1.3
JAN	271	251	10	1.5
30	341	347	32	9.7
MAR				
14	540	552	28	2.3
MAY				
31	378	387	120	21
AUG				
29	E469	E481	30	13

Remark codes used in this report:

< -- Less than

E -- Estimated value

Table 8. Fish species collected in Dickinson Bayou, Texas Gulf Coastal Plain, 2000–2001

[Modified from Hogan (2002, table 3)]

			Sampling site		
	DCK01	DCK02	DCK03	DCK04	DCK05
Freshwater fish species	<u> </u>		ļ		
Alligator gar					
Blue catfish					
Bluegill					
Brook silverside					
Channel catfish					
Common carp					
Freshwater drum					
Gizzard shad					
Grass carp					
Green sunfish					
Inland silverside					
Longnose gar					
Sailfin molly					
Smallmouth buffalo					
Spotted gar					
Threadfin shad					
Warmouth					
White crappie					
11			1		
Brackish water fish species					
Atlantic croaker					
Bay anchovy					
Black drum					
Spotted seatrout					
Crevalle jack					
Gafftopsail catfish					
Gulf menhaden					
Hardhead catfish					
Ladyfish					
Pinfish					
Red drum					
Sand seatrout					
Sheepshead					
Sheepshead minnow					
Silver seatrout					
Southern flounder					
Spot					
Striped mullet					
Tarpon					

Table 9. Fish species collected in Armand Bayou, Texas Gulf Coastal Plain, 2000–2001

[Modified from Hogan (2002, table 2)]

			Sampling sit	e	
	ARM01	ARM02	ARM03	HRSP01	HRSP02
Freshwater fish species					
Alligator gar					
Black crappie					
Blue catfish					
Bluegill					
Channel catfish					
Gizzard shad					
Green sunfish					
Largemouth bass					
Longear sunfish					
Longnose gar					
Sailfin molly					
Smallmouth buffalo					
Spotted gar					
Western mosquitofish					
White crappie					
Yellow bullhead					
		•	1	•	•
Brackish water fish species					
Atlantic croaker					
Bay anchovy					
Black drum					
Gaftopsail catfish					
Gulf menhaden					
Hardhead catfish					
Ladyfish					
Lined sole					
Pinfish					
Red drum					
Sand seatrout					
Southern flounder					
Spot					
Striped mullet					

Table 10. Fish taxa and counts of individual fish collected in the San Bernard River, Texas Gulf Coastal Plain, 2000–2002 [Number of individuals per taxon shown for each site]

