

Summary of Water- and Sediment-Quality Data for Anacostia River Well Sites Sampled in July-August 2002

Open-File Report 03-73

In cooperation with the

D.C. DEPARTMENT OF HEALTH

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

Summary of Water- and Sediment-Quality Data for Anacostia River Well Sites Sampled in July-August 2002

By Cherie V. Miller and Cheryl A. Klohe

Open-File Report 03-73

In cooperation with the

D.C. DEPARTMENT OF HEALTH

Baltimore, Maryland 2003

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

U.S. Department of the Interior GALE A. NORTON, Secretary

U.S. Geological Survey Charles G. Groat, Director

The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For additional information contact:

District Chief U.S. Geological Survey 8987 Yellow Brick Road Baltimore, MD 21237

Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286

CONTENTS

Abstract	1
Introduction	1
Site selection, core collection, and well construction	1
Sediment-quality sampling	5
Water-quality sampling	
Chemical analyses	
Quality assurance and quality control	
Results	30
Summary	47
References Cited	
Appendix A: Cross-reference table for USGS well identifiers that can be used to rev	iew
data in the USGS National Water Information System (NWIS)	
database	48

FIGURES

1.	Location of sediment- and water-quality sampling sites along the Anacostia River,	
	Washington, D.C., July - August 2002	3
2.	Plot of Aroclor 1260 composition data	31

TABLES

1.	Station locations and sampling information for wells and hoverprobe cores4
2.	Methods used for water- and sediment-quality analyses
3.	Method detection limits and laboratory reporting levels for analytes measured at the
	Severn Trent Laboratory
4.	Results of selected quality-control data for volatile organic compounds in ground-
	water and sediment samples collected in July - August 2002 at the Anacostia River
	stations19
5.	Results of selected quality-control data for semi-volatile organic compounds in
	ground-water and sediment samples collected in July - August 2002 at the Anacostia
	River stations
6.	Results of selected quality-control data for the concentrations of organo-chlorine
	pesticides in ground-water and sediment samples collected in July - August 2002 at
	the Anacostia River stations
7.	Summary of quality-control data for the concentrations of selected aroclors collected
	in July - August 2002 at the Anacostia River stations
8.	Results of selected quality-control data for total metals detected in ground-water and
	sediment samples collected in July - August 2002 at the Anacostia River stations26
9.	Results of selected quality-control data for nutrients, total cyanide, and total phenols
	in ground-water and sediment samples collected in July - August 2002 at the
	Anacostia River stations

 10. Results of quality-control data for <i>n</i>-Hexane Extractable Material (oil and grease), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids, and total suspended solids samples in ground water collected in July - August 2002 at the Anacostia River stations
 15. Summary of the concentrations of selected aroclors collected in July - August 2002 at the Anacostia River stations
16. Total PCB congeners measured in stream sediment at hoverprove station DCHP01-02 on July 2, 2002
17. Summary of the concentrations of total metals detected in ground-water and sediment samples collected in July - August 2002 at the Anacostia River
stations
 19. Summary of the concentrations of <i>n</i>-Hexane Extractable Material (oil and grease), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids, and total suspended solids samples in ground water collected in July - August 2002 at the Anacostia River stations

Conversion Factors and Vertical Datum

Multiply	By	To Obtain
inch (in.)	2.54	centimeter
inch (in.)	25.4	millimeter
foot (ft)	0.3048	meter
mile (mi)	1.609	kilometer
acre	4,047	square meter
acre	0.004047	square kilometer
square mile (mi ²)	259	hectare
square mile (mi ²)	2.59	square kilometer
cubic feet per second (ft^3/s)	0.02932	cubic meter per second
pound (lb)	0.4536	kilogram
ton, short (2,000 lb)	0.9072	megagram

Temperatures in degrees Celsius (°C) can be converted to degrees Fahrenheit (°F) by using the following equation:

 $^{\circ}F = (^{\circ}C \times 1.8) + 32$

Vertical Datum: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929---a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

Summary of Water- and Sediment-Quality Data for Anacostia River Well Sites Sampled in July - August 2002

by Cherie V. Miller and Cheryl A. Klohe

Abstract

This data report is a summary of chemical analyses conducted by the U.S. Geological Survey on ground water and sediment in the tidal Anacostia River watershed, Washington, D.C. during July-August 2002. Cores were drilled and wells were established at three shoreline sites: two wells at the New York Avenue overpass, two wells at the Kenilworth Aquatic Gardens, and one well at Anacostia Park. Additionally, two cores were collected by hoverprobe in mudflats on the river: one by Benning Road and one in the mouth of Beaverdam Creek. Chemical analyses included volatile organic compounds, semi-volatile organic compounds or polyaromatic hydrocarbons, organochlorine pesticides, aroclors and total polychlorinated biphenyls, metals, nutrients, biochemical and chemical oxygen demands, total phenols, total cyanide, oil and grease, and total suspended and dissolved solids in aqueous phases.

Introduction

From July through August 2002, the U.S. Geological Survey (USGS) collected water- and sediment-quality samples from five sites along the Anacostia River in Washington, D.C. (fig. 1, table 1). Samples were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) or polyaromatic hydrocarbons (PAHs), organochlorine pesticides, aroclors and total polychlorinated biphenyls (PCBs), metals, nutrients, biochemical and chemical oxygen demands (BOD and COD), total phenols, total cyanide, oil and grease, and total suspended and dissolved solids in aqueous phases (TSS and TDS). The purpose of this sampling was to determine baseline concentrations of potential contaminants in the tidal portion of the river. The selected sites have no documented point sources of contaminants, and likely represent the background levels of chemicals from nonpoint sources in the urban areas surrounding the Anacostia River. The suite of chemicals that was analyzed was selected based on previous history of contaminant sampling in the Anacostia River and includes regulated chemicals that are currently being evaluated by the D.C. Department of Health.

Site Selection, Core Collection, and Well Construction

Sets of nested wells were installed at three sites near the shoreline in the tidal Anacostia River Basin. Cores for sediment quality and lithology were collected at each site by vibracoring. At some sites, there was refusal of the vibracore method at depth. At this point, augering was used to reach the target depth. The sediment material from augering was archived for lithology, but was not used for chemical analysis. The chemical analyses of water and sediment at these sites will initially provide reference levels of the concentrations of contaminants for comparison to more contaminated areas.

Two wells were installed at the southwest bank of the Anacostia River at New York Avenue. Well DCMW001-02 was drilled and installed on July 24, 2002, and screened at a depth of 15 to 25 feet below land surface. Well DCMW004-02 was drilled and installed on July 26, 2002, and screened at a depth of 22 to 32 feet below land surface. Both wells were screened in the uppermost aquifer, which lies beneath fine-grained material that may be a semi-confining unit. These wells will provide background information on ground water discharging from the west side of the Anacostia River near the Maryland/Washington, D.C. border. Continuous core material for lithologic analysis was collected from DCMW004-02 to a depth of 33 feet below land surface. Replicate sediment samples were collected from this core at 18 to 23 feet below land surface for chemical analyses. No surface sediment was collected because the surface was too disturbed from recent construction.

Two wells were installed on July 24 and 25, 2002 at the Kenilworth Aquatic Gardens visitor center. Well DCMW002-02 was screened in the unconfined aquifer at 12.6 to 22.6 feet below land surface, and well DCMW003-02 was screened in the semiconfined aquifer at 36.3 to 46.3 feet below land surface. These wells will provide information on ground water discharging from the eastern Washington, D.C. neighborhoods in the vicinity of Kenilworth Avenue. Surface sediment (just below the O horizon) and deeper sediment (11 feet below land surface) were collected for chemical analyses from this well site.

One well was installed on July 29, 2002 at Anacostia Park on the south bank of the river near the public roller-skating rink. This well is screened at 38.5 to 48.5 feet below land surface in the uppermost aquifer beneath fine-grained material that acts as a semi-confining unit. This well will provide data on the condition of ground water for comparison to data from a well that is already in place at the same site. Surface sediment (below the O horizon) and deeper sediment (37.5 to 38.5 feet below land surface) samples were collected from the core for chemical analyses.

The USGS hoverprobe was deployed on July 2, 2002 to collect cores from two mudflats in the tidal Anacostia River. One site was a mudflat north of the Benning Bridge, and the other site was in the mouth of Beaverdam Creek at the Maryland/Washington, D.C. border. A total of 18 feet of core was collected in 5-foot core barrels at the Benning Bridge site, and a composite sample of sediment from the entire length of this core was collected for chemical analysis. No samples for sediment quality were collected from the Beaverdam Creek mudflat site. Both cores were reviewed and archived for lithology.

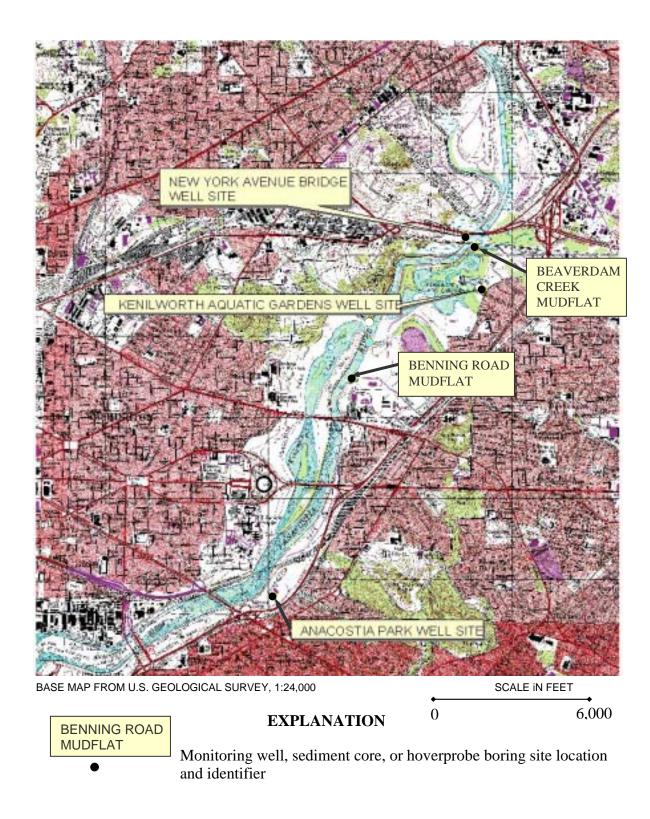


Figure 1. Location of sediment- and water-quality sampling sites along the Anacostia River, Washington, D.C., July - August 2002.

Table 1. Station locations and sampling information for wells and hoverprobe cores [NA, none assigned; °, degrees; ', minutes; ", seconds]

Station location	Latitude longitude	Well name	Type of well or core	Well screened interval (feet below land surface)	Sediment core sample name	Depths of composite sediment sample (feet below land surface)	Type of chemical sampling	
Beaverdam Creek Mudflat	38° 54' 59.5" 076° 56' 34.0"	NA	Hoverprobe Core	NA	NA	NA	NA	
Benning Road Mudflat	38° 54' 05.8" 076° 57' 34.2"	NA	Hoverprobe Core	NA	DCHP01-02	0 - 18.0	Sediment Quality	
New York	38° 55' 03.6"	DCMW001-02	Shallow Well	15.0 - 25.0	NA	NA	Sediment and	
Avenue bridge	ge 076° 56' 37.7"	DCMW004-02	Deep Well and Core	22.0 - 32.0	NYASOIL001-02	18.0 - 23.0	Water Quality	
		DCMW002-02	Shallow Well	12.6 - 22.6	NA	NA		
Kenilworth Aquatic Gardens	38° 54' 43.5" 076° 56' 28.4"	DCMW003-02	Deep Well	26.2 46.2	KAGSOIL001-02	0 - 1.0	Sediment and Water Quality	
		DCM w 003-02	and Core	36.3 – 46.3	KAGSOIL002-02	10.0 - 11.0		
	38° 52' 38.4"		Deep Well		APSSOIL001-02	0-1.0	Sediment and	
Anacostia Park	k 076° 58' 15.3" D			38.5 - 48.5	APSSOIL002-02	37.5 - 38.5	Water Quality	

Sediment-Quality Sampling

Samples of sediment were collected from the core materials at selected strata. Where possible, sediments were pulled from the centers of the vibracore sections to avoid cross contamination. Samples for sediment quality were not collected from the augering material. Sediments were collected into clean glass jars. Prior to sampling, jars for sediment collection were cleaned by rinsing with a tap-water/Liquinox mixture, followed by soaking for 10 minutes in 10 percent HNO₃, and a final rinse of nano-pure deionized water (greater than 18 megaohm). Preservatives were not used for sediment sampling. Samples were stored in coolers filled with ice and shipped to the Severn Trent Laboratroy (STL) in Arvada, Colorado for analysis at the end of each day.

