Water Resources Data Colorado Water Year 1996

Volume 1. Missouri River Basin, Arkansas River Basin, and Rio Grande Basin

By R.M. Crowfoot, A.V. Paillet, G.F. Ritz, M.E. Smith, R.D. Steger, and G.B. O'Neill

Water-Data Report CO-96-1

UNITED STATES DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary
U. S. GEOLOGICAL SURVEY

Gordon P. Eaton, Director

For information on the water program in Colorado write to:
District Chief, Water Resources Division
U.S. Geological Survey

Box 25046, Mail Stop 415
Denver Federal Center
Lakewood, CO 80225
1997

CALENDAR FOR WATER YEAR 1996

1995

OCTOBER							NOVEMBER							DECEMBER						
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
1	2	3	4	5	6	7				1	2	3	4						1	2
8	9	10	11	12	13	14	5	6	7	8	9	10	11	3	4	5	6	7	8	9
15	16	17	18	19	20	21	112	13	14	15	16	17	18	10	11	12	13	14	15	16
22	23	24	25	26	27	28	19	20	21	22	23	24	25	17	18	19	20	21	22	23
29	30	31					26	27	28	29	30			24	25	26	27	28	29	30
														31						

1996																				
	JANUARY						FEBRUARY							MARCH						
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
	1	2	3	4	5	6					1	2	3						1	2
7	8	9	10	11	12	13	4	5	6	7	8	9	10	3	4	5	6	7	8	9
14	15	16	17	18	19	20	11	12	13	14	15	16	17	10	11	12	13	14	15	16
21	22	23	24	25	26	27	18	19	20	21	22	23	24	17	18	19	20	21	22	23
28	29	30	31				25	26	27	28	29			24	25	26	27	28	29	30
														31						
APRIL							MAY							JUNE						
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
	1	2	3	4	5	6				1	2	3	4							1
7	8	9	10	11	12	13	5	6	7	8	9	10	11	2	3	4	5	6	7	8
14	15	16	17	18	19	20	12	13	14	15	16	17	18	9	10	11	12	13	14	15
21	22	23	24	25	26	27	19	20	21	22	23	24	25	16	17	18	19	20	21	22
28	29	30					- 26	27	28	29	30	31		23	24	25	26	27	28	29
														30						
JULY							AUGUST							SEPTEMBER						
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
	1	2	3	4	5	6					1	2	3	1	2	3	4	5	6	7
7	8	9	10	11	12	13	4	5	6	7	8	9	10	8	9	10	11	12	13	14
14	15	16	17	18	19	20	11	12	13	14	15	16	17	15	16	17	18	19	20	21
2	22	23	24	25	26	27	18	19	20	21	22	23	24	22	23	24	25	26	27	28
28	29	30	31				25	26	27	28	29	30	31	29	30					

PREFACE

This volume of the annual hydrologic data report of Colorado is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each state, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Colorado are contained in two volumes:

Volume 1. Missouri River, Arkansas River, and Rio Grande basins in Colorado,
Volume 2. Colorado River basin.

This report is the culmination of a concerted effort by dedicated personnel of the U. S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

B. D. Bemis	J. M. Gearheart	W. F. Payne	W. A. Swenson
B. W. Bouley S. T. Green	M. A. Penrod	W. J. Thomas	
R. J. Brandle	M. J. Hernandez	K. G. Petty	C. H. Thompson
A. J. Brogan	M. D. Klock	S. A. Rafferty	L. A. Walsh
J. F. Bruce	J. M. Kuzmiak	R. L. Reed	W. B. Weiss
C. Christiansen	K. R. Leonard	E. A. Samuels	S. G. Welch
J. A. Collins	J. D. Martinez	D. G. Shubert	J. M. Wiles
J. R. Cox	M. R. McCoy	G. J. Smith	K. R. Wilke
J. E. Dick	M. L. Morey	D. E. Smits	N. O. Young
R. L. Einarsen	R. H. Munson	K. S. Clair	M. A. Zook
J. B. Evans	S. V. Muro	J. T. Steinheimer	
J. S. Ferarese	R. M. Neam	M. R. Stevens	

This report was prepared in cooperation with the State of Colorado and with other agencies under the general supervision of W. F. Horak, District Chief, Colorado.

CONTENTS

Page
Preface III
List of surface-water stations, in downstream order, for which records are published in this volume VII
Introduction 1
Cooperation 4
Overview of Hydrologic Conditions 5
Precipitation 5
Streamflow 5
Chemical quality of streamflow 11
Special networks and programs 13
Explanation of the records 13
Station identification numbers 13
Downstream order system 13
Latitude-longitude system 14
System for numbering wells, springs, and miscellaneous sites 14
Records of stage and water discharge 14
Data collection and computation. 15
Data presentation 15
Station manuscript 16
Data table of daily mean values 17
Statistics of monthly mean data 17
Summary statistics 17
Identifying estimated daily discharge 18
Accuracy of the records 18
Other records available. 18
Records of surface-water quality 19
Accuracy of the records 19
Classification of records 19
Arrangement of records 19
Onsite measurements and sample collection 19
Water temperature 20
Sediment 20
Laboratory measurements 20
Data presentation 21
Remark codes. 21
Records of ground-water quality 21
Data collection and computation. 22
Data presentation 22
Access to WATSTORE DATA 22
Definition of terms 23
Selected references 30
List of discontinued surface-water discharge or stage-only stations 32
List of discontinued surface-water-quality stations 38
Publications on techniques of water-resources investigations 39
Station records, surface-water 43
Transmountain diversions from Colorado River basin in Colorado 471
Discharge at partial-record stations and miscellaneous sites 473
Crest-stage partial-record stations 473
Special study and miscellaneous sites 477
Precipitation records 478
Supplemental water-quality data for gaging stations 489
Quality of ground-water 501
Miscellaneous water-quality in the Rio Grande basin 506
Index 509

ILLUSTRATIONS

Page
Figures 1-2. Map showing:

1. Locations of lakes and surface-water stations and surface-water-quality stations in Colorado 2
2. Locations of crest-stage partial-record stations in Colorado 3
3. Comparison of monthly precipitation for water year 1996 to normal monthly precipitation for the reference period 1961-90 6
4. Comparison of monthly discharges for water year 1996 to mean monthly discharges for the reference periods indicated on the individual graphs 8
5. Comparison of range and distribution of specific conductance measured during water year
1996 to long-term values 12

TABLES

1. Precipitation during water year 1996 and departures from normal precipitation (1961-90), in inches. 5
2. Peak discharges for water year 1996 and for the period of record at selected surface-water stations 10
3. Results of Wilcoxon-Mann-Whitney rank sum tests comparing mean specific conductance of discharge for water year 1996 with mean for the period of record at selected gaging stations 11

NOTE.--Data for partial-record stations and miscellaneous sites for both surface-water discharge and quality are published in separate sections of the data report.

(Letter after station name designates type and frequency of published data. Daily tables: (D) discharge, (C) specific conductance, (S) sediment, (T) temperature, (E) elevation or contents, (O) dissolved oxygen, (P) pH, (R) precipitation.

Periodic tables: (c) chemical, (b) biological, (e) elevation or contents, (m) microbiological, (s) sediment, (t) temperature.)

	Station number
MISSOURI RIVER BASIN	

PLATTE RIVER BASIN
 North Platte River:

South Platte River below Cheesman Lake (D) .. 06701500
North Fork South Platte River:
Geneva Creek:
Duck Creek near Grant (DCTR).. 0670450
Geneva Creek at Grant (DCTR).. 06705500
North Fork South Platte River below Geneva Creek, at Grant (D) .. 39306000105340400
Deer Creek near Bailey (DCTR)....... 61020
Plum Creek near Sedalia (D).. $0670.1 . .$.
Chattield Lake near Littleton (e)... 06709600

Bear Creek above Evergreen (D) .. 067710385
Bear Creek at Morrison (D)... 06710500
Bear Creek above Bear Creek Lake near Morrison (D)...
Bear Creek at mouth, at Sheridan (D)

$\begin{array}{ll}\text { Cherry Creek near Parker (D).. } \\ \text { Cherry Creek Lake near Denver (e) } & 8990 \\ 88\end{array}$
$\begin{array}{ll}\text { Cherry Creek Lake near Denver (e) ... } 06713000 & 88 \\ \text { Cherry Creek below Cherry Creek Lake (D) } & 89\end{array}$
Cherry Creek at Glendale (D)... 06713300
Cherry Creek at Denver (D)..

Sand Creek at mouth near Commerce City (D)... 394839104570300
Clear Creek near Loveland Pass (D)... 394115105525600
South Clear Creek above Naylor Creek near Georgetown (DCTR).. 393647105425317
$\begin{array}{lll}\text { South Clear Creek above Lower Cabin Creek Reservoir near Georgetown (DCT) } 067144000 & 102 \\ \text { South Clear Creek above Leavenworth Creek near Georgetown (DCTR)....... }\end{array}$
Leavenworth Creek at mouth near Georgetown (DCTR).. 06714800
113
Clear Creek above West Fork Clear Creek near Empire (D)... 06715000
West Fork Clear Creek above mouth near Empire (D) ... 120
Clear Creek near Lawson (D) ...
Chicago Creek below Devils Canyon near
Clear Creek above Johnson Gulch near Idaho Springs (D) ... 06718300

South Platte River at Henderson (D)... 06720500
Big Dry Creek at mouth near Fort Lupton (D).. 06720990
St. Vrain Creek:
North St. Vrain Creek near Allens Park (D).. 06721500 128
St. Vrain Creek at Lyons (D).. 06724000

Boulder Creek at mouth near Longmont (D) .. 06730500
St. Vrain Creek at mouth, near Platteville (D)... 06731000 . $1 .$.
Big Thompson River below Moraine Park near Estes Park (Dcts) .. 402114105350101134
Big Thompson River at Estes Park (D)... 067330001.
$\begin{array}{ll}\text { Horsetooth Reservoir near Fort Collins (etcmb).. } 06737500 & 138 \\ \text { Hen }\end{array}$
Horsetooth Reservoir near Fort Collins (tcmb).. 403147105083800
Big Thompson River at mouth of Canyon, near Drake (D) ... 06738000
Big Thompson River at Loveland (Dtc) .. 06741510
Carter Lake near Berthoud (etcmb).. 06742500 147
Station
number \quad Page

KANSAS RIVER BASIN
Arikaree River (head of Kansas River):North Fork Republican River at Colorado-Nebraska State line (D).06823000178
LOWER MISSISSIPPI RIVER BASINMississippi River:ARKANSAS RIVER BASINArkansas River:
East Fork Arkansas River at Highway 24 near Leadville (DCPT) 07079300 179
St. Kevin Gulch above Temple Gulch near Leadville (D).
07081200
Arkansas River near Leadville (DCPT)
.07082400
.07082400 192 192
Turguoise Lake near Leadville (e)
Turguoise Lake near Leadville (e) 07083000 193
Lake Creek above Twin Lakes Reservoir (D) 196
Arkansas River at Granite (DCT). 07086000
Arkansas River near Nathrop (DT) 197
Arkansas River near Wellsville (D) 05 07093700
Badger Creek, Upper Station, near Howard (DTSs)
Badger Creek, Lower Station, near Howard (DTSs) 07093775
Arkansas River at Parkdale (DT)206Arkansas River at Canon City (DCT)07096000
Fourmile Creek below Cripple Creek near Victor (D) 07096250
Fourmile Creek near Canon City (D)07097000
Arkansas River at Portland (DCT)
07099050
07099050
Beaver Creek above Highway 115 near Penrose (D). 07099060
Turkey Creek near Fountain (D)
07099230
Turkey Creek above Teller Reservoir, near Stone City (D).
07099233
07099233
Teller Reservoir near Stone City (E)
Turkey Creek near Stone City (D). 07099235
Pueblo Reservoir near Pueblo (ect).
07099400
Arkansas River above Pueblo (DCT)
07099969
Arkansas River at St. Charles Mesa Diversion at Pueblo (C) 07099970
Fountain Creek near Colorado Springs (DctsmS) 07103700
Camp Creek at Garden of the Gods (D) 07103703
Monument Creek at Palmer Lake (ctm)
07103780
West Monument Creek below Rampart Reservoir (D) 07103797
West Monument Creek at U.S. Air Force Academy (D) 07103800
Cottonwood Creek at Woodmen Road near Colorado Springs (D) 07103980
Cottonwood Creek at mouth at Pikeview (D) 07103990
Monument Creek at Pikeview (DctmsS) 07104000
Bear Creek near Colorado Springs (D) 07105000
Cheyenne Creek at Evans Avenue at Colorado Springs (D) 07105490
Fountain Creek at Colorado Springs (DctmsS) 07105500
Fountain Creek below Janitell Road, below Colorado Springs (DctmCPTO) 07105533
.07105905 Fountain Creek above Little Fountain Creek, below Fountain (ctm)220220223

Fountain Creek above Lite Fountain Creek, below Fountain (am)

VOLUME 1: MISSOURI RIVER, ARKANSAS RIVER, AND RIO GRANDE BASINS

By R.M. Crowfoot, A.V. Paillet, G.F. Ritz, M.E. Smith, R.D. Steger, and G.B. O'Neill

INTRODUCTION

The Water-Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Colorado each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in the report series entitled "Water Resources Data - Colorado".

This report (Volume 1 of two volumes) includes records on both surface and ground water in the State, east of the Continental Divide. Specifically, it contains: (1) discharge records for 146 surface-water stations, and peak discharges for 29 partial-record surface-water stations; (2) stage and contents for 12 lakes and reservoirs; (3) water-quality data for 62 surface-water stations, 4 reservoirs, 14 wells, and miscellaneous surface-water-quality data for 68 gaged sites, 1 miscellaneous site, and meteorological data for 19 sites. Locations of lake and surface-water stations and surface-water-quality stations are shown in figure 1, locations of crest-stage partial-record stations are shown in figure 2. Four pertinent stations operated by bordering States also are included in this report. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Colorado.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for Colorado were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-water Supply of the United States," Parts 6B, 7 , 8, and 9 . For the 1961 through 1970 water years, the data were published in two 5 -year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States." Data on ground-water levels for the 1935 through 1955 water years were published annually under the title "Water Levels and Artesian Pressures in Observation Wells in the United States." For the 1956 through 1974 water years the data were published in four 5 -year reports under the title "Ground-Water Levels in the United States." Water-supply papers may be purchased from the, U.S. Geological Survey, Books and Open-File Reports, Federal Center, Building 810, Box 25425, Denver, CO 80225.

For water years 1961 through 1970, surface-water data were released by the Survey in annual reports on a State-boundary basis. Surface-water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with surface-water records.

Beginning with the 1971 water year, water data on surface-water, water quality, and ground-water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report CO-96-1." These water-data reports are for sale, in paper copy or in micro-fiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (303) 236-4882.

Figure 1.--Map showing locations of lakes and surface-water stations and surface-water-quality stations in Colorado.

COOPERATION

The U.S. Geological Survey and organizations of the State of Colorado have had cooperative agreements for the systematic collection of surface-water records since 1895 and for water-quality records since 1941. Organizations that assisted in collecting data for this report through cooperative agreement with the Survey are:
Arapahoe County, Water and Wastewater Authority.
Arkansas River Compact Administration.
Centennial Water and Sanitation District.
Cherokee Metropolitan District.
City and County of Denver, Board of Water Commissioners.
City of Aurora.
City of Black Hawk.
City of Boulder.
City of Colorado Springs.
City of Englewood.
City of Fort Collins.
City of Glendale.
City of Greenwood Village.
City of Gunnison.
City of Lakewood.
City of Longmont.
City of Loveland.
City of Pueblo.
Colorado Department of Public Health and Environment.
Colorado Department of Transportation.
Colorado Division of Parks and Outdoor Recreation.
Colorado Division of Water Resources.
Colorado Division of Wildlife.
Colorado River Water Conservation District.
Colorado Springs Department of Public Utilities.
Crested Butte South Metropolitan District.
Delta County Board of County Commissioners.
Eagle County Board of Commissioners.
Eagle River Water and Sanitation District.
East Grand County Water-Quality Board.
Evergreen Metropolitan District.
Fountain Valley Authority.
Garfield County.
Gunnison County
La Plata County.
Lower Fountain Water-Quality Management Association.
Meeker Sanitation District
Metro Wastewater Reclamation District.
Moffat County.
Mount Crested Butte Water and Sanitation District.
Northern Colorado Water Conservancy District.
Northwest Colorado Council of Governments.
Pueblo Board of Water Works.
Pueblo West Metro Water District.
Rio Blanco County Board of County Commissioners.
Rio Blanco Water Conservancy District.
Rio Grande Water Conservation District.
Southeastern Colorado Water Conservancy District.
Southern Ute Indian Tribe.
Southwestern Colorado Water Conservation District.
St. Charles Mesa Water District.
Teller - Park Soil Conservation District.
Town of Breckenridge.
Town of Crested Butte.
Town of Meeker.
Town of Rangely.
Trinchera Water Conservancy District.
Upper Arkansas River Water Conservancy District.
Upper Eagle Regional Water Authority.
Upper Gunnison River Water Conservancy District.
Upper Yampa Water Conservancy District.
Urban Drainage and Flood Control District.
Yellowjacket Water Conservancy District.
Financial assistance was also provided by the U.S. Army, Corps of Engineers; U.S. Army; Bureau of Land Management, Bureau of Reclamation, National Park Service, U.S. Fish and Wildlife Service, and U.S. Environmental Protection Agency. Organizations that supplied data are acknowledged in station descriptions.

OVERVIEW OF HYDROLOGIC CONDITIONS

[East of the Continental Divide]
Prepared by G.F. Ritz and M.E. Smith

Precipitation

Precipitation data for water year 1996 were obtained from published reports of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Climatic Data Center, for the four National Weather Service divisions in Colorado that are east of the Continental Divide (table 1). Precipitation and departures-from-normal precipitation (1961-90) are listed for the first 6 months (October-March) of the water year when precipitation is predominately snow and for the remaining 6 months (April-September) when precipitation is predominately rain. Also listed are the precipitation and departures-from-normal precipitation for the entire water year.

For October-March, precipitation was 29 percent less than normal in the Kansas Drainage Basin, 38 percent less than normal in the Arkansas Drainage Basin, and 53 percent less than normal in the Rio Grande Drainage Basin. Precipitation was 10 percent greater than normal in the Platte Drainage Basin. For April-September, precipitation was 15 percent less than normal in the Rio Grande Drainage Basin. Precipitation was 7 percent greater than normal in the Platte Drainage Basin, 22 percent greater than normal in the Arkansas Drainage Basin, and 34 percent greater than normal in the Kansas Drainage Basin.

Graphs of monthly precipitation for the water year and for normal monthly precipitation, at selected weather stations, are shown in figure 3. Monthly precipitation data for water year 1996 were supplemented with ancillary information obtained from the Colorado State University, Department of Atmospheric Science, Colorado Climate Center, in Fort Collins.

Table 1. Precipitation during water year 1996 and departures-from-normal precipitation (1961-90), in inches

National Weather Service division	October-March		April-September		Water year 1996	
	Precipitation	Departure from normal	Precipitation	Departure from normal	Precipitation	Departure from normal
Arkansas Drainage Basin	2.51	-1.53	12.92	2.35	15.43	0.82
Kansas Drainage Basin	2.40	-. 96	17.79	4.54	20.19	3.58
Platte Drainage Basin	4.94	. 44	12.01	. 74	16.95	1.18
Rio Grande Drainage Basin	2.56	-2.84	6.59	-1.17	9.15	-4.01

Streamflow

Monthly mean discharges during water year 1996 at selected streamflow-gaging stations are compared to long-term (reference period through previous water year) mean monthly discharges in figure 4. Individual graphs show the varied streamflow east of the Continental Divide. Streamflows during water year 1996, with a few exceptions, were not unusually higher or lower than long-term mean streamflows. The long-term mean monthly discharges used for gaging station 06706000, North Fork South Platte River below Geneva Creek, at Grant (fig. 4, site B), do not include records prior to water year 1964 (the year that imported water from the Colorado River Basin began flowing past the gaging station). Gaging station 07094500, Arkansas River at Parkdale (fig. 4, site D), has been operated seasonally (April-September) since water year 1995.

In the Platte River Basin, the graphs for gaging stations 06701500, South Platte River below Cheesman Lake (fig. 4, site A), and 06706000, North Fork South Platte River below Geneva Creek, at Grant (fig. 4, site B), had general trends similar to the trends of the long-term mean monthly discharges. The graph for gaging station 06758500, South Platte River near Weldona (fig. 4, site C), indicates that water year 1996 monthly mean discharges did not follow the general trend of long-term mean monthly discharges. Local water-management practices, which consisted mostly of storage, release, or diversion of water as determined by daily and seasonal irrigation and municipal needs, affected the trends in the three discharge graphs. The water year 1996 mean discharge at gaging station 06701500, South Platte River below Cheesman Lake, was 42 percent greater than the longterm mean. The water year 1996 mean discharge at gaging station 06706000, North Fork South Platte River below Geneva Creek, at Grant, was seven percent less than the long-term mean. The water year 1996 mean discharge at gaging station 06758500, South Platte River near Weldona, was seven percent less than the long-term mean.

In the Arkansas River Basin, the graph for gaging station 07094500, Arkansas River at Parkdale (fig. 4, site D), had a general trend similar to that of the long-term mean monthly discharges. The graphs for gaging stations 07126300 , Purgatoire River near Thatcher (fig. 4, site E), and 07133000, Arkansas River at Lamar (fig. 4, site F), indicate that water year 1996 monthly mean discharges did not follow the general trend of long-term mean monthly discharges. Local water-management practices, which consisted mostly of storage, release, or diversion of water as determined by daily and seasonal irrigation and municipal needs, affected the trends in the three discharge graphs. The April through September 1996 mean discharge at gaging station 07094500, Arkansas River at Parkdale, was seven percent greater than the long-term mean. The water year 1996 mean discharge at gaging station 07126300, Purgatoire River near Thatcher, was 38 percent less than the long-term mean; the April to September 1996 mean discharge at this site was notably less (55 percent) than the long-term mean for the same period. The water year 1996 mean discharge at gaging station 07133000, Arkansas River at Lamar, was 25 percent greater than the long-term mean.

In the Rio Grande Basin, the graph for gaging station 08217500, Rio Grande at Wagon Wheel Gap (fig. 4, site G), had a general trend similar to that of the long-term mean monthly discharges, although the highest water year 1996 monthly mean discharge occurred earlier than normal. The graph for gaging station 08251500, Rio Grande near Lobatos (fig. 4, site H), indicates that 1996 monthly mean discharges did not follow the general trend of long-term mean monthly discharges. Local watermanagement practices, which consisted mostly of storage, release, or diversion of water as determined by daily and seasonal irrigation and municipal needs, affected the trends in the two discharge graphs. The water year 1996 mean discharge at gaging station 08217500, Rio Grande at Wagon Wheel Gap, was 26 percent less than the long-term mean. The water year 1996 mean discharge at gaging station 08251500 , Rio Grande near Lobatos, was 66 percent less than the long-term mean; the April through September 1996 mean discharge at this site was notably less (89 percent) than the long-term mean for the same period.

Figure 3.--Comparison of monthly precipitation for water year 1996 to normal monthly precipitation for the reference period 1961-90.

Figure 3.--Comparison of monthly precipitation for water year 1996 to normal monthly precipitation for the reference period 1961-90--Continued.

EXPLANATION

Mean monthly discharge for reference period■ Monthly mean discharge for water year 1996

A
GAGING STATION--Letter refers to accompanying graph and map
(1925-95)
REFERENCE PERIOD

Figure 4.--Comparison of monthly discharges for water year 1996 to mean monthly discharges for the reference periods indicated on the individual graphs.

Figure 4.--Comparison of monthly discharges for water year 1996 to mean monthly discharges for the reference periods indicated on the individual graphs--Continued.

Peak discharges during water year 1996 and for the period of record (through previous water year) for selected streamflowgaging stations are listed in table 2. No discharge extremes occurred this water year at these gaging stations. The water year 1996 peak discharges at gaging stations 06706000, North Fork South Platte River below Geneva Creek, at Grant; 06752500, Cache La Poudre River near Greeley; 07106500, Fountain Creek at Pueblo; and 07109500, Arkansas River near Avondale, were greater than the 75th percentile. The water year 1996 peak discharges at gaging stations 07124000, Arkansas River at Las Animas; 08246500, Conejos River near Mogote; and 08251500, Rio Grande near Lobatos, were less than the 25th percentile. Water year 1996 peak discharges at the other gaging stations listed in table 2 were within the middle 50 percent of the long-term discharge distributions.

Table 2. Peak discharges for water year 1996 and for the period of record at selected gaging stations

$$
\left[\mathrm{mi}^{2} \text {, square miles; } \mathrm{ft}^{3} / \mathrm{s}\right. \text {, cubic feet per second; WY, water year] }
$$

Gaging-station identification		$\begin{aligned} & \text { Drainage } \\ & \text { area } \\ & \left(\mathrm{mi}^{2}\right) \end{aligned}$	Period of record (water years)	Water year 1996		Period of record		Remarks on WY 1996 peak discharge
Station number	Station name			Date	Peak discharge $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	Date	Peak discharge ($\mathrm{ft}{ }^{3} / \mathrm{s}$)	
06620000	North Platte River near Northgate	1,431	$\begin{aligned} & \text { 1904, } \\ & \text { 1915-95 } \end{aligned}$	4/11	3,880	6/11/23	6,720	Less than 75th percentile
06696000	South Platte River near Lake George	963	1930-95	5/26	418	4/28/70	3,000	Less than median
06701500	South Platte River below Cheesman Lake	1,752	1926-95	7/17	719	4/29/70	4,640	Greater than 25th percentile
06706000	North Fork South Platte River below Geneva Creek, at Grant	127	${ }^{1} 1964-95$	6/5	750	6/18/95	1,160	Greater than 75th percentile
06752500	Cache la Poudre River near Greeley	1,877	$\begin{aligned} & \text { 1903, } \\ & \text { 1916-17, } \\ & 1919, \\ & 1924-95 \end{aligned}$	6/17	2,110	6/14/83	6,360	Greater than 75th percentile
06758500	South Platte River near Weldona	13,245	1953-95	5/28	4,510	5/8/73	26,800	Greater than median
07094500	Arkansas River at Parkdale	2,548	$\begin{aligned} & 1946-55, \\ & 1965-95 \end{aligned}$	6/14	4,440	6/18/95	6,830	Greater than median
07106500	Fountain Creek at Pueblo	926	$\begin{aligned} & 1921-22, \\ & 1924-25, \\ & 1935, \\ & 1941-65, \\ & 1971-95 \end{aligned}$	7/9	12,100	6/17/65	47,000	Greater than 75th percentile
07109500	Arkansas River near Avondale	6,327	$\begin{aligned} & \text { 1939-51, } \\ & 1965-95 \end{aligned}$	7/10	11,600	6/18/65	50,000	Greater than 75th percentile
07124000	Arkansas River at Las Animas	14,417	1939-95	7/14	2,320	5/20/55	44,000	Less than 25th percentile
07126300	Purgatoire River near Thatcher	1,791	1965-95	9/6	7,540	6/18/65	47,700	Less than 75th percentile
07128500	Purgatoire River near Las Animas	3,318	$\begin{aligned} & \text { 1922-31, } \\ & \text { 1949-95 } \end{aligned}$	8/31	2,830	5/20/55	70,000	Greater than 25th percentile
07133000	Arkansas River at Lamar	19,780	$\begin{aligned} & \text { 1913, 1915, } \\ & \text { 1919-55, } \\ & 1960-95 \end{aligned}$	5/27	5,030	6/5/21	130,000	Less than 75th percentile
08220000	Rio Grande near Del Norte	1,320	1890-1995	5/17	3,760	10/5/11	18,000	Greater than 25th percentile
08240000	Rio Grande above mouth of Trinchera Creek, near Lasauses	5,740	$\begin{aligned} & 1936-62, \\ & 1964-80, \\ & 1982-95 \end{aligned}$	2/19	526	6/21/49	5,470	Greater than 25th percentile
08246500	Conejos River near Mogote	282	$\begin{aligned} & \text { 1903-05, } \\ & \text { 1912-95 } \end{aligned}$	5/15	1,680	10/5/11	9,000	Less than 25th percentile
08251500	Rio Grande near Lobatos	7,700	1900-95	2/20	650	6/8/05	13,200	Less than 25th percentile

[^0]
Chemical Quality of Streamflow

To determine if substantial changes occurred during water year 1996 in the chemical quality of streamflow, an analysis was made of specific conductance, which was measured at gaging stations on six selected streams. Specific conductance can be used to estimate the dissolved-solids concentration in water because specific conductance is directly proportional to the concentrations of ions in water. Each selected gaging station is the most downstream gaging station on that stream or is representative of a substantial part of the drainage area of that stream. For each selected gaging station, the distribution of specific conductance during water year 1996 is compared to the distribution of specific conductance for the reference period in figure 5 .

The Wilcoxon-Mann-Whitney rank sum test was used to determine if there were significant differences between values of specific conductance for water year 1996 and values for the reference period (Ott, 1993). This test is a nonparametric counterpart to the common t-test and does not require the data to have a normal distribution.

The Wilcoxon-Mann-Whitney rank sum test was applied to the hypothesis that the mean specific conductance for water year 1996 was equal to the mean for the reference period. The procedure for testing the hypothesis involves computing a test statistic from the ranks of the data by using a pooled standard deviation and comparing the test statistics to a value obtained from a table of "Student's" t values (Box and others, 1978). The table value is (1 - alpha/2), where alpha (the level of significance) equals 0.05 , at the appropriate degrees of freedom for the number of samples. If the absolute value of the computed test statistic (t_{R}) is greater than the tabular t value ($\mathrm{t}_{\mathrm{tab}}$), the hypothesis is rejected. A rejection of the hypothesis is statistical evidence that the two means are different. The Wilcoxon-Mann-Whitney rank sum test results were evaluated at the 95 percent confidence level.

Results of the Wilcoxon-Mann-Whitney rank sum tests for the six gaging stations are listed in table 3. For five of the six gaging stations, 06741510, Big Thompson River at Loveland; 06752280, Cache la Poudre River above Box Elder Creek, near Timnath; 07094500, Arkansas River at Parkdale; 07128500, Purgatoire River near Las Animas; and 08217500, Rio Grande at Wagon Wheel Gap, the tests indicate that the mean specific conductance for water year 1996 and the mean specific conductance for the reference period are not statistically different. For gaging station 07133000, Arkansas River at Lamar, the mean specific conductance for water year 1996 is statistically different from the mean for the reference period. Examination of the plot of monthly mean discharges shows much greater than normal flows (1949-96 period) were observed during March, April, and May 1996. Discharge and specific conductance are inversely related at this site, therefore mean specific conductance for water year 1996 would be expected to be lower than the mean specific conductance for the reference period.

Table 3. Results of Wilcoxon-Mann-Whitney rank sum tests comparing mean specific conductance of discharge for water year 1996 with mean for the reference period at selected gaging stations
[Specific conductance, in microsiemens per centimeter at 25 degrees Celsius; t_{R}, calculated test statistic; $t_{\text {tab }}$, \mathbf{t}-values from standard table; A, accepted, R, rejected]

Gaging station identification		Specific conductance						Wilcoxon-Mann-Whitney rank sum test			
		Water year 1996			Reference Period						
Station number	Station name	Number of values	Mean	Standard deviation	Number of values	Mean	Standard deviation	(water years)	$t_{\text {R }}$	$t_{\text {tab }}$	Hypoth-
06741510	Big Thompson River at Loveland	11	1,132	565	121	994	506	1986-95	0.90	1.98	A
06752280	Cache la Poudre River above Box Elder Creek, near Timnath	11	1,119	836	111	1,532	720	1986-95	-1.39	1.98	A
07094500	Arkansas River at Parkdale	6	193	82	135	247	68	1987-95	-1.54	1.98	A
07128500	Purgatoire River near Las Animas	19	3,141	1,131	172	2,993	1,057	1986-95	0.48	1.98	A
07133000	Arkansas River at Lamar	11	2,795	955	119	3,438	898	1987-95	-2.19	1.98	R
08217500	Rio Grande at Wagon Wheel Gap	8	83	22	76	92	23	1987-95	-1.16	1.99	A

Figure 5.--Comparison of range and distribution of specific conductance measured during water year 1996 to long-term values.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-Mark Network is a network of 53 small sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 142 sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of wet atmospheric deposition, which includes snow, rain, sleet and hail. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

National Water-Quality Assessment Program (NAWQA) is a nationwide program that was implemented full-scale by the U.S. Geological Survey in 1991. The long term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface-water, and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. The principle building blocks of the NAWQA program are the study-unit investigations on which national-level assessments are based. Study unit-investigations are comprehensive and include information on water, sediment, biota, and aquatic and terrestrial habitats within its boundaries. Of the 60 study unit-investigations that comprise the NAWQA program, portions of three are located in Colorado; the South Platte River, Rio Grande Valley, and Upper Colorado River Basins. Selected water-quality data for one surface-water monitoring site within the South Platte River Basin NAWQA and four surface-water monitoring sites within the Rio Grande Valley Basin NAWQA are included in volume one of this report.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1996 water year that began on October 1, 1995, and ended September 30, 1996. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, and water-quality data for surface and ground water. The locations of the stations where the surface-water data were collected are shown in figures 1 and 2. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and, in Colorado, for surface-water stations where only infrequent measurements are made.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 06614800, which appears just to the left of the station name, includes the two-digit Part number "06" plus the six-digit downstream-order number "614800." The Part number designates the major river basin; for example, Part " 06 " is the Missouri River basin.

The identification numbers for wells, springs, and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote the degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1 -second grid. This site-identification number, once assigned, is a pure number, and may have no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below).

System for numbering wells, springs, and miscellaneous sites.

The local well number locates a well within a 10 -acre tract using the U . S. Bureau of Land Management system of land subdivision. The components of the local well number proceed from the largest to the smallest land subdivisions. This is in contrast to the legal description, which proceeds from the smallest to the largest land subdivision. The largest subdivision is the survey. Colorado is governed by three surveys: The Sixth Principal Meridian Survey (S), the New Mexico Survey (N), and the Ute Survey (U). Costilla County was not included in any of the above official surveys. This report follows the convention of the Costilla County Assessor in which the northern part of the county is governed by the Sixth Principal Meridian Survey and the southern part of the county is governed by a local system called the Costilla Survey (C). The first letter of the well location designates the survey.

A survey is subdivided into four quadrants formed by the intersection of the baseline and the principal meridian. The second letter of the well location designates the quadrant: A indicates the northeast quadrant, B the northwest, C the southwest, and D the southeast. A quadrant is subdivided in the north-south direction every 6 mi by townships and is divided in the east-west direction every 6 mi by ranges. The first number of the well location designates the township and the second number designates the range.

The $36-\mathrm{mi}^{2}$ area described by the township and range designation is subdivided into $1-\mathrm{mi}^{2}$ areas called sections. The sections are numbered sequentially. The third number of the well location designates the section. The section, which contains 640 acres, is subdivided into quarter sections. The 160-acre area is designated by the first letter following the section: A indicates the northeast quarter, B the northwest, C the southwest, and D the southeast. The quarter section is subdivided into quarter-quarter sections. The 40 -acre area is designated in the same manner by the second letter following the section. The 10-acre area is designated in the same manner by the third letter following the section. If more than one well is located within the 10 -acre tract, the wells are numbered sequentially in the order in which they were originally inventoried. If this number is necessary, it will follow the three-letter designation.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stagerecording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles. Records of miscellaneous discharge measurements or of measurements from special studies may be considered as partial records, but they are presented separately in this report. Location of all complete-record stations for which data are given in this report are shown in figure 1.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stagecapacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals, with electronic recorders that store stage values on computer chips at selected time intervals, or with satellite data collection platforms that transmit near real-time data at selected time intervals to office computers. Measurements of discharge are made with current meters using methods adapted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stagedischarge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the currentmeter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves, or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections. "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1992 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts, the manuscript or station description and the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flow as well as data pertaining to annual runoff, 7 -day low-flow minimums, and flow duration.

Station manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that flow at it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents.

Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second during the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

If applicable, data collected at partial-record stations follow the information for continuous-record sites. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS \qquad - \qquad , BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS \qquad - \qquad ," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.
LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.
HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.
LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.
ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7 -day period. (This value should not be confused with the 7 -day 10 -year lowflow statistic.)

INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)

INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ. The REMARKS paragraph in the manuscript or a footnote may be used to provide further information.

INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.
ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period.
50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period.
90 PERCENT EXCEEDS.-- The discharge that has been exceeded 90 percent of the time for the designated period.
Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true value; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for daily values less than $1 \mathrm{ft}^{3} / \mathrm{s}$; to the nearest tenth between 1.0 and $10 \mathrm{ft}^{3} / \mathrm{s}$; to whole numbers between 10 and $1,000 \mathrm{ft}^{3} / \mathrm{s}$; and to 3 significant figures for more than 1,000 $\mathrm{ft}^{3} / \mathrm{s}$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

The National Water Data Exchange (NAWDEX), U.S. Geological Survey, Reston, VA 22092, maintains an index of records of discharge collected by other agencies but not published by the Geological Survey. Information on records at specific sites can be obtained from that office upon request.

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables are on file in the Colorado District office. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the District office.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

In March 1989 the National Water-Quality Laboratory discovered a bias in the turbidimetric method for sulfate analysis, indicating that values below $75 \mathrm{mg} / \mathrm{L}$ have a median positive bias of $2 \mathrm{mg} / \mathrm{L}$ above the true value for the period between 1982 and 1989. Sulfate values in this report have not been corrected for this bias.

On October 1, 1995, the Colorado District adopted a new sampling and quality-assurance protocol for sampling of surface waters (Horowitz and others, 1994). This protocol was adopted as standard operating procedure for the collection and processing of all traceelement, major-ion, nutrient, and radiochemical species in filtered, surface-water samples.

Accuracy of the Records

Accuracy of water-quality monitor records are based on: (1) The completeness of the record, (2) frequency of calibration checks, (3) the length of time and frequency that data exceed allowable error limits, (4) the magnitude of errors, and (5) confidence in the resultant shifts applied. Listed below are the limits of allowable error.

$*$	Temperature:
$*$	Specific Conductance:
$*$	pH:
$*$	Dissolved Oxygen:

$$
\begin{aligned}
& +/-0.3 \text { degree C. } \\
& +/-5 \mathrm{uS} / \mathrm{cm} \text { or }+5 \% \text { whichever is greater } \\
& +/-0.2 \mathrm{pH} \text { units } \\
& +/-0.3 \mathrm{mg} / \mathrm{L} \text { or }+5 \% \text { whichever is greater. }
\end{aligned}
$$

A record is rated excellent if the allowable error limits are never exceeded, good if limits are occasionally exceeded and shifts are no greater than two times the limit, fair if limits are regularly exceeded and shifts are no greater than three times the limit, and poor for all others.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partialrecord station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched or recorded at short intervals on a paper tape, magnetic tape, computer chip, or some other medium. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 1.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

Onsite Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH , and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed on pages 30 and 31 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S.G.S. District Office whose address is given on the back of the title page of this report.

Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by wasteheat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are recorded to the nearest 0.1 degree Celsius. Water temperatures measured at the time of water-discharge measurements are published in this report as supplemental water-quality for gaging stations.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027 , the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally, all other samples are analyzed in the Geological Survey laboratories in Arvada, CO. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratories are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Historical and current-year dissolved trace-element concentrations are reported herein for water that was collected, processed, and analyzed by using either ultraclean or other than ultraclean techniques. If ultraclean techniques were used, then those concentrations are reported in nanograms per liter. If other than ultraclean techniques were used, then those concentrations are reported in micrograms per liter and could reflect contamination introduced during some phase of the procedure.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH , water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.
DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.
PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.
COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey waterquality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remarks codes may appear with the water-quality data in this report:

PRINTED OUTPUT REMARK

e Estimated value

$>$ Actual value is known to be greater than the value shown
<Actual value is known to be less than the value shown
K Based on non-ideal colony count
M Presence of material verified but not quantified

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed at the end of the introductory text. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

ACCESS TO WATSTORE DATA

The U.S. Geological Survey is the principal Federal water-data agency and, as such, collects and disseminates about 70 percent of the water data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. As part of the Geological Survey's program of releasing water data to the public, a large-scale computerized system has been developed for the storage and retrieval of water data collected through its activities. The National Water Data Storage and Retrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water-data collected through the activities of the U.S. Geological Survey and to facilitate release of the data to the public. A variety of useful products ranging from data tables to complex statistical analyses such as Log Pearson Type III, can be produced using WATSTORE. The system resides on the central computer facilities of the U.S. Geological Survey at its National Center in Reston, Virginia, and consists of related files and data bases.

* Station Header File - Contains descriptive information on more than 440,000 sites throughout the United States and its territories where the U.S. Geological Survey collects or has collected data.
* Daily Values File - Contains more than 220 million daily values of stream flows, stages, reservoir contents, water temperatures, specific conductances, sediment concentrations, sediment discharges, and ground-water levels.
* Peak Flow File - Contains approximately 500,000 maximum (peak) streamflow and gage-height values at surface-water sites.
* Water Quality File - Contains approximately 2 million analyses of water samples that describe the chemical, physical, biological, and radio-chemical characteristics of both surface and ground water.
* Ground-Water Site Inventory Data Base - Contains inventory data for more than 900,000 wells, springs, and other sources of ground water. The data includes site location, geohydrologic characteristics, well-construction history, and one-time field measurements such as water temperature.

In 1976, the U.S. Geological Survey opened WATSTORE to the public for direct access. The signing of a Memorandum of Agreement with the Survey is required to obtain direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requester will be expected to pay all computer costs he/she incurs. Direct access may be obtained by contacting:

```
U.S. Geological Survey
National Water Data Exchange
421 USGS National Center
Reston, VA 20192
```

In addition to data retrieval by direct access to WATSTORE, data are available in various machine-readable formats on magnetic tape or 5-1/4 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division's District offices (see address on the back of the title page).

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multicelled plants, containing chlorophyll and lacking roots, stems, and leaves.
Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Alkalinity represents the capacity of solutes in an aqueous sample to neutralize acid. Total alkalinity titrations are performed in the field (FIELD) environment on an aqueous sample, filtered through a 0.45 micrometer filter (DIS), to an inflection point near $\mathrm{pH}=4.5$, using the iterative-titration (IT) method. Alkalinity titrations in the laboratory (LAB) are performed on unfiltered samples using the fixedendpoint (FEP) method to $\mathrm{pH}=4.5$. On occasion, for chemical or hydrologic considerations, alkalinity titrations are performed in the field environment on unfiltered, whole-water (WWR) samples and noted. Column headings in this publication containing total alkalinity results will display the location: FIELD or LAB; titration method: IT or FEP; and type of aqueous sample: DIS or WWR.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at $35^{\circ} \mathrm{C}$. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at $35^{\circ} \mathrm{C} \pm 1.0^{\circ} \mathrm{C}$ on M -Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at $44.5^{\circ} \mathrm{C} \pm 0.2^{\circ} \mathrm{C}$ on $\mathrm{M}-\mathrm{FC}$ medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warmblooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brainheart infusion broth. In the laboratory they are defined as all the organism which produce red or pink colonies with 48 hours at $35^{\circ} \mathrm{C} \pm 1.0^{\circ} \mathrm{C}$ on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.
Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.
Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of $500^{\circ} \mathrm{C}$ for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter $\left(\mathrm{g} / \mathrm{m}^{3}\right)$, and periphyton and benthic organisms in grams per square meter $\left(\mathrm{g} / \mathrm{m}^{2}\right)$.

Dry mass refers to the mass of residue present after drying in an oven at $105^{\circ} \mathrm{C}$ for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash and dry mass.

Wet mass is the mass of living matter plus contained water.
Bottom material: See Bed material.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Cfs-day is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

Chlorophyll refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common green pigments in plants.
Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Control designates a feature downstream from the gage that determines the stage-discharge relation at a gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic foot per second $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$ is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Cubic feet per second per square mile $\left(\mathrm{ft}^{3} / \mathrm{s}\right) / \mathrm{mi}^{2}$ is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific time.
Instantaneous discharge is the discharge at a particular instant of time.
Annual 7-day minimum is the lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7 -day minimum flows use a climatic year (April 1 - March 31). The date shown in the summary statistics table is the initial date of the 7 -day period. (This value should not be confused with the 7 -day 10year low-flow statistic.)

Dissolved refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

Drainage basin is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage" although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.
Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$.

Hydrologic Bench-Mark Network is a network of 53 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

Land-surface datum (Isd) is a datum plane that is approximately at land surface at each groundwater observation well.
Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larvaadult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (ug / g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter ($\mathrm{MG} / \mathrm{L}, \mathrm{mg} / \mathrm{L}$) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg / L and is based on the mass of dry sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 142 sites in NASQAN are generally located th the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

National Trends Network (NTN) is a 150 -station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which incudes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

Organism is any living entity.
Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per unit area habitat, usually square meter $\left(\mathrm{m}^{2}\right)$, acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.
Parameter Code is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

Partial-record station is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter or particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with the recommendation made by the American Geophysical Unit Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)		Method of analysis
Clay..........	$0.00024-$	0.004	Sedimentation
Silt...........	.004	-	.062
Sand.......	.062	-	2.0
Gravel.......	2.0	-	64.0

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population in terms of types, numbers, mass, or volume.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

Picocurie ($\mathrm{PC}, \mathrm{pCi}$) is one trillionth $\left(1 \times 10^{-12}\right)$ of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7×10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Plankton is a community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.
Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells $/ \mathrm{mL}$) of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells $/ \mathrm{mL}$) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton is dominated by small crustaceans and rotifers.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time $\mathrm{mg} \mathrm{C} /\left(\mathrm{m}^{2}\right.$.time) for periphyton and macrophytes and $\mathrm{mg} \mathrm{C} /\left(\mathrm{m}^{3}\right.$.time) for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time $\mathrm{mgO} /\left(\mathrm{m}^{2}\right.$. .time) for periphyton and macrophytes and $\mathrm{mg} \mathrm{O} /\left(\mathrm{m}^{3}\right.$.time) for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sea Level In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

Bed load discharge (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg / L).

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24 -hour day.

Suspended-sediment discharge (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg / L) \times discharge $\left(\mathrm{ft}^{3} / \mathrm{s}\right) \times 0.0027$.

Suspended-sediment load is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.

Total-sediment load or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

7-day 10 -year low flow ($7 \mathrm{Q}_{10}$) is the discharge at the 10 -year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7 -day low flow).

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.
Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at $25^{\circ} \mathrm{C}$. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and the volume of water, per unit of time, flowing in a channel.
Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is they physical surface upon which an organism lives.
Natural substrate refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglas strips for periphyton.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

Surficial bed material is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.
Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45 -micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituents.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata, is the following:

Kingdom..	Animal
Phylum.	Arthropoda
Class.	Insecta
Order.	Ephemeroptera
Family.	Ephemeridae
Genus.	Hexagenia
Species...	Hexagenia limbata

Thermograph is an instrument that continuously records variation of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136 .

Tons per day (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24 -hour period.
Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

Total discharge is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses, because different digestion procedures are likely to produce different analytical results.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water year in Geological Survey reports dealing with surface-water supply is the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1980, is called the "1980 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologicdata reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

SELECTED REFERENCES

The following publications are available for background information on the methods for collecting, analyzing, and evaluating the chemical and physical properties of surface waters:

American Public Health Association, and others, 1980, Standard methods for the examination of water and waste water, 13th ed: American Public Health Assoc., New York, 1134 p.

Box, George E. P., Hunter, William G., and Hunter, J. Stuart, 1978, Statistics for Experimenters: New York, John Wiley, and Sons, 653 p.
Cain, D. L., 1984, Quality of the Arkansas River and irrigation-return flows in the lower Arkansas River Valley of Colorado: Water-Resources Investigation Report 84-4273, 91 p .

Carter, R. W., and Davidian, Jacob, 1968, General procedures for gaging streams: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6, 13 p.

Clarke, F. W., 1924, The composition of the river and lake waters of the United States: U.S. Geological Survey Professional Paper 135, 199 p.

Colby, B. R., 1963, Fluvial sediments--a summary of source, transportation, deposition, and measurements of sediment discharge: U.S. Geological Survey Bulletin 1181-A, 47 p.

Colby, B. R., and Hembree, C. H., 1955, Computations of total sediment discharge, Niobrara River near Cody, Nebraska: U.S. Geological Survey Water-Supply Paper 1357, 187 p.

Colby, B. R., and Hubbell, D. W., 1961, Simplified methods for computing total sediment discharge with the modified Einstein procedure: U.S. Geological Survey Water-Supply Paper 1593, 17 p.

Collins, W. D., and Howard, C. S., 1928, Quality of water of Colorado River in 1925-26: U.S. Geological Survey Water-Supply Paper 596 B, p. 33-43.

Corbett, D. M., and others, 1942, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geological Survey Water-Supply Paper 888, 245 p.

Crouch, T. M., and others, 1984, Water-Resources Appraisal of the upper Arkansas River basin from Leadville to Pueblo, Colorado: WaterResources Investigation Report 82-4114, 123p.

Fishman, M. J., and Bradford, W. L., 1982, A supplement to methods for the determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Laboratory Analysis, Chapter A1, openfile report 82-272, 136 p .

Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A3, 40 p.

Gregg, D. O., and others, 1961, Public water supplies of Colorado (1959-60): Fort Collins, Colorado State University Agricultural Experiment Station, General Service 757, 128 p .

Guy, H. P., 1970, Fluvial sediment concepts: U.S. Geological Survey Techniques of Water-Resources Investigation, Book 3, Chapter C1, 55 p .

1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C1, 57 p.

Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of WaterResources Investigations, Book 3, Chapter C2, 59 p.

Hawley, Gessner G., 1981, The condensed chemical dictionary; Van Nostrand-Reinhold Publication Corporation, New York, 10th edition, 1135 p.

Hem, John D., 1970, Study and interpretation of the chemical characteristics of natural water, 2d ed.: U.S. Geological Survey Water-Supply Paper 1473, 363 p.

Horowitz, A.J., and others, 1994, U.S. Geological Survey protocol for the collection and processing of surface-water samples for the subsequent determination of inorganic constituents in filtered water: U.S. Geological Survey open-file report 94-539, 57 p .

Howard, C. W., 1955, Quality of water of the Colorado River, 1925-40: U.S. Geological Survey open-file report, 103 p.
Iorns, W. V., and others, 1964, Water Resources of the Upper Colorado River basin--basic data: U.S. Geological Survey Professional Paper 442, 1,036 p.

1965, Water Resources of the Upper Colorado River basin--technical report: U.S. Geological Survey Professional Paper 441, 370 p.

Lane, E. W., and others, 1947, Reports of Subcommittee on terminology: American Geophysical Union Transaction, v. 28, p. 937.
Langbein, W. B., and Iseri, K. T., 1960, General introduction and hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.

Lohman, S. W., and others, 1972, Definitions of selected ground-water terms--revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, p. 2.

McGuinness, C. L., 1963, The role of ground water in the national water situation: U.S. Geological Survey Water-Supply Paper 1800, 1121 p.

Meinzer, O. E., 1923, The occurrence of ground water in the United States: U.S. Geological Survey Water-Supply Paper 489, 321 p.
___1923, Outline of ground-water hydrology, with definitions: U.S. Geological Survey Water-Supply Paper 494, 71 p.
Moran, R. E., and Wentz, D. A., 1974, Effects of metal-mine drainage on water quality in selected areas of Colorado, 2 of 3, 1972-73: Colorado Water Conservation Board Circular 25, 250 p.

Ott, R.L., 1993, An introduction to statistical methods and data analysis, 4th ed: Duxbury Press, 1051 p.
Porterfield, George, 1972, Computations of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p.

Rantz, S. E. and others, Measurement and Computation of Streamflow: Volume 1. Measurement of Stage and Discharge: U.S. Geological Survey Water-Supply Paper 2175, 284 p.

Rantz, S. E. and others, Measurement and Computation of Streamflow: Volume 2. Computation of Discharge: U.S. Geological Survey Water-Supply Paper 2175, 285-631 p.

Ritter, J. R., and Helley, E. J., 1969, Optical method for determining particle sizes of coarse sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C3, 33 p.

Slack, K. V., and others, 1973, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 165 p.

Spahr, N. E., Blakely, S. R., and Hammond, S. E., 1985, Selected Hydrologic Data for the South Platte River through Denver, Colorado: U. S. Geological Survey open file report 84-703, 225 p.

Stabler, Herman, 1911, Some stream waters of the Western United States: U.S. Geological Survey Water-Supply Paper 274, 188 p.
U.S. Inter-Agency Committee on Water Resources, A study of methods used in measurements and analysis of sediment loads in streams:

Report 11, 1957, The development and calibration of visual accumulation tube: St. Anthony Falls Hydraulic Lab., Minneapolis, Minn., 109 p.

Report 12, 1957, Some fundamentals of particle-size analysis: Washington, D. C., U.S. Government Printing Office, 55 p.
Report AA, 1959, Federal Inter-Agency sedimentation instruments and reports: St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minn., 41 p.

Report 13, 1961, The single-stage sampler for suspended sediment: Washington, D. C., U.S. Government Printing Office, 105 p. Report 14, 1963, Determinations of fluvial sediment discharge: Washington, D. C., U.S. Government Printing Office, 151 p.

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Colorado have been discontinued or converted to partial-record stations. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. [--, data unavailable]

Station name	Station number	Drainage area (sq mi)	Period of record (water years)
Colorado Creek near Spicer, CO	06611000	25.8	1950-55
Grizzly Creek near Spicer, CO	06611100	118	1976-80
Buffalo Creek near Hebron, CO	06611200	56.3	1976-80
Grizzly Creek near Hebron, CO	06611300	223	1976-80
Grizzly Creek near Walden, CO	06611500	258	
Little Grizzly Creek near Coalmont, CO	06611700	10.1	1967-73
Little Grizzly Creek above Coalmont, CO	06611800	35.4	1976-80
Little Grizzly Creek above Hebron, CO	06611900	52.2	1976-80
Little Grizzly Creek near Hebron, CO	06612000	98.6	$\begin{aligned} & 1904-05, \\ & 1931-45 \end{aligned}$
Roaring Fork near Walden, CO	06612500	79.1	$\begin{aligned} & 1904-05, \\ & 1923-47 \end{aligned}$
North Platte River near Walden, CO	06613000	469	$\begin{aligned} & 1904-05, \\ & 1923-47 \end{aligned}$
North Fork North Platte River near Walden, CO	06614000	160	$\begin{aligned} & 1923-28, \\ & 1936-45 \end{aligned}$
South Fork Michigan River near Gould, CO	06615000	11.4	1950-58
Michigan River near Lindland, CO	06615500	60.9	1931-41
North Fork Michigan River near Gould, CO	06616000	20.5	1950-82
Michigan River at Walden, CO	06617100	182	$\begin{aligned} & 1904-05, \\ & 1923-47 \end{aligned}$
Illinois Creek near Rand, CO	06617500	70.6	1931-40
Willow Creek near Rand, CO	06618000	55.9	1931-40
Illinois Creek at Walden, CO	06618500	259	1923-47
Michigan River near Cowdrey, CO	06619000	478	$\begin{aligned} & 1904-05, \\ & 1937-47 \end{aligned}$
Canadian River near Lindland, CO	06619400	44.0	1978-83
Bush Draw near Walden, CO	06619415	4.10	1980-83
Williams Draw near Walden, CO	06619420	3.95	1979-83
Canadian River near Brownlee, CO	06619450	158	1978-83
Canadian River at Cowdrey, CO	06619500	181	$\begin{aligned} & 1904-05, \\ & 1929-31 \\ & 1937-47 \end{aligned}$
Laramie River near Glendevey, CO	06657500	101	$\begin{aligned} & 1904-05 \\ & 1910-82 \end{aligned}$
Middle Fork South Platte River above Fairplay, CO	06693980	62.2	1978-80
Middle Fork South Platte River near Hartsel, CO	06694100	250	1978-80
South Fork South Platte River above Fairplay, CO	06694400	50.3	1978-80
Fourmile Creek near Fairplay, CO	06694700	12.0	1978-80
South Platte River at Lake George, CO	06696200	1,084	$\begin{aligned} & \text { 1910-11, } \\ & 1929 \end{aligned}$
Tarryall Creek at Upper Station near Como, CO	06696980	23.7	1978-86
French Creek near Jefferson, CO	06697200	4.63	1986-90
Michigan Creek above Jefferson, CO	06697450	23.1	1978-86
Jefferson Creek near Jefferson, CO	06698000	11.8	$\begin{aligned} & 1910-12 \\ & 1978-86 \end{aligned}$
Tarryall Creek near Jefferson, CO	06698500	183	
Rock Creek near Jefferson, CO	06699000	45.5	1986-90
Tarryall Creek near Lake George, CO	06699500	236	$\begin{aligned} & 1910-12, \\ & 1916, \\ & 1925-55 \end{aligned}$
South Platte River above Cheesman Lake, CO	06700000	1,628	$\begin{aligned} & \text { 1899-1901, } \\ & 1924-43 \end{aligned}$
Goose Creek above Cheesman Lake, CO	06700500	86.6	$\begin{aligned} & 1899, \\ & 1924-82 \end{aligned}$
South Platte River above North Fork at South Platte, CO	06702000	2,098	1905-12
North Fork South Platte River at Grant, CO	06702500	49.0	1910-17
North Fork South Platte River at Pine, CO	06706500	374	1942-46
North Fork South Platte River at South Platte, CO	06707000	479	$\begin{aligned} & 1909-10 \\ & 1913-82 \end{aligned}$
South Platte River at South Platte, CO	06707500	2,579	$\begin{aligned} & \text { 1887-92, } \\ & \text { 1895-97, } \\ & \text { 1898-1982 } \end{aligned}$
South Platte River at Waterton, CO	06708000	2,621	1926-80
East Plum Creek at Castle Rock, CO	06708750	102	1985-89

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS (Continued)

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Colorado have been discontinued or converted to partial-record stations. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. [--, data unavailable]

Station name	Station number	Drainage area (sq mi)	Period of record (water years)
Plum Creek near Louviers, CO	06709500	302	1947-90
South Platte River at Littleton, CO	06710000	3,069	1941-86
South Platte River at Union Avenue, at Englewood, CO	06710245	3,043	1989-95
Turkey Creek above Bear Creek Lake, near Morrison, CO	06711040	50.6	1986-89
South Platte River at Florida Avenue, at Denver, CO	06711590	--	1981-82
Cherry Creek near Melvin, CO	06712500	360	1939-69
South Platte River at 50th Avenue at Denver, CO	06714130	3,810	1980-81
Senac Creek at North Border Sludge Area, near Aurora, CO	06714220	7.81	1989-93
West Fork Clear Creek above Empire, CO	06715500	40.5	1942-46
West Fork Clear Creek near Empire, CO	06716000	58.2	1929-31
Clear Creek below Idaho Springs, CO	06718000	259	1951-55
North Clear Creek near Blackhawk, CO	06718500	52.2	1951-55
Clear Creek at Forks Creek, CO	06719000	339	1899-1912
Clear Creek near Golden, CO	06719500	399	$\begin{aligned} & \text { 1908-09, } \\ & \text { 1911-74 } \end{aligned}$
Clear Creek at Tabor Street, at Lakewood, CO	06719526	427	1981-83
Ralston Creek near Plainview, CO	06719725	36.9	1983-84
Schwartzwalder Mine Effluent near Plainview, CO	06719730	--	1983-84
Ralston Creek below Schwartzwalder Mine near Plainview, CO	06719735	38.9	1983-84
Ralston Creek above Ralston Reservoir near Golden, CO	06719740	42.7	1983-84
Clear Creek at Mouth near Derby, CO	06720000	575	$\begin{aligned} & 1914, \\ & 1927-82 \end{aligned}$
Grange Hall Creek at Grant Park at Northglenn, CO	06720330	--	1978-79
Grange Hall Creek at Northglenn, CO	06720415	3.08	1978-81
Grange Hall Creek below Northglenn, CO	06720417	--	1981-82
First Creek below Buckley Road, near Rocky Mountain Arsenal, CO	06720460	26.4	1992-94
First Creek at Highway 2, near Rocky Mountain Arsenal, CO	06720490	39.0	1992-94
Woman Creek near Plainview, CO	06720690	--	1973-74
Big Dry Creek at Westminster, CO	06720820	43.8	1987-95
South Platte River at Fort Lupton, CO	06721000	5,010	$\begin{aligned} & 1906, \\ & 1929-57 \end{aligned}$
North Saint Vrain Creek at Longmont Dam near Lyons, CO	06722000	106	1925-53
South Saint Vrain Creek near Ward, CO	06722500	14.4	$\begin{aligned} & 1925-27 \\ & 1928-31 \\ & 1954-73 \end{aligned}$
Middle Saint Vrain Creek near Raymond, CO	06722900	16.8	1956-58
Middle Saint Vrain Creek near Allens Park, CO	06723000	28.0	1925-30, ${ }^{\text {a }}$
South Saint Vrain Creek above Lyons, CO	06723400	81.4	1971-80
Lefthand Creek near Boulder, CO	06724500	52.0	$\begin{aligned} & \text { 1929-31, } \\ & \text { 1947-53, } \\ & 1976-80 \end{aligned}$
Lefthand Creek at Mouth at Longmont, CO	06725000	72.0	$\begin{aligned} & \text { 1927-42, } \\ & 1953-55, \\ & 1976-79 \end{aligned}$
Saint Vrain Creek near Longmont, CO	06725100	370	1964-68
North Boulder Creek at Silver Lake, CO	06726000	8.70	1913-32
North Boulder Creek near Nederland, CO	06726500	30.4	1929-31
Bummers Gulch near El Vado, CO	06726900	3.87	1983-95
Fourmile Creek at Orodell, CO	06727500	24.1	$\begin{aligned} & \text { 1947-53, } \\ & 1983-95 \end{aligned}$
South Boulder Creek near Rollinsville, CO	06729000	42.7	$\begin{aligned} & \text { 1910-18, } \\ & 1945-49 \end{aligned}$
South Boulder Creek at Pinecliff, CO	06729300	72.7	1979-80
Coal Creek near Plainview, CO	06730300	15.1	1959-82
Boulder Creek at Mouth near Longmont, CO	06730500	439	$\begin{aligned} & 1927-49 \\ & 1951-55 \\ & 1978-90 \end{aligned}$
Boulder Brook near Estes Park, CO	06731800	3.83	1968-70
Glacier Creek near Estes Park, CO	06732000	20.8	$\begin{aligned} & \text { 1941-57, } \\ & 1968-70 \end{aligned}$
Beaver Brook near Estes Park, CO	06732300	1.49	1968-70
Fall River at Estes Park, CO	06732500	39.8	1945-53, ${ }^{\text {a }}$
Fish Creek near Estes Park, CO	06734500	15.8	1947-55
North Fork Big Thompson River at Drake, CO	06736000	85.1	1947-55
Big Thompson River below Power House near Drake, CO	06736500	278	1917-55
Dry Creek near Pinewood, CO	06740000	7.11	1950-52
Cottonwood Creek near Pinewood, CO	06741000	14.7	1947-53
Big Thompson River near Loveland, CO	06741500	505	1947-55
Little Thompson River near Berthoud, CO	06742000	100	$\begin{aligned} & \text { 1929-30, } \\ & 1947-61 \end{aligned}$

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Colorado have been discontinued or converted to partial-record stations. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. [--, data unavailable]

Station name	Station number	Drainage area (sq mi)	Period of record (water years)
Little Thompson River at Milliken, CO	06743500	199	1951-55
Big Thompson River at Mouth near La Salle, CO	06744000	830	$\begin{aligned} & \text { 1914-15, } \\ & 1927-82 \end{aligned}$
Cache La Poudre River above Chambers Lake Outlet, CO	06745000	89.7	1929-31
Joe Wright Creek near Cameron Pass, CO	06746100	5.05	1974-78
Cache La Poudre River near Rustic, CO	06747500	198	1956-68
Cache La Poudre River near Log Cabin, CO	06748000	234	$\begin{aligned} & \text { 1909-11, } \\ & \text { 1929-31 } \end{aligned}$
Fall Creek near Rustic, CO	06748200	3.59	1960-73
South Fork Cache La Poudre near Eggers, CO	06748500	70.6	1929-31
Little Beaver Creek near Idylwilde, CO	06748510	0.88	1960-73
Little Beaver Creek near Rustic, CO	06748530	12.3	1960-73
South Fork Cache La Poudre River near Rustic, CO	06748600	92.4	1956-79
Cache La Poudre River below Elkhorn, CO	06749000	409	1946-59
North Fork Cache La Poudre River near Livermore, CO	06751500	567	1947-65
Lonetree Creek at Carr, CO	06753400	167	1993-95
Lonetree Creek near Nunn, CO	06753500	199	1951-57
Lonetree Creek near Greeley	06753990	567	1993-95
Crow Creek near Barnsville, CO	06756500	1,324	1951-57
South Platte River at Masters, CO	06756995	12,175	1976-88
South Platte River at Sublette, CO	06757000	12,170	$\begin{aligned} & 1926-42 \\ & 1943-55 \end{aligned}$
Kiowa Creek at K-79 Reservoir near Eastonville, CO	06757600	3.20	1955-65
Kiowa Creek at Elbert, CO	06758000	28.6	1955-65
West Kiowa Creek at Elbert, CO	06758100	35.9	1962-65
Kiowa Creek at Kiowa, CO	06758200	111	1955-65
Kiowa Creek at Bennett, CO	06758300	236	1960-65
Bijou Creek near Wiggins, CO	06759000	1,314	1950-56
Bijou Creek near Fort Morgan, CO	06759100	1,500	1976-87
South Platte River at Fort Morgan, CO	06759500	14,810	1943-58
South Platte River at Balzac, CO	06760000	16,852	1916-80
South Platte River near Crook, CO	06760500	19,238	1953-58
North Fork Republican River near Wray, CO	06822000	1,019	$\begin{aligned} & 1937-46, \\ & 1951-57, \\ & 1962-64 \end{aligned}$
South Fork Republican River near Idalia, CO	06825000	1,300	$\begin{aligned} & \text { 1950-71, } \\ & 1972-81 \end{aligned}$
Landsman Creek near Hale, CO	06825500	268	$\begin{aligned} & 1950-76, \\ & 1977-81 \end{aligned}$
Bonny Reservoir near Hale, CO	06826000	1,820	1950-95
South Fork Republican River near Hale, CO	06826500	1,825	$\begin{aligned} & 1946-48, \\ & 1951-86 \end{aligned}$
Leadville Mine Drainage Tunnel at Leadville, CO	07079200	--	1990-93
East Fork Arkansas River near Leadville, CO	07079500	50.0	$\begin{aligned} & \text { 1890-1903, } \\ & 1910-24 \end{aligned}$
Tennessee Creek near Leadville, CO	07081000	48.0	$\begin{aligned} & \text { 1890-1903, } \\ & \text { 1910-1924 } \end{aligned}$
Arkansas River near Leadville, CO	07081200	97.2	1967-83
Lake Fork above Sugar Loaf Reservoir, CO	07082000	23.9	1946-67
Halfmoon Creek near Leadville, CO	07083500	25.2	1911-14
Arkansas River near Malta, CO	07083700	228	$\begin{aligned} & \text { 1964-67, } \\ & \text { 1976-84 } \end{aligned}$
Arkansas River below Empire Gulch, near Malta, CO	07083710	237	1990-93
Arkansas River at Buena Vista, CO	07087200	611	$\begin{aligned} & 1964-80 \\ & 1986-93 \end{aligned}$
Cottonwood Creek below Hot Springs near Buena Vista, CO	07089000	65.0	$\begin{aligned} & 1910-23, \\ & 1949-86 \end{aligned}$
Chalk Creek Upper Station near Saint Elmo, CO	07090000	48.0	1913-19
Chalk Creek near Saint Elmo, CO	07090500	83.0	1910-16
Chalk Creek near Nathrop, CO	07091000	97.0	$\begin{aligned} & 1910, \\ & 1949-56, \end{aligned}$
Arkansas River at Salida, CO	07091500	1,218	$\begin{aligned} & \text { 1895-97, } \\ & 1901-03, \\ & 1909-80 \end{aligned}$
South Arkansas River at Poncha, CO	07092000	140	1910-18
Poncha Creek at Poncha, CO	07093000	56.0	1910-18
South Arkansas River near Salida, CO	07093500	208	$\begin{aligned} & \text { 1922-23, } \\ & 1929-40 \end{aligned}$
South Colony Creek near Westcliffe, CO	07094600	6.03	1974-78
Middle Taylor Creek near Westcliffe, CO	07094900	3.19	$\begin{aligned} & 1974-78, \\ & 1984-85 \end{aligned}$

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS (Continued)

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Colorado have been discontinued or converted to partial-record stations. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. [--, data unavailable]

Station name	Station number	Drainage area (sq mi)	Period of record (water years)
Beaver Creek near Portland, CO	07099100	214	1971-81
Arkansas River near Portland, CO	07099200	4,280	1964-79
Little Turkey Creek near Fountain, CO	07099220	9.59	1978-88
Turkey Creek above Teller Reservoir near Stone City, CO	07099230	62.3	1978-88
Turkey Creek near Stone City, CO	07099235	71.5	$\begin{aligned} & 1978-83 \\ & 1987 \end{aligned}$
Arkansas River near Pueblo, CO	07099500	4,686	$\begin{aligned} & \text { 1885-87, } \\ & \text { 1889, } \\ & \text { 1894-1975 } \end{aligned}$
Monument Creek at Palmer Lake, CO	07103747	25.9	1977-90
Monument Creek at Monument, CO	07103750	28.5	1976-77
West Monument Creek near Pikeview, CO	07103900	15.4	1957-70
Kettle Creek near Black Forest, CO	07103950	9.01	1976-86
Templeton Gap Floodway at Colorado Springs, CO	07104500	8.73	1951-81
B Ditch Drain near Security, CO	07105780	--	1981-88
Clover Ditch near Widefield, CO	07105820	--	1981-88
Womack Ditch near Fort Carson, CO	07105924	--	1978-91
Little Fountain Creek near Fountain, CO	07105940	26.9	1978-88
Rock Creek near Fountain, CO	07105960	16.9	1978-88
Saint Charles River at San Isabel, CO	07107000	16.0	1936-41
Saint Charles River at Burnt Mill, CO	07107500	166	1923-34
Greenhorn Creek near Rye, CO	07107900	9.56	1974-79
Greenhorn Creek near Colorado City, CO	07108050	29.6	1974-79
Saint Charles River near Pueblo, CO	07108500	467	$\begin{aligned} & \text { 1941-53, } \\ & 1955 \end{aligned}$
Saint Charles River near Vineland, CO	07108800	473	1968-74
Saint Charles River at Mouth near Pueblo, CO	07109000	475	1922-25
Sixmile Creek near Avondale, CO	07110000	45.0	$\begin{aligned} & \text { 1922-24, } \\ & 1941-46 \end{aligned}$
Chico Creek near North Avondale, CO	07110500	864	1941-46
Huerfano River at Manzanares Crossing near Redwing, CO	07111000	73.0	1923-82
Huerfano River at Malachite, CO	07111500	107	1923-25
Huerfano River near Badito, CO	07112000	499	1941-46
Huerfano River at Badito, CO	07112500	532	$\begin{aligned} & 1912, \\ & 1923-25, \\ & 1938-41, \\ & 1946-54 \end{aligned}$
Huerfano River at Huerfano, CO	07113000	717	1923-28
Huerfano River near Mustang, CO	07113500	803	1942-47
Cucharas River at Boyd Ranch near La Veta, CO	07114000	56.0	1934-82
Cucharas River near La Veta, CO	07114500	75.0	1923-34
Huerfano River below Huerfano Valley Dam near Undercliffe, CO	07116000	1,673	1939-67
Arkansas River at Nepesta, CO	07117500	9,460	$\begin{aligned} & \text { 1898-1902, } \\ & 1904-06, \\ & 1936 \end{aligned}$
Chicosa Creek near Fowler, CO	07117600	109	1968-74
Apishapa River near Aguilar, CO	07118000	126	1939-50
Apishapa River at Aguilar, CO	07118500	149	$\begin{aligned} & \text { 1938-39, } \\ & 1978-81 \end{aligned}$
Apishapa River near White Rock, CO	07119000	737	1942-47
Big Arroyo near Thatcher, CO	07120620	15.5	$1983-90^{\text {a }}$
Timpas Creek near Rocky Ford, CO	07121000	451	$\begin{aligned} & \text { 1922-27, } \\ & 1940-50 \end{aligned}$
Fort Lyon Canal near Casa, CO	07122060	--	1988-90
Fort Lyon Canal near Cornelia, CO	07122105	--	1988-90
Fort Lyon Canal near Hasty, CO	07122200	--	$\begin{aligned} & 1968-75 \\ & 1988-90 \end{aligned}$
Fort Lyon Canal near Big Bend, CO	07122350	--	1988-90
Crooked Arroyo near Swink, CO	07122400	108	1968-93
Crooked Arroyo near La Junta, CO	07122500	--	1922-25
Horse Creek near Sugar City, CO	07123500	1,080	1940-47
Horse Creek near Las Animas, CO	07123675	1,403	1979-93
Middle Fork Purgatoire River at Stonewall, CO	07124050	57.1	1978-81
Molino Canyon near Weston, CO	07124100	4.23	1978-81
Sarcillo Canyon near Segundo, CO	07124120	35.3	1978-81
Mulligan Canyon near Boncarbo, CO	07124210	4.53	1978-81
Reilly Canyon at Cokedale, CO	07124220	35.1	1978-81
Long Canyon Creek near Madrid, CO	07124300	100	1972-89
Carpios Canyon near Jansen, CO	07124350	4.57	1978-81

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Colorado have been discontinued or converted to partial-record stations. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. [--, data unavailable]

Station name	Station number	Drainage area (sq mi)	Period of record (water years)
Purgatoire River at Trinidad, CO	07124500	795	$\begin{aligned} & \text { 1895-99, } \\ & \text { 1905-12, } \\ & 1915-60, \\ & 1961-82 \end{aligned}$
Purgatoire River near Hoehne, CO	07125000	857	1954-68
Frijole Creek near Alfalfa, CO	07125100	80.0	1957-68
San Francisco Creek near Alfalfa, CO	07125500	160	1954-68
Purgatoire River near Alfalfa, CO	07126000	1,320	1905-07, 1924-28, 1951-68
Van Bremer Arroyo near Thatcher, CO	07126130	80.6	1983-85
Burke Arroyo Tributary near Thatcher, CO	07126320	4.66	1983-87
Lockwood Canyon Creek near Thatcher, CO	07126390	41.4	$1983-92^{\text {a }}$
Red Rock Canyon Creek at Mouth, near Thatcher, CO	07126415	48.8	$1983-90{ }^{\text {a }}$
Chacuaco Creek at Mouth, near Timpas, CO	07126470	424	1983-92 ${ }^{\text {a }}$
Bent Canyon Creek at Mouth near Timpas, CO	07126480	56.2	$1983-90^{\text {a }}$
Purgatoire River at Highland Dam near Las Animas, CO	07128000	3,376	$\begin{aligned} & 1898, \\ & 1931-55 \end{aligned}$
Rule Creek near Caddoa, CO	07129500	435	1941-46
Caddoa Creek at Caddoa, CO	07131000	131	1941-46
Willow Creek near Lamar, CO	07133050	42.0	1974-77
Big Sandy Creek above Amity Canal near Korman, CO	07134000	3,396	1941-46
Arkansas River at Holly, CO	07135500	25,073	$\begin{aligned} & 1894, \\ & \text { 1901-02, } \\ & 1907-53 \end{aligned}$
Wild Horse Creek at Holly, CO	07136000	270	$\begin{aligned} & \text { 1922-35, } \\ & 1938-50 \end{aligned}$
Holly Drain near Holly, CO	07136500	--	1924-50
Willow Creek at Creede, CO	08216500	51.7	1951-82
Rio Grande at Wason below Creede, CO	08217000	705	1907-54
Goose Creek near Wagonwheel Gap, CO	08218000	53.6	$\begin{aligned} & \text { 1924-26, } \\ & 1939-52 \end{aligned}$
Goose Creek at Wagonwheel Gap, CO	08218500	90.0	1954-91
Pinos Creek near Del Norte, CO	08220500	53.0	$\begin{aligned} & \text { 1919-24, } \\ & 1936-82 \end{aligned}$
San Francisco Creek at upper station near Del Norte, CO	08220900	11.8	1967-69
Rio Grande near Monte Vista, CO	08221500	1,590	1926-80
Rock Creek near Monte Vista, CO	08223500	32.9	$\begin{aligned} & \text { 1935-55, } \\ & 1966-70 \end{aligned}$
San Luis Creek near Poncha Pass, CO	08224110	6.57	1979-85
San Luis Creek above Villa Grove, CO	08224113	11.2	1979-85
Raspberry Creek near Villa Grove, CO	08224200	1.78	1967-70
Kerber Creek at Ashley Ranch near Villa Grove, CO	08224500	38.0	$\begin{aligned} & \text { 1923-26, } \\ & 1936-82 \end{aligned}$
Noland Gulch Tributary Reservoir Inflow, near Villa Grove, CO	08226600	0.08	1979-89
Cotton Creek near Mineral Hot Springs, CO	08226700	13.6	1967-70
Anaconda Reservoir near Villa Grove, CO	08227300	0.17	1979-85
Tracy Pit Reservoir Inflow near Saguache, CO	08227400	0.05	1979-89
North Crestone Creek near Crestone, CO	08227500	10.7	1936-82
Cottonwood Creek near Crestone, CO	08229500	6.77	$\begin{aligned} & \text { 1936, } \\ & 1967-70 \end{aligned}$
Carnero Creek near La Garita, CO	08230500	117	1919-82
La Garita Creek near La Garita, CO	08231000	61.0	1919-82
Mosca Creek near Mosca, CO	08234200	3.67	1967-70
Alamosa Creek above Terrace Reservoir, CO	08236000	107	$\begin{aligned} & 1911-12, \\ & 1914-27 \\ & 1934-82 \end{aligned}$
Alamosa Creek below Terrace Reservoir, CO	08236500	116	1909-55
La Jara Creek at Gallegos Ranch near Capulin, CO	08238000	98.0	$\begin{aligned} & \text { 1916-17, } \\ & \text { 1919-23, } \\ & 1936-82 \end{aligned}$
Yellow Warbler Reservoir Inflow near Antonito, CO	08238350	0.18	1979-89
Turkey Reservoir Inflow near Conejos, CO	08238380	0.24	1979-89
Bobolink Reservoir near Conejos, CO	08238400	0.23	1979-89
Trinchera Creek above Turners Ranch near Ft Garland, CO	08240500	45.0	1923-82
Trinchera Creek above Mountain Home Reservoir near Ft Garland, CO	08241000	61.0	1923-55
Sangre De Cristo Creek near Ft Garland, CO	08241500	190	$\begin{aligned} & 1916, \\ & \text { 1923-30, } \\ & 1931-82 \end{aligned}$
Ute Creek near Ft Garland, CO	08242500	32.0	$\begin{aligned} & 1916, \\ & 1923-82 \end{aligned}$

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS (Continued)

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Colorado have been discontinued or converted to partial-record stations. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. [--, data unavailable]

Station name	Station number	Drainage area (sq mi)	Period of record (water years)
Trinchera Creek below Smith Reservoir near Blanca, CO	08243500	396	
Conejos River at Platoro, CO	08245500	44.4	
Conejos River at Counsellors Cabin near Mogote, CO	08246000	$1928-82$	
San Antonio River at mouth near Manassa, CO	08248500	211	$1936-53$
Culebra Creek near Chama, CO	08249400	348	72.4
Culebra Creek at San Luis, CO	08250000	220	$1923-82$
Culebra Creek below San Luis, CO	08250500	$1967-70$	
Rio Grande at CO-NM State Line	08252000	255	$1927-82$

a-Converted to a crest-stage partial-record station.

The following stations were discontinued as continuous-record surface-water-quality stations. Daily records of temperature, specific conductance, pH , dissolved oxygen or sediment were collected and published for the period of record shown for each station. [--, data unavailable]

Station name	Station number	Drainage area (sq mi)	Type of record	Period of record (water years)
Canadian River near Lindland, CO	06619400	44.0	Temp., S.C., Sed.	1978-83
Canadian River near Brownlee, CO	06619450	158	Temp., S.C., Sed.	1978-83
South Platte River at Littleton, CO	06710000	3,069	Temp.	1970-86
			S.C.	1984-86
South Platte River at 64th Ave.at Commerce City, CO	06714215	3,884	Temp., pH, D.O. pH, D.O., Sed.	1987
Clear Creek at Golden, CO	06719505	400		1981
			Temp., S.C.	1981-95
Ralston Creek near Plainview, CO	06719725	36.9	Temp., S.C., pH, D.O.	1983-84
Schwartzwalder Mine Effluent near Plainview, CO	06719730	--	Temp., S.C., pH, D.O.	1983-84
Ralston Creek below Schwartzwalder Mine, CO	06719735	38.9	Temp., S.C., pH, D.O.	1983-84
Ralston Creek above Ralston Res. near Plainview, CO	06719740	42.7	Temp., S.C., pH, D.o.	1983-84
Cache La Poudre River near Greeley, CO	06752500	1,877	Temp., S.C., pH, D.O.	1975
South Platte River near Kersey, CO	06754000	8,598	Temp.	1950-53
Kiowa Creek at Elbert, CO	06758000	28.6	Sed.	1957-68, 1960-62
				1964-65
West Kiowa Creek at Elbert, CO	06758100	35.9	Sed.	1962-65
Kiowa Creek at Kiowa, CO	06758200	111	Sed.	1956-65
South Platte River at Julesburg, CO	06763990	--	Temp.	1967-73
(Chan. 2)			s.c.	1971-73
North Fork Republican River near Wray, CO	06822000	1,019	Temp., Sed.	1962-63
California Gulch at Malta, CO	07081800	8.13	Temp., S.C., pH	1991-92
Halfmoon Creek near Malta, CO	07083000	23.6	Temp.	1967-82
Arkansas River below Empire Gulch, near Malta, CO	07083710	237	Temp., S.C., pH	1990-93
Arkansas River at Buena Vista, CO	07087200	611	Temp., S.C.	1986-93
Arkansas River near Nathrop, CO	07091200	1,060	Temp., S.C., pH	1989-93
Arkansas River at Parkdale, CO	07094500	2,548	Temp., S.C.	1986-93
Fountain Creek near Pinon, CO	07106300	849	Temp., S.C.	1976-79
Apishapa River at Aguilar, CO	07118500	149	Sed.	1979-81
Apishapa River near Fowler, CO	07119500	1,125	Temp., S.C.	1966-68
Big Arroyo near Thatcher, CO	07120620	15.5	Temp., S.C., Sed.	$1983-90^{\text {a }}$
Arkansas River near La Junta, CO	07122000	--	Temp., S.C.	1966-68
Horse Creek near Las Animas, CO	07123675	1,403	Temp., S.C.	1987-93
Middle Fork Purgatoire River at Stonewall, CO	07124050	52.1	Temp., S.C.	1978-81
			Sed.	1979-81
Molino Canyon near Weston, CO	07124100	4.23	Sed.	1979-81
Sarcillo Canyon near Segundo, CO	07124120	35.3	Sed.	1980-81
Purgatoire River at Madrid, CO	07124200	550	Temp., S.C.	1979-81
			Sed.	1978-81
Mulligan Canyon near Boncarbo, CO	07124210	4.53	Sed.	1979-81
Reilly Canyon at Cokedale, CO	07124220	35.1	Sed.	1979-81
Carpios Canyon near Jansen, CO	07124350	100	Sed.	1979-81
Purgatoire River below Trinidad Lake, CO	07124410	672	Sed.	1977-82
Luning Arroyo Tributary near Model, CO	07126110	--	Temp., S.C.	1984
Van Bremer Arroyo near Thatcher, CO	07126130	80.6	Temp., S.C.	1985
Purgatoire River near Thatcher, CO	07126300	1,791	Sed.	1983-92
Burke Arroyo Tributary near Thatcher, CO	07126320	4.66	Temp., S.C.	1983-86
			Sed.	1984-86
Lockwood Canyon Creek near Thatcher, CO	07126390	41.4	Temp., S.C., Sed.	1989-92 ${ }^{\text {a }}$
Red Rock Canyon Creek at Mouth, near Thatcher, CO	07126415	48.8	Temp., S.C.	$1983-90^{\text {a }}$
Chacuaco Creek at Mouth near Timpas, CO	07126470	424	Temp., S.C., Sed.	$1983-92{ }^{\text {a }}$
Bent Canyon Creek at Mouth near Timpas, CO	07126480	56.2	Temp., S.C.	$1983-90^{\text {a }}$
Purgatoire River at Rock Crossing near Timpas, CO	07126485	2,635	Temp., S.C., Sed.	1983-92
Purgatoire River at Highland Dam near Las Animas, CO	07128000	3,376	S.C.	1967-68
Willow Creek at Creede, CO	08216500	35.3	Temp., S.C.	1976-77
Rio Grande at Wagonwheel Gap, CO	08217500	780	Temp., S.C.	1976-77
San Luis Creek near Poncha Pass, CO	08224110	6.57	Sed.	1981-83
San Luis Creek above Villa Grove, CO	08224113	11.2	Sed.	1981-83
Rio Grande above Culebra Creek near Lobatos, CO	08249200	--	Temp., S.C.	$1964-66$ $1964-66$

Type of record: Temp. (temperature), S.C. (specific conductance), pH (pH), D.O. (dissolved oxygen), Sed. (sediment).
a-Converted to a crest-stage partial-record station.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Branch of Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."
1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.

1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.

2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
2-D2. Application of seismic-refraction techniques to hydrologic studies, by F. P. Haeni: USGS--TWRI Book 2, Chapter D2. 1988. 86 pages.

2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L.M. MacCary: USGS-TWRI Book 2, Chapter E1. 1971. 126 pages.

2-E2. Borehole geophysics applied to ground-water investigations, by W. S. Keys: USGS--TWRI Book 2, Chapter E2. 1990. 150 pages.

2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W. E. Teasdale: USGS--TWRI Book 2, Chapter F1. 1989. 97 pages.

3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.

3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.

3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.

3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages.

3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3. Chapter A5. 1967. 29 pages.

3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.

3-A7. \quad Stage measurement at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.

3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.

3-A9. Measurement of time of travel in streams by dye tracing, by F. A. Kilpatrick and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1989. 27 pages.
3-AIO. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
3-A11. Measurement of discharge by the moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter A11. 1969. 22 pages.
3-A12. Fluorometric procedures for dye tracing, Revised, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS- -TWRI Book 3, Chapter A12. 1986. 34 pages.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.

3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.

3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
3-A16. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter A16. 1985. 52 pages.

3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages.
3-A18. Determination of stream reaeration coefficients by use of tracers, by F. A. Kilpatrick, R. E. Rathbun, Nobuhiro Yotsukura, G. W. Parker, and L. L. DeLong: USGS--TWRI Book 3, Chapter A18. 1989. 52 pages.
3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A19. 1990. 31 pages.
3-A20. Simulation of soluable waste transport and buildup in surface waters using tracers, by F. A. Kilpatrick: USGS--TWRI Book 3, Chapter A20. 1993. 38 pages.
3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS--TWRI Book 3, Chapter A21. 1995. 56 pages.

3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.

3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS-- TWRI Book 3, Chapter B2. 1976. 172 pages.
3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.

3-B4. Regression modeling of ground-water flow, by R. L. Cooley and R. L. Naff: USGS--TWRI Book 3, Chapter B4. 1990. 232 pages.

3-B4. Supplement 1. Regression modeling of ground-water flow - Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R. L. Cooley: USGS--TWRI Book 3, Chapter B4. 1993. 8 pages.

3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages.

3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6. 1987. 28 pages.

3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E. J. Wexler: USGS--TWRI Book 3, Chapter B7. 1992. 190 pages.

3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.

3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.

4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L. C. Friedman, editors: USGS--TWRI Book 5, Chapter A1. 1989. 545 pages.

5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages.

5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R. L. Wershaw, M. J. Fishman, R. R. Grabbe, and L. E. Lowe: USGS--TWRI Book 5, Chapter A3. 1987. 80 pages.

5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L. J. Britton and P. E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages.
5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.

5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
6-A1. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter A1. 1988. 586 pages.

6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S. A. Leake and D. E. Prudic: USGS--TWRI Book 6, Chapter A2. 1991. 68 pages.
6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L. J. Torak: USGS--TWRI Book 6, Chapter A3. 1993. 136 pages
6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R. L. Cooley: USGS--TWRI Book 6, Chapter A4. 1992. 108 pages.

6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L. J. Torak: USGS--TWRI Book 6, Chapter A5, 1993. 243 pages.
6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler. 1995. 125 pages.
7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.

7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffranek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.

8-A1. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages.

8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.

8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

PLATTE RIVER BASIN

06614800 MICHIGAN RIVER NEAR CAMERON PASS, CO

LOCATION.--Lat $40^{\circ} 29^{\prime} 46^{\prime \prime}$, long $105^{\circ} 51^{\prime} 52^{\prime \prime}$, in $\mathrm{S}^{1} / 2 \mathrm{sec} .12$, T. 6 N., R. 76 W. (unsurveyed), Jackson County, Hydrologic Unit 10180001, on right bank 500 ft upstream from Michigan ditch, 2.2 mi southeast of Cameron Pass, 8 mi east of Gould, and 27 mi southeast of Walden.
DRAINAGE AREA.-- $1.53 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--October 1973 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $10,390 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.6	e1.2	e1.1	e. 61	e. 54	e. 43	e. 43	e. 84	5.9	17	3.0	1.2
2	1.4	e1.2	e1.1	e. 60	e. 53	e. 42	e. 43	e. 82	6.3	16	3.1	1.2
3	1.3	e1.1	e1.1	e. 58	e. 52	e. 42	e. 43	e. 90	7.5	16	3.3	1.1
4	1.3	e1.1	e1.1	e. 57	e. 50	e. 42	e. 43	e1.0	9.2	15	3.1	1.1
5	1.1	e1.1	e1.1	e. 56	e. 48	e. 42	e. 43	e1.1	13	16	2.8	1.1
6	1.4	e1.1	e1.1	e. 55	e. 47	e. 42	e. 45	e1.3	15	15	2.5	1.4
7	2.0	e1.1	e1.1	e. 54	e. 46	e. 42	e. 47	e1. 5	17	13	2.3	1.3
8	1.4	e1.1	e1.0	e. 54	e. 45	e. 42	e. 50	e1. 8	19	12	2.2	1.1
9	1.2	e1.1	e1.0	e. 54	e. 45	e. 42	e. 52	e2.0	21	10	2.1	1.1
10	1.2	e1.1	e1.0	e. 54	e. 45	e. 42	e. 56	2.1	43	9.3	2.0	1.0
11	1.3	e1.1	e. 96	e. 54	e. 45	e. 42	e. 59	2.6	51	9.1	1.9	1.0
12	1.3	e1.1	e. 92	e. 54	e. 45	e. 42	e. 62	3.5	50	8.7	1.8	1.4
13	1.3	e1.1	e. 90	e. 54	e. 45	e. 42	e. 62	4.2	48	8.2	1.7	1.6
14	1.1	e1.1	e. 90	e. 54	e. 45	e. 42	e. 63	5.0	33	7.9	1.7	1.5
15	1.1	e1.1	e. 90	e. 54	e. 45	e. 42	e. 63	5.8	27	7.2	1.7	1.3
16	1.1	e1.1	e. 90	e. 54	e. 45	e. 42	e. 64	7.2	30	6.7	1.6	1.3
17	1.1	e1.1	e. 88	e. 54	e. 45	e. 42	e. 66	7.8	28	6.9	1.5	1.3
18	e1.2	e1.1	e. 86	e. 54	e. 45	e. 42	e. 68	8.4	30	7.8	1.5	1.3
19	e1.2	e1.1	e. 85	e. 54	e. 45	e. 42	e. 71	8.2	30	7.0	1.7	1.3
20	e1.2	e1.1	e. 82	e. 54	e. 45	e. 42	e. 73	7.4	28	6.1	1.5	1.4
21	e1.2	e1.1	e. 80	e. 54	e. 45	e. 42	e. 74	7.8	42	5.5	1.5	1.3
22	e1.2	e1.1	e. 78	e. 54	e. 45	e. 42	e. 74	9.5	46	5.0	1.4	1.6
23	e1.2	e1.1	e. 76	e. 54	e. 45	e. 42	e. 76	10	31	4.5	1.4	1.8
24	e1.2	e1.1	e. 74	e. 54	e. 45	e. 42	e. 80	10	28	4.3	1.3	2.3
25	e1.2	e1.1	e. 73	e. 54	e. 45	e. 42	e. 90	11	25	3.9	1.3	2.2
26	e1.2	e1.1	e. 72	e. 54	e. 44	e. 41	e. 92	10	24	3.5	1.2	1.9
27	e1.2	e1.1	e. 70	e. 54	e. 44	e. 40	e. 88	8.7	25	3.3	1.3	1.8
28	e1.2	e1.1	e. 68	e. 54	e. 43	e. 42	e. 86	8.3	22	3.2	1.6	1.8
29	e1.2	e1.1	e. 66	e. 54	e. 43	e. 43	e. 85	7.0	19	4.1	1.7	2.0
30	e1.2	e1.1	e. 64	e. 54	---	e. 43	e. 84	6.3	19	3.7	1.4	2.2
31	e1.2	---	e. 62	e. 54	--	e. 43	---	5.9	-	3.3	1.3	---
TOTAL	39.0	33.2	27.42	16.97	13.34	13.03	19.45	167.96	792.9	259.2	58.4	43.9
MEAN	1.26	1.11	. 88	. 55	. 46	. 42	. 65	5.42	26.4	8.36	1.88	1.46
MAX	2.0	1.2	1.1	. 61	. 54	. 43	. 92	11	51	17	3.3	2.3
MIN	1.1	1.1	. 62	. 54	. 43	. 40	. 43	. 82	5.9	3.2	1.2	1.0
AC-FT	77	66	54	34	26	26	39	333	1570	514	116	87

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1974 - 1996, BY WATER YEAR (WY)

[^1]
06620000 NORTH PLATTE RIVER NEAR NORTHGATE, CO

LOCATION.--Lat $40^{\circ} 56^{\prime} 15^{\prime \prime}$, long $106^{\circ} 20^{\prime} 16^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec.11, T. 11 N., R. 80 W., Jackson County, Hydrologic Unit 10180001, on right bank $1,000 \mathrm{ft}$ downstream from bridge on State Highway 125, 0.7 mi upstream from Camp Creek, 4.2 mi northwest of Northgate, and 4.4 mi south of Colorado-Wyoming State line.
DRAINAGE AREA.-- $1,431 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--May to November 1904 (published as "near Pinkhampton"), May 1915 to current year. Monthly discharge only for some periods, published in WSP 1310.
REVISED RECORDS.--WSP 1310: 1916-21, 1929(M), 1930-32. WSP 1730: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is $7,810.39 \mathrm{ft}$ above sea level. See WSP 1730 for history of changes prior to Apr. 8, 1918. Apr. 8, 1918, to Aug. 21, 1961, water-stage recorder at site 0.7 mi downstream at datum 3.36 ft lower. Aug. 22, 1961, to Sept. 18, 1984, at site 650 ft upstream at same datum.
REMARKS.--Records good except for Apr. 7 to July 24, which are fair and for estimated daily discharges, which are poor. Diversions for irrigation of about 130,000 acres of hay meadows upstream from station. Transbasin diversions upstream from station to Cache la Poudre River basin. National Weather Service satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

e-Estimated.

a-Gage height, 6.20 ft .
b-Gage height 6.24 ft , site and datum then in use.
c-Backwater from ice jam.

06696000 SOUTH PLATTE RIVER NEAR LAKE GEORGE, CO

LOCATION.--Lat $38^{\circ} 54^{\prime} 19$ ", long $105^{\circ} 28^{\prime} 22^{\prime \prime}$, in SW¹/4sec.20, T. 13 S., R. 72 W., Park County, Hydrologic Unit 10190001, on left bank 700 ft downstream from Elevenmile Canyon Reservoir and 8.2 mi southwest of town of Lake George.
DRAINAGE AREA.--963 mi'.
PERIOD OF RECORD.--October 1929 to current year. Monthly discharge only for some periods, published in WSP 1310.
REVISED RECORDS.--WSP 1730: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry, and Parshall flume. Elevation of gage is $8,458 \mathrm{ft}$ above sea level, from topographic map. Prior to Oct. 26, 1940, at site 1 mi downstream at datum $8,423.95 \mathrm{ft}$, above sea level, adjustment of 1912 .
REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by transmountain diversions through East and West Hoosier ditches at Hoosier Pass prior to 1941, storage in Elevenmile Canyon Reservoir (see elsewhere in this report) and Antero Reservoir, capacity, 22,300 acre-ft, diversions for irrigation, and return flow from irrigated areas.

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	оСт	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	132	68	72	96	65	67	56	130	290	191	187	191
2	131	75	73	96	62	65	56	131	261	200	180	188
3	129	76	72	96	60	63	57	130	232	223	185	185
4	131	79	81	94	58	62	63	145	208	229	188	182
5	123	80	74	90	55	62	75	163	191	230	186	178
6	113	78	75	89	53	67	85	181	172	224	181	173
7	111	80	73	87	52	67	92	197	171	217	175	180
8	107	75	82	86	51	66	103	209	178	207	179	185
9	104	72	84	86	50	65	114	230	194	210	180	178
10	102	69	85	86	49	65	124	253	205	230	190	171
11	102	67	90	83	48	64	137	268	213	244	184	165
12	107	62	97	83	47	64	147	278	220	225	180	161
13	108	59	103	83	47	62	183	290	228	220	174	160
14	107	56	105	82	47	62	214	300	227	205	169	160
15	110	54	103	83	47	63	230	306	259	205	164	167
16	152	54	101	82	51	62	221	316	275	195	162	171
17	184	53	99	81	55	62	215	320	293	188	161	158
18	178	52	98	83	59	63	198	322	286	189	168	143
19	175	51	97	82	62	61	193	314	275	198	180	131
20	191	51	97	83	65	59	170	318	268	210	179	118
21	198	62	97	82	71	57	162	328	260	218	189	108
22	192	69	96	80	74	57	159	342	254	222	189	104
23	180	68	96	81	74	57	155	345	244	213	190	98
24	87	69	96	80	74	56	155	340	241	206	191	98
25	39	71	96	79	74	56	150	373	234	202	190	97
26	44	73	95	79	75	56	141	404	206	200	188	92
27	48	71	94	80	72	56	138	393	198	205	188	99
28	48	75	94	80	69	56	133	366	196	202	189	96
29	52	74	94	79	69	56	135	349	183	200	193	96
30	59	73	94	74	---	56	139	335	183	204	189	97
31	65	---	96	69	---	56	---	316	---	199	190	---
TOTAL	3609	2016	2809	2594	1735	1890	4200	8692	6845	6511	5638	4330
MEAN	116	67.2	90.6	83.7	59.8	61.0	140	280	228	210	182	144
MAX	198	80	105	96	75	67	230	404	293	244	193	191
MIN	39	51	72	69	47	56	56	130	171	188	161	92
AC-FT	7160	4000	5570	5150	3440	3750	8330	17240	13580	12910	11180	8590

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1930 - 1996 , BY WATER YEAR (WY)

06699005 TARRYALL CREEK BELOW ROCK CREEK, NEAR JEFFERSON, CO

LOCATION.--Lat $39^{\circ} 17^{\prime} 13^{\prime \prime}$, long $105^{\circ} 41^{\prime} 43^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{NW}^{1 / 4}$ sec.8, T. 9 S., R. 74 W., Park County, Hydrologic Unit 10190001, on left bank 1,800 ft downstream from Rock Creek, 1.0 mi northwest of Bordenville, and 9 mi southeast of Jefferson.
DRAINAGE AREA.--230 mi ${ }^{2}$.
PERIOD OF RECORD.--April 1983 to current year.
REVISED RECORDS.--WDR CO-86-1: Drainage area. WDR CO-87-1: 1986 (M).
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $9,020 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	39	22	e14	e12	e12	e14	e17	40	124	127	50	28
2	37	19	e14	e12	e12	e14	e17	41	121	113	47	27
3	35	18	e14	e12	e12	e14	e17	37	120	105	46	27
4	33	15	e14	e12	e12	e14	e17	42	138	105	45	26
5	35	e15	e14	e12	e12	e14	e17	45	160	110	45	26
6	30	e15	e14	e12	e12	e14	e17	48	206	96	42	28
7	37	e15	e14	e12	e12	e14	e17	49	237	87	40	38
8	36	e15	e14	e12	e12	e14	e17	50	239	81	42	30
9	34	e15	e14	e12	e12	e14	e17	60	247	95	40	27
10	33	e15	e14	e12	e12	e14	e18	63	265	104	37	27
11	32	e15	e14	e12	e12	e14	e19	64	260	77	35	25
12	32	e15	e14	e12	e13	e15	e20	73	261	65	33	26
13	33	e15	e14	e12	e13	e15	e21	85	274	65	32	27
14	35	e14	e14	e12	e13	e16	22	78	287	58	32	26
15	34	e14	e14	e12	e13	e16	24	92	309	56	33	29
16	34	e14	e14	e12	e13	e16	31	105	383	59	32	27
17	35	e14	e14	e12	e14	e16	34	140	270	60	32	25
18	36	e14	e14	e12	e14	e16	39	154	243	107	31	25
19	36	e14	e13	e12	e14	e16	37	143	220	128	31	28
20	31	e14	e13	e12	e14	e16	30	167	204	82	34	32
21	32	e14	e13	e12	e14	e16	29	165	196	66	35	28
22	34	e14	e13	e12	e14	e17	31	159	252	57	37	26
23	31	e14	e13	e12	e14	e17	29	171	254	53	36	28
24	31	e14	e12	e12	e14	e17	42	160	202	51	34	33
25	35	e14	e12	e12	e14	e17	54	176	180	51	31	34
26	26	e14	e12	e12	e14	e17	46	274	162	51	29	32
27	23	e14	e12	e11	e14	e17	48	266	167	51	31	31
28	24	e14	e12	e12	e14	e17	44	229	156	50	39	28
29	25	e14	e12	e12	e14	e17	35	185	156	54	44	28
30	24	e14	e12	e12	--	e17	36	157	142	75	35	29
31	23	---	e12	e12	---	e17	---	133	---	54	31	---
TOTAL	995	447	413	371	379	482	842	3651	6435	2393	1141	851
MEAN	32.1	14.9	13.3	12.0	13.1	15.5	28.1	118	214	77.2	36.8	28.4
MAX	39	22	14	12	14	17	54	274	383	128	50	38
MIN	23	14	12	11	12	14	17	37	120	50	29	25
AC-FT	1970	887	819	736	752	956	1670	7240	12760	4750	2260	1690

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1996, BY WATER YEAR (WY)

[^2]b-Maximum gage height, 7.00 ft , Apr 19, 1987, from floodmarks.

RESERVOIRS IN SOUTH PLATTE RIVER BASIN

06695500 ELEVENMILE CANYON RESERVOIR.--Lat $38^{\circ} 54^{\prime} 19^{\prime \prime}$, long $105^{\circ} 28^{\prime} 30^{\prime \prime}$, in $\mathrm{N}^{1 ⁄ 2}$ SW¹⁄4 $\sec .20$, T. 13 S., R. 72 W., Park County, Hydrologic Unit 10190001, at north end of dam on South Platte River, 8 mi southwest of Lake George. DRAINAGE AREA, $963 \mathrm{mi}^{2}$. PERIOD OF RECORD, October 1932 to current year. Prior to September 1938, published in WSP 1310. REVISED RECORDS, WSP 1730: Drainage area. GAGE, nonrecording gage read once daily. Datum of gage is $8,597.00 \mathrm{ft}$ above sea level, (levels by Denver Board of Water Commissioners); gage readings published are to datum.

Reservoir is formed by concrete arch dam; storage began in October 1932; dam completed in November 1932 Spillway built 5.00 ft , higher, Aug. 1, 1957. Capacity, 97,780 acre- ft , between elevations $8,488.25 \mathrm{ft}$, invert of outlet pipe, and $8,597.00 \mathrm{ft}$, crest of spillway. Dead storage is negligible. Figures given represent total contents. Water is for municipal use by city of Denver. Records provided by Denver Board of Water Commissioners.
EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 111,200 acre-ft, Apr. 28, 1970, elevation, 8,600.82 ft; no contents at times in 1935.
EXTREMES FOR CURRENT YEAR: Maximum contents observed, 102,900 acre-ft, May 26, elevation, 8,598.48 ft; minimum observed, 99,110 acre-ft, Oct. 24, elevation, $8,597.39 \mathrm{ft}$.

06701000 CHEESMAN LAKE.--Lat $39^{\circ} 12^{\prime} 26^{\prime \prime}$, long $105^{\circ} 16^{\prime} 18^{\prime \prime}$, in $\mathrm{NW}^{1 / 4}$ SW $^{1 / 4}$ sec. 6 , T. 10 S., R. 70 W., Douglas County, Hydrologic Unit 10190002, at dam on South Platte River, 4.1 mi southwest of Deckers. DRAINAGE AREA, $1,752 \mathrm{mi}^{2}$. PERIOD OF RECORD, September 1900 to December 1901, September 1902 to current year. Prior to October 1938, published in WSP 1310. Published as Lake Cheesman prior to 1947. REVISED RECORDS, WSP 1730: Drainage area. GAGE, nonrecording gage read once daily. Datum of gage is $6,834.91 \mathrm{ft}$ above sea level, (levels by Denver Board of Water Commissioners); gage readings published are to datum.

Reservoir is formed by masonry dam. Storage began September 1900. Dam completed about October 1902. Capacity, 79,060 acre-ft at gage height 212 ft , spillway crest, above sill of lowest gate. No dead storage. Figures given represent total contents. Water is for municipal use by city of Denver. Records provided by Denver Board of Water Commissioners.
EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 81,360 acre-ft, Apr. 29, 1970, gage height, 214.60 ft , minimum observed since appreciable storage was attained, 3,650 acre-ft, Apr. 20, 1933, gage height, 55.02 ft .
EXTREMES FOR CURRENT YEAR: Maximum contents observed, 78,720 acre-ft, July 3, gage height, 211.61 ft ; minimum observed, 59,780 acre-ft, Sept. 11, gage height, 188.02 ft .

MONTHEND ELEVATION AND CONTENTS AT 0800, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

	Elevation	Contents	Change in	Gage	Contents
Date	a feet)	(acre-feet)	contents	height	contents
		(feet)	(acre-feet)		

06695500 ELEVENMILE CANYON RESERVOIR
06701000 CHEESMAN LAKE

Sept.	$30 \ldots \ldots . .$.
Oct.	$31 \ldots \ldots \ldots$
Nov.	$30 \ldots \ldots \ldots$
Dec.	$31 \ldots \ldots .$.

$8,597.78$	100,400
$8,597.55$	99,660
$8,597.53$	99,590
$8,597.64$	99,970

-

-740
-70
+380
+930

-350
-100
-100
+980
$+1,500$
-900
+100
-100
$-1,100$

209.91	77,250	-
209.73	77,100	-150
210.09	77,410	+310
205.83	73,780	$-3,630$
	-	$+20,040$
203.78		
204.15	72,080	$-1,700$
200.85	69,690	+310
201.89	70,530	$-2,700$
203.45	71,810	+840
211.47	78,600	$+1,280$
200.94	69,760	$+6,790$
192.34	63,010	$-8,840$
190.05	61,280	$-6,750$
		$-1,730$
-	-	$-15,970$

06701500 SOUTH PLATTE RIVER BELOW CHEESMAN LAKE, CO

LOCATION.--Lat $39^{\circ} 12^{\prime} 33^{\prime \prime}$, long $105^{\circ} 16^{\prime} 02^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NW}^{1 / 4}$ sec.6, T. 10 S., R. 70 W., Jefferson County, Hydrologic Unit 10190002, on left bank $1,400 \mathrm{ft}$ downstream from toe of Cheesman Dam and 3.8 mi southwest of Deckers.
DRAINAGE AREA.-- $1,752 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--October 1924 to current year. Monthly discharge only for some periods, published in WSP 1310.
REVISED RECORDS.--WSP 1310: 1949. WSP 1730: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry, and Parshall flume. Datum of gage is $6,609.29 \mathrm{ft}$ above sea level. Prior to May 14, 1956, at site 370 ft upstream at datum 0.50 ft , higher.
REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by minor transmountain diversion from Colorado River basin through Boreas Pass ditch, Elevenmile Canyon Reservoir and Cheesman Lake (see elsewhere in this report), diversions for irrigation of about 40,000 acres, and return flow from irrigated areas.

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	182	49	111	203	150	221	98	247	318	324	453	173
2	181	49	111	204	122	255	98	302	319	326	453	229
3	183	79	113	171	87	254	99	411	276	328	402	248
4	183	102	137	129	86	226	99	450	165	358	366	319
5	182	102	150	130	86	196	99	447	99	374	402	395
6	183	139	152	130	86	172	99	496	99	409	426	394
7	183	164	152	130	87	156	98	602	99	426	545	215
8	181	164	152	131	87	156	98	674	85	428	653	197
9	206	134	151	130	88	156	98	644	78	430	651	507
10	221	98	150	130	89	158	156	529	118	432	646	701
11	221	81	172	130	89	177	214	480	219	434	645	500
12	219	81	183	141	89	194	186	478	272	437	600	185
13	218	81	184	147	89	194	168	477	272	438	466	93
14	217	99	185	148	88	194	168	475	334	438	278	148
15	215	111	195	148	96	195	168	475	429	437	240	329
16	214	111	203	149	104	196	168	475	429	452	240	414
17	216	111	203	150	104	196	202	427	559	603	239	96
18	215	111	203	150	104	172	314	332	656	713	237	97
19	235	110	205	148	105	145	417	382	608	709	193	98
20	256	110	205	148	106	152	415	438	498	655	158	98
21	256	68	215	149	106	139	414	438	459	619	148	99
22	256	100	228	150	106	134	414	437	459	581	130	99
23	205	170	228	150	108	134	414	435	459	519	157	98
24	172	170	228	150	108	134	414	439	459	517	181	97
25	172	170	228	150	108	113	414	441	459	478	285	97
26	171	170	229	150	108	98	324	312	430	397	491	98
27	170	171	214	149	107	98	247	193	416	426	424	98
28	171	134	205	150	141	98	247	194	385	469	203	99
29	172	112	204	150	186	98	247	195	374	470	148	99
30	81	111	203	150	--	98	247	253	342	452	149	99
31	48	---	203	150	---	98	---	318	---	453	149	---
TOTAL	5985	3462	5702	4595	3020	5007	6844	12896	10174	14532	10758	6419
MEAN	193	115	184	148	104	162	228	416	339	469	347	214
MAX	256	171	229	204	186	255	417	674	656	713	653	701
MIN	48	49	111	129	86	98	98	193	78	324	130	93
AC-FT	11870	6870	11310	9110	5990	9930	13580	25580	20180	28820	21340	12730

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 - 1996, BY WATER YEAR (WY)

[^3]b-Also occurred Apr 9-14, 1957.

06704500 DUCK CREEK NEAR GRANT, CO

LOCATION (REVISED).--Lat $39^{\circ} 31^{\prime} 46^{\prime \prime}$, long $105^{\circ} 43^{\prime} 50$ ", in NE $1 / 4 \mathrm{NW}^{1} / 4 \sec .13$, T. 6 S., R. 75 W., Park County, Hydrologic Unit 10190002, on left bank 570 ft upstream from Geneva Creek Road, 650 ft upstream from the confluence with Geneva Creek, and 7.0 mi north of Grant.
DRAINAGE AREA.--7.78 mi^{2}.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1994 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $10,000 \mathrm{ft}$ above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Flow partially regulated by Duck Lake.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	оСт	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.7	2.7	2.0	e1.3	e1.2	e. 96	1.1	2.0	19	21	15	1.1
2	3.6	2.4	1.9	e1.3	e1.2	e. 98	1.2	2.5	19	21	17	1.1
3	3.4	2.2	1.8	e1.3	e1.2	e. 98	1.2	3.0	19	20	18	1.1
4	3.7	2.5	1.8	e1.3	e1.2	e. 98	1.1	3.3	19	20	11	1.0
5	3.4	2.3	1.8	e1.3	e1.1	e. 98	1.1	3.8	20	19	6.7	1.0
6	3.5	2.3	1.9	e1.2	e1.1	e. 98	1.1	3.8	21	19	3.1	1.2
7	3.4	2.3	1.9	e1.3	e1.0	e. 98	1.1	4.0	22	18	2.8	1.3
8	3.2	2.3	1.8	e1.3	e1.1	e. 98	1.7	4.4	23	17	2.5	1.1
9	3.2	2.4	1.9	e1.2	e1.0	e. 98	2.3	4.7	24	18	2.3	1.1
10	3.2	2.4	1.8	e1.2	e1.0	e. 98	2.2	5.0	25	17	2.0	1.1
11	3.2	2.5	1.7	e1.1	e1.0	. 92	1.7	5.3	26	16	1.9	1.1
12	3.3	2.4	1.7	e1.1	e1.0	. 91	1.4	5.9	26	15	1.6	1.3
13	3.3	2.4	1.7	e1.1	1.2	. 87	1.4	6.4	27	15	1.4	1.4
14	3.2	2.3	1.7	e1.1	1.2	. 84	1.3	6.8	27	14	1.3	1.2
15	3.1	2.2	1.6	e1.2	1.1	. 81	1.4	7.4	29	14	1.3	1.3
16	3.0	2.3	1.7	e1.2	1.1	. 82	1.5	8.4	27	13	1.3	1.2
17	2.9	2.2	e1.5	e1.2	. 99	. 85	1.8	9.2	27	19	1.3	1.2
18	2.8	2.2	e1.3	e1.0	. 99	. 86	1.5	9.8	27	28	1.3	1.3
19	2.8	2.2	e1.1	e1.1	. 99	. 85	1.3	12	27	27	1.2	1.4
20	2.8	2.1	e1.2	e1.1	. 99	. 88	1.3	13	26	26	1.2	1.4
21	2.7	2.1	e1.3	e1.1	1.0	. 92	1.2	14	27	26	1.7	1.4
22	2.8	2.1	e1.3	e1.1	. 96	. 86	1.2	16	27	26	1.8	1.3
23	2.9	2.1	e1.3	e1.1	. 92	. 87	1.5	18	26	24	1.8	1.4
24	2.8	2.1	e1.4	e1.1	. 90	. 86	2.5	19	25	23	1.6	2.2
25	2.7	2.0	e1.3	e1.1	e. 94	. 88	2.4	21	25	22	1.4	1.7
26	2.7	2.1	e1.2	e1.1	e. 98	. 94	2.3	22	24	21	1.3	1.8
27	2.7	1.9	e1.2	e1.2	e. 88	. 95	2.0	22	23	19	1.2	1.7
28	2.7	e1.7	e1.3	e1.2	e. 90	. 89	1.6	22	23	18	1.3	1.7
29	2.6	e2.0	e1.3	e1.2	e. 96	. 92	1.7	22	22	17	1.3	1.7
30	2.6	2.2	e1.4	e1.2	---	. 91	1.6	21	22	16	1.4	1.6
31	2.6	---	e1.3	e1.2	---	. 95	---	19	---	15	1.1	---
TOTAL	94.5	66.9	48.1	36.5	30.10	28.34	46.7	336.7	724	604	110.1	40.4
MEAN	3.05	2.23	1.55	1.18	1.04	. 91	1.56	10.9	24.1	19.5	3.55	1.35
MAX	3.7	2.7	2.0	1.3	1.2	. 98	2.5	22	29	28	18	2.2
MIN	2.6	1.7	1.1	1.0	. 88	. 81	1.1	2.0	19	13	1.1	1.0
AC-FT	187	133	95	72	60	56	93	668	1440	1200	218	80

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 1996, BY WATER YEAR (WY)

[^4]
06704500 DUCK CREEK NEAR GRANT, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--May 1995 to current year (seasonal record).
INSTRUMENTATION.--Water-quality monitor since May 1995.
REMARKS.--Water temperature and specific conductance records are good.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 59 microsiemens, Sept. 12-17; minimum, 33 microsiemens July 18, 21-23.
WATER TEMPERATURE: Maximum, $15.3^{\circ} \mathrm{C}$, July 21, and Aug. 1 ; minimum, $0.0^{\circ} \mathrm{C}$, on many days in Nov., Dec., Jan., and Apr.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	47	46	47	48	47	48	48	47	47	48	47	47
2	47	46	47	49	47	48	47	47	47	47	47	47
3	47	46	47	51	48	50	47	47	47	48	47	47
4	47	45	46	50	48	49	48	47	47	47	47	47
5	46	45	46	50	48	49	47	47	47	47	47	47
6	46	46	46	49	48	48	47	46	46	47	46	47
7	46	45	46	48	48	48	46	46	46	47	46	47
8	47	46	46	48	48	48	47	46	46	47	46	46
9	47	46	46	48	47	48	47	46	46	47	46	47
10	47	46	47	48	47	47	47	46	47	47	46	47
11	48	47	47	50	47	49	47	46	47	47	46	46
12	48	47	47	48	47	47	47	46	47	47	47	47
13	48	47	47	47	47	47	47	46	47	48	46	47
14	48	47	47	47	47	47	47	46	47	47	46	47
15	48	47	48	48	47	47	48	46	47	47	46	46
16	49	47	48	48	47	47	47	47	47	47	46	46
17	49	48	48	48	47	47	48	47	47	47	46	46
18	49	48	48	48	48	48	48	47	47	47	46	46
19	48	47	47	48	47	48	49	47	48	47	46	47
20	48	47	47	48	47	47	49	48	48	47	46	47
21	48	47	47	48	47	47	48	48	48	47	46	47
22	48	46	47	48	47	47	48	47	48	47	46	47
23	48	46	47	48	47	47	48	47	48	47	46	46
24	48	47	47	49	46	48	48	47	48	---	---	---
25	47	47	47	48	47	48	48	47	48	---	---	---
26	47	47	47	48	47	48	48	47	48	-	--	-
27	47	47	47	48	47	48	48	48	48	---	---	---
28	48	47	47	50	48	49	48	47	48	---	---	--
29	48	47	47	48	47	47	48	48	48	---	---	---
30	48	47	48	48	47	47	48	47	48	---	---	---
31	48	48	48	---	---	---	48	47	47	---	--	-
MONTH	49	45	47	51	46	48	49	46	47	---	---	---

06704500 DUCK CREEK NEAR GRANT, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	--	---	---	---	---	---	---	51	49	50
2	---	---	-	---	---	---	-	---	---	50	48	49
3	---	---	-	---	---	---	-	---	-	50	48	49
4	---	--	-	---	---	-	--	---	---	50	48	48
5	---	-	---	---	---	---	50	49	49	50	48	49
6	---	---	---	---	---	---	49	49	49	52	49	50
7	---	---	---	---	---	---	50	49	49	53	51	52
8	---	---	---	---	---	---	49	47	48	54	52	53
9	---	---	---	---	---	---	50	47	48	54	52	53
10	---	---	--	---	---	---	50	47	48	54	53	53
11	--	-	---	---	--	---	50	49	50	55	53	54
12	--	---	---	-	---	--	50	49	50	55	53	54
13	---	-	---	--	---	---	50	49	50	54	53	53
14	---	---	---	---	---	---	50	50	50	54	52	53
15	---	---	---	-	---	-	50	50	50	53	51	52
16	---	-	-	-	---	---	50	49	50	53	50	51
17	---	---	---	---	---	---	50	49	50	51	49	50
18	---	---	---	---	---	---	50	49	49	50	48	49
19	---	---	---	---	---	-	51	48	50	49	47	48
20	---	---	---	-	---	-	51	48	50	47	45	46
21	---	---	---	---	---	---	51	50	50	47	46	46
22	---	---	---	--	-	---	50	50	50	46	45	46
23	---	---	---	---	---	-	50	48	50	46	44	45
24	---	---	---	--	---	---	50	45	48	45	43	44
25	---	---	---	---	--	---	50	45	48	44	43	43
26	---	---	---	---	---	---	50	48	49	43	41	42
27	---	---	---	---	--	---	50	48	49	43	42	42
28	---	---	---	-	---	---	51	49	50	43	42	43
29	---	---	---	---	---	---	52	50	51	44	43	43
30	---	---	---	---	---	---	51	50	50	44	43	43
31	---	---	---	---	---	---	---	---	---	44	42	43
MONTH	---	---	---	---	---	---	---	---	---	55	41	48

	JUNE			JULY			AUGUST			SEPTEMBER		
1	44	42	43	39	38	39	36	35	36	56	55	55
2	44	42	43	39	38	39	36	35	35	57	55	56
3	44	42	43	39	38	39	36	34	35	57	56	57
4	44	42	43	39	38	39	38	36	37	57	56	57
5	43	41	42	39	38	39	44	38	40	57	56	57
6	42	40	41	39	38	39	48	44	46	58	51	57
7	42	40	41	39	38	39	48	47	48	58	57	57
8	42	40	41	39	38	39	49	48	49	58	57	57
9	41	39	40	39	38	39	50	49	49	57	57	57
10	40	39	39	40	39	39	50	49	50	58	57	57
11	40	39	39	40	39	39	51	50	50	57	56	57
12	39	38	39	40	37	38	52	50	51	59	56	58
13	39	38	39	38	37	38	53	52	52	59	59	59
14	39	38	38	38	37	38	53	52	53	59	58	58
15	39	38	39	38	37	38	53	53	53	59	58	59
16	40	38	39	38	37	38	54	53	53	59	58	59
17	39	38	39	38	34	37	54	53	53	59	58	58
18	39	38	38	35	33	34	54	53	54	58	54	57
19	39	38	38	35	34	34	54	53	54	58	56	57
20	39	38	39	35	34	34	54	54	54	58	57	57
21	39	38	38	35	33	34	55	53	54	58	57	57
22	39	38	38	35	33	34	55	53	54	58	57	57
23	39	38	38	35	33	34	55	54	55	58	57	58
24	39	38	38	35	34	34	55	54	55	58	57	57
25	39	38	38	35	34	34	55	55	55	57	57	57
26	39	38	38	35	34	34	56	55	55	57	56	56
27	39	38	38	35	34	35	56	55	55	56	55	56
28	39	38	38	35	34	35	56	55	56	57	56	56
29	39	38	38	36	35	35	56	55	56	57	56	56
30	39	38	39	36	35	35	57	55	56	57	56	57
31	---	-	---	36	35	35	56	55	56	---	---	-
MONTH	44	38	39	40	33	37	57	34	50	59	51	57

06704500 DUCK CREEK NEAR GRANT, CO--Continued

TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06704500 DUCK CREEK NEAR GRANT, CO--Continued

TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST			SEPTEMBER	
1	9.6	3.1	5.7	13.2	4.7	8.4	15.3	8.3	11.4	11.0	4.5	7.3
2	11.4	2.2	6.3	11.7	5.0	7.8	14.1	8.6	11.2	10.2	5.3	7.4
3	12.2	2.6	6.8	10.0	5.2	7.5	14.0	9.1	11.1	11.4	4.7	7.3
4	10.7	3.1	6.5	11.7	5.2	7.9	12.9	8.1	10.2	10.0	4.8	7.1
5	12.4	3.4	7.2	12.2	5.8	8.6	13.5	6.2	9.8	11.0	4.8	7.2
6	12.1	3.7	7.2	12.9	5.7	8.7	13.1	6.3	9.7	7.6	6.0	6.8
7	12.4	2.8	7.0	13.5	5.5	8.9	11.5	7.3	9.1	10.8	5.0	7.1
8	12.8	3.0	7.2	11.0	5.7	8.1	10.0	6.0	8.2	10.2	4.2	6.6
9	11.3	4.0	7.2	10.2	6.3	8.0	11.6	6.5	8.8	9.2	4.3	6.4
10	10.8	3.8	6.7	12.7	5.8	8.8	11.6	6.0	8.6	9.1	4.4	6.4
11	11.4	3.5	6.8	13.6	5.5	8.9	11.6	5.8	8.6	8.3	4.5	6.3
12	8.6	3.5	5.8	12.6	6.2	9.0	13.1	6.2	9.1	10.5	5.6	7.5
13	11.1	3.8	6.6	13.3	7.1	9.5	10.3	6.0	8.1	9.5	6.2	7.8
14	6.8	4.0	5.5	13.8	6.4	9.4	11.0	6.0	8.2	8.4	4.9	6.5
15	5.7	4.2	5.2	11.6	5.9	8.6	11.5	6.0	8.4	10.1	5.5	7.1
16	12.1	3.3	6.8	13.1	6.6	9.4	11.1	6.0	8.1	10.0	4.3	6.6
17	11.6	3.5	6.7	13.8	7.1	10.0	12.9	5.5	8.3	7.7	4.7	5.8
18	11.9	3.3	6.9	12.1	8.9	10.3	11.7	6.2	8.4	7.4	2.5	5.0
19	11.4	3.2	6.8	14.4	8.2	10.7	9.6	6.5	7.9	7.0	2.5	4.6
20	11.9	4.0	7.2	13.6	8.5	10.8	11.1	5.7	8.0	8.0	4.1	5.5
21	9.1	4.7	6.8	15.3	8.5	11.2	10.4	6.5	8.3	9.0	4.1	5.9
22	10.5	5.2	7.0	14.9	8.3	11.1	11.1	7.2	8.8	7.9	4.2	5.9
23	11.8	3.3	6.9	15.2	9.5	11.8	9.9	6.3	8.2	7.3	5.0	6.0
24	12.3	4.2	7.5	14.5	8.6	11.4	10.2	5.9	7.9	9.5	5.2	6.7
25	11.2	4.0	6.8	13.9	10.2	11.7	10.6	5.5	7.7	7.6	4.6	5.9
26	12.2	4.1	7.5	13.8	8.6	10.8	11.2	5.9	8.0	5.4	3.4	4.2
27	9.8	5.4	7.2	13.5	8.2	10.7	9.3	6.5	7.7	5.8	1.8	3.8
28	9.5	5.2	7.0	13.9	8.8	10.9	9.2	5.5	7.4	8.3	3.5	5.4
29	12.3	4.1	7.5	11.8	9.8	10.7	10.1	5.5	7.7	8.7	3.6	5.7
30	11.8	5.6	8.1	14.6	8.4	11.0	12.3	5.7	8.2	8.4	3.9	5.8
31	---	---	---	15.1	7.8	11.0	11.3	4.7	7.5	--	--	-
MONTH	12.8	2.2	6.8	15.3	4.7	9.7	15.3	4.7	8.7	11.4	1.8	6.3

06704500 DUCK CREEK NEAR GRANT, CO--Continued

PRECIPITATION RECORDS

PERIOD OF RECORD.--July 1995 to current year (seasonal records only).
GAGE.--Tipping bucket rain gage (no wind vanes used) with satellite telemetry. Elevation of gage is $10,100 \mathrm{ft}$ above sea level, from topographic map.

REMARKS.--Records poor.
ESTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 0.59 in., May 28, and July 18, 1996. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 0.59 in., May 28, and July 18.