Croun	Common name	Family	Scientific name			Samp	ling site			Tota
Group	Common name	ramily	Scientific name	COUSH	WESTB	GUMTR	SANB01	SANB02	SANB03	iota
Gars		Lepisosteidae								
	Spotted gar		Lepisosteus oculatus	2	1	7	3	1	0	14
	Longnose gar		Lepisosteus osseus	0	0	0	0	0	1	
Herrings		Clupeidae								
	Gizzard shad		Dorosoma cepedianum	0	2	3	0	0	0	
Livebearers		Poeciliidae								
	Mosquito fish		Gambusia sp.	12	40	94	10	2	0	15
Suckers		Catostomidae								
	Smallmouth buffalo		Ictiobus bubalus	0	3	1	2	1	0	
	River carpsucker		Carpiodes carpio	0	13	0	0	0	0	1
Bullhead catfish	_	Ictaluridae								
	Tadpole madtom		Noturus gyrinus	1	1	0	0	0	0	
	Channel catfish		Ictalurus punctatus	0	1	18	0	0	1	2
	Flathead catfish		Pylodictis olivaris	0	2	0	1	0	0	
	Yellow bullhead		Ameiurus natalis	0	0	3	0	0	0	
Sunfishes		Centrarchidae								
	White crappie		Poxomis annularis	0	0	0	7	0	0	
	Green sunfish		Lepomis cyanellus	2	21	81	4	0	0	10
	Redear sunfish		Lepomis microlophus	5	0	0	0	0	0	
	Longear sunfish		Lepomis megalotis	16	4	7	9	2	4	4
	Bluegill		Lepomis macrochirus	25	1	10	15	0	0	5
	Warmouth		Lepomis gulosus	5	4	4	17	2	0	3
	Largemouth bass		Micropterus salmoides	0	0	0	1	0	0	·
	Redeye bass		Micropterus coosae	0	2	0	0	0	Ö	
	Spotted bass		Micropterus punctulatus	2	0	0	0	1	0	
Pirate perches	Spotted cass	Aphredoderidae	niteropierus punetutatus	-	Ü	Ü	Ü	•	· ·	
nate perenes	Pirate perch	1 Ipini ed oderi dae	Aphredoderus sayanus	5	4	1	0	0	0	1
Orums	Thate peren	Sciaenidae	Tipriredoderus sayanus	3	•		o o	o o	Ü	•
orums	Freshwater drum	Schemac	Aplodinotus grunniens	0	0	5	0	0	1	
Perches	110511Water Grain	Percidae	Tiptoutions grunnens	Ü	O	3	o o	o o	1	
crenes	Slough darter	reretate	Etheostoma gracile	0	1	2	0	0	0	
	Bluntnose darter		Etheostoma chlorosomum	10	0	0	0	0	0	1
	Dusky darter		Percina sciera	0	0	0	0	1	0	1
Killifishes	Dusky darter	Cyprinodontidae	Terema sciera	O	O	O	U	1	U	
Killinshes	Blackstripe topminnow	Суртнойонний	Fundulus notatus	8	0	1	0	0	1	1
Silversides	Blacksurpe topinimow	Atherinidae	Tundutus notatus	O	O	1	O	U	1	1
on versides	Inland silverside	Automidae	Menidia beryllina	0	0	1	0	0	0	
Minnows	illiand silverside	Cyprinidae	менши регушни	U	U	1	U	U	U	
viiiiiows	Blacktail shiner	Сургинае	Cyprinella venusta	0	1	2	0	6	1	1
	Common carp		Cyprineita venusia Cyprinus carpio	0	2	4	0	0	0	1
				0	0	0	3	0	0	
	Mimic shiner Red shiner		Notropis volucellus	0	3	9	0	6	4	2
			Cyprinella lutrensis			3				
rvamia aunfi-1	Bullhead minnow	Elegger - tid	Pimephales vigilax	7	0	3	11	6	1	2
Pygmie sunfishes	D d - d	Elassomatidae	Elmann	0	0	0	2	4	0	
	Banded pygmy sunfish		Elassoma zonatum	0	0	0	2	1	0	
J				100	107	257	9.5	20	1.4	50
Number of individuals				100	106	256	85	29	14	59
Number of taxa				13	18	19	13	11	8	

Table 11. Fish community data (metrics) for sites in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000-2002

	ı	Dickinson	Bayou sa	mpling sit	е		Armand E	Bayou san	npling site			San B	ernard Riv	er sampli	ng site	
Metric	DCK01	DCK02	DCK03	DCK04	DCK05	ARM01	ARM02	ARM03	HRSP01	HRSP02	COUSH	WESTB	GUMTR	SANB01	SANB02	SANB03
Number of species	13	7	10	9	30	6	14	20	11	9	13	18	19	13	11	8
Menhinick's richness index	2.3	.90	1.3	1.4	1.0	.41	.63	.64	.62	.50	1.3	1.7	1.2	1.4	2.0	2.1
Shannon-Wiener diversity index	2.0	2.8	2.7	2.6	4.9	2.8	4.9	5.4	4.3	4.6	2.9	3.1	4.0	2.9	2.0	1.5
Number of darter species	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1	0
Number of sunfish species	4	0	0	0	0	3	3	1	2	0	6	5	4	5	4	1
Number of sucker species	1	0	0	0	0	0	1	0	0	1	0	2	1	1	1	0
Number of intolerant species ¹	0	0	0	1	6	0	0	2	0	0	1	1	0	0	1	0
Proportion ² of green sunfish	.06	0	0	0	0	.02	0	0	0	0	.02	.20	.32	.05	0	0
Number of green sunfish	2	0	0	0	0	4	0	0	0	0	2	21	81	4	0	0
Proportion ² of omnivores	.58	0.61	.56	.62	.60	.24	.92	.80	.78	.88	0	.20	.11	.02	.03	.07
Proportion ² of insectivores	.09	0	.02	.05	.27	.74	.01	.03	0	0	.89	.52	.53	.59	.83	.86
Proportion ² of piscivores	.33	.39	.41	.33	.13	.02	.07	.17	.22	0.12	.11	.28	.36	.39	.14	.07
Total number of individuals	33	61	63	39	859	218	495	963	313	102	100	106	256	85	29	14
Proportion ² of hybrids	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Proportion ² of external anomalies	0	0	0	0	.01	.01	.01	.08	0	.01	0	0	0	0	0	0

¹ Categorization of species intolerant to degraded water-quality conditions by Linam and Kleinsasser (1998).
² Proportion computed as ratio of number of individual fish in category to total number of fish collected at site.