Water-Quality Sampling

Before sampling, each well was developed by continuous pumping to flush the well screens until the ground water appeared clear and free of sediment. The wells were then allowed 2 weeks to stabilize before sampling for water quality from August 21 through 23, 2002. Samples for ground-water quality were collected from the wells using a peristaltic pump and with completely dedicated tubing at each well to minimize cross contamination. Teflon tubing was used except for a 2-foot length of flexible silicon tubing in the pump. Prior to sampling, all tubing was cleaned by rinsing with a tapwater/Liquinox mixture, followed by soaking for 10 minutes in 10 percent HNO₂, and a final rinse of nano-pure deionized water (greater than 18 MOhm). Tubing was stored in acid-washed plastic zipper-lock bags until use. Each well was purged until measurements of temperature, pH, dissolved oxygen, turbidity, and specific conductance were stable. Field parameters were measured using a bucket to collect water as it was pumped from the well with continuous laminar overflow, a WTW multimeter for temperature, pH, dissolved oxygen, and specific conductance, and a HACH 2100P turbidimeter for turbidity. Samples for water quality were not filtered so that the data would meet regulatory compliance requirements. Sample preservatives are listed in table 2. Samples were sealed in plastic zipper-lock bags, packed in coolers with ice, and shipped to STL for analysis at the end of each day. All field methods and sampling procedures are documented in the USGS National Field Manual (U.S. Geological Survey, 1997 to present).

Chemical Analyses

Samples for sediment and water quality were analyzed at STL using approved U.S. Environmental Protection Agency methods (table 2). Methods, detection limits, and reporting levels for individual constituents are shown in table 3. Many of these methods are "information rich," meaning that often the chemical can be detected below the reporting level. The precision on these low-level detections is, however, not as good. Detections that are below the reporting levels are presented here, but are coded to qualify these data and should be considered to have large confidence intervals. Examples of information-rich methods are Gas-Chromatography - Mass Spectrometry (GS-MS) for organic compounds and Ion-Coupled Plasma - Mass Spectrometry (ICP-MS) for metals.

[--, not applicable]

Analyses	Preservatives used in aqueous samples	Preparation methods	Analytical methods	Preparation methods	Analytical methods	References
		<u>Sedi</u>	<u>ment</u>	Wa	<u>ter</u>	
Total cyanide	NaOH	9012A	9012A	9012A	9012A	$SW846^{1}$
Inductively coupled plasma (ICP) Metals	HNO ₃	3550B	8015B			SW846
Metals by ICP-MS	HNO ₃	3050B	6020	3010	6020	SW846
Mercury	HNO ₃	7471A	7471A	7470A	7470A	SW846
Nitrate plus nitrite	H_2SO_4	353.2	353.2	353.2	353.2	$MCAWW^2$
Ammonia as nitrogen	H_2SO_4	350.1	350.1	350.1	350.1	MCAWW
Organochlorine pesticides	None	3550	8081A	3510C	8081A	SW846
Percent moisture		Modified 160.3	Modified 160.3			MCAWW
Phenolics	H_2SO_4	9066	9066	9066	9066	SW846
PCBs	None	3550	8082	3510C	8082	SW846
Semivolatile organic compounds by GC-MS	None	3550B	8270C	3520C	8270C	SW846
Total phosphorus	H_2SO_4	365.3	365.3	365.3	365.3	MCAWW
Total Kjeldahl nitrogen	H_2SO_4	351.2	351.2	351.2	351.2	MCAWW
Trace ICP metals	HNO ₃	3050B	6010B	3010A	6010B	SW846

[¹, U.S. Environmental Protection Agency, 1986; ², U.S. Environmental Protection Agency, 1983; ³, U.S. Environmental Protection Agency, 1984]

 Table 2. Methods used for water- and sediment-quality analyses -- continued.

Analyses	Preservatives used in aqueous samples	Preparation methods	Analytical methods ment	Preparation methods	Analytical methods	References
Volatile and gasoline-range organics	1	Seur	ment	Wa		
(PID/FID)	HCl		8021B/GRO			SW846
Volatile organic compounds	HCl	5030	8260B	5030B/826	8260B	SW846
by GC-MS						
Biochemical oxygen demand	None			405.1	405.1	MCAWW
Chemical oxygen demand	H_2SO_4			410.4	410.4	MCAWW
Total dissolved solids (TDS)	None			160.1	160.1	MCAWW
<i>n</i> -hexane extractable material	None			1664	1664A	CFR136A ³
Total suspended solids (TSS)	None			160.2	160.2	MCAWW

Table 3. Method detection limits and laboratory reporting levels for analytes measured at the Severn Trent Laboratory. [MDL, method detection limits; RL, laboratory reporting levels; STL, Severn Trent Laboratory at Arvada, Colorado; CAS, Chemical Abstracts Service Registry; CVAA, Cold Vapor Atomic Absorption; ICP/MS, Inductively Coupled Plasma/Mass Spectrometry; GRO, gasoline-range organics; CVAA, cold-vapor atomic absorption; μg/L, micrograms per liter; μg/kg, micrograms per kilogram; mg/kg, milligrams per kilogram]

		<u>Sediment</u>				Water				
CAS #		Method	unit	STL RL	STL MDL	Method	unit	STL RL	STL MDL	
	Volatile organic compounds									
67-64-1	Acetone	8260B	µg/kg	20	4.6	8260B	µg/L	10	2.9	
71-43-2	Benzene	8260B	µg/kg	5	0.89	8260B	$\mu g/L$	1	0.27	
75-27-4	Bromodichloromethane	8260B	µg/kg	5	0.92	8260B	$\mu g/L$	1	0.35	
75-25-2	Bromoform	8260B	µg/kg	5	0.91	8260B	$\mu g/L$	1	0.46	
74-83-9	Bromomethane	8260B	µg/kg	10	1.2	8260B	$\mu g/L$	2	0.28	
78-93-3	2-Butanone (MEK)	8260B	µg/kg	20	4.7	8260B	$\mu g/L$	5	2.4	
56-23-5	Carbon tetrachloride	8260B	µg/kg	5	1.2	8260B	$\mu g/L$	1	0.35	
108-90-7	Chlorobenzene	8260B	µg/kg	5	0.75	8260B	$\mu g/L$	1	0.24	
124-48-1	Chlorodibromomethane	8260B	µg/kg	5	0.9	8260B	$\mu g/L$	1	0.27	
75-00-3	Chloroethane	8260B	µg/kg	10	1.3	8260B	$\mu g/L$	2	0.26	
67-66-3	Chloroform	8260B	µg/kg	10	0.9	8260B	$\mu g/L$	1	0.29	
74-87-3	Chloromethane	8260B	µg/kg	10	1.5	8260B	$\mu g/L$	2	0.26	
75-34-3	1,1-Dichloroethane	8260B	µg/kg	5	0.98	8260B	$\mu g/L$	1	0.29	
107-06-2	1,2-Dichloroethane	8260B	µg/kg	5	0.99	8260B	$\mu g/L$	1	0.43	
75-35-4	1,1-Dichloroethene	8260B	µg/kg	5	1.1	8260B	$\mu g/L$	1	0.31	
156-59-2	cis-1,2-Dichloroethene	8260B	µg/kg	2.5	0.84	8260B	$\mu g/L$	1	0.33	
156-60-5	trans-1,2-Dichloroethene	8260B	µg/kg	2.5	0.79	8260B	$\mu g/L$	0.5	0.25	

			Sedin	nent			Wat	er	
CAS #		Method	unit	STL RL	STL MDL	Method	unit	STL RL	STL MDL
	Volatile organic compounds (cont.)								
540-59-0	total 1,2-Dichloroethene	8260B	µg/kg	5	1.5	8260B	µg/L	1	0.54
78-87-5	1,2-Dichloropropane	8260B	µg/kg	5	1.2	8260B	µg/L	1	0.38
10061-01-5	cis-1,3-Dichloropropene	8260B	µg/kg	5	0.96	8260B	µg/L	1	0.31
100-41-4	Ethylbenzene	8260B	µg/kg	5	1.2	8260B	µg/L	1	0.51
591-78-6	2-Hexanone	8260B	µg/kg	20	4.6	8260B	µg/L	5	1.8
108-10-1	4-Methyl-2-pentanone	8260B	µg/kg	20	3.9	8260B	µg/L	5	1.8
1634-04-4	Methyl-tert-butyl ether (MTBE)	8260B	µg/kg	20	0.79	8260B	µg/L	5	0.88
75-09-2	Methylene chloride	8260B	µg/kg	5	0.8	8260B	µg/L	1	0.86
100-42-5	Styrene	8260B	µg/kg	5	0.66	8260B	µg/L	1	0.28
79-34-5	1,1,2,2-Tetrachloroethane	8260B	µg/kg	5	1.1	8260B	µg/L	1	0.5
127-18-4	Tetrachloroethene	8260B	µg/kg	5	0.99	8260B	µg/L	1	0.27
108-88-3	Toluene	8260B	µg/kg	5	0.78	8260B	µg/L	1	0.26
71-55-6	1,1,1-Trichloroethane	8260B	µg/kg	5	0.98	8260B	µg/L	1	0.26
79-00-5	1,1,2-Trichloroethane	8260B	µg/kg	5	1.5	8260B	µg/L	1	0.41
79-01-6	Trichloroethene	8260B	µg/kg	5	0.87	8260B	µg/L	1	0.24
96-18-4	1,2,3-Trichloropropane	8260B	µg/kg	5	1.5	8260B	µg/L	1	0.76
75-01-4	Vinyl chloride	8260B	µg/kg	5	1.1	8260B	µg/L	1	0.26
1330-20-7	Xylenes [total]	8260B	µg/kg	5	2.8	8260B	µg/L	2	0.73

			Sediment					ter		
CAS #		Method	unit	STL RL	STL MDL	Method	unit	STL RL	STL MDL	
	Gasoline-range organics									
	Total GRO	8015 M	mg/kg	0.5	0.133	8015 M	µg/L	10	3	
71-43-2	Benzene	8021	mg/kg	0.05	0.0043	8021	$\mu g/L$	0.5	0.094	
108-88-3	Toluene	8021	mg/kg	0.05	0.0087	8021	$\mu g/L$	0.5	0.12	
100-41-4	Ethylbenzene	8021	mg/kg	0.05	0.0058	8021	$\mu g/L$	0.5	0.1	
1330-20-7	Xylenes [total]	8021	mg/kg	0.05	0.023	8021	$\mu g/L$	0.5	0.38	

			Sedin	nent			Wat	ter	
CAS #		Method	unit	STL RL	STL MDL	Method	unit	STL RL	STL MDL
	Semivolatile organic compounds								
83-32-9	Acenaphthene	8270C	µg/kg	330	46	8270C	$\mu g/L$	10	1
208-96-8	Acenaphthylene	8270C	µg/kg	330	34	8270C	$\mu g/L$	10	1
120-12-7	Anthracene	8270C	µg/kg	330	78	8270C	$\mu g/L$	10	1.6
56-55-3	Benzo(a)anthracene	8270C	µg/kg	330	39	8270C	$\mu g/L$	10	1.2
205-99-2	Benzo(b)fluoranthene	8270C	µg/kg	330	100	8270C	$\mu g/L$	10	2.2
207-08-9	Benzo(k)fluoranthene	8270C	µg/kg	330	93	8270C	$\mu g/L$	10	2
65-85-0	Benzoic acid	8270C	µg/kg	1600	570	8270C	$\mu g/L$	50	12
50-32-8	Benzo(a)pyrene	8270C	µg/kg	330	94	8270C	$\mu g/L$	10	1.4
191-24-2	Benzo(g,h,i)perylene	8270C	µg/kg	330	70	8270C	$\mu g/L$	10	1.7
100-51-6	Benzyl alcohol	8270C	µg/kg	330	77	8270C	$\mu g/L$	10	2.7
111-91-1	Bis(2-chloroethoxy)methane	8270C	µg/kg	330	74	8270C	$\mu g/L$	10	1.3
111-44-4	Bis(2-chloroethyl)ether	8270C	µg/kg	330	49	8270C	$\mu g/L$	10	1.8
108-60-1	Bis(2-chloroisopropyl)ether	8270C	µg/kg	330	69	8270C	$\mu g/L$	10	1.5
117-81-7	Bis(2-ethylhexyl)phthalate	8270C	µg/kg	330	69	8270C	$\mu g/L$	10	3.1
101-55-3	4-Bromophenylphenyl ether	8270C	µg/kg	330	71	8270C	$\mu g/L$	10	1.5
85-68-7	Butyl benzyl phthalate	8270C	µg/kg	330	34	8270C	µg/L	10	1.6
59-50-7	4-Chloro-3-methylphenol	8270C	µg/kg	330	95	8270C	µg/L	10	2
91-58-7	2-Chloronaphthalene	8270C	µg/kg	330	38	8270C	µg/L	10	1.1
95-57-8	2-Chlorophenol	8270C	µg/kg	330	73	8270C	$\mu g/L$	10	1.8
7005-72-3	4-Chlorophenyl phenyl ether	8270C	µg/kg	330	71	8270C	$\mu g/L$	10	1.2
218-01-9	Chrysene	8270C	µg/kg	330	53	8270C	µg/L	10	1.7