PRECIPITATION INCHES, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	---	---	---	---	---	. 00	. 04	. 00	. 00	. 00	. 00
2	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
3	. 00	---	---	---	---	---	. 00	. 00	. 01	. 09	. 06	. 00
4	. 00	---	---	---	---	---	. 00	. 00	. 00	. 02	. 00	. 00
5	. 00	---	---	---	---	---	. 00	. 00	. 05	. 00	. 00	. 00
6	. 04	---	---	---	---	---	. 18	. 00	. 00	. 00	. 00	. 39
7	. 08	---	---	---	---	---	. 08	. 00	. 00	. 00	. 01	. 00
8	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 03	. 00
9	. 00	---	---	---	---	---	. 00	. 00	. 00	. 46	. 00	. 06
10	. 00	---	---	---	---	---	. 04	. 00	. 00	. 01	. 00	. 03
11	. 00	---	---	---	---	---	. 04	. 00	. 00	. 00	. 00	. 16
12	. 14	---	---	---	---	---	. 00	. 00	. 14	. 00	. 00	. 36
13	. 00	---	---	---	---	---	. 00	. 00	. 05	. 00	. 00	. 00
14	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 10
15	. 00	---	---	---	---	---	. 22	. 00	. 37	. 01	. 02	. 01
16	. 00	---	--	--	---	---	. 01	. 00	. 00	. 00	. 00	. 00
17	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 02
18	. 00	---	---	---	---	---	. 08	. 00	. 00	. 59	. 00	. 00
19	. 00	---	---	---	---	---	. 02	. 00	. 00	. 01	. 02	. 01
20	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 05	. 07
21	. 00	---	---	---	---	---	. 03	. 00	. 16	. 00	. 20	. 24
22	. 00	---	---	---	---	---	. 01	. 00	. 22	. 00	. 04	. 07
23	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 20	. 18
24	. 01	---	---	---	---	---	. 00	. 01	. 00	. 00	. 00	. 28
25	. 00	---	---	---	---	---	. 16	. 13	. 00	. 01	. 00	. 04
26	. 00	---	---	---	---	---	. 00	. 01	. 08	. 00	. 00	. 00
27	. 00	---	---	---	---	---	. 03	. 42	. 01	. 00	. 04	. 01
28	. 00	---	---	---	---	---	. 00	. 59	. 07	. 09	. 01	. 15
29	. 00	---	---	---	---	---	. 05	. 05	. 00	. 10	. 01	. 00
30	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
31	. 00	---	---	---	---	---	---	. 00	---	. 00	. 00	---
TOTAL	0.27	---	---	--	---	---	0.95	1.25	1.16	1.39	0.69	2.18

06705500 GENEVA CREEK AT GRANT, CO

LOCATION.--Lat $39^{\circ} 28^{\prime} 20^{\prime \prime}$, long $105^{\circ} 40^{\prime} 54^{\prime \prime}$ (revised), in $\mathrm{NE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec. 5 , T. 7 S., R. 74 W., Park County, Hydrologic Unit 10190002, on right bank 0.2 mi downstream from Geneva Creek Campground, and 1.5 mi upstream from Grant.
DRAINAGE AREA.--74.6 mi^{2}.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1908 to March 1918, published in WSP 1310. Prior to 1911, published as "at Sullivan's Ranch, near Grant". October 1994 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $8,760 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow may be affected at times by Duck Lake.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	38	25	e20	e14	e13	e13	e16	22	144	179	56	23
2	37	e21	e21	e14	e13	e13	e18	28	146	170	57	22
3	35	e17	e28	e14	e13	e13	e18	32	161	164	60	22
4	37	e20	e23	e14	e13	e13	e16	39	182	165	53	21
5	35	e20	e17	e14	e12	e13	e15	47	210	169	44	21
6	36	e20	e18	e13	e12	e13	e16	53	242	160	37	28
7	36	e21	e19	e14	e11	e13	e17	58	235	149	37	29
8	36	e21	e22	e14	e12	e13	e20	70	242	140	38	24
9	34	e22	e28	e13	e11	e13	e22	84	257	134	36	22
10	33	e21	e27	e13	e11	e13	e24	93	269	143	33	23
11	33	e20	e26	e12	e11	e12	25	103	263	123	31	22
12	32	e24	e24	e12	e11	e12	20	133	262	117	30	25
13	34	e24	e17	e12	e12	e12	19	147	255	111	28	29
14	31	23	e18	e12	e12	e12	17	157	254	104	28	26
15	31	22	e20	e13	e12	e12	17	169	266	99	28	28
16	31	22	e25	e13	e11	e12	20	210	258	96	27	25
17	29	22	e21	e13	e12	e12	22	238	245	96	27	24
18	28	21	e16	e11	e12	e12	21	236	241	113	27	25
19	27	21	e12	e12	e11	e11	18	257	231	110	27	28
20	26	21	e13	e12	e12	e12	17	238	230	101	27	28
21	27	21	e14	e12	e12	e13	16	197	243	94	28	27
22	27	20	e14	e12	e12	e14	16	215	282	89	34	28
23	e21	20	e14	e12	e11	e14	17	225	243	85	34	29
24	e25	20	e15	e12	e10	e13	26	202	223	81	33	38
25	e26	20	e14	e12	e11	e14	30	191	212	79	28	35
26	26	20	e13	e12	e12	e14	26	178	204	75	26	33
27	26	18	e13	e13	e11	e14	27	160	213	71	27	29
28	25	e16	e14	e13	e12	e12	21	156	204	69	31	30
29	26	e18	e14	e13	e12	e13	21	161	193	72	29	32
30	25	e20	e15	e13	---	e16	20	158	184	66	26	31
31	25	--	e14	e13	---	e15	---	147	---	61	24	---
TOTAL	938	621	569	396	340	401	598	4404	6794	3485	1051	807
MEAN	30.3	20.7	18.4	12.8	11.7	12.9	19.9	142	226	112	33.9	26.9
MAX	38	25	28	14	13	16	30	257	282	179	60	38
MIN	21	16	12	11	10	11	15	22	144	61	24	21
AC-FT	1860	1230	1130	785	674	795	1190	8740	13480	6910	2080	1600

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 1996, BY WATER YEAR (WY)

MEAN	25.0	18.1	15.8	11.2	10.2	12.1	16.2	88.6	310	210	71.0	38.2
MAX	30.3	20.7	18.4	12.8	11.7	12.9	19.9	142	394	108		
(WY)	1996	1996	1996	1996	1996	1996	1996	1996	1995	1995	1995	1995
MIN	19.6	15.5	13.3	9.65	8.53	11.3	12.5	35.1	226	112	33.9	26.9
(WY)	1995	1995	1995	1995	1995	1995	1995	1995	1996	1996	1996	1996

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
ANNUAL RUNOFF (AC-F
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

e-Estimated.

a-Also occurred Jun 18, 1995.
b-Also occurred Feb 7, 12-13, 1995.

06705500 GENEVA CREEK AT GRANT, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1995 to current year (seasonal record).
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: May 1995 to current year.
WATER TEMPERATURE: May 1995 to current year.
INSTRUMENTATION.--Water-quality monitor since May 1995..
REMARKS.--Water temperature records are good. Specific conductance records are good.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 99 microsiemens, April 5; minimum, 40 microsiemens May 19.
WATER TEMPERATURE: Maximum, $15.7^{\circ} \mathrm{C}$, July 23 ; minimum, $0.0^{\circ} \mathrm{C}$, several days in October and September 27.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	77	74	75	---	---	-	---	--	-	---	---	-
2	77	75	76	-	---	---	-	---	---	--	---	-
3	80	73	76	-	---	---	--	--	---	---	-	---
4	77	72	75	-	-	---	---	---	---	---	---	-
5	75	71	73	---	---	---	---	---	---	---	---	-
6	---	--	---	-	--	---	---	--	-	---	--	-
7	---	---	---	--	---	---	---	---	---	--	---	-
8	81	72	77	---	---	---	---	---	---	---	---	--
9	79	75	77	---	---	---	---	---	---	-	---	-
10	80	75	78	---	---	--	---	---	---	---	---	---
11	81	77	79	---	---	---	---	---	---	---	---	---
12	80	78	79	---	---	---	---	---	---	---	---	---
13	81	74	79	---	---	---	---	---	---	---	---	---
14	80	72	78	---	---	--	---	---	---	---	---	---
15	81	77	79	---	---	---	---	---	---	---	---	---
16	82	77	80	---	---	---	---	---	---	---	---	--
17	82	77	80	---	---	---	---	---	---	---	---	--
18	83	79	80	--	-	---	---	---	---	-	---	-
19	86	78	81	---	---	-	--	---	---	---	---	---
20	---	---	---	---	---	---	---	---	---	---	---	---
21	83	75	81	---	---	---	--	---	---	---	---	--
22	---	---	---	---	---	---	---	---	---	---	---	-
23	---	---	---	---	---	---	---	---	---	---	---	---
24	---	---	---	---	---	---	---	---	---	---	---	---
25	---	---	--	--	---	-	---	---	---	---	---	-
26	86	78	81	--	-	-	---	-	-	-	---	---
27	---	---	---	---	---	---	---	---	---	-	-	-
28	---	---	---	---	---	---	---	---	---	---	---	---
29	---	---	---	---	---	---	--	---	---	--	---	--
30	---	---	---	---	---	---	--	---	---	---	---	---
31	---	---	---	---	---	---	---	---	---	---	--	--
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

06705500 GENEVA CREEK AT GRANT, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	-	---	---	---	--	---	-	86	82	84
2	---	---	---	---	---	---	---	-	---	82	76	79
3	---	--	--	---	--	---	---	---	---	80	72	76
4	---	--	--	---	--	--	--	--	--	77	68	72
5	-	-	---	---	---	---	99	85	93	74	67	70
6	--	-	---	---	--	---	98	83	93	71	63	68
7	---	---	---	-	---	---	94	91	92	71	65	67
8	---	---	---	---	---	---	94	84	91	68	59	64
9	---	---	---	---	-	---	87	81	84	64	58	61
10	---	---	---	---	---	---	87	77	82	62	56	59
11	---	---	---	---	---	---	88	81	85	62	51	57
12	---	---	-	---	---	-	92	87	88	57	50	53
13	--	---	---	---	---	---	89	83	88	54	48	51
14	--	---	---	---	---	---	94	83	87	52	47	50
15	---	---	---	---	--	---	97	80	91	52	45	49
16	---	---	---	---	---	---	94	85	89	49	41	46
17	--	---	---	---	---	---	89	84	86	47	41	44
18	---	--	---	--	---	---	87	71	82	47	41	44
19	---	--	---	-	--	---	90	82	87	47	40	43
20	--	---	---	-	---	---	94	81	90	47	41	45
21	---	---	---	---	--	-	92	85	90	50	45	48
22	---	---	-	---	--	-	94	82	90	49	43	47
23	---	---	---	-	--	---	96	85	90	48	43	45
24	---	---	---	---	---	---	91	73	85	48	44	47
25	--	---	---	---	--	---	82	71	76	48	46	48
26	---	---	---	-	---	---	86	78	81	50	47	48
27	-	---	---	---	---	---	81	74	78	53	48	50
28	---	---	---	---	---	---	86	79	82	54	51	52
29	---	---	---	---	---	---	89	79	85	52	46	50
30	-	---	---	---	---	---	88	80	84	50	46	49
31	---	-	---	---	---	---	---	---	---	51	48	50
MONTH	---	---	---	---	---	---	---	---	---	86	40	55

	JUNE			JULY			AUGUST			SEPTEMBER		
1	51	50	50	50	46	49	61	59	60	85	83	84
2	52	50	51	50	46	49	62	58	61	85	83	84
3	51	48	50	51	47	50	61	58	59	86	84	85
4	50	47	48	51	48	50	63	59	61	87	85	86
5	49	44	47	51	48	50	69	61	64	87	85	86
6	48	43	46	51	48	50	69	68	69	87	80	85
7	48	44	46	52	47	51	73	69	70	82	77	80
8	48	43	46	52	48	51	72	71	72	85	82	83
9	47	44	45	53	51	52	74	70	72	85	83	84
10	46	42	45	54	50	52	75	73	74	86	84	85
11	46	43	45	55	52	54	76	73	75	86	84	85
12	45	42	44	55	53	54	78	76	77	88	81	85
13	46	43	45	57	55	56	78	77	78	84	82	83
14	45	43	44	58	55	56	79	78	78	84	82	83
15	46	42	44	57	54	56	79	77	79	83	81	82
16	46	42	44	58	54	57	80	79	79	83	81	82
17	46	43	44	58	55	57	80	79	80	84	82	83
18	46	43	45	55	51	54	81	79	80	83	77	82
19	47	44	45	55	52	54	82	79	81	84	77	79
20	47	44	46	55	54	54	82	80	81	82	79	80
21	46	44	45	57	54	55	88	79	82	82	79	81
22	45	42	44	56	54	55	81	75	78	84	81	82
23	46	42	44	57	54	56	79	75	77	84	80	82
24	47	44	46	57	56	57	78	74	76	83	78	81
25	48	45	46	58	55	57	83	78	79	80	78	79
26	48	45	47	58	57	58	82	80	81	79	76	78
27	47	44	46	59	58	58	82	75	81	82	72	78
28	48	44	47	59	57	58	80	75	78	82	78	80
29	49	44	47	59	56	58	81	76	79	80	77	78
30	50	47	48	60	57	59	83	80	82	80	78	80
31	--	-	-	60	59	59	84	81	82	---	---	-
MONTH	52	42	46	60	46	54	88	58	75	88	72	82

06705500 GENEVA CREEK AT GRANT, CO--Continued

TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06705500 GENEVA CREEK AT GRANT, CO--Continued

TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY		AUGUST			SEPTEMBER		
1	9.1	3.1	6.2	14.0	5.8	9.9	14.8	8.0	11.8	11.0	6.6	9.2
2	10.7	2.3	6.5	12.1	6.1	9.3	14.1	8.8	11.8	11.3	7.5	9.5
3	11.6	2.8	7.2	11.5	6.2	9.1	13.9	8.9	11.4	12.3	6.9	9.7
4	10.4	3.3	6.8	12.6	6.1	9.5	13.6	8.0	10.8	12.6	7.3	10.0
5	11.8	3.5	7.4	13.9	7.0	10.5	13.6	6.5	10.3	11.9	7.6	10.0
6	11.5	3.8	7.4	14.1	7.2	10.8	13.4	7.2	10.7	10.7	8.2	9.4
7	11.9	2.8	7.3	14.5	6.6	10.6	12.1	8.2	10.5	10.6	5.5	8.0
8	12.5	3.1	7.6	12.3	6.9	9.7	11.4	6.9	9.5	10.7	5.3	8.1
9	11.8	4.2	7.9	11.3	7.7	9.7	12.1	7.3	9.9	10.0	5.8	8.2
10	10.7	4.0	7.2	14.2	7.2	10.6	11.9	6.6	9.6	10.4	6.0	8.5
11	11.2	3.6	7.3	14.5	6.6	10.8	12.7	6.2	9.9	9.4	6.2	8.2
12	8.9	3.7	6.5	13.9	7.9	11.1	13.8	7.4	10.8	10.6	7.3	9.1
13	10.9	3.9	7.2	14.6	9.0	11.8	12.2	7.9	10.4	10.3	8.4	9.3
14	7.8	4.5	6.3	14.8	8.3	11.6	12.4	8.3	10.5	8.6	5.8	7.5
15	6.6	5.0	5.9	12.7	7.8	10.7	13.6	8.1	11.0	10.2	6.5	8.3
16	12.3	3.4	7.3	14.1	8.3	11.1	13.3	8.3	10.8	10.2	5.1	7.8
17	12.2	4.0	7.7	14.7	8.9	12.0	12.6	7.5	10.4	8.7	5.7	7.2
18	12.4	3.7	7.9	13.6	9.6	11.2	12.4	8.1	10.6	6.9	3.2	5.4
19	12.3	3.6	8.0	14.1	7.6	11.0	11.6	9.2	10.6	5.1	1.4	3.2
20	12.6	4.9	8.7	13.6	8.3	11.2	12.2	7.9	10.3	5.5	3.1	4.4
21	10.4	5.9	8.2	15.4	8.1	11.9	11.9	9.1	10.6	8.0	3.4	5.6
22	11.1	6.2	8.3	15.2	7.5	11.7	11.7	8.7	10.4	8.1	4.0	6.4
23	12.1	3.7	7.8	15.7	9.1	12.5	12.0	8.0	10.0	8.1	5.3	6.7
24	13.0	5.0	8.8	14.7	8.1	11.7	11.9	6.9	9.6	9.3	5.3	7.2
25	12.0	4.9	8.3	13.9	10.1	12.0	13.0	7.2	10.1	7.2	4.3	5.6
26	13.0	4.9	8.8	13.4	7.7	10.8	13.0	8.6	10.9	5.1	1.9	3.0
27	11.2	6.8	8.8	13.1	7.5	10.5	11.6	9.3	10.4	3.3	. 0	1.7
28	10.4	6.3	8.4	13.4	8.3	11.0	11.3	7.1	9.3	6.5	1.7	4.1
29	12.7	4.6	8.5	11.8	9.9	10.9	11.7	7.4	9.7	7.1	2.5	5.1
30	13.0	7.0	9.7	14.1	7.9	11.0	12.2	8.4	10.4	6.9	3.4	5.6
31	-	---	---	14.5	7.5	11.3	12.3	7.0	9.8	---	---	---
MONTH	13.0	2.3	7.7	15.7	5.8	10.9	14.8	6.2	10.4	12.6	. 0	7.1

06705500 GENEVA CREEK AT GRANT, CO--Continued

PRECIPITATION RECORDS

PERIOD OF RECORD.--May 1995 to current year (seasonal records only).
GAGE.--Tipping bucket rain gage (no wind vanes used) with satellite telemetry. Elevation of gage is $8,760 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records poor.
ESTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 0.92 in ., May 18, 1995.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 0.51 in ., May 26.

PRECIPITATION INCHES, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	---	---	---	---	---	. 00	. 01	. 00	. 08	. 00	. 00
2	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
3	. 00	---	---	---	---	---	. 00	. 00	. 00	. 01	. 00	. 00
4	. 01	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
5	. 00	---	---	---	---	--	. 02	. 00	. 01	. 00	. 00	. 00
6	. 00	---	---	---	---	---	. 16	. 00	. 00	. 00	. 00	. 45
7	. 00	---	---	---	---	---	. 19	. 00	. 00	. 00	. 00	. 00
8	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 02	. 00
9	. 00	---	---	---	---	---	. 00	. 00	. 00	. 14	. 00	. 00
10	. 00	---	---	---	---	---	. 01	. 00	. 00	. 01	. 00	. 00
11	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
12	. 07	---	-	---	---	---	. 00	. 00	. 05	. 00	. 00	. 31
13	. 00	---	---	--	---	---	. 01	. 00	. 00	. 00	. 00	. 00
14	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 04	. 15
15	. 00	---	---	--	---	---	. 00	. 00	. 30	. 01	. 00	. 02
16	. 00	--	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
17	. 00	--	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
18	. 00	---	---	---	---	---	. 03	. 00	. 00	. 45	. 00	. 03
19	. 00	---	---	---	---	---	. 00	. 00	. 00	. 04	. 01	. 11
20	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
21	. 00	---	---	---	---	---	. 01	. 00	. 08	. 00	. 17	. 00
22	. 00	---	---	---	---	---	. 02	. 00	. 07	. 00	. 10	. 00
23	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 01	. 07
24	. 00	---	---	---	---	---	. 00	. 02	. 00	. 00	. 00	. 06
25	. 00	---	---	---	---	---	. 01	. 14	. 00	. 00	. 00	. 00
26	. 00	---	---	---	---	---	. 00	. 51	. 05	. 01	. 00	. 00
27	. 00	---	---	---	---	---	. 00	. 02	. 00	. 00	. 23	. 01
28	. 00	---	---	--	---	---	. 00	. 05	. 04	. 27	. 01	. 39
29	. 00	---	---	--	---	---	. 05	. 00	. 00	. 15	. 00	. 00
30	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
31	. 00	---	---	---	---	---	---	. 00	---	. 00	. 00	--
TOTAL	0.08	---	---	---	---	---	0.51	0.75	0.60	1.17	0.59	1.60

06706000 NORTH FORK SOUTH PLATTE RIVER BELOW GENEVA CREEK, AT GRANT, CO

LOCATION.--Lat $39^{\circ} 27^{\prime} 26^{\prime \prime}$, long $105^{\circ} 39^{\prime} 29^{\prime \prime}$, in NW ${ }^{1 / 4}$ sec.10, T. 7 S., R. 74 W., Park County, Hydrologic Unit 10190002, on left bank at Grant, $1,550 \mathrm{ft}$ downstream from Geneva Creek, and 1.3 mi downstream from east portal of Harold D. Roberts tunnel.
DRAINAGE AREA.-- $127 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--July 1908 to November 1913 (published as "at Cassells"), June 1942 to current year. Monthly discharge only for some periods, published in WSP 1310. December 1913 to March 1918, equivalent records may be obtained by summation of flow of North Fork South Platte River at Grant (above Geneva Creek) and Geneva Creek at Grant.

REVISED RECORDS.--WSP 956: Drainage area at site at Cassells. WSP 1116: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Datum of gage is $8,560.81 \mathrm{ft}$ above sea level, adjustment of 1960. See WSP 1710 or 1730 for history of changes prior to July 23, 1948. July 23, 1948, to Nov. 15, 1968, water-stage recorder at site 50 ft downstream at datum 3.49 ft , lower.
REMARKS.--No estimated daily discharges. Records good. Small diversions upstream from station for irrigation of about 200 acres. Diversions from Colorado River basin to North Fork South Platte River upstream from station through Harold D. Roberts tunnel (see elsewhere in this report).

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	59	49	38	44	32	28	37	47	328	289	76	356
2	56	40	40	44	32	28	40	54	393	296	74	433
3	53	35	55	44	32	28	40	57	458	225	75	466
4	55	40	45	44	32	28	36	64	569	224	68	465
5	51	42	33	44	30	28	36	74	651	226	60	376
6	48	43	36	43	30	28	37	84	630	217	52	163
7	52	45	38	44	30	28	39	89	619	206	52	110
8	54	45	42	44	30	28	44	103	661	194	55	101
9	52	46	55	43	29	28	51	121	665	182	53	99
10	62	44	53	42	29	28	50	127	638	178	50	99
11	73	42	48	42	29	27	47	137	677	150	48	99
12	78	49	47	39	29	27	42	174	593	143	47	68
13	78	50	33	36	38	27	40	194	546	136	122	40
14	72	47	34	37	32	28	36	206	460	125	353	38
15	72	45	37	37	27	28	38	220	349	120	437	42
16	70	45	49	36	26	28	42	267	340	116	438	38
17	66	44	38	36	27	28	45	294	318	114	377	37
18	63	44	33	34	27	28	43	291	313	133	334	38
19	59	44	38	34	26	27	69	318	305	128	335	107
20	54	43	42	34	27	28	89	297	310	122	335	201
21	55	42	45	34	27	29	91	327	324	114	336	199
22	55	43	45	34	27	30	97	452	368	111	343	177
23	44	42	44	33	26	31	99	521	316	130	319	211
24	51	41	46	33	25	30	71	485	275	168	151	286
25	53	42	44	33	26	29	54	480	266	142	244	324
26	52	42	43	33	27	27	48	461	260	102	221	354
27	51	38	42	34	26	27	53	432	268	91	44	387
28	50	33	44	34	27	61	47	426	255	90	85	398
29	51	40	45	34	28	94	45	426	272	92	211	406
30	50	39	46	33	---	50	44	358	237	89	256	329
31	49	-	45	33	-	34	--	269	---	81	279	-
TOTAL	1788	1284	1323	1169	833	998	1550	7855	12664	4734	5930	6447
MEAN	57.7	42.8	42.7	37.7	28.7	32.2	51.7	253	422	153	191	215
MAX	78	50	55	44	38	94	99	521	677	296	438	466
MIN	44	33	33	33	25	27	36	47	237	81	44	37
AC-FT	3550	2550	2620	2320	1650	1980	3070	15580	25120	9390	11760	12790

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1909 - 1996, BY WATER YEAR (WY)

[^5]
393040105340400 DEER CREEK NEAR BAILEY, CO

LOCATION.--Lat $39^{\circ} 30^{\prime} 40^{\prime \prime}$, long $105^{\circ} 34^{\prime} 04^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{NW}^{1 / 1} 4$, sec. 21 , T. 6 S., R. 73 W., Park County, Hydrologic Unit 10190002, on left bank 200 ft upstream from Deer Creek Trailhead parking lot, and 13 mi northwest of Bailey.
DRAINAGE AREA.--Not determined.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February to September 1996.
GAGE.--Water-stage recorder. Elevation of gage is $9,280 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. No known regulation or diversion.
EXTREMES FOR CURRENT YEAR.--Maximum discharge during period February to September, $44 \mathrm{ft}^{3} / \mathrm{s}$, June 15, 1996 at 1700, gage height, 1.17 ft ; minimum daily $2.5 \mathrm{ft}^{3} / \mathrm{s}$, Feb. 8 .

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	e2.9	e3.1	e3.6	e5.0	19	24	11	6.1
2	---	---	---	---	e2.6	e3.0	e3.9	e6.0	20	23	11	5.9
3	---	---	---	---	e2. 8	e3.0	e4.0	8.0	22	23	11	5.8
4	---	---	---	---	e2. 8	e2.9	e4.2	9.4	24	22	10	5.6
5	--	--	--	--	e3.0	e2.9	e4.6	11	26	21	9.7	5.4
6	--	---	---	--	e2.7	e2.9	e4.5	11	27	20	9.3	7.7
7	---	---	---	---	e2. 6	e2.9	e4.6	12	27	19	9.5	6.8
8	---	--	-	---	e2.5	e2.9	e4.7	14	28	19	9.2	5.8
9	---	---	---	--	e2.6	e3.0	e4.9	13	28	20	9.0	5.6
10	---	---	---	---	e2.6	e3.0	e5.2	13	28	21	8.6	5.5
11	--	---	--	---	e2. 6	e3.0	e5.6	15	28	17	8.3	5.4
12	---	---	---	---	e2.6	e3.0	e6.4	17	28	16	7.9	6.9
13	---	---	---	---	e2.6	e3.0	e6.0	19	29	15	7.8	6.6
14	---	---	---	---	e2. 6	e3.1	e5.4	20	28	14	7.9	6.3
15	---	---	-	---	e2.6	e3.0	e5.2	22	31	14	7.7	8.0
16	---	---	---	--	e2. 6	e3.2	e5.0	e25	30	14	7.6	6.1
17	---	---	---	---	e2.6	e3.0	e4.9	e28	29	14	7.4	5.7
18	---	---	-	-	e2. 8	e2.9	e4.8	29	29	18	7.1	5.9
19	---	---	--	---	e2.7	e2.9	e4.5	31	28	17	7.5	6.0
20	--	--	--	---	e2.7	e3.0	e4.3	29	28	14	7.2	5.9
21	---	---	---	---	e2. 8	e3.0	e4.1	26	28	13	8.4	5.7
22	---	---	---	---	e2.7	e3.1	e4.0	29	31	12	8.9	5.5
23	--	---	---	---	e2. 8	e3.2	e3.8	29	29	13	9.7	5.8
24	---	--	---	---	e2.8	e3.3	e4.0	26	28	14	8.0	7.0
25	---	---	---	--	e2.9	e3.0	e4.5	27	27	14	7.2	6.1
26	---	---	---	---	e2.9	e3.0	e4.7	24	27	14	6.9	5.9
27	---	---	---	---	e2.9	e3.0	e5.4	23	26	13	7.5	5.9
28	---	---	---	---	e3.0	e3.2	e5.2	22	26	13	8.6	6.4
29	---	---	---	---	e3.0	e3.4	e5.2	22	25	14	7.7	6.4
30	---	---	---	---	---	e3.5	e5.2	23	25	13	7.0	5.9
31	---	---	---	--	---	e3.5	---	21	-	12	6.5	---
TOTAL	---	---	--	--	79.3	94.9	142.4	609.4	809	510	261.1	183.6
MEAN	---	---	--	--	2.73	3.06	4.75	19.7	27.0	16.5	8.42	6.12
MAX	---	---	---	---	3.0	3.5	6.4	31	31	24	11	8.0
MIN	---	---	---	---	2.5	2.9	3.6	5.0	19	12	6.5	5.4
AC-FT	---	---	---	---	157	188	282	1210	1600	1010	518	364

[^6]
393040105340400 DEER CREEK NEAR BAILEY, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--May 1996 to September 1996 (seasonal record).
INSTRUMENTATION.--Water-quality monitor since May 1995.
REMARKS.--Water temperature and specific conductance records are good.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 42 microsiemens, several days in Sept.; minimum, 27 microsiemens several days in June. WATER TEMPERATURE: Maximum, $9.9^{\circ} \mathrm{C}$, July 14 ; minimum, $0.0^{\circ} \mathrm{C}$, on May 26 and Sept. 26-27.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	---	-	--	---	--	---	---	---	---	---	---	-
2	---	---	---	---	---	---	---	---	---	---	---	---
3	---	---	---	---	---	---	---	---	---	---	---	---
4	---	---	---	---	---	---	---	---	--	---	--	---
5	---	---	---	---	---	---	---	---	---	---	---	---
6	---	---	---	--	---	-	-	---	--	---	---	---
7	---	---	---	---	---	---	---	---	---	---	---	---
8	---	---	---	--	---	-	-	--	-	---	--	--
9	---	---	---	---	---	---	---	---	---	---	---	---
10	---	---	---	---	---	---	---	---	---	---	---	---
11	---	---	---	---	---	---	---	---	---	---	---	---
12	---	---	---	---	---	---	---	---	---	---	---	---
13	---	---	---	---	---	---	---	---	---	---	---	---
14	---	---	---	---	---	---	---	---	---	---	---	---
15	---	---	---	---	---	--	---	---	---	---	---	---
16	--	---	---	-	-	-	-	-	-	-	-	--
17	---	---	---	--	--	--	---	--	--	-	-	--
18	---	---	---	---	---	---	---	---	---	---	---	---
19	---	-	---	---	-	---	---	--	---	---	-	--
20	---	---	---	---	---	---	---	---	---	---	---	---
	---	---	---	---	---	---	---	---	---	---	---	---
22	---	---	---	---	---	---	---	---	---	---	---	---
23	---	---	---	--	---	---	---	---	---	---	--	---
24	---	---	---	---	---	---	---	---	---	---	--	--
25	---	---	---	---	---	---	---	---	---	---	--	---
26	---	---	---	---	--	-	-	--	---	--	--	--
27	---	---	---	---	---	---	---	---	---	---	---	---
28	---	---	---	---	---	---	---	---	---	---	---	---
29	---	-	--		--	-	-	-	---	---	--	---
30	---	---	---	---	---	---	---	---	---	---	---	---
31	---	--	---	---	--	---	---	--	--	--	-	--
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

393040105340400 DEER CREEK NEAR BAILEY, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	---	---	---	---	---	---
2	---	---	---	--	---	---	---	---	--	---	---	---
3	---	---	---	---	---	---	---	---	---	-	--	-
4	---	---	-	--	---	---	---	--	--	-	---	--
5	---	--	-	---	-	---	---	---	-	-	-	-
6	---	---	---	---	---	---	---	---	---	---	---	---
7	---	---	---	---	---	---	---	---	-	-	--	-
8	---	---	---	---	---	---	---	---	---	---	--	---
9	---	---	---	---	---	---	---	---	---	---	---	-
10	---	-	---	---	---	---	---	---	---	---	---	-
11	---	--	---	-	---	--	---	---	-	---	-	---
12	---	---	---	---	---	---	---	---	---	---	---	---
13	---	---	---	---	---	---	---	---	---	---	---	-
14	---	--	---	---	--	--	--	-	--	---	---	---
15	-	---	---	---	---	---	---	---	---	---	---	--
16	---	--	---	---	---	-	---	---	---	---	---	--
17	---	---	---	---	---	---	-	---	---	---	---	--
18	---	---	---	---	---	---	---	---	---	34	28	32
19	---	--	---	---	--	--	--	---	---	31	29	30
20	---	---	--	---	---	---	-	---	---	33	28	31
21	---	-	---	-	---	-	---	---	---	35	32	34
22	---	---	--	---	--	--	---	---	---	34	29	32
23	---	---	---	---	---	-	---	---	-	32	29	31
24	---	---	---	---	---	---	---	---	---	34	31	33
25	---	---	--	---	---	---	---	---	---	35	34	34
26	--	-	---	---	---	---	---	-	--	35	33	34
27	---	---	---	---	--	---	---	---	---	35	35	35
28	---	--	--	---	--	--	---	---	--	36	35	36
29	---	-	---	---	---	---	---	---	---	36	35	36
30	--	---	---	---	---	---	---	---	---	35	34	35
31	---	---	--	--	--	---	-	---	---	36	34	35
MONTH	---	---	---	---	---	---	---	---	---	---	---	--
DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST			TEMB	
1	36	34	35	30	30	30	37	36	36	40	39	40
2	36	33	35	31	30	30	37	36	37	40	40	40
3	35	31	34	31	30	30	37	36	36	41	40	40
4	33	31	32	31	30	31	37	36	36	41	40	40
5	33	28	31	31	31	31	38	36	37	41	40	40
6	31	28	29	32	31	31	38	37	37	41	39	40
7	30	27	29	32	31	31	38	36	37	41	40	41
8	30	27	28	32	31	31	38	37	37	41	40	41
9	29	27	28	32	31	32	38	37	37	41	40	41
10	29	27	28	33	32	32	38	37	37	41	40	41
11	29	27	28	33	32	32	38	37	38	41	40	40
12	29	27	28	34	32	33	39	38	38	42	35	41
13	29	27	28	35	33	34	39	38	38	42	41	41
14	29	27	28	35	34	34	39	38	38	41	39	41
15	29	28	29	35	34	34	39	38	38	42	40	41
16	30	28	29	35	34	35	39	38	39	42	41	42
17	29	27	28	35	34	35	39	38	39	42	41	41
18	28	27	28	36	33	35	39	38	39	41	40	41
19	28	27	28	35	33	34	40	38	39	41	40	40
20	28	27	28	35	34	34	40	39	39	40	40	40
21	28	27	28	35	34	34	40	38	39	41	40	40
22	28	27	28	35	34	34	40	38	39	41	40	41
23	28	28	28	35	35	35	40	36	39	41	40	41
24	29	28	28	35	34	35	40	39	40	42	41	41
25	29	28	28	36	35	35	40	39	40	41	40	41
26	29	28	29	36	34	35	40	39	39	40	39	40
27	29	28	29	36	35	35	40	38	39	42	39	40
28	29	29	29	36	35	35	41	39	40	41	40	40
29	30	29	29	36	35	36	41	40	40	41	40	41
30	30	30	30	36	35	36	41	40	40	42	41	41
31	---	---	---	37	36	36	40	39	40	---	---	--
MONTH	36	27	29	37	30	33	41	36	38	42	35	41

393040105340400 DEER CREEK NEAR BAILEY, CO--Continued
TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

393040105340400 DEER CREEK NEAR BAILEY, CO--Continued

TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	JUNE			JULY			AUGUST			SEPTEMBER		
1	5.5	1.7	3.3	7.8	4.2	6.0	9.6	5.2	7.4	8.2	4.5	6.4
2	6.3	1.2	3.4	8.2	4.3	6.1	9.2	5.8	7.6	8.0	5.7	6.8
3	7.0	1.5	4.0	7.4	4.7	6.1	8.8	5.8	7.2	8.1	4.9	6.6
4	6.0	2.2	4.0	7.6	4.8	6.2	9.4	5.6	7.3	8.6	5.4	7.0
5	7.1	2.2	4.4	9.5	5.1	7.1	9.0	4.4	6.8	8.7	5.7	7.2
6	7.0	2.7	4.5	9.1	5.3	7.1	9.0	4.7	6.9	7.2	5.2	6.4
7	7.4	1.9	4.3	9.6	5.2	7.2	7.2	5.0	6.3	6.8	3.8	5.3
8	7.5	2.0	4.5	7.6	5.0	6.3	8.5	4.7	6.5	6.6	3.4	5.1
9	7.2	2.9	4.9	7.2	5.3	6.4	8.0	5.1	6.5	7.1	3.9	5.6
10	6.1	3.1	4.6	9.2	5.3	7.0	7.1	4.1	5.8	7.0	4.6	5.8
11	7.6	2.9	4.9	9.7	5.0	7.3	8.2	3.8	6.1	7.2	4.3	5.8
12	5.6	3.1	4.4	9.0	5.7	7.4	9.1	5.0	7.0	6.4	2.6	5.7
13	6.9	3.3	4.9	9.5	6.1	7.5	8.0	5.3	6.7	6.8	5.1	5.9
14	5.8	3.5	4.7	9.9	5.6	7.5	7.9	6.0	6.9	6.1	3.9	5.1
15	4.8	3.6	4.4	8.6	5.2	7.0	8.5	5.7	7.1	6.2	4.2	5.2
16	7.8	3.0	5.0	8.4	6.0	7.2	7.9	5.3	6.8	6.6	3.3	5.0
17	7.3	3.5	5.2	9.7	6.1	7.8	8.6	4.9	6.8	5.4	4.0	4.6
18	7.7	2.9	5.1	8.1	6.5	7.2	8.8	6.0	7.4	4.1	2.1	3.3
19	7.9	2.8	5.2	8.8	5.5	7.1	7.5	6.0	6.7	3.1	. 6	1.9
20	8.4	3.9	5.9	8.5	5.8	7.2	8.6	5.7	7.2	3.7	1.4	2.4
21	7.0	4.5	5.7	9.8	5.5	7.5	8.6	6.7	7.4	5.4	1.8	3.4
22	8.0	4.7	5.8	9.4	5.0	7.3	8.2	6.1	7.0	5.9	2.3	4.1
23	8.0	3.0	5.3	9.5	6.0	7.7	7.8	5.3	6.5	5.6	3.2	4.4
24	8.4	3.9	5.8	8.5	5.1	7.0	8.4	5.0	6.7	6.2	3.5	4.6
25	7.6	3.8	5.6	8.1	6.3	7.2	8.9	5.0	6.9	5.1	2.0	3.7
26	9.0	4.0	6.1	8.0	5.1	6.5	7.9	6.1	7.1	2.0	. 0	. 8
27	7.4	5.5	6.3	8.3	4.9	6.6	7.7	6.3	6.9	1.0	. 0	. 4
28	7.5	4.8	6.0	8.4	5.8	7.1	7.3	5.4	6.4	3.5	. 4	1.8
29	7.9	3.7	5.7	7.1	6.3	6.6	8.3	5.4	6.8	4.7	1.2	2.9
30	7.0	4.9	6.1	8.5	5.3	6.7	8.1	5.6	6.8	5.3	2.2	3.7
31	---	---	---	8.5	4.7	6.7	8.3	4.8	6.5	5.	,	---
MONTH	9.0	1.2	5.0	9.9	4.2	7.0	9.6	3.8	6.8	8.7	. 0	4.6

393040105340400 DEER CREEK NEAR BAILEY, CO--Continued PRECIPITATION RECORDS

PERIOD OF RECORD.--July to September 1996.
GAGE.--Tipping bucket rain gage (no wind vanes used) with satellite telemetry. Elevation of gage is $9,280 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records poor.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, $1.55 \mathrm{in} .$, Sept. 12, 1996.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.55 in., Sept. 12.

PRECIPITATION INCHES, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	---	. 00	. 00
2	---	---	---	---	---	---	---	---	---	---	. 00	. 00
3	---	---	---	---	---	---	---	---	---	---	. 02	. 00
4	---	---	---	---	---	---	---	---	---	---	. 00	. 00
5	---	---	---	---	---	---	---	---	---	---	. 00	. 00
6	---	---	---	---	---	---	---	---	---	---	. 00	. 79
7	---	---	---	---	---	---	---	---	---	---	. 14	. 00
8	---	---	---	---	---	---	---	---	---	---	. 00	. 00
9	---	---	---	---	---	---	---	---	---	---	. 00	. 00
10	---	---	---	---	---	---	---	---	---	---	. 00	. 00
11	---	---	---	---	---	---	---	---	---	---	. 00	. 09
12	---	---	---	---	---	---	---	---	---	---	. 00	1.55
13	---	---	---	---	---	---	---	---	---	---	. 00	. 02
14	---	---	---	---	---	---	---	---	---	---	. 03	. 34
15	---	---	---	---	---	---	---	---	---	---	. 09	. 02
16	---	---	---	---	---	---	---	---	---	---	. 00	. 00
17	---	---	---	---	---	---	---	---	---	---	. 00	. 02
18	---	---	---	---	---	---	---	---	---	---	. 03	. 10
19	---	---	---	---	---	---	---	---	---	---	. 50	. 07
20	---	---	---	---	---	---	---	---	---	---	. 00	. 00
21	---	---	---	---	--	---	---	---	---	---	. 93	. 00
22	---	---	---	---	---	---	---	---	---	---	. 13	. 06
23	---	---	---	---	---	---	---	---	---	---	. 89	. 25
24	---	---	---	---	---	---	---	---	---	. 00	. 01	. 15
25	---	---	---	---	---	---	---	---	---	. 01	. 02	. 00
26	---	---	---	---	---	---	---	---	---	. 21	. 00	. 00
27	---	---	---	---	---	---	---	---	---	. 02	. 24	. 02
28	---	---	---	---	---	---	---	---	---	. 10	. 53	. 48
29	---	---	---	---	---	---	---	---	---	. 17	. 01	. 00
30	---	---	---	---	---	---	---	---	---	. 01	. 00	. 00
31	---	---	---	---	---	---	---	---	---	. 00	. 00	-
TOTAL	---	---	---	---	---	---	---	---	---	---	3.57	3.96

06709000 PLUM CREEK NEAR SEDALIA, CO

LOCATION.--Lat $39^{\circ} 26^{\prime} 18^{\prime \prime}$, long $104^{\circ} 58^{\prime} 57^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{sec} .15$, T. 7 S., R. 68 W., Douglas County, Hydrologic Unit 10190002, on right bank, on south side of County Road No. 20 bridge over Plum Creek, 1.0 mi west of Sedalia, and 1.4 mi downstream from the confluence of East and West Plum Creeks.
DRAINAGE AREA.--274 mi ${ }^{2}$.
PERIOD OF RECORD.--June 1942 to September 1947. August 1990 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,720 \mathrm{ft}$ above sea level, from topographic map. Aug. 1942 to Sept. 1947, water-stage recorder at site 150 ft upstream at different datum. Prior to Aug. 1942, nonrecording gage at bridge.

REMARKS.--Records poor. Diversions upstream from station for irrigation. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.
COOPERATION.--U.S. Army Corps of Engineers.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	13	e23	e9.8	e8.4	e12	e11	18	28	27	5.0	. 07	. 00
2	24	e24	e9.9	e8.4	e12	e11	17	29	27	3.0	. 06	. 00
3	22	24	e9.2	e8.4	e12	e11	16	26	23	1.9	. 06	. 10
4	24	25	e9.4	e9.0	e12	e11	18	26	20	1.5	. 05	. 90
5	18	20	e9.2	e9.0	e12	e11	28	24	19	1.5	. 05	. 50
6	14	25	e9.2	e9.6	e13	14	29	27	17	1.3	. 05	. 28
7	8.0	26	e9.0	e11	e13	17	27	23	13	1.2	. 04	. 26
8	8.5	18	e9.0	e11	e13	16	18	22	11	1.0	. 04	. 19
9	13	17	e8.8	e12	e14	24	20	24	9.1	2.1	. 04	. 16
10	15	22	e8.6	e13	e15	31	22	25	8.4	3.7	. 04	. 14
11	8.3	22	e8. 2	e14	e15	22	20	24	7.4	1.9	. 03	. 23
12	8.7	23	e8.2	e14	e14	21	19	20	7.3	2.0	. 04	. 46
13	7.5	20	e8.0	e14	e14	26	22	17	8.3	4.0	. 04	. 39
14	8.7	21	e7.6	e14	e12	35	36	14	7.9	2.8	. 00	. 60
15	8.1	17	e7.4	e14	e12	26	27	12	29	2.7	. 00	. 69
16	11	17	e7.0	e14	e11	25	29	9.9	23	2.7	. 00	. 66
17	9.6	15	e6. 8	e14	e11	17	27	7.6	16	2.1	. 00	. 62
18	11	10	e6.4	e13	e10	22	30	6.2	11	1.8	. 00	1.6
19	11	9.5	e5.8	e13	e10	16	26	5.4	8.4	1.6	. 00	5.2
20	8.3	11	e5.3	e12	e10	14	25	5.2	6.5	1.2	. 00	1.7
21	12	14	e6.0	e12	e10	14	26	5.0	8.7	. 76	. 00	1.9
22	12	16	e6. 6	e12	e11	14	26	5.0	18	. 50	. 00	. 96
23	23	12	e7.4	e12	e11	14	24	4.9	14	. 39	. 00	1.5
24	28	13	e8.0	e12	e11	14	22	4.5	8.8	. 36	. 00	2.1
25	29	12	e8.6	e12	e11	12	37	15	6.1	. 64	. 00	1.1
26	25	11	e8. 6	e12	e11	15	36	63	6.3	. 65	. 00	1.4
27	18	e11	e8.6	e12	e11	12	24	54	5.7	. 36	. 00	2.8
28	28	e11	e8.4	e12	e11	12	28	42	5.9	. 15	. 00	5.1
29	19	e10	e8.4	e12	e11	13	33	37	7.1	. 18	. 00	2.2
30	e20	e10	e8.2	e12	--	13	33	32	5.5	. 16	. 00	2.4
31	e22	-	e8.2	e12	---	18	-	28	---	. 09	. 00	---
TOTAL	487.7	509.5	249.8	367.8	345	532	763	665.7	385.4	49.24	0.61	36.14
MEAN	15.7	17.0	8.06	11.9	11.9	17.2	25.4	21.5	12.8	1.59	. 020	1.20
MAX	29	26	9.9	14	15	35	37	63	29	5.0	. 07	5.2
MIN	7.5	9.5	5.3	8.4	10	11	16	4.5	5.5	. 09	. 00	. 00
AC-FT	967	1010	495	730	684	1060	1510	1320	764	98	1.2	72

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1942 - 1996, BY WATER YEAR (WY)

[^7]b-Also occurred Aug to sep 2.
c-No flow many days,also during most years.
d-Site and datum then in use, from rating curve extended above $350 \mathrm{ft} 3 / \mathrm{s}$ on basis of slope-area determination of peak flow. f-Highest flood of actual record probably occurred Jun 16, 1965. Discharge computed at Plum Creek near Louviers was 154,000 cfs. g-Maximum gage height, 7.07 ft , Jan 15, 1993, backwater from ice.

06709530 PLUM CREEK AT TITAN ROAD NEAR LOUVIERS, CO

LOCATION (REVISED).--Lat 39³0'27", long $105^{\circ} 01^{\prime} 26^{\prime \prime}$, on line between sec. 20 and sec. 29 , T. 6 S., R. 68 W., Douglas County, Hydrologic Unit 10190002, on left bank, on downstream side of bridge on Titan Road, 2.4 mi north of Louviers.
DRAINAGE AREA.--315 mi ${ }^{2}$.
PERIOD OF RECORD.--May 1984 to current year.
REVISED RECORDS.--WDR CO-86-1: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,520 \mathrm{ft}$ above sea level, from topographic map. Prior to July 10, 1996, at same site, but different datum.
REMARKS.--Gage was removed from site Oct. 1 to July 10 due to bridge construction. Records poor. Diversions upstream from station for irrigation. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e3.7	e14	e7.0	e4.3	e7.4	e7.0	e12	e24	e20	e1.0	. 00	. 00
2	e14	e14	e6. 8	e4.3	e7.4	e7.0	e12	e23	e18	e. 30	. 00	. 00
3	e13	e15	e6.4	e4.7	e7.4	e7.0	e13	e22	e17	e. 00	. 00	. 00
4	e9.6	e16	e6.2	e4.9	e7.4	e7.0	e13	e21	e17	e. 00	. 00	. 00
5	e4.5	e13	e6.0	e5.2	e7.4	e7.4	e14	e21	e16	e. 00	. 00	. 00
6	e2.9	e16	e5.8	e5.4	e7.6	e8.2	e14	e22	e14	e. 00	. 00	. 00
7	e2.0	e15	e5.4	e5.6	e8.0	e9.2	e15	e19	e12	e. 00	. 00	. 00
8	e2. 5	e14	e5.2	e6.0	e8.0	e11	e16	e18	e10	e. 00	. 00	. 00
9	e4.2	e12	e5.0	e6.4	e8.8	e12	e16	e18	e8.6	e. 00	. 00	. 00
10	e4.7	e14	e4.5	e7.0	e8.8	e13	e17	e17	e7.2	e. 00	. 00	. 00
11	e2. 6	e15	e4.3	e7.6	e8.2	e15	e16	e16	e5.8	. 00	. 00	. 00
12	e2. 6	e16	e4.2	e8.2	e8.0	e17	e15	e14	e5.4	. 00	. 00	. 00
13	e2.5	e15	e4.0	e8.2	e7.6	e17	e18	e13	e8.0	. 00	. 00	. 00
14	e2. 8	e14	e3. 8	e8.2	e7.2	e17	e26	e12	e16	. 00	. 00	. 00
15	e3.2	e13	e3.6	e8.2	e7.0	e15	e23	e11	e21	. 00	. 00	. 00
16	e3.1	e12	e3. 5	e8.2	e7.0	e14	e23	e7. 8	e15	. 00	. 00	. 00
17	e3.0	e10	e3.3	e8.2	e7.0	e13	e23	e4.7	e11	. 00	. 00	. 00
18	e3.3	e9.2	e3.2	e8.0	e7.0	e13	e23	e3.2	e8.2	. 00	. 00	. 00
19	e2.9	e8.0	e2.9	e7.4	e7.0	e12	e23	e2.3	e5.8	. 00	. 00	. 00
20	e2. 5	e9.4	e2. 8	e7.4	e7.0	e12	e22	e2. 2	e5.0	. 00	. 00	. 00
21	e6.0	e11	e3.0	e7.4	e7.0	e11	e21	e2.2	e7.2	. 00	. 00	. 00
22	e11	e13	e3.2	e7.4	e7.0	e11	e20	e2.2	e13	. 00	. 00	. 00
23	e13	e12	e3.5	e7.4	e7.0	e11	e19	e2.2	e9.4	. 00	. 00	. 00
24	e17	e11	e3.7	e7.4	e7.0	e10	e18	e2.0	e7.6	. 00	. 00	. 00
25	e19	e11	e3.9	e7.4	e7.0	e10	e25	e30	e4.8	. 00	. 00	. 00
26	e16	e10	e4.1	e7.4	e7.0	e12	e22	e28	e5.0	. 00	. 00	. 00
27	e13	e9.6	e4.2	e7.4	e7.0	e10	e20	e25	e4.6	. 00	. 00	. 00
28	e18	e8.8	e4.2	e7.4	e7.0	e10	e22	e23	e4.6	. 00	. 00	. 00
29	e14	e8.0	e4.2	e7.4	e7.0	e10	e23	e22	e5.4	. 00	. 00	. 00
30	e12	e7.8	e4.2	e7.4	---	e11	e24	e21	e4.1	. 00	. 00	. 00
31	e13	---	e4.2	e7.4	---	e11	---	e20	---	. 00	. 00	-
TOTAL	241.6	366.8	136.3	214.8	214.2	350.8	568	468.8	306.7	1.30	0.00	0.00
MEAN	7.79	12.2	4.40	6.93	7.39	11.3	18.9	15.1	10.2	. 042	. 000	. 000
MAX	19	16	7.0	8.2	8.8	17	26	30	21	1.0	. 00	. 00
MIN	2.0	7.8	2.8	4.3	7.0	7.0	12	2.0	4.1	. 00	. 00	. 00
AC-FT	479	728	270	426	425	696	1130	930	608	2.6	. 00	. 00

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1984 - 1996, BY WATER YEAR (WY)

MEAN	13.1	17.4	13.9	13.3	16.7	27.7	63.0	161	49.2	16.8	12.0	5.78
MAX	71.8	75.9	44.3	29.7	42.7	62.1	126	779	135	66.5	63.4	31.1
(WY)	1985	1985	1985	1985	1988	1988	1987	1984	1984	1995	1984	
MIN	.000	2.15	4.40	4.86	5.14	6.55	18.9	10.4	5.89	.002		
(WY)	1995	1995	1996	1991	1990	1995	1996	1989	1990	1993	1993	1990

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1984 - 1996
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

13888.21		
38.0		
596	May 26	
$*, \mathrm{e} .00$	Aug	13
.05	Aug	12
27550		
98		
8.8		
2.5		

$$
\begin{array}{rrr}
2869.30 \\
7.84 \\
e_{30} & & \\
a & \text { May } & 25 \\
\text { a.00 Jul } & 3 \\
.00 & \text { Jul } & 3 \\
\text { Not determined } \\
\text { Not determined } \\
5690
\end{array}
$$

28.6		
68.3		1987
7.84		1996
1770	May 15	1984
b.		
.00	Jul	2
.00	Jul	1989

[^8]*-Also occurred Aug 14-18.
a-No flow many days.
b-No flow many days, most years.
c-From rating curve extended above $450 \mathrm{ft}^{3} / \mathrm{s}$.

06709600 CHATFIELD LAKE NEAR LITTLETON, CO

LOCATION.--Lat $39^{\circ} 33^{\prime} 26^{\prime \prime}$, long $105^{\circ} 03^{\prime} 27^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec.1, T. 6 S., R. 69 W., Jefferson County, Hydrologic Unit 10190002, near left end of dam on South Platte River at mouth of Plum Creek and 4.7 mi southwest of courthouse in Littleton.

DRAINAGE AREA.--3,018 mi ${ }^{2}$.
PERIOD OF RECORD.--Contents, May 1975 to current year. Water-quality data available, October 1976 to September 1981.
GAGE.--Water-stage recorder. Datum of gage is $5,500.00 \mathrm{ft}$ above sea level, (levels by U.S. Army, Corps of Engineers); gage readings have been reduced to elevations above sea level.

REMARKS.--Reservoir is formed by earthfill dam. Storage began May 29, 1975. Capacity, 235,000 acre-ft at elevation 5,500 ft, crest of spillway. No dead storage. Figures given represent total contents. Reservoir is for flood control and recreation.

COOPERATION.--Records provided by U.S. Army, Corps of Engineers.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 54,690 acre-ft, May 26, 1980, elevation, $5,447.58 \mathrm{ft}$; minimum since first filling in June 1979; 16,650 acre-ft, Dec. 18, 1995, elevation 5,423.63 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 27,540 acre-ft, June 23, elevation, 5,432.34 ft; minimum, 16,650 acre-ft, Dec. 18, elevation, 5,423.63 ft.

MONTHEND ELEVATION AND CONTENTS AT 0800, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996
Change in

06710245 SOUTH PLATTE RIVER AT UNION AVENUE, AT ENGLEWOOD, CO

LOCATION.--Lat $39^{\circ} 37^{\prime} 52^{\prime \prime}$, long $105^{\circ} 00^{\prime} 50$ ", in $\mathrm{NW}^{1} / 4 \mathrm{SW}^{1} / 4$ sec. 9 , T. 5 S., R. 68 W., Arapahoe County, Hydrologic Unit 10190002, on right bank 280 ft downstream from Big Dry Creek, 285 ft upstream from Union Avenue bridge in Englewood, and 7.5 mi downstream from Chatfield Dam.
DRAINAGE AREA.--3,043 mi^{2}.
PERIOD OF RECORD.--April 1989 to February 1996 (discontinued).
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,300 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated daily discharges. Records fair except for discharges less than $50 \mathrm{ft}^{3} / \mathrm{S}$ or greater than $300 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Flow regulated by Chatfield Reservoir (station 06709600) 7.1 mi upstream. One measurement of specific conductance and water temperature was obtained and is published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $2,840 \mathrm{ft}^{3} / \mathrm{s}$, July 6,1995 , gage height, 8.35 ft .; minimum daily $9.7 \mathrm{ft}^{3} / \mathrm{s}$, Feb. 18, 1991.
EXTREMES FOR CURRENT YEAR.--Maximum discharge, $176 \mathrm{ft}^{3} / \mathrm{s}$ at 1400 Dec .2 , gage height, 4.84 ft ; minimum daily, $23 \mathrm{ft}^{3} / \mathrm{s}$, Oct. 17-19.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	46	39	67	29	32	--	---	---	---	---	---	--
2	45	86	171	29	33	--	---	---	---	---	---	---
3	39	165	173	31	32	---	--	---	---	---	---	---
4	53	163	165	30	32	---	--	---	--	---	---	--
5	34	162	148	30	32	--	--	---	---	---	---	--
6	32	155	149	31	---	-	--	---	---	---	---	---
7	131	124	151	28	---	---	---	---	---	---	---	---
8	36	121	140	29	---	---	--	---	---	---	---	---
9	29	113	116	28	-	---	---	---	---	---	---	-
10	26	118	115	28	---	---	---	---	---	---	---	--
11	25	112	105	29	---	---	---	---	---	---	---	---
12	25	110	77	28	-	---	---	---	---	---	---	---
13	26	111	86	29	--	-	--	---	---	---	---	-
14	24	105	125	30	--	---	---	---	---	---	---	---
15	25	105	125	30	---	---	---	---	---	---	---	---
16	24	138	125	30	---	---	---	---	---	---	---	---
17	23	149	125	30	---	---	---	---	--	-	---	---
18	23	151	110	31	--	---	---	---	---	---	---	---
19	23	149	38	31	---	--	--	---	--	--	---	---
20	24	141	30	30	---	---	--	---	---	---	---	---
21	24	146	30	30	-	---	--	---	---	-	---	--
22	55	140	30	31	--	---	---	---	---	---	---	---
23	64	129	30	30	---	---	---	---	---	---	---	---
24	46	129	30	30	-	---	--	---	---	---	---	--
25	41	127	30	31	---	---	---	---	---	---	---	---
26	37	126	30	32	---	---	---	---	---	---	---	---
27	35	109	30	31	---	---	---	---	---	---	---	---
28	35	44	30	30	-	---	-	---	---	---	---	---
29	35	39	29	31	---	---	---	---	---	---	---	---
30	35	39	29	33	---	---	---	---	---	---	---	-
31	35	-	29	32	---	---	---	---	---	---	---	---
TOTAL	1155	3545	2668	932	---	---	---	---	---	---	---	---
MEAN	37.3	118	86.1	30.1	---	---	---	---	---	---	---	---
MAX	131	165	173	33	---	---	---	---	---	---	---	---
MIN	23	39	29	28	---	---	---	---	---	---	---	---
AC-FT	2290	7030	5290	1850	---	---	---	---	---	---	---	---
STATISTICS OF MONTHLY MEAN			DATA	WATER	RS 1989		WATER YEAR (WY)					
MEAN	43.0	77.5	47.1	37.4	42.6	65.2	139	256	466	460	195	78.5
MAX	80.7	125	113	64.3	73.7	133	203	667	1758	2001	418	148
(WY)	1991	1991	1990	1992	1992	1992	1992	1995	1995	1995	1995	1995
MIN	23.8	27.0	15.6	15.9	11.5	32.3	84.3	114	168	81.5	75.1	29.2
(WY)	1992	1990	1992	1991	1991	1991	1990	1991	1991	1994	1994	1992

06710247 SOUTH PLATTE RIVER BELOW UNION AVENUE, AT ENGLEWOOD, CO

LOCATION.--Lat $39^{\circ} 37^{\prime} 57^{\prime \prime}$, long $105^{\circ} 00^{\prime} 52^{\prime \prime}$, in $\mathrm{SW}^{1 / 4} \mathrm{NW}^{1} / 4 \mathrm{sec} .9$, T. 5 S., R. 68 W., Arapahoe County, Hydrologic Unit 10190002, on right bank 100 ft downstream from Englewood Water Treatment Plant, 800 ft downstream from Union Avenue bridge in Englewood, and 7.7 mi downstream from Chatfield Dam.
DRAINAGE AREA.--3,043 mi ${ }^{2}$.
PERIOD OF RECORD.--February 1996 to September 1996.
GAGE.--Water-stage recorder with satellite telemetry and concrete control. Elevation of gage is $5,290 \mathrm{ft}$ above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Flow regulated by Chatfield Reservoir (station $06709600) 7.7 \mathrm{mi}$ upstream. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.
EXTREMES FOR CURRENT YEAR.--Maximum discharge, $517 \mathrm{ft}^{3} / \mathrm{s}$ at 1530 May 26, gage height, 12.88 ft ; minimum daily, $3.3 \mathrm{ft}^{3} / \mathrm{s}$, Apr. 24.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	22	8.2	62	116	207	98	110
2	-	---	---	---	---	139	5.7	57	106	257	107	78
3	--	---	---	---	-	17	37	16	145	249	114	67
4	---	--	-	--	-	13	37	19	299	178	102	67
5	---	---	---	---	---	9.8	49	22	235	203	97	57
6	---	---	---	---	---	7.1	14	36	103	230	98	39
7	---	---	---	---	e5.1	13	7.1	160	72	207	95	37
8	---	---	---	--	9.0	10	14	219	66	212	83	25
9	---	---	---	---	4.2	7.4	13	164	77	193	80	17
10	--	--	---	-	35	7.8	107	153	109	174	88	31
11	--	--	---	---	42	5.6	205	130	106	235	85	108
12	---	---	---	--	e56	16	284	125	151	320	88	203
13	--	---	---	-	e69	38	296	128	222	354	89	155
14	---	--	---	---	97	149	295	94	205	370	94	167
15	---	---	---	---	48	70	271	62	180	294	100	171
16	---	---	---	---	44	34	239	63	244	217	102	136
17	--	---	---	---	8.6	28	191	98	311	86	113	51
18	---	---	---	---	11	35	100	194	313	96	105	94
19	--	---	---	---	4.4	27	84	201	309	94	97	222
20	--	-	---	---	7.6	27	25	197	270	168	70	119
21	---	---	---	---	13	23	14	213	153	266	77	45
22	---	---	---	---	12	18	17	250	87	289	144	39
23	--	---	---	---	8.0	12	17	298	194	262	176	37
24	---	---	---	---	11	28	3.3	272	416	202	180	42
25	---	---	---	--	8.8	14	36	282	374	189	167	47
26	---	---	---	---	18	12	122	347	265	136	79	62
27	---	---	---	---	13	10	174	119	254	146	129	75
28	--	-	---	---	14	10	185	162	308	171	133	46
29	---	---	---	---	11	13	168	230	269	200	82	42
30	---	---	---	---	---	12	97	310	194	221	124	34
31	---	---	---	---	---	11	--	211	---	167	121	---
TOTAL	---	---	---	--	---	838.7	3115.3	4894	6153	6593	3317	2423
MEAN	---	--	--	--	---	27.1	104	158	205	213	107	80.8
MAX	---	---	---	---	---	149	296	347	416	370	180	222
MIN	---	---	---	---	---	5.6	3.3	16	66	86	70	17
AC-FT	---	--	--	---	---	1660	6180	9710	12200	13080	6580	4810

06710385 BEAR CREEK ABOVE EVERGREEN, CO

LOCATION.--Lat $39^{\circ} 37^{\prime} 58^{\prime \prime}$, long $105^{\circ} 19^{\prime} 599^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NE}^{1 / 4} \sec .9$, T. 5 S., R. 71 W., Jefferson County, Hydrologic Unit 10190002, on right bank 0.6 mi upstream from Evergreen Lake dam at Evergreen.
DRAINAGE AREA.-- $104 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--August 1984 to current year.
GAGE.--Water-stage recorder. Elevation of gage $7,076 \mathrm{ft}$ above sea level, from topographic map. Prior to May 1, 1986, at site 200 ft downstream at present datum.
REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by small diversions for irrigation. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	35	26	e25	e21	e18	e17	e20	26	77	51	31	e17
2	33	16	e25	e20	e18	e18	e20	29	74	49	31	e18
3	33	20	e25	e20	e18	e18	e20	34	73	48	e30	e16
4	33	32	e26	e20	e19	e19	e20	39	76	47	e30	e15
5	31	35	e26	e19	e18	e16	e20	45	76	50	e30	16
6	30	31	e25	e19	e18	e15	e22	49	81	50	e31	19
7	33	33	e26	e19	e17	e16	e24	46	77	46	e32	29
8	32	e30	e25	e19	e18	e17	e26	48	74	44	e35	20
9	31	e26	e25	e18	e18	e17	e28	53	72	46	e40	17
10	30	e25	e26	e18	e18	e17	30	51	73	57	e30	17
11	30	e24	e26	e18	e18	e18	29	47	70	44	e25	17
12	30	e26	e25	e18	e18	e18	24	50	71	41	e27	24
13	30	e27	e24	e18	e18	e17	24	53	73	41	e28	28
14	29	e27	e23	e18	e18	e17	19	55	71	39	e25	25
15	30	e28	e27	e18	e18	e18	20	53	79	37	e18	40
16	28	e27	e25	e19	e19	e18	22	53	90	37	e20	28
17	28	e26	e25	e19	e19	e19	24	58	74	35	e20	24
18	27	e25	e24	e19	e18	e18	25	54	69	35	e20	29
19	26	e25	e24	e20	e19	e18	22	54	64	44	e20	29
20	23	e25	e24	e20	e19	e19	18	54	62	38	e21	28
21	27	e25	e24	e19	e18	e20	18	45	63	34	e22	25
22	28	e25	e24	e18	e18	e21	18	44	73	32	e25	24
23	21	e25	e24	e18	e18	e20	17	48	68	34	e30	23
24	23	e25	e24	e18	e18	e19	23	50	61	34	e35	27
25	29	e25	e23	e18	e19	e19	37	78	60	34	e30	26
26	29	e24	e22	e18	e18	e20	28	83	57	34	e25	28
27	27	e23	e22	e18	e18	e20	32	73	60	37	e24	29
28	26	e27	e22	e18	e19	e20	32	71	57	35	e26	31
29	28	e26	e22	e18	e18	e20	23	71	57	39	e30	36
30	28	e25	e21	e18		e20	26	79	54	43	e25	34
31	27	---	e20	e18	---	e20	---	79	---	34	e17	--
TOTAL	895	784	749	579	528	569	711	1672	2086	1269	833	739
MEAN	28.9	26.1	24.2	18.7	18.2	18.4	23.7	53.9	69.5	40.9	26.9	24.6
MAX	35	35	27	21	19	21	37	83	90	57	40	40
MIN	21	16	20	18	17	15	17	26	54	32	17	15
AC-FT	1780	1560	1490	1150	1050	1130	1410	3320	4140	2520	1650	1470

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 1996, BY WATER YEAR (WY)

[^9]b-Maximum gage height 3.25 ft , Aug 30, backwater from beaver dam.

06710500 BEAR CREEK AT MORRISON, CO

LOCATION.--Lat $39^{\circ} 39^{\prime} 11^{\prime \prime}$, long $105^{\circ} 11^{\prime} 43$ ", in $\mathrm{SE}^{1} / 4 \mathrm{SW}^{1} / 4 \mathrm{sec} .35$, T. 4 S., R. 70 W., Jefferson County, Hydrologic Unit 10190002, on left bank at Morrison, 180 ft upstream from bridge on State Highway 8 and 0.2 mi upstream from Mount Vernon Creek.
DRAINAGE AREA.-- $164 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--Streamflow records, September 1887 to September 1891, May 1895 to December 1901, February 1902 (gage heights only), October 1919 to current year. No winter records for water years 1888-90, 1896, 1898, 1900. Monthly discharge only for some periods, published in WSP 1310. Published as "near Morrison" 1900-1902, as "at Starbuck" 1919-28, and as "at Idledale" 1929-34. Water-quality data available, October 1976 to September 1981.
REVISED RECORDS.--WSP 976: 1942. WSP 1310: 1888, 1890-91, 1898, 1935(M). WSP 1730: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $5,780.43 \mathrm{ft}$ above sea level. See WSP 1710 or 1730 for history of changes prior to Oct. 1, 1934. Oct. 1, 1934, to Oct. 10, 1961, water-stage recorder at site 80 ft downstream at present datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. Small diversions for irrigation of about 1,000 acres upstream from station.

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42	26	24	e20	e19	e15	28	39	96	47	22	e17
2	39	23	22	e20	e19	e16	29	40	90	42	19	e16
3	39	19	21	e20	e19	e16	31	43	87	39	18	e14
4	38	e20	21	e20	e19	17	31	46	87	39	18	e13
5	38	e22	25	e20	e19	16	29	49	87	43	17	e13
6	34	24	23	e20	e19	17	31	53	90	44	15	e14
7	39	25	18	e20	e19	23	37	52	85	41	15	e11
8	37	26	23	e20	e19	24	36	50	81	38	19	e12
9	36	24	e24	e20	e19	22	40	53	77	39	19	e11
10	35	25	e24	e19	e19	18	46	54	77	53	18	e10
11	34	20	e24	e19	e19	17	47	50	73	42	15	e10
12	34	e24	23	e19	e19	19	43	51	72	37	14	e27
13	33	24	23	e19	e19	18	45	53	74	37	13	e21
14	34	24	19	e19	e19	20	41	54	72	34	13	e24
15	33	21	17	e19	e18	18	38	53	79	32	14	e26
16	34	21	18	e19	e18	20	42	53	97	33	16	e29
17	32	24	e20	e19	e17	20	42	56	76	32	14	e31
18	33	22	e20	e19	e16	17	41	52	69	31	13	27
19	30	24	e20	e19	e16	21	42	52	63	37	13	33
20	28	21	e20	e19	e15	20	35	52	59	33	e12	26
21	31	21	e20	e19	e15	24	37	46	59	30	e14	23
22	32	22	e20	e19	e14	23	37	42	67	27	e18	22
23	31	22	e20	e19	e14	26	35	44	66	25	e19	22
24	26	19	e20	e19	e13	26	38	48	57	24	e21	23
25	32	24	e20	e19	e13	20	46	86	54	24	e21	24
26	31	23	e20	e19	e13	31	43	122	53	25	e64	27
27	28	24	e20	e19	e12	25	44	102	54	24	e37	29
28	25	25	e20	e19	e13	26	47	97	53	23	e21	28
29	26	23	e20	e19	e15	27	38	97	51	24	e19	30
30	26	28	e20	e19	---	27	43	101	49	31	e19	29
31	26	-	e20	e19	-	26	---	99	---	25	e18	---
TOTAL	1016	690	649	598	488	655	1162	1889	2154	1055	588	642
MEAN	32.8	23.0	20.9	19.3	16.8	21.1	38.7	60.9	71.8	34.0	19.0	21.4
MAX	42	28	25	20	19	31	47	122	97	53	64	33
MIN	25	19	17	19	12	15	28	39	49	23	12	10
AC-FT	2020	1370	1290	1190	968	1300	2300	3750	4270	2090	1170	1270

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1900 - 1996, BY WATER YEAR (WY)

[^10]a-Also occurred Jan 4 to Feb 13.
b-Also occurred Sep 11.
c-Result of freezeup.

06710605 BEAR CREEK ABOVE BEAR CREEK LAKE NEAR MORRISON, CO

LOCATION.--Lat $39^{\circ} 39^{\prime} 08^{\prime \prime}$, long $105^{\circ} 10^{\prime} 23 "$, in $\mathrm{NW}^{1 / 1} 4 \mathrm{NE}^{1 / 4}$ sec.1, T. 5 S. R. 70 W., Jefferson County, Hydrologic Unit 10190002, on right bank, 0.9 mi downstream from Strain Gulch, 1.0 mi east of Morrison, and 1.1 mi downstream from Mt. Vernon Creek.
DRAINAGE AREA.-- $176 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--May 1986 to current year.
GAGE.--Water-stage recorder. Elevation of gage $5,645 \mathrm{ft}$ above sea level, from topographic map. Prior to Apr. 21, 1989, at datum 3.37 ft , higher.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by diversions to Harriman Canal, and Ward Canal, 0.7 mi upstream from gage. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	23	21	37	29	e19	20	23	27	110	50	8.3	7.6
2	22	19	33	31	e19	21	20	31	103	42	6.8	6.1
3	25	16	33	31	e19	19	18	37	102	37	7.5	4.0
4	29	18	31	31	e19	20	19	42	103	35	7.8	3.5
5	30	25	38	28	e17	20	16	44	101	41	7.8	5.4
6	27	31	36	29	e10	24	18	50	104	41	7.2	5.8
7	30	30	30	29	e9.0	23	28	49	99	38	7.8	20
8	28	33	33	27	e10	18	26	45	94	35	10	11
9	27	31	35	26	e16	18	32	52	89	37	12	9.7
10	27	34	36	26	30	19	38	56	88	57	10	8.9
11	31	28	42	27	25	20	40	52	86	45	8.5	16
12	35	39	37	26	24	22	36	53	82	37	8.6	10
13	33	35	38	28	24	21	37	56	83	36	8.2	12
14	31	36	32	27	25	25	34	57	81	31	7.5	11
15	28	31	24	27	25	21	28	56	88	30	6.1	20
16	27	31	20	28	23	24	34	54	111	30	4.9	14
17	23	33	29	27	25	15	35	58	89	22	5.0	10
18	24	30	30	e27	27	3.2	36	54	78	9.1	4.9	20
19	22	33	26	e27	25	5.2	45	52	68	14	5.2	29
20	21	28	25	e27	24	8.9	32	53	62	12	7.5	14
21	23	28	25	e27	28	15	35	44	62	8.7	8.3	12
22	24	29	26	27	31	14	32	40	71	3.6	10	11
23	23	28	30	31	24	18	23	41	71	1.4	23	10
24	19	25	30	29	23	17	26	45	61	1.6	25	12
25	30	31	28	27	24	13	37	91	54	6.4	13	12
26	30	30	28	27	23	19	33	159	51	12	8.2	21
27	26	32	30	27	18	19	33	138	54	11	6.7	29
28	20	28	28	26	19	22	37	124	54	11	14	21
29	20	32	27	e22	20	24	25	111	54	11	18	19
30	21	43	27	e19	---	24	31	109	52	22	15	17
31	21	---	26	e19	---	21	---	114	---	13	11	-
TOTAL	800	888	950	839	625.0	573.3	907	1994	2405	780.8	303.8	402.0
MEAN	25.8	29.6	30.6	27.1	21.6	18.5	30.2	64.3	80.2	25.2	9.80	13.4
MAX	35	43	42	31	31	25	45	159	111	57	25	29
MIN	19	16	20	19	9.0	3.2	16	27	51	1.4	4.9	3.5
AC-FT	1590	1760	1880	1660	1240	1140	1800	3960	4770	1550	603	797

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1987 - 1996, BY WATER YEAR (WY)

[^11]
06711500 BEAR CREEK AT MOUTH, AT SHERIDAN, CO

LOCATION.--Lat $39^{\circ} 39^{\prime} 08^{\prime \prime}$, long $105^{\circ} 01^{\prime} 577^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{NW}^{1 / 1} 4 \mathrm{sec} .5$, T. 5 S., R. 68 W., Arapahoe County, Hydrologic Unit 10190002, on left bank just downstream from bridge on road to Fort Logan Mental Health Center, at Highway Department maintenance building at northwest city limits of Sheridan, 1.3 mi upstream from mouth, and 2.1 mi west of city hall in Englewood.
DRAINAGE AREA.--260 mi^{2}.
PERIOD OF RECORD.--April to November 1914, March 1927 to current year. Monthly discharge only prior to October 1933, published in WSP 1310. Published as "at Sheridan Junction" 1934-41.

REVISED RECORDS.--WSP 1730: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,295 \mathrm{ft}$ above sea level, from topographic map. See WSP 1710 or 1730 for history of changes prior to Oct. 9,1953 . Oct. 9,1953 , to Aug. 6, 1969, water-stage recorder at present site at datum 1.0 ft , higher.
REMARKS.--Records good except for estimated daily discharges, which are fair. Flow regulated by Bear Creek Lake since July 1979. Storage and diversions upstream from station for irrigation of about 12,000 acres.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	32	27	39	25	22	23	29	23	124	37	14	13
2	30	27	36	23	22	26	28	22	115	32	11	10
3	29	25	34	e27	22	26	26	24	108	26	9.7	8.5
4	36	23	32	29	21	26	33	26	106	24	8.7	7.8
5	37	25	33	e28	20	26	34	33	100	23	9.0	7.5
6	37	31	36	e25	24	26	28	40	95	28	7.4	13
7	35	33	34	e25	25	23	29	43	90	27	6.4	14
8	37	36	29	e28	26	23	32	40	85	25	6.9	16
9	34	35	25	29	27	24	32	42	81	33	8.0	14
10	33	37	22	28	28	26	34	47	78	39	12	11
11	32	36	32	26	26	27	36	43	76	44	14	13
12	37	35	37	26	25	27	37	40	72	79	14	34
13	38	40	35	27	24	31	40	44	71	43	14	27
14	38	40	34	27	24	49	39	49	71	32	14	31
15	36	37	28	27	24	35	34	46	99	28	14	33
16	35	36	23	28	24	29	32	39	117	24	15	35
17	31	36	24	e29	24	31	31	39	106	21	13	39
18	28	36	28	e27	25	33	30	41	82	16	13	62
19	28	35	24	e25	26	23	31	38	69	12	12	82
20	27	36	20	26	25	20	28	37	59	12	7.7	38
21	27	32	19	e26	27	22	25	37	71	11	7.4	29
22	34	28	20	e25	30	29	25	31	69	10	16	27
23	35	30	e20	e24	29	34	24	29	70	8.6	18	26
24	29	30	e21	e23	26	40	21	35	65	7.8	20	25
25	30	30	21	e22	26	34	23	114	52	8.1	19	25
26	32	31	23	e22	25	25	29	295	47	7.3	60	36
27	32	41	e23	e22	23	29	27	214	45	8.3	35	74
28	31	33	e22	e22	21	29	31	149	46	8.5	20	83
29	28	30	23	e23	21	30	29	140	43	11	18	78
30	25	38	24	e24	--	32	25	137	39	12	18	85
31	26	---	25	e24	-	30	---	133	---	15	16	---
TOTAL	999	989	846	792	712	888	902	2070	2351	712.6	471.2	996.8
MEAN	32.2	33.0	27.3	25.5	24.6	28.6	30.1	66.8	78.4	23.0	15.2	33.2
MAX	38	41	39	29	30	49	40	295	124	79	60	85
MIN	25	23	19	22	20	20	21	22	39	7.3	6.4	7.5
AC-FT	1980	1960	1680	1570	1410	1760	1790	4110	4660	1410	935	1980

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1927 - 1996, BY WATER YEAR (WY)

MEAN	22.0	22.6	21.4	19.6	19.0	22.1	51.2	149	103	36.6	36.1	24.1
MAX	151	99.8	61.3	46.3	43.5	94.4	394	859	630	238	255	256
(WY)	1985	1985	1985	1970	1942	1960	1942	1973	1949	1983	1984	1938
MIN	1.52	3.53	8.21	3.85	5.09	5.35	3.33	1.16	1.67	1.77	3.05	1.82
(WY)	1955	1955	1951	1945	1945	1935	1935	1963	1966	1963	1954	1956
SUMMA	TATI		FO	5 CAI	R YEAR		1996	R YEAR		NATER	S 192	1996

ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

| 46932.7 | | |
| ---: | :--- | ---: | ---: |
| 129 | | |
| | | |
| 942 | Jun | 4 |
| 4.4 | Mar | 22 |
| 5.3 | Mar | 9 |
| | | |
| 93090 | | |
| 542 | | |
| 34 | | |
| 8.2 | | |

12729.6		
34.8		
295	May	26
6.4	Aug	7
8.0	Aug	3
838	Jul	12
4.97	Jul	12
25250		
63		
28		
14		

44.3			
157			1983
6.53			1954
4020		May	7
.00	Jul	1969	1954
.33	May	23	1963
a_{8150}	May	7	1969
10.50	May	7	1969
32130			
91			
16			
6.0			

[^12]a-Present datum, from floodmarks, from rating curve extended above 3400 ft 3 .

06711545 LITTLE DRY CREEK AT GREENWOOD VILLAGE, CO

LOCATION.--Lat $39^{\circ} 37^{\prime} 02$ ", long $104^{\circ} 57^{\prime} 08^{\prime \prime}$ in $\mathrm{SE}^{1 / 4} \mathrm{NW}^{1 / 4}$ sec. 13 , T. 5 S., R. 68 W., Arapahoe County, Hydrologic Unit 10190002, on right bank, 0.3 mi west of University Boulevard, and 0.5 mi south of East Belleview Avenue.
DRAINAGE AREA.-- $14.4 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--June 1994 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,427 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by diversions upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.7	3.8	3.2	e2. 7	e1.9	e1. 8	3.0	2.4	7.6	4.6	6.1	3.3
2	4.7	3.9	3.1	e2. 6	e1.8	e1. 8	2.7	2.4	6.1	5.1	2.3	2.8
3	4.2	3.8	3.0	e2. 5	e1. 8	e1.9	2.8	2.5	5.6	4.6	2.7	2.7
4	17	3.4	3.0	e2.2	e1. 8	2.6	8.8	2.7	6.4	4.3	2.4	2.5
5	6.4	3.4	2.8	2.1	e2. 2	3.3	18	2.6	6.5	4.6	2.1	4.8
6	4.3	3.4	2.8	2.2	e2. 5	2.7	4.6	3.2	7.9	6.8	1.7	12
7	4.2	3.2	e2.7	3.0	e2.7	2.9	3.2	2.9	6.3	5.2	11	7.6
8	4.3	3.1	e2. 5	6.5	3.0	2.5	2.9	3.3	5.8	4.4	10	4.7
9	4.1	3.2	e2. 2	4.2	4.5	2.4	2.9	31	6.7	8.1	3.3	3.6
10	3.9	7.1	e2.4	3.1	2.6	2.5	2.7	41	6.7	18	3.1	3.6
11	4.0	5.0	e2. 5	2.7	2.4	2.8	3.2	4.4	5.8	6.3	2.3	10
12	3.6	3.9	e2. 5	2.7	2.7	3.1	2.9	3.3	5.9	15	2.0	28
13	3.2	3.4	e2. 5	2.5	2.3	8.2	11	3.1	6.9	97	3.2	6.2
14	3.5	3.3	e2. 5	2.5	2.2	61	7.7	7.2	6.3	5.6	14	5.5
15	3.4	3.2	e2. 6	2.5	2.3	13	3.7	3.4	69	4.4	3.7	5.8
16	3.4	3.2	e2.7	2.6	2.1	7.6	3.2	2.7	18	4.4	5.2	4.3
17	3.3	3.2	e2.7	2.9	2.1	4.8	2.9	2.5	13	4.5	2.8	12
18	3.6	3.1	e2.7	2.6	e2.1	4.6	2.9	2.3	7.0	4.0	2.3	46
19	3.2	3.0	e2.7	3.3	e2.1	4.2	3.1	2.2	5.6	6.1	2.4	107
20	3.3	3.0	e2.7	3.6	e2.1	3.1	12	2.4	5.1	5.1	2.4	8.4
21	3.5	3.0	e2.7	3.0	e2.1	2.9	13	8.1	16	2.8	2.9	5.6
22	9.7	3.1	e2. 8	2.8	e2.1	3.0	5.8	3.3	12	2.4	55	4.7
23	16	3.0	e2. 8	2.6	e2.1	3.2	4.5	3.2	6.8	2.1	21	4.0
24	7.5	3.0	e2. 8	2.4	e2.1	10	4.4	4.3	5.6	6.8	6.6	3.9
25	4.5	3.0	e2. 8	2.2	e2.1	4.1	2.8	49	4.7	25	2.8	3.9
26	4.0	3.1	e2. 8	e1.9	e2.0	3.4	3.2	216	4.4	3.7	2.2	14
27	3.6	e3.2	e2. 8	e1.8	e1.9	3.1	2.6	25	4.5	2.7	5.3	30
28	3.4	e3.2	e2. 8	e1.9	e1. 8	2.7	4.0	12	5.6	2.5	4.6	10
29	3.6	e3.2	e2.9	e2.0	e1. 8	2.8	3.3	11	6.2	2.8	5.1	5.8
30	3.3	e3.2	e2.8	e2.0	---	2.8	2.7	7.6	4.5	2.8	4.4	4.6
31	3.4	--	e2.7	e2.0	--	5.4	---	7.0	---	3.3	5.9	---
TOTAL	157.8	103.6	84.5	83.6	65.2	180.2	150.5	474.0	278.5	275.0	200.8	367.3
MEAN	5.09	3.45	2.73	2.70	2.25	5.81	5.02	15.3	9.28	8.87	6.48	12.2
MAX	17	7.1	3.2	6.5	4.5	61	18	216	69	97	55	107
MIN	3.2	3.0	2.2	1.8	1.8	1.8	2.6	2.2	4.4	2.1	1.7	2.5
AC-FT	313	205	168	166	129	357	299	940	552	545	398	729

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 1996, BY WATER YEAR (WY)

MEAN	4.43	3.39	2.38	2.46	2.32	4.36	8.25	22.6	17.1	6.74	6.03	8.51
MAX	5.09	3.45	2.73	2.70	2.40	5.81	11.5	30.0	24.8	9.09	7.44	12.2
(WY)	1996	1996	1996	1996	1995	1996	1995	1995	1995	1995	1995	1996
MIN	3.77	3.33	2.04	2.22	2.25	2.90	5.02	15.3	9.28	2.27	4.17	2.52
(WY)	1995	1995	1995	1995	1996	1995	1996	1996	1996	1994	1994	

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1994 - 1996

3426.5		
9.39		
287	May	17
$a_{1} .4$	Feb	12
1.6	Feb	7
6800		
16		
4.2		
1.9		

2421.0		
6.61		
216	May 26	
1.7	Aug	6
1.9	Feb 26	
457	Aug 22	
8.65	Aug 22	
4800		
10		
3.2		
2.2		

7.91			
9.21			1995
6.61			1996
287		May 17	1995
a		Feb 12	1995
1.4		Jul	6
199	1994		
495		May 17	1995
8.87		May 17	1995
5730			
12			
3.2			
1.8			

[^13]
06711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO

LOCATION.--Lat $39^{\circ} 39^{\prime} 54^{\prime \prime}$, long $105^{\circ} 00^{\prime} 13$ ", in $\mathrm{NW}^{1 / 4} \mathrm{NE}^{1 / 4} \sec .33$, T. 4 S., R. 68 W., Arapahoe County, Hydrologic Unit 10190002, on right bank, 0.3 mi downstream from Dartmouth Ave bridge at Englewood, and 1.4 mi downstream from Bear Creek.
DRAINAGE AREA.--3,387 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1983 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,250 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated daily discharges. Records fair. Natural flow of stream affected by transmountain diversions, storage and flood control reservoirs, power developments, diversions for irrigation and municipal use, and return flow from irrigated areas. Flow regulated by Chatfield Dam since May 29, 1975 (station 06709600), and Bear Creek Dam since July 1979.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	91	69	108	52	45	46	48	146	224	242	137	145
2	86	114	312	51	49	240	43	128	207	273	140	112
3	85	209	310	65	54	65	69	60	221	271	143	95
4	146	209	305	80	49	52	98	65	340	212	130	94
5	124	212	276	83	47	48	150	78	298	224	124	86
6	102	219	278	61	41	47	63	99	197	254	123	80
7	202	191	276	62	42	49	50	268	168	239	122	69
8	127	191	262	86	49	45	57	348	159	239	114	61
9	99	193	208	75	46	45	56	308	166	244	102	50
10	92	198	202	64	77	47	202	329	194	237	115	57
11	83	196	206	54	92	45	314	256	188	273	112	147
12	83	195	171	53	105	51	394	241	223	395	115	255
13	83	196	172	51	200	87	419	246	289	456	115	197
14	90	198	232	51	192	323	418	216	289	419	131	209
15	86	187	229	55	103	188	385	170	339	305	130	217
16	76	232	225	52	94	103	352	169	359	248	139	192
17	70	256	227	54	49	82	311	196	405	130	145	113
18	63	260	220	55	48	94	207	314	393	137	138	229
19	72	256	93	65	44	66	189	319	388	126	126	416
20	71	246	60	50	46	62	92	316	366	189	88	187
21	68	257	49	49	58	54	70	334	285	262	93	98
22	114	248	53	46	58	64	62	357	216	282	200	85
23	149	225	51	54	52	61	63	408	311	264	228	81
24	97	227	65	57	50	107	43	384	563	218	206	87
25	86	224	46	44	50	75	80	513	486	225	191	89
26	87	225	47	57	53	51	226	900	313	163	136	129
27	85	240	47	54	51	51	288	313	298	169	174	186
28	74	123	52	43	48	50	309	271	340	190	164	154
29	70	84	50	42	46	56	289	312	306	215	114	141
30	65	97	49	42	---	56	200	384	236	230	156	138
31	67	---	47	51	---	55	---	298	-	198	156	-
TOTAL	2893	5977	4928	1758	1938	2465	5547	8746	8767	7529	4307	4199
MEAN	93.3	199	159	56.7	66.8	79.5	185	282	292	243	139	140
MAX	202	260	312	86	200	323	419	900	563	456	228	416
MIN	63	69	46	42	41	45	43	60	159	126	88	50
AC-FT	5740	11860	9770	3490	3840	4890	11000	17350	17390	14930	8540	8330

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1996, BY WATER YEAR (WY)

MEAN	160	177	99.7	81.3	86.6	138	388	903	778	415	165	
MAX	1050	733	268	216	166	261	1074	2576	2479	2337	1574	724
(WY)	1985	1985	1985	1985	1985	1983	1984	1987	1995	1995	1984	1984
MIN	44.8	39.3	48.9	45.4	35.5	51.7	123	209	243	79.0	98.8	
(WY)	1993	1990	1995	1991	1991	1991	1991	1989	1990	1994	1994	1992

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1983 - 1996
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
$50 ~ P E R C E N T ~ E X C E E D S ~$
90 PERCENT EXCEEDS

225071		
617		
4010	Jun 28	
30	Mar	1
37	Feb 24	
446400		
2370		
191		
49		

59054				
161	301			
		692		1984
		124		1993
900	May 26	4010	Jun 28	1995
41	Feb 6	a_{20}	Sep 13	1994
47	Jan 27	b 24	Sep 13	1994
1550	May 26	b9710	Jun 4	1995
3.71	May 26	7.21	Jun 4	1995
117100		218000		
312		786		
130		141		
49		48		

[^14]
06711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--March 1985 to current year.

PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: March 1985 to current year.
pH : March 1985 to current year.
WATER TEMPERATURE: March 1985 to current year.
DISSOLVED OXYGEN: March 1985 to current year.
INSTRUMENTATION.--Water-quality monitor since March 1985.
REMARKS.--Water temperature record is good. Specific conductance, pH , and dissolved oxygen are poor.
EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum mean, 995 microsiemens, Jan. 31, 1990; minimum mean, 223 microsiemens, May 16, 1987. pH: Maximum, 9.9 units, Jul. 14-15, 18, 1987, Jun. 8 and 11, 1993; minimum, 6.4 units, Oct. 18, 1989.
WATER TEMPERATURE: Maximum, $29.0^{\circ} \mathrm{C}$, Aug. 17,1986 , July 30,1987 ; minimum, $0.0^{\circ} \mathrm{C}$, freezing point on many days during winter months.
DISSOLVED OXYGEN: Maximum, $19.0 \mathrm{mg} / \mathrm{L}$, Feb. 7 and 9, 1995; minimum, $3.4 \mathrm{mg} / \mathrm{L}$, Jul. 31, 1987.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum 996 microsiemens, Jan. 28 and Mar. 13; minimum, 250 microsiemens Aug. 22. pH: Maximum 9.2 units Nov. 22-24, Jun. 11 and Aug. 5; minimum, 7.2 units, Mar 19 and Sept. 19.
WATER TEMPERATURE: Maximum, $25.0^{\circ} \mathrm{C}$, Aug. 17 ; minimum, $0.0^{\circ} \mathrm{C}$, on many days during winter months. DISSOLVED OXYGEN: Maximum $16.9 \mathrm{mg} / \mathrm{L}$, Oct. 17 ; minimum, $4.6 \mathrm{mg} / \mathrm{L}$, Sept. 4.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	722	587	670	819	788	803	694	570	677	844	784	810
2	759	722	742	812	672	765	570	456	477	924	740	810
3	773	744	760	672	542	582	480	455	468	-	---	--
4	883	553	706	579	541	557	491	459	473	---	---	---
5	697	670	685	575	532	551	504	468	488	867	787	824
6	723	692	702	553	517	538	496	469	485	890	782	839
7	752	547	612	566	540	553	502	464	484	994	808	891
8	688	580	646	568	538	550	518	465	486	?	---	---
9	715	688	699	559	542	552	542	502	520	982	815	889
10	724	693	707	652	541	612	549	522	539	844	792	821
11	731	698	720	644	541	575	584	524	547	832	795	816
12	728	665	689	576	538	557	599	569	587	839	782	808
13	690	661	677	562	540	552	609	537	583	812	749	794
14	696	677	687	558	538	547	541	485	505	807	741	789
15	702	690	695	573	536	558	530	484	505	816	767	798
16	716	690	702	537	488	515	541	504	519	819	792	802
17	743	716	726	503	474	490	551	516	528	803	762	791
18	789	741	757	504	440	482	592	498	531	947	728	843
19	789	732	759	508	471	491	721	592	673	---		8
20	760	733	750	509	448	491	821	699	764	969	892	941
21	768	747	760	509	475	496	866	748	809	926	842	881
22	776	552	716	512	467	493	868	819	844	869	782	841
23	780	691	732	516	477	499	884	778	840	866	807	840
24	780	741	758	521	469	498	847	795	825	870	819	843
25	782	724	756	516	484	497	868	740	806	839	781	814
26	743	722	732	524	494	507	858	740	799	928	793	869
27	740	724	734	655	513	576	843	742	795	959	862	920
28	747	725	738	719	644	696	870	763	819	996	834	914
29	797	747	768	729	698	715	852	795	820	959	772	859
30	799	757	775	732	685	706	840	746	798	876	797	843
31	800	777	791	---	---	---	822	767	798	903	797	849
MONTH	883	547	721	819	440	567	884	455	638	--	---	---

06711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL				MAY	
1	891	768	849	842	759	805	---	---	---	--	---	--
2	921	809	859	793	504	565	---	---	---	---	-	---
3	949	814	875	730	597	672	--	--	---	-	---	---
4	---			736	714	727	---	---	---	--	--	---
5	976	890	928	775	670	732	---	---	---	---	-	-
6	959	817	883	786	742	763	---	---	---	---	---	---
7	891	821	843	823	747	786	---	---	---	---	---	---
8	853	766	825	829	743	791	---	---	---	---	---	---
9	860	719	801	810	762	779	---	---	---	---	---	---
10	844	691	775	768	715	735	---	---	---	---	---	---
11	713	647	685	739	711	724	---	---	---	--	---	-
12	713	623	680	781	701	739	---	---	---	---	---	---
13	623	545	566	996	706	775	--	--	---	--	---	---
14	597	536	553	730	532	614	--	--	--	--	--	---
15	658	597	636	670	573	615	-	-	---	--	---	--
16	673	640	651	733	670	718	---	---	---	---	---	---
17	725	641	698	737	705	728	--	-	-	---	-	---
18	753	725	734	776	714	746	---	--	--	-	---	---
19	753	701	738	814	742	793	---	---	---	-	--	---
20	776	750	760	832	723	787	---	---	---	---	-	---
21	976	762	900	820	767	798	---	---	---	---	---	---
22	862	773	819	767	744	752	--	---	---	---	---	---
23	785	730	766	755	727	741	---	---	-	---	--	---
24	779	706	761	995	735	866	---	---	---	---	---	---
25	782	745	764	874	740	781	---	---	---	---	---	---
26	777	717	757	896	746	795	---	---	---	---	--	---
27	800	774	783	814	674	755	--	--	---	--	--	---
28	914	716	815	770	733	747	---	---	---	---	--	---
29	877	809	838	770	741	755	---	---	---	---	---	---
30	---	---	---	765	733	748	---	---	---	---	---	---
31	-	---	-	891	740	774	---	---	---	---	---	---
MONTH	---	---	---	996	504	745	---	-	-	---	--	---

06711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE		JULY			AUGUST			SEPTEMBER		
1	8.3	7.7	8.0	8.4	7.4	7.8	9.1	7.7	8.3	8.4	7.4	7.8
2	8.4	7.7	8.0	8.8	7.5	8.2	9.1	7.7	8.4	8.4	7.4	7.8
3	8.7	7.7	8.1	8.7	7.6	8.1	9.0	7.7	8.3	8.3	7.3	7.8
4	--	-	-	8.7	7.5	8.1	9.1	7.9	8.5	8.4	7.3	7.8
5	8.7	7.8	8.1	8.6	7.7	8.1	9.2	8.0	8.5	8.5	7.3	7.8
6	8.8	7.6	8.1	8.6	7.6	8.1	--	---	---	7.9	7.5	7.6
7	8.8	7.6	8.2	8.3	7.9	8.1	---	---	---	8.0	7.5	7.7
8	8.8	7.6	8.3	8.7	7.2	8.3	---	---	---	8.0	7.6	7.8
9	8.8	7.6	8.3	8.6	7.5	8.0	--	---	---	7.8	7.3	7.6
10	9.1	7.6	8.4	8.5	7.5	8.2	---	---	---	7.8	7.3	7.6
11	9.2	7.5	8.3	8.9	7.9	8.4	---	---	---	8.6	7.3	7.7
12	8.9	7.6	8.2	8.5	8.1	8.3	---	---	---	8.1	7.3	7.6
13	8.6	7.8	8.1	8.7	7.7	8.3	---	---	---	8.2	7.4	7.7
14	9.0	7.7	8.2	8.5	8.0	8.3	---	---	---	8.4	7.4	7.8
15	7.9	7.5	7.7	8.4	8.1	8.2	---	---	---	8.4	7.4	7.8
16	8.8	7.7	8.1	8.5	7.5	8.0	---	---	---	8.8	7.4	8.0
17	8.7	7.7	8.0	8.2	7.4	7.7	---	--	--	8.2	7.5	7.9
18	8.7	7.6	8.1	8.1	7.5	7.7	---	---	--	8.5	7.4	7.9
19	8.8	7.6	8.1	8.4	7.5	7.9	---	---	--	8.1	7.2	7.7
20	8.8	7.6	8.1	8.5	7.5	8.1	---	--	---	8.5	7.8	8.1
21	8.5	7.5	7.9	8.3	7.8	8.1	---	---	---	8.3	7.6	7.9
22	8.2	7.4	7.8	---	---	---	8.6	7.8	8.1	8.2	7.6	7.9
23	8.7	7.5	7.8	---	---	---	8.6	7.7	8.2	8.2	7.6	7.9
24	8.4	7.6	7.9	---	---	--	8.6	7.7	8.1	8.3	7.6	7.9
25	8.5	7.7	8.0	---	---	---	8.5	7.8	8.0	8.3	7.5	7.9
26	8.6	7.6	8.0	---	---	---	---	---	---	8.4	7.5	7.9
27	8.6	7.5	7.9	-	---	---	-	--	--	8.4	7.5	7.9
28	8.4	7.4	7.9	--	--	--	8.1	7.6	7.8	8.5	7.5	7.9
29	8.6	7.3	7.8	9.0	7.8	8.2	8.2	7.5	7.7	8.5	7.5	7.9
30	8.5	7.3	7.9	9.0	8.0	8.5	8.3	7.5	7.8	8.4	7.5	7.8
31	---	--	---	8.9	7.8	8.4	8.4	7.5	7.9	---	---	---
MONTH	---	---	-	---	---	---	--	---	---	8.8	7.2	7.8

TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOB		NOVEMBER			DECEMBER			JANUARY		
1	15.1	10.8	13.0	7.9	4.3	6.6	8.6	5.3	6.9	2.9	1.2	2.2
2	15.9	11.0	13.4	4.8	2.0	3.9	7.7	4.2	6.0	2.8	. 2	1.4
3	16.6	11.2	13.7	7.8	2.4	5.5	7.1	4.1	5.5	3.8	1.0	2.3
4	13.6	11.1	12.2	7.5	4.2	5.9	7.3	4.0	5.5	2.8	. 0	1.3
5	11.4	8.9	10.2	9.0	4.1	6.6	6.6	4.3	5.6	1.3	. 0	. 4
6	13.0	7.0	10.0	8.2	4.7	6.7	6.4	4.0	5.1	1.2	. 0	. 3
7	14.6	8.8	11.8	8.4	5.5	7.0	6.1	2.0	4.5	2.6	. 0	1.1
8	14.7	9.8	12.1	8.7	5.4	7.2	4.7	1.4	3.2	3.9	. 5	2.2
9	12.8	9.5	11.2	9.6	5.6	7.6	3.3	. 1	1.8	4.1	1.4	2.7
10	15.3	9.6	12.3	7.9	4.4	5.9	4.1	1.9	3.1	5.4	1.7	3.4
11	16.0	10.4	13.2	6.8	2.0	4.7	6.3	3.4	4.8	4.7	1.4	3.0
12	15.4	11.3	13.3	9.5	6.1	7.8	6.0	3.7	5.0	5.8	1.9	3.7
13	14.2	10.4	12.1	7.9	6.2	7.0	6.9	4.4	5.6	6.2	2.1	4.1
14	13.8	8.4	11.0	8.7	4.9	6.9	5.7	2.9	4.4	6.2	2.0	4.2
15	15.0	9.4	12.0	8.9	5.2	7.2	5.1	1.6	3.5	5.9	2.1	4.0
16	15.4	10.4	12.6	9.1	5.1	7.4	4.3	2.6	3.5	6.5	2.7	4.6
17	15.1	10.3	12.4	9.2	5.5	7.4	3.4	2.5	2.8	4.7	. 0	2.5
18	15.3	10.1	12.4	8.8	5.1	7.0	3.6	2.3	3.0	. 9	. 0	. 2
19	13.4	10.1	11.6	8.7	5.4	7.0	3.1	. 4	1.8	1.6	. 0	. 6
20	12.6	7.4	10.0	7.7	5.0	6.5	3.2	. 3	1.7	3.2	. 1	1.4
21	13.7	8.8	11.1	8.0	4.6	6.4	2.9	. 7	1.7	3.9	. 0	1.8
22	11.4	5.7	8.9	7.6	5.5	6.6	3.2	1.2	2.0	2.1	. 0	. 8
23	9.9	5.1	6.9	8.2	5.0	6.6	2.5	. 0	1.1	1.8	. 0	. 6
24	10.5	5.5	8.0	7.6	4.4	6.1	2.8	. 0	1.1	2.6	. 0	1.0
25	11.4	6.9	9.1	8.6	5.6	7.1	3.6	. 1	1.7	1.6	. 0	. 9
26	11.8	7.1	9.7	8.2	5.0	6.7	3.5	. 3	1.7	. 5	. 0	. 1
27	11.5	7.7	9.4	6.0	3.8	4.9	2.7	. 0	1.3	. 9	. 0	. 3
28	10.7	6.8	8.7	4.3	2.3	3.4	2.6	. 0	1.3	2.7	. 1	1.0
29	10.2	7.0	8.7	7.2	3.5	5.2	4.0	1.1	2.2	3.6	. 0	1.6
30	10.6	7.0	8.5	7.7	5.3	6.6	3.4	1.0	2.1	1.2	. 0	. 3
31	9.5	7.0	7.9	-	---	---	3.5	2.0	2.6	. 4	. 0	. 1
MONTH	16.6	5.1	10.9	9.6	2.0	6.4	8.6	. 0	3.3	6.5	. 0	1.7

06711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO--Continued

TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		FEBRUARY			MARCH			APRIL			MAY	
1	. 6	. 0	. 1	6.5	1.1	3.3	-	--	--	---	---	-
2	. 1	. 0	. 0	6.9	1.8	4.3	--	--	---	---	---	-
3	. 1	. 0	. 0	8.4	1.9	5.1	---	---	---	---	---	-
4	. 7	. 0	. 3	8.0	4.0	5.9	---	---	---	---	---	-
5	3.2	. 2	1.6	9.3	3.7	6.2	---	-	--	-	--	---
6	4.9	2.1	3.3	5.3	1.6	3.3	-	---	---	---	-	-
7	5.4	2.5	4.0	5.5	. 2	2.8	---	---	---	---	---	-
8	7.2	3.3	5.0	7.6	. 6	3.9	---	---	---	---	---	-
9	8.0	2.4	5.3	10.2	2.4	6.2	---	---	--	---	---	--
10	6.2	2.4	4.4	10.8	4.7	7.7	---	---	---	---	-	-
11	5.1	. 3	2.8	10.9	5.0	8.1	-	--	-	---	--	-
12	6.0	. 9	3.7	10.0	5.5	7.9	---	---	---	---	---	---
13	7.1	1.6	4.5	9.9	5.7	7.4	---	--	---	---	---	--
14	7.0	3.1	5.1	6.3	2.0	3.8	---	--	---	---	---	--
15	5.8	3.1	4.6	10.0	2.0	6.3	---	-	---	--	--	---
16	7.1	1.7	4.7	10.5	5.4	7.6	---	---	---	---	---	---
17	8.8	3.3	6.2	7.8	4.5	6.1	---	---	---	---	---	--
18	8.8	4.8	6.4	6.0	3.7	4.9	---	---	---	---	---	-
19	8.7	3.7	6.0	9.4	2.0	5.5	---	---	---	---	---	---
20	9.0	4.0	6.4	11.4	4.1	7.4	---	-	-	---	--	--
21	10.9	5.7	8.1	12.4	6.8	9.1	---	---	---	---	---	-
22	9.6	5.8	7.6	9.5	6.6	8.0	---	---	---	---	---	---
23	8.0	2.0	5.2	10.6	5.7	7.7	---	---	---	---	---	-
24	8.9	3.0	5.9	6.2	2.0	4.1	---	---	---	---	---	-
25	10.1	4.3	6.8	7.3	. 3	3.6	---	---	---	-	-	-
26	5.7	2.0	3.8	10.6	1.6	5.6	---	---	---	---	---	-
27	3.3	. 8	2.0	11.4	4.2	7.6	---	---	---	---	--	---
28	2.8	. 0	1.1	12.2	5.2	8.8	---	---	---	---	---	---
29	4.9	. 0	1.8	12.2	6.4	9.1	---	--	---	---	--	---
30	--	--	---	12.9	7.1	9.6	---	---	---	17.3	--	---
31	---	--	---	14.1	5.8	9.8	-	--	---	18.6	13.1	15.4
MONTH	10.9	. 0	4.0	14.1	. 2	6.3	---	---	---	---	---	---

	JUNE			JULY			AUGUST			SEPTEMBER		
1	20.1	13.2	16.2	---	---	---	---	---	---	23.0	17.5	20.4
2	20.3	13.3	16.5	-	-	---	---	---	---	22.7	17.2	20.0
3	21.1	13.6	17.4	23.9	18.1	20.9	---	---	---	23.1	17.3	20.3
4	19.9	15.8	18.1	24.3	18.1	21.1	---	---	---	22.1	17.5	20.1
5	20.1	14.5	16.9	-	-	---	---	---	---	23.5	17.3	20.2
6	21.1	14.1	17.1	---	---	---	---	---	---	20.8	16.3	18.1
7	21.7	14.3	17.8	---	---	---	---	---	---	21.2	14.6	17.6
8	23.0	15.1	18.7	---	---	---	---	---	---	22.1	15.6	18.7
9	21.5	16.1	18.6	---	---	---	---	---	---	22.5	16.1	18.9
10	21.7	15.6	18.6	---	---	---	---	---	---	23.2	16.1	19.2
11	22.5	15.7	18.9	---	---	---	---	---	---	22.1	13.6	19.3
12	---		---	---	---	---	---	---	---	21.0	16.6	18.7
13	---	---	---	---	---	---	-	--	---	19.6	16.3	18.0
14	20.4	15.7	17.9	---	---	---	---	---	---	19.9	15.7	17.7
15	--	---	---	-	---	---	---	---	---	21.3	16.4	18.5
16	---	---	---	---	---	---	24.6	18.4	21.4	21.4	15.7	18.2
17	--	--	--	---	--	-	25.0	17.8	21.3	18.1	14.9	16.2
18	23.0	16.1	19.1	--	--	---	23.1	17.8	20.6	17.3	11.3	15.0
19	22.9	15.8	18.9	---	---	---	22.4	18.6	20.4	---	---	---
20	22.4	16.6	19.3	-	-	-	22.5	17.4	20.1	16.9	13.6	15.0
21	20.9	16.9	18.9	---	---	---	22.0	18.4	20.3	18.0	11.9	15.1
22	21.2	17.1	18.7	---	---	---	23.2	17.9	20.1	17.6	13.4	15.7
23	23.8	16.1	19.1	---	---	---	23.5	17.9	20.0	16.6	13.7	15.2
24	---	---	---	---	---	---	24.9	17.8	20.9	17.3	13.0	14.9
25	--	---	---	-	---	---	24.7	18.3	21.4	16.5	12.9	14.6
26	24.0	16.5	19.8	---	---	---	---	---	---	12.9	9.7	11.3
27	22.6	17.4	19.5	---	---	---	21.6	---	---	13.7	6.9	10.4
28	---	---	---	---	---	---	---	---	---	16.4	11.7	13.9
29	---	---	---	---	--	---	22.1	17.3	19.8	17.3	12.5	15.0
30	---	---	---	---	---	---	22.6	17.8	19.9	17.5	13.4	15.5
31	---	---	---	---	---	---	24.1	17.3	20.6	---	---	---
MONTH	--	--	---	---	---	---	---	---	---	---	---	--

OXYGEN，DISSOLVED（MG／L），WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	12.0	6.7	8.5	11.4	7.0	8.7	13.8	8.2	10.0	－	－	－－－
2	12.9	6.5	8.8	13.6	8.6	10.4	11.8	8.5	9.8	－－－	－－－	－－－
3	13.6	6.2	8.7	12.1	8.5	9.9	12.4	9.0	10.2	－－－	－－－	－－－
4	10.6	6.0	7.7	12.0	8.4	9.7	12.4	9.1	10.2	－－－	－－－	－－－
5	11.3	6.7	8.4	12.3	8.0	9.6	13.3	9.1	10.6	－－－	－－－	－－－
6	12.3	6.6	8.7	12.3	7.9	9.4	13.3	9.4	10.7	－－	－－－	－
7	11.1	6.3	8.1	12.9	7.9	9.6	13.0	9.0	10.6	－－－	－－－	－－－
8	12.5	6.3	8.4	12.9	7.8	9.6	13.3	9.0	10.6	11.6	8.3	9.6
9	12.6	6.2	8.5	13.0	7.5	9.4	13.4	9.4	10.9	11.4	9.6	10.2
10	13.6	6.1	8.6	12.5	7.4	9.3	12.7	8.9	10.3	11.5	9.7	10.2
11	13.8	5.7	8.5	12.3	8.0	9.9	13.3	8.3	10.1	11.9	9.7	10.5
12	13.4	5.6	8.2	13.4	7.6	9.5	12.9	8.3	9.8	11.9	9.8	10.6
13	13.4	5.7	8.4	－－	－－	－－	13.1	8.2	9.7	12.0	9.7	10.5
14	13.5	6.1	8.6	13.9	8.0	9.9	12.7	8.4	9.9	12.3	9.7	10.7
15	13.8	5.8	8.5	14.3	8.0	10.0	12.9	8.7	10.2	12.8	9.9	10.9
16	13.7	5.7	8.3	13.5	8.0	9.8	12.9	8.7	10.0	12.0	9.1	10.5
17	16.9	5.6	9.6	13.2	8.0	9.7	－－－		，	11.5	9.0	10.1
18	16.6	7.0	10.2	13.1	8.2	9.8	－－－	－－－	－－－	12.3	10.7	11.3
19	16.3	6.8	10.2	13.4	8.3	9.9	－－－	－－－	－－－	11.8	10.4	10.9
20	15.8	7.6	10.3	13.5	8.4	10.1	－－－	－－－	－－－	12.1	10.4	11.0
21	15.9	7.0	10.0	13.8	8.3	10.1	－－－	－－－	－－－	12.0	10.0	10.9
22	10.9	6.8	8.6	13.4	8.4	10.0	－－－	－－－	－－－	11.8	10.0	10.8
23	12.6	8.2	9.7	14.3	8.5	10.3	－－－	－－－	－	12.2	10.6	11.1
24	14.1	7.9	10.0	14.4	8.4	10.5	－－－	－－－	－－	12.1	10.2	10.9
25	14.6	7.5	9.9	14.2	8.3	10.3	－－－	－－－	－－－	11.7	10.1	10.8
26	14.4	7.1	9.6	13.9	8.3	10.0	－－－	－－－	－－－	12.0	10.4	11.0
27	14.9	7.1	9.8	12.3	8.4	9.9	－－－	－－－	－－－	11.9	10.4	11.0
28	15.4	7.3	10.1	14.0	8.9	10.4	－－－	－－－	－－－	11.7	9.9	10.7
29	15.8	7.2	10.3	14.2	8.4	10.2	－－－	－－－	－－－	11.7	9.9	10.6
30	15.8	7.2	10.3	13.7	8.1	9.8	－－－	－	－－－	11.9	9.9	10.8
31	15.8	7.3	10.0	－	－	－－	－－－	－－	－－－	11.8	10.1	10.8
MONTH	16.9	5.6	9.1	－－－	－－－	－－－	－－－	－－	－－	－	－－－	－－－

$\begin{aligned} & \text { 各 } \\ & \text { 呆 } \\ & \text { 缶 } \end{aligned}$	$\omega \omega N N N$ トロ $0 \times$ ンの	NNNNN $ज 』 \omega N \mapsto$	$\begin{aligned} & \text { Nமゅゅ } \stackrel{\rightharpoonup}{\sigma} \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\stackrel{\rightharpoonup}{\circ} 6 \infty \text { لの }$	$G \triangleright \omega N \triangleright$
\mid	｜ $\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\omega} \\ & \text { i } \\ & \text { ¢ }\end{aligned}$	它吨	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \stackrel{y}{N} \\ & \text { wóncu } \end{aligned}$		
\|	（ 1		$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$		$\infty \infty \infty \infty$ $\omega \triangleright$ のンo	6官 6 ю $\stackrel{\rightharpoonup}{\circ}$ $\dot{\omega} \dot{i} \dot{i}$
i			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\stackrel{\rightharpoonup}{\circ}$ ๑ σ －जの்்	
$\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		＋$\stackrel{\text { N゙ }}{\sim}$	ЬトЬЬ㠯 －••• जト○	बं० oं o	$\stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\omega}$ $\dot{\omega} \dot{\square} \dot{\square}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{\rightharpoonup}{\bullet} \dot{\omega} \dot{\bullet} \end{aligned}$
$\begin{aligned} & \text { o } \\ & \text { i } \end{aligned}$	のののののの ivi $\omega \dot{\omega}$	$\begin{aligned} & \infty \text { のののの } \\ & \dot{\bullet} \dot{\infty} \text { の } \end{aligned}$		$\begin{aligned} & \checkmark \infty ン v a \\ & \text { in i } \dot{\circ} \circ \end{aligned}$	$\checkmark \checkmark \infty \quad \infty$ へのஸ்i i	$\begin{aligned} & \infty \propto \infty \text { ю } \\ & \dot{\omega} \dot{\square} \dot{\omega} \dot{\omega} \end{aligned}$
$\begin{aligned} & 6 \\ & \text { ir } \end{aligned}$						っ・っちゃ ì ivं
	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$
1	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$
i	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$
I	$\begin{array}{llll:l} \infty & : & : & 1 \\ o & 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$
1		$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$
\mid	∞ 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$

06711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO--Continued

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			UGUST			TEMB	
1	8.7	7.4	8.0	9.7	6.3	7.6	10.5	5.3	7.4	8.1	5.1	6.3
2	8.8	7.2	8.0	8.8	5.9	7.7	10.8	5.1	7.2	8.1	4.9	6.3
3	8.8	7.1	7.8	8.6	5.7	6.9	10.6	5.3	7.4	8.3	4.7	6.1
4	---	---	---	8.9	5.5	6.7	11.2	5.1	7.7	10.2	4.6	6.8
5	9.2	7.2	8.1	8.3	5.5	6.6	12.3	5.0	7.9	10.9	5.4	7.4
6	10.0	7.2	8.3	8.3	5.7	6.7	14.7	4.9	8.5	---	---	---
7	10.2	7.1	8.3	8.7	5.2	6.9	14.6	5.5	8.6	---	---	---
8	10.6	6.8	8.2	7.8	5.2	6.7	---	---	---	---	---	---
9	11.0	6.7	8.2	7.4	6.3	7.0	---	---	---	---	---	---
10	10.9	6.7	8.4	9.1	5.5	7.0	---	---	---	---	--	---
11	11.6	6.6	8.5	8.6	5.8	6.9	---	---	---	---	---	---
12	11.3	6.5	8.0	7.8	5.9	6.9	---	---	---	---	---	---
13	9.9	6.8	7.9	7.5	6.1	6.9	---	---	---	---	---	---
14	9.8	6.4	7.9	7.6	6.2	7.0	---	---	---	---	---	---
15	8.2	6.2	7.0	7.2	6.0	6.8	---	---	---	---	---	---
16	9.4	7.0	8.0	7.1	5.7	6.5	---	---	---	---	---	---
17	9.2	7.0	8.0	7.9	5.5	6.5	---	---	---	---	---	---
18	9.2	6.8	7.9	7.7	5.4	6.2	---	---	---	---	---	---
19	9.3	6.9	7.9	8.1	5.0	6.4	9.6	5.8	---	---	---	---
20	9.4	6.3	7.7	8.2	5.0	6.5	8.9	5.3	6.5	8.3	5.6	7.0
21	9.7	6.3	7.4	8.1	5.7	6.5	7.6	5.1	6.2	8.0	5.2	6.4
22	9.6	6.2	7.1	8.5	5.8	6.9	7.9	5.1	6.4	8.7	5.0	6.2
23	9.9	6.2	7.5	8.7	6.4	7.7	7.8	6.4	7.0	9.4	4.8	6.4
24	8.2	6.4	7.2	9.7	6.4	7.5	8.5	6.5	7.4	10.0	5.2	6.8
25	8.2	6.5	7.3	9.1	6.6	7.8	8.4	5.3	7.1	10.3	5.0	6.8
26	8.5	6.1	7.2	8.7	6.8	7.8	-	--	--	9.9	5.6	7.4
27	8.6	6.2	7.1	8.6	6.1	7.5	---	-	---	10.0	6.3	7.6
28	8.7	6.4	7.2	8.3	6.4	7.4	8.0	5.8	6.9	9.5	5.6	7.1
29	8.8	6.3	7.5	9.1	6.4	7.2	7.0	5.6	6.2	9.4	5.2	6.8
30	9.1	6.3	7.5	9.5	5.9	7.5	8.2	6.1	6.9	9.6	5.0	6.5
31	---	--	---	9.5	5.7	7.4	8.5	5.4	6.9	--	---	---
MONTH	---	---	---	9.7	5.0	7.0	---	---	--	---	---	-

06712000 CHERRY CREEK NEAR FRANKTOWN, CO

LOCATION.--Lat $39^{\circ} 21^{\prime} 21^{\prime \prime}$, long $104^{\circ} 45^{\prime} 46^{\prime \prime}$, in NE ${ }^{1 / 4}$ sec. 15 , T. 8 S., R. 66 W., Douglas County, Hydrologic Unit 10190003, on right bank 1.5 mi upstream from Russellville Gulch, and 2.5 mi south of Franktown.
DRAINAGE AREA.-- $169 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--November 1939 to current year.
REVISED RECORDS.--WSP 1730: Drainage area. WDR CO-87-1: 1983-85 (P).
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $6,170 \mathrm{ft}$ above sea level, from topographic map. See WSP 1730 for history of changes prior to Oct. 1, 1953.
REMARKS.--Records poor. Many small diversions upstream from station for irrigation of about 800 acres. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 3, 1933, caused by Castlewood Dam failure, exceeded all other observed floods at this location.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.7	7.0	e7.2	6.6	4.0	9.8	9.0	5.0	e5.4	2.9	2.2	1.8
2	4.1	6.8	e7.2	6.3	3.8	5.4	9.4	4.9	e5.6	2.6	2.2	1.7
3	3.9	6.1	e7.2	6.6	3.8	5.3	9.7	4.3	e3. 5	2.5	2.3	1.6
4	4.0	6.1	e7.2	6.5	4.4	6.8	9.6	4.1	3.4	2.5	2.3	1.6
5	4.2	6.2	e7.2	6.4	4.4	7.2	9.0	3.8	3.1	2.4	2.3	1.6
6	4.1	6.4	e7.1	e6.6	4.4	6.6	9.0	3.5	3.0	2.6	2.2	1.6
7	4.1	7.3	e7.1	6.9	4.6	6.1	8.8	3.3	2.8	3.1	2.4	1.7
8	4.1	6.8	6.9	7.0	5.2	6.0	8.3	e4.0	2.7	2.6	2.5	1.7
9	4.2	8.2	e7.0	6.6	6.1	7.2	7.8	e8.0	2.5	e19	2.4	1.6
10	4.1	12	7.0	e6. 5	6.5	8.6	8.7	e6.0	2.4	e39	2.4	1.7
11	4.1	7.0	e7.1	e6.4	6.4	8.8	8.1	e4.5	2.2	5.4	2.2	1.9
12	4.0	4.4	e7.2	e6.4	6.4	9.1	7.9	e4.0	2.4	3.7	2.1	3.0
13	3.8	6.3	e7.2	e6.5	6.5	9.4	8.0	e3.0	2.7	3.4	2.2	2.3
14	3.8	6.6	e7.2	6.3	7.2	9.9	5.3	e2.2	3.1	3.6	3.3	2.2
15	3.9	7.2	e7.2	6.8	7.1	11	5.7	e2. 4	5.8	3.6	3.2	2.4
16	4.0	7.6	e7.1	7.2	7.5	14	16	e2.7	9.9	3.4	3.3	2.3
17	4.0	7.6	e7.1	7.1	8.0	12	16	e2. 3	15	2.9	3.0	3.4
18	4.0	7.6	7.1	e7.0	8.3	12	12	e2.2	7.9	2.8	2.6	6.4
19	4.1	7.6	e7.2	e6. 8	8.7	10	10	e2.2	5.1	2.7	2.5	5.6
20	4.0	7.7	e7.3	6.5	8.9	10	9.4	e2. 2	4.1	2.4	2.4	3.7
21	4.1	7.8	7.2	5.5	10	11	9.0	e2. 2	e20	2.3	2.3	2.8
22	4.5	7.7	7.1	5.2	11	14	8.5	e2.1	e8.0	2.3	2.4	2.4
23	5.5	7.8	7.1	5.2	9.1	14	5.2	e2.4	5.2	2.3	e250	2.4
24	5.4	7.7	e6. 8	5.3	7.6	14	6.8	e2.7	4.6	2.3	e42	2.4
25	5.4	7.5	6.5	5.2	9.3	11	5.6	e3.0	3.9	2.4	9.2	2.5
26	6.5	7.9	5.9	5.6	8.8	10	5.3	e15	3.5	2.4	5.1	2.6
27	7.5	8.2	5.5	4.6	e5.0	14	4.9	e20	3.5	2.3	3.3	4.0
28	7.6	7.4	5.3	4.5	e4.9	13	4.2	e10	3.4	2.3	2.6	4.4
29	7.5	7.1	5.2	4.3	e8.0	12	4.8	e8.8	3.2	2.4	2.3	3.6
30	7.7	e7.3	5.6	3.8	---	12	5.4	e6.0	2.9	2.4	2.1	3.3
31	6.8	.	6.3	3.9	-	11	---	e5.0	---	2.3	2.0	---
TOTAL	149.7	218.9	211.3	186.1	195.9	311.2	247.4	151.8	150.8	138.8	373.3	80.2
MEAN	4.83	7.30	6.82	6.00	6.76	10.0	8.25	4.90	5.03	4.48	12.0	2.67
MAX	7.7	12	7.3	7.2	11	14	16	20	20	39	250	6.4
MIN	3.8	4.4	5.2	3.8	3.8	5.3	4.2	2.1	2.2	2.3	2.0	1.6
AC-FT	297	434	419	369	389	617	491	301	299	275	740	159

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 - 1996, BY WATER YEAR (WY)

e-Estimated.
a-Also occurred Aug 24, and 29, 1995.
b-Also occurred Sep 4-6, and 9 .
c-Also occurred Sep 30 and Oct 1, 1950.
d-Site and datum then in use, by float measurement.
f-Maximum gage height, 7.02 ft , Aug 23, 1996 , current site and datum.

393109104464500 CHERRY CREEK NEAR PARKER, CO

LOCATION.--Lat $39^{\circ} 31^{\prime} 09^{\prime \prime}$, long $104^{\circ} 46^{\prime} 45^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NW}^{1 / 4} \mathrm{NE}^{1 / 4} / 4$ sec. 21 , T. 6 S., R. 67 W., Douglas County, Hydrologic Unit 10190003, on right bank 200 ft upstream from Main Street, $1,100 \mathrm{ft}$ downstream from mouth of Sulphur Gulch, and 0.8 mi west of City of Parker.
DRAINAGE AREA.--Not determined.
PERIOD OF RECORD.--October 1991 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,805 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records poor. Several diversions upstream from station for irrigation. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

						DAIL	MEAN VAL					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.7	9.8	8.2	12	14	5.9	9.4	7.6	7.4	3.2	1.7	1.7
2	1.8	9.7	8.4	10	13	6.1	8.7	7.4	5.0	2.9	2.8	1.7
3	1.6	8.2	8.9	12	13	5.7	11	e7.0	3.9	3.0	1.7	1.8
4	2.6	9.5	8.7	11	12	5.7	12	e5.6	3.4	3.1	1.4	1.9
5	2.5	8.1	9.7	8.2	15	5.3	13	e4.8	3.2	3.2	1.3	1.9
6	2.5	8.0	9.1	8.1	18	6.8	11	e4.4	3.0	3.1	1.5	1.9
7	2.4	8.1	9.5	8.8	16	6.8	11	e5.0	2.9	3.2	1.7	2.0
8	2.6	8.4	8.6	9.6	7.5	7.6	9.2	e5.6	2.8	3.3	1.3	1.9
9	2.4	8.2	6.2	8.9	8.1	7.8	8.6	e7.0	2.8	3.3	1.2	2.0
10	1.9	12	9.0	10	8.3	7.7	8.9	e6.0	2.9	e20	1.2	2.0
11	1.8	13	9.7	9.7	8.8	8.8	9.9	e4.5	3.1	e7.0	1.3	1.9
12	1.4	7.9	8.3	9.2	9.2	9.8	8.7	e3.5	3.1	e4.0	1.3	2.2
13	2.0	7.5	8.7	9.6	10	11	11	e3.0	3.0	e3.0	1.3	1.7
14	1.8	8.8	9.3	3.1	12	14	13	e2.2	3.1	e3.0	1.4	1.6
15	1.6	8.7	6.8	3.3	14	13	10	e2.3	7.0	e3.1	1.4	1.4
16	1.5	8.7	7.1	3.8	12	16	12	e2. 5	5.6	3.3	1.4	1.6
17	1.7	8.7	5.9	3.9	12	15	20	2.2	7.6	3.3	1.4	1.5
18	1.7	9.8	5.6	3.0	13	13	17	2.2	8.0	2.9	1.4	1.8
19	1.9	9.6	3.9	3.0	12	11	14	2.1	4.6	3.1	1.3	3.7
20	1.9	8.1	4.1	3.7	11	11	14	2.1	3.5	3.3	1.3	1.8
21	2.7	8.8	4.0	3.9	11	11	12	1.9	3.8	3.4	e1.3	1.7
22	4.0	8.4	5.1	4.1	11	12	11	1.8	6.3	3.4	e1.5	1.5
23	6.9	8.3	9.4	11	11	14	9.6	2.0	4.8	3.2	e80	1.5
24	7.9	8.2	12	12	9.3	16	8.1	2.1	3.4	2.8	7.6	1.7
25	7.8	8.5	14	14	8.0	14	7.8	2.3	3.2	2.1	2.1	1.9
26	7.3	9.0	13	12	9.5	12	7.6	17	3.1	2.0	1.7	1.5
27	7.8	9.3	12	11	6.3	13	7.6	20	2.9	2.0	1.8	2.0
28	9.6	8.4	13	14	5.3	13	8.3	12	3.0	2.0	1.7	1.5
29	9.8	8.4	13	14	4.9	12	8.8	11	3.2	1.8	1.7	1.9
30	9.5	7.4	13	14	---	11	7.8	10	3.2	1.7	1.7	1.7
31	9.8	---	14	13	---	11	---	8.3	---	1.7	1.6	--
TOTAL	122.4	265.5	278.2	273.9	315.2	327.0	321.0	175.4	122.8	110.4	132.0	54.9
MEAN	3.95	8.85	8.97	8.84	10.9	10.5	10.7	5.66	4.09	3.56	4.26	1.83
MAX	9.8	13	14	14	18	16	20	20	8.0	20	80	3.7
MIN	1.4	7.4	3.9	3.0	4.9	5.3	7.6	1.8	2.8	1.7	1.2	1.4
AC-FT	243	527	552	543	625	649	637	348	244	219	262	109

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1996, BY WATER YEAR (WY)

MEAN	2.21	3.70	4.31	5.48	10.2	17.3	14.7	10.7	11.3	4.91	2.48	1.33
MAX	3.95	8.85	8.97	8.84	14.1	42.8	21.7	26.8	33.5	14.0	4.26	1.83
(WY)	1996	1996	1996	1996	1993	1992	1993	1995	1995	1995	1996	1996
MIN	1.26	.79	.76	1.51	1.74	3.82	9.93	5.23	1.87	1.04	.58	.73
(WY)	1992	1995	1995	1995	1995	1995	1994	1992	1994	1994	1994	1994

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1992 - 1996
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

3605.01			
9.88			
229		Jun 29	
.66	Sep	4	
.72	Aug	30	
7150			
18			
5.2			
1.1			

2498.7	
6.83	
e^{80}	
$a_{1} .2$	Aug
1.3	23
1.3	Aug
$C_{\text {Not }}$	9
$C_{\text {Not }}$	determined
4960	
13	
6.8	
1.7	

7.36			
8.92			1992
5.36			1994
229	Jun 29	1995	
b .43	Aug 24	1994	
.45	Aug 21	1994	
$\mathrm{~d}_{457}$	Jun 29	1995	
7.17	Jun 29	1995	
5330			
15			
3.8			
1.0			

e-Estimated.
a-Also occurred Aug 10.
b-Also occurred Aug 25, 1994.
c-Probably occurred on Aug 23.
d-From rating curve extended above $140 \mathrm{ft}^{3} / \mathrm{s}$.