Table 12. Benthic macroinvertebrate taxa and counts of individual taxa collected in the San Bernard River, Texas Gulf Coastal Plain, 2000–2002 [Number of individuals per taxon shown for each site]

Class	Order	Family S	Subfamily	Genus or				Sampling sit	е		
Class	Order	railily 3	bubianing	scientific name	COUSH	GUMTR	WESTB	SANB01	SANB02	SANB03	Total
Arachnida	Acari			Acari	2	0	0	0	8	1	11
		Hygrobatidae		Hygrobatidae	0	5	0	0	0	0	5
		Unionicolidae		Unionicolidae	6	0	0	0	0	0	6
		Sarcoptiformes		Oribatei	1	7	4	0	0	0	12
Bivalvia				Bivalvia	0	0	0	0	2	0	2
	Veneroidea	Sphaeriidae		Eupera cubensis	0	0	6	15	1	17	39
				Pisidium sp.	0	0	0	0	0	7	7
				Sphaeriidae	0	4	0	1	0	0	5
Crustacea	Amphipoda	Talitridae		Hyalella azteca	0	0	0	13	0	1	14
(Malacostraca)				Hyalella sp.	17	0	24	0	0	0	41
	Decapoda	Astacidae		Procambarus sp.	2	2	0	0	0	0	4
		Palaemonidae		Palaemonetes kadiakensis	13	4	11	20	12	15	75
				Palaemonidae	0	0	0	0	0	8	8
	Mysidacea	Mysidae		Taphromysis louisianae	0	0	0	9	0	0	Ģ
Gastropoda	Basommatophora	Ancylidae		Ancylidae	2	0	0	6	1	1	10
				Ferrissia sp.	0	6	7	0	0	0	13
		Lymnaeidae		Lymnaeidae	2	0	0	0	0	0	2
		Planorbidae		Planorbidae	0	0	0	2	0	0	-
				Menetus dilatatus	0	21	12	0	0	0	33
		Physidae		Physella sp.	0	0	0	0	1	0	1
				Physidae	6	0	1	0	0	0	7
	Neotaenioglossa	Hydrobiidae		Hydrobiidae	0	0	1	18	22	44	85
Iirudinea	Gnathobdellida	Hirudinidae		Hirudinea	0	0	0	4	1	2	7
	Rhynchobdellida	Glossiphoniidae		Glossiphoniidae	0	0	1	0	0	0	
nsecta	Coleoptera	Dytiscidae		Liodessus sp.	0	0	0	0	0	1	
		Elmidae		Dubiraphia sp.	0	0	0	1	0	0	
				Dubiraphia bivittata	0	0	2	0	0	0	2
				Heterelmis sp.	0	0	0	1	5	30	3
				Stenelmis sp.	1	0	19	1	2	0	2
		Gyrinidae		Dineutus sp.	2	0	0	2	0	0	
				Gyretes sp.	0	0	1	0	0	3	

Table 12. Benthic macroinvertebrate taxa and counts of individual taxa collected in the San Bernard River, Texas Gulf Coastal Plain, 2000–2002—Continued