			Sedin	nent		1	Wat	ter	
CAS #		Method	unit	STL RL	STL MDL	Method	unit	STL RL	STL MDL
	Semivolatile organic compounds (cont.)								
53-70-3	Dibenzo(a,h)anthracene	8270C	µg/kg	330	47	8270C	$\mu g/L$	10	1.3
132-64-9	Dibenzofuran	8270C	µg/kg	330	82	8270C	$\mu g/L$	10	5
95-50-1	1,2-Dichlorobenzene	8270C	µg/kg	330	64	8270C	$\mu g/L$	10	1.6
541-73-1	1,3-Dichlorobenzene	8270C	µg/kg	330	71	8270C	$\mu g/L$	10	1.7
106-46-7	1,4-Dichlorobenzene	8270C	µg/kg	330	55	8270C	$\mu g/L$	10	1.8
91-94-1	3,3'-Dichlorobenzidine	8270C	µg/kg	1600	70	8270C	$\mu g/L$	50	8.4
120-83-2	2,4-Dichlorophenol	8270C	µg/kg	330	88	8270C	$\mu g/L$	10	1.7
84-66-2	Diethyl phthalate	8270C	µg/kg	330	53	8270C	$\mu g/L$	10	1.1
131-11-3	Dimethyl phthalate	8270C	µg/kg	330	85	8270C	$\mu g/L$	10	5
105-67-9	2,4-Dimethylphenol	8270C	µg/kg	330	92	8270C	$\mu g/L$	10	2.9
84-74-2	Di- <i>n</i> -butyl phthalate	8270C	µg/kg	330	76	8270C	$\mu g/L$	10	1.1
534-52-1	4,6-Dinitro-2-methylphenol	8270C	µg/kg	1600	420	8270C	$\mu g/L$	50	18
51-28-5	2,4-Dinitrophenol	8270C	µg/kg	1600	500	8270C	$\mu g/L$	50	18
121-14-2	2,4-Dinitrotoluene	8270C	µg/kg	330	96	8270C	$\mu g/L$	10	2.6
606-20-2	2,6-Dinitrotoluene	8270C	µg/kg	330	100	8270C	$\mu g/L$	10	1.6
117-84-0	Di- <i>n</i> -octyl phthalate	8270C	µg/kg	330	36	8270C	$\mu g/L$	10	1.5
206-44-0	Fluoranthene	8270C	µg/kg	330	84	8270C	$\mu g/L$	10	1.5
86-73-7	Fluorene	8270C	µg/kg	330	76	8270C	$\mu g/L$	10	1.3
118-74-1	Hexachlorobenzene	8270C	µg/kg	330	76	8270C	$\mu g/L$	10	1.7
87-68-3	Hexachlorobutadiene	8270C	µg/kg	330	100	8270C	$\mu g/L$	10	1.7
77-47-4	Hexachlorocyclopentadiene	8270C	µg/kg	1600	33	8270C	µg/L	50	5

		I	Sedin	nent		I	Wat	ter	
CAS #		Method	unit	STL RL	STL MDL	Method	unit	STL RL	STL MDL
	Semivolatile organic compounds (cont.)								
67-72-1	Hexachloroethane	8270C	µg/kg	330	50	8270C	$\mu g/L$	10	2.2
193-39-5	Indeno(1,2,3-cd)pyrene	8270C	$\mu g/kg$	330	48	8270C	$\mu g/L$	10	1.2
78-59-1	Isophorone	8270C	µg/kg	330	68	8270C	$\mu g/L$	10	2.3
91-57-6	2-Methylnaphthalene	8270C	µg/kg	330	59	8270C	$\mu g/L$	10	1.5
95-48-7	2-Methylphenol	8270C	µg/kg	330	77	8270C	$\mu g/L$	10	2.1
108-39-4	3-Methylphenol	8270C	µg/kg	330	74	8270C	$\mu g/L$	10	2.1
106-44-5	4-Methylphenol	8270C	µg/kg	330	74	8270C	$\mu g/L$	10	2.1
91-20-3	Naphthalene	8270C	µg/kg	330	70	8270C	$\mu g/L$	10	1.2
88-74-4	2-Nitroaniline	8270C	µg/kg	1600	80	8270C	$\mu g/L$	50	1.8
99-09-2	3-Nitroaniline	8270C	µg/kg	1600	85	8270C	$\mu g/L$	50	7.6
100-01-6	4-Nitroaniline	8270C	µg/kg	1600	64	8270C	$\mu g/L$	50	2.1
98-95-3	Nitrobenzene	8270C	µg/kg	330	85	8270C	$\mu g/L$	10	2.5
88-75-5	2-Nitrophenol	8270C	µg/kg	330	120	8270C	$\mu g/L$	10	1.8
100-02-7	4-Nitrophenol	8270C	µg/kg	1600	95	8270C	$\mu g/L$	50	1.8
62-75-9	<i>N-I</i> Nitrosodimethylamine	8270C	µg/kg	330	59	8270C	$\mu g/L$	10	2.1
621-64-7	<i>N-I</i> Nitrosodi-n-propylamine	8270C	µg/kg	330	88	8270C	$\mu g/L$	10	1.6
86-30-6	N-Nitrosodiphenylamine	8270C	µg/kg	330	72	8270C	$\mu g/L$	10	1.5
87-86-5	Pentachlorophenol	8270C	µg/kg	1600	370	8270C	$\mu g/L$	50	11
85-01-8	Phenanthrene	8270C	µg/kg	330	37	8270C	$\mu g/L$	10	1.3
108-95-2	Phenol	8270C	µg/kg	330	71	8270C	$\mu g/L$	10	1.4
129-00-0	Pyrene	8270C	µg/kg	330	40	8270C	µg/L	10	2

		1	<u>Sediment</u>			Water			
CAS #		Method	unit	STL RL	STL MDL	Method	unit	STL RL	STL MDL
	Semivolatile organic compounds (cont.)								
95-94-3	1,2,4,5-Tetrachlorobenzene	8270C	µg/kg	330	33	8270C	$\mu g/L$	10	1.9
120-82-1	1,2,4-Trichlorobenzene	8270C	µg/kg	330	64	8270C	$\mu g/L$	10	1.5
95-95-4	2,4,5-Trichlorophenol	8270C	µg/kg	330	75	8270C	$\mu g/L$	10	1.3
88-06-2	2,4,6-Trichlorophenol	8270C	µg/kg	330	50	8270C	$\mu g/L$	10	1.3

			<u>Sediment</u>			<u>Water</u>			
CAS #		Method	unit	STL RL	STL MDL	Method	unit	STL RL	STL MDL
	Polychorinated biphenyls								
12674-11-2	Aroclor 1016	8082	µg/kg	33	3.4	8082	µg/L	1.0	0.085
11104-28-2	Aroclor 1221	8082	µg/kg	33	2.9	8082	$\mu g/L$	1.0	0.12
11141-16-5	Aroclor 1232	8082	µg/kg	33	3.6	8082	$\mu g/L$	1.0	0.18
53469-21-9	Aroclor 1242	8082	µg/kg	33	2.9	8082	µg/L	1.0	0.06
12672-29-6	Aroclor 1248	8082	µg/kg	33	11	8082	µg/L	1.0	0.11
11097-69-1	Aroclor 1254	8082	µg/kg	33	4.3	8082	µg/L	1.0	0.074
11096-82-5	Aroclor 1260	8082	µg/kg	33	4.8	8082	µg/L	1.0	0.06

		I	Sedim	lent		I	Wa	ter	
CAS #		Method	unit	STL RL	STL MDL	Method	unit	STL RL	STL MDL
	Organochlorine pesticides								
309-00-2	Aldrin	8081A	µg/kg	1.7	0.39	8081A	µg/L	0.05	0.0042
319-84-6	alpha-BHC	8081A	µg/kg	1.7	0.37	8081A	$\mu g/L$	0.05	0.0076
319-85-7	beta-BHC	8081A	µg/kg	1.7	0.34	8081A	$\mu g/L$	0.05	0.0051
319-86-8	delta-BHC	8081A	µg/kg	1.7	0.11	8081A	$\mu g/L$	0.05	0.005
58-89-9	gamma-BHC (Lindane)	8081A	µg/kg	1.7	0.7	8081A	$\mu g/L$	0.05	0.0085
5103-71-9	Chlordane [a-]	8081A	µg/kg	1.7	0.38	8081A	$\mu g/L$	0.05	0.0054
5103-74-2	Chlordane [g-]	8081A	µg/kg	1.7	0.35	8081A	$\mu g/L$	0.05	0.0079
510-15-6	Chlorobenzilate	8081A	µg/kg	17	2.5	8081A	$\mu g/L$	0.1	0.05
72-54-8	4,4'-DDD	8081A	µg/kg	1.7	0.29	8081A	$\mu g/L$	0.05	0.005
72-55-9	4,4'-DDE	8081A	µg/kg	1.7	0.32	8081A	$\mu g/L$	0.05	0.0147
50-29-3	4,4'-DDT	8081A	µg/kg	1.7	0.33	8081A	$\mu g/L$	0.05	0.0095
60-57-1	Dieldrin	8081A	µg/kg	1.7	0.54	8081A	$\mu g/L$	0.05	0.0094
959-98-8	alpha-Endosulfan [I]	8081A	µg/kg	1.7	0.38	8081A	$\mu g/L$	0.05	0.0165
33213-65-9	beta-Endosulfan [II]	8081A	µg/kg	1.7	0.66	8081A	$\mu g/L$	0.05	0.0074
1031-07-8	Endosulfan sulfate	8081A	µg/kg	1.7	0.29	8081A	$\mu g/L$	0.05	0.0065
72-20-8	Endrin	8081A	µg/kg	1.7	0.38	8081A	µg/L	0.05	0.0086
7421-93-4	Endrin aldehyde	8081A	µg/kg	1.7	1.53	8081A	µg/L	0.05	0.014
76-44-8	Heptachlor	8081A	µg/kg	1.7	0.47	8081A	µg/L	0.05	0.0053
72-43-5	Methoxychlor	8081A	µg/kg	3.3	0.17	8081A	µg/L	0.1	0.0048
8001-35-2	Toxaphene	8081A	µg/kg	170	10	8081A	µg/L	5	0.26