06712990 CHERRY CREEK LAKE NEAR DENVER, CO

LOCATION.--Lat $39^{\circ} 39^{\prime} 03^{\prime \prime}$, long $104^{\circ} 51^{\prime} 13$ ", in $\mathrm{NW}^{1} / 4 \mathrm{NE}^{1 / 4} \mathrm{sec} .2$, T. 5 S., R. 67 W., Arapahoe County, Hydrologic Unit 10190003, 0.2 mi from right end of dam, 0.8 mi southwest from intersection of Interstate Highway 225 and Parker Road, 1.6 mi northwest of intersection of Parker and Airline Roads, and 11.5 mi upstream from mouth.

DRAINAGE AREA.--385 mi ${ }^{2}$.
PERIOD OF RECORD.--Contents, October 1960 to current year. Water-quality data available, October 1976 to September 1981.
GAGE.--Water-stage recorder. Datum of gage is $5,598.00 \mathrm{ft}$ above sea level (levels by U.S. Army, Corps of Engineers); gage readings have been reduced to elevations above sea level.

REMARKS.--Reservoir is formed by earthfill dam. Dam completed in June 1950; storage began May 15, 1957. Capacity, 92,820 acre-ft, at elevation $5,598.00 \mathrm{ft}$, crest of spillway. No dead storage. Figures given represent total contents. Reservoir is for flood control and recreation.

COOPERATION.--Records provided by U.S. Army, Corps of Engineers.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 31,120 acre-ft, June 3, 1973, elevation, 5,565.82 ft; minimum, 9,980 acre-ft, Nov. 23-24, 1978, elevation, 5,545.90 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 13,600 acre-ft, May 29, elevation, 5,550.93 ft; minimum, 12,430 acre-ft, Sept. 10-11, elevation, 5,549.55 ft.

MONTHEND ELEVATION AND CONTENTS AT 0800, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06713000 CHERRY CREEK BELOW CHERRY CREEK LAKE, CO

LOCATION.--Lat $39^{\circ} 39^{\prime} 10^{\prime \prime}$, long $104^{\circ} 51^{\prime} 40^{\prime \prime}$, in SW ${ }^{1} / 4 \mathrm{SW}^{1} / 4$ sec. 35 , T. 4 S., R. 67 W., Denver County, Hydrologic Unit 10190003, on right bank $2,000 \mathrm{ft}$ downstream from Cherry Creek Dam, 2.2 mi southeast of Sullivan, 9 mi southeast of Civic Center in Denver, and 11 mi upstream from mouth.

DRAINAGE AREA.-- $385 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--June 1950 to current year.

REVISED RECORDS.--WSP 1730: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is $5,490.51 \mathrm{ft}$ above sea level, (Corps of Engineers bench mark).
REMARKS.--Records fair except for estimated daily discharges, and for discharges less than $1 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Flow regulated by Cherry Creek Lake (see elsewhere in this report). Diversions upstream from station for irrigation of about 1,800 acres. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.
EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum flood known, $34,000 \mathrm{ft}^{3} / \mathrm{s}$, Aug. 3, 1933, by slope-area measurement near present site (Castlewood Dam failure).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

e-Estimated.
a-Also occurred May 21-22.
b -No flow many days.
c-No flow most of time since May 1957.
d-Maximum gage height, $6.27 \mathrm{ft}, \mathrm{May} 11,1995$.

06713300 CHERRY CREEK AT GLENDALE, CO

LOCATION.--Lat $39^{\circ} 42^{\prime} 22^{\prime \prime}$, long $104^{\circ} 56^{\prime} 13^{\prime \prime}$, in $\mathrm{SW}^{1 / 1} 4 \mathrm{NW}^{1 / 4}$ sec. 18 , T. 4 S., R. 67 W., Denver County, Hydrologic
Unit 10190003, on left bank 900 ft upstream from Colorado Boulevard, on Cherry Creek South Drive and Ash Court, in the City of Glendale, and 5 miles downstream from Cherry Creek Reservoir.

DRAINAGE AREA.--404 mi ${ }^{2}$.

PERIOD OF RECORD.--January 1985 to current year.
GAGE.--Water-stage recorder with crest-stage gage. Elevation of gage is $5,320 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records poor. Flow regulated by Cherry Creek Lake (see elsewhere in this report). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.
REVISIONS.--The maximum discharge for the water year 1995 has been revised to $643 \mathrm{ft}^{3} / \mathrm{s}$, May 17, 1995, gage height, 6.76 ft .
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15	e13	8.7	13	10	21	22	14	32	30	12	e20
2	13	12	9.8	14	10	22	22	14	33	29	10	e20
3	12	12	10	e14	10	19	27	14	33	35	8.7	e20
4	19	12	11	15	11	20	28	14	37	38	8.4	e20
5	12	12	12	14	11	19	22	14	44	37	7.8	e30
6	11	12	12	14	11	18	21	12	44	38	7.6	e40
7	11	11	12	14	9.0	18	21	11	45	39	7.2	e28
8	11	10	12	20	8.1	19	21	e38	45	34	8.2	e24
9	10	9.3	12	17	7.6	19	21	e33	46	50	7.6	e18
10	9.6	12	12	16	6.9	19	22	34	48	65	7.4	e18
11	10	9.1	13	15	6.5	20	21	15	48	31	7.2	e35
12	12	9.1	13	14	6.2	20	28	11	48	29	6.9	e25
13	11	8.9	13	13	6.2	27	22	10	48	115	10	e24
14	9.9	8.5	13	12	6.5	56	20	10	31	30	9.3	e24
15	9.6	8.6	14	12	6.5	31	20	12	121	21	10	e23
16	9.1	9.1	14	12	8.5	21	20	13	69	19	11	e21
17	8.5	9.1	13	12	9.6	21	20	12	45	19	9.5	e22
18	8.2	8.4	13	12	9.4	19	18	12	41	23	9.2	e25
19	7.6	7.9	13	14	9.6	21	15	12	27	34	9.8	e60
20	8.1	7.6	14	12	10	23	23	12	25	33	9.1	e45
21	7.3	7.7	14	12	12	23	19	19	56	14	9.5	e35
22	9.6	8.1	13	12	11	23	18	14	41	14	37	e30
23	e20	7.8	12	12	10	28	17	39	32	11	91	e25
24	e14	8.1	12	12	15	26	16	25	30	11	29	e23
25	e11	8.2	12	12	15	25	16	89	33	13	e20	e25
26	e11	8.2	13	11	15	25	16	194	28	9.7	e17	e30
27	e10	e8.8	12	12	16	25	15	59	27	8.8	e19	e45
28	e10	9.0	12	12	16	24	14	29	30	9.8	e18	e30
29	e11	9.0	12	11	17	23	14	30	31	9.7	e21	e27
30	e11	8.7	13	11	---	23	14	26	30	9.0	e21	e22
31	e12	-	12	11	--	23	---	27	---	9.0	e22	--
TOTAL	344.5	285.2	381.5	407	300.6	721	593	868	1248	868.0	481.4	834
MEAN	11.1	9.51	12.3	13.1	10.4	23.3	19.8	28.0	41.6	28.0	15.5	27.8
MAX	20	13	14	20	17	56	28	194	121	115	91	60
MIN	7.3	7.6	8.7	11	6.2	18	14	10	25	8.8	6.9	18
AC-FT	683	566	757	807	596	1430	1180	1720	2480	1720	955	1650

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 1996, BY WATER YEAR (WY)

[^15]
06713500 CHERRY CREEK AT DENVER, CO

LOCATION.--Lat $39^{\circ} 44^{\prime} 47^{\prime \prime}$, long $105^{\circ} 00^{\prime} 00^{\prime \prime}$, in $\mathrm{NE}^{1 / 4}$ sec. 33 , T. 3 S., R. 68 W., Denver County, Hydrologic Unit 10190003, on right bank 300 ft upstream from Market Street Bridge in Denver, and 0.7 mi upstream from mouth.
DRAINAGE AREA.--409 mi^{2}.
PERIOD OF RECORD.--August 1942 to September 1969, February 1980 to September 1983, and annual maximums 1984, 1985. April 1986 to current year. Water-quality data available April 1993 to July 1995.
REVISED RECORDS.--WSP 1710: Drainage area. WDR CO-82-1: 1982 (M).
GAGE.--Water-stage recorder. Elevation of gage is $5,180 \mathrm{ft}$ above sea level, from topographic map. See WSP 1730 for history of changes prior to July 16, 1951. Prior to March 1, 1995, at site 0.2 mi downstream, on downstream side of Wazee Street Bridge, at different datum.
REMARKS.--Records fair except for estimated daily discharges which are poor. Several diversions upstream from station for irrigation of about 1,900 acres. Floodflow regulated by Cherry Creek Reservoir 11 mi upstream, capacity, 95,960 acre-ft. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 26, 1885, reached a discharge of $20,000 \mathrm{ft}^{3} / \mathrm{s}$, by float measurement. Flood of May 19 and 20, 1864, reached a somewhat higher stage. Flood of Aug. 3, 1933, reached a discharge of about $15,000 \mathrm{ft}^{3} / \mathrm{s}$, as determined by rise of South Platte River at Denver.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	33	16	16	19	17	15	23	18	39	23	21	26
2	27	16	17	20	17	15	23	19	39	20	20	23
3	22	16	18	e20	15	15	23	21	36	25	20	21
4	38	16	19	e21	17	15	26	21	38	26	21	21
5	31	15	19	e21	18	15	40	23	51	29	21	23
6	25	15	20	21	16	15	24	22	51	31	20	49
7	24	15	20	21	14	15	22	19	51	34	22	28
8	21	16	20	32	e13	14	23	18	51	33	23	23
9	19	17	20	31	e12	14	23	51	50	76	21	21
10	18	26	20	24	e12	14	25	48	48	64	20	20
11	19	22	20	22	e11	14	30	21	45	42	20	34
12	22	17	21	21	e10	14	27	17	46	64	21	81
13	23	17	21	20	e9.0	26	38	15	63	125	22	33
14	22	17	20	20	e8.7	97	31	15	27	46	24	30
15	22	16	20	20	7.3	38	25	17	114	37	22	26
16	22	17	20	19	9.1	28	24	18	77	26	24	23
17	21	17	21	19	11	20	25	17	60	24	20	40
18	22	17	21	19	11	19	25	18	48	26	19	111
19	21	16	21	21	11	18	25	19	32	49	21	193
20	23	16	21	20	11	21	20	20	27	40	21	76
21	24	15	21	19	16	23	28	27	69	27	20	57
22	41	15	21	18	10	23	28	21	36	26	79	38
23	38	15	21	18	9.4	23	24	52	33	21	90	30
24	24	15	21	18	14	33	22	30	30	20	30	28
25	19	15	20	18	16	26	20	114	27	23	21	27
26	18	15	20	18	16	24	21	280	23	19	22	47
27	16	e15	20	17	16	24	23	82	22	19	20	66
28	15	e16	20	18	16	24	23	57	25	24	24	31
29	15	17	20	17	16	23	19	57	24	27	25	27
30	15	18	19	17	--	23	18	39	25	25	26	26
31	15	---	19	17	---	23	---	36	---	19	25	---
TOTAL	715	496	617	626	379.5	711	748	1232	1307	1090	805	1279
MEAN	23.1	16.5	19.9	20.2	13.1	22.9	24.9	39.7	43.6	35.2	26.0	42.6
MAX	41	26	21	32	18	97	40	280	114	125	90	193
MIN	15	15	16	17	7.3	14	18	15	22	19	19	20
AC-FT	1420	984	1220	1240	753	1410	1480	2440	2590	2160	1600	2540

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1942 - 1996, BY WATER YEAR (WY)

e-Estimated.
a-Also occurred Apr 3.
b-Also occurred Jun 17-18, 1948.
c-Site and datum then in use.
d-Maximum gage height, 11.91
d-Maximum gage height, 11.91 ft , Jun 17, 1965, backwater from South Platte River.

06714000 SOUTH PLATTE RIVER AT DENVER, CO

LOCATION.--Lat $39^{\circ} 45^{\prime} 35^{\prime \prime}$, long $105^{\circ} 00^{\prime} 10^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{SE}^{1 / 4}$ sec. 28 , T. 3 S., R. 68 W., Denver County, Hydrologic Unit 10190003, on right bank 90 ft upstream from Nineteenth Street Bridge in Denver and 0.4 mi downstream from Cherry Creek.
DRAINAGE AREA.--3,861 mi ${ }^{2}$.
PERIOD OF RECORD.--May to October 1889, June to October 1890, July 1895 to current year. Monthly discharge only for some periods, published in WSP 1310. Statistical summary computed for 1976 to current year.
REVISED RECORDS.--WSP 1310: 1934(M). WSP 1730: 1957(M). WDR CO-86-1: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $5,157.64 \mathrm{ft}$ above sea level, adjustment of 1960 . Prior to Aug. 12, 1909, nonrecording gages, and Aug. 12, 1909, to Aug. 28, 1931, water-stage recorder, at several sites within 0.5 mi of present site at various datums. Aug. 29, 1931, to June 28, 1965, water-stage recorder at site 70 ft downstream at datum 3.66 ft , lower. June 29, 1965, to Mar. 18, 1966, water-stage recorder at site 70 ft downstream at present datum.
REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 79,000 acres and municipal use, and return flow from irrigated areas.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^16]
06714215 SOUTH PLATTE RIVER AT 64TH AVENUE AT COMMERCE CITY, CO

LOCATION.--Lat $39^{\circ} 48^{\prime} 44^{\prime \prime}$, long $104^{\circ} 57^{\prime} 28^{\prime \prime}$, in NW ${ }^{1 / 4} \mathrm{NW}^{1 / 4}$ sec.12, T. 3 S., R. 68 W., Adams County, Hydrologic Unit 10190003, on left bank (revised) 300 ft southeast of intersection of York Street and East 64th Avenue and 1,900 ft upstream from mouth of Sand Creek at northeast corner of Metro Denver Sewage Disposal plant at Commerce City.
DRAINAGE AREA.--3,884 mi ${ }^{2}$.
PERIOD OF RECORD.--January 1982 to current year.
REVISED RECORDS.--WDR CO-86-1: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,105 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated daily discharges. Records fair. Natural flow of stream affected by transmountain diversions, storage and flood-control reservoirs, power developments, diversions for irrigation and municipal use, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental WaterQuality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	75	101	84	11	101	12	5.6	121	20	18	81	166
2	74	31	14	12	101	13	5.6	107	20	19	77	128
3	61	28	15	11	98	14	5.9	87	18	61	87	106
4	92	24	12	10	104	14	15	81	60	100	76	96
5	30	20	16	8.8	114	9.6	116	85	18	102	70	94
6	21	16	18	9.8	49	9.0	30	88	17	144	69	151
7	30	12	21	12	12	12	10	144	18	132	65	104
8	29	8.9	11	19	13	14	8.0	276	18	126	71	73
9	20	26	12	27	17	12	7.3	284	15	222	51	65
10	20	27	16	26	17	11	17	378	15	124	58	33
11	22	23	18	25	16	8.6	27	207	15	22	59	100
12	23	16	18	32	14	12	105	182	17	78	60	443
13	20	9.9	16	30	13	21	216	188	201	487	61	32
14	20	6.3	16	37	9.6	420	173	172	103	129	76	42
15	17	13	15	37	20	41	73	122	291	24	70	57
16	16	8.2	12	41	15	12	21	114	66	68	99	11
17	14	6.3	10	35	12	9.6	17	69	46	80	80	26
18	14	7.0	11	55	8.1	15	8.8	24	19	80	74	175
19	14	8.7	11	119	7.3	15	12	12	17	77	77	890
20	12	9.2	9.5	123	8.6	7.6	7.9	15	15	213	44	87
21	11	8.0	8.6	119	8.6	7.9	6.9	14	178	218	40	12
22	126	8.3	9.4	113	10	11	6.8	15	37	253	415	8.1
23	222	9.4	11	107	8.0	10	5.6	53	40	227	521	6.3
24	60	9.3	9.1	107	8.7	49	21	59	123	156	283	6.5
25	47	8.6	17	105	8.3	27	55	386	98	177	265	6.8
26	45	7.0	16	103	10	12	143	1330	23	99	182	13
27	47	8.1	6.9	107	11	13	222	255	21	98	376	99
28	44	58	8.3	112	11	13	268	34	38	128	222	14
29	36	120	8.3	111	12	11	258	31	22	171	127	10
30	38	136	10	105	---	9.2	178	45	20	180	176	7.9
31	48	---	11	100	---	7.4	---	21	-	157	175	---
TOTAL	1348	774.2	471.1	1869.6	837.2	852.9	2045.4	4999	1609	4170	4187	3062.6
MEAN	43.5	25.8	15.2	60.3	28.9	27.5	68.2	161	53.6	135	135	102
MAX	222	136	84	123	114	420	268	1330	291	487	521	890
MIN	11	6.3	6.9	8.8	7.3	7.4	5.6	12	15	18	40	6.3
AC-FT	2670	1540	934	3710	1660	1690	4060	9920	3190	8270	8300	6070

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1982 - 1996, BY WATER YEAR (WY)

394839104570300 SAND CREEK AT MOUTH NEAR COMMERCE CITY, CO

LOCATION.--Lat $39^{\circ} 48^{\prime} 39^{\prime \prime}$, long $104^{\circ} 57^{\prime} 03^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NW}^{1 / 1} / 4 \mathrm{NW}^{1 / 1} / 4$ sec. 12 , T. 3 S., R. 68 W., Adams County, Hydrologic Unit 101900033, on left bank 0.1 mi downstream from confluence of ditch and Sand Creek in northeast corner of Metro Sewer Plant.
DRAINAGE AREA.-- $191 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--January 1992 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,120 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	140	31	50	17	12	16	18	17	96	5.5	132	42
2	117	26	53	15	11	15	16	16	63	6.0	150	33
3	84	25	52	19	10	15	17	20	57	6.1	133	44
4	87	26	52	16	13	15	17	25	54	4.0	126	47
5	40	26	49	13	21	15	41	26	36	11	121	29
6	31	25	49	14	22	13	28	25	31	40	128	73
7	31	25	51	15	19	13	22	33	25	43	132	37
8	25	25	50	32	18	14	17	36	30	34	118	17
9	23	24	43	49	17	16	16	45	18	85	128	15
10	20	35	51	24	17	15	15	80	17	215	141	9.0
11	22	35	50	20	16	16	19	43	13	90	134	6.9
12	17	30	49	19	19	16	21	32	12	66	101	93
13	18	29	47	18	18	19	34	28	33	110	64	58
14	20	29	47	19	17	118	37	26	18	60	66	56
15	21	29	29	18	16	63	27	23	208	47	97	42
16	21	32	25	17	16	39	24	23	72	52	87	14
17	21	30	22	14	15	27	24	38	33	153	77	20
18	18	30	21	12	14	27	21	31	9.8	152	72	69
19	19	28	20	16	15	27	18	12	10	149	72	385
20	17	27	17	18	15	25	17	9.3	9.3	161	93	69
21	17	27	17	14	27	23	17	20	61	123	111	32
22	25	26	18	11	18	21	34	34	30	123	179	25
23	65	40	16	12	16	19	58	52	15	128	166	22
24	104	45	16	14	16	35	61	40	10	135	61	16
25	95	46	17	11	14	27	45	100	11	151	49	15
26	91	46	17	11	14	24	21	e500	10	142	39	14
27	85	59	17	12	12	23	16	303	6.0	131	21	45
28	84	50	16	14	12	23	17	147	7.2	125	42	52
29	85	53	16	13	14	21	19	143	15	125	76	71
30	86	52	16	10	---	20	19	104	6.8	125	77	72
31	75	--	17	11	--	18	---	95	--	134	63	---
TOTAL	1604	1011	1010	518	464	778	756	2126.3	1017.1	2931.6	3056	1522.9
MEAN	51.7	33.7	32.6	16.7	16.0	25.1	25.2	68.6	33.9	94.6	98.6	50.8
MAX	140	59	53	49	27	118	61	500	208	215	179	385
MIN	17	24	16	10	10	13	15	9.3	6.0	4.0	21	6.9
AC-FT	3180	2010	2000	1030	920	1540	1500	4220	2020	5810	6060	3020

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1996, BY WATER YEAR (WY)

MEAN	31.5	23.2	19.7	14.9	17.4	29.4	37.2	81.6	73.7	101	88.7	53.0
MAX	51.7	33.7	32.6	16.7	21.7	71.8	56.0	124	137	172	124	129
(WY)	1996	1996	1996	1996	1993	1992	1994	1995	1995	1995	1995	1995
MIN	17.8	16.8	13.3	12.9	14.6	13.6	25.2	46.1	33.9	68.0	53.6	16.9
(WY)	1993	1995	1995	1995	1995	1995	1996	1993	1996	1994	1993	1992

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1992 - 1996
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

26934.4			
73.8			
786	May	17	
6.8	Feb	27	
9.4	Mar	19	
53420			
159			
48			
11			

16794.9		
45.9		
$e^{2} 00$	May	26
4.0	Jul	4
7.2	Jun	28
1230	Sep	19
$a_{7} .83$	Sep	19
33310		
118		
26		
13		

47.9			
68.6		1995	
35.5		1993	
940		Aug 24	1992
4.0	Jul	4	1996
7.2	Jun 28	1996	
1550	Aug 11	1994	
b 8.28	Aug 11	1994	
34720			
111			
27			
13			

a-Maximum gage height, 9.15 ft , May 26 , backwater from South Platte River.
a-Maximum gage height, 9.15 ft , May 26 , backwater from South Platte River.
b-Maximum gage height, 10.41 ft , Aug 24 , 1992 , backwater from South Platte River.

394115105525600 CLEAR CREEK NEAR LOVELAND PASS, CO

LOCATION.--Lat $39^{\circ} 41^{\prime} 15^{\prime \prime}$, long $105^{\circ} 52^{\prime} 56$ ", in $\mathrm{NW}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec.22, T. 4 S., R. 76 W., Clear Creek County, Hydrologic Unit 10190004 , on left bank 0.25 mi downstream from Loveland Valley Ski Area lower parking lot and 2.0 mi north of Loveland Pass.

DRAINAGE AREA.--5.86 mi ${ }^{2}$.
PERIOD OF RECORD.--Seasonal record May 1995 to September 1996 (discontinued).
GAGE.--Water-stage recorder. Elevation of gage is $10,615 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion or regulation upstream from gage. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period of seasonal operation, $314 \mathrm{ft}^{3} / \mathrm{s}$, July 8, 1995, gage height, 1.66 ft ; maximum gage height, 1.80 ft , June 6, 1996; minimum daily discharge $1.4 \mathrm{ft} / 3 / \mathrm{s}$, May 1 and 5, 1995 .
EXTREMES FOR CURRENT PERIOD.--Maximum discharge during period of seasonal operation, $104 \mathrm{ft}^{3} / \mathrm{s}, \mathrm{June} 22$, at 0815 , gage height, 1.71 ft ; maximum gage height, 1.80 ft , June 6 at 1815; minimum daily, $1.8 \mathrm{ft}^{3} / \mathrm{s}$, April 19 and 20.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	e2.0	3.1	21	63	14	5.3
2	---	---	---	---	---	---	e2.1	3.2	23	58	13	5.1
3	---	---	---	--	--	---	e2.0	3.6	27	61	13	4.9
4	---	---	---	---	---	---	e1.9	5.1	32	60	13	4.8
5	---	---	--	--	---	---	e2.0	7.8	41	60	12	4.8
6	--	---	---	---	---	---	e2.0	10	47	58	11	5.6
7	---	---	---	---	---	---	e2.1	12	44	54	11	4.9
8	---	---	---	---	---	---	e2.2	14	53	46	10	4.6
9	---	---	---	---	---	---	e2.4	15	63	40	9.6	4.6
10	--	--	---	--	---	---	e2. 6	15	69	41	9.1	4.4
11	---	---	---	---	---	---	e2.3	16	78	37	8.6	4.3
12	---	--	---	---	-	-	e2.1	21	78	34	8.3	5.5
13	---	---	--	--	--	---	e2.0	25	77	33	8.2	5.6
14	---	---	---	---	---	---	e1.9	27	72	30	8.1	4.9
15	---	--	---	--	--	---	e2.0	28	74	28	7.9	5.0
16	--	---	---	--	--	---	e2.1	36	75	26	7.6	4.3
17	---	---	---	---	---	---	2.3	38	74	26	7.4	4.3
18	---	---	---	---	---	---	2.2	38	72	27	7.3	4.5
19	-	-	-	---	---	-	1.8	46	69	25	7.7	4.8
20	---	---	---	--	---	---	1.8	43	72	23	7.4	4.6
21	---	--	---	--	---	---	2.4	36	79	21	6.8	5.1
22	---	---	---	---	---	---	2.4	40	85	19	8.8	5.5
23	---	---	--	---	---	---	3.0	41	85	18	7.6	5.7
24	---	---	---	---	---	---	4.2	37	82	17	6.9	7.3
25	---	---	---	--	---	---	4.4	34	74	16	6.5	5.5
26	-	---	---	---	---	---	4.0	28	70	15	6.6	4.2
27	---	---	---	-	---	---	3.8	24	73	14	6.1	3.7
28	---	---	---	---	---	---	3.2	21	71	13	6.2	5.5
29	-	-	---	---	---	---	3.1	22	66	13	5.9	5.7
30	---	---	---	-	-	---	3.0	22	65	14	5.6	5.5
31	---	---	---	---	---	---	---	21	---	14	5.4	-
TOTAL	--	---	---	--	--	---	75.3	732.8	1911	1004	266.6	150.5
MEAN	--	-	---	---	-	---	2.51	23.6	63.7	32.4	8.60	5.02
MAX	---	---	---	--	---	---	4.4	46	85	63	14	7.3
MIN	--	---	---	--	---	---	1.8	3.1	21	13	5.4	3.7
AC-FT	---	---	---	---	--	---	149	1450	3790	1990	529	299

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 1996, BY WATER YEAR (WY)

MEAN	---	---	---	---	---	---	2.51	13.8	61.4	51.8	14.1	7.38
MAX	---	---	---	---	---	---	2.51	23.6	63.7	71.2	19.6	9.75
(WY)	---	---	---	---	---	---	1996	1996	1996	1995	1995	1995
MIN	---	---	---	---	---	---	2.51	4.05	59.1	32.4	8.60	5.02
(WY)	---	---	---	---	---	---	1996	1995	1995	1996	1996	1996

[^17]
393647105425317 SOUTH CLEAR CREEK ABOVE NAYLOR CREEK NEAR GEORGETOWN, CO

LOCATION.--Lat $39^{\circ} 36^{\prime} 47^{\prime \prime}$, long $105^{\circ} 42^{\prime} 53$ ",T. 5 S., R. 74 W. (unsurveyed), Clear Creek County, Hydrologic Unit 10190004, on left bank 200 ft upstream from Naylor Creek, and 9.5 mi south of Georgetown.
DRAINAGE AREA.--Not determined.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May to September 1996.
GAGE.--Water-stage recorder. Elevation of gage is $10,710 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. No known regulation or diversions.
EXTREMES FOR CURRENT PERIOD.--Maximum daily discharge during period May to September, $19 \mathrm{ft}^{3} / \mathrm{s}$, May 19, 1996, during period of estimated record. Maximum recorded discharge, $16 \mathrm{ft}^{3} / \mathrm{s}$, June 15 , at 1800 , gage height 7.70 ft ; minimum daily, $0.44 \mathrm{ft}^{3} / \mathrm{s}$, Sept. 4 and 5.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

393647105425317 SOUTH CLEAR CREEK ABOVE NAYLOR CREEK NEAR GEORGETOWN, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--June 1996 to September 1996 (seasonal record).
INSTRUMENTATION.--Water-quality monitor since June 1996..
REMARKS.--Water temperature and specific conductance records are good.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 244 microsiemens, Aug. 21; minimum, 42 microsiemens June 5. WATER TEMPERATURE: Maximum, $14.5^{\circ} \mathrm{C}$, July 21 ; minimum, $0.0^{\circ} \mathrm{C}$, on several days in September.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	---	---	---	---	---	---	---	---	---	---	---	---
2	---	---	---	---	---	---	---	---	---	---	--	---
3	---	---	---	---	---	---	---	---	---	---	---	---
4	---	---	---	---	---	---	---	---	---	---	---	---
5	---	---	---	---	---	---	---	---	---	---	---	---
6	---	---	---	---	---	---	---	---	---	---	---	---
7	---	---	---	---	---	---	---	---	---	---	---	---
8	---	---	---	---	---	---	---	---	---	---	---	---
9	---	---	---	---	---	---	---	---	---	---	---	---
10	---	---	---	---	---	---	---	---	---	---	---	---
11	--	--	---	---	--	---	---	---	---	---	---	---
12	---	---	---	---	---	---	---	---	---	---	---	---
13	---	---	---	--	---	---	---	---	---	---	---	---
14	---	---	---	---	---	---	---	---	---	---	---	---
15	---	---	---	---	---	---	---	---	---	---	---	---
16	---	---	---	---	---	---	---	---	---	---	---	---
17	---	---	--	---	---	---	---	---	---	-	---	---
18	---	---	---	---	---	---	---	---	---	---	---	---
19	---	---	---	---	---	---	---	---	---	---	---	---
20	---	---	---	---	---	---	---	---	---	---	---	---
21	---	---	--	-	---	---	---	---	---	---	--	---
22	---	---	---	---	---	---	---	---	---	---	---	---
23	---	---	---	---	---	---	---	---	---	---	---	---
24	---	---	---	---	---	---	---	---	---	---	---	---
25	---	---	---	---	---	---	---	---	---	---	---	---
26	---	---	---	---	---	---	---	---	---	---	---	---
27	---	---	---	---	---	---	---	---	---	---	---	---
28	---	---	---	---	---	---	---	---	---	---	---	---
29	---	---	---	---	---	---	---	---	---	--	---	--
30	---	---	---	---	---	---	---	---	---	---	---	---
31	---	---	---	---	---	---	---	---	---	---	--	---
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	--	---	---	---	---	---	---	---	---	---	---
2	---	---	---	---	---	---	---	---	---	--	---	---
3	---	---	-	---	---	-	---	---	---	-	---	---
4	---	---	---	---	---	---	---	---	---	---	---	---
5	---	-	---	---	-	---	---	---	---	---	---	-
6	---	---	---	---	---	---	---	---	---	---	---	---
7	---	---	---	---	---	---	---	---	---	---	---	---
8	---	---	-	--	---	---	--	---	---	---	---	---
9	---	---	--	--	---	---	---	---	---	---	---	---
10	-	---	---	---	---	---	---	---	---	---	-	-
11	---	-	---	---	--	-	--	---	-	---	-	-
12	---	---	---	---	---	---	---	---	---	---	---	---
13	---	---	---	-	--	---	---	--	-	---	--	---
14	---	---	---	---	---	---	---	---	---	---	---	---
15	--	---	---	---	---	---	---	---	---	---	---	---
16	---	---	---	---	---	---	---	---	---	---	---	---
17	---	---	-	-	-	---	---	-	-	---	-	-
18	---	---	---	---	---	---	---	-	---	---	--	---
19	---	---	---	---	---	---	---	---	---	---	---	---
20	---	---	---	--	---	---	---	---	---	---	---	---
21	---	---	---	---	---	---	---	--	---	-	-	-
22	---	---	-	---	---	-	--	---	---	---	---	---
23	---	-	---	---	-	---	---	---	---	---	---	---
24	---	---	-	--	---	-	---	---	---	--	---	---
25	---	---	--	--	---	---	---	---	---	---	---	---
26	--	-	---	-	--	---	---	---	--	-	---	---
27	---	--	---	---	---	---	---	---	---	---	--	---
28	---	---	---	-	-	---	---	---	---	---	---	---
29	---	-	-	--	---	---	-	---	---	--	---	--
30	---	---	---	---	---	---	---	---	---	---	---	---
31	---	---	-	-	---	---	---	---	---	---	---	---
MONTH	---	---	---	-	---	---	---	---	---	---	---	---
		JUNE			JULY			AUGUST			TEMB	
1	56	48	53	96	88	92	125	106	114	160	146	152
2	57	47	52	98	91	94	124	113	118	159	150	155
3	56	44	51	96	93	94	122	107	113	161	148	155
4	55	46	52	99	69	87	123	110	115	162	151	157
5	57	42	51	91	74	84	131	112	120	163	152	158
6	53	45	49	96	88	92	134	117	125	---	---	---
7	55	46	51	100	90	95	132	118	122	---	---	---
8	58	49	53	99	94	96	121	116	118	143	133	137
9	60	51	56	101	94	96	133	118	123	144	139	142
10	61	54	58	101	87	92	139	124	130	145	137	141
11	64	57	60	104	93	98	144	126	134	146	140	143
12	65	59	62	103	98	101	150	130	139	146	107	138
13	66	60	63	105	97	101	149	136	143	128	107	120
14	68	61	65	109	100	104	148	136	140	131	117	125
15	68	48	61	109	101	105	148	134	138	119	109	113
16	68	53	64	109	101	104	150	136	142	126	112	119
17	74	67	70	114	104	109	150	139	143	126	116	124
18	78	71	75	112	89	102	154	136	142	121	96	115
19	81	76	79	105	93	99	154	143	148	112	92	103
20	84	79	81	110	99	103	150	140	144	109	99	104
21	84	68	80	115	103	108	244	96	133	110	97	103
22	72	66	69	117	106	111	130	108	123	107	98	102
23	83	72	77	120	107	113	133	101	121	106	97	103
24	86	80	82	117	109	113	136	113	124	102	85	93
25	89	82	85	116	109	112	144	129	135	98	87	93
26	91	78	86	114	105	111	144	138	140	96	88	90
27	86	78	82	116	107	111	159	118	136	111	85	97
28	87	79	83	115	106	110	134	119	128	103	73	92
29	89	80	84	109	95	101	142	126	133	87	74	80
30	93	86	89	116	102	107	147	137	141	91	77	84
31	---	--	--	115	108	111	155	140	146	---	---	--
MONTH	93	42	67	120	69	102	244	96	131	---	--	-

393647105425317 SOUTH CLEAR CREEK ABOVE NAYLOR CREEK NEAR GEORGETOWN, CO--Continued
TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

393647105425317 SOUTH CLEAR CREEK ABOVE NAYLOR CREEK NEAR GEORGETOWN, CO--Continued
TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	JUNE			JULY			AUGUST			SEPTEMBER		
1	5.2	. 8	2.6	12.9	4.5	8.1	12.8	4.6	8.3	10.6	2.9	6.2
2	6.3	. 2	3.1	11.5	4.8	7.9	12.0	5.4	8.3	9.1	4.2	6.3
3	7.1	. 7	3.8	8.9	5.2	7.2	12.0	5.4	8.1	10.5	3.3	6.3
4	6.0	1.6	3.7	11.9	4.8	7.6	11.9	5.4	7.8	10.1	3.6	6.5
5	8.2	1.9	4.5	12.3	5.8	8.6	12.8	3.8	7.3	10.8	3.9	6.8
6	7.9	1.4	4.6	14.0	5.6	8.9	13.0	3.8	7.7	6.9	4.8	6.2
7	8.8	1.1	5.0	14.0	5.5	8.9	9.5	4.7	7.0	8.4	2.6	5.0
8	9.8	1.9	5.5	11.5	5.6	8.3	8.6	3.6	6.2	9.3	1.8	5.0
9	9.1	2.9	5.5	10.4	6.0	8.2	10.7	4.1	7.0	7.8	2.4	5.1
10	8.4	2.8	5.2	13.2	5.8	8.6	10.9	3.0	6.4	8.1	2.4	5.1
11	10.0	2.6	5.5	13.8	5.1	8.6	12.2	2.6	6.8	8.4	2.4	5.3
12	7.7	2.6	4.9	11.7	5.9	8.7	12.2	3.7	7.3	8.9	4.3	6.2
13	8.9	3.0	5.5	11.9	6.6	8.6	9.6	3.9	6.7	8.2	4.6	6.2
14	6.5	3.5	5.0	13.8	5.7	8.9	9.2	4.7	7.0	6.8	2.4	4.3
15	5.0	3.4	4.4	13.5	5.3	8.7	11.0	4.4	7.4	8.4	2.8	4.8
16	10.2	2.2	5.5	11.3	6.7	8.8	10.9	4.5	7.2	8.2	1.5	4.5
17	11.0	3.1	6.4	13.2	6.8	9.6	9.6	3.6	6.5	4.7	2.2	3.2
18	11.1	2.9	6.4	10.8	7.0	8.7	11.8	4.7	7.5	4.3	. 0	1.6
19	11.4	3.1	6.6	13.9	5.7	9.0	9.9	5.6	7.4	1.9	. 0	. 6
20	12.0	3.8	7.0	13.1	5.9	9.3	9.8	4.5	6.9	4.3	. 1	1.6
21	8.7	4.7	6.5	14.5	5.6	9.2	9.8	5.8	7.2	6.5	. 4	2.8
22	9.5	4.8	6.7	13.7	4.7	8.3	10.1	5.1	7.0	7.0	1.8	3.9
23	11.2	2.8	6.5	14.1	5.7	8.9	8.2	4.1	6.3	5.2	2.2	3.5
24	10.6	4.2	7.0	12.2	4.8	8.2	11.6	3.7	7.0	7.4	1.6	3.7
25	11.5	3.5	6.7	11.5	6.3	8.5	11.8	3.6	7.0	5.5	. 7	2.9
26	12.8	4.0	7.4	10.2	4.8	7.3	8.1	4.7	6.5	. 7	. 0	. 0
27	9.7	5.9	7.6	12.2	4.3	7.5	8.1	5.1	6.3	. 1	. 0	. 0
28	9.5	5.3	7.1	11.6	5.4	8.0	8.3	3.8	6.0	3.0	. 0	1.0
29	12.0	3.8	7.2	8.7	7.0	8.0	11.7	3.8	7.1	5.7	. 0	2.0
30	11.5	5.7	8.1	14.0	5.2	8.4	11.1	4.4	7.3	6.5	. 3	2.8
31	---	---	---	11.7	4.5	7.8	10.4	3.5	6.3	---	--	--
MONTH	12.8	. 2	5.7	14.5	4.3	8.4	13.0	2.6	7.1	10.8	. 0	4.0

393647105425317 SOUTH CLEAR CREEK ABOVE NAYLOR CREEK NEAR GEORGETOWN, CO--Continued PRECIPITATION RECORDS

PERIOD OF RECORD.--July to September 1996 (seasonal records only).
GAGE.--Tipping bucket rain gage (no wind vanes used) with satellite telemetry. Elevation of gage is $10,710 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records poor.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 0.52 in., Sept. 6, 1996.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 0.52 in., Sept. 6.
PRECIPITATION INCHES, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	--	---	---	---	---	---	---	---	---	---	. 00	. 00
2	---	---	---	---	---	--	---	---	--	---	. 00	. 00
3	---	---	---	---	---	--	---	---	--	---	. 11	. 00
4	---	---	---	---	---	---	---	---	---	---	. 00	. 00
5	--	---	--	---	--	-	--	--	--	---	. 00	. 00
6	---	---	--	---	--	--	---	--	--	---	. 00	. 52
7	---	---	---	---	---	--	---	---	---	---	. 12	. 01
8	---	---	---	---	---	---	---	---	---	---	. 02	. 00
9	--	---	---	---	---	---	---	-	---	. 13	. 00	. 00
10	---	---	---	---	---	---	---	---	---	. 01	. 00	. 01
11	--	-	---	-	--	---	--	-	-	. 01	. 00	. 01
12	---	---	---	---	---	---	---	---	---	. 00	. 00	. 28
13	---	---	--	---	---	-	---	---	---	. 00	. 00	. 02
14	---	---	-	---	---	-	--	--	--	. 00	. 00	. 13
15	---	---	---	---	---	---	---	---	---	. 02	. 01	. 33
16	---	---	---	---	--	--	---	--	--	. 00	. 00	. 00
17	---	---	---	---	--	---	---	---	---	. 00	. 06	. 00
18	---	---	---	-	---	---	---	---	---	. 17	. 00	. 12
19	---	---	---	---	---	--	---	--	---	. 03	. 02	. 00
20	---	---	---	---	--	---	---	--	--	. 00	. 07	. 06
21	--	-	---	-	---	---	--	-	---	. 00	. 25	. 31
22	---	---	---	--	---	---	-	--	--	. 00	. 06	. 08
23	---	-	---	---	-	---	---	---	---	. 00	. 14	. 20
24	---	---	--	---	--	---	---	---	---	. 00	. 00	. 35
25	---	---	---	---	---	-	---	---	---	. 00	. 00	. 06
26	---	---	---	---	---	---	---	---	---	. 03	. 00	. 00
27	--	-	---	-	-	---	---	---	---	. 01	. 13	. 00
28	---	---	---	---	---	---	---	---	---	. 16	. 06	. 29
29	---	---	---	---	--	---	---	---	---	. 10	. 00	. 19
30	-	---	---	---	---	---	---	---	--	. 01	. 00	. 07
31	---	---	---	---	---	---	---	---	---	. 01	. 00	---
TOTAL	---	---	---	---	---	---	---	---	---	---	1.05	3.04

06714400 SOUTH CLEAR CREEK ABOVE LOWER CABIN CREEK RESERVOIR NEAR GEORGETOWN, CO

LOCATION.--Lat $39^{\circ} 39^{\prime} 09^{\prime \prime}$, long $105^{\circ} 42^{\prime} 25^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{sec} .31$, T. 4 S., R. 74 W., Clear Creek County, Hydrologic Unit 101900004, on left bank at security fence, 6.5 mi south of Georgetown.
DRAINAGE AREA.-- $11.8 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1994 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $10,100 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. No known diversions upstream of station.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.6	6.6	4.4	e3.7	e3.1	e2.7	e3.4	4.1	26	30	16	7.1
2	e9.5	6.8	4.7	e3.7	e3.1	e2. 8	e3.4	5.2	25	e30	16	6.9
3	e9.4	6.4	4.7	e3.7	e3.2	e2.7	e3. 5	7.6	26	e30	16	6.8
4	e9.7	5.3	4.7	e3.7	e3.2	e2.7	e3.6	11	27	e30	15	6.7
5	9.2	5.9	4.9	e3.7	e3.3	e2. 6	e3.7	13	28	e31	15	6.6
6	9.8	6.1	5.0	e3. 5	e3. 2	e2. 6	e3.7	14	30	e30	15	8.4
7	9.2	5.6	5.1	e3.5	e3.0	e2. 6	e3.7	17	30	e30	15	7.1
8	9.0	5.9	4.9	e3.5	e2.9	e2. 6	e3.7	18	30	e30	14	6.6
9	8.9	5.7	5.3	e3.5	e3.0	e2. 6	e4.0	19	30	29	14	6.4
10	8.7	e5.6	5.2	e3.5	e2.9	e2. 6	e4.3	20	31	28	13	6.2
11	8.6	e5.8	5.1	e3.4	e2.9	e2.5	e4.5	22	30	27	13	5.9
12	8.6	e5.8	4.9	e3.4	e2.9	2.7	e4.0	25	30	26	12	6.4
13	8.6	5.6	4.8	e3.4	e2.9	3.0	3.6	29	30	25	12	6.6
14	8.4	5.4	e4.7	e3.5	e2.9	3.1	3.4	30	30	25	12	6.3
15	8.4	5.4	e4.5	e3.4	e2.9	3.1	e3.3	32	30	25	12	7.0
16	8.3	5.4	e4.7	e3.4	e2.9	3.0	e3.5	34	31	24	11	6.4
17	8.1	5.4	e4.4	e3.4	e2.9	e3.1	e3. 5	36	31	24	11	7.0
18	8.0	5.3	e4.1	e3.3	e3.0	e3.0	e3.6	34	31	24	10	7.5
19	7.9	5.3	e4.1	e3.3	e2.9	e2.9	e3.6	34	31	25	10	8.0
20	7.9	5.2	e4.1	e3.3	e2.9	e2.9	e3.5	33	30	24	9.5	7.5
21	7.7	5.2	e4.1	e3.2	e3.0	e3.0	e3. 5	32	30	23	10	7.3
22	7.6	5.1	e4.1	e3.2	e2.9	e3.2	e3.4	32	30	22	9.8	7.0
23	e7. 3	5.0	e4.1	e3.2	e2. 8	e3.2	e3.5	31	30	21	9.6	7.7
24	e7.2	5.1	e4.1	e3.2	e2. 8	e3.2	e3.9	30	30	20	9.2	10
25	7.2	5.0	e4.1	e3.1	e2. 8	e3.0	e4.1	29	30	20	8.8	7.9
26	6.9	4.9	e3.9	e3.1	e2. 8	e3.0	e3.9	28	30	19	8.5	7.8
27	6.9	4.1	e3.9	e3.1	e2.7	e3.1	e4.1	26	30	18	8.7	6.9
28	6.8	e4.3	e3.9	e3.1	e2. 8	e3.1	e4.1	26	30	17	8.5	8.0
29	6.8	e4.6	e3.9	e3.1	e2. 8	e3.3	e4.1	27	29	18	7.9	8.6
30	6.8	e4.6	e3.9	e3.1	---	e3.3	e4.1	27	30	16	7.5	8.0
31	6.7	--	e3.9	e3.1	--	e3.3	---	26	---	16	7.2	---
TOTAL	253.7	162.4	138.2	104.3	85.4	90.5	112.2	751.9	886	757	357.2	216.6
MEAN	8.18	5.41	4.46	3.36	2.94	2.92	3.74	24.3	29.5	24.4	11.5	7.22
MAX	9.8	6.8	5.3	3.7	3.3	3.3	4.5	36	31	31	16	10
MIN	6.7	4.1	3.9	3.1	2.7	2.5	3.3	4.1	25	16	7.2	5.9
AC-FT	503	322	274	207	169	180	223	1490	1760	1500	709	430

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 1996, BY WATER YEAR (WY)

| MEAN | 6.75 | 4.85 | 3.73 | 2.61 | 2.39 | 2.47 | 2.86 | 15.4 | 46.8 | 40.3 | 17.5 | 10.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MAX | 8.18 | 5.41 | 4.46 | 3.36 | 2.94 | 2.92 | 3.74 | 24.3 | 64.2 | 56.1 | 23.4 | 12.9 |
| (WY) | 1996 | 1996 | 1996 | 1996 | 1996 | 1996 | 1996 | 1996 | 1995 | 1995 | 1995 | 1995 |
| MIN | 5.33 | 4.29 | 3.01 | 1.85 | 1.81 | 2.02 | 1.98 | 6.58 | 29.5 | 24.4 | 11.5 | 7.22 |
| (WY) | 1995 | 1995 | 1995 | 1995 | 1995 | 1995 | 1995 | 1995 | 1996 | 1996 | 1996 | 1996 |

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR

ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
e-Estimated.
a-Also occurred Feb 5-13, 1995
b-Probably occurred Jun 19, 1995.

3915.4				
10.7		13.0		
		15.31995		
		10.7		1996
36	May 17	107	Jun 1	181995
$\mathrm{e}_{2.5}$	Mar 11	$\mathrm{a}_{1.6}$	Feb	41995
2.6	Mar 5	$\mathrm{b}^{1.6}$	Feb	41995
42	May 19	Not	ermine	
1.29	May 19	3.43	Jun 1	191995
7770		9430		
30		31		
6.2		5.2		
3.0		1.9		

06714400 SOUTH CLEAR CREEK ABOVE LOWER CABIN CREEK RESERVOIR NEAR GEORGETOWN, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--May 1995 to current year (seasonal record).
INSTRUMENTATION.--Water-quality monitor since May 1995.
REMARKS.--Water temperature and specific conductance records are fair.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 99 microsiemens, April 22; minimum, 44 microsiemens Oct. 23-24.
WATER TEMPERATURE: Maximum, $14.4^{\circ} \mathrm{C}$, Aug. and 12 ; minimum, $0.0^{\circ} \mathrm{C}$, on many days during Oct., Nov., April, May, and Sept. 27.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06714400 SOUTH CLEAR CREEK ABOVE LOWER CABIN CREEK RESERVOIR NEAR GEORGETOWN, CO--Continued
SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	---	---	---	97	91	94
2	---	---	---	---	---	---	---	---	---	96	88	92
3	---	---	---	---	---	---	---	---	---	95	84	90
4	---	-	---	---	---	---	---	---	-	92	82	88
5	---	-	--	-	--	-	---	---	---	90	80	85
6	---	---	---	---	---	---	---	---	---	87	79	83
7	---	---	---	---	---	---	---	---	---	84	77	81
8	---	---	---	---	---	---	---	---	---	82	75	79
9	---	---	---	---	---	---	---	---	---	77	71	75
10	---	---	---	---	---	---	---	---	---	76	71	73
11	---	---	--	---	---	-	---	---	---	77	67	73
12	---	---	---	--	---	---	---	-	---	71	61	66
13	---	---	-	-	---	---	---	---	---	74	60	63
14	---	---	-	---	---	---	--	---	---	67	59	63
15	-	--	-	---	--	---	---	---	---	66	54	61
16	---	---	---	--	---	---	---	---	---	61	49	55
17	---	---	---	---	---	---	---	---	---	58	49	54
18	---	---	---	---	---	---	---	---	---	60	49	55
19	---	---	--	---	---	---	94	87	90	59	47	53
20	---	---	--	---	---	---	96	88	92	58	49	55
21	---	---	---	---	-	-	94	89	91	63	54	58
22	---	---	---	-	---	---	99	88	91	62	53	58
23	---	---	---	---	---	---	94	85	88	61	54	58
24	---	---	---	---	---	---	92	80	87	63	58	60
25	---	---	---	-	---	---	95	84	90	64	59	63
26	---	---	---	---	---	---	96	90	93	67	63	65
27	---	---	---	---	---	---	95	91	93	70	67	69
28	---	---	---	---	---	---	97	80	91	73	69	70
29	---	---	---	---	-	---	---	---	---	75	64	70
30	---	---	--	---	---	---	96	93	94	70	64	68
31	---	---	---	---	---	---	---	---	---	72	67	69
MONTH	---	---	---	---	---	---	---	---	---	97	47	69

	JUNE			JULY			AUGUST			SEPTEMBER		
1	72	67	69	54	52	52	59	55	55	67	65	66
2	72	65	69	---	---	---	56	55	55	67	66	67
3	71	63	67	---	---	---	56	55	56	68	66	67
4	68	63	66	---	---	---	56	55	56	68	66	67
5	68	59	64	---	---	---	57	55	56	68	67	67
6	64	59	61	---	---	---	57	55	56	73	65	69
7	64	59	62	---	---	---	58	56	56	71	69	70
8	64	60	62	---	---	---	58	56	57	71	68	69
9	64	60	62	52	51	52	58	57	57	70	69	70
10	63	60	61	53	51	52	58	57	57	71	69	70
11	64	60	62	52	51	52	59	57	58	71	70	70
12	63	60	62	53	52	52	59	57	58	71	69	70
13	63	61	62	53	52	52	59	58	58	73	70	72
14	62	60	61	53	52	52	59	58	59	72	69	71
15	63	58	61	53	52	52	60	58	59	74	69	73
16	62	58	61	53	52	53	60	58	59	74	72	72
17	62	60	61	53	52	53	60	59	60	72	70	71
18	61	59	60	54	53	53	61	60	60	71	66	70
19	60	58	59	54	53	54	61	60	61	72	67	70
20	60	58	59	54	53	54	62	61	61	72	69	70
21	58	56	58	55	53	54	67	61	63	72	70	71
22	57	55	56	54	53	54	65	63	63	72	71	71
23	56	55	56	55	54	54	65	63	63	71	70	71
24	56	55	55	55	54	54	65	63	64	74	70	72
25	55	54	55	55	54	55	65	64	64	73	71	71
26	55	54	54	55	54	54	65	64	64	71	68	69
27	55	53	54	54	54	54	66	64	64	71	65	69
28	54	53	53	55	54	54	66	65	65	71	69	70
29	54	53	53	57	54	55	67	65	66	71	69	70
30	54	53	53	56	55	55	67	65	66	72	69	70
31	---	---	---	55	54	55	67	65	66	---	---	---
MONTH	72	53	60	--	---	--	67	55	60	74	65	70

06714400 SOUTH CLEAR CREEK ABOVE LOWER CABIN CREEK RESERVOIR NEAR GEORGETOWN, CO--Continued
TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06714400 SOUTH CLEAR CREEK ABOVE LOWER CABIN CREEK RESERVOIR NEAR GEORGETOWN, CO--Continued
TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST			SEPTEMBER	
1	8.9	1.9	4.6	12.0	4.4	7.4	14.4	5.4	9.0	12.0	4.4	7.9
2	10.5	1.2	5.0	---	---	---	13.1	6.3	9.0	11.8	5.7	8.2
3	11.1	1.7	5.5	---	---	---	12.9	6.2	8.7	12.6	4.9	8.3
4	8.6	2.6	5.3	---	---	---	13.4	6.3	8.7	12.6	5.3	8.5
5	11.4	2.8	6.0	---	---	---	14.0	5.0	8.5	11.4	5.5	8.2
6	10.5	2.5	5.7	---	---	---	14.3	5.2	8.8	8.2	6.4	7.5
7	11.0	1.6	5.7	---	---	---	11.1	5.6	7.8	11.5	4.0	6.9
8	11.7	2.1	6.0	---	--	-	10.9	5.0	7.6	11.9	3.4	7.0
9	10.4	3.1	6.0	---	---	---	12.1	5.5	8.4	10.0	4.0	6.8
10	9.1	3.0	5.7	12.3	5.4	8.0	12.1	4.5	7.7	9.6	4.2	6.8
11	11.0	2.8	6.0	13.0	5.0	8.1	13.6	4.2	8.2	9.6	4.2	7.0
12	8.2	2.8	5.3	11.3	5.6	8.1	14.4	5.2	8.9	11.3	5.6	7.8
13	9.7	3.2	5.6	11.5	6.1	8.0	11.0	5.4	8.1	9.3	5.8	7.4
14	7.0	3.5	5.2	13.0	5.4	8.4	11.1	6.1	8.4	8.7	4.0	6.2
15	5.4	3.8	4.8	11.9	5.3	8.0	13.3	5.9	9.0	10.7	4.5	6.8
16	11.5	2.8	6.1	11.0	6.4	8.2	13.4	5.8	8.8	10.7	3.1	6.4
17	11.1	3.3	6.6	12.7	6.5	9.0	12.0	5.2	8.1	6.2	3.6	4.8
18	11.5	3.1	6.5	10.2	6.5	8.0	13.6	5.9	9.1	6.8	1.5	3.8
19	11.5	3.3	6.7	12.4	5.6	8.4	10.9	6.6	8.4	6.7	. 4	2.8
20	11.5	4.0	7.0	13.3	5.8	8.9	12.9	6.0	8.6	7.4	1.7	4.0
21	8.8	4.8	6.6	14.0	5.6	8.9	10.4	6.9	8.4	9.4	2.0	5.0
22	9.8	4.8	6.5	13.5	5.1	8.4	11.2	6.1	8.1	9.4	3.4	5.8
23	11.1	3.1	6.4	13.9	6.0	8.9	10.3	5.5	7.8	7.4	3.9	5.4
24	11.1	4.3	6.9	12.3	5.1	8.2	12.9	5.1	8.4	9.1	3.7	5.7
25	10.9	3.8	6.6	11.5	6.4	8.3	13.8	5.0	8.7	7.0	2.9	4.7
26	11.5	4.3	7.1	10.7	5.4	7.6	11.2	6.0	8.1	3.0	. 4	1.5
27	9.5	5.5	7.0	12.3	5.3	8.0	10.1	6.1	7.7	3.5	. 0	1.1
28	9.0	5.0	6.7	11.5	6.2	8.4	11.4	5.4	7.8	7.8	. 9	3.8
29	11.1	3.8	6.8	---	---	---	12.7	5.4	8.6	8.6	1.1	4.2
30	11.5	5.3	7.6	13.6	5.8	8.7	11.3	5.5	8.3	9.3	1.9	5.0
31	---	---	---	12.0	5.5	8.3	13.1	4.8	8.2	---	--	--
MONTH	11.7	1.2	6.1	---	---	---	14.4	4.2	8.4	12.6	. 0	5.8

06714600 SOUTH CLEAR CREEK ABOVE LEAVENWORTH CREEK NEAR GEORGETOWN, CO

LOCATION.--Lat $39^{\circ} 41^{\prime} 13$ ", long $105^{\circ} 41^{\prime} 56^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 1} / 4$ sec.20, T. 4 S., R. 74 W., Clear Creek County, Hydrologic Unit 10190004, on right bank 240 ft upstream from the confluence of Leavenworth Creek, and 3.1 mi south of Georgetown.
DRAINAGE AREA.-- $16.0 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1994 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $9,280 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Flow is entirely regulated by Lower Cabin Creek Reservoir. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	12	8.6	8.3	4.0	5.1	10	6.7	28	51	14	11
2	16	7.8	8.6	8.1	3.9	5.0	10	6.9	29	50	19	11
3	16	7.3	8.6	8.2	3.9	5.0	12	7.2	27	50	18	11
4	15	7.1	8.6	8.2	3.9	4.9	19	7.8	31	52	18	11
5	15	7.0	8.6	8.1	3.6	5.0	18	8.5	31	50	20	11
6	15	6.9	8.6	7.9	3.4	5.0	18	9.2	38	49	20	10
7	15	6.9	8.6	8.0	3.5	5.7	17	9.8	43	50	20	14
8	15	7.2	8.6	8.1	3.5	5.9	16	11	45	49	20	11
9	15	8.6	8.6	8.0	3.5	5.9	15	13	46	49	20	8.9
10	15	8.6	8.6	8.0	3.5	5.9	15	18	45	49	18	12
11	15	8.6	8.6	7.9	3.6	5.9	14	19	47	49	19	8.2
12	15	8.6	8.5	7.9	3.7	5.9	13	19	50	50	18	7.9
13	15	8.6	8.6	7.8	3.7	6.1	12	21	52	48	17	7.6
14	15	8.6	8.5	7.8	3.7	6.6	11	21	52	48	17	8.0
15	14	8.6	8.4	7.8	3.7	6.5	11	28	54	45	17	7.7
16	14	8.6	8.4	7.7	3.7	6.5	10	33	52	40	15	7.2
17	14	8.6	8.4	7.4	3.7	6.5	10	37	55	38	14	7.4
18	14	8.7	8.2	6.3	3.8	6.4	9.7	38	55	36	15	12
19	14	8.7	8.4	6.3	3.9	6.3	9.2	42	57	34	15	9.9
20	14	8.7	8.4	6.3	3.9	6.4	8.5	40	58	32	14	9.3
21	14	8.7	8.4	6.0	4.0	7.9	7.6	45	58	30	15	11
22	14	8.7	8.4	5.7	5.1	8.1	7.4	43	60	28	15	9.9
23	14	8.7	8.4	5.4	5.3	8.1	7.2	43	56	30	16	10
24	14	8.6	8.3	5.2	5.3	8.1	7.2	40	52	35	14	11
25	14	8.6	8.1	5.2	5.4	7.9	7.2	37	56	35	15	11
26	13	8.6	8.1	5.1	5.6	7.9	7.2	36	51	31	11	11
27	13	8.6	8.0	5.1	e5.6	8.2	7.1	36	53	22	9.4	11
28	13	8.6	8.1	5.1	e5.3	10	7.1	37	54	22	11	12
29	13	8.6	8.2	5.1	e5.1	10	6.9	35	54	24	11	12
30	13	8.6	8.3	5.1	---	10	6.8	33	53	19	12	12
31	13	-	8.4	5.0	--	11	---	29	---	13	9.9	---
TOTAL	445	252.0	261.1	212.1	120.8	213.7	330.1	810.1	1442	1208	487.3	307.0
MEAN	14.4	8.40	8.42	6.84	4.17	6.89	11.0	26.1	48.1	39.0	15.7	10.2
MAX	16	12	8.6	8.3	5.6	11	19	45	60	52	20	14
MIN	13	6.9	8.0	5.0	3.4	4.9	6.8	6.7	27	13	9.4	7.2
AC-FT	883	500	518	421	240	424	655	1610	2860	2400	967	609

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 1996, BY WATER YEAR (WY)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--May 1995 to current year.
INSTRUMENTATION.--Water-quality monitor since May 1995.
REMARKS.--Water temperature records are good and specific conductance records are fair.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 117 microsiemens, Aug 3; minimum, 66 microsiemens June 22.
WATER TEMPERATURE: Maximum, $13.9^{\circ} \mathrm{C}$, July 24 ; minimum, $0.1^{\circ} \mathrm{C}$, on Feb 23.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		FEBRUARY			MARCH			APRIL			MAY	
1	---	--	---	107	106	107	102	101	102	110	107	109
2	---	---	-	107	106	106	102	102	102	110	108	109
3	---	---	---	107	106	106	103	99	101	109	106	107
4	---	-	---	107	106	107	100	99	99	111	105	106
5	---	-	---	107	106	107	100	99	100	108	105	107
6	---	---	---	107	106	106	101	99	100	107	105	106
7	---	---	---	106	105	105	102	100	101	105	102	104
8	111	110	110	106	105	105	103	101	102	104	101	102
9	111	110	111	106	104	105	103	102	102	103	97	101
10	111	111	111	106	105	105	105	102	104	100	95	97
11	112	110	111	107	105	105	104	103	104	97	94	96
12	111	110	111	106	105	105	106	103	105	97	94	96
13	112	110	111	106	102	105	104	102	103	95	93	94
14	112	111	111	104	102	104	104	102	103	95	93	94
15	111	110	111	105	104	104	105	103	104	94	91	92
16	112	111	111	105	104	104	106	103	105	92	89	91
17	112	111	111	104	103	104	107	104	105	90	89	89
18	112	108	110	104	103	104	107	104	106	89	86	88
19	111	110	111	105	104	104	105	104	104	89	83	87
20	111	107	110	105	104	104	105	104	105	86	84	85
21	111	107	110	104	102	103	107	105	106	87	83	85
22	109	107	108	103	102	102	108	106	106	85	82	83
23	108	106	107	104	102	103	108	106	107	84	82	83
24	108	106	107	102	101	102	109	106	108	84	83	84
25	108	106	107	103	102	102	111	108	109	85	84	85
26	108	105	107	103	102	102	111	109	109	85	83	85
27	108	106	107	103	101	102	111	109	110	87	85	86
28	108	106	107	101	100	101	109	107	108	87	84	86
29	---	-	---	101	100	101	109	108	108	87	86	86
30	---	---	---	101	101	101	108	106	108	88	86	86
31	---	---	---	102	101	101	---	--	--	88	86	87
MONTH	---	---	---	107	100	104	111	99	105	111	82	93

	JUNE			JULY			AUGUST			SEPTEMBER		
1	88	85	87	72	70	71	104	86	92	105	104	105
2	89	87	87	71	71	71	116	104	111	104	104	104
3	89	86	88	73	71	72	117	112	115	104	104	104
4	88	86	87	73	70	72	114	111	113	104	104	104
5	88	83	86	73	71	72	112	110	111	105	104	104
6	84	80	83	73	72	72	111	108	109	105	103	105
7	83	78	81	73	72	72	108	106	108	104	103	104
8	82	76	79	73	72	73	107	106	106	106	103	104
9	80	75	77	73	72	73	106	105	105	107	105	106
10	78	72	76	72	72	72	105	104	105	105	104	104
11	77	71	74	72	71	72	104	103	104	107	104	106
12	76	70	74	73	71	72	104	103	104	107	101	106
13	75	69	72	73	72	72	104	103	103	108	107	107
14	75	70	73	73	72	73	103	103	103	109	104	107
15	75	70	73	74	72	73	103	103	103	109	108	108
16	76	73	74	74	72	74	104	103	103	109	107	108
17	75	72	74	75	73	74	104	103	104	108	106	107
18	76	71	74	76	74	75	104	103	103	107	97	101
19	75	71	74	77	75	76	103	102	103	99	98	98
20	76	72	74	78	76	77	104	103	103	98	96	98
21	74	70	73	79	77	78	103	102	103	96	95	95
22	72	66	71	81	77	79	103	102	103	95	94	95
23	74	71	73	80	77	79	103	102	102	95	93	94
24	76	71	74	78	77	78	103	102	102	93	92	93
25	74	72	73	78	76	77	102	102	102	93	91	92
26	74	71	73	80	76	78	104	102	103	92	90	91
27	73	71	72	82	79	80	105	104	105	91	88	91
28	73	69	72	82	80	81	105	104	105	92	91	91
29	73	71	72	81	78	80	105	104	105	91	90	91
30	72	70	71	85	79	82	104	104	104	91	90	91
31	---	---	---	90	83	86	105	104	105	-	---	--
MONTH	89	66	76	90	70	75	117	86	105	109	88	100

TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	8.5	7.1	7.5	5.4	3.2	4.4	3.6	2.5	2.8	2.1	1.6	1.8
2	8.7	7.0	7.5	4.3	2.6	3.3	3.2	2.3	2.5	1.9	1.2	1.6
3	8.7	6.8	7.4	4.5	2.5	3.2	3.0	2.0	2.3	2.4	1.7	2.1
4	7.6	6.0	6.9	4.4	2.8	3.3	3.3	2.2	2.6	2.5	1.1	2.0
5	7.4	5.9	6.4	4.7	3.0	3.6	3.2	1.8	2.7	2.3	1.3	1.9
6	7.8	5.5	6.3	4.8	3.4	3.8	3.3	2.2	2.7	2.0	1.0	1.5
7	7.9	5.9	6.5	4.7	3.3	3.7	3.0	2.0	2.4	2.7	1.8	2.1
8	7.6	5.7	6.4	5.0	3.2	3.7	2.3	1.4	1.8	2.6	1.9	2.1
9	7.4	5.9	6.4	4.4	3.0	3.8	2.5	1.7	2.0	2.8	1.9	2.2
10	7.9	5.9	6.5	3.6	1.3	2.8	3.1	2.1	2.4	2.5	1.7	2.1
11	8.0	5.9	6.5	4.1	1.6	3.2	3.2	2.2	2.6	3.0	1.6	2.1
12	7.9	6.1	6.7	4.0	3.3	3.6	3.5	2.5	2.9	2.9	1.8	2.1
13	6.8	5.2	5.8	4.2	3.4	3.6	3.2	1.9	2.8	3.0	1.9	2.1
14	7.4	5.5	6.0	4.8	3.1	3.6	2.8	1.6	2.1	2.8	1.7	2.0
15	7.6	5.7	6.2	4.3	2.8	3.2	2.8	1.5	2.0	2.8	1.7	2.1
16	7.4	5.5	6.2	4.2	2.7	3.3	2.9	1.8	2.2	2.7	1.9	2.1
17	7.3	5.5	6.1	4.0	2.5	3.0	2.7	1.4	1.9	2.4	1.1	1.9
18	7.2	5.5	6.0	4.2	2.7	3.1	2.2	1.2	1.5	1.5	. 2	. 8
19	6.5	5.0	5.5	4.0	2.7	3.0	2.2	1.2	1.5	1.7	1.1	1.5
20	6.7	4.9	5.4	3.9	2.7	3.0	2.1	1.1	1.4	1.5	. 8	1.1
21	6.8	5.2	5.7	3.8	2.5	2.9	2.2	1.1	1.4	2.4	1.0	1.7
22	5.7	4.3	5.1	3.5	2.5	2.9	2.0	1.1	1.4	2.3	1.3	1.7
23	5.4	4.0	4.4	3.6	2.3	2.7	2.0	1.0	1.3	1.6	. 7	1.0
24	5.7	4.1	4.6	3.9	2.3	2.9	2.3	1.4	1.7	1.9	. 8	1.5
25	5.8	4.3	4.8	3.8	2.8	3.0	2.4	1.4	1.7	1.7	. 9	1.4
26	5.5	4.3	4.7	3.6	2.4	2.9	2.4	1.5	1.7	1.5	. 8	1.1
27	5.3	4.1	4.5	2.4	1.5	2.0	2.4	1.5	1.7	2.5	. 8	1.6
28	5.8	4.4	4.8	2.3	1.3	1.8	2.5	1.5	1.9	1.9	1.3	1.6
29	5.4	4.6	4.9	3.2	2.1	2.6	2.4	1.6	1.8	2.5	1.4	1.8
30	5.5	4.4	4.8	3.3	2.5	2.8	2.5	1.5	2.0	2.2	1.4	1.8
31	5.9	4.5	4.9	---	---	---	2.5	1.1	1.9	2.5	. 9	1.8
MONTH	8.7	4.0	5.9	5.4	1.3	3.2	3.6	1.0	2.1	3.0	. 2	1.7

DAY	MAX	MIN	MEAN									
		FEBRUA			MARCH			APRIL			MAY	
1	---	---	---	2.5	. 3	1.1	4.2	1.7	2.4	6.2	2.4	3.5
2	--	-	---	2.9	. 3	1.3	4.4	1.8	2.5	5.7	2.6	3.5
3	---	---	---	3.4	. 3	1.8	3.5	1.4	2.2	6.2	2.7	3.7
4	---	---	---	3.3	1.8	2.2	2.4	1.2	1.6	6.5	2.4	3.7
5	--	---	---	3.3	1.6	2.2	3.3	1.1	1.9	6.6	2.5	3.8
6	---	--	-	3.1	1.1	1.8	3.6	1.4	2.1	6.0	2.5	3.7
7	---	---	---	3.3	. 6	1.7	3.4	1.8	2.4	6.5	2.5	3.8
8	4.0	2.0	2.4	2.9	1.3	2.0	4.2	2.0	2.6	6.5	2.7	3.9
9	3.7	1.9	2.5	4.2	1.7	2.4	4.5	1.9	2.6	6.7	3.0	3.9
10	4.4	1.1	2.3	3.5	1.9	2.5	4.0	2.0	2.6	5.7	2.9	3.9
11	3.4	. 7	1.5	4.2	1.9	2.5	4.2	2.1	2.5	6.4	3.3	4.3
12	3.6	. 8	1.6	3.7	1.8	2.4	3.8	1.7	2.4	6.5	3.7	4.6
13	4.1	1.0	2.1	4.0	1.0	2.3	2.5	1.5	2.0	6.7	3.9	4.6
14	4.2	1.6	2.4	3.0	1.0	2.2	3.3	1.5	2.0	6.4	4.1	4.8
15	3.7	1.0	1.8	4.2	1.2	2.3	4.6	1.3	2.4	6.9	4.3	5.2
16	4.1	1.4	2.1	4.1	1.8	2.4	4.7	1.7	2.6	7.4	5.1	5.9
17	4.1	1.5	2.3	2.4	1.4	1.8	4.9	1.7	2.7	7.3	5.4	6.0
18	3.5	1.0	2.1	2.1	1.2	1.6	3.6	1.5	2.2	7.5	5.5	6.1
19	3.2	1.4	2.2	3.7	1.2	1.9	3.3	1.0	1.8	7.7	5.8	6.3
20	3.2	. 6	2.3	4.1	1.1	2.1	3.8	1.1	1.9	7.1	5.6	6.1
21	3.2	. 6	2.6	4.0	1.8	2.4	4.6	1.4	2.4	7.8	5.9	6.6
22	3.6	1.4	2.5	3.8	1.9	2.4	4.4	1.2	2.2	8.3	6.3	7.1
23	2.9	. 1	1.3	4.3	1.5	2.4	5.7	1.6	2.9	8.5	7.0	7.5
24	3.7	1.2	2.0	2.7	. 8	1.6	6.3	2.4	3.5	7.4	7.0	7.1
25	3.8	1.3	2.0	2.8	. 8	1.6	5.4	1.8	3.0	7.0	5.8	6.7
26	2.1	. 9	1.5	3.6	. 9	1.8	5.7	2.0	3.1	6.4	5.1	5.9
27	2.2	. 8	1.3	3.8	1.1	2.0	5.3	2.1	3.0	6.8	5.7	6.0
28	2.8	. 3	1.1	3.5	1.4	2.1	2.4	1.2	1.8	6.5	5.1	5.9
29	---	--	---	3.8	1.5	2.2	5.1	1.2	2.4	7.7	5.6	6.4
30	-	---	---	3.8	1.6	2.2	3.8	1.8	2.7	7.8	6.2	6.8
31	---	---	---	4.0	1.6	2.4	---	---	---	8.0	6.1	6.7
MONTH	---	---	---	4.3	. 3	2.1	6.3	1.0	2.4	8.5	2.4	5.3

06714600 SOUTH CLEAR CREEK ABOVE LEAVENWORTH CREEK NEAR GEORGETOWN, CO--Continued
TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	JUNE			JULY			AUGUST			SEPTEMBER		
1	7.9	6.1	6.8	12.1	10.3	11.0	13.0	10.1	11.2	12.2	9.9	10.5
2	8.5	6.2	7.0	12.1	10.5	11.1	10.1	7.7	9.1	11.9	10.0	10.6
3	9.1	6.6	7.4	12.1	10.7	11.1	9.0	7.2	7.6	12.0	9.9	10.6
4	9.1	7.0	7.7	12.2	10.8	11.1	9.0	7.1	7.6	12.2	10.0	10.6
5	9.7	7.1	7.9	12.2	10.8	11.3	9.3	7.3	8.0	11.1	10.1	10.5
6	9.3	7.0	7.8	12.7	10.9	11.4	9.9	7.8	8.6	10.7	9.9	10.3
7	9.6	7.2	8.0	12.7	11.1	11.6	10.1	8.4	9.0	11.8	9.7	10.3
8	10.1	7.5	8.3	12.6	11.3	11.8	10.5	8.9	9.4	12.0	9.7	10.4
9	9.9	7.5	8.2	12.5	11.5	11.8	11.1	9.3	9.9	11.7	9.3	10.2
10	9.7	7.5	8.1	12.8	11.3	11.7	11.2	9.4	10.0	12.0	9.9	10.5
11	9.9	7.5	8.2	12.8	11.4	11.9	11.5	9.6	10.2	12.0	9.6	10.3
12	9.3	7.6	8.1	12.9	11.5	12.0	11.9	9.9	10.5	11.7	9.5	10.1
13	9.9	7.7	8.4	13.1	11.7	12.2	11.4	9.9	10.4	11.4	9.4	10.0
14	9.3	7.9	8.6	13.3	11.7	12.4	11.3	10.1	10.5	11.2	9.2	9.8
15	8.7	7.6	8.3	13.6	12.0	12.5	12.0	10.1	10.7	11.7	9.2	10.0
16	10.1	7.5	8.5	13.2	12.1	12.5	11.8	10.1	10.6	11.9	8.8	9.8
17	10.1	8.2	8.9	13.3	12.1	12.5	12.1	9.9	10.5	10.1	9.0	9.4
18	10.5	8.3	9.2	13.2	12.1	12.4	12.0	10.0	10.6	10.4	7.3	9.2
19	10.6	8.7	9.5	13.3	11.9	12.3	11.3	10.2	10.5	10.0	8.1	8.7
20	11.1	9.0	9.8	13.4	11.9	12.4	12.2	10.1	10.7	10.4	8.4	8.9
21	10.4	9.1	9.7	13.7	11.8	12.4	11.9	10.4	10.7	10.7	8.3	9.1
22	10.8	8.7	9.4	13.7	11.7	12.3	11.6	10.3	10.6	10.7	8.6	9.1
23	11.0	8.6	9.6	13.7	11.6	12.4	12.0	10.3	10.7	10.5	8.4	8.9
24	11.4	9.3	10.1	13.9	11.9	12.6	12.2	10.2	10.8	10.1	8.2	8.8
25	11.3	9.5	10.1	13.6	12.2	12.6	12.3	10.3	10.9	9.5	7.0	8.3
26	11.6	9.6	10.2	13.6	11.8	12.3	12.3	10.2	10.8	8.1	6.2	7.1
27	11.1	10.0	10.4	13.4	11.5	12.1	11.4	10.1	10.6	8.0	5.2	6.9
28	10.9	9.7	10.2	13.3	11.7	12.2	12.2	10.1	10.6	9.3	7.1	7.7
29	11.5	9.5	10.3	12.3	11.7	12.1	11.9	10.1	10.6	9.4	7.0	7.7
30	11.8	10.2	10.7	13.7	11.1	12.0	11.6	10.1	10.5	9.6	7.1	7.9
31	-	--	---	13.7	10.9	11.7	12.1	9.8	10.5	---	---	---
MONTH	11.8	6.1	8.8	13.9	10.3	12.0	13.0	7.1	10.1	12.2	5.2	9.4

06714600 SOUTH CLEAR CREEK ABOVE LEAVENWORTH CREEK NEAR GEORGETOWN, CO--Continued PRECIPITATION RECORDS

PERIOD OF RECORD.--May 1995 to August 1996 (discontinued).
GAGE.--Tipping bucket rain gage (no wind vanes used) with satellite telemetry. Elevation of gage is $9,280 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records poor.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 0.76 in., May 27, 1996.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 0.76 in., May 27.

PRECIPITATION INCHES, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	---	---	--	-	-	. 00	. 13	. 01	. 00	. 00	---
2	. 00	---	---	-	---	--	. 00	. 04	. 00	. 18	. 00	---
3	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	---
4	. 01	---	---	---	---	---	. 00	. 00	. 00	. 09	. 00	---
5	. 00	---	---	--	--	---	. 15	. 00	. 03	. 00	. 00	--
6	. 16	---	---	---	---	---	. 25	. 00	. 00	. 00	. 00	---
7	. 11	---	---	--	-	---	. 03	. 00	. 00	. 00	. 00	---
8	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	---	---
9	. 00	---	---	---	---	---	. 00	. 00	. 00	. 06	--	---
10	. 00	---	---	--	-	-	. 04	. 00	. 00	. 00	--	-
11	. 00	---	---	---	---	---	. 01	. 00	. 00	. 00	---	---
12	. 28	---	---	---	---	---	. 00	. 00	. 51	. 00	---	---
13	. 01	---	---	---	---	---	. 00	. 00	. 04	. 00	---	---
14	. 00	---	---	---	---	---	. 05	. 00	. 00	. 00	---	---
15	. 00	---	---	---	---	---	. 11	. 00	. 56	. 00	-	---
16	. 00	---	---	-	---	---	. 00	. 00	. 00	. 00	---	---
17	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	---	---
18	. 00	---	---	---	---	---	. 08	. 00	. 00	. 21	---	---
19	. 00	---	---	---	---	---	. 02	. 00	. 00	. 00	---	---
20	. 00	---	---	---	---	---	. 01	. 00	. 01	. 00	---	---
21	. 00	---	---	---	---	---	. 11	. 00	. 07	. 00	---	---
22	. 00	---	---	---	---	---	. 06	. 00	. 15	. 00	---	---
23	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	---	---
24	. 02	---	---	---	---	---	. 00	. 02	. 00	. 00	--	---
25	. 01	---	---	---	---	---	. 13	. 17	. 00	. 03	--	---
26	. 00	---	---	---	---	---	. 00	. 13	. 06	. 00	---	---
27	. 00	---	---	---	---	---	. 03	. 76	. 00	. 00	--	---
28	. 00	---	---	---	---	---	. 00	. 42	. 16	. 00	---	---
29	. 00	---	---	---	---	---	. 15	. 01	. 00	. 00	---	---
30	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	--	---
31	. 01	---	---	---	---	---	---	. 00	---	. 00	---	---
TOTAL	0.61	---	--	--	---	--	1.23	1.68	1.60	0.57	--	---

06714800 LEAVENWORTH CREEK AT MOUTH NEAR GEORGETOWN, CO

LOCATION.--Lat $39^{\circ} 41^{\prime} 14^{\prime \prime}$, long $105^{\circ} 41^{\prime} 59^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec. 20 , T. 4 S., R. 74 W., Clear Creek County, Hydrologic Unit 10190004, on left bank 400 ft upstream from confluence of South Clear Creek, 0.3 mi south of Georgetown Reservoir, and 1.3 mi south of Georgetown.
DRAINAGE AREA.--12.0 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1994 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $9,320 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. Vidler tunnel (transmountain diversion) imports water from Peru Creek. There is seasonal diversion into Green Lake.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8.1	e5.6	e3.3	e1.9	e1.9	e1. 5	1.9	2.5	33	58	18	5.8
2	8.1	e5. 5	3.1	e1.9	e1.7	e1.4	1.8	2.6	33	55	17	5.7
3	8.0	e5.5	3.0	e1.9	e1.7	e1.4	1.8	3.0	38	51	19	5.5
4	8.1	e5.5	3.0	e1.9	e1.7	e1. 5	1.7	3.9	44	53	18	5.3
5	7.6	e5.5	3.0	e1.9	e1.8	e1.5	1.7	5.6	50	57	15	5.3
6	8.3	e5. 2	3.1	e1.9	e1. 8	e1. 5	1.8	7.4	59	53	15	6.7
7	7.9	e5.2	3.0	e2.0	e1.8	e1.5	1.8	9.0	62	48	15	6.2
8	7.8	e5.2	e2.9	e2.1	e1.9	e1. 5	2.0	11	67	43	16	5.5
9	7.5	e4.7	e2.7	e2.1	e1.9	e1.3	2.6	12	79	40	14	5.3
10	7.4	e4.7	e2.7	e2.1	e2.0	e1.4	3.0	13	82	41	13	5.3
11	7.4	e4.7	e2. 8	e1.9	e1. 8	e1. 5	2.7	15	83	37	12	5.1
12	7.5	e4.5	e2. 8	e2.0	e1.7	e1.5	2.4	19	79	35	11	6.0
13	e7.4	e4.4	e2.7	e2.3	e1.7	e1. 6	2.3	22	77	34	11	6.2
14	e7.7	e4.4	e2. 6	e2. 2	e1.9	e1. 6	2.1	26	72	33	11	5.9
15	e8.0	e4.2	e2.7	e2.2	e1.8	e1.5	2.2	33	73	31	10	7.5
16	e7.8	e4.2	e2. 6	e2.1	e1.7	e1. 5	2.2	43	67	29	10	6.3
17	e7.1	e4.1	e2. 5	e2.0	e1.7	e1. 6	2.3	50	65	28	10	5.7
18	e6.9	e4.0	e2.4	e1.9	e1. 8	e1. 5	2.2	54	64	34	10	5.9
19	e6. 6	e3.7	e2. 4	e1. 8	e1.7	e1. 5	2.1	62	61	33	9.8	6.4
20	e7.2	e3.7	e2. 4	e1. 8	e1.7	e1.6	2.1	58	62	32	9.8	6.1
21	e6.4	e3.7	e2. 3	e1. 8	e1.7	e1.7	2.0	52	72	29	9.4	6.6
22	e6.1	e3.9	e2.2	e1.9	e1.7	e1.9	2.0	55	83	27	8.3	6.7
23	e6.9	e3. 8	e2.1	e1.8	e1.7	e1.9	2.0	54	65	25	7.9	6.8
24	e8.4	e3.7	e2.2	e1. 8	e1. 6	e1. 8	2.7	43	59	25	7.6	8.5
25	e8.0	e3.6	e2.2	e1.8	e1.6	e1.7	3.4	39	58	24	7.1	7.6
26	e7.6	e3. 5	e2. 3	e1. 8	e1. 6	e1.7	2.9	34	59	23	6.9	6.6
27	e6.7	e3.5	e2.3	e1.7	e1. 6	e1.7	2.9	30	60	22	7.4	6.0
28	e6. 8	e3.5	e2.3	e1. 8	e1. 6	e1. 8	2.7	28	62	21	7.5	6.6
29	e6.3	e3.4	e2.1	e1. 8	e1.6	e1.8	2.7	31	58	23	6.8	7.6
30	e5.9	e3.3	e2.0	e1. 8	---	e1.8	2.5	33	58	20	6.4	7.6
31	e5.8	---	e1.9	e1. 8	--	1.9		32	---	19	6.0	-
TOTAL	227.3	130.4	79.6	59.7	50.4	49.6	68.5	883.0	1884	1083	345.9	188.3
MEAN	7.33	4.35	2.57	1.93	1.74	1.60	2.28	28.5	62.8	34.9	11.2	6.28
MAX	8.4	5.6	3.3	2.3	2.0	1.9	3.4	62	83	58	19	8.5
MIN	5.8	3.3	1.9	1.7	1.6	1.3	1.7	2.5	33	19	6.0	5.1
AC-FT	451	259	158	118	100	98	136	1750	3740	2150	686	373

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 1996, BY WATER YEAR (WY)

e-Estimated.

a-Also occurred Jun 22.
b-Also occurred Mar 13, 1995.
c-Also occurred Jun 10, 12
d-Maximum gage height, 5.69 ft, Jun 17, 1995.

WATER－QUALITY RECORDS

PERIOD OF RECORD．－－May 1995 to current year（seasonal record）．
INSTRUMENTATION．－－Water－quality monitor since May 1995.
REMARKS．－－Water temperature and specific conductance records are good．
EXTREMES FOR CURRENT YEAR．－－
SPECIFIC CONDUCTANCE：Maximum， 142 microsiemens，April 15；minimum， 39 microsiemens several days in June． WATER TEMPERATURE：Maximum， $12.1^{\circ} \mathrm{C}$ ，July 17,21 ；minimum， $0.0^{\circ} \mathrm{C}$ ，on many days during Oct．，Nov．，Apr．，May，and Sept．

SPECIFIC CONDUCTANCE，（MICROSIEMENS／CM＠ 25 DEG．C），WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

学 （1）		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1
$\stackrel{\text { 品 }}{\substack{2}}$	$\begin{aligned} & \text { ry } \\ & \text { 吕 } \\ & \text { 苮 } \\ & \hline \end{aligned}$	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
${ }_{\Sigma}^{x}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \text { z } \\ & \text { 茳 } \end{aligned}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \text { Z } \\ & \stackrel{y}{c} \end{aligned}$		1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
$\stackrel{x}{\underset{\Sigma}{\alpha}}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \text { z } \\ & \text { 䍗 } \end{aligned}$						に ก ก ก 6 กNN N ーウr		1
$\underset{\text { 峾 }}{\text { 品 }}$								1
$\underset{\Sigma}{x}$						$66 \wedge \wedge 6$ ง N N N N 		1
$\begin{aligned} & \text { z } \\ & \text { 茳 } \\ & \text { M } \end{aligned}$		$\begin{array}{l:\|cc} \text { न- } & \text { नू } \end{array}$	6 サー 6 ののののの					1
$\stackrel{\text { 品 }}{\stackrel{y}{c}}$	$$	$\begin{array}{l:l\|ll} \infty & \infty & -1 \\ \infty & & \infty & \sigma \end{array}$						1
${ }_{\Sigma}^{x}$		$\begin{array}{l:l} n & \text { n } \\ & \text { an } \end{array}$						1
$\begin{aligned} & \text { N } \\ & \text { 只 } \end{aligned}$		「Nのが	மヶmのo	$\begin{aligned} & \text { HNMルに } \\ & \vec{H} \boldsymbol{H} \boldsymbol{H} \end{aligned}$		$\underset{N}{-1} N \underset{N}{n}$	6 トのの○ー $\mathrm{N} N \mathrm{~N}$ Nm	\％

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	---	---	---	130	124	128
2	---	---	--	---	---	-	---	---	---	128	124	126
3	---	---	---	---	---	---	---	---	---	127	117	123
4	-	---	-	---	-	-	--	---	---	121	103	115
5	--	---	-	---	---	---	---	---	-	111	95	105
6	---	---	--	-	-	-	---	---	---	103	91	98
7	---	---	---	---	---	---	---	---	---	97	85	92
8	---	---	---	---	---	---	139	129	135	92	78	86
9	---	---	---	---	---	---	133	125	130	87	76	81
10	---	---	--	---	---	---	130	126	128	85	75	80
11	---	---	-	-	---	---	132	130	131	85	69	78
12	---	---	---	---	---	--	134	132	133	79	64	73
13	---	---	---	---	---	---	135	132	134	75	64	69
14	---	-	---	---	---	-	137	135	136	72	62	67
15	---	---	---	---	---	---	142	128	135	69	58	64
16	---	---	--	---	---	---	136	132	134	65	53	60
17	-	---	---	--	-	-	135	130	133	59	53	57
18	---	---	---	---	---	---	134	131	132	57	50	55
19	---	-	-	--	--	---	137	132	133	54	49	52
20	---	---	--	--	---	---	141	128	135	54	50	52
21	---	---	---	--	---	---	137	133	136	57	54	55
22	--	---	--	-	---	--	139	132	137	56	52	54
23	---	---	---	---	---	---	138	131	135	54	52	53
24	--	---	---	---	---	--	133	118	128	56	53	55
25	-	-	---	--	--	---	126	116	121	58	56	57
26	---	---	---	---	---	---	128	123	126	59	56	58
27	---	---	---	--	--	--	126	123	125	61	59	59
28	-	-	---	--	--	---	129	125	126	62	61	61
29	---	---	---	---	---	---	135	122	128	63	59	62
30	---	---	---	---	---	--	129	126	128	62	61	62
31	---	-	--	---	-	---	,	---	---	62	61	61
MONTH	---	---	---	---	---	-	---	-	---	130	49	74
	JUNE			JULY			AUGUST			SEPTEMBER		
1	62	60	61	46	43	44	70	68	69	91	88	89
2	62	59	61	46	43	45	70	69	69	90	87	88
3	61	57	59	47	45	46	72	68	70	91	88	89
4	58	55	57	49	44	47	73	71	72	92	89	90
5	57	49	54	48	44	47	75	70	72	92	89	90
6	53	48	50	48	45	46	76	74	75	93	86	89
7	52	46	49	48	45	47	76	75	75	96	93	95
8	49	42	46	49	45	48	84	71	77	95	93	94
9	46	40	43	50	48	49	84	78	80	95	92	93
10	44	39	41	53	49	51	79	68	76	96	93	95
11	42	39	40	53	50	52	79	76	78	96	94	95
12	42	39	41	53	50	52	80	77	78	95	84	92
13	42	39	41	54	51	52	79	77	78	96	90	94
14	44	39	41	55	52	53	80	78	79	97	89	95
15	45	44	44	55	52	54	81	79	80	100	90	94
16	46	41	44	56	54	55	81	79	80	99	97	98
17	44	40	42	57	54	56	82	79	80	99	95	96
18	44	40	41	59	57	58	84	81	83	97	90	95
19	43	40	41	60	59	59	83	81	81	99	92	95
20	43	40	41	60	59	60	84	81	82	100	95	98
21	42	39	41	61	59	60	85	83	84	101	96	100
22	42	39	40	62	60	61	84	83	83	100	97	98
23	43	39	41	63	61	62	83	80	82	99	95	97
24	44	41	42	63	62	62	82	80	81	103	97	99
25	45	42	43	64	63	63	83	80	81	102	97	100
26	46	42	44	65	64	64	84	80	82	100	95	98
27	46	42	44	66	65	65	87	81	83	109	94	101
28	45	43	44	67	66	67	90	87	89	102	95	98
29	45	42	43	71	66	69	90	88	89	105	98	103
30	45	42	44	71	69	70	91	89	90	104	99	100
31	---	---	---	69	68	69	91	88	89	---	---	---
MONTH	62	39	45	71	43	56	91	68	80	109	84	95

TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06714800 LEAVENWORTH CREEK AT MOUTH NEAR GEORGETOWN, CO--Continued

DAY	MAX	MIN	MEAN									
	JUNE			JULY			AUGUST			SEPTEMBER		
1	6.7	1.3	3.3	10.7	4.0	7.1	11.9	5.6	8.7	9.5	5.4	7.5
2	7.4	. 9	3.5	9.5	4.4	6.7	11.7	6.5	9.1	9.2	6.1	7.7
3	7.7	1.3	3.8	8.4	4.6	6.5	11.0	6.8	8.7	9.4	5.5	7.7
4	6.9	1.9	3.7	10.0	4.5	6.9	11.2	6.4	8.5	10.0	6.0	8.1
5	7.9	2.1	4.0	11.0	5.3	7.8	11.1	5.1	7.9	8.5	6.4	7.7
6	6.9	1.7	3.6	11.3	5.1	7.8	11.5	5.3	8.4	7.6	6.4	7.2
7	7.3	1.0	3.6	11.6	5.1	7.9	9.8	5.8	8.0	8.0	4.4	6.3
8	7.7	1.6	3.9	10.5	5.4	7.7	9.3	5.1	7.3	8.2	4.1	6.3
9	7.3	2.3	3.9	8.7	5.6	7.2	10.1	5.6	7.8	7.7	4.8	6.4
10	6.6	2.2	3.9	11.1	5.3	7.8	9.6	4.7	7.3	8.4	4.8	6.7
11	7.4	2.0	4.1	11.7	5.2	8.1	10.5	4.3	7.5	7.8	4.9	6.6
12	5.7	2.1	3.7	11.0	5.3	8.1	10.9	5.4	8.2	8.7	5.8	6.8
13	7.3	2.3	4.2	10.7	5.6	8.0	9.9	5.9	8.0	7.7	5.0	6.4
14	5.5	2.6	4.0	11.6	5.6	8.3	9.9	6.1	8.2	6.8	4.2	5.7
15	4.2	2.8	3.6	10.5	5.0	7.7	11.0	6.3	8.8	7.3	4.4	5.9
16	8.3	2.2	4.6	10.6	6.6	8.3	10.6	6.5	8.5	7.5	3.2	5.6
17	7.7	2.5	4.8	12.1	6.5	9.0	10.0	5.3	7.9	6.4	4.1	4.9
18	8.6	2.4	4.9	9.3	6.6	8.0	11.0	6.4	8.7	4.2	1.3	3.0
19	9.0	2.5	5.3	11.3	5.7	8.3	9.4	7.2	8.4	2.8	. 2	1.4
20	9.1	3.0	5.6	11.0	5.9	8.5	10.8	6.0	8.4	4.0	1.2	2.6
21	7.5	4.1	5.6	12.1	5.4	8.5	10.2	7.4	8.9	5.8	2.0	4.0
22	8.4	4.0	5.5	11.8	5.0	8.2	9.1	7.0	8.3	6.2	3.2	4.8
23	8.9	2.5	5.4	11.8	5.1	8.3	9.4	6.2	8.0	6.3	3.7	4.9
24	9.3	3.2	5.9	11.6	5.2	8.4	9.9	5.7	8.0	6.4	3.5	4.8
25	9.3	3.2	5.7	10.6	6.1	8.2	9.7	5.8	8.1	5.1	1.8	3.8
26	9.9	3.8	6.4	10.5	5.3	7.6	9.8	6.5	8.2	1.8	. 0	. 5
27	8.7	5.1	6.5	10.6	5.0	7.6	8.8	6.1	7.5	. 5	. 0	. 1
28	8.4	4.5	6.1	10.5	6.1	8.2	9.3	5.8	7.6	3.0	. 1	1.6
29	9.8	3.4	6.3	8.9	7.4	8.1	9.5	6.0	8.0	4.8	. 9	2.9
30	9.5	4.6	6.9	11.8	5.7	8.5	9.4	6.2	8.1	5.5	1.5	3.5
31	---	---	-	11.4	5.7	8.5	9.5	5.6	7.7	-	-	-
MONTH	9.9	. 9	4.7	12.1	4.0	7.9	11.9	4.3	8.2	10.0	. 0	5.0

06714800 LEAVENWORTH CREEK AT MOUTH NEAR GEORGETOWN, CO--Continued PRECIPITATION RECORDS

PERIOD OF RECORD.--May 1995 to current year (seasonal records only).
GAGE.--Tipping bucket rain gage (no wind vanes used) with satellite telemetry. Elevation of gage is $9,320 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records poor.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 1.04 in., May 27, 1996.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.04 in., May 27.
PRECIPITATION INCHES, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996
DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	---	---	---	---	---	. 00	. 00	. 02	. 00	. 00	. 00
2	. 00	---	---	---	--	---	. 00	. 00	. 00	. 00	. 01	. 00
3	. 00	---	---	--	--	---	. 00	. 00	. 00	. 00	. 30	. 00
4	. 06	---	---	-	-	--	. 11	. 00	. 00	. 15	. 00	. 00
5	. 00	_-	---	---	-	-	. 00	. 00	. 04	. 02	. 00	. 00
6	. 00	--	---	-	-	---	. 00	. 00	. 00	. 00	. 00	. 41
7	. 00	-	---	---	-	---	. 00	. 01	. 00	. 00	. 15	. 00
8	. 00	---	---	---	---	-	. 00	. 00	. 00	. 00	. 04	. 00
9	. 00	---	---	---	---	---	. 00	. 00	. 00	. 11	. 00	. 00
10	. 00	---	---	---	---	---	. 00	. 00	. 00	. 01	. 00	. 00
11	. 00	--	---	---	---	--	. 00	. 00	. 00	. 00	. 00	. 01
12	. 00	---	---	---	---	---	. 00	. 00	. 53	. 00	. 00	. 43
13	. 00	---	--	---	---	---	. 00	. 00	. 05	. 00	. 00	. 03
14	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 02	. 48
15	. 00	---	---	---	---	---	. 00	. 00	. 78	. 01	. 00	. 02
16	. 00	---	---	---	-	---	. 00	. 00	. 00	. 00	. 00	. 00
17	. 00	---	--	---	---	---	. 00	. 00	. 00	. 00	. 04	. 09
18	. 00	--	---	---	--	---	. 00	. 00	. 00	. 13	. 00	. 03
19	. 00	-	---	---	---	---	. 00	. 00	. 00	. 01	. 11	. 39
20	. 00	---	---	---	---	---	. 00	. 00	. 04	. 00	. 01	. 08
21	. 00	-	--	---	--	---	. 00	. 00	. 08	. 00	. 11	. 00
22	. 00	---	---	---	---	---	. 00	. 00	. 13	. 00	. 10	. 01
23	. 00	--	---	-	---	--	. 00	. 00	. 00	. 00	. 05	. 06
24	. 00	---	---	-	--	--	. 00	. 14	. 00	. 00	. 00	. 19
25	. 00	---	---	---	---	---	. 00	. 38	. 00	. 00	. 00	. 10
26	. 00	--	-	---	---	---	. 00	. 01	. 07	. 06	. 00	. 02
27	. 00	--	---	---	--	---	. 00	1.04	. 00	. 00	. 10	. 00
28	. 00	---	-	---	--	-	. 00	. 35	. 18	. 01	. 08	. 00
29	. 00	---	--	---	---	---	. 00	. 02	. 00	. 14	. 00	. 00
30	. 00	---	---	---	---	---	. 00	. 00	. 00	. 01	. 00	. 00
31	. 00	---	---	---	---	---	---	. 00	---	. 03	. 00	---
TOTAL	0.06	---	--	---	--	---	0.11	1.95	1.92	0.69	1.12	2.35

06715000 CLEAR CREEK ABOVE WEST FORK CLEAR CREEK NEAR EMPIRE, CO

LOCATION.--Lat $39^{\circ} 45^{\prime} 07$ ", long $105^{\circ} 39^{\prime} 41^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{NW}^{1 / 1 / 4}$ sec.34, T. 3 S., R. 74 W., Clear Creek County, Hydrologic Unit 101900004, on left bank, 1.1 mi west of exit 232 on I-70, and 2.1 mi west of Lawson.
DRAINAGE AREA.--86.1 mi^{2}.
PERIOD OF RECORD.--October 1994 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $8,280 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of his report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	57	37	26	e25	e17	18	25	28	195	387	113	52
2	54	28	25	e24	e16	18	28	28	198	375	117	50
3	52	23	25	e24	e16	17	28	29	212	362	117	50
4	55	25	25	e23	e15	17	34	34	244	372	116	48
5	50	26	27	e24	e16	16	34	48	285	385	108	48
6	50	29	26	e23	e16	16	34	66	360	372	103	52
7	52	29	25	e22	e17	19	34	79	384	354	104	55
8	52	25	27	e21	e17	17	34	92	410	333	104	49
9	49	29	24	e19	e16	17	40	112	452	306	100	43
10	48	30	25	e19	e15	18	46	121	477	306	93	47
11	50	30	25	e20	e14	19	43	124	489	289	89	43
12	51	30	25	e20	e15	19	38	152	482	279	86	46
13	50	30	24	e20	16	19	36	182	478	264	82	54
14	46	28	21	e20	17	19	33	194	483	252	81	50
15	47	29	23	e19	17	19	30	222	473	239	79	54
16	47	28	25	e18	17	19	31	267	466	223	77	48
17	45	27	25	e17	17	19	32	306	477	218	74	45
18	44	28	24	e16	18	19	32	304	474	224	73	49
19	42	28	e25	e16	17	18	30	341	471	215	74	50
20	39	28	e25	e17	17	18	27	345	482	201	76	48
21	41	28	e26	e17	18	19	26	303	531	190	72	48
22	42	28	e25	e17	17	21	25	308	609	179	73	51
23	34	27	e26	e17	18	21	26	316	512	170	77	51
24	36	27	e26	e18	17	23	29	290	460	170	70	58
25	40	28	e25	e18	17	21	33	278	432	165	66	56
26	39	26	e26	e17	18	21	32	254	410	153	61	53
27	37	26	e25	e17	18	20	33	224	421	140	59	49
28	37	27	e24	e16	18	23	31	208	431	135	62	50
29	38	28	e24	e17	18	24	29	201	410	141	59	55
30	39	28	e24	e17	---	25	29	207	398	133	57	55
31	38	-	e23	e17	-	25	--	199	---	120	53	---
TOTAL	1401	840	771	595	485	604	962	5862	12606	7652	2575	1507
MEAN	45.2	28.0	24.9	19.2	16.7	19.5	32.1	189	420	247	83.1	50.2
MAX	57	37	27	25	18	25	46	345	609	387	117	58
MIN	34	23	21	16	14	16	25	28	195	120	53	43
AC-FT	2780	1670	1530	1180	962	1200	1910	11630	25000	15180	5110	2990

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 1996, BY WATER YEAR (WY)

MEAN	36.5	23.7	20.1	16.0	15.8	20.3	26.1	119	459	401	140	63.5
MAX	45.2	28.0	24.9	19.2	16.7	21.0	32.1	189	497	555	197	76.7
(WY)	1996	1996	1996	1996	1996	1995	1996	1996	1995	1995	1995	1995
MIN	27.9	19.3	15.4	12.8	14.8	19.5	20.2	48.6	420	247	83.1	50.2
(WY)	1995	1995	1995	1995	1995	1996	1995	1995	1996	1996	1996	1996

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1994-1996
ANNUAL TOTAL

47112		
129		
886	Jun 22	
11	Jan 16	
12	Jan 14	
93450		
471		
28		
14		

$$
\begin{array}{rlrr}
35860 & & \\
98.0 & & \\
& & \\
609 & \text { Jun } & 22 \\
\mathrm{e}_{14} & \text { Feb } & 11 \\
16 & \text { Feb } & 6 \\
650 & \text { Jun } & 22 \\
5.87 & \text { Jun } & 22 \\
71130 & & \\
310 & & \\
36 & & \\
17 & &
\end{array}
$$

112			
126			1995
98.0			1996
886	Jun 22	1995	
11	Jan 16	1995	
12	Jan 14	1995	
1030	Jun 17	1995	
6.63	Jun 17	1995	
81150			
360			
29			
16			

e-Estimated.

06716100 WEST FORK CLEAR CREEK ABOVE MOUTH NEAR EMPIRE, CO

LOCATION.--Lat $39^{\circ} 45^{\prime} 32^{\prime \prime}$, long $105^{\circ} 39^{\prime} 34^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 1 / 4} \mathrm{sec} .27$, T. 3 S., R. 74 W., Clear Creek County, Hydrologic Unit 10190004, on left bank, 60 ft downstream from frontage road bridge and 1.2 mi east of Empire.
DRAINAGE AREA.--57.6 mi ${ }^{2}$.
PERIOD OF RECORD.--October 1994 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $8,235 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by transbasin diversions. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	38	32	26	e18	e14	e11	20	29	207	310	76	40
2	37	30	25	e18	e13	e11	21	29	201	297	72	39
3	35	e30	24	e18	e13	e11	21	30	211	281	72	37
4	37	e29	25	e17	e14	e10	21	34	241	284	70	37
5	35	28	25	e17	e14	e11	21	42	283	287	67	36
6	35	31	24	e17	e15	e11	22	53	330	284	63	39
7	35	32	23	e17	e14	e12	22	65	363	275	62	37
8	35	31	24	e17	e14	e13	24	78	390	263	62	36
9	34	31	23	e17	e13	e14	28	99	423	248	61	34
10	33	31	21	e17	e13	e14	32	109	450	235	58	33
11	34	31	21	e17	e12	e14	33	115	468	220	56	33
12	35	32	21	e17	e12	e15	31	146	454	212	53	38
13	36	32	21	e16	e12	e15	30	181	457	204	52	41
14	34	31	20	e16	e13	e15	27	218	452	194	51	38
15	34	30	22	e16	e12	e16	26	243	459	181	50	41
16	33	34	e20	e16	e13	e16	27	279	441	167	49	37
17	33	33	e20	e16	e12	e16	26	289	438	162	47	34
18	32	29	e20	e15	e12	e16	27	292	441	172	47	35
19	32	28	e20	e15	e12	e16	26	317	436	160	53	37
20	31	27	e20	e16	e12	e16	25	335	444	149	53	37
21	31	27	e19	e16	e12	e17	25	302	461	136	49	37
22	32	27	e19	e16	e12	18	24	303	514	126	51	38
23	30	26	e19	e16	e12	18	24	320	463	118	51	37
24	31	26	e19	e15	e11	18	27	316	425	110	47	38
25	32	26	e19	e16	e11	21	32	322	399	105	45	37
26	32	26	e19	e16	e11	21	30	298	373	98	43	38
27	32	25	e18	e16	e11	20	31	271	368	93	46	37
28	31	25	e18	e15	e11	18	31	242	363	89	44	38
29	32	24	e18	e15	e11	18	30	226	341	92	43	39
30	32	26	e18	e15	---	18	29	221	330	88	42	38
31	31	---	e18	e14	---	19	---	212	-	80	41	---
TOTAL	1034	870	649	503	361	479	793	6016	11626	5720	1676	1116
MEAN	33.4	29.0	20.9	16.2	12.4	15.5	26.4	194	388	185	54.1	37.2
MAX	38	34	26	18	15	21	33	335	514	310	76	41
MIN	30	24	18	14	11	10	20	29	201	80	41	33
AC-FT	2050	1730	1290	998	716	950	1570	11930	23060	11350	3320	2210

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 1996, BY WATER YEAR (WY)

| MEAN | 27.7 | 22.4 | 15.7 | 13.1 | 11.8 | 14.1 | 20.8 | 121 | 389 | 290 | 98.3 | 45.9 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| MAX | 33.4 | 29.0 | 20.9 | 16.2 | 12.4 | 15.5 | 26.4 | 194 | 391 | 395 | 143 | 54.7 |
| (WY) | 1996 | 1996 | 1996 | 1996 | 1996 | 1996 | 1996 | 1996 | 1995 | 1995 | 1995 | 1995 |
| MIN | 22.0 | 15.9 | 10.4 | 9.92 | 11.1 | 12.8 | 15.3 | 47.2 | 388 | 185 | 54.1 | 37.2 |
| (WY) | 1995 | 1995 | 1995 | 1995 | 1995 | 1995 | 1995 | 1995 | 1996 | 1996 | 1996 | 1996 |

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1994 - 1996
ANNUAL TOTAL

35525.5	
97.3	
720	Jun 18
$a_{9} .5$	Jan 16
9.6	Jan 14
70460	
352	
30	
11	

30843		
84.3		
514	Jun	22
e^{2}		Mar
10	4	
11	Feb	27
560	Jun	22
6.24	Jun	22
61180		
290		
32		
14		

89.3		
94.4		1995
84.3		1996
720	Jun 18	1995
9.5	Jan 16	1995
9.6	Jan 14	1995
${ }^{\circ} 774$	Jun 18	1995
6.67	Jun 18	1995
64710		
296		
27		
11		

[^18]e-Estimated.
a-Also occurred Jan 17-20.
a-Also occurred Jan $17-$

06716500 CLEAR CREEK NEAR LAWSON, CO

LOCATION.--Lat $39^{\circ} 45^{\prime} 57^{\prime \prime}$, long $105^{\circ} 37^{\prime} 32^{\prime \prime}$, in NW $^{1} / 4 \mathrm{NW}^{1 / 4} / 4$ sec. 25 , T. 3 S., R. 74 W., Clear Creek County, Hydrologic Unit 10190004, on left bank at east edge of Lawson, 30 ft downstream from private bridge, and 2.0 mi downstream from West Fork Clear Creek.
DRAINAGE AREA.-- $147 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--March 1946 to September 1986; October 1994 to current year. Records prior to 1959 include inflow from August P. Gumlick Tunnel (formerly Jones Pass tunnel).

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $8,080 \mathrm{ft}$ above sea level, from topographic map. Mar. 29, 1946 to Sept. 30, 1967, at site 1.5 mi upstream at different datum.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural flow affected by minor transmountain diversion from Colorado River basin through Berthoud Pass ditch (see elsewhere in this report). No diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental WaterQuality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	92	63	44	e36	e31	e29	39	46	388	718	207	88
2	89	55	47	e36	31	e32	42	47	386	692	206	85
3	86	43	45	e36	33	e31	43	48	402	657	205	83
4	88	49	47	e36	33	30	46	54	452	666	201	79
5	83	52	48	e36	36	29	48	70	522	687	188	79
6	80	55	47	e35	33	28	48	93	645	670	178	85
7	83	55	45	e35	31	28	48	116	703	637	175	86
8	83	52	40	e35	29	28	49	142	800	606	172	80
9	78	55	42	e35	30	28	55	180	853	565	166	74
10	76	56	45	e35	30	30	62	200	917	547	154	75
11	78	50	44	e34	29	31	63	209	947	517	147	72
12	80	57	44	e34	29	31	58	264	939	497	140	77
13	81	57	43	e34	29	31	56	323	926	472	134	91
14	74	55	40	e35	29	31	52	362	942	450	131	84
15	75	54	38	e34	29	31	48	407	926	430	128	91
16	74	57	44	e34	29	28	50	470	913	405	125	82
17	71	56	41	e34	30	32	50	543	919	396	120	75
18	70	53	38	e33	32	31	50	548	916	406	118	78
19	67	52	e38	e33	30	30	48	609	916	394	124	84
20	63	52	e38	e33	29	30	44	629	925	374	130	80
21	66	51	e38	e32	31	33	43	562	987	356	120	79
22	69	51	e38	e32	29	35	41	567	1100	337	123	82
23	59	50	e38	e32	28	36	41	586	1000	318	125	81
24	61	49	e38	e32	29	36	45	561	907	311	116	88
25	66	50	e38	e32	29	32	52	561	853	299	108	87
26	64	48	e37	e31	30	32	50	524	804	283	102	85
27	63	47	e37	e31	29	33	53	470	810	262	102	81
28	63	42	e37	e31	32	35	50	429	811	246	103	81
29	63	49	e37	e31	e31	37	49	406	775	254	99	87
30	64	50	e37	e31	-	38	48	409	744	241	95	86
31	62	--	e37	e31	---	38	---	396	---	221	91	--
TOTAL	2271	1565	1270	1039	880	984	1471	10831	24128	13914	4333	2465
MEAN	73.3	52.2	41.0	33.5	30.3	31.7	49.0	349	804	449	140	82.2
MAX	92	63	48	36	36	38	63	629	1100	718	207	91
MIN	59	42	37	31	28	28	39	46	386	221	91	72
AC-FT	4500	3100	2520	2060	1750	1950	2920	21480	47860	27600	8590	4890

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1946 - 1986, BY WATER YEAR (WY)

[^19]
06717400 CHICAGO CREEK BELOW DEVILS CANYON, NEAR IDAHO SPRINGS, CO

LOCATION (REVISED).--Lat $39^{\circ} 42^{\prime} 53^{\prime \prime}$, long $105^{\circ} 34^{\prime} 17^{\prime \prime}$, in NW $1 / 4$ SW $^{1} / 4$ sec. 9 , T. 4 S., R. 73 W., Clear Creek County, Hydrologic Unit 10190004, on right bank, 750 ft upstream from Highway 103 bridge, 5.6 mi upstream from intersection of I-70 and Colorado Highway 103, and 5.8 mi southwest of Idaho Springs.
DRAINAGE AREA.--43.7 mi^{2}.
PERIOD OF RECORD.--October 1994 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $8,040 \mathrm{ft}$ above sea level, from topographic map. Prior to May 14, 1996, at site 750 ft downstream at different datum.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	e6.2	e6. 8	e6.0	e5.0	e5.0	e6.7	e11	52	34	11	7.1
2	12	e5.8	e6. 7	e6.0	e5.0	e5.4	e7.7	e13	51	33	11	7.0
3	12	e5.6	e6.6	e6.0	e4.9	e5.8	e7.9	e16	49	32	11	6.8
4	12	e5.3	e6. 6	e6.0	e4.8	e5.4	e8. 1	e18	49	32	11	6.8
5	12	e5.0	e6.7	e6.0	e4.9	e4.9	e8.2	e21	50	30	10	6.7
6	11	e6.0	e6.7	e5.9	e5.0	e4.4	e8.3	e23	48	23	9.8	9.7
7	11	e7. 8	e6.6	e5.9	e5.1	e4.5	e9.7	e25	43	22	11	9.9
8	11	e7. 8	e6. 5	e5.8	e5.0	e4.6	e12	e26	43	22	12	7.9
9	11	e7.7	e6.5	e5.8	e4.8	e4.5	e14	e27	43	22	11	7.6
10	11	e7.8	e6. 6	e5.7	e4.5	e4.5	e15	e28	43	23	9.8	7.4
11	11	e7.9	e6. 6	e5.6	e4.3	e4.5	e14	e29	42	20	9.4	7.4
12	11	e7.8	e6.6	e5.5	e4.2	e4.4	e12	e30	43	20	9.0	8.8
13	11	e7.8	e6.5	e5.5	e4.1	e4.4	e11	e32	44	19	8.8	11
14	10	e7.7	e6.4	e5.3	e4.0	e4.5	e9.4	e34	41	18	9.0	9.3
15	10	e7.8	e6. 3	e5.1	e4.1	e4.6	e9.4	35	49	17	9.4	13
16	10	e7.9	e6. 3	e5.0	e4.2	e4.6	e9.3	40	48	17	9.1	9.9
17	10	e7. 8	e6.3	e5.1	e4.3	e4.7	e10	43	41	16	8.7	9.1
18	9.9	e7. 8	e6.3	e5.0	e4.4	e4.7	e10	40	39	17	8.2	9.9
19	9.5	e7.7	e6.2	e5.1	e4.5	e4.8	e9.4	44	37	17	8.2	11
20	9.5	e7.7	e6.2	e5.0	e4.4	e4.8	e11	42	36	16	8.1	10
21	9.9	e7. 6	e6.2	e5.1	e4.5	e4.9	e8.9	43	37	14	8.1	10
22	10	e7.4	e6.2	e5.1	e4.5	e5.6	e7.2	44	46	13	8.9	11
23	e7.8	e7.2	e6.2	e5.1	e4.4	e6.3	e7.4	43	46	13	9.0	10
24	e9.8	e7.0	e6.2	e5.1	e4.4	e6.6	e11	42	44	13	9.1	11
25	e8.0	e6.9	e6.1	e5.1	e4.3	e6.4	e13	47	42	13	7.9	11
26	e6.1	e6. 8	e6.1	e5.1	e4.4	e5.9	e11	44	41	13	7.7	11
27	e6.1	e6.7	e6.1	e5.2	e4.3	e3. 7	e12	40	41	13	8.3	11
28	e6. 0	e6. 5	e6.1	e5.2	e4.2	e4.2	e11	46	38	12	8.8	12
29	e6.3	e6. 6	e6.0	e5.1	e4.6	e5.1	e11	52	38	13	8.5	13
30	e6.4	e6.7	e6.0	e5.1	---	e5.3	e9.8	55	35	14	7.9	13
31	e6.2	-	e6.0	e5.0	--	e5.8	---	53	35	12	7.5	-
TOTAL	299.5	212.3	197.2	167.5	131.1	154.8	305.4	1086	1299	593	287.2	289.3
MEAN	9.66	7.08	6.36	5.40	4.52	4.99	10.2	35.0	43.3	19.1	9.26	9.64
MAX	12	7.9	6.8	6.0	5.1	6.6	15	55	52	34	12	13
MIN	6.0	5.0	6.0	5.0	4.0	3.7	6.7	11	35	12	7.5	6.7
AC-FT	594	421	391	332	260	307	606	2150	2580	1180	570	574

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 1996, BY WATER YEAR (WY)

MEAN	8.68	5.85	5.23	4.76	3.99	4.41	8.52	36.0	115	59.7	18.9	12.6
MAX	9.66	7.08	6.36	5.40	4.52	4.99	10.2	36.9	186	100	28.6	15.5
(WY)	1996	1996	1996	1996	1996	1996	1996	1995	1995	1995	1995	1995
MIN	7.70	4.62	4.10	4.12	3.45	3.84	6.85	35.0	43.3	19.1	9.26	9.64
(WY)	1995	1995	1995	1995	1995	1995	1995	1996	1996	1996	1996	1996

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
$\begin{array}{clll}5022.3 & & \\ 13.7 & & \\ & & \\ 55 & \text { May } 30 \\ e_{3 .} .7 & \text { Mar } 27 \\ 4.2 & \text { Feb } 11 \\ 70 & \text { Jun } 15 \\ 5.99 & \text { Jun } 15 \\ 9960 & & \\ 40 & & \\ 8.2 & & \\ 4.8 & & \end{array}$
WATER YEARS 1995 - 1996

12441.8		
34.1		
e_{275}	Jun 19	
$\mathrm{e}_{3} .1$	Feb 18	
3.2	Feb	15
24680		
112		
7.9		
3.7		

23.6		
33.5		
13.7		1995
275		1996
3.1	Jun 19	1995
3.2	Feb 18	1995
a	Feb 15	1995
Not		
Notermined		
17100		
53		
7.8		
4.0		

e-Estimated.
a-Probably occurred June 19, 1995.

06718300 CLEAR CREEK ABOVE JOHNSON GULCH NEAR IDAHO SPRINGS, CO

LOCATION.--Lat $39^{\circ} 44^{\prime} 47$ ", long $105^{\circ} 26^{\prime} 08^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 4} / 4$ sec.34, T. 3 S., R. 72 W., Clear Creek County, Hydrologic Unit 10190004, on left bank 150 ft downstream from I-70 exit 243 bridge over Clear Creek, and 2 mi east of Idaho Springs.
DRAINAGE AREA.-- $267 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--October 1994 to present.
GAGE.--Water-stage recorder. Elevation of gage is $7,210 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	142	91	70	e56	e49	46	62	88	614	982	252	142
2	135	82	70	e56	e48	46	67	91	608	955	248	142
3	127	72	67	e56	e46	47	68	95	629	916	248	136
4	132	73	68	e57	e45	49	72	109	704	878	245	130
5	127	79	70	e57	e47	45	73	138	804	846	231	128
6	121	80	69	e58	e50	42	74	179	972	821	223	152
7	127	79	66	e57	e49	45	76	230	1010	783	226	151
8	126	75	62	e56	e48	50	79	295	1060	753	226	139
9	121	78	e62	e56	e46	45	92	350	1160	700	218	130
10	119	81	e61	e57	e44	45	106	372	1220	672	203	131
11	120	74	e61	e58	e45	46	110	370	1260	634	197	128
12	135	81	e60	e59	e46	47	98	430	1260	614	190	132
13	138	81	e60	e57	e45	46	95	500	1220	578	187	156
14	126	79	e58	e56	e45	48	87	551	1240	549	185	149
15	128	77	56	e57	e46	46	82	614	1220	520	183	164
16	126	80	e58	e56	43	47	85	759	1220	484	181	142
17	122	79	e58	e56	45	47	87	859	1210	471	181	133
18	124	75	e59	e55	49	48	87	836	1190	489	178	143
19	126	73	e59	e53	45	45	87	908	1180	473	185	144
20	117	73	e58	e51	44	45	79	933	1180	439	196	136
21	106	72	e58	e52	48	50	79	839	1260	413	179	132
22	104	72	e58	e53	46	53	75	843	1380	389	185	137
23	90	69	e57	e54	43	54	76	868	1300	367	196	136
24	94	69	e58	e52	46	55	88	837	1200	358	183	143
25	100	73	e58	e52	45	54	101	854	1140	352	168	143
26	99	69	e58	e52	45	55	94	799	1090	347	160	140
27	94	69	e57	e51	47	52	99	702	1090	327	160	136
28	93	68	e57	e51	47	55	95	653	1090	309	163	135
29	93	72	e58	e51	47	57	91	637	1050	315	158	143
30	95	72	e57	e50	---	60	91	649	1010	287	153	143
31	91	---	e56	e50	--	61	-	626	---	260	147	-
TOTAL	3598	2267	1884	1692	1339	1531	2555	17014	32571	17281	6035	4196
MEAN	116	75.6	60.8	54.6	46.2	49.4	85.2	549	1086	557	195	140
MAX	142	91	70	59	50	61	110	933	1380	982	252	164
MIN	90	68	56	50	43	42	62	88	608	260	147	128
AC-FT	7140	4500	3740	3360	2660	3040	5070	33750	64600	34280	11970	8320

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 1996, BY WATER YEAR (WY)

[^20]b-Maximum gage height, 8.23 ft, Jun 17, 1995.

06718550 NORTH CLEAR CREEK ABOVE MOUTH NEAR BLACKHAWK, CO

LOCATION.--Lat $39^{\circ} 44^{\prime} 56^{\prime \prime}$, long $105^{\circ} 23^{\prime} 57$ ", in $\mathrm{NE}^{1 / 1} \mathrm{SWW}^{1 / 4}$ sec.36, T. 3 S., R. 72 W., Clear Creek County, Hydrologic Unit 10190004, on left bank 150 ft upstream from intersection of Hwy 6 and Hwy 119 bridge over North Clear Creek and 6.5 mi southeast of Blackhawk.

DRAINAGE AREA.--59.4 mi^{2}.
PERIOD OF RECORD.--October 1994 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $6,910 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.6	4.7	4.7	e4.0	e3.3	e3.3	8.0	21	83	26	6.3	3.0
2	6.1	3.6	4.4	e4.0	e3.2	e3.4	8.8	23	84	25	5.7	2.8
3	5.9	3.5	4.1	e4.0	e3.1	e3.5	8.8	26	81	23	5.7	2.4
4	6.2	4.0	4.1	e4.0	e3.0	e3.6	9.1	31	78	21	5.6	2.4
5	5.8	4.3	4.2	e4.0	e2.9	e3.7	8.7	41	82	23	5.1	2.5
6	5.7	4.3	4.2	e3.9	e3.0	e3.6	9.3	50	85	22	4.6	4.0
7	6.1	4.1	3.9	e3.8	e3.0	e3.5	10	57	83	20	4.7	4.2
8	6.2	4.1	e4.1	e3.7	e2.9	e3.4	12	64	81	19	4.8	3.0
9	5.9	4.4	e4.1	e3.5	e2. 8	e3.4	15	70	80	19	4.8	2.7
10	5.7	4.4	e4.0	e3.5	e2.7	e3. 5	e18	72	78	18	4.7	2.6
11	5.4	3.9	e3.9	e3.7	e2. 6	e3.6	18	73	76	e16	4.5	2.4
12	5.4	4.8	e4.0	e3.6	e2.7	e3.7	16	79	73	e14	4.1	3.2
13	5.9	4.9	e3.9	e3.6	e2.7	e3.8	16	87	72	14	3.7	3.0
14	5.5	4.8	e3.6	e3.5	e2.7	e4.0	15	93	68	12	3.7	4.1
15	5.6	4.6	e3.8	e3.5	e2.7	e4.2	14	98	78	12	4.0	10
16	5.4	4.4	e4.0	e3. 5	e2. 7	e4.3	15	105	70	12	4.1	4.2
17	5.2	4.4	e4.0	e3.4	e2.7	e4.5	16	111	60	11	4.0	4.0
18	5.1	4.4	e4.0	e3.3	e2. 8	e4.7	16	114	56	10	3.9	6.9
19	4.8	4.4	e4.0	e3.4	e2.9	e4.8	16	116	52	10	3.9	8.2
20	4.4	4.2	e4.0	e3.4	e2.9	e4.9	15	112	50	9.0	5.1	5.8
21	4.6	3.8	e4.0	e3. 5	e2.9	e5.1	15	103	50	8.3	4.2	4.8
22	5.0	4.1	e4.0	e3.6	e2. 8	e5.3	15	95	50	7.5	4.0	4.9
23	4.1	4.0	e4.0	e3.7	e3.0	5.5	15	90	43	7.0	4.6	4.5
24	3.8	4.0	e4.0	e3.6	e2.9	5.5	17	88	39	6.7	4.4	4.6
25	4.9	4.3	e4.0	e3.5	e2. 8	5.8	23	106	37	6.7	3.8	4.4
26	5.2	4.2	e4.0	e3.4	e2.9	6.6	21	100	35	6.8	3.4	5.4
27	5.2	3.6	e4.0	e3.4	e3.0	6.1	22	88	34	6.4	3.3	5.2
28	4.8	3.4	e4.0	e3.4	e3.0	5.7	23	80	33	5.8	3.7	5.1
29	4.8	4.9	e4.0	e3.4	e3.2	6.6	22	81	31	8.0	3.3	5.7
30	4.8	5.0	e4.0	e3.3		6.9	22	78	28	8.6	3.3	5.5
31	4.8	---	e4.0	e3.3	---	7.4	---	78	---	6.5	3.3	---
TOTAL	164.9	127.5	125.0	111.4	83.8	143.9	459.7	2430	1850	414.3	134.3	131.5
MEAN	5.32	4.25	4.03	3.59	2.89	4.64	15.3	78.4	61.7	13.4	4.33	4.38
MAX	6.6	5.0	4.7	4.0	3.3	7.4	23	116	85	26	6.3	10
MIN	3.8	3.4	3.6	3.3	2.6	3.3	8.0	21	28	5.8	3.3	2.4
$\mathrm{AC}-\mathrm{FT}$	327	253	248	221	166	285	912	4820	3670	822	266	261

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 1996, BY WATER YEAR (WY)

[^21]$\mathrm{b}-$ From rating curve extended above $300 \mathrm{ft}^{3} / \mathrm{s}$.