Class	Order	Family	Subfamily	Genus or	Sampling site						
Class	Order	Faililly	Sublaining	scientific name	COUSH	GUMTR	WESTB	SANB01	SANB02	SANB03	Total
Insecta—Cont.	Coleoptera—Cont.	Haliplidae		Peltodytes sp.	3	0	0	0	0	0	3
		Hydraenidae		Hydraena sp.	1	0	0	0	0	0	1
		Hydrophilidae		Berosus sp.	7	0	0	0	0	0	7
				Hydrochus sp.	0	0	0	0	0	1	1
		Noteridae		Hydrocanthus sp.	0	0	1	0	0	0	1
		Scirtidae		Cyphon sp.	0	2	7	3	1	1	14
	Diptera	Ceratopogonidae		Atrichopogon sp.	0	0	0	1	0	0	1
				Bezzia/Palpomyia sp.	4	0	0	0	0	0	4
				Ceratopogonidae	0	0	0	0	0	1	1
			Ceratopogoninae	Ceratopogoninae	0	0	0	2	13	20	35
				Labrundinia sp.	25	9	30	67	1	0	132
				Culicoides sp.	3	0	0	0	0	0	3
				Forcipomyia sp.	0	1	0	0	0	0	1
				Probezzia sp.	2	0	0	0	0	0	2
		Chaoboridae		Chaoborus sp.	1	0	0	0	0	0	1
		Chironomidae	Chironominae	Chironomini	0	1	0	0	0	2	3
				Cladotanytarsus sp.	10	1	0	0	8	1	20
				Cryptochironomus sp.	2	0	0	6	2	0	10
				Cryptotendipes sp.	1	0	0	1	0	0	2
				Dicrotendipes sp.	23	0	1	12	5	1	42
				Endochironomus sp.	76	0	0	0	0	0	76
				Glyptotendipes sp.	1	0	0	1	0	1	3
				Harnischia sp.	0	0	2	6	0	1	9
				Parachironomus sp.	0	1	0	13	4	5	23
				Paracladopelma sp.	0	0	0	0	0	1	1
				Paralauterborniella nigrohalteris	0	0	3	2	0	0	5
				Polypedilum halterale grp.	1	0	0	0	0	0	1
				Polypedilum illinoense gr	39	64	9	0	0	0	112
				Polypedilum scalaenum gr.	0	3	8	2	5	33	51
				Polypedilum sp.	0	0	0	24	1	2	27
				Pseudochironomus sp.	5	0	0	0	0	7	12
				Rheotanytarsus sp.	7	59	0	1	0	0	67
				Stenochironomus sp.	1	6	3	0	3	8	21
				Tanytarsus sp.	5	26	13	7	7	14	72
				Tribelos fuscicorne	0	0	0	4	0	17	21
				Tribelos sp.	2	0	4	0	0	0	6
			Orthocladiinae	Corynoneura sp.	0	1	3	0	1	4	9

Table 12. Benthic macroinvertebrate taxa and counts of individual taxa collected in the San Bernard River, Texas Gulf Coastal Plain, 2000–2002—Continued

Class	Order	Family	Subfamily	Genus or	Sampling site						
	Order	railily	Sublaining	scientific name	COUSH	GUMTR	WESTB	SANB01	SANB02	SANB03	Total
Insecta—Cont.	Diptera—Cont.	Chironomidae	Orthocladiinae	Cricotopus bicinctus gr.	0	0	0	0	1	0	1
				Cricotopus sp.	0	0	0	0	2	0	2
				Nanocladius distinctus	0	0	0	0	1	0	1
				Nanocladius sp.	26	10	2	29	0	2	69
				Rheocricotopus robacki	0	0	0	1	10	0	11
				Rheocricotopus sp.	0	1	0	0	0	0	1
				Thienemanniella sp.	0	1	0	3	3	0	7
			Tanypodinae	Ablabesmyia sp.	22	12	14	74	5	26	153
				Clinotanypus sp.	0	0	0	0	0	2	2
				Larsia sp.	1	0	0	0	0	0	1
				Pentaneura sp.	0	0	0	2	17	0	19
				Procladius sp.	1	0	2	0	0	0	3
				Thienemannimyia gr. sp.	1	0	1	0	0	2	4
		Culicidae		Anopheles sp.	0	0	1	0	0	0	1
		Diptera		Diptera	0	0	0	2	0	0	2
		Phoridae		Phoridae	0	0	0	3	0	0	3
		Sciomyzidae		Sciomyzidae	0	0	0	4	0	0	4
		Simuliidae		Simuliidae	0	0	0	0	1	0	1
		Tabanidae		Tabanidae	0	0	0	1	0	0	1
	Ephemeroptera	Baetidae		Baetidae	0	0	0	0	1	1	2
				Baetis sp.	0	2	0	0	1	0	3
				Centroptilum sp.	3	0	0	0	0	0	3
				Fallceon quilleri	0	37	8	0	47	1	93
				Procloeon sp.	0	0	0	2	0	1	3
				Pseudocloeon sp.	0	0	0	6	0	0	6
		Caenidae		Caenis diminuta	16	0	0	0	0	0	16
				Caenis hilaris	19	0	0	0	0	0	19
				Caenis latipennis	0	0	38	9	0	0	47
				Caenis punctata	30	0	0	0	0	0	30
				Caenis sp.	0	1	0	5	24	1	31
		Heptageniidae		Heptageniidae	0	3	0	0	3	0	ϵ
		1 6		Stenacron interpunctatum	0	0	30	11	1	0	42
				Stenacron sp.	0	0	0	0	0	1	1
		Isonychiidae		Isonychia sp.	0	0	0	0	9	1	10
		Leptophlebiidae		Leptophlebiidae	0	0	0	1	7	1	ç
		Tricorythidae		Tricorythodes sp.	0	0	0	0	132	13	145
	Hemiptera	Corixidae		Corixidae	5	0	2	0	0	0	7