		1	Sedim	ent	1		Wat	ter	
CAS #		Method	unit	STL RL	STL MDL	Method	unit	STL RL	STL MDL
	Metals by ICP/MS (total)								
7440-36-0	Antimony	6020	mg/kg	0.2	0.0029	6020	µg/L	2	0.04
7440-38-2	Arsenic	6020	mg/kg	0.5	0.017	6020	$\mu g/L$	5	0.061
7440-39-3	Barium	6020	mg/kg	0.1	0.024	6020	$\mu g/L$	1	0.057
7440-41-7	Beryllium	6020	mg/kg	0.1	0.0044	6020	$\mu g/L$	1	0.028
7440-43-9	Cadmium	6020	mg/kg	0.1	0.0014	6020	$\mu g/L$	1	0.022
7440-47-3	Chromium	6020	mg/kg	0.2	0.018	6020	$\mu g/L$	2	0.24
7440-48-4	Cobalt	6020	mg/kg	0.1	0.0012	6020	$\mu g/L$	1	0.015
7440-50-8	Copper	6020	mg/kg	0.2	0.015	6020	µg/L	2	0.63
7439-92-1	Lead	6020	mg/kg	0.1	0.0042	6020	$\mu g/L$	1	0.15
7439-96-5	Manganese	6020	mg/kg	0.1	0.023	6020	$\mu g/L$	1	0.076
7439-98-7	Molybdenum	6020	mg/kg	0.2	0.0022	6020	$\mu g/L$	2	0.023
7440-02-0	Nickel	6020	mg/kg	0.1	0.013	6020	$\mu g/L$	2	0.25
7782-49-2	Selenium	6020	mg/kg	0.5	0.049	6020	$\mu g/L$	5	0.19
7440-22-4	Silver	6020	mg/kg	0.1	0.0023	6020	$\mu g/L$	1	0.012
7440-28-0	Thallium	6020	mg/kg	0.1	0.00099	6020	$\mu g/L$	1	0.015
7440-31-5	Tin	6020	mg/kg	1	0.079	6020	$\mu g/L$	10	0.054
7440-62-2	Vanadium	6020	mg/kg	0.5	0.0056	6020	$\mu g/L$	5	0.07
7440-66-6	Zinc	6020	mg/kg	1	0.350	6020	$\mu g/L$	10	2.3
7439-97-6	Mercury by CVAA	7471A	mg/kg	0.033	0.0025	7470A	µg/L	0.2	0.028

Quality Assurance and Quality Control

One field blank for ground water (blank solution water that is processed in the field through the entire sampling procedure), one field replicate for ground water, and one field replicate for sediment analysis were collected during the July - August 2002 sampling. A trip blank for VOCs (a sample of nitrogen-purged organic-free water that travels in the coolers over the entire route of the sampling bottles from the lab, to the field, and back to the lab) was included with each shipment of samples. Additionally, with each laboratory lot of samples, the STL analyzed laboratory blanks, replicates, and spikes for all methods. Results of the quality-control samples are summarized in tables 4 - 10. Additional quality-assurance results are available on request from the USGS District Office in Baltimore, Maryland.

Low-level detections of toluene and methylene chloride in trip blanks for several of the sediment samples were within the range of concentrations found for field samples. Similar detections in field blanks were found for antimony, chromium, and HEM (oil and grease) in water and total cyanide in sediments. Samples for which the corresponding field and/or lab blanks were found to contain greater than 10 percent of ambient concentrations in the environmental samples should be considered carefully and concentrations or detections of these chemicals may be suspect. Field blanks for other methods were generally clean except for some low-level detections that were far enough below the ambient concentrations to be considered negligible.

Surrogate organic compounds were added to samples before analysis at the laboratory to determine the recovery of similar compounds in the natural environmental matrices. The recoveries of these surrogate compounds should be considered when evaluating the concentrations of the target analytes. Surrogate recoveries for VOCs in water and sediment were close to 100 percent except for two surrogates for the Anacostia Park samples that were within \pm 30 percent of 100 percent. Surrogate recoveries for semivolatiles in water and sediment were consistently low -- between 38 and 69 percent for sediments and between 56 and 91 percent for water. This indicates that these constituents may be under-reported and true concentrations in the environmental samples may be up to three-fold higher than reported values. Surrogate recoveries for Aroclors were between 51 and 101 percent for sediments and 57 to 84 percent for water. Recoveries for the surrogates of the individual congeners were variable, but also were generally low, ranging from 41 to 101 percent.

Table 4. Results of selected quality-control data for volatile organic compounds in ground-water and sediment samples collected in

 July - August 2002 at the Anacostia River stations.

[Compounds that were detected and quantified are in **Bold**. The environmental sample associated with each replicate is presented here for comparison in italics; <, less than; μ g/L, micrograms per liter; μ g/kg, micrograms per kilogram; J, estimated result, compound was detected but value was less than the laboratory reporting level; B, the associated method blank contains this analyte at a low but reportable level; Rep, field replicate; FB, field blank]

Well					
or					Tenatively identified
core number	Toluene	Methylene chloride	Chloroform	1,1-Dichloroethene	compounds (TICs)
		Water	• •		
	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	
DCMW001-02-FB	<1.0	<5.0	<1.0	<1.0	None
Trip Blank	<1.0	<5.0	<1.0	<1.0	None
Trip Blank	<1.0	<5.0	<1.0	<1.0	None
Trip Blank	<1.0	<5.0	<1.0	<1.0	None
DCMW005-02-Rep	<1.0	<5.0	<1.0	<1.0	None
DCMW005-02	<1.0	<5.0	<1.0	<1.0	None
		Sedime	<u>nt</u>		
	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	
Trip Blank	<1.0	<5.0	<1.0	<1.0	None
Trip Blank	J 0.4	J,B 2.0	<1.0	J 0.50	None
					Diphenylmethane
Trip Blank	<1.0	J 1.2	<1.0	J, 0.56	2-Ethylhexyl ester acetic acid 1 Unknown TIC
NYASOIL001-02-Rep	J 6.3	<8.6	<17	J , 7.1	1 Unknown TIC
NYASOIL001-02	J 3.8	<8.9	<18	J, 4.5	6 Unknown TICs 3-Methylheptyl actetate

Table 5. Results of selected quality-control data for semi-volatile organic compounds in ground-water and sediment samples collected in July - August 2002 at the Anacostia River stations.

[Compounds that were detected and quantified are in **Bold**; The environmental sample associated with each replicate is presented here for comparison in italics; <, less than; μ g/L, micrograms per liter; μ g/kg, micrograms per kilogram; DRO, Diesel Range Organics (for sediments); Rep, field replicate; FB, field blank; J, estimated result, compound was detected but value was less than the laboratory reporting level; --, not analyzed]

Well					
or					
core number	Acenaphthene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
			<u>Water</u>		
	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)
DCMW001-02-FB	<10	<10	<10	<10	<10
DCMW005-02-Rep	<10	<10	<10	<10	<10
DCMW005-02	<10	<10	<10	<10	<10
			<u>Sediment</u>		
	(µg/kg)	(µg/kg)	$(\mu g/kg)$	(µg/kg)	(µg/kg)
NYASOIL001-02-Rep	<570	<570	<570	<570	<570
NYASOIL001-02	<590	<590	<590	J 310	<590

Well					
or			Bis(2-ethylhexyl)		
core number	Benzo(k)fluoranthene	Benzo(ghi)perylene	phthalate	Chrysene	Dibenz(a,h)anthracene
		Water			
	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)
DCMW001-02-FB	<10	<10	<10	<10	<10
DCMW005-02-Rep	<10	<10	<10	<10	<10
DCMW005-02	<10	<10	<10	<10	<10
		Sediment			
	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
NYASOIL001-02-Rep	<570	<570	<570	<570	<570
NYASOIL001-02	<590	<590	<590	<590	<590

Table 5. Results of selected quality-control data for semi-volatile organic compounds in ground-water and sediment samples collectedin July - August 2002 at the Anacostia River stations -- continued.

Well					
or			Indeno(1,2,3-cd)		
core number	Fluoranthene	Fluorene	pyrene	Phenanthrene	Pyrene
			<u>Water</u>		
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
DCMW001-02-FB	<10	<10	<10	<10	<10
DCMW005-02-Rep	<10	<10	<10	<10	<10
DCMW005-02	<10	<10	<10	<10	<10
			Sediment		
	(µg/kg)	(µg/kg)	$(\mu g/kg)$	(µg/kg)	(µg/kg)
NYASOIL001-02-Rep	<570	<570	<570	<570	<570
NYASOIL001-02	<590	<590	<590	<590	<590

Table 5. Results of selected quality-control data for semi-volatile organic compounds in ground-water and sediment samples collectedin July - August 2002 at the Anacostia River stations -- continued.

Table 5. Results of selected quality-control data for semi-volatile organic compounds in ground-water and sediment samples collectedin July - August 2002 at the Anacostia River stations -- continued.

Well or core number	DRO	Tentatively identified compoumds (TICs)						
Water								
DCMW001-02-FB		8 Unknown TICs						
DCMW005-02-Rep		1,1,2-Trichloro 1-propene 6 Unknown TICs						
DCMW005-02		3 Unknown TICs						

	Sediment								
	(mg/kg)								
NYASOIL001-02-Rep	<6.9	1 Unknown aldol condensate 3 Unknown TICs							
NYASOIL001-02	<7.1	4 Unknown TICs Unknown aldol condensate							

Table 6. Results of selected quality-control data for the concentrations of organo-chlorine pesticides in ground-water and sediment samples collected in July - August 2002 at the Anacostia River stations.

[The environmental sample associated with each replicate is presented here for comparison in italics; <, less than; μ g/L, micrograms per liter; μ g/kg, micrograms per kilogram; Rep, field replicate; FB, field blank]

Well			
or			
core number	4,4'-DDD	4,4'-DDE	4,4'-DDT
	<u>Water</u>		
	(µg/L)	$(\mu g/L)$	(µg/L)
DCMW001-02-FB	< 0.05	< 0.05	< 0.05
DCMW005-02-Rep	< 0.05	< 0.05	< 0.05
DCMW005-02	<0.05	<0.05	<0.05
5	Sediment		
-	(µg/kg)	(µg/kg)	(µg/kg)
NYASOIL001-02-Rep	<29	<29	<29
NYASOIL001-02	<30	<30	<30

Table 7. Summary of quality-control data for concentrations of selected aroclors collected in July - August 2002 at the AnacostiaRiver stations.

[The environmental sample associated with each replicate is presented here for comparison in italics; <, less than; $\mu g/L$, micrograms per liter; $\mu g/kg$, micrograms per kilogram; Rep, field replicate; FB, field blank]

Well or core number	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total aroclors
			Wa	<u>iter</u>				
DCMW001-02-FB DCMW005-02-Rep DCMW005-02	(µg/L) <1.0 <1.0 <1.0							
			Sedi	<u>ment</u>				
NYASOIL001-02-Rep NYASOIL001-02	(μg/kg) <57 <59	(µg/kg) <57 <59	(µg/kg) <57 <59	(µg/kg) <57 <59	(µg/kg) <57 <59	(µg/kg) <57 <59	(µg/kg) <57 <59	(μg/kg) <57 <59

Table 8. Results of selected quality-control data for total metals detected in ground-water and sediment samples collected in July -August 2002 at the Anacostia River stations.

[Compounds that were detected and quantified are in **Bold**; The environmental sample associated with each replicate is presented here for comparison in italics; <, less than; μ g/L, micrograms per liter; μ g/kg, micrograms per kilogram; B, estimated result, compound was detected but value was less than the laboratory reporting level; J, the associated method blank contains this analyte at a low but reportable level; Rep, field replicate; FB, field blank]

Well									
or									
core number	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Manganese	Nickel
				<u>Water</u>					
	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	$(\mu g/L)$
DCMW001-02-FB	<2.0	< 5.0	<1.0	<1.0	B,J 0.63	<2.0	<1.0	B,J 0.24	<2.0
Lab Blank	B 0.063	B 0.099	<1.0	<1.0	B 0.28	<2.0	<1.0	B 0.13	<2.0
DCMW005-02 Rep	<2.0	B,J 3.8	B 0.063	<1.0	B,J 1.1	B , 1.0	B, 0.27	J 190	B 0.65
DCMW005-02	<2.0	B,J 3.9	B 0.063	<1.0	B,J 1.1	<2.0	B 0.24	J 190	B 0.52
				<u>Sediment</u>					
	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
Lab Blank	<200	<500	<100	<100	B 108	B 51.3	<100	B 43.0	B 21.5
Lab Blank	B 4.0	<500	<100	<100	B 77.4	B 48.5	<100	B 27.5	<100
NYASOIL001-02-Rep	<343	2,350	2,000	349	J 32,400	J 16,200	12,600	J 431,000	39,800
NYASOIL001-02	<355	2,020	1,980	303	J 29,900	J 14,300	11,700	J 1,020,000	32,700

Well							
or core number	Selenium	Silver	Thallium	Zinc	Iron	Sulfur	Mercury
core number	Selemum	Silver		Zinc	11011	Sullui	wier cur y
	I		<u>Water</u>				
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
DCMW001-02-FB	<5.0	< 5.0	<1.0	<10	<100	< 0.10	< 0.20
Lab Blank	<5.0	< 5.0	<1.0	<10	<100	< 0.10	< 0.20
DCMW005-02 Rep	<5.0	< 5.0	<1.0	В 5.9	21,000	< 0.10	< 0.20
DCMW005-02	<5.0	<5.0	<1.0	B, 7.1	21,000	<0.10	<0.20
			<u>Sediment</u>				
	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Lab Blank	<500	B 4.6	<100	<1000	<10.0	<10.0	< 0.033
Lab Blank	<500	B 54.8	<100	<1000	<10.0	<10.0	< 0.033
NYASOIL001-02-Rep	1,140	B,J 134	265	99,300	28,600	1,150	B 0.023
NYASOIL001-02	1,090	B,J 123	259	91,100	18,500	806	B 0.028

Table 8. Results of selected quality-control data for total metals detected in ground-water and sediment samples collected in July - August 2002 at the Anacostia River stations -- continued.