06719505 CLEAR CREEK AT GOLDEN, CO

LOCATION.--Lat $39^{\circ} 45^{\prime} 11^{\prime \prime}$, long $105^{\circ} 14^{\prime} 05^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{NW}^{1 / 4}$ sec. 33 , T. 3 S., R. 70 W., Jefferson County, Hydrologic Unit 10190004, on left bank 100 ft downstream from U.S. Highway 6 bridge at west edge of Golden, 0.7 mi downstream from headgate of Church ditch, and 13.3 mi downstream from North Clear Creek.
DRAINAGE AREA.--400 mi^{2}.
PERIOD OF RECORD.--October 1974 to current year. Records for station at site 0.8 mi upstream (October 1908 to December 1909, June 1911 to September 1974) are not equivalent due to diversions by Church ditch. Water-quality data available November 1977 to August 1995. Sediment data available April to September 1981, and April 1993 to August 1995.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,695 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by minor transmountain diversions from Colorado River basin through Berthoud Pass ditch (see elsewhere in this report) and several small reservoirs upstream from station. Diversion by Welch ditch 1.4 mi upstream from station and by Church Ditch 0.7 mi upstream from station for irrigation of about 5,200 acres downstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e107	79	60	e34	e40	e40	69	81	541	819	189	124
2	e100	71	59	e34	e40	e42	73	96	533	783	181	123
3	e92	58	55	e34	e40	e45	78	100	540	718	179	115
4	e97	63	55	e34	e40	e48	81	116	604	702	180	107
5	e92	69	56	e34	e40	50	82	148	686	757	166	105
6	e86	70	55	e34	e40	44	82	174	881	728	157	132
7	e92	67	53	e34	e40	e45	87	200	932	676	166	140
8	e91	64	50	e35	e40	e46	88	262	990	637	170	124
9	e86	64	46	e36	e40	e48	103	302	1100	583	162	114
10	e84	69	e46	e36	e40	49	124	323	1160	559	149	110
11	e85	58	e45	e36	e41	48	132	326	1180	516	140	108
12	e100	72	e44	e36	e41	50	119	370	1170	494	143	116
13	e103	70	e43	e36	e42	49	116	443	1130	463	143	140
14	e91	69	e42	e36	48	53	101	499	1170	436	153	131
15	e93	66	41	e36	47	50	89	550	1140	414	161	171
16	e91	66	e40	e36	46	51	94	679	1150	380	161	127
17	e87	67	e38	e36	43	51	95	815	1110	364	166	116
18	e79	65	e36	e36	48	48	87	782	1090	382	162	126
19	83	61	e33	e37	45	48	79	851	1080	386	164	138
20	78	61	30	e38	43	50	68	886	1090	353	183	129
21	64	61	e31	e38	47	53	71	766	1160	330	163	119
22	61	61	e31	e38	46	57	62	763	1290	312	163	123
23	55	59	e31	e38	42	58	56	784	1200	289	179	123
24	52	58	e31	e38	43	61	63	755	1070	281	168	122
25	63	60	e31	e38	44	e50	75	825	1010	273	150	110
26	63	61	e32	e38	43	e58	77	796	932	271	142	111
27	55	59	e32	e38	43	e60	77	661	950	253	139	103
28	55	51	e33	e38	40	58	80	592	947	237	152	96
29	55	58	e33	e38	35	64	74	568	908	244	142	107
30	57	62	e34	e40	--	65	74	573	855	230	139	108
31	64	-	e34	e40	---	66	---	550	---	199	133	---
TOTAL	2461	1919	1280	1130	1227	1605	2556	15636	29599	14069	4945	3618
MEAN	79.4	64.0	41.3	36.5	42.3	51.8	85.2	504	987	454	160	121
MAX	107	79	60	40	48	66	132	886	1290	819	189	171
MIN	52	51	30	34	35	40	56	81	533	199	133	96
AC-FT	4880	3810	2540	2240	2430	3180	5070	31010	58710	27910	9810	7180

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 1996, BY WATER YEAR (WY)

[^22]
06720500 SOUTH PLATTE RIVER AT HENDERSON, CO

LOCATION.--Lat $39^{\circ} 55^{\prime} 19{ }^{\prime \prime}$, long $104^{\circ} 52^{\prime} 00^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec.34, T. 1 S., R. 67 W., Adams County, Hydrologic Unit 10190003, on right bank 500 ft upstream from bridge on State Highway 22 and 0.2 mi northwest of Henderson.
DRAINAGE AREA.--4,713 mi ${ }^{2}$.
PERIOD OF RECORD.--May 1926 to current year. Prior to October 1933, monthly discharge only, published in WSP 1310. Waterquality data available, July 1955 to September 1957, June 1962 to September 1973, and April 1988 to September 1995.
REVISED RECORDS.--WSP 1310: 1934-36(M). WSP 1730: Drainage area. WDR C0-88-1: 1986.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $5,003.12 \mathrm{ft}$ above sea level. See WSP 1710 or 1730 for history of changes prior to June 1, 1960. June 1, 1960, to May 10, 1969, water-stage recorder at site $1,200 \mathrm{ft}$ upstream at datum 2.00 ft , higher. May 11 to Oct. 2, 1969, nonrecording gage at site 500 ft downstream at present datum.
REMARKS.--Records good. Natural flow of stream affected by transmountain diversions, storage reservoirs, ground-water withdrawals, diversions for irrigation of about 253,000 acres, and return flow from irrigated areas.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^23]b-Maximum daily discharge for period of record, $13200 \mathrm{ft}^{3} / \mathrm{s}$, May 7,1973
C-Minimum daily discharge for period of record, $4.4 \mathrm{ft}^{3} / \mathrm{s}, \mathrm{Apr} 1,1950$.
-Maximum discharge and stage for period of record, $33000 \mathrm{ft}^{3} / \mathrm{s}$, May 6,1973 , gage height, 11.67 ft , from rating curve extended above $7200 \mathrm{ft}^{3} / \mathrm{s}$, partly on basis of flow-over-road measurement of peak flow; maximum gage height, 12.93 ft , Jun 17 , 1965 , site and datum then in use.
f-Maximum gage height for statistical period, $9.91 \mathrm{ft}, \mathrm{May} 17,1995$.

06720990 BIG DRY CREEK AT MOUTH NEAR FORT LUPTON, CO

LOCATION.--Lat $40^{\circ} 04^{\prime} 09^{\prime \prime}$, long $104^{\circ} 49^{\prime} 52^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec. 12 , T. 1 N., R. 67 W., Weld County, Hydrologic Unit 10190003, on left bank 1.0 mi west of State Highway 85, 1.1 mi south of State Highway 52, and 25 mi northeast of Denver.
DRAINAGE AREA.-- $107 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--October 1991 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $4,900 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records poor. Natural flow of stream affected by storage reservoirs, diversions for irrigation, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	77	14	25	e19	e19	e34	e64	9.3	70	24	65	51
2	62	14	24	e20	e19	e35	e66	9.7	63	17	46	51
3	56	17	25	e20	e19	e36	e72	15	53	11	33	46
4	40	19	24	e20	e19	e36	68	12	44	9.3	37	46
5	32	19	23	e20	e19	e36	79	11	50	9.2	43	48
6	26	19	23	e20	e19	e36	87	13	47	15	39	48
7	23	21	22	e21	e20	e36	77	15	42	71	35	e47
8	24	24	21	e22	e21	e38	69	21	35	57	35	e45
9	27	24	23	e22	e22	e38	47	38	33	47	44	e43
10	30	24	26	e22	e23	e38	29	76	35	177	46	e42
11	26	26	23	e22	e25	e38	22	34	27	106	45	e40
12	26	26	23	e22	e25	e38	19	22	21	56	40	82
13	26	26	22	e22	e25	e38	51	20	26	111	37	88
14	28	26	20	e22	e26	e40	85	21	26	100	40	47
15	30	26	20	e22	e27	e41	73	18	33	52	58	56
16	27	26	21	e21	e28	e41	57	23	84	33	47	61
17	26	25	23	e20	e28	e41	40	31	69	27	37	45
18	26	26	23	e20	e28	e41	36	20	52	21	31	50
19	26	26	e19	e20	e31	e42	30	16	34	17	24	154
20	27	26	e19	e20	e32	e45	22	21	24	19	28	111
21	24	27	e19	e20	e32	e47	25	15	21	12	33	90
22	25	27	e19	e20	e32	e49	31	15	42	8.8	31	85
23	34	26	e19	e20	e32	e50	29	17	75	9.0	50	83
24	34	26	e19	e19	e33	e50	22	27	79	10	48	81
25	29	26	e19	e19	e34	e52	18	101	58	9.3	40	82
26	27	25	e19	e19	e34	e55	13	208	39	25	39	88
27	29	26	e19	e19	e34	e58	9.4	262	24	34	71	79
28	26	34	e19	e19	e34	e60	10	120	24	39	75	77
29	30	28	e19	e19	e34	e61	9.5	108	44	81	54	67
30	25	26	e19	e19	---	e 62	15	98	38	81	54	65
31	16	---	e19	e19	---	e 62	---	87	---	78	50	---
TOTAL	964	725	658	629	774	1374	1274.9	1504.0	1312	1366.6	1355	1998
MEAN	31.1	24.2	21.2	20.3	26.7	44.3	42.5	48.5	43.7	44.1	43.7	66.6
MAX	77	34	26	22	34	62	87	262	84	177	75	154
MIN	16	14	19	19	19	34	9.4	9.3	21	8.8	24	40
AC-FT	1910	1440	1310	1250	1540	2730	2530	2980	2600	2710	2690	3960

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1996, BY WATER YEAR (WY)

06721500 NORTH ST. VRAIN CREEK NEAR ALLENS PARK, CO

LOCATION.--Lat. $40^{\circ} 13^{\prime} 08^{\prime \prime}$, long $105^{\circ} 31^{\prime} 40^{\prime \prime}$, in $\mathrm{SW}^{1 / 1} / \mathrm{SE}^{1 / 4}$ sec. 14 , T. 3 N., R. 73 W., Boulder County, Hydrologic Unit 10190005, on left bank 64 ft upstream from bridge on Colorado Highway 7, 0.8 mi upstream from Horse Creek, and 1.7 mi north of Allens Park.
DRAINAGE AREA.-- $32.6 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--October 1925 to September 1930. October 1986 to current year.
REVISIONS.--WDR CO-91-1: 1987, 1988, 1989 (M).
GAGE.--Water stage recorder with satellite telemetry. Elevation of gage is $8,280 \mathrm{ft}$ above sea level, from topographic map. Oct. 1, 1926 to June 6, 1929, water-stage recorder at present site at different datum. June 6, 1929 to Sept. 30, 1930 at site 300 ft downstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. No diversions upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	23	13	e9.6	e6. 4	e5.2	e4.9	9.9	20	134	229	81	37
2	21	e13	e9.5	e6. 2	e5.2	e4.9	11	21	134	221	80	36
3	20	e12	e9.4	e6.0	e5.1	e4.9	11	21	153	219	88	33
4	22	e12	e9.3	e6.0	e5.1	e5.1	11	27	198	215	83	33
5	21	e12	e9.3	e5.9	e5.1	e5.4	11	38	269	215	77	33
6	23	e12	e9.2	e5.8	e5.1	e5.6	e11	51	313	245	68	49
7	22	e11	e9.2	e5.7	e5.1	e5.6	12	60	285	235	65	46
8	20	11	e9.1	e5.7	e5.0	e5.8	15	78	296	205	63	41
9	19	11	e9.1	e5.7	e5.0	e6.3	23	95	320	182	62	37
10	19	e11	e9.0	e5.7	e5.0	6.8	29	94	326	163	59	35
11	19	e11	e8.9	e5.7	e5.0	7.0	29	95	321	162	56	34
12	20	e11	e8.8	e5.7	e5.0	7.1	25	117	312	158	54	33
13	23	e12	e8.8	e5.7	e5.0	e7.0	22	130	329	148	52	36
14	18	e12	e8.7	e5.7	e5.0	7.2	19	136	311	142	52	36
15	19	e11	e8.6	e5.6	e4.9	e7.1	e18	148	298	137	51	37
16	18	e11	e8.4	e5.6	e4.9	7.1	19	207	305	133	54	33
17	17	e11	e8.3	e5.6	e4.9	7.1	21	251	321	139	51	32
18	16	11	e7.9	e5.6	e4.9	e7.4	e19	233	314	143	52	34
19	15	11	e7.7	e5.5	e4.9	e7.5	e18	268	291	136	56	38
20	12	11	e7.6	e5.5	e4.9	e7.5	e18	231	290	133	54	35
21	14	e11	e7.4	e5.5	e4.9	e7.2	e16	167	348	125	53	34
22	14	e10	e7.3	e5.5	e4.9	e7. 5	16	169	385	114	53	35
23	12	10	e7.1	e5.5	e4.9	8.0	16	197	310	105	50	41
24	e13	e10	e6.9	e5.5	e4.9	e8.1	22	200	282	100	47	57
25	e13	10	e6. 8	e5.5	e4.9	e8.2	33	229	273	92	45	55
26	13	10	e6. 6	e5.5	e4.9	e8.3	27	181	257	85	44	52
27	12	e10	e6. 6	e5.5	e4.8	e8. 5	23	145	261	81	44	45
28	12	e10	e6.5	e5.4	e4.8	e8.6	22	127	250	78	43	43
29	12	e9.8	e6.5	e5.4	e4.7	e8.8	e22	122	232	94	41	45
30	13	e9.7	e6.4	e5.4	---	9.0	21	131	230	100	41	47
31	13	---	e6.4	e5.4	---	9.4	-	131	---	87	39	---
TOTAL	528	330.5	250.9	175.4	144.0	218.9	569.9	4120	8348	4621	1758	1182
MEAN	17.0	11.0	8.09	5.66	4.97	7.06	19.0	133	278	149	56.7	39.4
MAX	23	13	9.6	6.4	5.2	9.4	33	268	385	245	88	57
MIN	12	9.7	6.4	5.4	4.7	4.9	9.9	20	134	78	39	32
AC-FT	1050	656	498	348	286	434	1130	8170	16560	9170	3490	2340

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1926 - 1996 , BY WATER YEAR (WY)

[^24]b-Maximum discharge, 1,000 $\mathrm{ft}^{3} / \mathrm{s}$, estimated, occurred Jun 9, 1929, caused by failure of Copeland Dam 0.5 mi upstream, gage height not determined.

06724000 ST. VRAIN CREEK AT LYONS, CO

LOCATION.--Lat $40^{\circ} 13^{\prime} 05^{\prime \prime}$, long $105^{\circ} 15^{\prime} 34^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{NW}^{1 / 4} / 4 \mathrm{sec} .20$, T. 3 N., R. 70 W., Boulder County, Hydrologic Unit 10190005, on left bank 75 ft southwest of U.S. Highway 36 (State Highways 7 and 66) at southeast edge of Lyons, 400 ft upstream from St. Vrain Supply Canal, and 0.4 mi downstream from confluence of North and South St. Vrain Creeks.
DRAINAGE AREA.--212 mi^{2}.
PERIOD OF RECORD.--Streamflow records, August 1887 to September 1891, June 1895 to current year. Monthly discharge only for some periods, published in WSP 1310. Published as "near Lyons" 1901, 1903. Water-quality data available, October 1977 to February 1981.
REVISED RECORDS.--WSP 1310: 1898, 1900. WSP 1730: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,292 \mathrm{ft}$ above sea level, from topographic map. Prior to Apr. 6, 1923, nonrecording gages near present site at different datums. Apr. 6, 1923, to Sept. 30, 1956, water-stage recorder at same site at datum 1.00 ft , higher.
REMARKS.--No estimated daily discharges. Records good. Diversions upstream from station for irrigation of about 2,000 acres. Flow partly regulated by small reservoirs upstream from station.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
EXTREMES OUTSIDE PERIOD OF RECORD.--Outstanding floods occurred in June 1864 and May 1876. Flood in May or June 1894 reached a stage of 9.13 ft , from information by local resident, discharge, about $9,800 \mathrm{ft}^{3} / \mathrm{s}$. For discussions of these floods, see WSP 997.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

a-Also occurred Jan 20, 1922 and Jan 12-13, 1950.

06725450 ST. VRAIN CREEK BELOW LONGMONT, CO

LOCATION.--Lat $40^{\circ} 09^{\prime} 30^{\prime \prime}$, long $105^{\circ} 00^{\prime} 48^{\prime \prime}$, in NW ${ }^{1} / 4 \mathrm{NW}^{1 / 4} 4$ sec. 9 , T. 2 N., R. 68 W., Weld County, Hydrologic Unit 10190005, on left bank 1,750 ft upstream from mouth of Boulder Creek, 1.8 mi downstream from Spring Gulch, and 4.7 mi southeast of Longmont.
DRAINAGE AREA.--424 mi ${ }^{2}$.
PERIOD OF RECORD.--October 1976 to September 1982, August 1984 to current year. Water-quality data available, October 1976 to February 1981.

GAGE.--Water-stage recorder. Elevation of gage is $4,852 \mathrm{ft}$, above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, diversions for irrigation, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	84	56	51	e38	e47	e48	e40	33	314	287	177	107
2	80	57	47	e38	e47	e50	38	36	296	259	174	109
3	82	45	42	e38	e44	e50	37	32	271	247	172	109
4	82	41	e42	e38	e40	e47	47	32	289	226	171	106
5	73	39	e42	e38	e43	e42	61	31	345	213	167	101
6	67	37	e42	e38	e48	e42	39	46	525	223	162	107
7	71	35	e42	e38	e 56	e42	36	83	478	218	157	110
8	71	39	e42	e39	e56	e 42	35	46	447	222	154	103
9	71	36	e38	e40	e52	e42	37	34	464	275	156	97
10	70	38	e40	e40	e50	e42	44	42	438	328	152	93
11	63	34	e42	e40	e45	e42	64	36	361	261	149	93
12	62	32	e44	e40	e45	e45	35	e28	307	249	157	102
13	60	37	e44	e40	e45	e50	33	e48	345	265	156	104
14	58	39	e40	e40	e45	e62	32	e70	379	227	155	112
15	59	38	e38	e40	e45	e54	32	e150	437	217	161	152
16	65	34	e38	e40	e45	e50	32	e140	570	207	164	110
17	68	30	e38	e40	e45	e46	31	e110	571	198	150	102
18	68	32	e38	e40	e45	e46	31	e135	539	198	147	125
19	63	29	e38	e40	e45	e45	32	e180	456	196	148	167
20	66	46	e38	e40	e45	e45	34	e280	360	190	151	110
21	64	44	e38	e40	e45	e40	33	e250	442	183	118	96
22	54	37	e38	e40	e45	e42	35	e220	868	186	110	90
23	67	48	e37	e40	e45	e47	34	e240	751	182	123	85
24	72	48	e35	e40	e45	e54	34	e260	561	177	138	89
25	72	46	e35	e40	e45	e48	30	e280	511	172	139	93
26	81	45	e37	e40	e45	e43	28	e300	463	174	123	109
27	75	55	e38	e40	e45	e42	28	e320	373	174	109	108
28	70	49	e38	e40	e45	e42	28	e340	396	218	112	92
29	44	49	e38	e40	e46	e 42	29	e380	355	230	113	83
30	49	55	e38	e40	---	e41	29	e387	303	198	111	77
31	58	--	e38	e44	--	e41	-	320	---	186	108	---
TOTAL	2089	1250	1236	1229	1339	1414	1078	4889	13215	6786	4484	3141
MEAN	67.4	41.7	39.9	39.6	46.2	45.6	35.9	158	440	219	145	105
MAX	84	57	51	44	56	62	64	387	868	328	177	167
MIN	44	29	35	38	40	40	28	28	271	172	108	77
AC-FT	4140	2480	2450	2440	2660	2800	2140	9700	26210	13460	8890	6230

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1976 - 1996, BY WATER YEAR (WY)

06730200 BOULDER CREEK AT NORTH 75TH STREET NEAR BOULDER, CO

LOCATION.--Lat $40^{\circ} 03^{\prime} 06^{\prime \prime}$, long $105^{\circ} 10^{\prime} 42^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{NW}^{1} / 4 \sec .13$, T. 1 N., R. 70 W., Boulder County, Hydrologic Unit 1019005, on left bank, 50 ft upstream from bridge on North 75th Street, 0.2 mi downstream from Boulder feeder ditch, and 6 mi northeast of Boulder.

DRAINAGE AREA.--304 mi ${ }^{2}$.
PERIOD OF RECORD.--October 1986 to current year.
GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Elevation of gage is $5,106 \mathrm{ft}$ above sea level, from topographic map.

REMARKS.--No estimated daily discharges. Records good. Flow is partially regulated by Barker Reservoir, and affected by Boulder feeder ditch, Boulder sewage treatment plant, and Public Service power plant. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	оСт	NOV	DEC	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP
1	76	79	72	61	64	64	69	61	168	373	113	81
2	78	64	53	58	65	59	68	55	138	339	115	67
3	85	51	48	67	50	61	58	63	133	274	113	65
4	75	49	49	67	47	53	67	69	134	271	115	72
5	76	54	49	62	59	53	76	87	134	289	125	87
6	74	55	50	60	73	52	71	119	142	316	118	102
7	61	51	51	62	78	50	70	159	135	314	119	111
8	66	66	50	66	75	47	72	206	136	287	144	101
9	70	74	42	68	75	50	88	237	146	335	185	91
10	73	72	48	71	64	52	108	229	143	413	204	79
11	71	74	50	67	57	51	114	174	132	313	201	69
12	65	71	52	55	62	47	111	165	173	265	194	83
13	78	73	54	69	62	55	108	203	170	242	196	84
14	72	64	47	63	63	93	102	259	195	194	201	130
15	67	56	46	57	64	65	95	308	482	185	214	110
16	70	53	46	56	61	62	94	281	543	162	212	73
17	66	50	45	68	59	59	94	270	510	161	196	71
18	63	56	49	61	59	54	80	320	458	186	168	112
19	74	51	45	54	68	54	70	394	424	181	170	148
20	79	53	46	48	66	53	68	453	447	168	179	82
21	69	49	46	51	64	53	71	402	509	150	176	70
22	90	46	46	62	61	45	74	355	754	147	178	61
23	79	43	44	56	56	55	83	375	597	150	175	63
24	65	46	48	59	53	77	132	389	476	139	170	72
25	62	46	38	57	52	60	130	670	430	131	163	84
26	69	46	50	54	56	64	114	707	394	131	158	110
27	76	62	38	49	58	60	138	550	413	128	153	114
28	63	51	49	54	50	61	109	410	436	121	163	100
29	62	53	59	52	57	62	98	314	397	139	160	90
30	63	49	57	45	---	64	74	251	375	132	137	94
31	60	--	60	64	---	63	---	204	-	115	112	---
TOTAL	2197	1707	1527	1843	1778	1798	2706	8739	9724	6751	5027	2676
MEAN	70.9	56.9	49.3	59.5	61.3	58.0	90.2	282	324	218	162	89.2
MAX	90	79	72	71	78	93	138	707	754	413	214	148
MIN	60	43	38	45	47	45	58	55	132	115	112	61
AC-FT	4360	3390	3030	3660	3530	3570	5370	17330	19290	13390	9970	5310

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1987 - 1996, BY WATER YEAR (WY)

a-Also occurred Dec 27.

06730500 BOULDER CREEK AT MOUTH NEAR LONGMONT, CO

LOCATION.--Lat $40^{\circ} 09^{\prime} 08^{\prime \prime}$, long $105^{\circ} 00^{\prime} 52^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{SW}^{1 / 1} 4$ sec. 9 , T. 2 N., R. 68 W., Weld County, Hydrologic Unit 10190005, on left bank 0.6 mi upstream from mouth, 1.0 mi downstream from State Highway 254, and 4.8 mi southeast of Longmont.
DRAINAGE AREA.--439 mi^{2}.
PERIOD OF RECORD.--March 1927 to September 1949, May 1951 to September 1955, October 1978 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $4,860 \mathrm{ft}$ above sea level, from topographic map. Prior to June 10, 1939, at site 0.8 mi upstream at different datum. June 10, 1939, to Sept. 30, 1949, at site 1.0 mi upstream, at different datum. May 1, 1951, to Sept. 30, 1955, at site 1.4 mi upstream, at different datum.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain, transbasin, and storage diversions, diversions for irrigation, water-treatment plants, and return flows from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e75	66	84	73	e72	e76	e80	11	203	325	15	5.8
2	e65	54	74	81	e72	e74	e80	11	166	257	9.1	6.1
3	e56	46	67	73	e70	e74	72	8.2	141	185	6.8	7.1
4	43	47	69	77	e62	e66	72	8.2	137	143	6.7	7.0
5	79	48	75	80	e66	e65	92	8.9	127	122	6.5	8.4
6	94	44	71	e83	e74	e64	99	11	122	126	5.3	9.8
7	76	43	69	e82	e86	e58	87	23	98	124	4.9	21
8	79	59	69	e80	e86	e58	83	9.7	95	112	4.7	19
9	86	63	78	e78	e84	e58	92	11	91	108	4.2	14
10	93	70	68	e67	e80	e58	112	64	83	377	5.4	13
11	98	77	66	e70	e72	e58	114	26	64	213	5.1	14
12	88	53	61	e68	e74	e58	117	11	70	167	4.8	30
13	93	41	67	e67	e74	e80	113	12	75	215	4.0	60
14	92	42	60	e66	e74	e110	111	28	67	128	4.0	66
15	91	39	67	e64	e74	e76	103	71	335	102	4.9	118
16	94	42	61	e64	e74	e68	100	60	527	79	5.3	52
17	91	55	69	e63	e72	e64	96	15	515	58	4.8	36
18	72	39	69	e62	e70	e63	89	34	433	60	5.7	67
19	69	42	54	e61	e74	e62	76	111	388	53	6.5	231
20	64	69	69	e61	e76	e62	73	197	421	40	6.7	88
21	54	67	65	e61	e74	e56	76	181	449	22	9.5	60
22	64	69	74	e61	e74	e50	66	161	842	13	10	52
23	60	71	76	e61	e72	e58	47	166	656	10	9.3	47
24	54	67	74	e61	e72	e84	81	164	427	9.3	8.4	50
25	52	68	e78	e61	e68	e66	82	686	387	8.6	7.1	57
26	56	68	e80	e61	e68	e64	56	807	370	8.1	6.3	89
27	55	81	e82	e61	e72	e66	72	776	379	8.0	6.3	106
28	52	77	e84	e61	e72	e67	44	464	398	9.2	6.0	101
29	51	83	e88	e61	e66	e72	34	395	383	13	6.0	93
30	53	82	88	e61	---	e76	15	325	337	24	6.4	98
31	58	---	93	e 64	---	e78	---	250	---	19	6.3	---
TOTAL	2207	1772	2249	2094	2124	2089	2434	5106.0	8786	3138.2	202.0	1626.2
MEAN	71.2	59.1	72.5	67.5	73.2	67.4	81.1	165	293	101	6.52	54.2
MAX	98	83	93	83	86	110	117	807	842	377	15	231
MIN	43	39	54	61	62	50	15	8.2	64	8.0	4.0	5.8
AC-FT	4380	3510	4460	4150	4210	4140	4830	10130	17430	6220	401	3230

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1927 - 1996, BY WATER YEAR (WY)

[^25]b-No flow at times many years.
c-Site and datum then in use, from rating curve extended above $340 \mathrm{ft} / \mathrm{s}$, on basis of slope-area measurement of peak flow.

06731000 ST. VRAIN CREEK AT MOUTH, NEAR PLATTEVILLE, CO

LOCATION.--Lat $40^{\circ} 15^{\prime} 29^{\prime \prime}$, long $104^{\circ} 52^{\prime} 45^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NW}^{1 / 4}$ sec.3, T. 3 N., R. 67 W., Weld County, Hydrologic Unit 10190005, on right bank 140 ft downstream from bridge on county road, 1.3 mi upstream from mouth, and 4.2 mi northwest of Platteville.
DRAINAGE AREA.--976 mi^{2}.
PERIOD OF RECORD.--July 1904 to December 1906, April to December 1915, March 1927 to current year. Prior to October 1933, monthly discharge only, published in WSP 1310.

REVISED RECORDS.--WSP 956: 1938(M). WSP 1440: 1934, 1935(M). WSP 1730: 1958, drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $4,740 \mathrm{ft}$ above sea level, from topographic map. See WSP 1730 for history of changes prior to Apr. 25, 1960.
REMARKS.--Records good except for estimated daily discharges, which are fair. Diversions upstream from station for irrigation of about 177,000 acres. Flow partly regulated by many small reservoirs upstream from station.

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	201	143	186	147	128	163	139	79	591	702	342	216
2	179	150	197	144	115	162	146	78	537	616	315	212
3	174	139	175	146	98	158	138	e68	470	538	290	216
4	192	132	176	159	122	155	134	e55	477	443	287	205
5	206	131	171	148	164	150	176	68	514	391	264	198
6	243	126	172	138	196	143	191	74	633	397	236	198
7	222	125	156	145	201	136	171	97	634	479	225	253
8	214	121	154	169	220	139	e165	107	617	445	224	255
9	208	134	157	173	197	146	e160	95	612	405	223	230
10	205	139	176	170	173	140	187	155	621	890	240	211
11	199	149	181	176	150	137	213	145	567	669	259	210
12	190	150	186	154	148	129	215	108	528	567	248	343
13	187	155	191	159	151	131	212	101	544	626	246	295
14	187	140	191	157	150	242	217	126	546	520	241	288
15	175	127	176	153	155	238	191	158	722	441	255	419
16	169	122	181	154	151	185	181	179	1070	398	280	299
17	178	120	176	153	155	161	176	126	1130	358	271	242
18	173	119	173	132	151	149	172	193	1070	339	265	275
19	155	119	171	143	154	142	154	223	990	348	264	538
20	148	143	169	155	155	133	153	367	924	327	270	375
21	145	165	174	142	155	132	162	367	923	288	255	287
22	138	167	172	142	167	129	157	338	1380	276	235	251
23	151	163	166	138	165	121	137	342	1440	257	238	224
24	151	168	166	147	157	145	140	411	1130	260	272	224
25	150	168	167	151	153	156	158	975	1000	247	277	237
26	151	167	158	e95	154	143	134	1260	934	259	250	288
27	153	168	135	121	155	149	125	1690	839	276	207	317
28	151	192	132	151	147	152	130	1120	792	263	222	306
29	139	179	143	147	154	143	112	864	854	418	220	264
30	134	188	143	108	--	142	96	747	735	419	208	244
31	137	---	148	97	---	139	---	668	---	364	220	---
TOTAL	5405	4409	5219	4514	4541	4690	4842	11384	23824	13226	7849	8120
MEAN	174	147	168	146	157	151	161	367	794	427	253	271
MAX	243	192	197	176	220	242	217	1690	1440	890	342	538
MIN	134	119	132	95	98	121	96	55	470	247	207	198
AC-FT	10720	8750	10350	8950	9010	9300	9600	22580	47250	26230	15570	16110

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1927 - 1996, BY WATER YEAR (WY)

[^26]a-Also occurred Apr 9, 16.
b-Site and datum then in use, from rating curve extended above $4700 \mathrm{ft}{ }^{3} / \mathrm{s}$.

402114105350101 BIG THOMPSON RIVER BELOW MORAINE PARK NEAR ESTES PARK, CO

LOCATION.--Lat $40^{\circ} 21^{\prime} 14^{\prime \prime}$, long $105^{\circ} 35^{\prime} 01^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SW}^{1 / 1} 4$ sec. 33, T. 5 N., R. 73 W., Larimer County, Hydrologic Unit 10190006, on left upstream wingwall of bridge at lower Moraine Park parking lot, in Rocky Mountain National Park, and 4.0 mi southwest of Estes Park.
DRAINAGE AREA.--39.4 mi ${ }^{2}$ (determined by the National Park Service).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1995 to September 1996.
GAGE.--Water-stage recorder. Elevation of gage is $8,005 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good, except for estimated daily discharges, which are poor. No diversion or regulation upstream from gage. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	23	e10	e8. 6	e4.6	e3.7	e3. 5	e6. 6	16	146	179	76	29
2	21	e9.6	e8. 8	e4.5	e3. 5	e3.5	e7.4	17	152	174	77	27
3	19	e9.0	e9.6	e4.4	e3.6	e3.5	e7.8	17	183	173	87	25
4	21	e9.6	e10	e4.3	e4.5	e3.4	e7.8	19	249	171	78	25
5	19	e10	e8.6	e4.2	e4.7	e3.7	e8.0	28	326	179	67	26
6	19	e11	e8. 2	e4.1	e5.0	e3. 5	e8.8	41	378	200	60	39
7	19	e12	e7. 8	e4.2	e5.1	e3.4	e9.2	49	339	211	55	37
8	18	11	e7. 6	e4.7	e5.0	e3.4	e10	62	350	173	52	31
9	17	10	e7.4	e4.5	e5.0	e3.6	e15	75	371	151	52	27
10	16	9.9	e7.2	e4.1	e4.9	e4.0	22	79	410	133	49	25
11	16	e11	e7.1	e4.0	e4.8	e4.5	25	78	406	128	46	24
12	18	11	e7.2	e3.9	e4.6	e4.2	22	100	370	125	43	24
13	19	12	e6. 8	e4.0	e4.5	e4.0	20	127	349	118	42	28
14	16	11	e6.7	e4.1	e4.3	e4.0	17	144	324	114	42	30
15	16	10	e6. 6	e4.0	e4.6	e4.0	16	170	318	105	42	29
16	16	10	e6. 5	e3.9	e4.9	e3.9	16	223	309	104	44	26
17	15	9.5	e6.4	e3.6	e4.8	e3.9	17	290	314	110	42	27
18	14	9.2	e6.2	e3.9	e4.5	e3.9	e16	260	295	117	42	25
19	13	9.0	e6.0	e4.2	e4.4	e3.9	16	318	284	108	43	26
20	10	8.9	e5.8	e4.0	e4.3	e4.1	17	274	280	102	40	25
21	12	8.9	e5.4	e4.1	e4.4	e4.3	15	201	331	94	39	24
22	12	8.6	e5.5	e3.9	e4.5	e4.6	13	193	402	86	39	25
23	e10	8.4	e5.6	e3.7	e4.3	e4.7	13	222	298	79	39	28
24	e11	e8.0	e5.5	e3.7	e4.3	e4.8	14	214	246	74	37	41
25	e10	8.4	e5.5	e3.6	e4.0	e4.2	23	252	235	71	36	39
26	11	8.3	e5.3	e3.6	e3.7	e4.5	22	219	227	68	36	35
27	11	e8.0	e5.2	e3.9	e3.4	e4.9	20	167	229	65	36	30
28	e9.9	e8.0	e5.0	e4.0	e3.5	e5.1	18	137	210	62	35	29
29	10	e8.8	e4.9	e4.2	e3.5	e5.4	17	124	187	96	37	30
30	10	e9.0	e4.8	e3.9	---	e5.8	16	146	186	103	34	30
31	e10	---	e4.6	e3.8	---	e6.2	---	151	---	84	31	---
TOTAL	461.9	288.1	206.4	125.6	126.3	130.4	455.6	4413	8704	3757	1478	866
MEAN	14.9	9.60	6.66	4.05	4.36	4.21	15.2	142	290	121	47.7	28.9
MAX	23	12	10	4.7	5.1	6.2	25	318	410	211	87	41
MIN	9.9	8.0	4.6	3.6	3.4	3.4	6.6	16	146	62	31	24
AC-FT	916	571	409	249	251	259	904	8750	17260	7450	2930	1720

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 1996, BY WATER YEAR (WY)

MEAN	14.9	9.60	6.66	4.05	4.36	4.21	15.2	142	290	121	47.7	30.7
MAX	14.9	9.60	6.66	4.05	4.36	4.21	15.2	142	290	197	1929	1996
(WY)	1996	1996	1996	1996	1996	1996	1996	1996	1996	1995		
MIN	14.9	9.60	6.66	4.05	4.36	4.21	15.2	142	290	121	47.7	28.9
(WY)	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996

SUMMARY STATISTICS

ANNUAL TOTAL
ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
e-Estimated.
a-Also occurred Mar 4, 7, and 8.

402114105350101 BIG THOMPSON RIVER BELOW MORAINE PARK NEAR ESTES PARK, CO--Continued (National Water-Quality Assessment Program station)
 WATER-QUALITY RECORDS

PERIOD OF RECORD.--January 1995 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US /CM)	$\begin{aligned} & \text { PH } \\ & \text { FIELD } \\ & \text { (STAND- } \\ & \text { ARD } \\ & \text { UNITS) } \end{aligned}$	TEMPER- ATURE WATER (DEG C)	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	$\begin{aligned} & \text { BICAR- }{ }^{a} \\ & \text { BONATE } \\ & \text { WATER } \\ & \text { DIS IT } \\ & \text { FIELD } \\ & \text { MG/L AS } \\ & \text { HCO3 } \end{aligned}$	$\begin{aligned} & \text { ALKA-b } \\ & \text { LINITY } \\ & \text { WAT DIS } \\ & \text { TOT IT } \\ & \text { FIELD } \\ & \text { MG/L AS } \\ & \text { CACO3 } \end{aligned}$
OCT								
04	1230	23	20	7.0	5.5	9.4	6	5
NOV $07 \text {. . . }$	1030	17	24	6.8	0.0	10.7	--	--
$\begin{aligned} & \text { DEC } \\ & 14 \ldots \end{aligned}$	1510	6.5	27	6.8	0.0	12.0	7	5
JAN 11. .	1400	3.9	27	6.7	0.0	10.7	8	7
$\begin{aligned} & \text { FEB } \\ & 05 \ldots \end{aligned}$	1625	4.4	27	6.7	0.0	10.0	8	7
$\begin{aligned} & \text { MAR } \\ & 08 \ldots \end{aligned}$	1105	3.4	31	6.6	0.0	10.4	12	10
$\begin{aligned} & \text { APR } \\ & \quad 10 \ldots \end{aligned}$	1240	22	32	6.8	6.0	9.6	9	7
$\begin{aligned} & \text { MAY } \\ & 14 \ldots \\ & 23 \ldots \end{aligned}$	1400 1140	130 219	22 22	6.4 6.7	8.0 5.5	8.9 9.7	5 4	$\begin{aligned} & 4 \\ & 3 \end{aligned}$
JUN $17 \text {. . . }$	1300	292	14	6.7	8.5	8.8	4	3
JUL 15...	1250	105	12	6.7	12.5	8.4	4	3
$\begin{aligned} & \text { AUG } \\ & 20 . . . \end{aligned}$	0915	39	14	7.0	9.5	9.0	5	4
$\begin{aligned} & \text { SEP } \\ & 11 \ldots \end{aligned}$	1225	23	15	6.6	12.0	8.3	6	5
DATE	```NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)```	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2 + NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	NITROGEN, AMMONIA DISSOLVED (MG/L AS N)	NITROGEN, AMMONIA + ORGANIC TOTAL (MG/L AS N)	NITROGEN, AMMONIA + ORGANIC DIS. (MG/L AS N)	$\begin{gathered} \text { PHOS- } \\ \text { PHORUS } \\ \text { TOTAL } \\ \text { (MG/L } \\ \text { AS P) } \end{gathered}$	$\begin{gathered} \text { PHOS- } \\ \text { PHORUS } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS P) } \end{gathered}$	```PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)M```
$\begin{aligned} & \text { OCT } \\ & 04 \ldots . \end{aligned}$	<0.01	0.11	<0.01	<0.20	<0.20	0.02	0.02	<0.01
$\begin{gathered} \text { NOV } \\ 07 . . . \end{gathered}$	<0.01	0.13	<0.01	<0.20	<0.20	0.02	0.02	<0.01
$\begin{aligned} & \text { DEC } \\ & 14 \ldots . \end{aligned}$	<0.01	0.15	<0.01	<0.20	<0.20	<0.01	<0.01	<0.01
JAN 11. .	<0.01	0.17	<0.01	<0.20	<0.20	<0.01	<0.01	<0.01
$\begin{aligned} & \mathrm{FEB} \\ & 05 \ldots \end{aligned}$	<0.01	0.18	<0.01	<0.20	<0.20	0.01	0.01	0.01
$\begin{aligned} & \text { MAR } \\ & 08 \ldots \end{aligned}$	<0.01	0.08	<0.01	<0.20	<0.20	0.03	<0.01	0.01
$\begin{aligned} & \text { APR } \\ & 10 . . \end{aligned}$	<0.01	0.13	<0.01	0.20	<0.20	<0.01	<0.01	<0.01
$\begin{aligned} & \text { MAY } \\ & 14 \ldots \\ & 23 \ldots \end{aligned}$	<0.01 <0.01	0.12 0.06	0.02 0.02	0.30 0.20	0.20 0.20	0.02 0.02	<0.01 0.02	<0.01 <0.01
JUN 17.	<0.01	0.08	0.02	<0.20	<0.20	<0.01	<0.01	<0.01
JUL $15 .$.	<0.01	0.11	0.03	<0.20	<0.20	<0.01	<0.01	<0.01
$\begin{aligned} & \text { AUG } \\ & 20 \ldots \end{aligned}$	<0.01	0.09	<0.01	<0.20	<0.20	0.02	<0.01	<0.01
$\begin{aligned} & \mathrm{SEP} \\ & \quad 11 \ldots \end{aligned}$	<0.01	0.12	<0.01	<0.20	<0.20	<0.01	<0.01	<0.01

a-Field dissolved bicarbonate, determined by incremental titration method.
b-Field total dissolved alkalinity, determined by incremental titration method.

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06733000 BIG THOMPSON RIVER AT ESTES PARK, CO

LOCATION.--Lat $40^{\circ} 22^{\prime} 42^{\prime \prime}$, long $105^{\circ} 30^{\prime} 48^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} / \mathrm{NW}^{1 / 4}$ sec.30, T. 5 N., R. 72 W., Larimer County, Hydrologic Unit 10190006, on right bank in Estes Park, 600 ft downstream from bridge on State Highways 7 and 66, 900 ft downstream from Black Canyon Creek, and 0.3 mi northwest of Estes powerplant. Station is upstream from Lake Estes.

DRAINAGE AREA.-- $137 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--October 1946 to current year. Prior to October 1947, published as Thompson River at Estes Park.
GAGE.--Water-stage recorder with satellite telemetry, and Parshall flume with overflow weirs. Datum of gage is $7,492.5 \mathrm{ft}$ above sea level (levels by U.S. Bureau of Reclamation). Prior to May 18, 1949, at site 740 ft downstream at different datum.
May 18, 1949 to Mar. 22, 1951, at site 60 ft upstream at datum 1.2 ft , higher.
REMARKS.--Records good except for estimated daily discharges, which are poor. Diversion from Colorado River basin passed this station from Aug. 10, 1947 to Aug. 2, 1950. Small power developments and small diversions for irrigation and municipal use above station. Diversions upstream from station from Wind River to Lake Estes (bypassing this station), were 497acre-ft during current year.

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	57	26	25	e14	e18	e16	24	45	358	410	178	64
2	52	19	22	e14	e18	e16	28	49	357	398	173	59
3	47	e19	e19	e14	e18	e15	28	44	401	395	189	56
4	54	e22	e19	e14	e18	14	29	50	509	392	172	54
5	49	e22	e20	e14	e18	14	27	72	645	402	156	55
6	48	e22	e20	e14	e18	e13	29	108	753	443	138	88
7	49	e23	e20	e14	e18	e13	31	128	678	471	128	92
8	46	e23	e13	e14	e18	e14	35	161	698	398	121	74
9	43	e23	e16	e14	e18	e14	47	199	744	356	117	64
10	41	e23	22	e14	e18	16	60	209	822	314	112	58
11	41	e23	20	e14	e18	17	66	202	822	301	104	55
12	43	27	19	e15	e18	17	58	255	756	293	98	55
13	48	31	20	e15	e18	e18	54	321	726	274	95	63
14	39	30	e19	e15	e18	16	45	360	695	264	94	65
15	41	28	e18	e15	e18	e18	e42	402	682	249	96	66
16	39	26	e16	e15	e18	18	44	502	668	243	100	60
17	37	24	e13	e16	e18	16	48	638	663	253	94	60
18	35	23	14	e16	e18	e16	e41	575	633	285	91	63
19	32	24	13	e16	e18	e16	e41	676	605	280	e98	65
20	27	25	12	e16	e18	e16	e40	589	596	253	e96	61
21	28	e24	11	e16	e18	e16	e39	438	713	230	93	57
22	31	e24	13	e16	e18	e17	36	427	858	208	91	59
23	24	e22	13	e17	e17	e16	34	488	650	190	95	66
24	e26	e20	13	e17	e17	e16	38	483	553	179	87	97
25	e26	e22	13	e17	e17	e16	63	569	531	171	83	99
26	e26	e22	13	e17	e17	e16	59	522	514	162	80	97
27	e25	e19	13	e17	e16	e16	56	417	523	154	81	82
28	e24	e18	e13	e17	e16	e16	53	358	493	145	80	76
29	26	23	e13	e17	e16	e17	e48	327	429	214	82	78
30	27	28	e14	e17	---	e18	46	364	422	248	77	79
31	27	---	e14	e17	---	22	---	369	---	200	70	---
TOTAL	1158	705	503	478	512	499	1289	10347	18497	8775	3369	2067
MEAN	37.4	23.5	16.2	15.4	17.7	16.1	43.0	334	617	283	109	68.9
MAX	57	31	25	17	18	22	66	676	858	471	189	99
MIN	24	18	11	14	16	13	24	44	357	145	70	54
AC-FT	2300	1400	998	948	1020	990	2560	20520	36690	17410	6680	4100

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1947 - 1996, BY WATER YEAR (WY)

[^27]
06734900 OLYMPUS TUNNEL AT LAKE ESTES, CO

WATER-QUALITY RECORDS

LOCATION.--Lat $40^{\circ} 22^{\prime} 30^{\prime \prime}$, long $105^{\circ} 29^{\prime} 13^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{NW}^{1} / 4$ sec. 29 , T. 5 N., R. 72 W., Larimer County, Hydrologic Unit 10190006, at tunnel entrance at south end of Olympus Dam on Lake Estes, 1.9 mi east of Estes Park.
PERIOD OF RECORD.--September 1970 to current year.
REMARKS.--Tunnel is part of Colorado-Big Thompson project. Field data collected prior to 1974 water year available in district office. Records of discharge are estimated values.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06737500 HORSETOOTH RESERVOIR NEAR FORT COLLINS, CO

LOCATION.--Lat $40^{\circ} 36^{\prime} 00^{\prime \prime}$, long $105^{\circ} 10^{\prime} 06^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{SW}^{1 / 4} 4$ sec. 6 , T. 7 N., R. 69 W., Larimer County, Hydrologic Unit 10190007, on right bank near abutment of Horsetooth Dam on tributaries to Cache la Poudre River, 4.8 mi west of city hall in Fort Collins.

RESERVOIR ELEVATIONS AND CONTENTS RECORDS

PERIOD OF RECORD.--April 1951 to current year.
GAGE.--Nonrecording gage read at irregular intervals from 1 to 10 days. Datum of gage is $5,430.00 \mathrm{ft}$ above sea level, (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level.
REMARKS.--Reservoir is formed by an earth and rockfill dike and dams closing openings in subsequent valleys between hogbacks; storage began Jan. 10, 1951; dams completed July 21, 1949. Usable capacity, 143,500 acre-ft above elevations 5,320 ft, invert of channel from Spring Canyon Dam, 5,310 ft, invert of channel from Dixon Canyon Dam, 5,270 ft, trashrack sill of outlet at Soldier Canyon Dam, and below maximum water-surface elevation, $5,430 \mathrm{ft}, 6 \mathrm{ft}$ below crest of Satanka Dike. Dead storage, 7,003 acre ft . Figures given represent usable contents. Water is diverted from Colorado River basin through Alva B. Adams tunnel for supplemental irrigation supply to Cache la Poudre River. Water-quality sampling at three sites in reservoir.

COOPERATION.--Records provided by U.S. Bureau of Reclamation.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 148,400 acre-ft, June 26-27, 1995, elevation, 5,429.36 ft; minimum observed, 9 acre-ft, Nov. 16-30, 1977, elevation, 5,270.25 ft; no storage prior to Apr. 18, 1951.
EXTREMES FOR CURRENT YEAR.--Maximum contents, observed, 147,100 acre-ft, June 25, elevation, 5,428.68 ft; minimum, observed, 101,200 acre-ft, Oct. 31, elevation, 5,403.81 ft.

MONTHEND ELEVATION AND CONTENTS AT 0800, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06737500 HORSETOOTH RESERVOIR NEAR FORT COLLINS, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--September 1969 to current year.
REMARKS.--Samples collected at various depths near north end of reservoir near Soldier Canyon Dam.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	SAM- PLING DEPTH (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	$\begin{gathered} \text { PH } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	$\begin{gathered} \text { TEMPER- } \\ \text { ATURE } \\ \text { WATER } \\ \text { (DEG C) } \end{gathered}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ (M G / L) \end{gathered}$
OCT						
12.	1650	0.1	63	7.8	14.5	7.8
12.	1651	5.0	63	7.8	14.5	7.8
12.	1652	10	63	7.8	14.5	7.7
12.	1653	15	63	7.8	14.0	7.7
12.	1654	20	63	7.8	14.0	7.6
12.	1655	25	63	7.7	14.0	7.6
12.	1656	30	63	7.7	14.0	7.6
12.	1657	40	63	7.7	14.0	7.5
12.	1658	50	63	7.5	13.5	6.5
12.	1659	60	63	7.5	13.5	6.5
12.	1700	70	63	7.4	13.5	6.4
12.	1701	80	65	7.3	12.5	4.3
12.	1702	90	68	7.2	10.5	3.6
12.	1703	100	69	7.1	10.0	2.8
MAY						
14.	1105	0.1	64	7.8	13.0	9.1
14.	1106	5.0	64	7.8	13.0	8.9
14.	1107	10	64	7.8	12.5	8.8
14.	1108	15	64	7.8	11.5	8.8
14.	1109	20	64	7.8	11.0	8.7
14.	1110	25	64	7.7	9.0	9.0
14.	1111	30	63	7.7	8.0	9.1
14.	1112	40	63	7.7	7.5	9.1
14	1114	50	62	7.6	7.0	9.0
14	1115	70	63	7.6	6.5	9.1
14.	1116	80	63	7.6	6.5	9.1
14.	1117	90	63	7.6	6.5	9.1
14.	1118	100	63	7.6	6.5	9.1
14.	1119	110	63	7.6	6.5	9.1
14	1120	120	63	7.6	6.0	9.1
14.	1121	130	63	7.6	6.0	9.0
14.	1122	140	63	7.5	6.0	8.9
14.	1123	150	63	7.5	6.0	8.8
14.	1124	160	63	7.5	6.0	8.8
AUG						
15.	1045	0.1	50	7.5	22.0	7.0
15.	1046	5.0	50	7.4	22.0	7.1
15.	1047	10	50	7.4	22.0	7.1
15.	1048	15	50	7.3	21.5	6.9
15.	1049	20	49	7.3	21.0	6.7
15.	1050	25	47	7.2	20.5	6.9
15.	1051	30	44	7.2	19.5	6.5
15.	1052	40	45	7.2	17.0	5.4
15.	1053	50	50	7.2	14.0	5.8
15.	1054	60	54	7.1	12.0	6.2
15.	1055	70	57	7.1	10.5	6.5
15.	1056	80	58	7.1	10.0	6.4
15.	1057	90	59	7.1	10.0	6.4
15.	1058	100	60	7.0	9.5	6.4
15.	1059	110	60	7.0	9.0	6.4
15.	1100	120	62	7.0	8.5	6.5
15.	1101	130	62	7.0	8.5	6.6
15..	1102	140	63	7.0	8.0	6.9
15..	1103	150	63	6.9	8.0	6.9

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

403147105083800 HORSETOOTH RESERVOIR NEAR FORT COLLINS, CO--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06738000 BIG THOMPSON RIVER AT MOUTH OF CANYON, NEAR DRAKE, CO

LOCATION.--Lat $40^{\circ} 25^{\prime} 18^{\prime \prime}$, long $105^{\circ} 13^{\prime} 34$ ", in SW ${ }^{1} / 4 \mathrm{SW}^{1 / 4} 4$ sec.3, T. 5 N., R. 70 W., Larimer County, Hydrologic Unit 10190006, on right bank at mouth of canyon, 400 ft upstream from Handy Ditch diversion dam, and 6.0 mi east of Drake.
DRAINAGE AREA.--305 mi ${ }^{2}$.
PERIOD OF RECORD.--August 1887 to September 1892, May 1895 to September 1903, October 1926 to September 1933 (no winter records prior to October 1932, except water years 1927-28), April 1938 to September 1949, March 1951 to current year. Monthly discharge only for some periods, published in WSP 1310. Published as Big Thompson Creek at Arkins 1887-92, Big Thompson Creek near Arkins 1901-3, and as Thompson River at mouth of canyon, near Drake 1927-30, 1938-47.
REVISED RECORDS.--WSP 1310: 1891, 1927. WSP 1730: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $5,305.47 \mathrm{ft}$ above sea level (levels by U.S. Bureau of Reclamation). Oct. 1, 1949, to Sept. 18, 1977, at present site, datum 8.00 ft lower, Sept. 19, 1977 to July 27, 1980, at present site, datum 7.37 ft , lower. See WSP 1710 or 1730 for history of changes prior to Oct. 1, 1949.
REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation. Diversions from Colorado River basin to Big Thompson River basin upstream from station through Alva B. Adams tunnel began Aug. 10, 1947 (see station 09013000 in Volume 2 for diversion during current year); since Apr. 15, 1953, this imported water has been diverted from Lake Estes through Olympus tunnel bypassing this station. Part of the natural flow of the Big Thompson River has also been diverted through Olympus tunnel since May 17, 1955, 204,700 acre-ft diverted during current year; and Dille tunnel since Apr. 20, 1959, 57,360 acre-ft, diverted during current year, and returned to the river just downstream from this station.

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $31,200 \mathrm{ft}^{3} / \mathrm{s}$, July 31, 1976, gage height, 19.86 ft , from floodmarks, from slope-area measurements of peak flow; no flow at times in 1976 (all flow above station diverted through Olympus and Dille tunnels after flood of July 31, 1976), 1979-80 (all flow above station diverted through Dille tunnel).
EXTREMES FOR CURRENT YEAR.--Maximum discharge, $814 \mathrm{ft}^{3} / \mathrm{s}$, July 2, gage height, 4.00 ft ; minimum daily, $15 \mathrm{ft}^{3} / \mathrm{s}$, Dec. 9 .
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC		JAN		FEB		MAR	APR	MAY	JUN	JUL	AUG	SEP
1	44	48	37		e31		e31		30	32	215	139	316	104	50
2	35	33	34		e31		e30		29	36	306	116	302	56	48
3	59	36	33		e26		e29		30	37	400	104	259	47	49
4	71	39	34		e27		e26		30	46	557	142	323	41	50
5	69	41	33		e27		e25		30	51	608	404	335	38	61
6	66	39	38		e25		e28		31	44	630	452	324	37	55
7	72	36	33		e24		e28		32	50	266	655	353	37	88
8	69	44	30		e22		e29		32	52	185	529	393	37	60
9	67	28	15		e23		e30		33	57	92	498	335	37	43
10	68	36	38		e22		e30		32	54	102	539	285	37	87
11	65	35	51		e22		e30		30	45	116	604	233	37	100
12	64	38	41		e24		e30		30	42	114	579	359	37	95
13	67	38	36		e26		e26		31	46	152	527	379	45	94
14	72	38	33		e26		e25		33	43	174	483	353	49	103
15	73	39	26		e26		e25		32	43	224	454	114	52	93
16	71	35	33		e26		e28		31	55	528	442	41	47	67
17	72	37	34		e26		e25		29	68	549	413	49	45	58
18	73	35	33		e30		e25		29	67	604	451	54	46	62
19	70	35	31		e27		e26		30	68	555	291	49	47	68
20	71	36	30		e28		e25		29	66	601	297	47	49	105
21	64	35	36		e27		e25		31	69	585	309	31	48	120
22	67	36	44		e28		e26		30	68	272	446	35	45	122
23	68	36	35		e28		26		31	61	203	513	37	46	117
24	59	36	41		e28		28		34	58	270	439	36	43	109
25	57	36	59		e27		28		31	101	356	304	36	41	118
26	64	35	62		e29		28		36	104	474	237	37	50	136
27	63	36	e35		e31		28		34	78	410	232	38	52	136
28	63	36	e33		e28		28		32	83	273	230	31	49	117
29	59	40	e31		e30		28		35	71	185	257	29	47	103
30	58	39	e30		e28		---		35	53	131	235	105	44	106
31	55	--	e31		e30		---		33	---	145	---	73	42	---
TOTAL	1995	1111	1110		833		796		975	1748	10282	11321	5391	1432	2620
MEAN	64.4	37.0	35.8		26.9		27.4		31.5	58.3	332	377	174	46.2	87.3
MAX	73	48	62		31		31		36	104	630	655	393	104	136
MIN	35	28	15		22		25		29	32	92	104	29	37	43
AC-FT	3960	2200	2200		1650		1580		1930	3470	20390	22460	10690	2840	5200
CAL YR	1995	TOTAL 56945	MEAN	156	MAX	2070	MIN	15	AC-FT	113000					
WTR YR	1996	TOTAL 39614	MEAN	108	MAX	655	5 MIN	15	AC-FT	78570					

06741510 BIG THOMPSON RIVER AT LOVELAND, CO

LOCATION.--Lat $40^{\circ} 22^{\prime} 43^{\prime \prime}$, long $105^{\circ} 03^{\prime} 38^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{sec} .24$, T. 5 N., R. 69 W., Larimer County, Hydrologic Unit 10190006, on right bank 690 ft downstream from county road bridge $\mathrm{C}-13,1.7 \mathrm{mi}$ south of sugar refinery in Loveland, and 1.9 mi downstream from Farmers Ditch diversion.
DRAINAGE AREA.--535 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1979 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $4,906 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, diversions for irrigation, and return flow from irrigated areas.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	15	6.9	2.3	e2.8	2.0	2.0	35	3.1	130	65	27
2	15	14	7.0	e2.3	e3.0	2.0	1.9	36	6.3	137	59	25
3	15	14	7.1	e2.4	e4.9	2.0	1.9	68	7.6	126	66	27
4	15	16	6.9	2.5	e7.0	2.0	2.2	112	11	150	65	24
5	13	16	8.0	2.5	7.4	2.0	2.9	153	24	152	53	20
6	14	16	7.0	3.0	7.8	2.0	2.3	192	30	139	59	20
7	14	17	3.9	2.9	8.3	2.1	2.2	176	27	151	74	15
8	13	16	3.4	3.2	7.5	2.0	2.1	189	12	154	81	15
9	13	16	2.8	3.4	6.5	2.0	2.2	133	29	166	80	16
10	14	17	2.5	2.3	3.2	1.8	2.5	88	54	187	72	20
11	14	16	2.5	2.3	2.3	1.8	2.6	85	60	155	61	16
12	13	15	2.8	2.5	2.3	1.8	2.7	86	51	113	54	12
13	13	15	2.4	2.3	3.4	2.6	2.7	82	46	72	54	16
14	14	14	2.4	2.1	2.6	5.8	2.5	87	64	87	57	25
15	14	10	2.3	2.1	2.5	2.5	3.9	104	89	96	53	23
16	13	10	2.3	2.5	2.5	2.2	8.5	180	179	90	51	16
17	13	10	2.3	3.6	2.5	2.1	8.2	146	225	62	48	17
18	13	10	2.3	2.7	2.2	2.1	8.2	107	277	58	43	17
19	13	9.9	e2.3	2.6	2.1	2.1	7.6	98	204	64	41	12
20	14	9.6	e2. 4	2.4	2.5	2.1	7.8	117	166	59	47	7.9
21	14	9.7	2.4	2.2	3.6	2.1	7.8	139	145	55	50	13
22	14	9.9	2.2	e2.3	2.3	2.1	6.2	149	233	55	49	9.1
23	14	9.6	2.1	e2.4	2.3	2.2	2.8	177	321	69	60	16
24	14	9.0	2.2	e2.4	2.3	2.8	2.6	160	298	60	55	24
25	14	7.8	2.3	e2. 6	2.3	2.4	13	130	206	56	48	23
26	13	7.2	2.3	e2. 8	2.3	2.0	16	99	153	48	47	28
27	14	7.2	2.6	e2.8	2.3	2.0	9.0	58	142	46	48	26
28	14	7.2	5.5	e2.9	2.2	1.9	25	25	134	53	35	23
29	14	7.5	2.6	e2. 8	e2.1	1.8	45	6.5	134	58	25	19
30	14	6.7	2.3	e2.9	---	1.8	40	5.4	135	56	23	15
31	14	-	2.3	e2.9	-	1.9	--	2.5	---	69	27	-
TOTAL	425	358.3	108.3	80.9	105.0	68.0	244.3	3225.4	3466.0	2973	1650	567.0
MEAN	13.7	11.9	3.49	2.61	3.62	2.19	8.14	104	116	95.9	53.2	18.9
MAX	15	17	8.0	3.6	8.3	5.8	45	192	321	187	81	28
MIN	12	6.7	2.1	2.1	2.1	1.8	1.9	2.5	3.1	46	23	7.9
AC-FT	843	711	215	160	208	135	485	6400	6870	5900	3270	1120

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1996, BY WATER YEAR (WY)

MEAN	28.1	22.2	9.92	12.9	11.6	11.4	41.1	251	296	129	83.6	36.6
MAX	66.0	95.8	36.4	62.8	59.9	49.3	292	2078	1493	418	153	83.9
(WY)	1990	1985	1985	1980	1980	1980	1980	1980	1983	1995	1981	1982
MIN	6.15	3.96	2.86	2.55	2.42	2.19	4.49	4.07	25.0	29.9	44.3	16.6
(WY)	1988	1982	1993	1994	1993	1996	1981	1981	1982	1987	1995	1990

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1979 - 1996
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

60204.3	
165	
3520	May 30
2.1	Dec 23
2.3	Dec 18
119400	
671	
10	
4.2	

13271.2		
36.3		
321	Jun 23	
a		
1.8	Mar 10	
1.9	Mar 28	
368	Jun 23	
3.56	Jun 23	
26320		
130		
13		
2.2		

78.1			
321			1980
28.4			1990
4240	May	1	1980
. 80	May	11	1981
. 89	May	10	1981
6970	Apr	30	1980
$\mathrm{b}_{10} .10$	Apr	30	1980
56580			
139			
16			
3.2			

[^28]
06741510 BIG THOMPSON RIVER AT LOVELAND, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--June 1979 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06742500 CARTER LAKE NEAR BERTHOUD, CO

LOCATION.--Lat $40^{\circ} 19^{\prime} 28^{\prime \prime}$, long $105^{\circ} 12^{\prime} 41^{\prime \prime}$, in $\mathrm{SE}^{1 / 4}$ sec.10, T. 4 N., R. 70 W., Larimer County, Hydrologic Unit 10190006, in hoist house 293 ft from right abutment of Carter Lake Dam on Dry Creek, 7.0 mi west of Berthoud, and 8.9 mi upstream from mouth. Water-quality sampling site near center of reservoir.

RESERVOIR ELEVATIONS AND CONTENTS RECORDS

PERIOD OF RECORD.--March 1954 to current year.
GAGE.--Nonrecording gage read at irregular intervals from 1 to 13 days. Datum of gage is $5,763.00 \mathrm{ft}$ above sea level, (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level.

REMARKS.--Reservoir is formed by an earth and rockfill dam and dikes enlarging the natural basin of Carter Lake. Storage began in February 1954. Usable capacity, 113,500 acre-ft between elevations $5,618.00 \mathrm{ft}$, trashrack sill at outlet, and $5,763.00 \mathrm{ft}$, maximum water surface, 6 ft below crest of dam. Dead storage, 3,306 acre- ft . Figures given represent usable contents. Water diverted from Colorado River basin through Alva B. Adams tunnel is pumped from Flatiron Reservoir into Carter Lake for supplemental irrigation supply to Little Thompson River and St. Vrain and Boulder Creek basins. Water above elevation 5,620 ft may be released for return to Flatiron Reservoir where pump turbines can operate in reverse to generate power and water can be used for irrigation in Big Thompson or Cache la Poudre River basins.

COOPERATION.--Records provided by U.S. Bureau of Reclamation.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 109,100 acre-ft, Apr. 27-29, 1971, elevation, 5,759.12 ft; minimum observed since appreciable storage was attained, 960 acre- ft, Oct. 25, 1954, elevation, 5,621.40 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 81,870 acre-ft, Dec. 13, elevation, 5,734.25 ft; minimum contents, 40,730 acre-ft, Sept. 3, elevation, 5,690.38 ft.

MONTHEND ELEVATION AND CONTENTS AT 0800, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

PERIOD OF RECORD.--February 1970 to current year.
REMARKS.--Samples were collected near surface and near bottom, near southeast end of reservoir.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	SAM- PLING DEPTH (FEET)	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	$\begin{gathered} \text { PH } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	$\begin{aligned} & \text { TEMPER- } \\ & \text { ATURE } \\ & \text { WATER } \\ & \text { (DEG C) } \end{aligned}$	$\begin{aligned} & \text { OXYGEN, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L) } \end{aligned}$
OCT						
13.	1000	0.1	71	7.8	12.5	7.6
13.	1001	5.0	71	7.8	12.5	7.5
13.	1002	10	71	7.8	12.5	7.4
13.	1003	15	71	7.8	12.5	7.5
13.	1004	20	71	7.8	12.5	7.5
13.	1005	25	71	7.8	12.5	7.4
13.	1006	30	71	7.8	12.5	7.3
13.	1007	40	71	7.7	12.5	7.3
13.	1008	50	62	7.3	9.0	4.8
13.	1009	60	60	7.3	8.5	4.6
13.	1010	70	59	7.2	8.0	4.4
13.	1011	80	59	7.1	8.0	4.4
13.	1012	90	59	7.1	8.0	4.2
13.	1013	100	59	7.1	7.5	4.0
13.	1014	110	59	7.0	7.5	3.9
13.	1015	120	60	7.0	7.5	3.8
MAY						
15.	0945	0.1	69	8.0	13.5	9.1
15.	0946	5.0	69	8.0	13.0	9.1
15.	0947	10	69	8.0	12.5	9.1
15.	0948	15	69	8.1	10.0	9.1
15.	0949	20	68	8.1	9.0	9.7
15.	0950	25	67	8.0	8.0	9.7
15.	0951	30	67	7.9	7.5	9.6
15.	0952	40	67	7.9	7.0	9.4
15.	0953	50	67	7.8	6.5	9.3
15.	0954	60	67	7.8	6.5	9.2
15.	0955	70	67	7.7	6.5	9.1
15.	0956	80	67	7.7	6.5	9.1
15.	0957	90	67	7.7	6.0	9.0
15.	0958	100	67	7.7	6.0	8.9
15.	0959	110	67	7.6	6.0	8.9
15.	1000	120	67	7.6	6.0	8.9
AUG						
20.	1030	0.1	82	8.1	21.5	6.9
20.	1031	5.0	82	8.1	21.0	6.9
20.	1032	10	82	8.1	21.0	7.1
20.	1033	15	82	8.1	21.0	7.0
20.	1034	20	82	8.1	21.0	7.0
20.	1035	25	82	8.0	20.0	6.8
20.	1036	30	74	7.7	14.0	7.4
20.	1037	40	72	7.6	10.0	7.0
20.	1038	50	70	7.5	8.5	6.8
20.	1039	60	70	7.4	7.5	6.7
20.	1040	70	70	7.4	7.5	6.4
20.	1041	80	70	7.3	7.5	6.2
20.	1042	90	70	7.3	7.0	6.1

06742500 CARTER LAKE NEAR BERTHOUD, CO--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06746095 JOE WRIGHT CREEK ABOVE JOE WRIGHT RESERVOIR, CO

LOCATION.--Lat $40^{\circ} 32^{\prime} 24^{\prime \prime}$, long $105^{\circ} 52^{\prime} 566^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{sec} .26$, T. 7 N., R. 76 W., Larimer County, Hydrologic Unit 10190007, on left bank 150 ft downstream from unnamed tributary and Colorado Highway 14 culvert crossing, 1.5 mi northeast of Cameron Pass, 1.5 mi southwest of Joe Wright Dam, and 8 mi east of Gould.

DRAINAGE AREA.-- $3.01 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--October 1978 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $9,990 \mathrm{ft}$ above sea level, from topographic map. Prior to Aug. 7, 1989, at datum 3.40 ft , higher.

REMARKS.--Records good except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.2	e2.9	e2. 2	e1. 6	e1. 6	e1. 2	e1.1	e2.4	e35	39	9.5	5.4
2	5.5	e2. 8	e2.2	e1.6	e1. 6	e1.2	e1.0	e2. 5	e45	36	9.8	5.3
3	5.0	e2. 8	e2.2	e1.6	e1. 5	e1.2	e1.1	e2. 8	e55	34	10	5.0
4	4.6	e2.7	e2.2	e1.6	e1. 5	e1.2	e1.2	e3.0	e66	32	9.3	4.9
5	4.7	e2. 6	e2.2	e1.6	e1.4	e1.2	e1.2	e3.5	75	32	8.5	4.9
6	5.0	e2. 5	e2. 2	e1. 6	e1.4	e1. 2	e1. 3	e4.2	90	30	7.8	5.8
7	5.7	e2. 5	e2.2	e1. 6	e1.4	e1.2	e1.4	e5.0	97	28	7.4	5.1
8	5.2	e2. 4	e2.1	e1.6	e1.4	e1.2	e1.5	e6.0	103	26	7.1	4.7
9	4.8	e2. 4	e2.0	e1. 6	e1.3	e1.2	e1. 6	e7.0	112	25	7.1	4.6
10	4.9	e2.3	e2.0	e1.6	e1.3	e1.2	e1.6	e9.5	125	23	6.5	4.4
11	5.4	e2.3	e1.9	e1. 6	e1.3	e1.2	e1.7	e12	133	23	6.1	4.3
12	5.8	e2. 2	e1.9	e1.6	e1.3	e1.2	e1.8	e15	81	23	5.8	5.3
13	e5.6	e2.2	e1.8	e1.6	e1.3	e1.2	e1.8	e17	64	21	6.9	5.5
14	e5.2	e2.2	e1.8	e1.6	e1.3	e1.2	e1.8	e20	61	20	8.3	5.2
15	4.9	e2. 2	e1.8	e1.6	e1.3	e1.2	e1.8	e23	64	22	8.3	4.9
16	4.8	e2. 2	e1.8	e1. 6	e1.3	e1.2	e1.9	e25	61	28	7.9	4.8
17	4.6	e2. 2	e1.8	e1. 6	e1. 3	e1.2	e1.9	e27	58	29	7.6	5.0
18	4.5	e2. 2	e1.8	e1.6	e1.3	e1.2	e2.0	e26	58	31	7.7	5.1
19	e3. 8	e2. 2	e1.8	e1.6	e1.3	e1.2	e2.0	e24	58	27	7.9	5.2
20	e3.6	e2. 2	e1.7	e1.6	e1.3	e1.2	e2.1	e23	58	25	7.4	5.2
21	e3.4	e2. 2	e1.7	e1. 6	e1. 3	e1.2	e2.2	e26	72	23	7.0	5.4
22	e3.2	e2. 2	e1.7	e1.6	e1.3	e1.2	e2.2	e29	72	22	7.0	6.3
23	e3.1	e2. 2	e1.6	e1.6	e1.3	e1.2	e2.3	e30	59	20	6.8	6.8
24	e3.0	e2. 2	e1.6	e1.6	e1.3	e1.2	e2.4	e33	49	19	6.5	7.6
25	e3.0	e2. 2	e1.6	e1.6	e1.3	e1.2	e2. 6	e34	52	18	6.1	7.8
26	e3.0	e2. 2	e1. 6	e1. 6	e1. 3	e1. 2	e2. 6	e31	54	17	6.0	7.1
27	e3.0	e2. 2	e1.6	e1.6	e1.3	e1.1	e2. 6	e29	53	16	6.2	7.1
28	e3.0	e2.2	e1.6	e1.6	e1.3	e1.1	e2.5	e26	48	15	7.1	6.8
29	e3.0	e2. 2	e1.6	e1.6	e1.2	e1.1	e2.5	e24	43	20	6.9	7.8
30	e3.0	e2.2	e1.6	e1.6	---	e1.1	e2.5	e22	41	15	6.1	8.3
31	e3.0	---	e1.6	e1.6	--	e1.1	-	e25	---	10	5.7	---
TOTAL	133.5	70.0	57.4	49.6	39.0	36.7	56.2	566.9	2042	749	228.3	171.6
MEAN	4.31	2.33	1.85	1.60	1.34	1.18	1.87	18.3	68.1	24.2	7.36	5.72
MAX	6.2	2.9	2.2	1.6	1.6	1.2	2.6	34	133	39	10	8.3
MIN	3.0	2.2	1.6	1.6	1.2	1.1	1.0	2.4	35	10	5.7	4.3
AC-FT	265	139	114	98	77	73	111	1120	4050	1490	453	340

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1996, BY WATER YEAR (WY)

MEAN	2.29	1.30	.87	.70	.63	.65	1.09	13.3	50.8	26.7	7.90	3.72
MAX	4.96	3.20	1.85	1.60	1.34	1.50	3.39	34.6	88.5	90.8	21.5	7.30
(WY)	1994	1991	1996	1996	1996	1994	1994	1994	1988	1995	1995	1993
MIN	.54	.36	.28	.25	.20	.20	.39	3.58	25.5	6.75	1.88	1.06
(WY)	1981	1979	1981	1981	1979	1979	1979	1982	1989	1989	1985	1980

SUMMARY STATISTICS
ANNUAL TOTAL
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
$\begin{array}{rrr}6310.51 & & \\ 17.3 & & \\ & & \\ 150 & \text { Jul } & 11 \\ e & .43 & \text { Mar } \\ .44 & \text { Feb } & 47 \\ & & \\ 12520 & & \\ 62 & & \\ 2.2 & & \\ .52 & & \end{array}$

4200.2		
11.5		
133	Jun 11	
$\mathrm{e}_{1} .0$	Apr	2
1.1	Mar 27	
151	Jun 11	
b		
83.72	Jun 11	
32		
2.8		
1.2		

WATER YEARS 1979 - 1996

HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

9.17			
16.9			1995
5.40			1981
150	Jul 11	1995	
a .20	Jan 30	1979	
.20	Jan 30	1979	
238	Jul	7	1983
$\mathrm{C}_{5} .60$	Jul	7	1983
6640			
29			
1.4			
.45			

e-Estimated.
a-Also occurred Jan 31 to Apr 4, 1979, and Feb 9 to Apr 9, 1981.
b-Maximum recorded gage height, 8.34 ft , May 17, backwater from ice.
c-Maximum gage height, 10.64 ft , May 15, 1993, present datum, backwater from ice.

06746110 JOE WRIGHT CREEK BELOW JOE WRIGHT RESERVOIR, CO

LOCATION.--Lat $40^{\circ} 33^{\prime} 43^{\prime \prime}$, long $105^{\circ} 51^{\prime} 48^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NE}^{1 / 4} \sec .24$, T. 7 N., R. 76 W., Larimer County, Hydrologic Unit 10190007, on left bank 500 ft downstream from unnamed tributary, $2,000 \mathrm{ft}$ downstream from Joe Wright Dam, and 3 mi southwest of Chambers Lake.
DRAINAGE AREA.-- $6.90 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--June 1978 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $9,710 \mathrm{ft}$ above sea level, from topographic map. Prior to Aug. 7, 1989, at datum 0.50 ft , higher.

REMARKS.--Records good except for estimated daily discharges, which are poor. Flow regulated by Joe Wright Reservoir, 2000 ft upstream. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	65	e. 80	e. 46	e. 45	e. 44	e. 45	e. 45	e. 80	8.1	62	29	1.2
2	66	e. 80	e. 46	e. 45	e. 43	e. 45	e. 45	e. 80	8.3	60	29	1.2
3	64	e. 76	e. 45	e. 78	9.2	58	28	1.2				
4	58	e. 72	e. 45	e. 90	9.7	53	53	1.2				
5	59	e. 68	e. 45	e1.0	29	42	102	1.2				
6	64	e. 66	e. 45	e1.1	108	34	106	1.2				
7	65	e. 63	e. 45	e1.3	118	32	131	1.3				
8	64	e. 61	e. 45	e. 45	e. 45	e. 45	e. 46	e1.5	115	33	140	1.3
9	62	e. 60	e. 45	e. 45	e. 45	e. 45	e. 49	e1.7	109	34	135	1.3
10	43	e. 60	e. 45	e. 45	e. 45	e. 45	e. 52	e1.9	106	35	124	1.2
11	1.1	e. 60	e. 45	e. 45	e. 45	e. 45	e. 55	2.3	116	35	126	1.1
12	1.4	e. 60	e. 45	e. 45	e. 45	e. 45	e. 58	3.1	136	35	113	1.2
13	1.5	e. 60	e. 45	e. 45	e. 45	e. 45	e. 60	3.6	153	29	99	1.1
14	1.4	e. 60	e. 45	e. 45	e. 45	e. 45	e. 60	4.4	165	17	93	1.1
15	1.0	e. 58	e. 45	e. 45	e. 45	e. 45	e. 60	5.0	152	16	99	1.1
16	. 99	e. 56	e. 45	e. 45	e. 45	e. 45	e. 60	6.4	146	26	120	1.1
17	. 99	e. 55	e. 45	e. 45	e. 45	e. 45	e. 62	7.6	142	42	134	1.1
18	e. 98	e. 54	e. 45	e. 45	e. 45	e. 45	e. 64	8.0	123	52	132	1.1
19	e. 94	e. 53	e. 45	e. 45	e. 45	e. 45	e. 67	6.8	104	39	129	1.0
20	e. 93	e. 52	e. 45	e. 45	e. 45	e. 45	e. 68	5.6	110	35	122	1.0
21	e. 92	e. 52	e. 45	e. 45	e. 45	e. 45	e. 70	6.2	131	30	111	1.1
22	e. 91	e. 51	e. 45	e. 45	e. 45	e. 45	e. 70	7.2	166	27	111	1.2
23	e. 90	e. 50	e. 45	e. 45	e. 45	e. 45	e. 70	7.3	189	30	58	1.2
24	e. 90	e. 50	e. 45	e. 45	e. 45	e. 45	e. 74	8.2	159	34	56	1.1
25	e. 90	e. 50	e. 45	e. 45	e. 45	e. 45	e. 82	8.7	106	35	50	1.5
26	e. 90	e. 50	e. 45	e. 45	e. 45	e. 45	e. 90	7.8	69	32	49	1.2
27	e. 88	e. 50	e. 45	e. 45	e. 45	e. 45	e. 88	6.7	54	24	49	1.2
28	e. 86	e. 50	e. 45	e. 45	e. 45	e. 45	e. 86	6.7	50	21	48	1.2
29	e. 84	e. 48	e. 45	e. 45	e. 45	e. 45	e. 84	7.1	57	24	37	1.3
30	e. 82	e. 48	e. 45	e. 45	---	e. 45	e. 82	7.5	63	28	1.3	1.3
31	e. 80	-	e. 45	e. 45	-	e. 45	-	7.8	-	30	1.2	---
TOTAL	630.86	17.53	13.97	13.95	13.02	13.95	18.72	145.78	3011.3	1084	2615.5	35.5
MEAN	20.4	. 58	. 45	. 45	. 45	. 45	. 62	4.70	100	35.0	84.4	1.18
MAX	66	. 80	. 46	. 45	. 45	. 45	. 90	8.7	189	62	140	1.5
MIN	. 80	. 48	. 45	. 45	. 43	. 45	. 45	. 78	8.1	16	1.2	1.0
AC-FT	1250	35	28	28	26	28	37	289	5970	2150	5190	70

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1996 , BY WATER YEAR (WY)

| MEAN | 4.31 | .99 | .61 | .52 | .46 | .44 | .53 | 10.0 | 62.4 | 38.1 | 30.6 | 28.2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| MAX | 20.8 | 3.01 | 1.96 | 1.40 | 1.30 | 1.38 | .79 | 32.1 | 100 | 90.8 | 84.7 | 61.8 |
| (WY) | 1995 | 1982 | 1983 | 1983 | 1983 | 1983 | 1994 | 1988 | 1996 | 1993 | 1991 | 1995 |
| MIN | .54 | .34 | .21 | .24 | .22 | .23 | .29 | 1.21 | 12.6 | 2.49 | 6.44 | 1.13 |
| (WY) | 1989 | 1995 | 1993 | 1993 | 1995 | 1995 | 1991 | 1980 | 1980 | 1989 | 1981 | 1991 |

SUMMARY STATISTICS
ANNUAL TOTAL
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
$\begin{array}{ccr}7574.43 & & \\ 20.8 & & \\ & & \\ 144 & \text { Jun } & 24 \\ .21 & \text { Mar } & 3 \\ .22 & \text { Feb } & 25 \\ & & \\ 15020 & & \\ 68 & & \\ .60 & & \\ .22 & & \end{array}$

7614.08		
20.8		
189	Jun 23	
e.	23	Feb
.45	Jan 27	
206	Jun 23	
2.41	Jun 23	
15100		
99		
.83		
.45		

WATER YEARS 1979 - 1996

ANN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
99 CALENDAR YEAR F

14.8			
23.9			1993
3.69			1980
245		Jul	1
a	1993		
.17	Apr	3	1991
.18	Mar	31	1991
284	Aug	18	1991
2.71	Aug 18	1991	
10710			
55			
.96			
.32			

e-Estimated.
a-Also occurred Apr 4, 1991.

06751490 NORTH FORK CACHE LA POUDRE RIVER AT LIVERMORE, CO

LOCATION.--Lat $40^{\circ} 47^{\prime} 15^{\prime \prime}$, long $105^{\circ} 15^{\prime} 06^{\prime \prime}$, in SW ${ }^{1 / 4} \mathrm{SE}^{1 / 4}$ sec.32, T. 10 N., R. 70 W., Larimer County, Hydrologic Unit 10190007, on left bank 30 ft (revised) downstream from bridge on Colorado State Highway 200, 2.0 mi west of Livermore, and 2.9 mi downstream from Stonewall Creek.

DRAINAGE AREA.--539 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1986 to current year. May 1929 to September 1931, May 1947 to September 1960, published as near Livermore; records are not considered equivalent.

GAGE.--Water-stage recorder. Elevation of gage is $5,715 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow affected by transbasin diversions, storage reservoirs, and irrigation.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14	12	11	e9.1	e66	e38	23	36	357	70	10	7.3
2	14	e13	11	e9.1	e66	e38	24	31	345	41	10	7.3
3	14	e13	11	e9.2	e66	e38	23	24	334	27	9.8	7.1
4	13	e15	10	e9.3	e66	e38	24	21	316	25	8.5	7.3
5	12	e15	10	e9.3	e66	e38	24	17	302	23	7.8	7.5
6	12	17	10	e9.3	e66	e38	28	15	274	22	6.9	8.2
7	12	15	10	e9.3	e66	e34	32	21	249	21	6.7	8.6
8	12	13	9.2	e9.4	e66	e37	37	34	238	19	6.3	7.9
9	12	12	e10	e9.4	e66	e43	38	45	233	19	6.2	7.4
10	12	e11	10	e9.4	e66	44	39	70	219	27	6.3	7.7
11	12	11	11	e9.4	e66	46	43	77	205	22	5.8	8.1
12	12	12	11	e9.4	e66	48	58	75	192	19	5.8	8.6
13	11	13	11	e9.4	e49	51	74	99	193	18	5.9	8.8
14	11	13	10	e14	e35	56	71	124	183	16	6.4	8.7
15	11	13	9.4	e29	e32	53	68	151	193	16	6.0	8.4
16	11	13	9.8	e33	e30	54	74	183	285	16	6.3	8.3
17	11	13	10	e30	e32	53	76	205	236	15	7.3	8.9
18	11	13	e10	e30	e33	49	72	224	192	14	6.9	10
19	11	13	e10	e30	e33	44	84	238	156	14	6.6	12
20	11	12	e10	e34	e33	40	99	244	135	15	6.7	11
21	11	11	e10	e38	e35	52	98	220	115	13	6.6	11
22	11	11	e10	e41	e35	47	97	195	143	12	7.7	11
23	11	11	e10	e41	e35	16	94	214	153	11	7.4	11
24	11	11	e9.6	e42	e35	15	93	258	129	11	7.5	11
25	12	11	e9.4	e45	e38	e30	109	332	105	11	7.1	30
26	12	11	e9.2	e47	e38	e55	119	454	97	11	6.6	46
27	11	11	e9.1	e50	e38	33	100	614	95	11	7.2	45
28	12	10	e9.1	e53	e38	18	95	534	95	11	7.9	12
29	12	11	e8.9	e56	e38	19	75	479	96	12	8.0	8.1
30	12	11	e8.9	e59	--	20	49	435	83	11	8.2	7.1
31	12	-	e9.0	e62	---	21	---	392	---	11	7.6	---
TOTAL	366	371	307.6	855.0	1399	1206	1940	6061	5948	584	224.0	361.3
MEAN	11.8	12.4	9.92	27.6	48.2	38.9	64.7	196	198	18.8	7.23	12.0
MAX	14	17	11	62	66	56	119	614	357	70	10	46
MIN	11	10	8.9	9.1	30	15	23	15	83	11	5.8	7.1
AC-FT	726	736	610	1700	2770	2390	3850	12020	11800	1160	444	717

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1987 - 1996, BY WATER YEAR (WY)

$\begin{array}{lll}\text { MEAN } & 9.96 & 10.4\end{array}$	7.96	8.65		11.6		18.3		52.7		129		218	33.1		16.3		9.49
$\begin{array}{lll}\text { MAX } & 17.8 & 14.7\end{array}$	11.6	27.6		48.2		55.5		244		365		857	133		52.5		20.3
(WY) 1991	1994	1996		1996		1990		1990		1995		1995	1995		1991		1991
$\begin{array}{lll}\text { MIN } & 4.85 & 6.62\end{array}$	3.58	3.60		5.00		6.35		4.57		10.3		20.3	5.23		4.24		4.48
(WY) 19891988	1988	1988		1995		1995		1995		1989		1987	1989		1988		1987
SUMMARY STATISTICS	FOR	1995 CA	ALENDAR	R YE			FOR	1996	WATER	R YE	EAR		WATER	YEA	S 1987	-	1996
ANNUAL TOTAL		43469	9.1					19622									
ANNUAL MEAN		119															
HIGHEST ANNUAL MEAN													118				1995
LOWEST ANNUAL MEAN														06			1989
HIGHEST DAILY MEAN		1910		May	30			614		May	27		1910		May	30	1995
LOWEST DAILY MEAN			3.8 J	Jan	4					Aug	11				Sep	2	1988
ANNUAL SEVEN-DAY MINIMUM			3.9 J	Jan	1				1	Aug	9				Sep	1	1988
INSTANTANEOUS PEAK FLOW								651		May	27		5430		Jun	1	1991
INSTANTANEOUS PEAK STAGE									10	May	27				Jun	1	1991
ANNUAL RUNOFF (AC-FT)		86220						38920					31690				
10 PERCENT EXCEEDS		44						152					84				
50 PERCENT EXCEEDS		11	1					16					10				
90 PERCENT EXCEEDS			4.2														

e-Estimated.

a-Also occurred Aug 12
b-Also occurred Sep 3, 1988, and Apr 27, 1989.

06751490 NORTH FORK CACHE LA POUDRE RIVER AT LIVERMORE, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--November 1986 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	$\begin{gathered} \text { LITHIUM } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { AS LI) } \end{gathered}$	MANGANESE, DISSOLVED (UG/L AS MN)	MOLYBDENUM, DISSOLVED (UG/L AS MO)	```NICKEL, DIS- SOLVED (UG/L AS NI)```	$\begin{gathered} \text { SILVER, } \\ \text { DISS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { AS AG) } \end{gathered}$	STRONTIUM, DISSOLVED (UG/L AS SR)	VANADIUM, DISSOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
$\begin{aligned} & \text { OCT } \\ & 25 \ldots . \end{aligned}$	14	11	20	<10	<1	320	<6	8
$\begin{gathered} \mathrm{NOV} \\ 29 . \end{gathered}$	14	8	<10	<10	<1	280	<6	<3
$\begin{array}{r} \text { JAN } \\ 10 . \end{array}$	12	7	<10	<10	<1	270	<6	<3
FEB $13 . .$.	5	5	<10	<10	<1	120	<6	4
MAR 27..	5	7	<10	<10	<1	120	<6	3
APR $16 \ldots$	6	10	<10	<10	<1	110	<6	<3
$\begin{aligned} & \text { MAY } \\ & 21 \ldots \end{aligned}$	<4	8	<10	<10	<1	72	<6	11
JUN $04 \ldots$	<4	8	<10	<10	<1	61	<6	<3
JUL 09...	9	20	10	<10	<1	300	<6	<3
AUG 14..	14	16	<10	<10	<1	350	<6	11
SEP 19...	15	11	<10	<10	<1	320	<6	<3

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	$\begin{aligned} & \text { SEDI- } \\ & \text { MENT, } \\ & \text { SUS- } \\ & \text { PENDED } \\ & \text { (MG/L) } \end{aligned}$	$\begin{gathered} \text { SEDI- } \\ \text { MENT, } \\ \text { DIS- } \\ \text { CHARGE, } \\ \text { SUS- } \\ \text { PENDED } \\ \text { (T/DAY) } \end{gathered}$
OCT				
25...	1055	12	44	1.4
NOV				
29...	1100	12	34	1.1
JAN				
10...	1117	9.4	16	0.41
FEB				
13...	1030	70	15	2.8
MAR				
27...	1034	39	4	0.42
APR				
16...	1005	75	13	2.6
MAY				
21...	1205	232	18	11
JUN				
04...	1040	315	16	13
JUL				
09...	1059	16	5	0.22
AUG				
14...	0944	6.8	19	0.35
SEP				
19...	0948	12	10	0.33

06752000 CACHE LA POUDRE RIVER AT MOUTH OF CANYON, NEAR FORT COLLINS, CO

LOCATION.--Lat $40^{\circ} 39^{\prime} 52^{\prime \prime}$, long $105^{\circ} 13^{\prime} 26^{\prime \prime}$, in $\mathrm{NW}^{1 / 1} 4 \mathrm{sec} .15$, T. 8 N., R. 70 W., Larimer County, Hydrologic Unit 10190007, on left bank at mouth of canyon, 0.5 mi downstream from headgate of Poudre Valley Canal, 1.2 mi upstream from Lewstone Creek, and 9.3 mi northwest of courthouse in Fort Collins.

DRAINAGE AREA.-- $1,056 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--Streamflow records, June to August 1881, May to July 1883, October 1883 to current year. Monthly discharge only for some periods, published in WSP 1310. Records for March 23 to April 30 and July 4 to August 20, 1883, published in WSP 9 , have been found to be unreliable and should not be used. Prior to 1902, published as Cache la Poudre Creek or River at or near Fort Collins. Water-quality data available, June 1962 to October 1965, October 1971 to September 1982, and April 1993 to Septempber 1995.
REVISED RECORDS.--WSP 1310: 1885-87, 1889, 1892, 1894-96, 1934. WSP 1730: 1960, drainage area. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,220 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transbasin and transmountain diversions (see elsewhere in this report), diversions upstream from station for irrigation of about 50,000 acres, most of which is downstream from station, 86,020 acre-ft diverted during current year, and diversions for municipal use, 15,000 acre-ft diverted during current year.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^29]b-Also occurred Nov 28, 1948, caused by diversion of Poudre Valley Canal, 0.5 mi upstream.
c-Maximum discharge determined, caused by failure of Chambers Lake Dam, from reports of State Engineers Office. A greater discharge, but not determined, occurred May 20, 1904.

06752258 CACHE LA POUDRE RIVER AT SHIELDS STREET, AT FORT COLLINS, CO

WATER-QUALITY RECORDS

LOCATION.--Lat $40^{\circ} 36^{\prime} 11^{\prime \prime}$, long $105^{\circ} 05^{\prime} 43^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec.3, T. 7 N., R. 69 W., Larimer County, Hydrologic Unit 10190007, at Shields Street bridge, 0.8 mi downstream from Larimer-Weld Canal, and 1.0 mi northwest of Fort Collins.
PERIOD OF RECORD.--October 1979 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06752258 CACHE LA POUDRE RIVER AT SHIELDS STREET, AT FORT COLLINS, CO--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO

LOCATION.--Lat $40^{\circ} 35^{\prime} 21^{\prime \prime}$, long $105^{\circ} 04^{\prime} 09^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NW}^{1 / 4} / 4$ sec.12, T. 7 N., R. 69 W., Larimer County, Hydrologic Unit 10190007, on left bank 200 ft upstream from Lincoln Street Bridge in Fort Collins.
DRAINAGE AREA.- $-1,127 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1975 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $4,940 \mathrm{ft}$ above sea level, from topographic map. Prior to Nov. 10, 1988 at site $4,300 \mathrm{ft}$ upstream, at different datum. Prior to May 22, 1987, at site 300 ft downstream, at different datum.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, diversion for municipal supply, diversions upstream from station for irrigation, and return flow from irrigated areas.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.4	3.4	1.9	42	66	71	52	217	807	249	67	50
2	4.3	1.6	1.5	43	66	76	41	185	808	288	86	59
3	4.8	4.0	. 82	53	69	76	68	215	868	441	76	22
4	4.1	6.5	. 82	45	76	74	43	172	863	430	50	24
5	3.2	6.6	. 82	45	77	75	52	190	1130	477	31	27
6	3.5	15	1.5	50	79	69	48	201	e1700	478	35	13
7	4.2	3.0	1.5	39	82	60	65	271	1920	451	60	12
8	4.6	. 91	. 81	50	82	64	76	257	1870	366	49	33
9	4.9	. 78	. 79	45	79	71	96	149	1590	356	59	50
10	5.1	5.4	. 78	47	76	74	109	227	1330	279	63	21
11	4.5	4.4	. 79	43	69	77	121	308	1370	e200	56	62
12	4.4	. 77	. 83	43	66	78	112	321	1420	e250	47	65
13	3.7	3.9	5.5	61	71	80	119	319	1440	e450	45	40
14	1.9	2.2	19	51	77	102	154	220	1400	e780	39	61
15	. 78	. 81	27	57	77	80	129	297	1870	e580	38	74
16	. 75	. 78	18	57	72	71	47	378	2080	e250	100	49
17	1.0	. 76	16	48	80	76	6.7	884	1510	e140	64	28
18	. 75	. 74	16	42	78	74	5.8	665	1180	e74	17	13
19	. 76	. 77	25	35	79	90	4.9	642	874	e250	44	e30
20	. 78	. 80	17	56	78	95	7.8	319	702	e170	55	e18
21	3.4	. 80	17	58	83	108	76	253	705	e90	61	e9.0
22	4.1	1.4	16	65	84	85	59	324	1140	e27	58	e11
23	4.3	. 84	18	50	77	66	34	617	1040	e45	64	e23
24	4.3	. 83	38	62	65	76	45	678	740	e92	36	e150
25	4.2	. 83	40	55	70	59	53	1010	567	e60	24	62
26	4.8	. 82	36	56	78	43	131	1020	321	50	22	80
27	5.6	1.3	42	49	65	60	49	749	416	49	24	65
28	2.0	. 84	49	60	55	62	58	514	500	37	50	30
29	1.1	. 84	45	63	69	69	78	476	371	62	50	20
30	1.6	. 91	37	58	---	63	137	555	311	91	87	27
31	1.1	---	36	45	---	62	-	893	---	87	83	---
TOTAL	98.92	72.53	530.36	1573	2145	2286	2077.2	13526	32843	7649	1640	1228.0
MEAN	3.19	2.42	17.1	50.7	74.0	73.7	69.2	436	1095	247	52.9	40.9
MAX	5.6	15	49	65	84	108	154	1020	2080	780	100	150
MIN	. 75	. 74	. 78	35	55	43	4.9	149	311	27	17	9.0
AC-FT	196	144	1050	3120	4250	4530	4120	26830	65140	15170	3250	2440

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 1996, BY WATER YEAR (WY)

06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 1975 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: October 1987 to current year.
pH: October 1987 to current year.
WATER TEMPERATURE: October 1987 to current year.
INSTRUMENTATION.--Water-quality monitor since October 1987.
REMARKS.--Temperature, specific conductance are rated fair, and pH is rated poor.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 759 microsiemens, Oct. 22; minimum, 35 microsiemens, Jun. 22.
$\mathrm{pH}:$ Maximum, 9.1 units, Apr. 12, 16, 24-25; minimum, 6.9 units, Dec. 14.
WATER TEMPERATURE: Maximum, $23.8^{\circ} \mathrm{C}$ Aug. 23 ; minimum $0.0^{\circ} \mathrm{C}$ Jan. 12 and Mar. 1

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INSTT. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	$\begin{gathered} \text { PH } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	$\begin{gathered} \text { TEMPER- } \\ \text { ATURE } \\ \text { WATER } \\ \text { (DEG C) } \end{gathered}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	HARD - NESS TOTAL (MG/L AS CACO3)	CALCIUM DISSOLVED (MG/L AS CA)	$\begin{gathered} \text { MAGNE- } \\ \text { SIUM, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS MG) } \end{gathered}$	$\begin{aligned} & \text { SODIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS NA) } \end{aligned}$	$\begin{gathered} \text { ALKA- } \\ \text { LINITY } \\ \text { LAB } \\ \text { (MG/L } \\ \text { AS } \\ \text { CACO3) } \end{gathered}$
$\begin{aligned} & \text { OCT } \\ & 26 \ldots . \end{aligned}$	1022	4.1	579	8.1	6.0	9.0	250	69	20	--	203
$\begin{gathered} \text { NOV } \\ 30 \ldots \end{gathered}$	0923	0.83	786	8.1	7.5	9.7	350	95	28	--	281
$\begin{aligned} & \text { JAN } \\ & 11 . . . \end{aligned}$	0900	54	310	8.0	0.5	13.2	140	39	9.5	9.9	109
$\begin{gathered} \text { FEB } \\ 14 \ldots \end{gathered}$	1049	76	334	8.0	2.5	12.9	150	43	10	--	129
$\begin{aligned} & \text { MAR } \\ & 28 . \ldots \end{aligned}$	1053	65	270	8.2	5.5	11.5	120	33	8.5	--	97
APR 17...	0830	7.5	362	8.1	10.0	10.2	150	43	11	--	118
MAY 23...	0923	651	56	8.0	10.0	9.6	22	6.5	1.4	--	22
$\begin{aligned} & \text { JUN } \\ & 05 . . . \end{aligned}$	1156	1270	55	7.9	12.5	9.0	21	6.2	1.4	--	21
JUL 10...	1541	196	88	8.1	14.0	9.1	34	10	2.2	2.9	33
$\begin{gathered} \text { AUG } \\ 13 . \ldots \end{gathered}$	0937	41	131	8.0	16.0	8.6	49	14	3.4	2.9	49
SEP 18...	0849	13	257	8.0	13.5	8.4	110	31	7.7	--	95

DATE		CHLORIDE, DISSOLVED (MG/L AS CL)	FLUORIDE, SOLVED (MG/L AS F)	$\begin{aligned} & \text { SILICA, } \\ & \text { DIS- } \\ & \text { SLVEED } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { SIO2) } \end{aligned}$	$\begin{aligned} & \text { SoLIDS, } \\ & \text { RESIDUE } \\ & \text { AT 180 } \\ & \text { DEG. C } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L) } \end{aligned}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SIVEDE } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2NONO } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/LI } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { AMMNIA } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	PHOS- PHORUS Phorus SOLVED (MG/L AS P)	$\begin{gathered} \text { PHOS- } \\ \text { PHORUS } \\ \text { ORTHO, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS P) } \end{gathered}$
$\begin{aligned} & \text { OCT } \\ & 26 \ldots \\ & \text { Nov } \end{aligned}$	--	--	--	--	--	0.01	0.86	<0.02	<0.01	<0.01
30...	--	--	--	--	--	0.02	1.8	<0.02	0.01	<0.01
JAN $11 .$.	40	4.7	0.4	10	190	<0.01	0.27	<0.02	0.03	<0.01
$\begin{aligned} & \text { FEB } \\ & 14 \ldots \end{aligned}$	--	--	--	--	_-	<0.01	0.24	<0.02	<0.01	<0.01
$\begin{aligned} & \text { MAR } \\ & 28 \ldots . . \end{aligned}$	--	--	--	--	--	<0.01	0.13	<0.02	<0.01	<0.01
APR	--	--	--	--	--	<0.01	0.24	<0.02	<0.01	<0.01
MAY										
SUN $23 .$.	--	--	--	--	--	<0.01	0.04	0.02	0.01	<0.01
05...	--	--	--	--	--	<0.01	0.02	0.02	0.02	<0.01
$\begin{aligned} & \text { JUL } \\ & 10 . . . \end{aligned}$	6.9	1.2	0.2	5.6	52	<0.01	0.05	0.05	<0.01	<0.01
${ }^{\text {AUG }} 13$	--	--	--	--	--	0.01	0.07	0.02	<0.01	0.01
SEP										
18...	--	--	--	--	--	0.05	1.6	0.08	0.04	0.05

06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	513	478	500	--	---	---	---	---	---	353	335	345
2	531	483	512	--	---	-	---	---	--	352	331	340
3	529	470	506	--	---	---	---	---	---	338	309	321
4	499	402	468	--	---	-	--	---	--	320	306	313
5	518	488	509	---	---	---	---	---	---	330	306	319
6	567	515	540	--	---	--	---	---	---	355	322	338
7	565	522	547	---	---	---	-	---	--	366	317	344
8	565	521	544	---	---	---	---	---	---	343	289	306
9	558	523	541	---	---	---	-	---	---	303	279	293
10	554	512	539	---	-	---	--	---	---	298	275	286
11	559	521	542	---	---	---	---	---	---	299	275	289
12	561	529	548	--	---	--	--	---	--	313	293	301
13	---	---	---	-	---	---	---	-	---	295	264	277
14	--	-	---	---	---	-	---	---	---	306	270	287
15	---	---	---	---	---	---	---	---	---	293	274	282
16	---	---	---	---	---	---	--	---	--	288	274	282
17	--	---	---	---	---	---	---	---	---	305	276	284
18	---	-	--	---	-	--	---	---	---	346	274	301
19	--	---	--	---	---	---	-	--	--	398	323	372
20	---	---	---	-	---	---	---	-	-	323	287	301
21	---	--	--	---	---	---	--	-	--	316	285	305
22	759	632	681	-	-	--	---	---	---	303	285	296
23	655	614	639	---	---	---	---	-	--	336	303	322
24	652	594	631	--	---	---	---	---	---	364	287	314
25	636	575	617	---	--	---	419	377	397	314	296	305
26	---	-	---	--	--	---	396	364	377	339	309	328
27	-	---	---	---	-	---	412	355	381	340	320	332
28	---	---	--	--	---	-	370	342	358	335	296	314
29	--	-	--	-	---	--	413	345	363	314	298	307
30	---	---	---	---	---	---	379	351	362	325	301	314
31	---	---	---	---	---	---	389	350	363	342	322	332
MONTH	---	---	---	---	---	---	---	---	---	398	264	311

06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO--Continued

 SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996| DAY | MAX | MIN | MEAN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | JUNE | | | JULY | | | AUGUST | | | SEP TEMBER | |
| 1 | 81 | 71 | 75 | 71 | 59 | 64 | --- | --- | --- | 205 | 158 | 176 |
| 2 | 77 | 69 | 72 | 78 | 57 | 69 | --- | --- | --- | 228 | 121 | 190 |
| 3 | 75 | 62 | 67 | 68 | 61 | 64 | --- | --- | --- | 174 | 131 | 157 |
| 4 | 73 | 57 | 63 | 65 | 59 | 62 | --- | --- | --- | 236 | 147 | 172 |
| 5 | 66 | 49 | 55 | 64 | 58 | 60 | --- | --- | --- | 166 | 113 | 138 |
| 6 | 56 | 43 | 47 | 64 | 59 | 61 | --- | --- | --- | 272 | 146 | 203 |
| 7 | 51 | 44 | 47 | 66 | 59 | 62 | 129 | 104 | 113 | 336 | 272 | 308 |
| 8 | 51 | 45 | 47 | 68 | 61 | 65 | 134 | 111 | 121 | 365 | 123 | 317 |
| 9 | 53 | 44 | 47 | 72 | 65 | 68 | 131 | 111 | 120 | 156 | 120 | 136 |
| 10 | 53 | 42 | 46 | --- | --- | --- | 146 | 114 | 132 | 230 | 127 | 171 |
| 11 | 49 | 41 | 44 | --- | --- | --- | 162 | 121 | 143 | 139 | 113 | 124 |
| 12 | 46 | 39 | 43 | --- | --- | --- | 126 | 103 | 116 | 130 | 113 | 122 |
| 13 | 46 | 40 | 42 | --- | --- | --- | 127 | 101 | 114 | 204 | 120 | 175 |
| 14 | 43 | 37 | 39 | --- | --- | --- | 137 | 115 | 125 | 244 | 180 | 216 |
| 15 | 43 | 40 | 42 | - | - | -- | 142 | 115 | 129 | 187 | 174 | 180 |
| 16 | 48 | 38 | 42 | --- | --- | --- | 138 | 96 | 116 | 205 | 182 | 194 |
| 17 | 48 | 43 | 45 | --- | --- | - | 225 | 96 | 141 | 240 | 192 | 211 |
| 18 | 49 | 43 | 45 | --- | --- | --- | 301 | 146 | 258 | 286 | 203 | 264 |
| 19 | 49 | 43 | 45 | --- | - | - | 149 | 102 | 121 | 322 | 204 | 298 |
| 20 | 53 | 45 | 48 | --- | --- | - | 118 | 100 | 108 | 348 | 312 | 336 |
| 21 | 54 | 46 | 50 | --- | --- | --- | 119 | 100 | 108 | 360 | 335 | 351 |
| 22 | 54 | 35 | 38 | --- | --- | --- | 121 | 102 | 111 | 364 | 348 | 357 |
| 23 | 47 | 39 | 43 | --- | --- | --- | 130 | 89 | 110 | 348 | 223 | 307 |
| 24 | 53 | 46 | 48 | --- | --- | - | 234 | 130 | 195 | 223 | 144 | 163 |
| 25 | 62 | 51 | 54 | --- | --- | --- | 264 | 215 | 237 | 229 | 174 | 207 |
| 26 | 73 | 55 | 62 | --- | --- | --- | 284 | 142 | 208 | 204 | 171 | 185 |
| 27 | 63 | 51 | 55 | --- | --- | --- | 185 | 136 | 167 | 204 | 159 | 185 |
| 28 | 55 | 47 | 51 | --- | --- | --- | 146 | 108 | 121 | 274 | 197 | 233 |
| 29 | 60 | 53 | 56 | --- | --- | --- | 130 | 101 | 114 | 317 | 270 | 300 |
| 30 | 64 | 55 | 59 | --- | --- | -- | 151 | 84 | 115 | 311 | 263 | 289 |
| 31 | --- | - | -- | --- | --- | --- | 167 | 125 | 147 | --- | --- | --- |
| MONTH | 81 | 35 | 51 | --- | --- | --- | --- | --- | --- | 365 | 113 | 222 |

pH (STANDARD UNITS), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO--Continued

DAY	MAX	MIN	MEAN									
	FEBRUARY				MARCH	APRIL				MAY		
1	7.6	7.5	7.5	8.1	7.5	7.8	8.8	7.5	8.2	8.5	7.5	8.0
2	7.6	7.5	7.5	8.1	7.6	7.8	9.0	7.5	8.3	8.5	7.6	8.0
3	7.5	7.4	7.5	8.1	7.6	7.8	8.8	7.5	8.1	8.7	7.6	8.0
4	7.6	7.4	7.5	8.0	7.6	7.8	8.3	7.4	7.8	9.0	7.6	8.1
5	7.7	7.5	7.6	8.1	7.6	7.8	8.7	7.4	8.0	8.9	7.6	8.1
6	7.8	7.6	7.7	8.4	7.6	8.0	8.7	7.4	8.0	9.0	7.7	8.2
7	7.8	7.6	7.7	8.1	7.6	7.9	8.8	7.5	8.2	8.5	7.8	8.0
8	7.8	7.6	7.7	8.1	7.6	7.8	8.8	7.3	8.1	8.6	7.5	8.0
9	7.8	7.6	7.7	8.2	7.6	7.9	---	---	---	8.3	7.5	7.8
10	7.8	7.6	7.7	8.2	7.7	7.9	---	---	---	8.1	7.4	7.7
11	7.9	7.6	7.8	8.1	7.6	7.9	8.8	8.2	8.5	8.4	7.6	7.9
12	8.0	7.7	7.8	8.2	7.6	7.9	9.1	8.2	8.6	8.1	7.6	7.9
13	8.1	7.7	7.9	8.1	7.6	7.8	8.8	8.1	8.4	8.3	7.6	7.9
14	8.1	7.7	7.9	7.9	7.6	7.7	8.9	8.1	8.5	8.1	7.6	7.9
15	7.9	7.5	7.7	8.1	7.5	7.8	9.0	8.1	8.5	7.9	7.5	7.7
16	7.9	7.5	7.7	8.1	7.6	7.8	9.1	7.9	8.4	8.2	7.4	7.7
17	7.9	7.5	7.7	8.1	7.6	7.8	9.0	7.8	8.3	8.1	7.5	7.7
18	8.0	7.5	7.7	8.1	7.6	7.8	8.9	7.8	8.2	7.8	7.3	7.6
19	8.1	7.6	7.8	8.1	7.6	7.8	8.9	7.9	8.3	7.6	7.2	7.5
20	8.1	7.5	7.8	8.2	7.6	7.9	8.8	7.8	8.3	7.6	7.2	7.3
21	8.2	7.6	7.9	8.3	7.6	7.9	8.7	7.9	8.2	7.8	7.2	7.4
22	8.3	7.6	7.9	8.3	7.6	7.9	8.8	7.8	8.2	7.8	7.3	7.5
23	8.1	7.6	7.8	8.3	7.6	7.9	9.0	7.8	8.3	---	---	---
24	8.2	7.5	7.8	8.1	7.5	7.8	9.1	7.8	8.4	---	---	---
25	8.3	7.6	7.9	8.0	7.1	7.6	9.1	7.8	8.3	---	---	---
26	8.0	7.6	7.8	8.0	7.4	7.7	8.9	7.7	8.2	---	---	---
27	7.9	7.5	7.7	9.0	7.6	8.2	8.9	7.7	8.2	---	---	---
28	7.9	7.5	7.7	9.0	8.1	8.5	8.8	7.6	8.1	---	---	---
29	8.0	7.4	7.7	8.6	7.7	8.1	8.8	7.5	8.1	---	---	---
30	---	---	---	8.8	7.5	8.2	8.3	7.6	7.8	---	---	---
31	---	---	---	8.8	7.7	8.2	---	---	---	---	---	---
MONTH	8.3	7.4	7.7	9.0	7.1	7.9	-	--	-	---	---	---

		JUNE		JULY			AUGUST			SEPTEMBER		
1	---	--	---	8.5	8.0	8.3	---	---	---	8.8	7.6	8.1
2	---	---	---	8.5	8.0	8.2	---	---	---	8.8	7.5	8.1
3	---	---	---	8.4	8.0	8.2	---	---	---	8.6	7.5	8.0
4	---	---	---	8.4	8.0	8.2	---	---	---	8.7	7.5	8.0
5	-	---	---	8.4	8.0	8.2	---	---	---	8.7	7.5	8.0
6	8.1	7.8	8.0	8.4	8.0	8.2	---	---	---	8.2	7.5	7.8
7	8.1	7.6	7.9	8.4	8.0	8.2	8.5	7.4	7.8	8.4	7.8	8.1
8	8.2	7.8	7.9	8.4	8.1	8.2	8.5	7.4	7.8	8.6	7.9	8.2
9	8.1	7.7	7.9	8.2	8.0	8.1	8.4	7.5	7.9	8.6	7.8	8.0
10	7.9	7.7	7.8	---	---	---	8.7	7.6	8.0	8.8	7.6	8.1
11	8.2	7.6	7.8	---	---	---	8.8	7.6	8.1	8.7	7.8	8.2
12	7.9	7.6	7.7	---	---	---	8.7	7.5	8.0	8.6	7.8	8.1
13	8.3	7.6	7.9	---	---	---	8.6	7.3	7.8	8.7	7.8	8.3
14	8.0	7.7	7.8	---	---	---	8.5	7.2	7.7	8.9	8.0	8.4
15	7.7	7.5	7.7	---	---	---	8.4	7.2	7.7	8.8	7.9	8.4
16	7.8	7.5	7.6	---	---	---	8.6	7.3	7.7	8.7	8.0	8.3
17	8.0	7.7	7.8	---	---	---	8.5	7.2	7.7	8.5	8.0	8.2
18	8.0	7.7	7.8	---	---	---	8.4	7.2	7.6	8.5	7.9	8.1
19	8.1	7.7	7.9	---	---	---	8.3	7.1	7.5	8.6	8.0	8.2
20	8.1	7.8	7.9	---	---	---	8.3	7.0	7.6	8.6	8.2	8.4
21	8.1	7.9	8.0	---	---	---	8.4	7.1	7.5	8.7	8.2	8.4
22	7.9	7.6	7.7	---	---	---	8.6	7.2	7.8	8.8	8.3	8.5
23	8.2	7.7	8.0	---	---	---	8.5	7.2	7.7	8.8	8.2	8.5
24	8.3	7.9	8.1	---	---	---	8.7	7.3	7.9	---	---	---
25	8.4	8.0	8.2	---	---	---	8.7	7.4	8.0	8.4	8.1	8.2
26	8.5	8.0	8.2	---	---	---	8.7	7.4	8.0	8.4	8.0	8.2
27	8.4	8.0	8.2	---	---	---	8.5	7.4	7.9	8.4	7.9	8.1
28	8.3	8.0	8.1	---	---	---	8.3	7.4	7.7	8.6	8.0	8.2
29	8.4	7.9	8.1	---	---	---	8.7	7.3	7.9	8.7	8.0	8.3
30	8.5	8.0	8.2	-	---	---	8.5	7.3	7.8	8.9	8.1	8.5
31	---	---	---	---	---	---	8.8	7.5	8.0	---	---	---
MONTH	---	---	---	--	--	---	---	-	---	---	---	---

06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO--Continued

TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO--Continued

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST		SEPTEMBER		
1	14.7	10.7	12.4	17.8	14.1	15.8	22.9	17.1	20.1	20.4	16.3	18.7
2	14.8	10.4	12.3	17.1	13.5	15.0	22.6	17.6	20.3	20.0	17.1	18.4
3	14.8	10.8	12.6	15.4	12.3	13.7	21.5	17.5	19.7	19.4	15.1	17.5
4	13.9	11.0	12.4	15.6	11.9	13.4	21.9	16.6	19.2	20.1	15.8	18.1
5	13.9	10.9	12.3	15.4	12.2	13.5	22.2	15.9	19.1	20.0	14.9	17.5
6	13.1	11.0	11.9	16.1	11.8	13.7	21.7	16.6	19.2	18.2	16.3	17.3
7	13.1	10.1	11.5	15.9	12.0	13.8	20.4	14.5	17.8	21.0	15.5	17.7
8	13.4	10.7	11.7	14.0	12.2	12.9	21.1	15.6	18.5	20.6	15.5	17.8
9	12.8	10.5	11.4	12.6	11.7	12.1	20.6	16.8	18.9	18.4	12.6	15.6
10	12.8	11.0	11.7				21.5	16.6	19.2	19.4	15.1	17.5
11	12.7	10.9	11.5	---	---	---	22.2	16.3	19.6	17.9	13.4	15.4
12	12.9	10.7	11.6	---	---	---	20.8	15.3	18.6	16.0	13.6	14.5
13	12.5	10.6	11.6	-	---	---	19.9	15.0	17.8	17.0	14.4	15.7
14	13.9	10.9	12.0	---	---	---	19.4	15.5	17.6	17.3	15.8	16.5
15	12.0	9.9	10.8	---	---	---	19.0	15.3	17.4	18.4	14.9	16.9
16	12.8	9.4	11.0	---	---	---	20.4	15.0	17.8	18.1	15.4	17.0
17	14.0	11.6	12.6	22.3	17.0	19.6	21.7	15.1	18.1	17.3	14.8	16.3
18	14.5	11.4	12.8	20.5	17.6	19.1	23.1	17.1	19.5	17.4	12.3	14.5
19	15.0	11.8	13.2	21.0	15.4	18.3	18.6	15.4	17.0	15.1	11.4	13.1
20	14.6	12.4	13.3	22.5	16.9	19.5	18.2	13.5	16.0	15.5	11.7	13.2
21	14.1	12.5	13.2	22.9	16.6	19.8	16.7	13.7	15.4	16.0	11.2	13.8
22	12.6	11.3	12.0	22.2	16.9	19.8	17.8	13.9	15.8	16.0	12.4	14.4
23	14.7	11.5	13.0	20.5	16.5	18.6	19.0	14.0	16.6	15.8	12.4	14.1
24	15.8	12.7	14.1	20.4	14.5	17.5	21.8	16.7	19.2	14.8	11.9	13.4
25	17.3	13.7	15.2	19.9	16.4	18.2	23.8	18.9	20.9	13.8	10.8	12.7
26	18.2	13.1	15.5	20.4	15.3	17.8	22.3	18.7	20.2	10.8	9.0	9.8
27	16.0	14.1	15.0	21.2	15.4	18.5	20.0	17.5	18.6	10.8	6.8	9.1
28	15.5	12.9	13.9	21.2	16.6	18.7	17.6	14.3	15.7	14.5	9.9	12.2
29	16.6	12.2	14.3	19.2	16.5	17.7	18.2	13.6	15.8	16.2	10.8	13.7
30	17.9	13.6	15.7	20.2	15.4	17.8	18.6	14.7	16.6	16.5	11.9	14.4
31	-	-	-	22.4	15.8	19.0	20.4	15.5	18.2	---	---	---
MONTH	18.2	9.4	12.7	--	---	---	23.8	13.5	18.2	21.0	6.8	15.2

06752270 CACHE LA POUDRE RIVER BELOW FORT COLLINS, CO

WATER-QUALITY RECORDS

LOCATION.--Lat $40^{\circ} 34^{\prime} 01$ ", long $105^{\circ} 01^{\prime} 36^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{NE}^{1 / 4} \mathrm{sec} .20$, T. 7 N., R. 68 W., Larimer County, Hydrologic Unit 10190007, 1.4 mi west of Interstate 25 on Prospect Street in Fort Collins.

DRAINAGE AREA.-- $1,240 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--January 1978 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	$\begin{gathered} \text { PH } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPERATURE WATER (DEG C)	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DISSOLVED (MG/L AS CA)	$\begin{aligned} & \text { MAGNE- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS MG) } \end{aligned}$	$\begin{gathered} \text { SODIUM, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS NA) } \end{gathered}$	$\begin{gathered} \text { ALKA- } \\ \text { LINITY } \\ \text { LAB } \\ \text { (MG/L } \\ \text { AS } \\ \text { CACO3) } \end{gathered}$
OCT											
24	1505	16	754	8.2	9.0	10.9	360	94	31	--	279
NOV											
28.	1402	5.8	835	8.3	4.0	12.3	420	110	35	--	261
JAN											
09.	1456	4.9	850	7.9	3.5	13.6	410	110	33	35	278
FEB											
14	0833	82	379	8.5	2.0	11.7	170	47	12	--	136
MAR											
26.	1408	43	365	8.4	8.0	12.7	150	41	11	--	116
APR											
15.	1425	142	187	9.0	10.5	11.3	82	24	5.3	--	71
MAY											
22.	1151	363	85	7.9	11.5	9.3	34	9.9	2.3	--	32
JUN											
03.	1441	823	84	8.1	15.0	8.9	32	9.2	2.1	--	30
JUL											
08.	1636	360	96	8.8	15.0	9.2	38	11	2.5	3.3	34
AUG											
12.	1501	57	288	9.1	23.5	9.4	110	31	8.6	-	87
SEP											
18..	1340	34	486	8.8	18.0	13.2	200	55	16	--	142

DATE	$\begin{aligned} & \text { SULFATE } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & (\text { MG/L } \\ & \text { AS SO4) } \end{aligned}$	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	$\begin{aligned} & \text { FLUO- } \\ & \text { RIDE, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS F) } \end{aligned}$	$\begin{aligned} & \text { SILICA, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { SIO2) } \end{aligned}$	SOLIDS, RESIDUE AT 180 DEG. C DISSOLVED (MG/L)	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, } \\ & \text { NITRITE } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS N) } \end{aligned}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	NITROGEN, AMMONIA DISSOLVED (MG/L AS N)	$\begin{aligned} & \text { PHOS- } \\ & \text { PHORUS } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS P) } \end{aligned}$	PHOSPHORUS ORTHO, DISSOLVED (MG/L AS P)
$\begin{aligned} & \text { OCT } \\ & 24 . \end{aligned}$	--	--	--	--	--	0.03	1.7	<0.02	<0.01	<0.01
$\begin{aligned} & \mathrm{NOV} \\ & 28 . \end{aligned}$	--	--	--	--	--	0.03	2.2	0.04	<0.01	<0.01
$\begin{gathered} \text { JAN } \\ 09 . \end{gathered}$	140	26	0.7	12	504	0.02	2.4	0.05	<0.01	<0.01
$\begin{aligned} & \mathrm{FEB} \\ & 14 \ldots \end{aligned}$	--	--	--	--	--	<0.01	0.35	<0.02	<0.01	<0.01
$\begin{aligned} & \text { MAR } \\ & 26 \ldots . \end{aligned}$	--	--	--	--	--	<0.01	0.23	<0.02	0.02	<0.01
$\begin{aligned} & \text { APR } \\ & \quad 15 \ldots \end{aligned}$	--	--	--	--	--	<0.01	0.05	<0.02	<0.01	<0.01
$\begin{aligned} & \text { MAY } \\ & 22 \ldots \end{aligned}$	--	--	--	--	--	<0.01	0.08	0.02	<0.01	<0.01
$\begin{aligned} & \text { JUN } \\ & 03 \ldots \end{aligned}$	-	--	-	--	--	0.01	0.06	0.03	0.02	0.02
$\begin{aligned} & \text { JUL } \\ & 08 . . \end{aligned}$	9.6	1.4	0.2	5.6	40	<0.01	0.10	0.04	<0.01	0.02
$\begin{aligned} & \text { AUG } \\ & 12 . \end{aligned}$	--	1			-_	0.02	0.74	0.03	0.12	0.14
$\begin{aligned} & \mathrm{SEP} \\ & 18 \ldots . \end{aligned}$	--	--	--	--	--	0.10	1.8	0.02	0.17	0.21

06752270 CACHE LA POUDRE RIVER BELOW FORT COLLINS, CO--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	ALUM- INUM, DISSOLVED (UG/L AS AL)	$\begin{gathered} \text { ARSENIC } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { AS AS) } \end{gathered}$	$\begin{aligned} & \text { CADMIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS CD) } \end{aligned}$	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	$\begin{aligned} & \text { COPPER, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS CU) } \end{aligned}$	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	$\begin{aligned} & \text { LEAD, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS PB) } \end{aligned}$
$\begin{aligned} & \text { OCT } \\ & 24 . \end{aligned}$	--	--	--	--	1	250	--
$\begin{gathered} \mathrm{NOV} \\ 28 . . \end{gathered}$	--	--	--	--	<1	290	--
$\begin{aligned} & \text { JAN } \\ & 09 . \end{aligned}$	10	<1	<1	<1	<1	200	<1
FEB $14 . \text {. }$	--	--	--	--	<1	190	--
$\begin{aligned} & \text { MAR } \\ & 26 . . \end{aligned}$	--	--	--	--	<1	150	--
APR $15 .$	--	--	--	--	1	310	--
$\begin{gathered} \text { MAY } \\ 22 . . \end{gathered}$	--	--	--	--	2	620	--
$\begin{aligned} & \text { JUN } \\ & 03 . \end{aligned}$	--	--	--	--	1	540	--
$\begin{aligned} & \text { JUL } \\ & 08 . . \end{aligned}$	20	<1	<1	<1	2	170	<1
AUG 12..	--	--	--	--	1	110	-
$\begin{aligned} & \mathrm{SEP} \\ & 18 \ldots . \end{aligned}$	--	--	--	--	1	170	--

DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	$\begin{gathered} \text { MERCURY } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { AS HG) } \end{gathered}$	$\begin{aligned} & \text { NICKEL, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS NI) } \end{aligned}$	SELENIUM, DISSOLVED (UG/L AS SE)	$\begin{gathered} \text { SILVER, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { AS AG) } \end{gathered}$	$\begin{gathered} \text { ZINC, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { AS ZN) } \end{gathered}$
$\begin{aligned} & \text { OCT } \\ & 24 \ldots . \end{aligned}$	--	--	--	--	<0.2	--
NOV $28 \text {. . }$	--	--	--	--	<0.2	--
JAN 09..	40	<0.1	<1	4	<0.2	10
FEB $14 \text {. . }$	--	--	--	--	<0.2	--
MAR 26.	--	--	--	--	<0.2	--
APR $15 .$	--	--	--	--	<0.2	--
$\begin{gathered} \text { MAY } \\ 22 \ldots \end{gathered}$	--	--	--	--	<0.2	--
$\begin{aligned} & \text { JUN } \\ & 03 . \end{aligned}$	--	--	--	--	<0.2	--
JUL $08 \text {. . }$	<10	<0.1	<1	<1	<0.2	<3
AUG 12. . .	--	--	--	--	<0.2	--
$\begin{aligned} & \text { SEP } \\ & 18 \ldots \end{aligned}$	--	--	--	--	<0.2	--

06752280 CACHE LA POUDRE RIVER ABOVE BOX ELDER CREEK, NEAR TIMNATH, CO

LOCATION.--Lat $40^{\circ} 33^{\prime} 07^{\prime \prime}$, long $105^{\circ} 00^{\prime} 39^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{NW}^{1 / 4}$ sec. 28 , T. 7 N., R. 68 W., Larimer County, Hydrologic Unit 10190007, on left bank $4,000 \mathrm{ft}$ upstream from Box Elder Creek, 2.0 mi upstream from Interstate Highway 25 bridge, and 3.8 mi southeast of intersection of College Avenue and Prospect Street in Fort Collins.