Table 12. Benthic macroinvertebrate taxa and counts of individual taxa collected in the San Bernard River, Texas Gulf Coastal Plain, 2000–2002—Continued

Class	Ouden	Family	Subfamily	Genus or	Sampling site						
	Order	Family	Subtamily	scientific name	COUSH	GUMTR	WESTB	SANB01	SANB02	SANB03	Total
Insecta—Cont.	Hemiptera—Cont.	Nepidae		Ranatra sp.	0	0	0	0	1	1	2
	Odonata	Coenagrionidae		Argia sp.	1	16	3	8	1	1	30
				Coenagrion/Enallagma sp.	0	1	0	1	0	0	2
				Coenagrionidae	13	0	0	4	11	0	28
				Enallagma sp.	13	0	0	2	0	0	15
		Corduliidae		Corduliidae	0	0	0	1	0	0	1
		Gomphidae		Stylurus sp.	0	0	0	0	0	1	1
		Libellulidae		Libellulidae	3	0	0	0	0	0	3
	Neuroptera	Sisyridae		Climacia sp.	2	0	0	2	0	0	4
	Trichoptera	Hydropsychidae		Cheumatopsyche sp.	12	25	0	15	2	0	54
				Hydropsyche sp.	0	0	1	0	0	0	1
				Hydropsychidae	0	0	0	6	13	0	19
				Smicridea sp.	0	0	0	0	10	0	10
		Hydroptilidae		Hydroptila sp.	3	1	0	0	1	0	5
				Hydroptilidae	0	0	0	0	1	0	1
				Neotrichia sp.	0	0	1	3	3	2	9
				Oxyethira sp.	15	0	0	0	0	0	15
		Leptoceridae		Nectopsyche sp.	0	0	0	0	3	1	4
				Oecetis sp.	9	0	0	2	1	0	12
		Polycentropodidae		Cernotina sp.	2	0	0	0	0	0	2
				Cyrnellus sp.	0	0	0	28	1	8	37
				Neureclipsis sp.	0	0	0	0	0	1	1
				Polycentropus sp.	0	0	0	0	1	2	3
Nematoda (phylum)					0	0	0	0	0	1	1
Oligochaeta				Oligochaeta	19	17	46	18	21	47	168
	Branchiobdellida			Branchiobdellida	1	0	0	0	0	0	1
Ostracoda				Ostracoda	31	186	245	19	1	0	482
Number of individuals					521	536	567	507	442	367	2,940
Number of taxa					55	33	38	57	54	52	

Table 13. Benthic macroinvertebrate data (metrics) for sites in Dickinson Bayou, Armand Bayou, and the San Bernard River, Texas Gulf Coastal Plain, 2000–2001

[EPT, Ephemeroptera Plecoptera Trichoptera]