Table 9. Results of selected quality-control data for nutrients, total cyanide, and total phenols in ground-water and sediment samples collected in July - August 2002 at the Anacostia River stations.

[Compounds that were detected and quantified are in **Bold**; The environmental sample associated with each replicate is presented here for comparison in italics; <, less than; mg/L, milligrams per liter; mg/kg, milligrams per kilogram; B, estimated result, compound was detected but value was less than the laboratory reporting level; J, the associated method blank contains this analyte at a low but reportable level; Q, elevated reporting limit due to high analyte levels; *, ammonia as nitrogen is greater than total Kjeldahl nitrogen, but the difference in values is within the precisions of the methods; Rep, field replicate; FB, field blank]

Well	Ammonia	Nitrate/Nitrite	Total			
or	as	as	Kjeldahl	Total	Total	Total
core number	nitrogen	nitrogen	nitrogen	phosphorus	cyanide	phenols
		Wate	e <u>r</u>			
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
DCMW001-02-FB	B 0.031	< 0.10	< 0.50	< 0.050	< 0.010	< 0.020
Lab Blank	< 0.10	< 0.10	< 0.50	< 0.050	< 0.010	< 0.020
Lab Blank	< 0.10	< 0.10	< 0.50	< 0.050	B 0.0021	< 0.020
Lab Blank	< 0.10	< 0.10	< 0.50	< 0.050	< 0.010	< 0.020
DCMW005-02-Rep	0.50*	< 0.10	B 0.40 *	0.14	B,J 0.0070	< 0.020
DCMW005-02	0.48*	<0.10	B 0.39*	0.15	B,J 0.0068	<0.020
		Sedim	<u>ent</u>			
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Lab Blank	<1.0	<1.0	<25.0	В 1.9	B 0.13	<2.0
Lab Blank	<1.0	B 0.12	<25.0	<5.0	B 0.12	<2.0
NYASOIL001-02-Rep	5.7	<1.7	Q 3,340	Q 464	B,J 0.29	B , 1.9
NYASOIL001-02	7.7	<1.8	Q 5,180	Q 264	B,J 0.36	B 1.5

Table 10. Results of quality-control data for *n*-Hexane Extractable Material (oil and grease), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids, and total suspended solids samples in ground water collected in July - August 2002 at the Anacostia River stations.

[Compounds that were detected and quantified are in **Bold**; The environmental sample associated with the replicate is presented here for comparison in italics; <, less than; mg/L, milligrams per liter; B, estimated result, compound was detected but value was less than the laboratory reporting level; J, the associated method blank contains this analyte at a low but reportable level; HEM, *n*-Hexane Extractable Material; SGT, silica gel treated; Rep, field replicate; FB, field blank; --, not analyzed]

Well	Biochemical	Chemical	HEM		Total	Total
or	oxygen	oxygen	(oil and	HEM,	dissolved	suspended
core number	demand	demand	grease)	SGT	solids	solids
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
DCMW001-02-FB		B 8.0	B 1.3	< 5.0	<10	<4.0
Lab Blank	<2.0	<20	<5.0		<10	<4.0
Lab Blank	<2.0	<20	<5.0		B 8.0	<4.0
Lab Blank	<2.0	<20	B 1.4		B 8.0	<4.0
DCMW005-02-Rep	<2.0	B 5.0	<5.0	< 5.0	J 74	15
DCMW005-02	<2.0	B 9.7	<5.0	<5.0	J 77	33

Results

Summaries of field data and all chemicals that were detected and quantified are presented in tables 11 through 19. Data that are less than the reporting levels are not summarized in these table, but may be inferred from Table 3, where all reporting levels are given, or obtained from water-quality database in the USGS District office in Baltimore, Maryland. Tentatively Identified Compounds (TICs) are presented for the GC-MS methods, where spectra of organic compounds were found, but not verified or adequately quantified with internal standards.

VOCs were generally undetected except for several low-level concentrations that were similar to those found in field and laboratory blanks. Semivolatile or polyaromatic hydrocarbon compounds (PAHs) were found in some of the sediment samples, particularly the shallow versus the deep sediments, but were not found in any of the ground-water samples. Generally, lower PAHs, both for the number of compounds detected and for the concentrations, were found in the tidal flat north of Benning Road, than in the surface sediments at any of the three shore stations. Conversely, the Benning Road site had the highest concentration of Diesel-Range Organics (DRO, 260 milligrams per kilogram (mg/kg)) of any of the sites. Total Gasoline-Range Organics (GRO) were analyzed with method reporting levels of approximately 0.5 to 0.8 mg/kg. There were no detections of total GRO at or above these reporting levels in any of the sediment samples.

Of the organochlorine compounds that were analyzed, only DDT and its degradation products, DDE and DDD, were found in the surface sediments at Kenilworth Aquatic Gardens and Anacostia Park. DDT has been banned since 1973, so the detections at Kenilworth Aquatic Gardens demonstrate the persistence of this compound and its degradation products in the environment. The concentrations of DDE and DDT in surface sediments at this site were 120 and 100 micrograms per kilogram (μ g/kg), respectively.

Of the aroclor mixtures that were analyzed, only Aroclor 1260 was detected (table 15). This mixture was found in similar concentrations of 160 to 180 μ g/kg in surface sediments at all three shore stations. Aroclor 1260 is a complex mixture of a number of PCB congeners defined with a numerical identifier of the percentage of chlorines in the molecules (e.g. Aroclor 1260 has 60 percent chlorine). Figure 2 (U.S. Environmental Protection Agency, 2002) shows a typical distribution of the congeners for Aroclor 1260. A complete analysis of individual congeners was also determined on the mudflat sample from Benning Road, and most of these congeners were detected in the picogram to nanogram per liter concentration range (table 16). Complete PCB congener analysis was not done for any of the other samples.

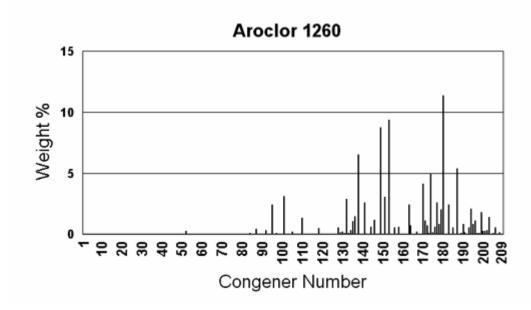


Figure 2. Plot of Aroclor 1260 composition data (from U.S. Environmental Protection Agency, 2002)

Trace metals were found in most of the sediment samples (table 17). Concentrations of trace metals in average crustal materials are shown at the bottom of this table for comparison to the sediment concentrations and appear to be similar in range. The highest concentrations of lead, arsenic, silver, mercury, and sulfur were found in the shallow sediment at the Kenilworth Aquatic Gardens, and in some cases these were an order of magnitude or more higher than occurs in average crustal material. Concentrations of selenium in almost all of the sediment samples were also more than an order of magnitude higher than average crustal material.

Concentrations of Kjeldahl nitrogen and total phosphorus appeared to be somewhat high in the sediment materials, and were found in moderate to high concentrations in the ground water as well (table 18).

Well		Water	pН	Dissolved	Specific		ANC
or		temperature	(standard	oxygen	conductance	Turbidity	(mg/L as
core number	Date	(°C)	units)	(mg/L)	(µS/cm)	(NTU)	CaCO ₃)
DCMW001-02	8/21/2002	15.5	6.1	<1	327	0.72	141
DCMW004-02	8/21/2002	15.4	6.1	<1	286	2.7	105
DCMW002-02	8/22/2002	17.6	5.0	5.9	305	2.6	4.0
DCMW003-02	8/22/2002	17.3	6.5	<1	91	0.85	30.5
DCMW005-02	8/23/2002	17.1	6.3	<1	153	2.6	57.0

Table 11. Field parameters for ground water collected at Anacostia River wells in July - August 2002. [<, less than; °C, degrees Celsius; ANC, acid-neutralizing capacity or unfiltered alkalinity; mg/L as CaCO₃, milligrams per liter as calcium carbonate; μS/cm, microsiemens per centimeter; NTU, Nephelometric Turbidity Units; mg/L, milligrams per liter]

Table 12. Summary of volatile organic compounds detected in ground-water and sediment samples collected in July - August 2002 at the Anacostia River stations.

[Compounds that were detected and quantified are in **Bold**; <, less than; $\mu g/L$, micrograms per liter; $\mu g/kg$, micrograms per kilogram; J, estimated result, compound was detected but value was less than the laboratory reporting level; --, not analyzed]

Well					
or core number	Toluene	Methylene chloride	Chloroform	1,1-Dichlorethene	Tentatively identified compounds (TICs)
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
DCMW001-02	<1.0	<5.0	<1.0	<1.0	None
DCMW004-02	<1.0	<5.0	<1.0	<1.0	None
DCMW002-02	<1.0	<5.0	5.7	<1.0	2-Ethylthiocyclohexane
DCMW003-02	<1.0	<5.0	<1.0	<1.0	None
DCMW005-02	<1.0	<5.0	<1.0	<1.0	None
	(µg/kg)	<u>Sedin</u> (µg/kg)	<u>nent</u> (µg/kg)	(µg/kg)	
DCHP01-02	<7.4	J 2.0	<7.4	<7.4	1 Unknown TIC Decahydro-naphthalene 7-Methyl-tridecane 2,6,10- trimethyl-Dodecane
NYASOIL001-02	J 3.8	<8.9	<18	J, 4.5	6 Unknown TICs 3-Methylheptyl actetate
KAGSOIL001-02	5.5	<5.3	<11	<5.3	None
KAGSOIL002-02	<5.5	<5.5	<11	<5.5	2 Unknown TICs 2-Ethylhexyl ester acetic acid
APSOIL001-02	<5.7	<5.7	<11	J, 1.7	None
APSOIL002-02	J 3.6	<8.4	<17	J, 4.8	3 Unknown TICs 2-Ethylhexyl ester acetic acid

Table 13. Summary of semi-volatile organic compounds detected in ground-water and sediment samples collected in July - August 2002 at the Anacostia River stations.

[Compounds that were detected and quantified are in **Bold**; <, less than; μ g/L, micrograms per liter; μ g/kg, micrograms per kilogram; J, estimated result, compound was detected but value was less than the laboratory reporting level; DRO, Diesel-Range Organics (for sediments only); --, not analyzed]

Well					
or core number	Acenaphthene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
			<u>Water</u>		
	$(\mu g/L)$	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)
DCMW001-02	<10	<10	<10	<10	<10
DCMW004-02	<10	<10	<10	<10	<10
DCMW002-02	<10	<10	<10	<10	<10
DCMW003-02	<10	<10	<10	<10	<10
DCMW005-02	<10	<10	<10	<10	<10
	1		<u>Sediment</u>		
	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
DCHP01-02	<490	<490	<490	<490	<490
NYASOIL001-02	<590	<590	<590	J 310	<590
KAGSOIL001-02	J 97	360	1,100	920	770
KAGSOIL002-02	<370	<370	<370	<370	<370
APSOIL001-02	<380	<380	J 56	<380	<380
APSOIL002-02	<550	<550	<550	<550	<550

Well or core number	Benzo(k)fluoranthene	Benzo(ghi)perylene	Bis (2-ethylhexyl) phthalate	Chrysene	Dibenz(a,h)anthracene					
Water										
	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	(µg/L)					
DCMW001-02	<10	<10	<10	<10	<10					
DCMW004-02	<10	<10	<10	<10	<10					
DCMW002-02	<10	<10	<10	<10	<10					
DCMW003-02	<10	<10	<10	<10	<10					
DCMW005-02	<10	<10	<10	<10	<10					

Table 13. Summary of semi-volatile organic compounds detected in ground-water and sediment samples collected in July - August2002 at the Anacostia River stations -- continued.