DRAINAGE AREA.--1,245 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1979 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $4,860 \mathrm{ft}$ above sea level, from topographic map. Prior to March 24, 1994, at site $1,900 \mathrm{ft}$ downstream at different datum.

REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, diversion for municipal supply, diversions upstream from station for irrigation, and return flow from irrigated areas.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.8	4.3	4.6	4.8	30	37	36	158	571	172	31	30
2	5.7	4.3	4.6	5.1	23	5.0	25	118	535	172	44	32
3	5.4	5.9	4.9	5.0	23	5.0	46	153	594	307	43	14
4	5.8	6.8	4.1	5.3	23	14	29	110	611	297	31	7.4
5	5.0	5.1	4.5	5.1	24	46	37	123	889	335	12	8.3
6	4.9	4.6	5.6	5.0	30	44	31	130	1370	366	7.6	6.0
7	5.0	5.0	5.9	5.0	39	39	41	174	1420	331	25	4.4
8	5.0	4.8	3.9	5.1	45	39	48	202	1480	263	17	6.3
9	4.5	4.3	3.5	5.2	48	42	62	81	1280	246	19	31
10	3.9	4.6	4.2	5.1	43	46	79	133	1020	227	29	6.4
11	3.4	4.7	4.6	5.2	39	48	99	215	1100	123	17	27
12	3.6	5.0	4.9	5.2	43	50	95	217	1160	280	24	42
13	5.0	5.3	4.8	5.1	53	57	95	218	1250	451	14	22
14	5.3	5.0	5.6	5.4	53	110	147	122	1170	563	14	36
15	4.6	5.8	8.1	8.7	52	39	118	171	1650	253	15	60
16	4.1	6.5	4.5	7.1	49	11	59	172	2140	139	53	36
17	4.4	7.1	4.0	16	55	8.8	7.2	779	1560	66	65	21
18	4.8	4.3	4.2	27	54	7.1	5.1	613	1220	41	5.3	8.8
19	3.6	4.8	4.2	5.9	55	12	4.7	559	840	189	17	26
20	3.5	4.6	4.2	15	51	13	3.5	218	622	143	27	7.9
21	4.0	4.6	4.2	36	57	18	48	102	620	59	32	7.0
22	4.1	4.3	4.2	44	56	15	49	165	1170	18	35	8.2
23	4.0	4.2	4.2	26	53	7.6	26	446	1090	39	44	16
24	3.8	4.4	4.4	36	46	12	29	519	661	69	21	63
25	3.7	4.2	4.5	38	45	21	19	975	513	11	16	35
26	3.6	4.4	4.6	35	52	30	92	947	273	16	7.9	44
27	3.6	5.0	4.6	27	43	38	24	649	321	18	6.2	40
28	4.1	5.3	4.6	34	35	41	19	327	395	16	20	17
29	4.6	5.1	4.6	37	40	43	34	259	272	30	21	5.8
30	4.6	4.6	4.6	42	--	43	67	314	216	47	48	6.7
31	4.5	-	4.6	39	-	40	---	672	---	54	55	-
TOTAL	137.9	148.9	144.0	545.3	1259	981.5	1474.5	10041	28013	5341	816.0	675.2
MEAN	4.45	4.96	4.65	17.6	43.4	31.7	49.1	324	934	172	26.3	22.5
MAX	5.8	7.1	8.1	44	57	110	147	975	2140	563	65	63
MIN	3.4	4.2	3.5	4.8	23	5.0	3.5	81	216	11	5.3	4.4
AC-FT	274	295	286	1080	2500	1950	2920	19920	55560	10590	1620	1340

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 1996, BY WATER YEAR (WY)

a-Also occurred Apr 11, 15.
b-Maximum gage height, $10.25 \mathrm{ft}, \mathrm{Jun} 18,1995$.

06752280 CACHE LA POUDRE RIVER ABOVE BOX ELDER CREEK NEAR TIMNATH, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1979 to current year.

WATER-QUALITY DATA WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	$\begin{gathered} \text { PH } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPERATURE WATER (DEG C)	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	$\begin{aligned} & \text { HARD- } \\ & \text { NESS } \\ & \text { TOTAL } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { CACO3) } \end{aligned}$	$\begin{aligned} & \text { CALCIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS CA) } \end{aligned}$	$\begin{aligned} & \text { MAGNE- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS MG) } \end{aligned}$	$\begin{aligned} & \text { SODIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS NA) } \end{aligned}$	$\begin{aligned} & \text { ALKA- } \\ & \text { LINITY } \\ & \text { LAB } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { CACO3) } \end{aligned}$
$\begin{aligned} & \text { OCT } \\ & 26 \ldots . \end{aligned}$	1406	3.6	2310	8.0	9.5	11.0	1300	330	110	--	223
$\begin{gathered} \text { NOV } \\ 30 \ldots \end{gathered}$	1224	4.6	2180	7.9	4.5	11.0	1200	310	98	--	246
$\begin{aligned} & \text { JAN } \\ & \quad 11 \ldots \end{aligned}$	1402	4.9	1930	7.3	3.0	12.0	1000	270	86	83	233
$\begin{aligned} & \text { FEB } \\ & 15 \ldots \end{aligned}$	0858	53	500	8.5	2.0	11.6	220	60	17	--	140
$\begin{array}{r} \text { MAR } \\ 28 \ldots \end{array}$	1421	44	545	8.6	10.5	10.9	230	60	19	--	120
$\begin{aligned} & \text { APR } \\ & 17 \ldots \end{aligned}$	1307	6.6	1560	8.1	15.5	9.6	760	200	63	--	170
$\begin{aligned} & \text { MAY } \\ & 22 \ldots \\ & \text { JUN } \end{aligned}$	0858	202	99	8.0	10.5	9.3	38	11	2.6	--	34
JUL 0 . ${ }^{\text {J }}$	1350	760	147	7.9	14.0	8.5	54	15	4.1	--	32
10...	1820	125	483	8.4	19.0	9.3	200	52	16	17	70
$\begin{aligned} & \text { AUG } \\ & 15 \ldots \end{aligned}$	0938	16	812	8.0	18.0	8.0	340	88	29	--	119
$\begin{aligned} & \text { SEP } \\ & 20 \ldots \end{aligned}$	0921	7.6	1750	8.2	12.5	8.9	850	220	74	--	184

DATE	$\begin{aligned} & \text { SULFATE } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS SO4) } \end{aligned}$	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DISSOLVED (MG/L AS F)	$\begin{aligned} & \text { SILICA, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { SIO2) } \end{aligned}$	$\begin{aligned} & \text { SOLIDS, } \\ & \text { RESIDUUE } \\ & \text { AT 180 } \\ & \text { DEG. C } \\ & \text { DIS-- } \\ & \text { SOLVED } \\ & \text { (MG/L) } \end{aligned}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	$\begin{gathered} \text { PHOS- } \\ \text { PHORUS } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS P) } \end{gathered}$	$\begin{aligned} & \text { PHOS- } \\ & \text { PHORUS } \\ & \text { ORTHO, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS P) } \end{aligned}$
$\begin{aligned} & \text { OCT } \\ & 26 \ldots . \end{aligned}$	--	--	--	--	--	0.03	1.9	0.07	<0.01	<0.01
$\begin{gathered} \text { NOV } \\ 30 \ldots \end{gathered}$	--	--	--	--	--	0.04	2.6	0.13	<0.01	<0.01
JAN 11...	880	21	1.1	12	1570	0.02	2.4	0.12	<0.01	<0.01
$\begin{aligned} & \text { FEB } \\ & 15 \ldots \end{aligned}$	--	--	--	-_	--	<0.01	0.4	<0.02	<0.01	<0.01
$\begin{gathered} \text { MAR } \\ 28 . . \end{gathered}$	--	--	--	--	--	<0.01	0.28	<0.02	0.01	<0.01
$\begin{gathered} \text { APR } \\ 17 \ldots \end{gathered}$	--	--	--	--	--	0.02	1.0	0.08	<0.01	<0.01
$\begin{array}{r} \text { MAY } \\ 22 \ldots \end{array}$	--	--	--	--	--	<0.01	0.09	0.02	0.01	<0.01
$\begin{aligned} & \text { JUN } \\ & 04 \ldots \end{aligned}$	--	--	--	--	--	0.01	0.08	0.03	0.02	<0.01
$\begin{aligned} & \text { JUL } \\ & 10 \text {. . . } \end{aligned}$	160	4.5	0.4	6.6	314	0.01	0.35	0.04	<0.01	0.01
AUG $15 \text {. . . }$	--	--	--	--	--	0.05	0.96	0.05	0.08	0.09
$\begin{aligned} & \text { SEP } \\ & 20 \ldots \end{aligned}$	--	--	--	--	--	<0.01	0.04	0.02	<0.01	<0.01

06752280 CACHE LA POUDRE RIVER ABOVE BOX ELDER CREEK NEAR TIMNATH, CO--Continued

WATER-QUALITY DATA WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	ALUMINUM, DISSOLVED (UG/L AS AL)	$\begin{gathered} \text { ARSENIC } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { AS AS) } \end{gathered}$	$\begin{aligned} & \text { CADMIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS CD) } \end{aligned}$	CHROMIUM, DISSOLVED (UG/L AS CR)	COPPER, DISSOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, DISSOLVED (UG/L AS PB)
$\begin{aligned} & \text { OCT } \\ & 26 \ldots \end{aligned}$	--	--	--	--	<1	240	--
$\begin{aligned} & \text { NOV } \\ & \quad 30 \ldots \end{aligned}$	--	--	--	--	<1	160	--
JAN 11...	<10	<1	<1	<1	<1	160	<1
FEB $15 .$.	--	--	-_	--	<1	180	--
$\begin{aligned} & \text { MAR } \\ & 28 \ldots \end{aligned}$	--	--	--	--	<1	160	--
APR 17...	--	--	--	--	<1	390	--
$\begin{array}{r} \text { MAY } \\ 22 \ldots \end{array}$	--	--	--	--	2	1000	--
JUN 04.	--	--	--	--	1	690	--
JUL 10...	10	<1	<1	<1	2	370	<1
$\begin{aligned} & \text { AUG } \\ & 15 \ldots \end{aligned}$	--	--	--	--	<1	240	--
SEP 20.	--	--	--	--	<1	300	--

DATE	MANGANESE, TOTAL RECOVERABLE (UG/L AS MN)	$\begin{gathered} \text { MERCURY } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { AS HG) } \end{gathered}$	$\begin{aligned} & \text { NICKEL, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS NI) } \end{aligned}$	SELENIUM, DISSOLVED (UG/L AS SE)	$\begin{gathered} \text { SILVER, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { AS AG) } \end{gathered}$	ZINC, DISSOLVED (UG/L AS ZN)
$\begin{aligned} & \text { ОСт } \\ & 26 \ldots \end{aligned}$	--	--	--	--	<0.2	--
$\begin{gathered} \text { NOV } \\ 30 . . \end{gathered}$	--	--	--	--	<0.2	--
JAN 11..	40	<0.1	<1	9	<0.2	10
FEB $15 .$.	--	--	--	--	<0.2	--
MAR \qquad	--	--	--	--	<0.2	--
APR $17 \ldots$	--	--	--	--	<0.2	--
$\begin{array}{r} \text { MAY } \\ 22 \ldots \end{array}$	--	--	--	--	<0.2	--
JUN $04 . .$.	--	--	--	--	<0.2	--
JUL 10.	40	<0.1	<1	1	<0.2	7
AUG 15..	--	--	--	--	<0.2	--
SEP						
20...	--	--	--	--	<0.2	--

06752500 CACHE LA POUDRE RIVER NEAR GREELEY, CO

LOCATION.--Lat $40^{\circ} 25^{\prime} 04^{\prime \prime}$, long $104^{\circ} 38^{\prime} 22^{\prime \prime}$, in $\mathrm{NW}^{1} / 4$ sec. 11 , T. 5 N., R. 65 W., Weld County, Hydrologic Unit 10190007, on right bank 25 ft downstream from highway bridge, 2.9 mi east of courthouse in Greeley, and 3.0 mi upstream from mouth.

DRAINAGE AREA.--1,877 mi^{2}.

PERIOD OF RECORD.--Streamflow records, March to October 1903, August to November 1904, January 1914 to December 1919, June 1924 to current year. Monthly discharge only for some periods, published in WSP 1310. Water-quality data available, November 1951 to September 1952, August 1954 to August 1956, December 1963 to September 1966, October 1967 to September 1968, October 1970 to September 1982.
REVISED RECORDS.--WSP 1440: 1935, 1938(M), 1942-43. WSP 1730: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,610 ft above sea level, from topographic map. See WSP 1710 or 1730 for history of changes prior to Dec. 14, 1933.
REMARKS.--Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, diversion for municipal supply, diversions upstream from station for irrigation of about 250,000 acres, and return flow from irrigated areas.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

e-Estimated.

a-Also occurred Apr 25.
b-Maximum gage height, 8.95 ft , Jun 22, 1983.

06754000 SOUTH PLATTE RIVER NEAR KERSEY, CO

LOCATION.--Lat $40^{\circ} 24^{\prime} 44^{\prime \prime}$, long $104^{\circ} 33^{\prime} 46^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{SW}^{1} / 4$ sec.9, T. 5 N., R.64W., Weld County, Hydrologic Unit 10190003, on downstream side of bridge on State Highway 37, 1.9 mi north of railroad in Kersey, and 2.5 mi downstream from Cache la Poudre River.
DRAINAGE AREA.--9,598 mi ${ }^{2}$.
PERIOD OF RECORD.--May 1901 to December 1903, March 1905 to current year. Monthly discharge only for some periods, published in WSP 1310. Published as "at Kersey" 1901-3. Statistical summary computed for 1976 to current year. Water-quality data available, 1950-53, and April 1993 to September 1995.
REVISED RECORDS.--WSP 1310: 1902, 1906, 1935(M). WSP 1730: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $4,575.77 \mathrm{ft}$ above sea level. See WSP 1710 or 1730 for history of changes prior to July 3, 1935.
REMARKS.--Records fair. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 888,000 acres, and return flow from irrigated areas. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^30]
06758500 SOUTH PLATTE RIVER NEAR WELDONA, CO

LOCATION.--Lat $40^{\circ} 19^{\prime} 19{ }^{\prime \prime}$, long $103^{\circ} 55^{\prime} 177^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{SW}^{1} / 4 \mathrm{sec} .7$, T. 4 N., R. 58 W., Morgan County, Hydrologic Unit 10190003, on left bank 400 ft downstream from bridge on State Highway 144, 2.8 mi southeast of Weldona, and 4.2 mi upstream from Bijou Creek.
DRAINAGE AREA.-- $13,245 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1952 to current year. Statistical summary computed for 1976 to current year.

REVISED RECORDS.--WSP 1710: Drainage area.

GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $4,307.80 \mathrm{ft}$ above sea level.
REMARKS.--Records good except for estimated daily discharges, and those above $1,620 \mathrm{ft} / \mathrm{s}$, which are fair. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, ground-water withdrawals, and diversions for irrigation, and return flow from irrigated areas.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1300	519	466	682	878	838	306	162	1000	440	872	937
2	1440	307	490	683	826	748	230	149	993	414	838	891
3	1230	277	477	738	e850	702	158	173	848	237	578	786
4	1140	229	372	787	e850	689	182	131	869	481	379	675
5	1090	190	310	802	e900	678	176	131	804	396	350	627
6	1020	154	291	734	e1000	637	163	157	810	307	297	673
7	849	131	303	706	e1100	618	166	200	1010	287	331	832
8	756	134	315	940	e1300	620	177	273	1320	621	309	898
9	683	132	374	949	1210	646	169	297	1380	734	266	1020
10	653	306	424	903	1090	499	452	324	1410	838	239	998
11	631	367	428	931	1020	341	512	319	1080	1740	283	950
12	590	410	366	909	930	225	538	409	1190	980	276	953
13	565	446	323	895	925	215	589	338	1190	537	373	1070
14	542	433	317	890	938	239	588	272	1300	762	332	1450
15	539	434	310	895	932	228	637	198	1440	1240	325	1390
16	538	430	303	907	858	280	544	174	1910	768	369	1390
17	509	424	340	893	763	280	485	197	3200	381	418	1400
18	479	357	431	802	705	220	440	225	3280	284	453	1350
19	454	374	436	797	662	122	374	337	2590	351	437	1550
20	431	376	435	976	614	121	347	359	1880	292	425	2460
21	419	305	440	1030	597	130	343	358	1310	288	448	2490
22	426	378	461	1030	616	116	337	453	1060	258	492	2000
23	468	427	507	1040	623	104	301	454	1840	300	518	1560
24	499	427	520	1020	639	140	281	479	2680	329	482	1290
25	571	429	497	1000	684	193	235	494	2250	443	450	1240
26	531	428	491	970	803	245	207	693	1730	351	383	1250
27	499	422	485	862	856	361	178	2530	1190	322	394	1320
28	477	426	470	918	853	292	136	3840	640	324	393	1170
29	501	429	464	1010	843	268	132	1780	593	340	589	1230
30	510	442	522	984	---	338	155	1030	786	610	734	1110
31	506	,	636	924	---	348	,	1050		756	1020	-
TOTAL	20846	10543	13004	27607	24865	11481	9538	17986	43583	16411	14053	36960
MEAN	672	351	419	891	857	370	318	580	1453	529	453	1232
MAX	1440	519	636	1040	1300	838	637	3840	3280	1740	1020	2490
MIN	419	131	291	682	597	104	132	131	593	237	239	627
AC-FT	41350	20910	25790	54760	49320	22770	18920	35680	86450	32550	27870	73310

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1976 - 1996, BY WATER YEAR (WY)

[^31]c-Maximum discharge and stage for period of record, $26800 \mathrm{ft}^{3} / \mathrm{s}$, May 8 , 1973 , gage height, 11.68 ft , from rating curve extended above $16000 \mathrm{ft}^{3} / \mathrm{s}$.

06758500 SOUTH PLATTE RIVER NEAR WELDONA, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1967 to September 1968, October 1971 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

06759910 SOUTH PLATTE RIVER AT COOPER BRIDGE, NEAR BALZAC, CO

LOCATION.--Lat $40^{\circ} 21^{\prime} 23^{\prime \prime}$, long $103^{\circ} 31^{\prime} 39^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{NE}^{1 / 4}$ sec.33, T. 5 N., R. 55 W., Morgan County, Hydrologic Unit 10190012, on left bank 0.7 mi downstream from North Sterling Canal, 1.3 mi downstream from Beaver Creek, and 4.3 mi northeast of Snyder.
DRAINAGE AREA.--16,852 mi^{2} (Area at downstream site used prior to October 1987).
PERIOD OF RECORD.-October 1987 to current year. Records prior to water year 1993 can be obtained from the Colorado Division of Water Resources. Statistical summary computed for 1993 to current year. Water-quality data available, April 1993 to September 1995.

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $4,140 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, ground-water withdrawals and diversions above station for irrigation.

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1740	134	97	550	624	885	337	141	542	84	e590	e625
2	2000	104	112	582	614	863	315	146	493	66	618	e740
3	1850	60	125	e630	552	794	262	134	430	e215	510	723
4	1760	53	98	e720	488	765	211	136	426	e300	403	638
5	1670	50	48	859	506	760	212	135	391	e430	324	564
6	1670	48	39	679	926	e750	181	125	328	329	309	548
7	1540	47	93	546	1240	e710	167	175	344	302	284	701
8	1230	43	241	815	1610	e700	160	249	555	284	e245	789
9	1080	44	195	1030	1660	e690	102	294	697	e480	e210	885
10	943	46	e235	912	1510	e710	56	282	715	585	197	945
11	906	68	e280	860	1240	e570	e75	280	641	667	181	910
12	833	79	e330	776	1070	e410	58	288	518	1100	179	930
13	782	76	258	795	890	e320	79	335	568	446	e200	883
14	798	89	159	787	850	e310	131	266	565	e420	220	1100
15	765	91	67	775	779	e330	131	197	644	e810	226	1390
16	775	92	64	758	706	e320	110	152	951	710	e240	1440
17	443	85	63	773	661	e380	41	124	1710	396	262	1530
18	194	62	77	923	457	e380	65	160	2680	212	e290	1540
19	141	57	102	947	365	e330	121	e220	2240	e200	e330	1710
20	e100	65	107	996	351	e240	153	e310	1600	229	e340	1940
21	e100	61	113	1050	349	e230	195	263	1020	212	e345	2910
22	e100	57	e270	1040	354	e260	241	282	651	e175	e355	2400
23	e105	62	322	1020	339	260	252	348	720	179	e355	2170
24	e115	85	384	1020	557	257	235	335	1790	197	e355	1730
25	145	90	428	903	733	e250	199	252	1860	212	e285	1660
26	154	93	454	603	e790	e320	183	e180	1300	e310	e235	1580
27	160	e90	465	585	852	e340	150	487	836	324	231	1610
28	162	e85	455	619	867	380	136	2590	362	e285	e250	1570
29	174	84	460	738	890	332	135	2010	92	e245	e325	1450
30	e150	88	472	720	---	351	133	842	66	251	e 420	1340
31	e125	---	499	539	---	381	---	575	---	e385	e500	---
TOTAL	22710	2188	7112	24550	22830	14578	4826	12313	25735	11040	9814	38951
MEAN	733	72.9	229	792	787	470	161	397	858	356	317	1298
MAX	2000	134	499	1050	1660	885	337	2590	2680	1100	618	2910
MIN	100	43	39	539	339	230	41	124	66	66	179	548
AC-FT	45050	4340	14110	48690	45280	28920	9570	24420	51050	21900	19470	77260

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993 - 1996, BY WATER YEAR (WY)

[^32]
06764000 SOUTH PLATTE RIVER AT JULESBURG, CO

LOCATION.--Lat $40^{\circ} 58^{\prime} 46^{\prime \prime}$, long $102^{\circ} 15^{\prime} 15^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{NE}^{1 / 4}$ and $\mathrm{NE}^{1 / 4} \mathrm{SE}^{1 / 4}$ (two channels) sec. 33 , T. $12 \mathrm{~N} .$, R. 44 W., Sedgwick County, Hydrologic Unit 10190018, on left bank of channel 4 (left channel) 215 ft downstream from bridge, and on right bank of channel 2, 5 ft downstream from bridge on U.S. Highway 385, 0.9 mi southeast of Julesburg, 3.0 mi upstream from ColoradoNebraska State line, and 8 mi downstream from Lodgepole Creek.
DRAINAGE AREA.--23,193 mi ${ }^{2}$.
PERIOD OF RECORD.--April 1902 to current year. Monthly discharge only for some periods, published in WSP 1310. Published as "near Julesburg" 1903-8, 1915-16, and as "at Ovid" 1922-24. Water-quality data available, October 1945 to September 1995.
REVISED RECORDS.--WSP 1310: 1902, 1906-7, 1948(P). WSP 1440: 1903-4. WDR CO-86-1: Drainage area.
GAGE.--Two water-stage recorders with satellite telemetry. Datum of gages is $3,446.76 \mathrm{ft}$ above sea level. See WSP 1710 or 1730 for history of changes prior to Oct. 1, 1956. Since Oct. 1, 1956, water-stage recorders on channels nos. 2 and 4. Channel no. 2: Oct. 1 1956, to Sept. 22, 1965, at site 300 ft downstream at present datum. Channel no. 4: Oct. 1, 1956 to Dec. 10, 1958, at site 135 ft downstream at present datum. Since May 11, 1973, supplementary water-stage recorder on channel no. 2 at bridge 800 ft upstream at same datum. Since Aug. 16, 1996, water-stage recorder on channel no. 1.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of 1,200,000 acres upstream from station, and return flow from irrigated areas.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1190	e286	452	e675	e711	1010	516	96	931	349	e40	1100
2	1160	e290	446	e659	e688	966	e403	98	714	e286	e48	929
3	1200	e326	426	e608	e690	1060	328	93	695	e190	e63	962
4	1380	e401	428	e559	e668	1070	305	92	685	e117	e77	1030
5	1370	e443	439	e518	e637	1030	e409	88	636	e103	e90	1040
6	1280	e443	433	e487	e613	e1030	438	90	571	e92	e100	995
7	1190	e408	447	e439	e725	e1000	448	97	507	e83	e75	997
8	1130	e407	e455	e486	e901	984	433	103	460	e74	e60	921
9	1080	412	e490	e571	e1240	986	396	176	432	e67	e55	913
10	967	406	e536	e646	e1520	885	368	161	433	e64	e49	966
11	897	392	e548	e658	e1380	912	367	154	509	e61	e44	1000
12	856	382	e559	e684	e1230	849	334	159	539	e59	e46	1060
13	842	395	e584	e756	e1130	728	302	164	498	e68	e48	1020
14	832	428	e558	e769	e1190	692	290	149	e380	e70	e49	996
15	889	425	e522	e795	e1110	704	272	123	e337	e76	e87	1020
16	922	428	e495	e737	e1050	720	290	129	e356	e79	e102	1190
17	854	418	e466	e589	1030	727	274	119	414	e91	74	e1420
18	715	428	e462	e254	1020	684	218	113	609	e95	64	e1840
19	589	435	e459	e304	994	691	191	105	e1280	e113	95	2300
20	434	427	e482	e406	846	648	184	105	e1780	e109	90	2820
21	363	422	e480	e663	719	584	163	99	e1710	e75	76	2160
22	312	437	e504	e931	716	392	148	96	e1590	e68	114	2380
23	287	437	e529	e1050	702	337	160	100	e1290	e65	133	2850
24	304	436	e554	e1010	664	e368	141	225	e981	e70	154	2630
25	291	442	e 556	e959	598	e380	121	146	e918	e66	161	2410
26	282	452	e583	e902	655	e450	112	175	e1290	e56	162	2150
27	282	444	e607	e811	895	643	104	312	e1350	e53	157	1930
28	294	429	e632	e761	967	556	102	306	e1160	e46	123	1690
29	e294	e457	e632	e739	1020	e509	104	388	866	e48	194	1630
30	e290	e452	e633	e712	-	e513	97	1510	520	e48	613	1540
31	e302	---	e664	e707	---	515	---	e1430	---	e44	1760	---
TOTAL	23078	12388	16061	20845	26309	22623	8018	7201	24441	2885	5003	45889
MEAN	744	413	518	672	907	730	267	232	815	93.1	161	1530
MAX	1380	457	664	1050	1520	1070	516	1510	1780	349	1760	2850
MIN	282	286	426	254	598	337	97	88	337	44	40	913
AC-FT	45780	24570	31860	41350	52180	44870	15900	14280	48480	5720	9920	91020

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1902 - 1996, BY WATER YEAR (WY)

[^33]
06823000 NORTH FORK REPUBLICAN RIVER AT COLORADO-NEBRASKA STATE LINE

LOCATION.--Lat $40^{\circ} 04^{\prime} 10^{\prime \prime}$, long $102^{\circ} 03^{\prime} 05^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NW}^{1 / 1 / 4}$ sec. 10 , T. 1 N., R. 42 W., Dundy County, Nebraska, Hydrologic Unit 10250002, on right bank 100 ft east of Colorado-Nebraska State line, 9.5 mi upstream from confluence with Arikaree River, and at mile 448.
DRAINAGE AREA..--2,370 mi^{2}, of which about $174 \mathrm{mi}^{2}$ contributes directly to surface runoff.
PERIOD OF RECORD.--October 1930 to current year. Prior to October 1932, published as North Fork of Arikaree River at ColoradoNebraska State line. Monthly discharge only for some periods, published in WSP 1310.
REVISED RECORDS.--WSP 1240: 1947(M). WSP 1390: 1934. WDR CO-94-1: Drainage area.
GAGE.--Water-stage recorder. Steel piling control since January 1965. Datum of gage is $3,336.09 \mathrm{ft}$ above sea level. Prior to Oct. 17, 1934, nonrecording gage at present site and datum.
REMARKS.--Records poor. Natural flow affected by diversion in Haigler Canal for irrigation of about 2,700 acres in Colorado and Nebraska.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	32	51	55	e52	52	49	50	14	43	e10	12	39
2	31	51	55	e50	57	47	47	11	38	e11	10	34
3	30	51	54	e50	59	47	44	10	37	e11	9.7	31
4	20	50	53	e52	60	46	42	9.3	47	e12	9.1	22
5	19	50	53	54	71	45	47	7.1	47	e12	18	20
6	22	50	53	e50	76	43	49	3.2	46	e13	25	18
7	20	50	53	53	72	41	46	e3.4	45	e14	25	15
8	19	50	e52	e52	67	41	46	e3.5	43	e14	25	8.7
9	19	49	e52	e52	67	41	42	e3.4	43	e14	19	5.1
10	20	50	e54	51	66	40	38	e3.3	32	e13	13	3.8
11	20	51	55	50	65	40	36	e3.4	15	e13	19	3.0
12	21	53	54	50	67	40	35	e3.5	13	e15	19	2.4
13	20	53	53	50	67	49	32	e3.5	14	e17	12	2.4
14	20	53	53	49	68	57	31	e3.4	13	e17	9.7	4.6
15	20	53	53	49	66	56	43	e3.3	13	e16	10	7.4
16	26	53	53	49	65	56	44	e3.3	13	e15	11	26
17	43	53	53	50	62	59	42	e3.3	12	e15	10	27
18	47	53	53	e50	60	60	40	e3.2	11	e15	9.1	45
19	46	53	53	e50	60	58	29	e2.9	9.7	e16	9.1	41
20	45	53	53	e50	58	56	26	e2.5	9.1	e16	9.1	34
21	47	53	53	e50	58	53	26	e2. 5	10	e15	12	31
22	47	54	56	e50	56	51	27	e2. 6	17	e14	27	30
23	50	54	53	e50	56	49	27	e2.7	10	e13	29	31
24	54	53	53	e52	55	48	28	e2.8	11	e13	31	32
25	54	54	53	e52	53	48	25	e3.0	20	14	33	34
26	55	55	53	e54	52	56	20	33	10	14	31	35
27	54	56	53	55	51	54	16	54	e11	19	33	34
28	53	55	53	e54	51	53	15	46	e11	19	31	34
29	52	55	e52	e54	49	52	18	41	e11	22	28	39
30	51	55	e52	e54	--	52	19	38	e10	22	47	39
31	51	---	e52	e54	---	51	---	51	---	20	43	---
TOTAL	1108	1574	1650	1592	1766	1538	1030	377.1	664.8	464	628.8	728.4
MEAN	35.7	52.5	53.2	51.4	60.9	49.6	34.3	12.2	22.2	15.0	20.3	24.3
MAX	55	56	56	55	76	60	50	54	47	22	47	45
MIN	19	49	52	49	49	40	15	2.5.	9.1	10	9.1	2.4
AC-FT	2200	3120	3270	3160	3500	3050	2040	748	1320	920	1250	1440

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1935 - 1996, BY WATER YEAR (WY)

MEAN	37.1	57.2	61.2	60.8	62.8	65.3	58.2	42.6	35.5	19.2	18.9	26.8
MAX	67.1	83.5	74.7	73.4	76.8	85.8	85.7	104	113	93.8	72.4	
(WY)	1963	1957	1954	1953	1960	1960	1980	1951	1962	1962	1950	
MIN	11.1	27.0	40.5	39.4	45.0	49.6	23.5	11.0	12.2	5.36	4.12	
(WY)	1979	1989	1993	1979	1993	1996	1972	1992	1952	1978	1940	

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1935 - 1996

07079300 EAST FORK ARKANSAS RIVER AT HIGHWAY 24 NEAR LEADVILLE, CO

LOCATION.--Lat $39^{\circ} 16^{\prime} 21^{\prime \prime}$, long $106^{\circ} 18^{\prime} 21^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{NW}^{1 / 1 / 4}$ sec. 14, T. 9 S., R. 80 W., Lake County, Hydrologic Unit 11020001, on right bank 20 ft downstream from U.S. Highway $24,0.35 \mathrm{mi}$ downstream from Leadville Mine Drainage Tunnel, 1.5 mi northwest of Leadville, and 2.2 mi upstream from mouth of Tennessee Creek.
DRAINAGE AREA.--49.9 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1990 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $9,900 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions (see elsewhere in this report).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26	20	18	e13	11	e11	12	34	311	176	44	23
2	25	19	e18	e13	e11	11	12	40	341	176	42	22
3	24	e20	e17	e14	e11	e11	12	47	402	182	43	22
4	25	e21	e17	14	e10	10	12	60	490	177	42	21
5	25	e20	16	14	10	11	12	74	491	173	39	22
6	26	e19	16	e14	10	11	13	82	594	167	37	24
7	27	18	e16	13	e10	e11	13	94	651	160	36	24
8	28	19	e16	e13	e10	e11	15	115	624	151	36	23
9	27	19	e16	e14	e10	11	17	136	670	138	35	22
10	26	20	e16	13	11	11	17	155	645	127	33	21
11	25	e20	e17	e13	e11	11	17	165	584	126	31	21
12	26	19	16	e13	e11	10	17	206	553	117	30	22
13	24	19	16	e13	e11	10	17	216	510	105	29	23
14	23	18	e17	e13	10	10	17	233	486	98	29	23
15	23	18	e16	e13	e11	11	17	271	480	93	29	25
16	23	18	e15	13	e11	11	18	295	453	89	30	24
17	22	18	e15	14	e11	11	19	252	413	86	29	22
18	22	18	e15	e14	11	12	19	248	376	86	29	22
19	22	18	e14	e14	11	e12	20	253	351	76	30	23
20	20	17	e14	14	11	e12	21	272	334	69	30	23
21	20	17	e14	e13	12	e12	19	283	338	64	29	24
22	21	16	e14	12	11	11	20	280	381	61	30	24
23	20	16	e14	e12	e11	11	21	287	287	57	31	25
24	21	e16	e14	e12	e11	11	26	294	234	55	29	26
25	20	e16	e15	12	e11	11	31	313	200	53	28	26
26	20	16	e15	e12	11	e11	32	302	184	52	27	25
27	20	17	e15	e12	e11	e11	35	252	196	50	26	24
28	20	e17	e15	11	e11	11	32	273	193	49	27	24
29	20	16	14	13	e11	11	30	269	180	54	26	23
30	20	e17	e14	e12	---	11	32	275	178	56	24	22
31	20	-	13	e12	-	11	---	286	-	48	23	---
TOTAL	711	542	478	402	313	341	595	6362	12130	3171	983	695
MEAN	22.9	18.1	15.4	13.0	10.8	11.0	19.8	205	404	102	31.7	23.2
MAX	28	21	18	14	12	12	35	313	670	182	44	26
MIN	20	16	13	11	10	10	12	34	178	48	23	21
AC-FT	1410	1080	948	797	621	676	1180	12620	24060	6290	1950	1380

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1990 - 1996, BY WATER YEAR (WY)

| MEAN | 18.1 | 13.7 | 11.5 | 10.6 | 9.65 | 9.83 | 13.5 | 97.3 | 233 | 99.4 | 38.2 | 23.9 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| MAX | 22.9 | 18.1 | 15.4 | 13.0 | 11.0 | 11.0 | 19.8 | 205 | 404 | 266 | 75.1 | 32.2 |
| (WY) | 1996 | 1996 | 1996 | 1996 | 1991 | 1996 | 1996 | 1996 | 1996 | 1995 | 1995 | 1995 |
| MIN | 15.1 | 10.8 | 10.1 | 9.17 | 7.10 | 8.74 | 10.5 | 38.4 | 146 | 42.2 | 23.5 | 19.3 |
| (WY) | 1995 | 1992 | 1992 | 1995 | 1993 | 1995 | 1993 | 1995 | 1992 | 1994 | 1994 | 1994 |

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1990 - 1996

```
ANNUAL TOTAL
ANNUAL MEAN 
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAG
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
```

25716.2		
70.5		
611	Jun 24	
$a_{6} .5$	Feb 15	
7.1	Feb 11	
51010		
224		
19		
9.0		

26723		
73.0		
670	Jun	9
$\mathrm{~b}_{10}$	Feb	4
10	Feb	3
816	Jun	9
4.08	Jun	9
53010		
258		
21		
11		

49.8			
73.0			1996
34.5			1994
670		Jun	9
6.0		1996	
6.0	Dec	9	1994
6.7		Feb	8
1993			
853		Jun 24	1995
4.11		Jun 24	1995
36070			
144			
18			
9.4			

[^34]b-Also occurred Feb 5-9, 14, and Mar 4, 12-14.

07079300 EAST FORK ARKANSAS RIVER AT HIGHWAY 24 NEAR LEADVILLE, CO--Continued

WATER-QUALITY RECORDS
PERIOD OF RECORD.--May 1990 to September 1996 (discontinued).
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: May 1990 to September 1996 (discontinued).
WATER TEMPERATURE: May 1990 to September 1996 (discontinued).
pH: May 1990 to September 1996 (discontinued).
INSTRUMENTATION: Water-quality monitor.
REMARKS.--Records for specific conductance are poor. Records for water temperature are good except Aug. 19 to Sept. 30, which are poor. Records for pH are poor. Daily data that are not published are either missing or of unacceptable quality.
EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 1,010 microsiemens, Sept. 21, 1993; minimum, 66 microsiemens, June 12, 1993.
WATER TEMPERATURE: Maximum, $18.3^{\circ} \mathrm{C}$, Aug. 16,1993 ; minimum, $0.0^{\circ} \mathrm{C}$, many days.
pH : Maximum, 8.9 units, Mar. 17-18, 1992; minimum, 7.1 units, June 28, 1993.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 393 microsiemens, Mar. 21; minimum, 73 microsiemens, June 17.
WATER TEMPERATURE: Maximum, $17.4^{\circ} \mathrm{C}$, Aug. 17 ; minimum, $0.1^{\circ} \mathrm{C}$, many days.
pH: Maximum, 8.6 units, Dec. 8, 16, 18; minimum, 7.5 units, Oct. 1, and Apr. 29.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	MAX	MIN	MEAN									
		TOBE		NOVEMBER			DECEMBER			JANUARY		
1	243	230	236	279	264	271	301	279	290	319	296	310
2	245	233	239	282	266	276	309	281	294	317	291	304
3	251	234	241	281	267	274	307	281	295	312	295	303
4	251	233	241	288	264	273	311	285	298	317	296	307
5	270	236	247	290	264	274	303	289	296	318	295	310
6	275	237	251	295	264	279	303	279	295	332	290	311
7	256	237	244	291	273	281	303	281	296	326	298	310
8	250	239	242	293	269	284	315	277	296	326	293	309
9	250	238	242	295	271	280	319	282	301	---	--	---
10	250	239	244	294	268	280	315	287	297	327	295	311
11	254	241	247	297	267	288	320	281	296	337	289	313
12	253	241	246	287	273	279	311	292	301	334	299	315
13	261	240	250	287	273	279	307	293	300	332	305	315
14	270	252	259	291	273	282	306	292	300	332	310	320
15	270	253	260	297	269	286	311	292	300	336	309	320
16	267	254	261	294	271	288	306	285	295	331	314	323
17	268	255	260	295	274	290	309	282	290	332	311	321
18	274	254	262	298	279	289	309	281	292	334	315	325
19	269	253	261	295	279	290	---	--	--	330	303	315
20	273	257	264	300	280	290	309	279	290	334	300	311
21	274	256	266	302	283	292	309	280	295	334	319	328
22	270	258	264	304	284	293	307	277	292	338	323	328
23	286	257	272	304	280	295	303	282	290	337	319	327
24	289	259	279	300	277	289	---	---	-	337	315	326
25	280	256	270	305	286	292	---	-	-	340	307	320
26	276	254	266	308	284	295	---	---	---	---	---	---
27	294	267	283	308	281	296	---	--	--	-	---	---
28	292	268	280	301	276	282	---	---	---	---	---	---
29	285	267	274	305	275	291	326	303	317	-	-	---
30	279	265	271	307	282	292	324	309	315	353	297	323
31	284	267	273	---	---	-	322	303	312	357	328	344
MONTH	294	230	258	308	264	285	---	---	---	---	--	-

07079300 EAST FORK ARKANSAS RIVER AT HIGHWAY 24 NEAR LEADVILLE, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07079300 EAST FORK ARKANSAS RIVER AT HIGHWAY 24 NEAR LEADVILLE, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	8.0	7.5	7.7	---	---	---	8.4	8.2	8.3	7.9	7.7	7.8
2	---	---	---	---	---	---	8.4	8.2	8.3	7.9	7.6	7.7
3	---	---		8.4	8.0	8.2	8.5	8.2	8.3	7.9	7.7	7.8
4	---	---	---	8.3	8.1	8.2	8.4	8.2	8.3	8.1	7.7	7.9
5	---	---	---	8.3	8.0	8.2	8.4	8.2	8.3	8.0	7.7	7.8
6	---	---	---	8.3	7.9	8.1	8.4	8.3	8.3	7.9	7.6	7.7
7	---	---	---	8.3	8.2	8.3	8.5	8.1	8.3	8.1	7.7	7.8
8	---	---	---	8.3	8.2	8.2	8.6	8.2	8.3	8.0	7.7	7.8
9	---	---	---	8.3	8.1	8.2	8.4	8.2	8.3	7.9	7.7	7.8
10	---	---	---	8.3	7.9	8.1	8.4	8.2	8.3	7.9	7.7	7.8
11	---	---	---	8.3	8.2	8.2	8.5	8.2	8.3	8.2	7.6	7.9
12	---	---	---	8.3	8.2	8.3	8.4	8.3	8.3	8.4	7.9	8.1
13	8.3	8.0	8.2	8.3	8.2	8.2	8.4	8.3	8.3	8.3	8.1	8.2
14	8.3	8.1	8.2	8.3	8.2	8.2	8.5	8.2	8.3	8.4	8.3	8.3
15	8.4	8.2	8.3	8.3	8.2	8.2	8.5	8.1	8.3	8.5	8.2	8.3
16	8.4	8.2	8.3	8.3	8.2	8.2	8.6	8.2	8.3	8.5	8.3	8.4
17	8.4	8.2	8.3	8.2	8.0	8.1	8.5	8.2	8.3	8.5	8.3	8.4
18	8.4	8.2	8.3	8.1	7.9	8.0	8.6	8.1	8.3	8.5	8.3	8.4
19	8.5	8.2	8.3	---	---	---	8.5	8.1	8.3	8.5	8.3	8.4
20	8.4	8.2	8.3	---	---	---	8.5	8.2	8.3	8.5	8.3	8.4
21	8.5	8.2	8.3	---	---	---	8.4	8.1	8.2	8.5	8.2	8.3
22	8.4	8.2	8.3	---	---	---	8.4	8.1	8.2	8.5	8.3	8.4
23	8.4	8.2	8.3	---	---	---	8.3	8.1	8.1	8.5	8.3	8.4
24	8.4	8.2	8.3	---	---	---	8.1	7.9	8.0	8.4	8.2	8.3
25	8.4	8.2	8.3	---	---	---	8.1	7.9	8.1	8.4	8.3	8.3
26	8.3	8.1	8.2	---	---	---	8.2	7.9	8.0	8.4	8.2	8.3
27	8.4	8.2	8.3	---	---	---	8.0	7.9	7.9	8.4	8.2	8.3
28	8.4	8.2	8.3	---	---	---	7.9	7.8	7.8	8.4	8.2	8.3
29	8.2	7.9	8.1	---	---	---	7.9	7.8	7.9	8.4	8.2	8.3
30	8.3	7.8	8.0	---	---	---	8.0	7.8	7.8	8.3	8.2	8.2
31	---	---	---	---	---	---	7.9	7.8	7.8	8.3	8.2	8.2
MONTH	---	---	---	---	---	---	8.6	7.8	8.2	8.5	7.6	8.1
	FEBRUARY			MARCH			APRIL			MAY		
1	8.3	8.2	8.2	8.4	8.1	8.2	8.3	7.9	8.1	8.3	7.9	8.1
2	8.3	8.1	8.2	8.4	8.0	8.2	8.2	7.9	8.0	8.3	7.9	8.1
3	8.1	8.0	8.0	8.3	7.9	8.1	8.2	7.9	8.0	8.3	7.9	8.0
4	8.1	7.9	8.0	8.4	8.0	8.2	8.1	7.8	7.9	8.3	7.9	8.0
5	8.2	8.1	8.1	8.3	8.0	8.1	8.2	7.8	7.9	8.2	7.8	8.0
6	8.3	8.1	8.1	8.4	7.9	8.1	8.1	7.7	7.9	8.2	7.8	8.0
7	8.3	8.0	8.1	8.3	7.7	8.0	8.1	7.8	7.9	8.2	7.8	8.0
8	8.3	8.0	8.1	8.4	7.8	8.1	8.1	7.8	7.9	8.2	7.8	7.9
9	8.4	8.0	8.2	8.4	7.9	8.2	8.1	7.7	7.9	8.2	7.8	7.9
10	8.4	8.2	8.3	8.3	7.9	8.2	8.0	7.7	7.8	8.1	7.8	7.9
11	8.4	8.3	8.4	8.2	8.0	8.1	8.0	7.6	7.8	8.0	7.8	7.9
12	8.4	8.3	8.4	8.1	7.8	8.0	8.0	7.6	7.8	7.8	7.7	7.8
13	8.4	8.3	8.4	8.0	7.8	7.9	7.8	7.6	7.7	7.9	7.7	7.8
14	8.4	8.3	8.4	8.0	7.8	7.8	8.0	7.6	7.7	---	---	---
15	8.4	8.2	8.4	8.0	7.8	7.9	8.0	7.6	7.8	---	---	---
16	8.5	8.2	8.4	8.1	7.9	8.0	8.2	7.6	7.9	---	---	---
17	8.5	8.3	8.4	8.1	7.9	7.9	8.0	7.6	7.8	---	---	---
18	8.5	8.4	8.5	8.1	7.8	7.9	8.2	7.9	8.0	---	---	---
19	8.5	8.4	8.5	8.2	7.7	7.9	8.1	7.9	8.0	---	---	---
20	8.5	8.4	8.4	8.1	7.8	7.9	8.2	7.9	8.0	---	---	---
21	8.5	8.3	8.4	8.2	7.8	7.9	8.2	8.0	8.1	8.0	7.8	7.9
22	8.5	8.4	8.4	8.2	7.9	8.0	8.2	8.0	8.1	8.0	7.8	7.9
23	8.5	8.3	8.4	8.3	7.9	8.1	8.3	8.0	8.1	8.0	7.8	7.9
24	8.5	8.3	8.4	8.3	8.0	8.1	8.4	7.9	8.1	8.0	7.8	7.9
25	8.5	8.3	8.4	8.3	7.9	8.0	8.4	7.9	8.0	7.9	7.8	7.9
26	8.5	8.3	8.4	8.2	7.8	8.0	8.4	7.9	8.1	7.9	7.8	7.9
27	8.5	8.1	8.3	8.2	7.8	8.0	8.4	7.9	8.0	8.0	7.8	7.9
28	8.5	8.1	8.3	8.3	7.9	8.0	8.2	7.6	7.9	8.0	7.9	7.9
29	8.5	8.0	8.2	8.3	7.9	8.0	8.3	7.5	7.9	8.1	7.9	8.0
30	---	---	---	8.3	7.9	8.1	8.5	7.9	8.1	8.2	7.9	8.1
31	---	---	---	8.2	8.0	8.1	--	---	---	8.2	8.0	8.1
MONTH	8.5	7.9	8.3	8.4	7.7	8.0	8.5	7.5	7.9	---	---	--

07079300 EAST FORK ARKANSAS RIVER AT HIGHWAY 24 NEAR LEADVILLE, CO--Continued
pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST			SEP TEMBER	
1	8.2	8.0	8.1	7.8	7.6	7.7	---	---	---	---	---	---
2	8.2	8.0	8.1	8.0	7.6	7.8	---	---	---	---	---	-
3	8.1	7.9	8.0	8.0	7.8	7.9	-	---	---	---	---	---
4	8.1	7.9	8.0	7.9	7.8	7.9	-	---	---	---	---	---
5	8.0	7.7	7.9	7.9	7.8	7.9	---	---	---	---	---	---
6	7.9	7.7	7.8	8.0	7.9	7.9	---	---	---	---	---	-
7	---	---	-	7.9	7.8	7.9	---	---	---	---	---	---
8	---	--	---	8.0	7.8	7.9	---	-	---	---	--	--
9	---	---	-	8.0	7.9	8.0	---	---	---	---	---	---
10	--	-	--	8.1	7.9	8.0	---	---	---	---	---	---
11	---	-	---	8.1	7.9	8.0	---	---	---	---	---	-
12	---	--	---	8.1	8.0	8.0	---	---	---	-	--	---
13	--	--	---	8.1	7.9	8.0	---	---	---	---	---	--
14	---	---	---	8.1	7.9	8.0	---	---	---	---	---	---
15	---	---	---	8.1	7.9	8.0	---	---	---	---	---	---
16	---	---	-	8.1	7.9	8.0	---	---	---	---	---	-
17	--	--	---	8.1	7.8	8.0	---	---	---	---	---	---
18	--	-	--	8.2	8.0	8.0	---	-	---	---	---	-
19	--	--	---	8.1	7.9	8.0	-	---	---	-	--	--
20	--	--	---	8.1	7.9	8.0	-	-	---	-	--	---
21	---	---	---	8.1	8.0	8.1	---	-	-	-	--	--
22	---	--	--	--	--	--	---	---	---	---	---	--
23	---	---	---	---	---	---	---	---	---	---	---	---
24	-	---	---	---	---	---	---	---	---	---	---	-
25	8.0	7.6	7.8	-	--	--	-	---	-	---	---	-
26	7.9	7.6	7.7	--	-	---	---	---	---	---	---	--
27	7.8	7.6	7.7	---	---	---	---	---	---	---	---	-
28	7.8	7.6	7.7	---	---	---	---	---	---	---	---	-
29	7.8	7.6	7.7	-	---	---	---	---	---	---	---	---
30	8.0	7.6	7.8	---	---	---	---	---	---	---	---	-
31	---	---	---	---	---	---	---	---	---	---	---	---
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

TEMPERATURE, WATER (DEG.C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07079300 EAST FORK ARKANSAS RIVER AT HIGHWAY 24 NEAR LEADVILLE, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07080980 ST. KEVIN GULCH ABOVE TEMPLE GULCH, NEAR LEADVILLE, CO

LOCATION.--Lat $39^{\circ} 17^{\prime} 29$ ", long $106^{\circ} 22^{\prime} 07$ ", in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{sec} .6$, T. 9 S., R. 80 W., Lake County, Hydrologic Unit 11020001, on left bank 0.15 mi upstream from fork in access road, 0.85 mi upstream from mouth, 2.7 mi from turn-off from Mountain View Drive, and 6.1 mi northwest of Leadville.

DRAINAGE AREA.-- $1.84 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--April 1993 to September 1996, seasonal records only, (discontinued).
GAGE.--Water-stage recorder. Elevation of gage is $9,900 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period of seasonal operation, $41 \mathrm{ft} 3 / \mathrm{s}$, May 20, 1996, gage height, 4.75 ft , from flood mark; minimum daily, $0.25 \mathrm{ft}^{3} / \mathrm{s}$, Sept. 28 and Oct. 6-7, 1994.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, $41 \mathrm{ft}^{3} / \mathrm{s}$, May 20, gage height, 4.75 ft , from flood mark; minimum daily, $0.36 \mathrm{ft}^{3} / \mathrm{s}$, Sept. 1-3.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 62	---	---	---	---	---	---	---	e11	e3.3	e. 84	e. 36
2	. 56	---	---	---	---	---	---	---	e11	e3.0	e. 80	e. 36
3	. 51	---	---	---	---	---	---	---	e12	e2.9	e. 75	. 36
4	. 52	---	---	---	---	---	---	---	e12	e2. 8	e. 70	. 65
5	. 52	---	---	--	---	---	---	---	e13	e2.4	e. 68	1.1
6	1.8	---	--	--	--	---	---	---	e13	e2. 2	e. 66	. 72
7	. 73	---	-	---	-	---	-	--	e13	e1.8	e. 64	. 53
8	. 55	---	---	---	---	---	---	---	e12	e1.6	e. 62	. 45
9	. 54	---	---	---	---	---	---	e7.0	e11	e1.5	e. 56	. 42
10	. 54	---	---	---	---	---	---	e7.5	e11	e1.4	e. 54	. 40
11	. 53	-	---	-	---	---	---	e8. 4	e10	1.4	e. 54	. 40
12	. 53	--	---	--	---	---	---	e11	e10	1.3	e. 53	. 41
13	. 56	---	---	---	---	---	---	e13	e9.0	1.2	e. 53	. 46
14	. 78	--	--	---	---	---	---	e14	e7.8	1.2	e. 52	. 45
15	. 52	---	---	---	---	---	---	e17	e7.0	1.2	e. 52	. 54
16	. 48	---	-	-	---	--	---	e25	e6. 4	1.2	e. 51	. 45
17	. 48	---	---	---	---	---	--	e30	e6.0	1.1	e. 50	. 42
18	. 48	--	-	---	--	-	---	e25	e5.8	1.2	e. 49	. 42
19	. 48	---	---	--	---	---	---	e29	e5.8	1.2	e. 48	. 48
20	e. 48	--	---	--	---	---	---	e35	e6.0	1.0	. 51	e. 54
21	e. 48	---	-	---	---	---	---	e27	e6.0	. 74	. 48	e. 54
22	e. 48	---	---	--	---	---	---	e29	e5.8	. 54	. 47	e. 48
23	e. 47	---	---	---	---	---	---	e30	e5.6	. 76	. 46	e. 94
24	e. 47	--	---	-	---	---	---	e26	e5.2	e. 80	. 44	e. 54
25	. 47	---	---	---	---	---	---	e21	e4.8	e. 82	. 42	e. 48
26	. 44	---	--	--	---	---	--	e18	e4.8	e. 88	. 48	e. 48
27	. 42	---	---	--	---	---	---	e16	e4.8	e1.0	. 49	e. 48
28	. 42	---	---	---	---	---	---	e13	e4.8	e2.0	e. 46	e. 54
29	. 43	---	---	---	---	---	--	e10	e4.5	e1.5	e. 42	e. 60
30	. 42	---	-	---	-	---	-	e10	e3. 6	e1.0	e. 39	e. 60
31	. 42	---	---	---	---	---	---	e11	---	e. 90	e. 37	--
TOTAL	17.13	---	--	---	---	---	---	---	242.7	45.84	16.80	15.60
MEAN	. 55	---	---	---	---	---	---	---	8.09	1.48	. 54	. 52
MAX	1.8	---	---	---	---	---	---	---	13	3.3	. 84	1.1
MIN	. 42	-	---	---	---	--	---	---	3.6	. 54	. 37	. 36
AC-FT	34	---	--	---	--	--	--	---	481	91	33	31

[^35]
07081200 ARKANSAS RIVER NEAR LEADVILLE, CO

LOCATION.--Lat $39^{\circ} 15^{\prime} 26^{\prime \prime}$, long $106^{\circ} 20^{\prime} 35$ ", in NW ${ }^{1} / 4 \mathrm{NW}^{1 / 4}$ sec. 21, T. 9 S., R. 80 W., Lake County, Hydrologic Unit 11020001, on right bank, 500 ft downstream from confluence of East Fork Arkansas River and Tennessee Creek, 0.5 mi downstream from highway bridge, and 2.8 mi northwest of Leadville.
DRAINAGE AREA.-- $98.8 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1967 to September 1983. April 1990 to current year.
REVISED RECORDS.--WDR CO-91-1: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $9,730 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversions from Colorado River Basin enters above this station (see elsewhere in this report). Small diversions upstream for irrigation and municipal use, amounts unknown.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	44	34	e21	e19	e18	e20	22	66	321	264	64	32
2	40	32	e21	e19	e19	e20	24	78	356	246	60	31
3	38	e33	e22	e20	e19	e20	25	103	426	222	62	30
4	40	e33	e22	e19	e19	e19	24	137	532	218	62	29
5	40	e34	e21	e20	e19	e20	24	191	629	218	57	30
6	40	e36	e20	e20	e19	e20	25	251	782	215	55	37
7	43	e35	e19	e19	e20	e19	26	295	741	202	53	37
8	44	35	19	e19	e21	e20	29	333	717	190	53	34
9	41	37	19	e19	e21	e20	32	361	745	167	50	31
10	39	33	19	e18	e20	e20	36	338	733	153	48	30
11	38	37	19	e18	e20	e20	40	339	625	151	43	32
12	40	33	18	e18	e20	e20	39	394	631	142	42	31
13	40	32	17	e18	e20	e19	42	449	574	132	41	33
14	37	30	e18	e18	e19	e19	38	464	582	122	41	34
15	35	28	e18	e19	e21	e20	37	486	565	116	41	35
16	36	27	e18	e19	e21	e20	37	580	518	113	42	33
17	35	26	e18	e20	e21	e20	39	723	490	109	41	30
18	34	25	e18	e20	e20	e21	40	650	469	113	40	29
19	33	23	e17	e20	e20	e21	36	697	445	108	41	31
20	33	23	e17	e19	e20	e21	39	780	425	97	41	32
21	32	22	e17	e20	e21	e21	36	639	496	90	41	32
22	33	23	e17	e19	e20	e20	34	598	559	83	40	32
23	31	e22	e17	e19	e20	e20	36	673	469	78	41	35
24	29	e21	e17	e19	e20	e20	47	542	377	75	39	35
25	31	e21	e18	e19	e20	e20	57	528	344	73	37	36
26	32	e22	e18	e19	e20	e20	58	503	309	70	37	36
27	32	e22	e19	e19	e20	e20	62	396	335	68	37	36
28	32	e21	e19	e19	e21	e20	58	321	331	67	36	34
29	32	e21	e18	e18	e20	e20	56	275	303	72	36	33
30	32	e22	e19	e18	---	e20	58	283	272	79	34	33
31	32	---	e18	e18	---	e20	---	290		68	33	---
TOTAL	1118	843	578	588	579	620	1156	12763	15101	4121	1388	983
MEAN	36.1	28.1	18.6	19.0	20.0	20.0	38.5	412	503	133	44.8	32.8
MAX	44	37	22	20	21	21	62	780	782	264	64	37
MIN	29	21	17	18	18	19	22	66	272	67	33	29
AC-FT	2220	1670	1150	1170	1150	1230	2290	25320	29950	8170	2750	1950

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 1996, BY WATER YEAR (WY)

[^36]b-Also occurred Dec 19-24.
c-Also occurred Feb 4-20, 1978.
d-From rating curve extended above $730 \mathrm{ft}^{3} / \mathrm{s}$.

07081200 ARKANSAS RIVER NEAR LEADVILLE, CO--Continued

WATER-QUALITY RECORDS
PERIOD OF RECORD.--May 1990 to September 1996 (discontinued).
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: May 1990 to September 1996 (discontinued).
WATER TEMPERATURE: May 1990 to September 1996 (discontinued).
pH: May 1990 to September 1996 (discontinued).
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for daily specific conductance are good except Nov. 8 to Apr. 17 and June 25 to July 23, which are fair. Records for water temperature are good. Records for daily pH are good except Jan. 12 to Apr. 17 and Sept. 11, which are fair. Daily data that are not published are either missing or of unacceptable quality.

EXTREMES FOR PERIOD OF RECORD.--

SPECIFIC CONDUCTANCE: Maximum, 384 microsiemens, Sept. 12, 1993; minimum, 47 microsiemens, May 21, 1993.
WATER TEMPERATURE: Maximum, $19.3^{\circ} \mathrm{C}$, Aug. 11,1994 ; minimum, $0.0^{\circ} \mathrm{C}$, many days.
pH: Maximum, 8.7 units, several days 1991 and 1992, July 20-22, 1996; minimum, 6.2 units, June 11, 1990 and Sept. 8-10, 16, 1996.

EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum, 316 microsiemens, Mar. 20, 26; minimum, 72 microsiemens, June 6-7, 9-10.
WATER TEMPERATURE: Maximum, $17.5^{\circ} \mathrm{C}$, July 24 ; minimum, $0.0^{\circ} \mathrm{C}$, on many days.
pH : Maximum, 8.7 units, July 20-22; minimum, 6.2 units, Sept. 8-10, 16.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG.C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07081200 ARKANSAS RIVER NEAR LEADVILLE, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	231	209	226	253	181	223	252	232	239	176	162	171
2	233	205	220	245	226	238	238	229	233	164	142	158
3	248	172	213	279	172	231	231	226	229	142	124	136
4	240	158	194	255	174	224	233	228	230	136	123	128
5	228	223	226	241	236	239	234	226	231	128	111	122
6	230	223	227	250	225	239	249	220	232	124	99	112
7	230	214	226	295	188	231	234	217	225	139	123	130
8	232	226	229	278	194	238	223	214	219	166	103	123
9	250	199	229	284	176	231	226	211	218	186	143	160
10	244	218	230	274	208	238	211	200	205	188	133	159
11	270	195	228	275	195	238	204	185	192	165	125	144
12	271	197	229	257	238	245	195	181	188	169	131	149
13	273	192	227	246	241	244	205	181	188	177	151	167
14	260	184	216	248	238	243	236	166	190	161	132	148
15	247	167	213	286	219	243	233	142	183	151	108	135
16	275	160	221	248	238	244	244	183	203	119	83	97
17	269	189	230	245	236	243	211	193	201	83	76	78
18	236	228	232	287	204	241	222	188	202	86	78	81
19	240	225	232	311	222	252	244	179	211	83	77	80
20	234	222	230	316	165	223	249	175	195	83	74	78
21	231	217	227	283	209	238	231	186	205	89	80	84
22	232	221	228	260	221	238	235	167	205	87	81	84
23	256	195	225	244	235	239	225	199	209	84	78	81
24	273	177	225	244	237	241	203	172	193	88	82	85
25	270	181	226	259	231	243	173	167	170	87	84	86
26	233	220	229	316	163	218	188	159	169	90	84	87
27	265	208	228	302	148	217	170	161	165	97	90	93
28	280	182	218	261	159	237	188	161	173	102	96	98
29	272	172	212	248	239	242	190	144	165	108	101	103
30	-	,		240	227	231	184	169	175	105	100	102
31	---	---	---	242	236	239	---	1		102	97	99
MONTH	280	158	224	316	148	236	252	142	201	188	74	115
	JUNE			JULY			AUGUST			SEPTEMBER		
1	100	95	98	93	86	89	132	127	130	200	196	198
2	100	94	96	95	86	91	136	131	133	203	197	200
3	120	89	105	97	91	93	137	130	133	203	196	201
4	100	81	88	97	92	94	133	130	132	206	197	203
5	86	75	78	96	88	92	137	132	136	206	193	201
6	78	72	75	95	88	91	142	136	140	195	173	185
7	79	72	75	96	89	93	144	140	143	186	177	182
8	79	73	76	99	91	95	145	139	142	192	178	188
9	77	72	74	100	95	98	149	144	147	197	185	192
10	77	72	74	105	98	101	154	148	151	202	171	193
11	79	74	76	104	96	100	162	154	159	193	179	189
12	78	74	76	104	98	101	164	157	163	196	189	193
13	80	75	77	106	99	103	167	161	165	194	185	191
14	81	74	77	109	103	106	177	164	169	192	185	188
15	82	78	80	111	105	108	182	167	171	195	185	189
16	83	77	80	113	109	111	178	170	173	196	185	190
17	83	78	80	116	112	114	183	177	180	199	180	191
18	83	77	80	116	110	113	186	181	183	186	180	183
19	84	77	81	119	112	115	186	176	181	184	180	182
20	86	79	82	123	117	120	185	180	184	190	175	180
21	84	74	77	125	120	122	190	178	183	196	189	193
22	77	74	75	128	121	124	193	180	188	197	186	194
23	83	74	77	134	122	128	193	188	190	193	180	188
24	89	81	84	137	127	133	196	190	192	184	172	177
25	90	83	86	140	127	134	199	194	196	189	180	184
26	92	85	88	140	130	137	199	182	193	186	162	181
27	91	83	87	142	139	141	196	185	192	185	178	181
28	92	83	87	144	139	142	196	185	193	187	180	184
29	94	86	89	142	127	136	200	186	193	191	183	187
30	94	89	92	135	122	127	200	191	195	187	180	185
31	---	-	-	128	124	127	198	196	197	-	-	-
MONTH	120	72	82	144	86	112	200	127	169	206	162	189
YEAR	316	72	179									

07081200 ARKANSAS RIVER NEAR LEADVILLE, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07081200 ARKANSAS RIVER NEAR LEADVILLE, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE		JULY			AUGUST			SEPTEMBER		
1	7.7	7.6	7.6	8.2	8.1	8.1	8.1	7.5	7.8	7.2	6.3	6.7
2	7.7	7.5	7.6	8.3	8.1	8.2	8.2	7.5	7.8	7.3	6.3	6.8
3	7.7	7.5	7.6	8.3	8.1	8.2	8.2	7.6	7.9	7.4	6.3	6.8
4	7.6	7.3	7.4	8.3	8.1	8.2	8.1	7.5	7.8	7.4	6.4	6.9
5	7.5	7.2	7.4	8.3	8.1	8.2	8.2	7.5	7.9	7.3	6.5	6.9
6	7.9	7.3	7.5	8.3	8.1	8.2	8.4	7.6	7.9	7.2	6.6	6.9
7	7.6	7.2	7.4	8.3	8.1	8.2	8.2	7.6	7.9	7.2	6.3	6.7
8	7.7	7.2	7.6	8.3	8.1	8.2	8.3	7.5	7.9	7.3	6.2	6.7
9	7.7	7.3	7.5	8.4	8.2	8.3	8.2	7.5	7.9	7.1	6.2	6.6
10	7.6	7.4	7.5	8.5	8.2	8.4	8.3	7.6	8.0	7.3	6.2	6.7
11	7.5	7.3	7.4	8.5	8.2	8.3	8.4	7.6	8.0	7.0	6.3	6.6
12	7.5	7.3	7.4	8.5	8.2	8.4	8.4	7.6	8.0	7.3	6.4	6.8
13	7.7	7.4	7.5	8.5	8.3	8.4	8.2	7.5	7.9	7.2	6.5	6.9
14	7.7	7.5	7.7	8.6	8.3	8.4	8.2	7.5	7.8	7.1	6.3	6.7
15	7.6	7.5	7.5	8.6	8.4	8.5	8.2	7.5	7.9	7.1	6.5	6.9
16	7.7	7.3	7.5	8.6	8.4	8.5	8.3	7.7	8.0	7.2	6.2	6.7
17	7.5	7.3	7.4	8.6	8.4	8.5	8.2	7.5	7.9	7.5	6.4	6.9
18	7.6	7.4	7.5	8.6	8.4	8.5	8.1	7.5	7.8	7.3	6.5	6.9
19	7.6	7.4	7.5	8.6	8.3	8.5	8.0	7.0	7.4	7.5	6.7	7.0
20	7.6	7.5	7.5	8.7	8.4	8.5	7.4	6.6	7.1	7.3	6.8	7.0
21	7.6	7.5	7.5	8.7	8.4	8.5	7.5	6.4	7.0	7.6	6.6	7.1
22	7.6	7.5	7.6	8.7	8.4	8.5	7.5	6.4	6.9	7.6	6.7	7.2
23	7.7	7.6	7.7	8.5	7.6	8.2	7.4	6.4	6.9	7.7	7.0	7.3
24	7.9	7.7	7.8	8.1	7.4	7.8	7.4	6.4	6.9	7.8	6.9	7.4
25	8.2	7.8	8.0	8.1	7.5	7.8	7.4	6.4	6.8	7.7	6.9	7.3
26	8.2	8.1	8.1	8.1	7.4	7.7	7.3	6.3	6.8	7.5	6.8	7.1
27	8.2	8.0	8.1	8.1	7.4	7.7	7.4	6.3	6.8	7.5	6.7	7.1
28	8.2	8.0	8.1	8.0	7.4	7.7	7.4	6.5	6.9	7.7	6.8	7.3
29	8.2	8.0	8.1	8.1	7.7	7.8	7.4	6.3	6.8	7.8	6.8	7.3
30	8.3	8.1	8.2	8.1	7.6	7.8	7.4	6.4	6.8	7.9	6.9	7.4
31	---	---	---	8.1	7.5	7.8	7.3	6.3	6.8	---	--	---
MONTH	8.3	7.2	7.6	8.7	7.4	8.2	8.4	6.3	7.5	7.9	6.2	7.0

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			EMB			CEMB			JANUARY	
1	8.1	2.5	5.2	5.4	1.9	3.2	1.4	. 1	. 5	. 4	. 0	. 1
2	8.9	2.8	5.5	3.3	. 1	1.2	1.1	. 1	. 4	. 6	. 0	. 2
3	10.1	3.5	6.5	1.2	. 0	. 5	1.0	. 0	. 3	. 6	. 1	. 3
4	6.4	2.6	4.5	1.3	. 0	. 4	1.0	. 1	. 5	. 8	. 1	. 4
5	5.1	1.0	2.9	1.3	. 0	. 5	1.4	. 2	. 6	. 7	. 0	. 3
6	6.7	. 3	3.0	2.1	. 1	1.0	1.3	. 0	. 5	. 7	. 0	. 2
7	8.0	. 7	4.1	3.3	. 2	1.4	1.0	. 1	. 3	. 9	. 1	. 3
8	8.4	2.5	5.1	4.1	. 2	1.6	1.0	. 0	. 3	. 9	. 1	. 3
9	7.4	1.6	4.4	2.4	. 3	1.0	. 8	. 0	. 3	. 9	. 1	. 3
10	9.0	2.2	5.3	. 5	. 1	. 2	1.0	. 0	. 3	. 6	. 1	. 3
11	9.5	2.5	5.8	1.2	. 0	. 4	1.2	. 0	. 4	. 8	. 0	. 3
12	7.1	3.1	5.1	1.0	. 3	. 7	1.0	. 1	. 5	. 9	. 0	. 3
13	7.5	2.2	4.6	1.4	. 4	. 9	. 9	. 1	. 5	. 9	. 0	. 3
14	7.9	1.1	4.3	4.1	. 4	1.9	1.0	. 0	. 3	. 9	. 0	. 2
15	8.7	1.8	5.0	3.4	. 1	1.4	. 4	. 0	. 1	. 9	. 0	. 3
16	8.5	2.3	5.1	2.7	. 1	1.2	. 8	. 0	. 2	1.1	. 2	. 5
17	8.5	2.2	5.1	3.9	. 1	1.6	1.0	. 0	. 2	. 7	. 1	. 3
18	8.4	2.0	5.0	2.5	. 1	. 9	1.2	. 0	. 3	. 6	. 0	. 2
19	7.3	2.6	4.6	2.8	. 1	1.0	1.0	. 0	. 2	. 5	. 1	. 2
20	6.7	. 5	3.2	3.0	. 1	1.2	. 8	. 0	. 2	. 8	. 0	. 3
21	7.5	. 4	3.7	2.3	. 1	. 9	. 8	. 0	. 2	. 2	. 0	. 1
22	4.6	. 6	3.0	2.7	. 3	1.1	. 6	. 0	. 2	. 6	. 0	. 3
23	3.7	. 2	1.3	2.8	. 1	1.0	. 6	. 0	. 1	. 5	. 0	. 2
24	4.4	. 1	1.6	1.3	. 1	. 6	. 8	. 0	. 2	. 5	. 1	. 2
25	5.5	. 2	2.2	2.0	. 2	. 8	. 9	. 0	. 2	. 5	. 1	. 2
26	3.3	1.0	2.1	. 9	. 1	. 4	. 9	. 0	. 2	. 4	. 0	. 1
27	4.7	. 2	2.2	. 9	. 0	. 3	. 9	. 0	. 2	. 4	. 0	. 2
28	5.0	. 4	2.4	. 7	. 1	. 3	. 8	. 0	. 2	. 5	. 1	. 2
29	6.8	. 4	3.4	1.2	. 1	. 5	. 8	. 1	. 3	. 8	. 2	. 4
30	6.6	2.0	3.9	1.2	. 1	. 5	. 6	. 0	. 3	. 4	. 1	. 2
31	5.6	2.0	3.7	--	-	-	. 7	. 1	. 3	. 5	. 1	. 3
MONTH	10.1	. 1	4.0	5.4	. 0	1.0	1.4	. 0	. 3	1.1	. 0	. 3

07081200 ARKANSAS RIVER NEAR LEADVILLE, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	. 9	. 0	. 3	1.0	. 0	. 3	3.7	. 2	1.8	6.9	1.7	3.6
2	. 5	. 0	. 1	1.1	. 0	. 4	3.4	. 4	1.7	8.1	1.2	4.2
3	. 3	. 0	. 1	1.0	. 0	. 3	3.8	. 8	2.0	6.8	1.7	3.7
4	. 3	. 0	. 2	1.3	. 0	. 4	2.8	1.1	1.8	6.7	. 8	3.2
5	1.0	. 1	. 4	1.1	. 1	. 4	4.2	. 8	2.2	6.4	. 8	2.9
6	1.0	. 1	. 4	1.0	. 0	. 4	4.4	. 4	2.2	5.7	. 7	2.5
7	1.1	. 1	. 4	. 8	. 0	. 2	3.7	. 8	2.1	6.7	. 6	2.8
8	1.4	. 1	. 5	1.5	. 0	. 4	4.8	1.3	2.7	8.2	. 7	3.5
9	1.2	. 0	. 4	1.9	. 0	. 6	5.2	1.1	2.9	9.4	. 6	4.0
10	. 9	. 0	. 3	1.7	. 0	. 8	4.4	1.0	2.6	9.8	. 6	4.5
11	. 7	. 1	. 2	1.9	. 0	. 8	4.1	1.2	2.2	11.3	. 8	5.5
12	. 8	. 0	. 2	2.2	. 1	1.0	4.7	. 9	2.5	11.1	1.1	5.8
13	1.0	. 0	. 2	2.1	. 2	1.0	2.0	. 2	1.2	10.4	1.3	5.5
14	1.5	. 0	. 5	1.8	. 1	. 8	3.3	. 1	1.0	9.4	1.2	5.3
15	1.2	. 0	. 5	1.9	. 0	. 7	3.9	. 0	1.7	11.9	1.5	6.2
16	1.1	. 0	. 3	2.3	. 1	1.2	5.1	. 4	2.8	12.6	2.0	7.0
17	1.2	. 0	. 5	1.2	. 0	. 5	6.1	1.4	3.1	9.7	2.8	5.9
18	1.0	. 1	. 6	1.2	. 0	. 3	3.6	. 5	1.7	11.0	2.1	6.4
19	. 9	. 0	. 5	1.2	. 0	. 4	2.7	. 0	. 9	12.3	3.9	7.5
20	. 7	. 1	. 4	1.4	. 0	. 5	2.3	. 0	. 8	10.0	2.8	6.1
21	. 7	. 1	. 4	2.5	. 0	1.1	5.8	. 1	2.3	11.3	2.2	6.6
22	1.3	. 2	. 6	2.8	. 0	1.3	5.6	. 0	2.3	11.8	2.9	7.0
23	1.0	. 0	. 3	2.6	. 6	1.4	8.9	. 7	4.4	9.5	3.3	6.2
24	. 8	. 0	. 2	1.5	. 2	. 8	9.4	2.4	5.4	8.3	3.0	5.8
25	1.0	. 0	. 3	1.6	. 0	. 7	7.6	1.4	4.3	6.6	3.7	5.0
26	1.0	. 0	. 3	1.3	. 0	. 4	7.6	. 9	4.1	5.8	2.0	3.7
27	. 7	. 0	. 2	1.6	. 0	. 7	7.1	1.3	3.9	5.9	2.2	4.0
28	. 3	. 0	. 1	2.8	. 0	1.4	2.5	. 1	1.3	8.4	2.3	5.0
29	. 5	. 0	. 1	3.2	. 3	1.6	6.4	. 0	2.4	11.4	2.8	7.0
30	-		---	3.8	. 7	2.0	8.0	. 9	3.7	10.5	4.3	7.4
31	---	---	---	3.7	. 5	1.7	---	---	---	11.0	3.3	7.1
MONTH	1.5	. 0	. 3	3.8	. 0	. 8	9.4	. 0	2.5	12.6	. 6	5.2
	JUNE			JULY			AUGUST			SEPTEMBER		
	11.9	4.3	7.9	13.3	7.9	10.6	16.7	8.2	12.5	13.1	6.6	10.1
2	12.3	3.5	7.8	13.3	7.8	10.7	17.0	9.4	13.2	14.2	7.2	10.4
3	12.6	3.9	8.1	13.4	7.8	10.7	15.6	9.5	12.4	14.5	6.5	10.7
4	11.7	4.0	7.7	11.8	7.9	10.2	14.9	9.0	11.7	13.9	7.1	10.8
5	11.8	4.2	7.7	13.7	8.2	10.8	16.8	7.1	11.7	12.7	7.2	10.0
6	12.2	4.2	7.9	15.1	8.5	11.8	16.0	7.7	12.0	10.8	8.0	9.3
7	12.5	3.7	7.9	16.0	8.2	12.0	14.1	8.7	11.5	13.1	6.1	9.3
8	12.2	4.4	8.2	12.2	8.7	10.7	14.4	7.4	10.9	13.2	5.4	9.0
9	10.8	5.0	8.0	13.2	8.7	10.6	14.4	7.8	11.2	11.4	5.3	8.6
10	8.6	4.8	6.9	15.1	9.2	12.0	15.5	7.0	11.1	13.2	5.7	9.4
11	10.7	4.0	7.3	15.9	8.4	12.0	16.0	6.9	11.4	-	6.5	-
12	9.4	4.6	7.3	16.4	8.5	12.3	16.6	7.7	12.0	12.0	7.8	9.9
13	10.5	5.0	7.9	16.3	9.3	12.5	15.2	7.7	11.3	11.9	8.2	9.8
14	9.0	6.0	7.5	16.6	8.1	12.2	14.9	7.9	11.3	10.9	6.0	8.3
15	7.5	5.7	6.4	14.9	9.4	12.0	15.2	8.0	11.5	10.3	6.8	8.4
16	11.7	4.3	7.7	15.1	9.1	11.8	17.1	7.8	12.1	12.6	4.6	8.5
17	12.0	5.4	8.5	16.8	9.5	12.9	17.3	7.7	12.2	10.9	6.6	8.6
18	13.1	5.2	9.1	13.4	9.9	11.6	15.0	8.8	11.6	8.7	4.2	6.1
19	13.2	5.4	9.3	16.7	8.0	12.2	14.8	8.0	11.3	10.0	3.4	6.0
20	13.1	6.3	9.8	17.3	9.5	13.2	15.2	7.7	11.4	8.1	4.2	6.0
21	11.8	7.4	9.6	17.3	8.6	12.9	14.9	9.2	12.0	11.4	3.4	7.3
22	11.5	7.4	9.4	16.6	8.5	12.7	14.2	8.0	11.1	10.9	4.9	7.9
23	12.9	5.5	9.1	17.3	9.2	13.0	14.5	7.5	10.8	10.3	5.8	8.1
24	13.3	6.1	9.7	17.5	8.4	12.9	15.3	8.4	11.5	10.9	5.9	8.2
25	12.5	6.6	9.6	15.6	9.5	12.4	14.7	8.1	11.3	9.5	5.0	7.2
26	12.7	6.8	9.6	14.9	8.4	11.7	11.9	7.9	10.3	6.6	2.8	4.7
27	12.1	7.8	9.7	15.5	9.0	12.0	14.3	8.0	10.8	6.9	. 5	3.6
28	11.2	7.4	9.4	13.9	8.4	11.4	13.8	8.7	11.2	10.6	3.0	6.6
29	14.4	6.0	10.0	13.8	9.4	11.4	15.7	7.2	11.2	11.4	3.7	7.4
30	14.4	8.2	11.2	16.0	8.2	11.7	15.4	7.8	11.2	11.1	4.4	7.6
31	,	.	---	16.7	8.2	12.3	15.4	6.8	11.0	---	.	
MONTH	14.4	3.5	8.5	17.5	7.8	11.8	17.3	6.8	11.5	---	. 5	---

07082400 TURQUOISE LAKE NEAR LEADVILLE, CO

LOCATION.--Lat $39^{\circ} 15^{\prime} 10^{\prime \prime}$, long $106^{\circ} 22^{\prime} 26^{\prime \prime}$, in SW ${ }^{1 / 4} \mathrm{NE}^{1 / 4}$ sec.19, T. 9 S., R. 80 W., Lake County, Hydrologic Unit 11020001, in control house of Sugar Loaf Dam on Lake Fork, 4.0 mi west of Leadville and 4.6 mi upstream from mouth.
DRAINAGE AREA.-- $28.1 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--April 1968 to current year.
GAGE.--Nonrecording gage read once daily. Datum of gage is $9,869.40 \mathrm{ft}$ above sea level, (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level.

REMARKS.--Reservoir formed by earthfill dam completed in 1909, capacity, 17,400 acre-ft. Enlargement of dam began Dec. 8,1965 , and closure was made Apr. 15, 1968. Enlarged capacity, 129,400 acre-ft at elevation $9,869.40 \mathrm{ft}$, crest of spillway. Dead storage, 2,770 acre-ft below elevation $9,765.90 \mathrm{ft}$, sill of lowest outlet. Figures given are total contents. Since Apr. 15, 1968, Turquoise Lake has been a regulatory reservoir for the Fryingpan-Arkansas project and stores water imported from the Colorado River basin through Charles H. Boustead Tunnel for irrigation, municipal water supply, and power development. It also stores water for industrial use, and water imported from the Colorado River basin through Busk-Ivanhoe tunnel for irrigation and through Homestake tunnel for municipal water supply.
COOPERATION.--Records provided by U.S. Bureau of Reclamation.
EXTREMES (at 0800 of following day) FOR PERIOD OF RECORD.--Maximum contents, 131,820 acre-ft, July 10, 1983, elevation, $9,870.73 \mathrm{ft}$; minimum since appreciable storage was attained, 14,510 acre- ft , Oct. 1, 1968, elevation, 9,782.85 ft.
EXTREMES (at 0800 of the following day) FOR CURRENT YEAR.--Maximum contents, 128,810 acre-ft, July 4-6, elevation, $9,869.07 \mathrm{ft}$; minimum, 113,280 acre- ft , Sept. 30, elevation, 9,860.21 ft.

MONTHEND ELEVATION AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996
$\left.\begin{array}{llllllll}\text { Change in } \\ \text { contents }\end{array}\right)$

07083000 HALFMOON CREEK NEAR MALTA, CO
 (Hydrologic Bench-Mark station)

LOCATION.--Lat $39^{\circ} 10^{\prime} 20^{\prime \prime}$, long $106^{\circ} 23^{\prime} 19^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec. 13 , T. 10 S., R. 81 W., Lake County, Hydrologic Unit 11020001, on right bank 1.4 mi upstream from culvert on Halfmoon Campground road, 3.3 mi upstream from mouth, and 4.3 mi southwest of Malta.
DRAINAGE AREA.-- $23.6 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1946 to current year.
REVISED RECORDS.--WSP 2121: Drainage area at site 1.4 mi downstream. WRD Colo. 1968: 1967 (M). WDR CO-79-1: 1976 (M). WDR CO-80-1: 1954 (M).
GAGE.--Water-stage recorder with satellite telemetry. Concrete control since 1966. Elevation of gage is $9,830 \mathrm{ft}$ above sea level, from topographic map. Prior to Oct. 19, 1966, at sites 1.4 mi downstream at different datums.
REMARKS.--Records good except for estimated daily discharges, which are poor. No regulation or diversion upstream from station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	20	9.6	e8.5	e9.0	e6.0	e6.0	e7.0	e15	68	150	42	17
2	20	10	e9.0	e9.0	e5.0	e6.0	e7.0	e20	81	141	40	17
3	19	e10	e9.5	e10	e5.0	e6.0	e7.0	e25	101	129	42	16
4	18	e10	e10	e9.0	e5.0	e5.0	e7.0	e30	128	133	40	16
5	18	e9.5	e10	e10	e5.0	e6.0	e7.0	e35	160	148	37	17
6	18	e9.5	e11	e10	e4.0	e6.0	e7.5	e40	191	140	35	23
7	21	e9.5	e10	e9.0	e4.0	e5.0	e7.5	e45	177	133	34	21
8	19	e9.0	e10	e9.0	e4.0	e6.0	e8.0	e50	190	117	32	18
9	18	e9.0	e10	e10	e4.0	e6.0	e8.0	e50	191	101	31	17
10	18	e8.7	e10	e9.0	e4.0	e6.0	e8.0	51	179	102	29	16
11	18	e8.5	e10	e10	e5.0	e6.0	e8.0	52	169	97	27	16
12	18	e8.0	e10	e10	e5.0	e5.0	e8.0	66	187	90	26	17
13	18	e8.0	e10	e9.0	e5.0	e5.0	e8.0	83	189	87	25	20
14	17	e8.0	e10	e9.0	e5.0	e5.0	e8.0	100	189	81	25	19
15	17	e8.0	e10	e10	e6.0	e6.0	e8.0	103	187	79	24	22
16	16	e8.0	e10	e9.0	e6.0	e6.0	e8.0	126	180	81	25	20
17	16	e8.0	e9.0	e9.0	e6.0	e6.0	e8.0	158	192	79	24	19
18	15	e8. 5	e9.0	e10	e5.0	e7.0	e8.0	139	185	83	23	19
19	15	e8.5	e9.0	e10	e5.0	e7.0	e8.5	147	181	81	24	19
20	15	e8.0	e9.0	e9.0	e5.0	e7.0	e8.5	158	188	71	25	19
21	15	e8.0	e9.0	e9.0	e6.0	e7.0	e9.0	126	246	66	23	18
22	14	e8.0	e9.0	e9.0	e5.0	e6.0	e8.5	130	280	60	22	19
23	14	e7.5	e9.0	e9.0	e5.0	e6.0	e8.5	137	213	56	22	21
24	18	e8.0	e9.0	e9.0	e5.0	e6.0	e9.0	112	182	52	21	19
25	21	e7.5	e10	e9.0	e5.0	e6.0	e10	94	167	50	21	19
26	13	e7. 5	e10	e8.0	e5.0	e6.0	e10	82	166	46	20	18
27	13	e8.0	e10	e8.0	e5.0	e6.0	e10	66	184	44	21	18
28	13	e8.0	e10	e8.0	e5.0	e6.0	e10	55	168	45	20	19
29	13	e7. 5	e9.5	e8.0	e6.0	e6.0	e12	49	153	56	20	20
30	11	e8.0	e10	e7.0	-	e6.0	e13	53	154	48	19	20
31	8.5	---	e9.5	e7.0	---	e6.0	---	55	---	43	18	---
TOTAL	507.5	254.3	299.0	280.0	146.0	185.0	255.0	2452	5226	2689	837	559
MEAN	16.4	8.48	9.65	9.03	5.03	5.97	8.50	79.1	174	86.7	27.0	18.6
MAX	21	10	11	10	6.0	7.0	13	158	280	150	42	23
MIN	8.5	7.5	8.5	7.0	4.0	5.0	7.0	15	68	43	18	16
AC-FT	1010	504	593	555	290	367	506	4860	10370	5330	1660	1110

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1946 - 1996 , BY WATER YEAR (WY)

e-Estimated.
a-Also occurred Jan 7-19, Feb 14-15.
b-Also occurred Apr 2, 1948.
c-From rating curve extended above $300 \mathrm{ft}^{3} / \mathrm{s}$.
d-Also occurred Feb 7-10.
f-Maximum gage height for period of record, 3.82 ft , Jul 11, 1995.

07083000 HALFMOON CREEK NEAR MALTA, CO--Continued
 (Hydrologic Bench-Mark station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.-- November 1966 to March 1996 (discontinued).
PERIOD OF DAILY RECORD.--
WATER TEMPERATURES: May 1967 to September 1982.
EXTREMES FOR PERIOD OF DAILY RECORD.--
WATER TEMPERATURES: Maximum, $26.0^{\circ} \mathrm{C}$, Aug. 16,1980 ; minimum, $0.0^{\circ} \mathrm{C}$, on many days during winter months.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

	ALUMINUM, DIS	BARIUM, DIS-	$\begin{gathered} \text { COBALT, } \\ \text { DIS- } \end{gathered}$	IRON, DIS-	LITHIUM DIS-	$\begin{aligned} & \text { MANGA- } \\ & \text { NESE, } \\ & \text { DIS- } \end{aligned}$	MOLYBDENUM, DIS-	NICKEL, DIS-	SELENIUM, DIS-	$\begin{gathered} \text { SILVER, } \\ \text { DIS- } \end{gathered}$	$\begin{aligned} & \text { STRON- } \\ & \text { TIUM, } \\ & \text { DIS- } \end{aligned}$	VANADIUM, DIS-
DATE	SOLVED											
	(UG/L											
	AS AL)	AS BA)	AS CO)	AS FE)	AS LI)	AS MN)	AS MO)	AS NI)	AS SE)	AS AG)	AS SR)	AS V)

NOV												
07.	20	20	<3	29	5	7	<10	<1	<1	<1	67	<6
FEB												
08.	<10	21	<3	16	<4	5	<10	<1	<1	<1	78	<6

[^37]
07083000 HALFMOON CREEK NEAR MALTA, CO--Continued (Hydrologic Bench-Mark station)

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

CROSS-SECTION DATA, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DATE	TIME	SAMPLE			PH	
		LOC-		SPE-	WATER	
		ATION,		CIFIC	WHOLE	
		CROSS	TEMPER-	CON-	FIELD	OXYGEN,
		SECTION	ATURE	DUCT-	(STAND-	DIS-
		(FT FM	WATER	ANCE	ARD	SOLVED
		L BANK)	(DEG C)	(US / CM)	UNITS)	(MG/L)
NOV						
18.	1246	27.4	0.0	--	7.9	9.7
18.	1247	29.2	0.0	--	7.9	9.8
18	1248	30.7	0.0	--	8.0	9.8
18.	1249	32.3	0.0	--	8.0	9.8
18.	1250	33.9	0.0	--	8.0	9.8
JUN						
30.	1245	11.4	3.5	49	7.6	10.1
30.	1246	16.1	3.5	48	7.5	10.1
30.	1247	19.8	3.5	49	7.5	10.1
30.	1248	23.5	3.5	48	7.5	10.1
30.	1249	27.5	3.5	48	7.5	10.1

07084500 LAKE CREEK ABOVE TWIN LAKES RESERVOIR, CO

LOCATION.--Lat $39^{\circ} 03^{\prime} 47^{\prime \prime}$, long $106^{\circ} 24^{\prime} 26^{\prime \prime}$, Lake County, Hydrologic Unit 11020001, on left bank 1.2 mi upstream from water line of Twin Lakes Reservoir at elevation $9,200 \mathrm{ft}$ and 1.9 mi southwest of village of Twin Lakes.
DRAINAGE AREA.--75 mi ${ }^{2}$.
PERIOD OF RECORD.--April 1946 to September 1962, October 1963 to current year. Monthly discharge only for some periods, published in WSP 1241, 1311, and 1731.
REVISED RECORDS.--WSP 1117: Drainage area. WSP 1711: 1951(M), 1952.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $9,310 \mathrm{ft}$ above sea level, from topographic map. Prior to May 20, 1950, at site 190 ft downstream, at different datum. May 20, 1950, to Apr. 7, 1953, at site 10 ft upstream, at present datum.
REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion upstream from station. Records include inflow from Roaring Fork River in Colorado River basin through Twin Lakes tunnel.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	84	34	e27	e17	e11	e8.6	e12	71	490	459	104	35
2	123	e27	e27	e10	e10	e9.2	e12	99	624	499	96	34
3	91	e24	e26	e9.3	e9.0	e9.6	e12	47	772	375	90	32
4	47	22	e25	e13	e9.6	e10	e13	58	1130	468	91	31
5	73	e23	e26	e12	e11	e11	e12	74	1300	408	94	35
6	74	e24	e24	e10	e11	e11	e14	129	1260	407	84	54
7	47	e50	e22	e12	e12	e10	e16	219	1320	400	76	50
8	45	e41	e20	e14	e12	e11	e18	239	1350	340	70	41
9	43	e29	e25	e14	e12	e12	e20	258	1380	300	68	37
10	43	e73	e26	e16	e13	e12	e22	337	1370	296	57	33
11	50	e45	e25	e27	e13	e12	e24	293	1240	276	53	33
12	144	e25	e26	e25	e12	e12	e25	553	786	243	49	33
13	77	e26	e33	e16	e11	e12	e26	652	615	239	47	41
14	44	e51	e25	e10	e12	e12	e27	777	625	223	46	39
15	44	e80	e24	e9.5	e12	e12	e28	817	628	211	44	41
16	40	e25	e23	e10	e12	e11	e30	1020	586	178	45	38
17	63	e26	e23	e11	e12	e12	e30	1130	597	185	44	35
18	e39	e27	e20	e12	e12	e11	e31	1050	576	215	44	35
19	e37	e28	e28	e12	e12	e10	e44	1050	551	207	48	36
20	39	e29	e29	e11	e12	e10	e82	1140	590	187	46	38
21	44	e30	e28	e10	e11	e10	e72	931	842	176	44	35
22	91	e61	e27	e10	e10	e11	e43	921	986	159	48	36
23	104	e78	e26	e10	e9.6	e11	e31	878	834	149	45	34
24	41	e29	e26	e11	e9.0	e11	e33	775	619	137	44	39
25	41	e28	e13	e11	e9.5	e11	36	621	646	129	40	34
26	41	e26	e14	e12	e9.0	e10	35	526	626	102	39	33
27	e40	e43	e14	e11	e8.5	e10	38	387	646	118	46	30
28	44	e65	e19	e10	e8.4	e10	e34	387	599	126	42	34
29	92	e27	e23	e10	e8.3	e11	e31	336	490	125	39	37
30	87	e26	e21	e10	---	e12	31	327	526	119	38	35
31	77	---	e27	e11	---	e12	---	447	---	105	36	---
TOTAL	1949	1122	742	386.8	313.9	337.4	882	16549	24604	7561	1757	1098
MEAN	62.9	37.4	23.9	12.5	10.8	10.9	29.4	534	820	244	56.7	36.6
MAX	144	80	33	27	13	12	82	1140	1380	499	104	54
MIN	37	22	13	9.3	8.3	8.6	12	47	490	102	36	30
AC-FT	3870	2230	1470	767	623	669	1750	32820	48800	15000	3490	2180

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1946 - 1996 , BY WATER YEAR (WY)

07086000 ARKANSAS RIVER AT GRANITE, CO

LOCATION.--Lat $39^{\circ} 02^{\prime} 34^{\prime \prime}$, long $106^{\circ} 15^{\prime} 55^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SW}^{1 / 4} / 4 \mathrm{sec} .31$, T. 11 S., R. 79 W., Chaffee County, Hydrologic Unit 11020001, on right bank at Granite, 100 ft east of U.S. Highway $24,100 \mathrm{ft}$ downstream from county bridge, and 200 ft upstream from Cache Creek.
DRAINAGE AREA.--427 mi^{2}.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April to October 1895, May to December 1897, August to September 1898, March to October 1899, April to May 1901 (gage heights and discharge measurements only in 1895, 1899, and 1901), April 1910 to current year. Monthly discharge only for some periods, published in WSP 1311.
REVISED RECORDS.--WSP 1117: Drainage area. WSP 1711: 1952, 1956(M).
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $8,914.86 \mathrm{ft}$ above sea level, supplementary adjustment of 1960. Prior to Apr. 6, 1910, nonrecording gages near present site at different datums. Apr. 6, 1910 to Oct. 25, 1917, water-stage recorder or nonrecording gage at site 832 ft upstream, at different datum. Oct. 26, 1917 to Oct. 26, 1960, water-stage recorder at site 168 ft downstream, at present datum.
REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 6,700 acres. Turquoise Lake and Twin Lakes Reservoir, on tributaries upstream from station, have a combined capacity of 269,700 acre-ft. Transmountain diversions from Colorado River basin to Arkansas River basin enter upstream from this station.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	221	156	129	e100	e104	e88	194	495	876	1280	505	145
2	218	148	121	e98	e94	e92	212	510	894	1090	515	140
3	228	129	119	e90	e90	e93	219	548	1020	1060	534	140
4	235	134	121	e98	e94	e98	230	587	1350	1230	525	134
5	238	137	129	e94	e96	e100	243	629	1770	1370	520	124
6	224	148	129	e90	e107	e96	253	729	2090	1470	535	138
7	214	182	114	e92	e108	e92	264	872	2310	1440	540	141
8	207	164	126	e93	e94	e94	322	936	2600	1430	540	131
9	204	156	114	e97	e99	e98	394	1040	2660	1250	535	127
10	207	145	116	e100	e104	e100	392	1180	2740	1010	519	125
11	214	132	119	e95	e107	e110	390	1170	2630	920	460	134
12	218	148	124	e93	e103	e113	374	1230	2360	845	475	150
13	221	148	124	e96	e100	e115	428	1530	2020	783	525	167
14	179	156	119	e99	e103	e120	445	2010	2050	767	535	165
15	176	134	126	e104	e108	128	440	2090	2020	721	490	174
16	173	134	132	e110	e110	164	453	2260	1890	705	415	167
17	170	142	124	e110	e108	170	459	2630	1840	e735	360	151
18	170	126	124	e108	e104	167	360	2810	1810	742	357	156
19	170	126	134	e107	e110	e162	264	2890	1800	735	361	187
20	164	126	139	e100	e104	e167	417	3040	1810	712	304	197
21	153	126	134	e100	e103	e167	411	2910	1950	694	233	164
22	153	126	139	e102	e103	e185	406	2620	2020	672	218	162
23	142	124	142	e104	e103	191	414	2350	1910	656	209	175
24	134	116	137	e105	e100	188	458	1780	1800	646	184	173
25	e132	124	e126	e106	e105	207	540	1560	1890	612	180	172
26	e130	126	e124	e105	e103	204	550	1350	1840	545	178	173
27	e137	119	e120	e102	e95	188	548	815	1750	525	178	178
28	145	114	e114	e100	e90	191	522	1110	1520	531	174	177
29	145	134	e110	e101	e84	176	501	991	1420	550	169	172
30	148	126	e106	e102	---	176	499	896	1360	540	161	166
31	148	-	102	e106	---	182	---	865	-	511	153	-
TOTAL	5618	4106	3837	3107	2933	4422	11602	46433	56000	26777	11587	4705
MEAN	181	137	124	100	101	143	387	1498	1867	864	374	157
MAX	238	182	142	110	110	207	550	3040	2740	1470	540	197
MIN	130	114	102	90	84	88	194	495	876	511	153	124
AC-FT	11140	8140	7610	6160	5820	8770	23010	92100	111100	53110	22980	9330

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1910 - 1996, BY WATER YEAR (WY)

MEAN	157	129	106	101	106	125	241	700	1273	903	247
MAX	356	337	448	419	526	500	667	1711	2146	2367	1239
(WY)	1977	1983	1983	1983	1985	1985	1962	1984	1984	1983	1984
MIN	82.4	64.3	48.5	39.8	45.0	55.0	97.1	1961			
(WY)	1932	1945	1977	1918	1919	1919	1933	1935	1932	193	193

SUMMARY STATISTICS	FOR 1995 CALENDAR YEAR	FOR 1996 WATER YEAR	WATER YEARS	1910-1996
ANNUAL TOTAL	218419	181127		
ANNUAL MEAN	598	495	387	
HIGHEST ANNUAL MEAN			687	1984
LOWEST ANNUAL MEAN			188	1934
HIGHEST DAILY MEAN	3040 Jul 13	3040 May 20	4990	Jun 301957
LOWEST DAILY MEAN	102 Dec 31	e 84 Feb 29	11	Mar 151918
ANNUAL SEVEN-DAY MINIMUM	115 Dec 25	91 Feb 27	31	Jan 101918
INSTANTANEOUS PEAK FLOW		3110 May 20	5360	Jun 281957
INSTANTANEOUS PEAK STAGE		6.01 May 20	7.20	Jun 281957
ANNUAL RUNOFF (AC-FT)	433200	359300	280700	
10 PERCENT EXCEEDS	1620	1520	1040	
50 PERCENT EXCEEDS	302	173	168	
90 PERCENT EXCEEDS	129	100	74	

07086000 ARKANSAS RIVER AT GRANITE, CO--Continued

WATER-QUALITY RECORD

PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: October 1993 to current year.
WATER TEMPERATURE: October 1993 to current year.
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for specific conductance are good except for Dec. 7 to Apr. 16, which are poor. Records for water temperature are good. Daily data that are not published are either missing or of unacceptable quality.

EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 249 microsiemens, Jan. 16, 1996; minimum, 72 microsiemens, several days in 1995-96. WATER TEMPERATURE: Maximum, $18.7^{\circ} \mathrm{C}$, Aug. 17,1994 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during the winter.

EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 249 microsiemens, Jan. 16; minimum, 72 microsiemens, several days. WATER TEMPERATURE: Maximum, $17.9^{\circ} \mathrm{C}$, Aug. 24 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during the winter.

07086000 ARKANSAS RIVER AT GRANITE, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	201	195	198	203	197	200	178	168	172	124	120	121
2	200	195	198	206	200	203	183	174	178	127	121	122
3	200	192	196	205	194	201	186	178	181	123	117	120
4	200	193	196	206	199	203	184	176	180	117	111	114
5	200	195	197	204	199	201	181	173	176	115	111	112
6	203	187	197	201	197	198	182	172	176	113	100	108
7	194	185	188	199	193	197	179	171	175	105	98	101
8	197	193	195	201	192	196	180	165	174	105	99	101
9	199	194	197	203	196	200	165	157	161	106	95	101
10	199	188	195	203	196	199	157	148	152	99	94	96
11	195	186	191	202	195	198	148	143	146	103	96	98
12	194	186	191	199	193	196	145	140	142	105	96	99
13	199	191	196	199	193	196	143	128	135	105	87	96
14	203	193	198	198	193	195	128	119	123	92	86	88
15	199	192	197	196	181	190	119	113	116	88	85	86
16	198	192	195	182	171	178	125	113	117	88	83	85
17	199	189	195	171	168	170	123	117	119	87	81	84
18	191	186	190	170	164	166	158	117	135	82	79	80
19	189	185	187	169	163	164	159	145	149	81	78	79
20	191	186	189	167	161	163	162	106	115	81	77	79
21	191	189	190	166	159	163	119	108	113	79	77	78
22	191	187	189	168	163	165	121	108	112	81	77	79
23	194	189	191	168	165	166	121	111	115	83	80	81
24	198	185	192	167	163	165	133	120	122	92	83	86
25	192	186	189	163	154	159	128	114	121	96	91	93
26	188	185	187	162	150	155	120	113	115	118	94	100
27	193	187	190	163	153	157	117	113	115	125	105	121
28	197	192	196	163	156	159	116	110	113	108	99	101
29	203	197	201	169	160	164	122	106	111	107	100	103
30	---	---	---	172	164	167	124	112	117	107	105	106
31	---	---	---	176	166	170	---	---	---	108	105	106
MONTH	203	185	193	206	150	181	186	106	139	127	77	98
	JUNE			JULY			AUGUST			SEPTEMBER		
1	107	103	104	82	78	80	113	103	107	174	167	169
2	104	101	102	89	80	84	109	99	105	172	166	169
3	102	93	98	92	79	87	102	97	99	173	166	169
4	94	83	89	83	79	81	102	95	100	191	167	181
5	85	78	81	82	74	78	99	94	96	195	180	187
6	79	76	78	77	72	74	101	95	98	197	187	192
7	79	74	77	75	72	73	100	95	98	193	181	189
8	75	73	74	77	72	74	100	97	98	187	176	180
9	74	72	73	82	72	76	105	97	101	193	176	188
10	73	72	72	85	82	83	98	91	95	192	187	190
11	73	72	72	88	83	85	100	94	97	197	178	189
12	77	73	75	90	85	87	96	90	93	179	174	177
13	77	74	76	92	87	89	96	89	93	181	174	177
14	78	75	75	93	88	90	94	89	92	174	167	170
15	82	78	80	96	89	92	105	90	96	173	167	170
16	81	78	80	98	92	95	121	99	108	169	167	168
17	78	76	77	100	91	95	113	105	110	201	168	181
18	78	74	76	95	91	93	109	105	107	184	178	182
19	76	74	75	96	91	94	111	106	109	189	163	173
20	76	72	74	96	90	93	149	110	130	177	158	165
21	75	72	73	95	89	92	159	145	151	175	165	168
22	78	73	75	97	90	93	161	154	158	165	162	164
23	75	73	74	96	89	93	180	158	169	169	161	165
24	76	73	74	94	90	92	189	177	185	176	166	173
25	74	72	73	100	90	95	188	181	185	177	172	174
26	75	72	73	106	95	100	190	181	186	178	173	175
27	78	74	76	105	100	102	187	180	184	182	168	173
28	81	77	79	116	100	105	185	178	183	183	168	173
29	81	79	80	119	114	116	192	178	184	173	163	166
30	81	78	79	115	106	112	192	178	185	166	160	163
31	---	---	---	111	105	108	184	170	178	---	---	---
MONTH	107	72	79	119	72	91	192	89	128	201	158	175
YEAR	249	72	155									

07086000 ARKANSAS RIVER AT GRANITE, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07086000 ARKANSAS RIVER AT GRANITE, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST		SEPTEMBER		
1	12.0	6.5	9.2	14.6	10.2	12.4	17.6	12.9	15.3	14.9	8.8	11.9
2	12.5	5.8	9.2	14.7	9.9	12.0	16.9	13.5	15.2	15.7	9.4	12.2
3	12.2	6.2	9.4	15.0	9.8	12.5	16.3	13.4	14.8	16.7	8.9	12.7
4	12.1	6.4	9.4	15.2	11.4	13.3	16.9	13.2	14.9	14.9	9.2	12.3
5	12.3	7.0	9.7	15.0	11.9	13.4	17.2	12.5	14.9	14.3	9.0	11.9
6	12.4	7.4	9.8	15.5	12.0	13.8	17.6	13.1	15.3	13.1	9.8	11.5
7	12.8	6.9	9.9	16.0	11.7	13.8	16.6	13.7	15.0	14.6	7.0	10.6
8	13.2	8.0	10.5	14.1	11.7	12.7	15.7	12.4	14.0	13.8	6.7	10.4
9	12.0	8.2	10.2	13.6	11.0	12.2	16.0	12.6	14.2	14.5	7.0	11.0
10	10.9	8.0	9.5	15.3	11.5	13.3	16.4	12.5	14.4	13.7	7.1	10.7
11	12.1	7.6	9.8	15.9	11.3	13.6	17.3	12.3	14.7	13.5	7.6	10.9
12	11.1	8.0	9.6	15.2	11.1	13.3	17.5	12.7	15.0	14.0	9.9	11.8
13	11.2	7.5	9.4	16.1	11.2	13.6	16.6	13.4	15.0	13.8	9.9	11.6
14	10.3	7.8	9.1	16.2	10.8	13.6	16.0	13.8	15.0	11.7	7.9	9.8
15	9.1	7.9	8.4	14.7	11.7	13.3	15.8	13.3	14.6	13.6	8.2	10.6
16	12.9	6.4	9.4	15.4	11.3	13.1	17.6	12.9	15.0	13.1	6.5	9.8
17	12.5	7.3	10.0	16.4	12.3	14.3	17.1	12.2	14.5	11.2	8.3	9.6
18	13.6	7.3	10.3	14.8	12.5	13.6	15.4	12.6	13.9	10.9	5.8	8.0
19	13.6	7.7	10.7	16.8	12.1	14.3	16.3	12.3	14.1	10.8	3.9	7.1
20	14.1	8.4	11.2	16.6	12.7	14.6	16.3	12.1	14.1	11.5	6.0	8.3
21	12.3	9.3	10.8	16.5	12.3	14.6	16.7	11.9	14.0	12.1	5.3	8.8
22	12.3	8.9	10.4	16.8	12.6	14.9	16.2	11.1	13.5	13.5	6.4	9.8
23	13.3	7.6	10.5	17.3	13.3	15.4	17.5	10.5	13.4	11.4	7.3	9.4
24	13.4	8.6	11.1	17.1	12.8	15.1	17.9	11.1	14.1	13.4	7.7	10.0
25	12.6	9.1	11.0	15.8	13.3	14.7	15.8	10.5	13.3	9.5	6.5	8.0
26	12.8	9.3	11.1	16.6	12.8	14.7	16.2	10.4	12.9	8.6	4.6	6.5
27	12.5	10.0	11.2	16.8	12.9	14.9	15.1	10.9	12.9	8.0	1.0	4.6
28	12.6	9.7	11.1	15.6	12.4	14.0	16.7	10.8	13.3	11.4	4.0	7.5
29	14.0	8.9	11.5	16.3	13.2	14.5	17.8	9.6	13.3	12.3	4.9	8.6
30	14.2	9.8	12.0	16.9	12.6	14.8	17.5	9.9	13.5	12.0	5.5	8.7
31	---	---	-	16.6	12.7	14.8	16.5	9.0	12.9	---	---	---
MONTH	14.2	5.8	10.2	17.3	9.8	13.8	17.9	9.0	14.2	16.7	1.0	9.8
YEAR	17.9	. 0	5.8									

07091200 ARKANSAS RIVER NEAR NATHROP, CO

LOCATION.--Lat $38^{\circ} 39^{\prime} 08^{\prime \prime}$, long $106^{\circ} 03^{\prime} 02^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{SW}^{1 / 1 / 4} \mathrm{sec} .23$, T. 51 N., R. 8 E., Chaffee County, Hydrologic Unit 11020001, on right bank 300 ft upstream from end of Chaffee County Road 194 in Browns Canyon, 3.7 mi downstream from Browns Creek, 6.7 mi south of Nathrop, and 9 mi north of Salida.

DRAINAGE AREA.-- $1,060 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1964 to September 1982. April 1989 to September 1993. October 1993 to current year (seasonal records only). Water-quality data available April 1989 to September 1993.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $7,350 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions (see elsewhere in this report), storage reservoirs, power development, diversions for irrigation of about 15,000 acres, and return flow from irrigated areas.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $5,540 \mathrm{ft} 3 / \mathrm{s}$, July 14, 1995, gage height, 8.63 ft , maximum gage height, 9.94 ft , Aug. 31, 1978, backwater from unnamed tributary; minimum daily discharge, $95 \mathrm{ft}^{3} / \mathrm{s}$, Feb. 25-27, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, $4,000 \mathrm{ft}^{3} / \mathrm{s}$ at 1100 May 20 , gage height, 7.90 ft ; minimum daily discharge, $287 \mathrm{ft}^{3} / \mathrm{s}$, Sept. 11 .

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	--	-	---	---	---	e350	861	1280	1830	706	311
2	---	---	---	-	---	--	e360	866	1330	1660	700	309
3	---	---	---	---	---	---	e390	855	1500	1450	722	306
4	---	---	---	---	---	---	e410	846	1980	1670	731	294
5	-	---	---	---	---	---	e430	897	2540	1760	713	290
6	---	---	---	---	---	-	e450	1000	3030	1900	710	294
7	---	---	---	---	---	---	e470	1240	3170	1860	715	313
8	---	---	---	---	---	---	e490	1340	3460	1810	718	304
9	---	---	---	---	---	---	531	1450	3500	1790	717	296
10	--	---	---	---	--	---	535	1680	3530	1460	765	290
11	---	---	---	---	---	---	527	1670	3450	1360	732	287
12	---	---	---	---	-	---	504	1770	3300	1270	695	303
13	---	---	---	---	---	---	543	2030	2920	1180	692	317
14	---	---	---	---	---	---	562	2610	2940	1140	699	324
15	--	---	---	---	---	---	558	2560	2940	1060	698	341
16	---	---	---	---	---	--	567	2840	2840	1010	691	329
17	--	---	---	---	---	---	577	3440	2720	969	e630	320
18	---	---	---	---	---	---	540	3590	2610	1040	e580	316
19	---	---	---	---	---	---	505	3630	2520	1050	e480	330
20	---	--	---	---	---	---	642	3850	2280	1010	e440	360
21	---	---	---	--	---	---	655	3690	2650	982	e390	336
22	---	---	---	---	---	---	643	3450	3130	951	e371	323
23	---	---	---	---	---	---	667	3190	3000	909	e376	330
24	---	---	---	---	---	---	709	2580	2700	871	e370	347
25	---	---	---	--	---	--	800	2240	2620	844	e360	397
26	---	---	---	---	---	---	860	2180	2510	782	e350	396
27	---	---	---	---	---	---	952	1400	2480	722	343	405
28	---	---	---	---	---	---	916	1510	2220	720	339	411
29	-	---	---	---	---	---	862	1480	2050	774	340	407
30	---	--	---	-	--	---	874	1300	1970	778	329	404
31	---	---	---	---	-	---	---	1260	--	727	319	---
TOTAL	-	---	---	---	---	---	17879	63305	79170	37339	17421	9990
MEAN	-	---	---	--	---	-	596	2042	2639	1204	562	333
MAX	---	-	---	--	---	--	952	3850	3530	1900	765	411
MIN	---	---	---	--	-	--	350	846	1280	720	319	287
AC-FT	---	---	---	---	---	---	35460	125600	157000	74060	34550	19820

[^38]
07091200 ARKANSAS RIVER NEAR NATHROP, CO--Continued

WATER-QUALITY RECORDS
PERIOD OF RECORD.--January 1981 to September 1983, April to September 1996 (seasonal only).
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: April 1989 to September 1993.
pH: April 1989 to September 1993.
WATER TEMPERATURE: April 1989 to September 1993, April to September 1996 (seasonal only).
INSTRUMENTATION.--Water-temperature probe with satellite telemetry since April 1996.
REMARKS.--Records for daily water temperature are fair. Daily data that are not published are either missing or of unacceptable quality.
EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 305 microsiemens, Sept. 19, 1991; minimum, 58 microsiemens, June 11, 1989.
pH: Maximum, 9.7 units, Oct. 24, 26, 31, Nov. 2, 1991; minimum, 6.4 units, Apr. 10-11, 1992.
WATER TEMPERATURE: Maximum, $20.5^{\circ} \mathrm{C}$, July 17,1991 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during the winter months.
EXTREMES FOR PERIOD APRIL TO SEPTEMBER 1996.--
WATER TEMPERATURE: Maximum, $16.2^{\circ} \mathrm{C}$, Aug. 21 ; minimum, $2.2^{\circ} \mathrm{C}$, Apr. 29.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	---	-	-	---	-	---	---	-	-	--	-	---
2	---	--	---	--	--	---	---	--	---	--	---	--
3	---	---	---	--	--	---	---	---	---	---	-	---
4	---	---	---	---	---	---	--	--	---	---	---	---
5	---	---	---	---	---	---	---	---	---	---	---	---
6	-	---	---	---	---	---	---	--	-	-	---	---
7	---	-	-	--	--	--	---	---	---	---	---	---
8	---	---	---	---	---	---	--	--	---	---	---	--
9	---	--	-	-	--	---	-	--	--	---	--	---
10	---	---	---	---	---	---	---	---	---	---	---	---
11	-	-	---	---	---	---	-	---	---	--	---	-
12	---	---	---	---	---	---	---	---	---	---	---	---
13	---	---	--	---	---	-	---	---	---	---	---	---
14	---	---	---	---	---	---	--	---	---	---	---	---
15	---	---	---	--	---	---	-	---	---	--	---	---
16	---	---	---	--	---	--	---	---	---	---	---	-
17	---	---	---	--	---	---	--	---	---	--	---	---
18	---	---	---	---	---	---	--	---	---	--	---	---
19	---	---	---	---	---	---	---	---	---	---	---	---
20	---	---	---	---	---	---	---	---	---	---	---	---
21	---	--	-	---	--	---	---	---	---	---	---	-
22	---	---	---	-	-	---	---	-	---	---	---	---
23	---	---	---	---	---	---	---	---	---	---	---	---
24	---	---	---	---	---	---	---	---	---	---	---	---
25	---	---	---	---	---	---	---	---	---	---	---	---
26	---	---	---	---	---	---	--	---	---	--	---	---
27	---	---	---	---	---	--	--	---	---	-	---	---
28	---	---	---	---	---	---	---	---	---	---	---	---
29	---	---	---	---	---	---	--	---	---	--	--	--
30	---	---	---	---	---	---	-	---	---	---	---	---
31	---	---	---	---	---	---	---	---	---	-	---	--
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

07091200 ARKANSAS RIVER NEAR NATHROP, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	--	---	---	---	9.4	5.7	7.6
2	---	---	---	---	---	---	---	---	---	10.1	6.1	8.0
3	---	---	---	---	---	---	---	---	---	11.4	6.4	8.9
4	---	---	---	---	---	---	---	---	-	11.2	6.7	9.0
5	---	---	---	---	---	---	---	---	--	10.8	7.5	9.3
6	--	---	---	-	---	-	-	---	-	10.9	7.9	9.4
7	---	---	---	---	---	---	---	---	-	10.1	7.5	9.0
8	---	---	---	---	---	---	---	---	---	10.3	7.5	9.0
9	---	---	---	---	---	---	---	---	---	10.3	8.0	9.2
10	---	---	---	---	---	---	---	---	---	10.2	8.3	9.3
11	---	---	---	---	---	---	---	---	---	10.7	8.1	9.4
12	---	---	---	---	---	---	---	---	---	11.0	8.7	9.9
13	---	---	---	---	---	---	---	---	---	11.0	9.1	10.1
14	---	---	---	---	-	---	---	---	---	10.6	9.2	9.9
15	---	---	---	---	---	---	---	---	-	10.5	8.8	9.7
16	---	---	---	---	---	---	---	---	--	11.1	9.3	10.2
17	---	---	---	---	---	---	---	---	---	10.9	9.7	10.3
18	-	-	---	---	--	--	---	---	--	10.6	9.2	9.8
19	---	---	---	---	---	---	---	---	---	10.8	9.5	10.1
20	---	---	---	---	---	-	---	---	--	10.8	9.6	10.1
21	---	---	---	---	---	---	---	---	---	10.3	9.4	9.8
22	---	---	---	---	---	---	---	---	---	10.4	9.5	9.9
23	---	---	---	---	---	---	---	---	---	10.5	9.6	10.0
24	---	---	---	---	---	---	---	---	-	10.1	9.3	9.6
25	---	---	---	---	---	---	---	---	---	9.4	8.7	9.1
26	---	---	---	---	---	---	9.7	6.4	7.6	8.7	8.3	8.4
27	---	---	---	---	---	---	9.4	6.3	8.0	8.9	7.8	8.2
28	---	---	---	---	---	---	7.4	3.6	5.0	9.1	8.4	8.6
29	---	---	---	---	---	---	7.8	2.2	4.9	10.0	8.7	9.2
30	---	---	---	---	---	---	9.2	4.7	7.0	10.9	9.8	10.2
31	---	---	---	---	---	---	---	--	-	10.9	10.1	10.5
MONTH	---	---	---	---	---	---	---	---	---	11.4	5.7	9.4
	JUNE			JULY			AUGUST			SEPTEMBER		
1	11.3	10.2	10.6	12.7	12.1	12.4	15.0	14.5	14.8	---	---	---
2	11.3	10.3	10.8	13.1	12.4	12.7	15.1	14.8	15.0	---	---	---
3	11.4	10.5	10.9	13.2	12.5	12.8	15.1	14.7	14.9	---	---	---
4	11.3	10.5	10.9	13.2	12.9	13.1	14.9	14.5	14.7	---	---	---
5	11.4	10.6	11.0	13.3	13.0	13.1	14.8	14.3	14.5	---	---	---
6	11.4	10.5	11.0	13.7	13.1	13.3	14.6	14.1	14.3	---	---	---
7	11.3	10.5	10.9	13.8	13.3	13.6	14.7	14.3	14.5	---	---	---
8	11.4	10.7	11.1	13.8	13.5	13.7	14.7	14.3	14.5	---	---	---
9	11.5	10.9	11.2	13.6	13.0	13.2	14.7	14.3	14.4	---	---	---
10	11.4	10.7	11.0	13.9	13.0	13.3	14.5	14.1	14.3	---	---	--
11	11.0	10.4	10.7	14.0	13.4	13.7	14.7	14.2	14.4	---	---	---
12	11.0	10.6	10.7	14.0	13.5	13.8	15.2	14.2	14.6	---	---	---
13	10.8	10.4	10.6	14.0	13.5	13.7	15.4	14.7	15.0	---	---	---
14	10.7	10.5	10.6	14.3	13.5	13.9	15.4	15.0	15.2	---	---	---
15	10.7	10.2	10.4	14.3	13.8	14.0	15.3	14.8	15.1	---	---	---
16	10.4	9.7	9.9	14.1	13.5	13.8	15.4	14.7	15.0	---	---	---
17	10.8	10.3	10.5	14.5	13.6	14.0	15.4	14.6	15.0	-	---	---
18	11.1	10.5	10.8	14.5	14.2	14.4	15.3	14.6	15.0	---	---	---
19	11.4	10.7	11.0	14.5	13.6	14.0	15.2	14.5	14.8	---	---	---
20	12.0	11.4	11.6	15.1	14.3	14.6	15.2	14.6	14.9	---	--	---
21	12.1	11.6	11.9	15.1	14.3	14.7	16.2	14.9	15.4	--	---	--
22	11.7	11.1	11.4	15.0	14.2	14.6	15.4	13.6	14.6	---	---	---
23	11.5	10.8	11.2	15.3	14.5	14.8	---	---	---	-	-	--
24	11.7	11.2	11.4	15.3	14.5	14.9	---	---	---	-	-	---
25	11.8	11.3	11.6	15.1	14.8	15.0	---	---	---	---	---	---
26	11.9	11.4	11.6	15.0	14.2	14.5	---	---	---	---	---	---
27	11.9	11.6	11.7	15.0	14.3	14.6	---	---	---	---	---	---
28	11.8	11.4	11.6	15.1	14.6	14.8	--	--	--	-	---	--
29	12.0	11.3	11.6	14.8	14.3	14.5	---	---	---	---	---	---
30	12.5	11.8	12.1	15.0	14.3	14.6	---	---	---	--	--	---
31				15.0	14.6	14.8	---	---	---	---	-	--
MONTH	12.5	9.7	11.1	15.3	12.1	14.0	---	---	---	---	---	---

07093700 ARKANSAS RIVER NEAR WELLSVILLE, CO

LOCATION.--Lat $38^{\circ} 30^{\prime} 10^{\prime \prime}$, long $105^{\circ} 56^{\prime} 21^{\prime \prime}$, in $\mathrm{SW}^{1 / 1} \mathrm{NE}^{1 / 1 / 4}$ sec. 14 , T. 49 N., R. 9 E., Chaffee County, Hydrologic Unit 11020001, on right bank 50 ft upstream from Chaffee-Fremont County line, 2.0 mi northwest of Wellsville, 2.8 mi downstream from South Arkansas River, and 3.5 mi southeast of Salida.
DRAINAGE AREA.-- $1,485 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--April 1961 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $6,883.4 \mathrm{ft}$ above sea level, (river-profile survey).
REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, diversions for irrigation of about 26,000 acres, and return flow from irrigated areas.

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	567	487	449	380	364	322	349	828	1250	1930	732	334
2	548	491	440	360	e310	319	353	829	1280	1760	721	330
3	542	488	422	359	e320	319	365	827	1440	1510	736	325
4	553	483	423	389	328	320	376	808	1860	1730	750	316
5	559	496	431	393	364	320	392	850	2360	1780	722	307
6	561	511	435	390	368	326	394	934	2940	1950	711	307
7	557	529	426	372	370	323	395	1150	3120	1920	716	324
8	562	547	408	389	369	318	409	1270	3500	1850	722	322
9	551	531	400	393	356	325	518	1370	3580	1860	734	310
10	540	538	390	387	356	329	560	1620	3630	1540	778	305
11	540	501	407	376	349	329	551	1640	3530	1410	749	303
12	548	519	403	368	333	322	533	1730	3390	1300	657	312
13	575	521	412	375	333	316	521	1940	2910	1200	669	326
14	550	523	420	377	339	315	576	2530	2930	1150	707	337
15	521	524	388	370	351	309	560	2520	2990	1090	703	355
16	519	499	374	374	343	363	558	2800	2910	1020	626	355
17	517	494	386	384	339	411	566	3600	2740	991	567	335
18	504	491	383	358	343	382	570	3920	2590	1050	541	322
19	496	482	361	346	342	346	500	3940	2530	1060	537	333
20	503	488	357	367	340	344	563	4200	2260	1030	537	363
21	503	478	348	349	358	353	662	3920	2550	995	442	351
22	486	473	e353	370	360	358	653	3600	3240	966	397	333
23	485	470	e343	359	351	377	649	3280	3140	932	376	333
24	469	468	e337	349	329	378	698	2630	2740	896	370	353
25	481	462	e330	369	339	378	774	2260	2680	877	352	386
26	484	461	e333	349	341	386	846	2240	2550	826	355	395
27	480	466	e338	320	339	365	917	1540	2540	773	363	400
28	478	415	e342	363	317	355	893	1510	2320	757	376	410
29	482	411	347	363	319	344	843	1530	2150	795	374	408
30	482	440	356	358	---	328	840	1310	2050	816	359	405
31	482	,	369	364	-	341	-	1250	---	758	344	---
TOTAL	16125	14687	11911	11420	9970	10621	17384	64376	79700	38522	17723	10295
MEAN	520	490	384	368	344	343	579	2077	2657	1243	572	343
MAX	575	547	449	393	370	411	917	4200	3630	1950	778	410
MIN	469	411	330	320	310	309	349	808	1250	757	344	303
AC-FT	31980	29130	23630	22650	19780	21070	34480	127700	158100	76410	35150	20420

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1961 - 1996, BY WATER YEAR (WY)

[^39]
07093740 BADGER CREEK, UPPER STATION, NEAR HOWARD, CO

LOCATION.--Lat $38^{\circ} 39^{\prime} 32^{\prime \prime}$, long $105^{\circ} 48^{\prime} 48^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec.13, T. 51 N., R. 75 W., Fremont County, Hydrologic Unit 11020001, on left bank 0.1 mi downstream from County Road 2, 1.0 mi upstream from Steer Creek, 14.3 mi north of Howard, and 14.6 mi upstream from mouth.

DRAINAGE AREA.-- $106 \mathrm{mi}^{2}$.
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--December 1980 to September 1986, October 1986 to October 1988 (seasonal only), at site 0.2 mi downstream. March 1989 to June 1994, at site 0.1 mi downstream (seasonal only). Not equivalent because of seepage at previous site. July 1994 to current year (seasonal only).

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $8,790 \mathrm{ft}$ above sea level, from topographic map. Prior to October 28, 1988 at site 0.2 mi downstream, at different datum. Prior to July 1, 1994, at site 0.1 mi downstream, at different datum. Prior to Aug. 1, 1996 at site 60 ft upstream, at datum 1.00 ft higher.

REMARKS.--Records fair except for estimated daily discharges, and those below $0.50 \mathrm{ft}^{3} / \mathrm{s}$ and above $10 \mathrm{ft}^{3} / \mathrm{s}$, which are poor.
AVERAGE DISCHARGE.--5 years (water years 1981-86), $5.89 \mathrm{ft} 3 / \mathrm{s} ; 4,270 \mathrm{acre-ft/yr}$.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $1,360 \mathrm{ft}^{3} / \mathrm{s}$, Aug. 14, 1983, gage height, 8.22 ft , result of indirect determination of peak flow; no flow, July 17-23, 1989.
EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, $368 \mathrm{ft} 3 / \mathrm{s}$, Sept. 12, gage height, 4.06 ft ; minimum daily, $0.21 \mathrm{ft}^{3} / \mathrm{s}$, June 7 .