Matria		Dickinson	Bayou sa	mpling sit	е		Armand E	Bayou san	npling site	•		San B	ernard Ri	ver sampli	ng site	
Metric	DCK01	DCK02	DCK03	DCK04	DCK05	ARM01	ARM02	ARM03	HRSP01	HRSP02	COUSH	WESTB	GUMTR	SANB01	SANB02	SANB03
Number of taxa	35	4	25	15	22	34	25	20	26	24	53	38	31	57	54	52
EPT taxa richness	11	1	1	1	4	2	3	0	4	1	9	5	6	11	19	13
Percent EPT taxa	4.4	.48	.10	.22	.75	2.8	1.6	0	.70	.98	21	14	13	17	59	9.3
Percent Chironomidae	8.0	56	36	21	7.8	84	52	26	32	35	49	17	37	50	17	35
Percent Ephemeroptera	4.3	.48	.10	.22	.55	2.8	1.6	0	.56	.98	13	13	8	6.7	51	5.4
Percent Oligochaeta	23	16	.50	44	6.7	.47	1.6	28	24	41	3.8	8.1	3.2	3.6	4.7	13
Percent Plecoptera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent Trichoptera	.16	0	0	0	.20	0	0	0	.13	0	8.1	.35	4.9	11	8.1	3.8
Percent filterers	19	0	3.1	13	22	3.7	2.1	19	1.3	2.7	4.7	3.5	22	11	5.9	8.2
Percent gatherers	58	67	58	31	5.4	85	28	16	58	50	28	60	50	26	63	32
Percent predators	10	33	2.2	31	19	2.8	34	13	22	12	19	9.7	9.4	34	14	16
Percent scrapers	4.3	0	9.0	1.6	2.8	6.6	0	.35	.58	.78	2.2	10	1.9	7.5	6.8	12
Percent shredders	25	56	20	4.9	3.9	.54	30	13	13	7.7	26	3.4	13	5.1	2.7	9.8
Number of filterer taxa	8	0	4	2	4	3	4	2	3	4	3	3	4	6	6	4
Number of gatherer taxa	16	2	7	5	3	9	11	5	12	7	13	12	13	17	17	22
Number of predator taxa	10	2	3	1	5	16	7	6	8	9	16	7	6	12	10	10
Number of scraper taxa	2	0	1	1	1	5	0	1	2	2	4	5	3	5	6	2
Number of shredder taxa	4	1	2	1	3	3	2	2	3	3	5	3	2	2	5	3
Shannon-Wiener diversity index	1.2	.50	.80	.98	1.0	.40	1.0	.88	.93	.87	1.4	1.0	1.0	1.4	1.3	1.4
Hilsenhoff's biotic index	4.4	2.4	2.3	2.0	.42	5.1	4.5	1.2	2.7	1.0	5.7	6.3	5.9	6.2	5.7	5.7
Margalef's richness index	5.1	1.4	3.2	3.4	3.3	4.1	4.1	3.0	4.0	3.1	5.8	4.6	3.2	6.8	6.9	8.6
Pielou's evenness index	.78	.83	.57	.70	.74	.25	.55	.56	.50	.50	.83	.65	.69	.82	.74	.80
Simpson's heterogeneity index	.90	.62	.75	.85	.88	.32	.83	.80	.78	.81	.95	.79	.84	.94	.88	.94

Table 14. Physical-habitat data for stream reaches at sites in the San Bernard River, Texas Gulf Coastal Plain, 2000–2001

[ft, feet; --, not available]

Datum	Sampling site										
Datum	COUSH	WESTB	GUMTR	SANB01	SANB02	SANB03					
Linear reach length (ft)	451	222	283	338	375	361					
Curvilinear reach length (ft)	488	251	295	422	400	376					
Sinuosity	1.08	1.13	1.04	1.25	1.07	1.04					
Reach slope	.0252	.0081	.0001	.0004	.0007	.0009					
Number of snags				8	3	10					
Number of other obstructions				2	3	4					
Number of stumps				0	1	0					
Number of undercut banks				0	0	0					
Number of bars				0	0	0					
Mean right bank slope	.36	.27	.24	.20	.17	.21					
Mean left bank slope	.14	.36	.27	.22	.20	.32					
Mean bank slope	.25	.32	.26	.21	.19	.27					
Mean channel width (ft)	65.9	68.0	44.5	73.4	107	108					
Mean right bank height (ft)	9.35	11.5	8.27	6.56	15	18.6					
Mean left bank height (ft)	5.99	8.50	7.29	6.88	14	19.9					
Mean bank height/channel width ratio	.32	.47	.48	.10	.14	.18					
Mean wetted channel width (ft)	27.0	22.2	17.0	29.8	51.1	51.9					
Mean depth (ft)	3.16	2.68	1.38	3.18	4.42	4.91					