Sediment

	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
DCHP01-02	<490	<490	J 340	<490	<490
NYASOIL001-02	<590	<590	<590	<590	<590
KAGSOIL001-02	840	520	<350	990	J 250
KAGSOIL002-02	<370	<370	<370	<370	<370
APSOIL001-02	<380	<380	<380	J 74	<380
APSOIL002-02	<550	<550	<550	<550	<550

Well or			Indeno(1,2,3-cd)							
core number	Fluoranthene	Fluorene	pyrene	Phenanthrene	Pyrene					
Water										
	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	$(\mu g/L)$					
DCMW001-02	<10	<10	<10	<10	<10					
DCMW004-02	<10	<10	<10	<10	<10					
DCMW002-02	<10	<10	<10	<10	<10					
DCMW003-02	<10	<10	<10	<10	<10					
DCMW005-02	<10	<10	<10	<10	<10					

Table 13. Summary of semi-volatile organic compounds detected in ground-water and sediment samples collected in July - August2002 at the Anacostia River stations -- continued.

Sediment											
	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)						
DCHP01-02	<490	<490	<490	<490	J 91						
NYASOIL001-02	<590	<590	<590	<590	<590						
KAGSOIL001-02	2,400	J 100	490	1,400	1,900						
KAGSOIL002-02	<370	<370	<370	<370	<370						
APSOIL001-02	<380	<380	<380	<380	<380						
APSOIL002-02	<550	<550	<550	<550	<550						

Table 13. Summary of semi-volatile organic compounds detected in ground-water andsediment samples collected in July - August 2002 at the Anacostia River stations --continued.

Well		Tentatively identified
core number	DRO	compounds (TICs)
	Wa	ater
DCMW001-02		5 Unknown TICs 1,2,3-Trichloro-1-propene
DCMW004-02		5 Unknown TICs
DCMW002-02		4 Unknown TICs
DCMW003-02		2 Unknown TICs 1,1,2-Trichloro-1-propene
DCMW005-02		3 Unknown TICs

<u>Sediment</u>							
	(mg/kg)						
		10 Unknown TICs					
		Unknown aldol condensate					
DCHP01-02	260	5-Methyl-undecane					
		3,7-Dimethyl-nonane					
		2-Methyl-8-propyl-dodecane					
NYASOIL001-02	<7.1	4 Unknown TICs					
NTASOIL001-02	< <i>1</i> .1	Unknown aldol condensate					
		3-Unknown TICs					
		Unknown aldol condensate					
KAGSOIL001-02	33	2-Methyl anthracene					
		4H-cyclopenta[def]phenanthrene					
		9,10-Anthracenedione					
KAGSOIL002-02	<4.4	4 Unknown TICs					
KAUSUIL002-02	<4.4	Unknown aldol condensate					
APSOIL001-02	<4.6	4 Unknown TICs					
AFSOIL001-02	<4.0	Unknown aldol condensate					
APSOIL002-02	<6.7	4 Unknown TICs					
AFSOIL002-02	<0.7	Unknown aldol condensate					

Table 14. Summary of the concentrations of organo-chlorine pesticides detected in ground-water and sediment samples collected in July - August 2002 at the Anacostia River stations.

[Compounds that were detected and quantified are in **Bold**; <, less than; μ g/L, micrograms per liter; μ g/kg, micrograms per kilogram; J, estimated result, compound was detected but value was less than the laboratory reporting level]

Well			
or			
core number	4,4'-DDD	4,4'-DDE	4,4'-DDT
	<u>Water</u>		
	(µg/L)	(µg/L)	(µg/L)
DCMW001-02	< 0.05	< 0.05	< 0.05
DCMW004-02	< 0.05	< 0.05	< 0.05
DCMW002-02	< 0.05	< 0.05	< 0.05
DCMW003-02	< 0.05	< 0.05	< 0.05
DCMW005-02	< 0.05	< 0.05	< 0.05
	<u>Sediment</u>		
	(µg/kg)	(µg/kg)	(µg/kg)
DCHP01-02	<50	<50	<50
NYASOIL001-02	<30	<30	<30
KAGSOIL001-02	J 7.0	120	100
KAGSOIL002-02	<1.9	<1.9	<1.9
APSOIL001-02	J 4.5	J 5.8	J 11
APSOIL002-02	<28	<28	<28

Well or core number	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total aroclors
			W	ater				
	(µg/L)	(µg/L)						
DCMW001-02	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DCMW004-02	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DCMW002-02	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DCMW003-02	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DCMW005-02	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
			Sed	<u>iment</u>				
	(µg/kg)	(µg/kg)	$(\mu g/kg)$	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
DCHP01-02	<49	<49	<49	<49	<49	<49	180	180
NYASOIL001-02	<59	<59	<59	<59	<59	<59	<59	<59
KAGSOIL001-02	<35	<35	<35	<35	<35	<35	160	160
KAGSOIL002-02	<37	<37	<37	<37	<37	<37	<37	<37
APSOIL001-02	<38	<38	<38	<38	<38	<38	180	180
APSOIL002-02	<55	<55	<55	<55	<55	<55	<55	<55

Table 15. Summary of the concentrations of selected aroclors collected in July - August 2002 at the Anacostia River stations. [Aroclors that were detected and quantified are in **Bold**; <, less than; $\mu g/L$, micrograms per liter; $\mu g/kg$, micrograms per kilogram]

Table 16. Total polychlorinated biphenyls (PCBs) congeners measured in stream sediment at hoverprove station DCHP01-02 on July 2, 2002.

[All units are in pg/g (picograms per gram); Congeners that were detected and quantified are in **Bold**; <, less than; C, co-eluting isomer; E, estimated result because the concentration exceeded the calibration range; B, the associated method blank contains this analyte at a low but reportable level; G, elevated reporting limit due to matrix interference; JA, the analyte was positively identified but the quantitation is an estimate; ¹, IUPAC PCB Congener 109; ², IUPAC Congener PCB 107; ³, IUPAC PCB Congener 108; ⁴, IUPAC PCB Congener 200; ⁵, IUPAC Congener PCB 201; ⁶, IUPAC PCB Congener 199].

<u>PCB 1</u>	PCB 2	<u>PCB 3</u>	<u>РСВ 4</u>	<u>PCB 5</u>	<u>PCB 6</u>	<u>PCB 7</u>	<u>РСВ 8</u>
110	<29	160	С 210	C 1,800	250	C 100	С 1,800
<u>РСВ 9</u>	<u>PCB 10</u>	<u>PCB 11</u>	<u>РСВ 12</u>	<u>РСВ 13</u>	<u>PCB 14</u>	<u>PCB 15</u>	<u>PCB 16</u>
С 100	180	<29	С 120	С 120	<29	1,200	C 2,200
<u>PCB 17</u>	<u>PCB 18</u>	<u>РСВ 19</u>	<u>PCB 20</u>	<u>РСВ 21</u>	<u>PCB 22</u>	<u>PCB 23</u>	<u>РСВ 24</u>
1,200	2,900	200	C 2,900	С 2,900	2,000	<29	С 270
<u>PCB 25</u>	<u>PCB 26</u>	<u>РСВ 27</u>	<u>PCB 28</u>	<u>PCB 29</u>	<u>PCB 30</u>	<u>PCB 31</u>	<u>PCB 32</u>
390	880	С 270	E 4,700	31	<29	E 4,300	C 2,200
<u>PCB 33</u>	<u>PCB 34</u>	<u>PCB 35</u>	<u>PCB 36</u>	<u>PCB 37</u>	<u>PCB 38</u>	<u>PCB 39</u>	<u>PCB 40</u>
C 2,900	<29	100	<29	2,100	<29	<29	<29
<u>PCB 41</u>	<u>PCB 42</u>	<u>РСВ 43</u>	<u>PCB 44</u>	<u>PCB 45</u>	<u>PCB 46</u>	<u>PCB 47</u>	<u>PCB 48</u>
C 2,500	930	С,Е 3,100	B 2,800	600	240	C 1,200	C 1,200
<u>PCB 49</u>	<u>PCB 50</u>	<u>PCB 51</u>	<u>PCB 52</u>	<u>PCB 53</u>	<u>PCB 54</u>	<u>PCB 55</u>	<u>PCB 56</u>
C,E, 3,100	<29	200	C,E,B 3,900	530	<29	<29	C,E 3,200
<u>PCB 57</u>	<u>PCB 58</u>	<u>PCB 59</u>	<u>PCB 60</u>	<u>PCB 61</u>	<u>PCB 62</u>	<u>PCB 63</u>	<u>PCB 64</u>
470	170	300	C,E 3,200	C 2,600	<29	160	C 2,500