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.0	---	---	---	---	---	e1. 6	e. 75	. 90	. 86	. 68	. 93
2	1.0	---	---	---	---	---	e1.6	e. 75	. 70	. 66	. 47	. 84
3	. 99	---	---	---	---	---	e1.6	. 78	. 54	. 51	. 40	. 74
4	1.0	---	---	---	---	---	e1.5	2.2	. 52	. 50	. 49	. 60
5	1.3	---	--	---	--	---	e1.5	1.3	. 34	. 50	. 42	. 45
6	1.7	-	--	---	--	---	e1. 5	1.5	. 23	. 30	. 30	. 78
7	1.4	---	---	---	---	---	e1.5	1.0	. 21	e. 30	. 44	. 81
8	1.1	---	---	---	-	---	e1.5	1.8	. 22	. 81	1.3	. 60
9	1.3	---	---	---	---	---	e1.5	1.2	. 27	2.8	. 72	. 52
10	1.3	---	---	---	---	---	e1. 4	1.1	. 53	2.6	. 58	. 52
11	1.1	--	---	---	---	---	e1. 4	. 90	. 58	1.2	. 49	. 57
12	1.1	---	---	---	--	---	e1.4	. 75	. 66	. 90	. 39	23
13	1.2	---	---	---	---	---	e1.4	. 77	. 92	. 81	. 35	2.6
14	1.4	---	--	---	---	---	e1.3	. 75	1.1	. 61	. 30	1.2
15	1.2	---	--	---	--	---	e1.3	. 76	3.6	. 41	. 30	2.0
16	1.1	-	--	---	---	---	e1.3	. 77	4.1	. 72	. 30	1.1
17	1.1	-	---	---	---	-	e1.2	. 65	2.3	. 45	5.6	. 91
18	1.2	--	---	---	---	---	e1.2	. 61	1.6	. 33	1.8	1.1
19	1.0	-	---	---	---	---	e1.2	. 69	1.1	e. 30	. 64	1.1
20	2.2	---	---	---	---	---	e1.1	. 55	. 81	e. 32	. 69	1.0
21	1.7	---	---	---	-	---	e1.1	. 71	. 74	e. 30	. 64	1.0
22	1.3	---	---	---	-	---	e1.1	. 87	2.1	e. 30	. 75	. 92
23	2.3	---	---	---	---	---	. 91	. 81	1.8	e. 33	. 93	. 90
24	2.0	---	--	--	---	---	. 91	1.0	1.2	e. 32	. 84	. 96
25	1.9	---	---	---	---	---	. 63	2.0	. 89	e. 40	. 78	. 93
26	1.4	-	--	---	---	---	e. 60	4.4	. 74	. 86	. 74	. 92
27	1.2	---	--	---	---	---	e. 65	2.4	. 73	. 54	8.2	. 89
28	1.7	-	--	---	---	---	e. 65	1.6	. 81	. 26	7.9	. 87
29	1.4	-	---	---	---	---	e. 70	1.5	1.1	1.4	1.4	. 86
30	1.3	---	---	---	---	---	e. 70	1.4	. 91	2.6	1.1	. 76
31	1.2	---	---	---	---	---	---	1.2	---	1.3	. 98	---
TOTAL	42.09	---	---	---	---	---	35.95	37.47	32.25	24.50	40.92	50.38
MEAN	1.36	---	---	---	---	---	1.20	1.21	1.07	. 79	1.32	1.68
MAX	2.3	---	---	---	---	---	1.6	4.4	4.1	2.8	8.2	23
MIN	. 99	---	---	---	---	---	. 60	. 55	. 21	. 26	. 30	. 45
AC-FT	83	---	---	--	--	--	71	74	64	49	81	100

[^40]
07093740 BADGER CREEK，UPPER STATION，NEAR HOWARD，CO－－Continued

WATER－QUALITY RECORDS
PERIOD OF RECORD．－－March 1989 to current year（seasonal record only）．Daily water temperature record March 21， 1995 to current year（seasonal record only）．February 1981 to October 1988 （seasonal record only）and at site 1，000 ft downstream，not equivalent because of seepage at previous site．

PERIOD OF DAILY RECORD．－－Suspended sediment discharge March 1989 to current year（seasonal only）．June 1981 to October 1988 （seasonal only）and at site $1,000 \mathrm{ft}$ downstream，not equivalent because of seepage at previous site．Daily water temperature record March to September 1995 （seasonal record only）．
INSTRUMENTATION．－－Pumping sediment sampler since June 1981．Water temperature probe since March 1995.
REMARKS．－－Records for water temperature are good．Records of daily sediment are fair except for estimated sediment discharge，which are poor．Daily water temperature data that are not published during period of seasonal operation are either missing or of unacceptable quality．Several seperate measurements of specific conductance and water temperature were obtained and are published in the＂Supplemental Water－Quality Data for Gaging Stations＂section of this report．

EXTREMES FOR PERIOD OF DAILY RECORD．－－
WATER TEMPERATURE：Maximum during period of seasonal operation， $30.7^{\circ} \mathrm{C}$ ，July 28,1995 ；minimum， $0.1^{\circ} \mathrm{C}$ ，many days． SEDIMENT CONCENTRATIONS：Maximum daily during period of seasonal operation， $25,800 \mathrm{mg} / \mathrm{L}$ ，Aug．20，1982；minimum daily， $0 \mathrm{mg} / \mathrm{L}$ ，many days．
SEDIMENT LOADS：Maximum daily during period of seasonal operation，15，600 tons，Aug．14，1983；minimum daily， 0 ton，many days．

EXTREMES FOR 1995 WATER YEAR．－－

SEDIMENT CONCENTRATIONS：Maximum daily during period of seasonal operation， $2,500 \mathrm{mg} / \mathrm{L}$ ，May 16 ；minimum daily， $13 \mathrm{mg} / \mathrm{L}$ ，Oct．4，8， 13.
SEDIMENT LOADS：Maximum daily during period of seasonal operation， 39 tons，May 16；minimum daily， 0.03 tons，many days．
EXTREMES FOR CURRENT YEAR．－－
WATER TEMPERATURE：Maximum during period of seasonal operation， $29.4^{\circ} \mathrm{C}$, Aug． 12 ；minimum， $0.1^{\circ} \mathrm{C}$ ，many days． SEDIMENT CONCENTRATIONS：Maximum daily during period of seasonal operation， $214 \mathrm{mg} / \mathrm{L}$ ，Apr．9；minimum daily， 37 mg L，May 3.
SEDIMENT LOADS：Maximum daily during period of seasonal operation， 3.6 tons，May 26；minimum daily， 0.08 tons，Apr．26，and May 1－3， 18.

TEMPERATURE，WATER（DEG．C），WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

$\begin{aligned} & \text { 芯 } \\ & \text { 䍗 } \end{aligned}$		1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\underset{\Sigma}{\text { 品 }}$		1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
${ }_{\sum}^{x}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \text { z } \\ & \text { 岚 } \\ & \text { 臬 } \end{aligned}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & & 1 & 1\end{array}$	1
$\begin{aligned} & \text { Z } \\ & \stackrel{y}{2} \end{aligned}$		$\begin{array}{l\|l\|l\|l} 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
$\stackrel{x}{\Sigma}$		1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \text { 杂 } \\ & \text { 㳖 } \end{aligned}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\stackrel{\text { Z }}{\substack{\mathrm{L} \\ \mathrm{~L}}}$		$\begin{array}{l\|} \hline & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
${ }_{\Sigma}^{x}$		1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \text { 杂 } \\ & \text { 汶 } \end{aligned}$		にのトトレ 				$\stackrel{N}{N} \underset{\sim}{n} \underset{\sim}{\infty} \underset{\sim}{\infty}$		1
$\stackrel{\text { Z }}{2}$		$\underset{\sim}{m} N \times \underset{\sim}{n}$	NO. N. N.	$\stackrel{\sim}{\sim} \underset{\sim}{\infty} \sim$	m，NO．	$\square บ บ$ ¢	N M M N	1
$\underset{\Sigma}{\times}$								1
$\begin{aligned} & \text { 䓘 } \\ & \hline \end{aligned}$		「Nのザの	¢			$\underset{\sim}{\operatorname{rin}} \underset{\sim}{N} \underset{\sim}{n}$	$\stackrel{\bullet}{\sim} \stackrel{\infty}{\sim} \stackrel{\sim}{\sim} \stackrel{-1}{\sim}$	

07093740 BADGER CREEK, UPPER STATION, NEAR HOWARD, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07093740 BADGER CREEK, UPPER STATION, NEAR HOWARD, CO--Continued

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	$\begin{gathered} \text { SEDI- } \\ \text { MENT, } \\ \text { DIS- } \\ \text { CHARGE, } \\ \text { SUS- } \\ \text { PENDED } \\ \text { (T/DAY) } \end{gathered}$
OCT				
12.	1100	0.92	15	0.04
APR				
03.	1040	1.8	95	0.46
17.	1120	1.3	223	0.78
MAY				
11	1010	5.0	174	2.3
22.	1020	6.3	160	2.7
JUN				
02.	0720	5.5	65	0.97
15.	1500	1.8	101	0.49
JUL				
05.	1415	2.4	99	0.64
17.	1350	0.91	253	0.62
31.	1535	0.34	118	0.11
AUG				
14.	1145	0.45	71	0.09
SEP				
12.	1310	0.91	35	0.09
26.	1340	0.91	34	0.08

07093740 BADGER CREEK, UPPER STATION, NEAR HOWARD, CO--Continued

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARE } \\ & \text { (TONS/DAY) } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$ (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG/L) } \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$
		OCTOBER			November			december	
1	1.0	---		---	---			---	
3	1.0 .99	----	----	----	----	----	----	---	
4	1.0	---	---	---	---				--
5	1.3	---	---	---	---	---	---	---	---
6	1.7	---	---	---	---	---	---	---	
7	1.4	----	-	----	----		----		
${ }_{9}$	1.3	----	----	--	---	---	---	---	---
10	1.3	---	---	---	---	---	---	---	---
11	1.1	---	---	---	---	---	---	---	---
12	1.1	---	---	---	---	---	---	---	---
13	1.2	---	---	---	---	---			
14	1.4								
15	1.2	---	---	---	---	---	---	---	---
16	1.1	---	---	---	---	---	---	---	---
17	1.1	---	---	---	---	---	---	---	---
18	1.2	-	-	---	---				
19	1.0								
20	2.2	---	---	---	---	---	---	---	--
21	1.7	---	---	---	---	---	---	---	--
22	1.3	---	---	---	---		---		
23	2.3	---	---	---	---	---	---	---	---
24 25	2.0 1.9	----	-	--	--	----	----		
26	1.4	---	---	---	---	---	--	--	--
27	1.2	---	---	---	---	---			---
28	1.7	---	-		---	---	---		---
29	1.4	---	---	---	--		---		
30 31	1.3 1.2	---	---	---	---	---			
total	42.09	---	---	---	---	---	---	---	--

07093740 BADGER CREEK, UPPER STATION, NEAR HOWARD, CO--Continued

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996							
		MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCENTRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCENTRATION (MG/L)	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$
		APRIL		MAY			JUNE		
1	e1. 6	---	e. 37	e. 75	---	e. 08	. 90	-	---
2	e1.6	92	e. 40	e. 75	--	e. 08	. 70	---	---
3	e1.6	130	e. 56	. 78	37	. 08	. 54	---	---
4	e1. 5	---	e. 73	2.2	---	e1. 5	. 52	---	--
5	e1.5	---	e. 83	1.3	---	e. 53	. 34	-	---
6	e1. 5	210	e. 85	1.5	-	e. 61	. 23	---	---
7	e1.5	---	e. 83	1.0	---	e. 27	. 21	---	---
8	e1. 5	---	e. 85	1.8	---	e. 73	. 22	---	---
9	e1.5	214	e. 87	1.2	---	e. 32	. 27	---	---
10	e1.4	210	e. 79	1.1	---	e. 30	. 53	---	---
11	e1.4	---	e. 80	. 90	---	e. 24	. 58	---	---
12	e1.4	204	e. 77	. 75	---	e. 16	. 66	---	---
13	e1.4	180	e. 68	. 77	---	e. 17	. 92	---	---
14	e1.3	204	e. 72	. 75	---	e. 16	1.1	---	---
15	e1.3	180	e. 63	. 76	---	e. 16	3.6	---	---
16	e1.3	---	e. 56	. 77	--	e. 17	4.1	--	---
17	e1.2	160	e. 52	. 65	---	e. 09	2.3	--	---
18	e1.2	180	e. 58	. 61	---	e. 08	1.6	---	---
19	e1.2	125	e. 40	. 69	---	e. 09	1.1	---	---
20	e1.1	---	e. 39	. 55	---	e. 07	. 81	--	--
21	e1.1	---	e. 36	. 71	---	e. 10	. 74	---	---
22	e1.1	122	e. 36	. 87	---	e. 19	2.1	---	---
23	. 91	---	e. 25	. 81	--	e. 17	1.8	-	---
24	. 91	-	e. 25	1.0	---	e. 40	1.2	---	---
25	. 63	--	e. 14	2.0	---	e1.4	. 89	---	---
26	e. 60	---	e. 08	4.4	---	e3.6	. 74	-	-
27	e. 65	---	e. 09	2.4	--	e1.6	. 73	-	---
28	e. 65	---	e. 09	1.6	---	e. 65	. 81	---	---
29	e. 70	---	e. 09	1.5	---	e. 40	1.1	---	---
30	e. 70	---	e. 09	1.4	---	e. 38	. 91	---	--
31		---		1.2	---	e. 32		---	---
TOTAL	35.95	--	14.93	37.47	---	15.10	32.25	-	-
	JULY			AUGUST			SEPTEMBER		
1	. 86	---	---	. 68	---	---	. 93	---	-
2	. 66	-	---	. 47	---	---	. 84	---	-
3	. 51	---	---	. 40	---	---	. 74	---	---
4	. 50	---	---	. 49	---	---	. 60	---	---
5	. 50	---	---	. 42	---	---	. 45	---	-
6	. 30	---	---	. 30	--	--	. 78	---	-
7	e. 30	---	-	. 44	--	--	. 81	---	---
8	. 81	---	---	1.3	---	---	. 60	---	---
9	2.8	---	---	. 72	---	-	. 52	-	---
10	2.6	---	---	. 58	-	-	. 52	-	--
11	1.2	---	---	. 49	---	---	. 57	---	---
12	. 90	---	---	. 39	---	---	23	---	---
13	. 81	--	---	. 35	-	--	2.6	-	--
14	. 61	---	---	. 30	--	--	1.2	---	---
15	. 41	---	---	. 30	---	---	2.0	--	-
16	. 72	-	---	. 30	---	---	1.1	---	---
17	. 45	---	---	5.6	--	---	. 91	---	--
18	. 33	---	---	1.8	---	---	1.1	--	---
19	e. 30	---	---	. 64	--	--	1.1	--	-
20	e. 32	--	---	. 69	-	-	1.0	---	---
21	e. 30	---	---	. 64	---	--	1.0	---	---
22	e. 30	---	---	. 75	---	---	. 92	---	---
23	e. 33	---	---	. 93	---	--	. 90	-	---
24	e. 32	---	---	. 84	---	---	. 96	---	---
25	e. 40	---	---	. 78	---	---	. 93	---	---
26	. 86	---	---	. 74	--	--	. 92	---	---
27	. 54	-	---	8.2	---	---	. 89	---	---
28	. 26	---	---	7.9	---	---	. 87	---	---
29	1.4	---	---	1.4	--	--	. 86	--	---
30	2.6	---	---	1.1	---	---	. 76	---	--
31	1.3	---	---	. 98	---	---	---	---	---
TOTAL	24.50	---	---	40.92	---	---	50.38	---	-

07093740 BADGER CREEK, UPPER STATION, NEAR HOWARD, CO--Continued

DAY	SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995								
	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCEN- TRATION (MG/L)	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG } / \mathrm{L}) \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFSS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (M G / L) \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$
		october			November			DECEMBER	
1	. 66	17	. 03	---	---	---	---	---	
2	. 74	---	e. 03	---	---	---	---	---	
3	. 78	15	. 03	---	--	---		---	
4	. 73	13	. 03	---	---	---		---	
5	. 82	14	. 03	---	---	---	---	---	
6	1.0	16	. 04	---	---	---	---	---	---
7	. 98	---	e. 04	-	---	---	---	---	---
8	1.0	13	. 04	---	---	---	---	---	
9	1.0	16	. 04	---	---	---	---	---	
10	. 97	--	e. 04	---	---	---	---	---	---
11	. 91	17	. 04	---	---	---	---	---	---
12	. 91	15	. 04	---	---	---	---	---	---
13	. 91	13	. 03	-	---	---	---	---	---
14	. 91	16	. 04	-	---	---	---	-	---
15	1.0	16	. 04	---	---	---	---	-	---
16	1.1	19	. 06	---	---	---	---	---	---
17	. 93	---	e. 05	--	---	---	---	---	---
18	. 90	---	e. 04	-	---	---	---	---	--
19	. 91	18	. 04	---	---	---	---	---	
20	. 86	32	. 08	---	---	---	---	---	
21	. 84	27	. 06	---	---	---	---	---	---
22	. 69	---	e. 04	---	---	---	---	---	---
23	. 64	---	e. 04	---	---	---	---	---	---
24	. 65	25	. 04	---	---	---	---	---	---
25	. 58	27	. 04	---	---	---	---	---	---
26	. 55	27	. 04	---	---	---	---	---	
27	. 53	---	e. 04	---	---	--	---	---	-
28	. 49	---	e. 04	---	--	--	---	---	---
29	. 44	33	. 04	---	--	-	---	---	---
30 31	. 50	28	. 03	----	----	----	---	---	
	. 42	---	e. 03	---					
TOTAL	24.35	---	1.25	---	---	---	---	---	

07093740 BADGER CREEK, UPPER STATION, NEAR HOWARD, CO--Continued

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$
		APRIL			MAY			JUNE	
1	1.8	-	e. 42	2.2	---	e1. 5	5.5	---	e1.0
2	1.6	---	e. 37	2.3	230	e1.4	5.5	68	e. 97
3	1.4	87	e. 32	2.5	195	e1.3	6.0	110	e1.7
4	1.5	163	e. 66	3.0	---	e1.5	6.0	140	e2. 2
5	1.6	132	e. 57	3.5	---	e1.7	5.5	100	e1.4
6	1.6	109	e. 47	3.5	---	e1.7	5.0	93	e1. 2
7	1.6	248	e1.1	3.5	---	e1.7	5.0	92	e1. 2
8	1.7	229	e1.0	3.5	---	e1.7	5.5	95	e1.4
9	1.7	96	e. 44	4.0	-	e1.9	5.0	120	e1.6
10	1.7	104	e. 48	4.5	---	e2.1	4.5	105	e1.2
11	1.8	497	e2. 4	5.0	200	e2. 6	3.5	105	e. 96
12	1.6	557	e2. 4	5.3	160	e2. 2	3.0	120	e. 94
13	1.8	247	e1.2	5.2	200	e2.7	2.5	86	e. 56
14	1.8	199	e. 96	5.8	450	e6. 8	2.0	80	e. 42
15	1.5	--	e. 91	5.8	500	e7.5	1.8	160	e. 75
16	1.8	--	e1.1	6.0	2500	e39	2.0	157	e. 84
17	1.6	240	e1.0	6.2	300	e4.8	2.1	--	e. 79
18	1.8	156	e. 76	6.4	---	e4.5	1.9	--	e. 64
19	1.8	--	e1.0	6.4	---	e4.0	1.8	---	e. 56
20	1.8	323	e1. 5	6.4	---	e3.3	1.8	105	e. 49
21	1.8	196	e. 95	6.4	---	e3.0	2.0	98	. 52
22	1.6	---	e. 71	6.3	120	e2.0	1.9	89	. 45
23	1.6	161	e. 71	5.7	115	e1.7	1.6	82	. 36
24	1.6	159	e. 71	5.5	90	e1.3	1.6	88	. 39
25	1.8	---	e. 83	6.0	70	e1.1	1.7	81	. 37
26	1.8	239	e1.2	5.5	120	e1.7	1.8	76	. 37
27	1.9	194	e1.0	5.0	80	e1.0	1.8	73	. 35
28	1.8	291	e1.4	5.5	90	e1.3	1.8	72	. 35
29	1.8	249	e1.2	6.0	110	e1.7	2.5	142	. 97
30	2.0	193	e1.0	6.5	100	e1.7	2.8	260	2.0
31	---	---	---	6.0	80	e1.2	--	---	--
TOTAL	51.2	---	28.77	155.4	---	111.6	95.4	---	26.95

	JULY			AUGUST			SEPTEMBER		
1	2.9	216	1.7	. 31	93	. 08	. 51	81	. 11
2	2.9	---	e1.4	. 23	72	. 04	. 53	98	. 14
3	2.7	---	e1.1	. 22	96	. 06	. 61	120	. 20
4	2.6	---	e. 85	. 25	73	. 05	. 56	63	. 10
5	2.3	106	. 66	. 29	60	. 05	. 52	74	. 10
6	2.2	129	. 78	. 24	44	. 06	. 45	103	. 12
7	1.9	121	. 62	. 25	57	. 04	. 72	64	. 13
8	1.8	109	. 52	. 26	70	. 03	. 91	96	. 24
9	1.6	125	. 54	. 26	90	. 04	. 91	77	. 19
10	1.5	116	. 46	. 32	112	. 06	. 93	54	. 14
11	1.2	96	. 33	. 31	104	. 07	. 98	49	. 13
12	1.0	112	. 30	. 33	75	. 10	. 87	34	. 08
13	. 90	118	. 29	. 42	74	. 12	. 82	53	. 12
14	. 87	75	. 18	. 40	77	. 08	. 82	54	. 12
15	1.0	80	. 22	. 34	---	e. 06	. 82	57	. 12
16	. 91	98	. 24	. 34	---	e. 06	. 78	38	. 08
17	. 86	155	. 37	. 31	---	e. 05	. 81	36	. 08
18	. 88	184	. 44	. 23	---	e. 03	. 82	36	. 08
19	. 82	150	. 33	. 25	---	e. 03	. 86	39	. 09
20	. 77	124	. 26	. 34	-	e. 06	. 91	39	. 10
21	. 58	112	. 18	. 43	---	e. 08	. 91	37	. 09
22	. 58	142	. 22	. 46	---	e. 09	. 91	51	. 13
23	. 54	113	. 16	. 45	---	e. 09	. 98	36	. 09
24	. 52	100	. 14	. 50	---	e. 09	. 91	---	e. 08
25	. 47	139	. 18	. 63	---	e. 13	. 91	---	e. 08
26	. 39	113	. 12	1.0	---	e. 54	. 91	34	. 08
27	. 35	---	e. 13	. 60	--	e. 21	. 91	---	e. 08
28	. 33	---	e. 10	. 59	116	. 18	. 97	---	e. 09
29	. 33	---	e. 11	. 65	107	. 19	1.0	---	e. 10
30	. 33	--	e. 11	. 65	128	. 22	1.0	---	e. 10
31	. 34	130	e. 12	. 58	111	. 18	---	---	---
TOTAL	36.37	---	13.16	12.44	---	3.17	24.55	---	3.39

07093775 BADGER CREEK, LOWER STATION, NEAR HOWARD, CO

LOCATION.--Lat $38^{\circ} 28^{\prime} 02^{\prime \prime}$, long $105^{\circ} 51^{\prime} 34$ ", in $\mathrm{SW}^{1} / 4 \mathrm{SW}^{1 / 1} 4$ sec. 27 , T. 49 N., R. 10 E., Fremont County, Hydrologic Unit 11020001, on left bank 660 ft upstream from Denver and Rio Grande Railroad bridge, 960 ft upstream from mouth, and 1.9 mi northwest of Howard.
DRAINAGE AREA.--211 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--December 1980 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $6,780 \mathrm{ft}$ above sea level, from topographic map. Prior to May 19, 1983, at site 360 ft downstream, at datum 5.07 ft , lower.

REMARKS.--Records good except for Aug. 20-27, Sept. 6-30, which are fair, and July 8, July 18 to Aug. 9, Aug. 28 to Sept. 5, and estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.6	8.3	8.7	e5.6	e5.8	e6.6	8.6	7.3	6.3	5.5	5.4	5.1
2	6.6	8.3	8.6	e5.4	e5.6	e6.8	9.0	7.2	6.0	5.2	5.1	5.0
3	6.6	e8.2	8.3	e5.6	e5.6	e7.0	9.5	7.1	5.8	5.0	4.9	4.8
4	6.6	8.2	8.5	6.3	e5.6	7.0	9.6	7.1	5.7	5.0	4.7	4.5
5	6.6	8.4	8.7	e6.4	e6.0	7.0	9.7	7.1	5.6	5.0	4.6	4.5
6	7.0	8.6	8.7	e6. 2	e6.0	7.2	9.0	7.1	5.4	4.9	4.6	11
7	7.4	8.6	8.5	e6.0	e5.7	e7.3	9.3	7.0	5.4	4.7	4.7	5.2
8	7.4	8.3	8.5	e6.0	5.6	7.5	9.4	6.9	5.3	122	8.9	5.0
9	7.4	8.5	e8.5	e5.8	5.8	e7.5	9.8	7.0	5.4	e10	6.5	5.1
10	7.4	9.0	e8.4	5.8	5.5	7.7	10	6.9	5.7	e6.2	5.7	5.0
11	7.6	8.5	8.4	e5.8	e5.6	7.8	9.9	6.8	5.8	e5.6	e5.2	5.0
12	7.4	9.2	8.6	e5.6	e5.6	e7.9	9.5	6.7	5.7	e5.3	e5.0	5.6
13	7.4	9.2	8.7	e5.6	e5.8	e8.0	9.9	6.8	6.0	e5.0	e5.2	8.6
14	7.4	9.2	8.5	e5.4	e6.0	e8.2	9.2	6.5	6.7	e4.9	e4.9	5.6
15	7.4	9.0	e8.2	e5.4	e6.0	8.7	9.2	6.5	7.3	e4.8	e5.0	5.9
16	7.4	8.2	e8.0	5.4	e6.3	e8. 5	9.2	6.3	7.9	e4.7	e5.0	5.7
17	7.4	8.3	e7. 8	5.4	e6. 6	e8.4	9.5	6.3	7.0	e4.7	e4.9	5.7
18	7.4	8.4	e7.7	e5.6	7.0	e8.2	9.3	6.3	6.1	5.4	e4.8	6.2
19	7.4	8.5	e7. 5	e5.5	6.7	e8.1	9.2	6.2	5.4	5.2	e4.9	6.3
20	7.7	8.5	e7.0	e5.4	6.2	e8.4	8.8	6.2	5.0	5.0	e4.9	6.1
21	8.3	8.6	e6.8	e5.4	7.0	8.7	8.7	6.2	5.6	4.8	4.7	5.8
22	8.3	8.8	e6. 5	e5.2	7.0	9.0	9.1	6.0	6.4	4.5	5.0	5.4
23	8.4	8.6	e6.2	e5.2	e7.0	9.3	8.6	5.7	6.4	4.5	5.3	5.2
24	8.4	8.6	e6.0	e5.4	e7.2	9.3	8.9	6.1	5.7	4.4	4.9	5.5
25	8.3	8.5	e6.2	e5.4	7.2	e8.8	8.6	6.8	5.4	4.5	4.6	5.7
26	8.4	8.7	e5.9	e5.4	7.3	e8.8	8.3	8.4	5.3	4.5	4.7	5.9
27	8.3	8.5	e5.8	e5.2	e7.0	e8.7	7.5	8.0	5.4	4.4	5.4	5.9
28	8.3	8.6	e5.6	e5.4	e6. 8	8.6	7.6	7.5	5.7	4.5	6.2	5.9
29	8.3	8.5	e5.8	e5.8	e6.7	8.5	7.5	7.2	5.7	6.1	5.3	5.8
30	8.3	8.8	e5.8	e6.0	-	8.4	7.4	6.7	5.5	5.7	5.1	5.8
31	8.3	---	5.8	e6.0	---	8.5	---	6.6	---	5.9	5.3	---
TOTAL	235.7	257.6	232.2	174.6	182.2	250.4	269.8	210.5	176.6	277.9	161.4	172.8
MEAN	7.60	8.59	7.49	5.63	6.28	8.08	8.99	6.79	5.89	8.96	5.21	5.76
MAX	8.4	9.2	8.7	6.4	7.3	9.3	10	8.4	7.9	122	8.9	11
MIN	6.6	8.2	5.6	5.2	5.5	6.6	7.4	5.7	5.0	4.4	4.6	4.5
AC-FT	468	511	461	346	361	497	535	418	350	551	320	343

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1981 - 1996 , BY WATER YEAR (WY)

MEAN	6.99	7.32	5.79	5.38	5.71	8.57	16.7	16.2	11.1	8.49	8.25	5.85
MAX	10.6	11.2	9.13	8.78	11.2	17.3	57.1	58.1	25.2	16.3	13.2	8.97
(WY)	1988	1988	1988	1986	1986	1986	1987	1987	1995	1995	1984	1987
MIN	3.78	5.37	3.50	3.44	3.61	4.79	5.69	6.63	4.97	5.06	5.00	2.46
(WY)	1982	1982	1983	1982	1982	1982	1982	1981	1981	1993	1993	1981

SUMMARY STATISTICS

ANNUAL TOTAL
ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1981 - 1996

e-Estimated.

a-Also occurred Jul 27.
b-From rating curve extended above $160 \mathrm{ft}^{3} / \mathrm{s}$ on the basis of slope-area measurement of peak flow .
c-From floodmarks.
$\begin{array}{ccr}2601.7 & & \\ 7.11 & & \\ & & \\ 122 & \text { Jul } & 8 \\ a_{4} .4 & \text { Jul } & 24 \\ 4.5 & \text { Jul } & 22 \\ \mathrm{~b}_{2990} & \text { Jul } & 8 \\ \mathrm{C}_{10} .73 & \text { Jul } & 8 \\ 5160 & & \\ 8.8 & & \\ 6.6 & & \\ 5.0 & & \end{array}$

9.06		
18.5		1987
5.31		1982
153	Apr 19	1987
. 56	Feb 4	1982
b . 73	Sep 11	1981
$\mathrm{b}_{29} 90$	Jul 8	1996
${ }^{\text {c }} 10.73$	Jul 8	1996
6570		
14		
6.9		
4.5		

07093775 BADGER CREEK, LOWER STATION, NEAR HOWARD, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--February 1981 to current year (seasonal record only). Water temperature record March 1995 to current year .
PERIOD OF DAILY RECORD.--Suspended sediment discharge May 1981 to September 1996 (seasonal record only, discontinued).
Daily water temperature record March 1995 to current year.
INSTRUMENTATION.--Pumping sediment sampler since May 1981. Water temperature probe with satellite telemetry since March 1995.

REMARKS.--Records for daily water temperature are fair, except for Oct. 1 to June 18, which are poor. Daily data not published are either missing or of unacceptable quailty. Records for daily suspended sediment in October and September are fair, except for estimated daily sediment values, which are poor. Records for daily suspended sediment April to August are poor.

EXTREMES FOR PERIOD OF DAILY RECORD.--
WATER TEMPERATURE: Maximum, $27.9^{\circ} \mathrm{C}$, July 3, 1996; minimum, $0.0^{\circ} \mathrm{C}$, Feb. 5-7, 11-12, 1996.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 18,200 mg/L, Apr. 18, 1987; minimum daily mean, $1 \mathrm{mg} / \mathrm{L}$, Sept. 22, 1981, many days in water year 1986, Oct. 16, 1986, Oct. 19, 1988, and Oct. 3, 1989.
SEDIMENT LOADS: Maximum daily mean, 31,500 tons/day (estimated), July 28, 1984; minimum daily mean, no load Sept 12-30, 1981.

EXTREMES FOR 1995 WATER YEAR.--
SEDIMENT CONCENTRATIONS: Maximum daily mean during period of seasonal operation, $575 \mathrm{mg} / \mathrm{L}$, Aug. 24; minimum daily mean, $1 \mathrm{mg} / \mathrm{L}$, Oct. 14.
SEDIMENT LOADS: Maximum daily mean during period of seasonal operation, 27 tons/day (estimated), May 20; minimum daily mean, 0.02 tons/day, Oct. 14.
EXTREMES FOR CURRENT YEAR.--
WATER TEMPERATURE: Maximum, $27.9^{\circ} \mathrm{C}$, July 3 ; minimum $0.0^{\circ} \mathrm{C}$, Feb. 5-7, 11-12.

WATER TEMPERATURE, (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07093775 BADGER CREEK, LOWER STATION, NEAR HOWARD, CO--Continued

DAY	MAX	MIN	MEAN									
		FEBRUARY			MARCH			APRIL			MAY	
1	. 2	. 2	. 2	8.8	. 2	2.0	25.1	7.2	12.2	18.0	3.8	9.7
2	. 7	. 1	. 2	13.3	. 2	3.6	16.2	4.0	8.9	19.0	4.3	10.5
3	. 8	. 1	. 1	11.8	. 9	5.2	11.6	4.6	7.4	18.4	4.5	10.7
4	. 2	. 1	. 1	13.3	1.6	5.4	8.0	2.5	4.6	21.1	4.6	11.5
5	6.3	. 0	1.9	11.7	3.0	5.6	16.2	2.5	7.2	22.2	5.9	12.4
6	8.6	. 0	2.5	9.6	1.7	3.9	19.0	2.5	8.8	21.9	6.1	12.9
7	10.1	. 0	4.0	11.7	. 3	3.7	13.1	4.0	8.1	22.4	7.1	13.3
8	9.9	. 8	3.9	13.2	1.0	4.9	19.8	4.6	10.9	22.2	5.0	12.4
9	12.9	. 8	5.4	14.6	1.7	7.4	16.9	4.6	10.0	18.4	5.7	11.4
10	9.4	1.7	4.8	12.4	1.7	6.4	13.9	4.6	8.9	22.3	8.1	13.3
11	10.0	. 0	3.3	16.0	1.7	7.2	17.7	4.6	9.8	23.4	5.6	13.1
12	11.5	. 0	3.3	13.9	3.9	7.3	18.2	4.0	9.2	23.0	6.3	13.6
13	12.8	. 1	5.3	10.8	3.1	6.4	8.7	4.0	6.4	22.1	7.6	14.0
14	12.0	. 8	5.9	7.4	3.1	4.9	12.4	2.5	6.2	22.6	7.3	13.7
15	13.0	1.6	5.3	15.4	2.4	7.5	19.0	1.6	8.1	23.6	6.8	14.0
16	13.0	. 1	4.4	15.4	2.4	7.1	17.5	3.2	9.1	23.8	7.9	14.5
17	14.4	1.6	6.5	9.4	2.4	5.2	16.9	4.6	9.1	23.8	9.1	14.9
18	11.3	2.3	5.1	12.5	1.7	4.0	13.9	4.0	8.1	24.6	7.9	14.8
19	7.5	1.6	4.0	18.4	. 6	5.5	16.7	1.6	7.1	22.4	9.3	14.7
20	14.2	3.1	6.8	15.2	1.0	7.9	9.2	1.9	5.3	23.8	9.0	14.7
21	11.2	4.5	7.2	17.5	1.7	9.2	11.9	1.9	6.1	23.8	7.5	14.1
22	9.7	2.3	5.5	18.4	3.9	10.6	14.7	3.9	7.8	23.8	7.6	14.5
23	9.7	. 1	3.0	17.5	4.5	9.9	19.0	2.5	9.5	21.0	8.1	13.1
24	11.2	. 2	3.7	13.1	2.4	5.8	18.8	6.0	11.9	14.8	8.8	11.8
25	11.2	. 2	4.4	7.2	1.0	3.2	18.8	7.1	11.4	12.8	9.7	10.9
26	6.6	. 2	2.4	13.9	. 9	5.4	17.1	4.5	9.6	13.5	8.4	10.3
27	7.3	. 2	1.5	16.2	1.0	7.4	18.8	5.0	10.1	20.0	7.2	12.5
28	4.5	. 2	. 9	21.5	2.4	10.0	7.1	2.2	4.8	17.9	9.3	12.5
29	6.7	. 2	1.4	20.0	6.0	11.0	16.0	1.2	7.0	24.3	9.2	14.6
30	_--	_--	_--	24.5	4.5	11.2	18.7	2.8	9.3	23.2	10.2	14.8
31	---	-	---	23.5	2.5	11.6	--	-	--	19.5	8.1	13.2
MONTH	14.4	. 0	3.6	24.5	. 2	6.7	25.1	1.2	8.4	24.6	3.8	13.0

	JUNE			JULY			AUGUST			SEPTEMBER		
1	25.1	10.1	15.7	26.6	11.4	17.8	20.6	16.3	18.5	19.6	13.6	16.4
2	25.9	8.5	15.6	25.3	11.4	16.9	19.9	16.9	18.5	18.2	12.8	15.3
3	25.9	9.7	16.5	27.9	10.8	17.6	18.9	16.9	18.0	21.0	12.1	15.8
4	24.0	10.3	16.7	26.8	12.5	17.6	19.0	16.0	17.5	21.1	12.6	16.3
5	26.1	10.4	16.9	25.7	12.4	17.8	19.5	14.9	17.1	19.9	12.9	16.0
6	---	---	---	26.6	12.8	18.5	19.6	15.3	17.4	18.3	9.3	14.4
7	---	---	---	25.9	12.0	18.0	19.4	16.1	17.7	18.2	11.9	14.3
8	---	---	---	22.3	11.2	15.5	19.0	15.8	17.1	17.8	12.0	14.9
9	---	---	---	24.8	12.9	16.5	19.6	15.0	17.0	17.0	12.4	14.8
10	---	---	---	---	---	---	19.4	15.5	17.6	18.1	12.7	15.2
11	---	---	---	---	---	---	20.2	15.1	17.6	17.4	13.1	15.3
12	---	---	---	---	---	---	20.7	15.7	18.1	17.3	14.5	15.8
13	---	---	---	---	---	---	20.3	16.2	18.4	16.5	13.5	14.9
14	---	---	---	---	---	---	19.9	16.6	18.5	15.2	12.6	14.0
15	---	---	---	---	---	---	19.3	16.4	18.1	17.8	12.5	14.6
16	---	---	---	---	---	---	20.5	16.2	18.2	16.4	12.3	14.4
17	---	---	---	26.8	12.7	18.2	20.4	15.8	18.1	15.2	12.2	13.6
18	25.2	---	---	24.1	14.7	18.6	19.2	16.0	17.6	12.9	10.5	11.6
19	25.7	8.2	15.9	26.0	12.6	18.0	19.2	16.2	17.7	13.0	7.8	10.2
20	25.9	11.3	17.1	25.6	14.0	18.9	23.3	14.6	18.3	14.6	7.8	10.7
21	22.3	11.7	15.4	26.6	13.5	18.9	22.9	12.8	16.3	15.0	8.2	11.2
22	23.9	12.4	16.1	26.2	13.1	18.7	21.3	13.8	16.1	15.3	9.5	12.1
23	25.2	9.2	16.0	27.4	14.4	19.4	23.4	13.3	16.9	15.3	10.6	12.8
24	25.7	11.1	16.8	25.9	13.7	18.5	23.0	14.2	17.4	16.6	11.6	13.6
25	22.8	10.5	15.0	25.0	15.1	18.3	22.0	13.9	17.5	18.5	9.1	12.7
26	25.2	10.7	16.4	23.8	12.8	17.7	21.5	15.0	17.7	17.0	6.9	9.6
27	18.8	13.7	15.7	24.0	13.3	17.7	18.0	14.6	16.3	17.5	4.5	9.3
28	22.9	11.9	15.6	22.8	13.4	17.4	18.6	12.9	15.6	20.7	4.9	10.9
29	25.5	10.1	16.4	22.1	14.9	18.0	18.6	12.9	15.7	21.2	6.4	12.0
30	24.9	11.4	16.9	20.3	16.2	18.2	21.1	14.6	17.3	21.6	7.1	12.5
31	---	,	---	20.5	17.3	19.0	21.2	13.9	17.2	---	---	-
MONTH	-	---	---	---	---	---	23.4	12.8	17.5	21.6	4.5	13.5

07093775 BADGER CREEK, LOWER STATION, NEAR HOWARD, CO--Continued

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN		MEAN			MEAN		
		CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT
		TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE
		(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)
		OCTOBER			OVEMBER			CEMBER	

1	6.6	---
2	6.4	5.0
3	6.2	5.0
4	6.5	19
5	5.6	92
6	6.1	---
7	5.5	5.0
8	5.4	5.0
9	5.2	6.0
10	5.2	6.0
11	5.2	-
12	5.2	4.0
13	5.2	3.0
14	5.2	1.0
15	6.1	2.0
16	5.8	---
17	5.8	6.0
18	5.8	5.0
19	5.8	5.0
20	6.1	4.0
21	6.2	---
22	6.2	4.0
23	6.2	3.0
24	6.2	4.0
25	6.2	7.0
26	6.2	---
27	6.2	14
28	6.2	5.0
29	6.2	6.0
30	6.2	9.0
31	6.2	---
TOTAL	183.1	--

e. 09
.09
.08
.46
e .4
.33
.08
.08
.09
.08
e .06
.06
.04
.02
.04
e .08
.10
.08
.08
.07
e .07
.06
.05

6.4	---	---
6.2	--	---
6.2	--	---
6.5	---	---
6.6	---	-
7.0	---	---
6.6	---	---
6.6	---	---
6.6	---	---
6.4	---	---
6.5	---	---
6.8	-	---
6.5	---	---
6.4	---	---
6.3	---	---
6.2	---	---
6.5	---	---
6.0	---	---
6.0	-	---
5.9	---	---
5.9	---	---
5.8	---	---
5.8	---	---
5.7	---	---
5.6	---	---
5.5	---	---
5.4	---	---
5.2	---	---
5.0	---	---
4.8	---	---
---	---	---
182.9	---	---

4.9	-	-
5.0	--	--
5.1	---	---
5.2	---	-
5.3	---	--
5.2	---	-
5.3	---	-
5.3	---	---
5.3	---	-
5.4	---	---
5.5	---	-
5.6	---	---
5.8	---	---
5.9	---	---
6.0	---	---
6.0	--	-
6.2	---	---
6.2	-	-
6.3	---	---
6.2	---	-
5.9	-	-
5.8	---	---
4.7	---	--
3.5	-	-
3.3	--	---
3.2	---	---
3.2	-	---
3.1	--	---
3.2	---	---
3.2	---	-
3.0	---	---
153.8	---	---

07093775 BADGER CREEK, LOWER STATION, NEAR HOWARD, CO--Continued

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

		MEAN			MEAN		MEAN		
	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT	MEAN	CONCEN-	SEDIMENT
	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE
DAY									
	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)	(CFS)	(MG/L)	(TONS/DAY)
					MAY		JUNE		

1	8.9	38	. 90
2	8.7	33	. 77
3	8.9	--	e. 79
4	9.3	30	. 75
5	10	29	. 82
6	9.9	35	. 94
7	11	36	1.1
8	11	37	1.1
9	12	27	. 85
10	11	29	. 81
11	10	26	. 70
12	9.7	20	. 52
13	11	26	. 78
14	13	31	1.1
15	12	26	. 83
16	11	25	. 74
17	12	22	. 68
18	11	24	. 74
19	13	---	e. 83
20	12	---	e. 77
21	13	---	e. 78
22	13	---	e. 75
23	12	---	e. 68
24	12	---	e. 67
25	12	---	e. 65
26	13	---	e. 70
27	13	---	e. 75
28	13	---	e. 76
29	12	---	e. 78
30	13	---	e. 89
31	---	---	---
TOTAL	341.4	---	23.93

13	---	e1. 5
14	49	1.8
15	-	e1.9
15	---	e1.9
16	---	e2.1
17	---	e2.1
17	---	e2.1
17	---	e2.0
17	---	e2.0
17	---	e2.0
18	---	e2.1
18	42	2.1
19	33	1.7
18	17	. 83
20	27	1.5
23	29	1.8
29	141	12
27	226	17
30	270	22
31	-	e27
29	--	e22
28	---	e19
29	---	e18
28	208	15
28	---	e14
29	---	e11
26	---	e8.2
25	91	6.2
29	103	8.2
33	246	22
32	92	8.0
707	---	259.03

29	---	e3.0
28	28	2.2
29	---	e3.4
31	---	e4.5
31	---	e4.9
30	--	e4.5
29	---	e3. 8
29	---	e3.5
31	---	e4.6
30	--	e4.9
28	---	e4.2
27	---	e3.6
26	47	3.2
24	40	2.6
24	43	2.8
24	39	2.5
24	43	2.8
28	---	e5.0
25	---	e3.8
23	43	2.7
22	42	2.5
21	43	2.4
20	28	1.6
21	25	1.4
20	30	1.6
19	37	1.9
19	45	2.3
18	46	2.3
21	44	2.5
26	51	3.5
757	---	94.5

	JULY			AUGUST			SEPTEMBER		
1	28	41	3.1	9.8	---	e. 13	6.2	---	e. 23
2	26	46	3.2	9.2	---	e. 12	6.2	---	e. 22
3	23	43	2.6	8.9	---	e. 12	6.2	---	e. 22
4	21	17	. 99	8.4	---	e. 11	6.1	---	e. 20
5	20	19	. 99	8.8	---	e. 12	5.7	---	e. 18
6	18	17	. 85	8.7	---	e. 12	5.8	---	e. 20
7	18	19	. 94	8.7	---	e. 12	6.6	---	e. 27
8	18	16	. 79	8.8	---	e. 12	7.7	---	e3. 5
9	17	35	1.6	8.6	---	e. 12	7.6	--	e. 37
10	16	37	1.6	8.3	---	e. 11	7.5	---	e. 32
11	16	22	. 97	8.4	---	e. 11	6.7	--	e. 32
12	15	20	. 85	8.3	---	e. 11	6.4	23	. 40
13	15	19	. 80	8.3	-	e. 11	6.2	42	. 71
14	16	26	1.1	8.4	27	. 61	6.2	28	. 47
15	17	15	. 70	8.7	54	1.2	6.2	27	. 46
16	17	17	. 79	7.9	78	1.7	6.1	25	. 42
17	17	19	. 88	7.7	24	. 50	5.4	19	. 27
18	18	17	. 86	7.4	19	. 38	5.4	16	. 24
19	17	9.0	. 41	7.0	21	. 41	5.4	14	. 21
20	16	10	. 46	7.0	15	. 28	5.4	14	. 21
21	15	9.0	. 38	7.0	14	. 27	5.4	12	. 17
22	15	6.0	. 24	7.8	17	. 36	5.8	18	. 28
23	15	8.0	. 33	8.8	22	. 52	6.2	24	. 41
24	15	7.0	. 28	8.1	575	13	6.2	18	. 31
25	13	4.0	. 16	9.7	468	12	6.2	26	. 43
26	12	4.0	. 13	8.8	121	2.9	6.2	29	. 49
27	11	3.0	. 09	10	65	1.8	6.2	19	. 32
28	11	4.0	. 11	8.5	48	1.1	6.2	--	e. 25
29	9.6	4.0	. 10	7.3	---	e. 49	6.2	---	e. 25
30	9.2	---	e. 10	6.8	--	e. 29	6.5	---	e. 25
31	9.3	---	e. 10	6.5	---	e. 26	---	---	---
TOTAL	504.1	---	26.50	256.6	---	39.59	186.1	---	12.58

07093775 BADGER CREEK, LOWER STATION, NEAR HOWARD, CO--Continued

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DATE	TIME		SEDIMENT, SUSPENDED (MG/L)	$\begin{gathered} \text { SEDI- } \\ \text { MENT, } \\ \text { DIS- } \\ \text { CHARGE, } \\ \text { SUS- } \\ \text { PENDED } \\ \text { (T/DAY) } \end{gathered}$
OCT				
12...	1430	5.2	3	0.04
APR				
05...	0915	11	28	0.83
18.	0820	11	25	0.74
MAY				
02...	1500	15	49	2.0
12...	1300	18	42	2.0
$30 .$.	1315	34	131	12
JUN				
20...	1520	24	39	2.5
JUL				
06...	0830	17	16	0.73
18...	0745	18	21	1.0
AUG				
14...	0905	8.3	4	0.09
SEP				
12...	1105	6.6	16	0.29
27...	0900	6.2	11	0.18

07094500 ARKANSAS RIVER AT PARKDALE, CO

LOCATION.--Lat $38^{\circ} 29^{\prime} 14$ ", long $105^{\circ} 22^{\prime} 23 "$, in $\mathrm{NE}^{1 / 4} \mathrm{NW}^{1 / 4}$ sec. 18 , T. 18 S., R. 71 W., Fremont County, Hydrologic Unit 11020001, on left bank at Parkdale, 100 ft upstream from Bumback Gulch, 300 ft upstream from bridge on U.S. Highway 50, and 0.9 mi upstream from Copper Gulch.

DRAINAGE AREA.--2,548 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1945 to September 1955, October 1964 to September 1994, April 1995 to current year (seasonal record only). Monthly discharge only for October 1945 to May 1946, published in WSP 1311. Water-quality data available November 1986 to September 1993.

REVISED RECORDS.--WSP 1117: Drainage area.

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,720 \mathrm{ft}$ above sea level, from topographic map. Prior to Oct. 1, 1964, at site 600 ft downstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, diversions for irrigation of about 35,000 acres upstream from station, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $6,830 \mathrm{ft}^{3} / \mathrm{s}$, June 18,1995 , gage height 8.82 ft ; minimum daily, $199 \mathrm{ft}^{3} / \mathrm{s}$, Mar. 17, 1978.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, 4,440 at 1830 June 14, gage height, 7.25 ft ; minimum daily, $326 \mathrm{ft}^{3} / \mathrm{s}$, Sept. 5, 11.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	692	---	---	---	---	---	368	848	1290	1970	823	353
2	666	---	---	---	---	---	366	843	1290	1820	815	346
3	654	---	---	---	---	---	374	859	1370	1620	796	341
4	653	---	---	---	---	---	414	819	1650	1670	821	335
5	661	---	--	---	--	---	433	847	2170	1740	805	326
6	665	--	-	---	--	---	437	925	2880	1890	773	348
7	662	---	---	---	---	-	442	1090	3190	1890	788	381
8	663	---	---	-	-	---	467	1250	3530	1890	804	353
9	661	--	---	---	---	---	503	1340	3670	1890	819	340
10	648	---	--	---	--	---	598	1510	3720	1720	829	332
11	640	-	--	---	--	---	606	1610	3710	1510	847	326
12	648	-	---	---	-	---	598	1640	3610	1400	763	328
13	655	--	---	---	---	---	571	1790	3150	1340	721	363
14	659	---	---	---	---	---	601	2350	3110	1270	758	368
15	623	---	-	---	-	---	618	2500	3130	1220	773	391
16	616	---	---	--	-	-	595	2650	3120	1140	741	405
17	607	--	---	---	---	--	590	3440	2870	1120	e680	386
18	593	---	---	---	--	---	601	3890	2660	1110	e640	372
19	583	---	-	-	---	--	563	3890	2620	1160	e600	368
20	577	-	--	--	---	---	541	4130	2280	1130	e575	381
21	592	---	---	---	---	---	679	4050	2420	1100	538	414
22	577	---	--	---	---	---	700	3800	3220	1070	463	387
23	574	---	---	---	---	--	690	3500	3440	1040	448	371
24	549	---	-	---	-	---	704	2960	2900	991	436	384
25	546	---	---	---	-	---	755	2290	2690	970	398	408
26	564	---	---	---	---	---	858	2310	2620	927	378	444
27	552	---	---	---	---	---	910	1800	2570	870	423	450
28	555	---	---	---	---	374	918	1440	2390	829	435	457
29	554	---	---	---	---	379	889	1590	2190	847	407	463
30	557	--	---	---	---	363	851	1390	2060	939	392	454
31	553	---	---	---	---	353	---	1300	---	856	369	--
TOTAL	18999	---	---	---	---	---	18240	64651	81520	40939	19858	11375
MEAN	613	---	---	---	---	---	608	2086	2717	1321	641	379
MAX	692	---	---	---	---	---	918	4130	3720	1970	847	463
MIN	546	---	---	---	---	---	366	819	1290	829	369	326
AC-FT	37680	--	--	---	--	--	36180	128200	161700	81200	39390	22560

[^41]
07094500 ARKANSAS RIVER AT PARKDALE，CO－－Continued

WATER－QUALITY RECORDS
PERIOD OF RECORD．－－January 1981 to September 1982，November 1986 to September 1993．April to September 1996 （seasonal only）．

PERIOD OF DAILY RECORD．－－

SPECIFIC CONDUCTANCE：November 1986 to September 1993.
WATER TEMPERATURE：November 1986 to September 1993，April to September 1996 （seasonal only）．
INSTRUMENTATION．－－Water－temperature probe with satellite telemetry since April 1996.
REMARKS．－－Records for daily water temperature are good．Daily data that are not published are either missing or of unacceptable quality．
EXTREMES FOR PERIOD OF DAILY RECORD．－－
WATER TEMPERATURE：Maximum， $25.5^{\circ} \mathrm{C}$ ，July 23,1987 ；minimum， $0.0^{\circ} \mathrm{C}$ ，on many days during the winter months．
EXTREMES FOR PERIOD OF SEASONAL RECORD．－－
WATER TEMPERATURE：Maximum， $22.5^{\circ} \mathrm{C}$ ，July 21 ；minimum， $5.4^{\circ} \mathrm{C}$ ，Apr． 29.

WATER TEMPERATURE，（DEG．C），WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

	$\begin{aligned} & \text { z } \\ & \text { 甶 } \end{aligned}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	1
잉	$\underset{\text { 品 }}{\substack{2}}$	$\begin{aligned} & \text { N } \\ & \text { 岚 } \\ & \text { 岂 } \\ & \stackrel{4}{4} \end{aligned}$	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
啡	\sum_{Σ}^{x}		$\begin{array}{l\|l\|l\|l\|l} 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{l\|l\|l\|l\|} \hline & 1 & 1 & 1 \\ & 1 & & 1 \\ 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
2			1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
	$\stackrel{\text { 岕 }}{\stackrel{y}{2}}$		$\begin{array}{l\|l\|l\|l\|} \hline & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \lambda \\ & \alpha \\ & \text { 宸 } \\ & 3 \\ & 3 \end{aligned}$	$\underset{\Sigma}{x}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{l\|l\|l\|l\|} 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \dot{U} \\ & \dot{U} \\ & \text { Me} \end{aligned}$	$\begin{aligned} & \text { 舀 } \\ & \text { 离 } \end{aligned}$		$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{l\|l\|l\|l\|l} 1 & 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{lllll} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1	1
资	$\stackrel{\text { Z }}{\text { Z }}$	$\begin{aligned} & \frac{\alpha}{11} \\ & \sum_{10}^{1} \\ & 9 \\ & 0 \\ & 0 \\ & z \end{aligned}$	$\begin{array}{l\|llll} 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
$\begin{aligned} & \underline{I} \\ & \underset{y}{u} \end{aligned}$	$\underset{\Sigma}{\underset{\Sigma}{X}}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll} 1 & 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1	1
	$\begin{aligned} & \text { z } \\ & \text { 峾 } \end{aligned}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & & \end{array}$	1
	$\stackrel{\text { Z }}{\text { Z }}$	0 1 1 0 0 0 0 0	$\begin{array}{l\|l\|l\|l\|} \hline & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{l\|l\|l\|l\|} \hline & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1	1
	${ }_{\Sigma}^{\times}$		1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll} 1 & 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{lllll} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{l\|llll} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & & 1 & 1 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1
	$\begin{aligned} & \text { 若 } \end{aligned}$		「Nのサー	¢	HNMザの		$\underset{\sim}{\sim} \underset{\sim}{N} \underset{\sim}{\sim} \stackrel{n}{n}$	$\stackrel{6}{\mathrm{~N}} \stackrel{\infty}{\mathrm{~N}} \stackrel{0}{\mathrm{~N}} \mathrm{~m} \mathrm{~m}_{\mathrm{m}}^{-1}$	

07094500 ARKANSAS RIVER AT PARKDALE, CO--Continued

WATER TEMPERATURE, (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	-	--	---	--	--	--	---	13.3	9.3	11.0
2	-	---	-	-	--	---	---	---	---	14.1	10.1	11.8
3	---	---	---	---	-	---	---	---	--	14.9	10.9	12.5
4	---	---	---	---	---	---	---	---	---	15.7	10.9	13.4
5	---	---	---	---	---	-	---	---	--	15.7	12.5	14.1
6	---	---	---	---	--	---	--	---	--	16.5	12.5	14.6
7	---	---	---	---	---	---	---	---	---	15.7	13.3	14.6
8	-	---	---	---	-	---	---	---	-	14.8	11.7	13.3
9	-	-	---	---	-	---	---	---	-	14.0	11.6	12.9
10	---	---	---	---	---	---	---	---	---	14.8	11.6	12.7
11	---	---	---	---	---	---	---	---	--	14.8	10.2	13.0
12	---	---	---	---	---	---	---	---	---	14.8	10.2	13.4
13	---	---	---	---	-	---	---	---	-	14.8	12.4	13.6
14	---	---	---	---	---	---	---	---	---	14.0	12.4	13.3
15	--	-	---	---	---	-	---	-	--	14.0	10.8	12.7
16	---	---	---	---	---	---	---	---	--	14.7	11.6	13.1
17	---	---	---	---	---	---	---	---	-	13.9	12.3	13.2
18	---	---	---	---	---	---	---	---	---	13.9	11.5	12.8
19	---	---	---	---	---	---	---	---	---	13.9	11.5	12.4
20	---	---	---	---	---	---	---	---	--	13.5	11.5	12.4
21	---	---	---	---	---	---	---	---	--	13.8	10.6	12.2
22	---	---	---	---	---	---	---	---	---	14.5	11.5	12.8
23	---	---	---	---	-	---	---	---	--	14.7	11.9	13.1
24	---	---	---	---	---	---	---	---	---	12.9	11.2	12.1
25	-	---	---	---	---	---	---	---	-	12.2	10.5	11.1
26	---	---	---	---	---	---	---	---	---	11.1	9.4	10.2
27	---	---	---	---	-	---	13.4	10.2	12.0	12.6	8.9	10.7
28	---	---	---	---	---	---	11.8	7.0	9.4	12.5	10.7	11.5
29	---	---	---	---	---	---	9.4	5.4	7.1	14.8	10.8	12.8
30	---	---	---	---	---	---	11.7	7.0	9.5	15.9	12.8	14.4
31	---	---	---	---	---	---	---	---		15.7	12.5	14.1
MONTH	---	---	---	---	---	---	---	---	---	16.5	8.9	12.8
	JUNE			JULY			AUGUST			SEPTEMBER		
1	16.4	13.1	14.8	18.6	15.8	17.3	21.5	17.8	19.7	---	---	---
2	16.7	13.6	15.2	19.5	16.5	17.9	21.8	16.5	19.5	---	---	---
3	16.3	13.7	15.0	20.0	16.3	18.2	21.6	18.1	19.3	---	---	---
4	15.9	14.2	15.1	19.3	16.9	18.3	21.3	16.8	19.0	---	---	---
5	16.5	12.9	14.7	19.0	16.8	18.0	21.1	16.0	18.7	20.0	---	---
6	16.0	13.1	14.6	19.7	17.0	18.4	21.6	16.9	19.4	20.1	16.4	18.0
7	16.1	12.8	14.4	19.9	17.2	18.5	21.3	17.6	19.3	19.9	14.8	17.1
8	16.0	12.6	14.3	18.8	17.5	18.2	21.3	17.0	19.1	19.5	15.1	17.4
9	15.2	13.2	14.3	18.9	16.4	17.5	20.1	16.8	18.5	19.6	15.1	17.4
10	14.8	12.5	13.7	20.3	16.2	18.2	20.2	16.6	18.5	19.6	15.2	17.4
11	14.3	12.3	13.3	20.1	17.5	18.9	20.6	15.8	18.4	19.3	15.3	17.4
12	15.3	12.5	13.8	20.5	17.6	19.1	21.2	16.6	18.9	17.7	15.8	16.7
13	15.2	12.4	13.9	20.3	17.8	19.1	21.8	16.9	19.3	17.9	15.3	16.5
14	15.0	13.1	14.0	21.2	17.4	19.3	20.5	17.5	19.1	16.8	14.5	15.5
15	14.3	12.6	13.4	21.4	18.3	19.7	19.5	16.9	18.3	18.2	14.1	15.7
16	14.2	11.8	13.0	21.3	18.4	19.9	20.4	16.6	18.1	18.7	14.5	16.7
17	16.3	12.3	14.2	21.0	18.2	19.8	---	---	---	17.2	14.1	15.4
18	16.9	13.1	15.0	21.4	18.6	20.1	---	---	--	15.3	12.1	13.3
19	17.0	13.0	15.1	21.7	18.2	19.9	--	---	--	13.7	9.7	11.6
20	18.1	14.2	16.2	22.1	18.2	20.2	---	---	---	14.3	10.0	12.0
21	17.2	15.0	16.2	22.5	18.8	20.8	20.1	17.1	18.6	14.8	9.9	12.5
22	16.1	13.8	15.0	21.9	18.8	20.3	19.2	17.4	18.1	16.1	11.5	13.8
23	16.3	13.1	14.8	21.5	18.2	20.1	22.2	16.7	19.0	17.2	13.0	14.8
24	17.7	13.9	15.7	21.3	18.7	20.1	21.9	16.8	19.2	17.2	13.0	14.8
25	16.5	14.2	15.4	20.7	18.4	19.6	---	---	--	16.5	12.8	14.5
26	17.3	14.2	15.8	20.5	17.7	19.2	--	-	--	13.1	9.8	10.6
27	16.7	15.0	15.6	20.6	17.3	19.1	---	---	---	12.0	8.5	10.3
28	17.1	14.1	15.4	19.9	17.6	18.9	---	---	---	12.9	8.8	11.0
29	17.0	14.0	15.6	19.7	18.0	18.8	---	---	---	14.0	10.1	12.2
30	18.4	15.3	16.8	20.7	17.0	19.1	---	---	---	14.9	10.9	13.1
31	--	-		22.3	18.6	20.3	---	---	---	---	-	-
MONTH	18.4	11.8	14.8	22.5	15.8	19.1	---	---	---	---	---	--

07096000 ARKANSAS RIVER AT CANON CITY, CO

LOCATION.--Lat $38^{\circ} 26^{\prime} 02^{\prime \prime}$, long $105^{\circ} 15^{\prime} 24^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec. 31 , T. 18 S., R. 72 W., Fremont County, Hydrologic Unit 11020002, on right bank 800 ft upstream from Sand Creek, 0.7 mi downstream from Grape Creek, and 0.7 mi upstream from First Street Bridge in Canon City.
DRAINAGE AREA.--3,117 mi^{2}.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1888 to current year. Monthly discharge only for some periods, published in WSP 1311. Published as "near Canyon" 1900-1906.
REVISED RECORDS.--WSP 1117: Drainage area. WSP 1311: 1897-98.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $5,342.13 \mathrm{ft}$ above sea level. See WSP 1711 or 1731 for history of changes prior to Oct. 1, 1957. Oct. 1, 1957 to Nov. 15, 1962, water-stage recorder at present site at datum 1.49 ft , higher.
REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 250 acres upstream from station.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	595	458	448	382	363	332	324	687	1230	1890	662	275
2	569	482	441	366	346	334	322	701	1220	1740	726	269
3	569	483	414	359	331	332	332	722	1300	1500	638	249
4	578	475	423	388	341	335	364	680	1610	1550	641	238
5	560	492	455	391	e367	336	374	708	2140	1650	623	236
6	558	504	465	387	e390	346	373	764	2780	1810	586	251
7	549	517	459	377	e410	323	383	925	3040	1810	622	344
8	552	542	439	387	e420	338	418	1100	3340	1810	688	319
9	550	542	436	395	e410	332	429	1280	3490	1810	764	280
10	533	547	420	388	e400	334	519	1490	3540	1660	746	267
11	516	526	422	399	e390	336	520	1600	3500	1390	739	258
12	525	513	433	370	e380	330	495	1640	3370	1300	662	254
13	531	538	447	372	e360	321	470	1800	2990	1230	593	258
14	538	530	446	371	e355	336	487	2370	3010	1160	638	280
15	507	541	415	366	357	333	501	2570	3030	1100	630	303
16	503	512	380	368	356	330	485	2670	3000	987	582	321
17	486	502	390	377	353	388	474	3360	2780	944	506	310
18	474	498	386	363	356	409	488	3890	2610	937	445	296
19	476	483	372	337	356	360	456	3880	2550	1000	416	296
20	479	484	363	369	355	354	427	4140	2250	976	413	300
21	490	484	342	362	362	358	556	4080	2360	922	394	320
22	473	477	360	366	372	362	585	3760	3050	894	348	319
23	474	471	339	369	366	361	577	3400	3250	868	338	299
24	461	461	332	353	351	355	591	2960	2820	828	325	289
25	427	452	336	372	347	345	645	2390	2630	816	253	303
26	435	464	346	361	352	339	736	2400	2560	780	226	329
27	429	471	350	318	340	360	795	1870	2500	724	298	351
28	435	442	352	365	330	339	869	1440	2350	680	360	355
29	431	384	349	377	329	339	785	1580	2140	686	323	357
30	451	432	354	402	---	328	729	1360	1990	794	304	352
31	458	---	367	376	-	315	---	1240	---	709	284	---
TOTAL	15612	14707	12281	11533	10545	10640	15509	63457	78430	36955	15773	8878
MEAN	504	490	396	372	364	343	517	2047	2614	1192	509	296
MAX	595	547	465	402	420	409	869	4140	3540	1890	764	357
MIN	427	384	332	318	329	315	322	680	1220	680	226	236
AC-FT	30970	29170	24360	22880	20920	21100	30760	125900	155600	73300	31290	17610

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1889 - 1996, BY WATER YEAR (WY)

07096000 ARKANSAS RIVER AT CANON CITY, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1993 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: October 1993 to current year.
WATER TEMPERATURE: October 1993 to current year.
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for specific conductance are good except Oct. 1 to Dec. 20 and Apr. 19 to May 7, which are fair, and Dec. 21 to Apr. 18, which are poor. Records for water temperature are good except Dec. 20 to May 8, which are poor. Daily data that are not published are either missing or of unacceptable quality.
EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 673 microsiemens, July 10, 1996; minimum, 94 microsiemens, June 9, 1996. WATER TEMPERATURE: Maximum, $22.5^{\circ} \mathrm{C}$, Aug. 27,1994 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during the winter.

EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum, 673 microsiemens, July 10; minimum, 94 microsiemens, June 9.
WATER TEMPERATURE: Maximum, $22.0^{\circ} \mathrm{C}$, July 21 , Aug. $25-26$; minimum, $0.0^{\circ} \mathrm{C}$, many days during the winter.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG.C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

TEMPERATURE, WATER (DEG.C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	12.3	10.6	11.6	8.3	2.8	5.3	9.2	3.6	5.8	. 1	. 0	. 0
2	12.4	10.1	11.2	4.9	2.2	3.5	8.9	3.2	5.5	. 0	. 0	. 0
3	12.5	9.5	11.1	3.6	. 2	2.4	6.0	. 5	2.8	. 5	. 0	. 2
4	11.8	9.5	10.6	4.8	1.3	3.0	10.0	. 8	6.7	. 3	. 0	. 1
5	10.4	7.8	9.1	5.4	3.0	4.3	6.7	. 9	3.4	. 0	. 0	. 0
6	9.6	7.1	8.5	5.9	4.4	5.1	6.4	2.0	4.2	. 0	. 0	. 0
7	10.0	7.4	8.8	5.1	3.5	4.4	4.4	1.7	2.9	. 2	. 0	. 0
8	10.9	8.4	9.7	6.3	4.3	5.3	2.6	. 0	. 8	. 4	. 0	. 1
9	10.5	8.5	9.7	7.1	5.3	6.2	. 0	. 0	. 0	. 1	. 0	. 1
10	11.1	8.4	9.9	6.5	4.6	5.6	6.0	. 0	2.6	. 1	. 0	. 0
11	11.7	9.1	10.5	4.9	2.7	4.1	8.2	1.4	4.6	. 1	. 0	. 1
12	11.8	9.9	10.9	6.7	4.5	5.7	9.5	1.8	6.1	. 1	. 0	. 1
13	11.8	10.1	10.9	6.7	5.4	6.1	7.4	4.3	5.3	. 2	. 0	. 1
14	11.0	8.4	9.8	7.4	5.4	6.4	4.7	3.1	4.1	. 2	. 1	. 1
15	11.3	8.3	9.7	6.7	5.5	6.2	3.4	. 0	2.0	. 3	. 1	. 2
16	11.3	9.0	10.1	7.0	5.3	6.1	3.3	. 0	1.1	. 3	. 2	. 3
17	11.5	9.2	10.3	7.0	5.6	6.2	2.0	. 0	. 4	. 3	. 2	. 3
18	12.0	8.8	10.2	6.4	4.8	5.5	. 1	. 0	. 0	. 2	. 1	. 1
19	10.5	8.7	9.5	6.4	4.6	5.4	. 0	. 0	. 0	. 2	. 1	. 2
20	9.3	6.9	8.2	5.6	4.0	4.7	. 0	. 0	. 0	. 3	. 2	. 2
21	9.4	6.6	8.0	5.4	3.2	4.2	. 1	. 0	. 0	. 3	. 2	. 2
22	8.4	5.8	7.3	5.4	3.2	4.2	. 2	. 0	. 0	. 5	. 2	. 3
23	6.4	3.8	5.0	6.2	2.8	4.4	. 0	. 0	. 0	. 3	. 2	. 2
24	9.5	2.3	4.7	7.9	3.4	4.7	. 0	. 0	. 0	. 4	. 2	. 3
25	11.0	3.3	6.0	9.8	4.0	6.0	. 3	. 0	. 0	. 4	. 3	. 3
26	13.5	4.6	8.9	7.1	4.2	5.3	. 7	. 0	. 1	. 3	. 3	. 3
27	12.0	4.0	7.1	4.9	1.6	3.6	. 0	. 0	. 0	. 3	. 3	. 3
28	9.3	2.8	5.5	4.3	. 5	2.1	. 3	. 0	. 0	. 4	. 3	. 3
29	12.3	3.7	7.5	8.6	3.2	5.4	. 0	. 0	. 0	. 5	. 3	. 3
30	9.3	2.7	5.5	9.8	5.0	6.8	. 4	. 0	. 1	. 4	. 3	. 3
31	11.5	2.7	6.1	---	-	---	. 4	. 0	. 1	. 4	. 3	. 3
MONTH	13.5	2.3	8.8	9.8	. 2	4.9	10.0	. 0	1.9	. 5	. 0	. 2

	FEBRUARY			MARCH			APRIL			MAY		
1	. 4	. 3	. 3	2.3	. 4	1.2	---	---	---	---	---	---
2	. 4	. 3	. 3	3.8	1.0	2.3	---	---	---	---	---	---
3	. 4	. 3	. 3	5.1	2.4	3.7	---	---	---	---	---	---
4	. 3	. 3	. 3	6.8	4.0	5.3	---	---	---	---	---	---
5	. 4	. 3	. 3	7.0	5.0	5.9	---	---	---	---	---	---
6	. 5	. 3	. 3	5.9	2.0	3.7	---	---	---	---	---	---
7	. 8	. 3	. 5	2.7	. 8	1.7	---	---	---	---	---	---
8	1.3	. 3	. 7	3.6	1.5	2.5	---	---	---	14.9	11.3	13.3
9	3.9	1.1	2.8	5.7	2.6	4.1	13.6	---	---	14.7	12.6	13.6
10	4.3	3.1	3.6	7.2	4.7	5.9	13.0	11.4	12.0	14.6	11.6	13.0
11	3.6	2.4	2.9	8.0	5.6	6.9	12.6	10.5	11.6	14.8	12.1	13.5
12	3.1	1.9	2.4	9.9	7.2	8.3	13.1	10.6	11.8	14.9	12.4	13.8
13	3.4	1.6	2.4	8.4	6.9	7.7	12.2	9.6	10.9	15.3	12.7	14.1
14	4.0	2.4	3.2	7.3	6.0	6.6	10.0	8.4	9.2	14.4	12.8	13.7
15	4.8	3.2	3.8	---	---	---	10.5	7.5	9.0	14.6	11.7	13.3
16	4.2	2.6	3.5	---	---	---	11.9	9.0	10.5	14.9	12.1	13.7
17	5.3	3.4	4.3	7.6	---	---	12.7	10.3	11.5	14.7	12.8	13.8
18	6.1	4.6	5.1	7.0	-	--	12.0	10.2	11.0	14.2	12.2	13.3
19	5.8	4.3	5.0	8.2	---	---	10.7	7.4	9.0	14.0	11.8	12.9
20	6.9	4.3	5.6	---	---	--	8.5	6.6	7.3	13.8	12.2	12.9
21	8.4	5.4	7.1	---	---	---	8.5	5.3	6.9	13.7	11.4	12.5
22	8.2	6.4	7.2	-	---	-	9.9	6.4	8.0	14.3	11.4	12.8
23	6.7	4.2	5.2	--	---	---	12.1	7.7	9.9	14.4	12.0	13.2
24	4.9	3.2	4.2	6.6	---	---	14.2	10.2	12.1	13.1	11.3	12.2
25	6.3	4.3	5.2	---	---	--	13.5	11.0	12.3	12.3	10.6	11.2
26	5.5	2.3	3.9	9.4	---	---	13.9	10.7	12.5	11.0	9.7	10.3
27	2.4	1.2	1.8	---	---	---	13.7	11.0	12.2	12.2	9.2	10.5
28	1.2	. 5	. 7	---	---	---	---	---	-	12.2	10.8	11.4
29	1.5	. 5	. 8	---	---	---	---	---	---	14.4	10.9	12.6
30	--	--	-	---	---	-	---	---	---	15.7	13.0	14.3
31	---	-	-	---	---	---	---	-	---	15.2	12.8	14.2
MONTH	8.4	. 3	2.9	---	---	---	---	--	---	-	-	---

07096000 ARKANSAS RIVER AT CANON CITY, CO--Continued

TEMPERATURE, WATER (DEG.C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	JUNE			JULY			AUGUST			SEPTEMBER		
1	16.2	13.2	14.6	18.5	16.1	17.3	20.9	18.1	19.7	20.1	18.4	19.2
2	16.3	13.9	15.1	19.0	16.5	17.8	21.1	16.6	19.4	18.5	17.3	17.9
3	16.0	13.8	15.0	19.5	16.6	18.1	20.5	18.5	19.3	19.2	16.5	17.8
4	15.5	14.6	15.1	19.0	17.2	18.3	20.2	17.5	18.9	19.7	17.1	18.4
5	16.0	13.3	14.7	19.2	17.0	18.1	20.0	16.8	18.6	19.6	17.2	18.4
6	15.8	13.3	14.7	19.1	17.0	18.2	20.7	17.8	19.4	19.0	17.3	18.2
7	15.8	13.0	14.4	19.3	17.4	18.5	20.9	18.2	19.4	18.8	16.0	17.5
8	15.8	12.7	14.4	18.4	17.7	18.0	21.0	17.4	19.1	---	---	---
9	15.0	13.2	14.3	18.6	16.3	17.5	19.8	17.1	18.7	---	---	---
10	14.7	12.7	13.7	19.9	16.2	18.2	20.5	17.4	18.9	---	---	---
11	14.3	12.4	13.4	19.8	17.6	18.8	20.2	16.6	18.6	---	---	---
12	15.2	12.7	13.8	20.5	17.7	18.9	20.6	17.1	19.0	---	---	---
13	15.2	12.7	14.0	19.9	17.9	19.0	20.6	17.4	19.2	18.0	17.1	17.8
14	14.9	13.3	14.1	20.6	17.6	19.1	20.1	18.2	19.4	17.1	16.1	16.4
15	14.3	12.8	13.6	20.7	18.2	19.5	19.9	17.5	18.6	17.2	15.5	16.3
16	14.4	12.0	13.1	20.7	18.3	19.6	20.0	17.2	18.4	18.0	15.6	16.8
17	16.0	12.4	14.2	20.3	18.6	19.6	20.5	16.6	18.5	17.6	15.4	16.9
18	16.6	13.3	15.0	21.2	18.8	19.9	20.8	17.7	19.0	15.4	14.2	14.8
19	16.5	13.3	15.0	21.0	18.5	19.9	20.1	17.6	18.8	14.2	12.4	13.3
20	17.7	14.5	16.2	21.4	18.3	20.0	20.5	17.4	18.9	13.9	12.3	13.0
21	17.3	15.3	16.2	22.0	19.1	20.7	20.3	18.1	19.0	14.1	12.5	13.4
22	16.4	14.0	15.1	21.6	18.8	20.3	19.1	17.8	18.4	15.1	13.4	14.3
23	16.1	13.3	14.8	21.3	18.6	19.9	20.9	17.3	18.9	15.8	14.6	15.2
24	17.2	14.1	15.6	20.7	18.9	19.8	21.7	17.7	19.5	16.0	14.4	15.2
25	16.4	14.3	15.4	20.1	18.8	19.5	22.0	18.5	20.2	15.9	14.9	15.4
26	17.1	14.3	15.8	20.3	17.8	19.0	22.0	19.3	20.4	14.9	11.6	13.1
27	16.6	15.0	15.7	20.4	17.6	19.1	20.5	15.5	19.1	12.3	11.1	11.7
28	16.9	14.2	15.4	19.8	18.1	18.9	20.2	15.5	18.1	12.7	11.2	12.0
29	16.7	14.3	15.6	19.3	18.3	18.8	19.7	16.7	18.3	13.4	12.1	12.8
30	18.2	15.5	16.7	20.5	17.3	19.0	20.2	18.2	19.1	14.1	12.9	13.5
31	-	-	--	21.3	19.0	20.2	21.1	18.1	19.5	---	---	--
MONTH	18.2	12.0	14.8	22.0	16.1	19.0	22.0	15.5	19.0	---	--	---

07096250 FOURMILE CREEK BELOW CRIPPLE CREEK NEAR VICTOR, CO

LOCATION.--Lat $38^{\circ} 39^{\prime} 52^{\prime \prime}$, long $105^{\circ} 13^{\prime} 37$ ", in $\mathrm{SW}^{1 / 1} 4 \mathrm{SE}^{1 / 4} \mathrm{sec} .9$, T. 16 S., R. 70 W., Teller County, Hydrologic Unit 11020002, on left bank 500 ft from Teller County Route 88 and 0.2 mi downstream from Cripple Creek.
DRAINAGE AREA.--272 mi^{2}.
PERIOD OF RECORD.--September 1992 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $6,870 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	24	18	17	24	e12	12	9.8	6.9	8.7	21	10	12
2	23	18	17	e22	e10	12	9.7	6.3	7.4	21	10	12
3	23	17	16	23	e8.0	10	10	5.7	7.3	21	11	12
4	22	18	17	21	e8.6	12	12	5.2	7.0	22	11	11
5	22	17	16	21	e9.0	10	12	5.3	6.9	22	10	12
6	22	17	17	e18	e10	8.4	13	5.3	7.4	21	10	17
7	22	17	15	e14	e10	9.1	15	5.1	7.3	19	10	19
8	21	17	14	e16	e11	11	13	5.4	7.2	19	12	14
9	21	17	17	18	e10	11	12	6.4	9.3	22	13	13
10	21	17	19	18	e12	10	10	6.7	11	27	11	12
11	21	16	19	16	14	10	10	6.7	9.8	25	10	12
12	20	18	18	16	15	10	8.4	6.9	8.5	25	27	12
13	20	17	17	16	16	9.8	8.4	7.2	11	22	15	13
14	20	17	15	15	15	10	8.3	7.3	12	23	13	14
15	19	17	13	16	14	9.6	11	12	12	26	13	15
16	19	17	15	15	14	9.8	12	14	12	26	13	13
17	19	16	15	15	14	9.9	12	17	10	27	15	13
18	19	16	14	e13	13	8.5	12	17	9.1	22	16	16
19	19	16	13	e12	14	8.3	9.3	18	8.2	16	13	15
20	19	16	11	e11	13	9.1	9.6	19	7.4	14	13	14
21	18	16	12	e12	14	9.2	11	18	8.4	10	13	14
22	19	16	14	e12	13	9.5	12	19	11	11	15	13
23	18	15	16	e11	9.6	9.3	13	19	15	12	26	14
24	18	15	14	e11	9.1	9.4	11	19	14	11	17	15
25	18	16	17	e12	9.9	8.0	12	22	15	12	13	14
26	18	16	21	e12	8.7	9.7	10	34	16	14	12	16
27	18	15	20	e13	9.7	9.4	8.1	19	25	15	14	18
28	17	14	21	e14	10	9.6	8.1	14	26	14	17	17
29	17	18	e20	e14	10	9.8	8.4	13	23	14	16	16
30	17	18	e22	e13	---	10	7.6	10	21	15	15	15
31	17	---	24	e13	---	10	---	9.6	---	10	13	---
TOTAL	611	498	516	477	336.6	304.4	318.7	380.0	353.9	579	427	423
MEAN	19.7	16.6	16.6	15.4	11.6	9.82	10.6	12.3	11.8	18.7	13.8	14.1
MAX	24	18	24	24	16	12	15	34	26	27	27	19
MIN	17	14	11	11	8.0	8.0	7.6	5.1	6.9	10	10	11
AC-FT	1210	988	1020	946	668	604	632	754	702	1150	847	839

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993 - 1996, BY WATER YEAR (WY)

[^42]LOCATION.--Lat $38^{\circ} 26^{\prime} 11^{\prime \prime}$, long $105^{\circ} 11^{\prime} 27^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec. 35 , T. 18 S., R. 70 W., Fremont County, Hydrologic Unit 11020002 , on left bank $1,000 \mathrm{ft}$ downstream from railroad bridge, 0.6 mi upstream from mouth, and 2.8 mi east of courthouse in Canon City.
DRAINAGE AREA.--434 mi^{2}.
PERIOD OF RECORD.--April to October 1910 (gage heights and discharge measurements only), October 1948 to September 1953, November 1970 to current year. Published as "Oil or Fourmile Creek" in 1910 and as Oil Creek near Canon City, 1948-53.

REVISED RECORDS.--WDR CO-84-1: 1982(M), 1983 (M); WDR CO-85-1: 1984 (M).
GAGE.--Water-stage recorder with satellite telemetry. Concrete control since Oct. 1, 1974. Elevation of gage is $5,254 \mathrm{ft}$, above sea level, from topographic map. April to October 1910, nonrecording gage at site $1,200 \mathrm{ft}$ upstream at different datum. October 1948 to September 1953, water-stage recorder at site 0.6 mi upstream at different datum.
REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 500 acres upstream from station. Water imported to basin from Arkansas River for irrigation of a few small orchards upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	36	e19	e21	28	20	19	e2. 8	14	23	21	13	24
2	33	e20	e22	27	17	19	e2. 5	15	21	19	14	22
3	31	e20	e21	28	15	19	e2.0	14	17	18	12	18
4	29	e20	e22	28	21	19	e1.5	13	15	20	17	15
5	29	e20	e21	27	25	19	e2.0	16	15	23	12	14
6	e27	e20	e22	24	25	19	e2.3	18	13	23	9.3	20
7	e26	e20	e20	25	22	17	e3.0	16	14	22	5.9	17
8	e25	e20	e18	26	23	21	e8.0	16	13	23	22	17
9	e25	e20	e22	25	23	19	28	16	15	22	25	18
10	e24	e20	e24	26	22	20	21	20	18	25	11	19
11	e24	e19	e25	27	20	18	22	20	21	19	9.0	21
12	e23	e21	e26	27	20	16	23	14	19	19	7.4	22
13	e23	e20	27	27	20	15	24	13	17	20	12	25
14	e22	e20	25	26	22	11	24	13	19	12	7.8	30
15	e22	e20	24	25	22	9.0	22	14	22	16	11	32
16	e22	e20	23	26	20	8.7	20	14	26	15	63	25
17	e22	e19	24	26	22	11	18	15	25	16	34	25
18	e21	e19	22	22	22	e6.0	16	13	24	22	26	29
19	e21	e19	20	22	22	e2.8	13	11	20	21	22	29
20	e20	e19	19	26	22	e3.0	10	17	21	21	18	31
21	e20	e19	20	26	23	e2.8	11	16	21	20	17	30
22	e20	e19	25	26	23	e2. 5	12	15	25	16	15	29
23	e20	e18	24	24	19	e2. 5	11	16	24	13	16	28
24	e20	e18	24	23	17	e2.0	13	20	20	12	28	28
25	e20	e20	24	24	18	e1.5	12	28	18	13	26	24
26	e20	e20	26	22	18	e1.0	15	39	17	14	25	26
27	e20	e19	25	20	17	e1.0	17	38	19	12	29	28
28	e19	e17	25	24	18	e3.1	20	32	25	12	24	26
29	e19	e20	27	23	19	e5.5	18	31	24	17	25	25
30	e19	e24	27	22	---	e3.0	15	28	22	21	23	19
31	e19	---	28	20	---	e10	---	25	---	16	27	--
TOTAL	721	589	723	772	597	326.4	409.1	590	593	563	606.4	716
MEAN	23.3	19.6	23.3	24.9	20.6	10.5	13.6	19.0	19.8	18.2	19.6	23.9
MAX	36	24	28	28	25	21	28	39	26	25	63	32
MIN	19	17	18	20	15	1.0	1.5	11	13	12	5.9	14
AC-FT	1430	1170	1430	1530	1180	647	811	1170	1180	1120	1200	1420

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1949 - 1996, BY WATER YEAR (WY)

-Estimated.

a-Also occurred Mar 27.
b-Also occurred Sep 4-10, 1950, and Sep 23, 1951.
c-From rating curve extended above $760 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurement of peak flow.
d-From rating curve extended above $96 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurement of peak flow.
f-From floodmarks, site and datum then in use.

07097000 ARKANSAS RIVER AT PORTLAND, CO

LOCATION.--Lat $38^{\circ} 23^{\prime} 18$ ", long $105^{\circ} 00^{\prime} 56^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec. 20 , T. 19 S., R. 68 W., Fremont County, Hydrologic Unit 11020002, on right bank at bridge on State Highway 120 at Portland and 1 mi downstream from Hardscrabble Creek.
DRAINAGE AREA.--4,024 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1939 to September 1952, October 1974 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $5,021.59 \mathrm{ft}$ above sea level. Prior to Oct. 1, 1974, at site 400 ft downstream at datum 0.03 ft , lower.
REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, diversions upstream from station for irrigation of about 60,000 acres and return flow from irrigated areas.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	702	511	503	410	437	306	329	730	1230	1930	694	e270
2	654	540	511	383	e390	318	318	722	1230	1780	751	e255
3	647	544	489	391	e365	317	322	719	1290	1550	707	e242
4	642	517	481	422	e370	319	379	680	1570	1520	696	e225
5	642	530	473	e431	e390	336	416	685	2120	1660	659	220
6	638	542	481	e414	e440	360	429	746	2810	1810	612	270
7	636	551	473	e410	447	340	431	870	3160	1860	645	374
8	627	580	465	424	467	353	455	1040	3500	1800	766	294
9	620	585	440	426	437	346	454	1130	3780	1900	893	271
10	600	580	430	428	429	352	529	1360	3840	1850	757	256
11	570	575	439	418	422	349	553	1480	3800	1460	760	248
12	560	551	442	408	410	345	525	1500	3690	1460	685	254
13	567	568	441	409	385	335	496	1670	3290	1280	590	391
14	593	564	436	404	361	354	507	2160	3240	1170	615	e330
15	577	573	419	409	341	355	535	2480	3420	1100	640	e310
16	556	563	386	424	337	343	511	2530	3270	987	736	e320
17	527	549	392	441	337	395	482	3230	2960	950	599	e320
18	516	549	384	419	341	435	492	3920	2750	945	505	e305
19	514	538	356	e400	345	387	485	3990	2640	1010	449	e310
20	534	536	341	e380	337	364	442	4320	2410	998	437	312
21	551	540	e330	411	345	368	535	4260	2390	948	420	351
22	545	531	349	408	365	369	608	3830	3230	897	368	322
23	541	516	329	407	361	362	590	3480	3610	885	398	279
24	520	509	e340	e400	341	376	590	3020	3060	916	439	283
25	502	502	e350	408	326	370	643	2440	2770	891	338	304
26	519	502	e360	e375	333	350	743	2440	2690	797	268	359
27	521	514	e360	e390	326	386	797	1980	2600	748	291	389
28	517	500	e360	424	317	346	844	1410	2480	690	422	393
29	513	447	e355	427	294	349	817	1590	2240	722	357	389
30	507	477	385	425	---	327	743	1400	2040	917	e310	365
31	500	---	386	422	---	308	---	1260	---	823	e290	--
TOTAL	17658	16084	12686	12748	10796	10920	16000	63072	83110	38254	17097	9211
MEAN	570	536	409	411	372	352	533	2035	2770	1234	552	307
MAX	702	585	511	441	467	435	844	4320	3840	1930	893	393
MIN	500	447	329	375	294	306	318	680	1230	690	268	220
AC-FT	35020	31900	25160	25290	21410	21660	31740	125100	164800	75880	33910	18270

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 - 1996, BY WATER YEAR (WY)

[^43]
07097000 ARKANSAS RIVER AT PORTLAND, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--February 1977 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: October 1979 to current year.
WATER TEMPERATURE: October 1979 to current year.
INSTRUMENTATION.--Water-quality monitor since November 1982, with satellite telemetry.
REMARKS.--Specific conductance records good except May 17 to Sept. 19, which are fair. Water temperature records good except Sept. 19-30, which are poor. Specific conductance data may not be representative of the cross section at the site during flash floods. Periodic water-quality data available Feb. 1977 to Sept. 1995 under National Stream-Quality Accounting Network (NASQAN) for this site.

EXTREMES FOR PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: Maximum daily observed, 1,380 microsiemens, Sept. 30, 1981; minimum, 111 microsiemens, June 22, 1984.
WATER TEMPERATURES: Maximum, $26.0^{\circ} \mathrm{C}$, July 27,1987 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during winter months.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 680 microsiemens, July 10; minimum, 133 microsiemens, June 23.
WATER TEMPERATURES: Maximum, $25.3^{\circ} \mathrm{C}$, Aug. 26 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during the winter months.
SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07097000 ARKANSAS RIVER AT PORTLAND, CO--Continued

SPECIFIC CONDUCTANCE,(MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	519	474	497	606	570	583	---	---	---	387	378	382
2	567	486	524	601	548	572	519	504	508	398	382	388
3	608	492	529	637	548	578	516	492	502	421	398	406
4	562	500	521	575	547	564	525	503	514	480	420	443
5	514	465	497	597	553	567	581	510	533	---	---	---
6	494	439	479	567	545	555	539	509	520	---	---	---
7	489	467	476	589	500	551	523	493	498	---	---	---
8	486	457	469	589	539	556	---	---	---	---	---	---
9	498	465	478	566	549	557	509	490	495	---	---	---
10	530	480	486	560	549	556	507	464	474	---	---	---
11	530	480	486	--	---	--	469	456	462	---	---	---
12	513	475	489	---	---	---	491	467	477	---	---	---
13	526	490	503	---	---	---	491	477	486	---	---	---
14	546	487	516	-	---	---	500	486	492	---	---	---
15	533	508	518	604	576	583	495	486	489	---	---	-
16	531	500	512	592	563	573	489	482	485	---	---	---
17	525	498	512	583	525	544	487	475	481	170	162	165
18	522	510	515	528	496	506	480	467	471	169	157	163
19	516	510	513	534	489	506	471	462	465	169	153	158
20	---	-	---	522	504	516	480	469	474	159	150	155
21	---	---	---	527	508	518	480	462	471	165	152	156
22	---	---	---	526	505	515	462	440	451	171	155	162
23	---	---	---	529	504	516	440	433	436	176	161	168
24	---	---	---	520	493	504	436	425	432	183	163	174
25	---	---	---	513	484	501	425	411	418	255	181	218
26	---	---	---	520	496	507	411	395	404	297	225	246
27	--	--	---	---	---	---	395	383	391	262	232	244
28	581	572	576	---	---	---	383	376	378	307	261	282
29	614	551	582	---	---	---	376	370	373	276	250	263
30	---	---	---	---	---	---	380	373	377	276	248	265
31	---	---	---	---	---	---	---	---	---	284	271	277
MONTH	---	---	---	---	---	---	---	---	---	---	---	---
	JUNE			JULY			AUGUST			SEPTEMBER		
1	287	271	279	170	166	168	415	402	407	585	571	579
2	291	266	276	177	169	174	400	378	389	617	571	592
3	272	257	266	187	173	179	391	383	385	622	586	602
4	266	223	247	194	181	188	384	348	373	626	565	596
5	224	188	205	186	172	177	352	338	345	623	471	571
6	189	163	176	175	166	172	381	352	368	520	456	500
7	166	158	163	174	167	171	384	377	380	643	456	543
8	166	150	157	180	171	177	400	380	387	516	480	497
9	155	148	151	477	167	221	549	398	493	525	497	508
10	158	146	150	680	203	306	458	394	429	518	487	507
11	150	146	148	236	219	233	394	358	373	531	509	518
12	155	145	149	674	213	314	359	350	356	525	489	512
13	162	150	156	412	258	274	359	352	356	---	---	---
14	174	155	164	265	256	260	433	355	382	---	---	---
15	404	150	197	278	261	267	432	354	414	---	---	---
16	175	154	158	284	266	275	616	365	452	---	---	---
17	158	149	154	289	277	283	614	452	557	589	540	578
18	157	147	151	376	275	301	452	395	412	589	559	565
19	151	142	147	320	270	294	609	395	427	555	550	552
20	154	142	149	323	277	284	410	403	408	557	530	542
21	154	147	151	331	275	290	405	395	401	547	499	522
22	148	135	143	335	278	322	449	403	426	542	507	527
23	138	133	136	338	279	298	527	448	460	552	534	542
24	144	135	141	340	286	314	527	493	502	578	498	536
25	146	139	142	307	288	300	504	497	497	528	507	518
26	145	139	143	313	307	308	510	502	506	523	482	501
27	147	142	144	319	308	314	533	500	515	517	494	506
28	154	144	150	403	317	341	562	474	504	506	484	496
29	163	150	158	413	394	407	531	472	507	512	499	508
30	168	159	164	466	381	417	626	531	594	520	497	509
31	-	-	-	462	392	441	592	564	583	---	---	-
MONTH	404	133	170	680	166	273	626	338	438	---	---	---

07097000 ARKANSAS RIVER AT PORTLAND, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBE		NOVEMBER			DECEMBER			JANUARY		
1	14.3	10.5	12.5	9.0	7.1	8.4	8.3	4.7	6.4	2.2	. 5	1.4
2	14.7	10.2	12.5	7.1	4.2	5.8	7.8	4.7	6.1	1.6	. 0	. 5
3	15.0	9.9	12.4	6.2	2.3	4.3	7.2	4.3	5.7	2.4	. 0	1.0
4	12.6	10.1	11.5	6.8	3.3	5.1	7.5	4.0	5.7	3.4	. 9	2.0
5	12.7	8.2	10.5	7.7	3.4	5.5	6.6	4.9	5.7	1.4	. 2	. 7
6	12.2	7.5	9.9	7.2	4.9	6.0	7.4	3.7	5.4	. 6	. 1	. 3
7	12.8	7.6	10.2	7.5	4.0	5.7	5.5	4.0	4.8	. 5	. 2	. 3
8	13.2	8.4	10.9	8.6	3.9	6.1	4.8	1.9	3.8	3.9	. 4	1.8
9	12.3	8.8	10.6	9.4	5.6	7.4	2.2	. 0	1.1	3.8	. 4	2.1
10	14.0	8.8	11.1	7.3	5.2	6.5	4.2	. 2	2.3	4.1	. 6	2.2
11	14.8	9.7	11.9	8.1	3.8	5.9	5.9	2.9	4.3	4.5	. 4	2.2
12	14.6	10.3	12.4	9.4	5.4	7.2	6.5	3.8	5.2	4.8	. 6	2.6
13	14.1	10.2	12.2	8.8	5.9	7.3	8.2	5.5	6.5	5.2	1.4	3.1
14	13.4	8.8	10.9	10.0	5.5	7.7	6.9	4.8	5.6	4.9	1.1	2.8
15	13.8	8.9	11.1	9.6	5.9	7.7	5.5	2.9	4.2	4.8	1.0	2.8
16	13.8	9.6	11.5	10.0	6.3	7.9	4.0	2.1	3.1	5.5	1.9	3.9
17	13.9	9.9	11.8	9.7	6.0	7.8	3.6	1.4	2.6	4.7	1.5	3.3
18	13.9	9.2	11.5	9.4	5.9	7.5	3.5	1.1	2.2	2.2	. 2	. 9
19	12.8	9.3	11.0	9.2	5.6	7.3	2.7	. 1	1.2	1.0	. 1	. 5
20	11.9	7.5	9.5	8.2	4.8	6.5	1.8	. 0	. 7	2.8	. 2	1.3
21	12.0	7.4	9.5	7.6	3.7	5.8	1.5	. 0	. 4	3.2	. 1	1.4
22	10.1	7.5	8.8	7.6	4.5	5.9	2.2	. 2	1.0	3.5	. 2	1.7
23	9.2	5.2	7.2	8.0	4.7	6.1	1.8	. 0	. 6	2.1	. 2	. 8
24	9.1	4.4	6.8	7.1	4.4	5.5	. 5	. 0	. 1	2.3	. 1	. 8
25	10.1	5.2	7.5	8.0	4.1	5.9	1.4	. 0	. 3	2.2	. 0	. 8
26	11.0	6.7	8.6	7.8	4.8	6.1	. 9	. 0	. 2	. 6	. 1	. 2
27	11.2	7.0	9.0	5.8	3.9	5.3	. 8	. 0	. 1	. 4	. 1	. 2
28	10.2	6.5	8.4	4.2	1.9	3.1	. 2	. 0	. 0	1.6	. 1	. 6
29	9.6	6.4	8.2	6.4	2.8	4.3	. 5	. 0	. 1	3.1	. 1	1.3
30	10.6	6.9	8.7	7.3	3.9	5.4	1.4	. 0	. 5	1.7	. 1	. 6
31	10.7	6.6	8.5	---	---	---	2.7	. 2	1.4	. 3	. 0	. 2
MONTH	15.0	4.4	10.2	10.0	1.9	6.2	8.3	. 0	2.8	5.5	. 0	1.4

	FEBRUARY			MARCH			APRIL			MAY		
1	. 3	. 2	. 2	5.8	. 1	2.8	15.0	7.2	11.1	15.6	10.1	12.4
2	. 3	. 2	. 3	7.8	1.3	4.2	15.3	9.1	12.2	16.3	10.3	13.1
3	. 3	. 2	. 3	9.0	2.1	5.5	12.7	9.9	11.2	16.8	10.9	13.7
4	. 3	. 0	. 2	10.6	4.6	7.4	10.1	6.3	8.4	18.7	11.9	15.0
5	. 4	. 0	. 2	10.3	5.6	7.8	9.7	5.2	7.0	17.6	13.7	15.4
6	2.4	. 2	1.1	7.6	2.7	4.8	13.7	5.4	9.4	19.0	13.3	16.0
7	4.7	1.0	2.7	6.2	. 4	3.1	14.3	8.6	11.3	19.9	14.9	17.0
8	5.1	1.9	3.4	7.3	1.8	4.4	15.7	9.6	12.4	18.2	13.4	15.6
9	7.8	2.0	4.6	9.4	2.7	6.0	16.5	10.0	13.5	18.0	13.6	15.2
10	6.8	4.1	5.3	10.9	5.0	8.2	15.0	11.0	13.0	15.7	12.3	13.9
11	5.9	2.6	4.3	12.5	7.5	9.9	15.5	10.0	12.5	16.6	13.1	14.5
12	6.5	2.0	4.0	13.2	8.1	10.5	15.9	10.0	12.6	17.4	13.0	14.9
13	7.1	2.2	4.5	12.3	7.9	10.3	13.0	8.6	11.2	16.9	13.8	15.2
14	7.2	2.9	4.9	9.9	6.6	8.1	12.3	6.8	9.1	16.1	13.3	14.8
15	7.6	2.8	5.2	12.3	6.4	9.2	13.5	6.5	9.8	15.7	13.0	14.2
16	7.3	2.0	4.7	12.6	7.1	9.8	15.1	8.3	11.3	16.3	13.3	14.8
17	8.8	3.6	6.0	9.9	7.3	8.4	15.7	9.7	12.5	16.0	13.6	14.8
18	8.0	4.6	6.5	9.6	5.6	7.3	15.9	9.6	12.5	15.7	13.2	14.4
19	8.1	4.3	6.2	9.7	3.7	6.6	13.4	7.8	10.5	15.0	12.6	13.8
20	---	---	---	10.5	3.7	7.0	9.9	6.8	8.4	14.8	12.8	13.6
21	---	---	---	12.3	5.8	9.1	11.3	5.9	8.3	14.3	12.0	13.2
22	---	---	---	12.0	6.6	9.3	12.7	7.3	9.5	14.8	11.9	13.6
23	---	---	---	13.4	7.6	10.1	15.1	7.5	11.0	15.8	12.8	14.2
24	---	---	---	10.1	5.2	7.8	16.5	10.5	13.2	14.4	12.3	13.1
25	---	---	---	6.4	2.5	4.4	16.4	11.5	13.7	13.1	11.2	12.1
26	---	---	---	8.7	1.6	5.0	16.5	10.8	13.6	12.3	10.4	11.3
27	4.8	---	---	11.3	3.6	7.3	16.5	11.7	13.8	13.0	9.7	11.3
28	3.7	. 4	1.9	13.0	6.1	9.5	13.1	9.3	10.8	13.1	11.5	12.0
29	4.8	. 1	2.0	12.3	7.2	9.8	11.9	6.4	9.0	16.2	11.6	13.6
30	---	---	---	14.1	8.4	11.1	13.7	7.1	10.2	18.2	13.9	15.7
31	--	-	--	12.8	7.2	10.0	---	---	--	18.3	13.7	15.7
MONTH	---	---	---	14.1	. 1	7.6	16.5	5.2	11.1	19.9	9.7	14.1

07097000 ARKANSAS RIVER AT PORTLAND, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST			PTEMB	
1	18.5	14.0	16.0	20.5	16.9	18.5	25.0	19.3	21.9	24.0	18.6	21.1
2	18.9	14.5	16.4	21.3	17.1	18.9	22.6	19.7	21.2	20.5	17.3	19.0
3	18.9	14.4	16.4	21.7	17.6	19.4	22.8	19.3	20.9	23.6	16.5	20.0
4	18.4	14.5	16.2	21.7	18.1	19.5	23.6	18.9	20.9	23.7	17.3	20.5
5	16.3	14.7	15.6	21.5	18.2	19.4	23.6	18.3	20.6	23.8	17.3	20.5
6	16.6	14.7	15.7	21.6	17.5	19.3	24.6	18.4	21.2	20.8	17.9	19.4
7	16.5	14.0	15.3	21.2	18.4	19.6	23.8	19.0	21.0	22.1	16.0	18.9
8	16.6	13.9	15.3	19.3	18.0	18.8	23.2	18.8	20.8	22.3	16.2	19.3
9	16.0	14.3	15.1	20.2	17.0	18.5	22.8	18.1	20.3	22.8	16.5	19.6
10	15.1	13.3	14.5	21.4	17.5	19.2	23.9	18.8	21.1	22.9	16.8	19.8
11	15.2	13.2	14.3	22.8	18.5	20.3	23.5	18.1	20.6	21.0	16.6	19.0
12	16.0	13.1	14.6	22.3	18.6	19.8	24.0	18.4	21.0	19.3	16.9	18.0
13	15.8	13.7	14.9	21.9	18.8	20.2	24.0	18.4	21.0	20.7	15.5	17.6
14	15.6	14.2	14.9	22.8	18.5	20.4	23.9	19.1	21.3	18.2	15.5	16.8
15	15.6	13.9	14.7	23.2	19.0	20.9	23.1	18.9	20.7	20.2	15.4	17.6
16	15.7	12.8	14.1	23.4	19.4	21.1	22.9	15.6	20.0	20.4	15.6	17.9
17	16.5	13.5	15.0	24.0	19.0	21.1	23.7	15.5	19.8	19.4	16.1	17.7
18	17.4	14.6	16.0	23.6	19.7	21.2	23.6	18.1	20.8	17.3	14.0	15.7
19	17.2	14.7	16.1	24.1	19.7	21.5	23.4	18.6	20.9	16.5	11.0	13.9
20	19.0	15.9	17.2	24.1	19.6	21.7	24.2	18.4	21.0	16.3	11.4	13.8
21	17.9	16.2	17.2	25.0	20.4	22.4	23.8	18.7	20.8	17.6	10.9	14.2
22	17.1	15.4	15.9	24.8	20.4	22.4	20.9	19.0	19.9	18.1	12.1	15.1
23	17.1	14.4	15.7	24.4	19.5	21.7	23.7	18.3	20.6	18.3	13.9	16.5
24	18.1	15.3	16.6	23.8	19.3	21.3	25.0	19.0	21.5	18.8	13.5	16.0
25	17.4	15.5	16.5	22.6	19.8	20.9	24.2	19.5	21.9	17.0	13.6	15.4
26	18.2	15.4	16.7	23.6	18.5	20.8	25.3	19.8	22.2	14.5	10.5	12.1
27	17.6	15.7	16.8	23.6	18.4	20.9	23.4	19.0	21.2	13.5	8.0	10.8
28	17.9	15.0	16.4	23.4	18.7	20.7	22.7	17.8	20.3	15.0	8.5	11.6
29	17.7	15.4	16.7	21.4	19.0	20.1	23.0	17.9	20.5	16.3	10.1	13.2
30	19.3	16.4	17.5	23.7	18.6	20.9	23.5	18.8	21.0	16.7	11.0	13.8
31	-	---	---	24.6	19.6	21.7	24.5	18.7	21.5	---	---	---
MONTH	19.3	12.8	15.8	25.0	16.9	20.4	25.3	15.5	20.9	24.0	8.0	16.8

07099050 BEAVER CREEK ABOVE UPPER BEAVER CEMETERY, NEAR PENROSE, CO

LOCATION.--Lat $38^{\circ} 33^{\prime} 42^{\prime \prime}$, long $105^{\circ} 01^{\prime} 17^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NW}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec. 20 , T. 17 S., R. 68 W., Fremont County, Hydrologic Unit 11020002, on left bank 40 ft upstream from bridge on Fremont County Road 132, 1 mi downstream from Banta Gulch, 1.3 mi northeast of Upper Beaver Cemetary, and 9.2 mi north of Penrose.
DRAINAGE AREA.-- $122 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--March 1991 to current year (seasonal record). Water-quality data available, March 1991 to September 1994.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $6,020 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good. Natural flow of creek affected by storage reservoirs and diversions for municipal use by the City of Colorado Springs. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period of seasonal operation, $633 \mathrm{ft}^{3} / \mathrm{s}$, May 12, 1994, gage height, 6.45 ft , from floodmark, from rating curve extended above $410 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurement of peak flow; minimum daily, $4.2 \mathrm{ft} 3 / \mathrm{s}$, Mar. 25, 1996.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, $95 \mathrm{ft}^{3} / \mathrm{s}$ at 1830 Aug. 23, gage height, 3.83 ft ; minimum daily, $4.2 \mathrm{ft}^{3} / \mathrm{s}$, Mar. 25 .

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	36	14	13	---	---	---	5.5	11	24	14	22	25
2	32	13	13	---	---	---	6.3	12	23	20	21	23
3	29	13	12	---	---	---	7.8	12	16	18	20	23
4	30	12	12	---	---	---	10	11	15	17	19	21
5	29	13	13	---	---	---	9.8	12	13	16	16	20
6	28	13	12	---	---	---	9.8	14	9.6	17	15	27
7	28	12	12	---	---	---	9.0	12	12	15	17	38
8	27	13	11	---	---	---	6.5	11	12	15	24	31
9	26	13	8.9	---	--	---	6.9	12	12	18	36	27
10	25	13	13	---	---	---	6.6	15	11	34	28	28
11	24	12	13	--	--	4.8	6.6	13	15	34	22	26
12	24	13	13	---	---	4.8	6.9	10	16	28	19	26
13	25	13	13	---	---	4.7	13	9.4	15	25	17	35
14	25	13	---	--	--	5.7	12	8.5	18	23	16	37
15	25	13	---	--	---	4.8	8.7	9.4	52	22	19	38
16	25	13	-	--	---	5.1	13	9.8	47	20	21	34
17	25	13	---	---	---	5.0	18	8.2	35	19	17	31
18	18	13	---	--	--	4.3	18	11	27	21	18	21
19	14	13	-	---	-	4.7	19	15	23	50	18	23
20	13	12	--	--	--	5.1	12	14	20	33	17	18
21	14	12	---	---	---	5.3	11	14	19	22	18	16
22	13	13	---	---	---	5.3	13	13	23	16	20	15
23	13	12	---	---	---	6.0	12	13	21	15	36	15
24	12	12	---	-	-	5.3	13	14	17	16	57	27
25	14	13	---	--	---	4.2	20	17	14	14	37	28
26	22	13	---	---	---	5.4	17	26	12	16	28	29
27	32	13	---	---	---	6.0	16	23	13	17	29	32
28	32	11	---	---	---	5.2	16	23	14	16	37	30
29	32	14	---	---	---	5.3	12	26	13	14	37	29
30	32	13	---	---	---	6.0	13	22	11	20	33	28
31	29	---	---	---	---	5.6	--	20	-	28	29	-
TOTAL	753	383	---	---	--	---	348.4	441.3	572.6	653	763	801
MEAN	24.3	12.8	---	---	---	---	11.6	14.2	19.1	21.1	24.6	26.7
MAX	36	14	---	---	---	---	20	26	52	50	57	38
MIN	12	11	---	---	---	---	5.5	8.2	9.6	14	15	15
AC-FT	1490	760	---	---	--	---	691	875	1140	1300	1510	1590

07099060 BEAVER CREEK ABOVE HIGHWAY 115, NEAR PENROSE, CO

LOCATION.--Lat $38^{\circ} 29^{\prime} 21^{\prime \prime}$, long $104^{\circ} 59^{\prime} 49^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec.16, T. 18 S., R. 68 W., Fremont County, Hydrologic Unit 11020002, on left bank 300 ft downstream from Beaver Park Irrigation Company diversion dam, 1.8 mi upstream from Highway 115, and 4.7 mi north of Penrose.

DRAINAGE AREA.-- $138 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--March 1991 to current year (seasonal record).
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $5,659.08 \mathrm{ft}$ above sea level.
REMARKS.--Records fair except for estimated daily discharges and discharges below $1.5 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Natural flow of creek is affected by storage reservoirs, diversions for muncipal use by Colorado Springs, and diversions for irrigation, mainly by the Beaver Park Irrigation Company. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period of seasonal operation, $611 \mathrm{ft}^{3} / \mathrm{s}$, May 30, 1995, gage height, 6.55 ft , from rating curve extended above $325 \mathrm{ft}^{3} / \mathrm{s}$; no flow many days.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, $48 \mathrm{ft}^{3} / \mathrm{s}$ at 1500 June 15 , gage height, 3.28 ft , from rating curve extended above $325 \mathrm{ft}^{3} / \mathrm{s}$; no flow many days.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11	1.3	9.7	---	---	---	. 00	. 07	. 00	. 00	. 00	. 26
2	12	1.0	3.4	---	---	---	. 00	. 07	. 00	. 00	. 00	. 00
3	11	. 39	12	---	---	---	. 00	. 06	. 00	. 00	. 00	. 00
4	10	. 30	16	---	---	---	. 00	. 06	. 00	. 00	. 00	. 00
5	11	. 23	17	--	---	---	. 00	. 06	. 00	. 00	. 00	. 00
6	11	. 20	14	---	---	---	. 00	. 05	. 00	. 00	. 00	. 00
7	12	. 18	10	---	---	---	. 00	. 06	. 00	. 00	. 00	7.1
8	11	. 16	8.1	---	---	---	. 00	. 04	. 00	. 00	. 00	. 33
9	10	. 13	1.1	---	---	---	. 00	. 04	. 00	. 00	2.1	. 00
10	8.1	. 08	. 38	---	---	---	. 00	. 04	. 00	9.3	. 35	. 00
11	7.9	. 06	. 45	--	---	---	. 00	. 02	. 00	2.9	. 38	. 00
12	6.9	. 03	. 44	---	---	---	. 00	. 00	. 00	. 01	. 10	. 00
13	5.5	. 01	. 34	---	---	. 00	. 00	. 00	. 00	. 00	. 00	1.8
14	4.2	. 00	. 25	---	---	. 00	. 03	. 00	. 00	. 00	. 00	3.3
15	3.3	. 00	---	---	---	. 00	. 04	. 00	30	. 00	. 00	6.5
16	3.7	. 00	---	--	---	. 00	. 05	. 00	33	. 00	. 00	1.4
17	3.7	. 00	---	-	--	. 00	. 06	. 00	9.3	. 00	. 00	. 55
18	3.5	. 00	---	---	---	. 00	. 12	. 00	. 00	. 00	. 00	. 00
19	1.3	. 00	---	---	---	. 00	. 11	. 00	. 00	8.7	. 00	. 00
20	1.5	. 00	---	---	---	. 00	. 10	. 00	. 00	. 07	. 00	. 00
21	1.6	. 00	---	---	---	. 00	. 08	. 00	. 00	. 00	. 00	. 00
22	1.4	. 00	---	---	---	. 00	. 08	. 00	. 00	. 00	e. 00	. 00
23	1.4	. 00	---	---	---	. 00	. 07	. 00	. 00	. 00	3.0	. 00
24	1.4	. 00	---	---	---	. 00	. 06	. 00	. 00	. 00	26	1.9
25	1.4	. 00	---	---	---	. 00	. 07	. 00	. 00	. 00	. 68	2.0
26	1.4	. 00	---	---	---	. 00	. 07	1.1	. 00	. 00	. 18	. 17
27	12	7.0	---	---	---	. 00	. 07	. 13	. 00	. 00	. 16	1.9
28	15	5.8	---	---	---	. 00	. 07	. 08	. 00	. 00	. 17	. 56
29	22	20	---	---	---	. 00	. 06	. 00	. 00	. 00	1.2	. 04
30	27	22	---	---	---	. 00	. 06	. 00	. 00	. 00	. 41	. 01
31	19	---	---	---	---	. 00	---	. 00	---	. 00	. 39	---
TOTAL	252.2	58.87	---	---	---	---	1.20	1.88	72.30	20.98	35.12	27.82
MEAN	8.14	1.96	---	---	---	---	. 040	. 061	2.41	. 68	1.13	. 93
MAX	27	22	--	--	---	---	. 12	1.1	33	9.3	26	7.1
MIN	1.3	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
AC-FT	500	117	---	-	---	---	2.4	3.7	143	42	70	55

[^44]
07099215 TURKEY CREEK NEAR FOUNTAIN, CO

LOCATION.--Lat $38^{\circ} 36^{\prime} 42^{\prime \prime}$, long $104^{\circ} 53^{\prime} 39^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec. 33, T. 16 S., R. 67 W., El Paso County, Hydrologic Unit 11020002, on Fort Carson Military Reservation, on right bank 100 ft downstream from State Highway 115 bridge, 0.7 mi downstream from Turkey Canyon, 0.8 mi upstream from Turkey Creek Ranch, and 9.4 mi southwest of Fountain.
DRAINAGE AREA.-- $13.0 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--Streamflow records, May 1978 to September 1989, May 1995 to current year. Water-quality data available, May 1978 to September 1982.
REVISED RECORDS.--WDR CO-80-1: 1978 (M), 1979 (M).
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $6,420 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are fair, and discharges above $190 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.
REVISIONS.--The maximum discharges for some water years have been revised, as shown in the following table. All of these figures are revised based on a discharge measurement and the extension of rating curve above $190 \mathrm{ft}^{3} / \mathrm{s}$ in the 1995 water year. These figures supersede those published in the reports for 1980, 1982-1986.

Water Year		Date		$\begin{gathered} \text { Discharge } \\ \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{gathered}$	Gage height (ft)	Water Year		Date		Discharge $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	Gage height (ft)
1980	Aug.	11,	1980	190	3.97	1984	Aug.	20,	1984	216	4.30
1982	Jul	28,	1982	450	4.70	1985	Oct.	4,	1984	184	3.91
1983	Aug.	6 ,	1983	164	3.72	1986	Aug.	31,	1986	154	3.62

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 15	. 26	. 15	. 00	e. 00	. 00	e. 00	. 00	. 03	. 00	. 21	1.4
2	. 17	. 10	. 15	. 00	e. 00	. 00	e. 00	. 00	. 00	. 00	. 15	1.2
3	. 23	. 12	. 14	. 00	e. 00	. 00	e. 00	. 00	. 00	. 00	. 16	1.1
4	. 23	. 13	. 15	e. 00	e. 00	. 00	e. 00	e. 00	. 00	. 00	. 03	. 92
5	. 15	. 14	. 11	e. 00	e. 00	. 00	e. 00	e. 00	. 00	. 00	. 00	. 80
6	. 14	. 23	. 08	e. 00	. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 96
7	. 14	. 21	. 08	e. 00	. 00	. 00	. 00	1.5				
8	. 20	. 22	e. 04	e. 00	. 00	. 00	. 09	1.0				
9	. 18	. 25	e. 00	. 00	5.8	1.8	. 77					
10	. 23	. 15	e. 00	e. 00	. 00	e. 00	e. 00	e. 00	. 00	8.5	2.4	. 64
11	. 26	. 14	e. 00	. 00	. 00	e. 00	e. 00	e. 00	. 00	1.8	1.4	. 54
12	. 32	. 18	e. 00	. 00	. 00	e. 00	e. 00	e. 00	. 01	. 99	. 92	. 52
13	. 22	. 14	e. 00	. 00	. 00	e. 00	e. 00	. 00	. 41	. 77	. 60	. 55
14	. 09	. 12	e. 00	. 00	. 18	. 61	. 41	. 60				
15	. 19	. 13	e. 00	. 00	. 31	. 43	. 68	. 49				
16	. 30	. 13	e. 00	. 00	. 81	. 21	. 98	. 48				
17	. 33	. 15	e. 00	. 00	e. 00	e. 00	e. 00	. 00	. 47	. 08	. 64	. 42
18	. 34	. 15	e. 00	. 00	e. 00	e. 00	e. 00	. 00	. 31	. 05	. 32	. 47
19	. 35	. 16	e. 00	e. 00	. 00	. 00	e. 00	. 00	. 22	. 59	. 99	. 40
20	. 26	. 15	. 00	e. 00	e. 00	. 00	e. 00	. 00	. 18	1.8	. 15	. 36
21	. 29	. 14	. 00	e. 00	e. 00	. 00	. 00	. 00	. 17	. 92	. 18	. 29
22	. 30	. 18	. 00	e. 00	e. 00	. 00	. 00	. 00	. 22	. 62	. 42	. 27
23	. 21	. 17	. 00	e. 00	e. 00	. 00	. 00	. 00	. 16	. 59	7.7	. 31
24	. 15	. 18	. 00	e. 00	e. 00	e. 00	e. 00	. 00	. 08	. 43	8.5	. 33
25	. 21	. 21	. 00	e. 00	e. 00	e. 00	e. 00	. 05	. 05	. 38	3.1	. 31
26	. 23	. 22	. 00	e. 00	e. 00	e. 00	e. 00	1.4	. 04	. 77	2.6	. 36
27	. 25	. 09	. 00	e. 00	e. 00	e. 00	e. 00	. 75	. 01	. 42	5.4	. 42
28	. 19	. 18	. 00	e. 00	e. 00	e. 00	e. 00	. 30	. 00	. 42	3.8	. 44
29	. 22	. 09	. 00	e. 00	e. 00	. 00	e. 00	. 18	. 00	. 47	2.0	. 53
30	. 25	. 15	. 00	e. 00	---	. 00	. 00	. 08	. 00	. 44	1.8	. 41
31	. 29	---	. 00	e. 00	---	. 00	---	. 03	---	. 37	1.5	---
TOTAL	7.07	4.87	0.90	0.00	0.00	0.00	0.00	2.79	3.66	27.46	48.93	18.79
MEAN	. 23	. 16	. 029	. 000	. 000	. 000	. 000	. 090	. 12	. 89	1.58	. 63
MAX	. 35	. 26	. 15	. 00	. 00	. 00	. 00	1.4	. 81	8.5	8.5	1.5
MIN	. 09	. 09	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 27
AC-FT	14	9.7	1.8	. 00	. 00	. 00	. 00	5.5	7.3	54	97	37

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1978 - 1996 , BY WATER YEAR (WY)

--Esti
e-Estimated.
a-Also occurred Aug 24.
$\mathrm{b}-\mathrm{No}$ flow many days some years.

07099230 TURKEY CREEK ABOVE TELLER RESERVOIR, NEAR STONE CITY, CO

LOCATION.--Lat $38^{\circ} 27^{\prime} 54^{\prime \prime}$, long $104^{\circ} 49^{\prime} 33^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 1 / 4}$ sec.19, T. 18 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, on Fort Carson Military Reservation, on left bank, 0.7 mi northwest of intersection of military roads 9, and 1, 2.2 mi upstream from Teller Reservoir Dam, and 2.2 mi northeast of Stone City.
DRAINAGE AREA.--62.3 mi^{2}.
REVISED RECORDS.--WDR CO-89-1: Drainage area.
PERIOD OF RECORD.--Streamflow records, May 1978 to current year. Water-quality data available, May 1978 to September 1981. Prior to July 20, 1989, at site 0.6 mi downstream, at different datum.
GAGE.--Water-stage recorder with satellite telemetry and concrete control with V-notch sharp-crested weir. Elevation of gage is 5,520 ft above sea level, from topographic map. Prior to July 20, 1989, at site 0.6 mi downstream, at different datum.

REMARKS.--Records fair except for those during winter period, estimated daily discharges, and those above $190 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Diversions upstream from gage for irrigation, amount unknown. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.1	1.5	1.5	1.5	1.4	1.0	1.2	1.1	. 55	. 13	. 34	. 27
2	1.1	1.5	1.5	1.4	1.3	1.0	1.2	1.1	. 52	. 12	. 17	. 23
3	1.2	1.5	1.5	1.5	1.4	1.0	1.2	1.1	. 53	. 10	. 14	. 17
4	1.1	1.6	1.5	1.5	1.4	. 96	1.4	1.2	e. 50	. 09	. 13	. 15
5	1.3	1.6	1.4	1.4	1.4	. 94	1.4	1.1	e. 40	. 08	. 12	. 16
6	1.4	1.5	1.5	1.3	1.3	1.1	1.4	1.1	e. 40	. 07	. 12	. 18
7	1.5	1.5	1.5	1.4	1.1	. 92	1.3	. 98	e. 40	. 07	. 14	. 17
8	1.5	1.5	1.5	1.5	1.1	1.0	1.2	1.0	e. 35	. 07	. 16	. 17
9	1.6	1.5	1.4	1.4	1.1	. 99	1.1	. 99	e. 35	2.4	. 16	. 16
10	1.6	1.5	1.5	1.4	1.1	. 96	1.1	1.0	e. 30	12	. 18	. 16
11	1.5	1.6	1.4	1.4	1.1	. 92	1.1	1.0	e. 30	1.5	. 21	. 16
12	1.5	1.5	1.4	1.4	1.1	. 89	1.2	1.0	e. 25	. 49	. 23	. 17
13	1.5	1.5	1.5	1.4	1.1	. 92	1.2	. 94	e. 40	. 38	. 24	. 18
14	1.7	1.5	1.5	1.4	1.2	1.1	1.2	. 93	e. 35	. 25	. 24	. 19
15	1.7	1.5	1.5	1.4	1.2	1.2	1.2	. 82	e. 40	. 32	. 26	. 19
16	1.6	1.5	1.6	1.4	1.2	1.1	1.1	. 79	e. 70	. 31	. 27	. 18
17	1.6	1.5	1.6	1.3	1.2	1.2	1.1	. 73	e. 50	. 21	. 27	. 18
18	1.7	1.5	1.6	1.0	1.2	1.3	1.1	. 73	e. 40	. 20	. 24	. 18
19	1.6	1.5	1.5	1.2	1.1	1.2	1.2	. 74	e. 30	. 21	. 23	. 17
20	1.8	1.5	1.5	1.4	1.1	1.2	1.2	. 79	e. 20	. 20	. 22	. 19
21	1.7	1.5	1.5	1.5	1.1	1.2	1.2	. 77	e. 18	. 19	. 18	. 19
22	1.6	1.5	1.6	1.4	1.1	1.2	1.2	. 66	e. 25	1.0	. 21	. 18
23	1.7	1.4	1.5	1.4	1.1	1.2	1.1	. 58	e. 20	2.9	. 20	. 18
24	1.6	1.5	1.5	1.3	1.1	1.2	1.0	. 57	e. 20	. 37	. 25	. 18
25	1.4	1.5	1.8	1.4	1.1	1.2	1.0	. 93	. 19	. 29	. 20	. 18
26	1.4	1.6	1.8	1.2	1.2	1.3	1.0	1.1	. 18	. 29	. 23	. 19
27	1.4	1.6	1.8	1.3	1.0	1.4	1.0	. 85	. 18	. 28	1.3	. 18
28	1.4	1.6	1.7	1.6	1.1	1.3	1.1	. 80	. 16	. 24	10	. 17
29	1.4	1.6	1.6	1.3	1.0	1.3	1.1	. 78	. 15	. 25	2.6	. 16
30	1.4	1.5	1.5	1.3	---	1.3	1.1	. 67	. 15	. 24	. 87	. 15
31	1.4	---	1.5	1.3	---	1.3	---	. 59	---	2.0	. 42	---
TOTAL	46.0	45.6	47.7	42.6	33.9	34.80	34.9	27.44	9.94	27.25	20.53	5.37
MEAN	1.48	1.52	1.54	1.37	1.17	1.12	1.16	. 89	. 33	. 88	. 66	. 18
MAX	1.8	1.6	1.8	1.6	1.4	1.4	1.4	1.2	. 70	12	10	. 27
MIN	1.1	1.4	1.4	1.0	1.0	. 89	1.0	. 57	. 15	. 07	. 12	. 15
AC-FT	91	90	95	84	67	69	69	54	20	54	41	11
STATISTICS OF		MONTHLY MEAN DATA	DATA	WATER YEARS 1978 - 1996, BY WATER YEAR (WY)								
MEAN	3.17	2.09	. 90	. 68	. 64	. 62	1.27	12.0	9.01	3.01	3.74	1.55
MAX	44.6	26.7	6.47	2.69	2.58	2.75	12.9	73.6	49.6	17.1	40.9	18.1
(WY)	1985	1985	1985	1985	1985	1985	1985	1980	1995	1985	1982	1982
MIN	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000
(WY)	1979	1979	1979	1979	1979	1979	1979	1979	1989	1978	1990	1978

SUMMARY STATISTICS
ANNUAL TOTAL
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1978 - 1996

ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN

3.32			
13.1			1985
.000			1991
353		Aug 20	1982
a	.00	May 18	1978
.00	May 18	1978	
$\mathrm{~b}_{3640}$	Aug 20	1982	
$\mathrm{C}_{11} .51$	Aug 20	1982	
2400			
4.9			
.40			
.00			

LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

e-Estimated.

a-No flow many days during most years.
b-From rating curve extended above $100 \mathrm{ft}^{3} / \mathrm{s}$, on the basis of slope-area measurements at gage heights 8.04 ft and 11.27 ft c-Maximum gage height, 11.88 ft , Jun 8, 1987, site and datum then in use.
d-Also occurred Jul 7-8.

07099233 TELLER RESERVOIR NEAR STONE CITY, CO

LOCATION.--Lat $38^{\circ} 26^{\prime} 33^{\prime \prime}$, long $104^{\circ} 49^{\prime} 31^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NW}^{1 / 1} 4$ sec. 31 , T. 18 S., R. 66 W., in Pueblo County, Hydrologic Unit 110200022, at left upstream end of dam on Turkey Creek on Fort Carson Military Reservation, 1.4 mi upstream from Booth Gulch, and 2.0 mi east of Stone City.
DRAINAGE AREA.--71.5 mi ${ }^{2}$.
PERIOD OF RECORD.--September 1978 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,453 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated midnight contents. Records good. Reservoir is formed by an earthfill dam completed around 1908. Maximum capacity of reservoir is 1,780 acre- ft at an uncontrolled spillway elevation of about $88 \mathrm{ft}, 1980$ survey. There is a controlled outlet from reservoir, however, considerable leakage occurs. Reservoir is used for recreation and for amphibious training for Fort Carson.

EXTREMES (at 2400) FOR PERIOD OF RECORD.--Maximum contents, 2,210 acre-ft, June 21, 1980, elevation, 90.15 ft , from capacity curve extended above 88 ft ; no contents during 1979, 1991-94 water years.
EXTREMES (at 2400) FOR CURRENT YEAR.--Maximum contents, 676 acre-ft, Apr. 6-10, elevation, 80.20 ft ; minimum contents, 469 acre-ft, Sept. 30, elevation, 78.03 ft .

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996DAILY OBSERVATION AT 24:00 VALUES																
DAY	OCT		NOV		DEC	JAN		FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1	562		509		537	576		628	649		665	646	614	529	584	532
2	556		508		540	577		630	649		664	645	612	526	578	528
3	551		510		538	580		630	649		664	643	609	520	576	526
4	543		511		542	583		630	649		670	643	606	517	571	523
5	538		515		540	585		633	650		675	641	603	516	567	519
6	533		513		540	587		635	650		676	639	599	509	562	518
7	533		513		542	588		637	650		676	638	597	504	560	516
8	532		516		540	592		639	651		676	636	593	502	560	512
9	530		518		540	594		641	652		676	634	592	521	558	510
10	529		516		542	596		642	652		676	633	588	614	554	506
11	528		518		546	599		643	653		675	631	586	613	550	503
12	527		518		551	600		643	652		674	629	584	611	547	499
13	524		518		553	603		644	653		672	628	582	609	543	498
14	523		519		553	605		645	659		670	626	580	605	540	496
15	521		520		554	607		647	662		670	623	580	606	536	496
16	520		523		556	609		647	663		669	620	578	602	533	495
17	518		521		556	614		649	663		667	617	575	600	529	493
18	518		525		557	614		650	665		665	613	570	596	525	493
19	512		525		557	616		650	665		662	613	567	593	520	490
20	512		525		558	617		650	665		661	608	562	591	518	487
21	512		528		558	620		650	665		661	605	562	585	515	484
22	511		527		560	621		650	666		659	602	561	588	512	482
23	509		528		561	622		649	666		658	599	559	609	515	478
24	508		532		561	623		648	666		657	600	555	606	513	477
25	508		533		562	624		650	666		655	616	551	603	511	476
26	509		533		563	625		650	666		653	623	547	600	510	475
27	507		533		566	625		649	666		652	622	543	597	540	473
28	506		534		567	626		649	667		650	621	540	593	540	472
29	508		535		569	628		650	666		648	621	536	592	540	470
30	507		538		570	628		-	666		647	619	533	587	537	469
31	509		---		573	628		---	665		---	617	---	584	534	---
TOTAL	16204		15662		17152	18812		18658	20426		19943	19351	17264	17828	16778	14896
MEAN	523		522		553	607		643	659		665	624	575	575	541	497
MAX	562		538		573	628		650	667		676	646	614	614	584	532
MIN	506		508		537	576		628	649		647	599	533	502	510	469
CAL YR	1995	TOTAL		240493	3 MEAN	659	MAX	- 1730	MIN	280						
WTR YR	1996	TOTAL	L 2	212974	4 MEAN	582	MAX	- 676	MIN	469						

07099235 TURKEY CREEK NEAR STONE CITY, CO

LOCATION.--Lat $38^{\circ} 26^{\prime} 22^{\prime \prime}$, long $104^{\circ} 9^{\prime} 34$ ", in $\mathrm{SW}^{1 / 1 / 4} \mathrm{SW}^{1 / 4}$ sec.31, T. 18 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, on Fort Carson Military Reservation, on right bank, 0.2 mi downstream from Teller Reservoir Dam, 1.1 mi upstream from military road No. 11, and 2.0 mi southeast of Stone City.
DRAINAGE AREA.--71.5 mi ${ }^{2}$.
PERIOD OF RECORD.--May 1978 to November 1984, June 1987 to current year.
REVISED RECORDS.--WDR CO-80-1: 1979(M).
GAGE.--Water-stage recorder with satellite telemetry, and concrete control with V-notch sharp-crested weir since Dec. 6, 1989. Elevation of gage is $5,395 \mathrm{ft}$ above sea level, from topographic map. Prior to June 12, 1987, at site 0.1 mi upstream at different datum.

REMARKS.--Records are poor. Flow regulated by Teller Reservoir 0.2 mi upstream. Gage records seepage and releases from reservoir. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental WaterQuality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.7	. 24	. 23	. 22	. 22	. 24	. 29	. 22	. 19	. 24	e. 27	. 25
2	1.6	. 24	. 21	. 22	. 22	. 24	. 27	. 22	. 19	. 25	. 27	. 20
3	1.6	. 24	. 21	. 23	. 22	. 24	. 27	. 22	. 18	. 25	. 26	. 20
4	1.5	. 25	. 21	. 22	. 23	. 24	e. 27	. 24	. 19	. 25	. 27	. 19
5	1.4	. 25	. 21	. 22	. 22	. 24	e. 27	. 25	. 19	. 25	. 27	. 17
6	. 89	. 24	. 22	. 22	. 23	. 24	e. 27	. 23	. 19	e. 25	. 28	. 17
7	. 22	. 24	. 22	. 22	. 27	. 24	e. 27	. 23	. 18	e. 25	. 24	. 16
8	. 22	. 24	. 22	. 22	. 23	. 24	e. 27	. 23	. 24	e. 25	. 24	. 15
9	. 21	. 24	. 21	. 22	. 23	. 24	e. 27	. 22	. 19	e. 28	. 22	. 14
10	. 21	. 24	. 22	. 23	. 23	. 25	e. 27	. 22	. 18	e. 30	. 21	. 14
11	. 21	. 23	. 22	. 22	. 22	. 24	. 27	. 22	. 21	e. 28	. 22	. 14
12	. 21	. 23	. 22	. 22	. 23	. 24	e. 26	. 23	. 22	e. 27	. 23	. 14
13	. 21	. 23	. 22	. 22	. 24	. 25	e. 26	. 24	. 23	e. 26	e. 24	. 15
14	. 21	. 22	. 21	. 22	. 23	. 27	. 24	. 22	. 23	e. 25	e. 24	e. 16
15	. 21	. 22	. 21	. 22	. 23	. 26	e. 25	. 21	. 22	e. 25	e. 24	e. 16
16	. 21	. 22	. 22	. 23	. 24	. 25	e. 25	e. 21	e. 22	e. 25	e. 24	e. 15
17	. 20	. 22	. 21	. 24	. 24	. 25	e. 25	e. 21	e. 23	e. 25	e. 24	e. 15
18	. 20	. 22	. 21	. 22	. 24	. 25	. 27	e. 21	e. 24	e. 25	e. 24	e. 15
19	. 20	. 22	. 22	. 23	. 24	. 25	. 28	e. 21	e. 25	e. 25	e. 24	e. 14
20	. 20	. 22	. 22	. 22	. 24	. 25	. 29	e. 21	e. 25	e. 25	e. 24	e. 14
21	. 20	. 22	. 22	. 22	. 24	. 25	. 25	e. 20	. 25	e. 26	e. 24	e. 14
22	. 21	. 22	. 23	. 23	. 24	. 26	. 27	e. 20	. 26	e. 29	e. 24	e. 14
23	. 20	. 22	. 23	. 24	. 23	. 26	. 27	e. 20	. 27	e. 30	e. 24	e. 15
24	. 20	. 22	. 23	. 24	. 24	. 29	. 26	e. 20	. 25	e. 29	. 23	e. 15
25	. 20	. 21	. 21	. 24	. 24	. 29	. 24	. 33	. 27	e. 28	. 21	e. 15
26	. 20	. 21	. 21	. 22	. 24	. 29	. 24	. 28	. 24	e. 28	. 24	e. 15
27	. 20	. 22	. 21	. 22	. 24	. 29	. 26	. 19	. 24	e. 28	. 25	e. 14
28	. 20	. 22	. 21	. 22	. 24	. 27	. 28	. 19	. 25	e. 28	. 25	e. 14
29	. 20	. 22	. 21	. 22	. 24	. 29	. 23	. 19	. 24	e. 27	. 25	e. 14
30	. 20	. 23	. 22	. 22	---	. 29	. 23	. 19	. 24	e. 27	. 26	e. 14
31	. 22	-	. 22	. 22	---	. 29	---	. 19	---	e. 27	. 24	.
TOTAL	13.84	6.84	6.72	6.95	6.80	7.99	7.87	6.81	6.73	8.20	7.55	4.69
MEAN	. 45	. 23	. 22	. 22	. 23	. 26	. 26	. 22	. 22	. 26	. 24	. 16
MAX	1.7	. 25	. 23	. 24	. 27	. 29	. 29	. 33	. 27	. 30	. 28	. 25
MIN	. 20	. 21	. 21	. 22	. 22	. 24	. 23	. 19	. 18	. 24	. 21	. 14
AC-FT	27	14	13	14	13	16	16	14	13	16	15	9.3

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1978 - 1996, BY WATER YEAR (WY)

[^45]b-Also occurred Sep 10-12, 19-22, and 27-30.
c-Maximum gage height, 6.02 ft , Aug. 3, backwater, from beaver dam.

07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO

LOCATION.--Lat $38^{\circ} 16^{\prime} 15^{\prime \prime}$, long $104^{\circ} 43^{\prime} 30^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{sec} .36$, T. 20 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, at dam on Arkansas River, 7 mi west of Pueblo.
DRAINAGE AREA.--4,669 mi ${ }^{2}$.

RESERVOIR ELEVATIONS AND CONTENTS RECORDS

PERIOD OF RECORD.--January 1974 to current year.
GAGE.--Nonrecording gage. Datum of gage is $4,898.70 \mathrm{ft}$ above sea level, (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level.

REMARKS.--Reservoir is formed by concrete and earthfill dam. Storage began Jan. 9, 1974; dam completed in August 1975. Capacity, 357,700 acre-ft at elevation $4,898.70 \mathrm{ft}$, crest of spillway. Dead storage, 3,730 acre-ft, below elevation $4,764.00 \mathrm{ft}$, invert of river outlet. Reservoir is terminal reservoir of the Fryingpan-Arkansas project and is used to provide flood control, municipal and industrial supplies, and to fulfill irrigation requirements in the Arkansas River valley. Figures given are total contents.
COOPERATION.--Records provided by U.S. Bureau of Reclamation.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 295,480 acre-ft, Feb. 12, 1985, elevation, 4,886.94 ft; minimum since appreciable storage was attained, 22,680 acre-ft, Nov. 13, 1974, elevation, 4,790.50 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 294,710 acre-ft, Feb. 22, elevation, 4,888.35 ft; minimum contents, 198,180 acre-ft, Sept. 25-26, elevation, 4,866.45 ft.

MONTHEND ELEVATION AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996
$\left.\begin{array}{llllll}\text { Change } \\ \text { in }\end{array}\right)$

WATER-QUALITY RECORDS

REMARKS.--Samples and field measurements were collected at a number of transects located along the length of the reservoir.

381754104504000 PUEBLO RESERVOIR SITE 2B

LOCATION.--Lat $38^{\circ} 17^{\prime} 54$ ", long $104^{0} 50^{\prime} 40^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{NW}^{1} / 4$, sec. 24 , T. 20 S., R. 67 W., Pueblo County, Hydrologic Unit 11020002, at approximate center of transect, approximately 1.1 mi downstream from Rush Creek, 1.1 mi upstream from Turkey Creek, and 7.8 mi upstream from Pueblo Dam.

PERIOD OF RECORD.--June 1988 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	SAM- PLING DEPTH (FEET)	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	$\begin{aligned} & \text { TRANS- } \\ & \text { PAR- } \\ & \text { ENCY } \\ & \text { (SECCHI } \\ & \text { DISK) } \\ & \text { (M) } \end{aligned}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$
MAY 1996							
14.	1215	--	-	-	--	1.1	--
14.	1216	0.0	277	9.0	18.5	--	9.5
14..	1217	3.0	278	9.0	18.5	--	9.5
14	1218	6.0	278	9.0	18.5	--	9.4
14	1219	9.0	277	9.0	18.0	--	9.3
14	1220	12.0	275	9.0	18.0	--	9.2
14	1221	15.0	268	8.6	17.0	--	8.2
14.	1222	18.0	258	8.4	16.0	--	7.5
14	1223	21.0	252	8.2	15.5	--	7.2
14.	1224	24.0	251	8.1	15.0	--	7.0
14.	1225	26.0	270	8.0	15.0	--	6.2
JUN							
28.	1010	--	--	--	--	1.8	--
28	1011	0.0	239	8.7	21.5	--	7.7
28.	1012	3.0	240	8.7	21.5	--	7.7
28	1013	6.0	239	8.7	21.5	--	7.7
28.	1014	9.0	239	8.7	21.5	--	7.8
28.	1015	12.0	238	8.7	21.5	--	7.8
28	1016	15.0	200	8.6	20.0	--	7.6
28.	1017	18.0	180	8.3	19.0	--	7.3
28.	1018	21.0	181	8.2	18.5	--	7.3
28	1019	24.0	177	8.2	18.0	--	7.2
28	1020	27.0	178	8.1	17.5	--	7.1
AUG							
21.	1030	--	-	--	--	1.2	--
21	1031	0.0	365	9.0	23.5	--	9.8
21	1032	3.0	365	9.0	23.5	--	9.8
21.	1033	6.0	366	8.9	23.5	--	9.8
21.	1034	9.0	369	8.9	23.0	--	9.3
21.	1035	12.0	402	8.5	23.0	--	6.6
21	1036	15.0	412	8.4	22.0	--	6.7
21.	1037	18.0	418	8.3	21.5	--	6.5
SEP							
24.	1105	--	--	--	--	0.5	-
24.	1106	0.0	412	8.8	19.0	--	8.4
24.	1107	3.0	412	8.8	19.0	--	8.3
24.	1108	6.0	414	8.7	18.5	--	8.0
24.	1109	9.0	420	8.7	18.5	--	7.3
24.	1110	12.0	446	8.6	17.5	--	7.0
24.	1111	13.0	457	8.6	17.5	--	6.7

381725104494400 PUEBLO RESERVOIR SITE 3B

LOCATION.--Lat $38^{\circ} 17^{\prime} 25^{\prime \prime}$, long $104^{\circ} 49^{\prime} 44^{\prime \prime}$, in SW ${ }^{1} / 4$ SW $^{1} / 4$, sec. 19 , T. 20 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, at approximate center of transect, approximately 100 ft downstream from Turkey Creek, and 6.7 mi upstream from Pueblo Dam.
PERIOD OF RECORD.--June 1988 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	SAM- PLING DEPTH (FEET)	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	$\begin{gathered} \text { PH } \\ \text { WATER } \\ \text { WHOLE } \\ \text { FIELD } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	$\begin{aligned} & \text { TEMPER- } \\ & \text { ATURE } \\ & \text { WATER } \\ & \text { (DEG C) } \end{aligned}$	$\begin{aligned} & \text { TRANS- } \\ & \text { PAR- } \\ & \text { ENCY } \\ & \text { (SECCHI } \\ & \text { DISK) } \\ & \text { (M) } \end{aligned}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$
MAY 1996							
14...	1145	-	--	--	--	1.2	--
14	1146	0.0	290	8.7	18.0	--	8.5
14	1147	3.0	288	8.7	18.0	--	8.5
14.	1148	6.0	287	8.7	17.5	--	8.4
14.	1149	9.0	290	8.7	17.5	--	8.3
14.	1150	12.0	290	8.6	17.5	--	8.1
14.	1151	15.0	288	8.4	16.5	--	6.8
14.	1152	18.0	295	8.2	16.5	--	6.8
14.	1153	21.0	286	8.0	15.5	--	6.2
14.	1154	24.0	303	7.9	15.0	--	5.7
14.	1155	27.0	330	7.8	14.0	--	5.2
14.	1156	30.0	437	7.7	13.5	--	5.1
14.	1157	33.0	471	7.7	12.5	--	4.7
14.	1158	36.0	494	7.7	11.5	--	4.6
14.	1159	39.0	495	7.6	11.0	--	4.2
JUN							
28.	0945	--	-	-	--	1.8	-
28.	0946	0.0	241	8.6	21.5	--	7.6
28.	0947	3.0	241	8.6	21.5	--	7.6
28.	0948	6.0	241	8.6	21.5	--	7.6
28.	0949	9.0	241	8.6	21.5	--	7.6
28.	0950	12.0	241	8.6	21.5	--	7.6
28.	0951	15.0	207	8.3	20.0	--	7.2
28	0952	18.0	195	8.2	19.5	--	7.1
28	0953	21.0	197	8.1	19.5	--	7.0
28.	0954	24.0	193	8.1	19.5	--	7.0
28	0955	27.0	186	8.1	19.0	--	7.0
28.	0956	30.0	179	8.1	18.5	--	6.9
28.	0957	33.0	177	8.0	18.0	--	6.8
28.	0958	36.0	176	8.0	17.5	--	6.5
28.	0959	39.0	178	8.0	17.5	--	6.2
AUG							
21.	1005	--	--	--	--	1.8	-
21.	1006	0.0	343	8.7	23.0	--	7.6
21.	1007	3.0	343	8.7	23.0	--	7.6
21.	1008	6.0	343	8.7	23.0	--	7.6
21.	1009	9.0	343	8.7	23.0	--	7.6
21.	1010	12.0	343	8.7	23.0	--	7.6
21.	1011	15.0	343	8.6	23.0	--	7.5
21.	1012	18.0	343	8.6	23.0	--	7.5
21.	1013	21.0	343	8.6	23.0	--	7.5
21.	1014	24.0	365	8.6	22.5	--	6.8
21.	1015	27.0	416	8.0	21.5	--	4.0
21.	1016	29.0	420	7.9	21.0	--	3.5
SEP							
24.	1040	--	--	--	--	1.5	-
24	1041	0.0	380	8.5	20.0	--	6.7
24.	1042	3.0	380	8.5	19.5	--	6.8
24	1043	6.0	381	8.5	19.5	--	6.8
24.	1044	9.0	381	8.5	19.5	--	6.8
24.	1045	12.0	382	8.5	19.5	--	6.8
24.	1046	15.0	382	8.5	19.5	--	6.8
24.	1047	18.0	382	8.5	19.5	--	6.8
24.	1048	21.0	383	8.5	19.0	--	6.9
24.	1049	24.0	497	8.5	17.5	--	6.9
24..	1050	25.0	500	8.5	17.5	--	5.6

WATER-QUALITY RECORDS

381647104475300 PUEBLO RESERVOIR SITE 4B

LOCATION.--Lat $38^{\circ} 16^{\prime} 47$ ", long $104^{\circ} 47^{\prime} 53^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{SE}^{1} / 4$, sec.29, T. 20 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, at approximate center of transect, approximately 1.3 mi upstream from Peck Creek, 2.2 mi downstream from Turkey Creek, and 4.5 mi upstream from Pueblo Dam.

PERIOD OF RECORD.--June 1988 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

381559104465500 PUEBLO RESERVOIR SITE 5C

LOCATION.--Lat $38^{\circ} 15{ }^{\prime} 59^{\prime \prime}$, long $104^{\circ} 46^{\prime} 55^{\prime \prime}$, in SW ${ }^{1} / 4 \mathrm{NE}^{1} / 4$, sec. 33 , T. 20 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, at approximate center of transect, approximately 0.1 mi upstream from Peck Creek, 1.2 mi upstream from Rock Creek, and 3.2 mi upstream from Pueblo Dam.

PERIOD OF RECORD.--June 1988 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued WATER-QUALITY RECORDS

381559104465500 PUEBLO RESERVOIR SITE 5C--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued

WATER-QUALITY RECORDS

381548104453300 PUEBLO RESERVOIR SITE 6C

LOCATION.--Lat $38^{\circ} 15^{\prime} 48^{\prime \prime}$, long $104^{\circ} 45^{\prime} 33$ ", in $\mathrm{NE}^{1} / 4 \mathrm{SE}^{1 / 4}$, sec.34, T. 20 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, at approximate center of transect, approximately 0.2 mi downstream from Rock Creek, and 1.2 mi downstream from Peck Creek, and 2.0 mi upstream from Pueblo Dam.

PERIOD OF RECORD.--June 1988 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

				PH			
			SPE-	WATER		TRANS-	
			CIFIC	WHOLE		PAR-	
		PAM-	CON-	FIELD	TEMPER-	ENCY	OXYGEN,
			PLING	DUCT-	(STAND-	ATURE	(SECCHI

07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued
 WATER-QUALITY RECORDS

381548104453300 PUEBLO RESERVOIR SITE 6C--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	SAM- PLING DEPTH (FEET)	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	$\begin{gathered} \text { PH } \\ \text { WATER } \\ \text { WHOLE } \\ \text { FIELD } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPER- ATURE WATER (DEG C)	$\begin{gathered} \text { TRANS- } \\ \text { PAR- } \\ \text { ENCY } \\ \text { (SECCHI } \\ \text { DISK) } \\ \text { (M) } \end{gathered}$	OXYGEN, DIS- SOLVED (MG/L)
SEP							
24	0940	--	--	--	--	2.1	--
24	0941	0.0	370	8.1	19.5	--	5.3
24	0942	6.0	370	8.1	20.0	--	5.3
24	0943	12.0	369	8.1	19.5	--	5.3
24	0944	18.0	369	8.1	19.5	--	5.3
24	0945	24.0	369	8.1	19.5	--	5.3
24	0946	30.0	369	8.1	19.5	--	5.3
24	0947	36.0	368	8.1	19.5	--	5.2
24	0948	42.0	368	8.1	19.5	--	5.3
24	0949	48.0	368	8.1	19.5	--	5.3
24	0950	54.0	369	8.1	19.5	--	5.2
24.	0951	60.0	369	8.1	19.5	--	5.2
24	0952	66.0	372	8.1	19.5	--	5.2
24	0953	72.0	374	8.1	19.5	--	5.2
24	0954	78.0	377	8.1	19.5	--	5.2
24...	0955	83.0	383	8.1	19.5	--	5.1

07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued WATER-QUALITY RECORDS

381602104435200 PUEBLO RESERVOIR SITE 7B

LOCATION.--Lat $38^{\circ} 16^{\prime} 02^{\prime \prime}$, long $104^{\circ} 43^{\prime} 52^{\prime \prime}$, in SW ${ }^{1} / 4 \mathrm{NE}^{1 / 4}$, sec.36, T. 20 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, at approximate center of transect, approximately 0.3 mi downstream from Boggs Creek, and 0.4 mi upstream from Pueblo Dam.

PERIOD OF RECORD.--June 1988 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	PH						
	TIME	SAM- PLING DEPTH (FEET)	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	$\begin{gathered} \text { WATER } \\ \text { WHOLE } \\ \text { FIELD } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPER-ATUREWATER(DEG \quad)	$\begin{gathered} \text { TRANS- } \\ \text { PAR- } \\ \text { ENCY } \\ \text { (SECCHI } \\ \text { DISK) } \\ \text { (M) } \end{gathered}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ (M G / L) \end{gathered}$
MAY 1996							
14.	0900	--	-	-	--	9.4	--
14	0901	0.0	516	8.2	15.5	--	8.4
14	0902	3.0	516	8.2	15.0	--	8.4
14	0903	6.0	518	8.3	15.0	--	8.5
14	0904	9.0	518	8.3	15.0	--	8.5
14	0905	12.0	518	8.3	15.0	--	8.5
14	0906	15.0	517	8.4	15.0	--	8.5
14.	0907	18.0	517	8.4	14.5	--	8.5
14	0908	21.0	515	8.4	14.5	--	8.6
14	0909	24.0	515	8.4	14.0	--	8.6
14	0910	27.0	516	8.4	13.5	--	8.7
14	0911	30.0	517	8.3	13.5	--	8.7
14.	0912	33.0	517	8.3	13.5	--	8.7
14.	0913	36.0	518	8.3	13.0	--	8.7
14	0914	39.0	520	8.3	12.5	--	8.8
14	0915	42.0	520	8.3	12.0	--	8.8
14	0916	45.0	523	8.3	11.5	--	8.8
14.	0917	48.0	522	8.3	11.5	--	8.8
14.	0918	51.0	526	8.2	10.5	--	8.8
14.	0919	54.0	525	8.2	10.5	--	8.8
14.	0920	57.0	525	8.2	10.0	--	8.9
14	0921	60.0	527	8.2	10.0	--	8.9
14.	0922	63.0	526	8.2	9.5	--	8.9
14	0923	66.0	525	8.2	9.5	--	8.9
14	0924	69.0	526	8.2	9.5	--	8.8
14.	0925	72.0	525	8.2	9.5	--	8.8
14.	0926	75.0	526	8.2	9.5	--	8.8
14.	0927	78.0	526	8.2	9.0	--	8.9
14	0928	81.0	525	8.2	9.0	--	8.9
14	0929	84.0	525	8.1	9.0	--	8.8
14	0930	87.0	525	8.1	9.0	--	8.8
14.	0931	90.0	525	8.1	9.0	--	8.9
14.	0932	93.0	525	8.1	9.0	--	8.9
14	0933	96.0	525	8.1	9.0	--	8.9
14.	0934	99.0	525	8.1	9.0	--	8.9
14	0935	102	525	8.1	9.0	--	8.8
14.	0936	105	525	8.1	9.0	--	8.8
14.	0937	108	525	8.1	9.0	--	8.8
14	0938	111	526	8.1	9.0	--	8.8
14.	0939	114	526	8.1	8.5	--	8.7
14	0940	117	526	8.1	8.5	--	8.7
14.	0941	120	526	8.1	8.5	--	8.7
14.	0942	123	527	8.1	8.5	--	8.5
JUN							
28.	0840	--	-	-	--	4.6	-
28.	0841	0.0	332	8.4	21.5	--	7.4
28.	0842	3.0	332	8.5	21.5	--	7.5
28.	0843	6.00	332	8.5	21.5	--	7.5
28.	0844	9.00	332	8.4	21.5	--	7.5
28.	0845	12.0	332	8.4	21.5	--	7.5
28.	0846	15.0	332	8.4	21.5	--	7.5
28.	0847	18.0	332	8.4	21.5	--	7.5
28.	0848	21.0	333	8.4	21.5	--	7.5
28.	0849	24.0	334	8.4	21.5	--	7.4
28.	0850	27.0	333	8.3	20.5	-	7.1
28.	0851	30.0	333	8.2	20.5	--	7.0
28.	0852	33.0	322	8.0	19.5	--	6.4
28.	0853	36.0	295	7.9	19.0	--	5.9
28.	0854	39.0	268	7.8	18.0	--	5.7
28.	0855	42.0	251	7.8	18.0	--	5.6
28.	0856	45.0	248	7.8	18.0	--	5.6
28.	0857	48.0	252	7.7	17.5	--	5.5
28.	0858	51.0	271	7.7	17.5	--	5.5
28.	0859	54.0	266	7.7	17.5	--	5.4
28...	0900	57.0	260	7.7	17.0	--	5.4

381602104435200 PUEBLO RESERVOIR SITE 7B--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	SAM- PLING DEPTH (FEET)	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	$\begin{aligned} & \text { PH } \\ & \text { WATER } \\ & \text { WHOLE } \\ & \text { FIELD } \\ & \text { (STAND- } \\ & \text { ARD } \\ & \text { UNITS) } \end{aligned}$	TEMPER- ATURE WATER (DEG \quad)	$\begin{gathered} \text { TRANS- } \\ \text { PAR- } \\ \text { ENCY } \\ \text { (SECCHI } \\ \text { DISK) } \\ \text { (M) } \end{gathered}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$
JUN 1996							
28...	0901	60.0	260	7.7	17.0	--	5.4
28.	0902	63.0	284	7.7	17.0	--	5.4
28.	0903	66.0	291	7.6	17.0	--	5.4
28	0904	69.0	289	7.7	17.0	--	5.4
28	0905	72.0	300	7.6	17.0	--	5.4
28	0906	75.0	301	7.6	17.0	--	5.4
28.	0907	78.0	298	7.7	16.5	--	5.4
28	0908	81.0	275	7.7	16.5	--	5.4
28	0909	84.0	272	7.7	16.5	--	5.4
28	0910	87.0	266	7.7	16.0	--	5.4
28.	0911	90.0	265	7.7	16.0	--	5.4
28	0912	93.0	258	7.7	16.0	--	5.3
28.	0913	96.0	259	7.7	15.5	--	5.2
28	0914	99.0	259	7.7	15.5	--	5.1
28.	0915	102	271	7.7	15.5	--	5.0
28.	0916	105	309	7.6	15.0	--	4.9
28	0917	108	326	7.6	14.5	--	4.8
28.	0918	111	339	7.6	14.0	--	4.8
28.	0919	114	363	7.5	13.5	--	4.6
28	0920	117	386	7.5	13.0	--	4.3
28	0921	120	397	7.5	12.5	--	4.1
28.	0922	124	401	7.5	12.5	--	4.0
AUG 1996							
21...	0815	--	-	-	--	4.0	--
21.	0816	0.0	331	8.3	23.0	--	6.5
21	0817	3.0	331	8.3	23.0	--	6.5
21.	0818	6.0	331	8.2	23.0	--	6.5
21	0819	9.0	331	8.2	23.0	--	6.5
21.	0820	12.0	331	8.2	23.0	--	6.5
21.	0821	15.0	331	8.2	23.0	--	6.5
21.	0822	18.0	330	8.2	23.0	--	6.5
21.	0823	21.0	330	8.2	23.0	--	6.5
21	0824	24.0	329	8.2	23.0	--	6.5
21.	0825	27.0	329	8.2	23.0	--	6.2
21.	0826	30.0	329	8.2	22.5	--	6.1
21	0827	33.0	329	8.2	22.5	--	5.8
21.	0828	36.0	328	8.2	22.5	--	6.0
21	0829	39.0	328	8.2	22.5	--	6.0
21.	0830	42.0	328	8.2	22.5	--	6.0
21.	0831	45.0	327	8.2	22.5	--	6.1
21.	0832	48.0	327	8.2	22.5	--	6.1
21.	0833	51.0	327	8.2	22.5	--	6.1
21.	0834	54.0	332	8.1	22.5	--	5.0
21.	0835	57.0	339	7.8	22.0	--	3.0
21.	0836	60.0	340	7.8	22.0	--	2.5
21.	0837	63.0	343	7.7	21.5	--	1.7
21.	0838	66.0	344	7.7	21.5	--	1.4
21.	0839	69.0	342	7.7	21.5	--	1.3
21.	0840	72.0	342	7.7	21.5	--	1.2
21.	0841	75.0	337	7.7	21.0	--	1.1
21.	0842	78.0	333	7.7	21.0	--	0.9
21.	0843	81.0	330	7.7	20.5	--	0.9
21.	0844	84.0	329	7.7	20.5	--	0.9
21.	0845	87.0	324	7.7	20.0	--	0.7
21.	0846	90.0	315	7.7	19.5	--	0.5
21.	0847	93.0	309	7.7	19.0	--	0.5
21.	0848	96.0	308	7.7	19.0	--	0.5
21.	0849	99.0	305	7.7	18.5	--	0.5
21.	0850	102	303	7.7	18.0	--	0.4
21.	0851	105	303	7.7	18.0	--	0.2
21.	0852	108	301	7.7	17.5	--	0.2
21.	0853	111	302	7.7	17.0	--	0.1
21..	0854	112	302	7.7	17.0	--	0.1

07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued
WATER-QUALITY RECORDS

381602104435200 PUEBLO RESERVOIR SITE 7B--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	SAM- PLING DEPTH (FEET)	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	$\begin{aligned} & \text { PH } \\ & \text { WATER } \\ & \text { WHOLE } \\ & \text { FIELD } \\ & \text { (STAND- } \\ & \text { ARD } \\ & \text { UNITS) } \end{aligned}$	TEMPER- ATURE WATER (DEG C)	$\begin{gathered} \text { TRANS- } \\ \text { PAR- } \\ \text { ENCY } \\ \text { (SECCHI } \\ \text { DISK) } \\ \text { (M) } \end{gathered}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$
SEP							
24.	0905	--	--	--	--	1.8	--
24.	0906	0.0	370	8.2	20.0	--	5.4
24.	0907	3.0	370	8.2	20.0	--	5.4
24.	0908	6.0	371	8.1	20.0	--	5.4
24	0909	9.0	371	8.1	20.0	--	5.4
24.	0910	12.0	371	8.1	20.0	--	5.4
24	0911	15.0	370	8.1	20.0	--	5.4
24.	0912	18.0	370	8.1	20.0	--	5.4
24	0913	21.0	370	8.1	20.0	--	5.4
24.	0914	24.0	369	8.1	20.0	--	5.4
24.	0915	27.0	368	8.1	20.0	--	5.4
24.	0916	30.0	368	8.1	20.0	--	5.4
24.	0917	33.0	368	8.1	20.0	--	5.4
24.	0918	36.0	368	8.1	20.0	--	5.3
24.	0919	39.0	367	8.1	20.0	--	5.3
24.	0920	42.0	368	8.1	20.0	--	5.3
24.	0921	45.0	368	8.1	20.0	--	5.2
24.	0922	48.0	368	8.1	20.0	--	5.3
24.	0923	51.0	368	8.1	20.0	--	5.2
24.	0924	54.0	370	8.1	20.0	--	5.0
24.	0925	57.0	370	8.1	20.0	--	5.0
24.	0926	60.0	372	8.1	19.5	--	4.8
24.	0927	63.0	373	8.1	19.5	--	4.7
24.	0928	66.0	376	8.0	19.5	--	4.7
24.	0929	69.0	380	8.0	19.5	--	4.7
24.	0930	72.0	380	8.0	19.5	--	4.7
24.	0931	75.0	384	8.0	19.5	--	4.6
24.	0932	78.0	388	8.0	19.5	--	4.4
24.	0933	81.0	389	8.0	19.5	--	4.4
24.	0934	84.0	390	8.0	19.5	--	4.4
24.	0935	87.0	396	8.0	19.5	--	4.4
24.	0936	90.0	396	8.0	19.5	--	4.3
24.	0937	93.0	398	8.0	19.5	--	4.3
24.	0938	96.0	401	8.0	19.0	--	4.2
24.	0939	100	408	8.0	19.0	--	4.2
24.	0940	103	409	8.0	19.0	--	4.2
24.	0941	106	414	8.0	19.0	--	3.8
24.	0942	109	420	8.0	18.5	--	2.7
24...	0943	110	422	8.0	18.5	--	2.6

07099400 ARKANSAS RIVER ABOVE PUEBLO, CO

LOCATION.--Lat $38^{\circ} 16^{\prime} 18^{\prime \prime}$, long $104^{\circ} 43^{\prime} 03$ ", in $\mathrm{SE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec.36, T. 20 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, on left bank 200 ft downstream from NE corner of Arkansas River bridge, 0.4 mi downstream from Pueblo Dam, and 7 mi west of Pueblo.

DRAINAGE AREA.--4,670 mi².

WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--Streamflow records, October 1965 to current year. Water-quality data available, October 1965 to September 1970, Dec. 1985 to current year. Sediment data available October 1965 to September 1970. Statistical summary computed for 1975 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $4,740 \mathrm{ft}$ above sea level, from topographic map. Prior to Mar. 23, 1967, at site 730 ft upstream at datum 1.23 ft , higher. May 24, 1974 to Feb. 24, 1975, at site $1,500 \mathrm{ft}$ downstream, at different datum. Since Feb. 25, 1975, at or within 50 ft of present location at present datum.
REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, diversions upstream from station for irrigation of about 88,000 acres and return flow from irrigated areas. Flow completely regulated by Pueblo Reservoir (station 07099350) since Jan. 9, 1974.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^46]
07099400 ARKANSAS RIVER ABOVE PUEBLO, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--December 1985 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: December 1985 to current year.
WATER TEMPERATURE: December 1985 to current year.
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for daily specific conductance are good except Dec 12 to Jan. 4, Sept. 1-2, 23, which are poor. Records for daily water temperature are good except Oct. 1 to Jan. 9, which are fair, and Jan. 10 to Mar. 12, which are poor. Daily data not published are either missing or of unacceptable quality. Specific conductance data may not be representative of the river at the site during periods of transient hydrologic conditions caused by abrupt flow changes from Pueblo Reservoir.

EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 814 microsiemens, Nov. 14, 1990; minimum, 223 microsiemens, July 13, 1986. WATER TEMPERATURE: Maximum, $23.1^{\circ} \mathrm{C}$, Aug. 13, 15, 17, 1994; minimum, $1.1^{\circ} \mathrm{C}$, Jan. 30, 1995.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 595 microsiemens, Mar. 4; minimum, 235 microsiemens, July 22.
WATER TEMPERATURE: Maximum, $21.0^{\circ} \mathrm{C}$, Sept. 3,5 ; minimum, $2.9^{\circ} \mathrm{C}$, Jan. 17.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	379	374	377	419	412	415	412	396	404	---	---	-
2	382	373	378	420	416	418	410	406	408	---	---	---
3	382	377	381	417	399	409	410	406	408	482	---	---
4	384	345	369	403	389	396	414	407	410	468	---	-
5	375	348	358	392	382	388	424	407	414	468	460	463
6	364	348	353	401	383	388	436	417	424	485	459	465
7	362	347	351	405	394	398	436	426	431	482	458	466
8	369	349	362	404	394	399	439	426	432	474	461	--
9	371	364	367	403	387	396	440	426	432	500	462	479
10	371	362	366	416	390	404	428	417	421	499	478	492
11	379	367	373	404	395	399	424	418	423	497	488	492
12	382	374	378	397	385	391	421	417	419	500	484	491
13	385	381	383	392	385	388	425	409	419	497	483	492
14	384	378	382	415	388	396	421	---	--	500	485	492
15	383	370	378	408	401	406	432	---	---	510	491	499
16	385	371	380	407	400	404	---	---	-	518	490	500
17	390	368	380	413	403	408	---	---	--	547	502	522
18	390	368	382	416	411	413	437	---	---	535	493	515
19	397	378	390	422	413	418	---	---	--	516	497	510
20	393	382	388	422	418	420	---	---	---	527	488	510
21	389	366	380	424	418	422	--	--	---	527	499	515
22	378	358	367	426	409	419	---	---	--	536	497	515
23	364	359	361	430	412	422	---	---	---	520	495	513
24	365	360	362	432	411	422	---	-	---	529	507	520
25	372	360	364	425	398	411	---	---	---	531	459	489
26	381	370	374	432	399	415	---	---	---	464	462	463
27	396	373	386	409	396	402	---	---	---	465	463	464
28	394	390	393	405	398	401	---	---	---	471	464	467
29	405	394	398	403	397	400	---	---	---	483	449	459
30	407	403	405	400	396	398	---	---	---	464	453	458
31	412	406	409	-	-	---	---	---	---	465	453	459
MONTH	412	345	377	432	382	406	---	---	-	---	---	--

07099400 ARKANSAS RIVER ABOVE PUEBLO, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	469	457	463	485	473	478	492	489	491	514	510	512
2	483	466	475	479	475	477	494	490	492	515	512	513
3	480	465	473	481	477	479	494	490	492	516	512	514
4	481	462	472	595	476	492	494	491	492	516	512	514
5	498	469	482	481	474	478	495	491	493	517	514	516
6	489	456	469	479	476	477	495	492	493	517	513	515
7	462	457	460	480	472	477	496	493	494	516	511	514
8	465	459	463	480	478	479	500	493	495	516	509	513
9	465	461	463	480	477	479	499	494	497	513	508	511
10	467	462	465	487	479	481	501	494	497	513	510	512
11	466	462	465	498	487	493	501	492	495	512	509	511
12	469	464	466	502	475	487	498	494	496	513	511	512
13	473	465	469	497	472	479	501	496	498	513	509	511
14	478	464	471	498	483	495	500	497	499	512	507	509
15	514	470	489	489	482	480	501	497	499	509	505	507
16	525	479	493	514	485	496	501	499	501	509	506	508
17	495	482	488	504	492	497	504	499	502	510	508	509
18	485	477	480	499	491	493	507	501	504	510	507	509
19	480	474	477	494	487	491	509	503	505	509	460	492
20	482	476	478	493	482	488	509	505	507	510	490	503
21	485	478	480	492	488	490	509	505	507	510	508	509
22	480	470	475	493	490	492	508	505	507	511	508	510
23	484	465	472	493	489	491	508	504	506	510	501	508
24	475	463	468	495	489	492	509	504	506	510	507	509
25	474	468	471	492	489	491	511	507	509	519	507	510
26	475	472	473	494	491	492	512	508	510	514	506	509
27	475	471	473	493	490	491	512	509	510	509	504	507
28	477	472	474	494	491	492	513	511	512	508	505	507
29	479	475	477	493	490	491	513	510	511	508	498	502
30	---	---	---	492	486	489	513	509	512	506	497	501
31	---	---	---	493	489	491	---	---	---	513	483	499
MONTH	525	456	473	595	472	487	513	489	501	519	460	509
	JUNE			JULY			AUGUST			SEPTEMBER		
1	509	501	506	292	277	285	282	255	269	---	---	---
2	509	501	504	303	277	296	286	268	279	---	---	---
3	504	486	496	299	283	293	287	268	280	394	358	374
4	500	492	495	287	274	283	278	243	261	391	376	382
5	497	459	481	295	269	281	275	240	259	438	384	407
6	475	387	447	291	271	281	291	259	278	481	381	405
7	439	411	425	286	273	279	293	284	289	463	385	398
8	426	399	412	286	272	278	293	277	284	401	373	390
9	406	377	394	375	269	285	306	278	288	400	377	389
10	412	366	390	354	268	311	292	264	282	400	390	396
11	397	361	379	394	259	271	286	262	274	402	395	398
12	391	357	370	323	262	273	289	258	276	409	395	401
13	380	350	369	278	266	272	292	270	284	400	390	395
14	379	364	371	280	265	272	296	282	289	399	395	396
15	382	358	369	291	269	279	302	286	297	409	395	402
16	377	351	362	288	282	285	313	289	297	409	392	402
17	370	344	354	293	280	286	312	296	303	438	396	407
18	354	347	351	289	284	286	320	303	314	436	415	424
19	351	325	340	290	283	287	321	304	310	427	409	418
20	334	315	322	290	272	281	325	290	311	430	417	425
21	340	312	326	277	240	261	323	307	318	429	412	424
22	325	304	311	389	235	264	323	294	313	451	416	434
23	322	308	315	380	255	288	348	305	328	---	---	---
24	310	297	304	280	254	270	339	323	327	471	435	451
25	308	286	297	281	271	276	389	327	348	448	433	441
26	306	285	296	288	269	281	362	340	348	444	424	433
27	306	283	294	286	271	280	381	343	354	433	421	426
28	314	275	298	287	275	281	359	349	354	422	415	419
29	292	275	287	286	277	282	395	353	361	426	413	419
30	309	280	292	293	277	283	374	362	368	438	426	429
31	---	--	---	288	271	280	373	357	365	-	---	--
MONTH	509	275	372	394	235	281	395	240	307	---	---	--

07099400 ARKANSAS RIVER ABOVE PUEBLO, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	17.5	16.8	17.1	13.1	12.5	12.9	9.8	5.8	8.7	---	---	---
2	17.4	16.6	16.9	12.5	12.4	12.4	9.9	8.3	9.3	---	---	---
3	17.6	16.5	17.0	12.9	12.3	12.5	9.6	8.6	9.3	6.7	5.5	6.1
4	17.4	15.2	16.5	12.8	11.4	12.2	9.8	9.2	9.4	---	5.1	---
5	17.5	16.4	16.8	12.8	11.9	12.4	9.5	8.8	9.1	5.3	4.8	5.0
6	17.3	16.5	16.8	12.5	11.9	12.2	9.4	8.3	8.9	5.8	4.7	5.1
7	17.3	16.5	16.8	12.2	11.6	11.9	8.9	8.5	8.6	5.9	4.9	5.3
8	17.0	16.4	16.7	12.1	10.9	11.6	8.8	8.2	8.5	6.3	4.9	5.6
9	16.4	15.9	16.2	12.3	11.5	11.9	8.7	8.0	8.3	6.2	4.4	5.1
10	16.5	15.9	16.1	11.8	10.4	11.4	8.7	8.0	8.3	5.6	4.3	4.6
11	16.4	15.5	15.9	11.6	10.3	10.9	8.5	8.0	8.2	5.5	4.1	4.6
12	16.3	15.7	15.9	12.1	11.3	11.5	8.5	7.6	8.2	5.8	4.2	4.7
13	15.9	15.6	15.7	11.8	11.0	11.5	8.5	7.4	8.0	5.9	4.3	4.8
14	15.9	15.3	15.6	11.7	11.1	11.4	-	6.9	---	5.8	4.3	4.8
15	16.1	14.7	15.7	11.6	10.8	11.1	---	---	---	5.4	4.1	4.7
16	15.9	15.4	15.7	11.4	10.6	10.9	---	---	---	5.9	4.4	4.9
17	15.8	15.1	15.6	11.1	10.0	10.6	---	---	---	4.8	2.9	4.1
18	16.0	15.3	15.6	10.9	8.3	10.2	---	---	---	4.8	3.4	3.9
19	15.6	15.1	15.4	10.9	9.6	10.2	---	---	---	5.0	3.4	4.0
20	15.7	14.3	15.1	10.7	9.8	10.2	---	---	---	5.0	3.6	4.1
21	15.7	14.7	15.2	10.6	9.3	10.1	---	---	---	5.2	3.6	4.2
22	15.5	14.8	15.1	10.9	9.9	10.3	---	---	---	5.1	3.7	4.1
23	15.3	14.4	14.8	10.7	8.8	10.1	---	---	---	4.7	3.5	3.8
24	15.1	13.2	14.3	10.5	7.1	9.7	---	---	---	4.9	3.4	3.9
25	14.9	14.1	14.5	10.9	9.1	10.1	---	---	---	4.4	3.4	3.8
26	14.3	14.0	14.1	10.8	8.0	10.0	---	---	---	4.0	3.3	3.5
27	14.2	13.4	13.8	10.2	8.1	9.5	---	---	---	4.1	3.0	3.5
28	14.0	13.2	13.5	9.8	7.6	8.8	---	---	---	4.3	3.3	3.7
29	13.6	13.1	13.4	10.2	8.0	9.4	---	---	---	3.9	3.3	3.5
30	13.5	12.9	13.2	10.2	9.0	9.7	---	---	---	4.0	3.3	3.6
31	13.4	12.8	13.1		---	---	---	---	---	4.0	3.4	3.6
MONTH	17.6	12.8	15.4	13.1	7.1	10.9	---	---	---	---	---	---
	FEBRUARY			MARCH			APRIL			MAY		
1	3.9	3.4	3.6	4.5	3.9	4.1	5.8	5.1	5.4	9.5	8.8	9.1
2	3.5	3.2	3.3	4.6	3.8	4.1	5.8	5.2	5.4	9.7	8.9	9.1
3	3.9	3.2	3.4	4.6	3.9	4.2	5.7	5.3	5.4	9.8	8.8	9.1
4	4.1	3.2	3.6	5.5	3.9	4.4	5.6	5.2	5.3	9.8	8.8	9.2
5	4.1	3.4	3.7	4.9	3.9	4.3	6.0	5.1	5.4	10.0	8.9	9.3
6	3.9	3.2	3.5	4.5	3.8	4.1	6.2	5.4	5.8	10.2	9.0	9.4
7	3.9	3.4	3.6	4.3	3.7	4.0	6.3	5.5	5.7	9.9	9.1	9.4
8	3.9	3.4	3.6	4.4	3.9	4.1	6.3	5.5	5.8	9.9	9.0	9.3
9	4.2	3.4	3.7	4.6	4.0	4.2	6.2	5.6	5.8	9.8	9.1	9.3
10	3.9	3.4	3.6	4.6	3.9	4.2	6.1	5.6	5.8	9.8	9.1	9.4
11	3.8	3.3	3.5	5.0	4.2	4.4	6.7	5.6	6.1	9.7	9.2	9.4
12	3.9	3.2	3.5	5.2	4.2	4.5	6.8	5.8	6.2	9.7	9.2	9.3
13	4.1	3.3	3.6	5.0	4.3	4.6	7.4	6.2	6.6	9.8	9.3	9.5
14	4.4	3.4	3.8	4.5	3.4	4.5	7.8	6.4	7.1	9.7	9.3	9.5
15	4.4	3.5	3.8	4.9	4.4	4.7	7.3	6.5	7.0	9.8	9.2	9.5
16	4.4	3.3	3.7	5.1	4.4	4.7	7.5	6.7	6.9	9.8	9.4	9.6
17	4.5	3.4	3.8	5.1	4.6	4.7	8.9	6.3	7.8	9.7	9.4	9.6
18	4.5	3.5	3.9	5.1	4.5	4.7	9.3	8.3	8.8	9.9	9.3	9.6
19	4.5	3.7	4.0	5.2	4.4	4.7	9.5	8.3	9.0	10.1	9.6	9.8
20	4.8	3.8	4.2	5.2	4.5	4.7	8.9	8.4	8.7	10.9	9.6	10.0
21	4.9	3.8	4.3	5.3	4.6	4.8	9.0	8.3	8.5	10.4	9.8	10.1
22	4.8	4.1	4.3	5.2	4.6	4.8	9.0	8.3	8.5	10.5	9.9	10.2
23	4.6	3.9	4.2	5.4	4.7	5.0	9.2	8.2	8.6	11.0	10.0	10.4
24	4.5	4.0	4.2	5.3	4.7	5.0	9.2	8.4	8.7	11.2	9.9	10.5
25	4.7	4.1	4.4	5.3	4.7	4.9	9.1	8.4	8.7	10.9	10.5	10.7
26	4.5	4.1	4.3	5.5	4.8	5.0	9.3	8.4	8.7	11.2	10.5	10.8
27	4.3	3.9	4.1	5.5	4.8	5.0	9.3	8.5	8.8	11.4	10.6	11.1
28	4.4	3.9	4.0	5.5	4.8	5.1	9.0	8.4	8.7	11.1	10.6	10.8
29	4.4	3.6	4.0	5.7	5.0	5.2	9.6	8.7	9.1	11.6	10.8	11.2
30	---	---	---	5.7	5.0	5.3	9.6	8.8	9.1	11.8	10.9	11.4
31	---	---	---	5.7	5.0	5.3	---	---	---	12.2	10.9	11.6
MONTH	4.9	3.2	3.8	5.7	3.4	4.6	9.6	5.1	7.2	12.2	8.8	9.9

07099400 ARKANSAS RIVER ABOVE PUEBLO, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST			SEPTEMBER	
1	11.7	11.0	11.3	16.2	15.9	16.0	18.7	18.1	18.3	---	---	---
2	11.9	11.0	11.4	16.3	15.9	16.1	18.7	18.1	18.3	---	---	---
3	12.1	11.0	11.6	16.4	15.9	16.1	18.7	18.1	18.4	21.0	19.2	19.8
4	12.0	11.2	11.6	16.4	15.9	16.1	18.8	18.2	18.4	20.9	19.2	19.7
5	12.6	11.4	11.9	16.6	16.0	16.3	18.9	18.2	18.5	21.0	19.3	19.8
6	13.8	12.1	12.7	16.9	16.1	16.5	18.8	18.3	18.6	20.7	19.2	19.7
7	13.3	12.7	13.0	16.8	16.2	16.5	19.1	18.3	18.8	20.6	19.4	19.8
8	13.5	12.8	13.2	17.0	16.3	16.6	19.1	18.6	18.8	20.9	19.4	19.9
9	13.8	13.3	13.5	16.9	15.5	16.5	19.3	18.7	19.0	20.8	19.5	20.0
10	14.0	13.2	13.7	16.6	15.5	16.0	19.5	18.8	19.0	20.9	19.3	20.1
11	14.5	13.5	14.1	17.0	16.3	16.7	19.3	18.8	19.0	20.8	19.5	20.0
12	14.5	13.6	14.1	17.4	16.5	16.9	19.5	18.9	19.2	20.1	19.6	19.9
13	14.7	14.1	14.4	17.1	16.6	16.8	19.7	18.8	19.2	20.9	19.9	20.2
14	14.8	14.2	14.5	17.2	16.6	16.9	19.5	19.0	19.3	20.5	20.0	20.2
15	15.1	14.3	14.7	17.1	16.6	16.8	20.0	19.1	19.5	20.9	20.0	20.3
16	15.3	14.5	15.0	17.2	16.7	16.9	19.7	19.4	19.6	20.9	20.1	20.3
17	15.4	14.6	15.1	17.3	16.7	17.0	19.8	19.4	19.7	20.8	19.9	20.3
18	15.4	14.9	15.1	17.3	16.7	16.9	20.2	19.7	20.0	20.7	19.8	20.2
19	15.5	15.0	15.2	17.5	16.8	17.0	20.4	19.7	20.1	20.8	19.9	20.3
20	15.6	15.1	15.3	17.6	16.8	17.1	20.4	19.9	20.3	20.8	19.3	20.2
21	15.5	14.9	15.3	17.7	17.1	17.3	20.8	20.1	20.3	20.8	19.8	20.1
22	15.8	15.2	15.5	17.7	16.2	17.3	20.5	20.1	20.4	20.7	19.7	20.0
23	15.9	15.3	15.7	17.7	16.4	17.3	20.7	19.7	20.2	---	---	---
24	15.9	15.5	15.7	18.0	17.4	17.7	20.3	19.6	20.0	20.0	19.1	19.4
25	16.1	15.6	15.8	18.1	17.6	17.8	20.2	19.2	19.8	20.0	18.7	19.2
26	16.1	15.7	15.9	18.2	17.7	17.9	20.4	19.3	19.8	19.5	18.7	19.0
27	16.2	15.7	15.9	18.3	17.8	18.0	20.2	19.3	19.7	19.6	18.3	18.9
28	16.3	15.7	16.0	18.4	17.8	18.0	20.2	19.4	19.7	19.6	18.5	18.9
29	16.3	15.7	16.0	18.3	17.7	18.1	20.4	19.4	19.8	19.6	18.4	18.8
30	16.3	15.8	16.0	18.4	17.8	18.1	20.4	19.4	19.7	19.3	18.2	18.6
31	-	-	--	18.4	17.9	18.1	20.5	19.5	19.9	-	---	--
MONTH	16.3	11.0	14.3	18.4	15.5	17.0	20.8	18.1	19.4	---	---	---

07099969 ARKANSAS RIVER AT ST CHARLES MESA DIVERSION AT PUEBLO, CO

WATER-QUALITY RECORDS

LOCATION.--Lat $38^{\circ} 15^{\prime} 13^{\prime \prime}$, long $104^{\circ} 36^{\prime} 20^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{NW}^{1 / 4}$ sec.6, T. 21 S., R. 64 W., Pueblo County, Hydrologic Unit 11020002, on right bank 10 ft upstream from intake of Saint Charles Mesa Water Association, 150 ft downstream from Santa Fe Avenue bridge, and 1.1 mi upstream from Fountain Creek.

DRAINAGE AREA.--4,778 mi^{2}.
PERIOD OF RECORD.--October 1988 to current year. Prior to October 1989, published as Arkansas River at Moffat Street at Pueblo (07099970).

PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: October 1988 to current year.
INSTRUMENTATION.--Water-quality monitor.
REMARKS.--Records good. Daily data not published are either missing or of poor quality. Specific conductance data is not representative of the cross section at the site "and is more representative of flow entering diversion". Specific conductance data representative of the cross section at the site is published as Arkansas River at Moffat Street at Pueblo (07099970) since water year 1991.

EXTREMES FOR PERIOD OF RECORD.--

SPECIFIC CONDUCTANCE: Maximum, 1,980 microsiemens, Nov. 24, 1988; minimum, 225 microsiemens, Aug 25, 1995.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 1230 microsiemens, Sept. 6; minimum, 233 microsiemens, July 22.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG.C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07099969 ARKANSAS RIVER AT ST CHARLES MESA DIVERSION AT PUEBLO, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	623	606	613	603	592	597	616	604	611	671	643	662
2	634	612	626	606	590	597	619	598	608	678	662	669
3	650	625	639	618	594	601	623	603	609	677	630	658
4	650	627	639	675	617	632	628	540	603	659	635	649
5	665	630	647	638	597	617	646	550	609	678	650	659
6	664	640	653	641	587	602	651	636	644	683	660	670
7	643	610	627	602	579	590	653	635	643	683	634	659
8	617	608	612	606	589	599	654	632	643	688	649	664
9	618	600	609	601	586	595	655	632	644	673	610	647
10	617	608	611	601	586	594	655	630	640	633	615	625
11	611	598	605	628	597	603	676	598	628	629	587	600
12	613	597	605	630	601	622	655	610	639	598	583	591
13	621	604	613	602	579	585	637	615	624	600	572	588
14	630	604	617	641	485	578	636	613	623	579	556	568
15	652	612	626	637	519	604	645	624	634	562	551	558
16	661	630	641	669	618	639	644	620	633	560	551	556
17	666	656	661	664	612	642	659	629	642	559	550	555
18	672	651	662	646	626	636	674	638	652	556	546	551
19	667	646	660	658	631	640	684	641	665	551	546	549
20	664	640	656	657	637	645	667	648	655	552	546	550
21	667	643	660	652	631	639	666	649	655	552	546	550
22	669	640	659	652	634	642	669	647	658	555	545	550
23	651	597	625	640	629	635	668	649	657	556	547	552
24	606	577	595	636	612	623	666	646	658	558	511	552
25	597	579	588	635	621	628	674	650	663	565	374	493
26	604	594	599	638	617	628	676	657	668	568	425	543
27	599	590	594	634	623	628	677	660	669	573	557	565
28	601	588	595	637	618	625	663	642	652	586	573	578
29	599	582	590	637	610	622	672	653	661	588	559	573
30	---	---	---	628	598	611	677	654	664	576	556	565
31	---	---	---	620	597	608	_--	---	---	583	550	571
MONTH	672	577	625	675	485	616	684	540	642	688	374	591
	JUNE			JULY			AUGUST			SEPTEMBER		
1	671	580	641	392	349	370	402	386	396	593	555	571
2	669	653	660	414	375	389	398	384	393	677	588	624
3	672	639	655	408	385	396	417	389	402	726	658	674
4	672	649	661	415	377	395	421	402	411	826	726	782
5	665	545	617	386	358	375	426	410	417	888	792	828
6	546	448	516	368	348	357	422	403	414	1230	724	1070
7	496	463	477	361	344	352	429	407	420	770	691	718
8	482	447	461	366	341	352	427	412	420	794	709	738
9	454	422	436	562	305	378	432	365	405	831	664	709
10	444	414	427	882	397	721	434	412	420	746	669	704
11	431	406	416	397	333	343	430	413	420	725	666	689
12	424	400	410	476	272	378	427	414	422	714	648	682
13	457	398	415	389	354	366	445	413	425	669	537	640
14	438	407	422	406	351	377	448	425	440	621	576	602
15	427	405	416	483	389	419	442	401	422	618	335	538
16	425	396	408	461	418	447	414	375	400	617	555	594
17	409	379	397	479	433	449	412	353	400	587	547	569
18	407	396	402	479	446	462	406	353	399	597	549	576
19	406	382	396	470	447	456	437	363	407	596	543	576
20	386	368	377	466	381	429	430	403	415	626	565	604
21	404	314	377	441	381	404	435	412	419	622	582	604
22	391	353	370	513	233	405	433	403	422	662	613	639
23	370	343	359	705	262	512	679	409	466	725	659	692
24	357	342	350	397	345	358	544	488	507	720	677	699
25	361	341	352	352	343	348	595	467	515	746	485	665
26	361	337	350	357	347	351	580	522	554	674	616	659
27	360	339	350	385	345	356	582	534	546	707	484	649
28	369	337	351	388	359	371	614	554	576	686	671	681
29	369	340	350	406	377	391	606	295	539	692	664	677
30	378	350	360	447	403	423	664	517	591	696	671	685
31	---	---	---	436	389	418	587	543	569	---	-	-
MONTH	672	314	439	882	233	405	679	295	450	1230	335	671
YEAR	1230	233	589									

07099970 ARKANSAS RIVER AT MOFFAT STREET, AT PUEBLO, CO

LOCATION.--Lat $38^{\circ} 15^{\prime} 13^{\prime \prime}$, long $104^{\circ} 36^{\prime} 20^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{NW}^{1 / 4}$ sec. 6 , T. 21 S., R. 64 W., Pueblo County, Hydrologic Unit 11020002, on right bank 10 ft upstream from intake of Saint Charles Mesa Water Association, 150 ft downstream from Santa Fe Avenue bridge, and 1.1 mi upstream from Fountain Creek.
DRAINAGE AREA.--4,778 mi^{2}.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1988 to current year.
REVISED RECORDS: WDR CO-90-1: 1989(M).
GAGE.--Water-stage recorder and concrete control. Elevation of gage is $4,653 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated daily discharges. Records good. Records do not include diversion for municipal supply of Saint Charles Mesa Water Association. Natural flow of stream affected by storage reservoirs, power developments, transbasin and transmountain diversions, and diversions for irrigation and municipal use. Flow almost completely regulated by Pueblo Reservoir.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	430	270	246	80	321	383	769	563	824	1480	1130	175
2	476	266	178	79	321	382	809	522	736	1260	1130	117
3	509	273	174	63	321	381	817	447	681	1200	1080	88
4	534	278	172	65	310	376	856	426	633	1140	1030	57
5	556	277	178	65	274	395	893	392	945	1290	1010	26
6	542	281	176	64	275	430	919	356	1780	1490	1000	22
7	538	278	162	62	330	439	915	394	2360	1600	982	69
8	525	300	161	62	354	422	894	501	2620	1560	992	56
9	484	376	163	64	356	425	871	727	3090	1520	1100	70
10	473	420	162	62	363	419	888	914	3560	558	997	65
11	478	433	154	59	366	434	920	1160	3930	1890	987	73
12	480	426	148	62	356	517	959	1210	3810	2030	976	87
13	490	449	141	60	342	724	1020	1270	3420	1490	941	118
14	491	444	139	61	329	894	871	1670	2710	1290	873	139
15	488	202	141	64	296	901	869	2210	2750	973	1020	191
16	461	196	144	64	222	632	849	2490	2870	820	1180	155
17	450	192	146	62	166	447	762	2590	3060	731	1220	196
18	429	194	144	69	164	416	647	3090	2540	621	1220	209
19	414	190	146	69	163	451	561	3420	2360	607	1200	202
20	403	194	114	66	164	555	481	3430	2150	853	1210	156
21	403	194	81	65	162	631	500	3430	1880	1020	1180	145
22	404	195	82	59	193	619	528	3290	2170	1140	1170	115
23	395	195	77	55	285	637	517	2880	3000	1040	915	88
24	387	196	76	57	435	643	520	2600	2970	1370	523	96
25	375	194	75	84	464	646	554	2680	2440	1460	364	118
26	356	194	79	126	446	621	520	2450	2300	1460	252	126
27	312	188	82	126	438	610	528	1900	2260	1410	255	130
28	277	192	81	122	433	640	555	1560	2150	1270	194	111
29	275	191	81	191	386	640	562	1570	1920	1120	248	104
30	269	266	80	281	---	812	571	1620	1720	985	209	99
31	261	---	80	301	---	803	---	1430	---	1000	205	---
TOTAL	13365	7944	4063	2769	9035	17325	21925	53192	69639	37678	26793	3403
MEAN	431	265	131	89.3	312	559	731	1716	2321	1215	864	113
MAX	556	449	246	301	464	901	1020	3430	3930	2030	1220	209
MIN	261	188	75	55	162	376	481	356	633	558	194	22
AC-FT	26510	15760	8060	5490	17920	34360	43490	105500	138100	74730	53140	6750

Statistics of monthly mean data for water years 1989-1996, by water year (wy)

a-Also occurred Jan 13 to Feb 8.
b-From rating curve extended above $3900 \mathrm{ft}^{3} / \mathrm{s}$.

07099970 ARKANSAS RIVER AT MOFFAT STREET, AT PUEBLO, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1988 to current year.

PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: October 1988 to current year.
WATER TEMPERATURE: October 1988 to current year.
INSTRUMENTATION.--Water-quality monitor.
REMARKS.--Records for water temperature are good except for Dec. 15 to Apr. 25, which are fair. Records for specific conductance are good. Daily data not published are either during periods of estimated daily discharge, or are missing or unrepresentative of the river for the day. Specific conductance data computed by using discharge-related coefficients, the discharge record at the site, and the daily mean specific conductance from Arkansas River at St Charles Mesa Diversion at Pueblo (07099969). Prior to October 1989, published specific conductance data was not representative of the cross section at the site.
EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum daily mean, 1,140 microsiemens, Dec. 31, 1989; minimum daily mean, 252 microsiemens, June 29, 1993.
WATER TEMPERATURE: Maximum, $26.3^{\circ} \mathrm{C}$, Aug. 31,1990 ; minimum, $0.0^{\circ} \mathrm{C}$, on many days during winter.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum daily mean, 861 microsiemens, Sept. 5, minimum daily mean, 296 microsiemens, July 25. WATER TEMPERATURE: Maximum, $24.8^{\circ} \mathrm{C}$, Sept. 4 ; minimum, $0.0^{\circ} \mathrm{C}$, Jan. 18-19, 26.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	464	565	517	701	533	513	507	563	526	318	321	508
2	462	572	539	702	545	513	499	569	548	319	318	562
3	466	553	544	751	556	517	499	559	544	325	326	613
4	467	540	539	734	556	544	---	558	555	320	333	735
5	441	532	548	725	563	531	499	567	---	311	338	861
6	449	532	553	734	568	518	528	576	---	307	339	---
7	449	537	563	751	545	507	527	567	453	306	344	661
8	456	534	570	758	526	515	527	564	443	306	344	694
9	458	503	562	743	524	512	528	537	436	---	328	---
10	456	494	555	754	525	511	525	512	436	---	344	655
11	462	490	557	763	520	519	515	486	433	---	344	634
12	467	485	567	752	520	529	524	485	426	---	346	621
13	473	478	567	762	527	486	505	482	---	315	348	--
14	471	490	568	752	537	---	511	500	409	313	361	542
15	470	561	568	748	545	---	520	519	404	---	342	---
16	462	561	579	747	564	537	519	528	400	367	324	529
17	456	572	578	753	588	546	533	533	397	373	---	501
18	469	577	582	721	589	547	541	551	386	388	--	507
19	476	584	588	---	587	544	565	560	376	383	---	507
20	486	582	---	---	584	548	557	561	351	-	340	538
21	485	583	703	768	587	537	557	561	--	327	339	544
22	475	565	706	789	587	539	559	555	344	---	342	575
23	463	533	713	803	544	533	558	541	355	--	---	630
24	469	539	708	790	512	517	559	530	346	---	431	636
25	477	534	---	744	500	521	564	---	334	296	---	---
26	492	547	706	---	509	528	568	--	329	298	488	593
27	513	542	690	641	511	528	569	508	329	303	480	---
28	537	538	696	634	512	525	554	503	326	304	513	613
29	542	537	703	605	507	522	562	499	315	317	---	616
30	552	512	695	550	---	501	564	492	317	347	-	623
31	558	---	710	542	---	499	---	485	---	343	501	---
MEAN	478	539	---	---	544	---	--	--	---	--	---	--
MAX	558	584	---	---	589	---	---	---	---	---	---	---
MIN	441	478	---	---	500	---	---	-	---	---	--	---

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

	FEBRUARY			MARCH			APRIL			MAY		
1	3.1	. 9	1.8	7.5	2.6	4.8	10.4	4.8	7.0	14.3	8.3	10.7
2	2.0	. 2	1.1	8.0	3.0	5.1	9.8	5.3	7.0	14.4	8.3	10.9
3	2.6	. 2	1.2	8.3	3.0	5.3	7.6	5.6	6.4	13.8	8.2	10.9
4	4.6	. 2	2.1	8.7	3.9	6.1	6.9	5.0	6.1	15.7	8.3	11.6
5	5.7	2.4	3.9	9.1	3.8	6.2	9.3	4.5	6.2	14.6	9.5	11.6
6	5.6	2.3	3.8	6.0	3.0	4.6	10.2	5.1	7.2	16.4	9.2	12.3
7	6.3	3.1	4.4	7.7	2.6	4.7	9.3	5.8	7.1	15.9	10.0	12.6
8	5.3	2.8	4.0	8.1	3.4	5.3	10.7	5.8	7.7	16.0	9.1	11.9
9	7.0	2.3	4.4	9.0	3.5	5.9	10.8	5.9	7.9	14.9	9.6	11.5
10	5.8	2.6	4.0	9.0	4.1	6.2	9.3	5.9	7.3	13.5	9.3	10.8
11	5.8	1.8	3.6	10.0	5.0	7.0	10.1	5.9	7.7	13.0	9.3	10.6
12	5.8	1.8	3.6	9.8	5.1	7.0	10.8	6.0	7.9	12.4	9.1	10.3
13	6.5	1.9	3.9	8.5	4.7	6.2	10.0	6.3	7.5	12.9	9.4	10.7
14	7.3	2.4	4.5	5.6	3.9	5.2	10.1	6.3	7.8	12.4	9.4	10.4
15	6.6	2.8	4.5	8.6	4.3	6.1	11.2	6.1	8.2	12.1	9.0	10.2
16	6.4	1.6	4.1	8.4	4.7	6.2	11.8	6.5	8.4	12.1	9.2	10.3
17	7.5	2.3	5.0	6.8	4.7	5.7	12.1	6.7	8.9	11.9	9.3	10.2
18	6.9	3.0	5.3	7.1	4.5	5.4	13.8	8.0	10.4	11.6	9.2	10.1
19	6.9	2.9	5.1	8.9	3.5	5.8	12.8	7.0	9.7	11.5	9.5	10.3
20	8.4	3.6	6.0	9.1	3.6	5.9	10.6	7.5	8.9	11.9	9.6	10.4
21	8.6	4.0	6.5	9.7	4.3	6.4		7.1	9.3		9.6	10.5
22	7.9	4.7	6.3	9.3	4.4	6.4	12.9	8.0	9.9	12.1	9.7	10.7
23	7.2	3.4	5.3	8.6	4.7	6.3	13.9	7.4	10.3	12.6	9.9	10.9
24	7.0	3.0	4.7	6.4	4.0	5.2	14.2	8.3	10.8	14.1	9.9	11.0
25	8.1	3.8	5.5	6.6	3.2	4.6	13.1	8.5	10.4	12.5	10.5	11.3
26	5.2	3.2	4.1	9.0	3.6	5.7	13.8	7.6	10.3	11.9	10.6	11.2
27	6.3	2.6	4.2	9.9	4.1	6.4	13.2	8.2	10.4	13.4	10.3	11.5
28	5.4	2.4	3.7	9.6	4.6	6.6	9.7	7.3	8.4	12.8	10.4	11.3
29	7.0	2.3	4.4	9.7	5.1	6.8	13.4	7.2	9.8	14.2	10.6	12.0
30	---	---	---	9.4	5.4	6.8	13.6	7.6	10.2	14.6	11.0	12.4
31	---	---	---	9.6	4.8	6.7	---	---	---	14.9	10.8	12.6
MONTH	8.6	. 2	4.2	10.0	2.6	5.9	14.2	4.5	8.5	16.4	8.2	11.1

DAY	MAX	MIN	MEAN									
	JUNE				JULY		AUGUST			SEPTEMBER		
1	16.5	11.2	13.2	19.2	15.7	17.0	21.9	17.6	19.2	23.6	18.0	20.9
2	16.5	11.0	13.3	19.8	15.5	17.2	21.8	17.9	19.2	21.2	17.7	19.6
3	17.5	11.3	13.8	19.8	15.6	17.2	20.9	17.7	19.0	24.4	17.0	20.5
4	16.2	11.1	13.4	20.0	15.6	17.2	22.0	17.8	19.3	24.8	18.5	21.4
5	15.3	11.3	13.1	19.6	15.9	17.1	21.8	17.3	19.2	21.1	18.2	19.5
6	15.4	11.9	13.4	19.7	16.0	17.4	22.2	17.7	19.4	21.2	18.4	19.4
7	15.4	12.5	13.5	19.4	16.0	17.4	22.0	17.6	19.4	23.7	17.0	19.9
8	15.4	12.5	13.7	17.3	16.3	16.9	21.6	18.1	19.5	24.1	17.6	20.7
9	15.2	13.1	13.8	19.3	16.3	17.3	21.7	18.1	19.4	24.5	17.5	20.7
10	15.4	13.2	14.0	21.9	16.1	18.4	22.4	18.1	19.8	24.3	17.8	20.8
11	15.8	13.4	14.3	19.6	16.2	17.7	22.4	17.8	19.7	23.4	17.6	20.5
12	15.7	13.7	14.4	19.8	13.6	17.1	22.6	18.0	19.9	20.0	17.6	18.3
13	15.9	14.1	14.7	19.8	16.7	17.7	22.4	18.0	19.8	22.8	17.3	19.5
14	16.1	14.1	14.8	20.6	16.4	18.1	22.9	18.4	19.9	20.8	17.6	19.2
15	16.1	14.4	15.1	21.4	16.5	18.3	22.6	18.6	19.9	20.7	16.3	18.9
16	16.9	14.3	15.4	21.5	16.6	18.6	22.1	18.9	20.0	22.0	17.7	19.5
17	17.1	14.5	15.6	22.3	16.7	18.9	22.5	18.6	20.2	22.5	17.4	19.7
18	17.4	14.6	15.8	21.3	16.8	18.6	22.4	19.1	20.3	20.7	17.0	18.5
19	17.5	14.7	15.8	22.4	16.6	19.0	22.6	18.9	20.2	20.0	15.1	17.5
20	17.9	15.0	16.2	20.8	16.7	18.5	22.9	19.3	20.6	20.4	15.8	18.1
21	19.4	15.1	16.0	21.5	17.0	18.8	23.1	19.5	20.7	21.9	15.5	18.7
22	16.5	15.2	15.7	21.5	17.0	18.9	21.0	19.6	20.2	22.2	16.2	19.1
23	17.5	15.0	16.0	21.4	12.1	17.4	23.7	19.8	21.0	20.8	16.9	18.8
24	18.0	15.5	16.4	20.4	16.9	18.2	24.1	18.7	20.9	21.2	16.2	18.5
25	17.9	15.4	16.3	20.1	17.4	18.2	24.0	18.8	21.2	20.8	13.3	17.9
26	18.3	15.4	16.5	20.6	17.2	18.5	23.6	18.5	20.9	17.2	14.2	15.5
27	17.7	15.6	16.4	20.9	17.4	18.6	22.9	18.4	20.4	18.4	11.6	15.3
28	18.2	15.6	16.6	21.1	17.3	18.6	23.6	17.8	20.4	19.7	13.7	16.7
29	18.6	15.6	16.7	20.2	17.6	18.5	23.9	17.9	20.4	20.3	14.7	17.6
30	17.9	16.0	16.6	21.9	17.6	19.2	23.2	18.4	20.5	21.0	15.0	18.0
31	--	-	--	22.0	17.7	19.1	23.6	17.9	20.6	---	--	---
MONTH	19.4	11.0	15.0	22.4	12.1	18.1	24.1	17.3	20.0	24.8	11.6	19.0
YEAR	24.8	. 0	11.2									

07103700 FOUNTAIN CREEK NEAR COLORADO SPRINGS, CO

LOCATION.--Lat $38^{\circ} 51^{\prime} 17^{\prime \prime}$, long $104^{\circ} 52^{\prime} 39^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec.3, T. 14 S., R. 67 W., El Paso County, Hydrologic Unit 11020003, on left bank 200 ft upstream from diversion to city of Colorado Springs, 0.5 mi east of bridge on U.S. Highway 24 near west city limits of Colorado Springs, and 1.0 mi downstream from Sutherland Creek.
DRAINAGE AREA.-- $103 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1958 to current year.
GAGE.--Water-stage recorder with satellite telemetry, and V-notch weir. Elevation of gage is $6,110 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by storage reservoirs, power developments, diversions for irrigation and municipal use, and at times, transbasin diversion from Beaver Creek drainage and transmountain diversions from Colorado River basin.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	17	10	15	15	15	10	11	16	18	15	36	41
2	17	10	16	13	15	10	10	15	17	13	42	33
3	17	11	15	18	15	10	12	15	16	13	25	29
4	17	14	16	19	14	9.7	12	15	16	13	23	27
5	17	18	17	19	14	9.4	13	16	15	14	20	24
6	17	18	17	20	12	9.6	12	16	13	14	19	29
7	17	16	17	24	10	11	12	16	12	13	20	30
8	17	16	16	24	10	9.9	12	16	11	13	23	23
9	16	16	16	21	11	10	14	17	10	60	21	23
10	17	16	20	18	11	10	17	21	11	63	19	22
11	16	17	16	14	11	9.6	17	19	12	29	17	30
12	18	20	16	15	11	9.7	16	16	12	41	16	40
13	21	17	16	15	9.4	9.7	17	15	15	40	16	26
14	20	18	18	15	8.4	11	18	15	15	30	16	26
15	19	19	18	14	8.6	9.8	16	16	19	26	18	28
16	18	19	19	14	8.9	9.8	17	19	22	21	16	26
17	14	19	19	17	8.8	10	18	19	18	33	16	36
18	12	19	14	15	11	10	18	16	15	54	15	35
19	12	18	11	15	11	10	18	16	12	51	18	32
20	12	16	12	15	9.7	10	16	17	12	38	21	29
21	12	15	13	17	8.6	10	15	17	14	38	16	28
22	12	15	13	14	10	11	15	17	16	43	17	29
23	14	14	14	9.3	9.7	11	16	17	15	42	30	34
24	16	15	15	9.8	9.5	10	16	18	13	38	32	33
25	19	15	17	12	9.4	9.2	16	68	12	33	20	29
26	13	16	17	14	9.2	12	14	71	11	59	18	30
27	12	15	16	9.0	9.5	11	15	36	12	28	27	32
28	12	15	17	13	9.1	11	16	29	13	24	34	31
29	11	16	15	13	9.8	11	15	25	11	22	61	31
30	11	15	16	13	---	11	17	21	14	26	65	28
31	10	--	15	15	--	11	---	18	---	24	52	--
TOTAL	473	478	492	479.1	309.6	317.4	451	668	422	971	789	894
MEAN	15.3	15.9	15.9	15.5	10.7	10.2	15.0	21.5	14.1	31.3	25.5	29.8
MAX	21	20	20	24	15	12	18	71	22	63	65	41
MIN	10	10	11	9.0	8.4	9.2	10	15	10	13	15	22
AC-FT	938	948	976	950	614	630	895	1320	837	1930	1560	1770

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1958 - 1996, BY WATER YEAR (WY)

MEAN	12.3	10.4	8.49	7.96	7.54	8.90	12.9	29.6	28.0	21.3	18.1	13.6
MAX	44.0	34.6	18.8	18.5	13.6	15.2	33.4	172	127	108	60.9	34.0
(WY)	1985	1985	1985	1985	1986	1985	1985	1980	1983	1995	1965	1983
MIN	5.29	4.98	4.14	4.46	4.44	4.91	5.90	6.37	6.69	6.48	5.48	
(WY)	1979	1965	1990	1994	1972	1965	1963	1989	1989	1964	1974	1978

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1958 - 1996

[^47] and 5.27 ft .

WATER-QUALITY RECORDS

PERIOD OF RECORD.--December 1974 to current year. Daily sediment record August 1995 to current year (peak flows only).
PERIOD OF DAILY RECORD.--Suspended-sediment discharge August 1995 to current year (peak flows only).
INSTRUMENTATION.--Pumping sediment sampler since August 1995.
REMARKS.--Records for daily sediment during peak flows are fair.
EXTREMES FOR PERIOD OF DAILY RECORD.--
SEDIMENT CONCENTRATIONS: Maximum daily during peak flows, $2,970 \mathrm{mg} / \mathrm{L}$, July 9, 1996; minimum daily, $137 \mathrm{mg} / \mathrm{L}$, Sept. 9, 1995.
SEDIMENT LOADS: Maximum daily during peak flows, 1,850 tons, July 9, 1996; minimum daily, 12 tons, Aug. 15, 1996.
EXTREMES FOR WATER YEAR 1996.--
SEDIMENT CONCENTRATIONS: Maximum daily during peak flows, $2,970 \mathrm{mg} / \mathrm{L}$, July 9; minimum daily, $189 \mathrm{mg} / \mathrm{L}$, Aug. 8 . SEDIMENT LOADS: Maximum daily during peak flows, 1,850 tons, July 9 ; minimum daily, 12 tons, Aug. 15.

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$
		OCtOBER			OVEMBER			CEMBER	
1	10	---	---	11	---	---	14	-	---
2	9.2	---	---	10	---	---	12	-	---
3	104	--	---	9.6	---	---	10	-	---
4	14	-	---	9.7	---	---	10	---	---
5	9.0		---	9.4	---	---	10	---	---
6	11	---	---	9.3	---	---	10	---	---
7	9.8	---	---	8.8	---	---	9.6	---	---
8	11	---	---	10	---	---	9.2	---	---
9	9.5	---	---	9.3	---	---	9.5	---	---
10	9.5	---	---	9.1	---	---	9.0	---	---
11	7.5	-	--	8.6	---	---	8.5	-	---
12	8.0	---	--	8.6	---	---	9.0	---	--
13	9.6	---	---	9.4	---	---	9.0	---	---
14	10	-	---	9.3	-	---	9.9	---	---
15	13	---	---	9.2	---	--	8.4	-	---
16	9.7	---	---	9.4	---	---	9.3	---	---
17	12	---	---	10	---	---	9.7	-	---
18	10	---	---	8.8	---	---	9.8	---	---
19	9.5	-	---	8.5	---	---	9.6	---	---
20	9.7	-	---	9.4	---	---	9.0	---	---
21	9.8	---	---	9.1	---	---	9.1	---	---
22	9.7	---	---	9.0	---	---	8.8	---	---
23	10	-	---	7.4	-	-	8.9	---	---
24	11	---	---	8.9	---	---	9.1	---	---
25	11	-	---	8.8	--	---	8.6	---	---
26	10	--	---	9.7	---	---	8.7	-	---
27	10	---	---	7.0	---	---	8.5	---	-
28	11	---	---	5.4	---	---	8.3	-	---
29	11	---	---	4.9	---	---	8.8	---	---
30	11	---	---	14	---	---	8.5	---	---
31	11	---	---	-	---	---	7.9	---	---
TOTAL	411.5	---	---	271.6	---	---	290.7	---	--

07103700 FOUNTAIN CREEK NEAR COLORADO SPRINGS, CO--Continued

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$
		JANUARY			RRUARY			ARCH	
1	8.9	--	---	8.0	---	---	6.6	-	---
2	7.1	---	--	8.1	---	---	6.4	---	---
3	6.9	---	---	7.4	---	---	14	---	---
4	4.7	---	---	7.0	---	---	12	---	---
5	5.9	-	---	6.9	---	---	11	---	---
6	8.2	---	---	6.5	---	---	9.9	---	---
7	8.1	---	---	6.2	---	---	10	---	---
8	8.2	---	---	6.9	---	--	9.7	---	---
9	7.7	---	---	8.2	---	-	9.8	---	-
10	7.8	---	--	7.8	-	---	9.4	---	-
11	7.6	---	--	6.1	---	--	9.0	-	---
12	7.1	---	---	3.4	---	---	9.7	--	---
13	7.4	---	---	3.5	-	---	8.8	---	---
14	7.9	-	--	9.4	---	---	8.5	---	---
15	7.6	---	---	9.7	---	---	8.3	---	---
16	7.4	---	---	9.0	---	---	9.5	---	---
17	6.5	---	--	9.6	---	---	10	-	---
18	7.2	--	---	9.3	---	---	9.7	--	---
19	8.2	---	---	8.3	---	---	9.4	---	---
20	7.4	---	---	8.1	---	---	9.0	---	---
21	5.8	---	---	8.1	---	---	8.6	---	---
22	5.1	---	---	7.8	---	---	8.6	---	---
23	6.5	---	---	7.6	---	---	9.4	---	---
24	8.5	--	--	7.6	---	--	9.2	---	---
25	9.0	---	-	7.4	---	-	8.6	-	---
26	8.5	-	---	7.5	---	---	8.1	--	---
27	8.5	---	---	7.2	---	---	8.2	---	---
28	8.0	---	---	7.5	---	---	8.9	---	---
29	7.4	---	---	---	---	---	8.5	---	---
30	7.7	---	---	---	---	---	8.9	---	---
31	8.2	---	---	---	---	---	9.5	---	---
TOTAL	231.0	---	---	210.1	---	---	287.2	---	-

07103700 FOUNTAIN CREEK NEAR COLORADO SPRINGS, CO--Continued

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (M G / L) \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$
		JULY			AUGUST			PTEMBER	
1	190	---	-	52	---	---	25	---	---
2	181	---	---	36	---	---	24	---	---
3	173	---	---	27	---	---	22	-	---
4	171	---	---	29	---	---	22	---	---
5	147	---	---	34	---	---	21	---	---
6	128	---	---	39	---	---	21	---	---
7	125	---	---	24	---	---	27	-	---
8	120	---	---	14	---	--	25	---	--
9	117	---	---	17	---	---	35	137	34
10	113	-	-	17	---	-	29	-	--
11	107	-	---	18	---	---	27	---	---
12	84	---	---	21	---	--	27	---	--
13	77	-	-	21	--	---	25	---	--
14	102	---	---	21	---	---	24	---	---
15	111	---	--	30	--	---	23	--	---
16	113	---	---	28	---	---	23	---	---
17	118	---	---	28	---	---	23	---	--
18	115	---	---	30	---	---	22	-	-
19	125	--	---	76	-	--	21	-	--
20	131	---	--	38	---	---	20	--	--
21	121	--	---	40	---	---	22	-	---
22	107	---	-	55	-	---	21	-	--
23	97	---	---	41	---	---	20	-	---
24	92	--	---	34	---	---	20	-	-
25	75	---	---	34	---	---	22	--	--
26	61	---	---	35	---	---	20	---	-
27	57	---	---	29	--	---	19	-	-
28	46	---	---	29	---	---	18	---	--
29	44	--	---	35	---	---	18	---	---
30	44	---	---	28	---	---	17	---	---
31	44	---	---	30	---	---	---	---	---
TOTAL	3336	---	---	990	---	---	683	---	--

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	$\begin{gathered} \text { SEDI- } \\ \text { MENT, } \\ \text { DIS- } \\ \text { CHARGE, } \\ \text { SUS- } \\ \text { PENDED } \\ \text { (T/DAY) } \end{gathered}$
OCT				
04.	1035	16	321	14
13.	0855	9.7	14	0.37
DEC				
01.	0840	14	42	1.6
29.	0815	6.7	14	0.25
JAN				
19.	0930	6.7	13	0.24
FEB				
23.	0840	7.6	10	0.21
MAR				
23.	0815	8.6	69	1.6
APR				
20.	0830	13	31	1.1
MAY				
25.	0845	170	313	144
JUN				
22.	0900	131	111	39
JUL				
27.	0830	59	26	4.1
AUG				
17.	1010	27	8	0.58
21.	1300	39	26	2.7
SEP				
15.	1135	25	16	1.1
28.	0845	19	14	0.72

07103700 FOUNTAIN CREEK NEAR COLORADO SPRINGS, CO--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07103700 FOUNTAIN CREEK NEAR COLORADO SPRINGS, CO--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGANESE, TOTAL RECOVERABLE (UG/L AS MN)	MANGANESE, DISSOLVED (UG/L AS MN)	NICKEL, TOTAL RECOVERABLE (UG/L AS NI)	NICKEL, DISSOLVED (UG/L AS NI)	ZINC, TOTAL RECOVERABLE (UG/L AS ZN)	$\begin{gathered} \text { ZINC, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { AS ZN) } \end{gathered}$
$\begin{aligned} & \text { OCT } \\ & 26 \ldots . \end{aligned}$	3	<1	110	50	<1	<1	20	<10
$\begin{aligned} & \text { NOV } \\ & 30 \ldots \end{aligned}$	<1	<1	40	20	<1	<1	<10	<10
$\begin{aligned} & \text { JAN } \\ & 18 \ldots \end{aligned}$	<1	<1	40	40	<1	<1	30	<10
$\begin{gathered} \text { FEB } \\ 22 \ldots \end{gathered}$	<1	<1	50	40	<1	<1	<10	<10
21...	<1	<1	40	30	<1	<1	<10	<10
$\begin{aligned} & \text { APR } \\ & \quad 18 \ldots \\ & \operatorname{MAY} \end{aligned}$	<1	<1	50	20	<1	<1	<10	<3
$\begin{aligned} & 16 \ldots . \\ & \text { JUN } \end{aligned}$	2	<1	90	24	<1	<1	<10	<3
20...	2	<1	80	27	<1	<1	<10	<3
JUL $18 .$.	9	2	260	9	1	<1	30	<3
$\begin{aligned} & \text { AUG } \\ & 15 \ldots \end{aligned}$	3	<1	70	20	<1	<1	<10	3
SEP $12 \ldots$.	12	<1	270	<10	2	<1	30	<3

MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPECIFIC CON-DUCTANCE (US/CM)	TEMPERATURE WATER (DEG C)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPERATURE WATER (DEG C)
ОСт 1995					MAY 1996				
11.	1320	17	275	8.5	28...	1345	30	220	7.5
NOV 08.					JUN				
08.	1410	17	261	5.5	27...	1240	12	300	16.0
DEC					JUL				
12...	1530	16	272	4.5	15...	1007	26	--	17.5
JAN 1996					AUG				
11...	1345	13	302	3.0	12...	1028	17	262	12.5
FEB					29...	1935	128	129	13.0
13...	1015	8.7	377	1.5	SEP				
MAR					10...	1340	22	215	13.5

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	$\begin{aligned} & \text { SEDI- } \\ & \text { MENT, } \\ & \text { SUS- } \\ & \text { PENDED } \\ & \text { (MG/L) } \end{aligned}$	$\begin{gathered} \text { SEDI- } \\ \text { MENT, } \\ \text { DIS- } \\ \text { CHARGE, } \\ \text { SUS- } \\ \text { PENDED } \\ \text { (T/DAY) } \end{gathered}$
OCT				
11...	1235	16	26	1.1
APR				
24.	1130	17	3	0.13
MAY				
16...	1115	19	103	5.3
28...	1415	29	58	4.5
JUN				
20...	0745	12	37	1.2
JUL				
18...	0900	27	156	11
AUG				
15...	0800	17	43	2.0
15...	1620	17	408	19
29...	1845	135	6200	2260
SEP 080				
12...	0830	47	248	31

07103700 FOUNTAIN CREEK NEAR COLORADO SPRINGS, CO--Continued

			SUSPEND	EDIMENT DIS	ARGE, WA	TER YEAR OC	R 1995 TO	TEMBER	
DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER		NOVEMBER			DECEMBER		
1	17	-	---	10	---	---	15	---	---
2	17			10	---	--	16	---	
3	17			11	--	--	15	---	---
4	17	---	---	14	---	---	16	---	---
5	17	---	---	18	---	---	17	---	---
6	17	---	---	18	---	---	17	---	---
7	17	---	---	16	---	---	17	---	---
8	17	---	---	16	---	---	16	---	---
9	16	---	---	16	---	---	16	---	---
10	17	---	---	16	---	---	20	---	-
11	16	---	--	17	--	---	16	-	---
12	18	---	---	20	---	---	16	---	--
13	21	---	---	17	---	---	16	---	--
14	20	---	---	18	--	---	18	-	--
15	19	---	-	19	---	---	18	---	---
16	18	---	---	19	---	---	19	---	---
17	14	---	---	19	---	---	19	---	---
18	12	--	--	19	---	---	14	---	---
19	12	---	---	18	---	---	11	---	---
20	12	---	---	16	---	---	12	---	---
21	12	---	-	15	---	--	13	-	---
22	12	---	---	15	---	---	13	---	---
23	14	---	---	14	---	---	14	---	---
24	16	---	---	15	---	---	15	---	---
25	19	-	---	15	---	---	17	---	---
26	13	---	--	16	---	-	17	---	---
27	12	---	---	15	---	---	16	--	--
28	12	---	---	15	---	---	17	--	--
29	11	---	---	16	---	---	15	--	--
30	11	---	---	15	---	---	16	--	---
31	10	---	-	--	---	--	15	---	-
TOTAL	473	-	---	478	---	---	492	---	---
	JANUARY			FEBRUARY			MARCH		
1	15	---	---	15	---	---	10	-	---
2	13	---	---	15	---	---	10	---	---
3	18	---	---	15	---	---	10	--	---
4	19	---	---	14	-	---	9.7	--	---
5	19	---	---	14	-	---	9.4	---	---
6	20	---	---	12	---	---	9.6	---	---
7	24	---	---	10	--	--	11	---	---
8	24	---	--	10	---	---	9.9	---	--
9	21	---	--	11	---	---	10	---	--
10	18	---	---	11	---	---	10	-	---
11	14	---	---	11	---	-	9.6	---	---
12	15	---	---	11	---	---	9.7	---	---
13	15	-	---	9.4	---	---	9.7	---	---
14	15	--	---	8.4	---	---	11	---	---
15	14	--	---	8.6	-	-	9.8	---	-
16	14	---	---	8.9	---	--	9.8	-	---
17	17	---	---	8.8	---	---	10	---	--
18	15	---	---	11	---	---	10	---	---
19	15	--	---	11	---	---	10	---	---
20	15	---	---	9.7	---	---	10	---	---
21	17	---	--	8.6	---	---	10	---	---
22	14	---	---	10	---	---	11	---	--
23	9.3	---	---	9.7	---	---	11	---	--
24	9.8	---	--	9.5	---	---	10	---	---
25	12	---	---	9.4	---	---	9.2	---	---
26	14	--	--	9.2	--	---	12	--	---
27	9.0	---	---	9.5	---	---	11	---	---
28	13	---	---	9.1	---	---	11	---	---
29	13	---	---	9.8	---	--	11	-	---
30	13	---	---	---	---	---	11	-	---
31	15	---	---	---	---	---	11	---	---
TOTAL	479.1	---	---	309.6	---	---	317.4	---	---

07103700 FOUNTAIN CREEK NEAR COLORADO SPRINGS, CO--Continued

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$
		APRIL			MAY			JUNE	
1	11	---	---	16	---	---	18	---	---
2	10	---	---	15	---	---	17	---	--
3	12	---	---	15	---	---	16	---	---
4	12	---	---	15	---	---	16	---	---
5	13	---	---	16	---	---	15	---	---
6	12	---	---	16	---	---	13	---	---
7	12	---	---	16	---	---	12	---	---
8	12	---	---	16	---	---	11	---	---
9	14	---	---	17	---	---	10	---	---
10	17	---	---	21	---	---	11	---	---
11	17	---	---	19	---	---	12	---	---
12	16	---	---	16	---	---	12	---	---
13	17	---	--	15	---	---	15	---	---
14	18	---	---	15	--	---	15	---	---
15	16	---	---	16	---	---	19	---	---
16	17	---	---	19	---	---	22	---	---
17	18	---	---	19	---	---	18	---	---
18	18	---	---	16	---	---	15	---	---
19	18	---	---	16	-	-	12	---	---
20	16	---	---	17	---	---	12	---	---
21	15	---	---	17	---	-	14	---	---
22	15	--	---	17	---	--	16	-	-
23	16	---	---	17	---	---	15	---	---
24	16	---	---	18	---	---	13	---	---
25	16	---	---	68	670	271	12	---	---
26	14	---	---	71	407	96	11	---	---
27	15	---	---	36	---	---	12	---	---
28	16	--	-	29	--	---	13	-	-
29	15	---	---	25	---	---	11	---	---
30	17	---	---	21	---	---	14	---	---
31	--	---	---	18	---	---	---	---	---
TOTAL	451	---	---	668	---	---	422	---	---
		JULY			AUGUST			TEMBER	
1	15	---	--	36	461	599	41	---	---
2	13	---	---	42	2010	440	33	---	---
3	13	---	---	25	---	---	29	---	---
4	13	---	---	23	---	---	27	---	---
5	14	---	---	20	---	---	24	---	---
6	14	---	---	19	---	---	29	---	---
7	13	---	---	20	---	---	30	---	---
8	13	---	---	23	189	28	23	---	---
9	60	2970	1850	21	---	---	23	---	---
10	63	1150	340	19	---	--	22	---	---
11	29	--	---	17	---	---	30	---	---
12	41	453	82	16	---	---	40	---	---
13	40	---	---	16	---	---	26	---	---
14	30	---	---	16	--	---	26	---	---
15	26	---	-	18	194	12	28	---	-
16	21	-	--	16	---	---	26	---	---
17	33	953	456	16	--	---	36	1420	431
18	54	424	93	15	--	-	35	---	---
19	51	---	---	18	---	---	32	---	---
20	38	--	-	21	---	---	29	---	---
21	38	---	---	16	--	--	28	--	---
22	43	---	---	17	---	---	29	---	---
23	42	---	---	30	---	---	34	---	---
24	38	---	---	32	---	--	33	---	-
25	33	---	---	20	---	---	29	---	---
26	59	2640	897	18	---	---	30	--	--
27	28	---	---	27	---	---	32	---	---
28	24	---	---	34	---	---	31	---	---
29	22	--	---	61	2000	718	31	--	-
30	26	---	---	65	903	217	28	---	---
31	24	-	--	52	---	---	---	---	---
TOTAL	971	---	---	789	---	---	894	---	--

07103703 CAMP CREEK AT GARDEN OF THE GODS, CO

LOCATION.--Lat $38^{\circ} 52^{\prime} 377^{\prime \prime}$, long $104^{\circ} 52^{\prime} 20$ ", in $\mathrm{SE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec.34, T. 13 S., R. 67 W., El Paso County, Hydrologic Unit 11020003, on right bank, 70 ft downstream from county road bridge at east entrance to Garden of the Gods Park, and 1.9 mi upstream from mouth. DRAINAGE AREA.-- $9.45 \mathrm{mi}^{2}$.

PERIOD OF RECORD.--April 1992 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $6,310 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated daily discharges. Records fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	ОСт	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	. 00	. 00	. 00	. 00	. 00	. 82	. 00	. 00	. 00	. 00	. 00
2	. 00	. 00	. 00	. 00	. 00	. 00	. 67	. 00	. 00	. 00	. 00	. 00
3	. 00	. 00	. 00	. 00	. 00	. 00	. 33	. 00	. 00	. 00	. 00	. 00
4	. 00	. 00	. 00	. 00	. 00	. 00	. 26	. 00	. 01	. 00	. 00	. 00
5	. 00	. 00	. 00	. 00	. 00	. 00	. 27	. 00	. 00	. 00	. 00	. 00
6	. 00	. 00	. 00	. 00	. 00	. 00	. 23	. 00	. 00	. 00	. 00	. 00
7	. 00	. 00	. 00	. 00	. 00	. 00	. 24	. 00	. 00	. 00	. 00	. 00
8	. 00	. 00	. 00	. 00	. 00	. 00	. 24	. 00	. 00	. 00	. 00	. 00
9	. 00	. 00	. 00	. 00	. 00	. 00	. 24	. 01	. 00	. 19	. 00	. 00
10	. 00	. 00	. 00	. 00	. 00	. 00	. 26	. 01	. 00	. 02	. 00	. 00
11	. 00	. 00	. 00	. 00	. 00	. 00	. 19	. 00	. 00	. 00	. 00	. 00
12	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 01	. 00	. 00
13	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 00
14	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
15	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00
16	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
17	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
18	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
19	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
20	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
21	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
22	. 00	. 00	. 00	. 00	. 00	. 57	. 00	. 00	. 00	. 00	. 00	. 00
23	. 00	. 00	. 00	. 00	. 00	1.3	. 00	. 00	. 00	. 00	. 00	. 00
24	. 00	. 00	. 00	. 00	. 00	1.5	. 00	. 00	. 00	. 00	. 00	. 00
25	. 00	. 00	. 00	. 00	. 00	1.7	. 00	. 19	. 00	. 00	. 00	. 00
26	. 00	. 00	. 00	. 00	. 00	1.6	. 00	. 07	. 00	. 00	. 00	. 00
27	. 00	. 00	. 00	. 00	. 00	1.3	. 00	. 00	. 00	. 00	. 00	. 00
28	. 00	. 00	. 00	. 00	. 00	. 94	. 00	. 01	. 00	. 00	. 00	. 00
29	. 00	. 00	. 00	. 00	. 00	. 94	. 00	. 09	. 00	. 00	. 00	. 00
30	. 00	. 00	. 00	. 00	-	. 93	. 00	. 06	. 00	. 00	. 00	. 00
31	. 00	---	. 00	. 00	--	. 93	-	. 00	---	. 00	. 00	---
TOTAL	0.00	0.00	0.00	0.00	0.00	11.71	3.81	0.44	0.02	0.22	0.00	0.00
MEAN	. 000	. 000	. 000	. 000	. 000	. 38	. 13	. 014	. 001	. 007	. 000	. 000
MAX	. 00	. 00	. 00	. 00	. 00	1.7	. 82	. 19	. 01	. 19	. 00	. 00
MIN	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
AC-FT	. 00	. 00	. 00	. 00	. 00	23	7.6	. 9	. 04	. 4	. 00	. 00

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1996, BY WATER YEAR (WY)

[^48]b-From rating curve extended above $900 \mathrm{ft}^{3} / \mathrm{s}$ on the basis of contracted-opening measurement.

07103747 MONUMENT CREEK AT PALMER LAKE, CO

WATER-QUALITY RECORDS

LOCATION.--Lat $39^{\circ} 06^{\prime} 07^{\prime \prime}$, long $104^{\circ} 53^{\prime} 277^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{sec} .9$, T. 11 S., R. 67 W., El Paso County, Hydrologic Unit 11020003, on left bank 0.9 mi upstream from Monument Lake, 1.5 mi downstream from North Monument Creek, and 1.9 mi southeast of town of Palmer Lake.

PERIOD OF RECORD.--April 1977 to September 1980; January 1984 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

		DIS-					OXYGEN	COLI-	STREP -		
DATE	TIME	CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	$\begin{gathered} \text { PH } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPER- ATURE WATER (DEG C)	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	$\begin{aligned} & \text { DEMAND, } \\ & \text { BIO- } \\ & \text { CHEM- } \\ & \text { ICAL, } \\ & 5 \text { DAY } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { FORM, } \\ & \text { FECAL, } \\ & 0.7 \\ & \text { UM-MF } \\ & \text { (COLS. / } \\ & 100 \mathrm{ML} \text {) } \end{aligned}$	$\begin{gathered} \text { TOCOCCI } \\ \text { FECAL, } \\ \text { KF AGAR } \\ \text { (COLS. } \\ \text { PER } \\ 100 \text { ML }) \end{gathered}$	$\begin{aligned} & \text { CALCIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS CA) } \end{aligned}$	MAGNESIUM, DISSOLVED (MG/L AS MG)
OCT											
25.	1000	2.2	172	7.3	3.0	9.8	0.5	--	150	21	3.5
NOV											
29.	1030	2.1	170	7.7	1.5	10.7	0.2	>120	48	20	3.5
JAN											
17.	1030	1.1	195	7.9	1.5	10.4	0.2	<1	K15	23	4.5
FEB											
21.	1100	1.1	186	7.9	5.5	9.2	0.2	K120	140	23	4.2
MAR											
20.	0915	1.0	188	7.9	1.0	10.7	0	23	K10	20	3.7
APR											
17.	0945	8.7	117	7.9	4.5	9.8	0.4	K11	27	13	2.0
MAY											
15.	1000	4.5	128	7.8	12.5	8.3	0.2	K3	24	15	2.3
JUN											
19.	0845	3.7	139	8.0	14.0	8.3	0.8	36	37	17	2.8
JUL 0.6											
17.	0915	0.67	195	8.1	17.5	7.1	0.6	68	84	25	4.4
AUG											
14...	0900	0.27	213	8.0	16.0	7.7	0.3	60	160	26	4.5
SEP											
11...	0945	0.31	225	8.1	14.5	9.1	0.1	120	48	28	4.8

DATE	$\begin{gathered} \text { ALKA- } \\ \text { LINITY } \\ \text { LAB } \\ \text { (MG/L } \\ \text { AS } \\ \text { CACO3) } \end{gathered}$	$\begin{aligned} & \text { SULFATE } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS SO4) } \end{aligned}$	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	$\begin{aligned} & \text { FLUO- } \\ & \text { RIDE, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS F) } \end{aligned}$	```RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)```	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	NITROGEN, AMMONIA DISSOLVED (MG/L AS N)	NITROGEN, AMMONIA + ORGANIC TOTAL (MG/L AS N)	```PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)```
$\begin{aligned} & \text { OCT } \\ & 25 \ldots . \end{aligned}$	61	7.1	7.0	1.7	3	<0.01	0.05	<0.015	<0.2	<0.01
$\begin{aligned} & \text { NOV } \\ & 29 . . \end{aligned}$	60	5.5	6.4	1.8	2	<0.01	0.11	<0.015	<0.2	<0.01
JAN $17 \text {. . . }$	68	8.6	7.6	1.8	3	<0.01	0.16	<0.015	0.2	<0.01
$\begin{aligned} & \text { FEB } \\ & 21 \ldots \end{aligned}$	67	10	8.1	1.6	5	<0.01	0.11	<0.015	<0.2	0.01
$\begin{aligned} & \text { MAR } \\ & 20 . \ldots \end{aligned}$	61	10	8.3	1.8	5	<0.01	0.12	<0.015	<0.2	<0.01
$\begin{aligned} & \text { APR } \\ & 17 . \ldots \end{aligned}$	39	7.5	3.2	1.7	34	<0.01	0.05	<0.015	0.2	<0.01
$\begin{aligned} & \text { MAY } \\ & 15 \ldots . \end{aligned}$	46	6.5	3.5	1.7	3	<0.01	<0.05	<0.015	<0.2	<0.01
$\begin{aligned} & \text { JUN } \\ & 19 \ldots \end{aligned}$	52	5.6	4.4	1.8	<1	<0.01	<0.05	0.02	<0.2	<0.01
JUL $17 . .$	82	4.3	6.1	2.1	12	<0.01	0.08	0.04	<0.2	<0.01
$\begin{aligned} & \text { AUG } \\ & 14 . \ldots \end{aligned}$	89	3.0	7.3	1.8	5	<0.01	<0.05	<0.015	<0.2	<0.01
$\begin{aligned} & \text { SEP } \\ & 11 \ldots \end{aligned}$	96	4.1	6.6	1.9	2	<0.01	<0.05	<0.015	<0.2	<0.01

K-Based on non-ideal colony count.

07103747 MONUMENT CREEK AT PALMER LAKE, CO--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07103780 MONUMENT CREEK ABOVE NORTH GATE BOULEVARD, AT U.S. AIR FORCE ACADEMY, CO

LOCATION.--Lat $39^{\circ} 01{ }^{\prime} 52^{\prime \prime}$, long $104^{\circ} 50^{\prime} 52^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{SW}^{1} / 4 \mathrm{sec} .1$, T. 12 S., R. 67 W., El Paso County, Hydrologic Unit 11020003, on right bank, at U.S. Air Force Academy, 50 ft upstream from Denver and Rio Grande Western Railroad bridge, 0.8 mi upstream from North Gate Boulevard, and 1.5 mi downstream from Beaver Creek.

DRAINAGE AREA.--81.7 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1985 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $6,640 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Storage and diversions upstream from station for municipal supply of Monument and Palmer Lake.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.2	6.2	5.4	4.0	e3. 5	e6.0	8.3	15	22	4.9	5.0	3.9
2	9.3	5.9	4.8	e4.0	e3.5	e7.0	15	16	20	4.5	5.4	3.8
3	11	6.9	4.8	e4.0	e3. 5	7.4	14	15	16	4.3	4.9	3.7
4	12	13	6.6	e3. 8	e3.7	6.3	16	14	15	4.6	4.3	3.3
5	12	17	4.5	e3.6	e4.0	6.8	15	13	15	4.4	3.9	3.2
6	11	12	4.3	e4.0	e4.6	9.2	12	13	14	4.0	3.4	3.5
7	10	5.6	4.6	e4.2	5.2	e8.0	11	13	12	3.9	3.4	3.6
8	8.3	6.8	e5.2	e4.5	5.2	9.5	6.0	12	6.2	4.1	3.9	3.2
9	6.0	9.3	e5.4	4.6	5.9	9.1	6.0	11	5.8	6.4	3.8	3.1
10	5.8	6.6	e5.4	4.4	5.0	8.0	7.1	11	5.6	7.6	3.4	3.6
11	5.5	8.1	5.4	e5.0	6.0	6.1	10	10	5.3	6.4	3.1	3.9
12	5.7	8.7	5.5	e5.3	5.9	5.4	13	10	7.6	6.3	3.0	6.1
13	5.1	5.3	e6.0	e5.6	5.8	5.3	16	9.9	17	11	2.8	4.5
14	4.1	6.3	e7.0	e5.8	4.4	5.8	16	10	17	9.3	2.8	4.5
15	4.1	6.2	e7.0	e5.6	3.9	6.6	16	8.9	17	7.2	3.2	4.2
16	5.1	7.4	e6. 6	e5.4	5.8	6.2	19	9.1	16	4.5	3.3	3.9
17	5.2	5.7	e6. 6	5.0	4.0	6.3	16	8.9	15	4.0	3.3	4.1
18	5.4	6.9	6.6	e5.0	5.3	7.4	14	8.2	9.8	5.3	3.4	5.1
19	5.0	6.0	e6. 6	e4.7	6.5	13	16	7.8	5.8	5.3	3.6	4.9
20	7.5	6.2	e6. 5	e4.5	4.6	12	12	7.8	5.5	3.6	4.2	4.0
21	11	7.0	e6. 3	e5.0	4.1	10	13	7.6	6.2	3.7	3.6	3.7
22	9.9	12	6.1	e5.4	7.7	7.3	13	7.5	5.4	3.2	3.5	3.5
23	10	13	8.3	e5.8	4.9	6.6	13	7.7	5.1	2.9	4.0	3.7
24	11	13	e8.0	e6.0	4.8	7.0	14	8.3	5.2	3.0	3.8	4.2
25	9.8	13	8.5	e6.0	6.1	14	11	15	4.9	3.5	3.6	4.6
26	8.7	14	9.4	e6.0	6.9	12	14	42	5.2	22	3.5	4.5
27	6.0	11	9.7	e6.0	e6. 2	5.9	14	30	5.8	12	3.9	5.9
28	5.7	5.7	7.8	e5.8	e6.0	5.4	16	36	6.1	7.1	4.0	5.5
29	6.4	5.6	6.2	e5.2	e6.0	5.6	15	48	5.3	6.4	4.2	6.0
30	8.9	5.8	7.0	e4.5	---	5.4	15	43	5.5	6.3	6.6	7.0
31	10	---	3.7	e4.0	---	5.3	---	26	---	5.8	4.3	---
TOTAL	242.7	256.2	195.8	152.7	149.0	235.9	396.4	494.7	302.3	187.5	119.1	128.7
MEAN	7.83	8.54	6.32	4.93	5.14	7.61	13.2	16.0	10.1	6.05	3.84	4.29
MAX	12	17	9.7	6.0	7.7	14	19	48	22	22	6.6	7.0
MIN	4.1	5.3	3.7	3.6	3.5	5.3	6.0	7.5	4.9	2.9	2.8	3.1
AC-FT	481	508	388	303	296	468	786	981	600	372	236	255

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 1996, BY WATER YEAR (WY)

MEAN	4.66	5.50	4.68	4.18	4.59	7.88	21.3	40.6	21.2	8.88	5.68	4.48
MAX	9.71	9.37	9.00	9.51	8.85	14.8	46.2	105	60.4	30.6	13.0	12.7
(WY)	1986	1986	1986	1986	1986	1992	1992	1985	1995	1995	1985	1985
MIN	.95	1.63	1.54	1.08	1.81	2.38	7.04	6.57	4.49	1.04	.90	1.16
(WY)	1990	1990	1990	1990	1990	1991	1989	1989	1989	1989	1989	1989

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR

```
ANNUAL TOTAL
ANNUAL MEAN 
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSIANIANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
```

8215.6

8215.6		
22.5		
219	May	21
$a_{2} .8$	Feb	4
2.8	Feb	7
16300		
58		
8.4		
3.5		

2861.0		
7.82		
48	May 29	
$\mathrm{~b}_{2} .8$	Aug 13	
3.1	Aug 11	
194	Jul 26	
5.12	Jul 26	
5670		
14		
6.0		
3.7		

WATER YEARS 1985 - 1996

[^49]
07103780 MONUMENT CREEK ABOVE NORTH GATE BOULEVARD, AT U.S. AIR FORCE ACADEMY, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 1984 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US / CM)	$\begin{gathered} \text { PH } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPER- ATURE WATER (DEG C)	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	OXYGEN DEMAND, BIO-CHEMICAL, 5 DAY (MG/L)	$\begin{aligned} & \text { COLI- } \\ & \text { FORM, } \\ & \text { FECAL, } \\ & 0.7 \\ & \text { UM-MF } \\ & \text { (COLS./ } \\ & 100 \mathrm{ML}) \end{aligned}$	$\begin{aligned} & \text { STREP- } \\ & \text { TOCOCCI } \\ & \text { FECAL, } \\ & \text { KF AGAR } \\ & \text { (COLS. } \\ & \text { PER } \\ & 100 \mathrm{ML} \text {) } \end{aligned}$	$\begin{aligned} & \text { CALCIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS CA) } \end{aligned}$	$\begin{aligned} & \text { MAGNE- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS MG) } \end{aligned}$
OCT											
25.	1210	11	275	8.0	7.0	9.5	2.1	--	75	29	4.9
$\begin{gathered} \text { NOV } \\ 29 . \end{gathered}$	1200	5.8	325	8.0	5.5	9.9	1.6	26	K10	30	5.1
JAN $17 \text {. . }$	1215	4.8	343	7.9	2.0	10.2	1.1	K8	29	33	5.7
FEB $21 .$.	1245	3.5	370	8.2	10.0	8.6	1.1	57	57	32	5.3
MAR 20	1045	11	267	8.2	4.0	10.3	1.2	K8	26	28	4.7
APR 17.	1145	22	211	8.1	9.0	9.3	1.8	48	40	22	3.3
MAY $15 .$	1215	9.1	217	8.8	19.0	8.0	1.3	K9	21	22	3.4
JUN 19..	1100	5.4	257	8.2	19.0	7.7	1.0	56	28	26	4.1
JUL $17 .$	1115	3.5	330	8.5	22.5	7.8	1.2	120	K33	29	4.6
$\begin{aligned} & \text { AUG } \\ & 14 . \ldots \end{aligned}$	1115	2.7	342	8.6	21.0	8.0	1.1	K38	K36	28	4.7
$\begin{aligned} & \text { SEP } \\ & 11 \ldots \end{aligned}$	1130	3.5	366	8.5	18.0	8.8	0.2	73	70	31	5.2

07103780 MONUMENT CREEK ABOVE NORTH GATE BOULEVARD, AT U.S. AIR FORCE ACADEMY, CO--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07103797 WEST MONUMENT CREEK BELOW RAMPART RESERVOIR, CO

LOCATION.--Lat $38^{\circ} 58^{\prime} 30^{\prime \prime}$, long $104^{\circ} 57^{\prime} 18^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec.26, T. 12 S., R. 68 W., El Paso County, Hydrologic Unit 11020003, on right bank 0.1 mi below Wildcat Gulch and 0.5 mi below Rampart Reservoir.
DRAINAGE AREA.--7.29 mi ${ }^{2}$.
PERIOD OF RECORD.--November 1993 to current year.
GAGE.--Water-stage recorder and satellite telemetry. Elevation of gage is $8,710 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by storage reservoir and transmountain diversions. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.6	4.7	8.0	8.2	9.0	7.7	8.6	11	15	21	13	7.8
2	4.6	5.1	8.0	8.2	9.1	7.9	8.9	11	17	20	13	7.7
3	4.9	6.6	8.0	8.1	10	8.0	8.6	15	20	20	13	9.0
4	4.9	6.6	8.0	8.1	11	8.1	8.9	22	21	19	12	10
5	4.4	6.7	7.9	8.5	10	8.1	8.9	23	21	19	12	10
6	4.4	6.7	7.9	8.5	9.8	7.7	9.1	24	20	14	12	11
7	4.6	6.1	7.8	8.7	9.5	7.9	8.8	23	20	14	12	9.8
8	4.5	5.4	7.7	8.8	9.8	8.1	9.0	23	19	15	12	8.6
9	4.4	5.3	7.8	8.9	9.4	8.2	13	23	19	15	12	11
10	4.3	5.5	8.1	8.8	9.1	8.7	14	22	18	13	12	11
11	4.3	5.8	8.3	8.6	9.2	8.9	14	14	19	10	12	12
12	4.3	5.8	8.3	8.5	9.1	9.0	11	14	18	9.2	11	10
13	4.3	5.8	8.3	8.6	9.1	9.4	8.7	14	17	9.3	11	5.5
14	4.3	5.8	8.1	8.4	9.2	9.6	8.3	14	13	11	11	5.8
15	4.2	5.8	7.9	8.6	9.3	9.7	6.4	15	11	13	12	7.0
16	3.9	5.8	8.0	8.7	9.5	9.7	4.5	23	6.2	13	12	6.5
17	3.8	5.8	8.0	8.6	9.5	9.7	4.4	22	6.2	13	12	5.4
18	3.8	5.8	8.0	8.6	9.8	9.7	6.1	26	8.6	13	13	5.1
19	3.8	5.8	8.0	11	9.9	9.5	7.9	27	12	13	13	4.8
20	3.8	5.8	8.0	13	9.8	9.4	8.1	23	17	11	13	4.6
21	3.8	5.8	8.0	13	9.7	9.6	8.2	23	19	9.6	13	4.6
22	3.7	5.9	8.0	14	9.5	9.8	8.3	23	13	9.2	13	4.6
23	3.6	5.9	8.0	15	6.9	9.7	9.5	22	8.0	9.0	13	4.7
24	3.6	5.9	8.0	14	3.7	9.4	18	21	10	9.5	10	4.8
25	3.5	7.1	7.9	8.0	4.6	9.4	19	12	10	10	6.0	4.7
26	3.5	8.1	7.8	8.0	6.8	9.5	19	5.7	10	12	5.9	4.6
27	4.0	8.1	8.0	8.0	7.1	9.6	19	5.6	11	13	7.4	4.5
28	5.5	8.0	8.2	7.9	7.2	9.6	15	5.3	12	13	10	4.2
29	5.5	8.0	8.2	8.0	7.2	9.3	10	8.7	19	13	10	4.1
30	5.7	8.0	8.2	8.0	-	9.2	11	13	23	13	10	4.1
31	5.8	---	8.4	8.8	--	8.9	-	14	-	13	8.9	---
TOTAL	134.3	187.5	248.8	290.1	253.8	279.0	314.2	542.3	453.0	409.8	350.2	207.5
MEAN	4.33	6.25	8.03	9.36	8.75	9.00	10.5	17.5	15.1	13.2	11.3	6.92
MAX	5.8	8.1	8.4	15	11	9.8	19	27	23	21	13	12
MIN	3.5	4.7	7.7	7.9	3.7	7.7	4.4	5.3	6.2	9.0	5.9	4.1
AC-FT	266	372	493	575	503	553	623	1080	899	813	695	412

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 1996, BY WATER YEAR (WY)

| MEAN | 7.20 | 8.40 | 8.89 | 8.31 | 8.05 | 8.58 | 9.14 | 11.7 | 11.0 | 14.3 | 11.6 | 8.24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MAX | 10.1 | 10.6 | 9.68 | 9.36 | 8.75 | 10.7 | 10.5 | 17.5 | 15.1 | 20.6 | 15.7 | 12.2 |
| (WY) | 1995 | 1995 | 1994 | 1996 | 1996 | 1994 | 1996 | 1996 | 1996 | 1994 | 1994 | 1994 |
| MIN | 4.33 | 6.25 | 8.03 | 7.66 | 7.04 | 6.02 | 6.97 | 6.98 | 8.10 | 9.19 | 7.72 | 5.62 |
| (WY) | 1996 | 1996 | 1996 | 1995 | 1995 | 1995 | 1995 | 1995 | 1995 | 1995 | 1995 | 1995 |

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1994 - 1996

ANNUAL TOTAI
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

2553.0			
6.99			
19	Jul	30	
$a_{3} .5$	Oct	25	
3.6	Oct	20	
5060			
10			
6.2			
4.4			

3670.5		
10.0		
27	May	19
$\mathrm{a}_{3} .5$	Oct	25
3.6	Oct	20
$\mathrm{~b}_{28}$	May	16
$\mathrm{~b}_{5} .19$	May	16
7280		
18		
8.9		
4.6		

8.97			
10.0			1996
7.92			1995
29	Jul 10	1994	
1.7	Dec 22	1994	
3.6	Oct 20	1995	
32	Jul 10	1994	
5.26	Jul 10	1994	
650			
16			
8.9			
4.9			

07103800 WEST MONUMENT CREEK AT U.S. AIR FORCE ACADEMY, CO

LOCATION.--Lat $38^{\circ} 58^{\prime} 144^{\prime \prime}$, long $104^{\circ} 54^{\prime} 08^{\prime \prime}$, in $\mathrm{SW}^{1 / 4} \mathrm{SW}^{1 / 1} / 4 \mathrm{sec} .28$, T. 12 S., R. 67 W., El Paso County, Hydrologic Unit 11020003, on left bank 500 ft upstream from diversion to city of Colorado Springs water-treatment plant, 2.7 mi south of U.S. Air Force Academy chapel, and 4.4 mi upstream from mouth.
DRAINAGE AREA.--14.9 mi ${ }^{2}$.
PERIOD OF RECORD.--May 1970 to current year.
GAGE.--Water-stage recorder with satellite telemetry and concrete control. Elevation of gage is $7,180 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by trans-mountain diversions from Colorado River basin, storage reservoirs, and operation of water-supply system. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.3	1.1	1.2	. 60	e. 54	. 65	. 83	1.0	1.6	. 66	. 63	. 70
2	1.3	1.1	1.2	. 59	e. 50	. 59	. 89	. 97	1.4	. 62	. 66	. 69
3	1.2	1.7	1.2	. 61	e. 50	. 60	. 87	. 97	1.3	. 61	. 69	. 66
4	1.3	1.0	1.2	. 65	e. 50	. 61	. 85	. 96	1.3	. 60	. 68	. 63
5	1.2	1.1	1.2	. 65	e. 55	. 62	. 88	. 96	1.2	. 59	. 64	. 64
6	1.2	1.1	1.2	. 65	e. 55	e. 60	. 91	. 96	1.1	. 57	. 62	. 76
7	1.2	1.1	1.2	. 65	. 55	e. 60	. 93	. 96	1.1	. 56	. 63	. 88
8	1.2	1.1	e1.1	. 63	. 54	e. 60	1.0	. 94	1.0	. 59	. 65	. 75
9	1.2	1.1	e1.1	. 61	. 54	. 62	1.0	. 92	1.0	. 69	. 67	. 70
10	1.2	1.1	e1.1	. 65	. 54	. 67	1.1	. 93	. 98	1.0	. 64	. 69
11	1.1	1.1	1.1	. 65	. 54	. 68	1.1	. 92	. 99	. 90	. 60	. 76
12	1.1	1.1	1.1	. 71	. 54	. 66	1.0	. 88	. 97	. 71	. 58	1.2
13	1.1	1.1	1.1	. 83	. 51	. 68	1.1	. 83	1.0	. 68	. 57	. 92
14	1.1	1.1	1.1	. 85	. 49	. 72	. 99	. 82	1.0	. 62	. 58	. 89
15	1.1	1.1	1.1	. 79	. 49	. 75	1.1	. 80	1.1	. 61	. 60	. 87
16	1.1	1.1	1.0	. 81	. 50	. 73	1.2	. 78	1.1	. 61	. 65	. 83
17	1.1	1.1	. 99	e. 80	. 49	. 73	1.2	. 76	. 96	. 58	. 60	. 88
18	1.1	1.1	e. 90	e. 80	. 52	e. 80	1.2	. 75	. 89	. 69	. 59	. 99
19	1.1	1.1	e. 90	e. 80	. 54	e1.0	1.1	. 75	. 84	. 76	. 91	. 97
20	1.1	1.1	e. 90	e. 80	. 54	e. 90	1.1	. 77	. 82	. 71	. 98	. 89
21	1.1	1.2	e. 90	e. 78	. 55	. 75	1.0	. 75	. 84	. 87	. 75	. 85
22	1.1	1.2	e. 85	. 72	. 59	. 84	1.0	. 72	. 86	. 69	. 70	. 82
23	1.2	1.2	e. 83	e. 75	. 55	. 86	1.0	. 71	. 80	. 66	. 81	. 86
24	1.2	1.2	e. 80	e. 70	e. 70	. 78	1.1	. 75	. 76	. 65	. 86	. 93
25	1.2	1.2	e. 80	e. 70	. 79	1.1	1.1	1.9	. 72	. 65	. 77	. 85
26	1.2	1.2	e. 75	e. 70	. 68	. 92	. 99	5.1	. 70	. 75	. 86	. 87
27	1.2	1.2	e. 72	e. 70	e. 60	. 84	. 97	3.9	. 71	. 84	. 73	. 92
28	1.1	1.2	e. 70	e. 70	e. 60	. 81	. 98	2.2	. 69	. 70	. 74	. 92
29	1.1	1.2	e. 70	. 65	e. 60	. 81	. 96	2.0	. 65	. 72	. 75	. 89
30	1.1	1.3	e. 65	. 65	---	. 82	. 98	1.8	. 66	. 69	. 88	. 85
31	1.1	-	e. 62	e. 60	---	. 80	---	1.7	---	. 67	. 76	---
TOTAL	35.9	34.6	30.21	21.78	16.13	23.14	30.43	39.16	29.04	21.25	21.78	25.06
MEAN	1.16	1.15	. 97	. 70	. 56	. 75	1.01	1.26	. 97	. 69	. 70	. 84
MAX	1.3	1.7	1.2	. 85	. 79	1.1	1.2	5.1	1.6	1.0	. 98	1.2
MIN	1.1	1.0	. 62	. 59	. 49	. 59	. 83	. 71	. 65	. 56	. 57	. 63
AC-FT	71	69	60	43	32	46	60	78	58	42	43	50

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 1996, BY WATER YEAR (WY)

[^50]
07103980 COTTONWOOD CREEK AT WOODMEN ROAD NEAR COLORADO SPRINGS, CO

LOCATION.--Lat $38^{\circ} 56^{\prime} 22^{\prime \prime}$, long $104^{\circ} 44^{\prime} 26^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec. 11 , T. 13 S., R. 66 W., El Paso County, Hydrologic Unit 11020003, on right bank, 100 ft downstream from Woodmen Road, 4.0 mi east of Interstate 25 , and 5.0 mi upstream from mouth.
DRAINAGE AREA.-- $10.3 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--May 1992 to current year.
REVISED RECORDS.--WDR CO-93-1: Drainage area.
GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is $6,680 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for winter period and estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemenal Water-Quality Data For Gaging Stations" section of this report.
REVISIONS.--The maximum discharge for water year 1995 has been revised to $428 \mathrm{ft}^{3} / \mathrm{s}$, June 2, 1995, gage height, 4.10 ft .
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.9	2.0	. 38	. 61	. 20	e. 40	e. 50	e. 30	1.1	1.4	e25	e. 52
2	2.2	1.5	e. 36	e. 55	e. 17	e. 50	e. 50	e. 30	. 54	1.3	e2.0	e. 50
3	2.2	1.6	. 34	. 46	e. 15	. 56	e. 50	e. 30	. 62	1.1	e1.2	e. 46
4	3.1	1.5	. 31	. 26	e. 18	. 37	e. 50	e. 30	. 55	. 95	e. 90	e. 43
5	2.0	1.4	e. 30	. 26	e. 25	. 26	e. 50	e. 30	. 37	1.5	e. 75	e. 42
6	1.6	1.3	. 34	e. 30	. 35	e1.0	e. 50	e. 30	. 31	1.5	e. 70	e1.2
7	2.1	1.2	. 50	e. 35	. 49	1.4	e. 50	e. 30	. 43	1.2	e. 70	e. 57
8	1.9	1.1	. 56	e. 38	. 46	e1.0	e. 50	e. 30	. 43	1.5	e. 70	e. 48
9	2.1	1.1	e. 70	. 39	. 90	. 67	e. 50	2.1	. 25	18	e. 85	e. 56
10	2.1	1.2	. 99	. 43	. 78	. 52	e. 50	1.5	. 47	11	e. 80	. 82
11	1.7	1.3	. 87	e. 45	. 81	. 42	e. 68	. 48	. 45	1.4	e. 68	7.0
12	1.8	. 95	. 76	e. 40	. 75	. 41	e. 66	e. 40	. 84	1.5	e. 65	1.5
13	1.6	. 90	. 59	. 31	. 79	. 57	e. 70	e. 42	31	1.8	e. 60	1.4
14	1.2	. 80	. 41	. 28	1.1	1.1	1.9	e. 38	25	1.7	e8.0	. 83
15	1.3	. 71	. 33	. 34	. 76	. 70	. 73	e. 40	5.8	1.7	e15	2.0
16	1.2	. 63	. 55	. 65	e. 80	. 64	. 77	e. 48	1.9	1.2	e1.5	. 62
17	1.0	. 56	. 66	e. 65	1.1	. 57	. 69	e. 45	4.3	11	e1.0	13
18	1.2	. 43	. 60	e. 62	. 80	. 51	. 36	e. 43	1.3	11	e. 90	4.4
19	1.2	. 52	e. 64	. 58	. 60	1.1	e. 32	e. 45	. 69	1.5	e10	2.0
20	1.0	. 63	e. 68	. 47	1.0	. 62	e. 31	. 85	1.5	1.4	e2.0	. 74
21	. 92	. 76	e. 70	. 38	. 61	. 32	e. 30	. 45	2.9	12	. 83	. 65
22	1.4	. 54	e. 70	. 23	. 36	. 29	e. 30	e. 40	2.2	1.0	2.9	. 41
23	3.4	. 43	e. 68	. 15	. 55	. 29	e. 30	e. 45	1.3	. 85	4.3	5.4
24	2.3	. 45	e. 60	. 52	. 43	. 73	e. 30	2.2	1.0	2.2	1.5	1.2
25	1.7	. 43	e. 62	e. 55	. 41	1.9	e. 30	32	1.0	3.4	e. 67	. 59
26	1.9	. 40	e. 64	e. 58	. 33	1.2	e. 30	22	1.0	21	e. 61	4.0
27	1.6	. 57	e. 68	e. 58	e. 32	e. 75	e. 30	4.2	1.2	e3.0	e. 74	5.0
28	1.8	. 67	e. 70	. 48	e. 31	e. 70	e. 30	2.3	1.1	e1.3	e1.1	. 54
29	2.1	. 75	e. 70	. 29	e. 30	e. 62	e. 30	. 91	1.3	e1.0	e1.9	. 40
30	1.5	. 49	e. 70	e. 25	---	e. 52	e. 30	. 75	1.4	e. 90	e. 85	. 43
31	2.1	--	e. 70	e. 22	--	e. 50	--	. 79	---	e2. 5	e. 51	---
TOTAL	55.12	26.82	18.29	12.97	16.06	21.14	15.12	77.19	92.25	122.80	89.84	58.07
MEAN	1.78	. 89	. 59	. 42	. 55	. 68	. 50	2.49	3.07	3.96	2.90	1.94
MAX	3.4	2.0	. 99	. 65	1.1	1.9	1.9	32	31	21	25	13
MIN	. 92	. 40	. 30	. 15	. 15	. 26	. 30	. 30	. 25	. 85	. 51	. 40
AC-FT	109	53	36	26	32	42	30	153	183	244	178	115

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1996, BY WATER YEAR (WY)

LOCATION.--Lat $38^{\circ} 55^{\prime} 41^{\prime \prime}$, long $104^{0} 38^{\prime} 355^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{SW}^{1 / 4} \mathrm{sec} .8$, T. 13 S, R. 67 W., El Paso County, Hydrologic Unit 11020003, on left bank 70 ft upstream from Vincent Drive bridge, 0.3 mi south of Woodmen Valley Road, and 0.3 mi upstream from mouth.
DRAINAGE AREA.-- $18.7 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--December 1985 to current year.
GAGE.--Water-stage recorder with satellite telemetry, and crest-stage gage. Elevation of gage is $6,265 \mathrm{ft}$ above sea level, from topographic map.