$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
PCB 73 c,E,B 3,900PCB 74 C 2,600PCB 75 C 1,200PCB 76 E,C 4,600PCB 77 G <560								
C,E,B 3,900C 2,600C 1,200E,C 4,600G <560	<29	C,E 3,100	<29	C 2,500	<29	E 5,500	940	36
C,E,B 3,900C 2,600C 1,200E,C 4,600G <560 <29 47C,E 3,100 $PCB 81$ G <79	DCD 72		DCD 75		DCD 77	DCD 70	DCD 70	
PCB 81 G <79PCB 82 1,100PCB 83 C 310PCB 84 1,500PCB 85 C 1,000PCB 86 C,E 3,300PCB 87 C,E 3,300PCB 88 PCB 89 C,E,B 7,400PCB 90 C,E,B 7,400PCB 91 800PCB 92 1,800PCB 93 C,E,B 7,100PCB 94 32PCB 95 C,E,B 7,100PCB 96 41PCB 97 C,E 3,300PCB 98 C 160PCB 99 E 3,000PCB 100 <29								
$\overline{G} < 79$ $\overline{I,100}$ $\overline{C} 310$ $\overline{I,500}$ $\overline{C} 1,000$ $\overline{C,E,3,300}$ $\overline{C,E,3,300}$ $\overline{-29}$ $\underline{PCB 89}$ $\mathbf{C,E,B 7,400}$ $\underline{PCB 91}$ 800 $\underline{PCB 92}$ $\mathbf{I,800}$ $\underline{PCB 93}$ $\mathbf{C,E,B 7,100}$ $\underline{PCB 94}$ 32 $\underline{PCB 95}$ $\mathbf{C,E,B 7,100}$ $\underline{PCB 96}$ 41 $\underline{PCB 97}$ $\mathbf{C,E 3,300}$ $\underline{PCB 98}$ $\mathbf{C,E,B 3,300}$ $\underline{PCB 99}$ $\mathbf{E 3,000}$ $\underline{PCB 100}$ $\mathbf{-29}$ $\underline{PCB 102}$ $\mathbf{C,E,B 7,400}$ $\underline{PCB 103}$ $\mathbf{-29}$ $\underline{PCB 104}$ $\mathbf{-29}$ $\underline{PCB 105}$ $\mathbf{C,E 3,300}$ $\underline{PCB 106}$ $\mathbf{C,E,B 4,500}$ $\underline{PCB 107^1}$ $\mathbf{C 530}$ $\underline{PCB 108^2}$ $\mathbf{C 310}$ $\underline{PCB 110}$ $\mathbf{C 530}$ $\underline{PCB 111}$ $\mathbf{E 7,500}$ $\underline{PCB 111}$ $\mathbf{C,E 3,300}$ $\underline{PCB 112}$ $\mathbf{-29}$ $\underline{PCB 113}$ $\mathbf{-29$ $\underline{PCB 115}$ $\mathbf{C,E 3,300}$ $\underline{PCB 116}$ $\mathbf{C,E 3,300}$ $\underline{PCB 112}$ $\mathbf{C,E 3,300$ $\underline{PCB 120}$ $\mathbf{C,E 3,300$ $\underline{PCB 126}$ $\mathbf{C,E 3,300$ $\underline{PCB 127}$ $\mathbf{C,E 3,300$ $\underline{PCB 128}$ $\mathbf{C,E 3,300$ $\underline{PCB 126}$ $\mathbf{C,E 3,300$ $\underline{PCB 133}$ $\mathbf{C,E 3,300$ $\underline{PCB 133}$ $\mathbf{C,E 3,300$ $\underline{PCB 134}$ $\mathbf{C,E 3,900$ $\underline{PCB 136}$ $\mathbf{C,E 3,900$ $\underline{PCB 136}$ $\mathbf{C,E 3,900$ $\underline{PCB 136}$ $\mathbf{C,E 3,900$ $\underline{PCB 136}$ $\mathbf{C,E 3,900$ $\underline{PCB 144}$ $\underline{PCB 143}$ $PCB 144$	С,Е,В 3,900	C 2,600	C 1,200	E,C 4,600	G <560	<29	47	C,E 3,100
$\overline{G} < 79$ $\overline{I,100}$ $\overline{C} 310$ $\overline{I,500}$ $\overline{C} 1,000$ $\overline{C,E,3,300}$ $\overline{C,E,3,300}$ $\overline{-29}$ $\underline{PCB 89}$ $\mathbf{C,E,B 7,400}$ $\underline{PCB 91}$ 800 $\underline{PCB 92}$ $\mathbf{I,800}$ $\underline{PCB 93}$ $\mathbf{C,E,B 7,100}$ $\underline{PCB 94}$ 32 $\underline{PCB 95}$ $\mathbf{C,E,B 7,100}$ $\underline{PCB 96}$ 41 $\underline{PCB 97}$ $\mathbf{C,E 3,300}$ $\underline{PCB 98}$ $\mathbf{C,E,B 3,300}$ $\underline{PCB 99}$ $\mathbf{E 3,000}$ $\underline{PCB 100}$ $\mathbf{-29}$ $\underline{PCB 102}$ $\mathbf{C,E,B 7,400}$ $\underline{PCB 103}$ $\mathbf{-29}$ $\underline{PCB 104}$ $\mathbf{-29}$ $\underline{PCB 105}$ $\mathbf{C,E 3,300}$ $\underline{PCB 106}$ $\mathbf{C,E,B 4,500}$ $\underline{PCB 107^1}$ $\mathbf{C 530}$ $\underline{PCB 108^2}$ $\mathbf{C 310}$ $\underline{PCB 110}$ $\mathbf{C 530}$ $\underline{PCB 111}$ $\mathbf{E 7,500}$ $\underline{PCB 111}$ $\mathbf{C,E 3,300}$ $\underline{PCB 112}$ $\mathbf{-29}$ $\underline{PCB 113}$ $\mathbf{-29$ $\underline{PCB 115}$ $\mathbf{C,E 3,300}$ $\underline{PCB 116}$ $\mathbf{C,E 3,300}$ $\underline{PCB 112}$ $\mathbf{C,E 3,300$ $\underline{PCB 120}$ $\mathbf{C,E 3,300$ $\underline{PCB 126}$ $\mathbf{C,E 3,300$ $\underline{PCB 127}$ $\mathbf{C,E 3,300$ $\underline{PCB 128}$ $\mathbf{C,E 3,300$ $\underline{PCB 126}$ $\mathbf{C,E 3,300$ $\underline{PCB 133}$ $\mathbf{C,E 3,300$ $\underline{PCB 133}$ $\mathbf{C,E 3,300$ $\underline{PCB 134}$ $\mathbf{C,E 3,900$ $\underline{PCB 136}$ $\mathbf{C,E 3,900$ $\underline{PCB 136}$ $\mathbf{C,E 3,900$ $\underline{PCB 136}$ $\mathbf{C,E 3,900$ $\underline{PCB 136}$ $\mathbf{C,E 3,900$ $\underline{PCB 144}$ $\underline{PCB 143}$ $PCB 144$	PCB 81	PCB 82	PCB 83	PCB 84	PCB 85	PCB 86	PCB 87	PCB 88
PCB 89 C,E,B 7,400 PCB 90 C,E,B 7,400 PCB 91 800 PCB 92 1,800 PCB 93 C,E,B 7,100 PCB 94 32 PCB 95 C,E,B 7,100 PCB 96 41 PCB 97 C,E 3,300 PCB 98 C 160 PCB 99 E 3,000 PCB 100 PCB 101 C,E,B 7,400 PCB 102 C 160 PCB 103 PCB 104 <29								
C,E,B 7,400C,E,B 7,400 $\overline{800}$ $\overline{1,800}$ C,E,B 7,100 $\overline{32}$ C,E,B 7,100 $\overline{41}$ $PCB 97$ C,E 3,300 $PCB 98$ C 160 $PCB 99$ E 3,000 $PCB 100$ <29 $PCB 101$ C,E,B 7,400 $PCB 102$ C 160 $PCB 103$ <29 $PCB 104$ <29 $PCB 105$ C,E 3,300 $PCB 106$ C 530 $PCB 107^1$ C 530 $PCB 108^2$ C 310 $PCB 109^3$ C 530 $PCB 110$ E 7,500 $PCB 111$ C,E 3,300 $PCB 112$ <29 $PCB 113$ <29 $PCB 114$ 100 $PCB 115$ C,E 3,300 $PCB 116$ C,E 3,300 $PCB 117$ C,E 3,300 $PCB 118$ C,E 3,300 $PCB 119$ <210 $PCB 120$ C 1,000 $PCB 121$ <29 $PCB 122$ 67 $PCB 123$ G <330 $PCB 124$ <300 $PCB 125$ <20 $PCB 126$ <20 $PCB 127$ C,E 3,300 $PCB 128$ <210 $PCB 129$ <29 $PCB 130$ <29 $PCB 131$ <29 $PCB 131$ <20 $PCB 132$ <20 $PCB 133$ <20 $PCB 133$ <20 $PCB 134$ <20 $PCB 135$ <20 $PCB 136$ <20 $PCB 137$ $PCB 138$ $PCB 139$ <20 $PCB 140$ <20 $PCB 141$ <20 $PCB 143$ <20 $PCB 144$	0 (1)	1,100	0.010	1,000	0 1,000	0,110,000	C,L 5,500	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PCB 89	PCB 90	PCB 91	PCB 92	PCB 93	PCB 94	PCB 95	PCB 96
C,E 3,300 C 160 E 3,000 <29	C,E,B 7,400	C,E,B 7,400	800	1,800	C,E,B 7,100	32	C,E,B 7,100	41
C,E 3,300 C 160 E 3,000 <29								
PCB 105 PCB 106 PCB 107 ¹ PCB 108 ² PCB 109 ³ PCB 110 PCB 111 PCB 111 PCB 112 PCB 13 PCB 114 PCB 115 PCB 116 PCB 117 PCB 118 PCB 119 PCB 120 PCB 121 PCB 122 PCB 122 PCB 123 PCB 123 PCB 124 PCB 125 PCB 126 PCB 127 PCB 128 PCB 129 PCB 130 PCB 131 PCB 131 PCB 132 PCB 132 PCB 133 PCB 133 PCB 134 PCB 135 PCB 136 PCB 137 PCB 138 PCB 139 PCB 140 PCB 141 PCB 141 PCB 142 PCB 143 PCB 144								
C,B 1,800 C,E,B 4,500 C 530 C 310 C 530 E 7,500 C,E 3,300 <29 PCB 113 PCB 114 PCB 115 PCB 116 PCB 117 PCB 118 PCB 119 PCB 120 PCB 130 PCB 130 PCB 130 PCB 130 PCB 130 PCB 144 PCB 143 PCB 144	C,E 3,300	C 160	E 3,000	<29	С,Е,В 7,400	C 160	<29	<29
C,B 1,800 C,E,B 4,500 C 530 C 310 C 530 E 7,500 C,E 3,300 <29 PCB 113 PCB 114 PCB 115 PCB 116 PCB 117 PCB 118 PCB 119 PCB 120 PCB 130 PCB 130 PCB 130 PCB 130 PCB 130 PCB 144 PCB 143 PCB 144	DCD 105	DCD 107	$\mathbf{D}\mathbf{C}\mathbf{D}$ 107 ¹	DCD 100^{2}	DCD 100^3	DCD 110	DCD 111	DCD 112
PCB 113 PCB 114 PCB 115 PCB 116 PCB 117 PCB 118 PCB 119 PCB 120 29 100 C,E 3,300 C,E 3,300 C,E 3,300 C,E 3,300 C,E,B 4,500 210 C 1,000 PCB 121 PCB 122 PCB 123 PCB 124 PCB 125 PCB 126 PCB 127 PCB 128 <29								
<29 100 C,E 3,300 C,E 3,300 C,E 3,300 C,E,B 4,500 210 C 1,000 PCB 121 PCB 122 PCB 123 PCB 124 PCB 125 PCB 126 PCB 127 PCB 128 <29 67 G < 330 PCB 132 PCB 132 PCB 132 PCB 133 PCB 133 PCB 133 PCB 133 PCB 133 PCB 134 PCB 135 PCB 136 PCB 136 PCB 137 PCB 138 PCB 139 PCB 140 PCB 141 PCB 142 PCB 143 PCB 144	С,В 1,800	С,Е,В 4,500	C 530	C 310	C 530	E 7,500	C,E 3,300	<29
<29	PCB 113	PCB 114	PCB 115	PCB 116	PCB 117	PCB 118	PCB 119	PCB 120
PCB 121 PCB 122 PCB 123 PCB 124 PCB 125 PCB 126 PCB 127 PCB 128 <29								
<th< th=""><th></th><th>100</th><th>C,E 5,500</th><th>С,Е 5,500</th><th>C,E 3,500</th><th>C,E,D 4,500</th><th>210</th><th>C 1,000</th></th<>		100	C,E 5,500	С,Е 5,500	C,E 3,500	C,E,D 4,500	210	C 1,000
<th< td=""><td>PCB 121</td><td>PCB 122</td><td>PCB 123</td><td>PCB 124</td><td>PCB 125</td><td>PCB 126</td><td>PCB 127</td><td>PCB 128</td></th<>	PCB 121	PCB 122	PCB 123	PCB 124	PCB 125	PCB 126	PCB 127	PCB 128
PCB 129 PCB 130 PCB 131 PCB 132 PCB 133 PCB 133 PCB 135 PCB 135 PCB 136 560 940 C,E 3,400 C,E 4,700 320 850 C,E 3,900 2,800 PCB 137 PCB 138 PCB 139 PCB 140 PCB 141 PCB 142 PCB 143 PCB 144								
560 940 C,E 3,400 C,E 4,700 320 850 C,E 3,900 2,800 PCB 137 PCB 138 PCB 139 PCB 140 PCB 141 PCB 142 PCB 143 PCB 144					, ,		, ,	,
<u>PCB 137</u> <u>PCB 138</u> <u>PCB 139</u> <u>PCB 140</u> <u>PCB 141</u> <u>PCB 142</u> <u>PCB 143</u> <u>PCB 144</u>	<u>PCB 129</u>	<u>PCB 130</u>	<u>PCB 131</u>	<u>PCB 132</u>	<u>PCB 133</u>	<u>PCB 134</u>	<u>PCB 135</u>	<u>PCB 136</u>
	560	940	C,E 3,400	С,Е 4,700	320	850	С,Е 3,900	2,800
<u>320 C,E 18,000 C,E,B 18,000 72 E 5,100 C,E 3,400 <29 C,E 3,900</u>								
	320	C,E 18,000	C,E,B 18,000	72	E 5,100	C,E 3,400	<29	C,E 3,900

 Table 16. Total PCB congeners measured in stream sediment at hoverprove station DCHP01-02 on July 2, 2002 -- continued.

<u>PCB 145</u>	<u>PCB 146</u>	<u>PCB 147</u>	<u>PCB 148</u>	<u>PCB 149</u>	<u>PCB 150</u>	<u>PCB 151</u>	<u>PCB 152</u>
<29	<29	150	<29	C,E,B 18,000	<29	E 6,500	<29
<u>PCB 153</u>	<u>PCB 154</u>	<u>PCB 155</u>	<u>PCB 156</u>	<u>PCB 157</u>	<u>PCB 158</u>	<u>PCB 159</u>	<u>PCB 160</u>
E 19,000	180	<29	1,100	140	C 1,600	290	C 1,600
<u>PCB 161</u>	<u>PCB 162</u>	<u>PCB 163</u>	<u>PCB 164</u>	<u>PCB 165</u>	<u>PCB 166</u>	<u>PCB 167</u>	<u>PCB 168</u>
<29	180	C,E 18,000	C,E 18,000	C,E 3,400	34	450	C,E 4,700
<u>PCB 169</u>	<u>PCB 170</u>	<u>PCB 171</u>	<u>PCB 172</u>	<u>PCB 173</u>	<u>PCB 174</u>	<u>PCB 175</u>	<u>PCB 176</u>
7.0	C,E,B 8,600	2,300	C,1,400	180	E 10,000	410	1,200
<u>PCB 177</u>	<u>PCB 178</u>	<u>PCB 179</u>	<u>PCB 180</u>	<u>PCB 181</u>	<u>PCB 182</u>	<u>PCB 183</u>	<u>PCB 184</u>
E 5,700	1,900	E 3,900	E ,B 19,000	<29	C,E 11,000	E 5500	<29
<u>PCB 185</u>	<u>PCB 186</u>	<u>PCB 187</u>	<u>PCB 188</u>	<u>PCB 189</u>	<u>PCB 190</u>	<u>PCB 191</u>	<u>PCB 192</u>
1,200	<29	C,E 11,000	<29	330	C,E,B 8,600	370	C 1,400
<u>PCB 193</u>	<u>PCB 194</u>	<u>PCB 195</u>	<u>PCB 196</u>	<u>PCB 197</u>	<u>PCB 198</u>	<u>PCB 199⁴</u>	PCB 200 ⁵
1,000	E 4,000	1,400	C,E 5,600	180	270	E 4,600	670
<u>PCB 201⁶</u>	<u>PCB 202</u>	<u>PCB 203</u>	<u>PCB 204</u>	<u>PCB 205</u>	<u>PCB 206</u>	<u>РСВ 207</u>	<u>PCB 208</u>
660	650	C,E 5,600	<29	230	2,000	170	380
<u>PCB 209</u> B 730							

 Table 16. Total PCB congeners measured in stream sediment at hoverprove station DCHP01-02 on July 2, 2002 -- continued.

Table 17. Summary of the concentrations of total metals detected in ground-water and sediment samples collected in July - August 2002 at the Anacostia River stations.

[Compounds that were detected and quantified are in **Bold**; For comparison in the sediment samples, average crustal abundances of the elements are presented from Lide (1996); <, less than; μ g/L, micrograms per liter; mg/L, milligrams per liter; μ g/kg, micrograms per kilogram; mg/kg, milligrams per kilogram; B, estimated result, compound was detected but value was less than the laboratory reporting level; J, the associated method blank contains this analyte at a low but reportable level]

Well										
or				~	~	~				
core number	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Manganese	Nickel	
	Water									
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
DCMW001-02	B,J 0.073	B,J 0.44	B 0.048	<1.0	B,J 1.1	<2.0	<1.0	J 2,300	B 0.99	
DCMW004-02	<2.0	B,J 0.54	B 0.059	<1.0	B,J 1.1	B 0.76	B 0.16	J 1,800	B 0.94	
DCMW002-02	<2.0	B,J 0.20	B 0.15	B 0.54	B,J 0.67	B 0.88	<1.0	J 120	8.0	
DCMW003-02	<2.0	B,J 2.4	<1.0	<1.0	B,J 0.62	<2.0	<1.0	J 220	B 0.76	
DCMW005-02	<2.0	B,J 3.9	B 0.063	<1.0	B,J 1.1	<2.0	B 0.24	J 190	B 0.52	
				Sedimen	t					
	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	<u>.</u> (µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	
DCHP01-02	<294	(μg/kg) 4,510	(µg/Kg) 1,200	(µg/kg) 469	(μg/kg) J 53,800	(µg/kg) J 23,100	(µg/kg) 33,900	J 266, 000	(µg/kg) J 14,500	
NYASOIL001-02	<355	2,020	1,200 1,980	303	J 29,900	J 14,300	33,900 11,700	J 1,020,000	32,700	
KAGSOIL001-02	B,J 62.9	2,020 6,490	681	303	J 29,900 J 25,500	J 14,300 J 23,900	197,000	J 214,000	32,700 12,600	
KAGSOIL001-02 KAGSOIL002-02	B,J 02.9 B,J 11.9	0,490 2,210	409	заз В 57.3	J 25,500 J 11,100	J 23,900 J 7,340	3,190	J 122,000	8,420	
APSOIL002-02 APSOIL001-02	B,J 11.9 B,J 11.5		409 977	ы 57.5 362			-			
APSOIL001-02 APSOIL002-02	,	3,850 2,420			J 30,700	J 22,600	58,500 12,800	J 536,000	19,600 28 200	
AFS01L002-02	<335	2,430	1,590	307	J 26,700	J 15,400	12,800	J 949,000	28,200	
			Avera	ge crustal a	bundance					
	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	
	200	1,800	2,800	150	102,000	60,000	14,000	950,000	84,000	

Well							
or							
core number	Selenium	Silver	Thallium	Zinc	Iron	Sulfur	Mercury
			<u>Water</u>				
	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
DCMW001-02	<5.0	<5.0	<1.0	B 8.2	47,000	0.26	B 0.035
DCMW004-02	<5.0	< 5.0	<1.0	B 7.2	38,000	0.15	B 0.043
DCMW002-02	B 0.65	< 5.0	<1.0	14	680	21	< 0.20
DCMW003-02	<5.0	< 5.0	<1.0	B 6.9	14,000	1.7	< 0.20
DCMW005-02	<5.0	< 5.0	<1.0	B , 7.1	21,000	< 0.10	< 0.20
			<u>Sediment</u>				
	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
DCHP01-02	1,010	J 397	264	81,300	23,700	282	0.11
NYASOIL001-02	1,090	B,J 123	259	91,100	18,500	806	B 0.028
KAGSOIL001-02	672	J 2,500	146	88,700	14,600	454	0.36
KAGSOIL002-02	B 182	B,J 11.3	B 49.9	56,400	16,000	46.1	< 0.037
APSOIL001-02	792	J 1,130	217	82,600	22,900	575	0.26
APSOIL002-02	963	B,J 117	229	81,500	33,000	867	B 0.033
				_			
		Averag	<u>e crustal ab</u>	undance			
	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	50	75	850	70,000	56,300	250	0.085

Table 17. Summary of the concentrations of total metals detected in ground-water and sediment samples collected in July - August2002 at the Anacostia River stations -- continued.

Table 18. Summary of the concentrations of nutrients, total cyanide, and total phenols in ground-water and sediment samples collected in July - August 2002 at the Anacostia River stations

[Compounds or measurements that were detected and quantified are in **Bold**; <, less than; mg/L, milligrams per liter; mg/kg, milligrams per kilogram; B, estimated result, compound was detected but value was less than the laboratory reporting level; J, the associated method blank contains this analyte at a low but reportable level; Q, elevated reporting limit due to high analyte levels; --, not analyzed; *, ammonia (as nitrogen) is greater than total Kjeldahl nitrogen, but the difference in values is within the precision of the methods]

Well	Ammonia	Nitrate plus	Total			
or	as	nitrite	Kjeldahl	Total	Total	Total
core number	nitrogen	as nitrogen	nitrogen	phosphorus	cyanide	phenols
	_	W	ater			
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
DCMW001-02	2.1	< 0.10	2.3	0.49	< 0.010	B 0.0034
DCMW004-02	1.5	< 0.10	1.8	0.42	< 0.010	< 0.020
DCMW002-02	< 0.10	6.9	< 0.50	< 0.050	< 0.010	< 0.020
DCMW003-02	0.14	< 0.10	< 0.50	0.079	< 0.010	< 0.020
DCMW005-02	0.48*	< 0.10	B 0.39*	0.15	B,J 0.0068	< 0.020
		Sed	iment			
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
DCHP01-02	65.1	B 0.46	Q 1,190	J,Q 416	B,J 0.50	<2.9
NYASOIL001-02	7.7	<1.8	Q 5,180	Q 264	B,J 0.36	B 1.5
KAGSOIL001-02	B 1.0	J 16.1	Q 1,990	Q 715	B,J 0.13	B 1.6
KAGSOIL002-02	<1.1	J 1.9	< 55.3	Q 154	B,J 0.15	<2.2
APSOIL001-02	<1.1	J 18.5	Q 4,000	Q 153	B,J 0.51	<2.3
APSOIL002-02	25.5	<1.7	Q 4,050	Q 636	B,J 0.32	<3.4

Table 19. Summary of the concentrations of *n*-Hexane Extractable Material (oil and grease), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids, and total suspended solids samples in ground water collected in July - August 2002 at the Anacostia River stations.

[Parameters that were detected and quantified are in **Bold**; <, less than; mg/L, milligrams per liter; HEM, n-Hexane Extractable Material; SGT, silica-gel treated; B, Estimated result, Compound was detected but value was less than the laboratory reporting level; J, the associated method blank contains this analyte at a low but reportable level]

Well	Biochemical oxygen demand	Chemical oxygen demand	HEM (oil and grease)	HEM, SGT	Total dissolved solids	Total suspended solids
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
DCMW001-02	7.5	B 16	<5.0	< 5.0	120	28
DCMW004-02	4.3	B 12	B 1.2	<5.0	130	22
DCMW002-02	<2.0	<20	B,J 1.6	<5.0	J 220	B 2.8
DCMW003-02	<2.0	<20	B,J 1.4	< 5.0	J 22	14
DCMW005-02	<2.0	В 9.7	<5.0	<5.0	J 77	33

Summary

Data for water and sediment quality presented in this report provide baseline conditions for the chemistry of ground water in selected areas of the lower Anacostia River watershed. Samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) or polyaromatic hydrocarbons (PAHs), organochlorine pesticides, aroclors and total polychlorinated biphenyls (PCBs), metals, nutrients, biochemical and chemical oxygen demands (BOD and COD), total phenols, total cyanide, oil and grease, and total suspended and dissolved solids in aqueous phases (TSS and TDS). Concentrations of most aqueous-phases chemicals were generally low or less than the reporting levels. Higher levels of some of the contaminants occurred in shallow as compared to deeper sediments at all sites. Samples collected at the Kenilworth Aquatic Gardens and from the Benning Road Mudflat had the most detections and the highest observed concentrations of cantaminants of all of the sites.

References Cited

Lide, D.R. (ed.), 1996. CRC handbook of chemistry and physics, 77th ed: New York, CRC Press, pp. 14-15.

U.S. Environmental Protection Agency, 1983 and subsequent revisions, Methods for chemical analysis of water and wastes: EPA-600/4-79-020, <u>http://www.epa.gov/cgi-bin/claritgw?op-Display&document=clserv:ORD:0167;&rank</u>=4&template=epa, accessed on February 14, 2003.

______, 1984 and subsequent revisions, Methods for organic chemical analysis of municipal and industrial wastewater: 40CFR, Chapter 1, Part 136, Appendix A, http://www.epa.gov/docs/epacfr40/chapt-Linfo/, accessed February 14, 2003.

_____, 1986 and subsequent revisions, Test methods for evaluating solid waste, physical/chemical methods, 3rd ed., http://www.epa.gov/epaoswer/hazwaste/test/main.htm, accessed February 14, 2003.

______, 2002, PCB definitions, USEPA Region 5 toxics information pages, <u>http://www.epa.gov/toxteam/pcbid/aroclor_plots.htm#A1260</u>, accessed December 7, 2002.

U.S. Geological Survey, 1997 and subsequent revisions, National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chaps. A1-A9 [variously paged] [Also available online at http://pubs.water.usgs.gov/twri9A. Chapters originally were published from 1997-1999; updates and revisions are ongoing and are summarized at:

http://water.usgs.gov/owq/FieldManual/mastererrata.html], accessed February 14, 2003.

Appendix A. Cross-reference table for USGS well identifiers that can be used to review data in the USGS National Water Information
System (NWIS) database. These data may be accessed on the world wide web at <u>http://waterdata.usgs.gov/nwis</u> . [NA; none assigned]

		USGS Station			
Well Name	Core Name	Name	USGS Station ID	Site Location	
NA	DCHP01-02	WE Ca 30	385406076573401	Benning Road Mudflat	
DCMW001-02	NA	WE Bb 3	385504076563801	New York Ave	
DCMW004-02	NYASOIL001-02	WE Bb 4	385504076563802	New TOIK Ave	
DCMW002-02	NA	WE Cb 5	385443076562801	Kenilworth	
	KAGSOIL001-02		205442076562000	Aquatic	
DCMW003-02	KAGSOIL002-02	WE Cb 6	385443076562802	Gardens	
DCI IIVOOT OO	APSOIL001-02		2052220256501501		
DCMW005-02	APSOIL002-02	WE Ca 29	385238076581501	Anacostia Park	