REMARKS.--Records poor. Natural flow of stream affected by runoff from industrial and residential areas of northeast Colorado Springs. Several measurements of water temperature and specific conductance were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

[^51]
07104000 MONUMENT CREEK AT PIKEVIEW, CO

LOCATION.--Lat $38^{\circ} 55^{\prime} 04^{\prime \prime}$, long $104^{\circ} 49^{\prime} 05^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{sec} .18$, T. 13 S., R. 66 W., El Paso County, Hydrologic Unit 11020003, on right bank 0.1 mi west of U.S. Interstate Highway I-25, 0.9 mi downstream from Cottonwood Creek, and 1.3 mi downstream from Woodmen Valley Road.

DRAINAGE AREA.--204 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1938 to September 1949, January 1976 to current year.
REVISED RECORDS.--WDR CO-90-1: 1989 (M).
GAGE.--Water-stage recorder with satellite telemetry, and crest-stage gage. Datum of gage is $6,203.26 \mathrm{ft}$ above sea level. Sept. 1938 to Oct. 1949, nonrecording gage at present site at datum 0.10 ft lower. Jan. 1976 to June 6, 1994 at present site, at datum 2.00 ft lower.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, power developments, diversions for irrigation, municipal use and return flow from irrigation, and sewage-effluent discharge.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 30, 1935, reached a stage of about 14 ft , datum then in use.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	25	27	24	29	e19	e14	21	26	35	12	e850	25
2	25	26	21	e28	e16	e13	37	28	29	11	e50	21
3	30	23	19	e30	e14	e14	34	28	31	11	21	20
4	35	29	e19	e28	e15	e17	39	30	27	12	14	20
5	33	35	e19	e25	e16	20	46	27	24	16	11	17
6	28	37	e19	e23	e18	21	35	21	25	17	9.9	23
7	27	23	e18	e25	e20	24	30	26	29	15	8.7	29
8	21	24	e18	e27	22	27	22	34	22	16	11	22
9	17	28	e17	e28	18	24	18	26	17	79	14	18
10	20	26	16	e29	15	28	20	54	15	89	9.7	17
11	18	27	21	31	16	24	20	32	15	35	6.8	46
12	19	24	23	22	19	20	26	34	16	24	5.9	46
13	23	22	28	20	17	17	32	29	124	32	5.0	34
14	22	26	32	18	19	26	48	29	53	31	73	27
15	20	26	34	19	16	23	33	28	41	26	59	25
16	20	28	39	24	16	24	38	23	42	19	23	19
17	22	30	34	25	17	26	34	21	39	36	9.9	46
18	22	29	34	e24	17	24	30	18	37	93	7.9	44
19	22	26	31	e22	18	27	29	16	33	49	105	39
20	20	29	31	e19	16	29	24	17	35	33	38	26
21	25	28	36	e21	16	31	24	19	39	92	21	26
22	31	32	40	e23	17	26	24	21	37	21	22	24
23	35	32	33	e24	16	22	25	21	36	15	29	51
24	33	35	40	e22	e16	23	25	28	25	44	31	38
25	34	36	39	e21	e16	21	25	169	20	51	16	30
26	29	32	37	e19	e15	25	22	115	19	135	16	37
27	27	32	37	e18	15	22	24	51	16	79	16	50
28	24	29	44	e18	16	21	26	53	14	31	17	31
29	22	24	46	e21	e14	21	33	49	12	34	23	27
30	22	25	e45	e23	---	18	25	56	12	21	39	23
31	26	--	43	e21	---	17	---	44	---	e30	30	---
TOTAL	777	850	937	727	485	689	869	1173	919	1209	1592.8	901
MEAN	25.1	28.3	30.2	23.5	16.7	22.2	29.0	37.8	30.6	39.0	51.4	30.0
MAX	35	37	46	31	22	31	48	169	124	135	850	51
MIN	17	22	16	18	14	13	18	16	12	11	5.0	17
AC-FT	1540	1690	1860	1440	962	1370	1720	2330	1820	2400	3160	1790

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 - 1996, BY WATER YEAR (WY)

[^52]
07104000 MONUMENT CREEK AT PIKEVIEW, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 1975 to current year. Daily sediment record August 1995 to current year (peak flows only).
PERIOD OF DAILY RECORD.--Suspended-sediment discharge August 1995 to current year (peak flows only).
INSTRUMENTATION.--Pumping sediment sampler since August 1995.
REMARKS.--Records for 1995 water year for daily sediment during peak flows are poor. Records for 1996 water year for daily sediment during peak flows are fair except for estimated daily sediment values, which are poor.

EXTREMES FOR PERIOD OF DAILY RECORD.--

SEDIMENT CONCENTRATIONS: Maximum daily during peak flows, 4,710 mg/L, July 27, 1996; minimum daily, $203 \mathrm{mg} / \mathrm{L}$, Aug. 14, 1996.
SEDIMENT LOADS: Maximum daily during peak flows, 3,050 tons, June 13, 1996; minimum daily, 38 tons, May 24, 1996.

EXTREMES FOR CURRENT YEAR.--

SEDIMENT CONCENTRATIONS: Maximum daily during peak flows, $4,710 \mathrm{mg} / \mathrm{L}$, July 27; minimum daily, $203 \mathrm{mg} / \mathrm{L}$, Aug. 14. SEDIMENT LOADS: Maximum daily during peak flows, 3,050 tons, June 13; minimum daily, 38 tons, May 24.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^53]
07104000 MONUMENT CREEK AT PIKEVIEW, CO--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07104000 MONUMENT CREEK AT PIKEVIEW, CO--Continued

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	$\begin{gathered} \text { SEDI- } \\ \text { MENT, } \\ \text { DIS- } \\ \text { CHARGE, } \\ \text { SUS- } \\ \text { PENDED } \\ \text { (T/DAY) } \end{gathered}$
OCT				
26.	1315	27	63	4.6
APR				
24	1515	26	140	9.8
MAY				
28.	1140	55	341	51
JUN				
14.	1435	39	306	32
AUG				
15...	1700	43	976	113

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

07104000 MONUMENT CREEK AT PIKEVIEW, CO--Continued

[^54]
07104000 MONUMENT CREEK AT PIKEVIEW, CO--Continued

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG } / L) \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG /L) } \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$
		APRIL			MAY			JUNE	
1	21	---	---	26	---	---	35		
2	37	---	---	28	---	---	29	---	---
3	34	---	---	28	---	---	31	---	---
4	39	---	--	30	---	---	27	---	---
5	46	---	---	27	---	---	24	---	---
6	35	-	--	21	-	---	25	---	---
7	30	---	---	26	---	---	29	---	-
8	22	-	---	34	---	---	22	-	---
9	18	---	-	26	-	---	17	-	-
10	20	---	---	54	---	---	15	---	---
11	20	-	--	32	-	---	15	---	---
12	26	---	--	34	---	---	16	---	---
13	32	---	---	29	---	---	124	2440	3050
14	48	---	---	29	---	---	53	1560	472
15	33	---	---	28	---	---	41	---	---
16	38	---	---	23	---	---	42	---	---
17	34	---	---	21	-	---	39	-	-
18	30	---	--	18	---	--	37	---	--
19	29	---	---	16	---	---	33	---	---
20	24	---	---	17	---	---	35	---	--
21	24	-	---	19	-	--	39	---	---
22	24	---	---	21	---	---	37	---	---
23	25	---	-	21	--	--	36	-	--
24	25	---	--	28	304	38	25	---	--
25	25	---	--	169	3150	2310	20	---	--
26	22	-	---	115	2850	1440	19	---	--
27	24	---	--	51		,	16	---	--
28	26	---	---	53	---	---	14	---	---
29	33	-	-	49	--	--	12	--	--
30	25	-	--	56	--	--	12	--	--
31	---	---	---	44	---	---	---	---	---
TOTAL	869	-	--	1173	---	--	919	--	---
		JULY			AUGUST			TEMBER	
1	12	---	--	e850	---	---	25	---	-
2	11	---	-	e50	---	---	21	---	-
3	11	---	---	21	---	---	20	---	--
4	12	---	---	14	---	-	20	---	---
5	16	-	---	11	---	--	17	--	---
6	17	---	---	9.9	---	-	23	--	--
7	15	--	---	8.7	---	---	29	--	---
8	16	-	---	11	---	--	22	-	--
9	79	1010	603	14	---	--	18	---	---
10	89	792	382	9.7	-	--	17	---	---
11	35	-	---	6.8	--	--	46	262	146
12	24	---	---	5.9	---	---	46	888	117
13	32	--	--	5.0	---	---	34	---	---
14	31	---	--	73	203	226	27	---	--
15	26	---	---	59	1380	299	25	---	--
16	19	-	--	23	---	---	19	--	-
17	36	---	---	9.9	---	---	46	--	---
18	93	---	---	7.9	---	---	44	---	---
19	49	---	---	105	557	667	39	---	--
20	33	--	--	38	5	---	26	-	-
21	92	1190	1030	21	---	---	26	---	---
22	21	---	-	22	---	---	24	---	---
23	15	---	---	29	566	112	51	--	---
24	44	---	---	31	---	---	38	---	---
25	51	---	---	16	---	---	30	---	---
26	135	2020	2740	16	---	---	37	---	--
27	79	4710	1430	16	---	---	50	---	---
28	31	---	---	17	---	---	31	---	---
29	34	---	---	23	368	78	27	-	---
30	21	---	---	39	---	e75	23	---	---
31	e30	---	---	30	---	---	--	---	---
TOTAL	1209	---	---	1592.8	---	---	901	---	---

07104905 MONUMENT CREEK AT BIJOU STREET, AT COLORADO SPRINGS, CO

WATER-QUALITY RECORDS

LOCATION.--Lat $38^{\circ} 50^{\prime} 14^{\prime \prime}$, long $104^{\circ} 49^{\prime} 44^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{NW}^{1 / 4}$ sec.18, T. 14 S., R. 66 W., El Paso County, Hydrologic Unit 11020003 at bridge on Bijou Street in Colorado Springs.
PERIOD OF RECORD.--December 1979 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07104905 MONUMENT CREEK AT BIJOU STREET, AT COLORADO SPRINGS, CO--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07105000 BEAR CREEK NEAR COLORADO SPRINGS, CO

LOCATION.--Lat $38^{\circ} 49^{\prime} 21^{\prime \prime}$, long $104^{\circ} 53^{\prime} 17^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec. 21 , T. 14 S., R. 67 W., El Paso County, Hydrologic Unit 11020003, on left bank, 30 ft east of 26th Street, 0.6 mi southwest of Bear Creek Nature Center, and 3.4 mi upstream from mouth.
DRAINAGE AREA.-- $6.89 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--May 1992 to current year.
GAGE.--Water-stage recorder. Elevation of gage is $6,520 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.8	2.3	2.3	e1.9	e1.7	e1.7	1.8	1.3	1.9	1.2	2.1	2.3
2	2.8	2.3	2.3	e1.9	e1.7	e1. 8	1.9	1.2	1.8	1.0	1.9	2.1
3	2.8	2.4	2.2	e1.9	e1.7	e1.8	1.9	1.2	1.7	. 87	1.7	1.9
4	2.8	2.5	2.2	e1.8	e1.7	e1.8	1.9	1.3	1.6	. 81	1.5	1.9
5	2.8	2.4	2.2	e1.7	e1.8	e1.8	1.8	1.3	1.6	. 81	1.5	1.9
6	2.8	2.3	2.2	e1.7	e1. 8	e1. 8	1.9	1.3	1.6	. 80	1.4	2.0
7	2.8	2.4	2.2	e1.7	e1.8	e1.8	2.0	1.6	1.5	. 88	1.3	2.1
8	2.7	2.5	2.1	e1.7	e1.8	e1.9	2.0	1.7	1.5	1.1	1.6	1.9
9	2.7	2.5	1.9	e1.7	e1.8	e1.9	2.0	1.5	1.4	2.7	1.7	1.7
10	2.6	2.6	e1.9	e1.8	e1. 8	e2.2	2.0	1.6	1.4	5.5	1.5	1.6
11	2.7	2.6	e2.0	e1.8	e1.9	e2.0	2.0	1.5	1.5	3.6	1.3	2.2
12	2.7	2.6	e2.0	e1.9	e1.8	e1.8	1.9	1.4	1.4	3.2	1.3	3.8
13	2.7	2.5	e2.0	e1.9	e1.8	e1.7	1.8	1.4	1.4	3.2	1.1	2.9
14	2.7	2.4	e2.0	e1.9	e1.8	e1.8	1.8	1.3	1.4	3.0	1.1	2.7
15	2.6	2.4	e1.9	e1.9	e1. 8	e1.8	1.8	1.3	1.6	2.8	1.2	2.4
16	2.5	2.4	e1.9	e1.9	e1.9	1.8	1.9	1.2	1.5	2.7	1.1	2.1
17	2.5	2.3	e1.9	e1.8	e1.8	1.8	1.9	1.2	1.4	2.0	1.2	2.2
18	2.5	2.3	e1.9	e1.7	e1.8	1.7	1.9	1.3	1.3	1.9	1.2	2.4
19	2.6	2.3	e1.9	e1.7	e1.8	1.9	1.8	1.2	1.3	2.2	1.2	2.1
20	2.5	2.3	e1.8	e1.8	e1.9	2.0	1.8	1.3	1.3	1.8	1.4	2.1
21	2.4	2.3	e1. 8	e1. 8	e1.9	1.8	1.8	1.3	1.2	1.8	1.4	2.1
22	2.5	2.3	e1.7	e1.7	e1.9	1.8	1.8	1.3	1.3	1.5	1.3	2.0
23	2.5	2.3	e1.7	e1.7	e1.9	1.9	1.8	1.3	1.3	1.3	1.8	2.6
24	2.4	2.3	e1.7	e1.7	e1.8	1.9	1.8	1.3	1.2	1.3	2.4	3.1
25	2.3	2.3	e1.7	e1.7	e1.7	1.9	1.8	2.8	1.1	1.3	1.9	2.9
26	2.3	2.3	e1.7	e1. 6	e1.7	1.9	1.7	4.0	1.1	1.5	1.7	3.0
27	2.4	2.3	e1.7	e1.6	e1.7	1.8	1.8	3.1	1.1	1.6	2.0	3.3
28	2.3	2.3	e1.8	e1.6	e1.7	1.7	1.8	2.5	1.0	1.4	1.9	3.2
29	2.3	2.3	e1.8	e1.7	e1.7	1.9	1.6	2.3	. 97	1.5	3.1	3.1
30	2.3	2.3	e1.8	e1.7	---	1.8	1.3	2.1	1.2	1.4	3.6	3.1
31	2.3	--	e1.9	e1.7	---	1.8	---	2.0	---	1.7	2.4	---
TOTAL	79.6	71.3	60.1	54.6	51.9	57.0	55.0	51.1	41.57	58.37	51.8	72.7
MEAN	2.57	2.38	1.94	1.76	1.79	1.84	1.83	1.65	1.39	1.88	1.67	2.42
MAX	2.8	2.6	2.3	1.9	1.9	2.2	2.0	4.0	1.9	5.5	3.6	3.8
MIN	2.3	2.3	1.7	1.6	1.7	1.7	1.3	1.2	. 97	. 80	1.1	1.6
AC-FT	158	141	119	108	103	113	109	101	82	116	103	144

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1996, BY WATER YEAR (WY)

[^55]
07105490 CHEYENNE CREEK AT EVANS AVENUE AT COLORADO SPRINGS, CO

LOCATION.--Lat $38^{\circ} 47^{\prime} 26^{\prime \prime}$, Long $104^{\circ} 51^{\prime} 49^{\prime \prime}$, SW ${ }^{1 / 4} \mathrm{NW}^{1 / 4} / 4$ sec. 35 , T. 14 S., R.67W., El Paso County, Hydrologic Unit 11020003, on right bank 23 ft upstream from Evans Avenue, 30 ft downstream from the confluence of North and South Cheyenne Creeks, and 3.1 mi upstream from the mouth.

DRAINAGE AREA.--21.7 mi ${ }^{2}$.
PERIOD OF RECORD.--April 1992 to current year.
REVISED RECORDS.--WDR CO-93-1: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $6,280 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6.3	4.6	4.4	4.5	e3.0	3.5	2.9	1.9	5.7	3.8	10	12
2	6.2	4.3	4.1	4.4	e3.0	3.4	2.5	2.1	5.1	1.8	9.6	10
3	7.8	4.1	4.0	4.6	e3.0	3.3	2.9	2.1	3.1	1.6	8.1	9.0
4	8.2	4.8	4.0	4.5	e3.2	3.5	2.6	2.1	1.9	1.2	6.5	8.4
5	6.2	5.1	4.0	4.5	e3.5	3.4	2.9	2.1	1.4	. 93	5.6	8.0
6	4.9	4.9	4.2	4.5	e3.7	3.1	3.1	1.9	1.4	. 94	4.6	9.0
7	5.6	4.9	4.7	4.5	e3.7	3.4	3.1	1.6	1.8	. 86	4.3	9.5
8	5.6	4.9	4.0	3.9	e3.7	3.4	3.7	1.6	2.1	. 97	4.6	7.7
9	4.9	4.9	2.6	4.5	e3.7	3.5	3.8	1.7	3.3	e1.7	5.6	6.5
10	5.1	5.2	5.6	4.6	e3.8	3.5	3.8	2.1	5.6	e2. 8	6.5	6.5
11	4.8	4.8	4.3	4.5	e3.8	3.7	4.0	1.9	e4.5	e6. 4	5.4	6.4
12	4.6	4.7	3.7	7.4	e3.7	3.7	4.3	2.1	2.3	e5.6	4.7	12
13	4.7	4.6	3.7	11	e3.7	3.6	3.4	2.1	3.5	e6.9	4.6	9.9
14	4.8	4.6	2.9	11	e3.7	3.7	3.0	2.0	5.4	e7.0	4.5	9.3
15	4.7	4.4	2.4	8.8	e3.7	3.6	2.8	2.1	e4.5	e7.4	3.9	8.6
16	4.7	4.4	4.2	2.6	e3. 8	3.4	2.9	2.0	e2. 8	e7.7	3.5	8.4
17	4.5	4.5	2.8	2.9	e3. 8	3.7	2.8	2.3	e2.3	e8.0	3.0	10
18	4.7	4.3	2.4	2.2	e3.7	3.6	2.8	2.3	e3.0	8.5	3.3	12
19	4.7	4.1	2.7	3.1	e3.7	3.6	2.7	2.2	e3.7	10	3.0	10
20	4.8	4.1	3.2	e3.5	e3.6	3.8	2.7	2.4	4.2	12	5.3	9.2
21	4.8	4.2	3.6	e3.8	e3. 8	3.9	2.6	2.7	4.1	14	5.3	8.4
22	4.8	4.3	3.7	e4.0	e3.9	4.1	2.8	2.6	4.1	13	3.9	7.9
23	4.6	4.9	3.6	e4.0	e3.9	4.1	2.9	2.4	3.9	13	17	9.4
24	4.8	4.9	3.6	e4.0	e3.9	3.8	3.0	2.3	3.5	12	15	12
25	4.9	4.9	3.7	e4.0	e3.8	3.0	3.1	3.3	3.1	9.4	9.3	11
26	4.9	4.9	3.6	e3.7	e3.7	3.8	2.8	3.6	2.7	9.2	6.9	11
27	4.8	4.8	3.4	e3.5	3.6	3.7	2.0	e3.8	2.6	11	14	11
28	4.8	4.7	3.5	e3.1	4.0	3.7	2.0	e4.3	2.0	9.1	15	11
29	5.0	5.1	3.7	e3.0	3.5	3.7	1.9	e4.7	1.6	8.7	20	11
30	4.7	4.5	3.8	e3.0	---	3.7	1.8	e5.0	3.1	8.1	20	11
31	4.6	---	4.4	e3.0	--	3.7	---	6.2	---	9.7	15	---
TOTAL	160.5	139.4	114.5	140.6	105.6	111.6	87.6	81.5	98.3	213.30	248.0	286.1
MEAN	5.18	4.65	3.69	4.54	3.64	3.60	2.92	2.63	3.28	6.88	8.00	9.54
MAX	8.2	5.2	5.6	11	4.0	4.1	4.3	6.2	5.7	14	20	12
MIN	4.5	4.1	2.4	2.2	3.0	3.0	1.8	1.6	1.4	. 86	3.0	6.4
AC-FT	318	276	227	279	209	221	174	162	195	423	492	567

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1996, BY WATER YEAR (WY)

| MEAN | 3.78 | 3.43 | 2.67 | 2.73 | 2.50 | 2.99 | 8.27 | 39.2 | 28.2 | 10.0 | 7.35 | 5.16 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| MAX | 6.87 | 4.65 | 3.84 | 4.54 | 3.64 | 4.39 | 20.7 | 86.4 | 93.1 | 30.5 | 14.0 | 9.54 |
| (WY) | 1995 | 1996 | 1995 | 1996 | 1996 | 1994 | 1994 | 1994 | 1995 | 1995 | 1995 | 1996 |
| MIN | .73 | .84 | .46 | .91 | 1.53 | .53 | .88 | 2.63 | 2.59 | 1.03 | 2.09 | 1.12 |
| (WY) | 1993 | 1993 | 1993 | 1993 | 1993 | 1993 | 1993 | 1996 | 1993 | 1993 | | |

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

7913.0		
21.7		
168	May 30	
2.1	Mar	1
2.6	Feb 24	
15700		
71		
5.0		
2.8		

[^56]
07105500 FOUNTAIN CREEK AT COLORADO SPRINGS, CO

LOCATION.--Lat $38^{\circ} 48^{\prime} 59$ ", long $104^{\circ} 49^{\prime} 20$ ", in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec. 19 , T. 14 S., R. 66 W., El Paso County, Hydrologic Unit 11020003, on left bank 31 ft upstream from Nevada Avenue bridge in Colorado Springs, 100 ft downstream from mouth of Cheyenne Creek, and 1.3 mi downstream from mouth of Monument Creek.

DRAINAGE AREA.--392 mi^{2}.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1921 to September 1924, January 1976 to current year. Monthly discharge only for some periods, published in WSP 1311. Statistical summary computed for 1976 to current year.

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,900 \mathrm{ft}$ above sea level, from topographic map. Prior to Oct. 1, 1972, nonrecording gage at same site at different datum.
REMARKS.--Records good except for estimated daily discharges and those above $1000 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Natural flow of stream affected by storage reservoirs, power developments, ground-water withdrawals, diversions for irrigation and municipal use, return flow from irrigated areas and discharges from sewage treatment plants.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	66	53	51	e44	32	33	40	35	69	37	88	77
2	64	51	50	e46	42	34	47	36	58	20	249	67
3	68	50	49	46	54	34	47	40	47	19	57	57
4	78	58	50	43	43	35	57	40	41	19	47	54
5	78	67	52	35	47	38	69	40	36	29	36	49
6	71	66	55	31	45	41	45	40	39	22	31	79
7	70	55	54	40	41	40	45	36	40	20	33	70
8	68	55	51	48	39	38	42	38	29	19	92	44
9	63	60	35	43	43	38	40	46	26	339	58	40
10	61	61	57	43	42	41	44	86	27	274	42	42
11	58	56	58	39	37	35	47	49	28	64	30	129
12	60	62	55	44	38	35	49	36	30	65	25	188
13	64	57	e54	47	37	35	58	35	119	75	21	76
14	62	56	e54	44	37	60	73	35	80	68	28	69
15	63	53	e54	46	37	46	56	34	80	62	190	87
16	62	55	e53	43	34	43	56	33	70	51	48	66
17	56	54	e52	37	36	45	48	32	57	71	29	189
18	53	56	e46	20	38	41	44	31	44	173	29	114
19	54	55	e47	38	37	43	50	29	28	105	143	96
20	51	53	e48	44	36	43	52	29	25	69	66	72
21	56	54	e46	40	35	46	49	28	40	196	41	67
22	60	57	e45	40	42	45	45	27	49	66	51	65
23	62	60	e45	38	37	45	44	27	36	61	116	128
24	61	62	e46	40	34	43	41	53	25	93	107	88
25	65	60	e47	43	31	35	37	340	22	110	58	75
26	56	62	e47	28	33	44	34	395	21	272	43	96
27	54	61	e47	32	31	43	35	202	22	123	54	112
28	52	54	e46	45	31	39	47	115	24	67	74	82
29	53	56	e46	41	34	37	51	104	21	72	123	77
30	51	54	e45	37	--	38	37	98	29	64	156	74
31	56	--	e45	32	-	41	---	74	---	68	86	---
TOTAL	1896	1713	1530	1237	1103	1254	1429	2243	1262	2793	2251	2529
MEAN	61.2	57.1	49.4	39.9	38.0	40.5	47.6	72.4	42.1	90.1	72.6	84.3
MAX	78	67	58	48	54	60	73	395	119	339	249	189
MIN	51	50	35	20	31	33	34	27	21	19	21	40
AC-FT	3760	3400	3030	2450	2190	2490	2830	4450	2500	5540	4460	5020

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1976 - 1996, BY WATER YEAR (WY)

[^57]
07105500 FOUNTAIN CREEK AT COLORADO SPRINGS, CO--Continued

 WATER-QUALITY RECORDSPERIOD OF RECORD.--April 1975 to current year. Daily sediment record August 1995 to current year (peak flows only).
PERIOD OF DAILY RECORD.--Suspended-sediment discharge August 1995 to current year (peak flows only).
INSTRUMENTATION.--Pumping sediment sampler since August 1995.
REMARKS.--Records for 1995 water year for daily sediment during peak flows are fair. Records for 1996 water year for daily sediment during peak flows are fair.
EXTREMES FOR PERIOD OF DAILY RECORD.--
SEDIMENT CONCENTRATIONS: Maximum daily during peak flows, $8,520 \mathrm{mg} / \mathrm{L}$, Aug. 2, 1996; minimum daily, $109 \mathrm{mg} / \mathrm{L}$, June 12, 1996.
SEDIMENT LOADS: Maximum daily during peak flows, 6,670 tons, Aug. 2, 1996; minimum daily, 9.4 tons, June 12, 1996.
EXTREMES FOR CURRENT YEAR.--
SEDIMENT CONCENTRATIONS: Maximum daily during peak flows, $8,520 \mathrm{mg} / \mathrm{L}$, Aug. 2; minimum daily, $109 \mathrm{mg} / \mathrm{L}$, June 12. SEDIMENT LOADS: Maximum daily during peak flows, 6,670 tons, Aug. 2; minimum daily, 9.4 tons, June 12.

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG/L) } \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$
		OCTOBER			OVEMBER			CCEMBER	
1	191	--	---	34	--	-	49	---	---
2	138	---	---	32	---	---	41	---	---
3	302	---	---	35	---	---	35	---	---
4	573	---	---	42	---	---	36	--	---
5	116	---	---	42	---	---	33	---	-
6	55	---	---	34	---	-	30	---	--
7	40	---	-	30	-	---	26	---	---
8	65	-	---	32	---	---	23	---	--
9	41	---	---	38	-	---	27	--	-
10	39	-	--	35	--	---	28	-	--
11	34	---	---	33	---	---	40	---	-
12	32	-	--	30	---	---	35	--	--
13	32	---	--	29	---	---	39	---	--
14	36	---	---	28	---	---	32	---	---
15	342	---	---	32	---	--	28	---	---
16	57	-	---	32	---	---	32	---	-
17	170	---	---	40	---	--	35	---	--
18	66	---	--	33	---	---	30	--	-
19	55	---	--	32	---	-	28	---	--
20	49	--	---	59	---	--	26	---	---
21	48	---	--	40	---	---	29	---	-
22	47	---	---	32	---	--	28	---	--
23	46	---	---	29	---	---	27	--	---
24	45	---	--	32	--	--	29	--	-
25	42	---	---	34	---	--	28	---	--
26	44	---	---	36	---	---	31	---	--
27	42	---	---	27	--	-	27	-	-
28	49	---	---	20	---	--	28	-	--
29	46	---	---	20	---	---	30	---	--
30	56	---	---	47	---	---	32	---	---
31	45	---	---	---	---	---	21	---	---
TOTAL	2943	---	---	1019	---	---	963	---	--

07105500 FOUNTAIN CREEK AT COLORADO SPRINGS, CO--Continued

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)
		JANUARY			EBRUARY			MARCH	
1	22	---	---	27	---	---	21	---	---
2	24	---	---	24	---	---	32	-	---
3	23	---	---	23	-	---	68	---	---
4	15	---	---	21	---	---	42	---	---
5	27	---	---	21	---	---	34	---	---
6	32	---	---	23	---	---	66	---	---
7	29	--	---	21	---	---	32	---	---
8	37	---	-	24	---	---	29	---	---
9	31	--	---	23	---	---	30	---	---
10	30	---	---	24	---	---	30	---	---
11	26	---	---	18	---	---	30	---	---
12	24	---	---	14	---	---	29	---	---
13	26	---	---	33	---	---	33	---	---
14	26	---	---	133	---	---	29	---	---
15	30	---	---	62	---	---	26	---	---
16	26	-	---	34	---	---	54	---	---
17	19	-	---	29	--	---	41	---	---
18	19	--	-	30	--	---	34	---	---
19	24	---	---	28	---	---	31	---	---
20	23	---	---	28	---	---	30	---	---
21	22	---	---	27	---	---	28	---	---
22	22	-	---	29	--	---	28	---	---
23	21	---	---	26	---	---	28	---	---
24	27	---	--	24	---	--	24	---	-
25	31	---	---	25	---	---	27	---	--
26	31	---	---	24	---	---	33	---	---
27	28	---	---	23	---	---	29	---	---
28	25	---	---	25	---	---	36	---	---
29	25	---	---	---	---	---	31	---	---
30	22	---	---	---	---	---	31	---	---
31	26	---	---	---	---	---	29	---	---
TOTAL	793	---	---	843	---	---	1045	---	---
		APRIL			MAY			JUNE	
1	27	---	---	156	---	---	829	---	---
2	25	---	---	161	---	---	835	---	---
3	25	---	---	163	---	---	819	---	---
4	23	---	---	150	--	---	942	---	---
5	22	---	--	656	--	--	757	---	---
6	22	---	---	333	---	-	643	---	---
7	23	---	---	260	---	---	571	---	---
8	24	---	---	234	-	---	717	---	---
9	91	---	---	216	---	---	644	---	---
10	67	---	---	197	---	---	590	---	---
11	37	---	---	185	---	---	503	-	---
12	37	---	---	199	---	---	434	---	---
13	40	---	---	207	---	---	384	---	---
14	51	---	---	197	---	---	384	---	---
15	49	---	---	184	---	---	386	---	---
16	52	---	---	238	---	---	376	---	---
17	128	---	---	1940	---	---	444	---	---
18	165	--	-	761	---	---	463	---	---
19	213	---	---	714	---	---	353	--	--
20	113	---	--	673	---	---	317	---	--
21	151	---	---	698	---	---	292	---	---
22	104	---	---	758	---	---	271	---	---
23	70	---	---	773	---	---	406	---	---
24	92	---	---	811	---	---	307	---	---
25	73	---	---	791	---	---	274	---	---
26	198	---	---	800	---	---	241	---	-
27	83	---	---	700	---	---	245	---	--
28	86	---	---	650	---	---	414	---	--
29	146	-	---	1300	---	---	390	---	---
30	146	---	---	1350	---	---	428	---	---
31	---	---	---	999	---	---	---	---	---
TOTAL	2383	---	---	17454	---	---	14659	---	---

07105500 FOUNTAIN CREEK AT COLORADO SPRINGS, CO--Continued

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATIIN } \\ & (\text { MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)
		JULY		AUGUST			SEPTEMBER		
1	711	---	---	129	---	---	49	---	---
2	438		---	105	---	---	58	---	---
3	418	---	---	100	---	---	64	---	---
4	412	---	---	128	---	---	45	---	---
5	374	---	---	96	---	---	41	---	---
6	331	---	---	91	---	---	53	---	---
7	302	---	---	83	---	---	129	687	299
8	282	---	---	80	---	---	88	---	---
9	270	---	---	75	---	---	232	---	---
10	248	---	---	76	---	---	212	---	---
11	221	---	---	87	---	---	167	---	---
12	201	---	---	115	---	---	138	---	---
13	194	---	---	89	---	---	111	---	---
14	302	---	---	91	---	---	87	---	---
15	319	---	---	93	---	---	69	---	---
16	290	---	---	71	---	---	52	---	---
17	259	---	---	67	---	---	46	---	---
18	270	---	---	97	---	---	67	313	129
19	295	---	---	400	---	---	86	918	231
20	286	---	---	130	---	---	66	---	---
21	254	---	---	122	---	---	81	---	---
22	224	---	---	204	---	---	68	---	---
23	247	---	---	181	---	---	65	---	---
24	211	---	---	170	---	---	68	---	---
25	179	---	---	144	---	---	74	---	---
26	156	---	---	147	---	---	77	---	---
27	139	---	--	110	---	-	68	--	---
28	121	--	--	87	--	---	57	---	---
29	114	--	--	94	--	---	59	-	---
30	112	---	---	80	---	---	63	---	---
31	119	---	---	78	---	---	---	---	---
TOTAL	8299	---	---	3620	---	---	2540	---	---

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
$\begin{aligned} & \text { DEC } \\ & 29 \ldots \end{aligned}$	0850	13	77	2.7
JAN 19..	1015	11	89	2.6
$\begin{aligned} & \text { FEB } \\ & 23 \ldots \end{aligned}$	0910	28	95	7.2
$\begin{aligned} & \text { MAR } \\ & 23 \ldots . \end{aligned}$	0915	30	96	7.8
$\begin{gathered} \text { APR } \\ 20 . \end{gathered}$	0900	95	256	66
JUN $22 .$	0945	280	111	84
$\begin{aligned} & \text { AUG } \\ & 28 . \ldots \end{aligned}$	1405	85	87	20
$\begin{aligned} & \text { SEP } \\ & 15 \ldots \\ & 27 \ldots \end{aligned}$	1325 1150	68 71	47 101	8.6 19

07105500 FOUNTAIN CREEK AT COLORADO SPRINGS, CO--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US / CM)		$\begin{gathered} \text { TEMPER- } \\ \text { ATURE } \\ \text { WATER } \\ \text { (DEG C) } \end{gathered}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	OXYGEN DEMAND, BIO-CHEMICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREPTOCOCCI FECAL, KF AGAR (COLS. PER $100 \mathrm{ML})$	CALCIUM DISSOLVED (MG/L AS CA)	$\begin{aligned} & \text { MAGNE- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS MG) } \end{aligned}$
$\begin{aligned} & \text { OCT } \\ & 26 \ldots . \end{aligned}$	1315	53	670	8.0	9.0	9.3	1.0	K130	140	74	17
$\begin{gathered} \text { NOV } \\ 30 \ldots \end{gathered}$	1300	55	656	8.2	6.5	10.2	0.7	240	K800	72	17
JAN $18 .$.	1130	16	721	7.9	1.0	10.4	0.5	70	77	70	24
$\begin{gathered} \text { FEB } \\ 22 \ldots \end{gathered}$	1330	39	681	8.4	10.5	8.8	1.4	K100	K80	71	18
$\begin{aligned} & \text { MAR } \\ & 21 \ldots \end{aligned}$	1015	48	610	8.3	6.5	9.8	0.3	45	48	65	15
$\begin{aligned} & \text { APR } \\ & 18 \ldots \end{aligned}$	1045	45	602	8.4	9.5	9.4	0.9	90	87	64	14
$\begin{gathered} \text { MAY } \\ 16 \ldots \end{gathered}$	1300	35	680	8.3	24.5	6.4	2.9	K720	840	72	16
JUN 20...	1015	25	700	8.4	20.0	7.3	0.7	K1100	350	77	18
JUL 18...	1045	61	460	8.2	20.0	6.7	1.0	>1200	1200	50	11
$\begin{gathered} \text { AUG } \\ 15 \ldots \end{gathered}$	1000	58	436	8.1	16.5	7.5	4.0	>1200	K3300	44	8.8
$\begin{aligned} & \text { SEP } \\ & 12 \ldots \end{aligned}$	1015	103	325	8.1	13.0	8.5	e1. 6	K800	1700	33	6.6
DATE	$\begin{gathered} \text { ALKA- } \\ \text { LINITY } \\ \text { LAB } \\ \text { (MG/L } \\ \text { AS } \\ \text { CACO3) } \end{gathered}$	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	$\begin{aligned} & \text { FLUO- } \\ & \text { RIDE, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS F) } \end{aligned}$	$\begin{aligned} & \text { SULFIDE } \\ & \text { TOTAL } \\ & \text { (MG/L } \\ & \text { AS S) } \end{aligned}$	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { AMMONIA } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	NITROGEN, AMMONIA + ORGANIC TOTAL (MG/L AS N)	PHOSPHORUS ORTHO, DISSOLVED (MG/L AS P)
$\begin{aligned} & \text { OCT } \\ & 26 \ldots \end{aligned}$	145	140	26	2.2	--	53	0.02	2.9	<0.015	0.3	0.02
$\begin{gathered} \text { NOV } \\ 30 \ldots \end{gathered}$	137	140	24	2.1	<0.5	84	<0.01	2.9	<0.015	0.3	0.03
$\begin{aligned} & \text { JAN } \\ & 18 \ldots \end{aligned}$	145	180	30	3.1	--	27	<0.01	2.5	<0.015	<0.2	0.02
$\begin{aligned} & \text { FEB } \\ & 22 \ldots \end{aligned}$	144	140	27	2.0	--	119	0.02	2.8	<0.015	0.3	0.05
$\begin{aligned} & \text { MAR } \\ & 21 \ldots \end{aligned}$	128	120	25	2.0	--	131	<0.01	2.2	<0.015	0.3	0.07
$\begin{aligned} & \text { APR } \\ & 18 \ldots \end{aligned}$	124	130	25	2.0	--	128	0.01	2.2	0.02	0.5	0.07
$\begin{array}{r} \text { MAY } \\ 16 \ldots \end{array}$	137	160	25	1.9	<0.5	302	0.02	2.4	0.02	1.1	0.07
JUN 20.	137	170	24	2.1	--	76	0.02	2.5	0.03	<0.2	0.06
JUL 18...	105	94	17	2.3	--	194	0.03	1.4	0.04	0.5	0.03
AUG 15...	94	87	15	1.2	--	454	0.04	1.7	0.14	1.2	0.05
$\begin{array}{r} \text { SEP } \\ 12 \ldots \end{array}$	77	56	11	2.0	--	220	0.02	1.1	0.03	0.6	0.03

OCT													
26.	--		--	--	-	<1	<1	<1	<1	<1	2	<1	1400
NOV													
30.		1	<1	70	70	<1	<1	<1	<1	<1	2	1	2100
JAN													
18.	--		--	--	--	<1	<1	<1	<1	<1	1	<1	560
FEB													
22.	--		--	--	--	<1	<1	2	<1	<1	4	<1	3000
MAR													
21.	--		--	--	--	<1	<1	1	<1	<1	3	1	2100
APR													
18.	--		--	--	--	<1	<1	1	<1	<1	5	1	2000
MAY													
16.		2	<1	90	80	<1	<1	3	<1	<1	8	1	4600
JUN													
20.	--		--	--	--	<1	<1	<1	<1	<1	3	<1	1600
JUL													
18.	--		--	--	--	<1	<1	2	<1	<1	6	2	7700
AUG													
15.	--		--	--	--	<1	<1	4	<1	<1	11	2	11000
SEP													
12.	--		--	--	--	<1	<1	4	<1	<1	6	1	5600

07105500 FOUNTAIN CREEK AT COLORADO SPRINGS, CO--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	$\begin{aligned} & \text { IRON, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS FE) } \end{aligned}$	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	$\begin{aligned} & \text { LEAD, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS PB) } \end{aligned}$	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DISSOLVED (UG/L AS MN)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	$\begin{aligned} & \text { NICKEL, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS NI) } \end{aligned}$	SELENIUM, DISSOLVED (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	$\begin{aligned} & \text { ZINC, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS ZN) } \end{aligned}$	$\begin{aligned} & \text { CYANIDE } \\ & \text { TOTAL } \\ & \text { (MG/L } \\ & \text { AS CN) } \end{aligned}$
$\begin{aligned} & \text { OCT } \\ & 26 \ldots . \end{aligned}$	<10	2	<1	90	40	2	<1	6	20	<10	--
NOV $30 \text {. . }$	<10	2	<1	100	30	2	<1	6	20	<10	<0.010
JAN 18. .	10	1	<1	80	70	1	<1	5	40	<10	--
FEB $22 .$	20	7	<1	120	40	3	1	6	30	<10	--
$\begin{aligned} & \text { MAR } \\ & 21 . . \end{aligned}$	10	3	<1	100	30	3	1	5	20	<10	--
APR 18.	<10	3	<1	90	20	2	1	6	20	<3	--
$\begin{aligned} & \text { MAY } \\ & 16 \ldots . \end{aligned}$	4	8	<1	170	17	5	1	6	50	6	<0.010
$\begin{aligned} & \text { JUN } \\ & 20 \ldots . \end{aligned}$	<3	2	<1	70	24	1	1	7	10	4	--
JUL $18 . .$	5	11	<1	200	13	2	<1	4	30	<3	--
$\begin{aligned} & \text { AUG } \\ & 15 \ldots . \end{aligned}$	<10	18	<1	220	<10	6	1	3	60	5	--
$\begin{aligned} & \text { SEP } \\ & 12 \ldots \end{aligned}$	<10	15	<1	210	<10	4	<1	2	30	8	--

MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

JAN 1995					NOV 1995				
13.	1430	40	480	3.5	21.	1340	53	672	7.5
26.	1140	42	710	1.0	DEC				
FEB					13...	1345	54	689	6.5
16.	1230	27	548	2.0	JAN 1996				
MAR					02.	1410	44	804	1.5
20.	1235	32	730	13.0	29.	1500	62	706	1.5
APR					FEB				
20.	1540	138	580	8.0	27.	1315	29	912	4.5
MAY					MAR				
12.	1150	197	380	12.5	21.	1210	44	625	10.5
19.	1200	764	258	10.5	MAY				
JUN					01.	1315	36	707	16.5
02.	1200	690	332	12.5	13.	1410	33	732	21.5
14.	1045	392	352	13.5	28.	1540	97	494	10.0
28.	1340	238	392	17.0	JUN				
JUL					13.	1300	43	655	21.5
18.	1610	310	283	17.5	14	1330	57	558	20.5
25.	1400	173	432	19.5	26.	1535	21	825	28.5
AUG					JUL				
17.	1425	68	695	24.0	22.	1125	70	480	21.0
22.	1330	114	550	22.5	AUG				
SEP					13.	1310	23	895	23.5
15.	1320	72	591	19.0	20.	0910	63	540	14.5
26.	1415	78	588	15.5	26.	1440	36	705	25.0
OCT					SEP				
03. .	1135	68	660	11.5	05..	1150	57	570	19.0
27...	1240	56	700	10.0	17...	1320	71	490	15.5

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	$\begin{gathered} \text { SEDI- } \\ \text { MENT, } \\ \text { DIS- } \\ \text { CHARGE, } \\ \text { SUS- } \\ \text { PENDED } \\ \text { (T/DAY) } \end{gathered}$
OCT				
26.	1315	53	63	9.0
MAY				
08.	1445	39	151	16
28.	1545	98	346	92
JUN				
14.	1200	57	419	64
AUG				
15.	1000	58	638	100
15.	1730	79	854	182
29.	1815	214	4270	2470
SEP				
12..	1015	103	359	100

07105500 FOUNTAIN CREEK AT COLORADO SPRINGS, CO--Continued
SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATIIN } \\ & \text { (MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (M G / L) \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (M G / L) \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			OVEMBER			ECEMBER	
1	66	---	---	53	-	---	51	---	---
2	64			51	---	---	50	---	---
3	68	-	-	50	---	---	49	---	---
4	78	---	---	58	---	---	50	---	---
5	78	-	-	67	---	---	52	---	---
6	71	---	---	66	-	---	55	---	-
7	70	---	---	55	-	---	54	---	---
8	68	---	---	55	---	---	51	---	---
9	63	---	---	60	---	---	35	---	---
10	61	---	---	61	---	---	57	---	---
11	58	---	---	56	---	---	58	-	-
12	60	---	---	62	---	---	55	---	---
13	64	---	---	57	---	---	e54	---	---
14	62	-	--	56	---	--	e54	---	---
15	63	---	-	53	---	---	e54	---	---
16	62	---	---	55	---	---	e53	---	---
17	56	---	---	54	---	---	e52	---	---
18	53	---	-	56	---	---	e46	---	---
19	54	---	---	55	---	---	e47	---	---
20	51	---	---	53	--	---	e48	---	--
21	56	-	---	54	-	---	e46	---	-
22	60	---	---	57	---	---	e45	---	---
23	62	--	-	60	---	---	e45	---	---
24	61	---	---	62	---	---	e46	---	---
25	65	---	---	60	---	---	e47	---	---
26	56	---	---	62	-	---	e47	---	--
27	54	---	---	61	---	---	e47	--	---
28	52	---	---	54	---	---	e46	---	---
29	53	---	---	56	---	--	e46	---	---
30	51	---	---	54	-	---	e45	---	---
31	56	---	---	--	---	--	e45	---	---
TOTAL	1896	---	---	1713	---	---	1530	---	-
		JANUARY			EBRUARY			MARCH	
1	e44	---	---	32	-	---	33	---	---
2	e46	---	---	42	-	---	34	---	---
3	46	---	---	54	---	---	34	-	---
4	43	---	---	43	---	---	35	---	---
5	35	---	---	47	---	-	38	---	---
6	31	-	---	45	-	-	41	-	--
7	40	---	---	41	-	-	40	---	-
8	48	--	--	39	--	--	38	---	-
9	43	---	-	43	-	---	38	---	-
10	43	---	---	42	---	---	41	-	-
11	39	---	---	37	---	---	35	---	---
12	44	---	-	38	---	---	35	---	---
13	47	-	-	37	---	---	35	---	--
14	44	---	---	37	---	---	60	--	---
15	46	---	---	37	-	---	46	---	---
16	43	---	---	34	---	---	43	---	---
17	37	---	---	36	-	---	45	-	---
18	20	---	---	38	---	---	41	-	---
19	38	---	---	37	--	-	43	-	---
20	44	---	---	36	---	---	43	---	-
21	40	---	---	35	---	---	46	-	--
22	40	---	---	42	---	---	45	---	---
23	38	---	---	37	---	---	45	---	---
24	40	---	---	34	-	---	43	---	---
25	43	---	---	31	--	-	35	-	-
26	28	---	---	33	---	---	44	---	---
27	32	---	-	31	---	---	43	---	---
28	45	---	---	31	---	---	39	---	--
29	41	---	---	34	---	---	37	---	--
30	37	---	---	---	---	---	38	---	---
31	32	---	---	---	---	---	41	---	---
TOTAL	1237	-	-	1103	--	---	1254	-	---

e-Estimated.

07105500 FOUNTAIN CREEK AT COLORADO SPRINGS，CO－－Continued

SUSPENDED－SEDIMENT DISCHARGE，WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

		MEAN			MEAN		MEAN		
	MEAN	CONCEN－	SEDIMENT	MEAN	CONCEN－	SEDIMENT	MEAN	CONCEN－	SEDIMENT
	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE	DISCHARGE	TRATION	DISCHARGE
DAY	（CFS）	（MG／L）	（TONS／DAY）	（CFS）	（MG／L）	（TONS／DAY）	（CFS）	（MG／L）	（TONS／DAY）

	APRIL			MAY			JUNE		
1	40	－－－	－－－	35	－－－	－－－	69	－－－	－－
2	47	－－－	－－－	36	－－－	－－－	58	－－－	－－－
3	47	－－－	－－－	40	－－－	－－－	47	－－－	－－－
4	57	－－－	－－－	40	－－－	－－－	41	－－－	－－－
5	69	－－－	－－－	40	－－－	－－－	36	－－－	－
6	45	－－－	－－－	40	－－－	－－－	39	－－－	－－－
7	45	－－－	－－－	36	－－－	－－－	40	－－－	－－－
8	42	－－－	－－－	38	－－	－－－	29	－－－	－－－
9	40	－－－	－－－	46	173	50	26	－－－	－－－
10	44	－－－	－－－	86	1560	401	27	－－－	－－－
11	47	－－－	－－－	49	－－－	－－－	28	－－－	－－－
12	49	－－－	－－－	36	－－－	－－－	30	109	9.4
13	58	－－－	－－－	35	－	－	119	3650	3080
14	73	－－－	－－－	35	－－－	－－－	80	1640	450
15	56	－－－	－－－	34	－－－	－－－	80	4160	868
16	56	－－－	－－－	33	－－－	－－－	70	－－－	－－－
17	48	－－－	－－－	32	－－－	－－－	57	－－－	－－－
18	44	－－－	－－－	31	－－－	－－－	44	－－－	－－－
19	50	－－－	－－－	29	－－－	－－－	28	－－－	－－－
20	52	－－－	－－－	29	－－－	－－－	25	－－－	－－－
21	49	－－－	－－－	28	－－－	－－－	40	－－－	－－－
22	45	－－－	－－－	27	－－－	－－－	49	－－－	－－－
23	44	－－－	－－－	27	－－－	－－－	36	－－－	－－－
24	41	－	－－－	53	226	54	25	－－－	－－－
25	37	－－－	－－－	340	2040	2510	22	－－－	－
26	34	－－－	－－－	395	1730	1960	21	－－－	－－－
27	35	－－－	－－－	202	－－－	－	22	－－－	－－－
28	47	－－－	－－－	115	－－－	－－－	24	－－－	－－－
29	51	－－－	－－－	104	－－－	－－－	21	－－－	－－－
30	37	－－－	－－－	98	－－－	－－－	29	－－－	－－－
31	－－	－－－	－－－	74	－－－	－－	－－－	－－－	－－
TOTAL	1429	－－	－－－	2243	－－－	－－－	1262	－－－	－－－

	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1
咭	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	スヘビッグが					
			1 1 0 1 0 0 1 1 0 N		1 1 1 1 1 1 1 1 1	
$\begin{aligned} & H \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { a } \end{aligned}$		$\left\|\begin{array}{ccc} 1 & 6 & O \\ \mid & \ddots & O \\ \mid & \curvearrowleft & त \end{array}\right\|$			1 1 1 1 1 1 1 1 1 1 1 1	
		- M No No N	$\text { ০ } \stackrel{n}{N} \stackrel{-1}{\sim} \stackrel{\infty}{N} \stackrel{\circ}{-}$			
	1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 1 1 1 0 1 1 1 	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\begin{array}{ll\|l\|l\|l} 0 & 0 & 1 & \mid & 1 \\ \infty & -1 & & & 1 \\ \operatorname{H}_{0} & 1 & 1 & 1 & 1 \end{array}$
$\begin{aligned} & \text { ry } \\ & \hline \end{aligned}$	1 1 1 1 1 1 1 1 1	1 1 0 1 1 1 a 1 1 	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1		
	$\begin{aligned} & \text { ^o orog } \\ & \text { mo } \\ & \text { No } \end{aligned}$		ザ			
	－Nのサー	¢			$\underset{N}{-1} N \underset{N}{N}$	மトのの○ー $N \sim N N m m$

07105530 FOUNTAIN CREEK BELOW JANITELL ROAD BELOW COLORADO SPRINGS, CO

LOCATION.--Lat $38^{\circ} 48^{\prime} 11^{\prime \prime}$, long $104^{\circ} 47^{\prime} 43^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{sec} .29$, T. 14 S., R. 66 W., El Paso County, Hydrologic Unit 11020003, on right bank at upstream side of bridge on Janitell Road below Colorado Springs.
DRAINAGE AREA.--413 mi ${ }^{2}$.
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--October 1989 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,840 \mathrm{ft}$ above sea level, from topographic map. Prior to July 10, 1990, at site 500 ft upstream, at datum 2.00 ft , higher.

REMARKS.--Records good except for estimated daily discharges, and those above $1,200 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Natural flow of stream affected by storage reservoirs, power developments, ground-water withdrawals, diversions for irrigation and municipal use, return flow from irrigated areas, and flows from sewage treatment plants.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	100	116	77	97	90	99	92	73	101	102	128	168
2	92	115	82	91	86	106	102	76	126	74	449	165
3	101	112	79	108	92	106	103	88	87	70	127	147
4	112	124	80	103	102	100	120	92	68	66	110	102
5	106	138	79	88	111	97	148	95	66	76	97	80
6	96	134	82	91	108	118	114	91	75	71	87	150
7	97	117	80	104	104	115	107	76	79	69	86	123
8	97	118	77	110	101	114	105	74	64	72	159	82
9	92	129	61	103	107	114	97	90	59	e500	123	75
10	88	139	88	100	106	119	78	180	65	e400	109	77
11	86	139	84	94	99	105	66	66	59	141	87	203
12	85	149	79	102	100	98	89	49	63	141	104	329
13	89	142	81	105	96	95	119	64	174	124	78	148
14	92	137	81	100	99	149	140	71	125	114	98	126
15	97	114	74	105	96	112	102	71	153	108	315	163
16	93	119	83	98	94	111	94	68	114	93	121	105
17	82	105	77	92	99	117	79	69	91	111	83	367
18	81	89	67	70	99	109	74	71	87	225	79	192
19	79	106	88	86	98	107	77	71	74	177	212	161
20	78	92	103	100	96	108	84	73	67	109	120	106
21	87	76	104	100	95	111	82	73	95	275	85	100
22	94	84	102	92	102	109	79	69	112	106	96	99
23	93	85	95	92	97	110	78	71	92	99	229	214
24	92	83	94	94	99	104	74	116	79	155	186	152
25	93	92	94	97	94	95	59	706	72	190	124	141
26	85	102	95	79	94	104	44	553	72	352	121	190
27	84	99	92	90	96	101	47	187	76	216	135	202
28	85	87	92	106	98	95	57	140	78	145	164	161
29	90	90	95	99	104	93	65	131	74	162	230	156
30	84	85	95	93	---	90	71	119	81	154	295	148
31	108	---	106	87	---	99	---	88	---	143	189	---
TOTAL	2838	3317	2666	2976	2862	3310	2646	3861	2628	4840	4626	4632
MEAN	91.5	111	86.0	96.0	98.7	107	88.2	125	87.6	156	149	154
MAX	112	149	106	110	111	149	148	706	174	500	449	367
MIN	78	76	61	70	86	90	44	49	59	66	78	75
AC-FT	5630	6580	5290	5900	5680	6570	5250	7660	5210	9600	9180	9190

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1990 - 1996, BY WATER YEAR (WY)

[^58]a-From floodmark.

07105530 FOUNTAIN CREEK BELOW JANITELL ROAD, BELOW COLORADO SPRINGS, CO--Continued

 WATER-QUALITY RECORDSPERIOD OF RECORD.--April 1975 to June 1976, May 1979 to September 1979, December 1979 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: October 1990 to current year.
WATER TEMPERATURE: October 1990 to current year.
pH: October 1990 to current year.
DISSOLVED OXYGEN: October 1990 to current year.
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for daily specific conductance are poor. Records for daily pH are fair. Records for daily water temperature are good. Records for daily dissolved oxygen are fair. Daily data that are not published are either missing or of unacceptable quality.
EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 1,710 microsiemens, Nov. 20, 1994; minimum, 114 microsiemens, May 9, 1994.
WATER TEMPERATURE: Maximum, $25.1^{\circ} \mathrm{C}$, July 16, 1993; minimum, $0.5^{\circ} \mathrm{C}$, Jan. 15, 1992 and Mar. 10, 1992.
pH : Maximum, 8.8 units, July 19, 1995; minimum, 6.7 units, July 26, 1995.
DISSOLVED OXYGEN: Maximum, $11.3 \mathrm{mg} / \mathrm{l}$, May 5, 1991; minimum, $4.4 \mathrm{mg} / \mathrm{l}, \mathrm{Mar}$ 28, 1991.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 901 microsiemens, Dec. 9; minimum, 134 microsiemens, Sept. 6.
pH: Maximum, 8.3 units, Sept. 17; minimum, 6.9 units, Jan. 1.
WATER TEMPERATURE: Maximum, $24.1^{\circ} \mathrm{C}$, July 6; minimum, $2.2^{\circ} \mathrm{C}$, Apr. 28.
DISSOLVED OXYGEN: Maximum, $11.1 \mathrm{mg} / \mathrm{l}$, Mar. 24; minimum, $5.2 \mathrm{mg} / \mathrm{l}$, June 18.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

		DIS-					OXYGEN	COLI-	STREP -		
DATE	TIME	$\begin{gathered} \text { CHARGE, } \\ \text { INST. } \\ \text { CUBIC } \\ \text { FEET } \\ \text { PER } \\ \text { SECOND } \end{gathered}$	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	$\begin{gathered} \text { PH } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPERATURE WATER (DEG C)	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	$\begin{aligned} & \text { DEMAND, } \\ & \text { BIO- } \\ & \text { CHEM- } \\ & \text { ICAL, } \\ & 5 \text { DAY } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { FORM, } \\ & \text { FECAL, } \\ & 0.7 \\ & \text { UM-MF } \\ & \text { (COLS. / } \\ & 100 \text { ML) } \end{aligned}$	TOCOCCI FECAL, KF AGAR (COLS . PER 100 ML)	$\begin{aligned} & \text { CALCIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS CA) } \end{aligned}$	$\begin{aligned} & \text { MAGNE- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS MG) } \end{aligned}$
OCT											
26.	1500	90	819	8.1	14.5	9.2	>20	150	280	61	19
NOV											
30.	1430	94	798	8.1	11.5	8.1	7.1	440	360	61	19
JAN											
18.	1230	87	853	7.8	10.0	7.6	19	440	300	59	17
FEB											
22	1500	106	780	7.5	12.5	8.1	15	280	180	55	18
MAR											
21	1215	133	699	7.8	13.5	8.3	9.6	K47	60	50	16
APR											
18.	1230	87	719	8.0	15.0	8.4	9.4	56	60	54	16
MAY											
16.	1430	74	757	7.9	22.0	6.5	4.7	280	570	52	19
JUN											
20.	1215	97	714	7.7	22.0	6.4	8.7	140	K80	50	17
JUL											
18.	1230	97	660	8.0	22.0	6.5	9.3	K2800	880	46	16
AUG											
15.	1130	142	634	7.8	21.0	6.5	11	K2100	K3300	44	13
SEP											
12...	1215	209	533	7.9	16.0	7.8	e6.0	K1300	1600	39	11
	ALKA-		CHLO-	FLUO-		$\begin{aligned} & \text { RESIDUE } \\ & \text { TOTAL } \end{aligned}$	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, } \end{aligned}$	NITROGEN,	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, } \end{aligned}$	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, AM- } \end{aligned}$	PHOSPHORUS
	LINITY	SULFATE	RIDE,	RIDE,		AT 105	NITRITE	$\mathrm{NO} 2+\mathrm{NO} 3$	AMMONIA	MONIA +	ORTHO,
	LAB	DIS-	DIS-	DIS-	SULFIDE	DEG. C,	DIS-	DIS-	DIS-	ORGANIC	DIS-
	(MG/L	SOLVED	SOLVED	SOLVED	TOTAL	SUS-	SOLVED	SOLVED	SOLVED	TOTAL	SOLVED
DATE	AS	(MG/L	(MG/L	(MG/L	(MG/L	PENDED	(MG/L	(MG/L	(MG / L	(MG/L	(MG/L
	CACO3)	AS SO4)	AS CL)	AS F)	AS S)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS P)
OCT											
26.	110	180	39	2.0	--	20	0.17	3.0	6.2	8.3	0.32
NOV											
30..	106	170	37	1.9	<0.5	42	0.14	3.4	6.4	7.0	0.43
JAN											
18.	103	180	50	2.1	-	24	1.6	4.0	5.2	7.0	0.03
FEB											
22.	108	160	41	1.8	--	89	0.22	3.3	5.1	5.9	0.04
MAR											
21.	114	140	37	1.8	--	63	0.13	3.9	1.2	2.3	0.10
APR											
18.	109	160	37	1.8	--	46	0.15	3.7	2.6	3.5	0.06
MAY											
16.	115	180	38	1.9	<0.5	52	0.20	3.9	0.85	2.0	0.31
JUN											
20.	111	170	38	1.7	--	32	0.07	4.4	0.25	1.8	1.2
JUL											
18...	106	140	32	2.0	--	97	0.10	2.0	1.7	3.4	0.66
AUG											
15...	99	140	31	1.3	--	214	0.08	2.1	1.8	3.3	0.27
SEP											
12...	84	110	25	1.7	--	128	0.10	2.5	1.4	2.2	0.18

K-Based on non-ideal colony count.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07105530 FOUNTAIN CREEK BELOW JANITELL ROAD, BELOW COLORADO SPRINGS, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07105530 FOUNTAIN CREEK BELOW JANITELL ROAD, BELOW COLORADO SPRINGS, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			UGUST			SEPTEMBER	
1	669	586	633	---	---	---	642	549	596	---	--	---
2	687	581	641	---	---	---	635	230	304	661	626	644
3	725	640	684	809	739	774	---	---	---	711	653	682
4	751	667	725	798	655	710	---	---	---	701	657	679
5	772	690	731	782	690	736	792	687	740	715	669	692
6	758	665	724	---	--	---	788	716	752	719	134	512
7	711	657	681	---	---	---	770	723	746	---	-	--
8	759	707	736	---	---	---	754	276	515	---	---	---
9	767	724	741	---	---	---	604	387	528	--	--	--
10	772	722	747	---	---	---			---	775	677	726
11	784	724	751	689	647	668	---	--	---	763	248	705
12	806	727	766	731	505	644	---	---	---	611	225	464
13	754	293	636	643	531	590	---	--	---	656	437	574
14	645	396	547	642	534	606	834	348	788	661	450	589
15	594	455	531	666	523	609	---	-	---	626	453	567
16	588	500	549	672	575	637	---	---	---	646	524	584
17	637	516	583	715	--	---	---	---	---	640	235	500
18	690	625	649	655	250	421	-	---	---	549	337	486
19	694	635	669	519	354	436	---	---	-	572	437	520
20	755	665	721	-	---	--	---	---	---	615	511	570
21	684	546	615	---	---	--	--	---	---	642	565	606
22	675	523	599	-	---	--	---	---	---	691	549	605
23	680	607	643	---	---	---	793	337	631	691	330	543
24	728	626	677	663	248	529	611	325	476	607	441	539
25	728	650	686	661	267	497	729	514	621	624	537	587
26	777	655	716	700	268	519	795	644	720	632	478	588
27	---	637	702	678	375	557	779	354	644	580	457	524
28	---	---	---	787	660	723	---	---	---	614	530	572
29	---	--	---	770	677	723	---	239	392	622	526	578
30	---	---	---	742	646	702	---	241	325	617	528	584
31	---	---	---	749	652	700	---	---	---	---	---	---
MONTH	---	---	--	--	---	--	---	-	-	---	--	---

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			VEMB			EMB			NUA	
1	--	---	---	7.5	7.3	7.4	7.8	7.5	7.6	7.3	6.9	7.2
2	---	---	---	7.5	7.3	7.4	7.8	7.5	7.6	7.3	7.1	7.2
3	---	---	---	7.7	7.4	7.5	7.8	7.5	7.6	7.3	7.1	7.2
4	7.7	7.6	7.6	7.6	7.4	7.5	7.8	7.5	7.6	7.4	7.2	7.3
5	7.8	7.6	7.6	7.7	7.4	7.6	7.8	7.5	7.6	7.4	7.1	7.2
6	7.7	7.5	7.6	7.7	7.4	7.5	7.7	7.5	7.6	7.4	7.1	7.2
7	7.7	7.5	7.6	7.7	7.5	7.6	7.8	7.6	7.6	7.4	7.1	7.2
8	7.7	7.5	7.6	7.9	7.6	7.7	7.8	7.5	7.6	7.5	7.2	7.4
9	7.7	7.5	7.6	7.9	7.6	7.7	7.9	7.6	7.7	7.7	7.2	7.5
10	7.7	7.5	7.6	7.8	7.6	7.7	7.9	7.5	7.6	7.7	7.2	7.4
11	7.7	7.5	7.6	7.9	7.5	7.8	7.8	7.6	7.6	7.7	7.2	7.4
12	7.8	7.5	7.7	8.1	7.6	7.9	7.8	7.5	7.6	7.6	7.1	7.4
13	7.9	7.6	7.7	7.8	7.5	7.6	7.7	7.4	7.5	7.6	7.0	7.4
14	7.8	7.6	7.7	8.0	7.5	7.8	7.5	7.3	7.4	7.7	7.3	7.5
15	7.6	7.4	7.6	8.0	7.8	7.9	7.5	7.3	7.4	7.6	7.3	7.5
16	7.6	7.4	7.5	8.1	7.9	8.0	7.6	7.3	7.4	7.7	7.4	7.5
17	7.6	7.4	7.4	8.0	7.7	7.9	7.6	7.4	7.5	7.7	7.4	7.5
18	7.6	7.3	7.4	8.0	7.7	7.9	7.6	7.4	7.5	7.6	7.2	7.4
19	7.5	7.3	7.4	8.0	7.6	7.8	7.8	7.3	7.5	7.5	7.2	7.4
20	7.5	7.4	7.4	7.8	7.6	7.7	7.5	7.3	7.4	7.7	7.3	7.5
21	7.6	7.4	7.4	7.8	7.6	7.7	7.6	7.3	7.4	7.6	7.0	7.3
22	7.6	7.4	7.5	7.8	7.4	7.6	7.6	7.4	7.5	7.7	7.0	7.2
23	7.6	7.4	7.5	7.6	7.4	7.5	7.6	7.4	7.5	7.4	7.0	7.1
24	7.6	7.4	7.5	7.6	7.4	7.5	7.7	7.5	7.6	7.3	7.0	7.2
25	7.6	7.4	7.5	7.6	7.4	7.4	7.7	7.5	7.6	7.4	7.1	7.2
26	7.6	7.4	7.5	7.7	7.4	7.5	7.7	7.5	7.6	7.3	7.0	7.1
27	7.6	7.4	7.4	7.8	7.4	7.7	7.6	7.4	7.5	7.4	7.0	7.2
28	7.5	7.4	7.4	7.7	7.4	7.5	7.6	7.4	7.4	7.4	7.0	7.2
29	7.5	7.2	7.4	7.7	7.4	7.5	7.5	7.3	7.4	7.4	7.0	7.2
30	7.5	7.2	7.4	7.7	7.4	7.6	7.4	7.2	7.3	7.4	7.1	7.2
31	7.6	7.2	7.4	--	--	---	7.4	7.2	7.3	7.4	7.1	7.2
MONTH	---	---	---	8.1	7.3	7.6	7.9	7.2	7.5	7.7	6.9	7.3

07105530 FOUNTAIN CREEK BELOW JANITELL ROAD, BELOW COLORADO SPRINGS, CO--Continued

07105530 FOUNTAIN CREEK BELOW JANITELL ROAD, BELOW COLORADO SPRINGS, CO--Continued

TEMPERATURE, WATER (DEG.C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	---	---	---	12.8	9.0	11.0	12.2	6.2	9.6	9.7	6.4	8.1
2	---	---	---	10.4	7.0	9.2	12.3	5.7	9.4	10.3	5.9	8.4
3	---	---	---	11.6	6.1	9.3	11.5	5.7	9.0	9.5	6.4	7.8
4	15.0	10.5	12.8	12.0	6.1	9.4	11.1	5.0	8.8	9.4	5.1	7.5
5	14.5	7.5	11.5	12.2	4.4	9.2	9.6	6.0	8.1	9.1	5.2	7.4
6	14.6	7.4	11.6	11.0	6.1	9.3	10.6	5.1	8.1	9.9	5.1	7.5
7	16.0	7.7	12.3	11.9	6.2	9.7	9.3	3.7	7.1	9.3	5.7	7.6
8	16.1	9.2	13.0	12.7	5.8	10.3	8.7	4.2	6.5	9.3	4.4	7.6
9	15.4	9.2	12.8	13.5	7.2	10.8	11.8	4.9	7.2	10.8	6.0	8.6
10	16.2	9.5	13.3	10.8	7.5	9.5	9.2	4.1	6.6	9.6	5.8	8.2
11	16.8	9.6	13.8	13.1	5.7	10.1	10.0	4.3	7.7	10.5	6.2	8.7
12	16.8	10.8	14.2	14.5	7.8	11.4	10.6	5.1	8.5	10.8	6.3	8.6
13	15.6	10.0	13.2	11.8	7.4	10.4	11.0	6.5	9.1	11.0	6.2	8.5
14	15.6	8.5	12.5	14.5	7.8	11.9	10.3	5.2	8.2	11.5	6.4	8.9
15	16.2	9.2	13.1	13.6	8.1	11.3	10.9	3.5	7.2	11.4	6.2	8.6
16	16.4	9.6	13.6	13.8	7.4	11.1	10.2	3.2	7.0	11.3	6.0	9.1
17	16.1	10.5	13.7	13.5	8.4	11.2	9.3	3.5	6.6	10.7	6.6	8.3
18	16.5	9.6	13.7	13.4	6.6	10.5	9.6	3.9	7.0	11.5	8.2	9.7
19	14.9	10.1	12.9	13.8	6.9	10.9	11.4	4.2	7.7	11.0	7.2	8.5
20	14.7	7.7	11.8	11.9	7.7	10.3	11.5	5.9	8.5	9.6	5.8	7.8
21	14.9	7.7	11.9	11.8	6.1	9.5	10.0	5.3	7.9	10.5	6.6	8.1
22	13.1	8.2	10.9	12.6	7.2	9.7	9.6	5.5	8.0	8.9	5.3	7.2
23	12.7	5.6	9.5	11.8	5.4	8.5	10.0	5.4	7.7	9.2	5.2	7.2
24	12.6	5.7	9.8	11.1	4.5	8.2	10.3	5.7	8.0	9.2	5.5	7.2
25	12.8	6.4	10.4	11.8	6.2	9.0	9.7	5.0	7.6	8.7	4.8	6.7
26	14.4	8.0	11.4	13.1	5.9	9.5	9.7	5.6	7.9	10.0	4.6	7.4
27	14.3	8.2	11.6	10.6	6.3	8.7	10.3	6.2	8.1	8.9	6.2	7.5
28	13.6	7.0	10.4	10.1	4.0	7.4	11.2	6.5	8.5	8.6	5.0	6.9
29	14.8	8.0	11.8	10.8	4.5	8.2	10.4	6.3	8.2	8.8	5.6	7.1
30	13.4	8.6	11.6	11.3	5.5	9.1	10.1	7.1	8.5	9.0	5.1	7.2
31	14.7	7.1	11.5		---	---	10.3	6.1	8.4	9.2	6.1	7.7
MONTH	---	---	---	14.5	4.0	9.8	12.3	3.2	8.0	11.5	4.4	7.9
	FEBRUARY			MARCH			APRIL			MAY		
1	8.6	5.9	7.4	10.9	5.7	8.1	15.8	7.2	12.0	17.6	8.1	13.9
2	8.6	4.8	6.8	12.4	5.3	8.6	16.2	8.2	12.7	17.5	8.6	14.3
3	9.7	6.1	7.8	12.6	4.5	8.8	12.2	9.3	11.2	17.5	10.3	14.5
4	9.3	6.6	8.0	13.0	6.3	10.0	12.1	7.1	9.8	18.8	10.5	14.9
5	9.3	6.1	7.7	13.0	6.5	10.2	12.7	5.0	9.1	18.2	11.8	15.1
6	8.8	4.5	7.3	10.3	4.8	7.1	15.5	6.5	11.4	18.6	12.6	15.8
7	9.7	5.4	7.8	11.0	4.0	7.4	14.2	8.7	11.8	20.0	13.7	16.5
8	10.5	5.6	8.2	10.8	3.7	7.6	16.3	9.4	13.1	19.9	10.8	16.1
9	11.8	5.7	8.4	12.5	4.8	9.0	16.0	6.9	13.2	19.6	11.8	15.9
10	11.9	5.5	8.5	14.0	5.8	10.0	15.4	9.5	12.8	16.0	10.5	13.1
11	11.7	7.1	8.9	14.4	7.7	11.3	14.8	7.2	11.8	19.6	11.8	15.2
12	11.4	5.0	8.4	16.9	4.6	11.3	16.2	7.8	12.2	20.2	9.3	16.0
13	12.2	5.8	9.2	14.1	7.7	11.1	14.7	7.1	10.7	19.3	10.2	15.6
14	11.5	6.5	9.2	10.5	6.3	7.9	11.6	5.3	8.6	19.9	14.1	17.1
15	11.0	5.5	8.6	13.7	5.9	10.1	15.5	5.7	10.8	20.8	13.4	17.3
16	12.0	4.2	8.7	12.6	6.5	9.9	16.8	7.7	12.3	21.8	14.4	17.9
17	12.1	5.0	9.0	10.9	7.0	9.0	16.8	8.7	12.8	21.3	14.7	18.1
18	12.4	6.2	9.7	10.7	5.3	8.4	16.5	7.9	12.5	21.4	14.5	17.9
19	13.0	6.8	10.2	12.6	4.9	9.0	14.7	7.4	11.2	19.8	14.8	17.3
20	13.2	7.2	10.6	13.0	5.0	9.5	12.6	6.4	9.9	18.6	13.8	16.1
21	13.9	7.6	11.0	13.6	5.9	10.2	13.9	6.4	10.4	19.8	13.4	16.8
22	12.9	7.7	10.4	13.8	6.1	10.4	13.2	7.7	10.9	21.2	14.0	17.8
23	11.6	4.9	8.8	14.1	6.8	10.6	17.0	6.7	12.4	20.7	15.7	17.9
24	12.5	5.2	9.2	11.3	4.9	8.0	18.7	9.9	14.4	18.2	13.7	16.2
25	13.2	6.4	9.9	10.9	4.6	7.3	17.7	11.2	14.3	15.4	11.8	13.5
26	9.5	5.7	8.0	11.6	5.0	8.3	18.5	5.3	13.0	12.9	9.4	10.7
27	12.0	5.4	8.5	13.8	4.5	9.5	15.8	9.6	12.9	15.2	8.0	11.5
28	10.2	4.8	7.5	13.3	5.7	10.2	13.5	2.2	8.9	12.2	9.4	10.9
29	11.6	3.6	7.7	14.8	7.1	11.3	16.1	4.8	11.0	19.1	9.9	14.1
30	---	---	---	14.9	7.6	11.5	16.8	4.6	12.4	20.2	12.9	16.0
31	---	---	---	14.2	7.3	11.1	---	---	--	18.8	12.1	15.7
MONTH	13.9	3.6	8.7	16.9	3.7	9.4	18.7	2.2	11.7	21.8	8.0	15.5

07105530 FOUNTAIN CREEK BELOW JANITELL ROAD, BELOW COLORADO SPRINGS, CO--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	JUNE			JULY			AUGUST			SEPTEMBER		
1	19.8	12.7	16.3	22.9	16.4	18.6	23.5	15.6	20.1	20.5	14.1	17.3
2	20.3	12.6	16.5	---	---	---	22.1	15.7	17.8	19.3	14.7	17.2
3	21.2	13.0	17.3	23.0	19.0	21.2	---	---	---	21.8	14.4	18.3
4	20.2	14.0	17.6	23.5	17.9	20.4	---	---	---	21.7	15.2	18.6
5	19.7	13.8	17.6	23.7	18.5	20.7	---	---	---	21.9	15.0	18.8
6	21.5	14.4	17.6	24.1	18.3	20.7	23.6	16.9	20.3	20.3	14.7	17.4
7	21.5	13.4	17.6	23.0	18.1	20.6	22.7	17.0	19.8	20.6	12.4	16.5
8	21.9	14.5	18.3	20.1	18.4	19.5	22.8	17.8	19.9	21.3	13.8	17.8
9	20.9	15.7	18.2	21.4	18.0	19.4	22.3	16.0	19.1	21.2	14.2	18.1
10	21.8	15.5	18.2	---	---	---	23.3	17.2	20.2	21.7	14.7	18.2
11	21.0	15.0	18.1	23.4	19.7	21.6	23.2	16.6	20.1	20.7	14.7	18.2
12	22.4	15.3	18.1	21.7	17.7	19.4	23.4	17.0	20.4	16.0	13.7	15.3
13	20.4	11.9	16.4	22.0	16.4	19.1	22.8	17.5	20.4	17.8	14.1	15.8
14	19.8	13.5	16.4	22.3	15.7	19.1	23.1	10.7	20.4	17.7	13.5	15.9
15	17.8	15.0	16.2	22.5	16.5	19.4	21.6	10.7	17.7	19.2	13.2	16.2
16	21.6	13.5	17.1	22.4	17.7	19.9	23.2	16.0	19.6	18.1	14.1	16.3
17	21.2	13.9	17.8	23.1	17.4	20.2	23.0	17.2	20.1	18.1	11.7	15.2
18	22.4	14.8	18.8	21.9	17.4	19.3	22.8	17.8	20.3	15.4	11.5	13.4
19	22.2	15.3	19.0	21.3	15.3	18.3	23.2	14.6	18.3	16.6	8.5	12.9
20	23.0	16.8	19.8	22.6	16.1	19.3	---	---	---	16.8	10.4	13.9
21	21.9	16.8	18.9	23.3	12.5	19.1	---	---	---	18.4	10.3	14.5
22	19.9	16.7	18.1	23.2	16.0	19.5	---	---	---	18.2	11.5	15.2
23	21.8	14.6	18.3	23.6	15.8	19.2	22.4	17.0	18.7	17.8	12.7	15.0
24	22.8	17.5	19.7	22.2	11.8	18.7	21.3	14.9	18.0	17.9	12.1	15.0
25	22.4	16.5	19.5	21.3	11.8	17.6	22.4	16.1	19.2	16.7	12.2	14.8
26	23.1	16.9	19.9	22.7	15.2	18.2	22.5	17.0	19.8	13.8	8.7	11.6
27	21.7	17.9	19.6	22.4	14.0	18.0	22.0	16.7	19.1	14.0	6.1	10.6
28	22.0	17.5	19.7	21.5	15.4	18.3	20.8	14.6	17.6	16.6	9.1	13.0
29	22.3	17.3	19.7	19.5	16.3	17.9	21.5	15.3	17.9	17.2	10.2	13.9
30	20.9	18.0	19.2	22.8	15.7	19.3	18.9	12.4	15.9	17.7	10.9	14.6
31	-	-	---	23.4	17.3	20.0	20.7	14.3	17.4	---	---	---
MONTH	23.1	11.9	18.2	---	---	---	-	-	--	21.9	6.1	15.6

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	8.4	6.4	7.4	8.4	7.3	7.9	9.6	8.2	8.8	9.6	7.6	8.8
2	8.4	7.0	7.7	9.2	8.3	8.8	9.7	8.1	8.8	9.4	8.2	8.8
3	8.5	7.4	8.0	9.4	8.3	8.7	9.9	8.4	8.9	9.5	8.4	9.1
4	8.6	7.7	8.1	9.5	8.0	8.7	9.6	8.0	8.8	9.9	8.9	9.3
5	9.2	7.7	8.4	10.0	7.8	8.7	9.5	8.4	9.0	9.7	8.9	9.2
6	9.2	7.4	8.3	9.5	8.0	8.6	9.6	8.5	9.0	9.6	8.6	9.0
7	9.0	7.0	7.9	9.3	7.9	8.5	9.8	8.8	9.2	9.4	8.6	8.9
8	8.4	7.1	7.7	9.5	7.3	8.3	9.8	8.9	9.4	9.7	8.6	9.1
9	8.5	6.9	7.7	8.8	7.4	7.9	9.4	8.4	8.9	9.6	8.4	9.0
10	8.3	6.8	7.6	8.5	7.8	8.2	9.8	9.1	9.3	9.4	8.1	8.7
11	8.2	6.5	7.4	9.4	8.0	8.5	9.7	8.4	9.0	9.1	8.3	8.7
12	8.1	6.6	7.3	9.5	7.6	8.4	9.5	8.2	8.7	9.3	8.2	8.9
13	8.2	6.8	7.5	8.7	7.8	8.1	9.0	8.4	8.6	9.5	8.3	9.0
14	8.7	6.9	7.8	9.2	7.6	8.2	9.6	8.6	9.0	9.6	8.6	9.1
15	8.6	6.7	7.6	9.1	7.8	8.4	10.1	8.7	9.4	9.7	8.7	9.2
16	8.2	6.4	7.3	9.3	7.7	8.5	10.2	8.8	9.4	9.8	8.6	9.1
17	8.0	6.4	7.2	9.1	7.7	8.4	10.4	9.1	9.5	9.4	8.6	9.0
18	8.0	6.3	7.1	9.5	7.7	8.5	9.9	9.0	9.3	9.0	8.4	8.6
19	8.4	6.6	7.3	9.4	7.4	8.3	9.5	8.2	9.0	9.6	8.5	9.1
20	8.5	7.0	7.8	9.1	7.9	8.3	9.4	8.4	8.9	9.8	9.1	9.5
21	8.6	6.6	7.6	9.3	8.3	8.7	9.6	8.8	9.1	9.5	8.6	9.1
22	8.5	6.9	7.7	9.4	7.9	8.7	9.6	8.7	9.1	10.1	8.7	9.2
23	9.0	7.2	8.2	9.6	7.9	8.7	9.6	8.7	9.1	9.4	8.5	9.0
24	9.0	7.3	8.2	9.8	8.0	8.8	9.4	8.7	9.1	9.1	8.0	8.6
25	8.8	7.3	8.1	9.3	7.8	8.5	9.8	8.8	9.3	9.0	8.3	8.7
26	8.4	6.9	7.7	9.2	7.7	8.5	9.6	8.8	9.2	9.2	8.2	8.6
27	8.6	7.1	7.7	9.4	8.6	9.0	9.4	8.6	9.0	9.1	8.1	8.7
28	8.7	7.3	8.0	9.5	8.5	9.0	9.3	8.3	8.9	9.3	8.1	8.7
29	8.6	7.1	8.0	9.4	8.0	8.7	9.5	8.6	9.0	9.2	8.7	9.0
30	8.5	7.1	7.7	9.2	8.4	8.7	9.0	8.0	8.8	9.1	8.2	8.6
31	8.8	6.9	7.7	---	---	---	9.4	8.3	8.9	8.9	7.9	8.5
MONTH	9.2	6.3	7.7	10.0	7.3	8.5	10.4	8.0	9.0	10.1	7.6	8.9

07105530 FOUNTAIN CREEK BELOW JANITELL ROAD, BELOW COLORADO SPRINGS, CO--Continued

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	9.1	8.3	8.6	8.8	7.7	8.3	9.2	6.7	7.8	9.0	6.0	7.5
2	9.2	8.4	8.9	8.5	7.4	8.0	8.5	6.3	7.3	8.6	5.7	7.2
3	9.5	8.6	9.0	9.3	7.4	8.0	8.1	7.0	7.4	8.6	6.3	7.4
4	9.7	8.9	9.3	8.6	7.1	7.8	8.6	7.1	7.8	9.0	6.1	7.6
5	9.8	8.7	9.1	8.6	7.4	8.1	9.6	6.7	8.0	8.7	6.2	7.3
6	9.6	8.5	9.0	10.1	8.3	9.4	9.2	6.3	7.4	8.0	5.8	6.8
7	9.4	8.6	8.9	10.5	8.5	9.4	8.4	6.8	7.5	8.2	5.6	6.8
8	9.3	8.6	8.9	10.8	8.0	9.1	8.2	6.4	7.2	8.5	5.4	6.7
9	9.5	8.3	8.9	9.8	6.3	8.3	9.6	6.3	7.1	8.8	6.0	7.1
10	10.6	9.0	9.7	9.6	7.1	8.1	8.1	6.3	7.2	9.4	6.6	7.9
11	10.4	9.3	9.8	8.5	6.9	7.6	8.7	6.6	7.7	8.0	5.9	7.1
12	9.9	8.7	9.4	8.1	6.2	7.4	9.1	7.1	7.9	8.4	5.7	6.8
13	9.9	8.6	9.3	8.4	6.4	7.4	8.9	7.0	7.9	9.2	6.5	7.4
14	9.5	8.3	8.8	8.6	7.2	8.1	9.7	7.5	8.6	7.9	6.6	7.1
15	9.3	8.1	8.6	9.0	6.9	8.3	9.6	6.6	8.0	8.2	6.3	7.0
16	9.3	7.9	8.5	10.3	8.2	9.0	8.5	6.0	7.2	7.9	5.9	6.7
17	9.3	7.8	8.4	10.0	8.7	9.2	8.1	6.2	7.1	7.7	6.4	6.9
18	9.1	8.1	8.5	10.4	8.7	9.3	8.4	6.6	7.3	7.9	6.4	7.0
19	9.2	7.8	8.6	10.7	8.1	9.3	8.7	7.0	7.8	7.7	6.4	7.0
20	9.2	7.5	8.3	10.9	8.0	9.2	9.2	7.2	8.1	7.7	6.6	7.2
21	8.6	7.7	8.2	10.3	7.7	8.8	9.5	7.2	8.0	8.0	6.0	7.0
22	8.8	7.8	8.2	10.3	7.6	8.7	8.8	6.9	7.9	7.9	5.5	6.6
23	9.5	7.9	8.6	9.9	7.5	8.5	9.6	6.4	7.8	7.6	5.8	6.5
24	9.4	7.7	8.4	11.1	8.6	9.5	8.6	6.0	7.3	8.1	6.0	7.2
25	9.0	7.6	8.1	10.5	7.2	9.7	8.1	5.8	7.0		,	---
26	8.6	8.0	8.3	10.8	8.4	9.4	8.3	5.8	7.0	-	---	---
27	9.0	8.3	8.7	10.7	8.2	9.4	8.4	6.0	7.2	8.2	5.8	7.0
28	9.3	8.7	9.0	10.0	7.7	8.6	8.5	6.4	7.4	8.9	6.0	7.4
29	9.4	8.0	8.7	9.3	7.4	8.2	9.0	6.4	7.7	9.4	6.6	8.0
30	,	,	8.	9.3	7.4	8.2	9.4	6.4	7.9	8.3	6.3	7.4
31	--	-	-	9.5	7.4	8.2			--	8.5	6.6	7.4
MONTH	10.6	7.5	8.8	11.1	6.2	8.6	9.7	5.8	7.6	---	---	--
	JUNE			JULY			AUGUST			SEPTEMBER		
1	8.3	6.4	7.4	---	---	---	---	---	-	7.9	6.8	7.3
2	8.5	6.4	7.4	---	---	---	---	---	---	7.8	6.9	7.3
3	8.5	6.4	7.3	--	--	---	--	---	--	7.8	6.4	7.1
4	8.0	6.4	7.1	--	--	--	---	---	--	7.2	5.9	6.6
5	8.3	6.5	7.0	---	---	---	---	---	---	7.4	5.9	6.6
6	7.6	6.3	6.9	-	---	---	6.8	6.0	6.4	---	---	-
7	7.5	6.3	6.8	---	---	---	6.8	6.1	6.4	---	---	---
8	7.6	5.9	6.7	---	---	---	7.0	5.5	6.2	---	---	---
9	7.2	5.9	6.4	---	---	--	6.8	6.1	6.3	--	--	-
10	7.1	5.8	6.4	---	---	---	6.4	5.8	6.1	7.1	5.7	6.4
11	7.1	5.5	6.2	6.8	6.4	6.6	---	-	--	7.0	4.8	5.7
12	6.8	5.7	6.3	7.1	6.4	6.8	---	---	---	7.6	5.5	7.1
13	8.6	5.8	6.9	7.4	6.5	6.9	---	---	---	7.4	6.9	7.1
14	7.8	5.8	6.7	7.5	6.4	6.9	8.2	5.3	6.0	7.5	6.8	7.2
15	7.4	6.6	7.0	7.2	6.2	6.6	7.9	5.6	6.8	7.9	6.7	7.2
16	7.7	5.8	6.8	6.8	6.0	6.4	---	---	---	7.1	6.5	6.8
17	7.7	5.7	6.5	6.6	5.3	6.1	---	---	---	8.2	6.5	6.9
18	7.2	5.2	6.2	7.1	6.3	6.7	---	---	---	7.9	6.7	7.2
19	7.2	5.6	6.2	7.3	6.3	6.8	---	---	--	9.2	7.5	8.1
20	6.6	5.6	6.0	7.0	5.9	6.4	-	---	--	8.8	7.2	7.9
21	6.5	5.5	6.0	---	---	---	--	---	---	8.6	6.8	7.6
22			,	---	---	-	--	--	--	8.0	6.5	7.1
23	---	---	---	---	---	---	7.5	6.4	6.9	7.5	6.6	7.1
24	---	---	---	8.8	5.7	7.2	7.5	6.4	7.0	7.7	6.3	7.0
25	---	---	---	8.9	6.7	7.3	7.1	5.3	6.6	7.7	6.3	7.0
26	---	---	---	7.7	6.4	7.0	7.0	6.0	6.7	8.9	6.4	7.6
27	---	-	-	---	---	---	7.0	6.1	6.6	10.2	7.4	8.8
28	---	---	---	---	---	---	7.6	6.4	6.9	8.8	6.2	7.5
29	---	---	---	---	---	---	7.6	6.2	6.9	8.3	6.4	7.4
30	---	---	---	---	---	---	8.9	6.8	7.8	7.9	6.2	6.9
31	---	---	---	---	---	---	7.6	6.7	7.1	---	---	---
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

WATER-QUALITY RECORDS

LOCATION.--Lat $38^{\circ} 47^{\prime} 49^{\prime \prime}$, long $104^{\circ} 47^{\prime} 06^{\prime \prime}$, in SE ${ }^{1} / 4 \mathrm{SW}^{1 / 4}$ sec.28, T. 14 S., R. 66 W., El Paso County, Hydrologic Unit 11020003, approximately 100 ft downstream from Circle Drive below Colorado Springs.
PERIOD OF RECORD.--October 1989 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^59]K-Based on non-ideal colony count.

07105533 FOUNTAIN CREEK AT CIRCLE DRIVE BELOW COLORADO SPRINGS, CO--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07105800 FOUNTAIN CREEK AT SECURITY, CO

LOCATION.--Lat $38^{\circ} 43^{\prime} 46^{\prime \prime}$, long $104^{\circ} 44^{\prime} 00^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 1 / 4} \mathrm{sec} .24$, T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 11020003, on left bank on upstream side of Carson Road bridge, 0.9 mi southwest of South Security School, 3.5 mi northeast of Fountain, and 5.5 mi upstream from Jimmy Camp Creek.
DRAINAGE AREA.--495 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1964 to current year.
REVISED RECORDS.--WDR CO-85-1: 1984 (M).
GAGE.--Water-stage recorder with satellite telemetry, and crest-stage gage. Elevation of gage is 5,640 ft above sea level, from topographic map. Prior to Oct. 26, 1966, at site $1,040 \mathrm{ft}$ upstream at datum 6.00 ft higher. Oct. 26, 1966, to July 18, 1972, at site 980 ft upstream at datum 6.00 ft higher, July 19, 1972, to Feb. 20 1980, at site 980 ft downstream at datum 6.00 ft lower. Feb. 21, 1980 to Feb. 6, 1995 at present site at datum 3.00 ft lower. Feb. 7 to Nov. 29, 1995 at datum 4.00 ft lower. Nov. 30, 1995 to present at datum 5.00 ft lower.
REMARKS.--No estimated daily discharges. Records good except Feb. 27 to Mar. 13, Apr. 6-16, and discharges above $1500 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Natural flow of stream affected by storage reservoirs, power developments, ground-water withdrawals, diversions for irrigation of about 5,100 acres and for municipal use, return flow from irrigated areas and flows from sewage treatment plants.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	136	139	92	108	105	113	101	91	108	105	161	157
2	129	140	101	104	105	113	110	94	115	93	734	150
3	141	137	98	118	106	114	113	101	100	92	212	139
4	142	141	99	119	114	115	138	101	89	90	136	128
5	140	146	99	108	126	112	162	102	88	94	131	119
6	125	146	104	106	123	119	118	100	94	92	118	168
7	127	138	101	114	120	116	110	89	98	91	111	189
8	126	140	103	121	119	119	106	86	89	94	197	145
9	121	145	82	119	118	118	95	97	88	707	216	129
10	118	143	113	117	119	119	95	206	106	745	180	115
11	115	137	107	113	110	116	75	106	93	136	113	138
12	113	143	105	118	114	112	99	77	96	123	117	445
13	118	142	116	121	112	98	128	77	184	142	84	169
14	119	140	123	118	117	135	137	86	171	135	72	146
15	125	132	110	121	114	151	106	82	187	132	426	164
16	125	137	113	117	114	139	104	79	132	128	219	112
17	116	129	100	110	115	131	96	78	117	134	105	417
18	116	122	90	91	117	123	90	77	107	267	84	275
19	112	110	101	105	119	114	90	76	96	361	213	162
20	109	125	118	115	118	110	101	78	93	268	194	111
21	117	98	123	114	116	113	95	79	110	482	99	105
22	122	89	127	115	122	116	95	76	118	278	83	106
23	123	91	117	109	118	114	96	75	103	221	271	213
24	126	90	114	111	117	109	90	101	97	193	304	204
25	117	98	114	114	113	100	78	874	91	334	150	179
26	111	106	116	100	114	110	57	699	92	505	141	200
27	109	102	111	105	112	112	62	193	94	527	135	261
28	108	95	110	119	112	104	75	151	94	246	165	200
29	114	106	115	114	114	102	84	138	93	178	282	185
30	111	101	109	111	---	98	88	130	95	170	398	180
31	128		118	104	--	107	---	111	,	166	199	,
TOTAL	3759	3708	3349	3479	3343	3572	2994	4510	3238	7329	6050	5411
MEAN	121	124	108	112	115	115	99.8	145	108	236	195	180
MAX	142	146	127	121	126	151	162	874	187	745	734	445
MIN	108	89	82	91	105	98	57	75	88	90	72	105
AC-FT	7460	7350	6640	6900	6630	7090	5940	8950	6420	14540	12000	10730

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1965 - 1996, BY WATER YEAR (WY)

a-From rating curve extended above $2900 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurement of peak flow.
b-From floodmarks, site and datum then in use.
c-From floodmark.

07105800 FOUNTAIN CREEK AT SECURITY, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--December 1984 to current year.

PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: October 1990 to current year. WATER TEMPERATURE: October 1990 to current year. pH : October 1990 to current year.
DISSOLVED OXYGEN: October 1990 to current year.
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for daily specific conductance are fair, except for May 24-30, which are poor. Records for daily pH are fair. Records for daily water temperature are good, except for Nov. 18-21 and July 22-24, which are fair. Records for daily dissolved oxygen are fair, except for Oct. 1 to Dec. 16, which are poor. Daily data that are not published are either missing or of unacceptable quality.
EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 1,460 microsiemens, Mar. 6, 1996; minimum, 101 microsiemens, June 12, 1995. pH: Maximum, 8.7 units Apr. 27, 1996; minimum 6.5 units, May 24-25, 1996.
WATER TEMPERATURE: Maximum, $29.8^{\circ} \mathrm{C}$, July 17,1991 ; minimum, $0.0^{\circ} \mathrm{C}$, on many days during winter months.

EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 1,460 microsiemens, Mar. 6; minimum, 200 microsiemens, May 25. pH : Maximum, 8.7 units Apr. 27; minimum, 6.5 units, May 24-25.
WATER TEMPERATURE: Maximum, $28.3^{\circ} \mathrm{C}$, July 6 ; minimum, $0.0^{\circ} \mathrm{C}$, Dec. 9, Jan.2, Feb. 2-3.
DISSOLVED OXYGEN: Maximum, $12.1 \mathrm{mg} / \mathrm{L}$, Feb. 2 ; minimum, $4.5 \mathrm{mg} / \mathrm{L}$, Oct. 7.
SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	924	845	879	921	831	877	828	776	806	849	794	814
2	886	824	861	910	813	845	825	766	796	857	787	816
3	917	846	871	857	796	823	840	753	799	822	757	783
4	986	783	862	855	780	818	830	766	794	799	766	782
5	931	839	881	878	831	847	803	698	745	794	745	772
6	907	827	869	1460	830	971	809	758	781	797	734	767
7	876	817	851	1070	863	987	802	778	792	839	776	805
8	858	811	842	900	841	874	829	770	796	859	794	811
9	868	802	847	936	814	856	844	792	820	844	785	801
10	858	795	826	841	792	820	835	786	812	---	---	---
11	884	809	842	887	811	839	850	794	814	---	---	---
12	889	805	839	899	836	870	836	753	794	---	---	---
13	900	815	860	888	816	859	811	737	772	---	---	---
14	886	824	857	959	783	862	787	691	717	---	---	---
15	885	836	858	919	821	860	785	705	736	---	---	---
16	889	853	869	869	808	844	785	744	765	816	798	807
17	898	840	865	882	795	831	795	754	776	882	786	815
18	923	847	879	836	783	807	853	767	799	881	791	816
19	910	834	874	855	777	815	803	748	781	870	777	807
20	898	823	859	815	761	788	755	717	740	858	741	811
21	889	827	864	793	752	771	770	717	751	872	781	820
22	904	818	856	792	753	773	795	742	769	899	797	830
23	824	815	819	817	775	793	830	754	775	859	761	802
24	---	---	---	814	781	799	809	752	782	829	350	720
25	---	---	---	866	768	811	847	765	807	396	200	286
26	---	-	---	855	755	801	891	822	857	480	203	373
27	909	819	877	824	749	783	905	816	857	594	477	533
28	1040	805	883	828	770	802	876	785	832	627	587	607
29	984	888	928	835	787	814	807	753	786	623	575	599
30	---	---	---	863	788	828	832	772	800	608	559	589
31	---	---	---	830	771	808	---	---	---	666	580	625
MONTH	---	---	---	1460	749	835	905	691	788	---	---	---
	JUNE			JULY			AUGUST			SEPTEMBER		
1	686	645	665	772	726	753	745	650	713	658	588	618
2	683	633	659	848	760	828	---	---		709	625	657
3	733	663	697	868	---	---	---	---	---	748	688	711
4	773	722	749	824	---	---	--	-	--	765	683	718
5	800	751	779	---	---	---	800	776	791	750	704	730
6	814	740	786	857	717	788	832	769	800	---	---	---
7	768	722	744	785	---	---	855	756	804	711	457	610
8	881	758	801	874	---	---	795	409	753	764	699	727
9	860	776	824	675	---	---	742	430	670	776	717	750
10	864	658	792	691	---	---	767	485	715	786	728	757
11	785	708	760	817	505	709	837	754	792	815	710	780
12	917	758	812	903	681	828	879	781	819	---	---	---
13	885	780	835	779	664	712	866	791	833	---	---	---
14	--	---	--	766	648	722	902	632	844	---	---	---
15	---	---	--	847	737	762	683	---	---	---	---	---
16	---	---	---	791	737	768	779	656	740	---	---	---
17	753	731	740	832	604	801	893	779	835	---	---	---
18	807	750	775	724	336	585	1070	824	886	---	---	---
19	807	748	778	604	402	507	897	---	---	--	---	---
20	840	764	798	689	601	640	712	404	606	753	695	734
21	797	667	752	659	316	470	797	694	755	775	741	758
22	798	678	728	691	636	670	803	630	740	779	735	758
23	750	699	727	---	---	---	756	---	---	800	471	696
24	833	738	784	733	---	---	684	275	523	719	481	637
25	863	774	808	709	638	---	762	683	722	746	700	725
26	877	791	823	731	---	--	896	674	749	803	600	738
27	871	799	824	---	---	---	916	675	794	704	527	647
28	861	793	818	---	---	---	689	633	658	752	682	712
29	899	795	829	741	---	---	699	223	588	769	701	735
30	892	767	826	728	429	686	564	285	478	803	711	747
31	---	---	--	971	660	735	627	555	587	---	---	--
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

07105800 FOUNTAIN CREEK AT SECURITY, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	7.6	7.4	7.5	7.5	7.4	7.5	7.5	7.4	7.4	8.0	7.8	7.9
2	7.6	7.5	7.6	7.7	7.3	7.5	7.5	7.4	7.4	7.9	7.5	7.7
3	8.0	7.5	7.8	7.5	7.2	7.3	7.5	7.4	7.4	8.0	7.3	7.6
4	8.0	7.6	7.9	7.4	7.3	7.3	7.5	7.4	7.4	7.8	7.7	7.7
5	8.0	7.6	7.8	7.4	7.3	7.4	7.6	7.4	7.5	7.8	7.7	7.7
6	8.0	7.6	7.7	7.5	7.2	7.4	7.5	7.4	7.5	7.9	7.7	7.7
7	7.7	7.4	7.6	7.5	7.2	7.4	7.6	7.5	7.5	7.8	7.7	7.7
8	7.6	7.4	7.5	7.7	7.3	7.4	7.6	7.5	7.5	7.8	7.5	7.7
9	7.6	7.5	7.6	7.7	7.2	7.5	7.7	7.5	7.6	7.7	7.5	7.6
10	7.6	7.5	7.6	7.8	7.6	7.7	7.6	7.4	7.5	7.7	7.5	7.6
11	7.7	7.4	7.6	7.7	7.4	7.6	7.5	7.4	7.5	7.7	7.5	7.6
12	7.9	7.4	7.6	7.6	7.4	7.5	7.5	7.4	7.5	7.6	7.5	7.5
13	7.7	7.4	7.5	7.4	7.3	7.4	7.5	7.5	7.5	7.6	7.4	7.5
14	7.5	7.4	7.4	7.4	7.3	7.4	7.6	7.5	7.5	7.5	7.4	7.4
15	7.8	7.4	7.5	7.5	7.3	7.4	7.7	7.5	7.5	7.5	7.4	7.4
16	7.8	7.6	7.7	7.6	7.3	7.5	7.7	7.5	7.6	7.5	7.4	7.4
17	7.7	7.5	7.6	7.5	7.3	7.4	7.8	7.6	7.7	7.6	7.4	7.5
18	7.7	7.4	7.6	7.5	7.3	7.4	7.8	7.7	7.7	7.5	7.4	7.4
19	7.8	7.4	7.5	---	---	---	7.9	7.7	7.7	7.4	7.3	7.4
20	7.5	7.4	7.5	---	---	---	7.8	7.6	7.7	7.5	7.3	7.4
21	7.5	7.4	7.5	7.6	7.5	7.5	7.8	7.6	7.7	7.5	7.3	7.4
22	7.5	7.4	7.5	7.6	7.5	7.6	7.7	7.1	7.4	7.4	7.3	7.3
23	7.5	7.4	7.5	7.6	7.5	7.6	7.5	7.1	7.3	7.4	7.3	7.3
24	7.6	7.4	7.5	7.6	7.4	7.5	7.5	7.2	7.3	7.4	7.2	7.3
25	7.6	7.4	7.5	7.5	7.4	7.5	7.5	7.2	7.3	7.3	7.2	7.2
26	7.5	7.4	7.4	7.5	7.4	7.5	7.7	7.2	7.3	7.4	7.3	7.3
27	7.5	7.3	7.4	7.5	7.5	7.5	8.0	7.3	7.6	7.5	7.3	7.3
28	7.6	7.5	7.5	7.6	7.5	7.5	8.0	7.6	7.8	7.4	7.3	7.4
29	7.6	7.5	7.5	7.6	7.4	7.5	7.6	7.4	7.5	7.5	7.4	7.4
30	7.6	7.4	7.5	7.5	7.4	7.5	7.5	7.3	7.4	7.8	7.4	7.6
31	7.6	7.4	7.4	---	---	---	7.9	7.3	7.6	7.8	7.7	7.7
MONTH	8.0	7.3	7.6	---	---	---	8.0	7.1	7.5	8.0	7.2	7.5
	FEBRUARY			MARCH			APRIL			MAY		
1	7.8	7.7	7.7	7.5	7.3	7.4	8.0	7.3	7.5	7.9	7.5	7.7
2	7.8	7.7	7.8	7.7	7.4	7.5	7.9	7.4	7.6	7.9	7.3	7.6
3	7.8	7.7	7.8	7.9	7.5	7.6	7.8	7.4	7.5	7.8	7.2	7.4
4	7.8	7.7	7.7	7.9	7.6	7.8	7.7	7.4	7.5	7.8	7.2	7.4
5	7.8	7.7	7.7	8.0	7.4	7.7	7.6	7.5	7.5	7.7	7.1	7.3
6	7.8	7.7	7.7	7.8	7.3	7.5	7.9	7.5	7.6	7.4	7.0	7.2
7	7.8	7.7	7.7	7.8	7.3	7.5	7.9	7.5	7.6	7.5	7.0	7.2
8	7.8	7.7	7.7	7.8	7.6	7.7	8.0	7.5	7.7	7.6	7.0	7.2
9	7.8	7.7	7.7	7.7	7.5	7.6	7.9	7.5	7.7	8.2	6.9	7.4
10	7.8	7.6	7.7	7.7	7.4	7.5	7.8	7.5	7.6	7.4	7.1	7.3
11	7.7	7.5	7.6	7.6	7.3	7.5	7.8	7.5	7.6	7.5	7.2	7.4
12	7.7	7.4	7.5	7.5	7.2	7.3	7.7	7.3	7.5	7.7	7.5	7.6
13	7.6	7.3	7.5	7.4	7.1	7.2	7.5	7.3	7.4	7.8	7.6	7.7
14	7.5	7.2	7.4	7.3	7.0	7.1	7.5	7.2	7.4	7.9	7.7	7.8
15	7.4	7.2	7.3	7.2	7.0	7.1	7.5	7.3	7.4	8.0	7.7	7.9
16	7.4	7.2	7.3	7.3	7.1	7.2	8.2	7.4	7.8	8.2	7.7	7.9
17	7.4	7.2	7.3	7.3	7.1	7.2	8.4	7.8	8.1	8.1	7.7	7.9
18	7.4	7.2	7.3	7.3	7.1	7.2	8.3	7.7	8.0	8.0	7.6	7.8
19	7.4	7.2	7.3	7.3	7.1	7.2	8.4	7.8	8.0	8.0	7.5	7.7
20	7.4	7.2	7.2	7.3	7.1	7.2	8.3	7.7	7.9	7.9	7.5	7.7
21	7.4	7.2	7.3	7.5	7.1	7.3	8.4	7.7	8.0	8.0	7.4	7.7
22	7.4	7.2	7.3	7.6	7.2	7.3	8.2	7.6	7.9	7.8	---	---
23	7.4	7.1	7.3	7.5	7.2	7.3	8.4	7.6	7.9	7.8	---	---
24	7.2	7.0	7.2	7.5	7.2	7.3	8.5	7.5	7.9	7.5	6.5	7.1
25	7.2	6.9	7.1	7.5	7.2	7.4	8.6	7.5	8.0	7.3	6.5	7.0
26	7.1	6.9	7.1	7.5	7.2	7.3	8.5	7.6	8.0	7.3	7.1	7.1
27	7.4	7.0	7.2	7.5	7.2	7.3	8.7	7.6	7.9	7.2	7.0	7.2
28	7.4	7.2	7.3	7.6	7.2	7.3	8.3	7.6	7.9	7.2	7.1	7.2
29	7.4	7.2	7.3	7.8	7.2	7.4	8.0	7.6	7.8	7.3	7.2	7.2
30	---	---	---	7.8	7.3	7.5	8.0	7.5	7.7	7.3	7.2	7.2
31	---	---	---	7.8	7.3	7.5	---	---	---	7.4	7.2	7.3
MONTH	7.8	6.9	7.4	8.0	7.0	7.4	8.7	7.2	7.7	8.2	---	---

07105800 FOUNTAIN CREEK AT SECURITY, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE		JULY			AUGUST			SEPTEMBER		
1	7.4	7.2	7.4	7.4	7.1	7.2	7.3	7.2	7.3	7.4	7.3	7.3
2	7.5	7.1	7.3	7.4	7.1	7.3	7.5	7.1	7.3	7.4	7.3	7.3
3	7.6	7.3	7.4	7.5	7.2	7.4	---	---	---	7.4	7.3	7.4
4	7.6	7.4	7.5	7.9	7.1	7.5	---	---	---	7.5	7.3	7.4
5	7.6	7.5	7.5	7.5	7.0	7.3	7.7	7.7	7.7	7.6	7.3	7.4
6	7.7	7.4	7.5	7.7	7.1	7.3	7.8	7.6	7.7	7.4	7.2	7.4
7	7.7	7.4	7.6	7.7	7.1	7.3	7.8	7.6	7.7	7.4	7.2	7.4
8	7.7	7.3	7.5	7.5	7.1	7.2	7.8	7.4	7.6	7.5	7.3	7.4
9	7.7	7.3	7.5	7.6	7.1	7.3	7.5	7.4	7.5	7.6	7.3	7.4
10	7.7	7.1	7.4	7.6	7.1	7.3	7.5	7.4	7.4	7.6	7.3	7.4
11	7.5	7.2	7.3	7.3	7.1	7.2	7.5	7.4	7.4	7.6	7.3	7.5
12	7.5	7.2	7.4	---	---	-	7.4	7.3	7.4	7.7	7.4	7.5
13	7.4	7.1	7.2	---	---	---	7.5	7.3	7.4	7.9	7.8	7.8
14	7.3	7.1	7.2	---	---	---	7.5	7.3	7.4	7.8	7.7	7.8
15	7.2	7.0	7.1	7.7	7.2	7.4	7.6	7.3	7.3	7.8	7.6	7.7
16	7.3	7.0	7.1	7.6	6.9	7.1	7.4	7.2	7.3	7.8	7.5	7.7
17	7.2	6.9	7.1	7.5	7.0	7.2	7.4	7.3	7.4	8.0	7.5	7.6
18	7.2	6.9	7.0	7.5	7.0	7.3	7.4	7.3	7.4	7.7	7.4	7.5
19	7.2	6.9	7.1	7.7	7.2	7.4	7.6	7.3	7.4	8.0	7.3	7.6
20	7.3	6.9	7.1	7.8	7.3	7.5	7.5	7.3	7.4	7.6	7.3	7.5
21	7.2	6.8	7.0	7.9	7.2	7.5	7.5	7.4	7.4	7.7	7.5	7.6
22	6.9	6.8	6.9	7.5	7.2	7.3	7.4	7.2	7.4	7.9	7.5	7.7
23	7.2	6.9	7.1	---	---	---	7.4	7.2	7.3	8.0	7.7	7.8
24	7.3	6.9	7.1	7.8	7.7	7.8	7.4	7.3	7.3	7.9	7.8	7.9
25	7.3	6.9	7.1	7.9	7.6	7.8	7.4	7.3	7.4	7.9	7.8	7.8
26	7.4	6.9	7.1	7.8	7.5	7.7	7.4	7.3	7.3	7.9	7.8	7.8
27	7.2	6.9	7.1	7.7	7.3	7.5	7.4	7.2	7.3	7.8	7.7	7.8
28	7.4	6.9	7.2	7.5	7.4	7.4	7.5	7.2	7.3	7.9	7.6	7.8
29	7.4	7.1	7.2	7.5	7.2	7.4	7.5	7.3	7.4	7.8	7.5	7.6
30	7.5	7.0	7.3	7.4	7.2	7.3	7.4	7.3	7.4	7.7	7.4	7.6
31	-	---	---	7.4	7.2	7.3	7.5	7.3	7.4	---	---	---
MONTH	7.7	6.8	7.2	---	---	---	---	---	---	8.0	7.2	7.6

TEMPERATURE, WATER (DEG.C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOB		NOVEMBER			DECEMBER			JANUARY		
1	16.3	10.7	13.6	10.8	8.4	9.4	11.7	5.6	8.3	4.2	1.9	3.0
2	17.0	9.1	12.8	8.4	5.5	6.9	11.0	4.7	7.9	5.0	. 0	2.4
3	18.1	9.2	12.9	11.2	4.6	7.4	9.6	5.2	7.4	10.0	2.0	5.4
4	13.7	9.6	11.4	11.3	5.0	8.1	9.7	4.6	7.0	8.3	4.1	5.8
5	14.7	7.1	10.1	13.2	4.7	8.9	7.6	4.5	5.9	6.3	2.8	4.5
6	15.3	6.2	10.1	11.3	7.1	9.4	9.9	4.3	6.3	7.5	1.4	4.2
7	16.4	6.6	11.1	12.2	7.3	9.3	7.1	3.1	5.0	9.0	3.9	6.0
8	16.4	8.7	12.1	14.5	6.7	10.4	6.1	. 9	3.8	10.2	4.2	6.7
9	15.1	8.4	11.6	14.5	8.7	11.4	5.8	. 0	2.6	10.7	4.4	7.0
10	17.7	8.6	12.6	11.1	7.6	9.5	8.0	1.7	4.7	10.4	4.9	6.9
11	18.2	9.1	13.1	13.0	6.7	9.9	8.9	4.2	6.0	10.6	3.8	6.6
12	17.4	10.5	13.6	13.6	8.9	11.4	9.1	4.8	6.7	11.5	4.1	7.1
13	16.1	8.7	12.1	12.3	9.2	11.1	10.6	6.0	7.8	11.1	4.4	7.3
14	16.4	7.3	11.4	15.7	8.8	11.9	9.5	5.1	6.8	10.6	4.4	7.2
15	16.8	8.3	12.4	14.8	9.1	11.8	8.3	2.5	5.0	10.2	3.9	6.8
16	17.9	9.9	13.4	15.5	8.7	12.0	6.6	2.2	4.5	11.0	4.6	7.3
17	17.3	10.2	13.2	15.0	9.6	12.1	4.3	. 3	2.5	7.2	1.3	4.9
18	18.5	9.4	13.4	14.6	8.6	11.2	6.0	1.7	3.2	7.2	1.0	3.3
19	15.2	9.1	11.8	14.3	7.8	10.3	5.7	. 1	2.6	9.8	2.4	5.0
20	16.6	6.4	10.8	11.1	5.1	8.1	7.7	1.0	3.7	7.9	2.3	4.7
21	16.1	8.9	12.2	10.4	4.4	7.6	5.8	2.0	3.7	9.1	2.5	5.4
22	13.3	7.7	10.8	9.5	5.6	7.1	4.9	2.3	3.5	8.2	3.3	5.3
23	14.2	5.8	9.2	9.6	3.9	6.6	5.8	. 6	3.1	8.4	2.2	4.5
24	14.2	6.0	9.8	9.5	3.9	6.5	6.8	1.0	3.5	7.6	2.1	4.0
25	14.9	7.1	10.7	9.8	5.3	7.2	6.7	1.2	3.7	7.2	1.7	3.7
26	15.3	8.3	11.2	10.3	5.4	7.5	7.2	1.6	3.8	7.5	. 7	3.4
27	14.9	8.0	10.9	7.7	4.3	5.9	6.6	. 9	3.4	7.6	1.4	4.1
28	12.9	6.0	9.4	7.5	3.8	5.3	7.1	. 9	3.6	9.0	3.3	5.6
29	14.0	7.3	10.8	10.6	3.9	6.8	7.3	2.2	4.1	9.6	1.8	5.0
30	13.4	7.6	10.1	10.4	5.7	7.7	6.8	1.4	3.8	7.6	2.1	3.9
31	14.8	6.7	10.3	---	---	---	6.1	2.3	4.3	7.4	. 6	3.1
MONTH	18.5	5.8	11.6	15.7	3.8	9.0	11.7	. 0	4.8	11.5	. 0	5.2

07105800 FOUNTAIN CREEK AT SECURITY, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	5.7	1.6	3.0	11.3	2.5	6.0	18.5	6.7	12.0	19.8	8.8	13.5
2	5.2	. 0	1.6	12.2	2.8	6.8	18.0	8.3	12.7	18.9	9.8	14.3
3	6.4	. 0	2.0	12.2	3.1	7.3	11.6	9.2	10.2	17.7	9.9	13.9
4	9.0	. 6	4.1	13.8	5.3	8.8	10.5	7.2	8.6	21.2	10.1	15.2
5	9.9	3.6	5.8	12.9	5.3	8.7	14.1	5.1	9.0	20.0	11.2	15.1
6	9.2	3.7	5.9	8.5	2.2	4.9	18.1	6.2	11.5	21.2	12.3	16.1
7	11.1	4.6	6.8	12.1	1.4	5.5	16.0	8.8	12.0	22.7	13.6	17.2
8	10.4	4.6	6.7	11.6	2.0	6.1	18.9	9.7	13.8	23.2	12.1	16.8
9	12.7	4.2	7.5	13.9	3.6	7.7	18.9	9.7	14.0	23.3	12.4	16.3
10	10.0	4.8	6.6	15.1	5.5	10.0	18.4	9.8	13.4	16.2	10.5	12.9
11	9.7	3.0	5.9	15.7	7.8	11.1	17.1	9.4	12.4	22.2	11.5	15.6
12	11.8	2.7	6.2	15.1	8.1	11.0	19.0	9.0	12.9	23.4	11.8	16.8
13	11.4	3.0	6.5	15.3	6.8	10.2	16.2	6.3	10.9	20.9	12.6	16.2
14	12.0	4.5	7.5	8.0	4.3	6.0	13.6	4.2	8.3	22.0	13.7	17.7
15	11.0	4.2	7.0	15.4	5.0	9.4	17.8	5.5	10.8	23.6	12.6	17.9
16	12.1	2.8	6.9	12.8	5.3	8.9	19.6	8.0	12.8	24.9	13.7	18.7
17	11.7	4.2	7.6	9.7	6.3	7.8	18.9	8.9	13.1	25.1	14.2	19.0
18	11.0	5.6	7.6	10.1	4.8	6.6	18.7	7.6	12.4	24.4	13.9	18.7
19	11.0	4.6	7.4	13.9	3.2	7.7	16.7	6.5	10.7	22.8	13.3	17.6
20	13.5	5.6	8.9	14.7	3.7	8.5	12.4	5.7	9.0	20.2	13.1	15.8
21	15.0	6.9	10.1	15.5	5.7	10.0	15.5	5.9	9.9	21.7	12.7	16.6
22	12.7	6.7	9.2	15.6	5.8	10.0	12.9	7.6	9.9	24.5	13.1	18.3
23	13.3	3.9	7.8	15.5	6.5	10.1	19.0	6.5	12.4	23.4	15.1	18.3
24	13.6	4.8	8.7	9.0	2.1	5.3	20.6	9.9	14.6	19.0	12.1	15.3
25	15.1	6.0	9.6	9.6	1.1	4.4	20.3	10.7	14.4	15.4	10.6	13.1
26	8.2	4.6	6.2	14.1	2.2	7.1	19.7	7.9	13.7	13.3	9.9	11.3
27	11.0	2.5	5.7	15.9	3.5	9.0	19.5	10.0	13.7	16.2	9.0	12.5
28	8.5	1.3	4.0	15.8	5.6	9.9	12.2	5.9	8.7	13.5	10.0	11.7
29	10.8	1.0	4.9	17.1	7.0	10.8	17.3	5.0	10.5	20.7	10.7	14.9
30	---	---	---	16.7	6.4	11.1	18.3	6.9	12.2	23.3	13.7	17.3
31	---	---	---	16.7	6.0	10.6		---	---	20.5	12.7	16.0
MONTH	15.1	. 0	6.5	17.1	1.1	8.3	20.6	4.2	11.7	25.1	8.8	15.8
	JUNE			JULY			AUGUST			SEPTEMBER		
1	21.6	13.4	16.9	26.8	16.4	20.6	26.6	17.5	21.5	22.8	14.9	18.3
2	22.4	12.7	17.2	27.7	16.4	21.4	24.7	17.1	20.3	20.2	15.2	17.4
3	23.9	13.1	18.0	27.3	16.8	21.4	24.3	18.1	20.8	24.7	14.5	18.8
4	22.5	13.9	18.2	28.2	17.1	21.4	25.1	17.3	20.7	24.3	15.3	19.1
5	21.8	14.2	18.0	25.5	18.2	21.4	25.5	16.2	20.3	24.6	15.3	19.2
6	23.5	13.4	17.9	28.3	17.6	21.9	26.8	16.4	20.5	21.4	15.6	17.6
7	24.3	13.3	18.1	26.9	17.3	21.3	23.1	14.7	18.6	22.5	13.2	17.3
8	25.6	13.4	19.0	20.7	17.2	19.0	21.3	13.9	17.0	23.6	13.9	18.2
9	23.7	15.0	18.5	25.0	17.6	19.6	23.7	16.0	19.9	22.9	14.3	18.3
10	23.4	14.6	18.1	23.8	17.4	19.8	25.9	17.7	20.7	25.1	14.8	18.7
11	24.6	14.4	18.3	26.5	17.9	21.6	24.7	14.3	18.9	24.1	14.7	18.3
12	24.9	14.5	18.5	23.9	18.1	20.5	25.4	14.6	19.3	16.7	14.4	15.3
13	23.7	13.1	17.4	24.4	17.4	20.5	---	---	---	18.0	14.6	16.0
14	20.1	13.2	16.3	25.4	16.6	20.4	26.2	---	---	18.2	14.2	16.1
15	18.9	14.9	16.5	24.6	17.0	20.4	22.0	14.3	18.1	20.5	13.8	16.7
16	23.5	13.9	17.7	25.4	18.2	21.2	24.9	16.4	20.0	19.5	14.8	16.6
17	24.4	14.0	18.6	27.1	17.6	21.7	26.4	16.1	20.5	21.1	11.5	15.8
18	25.9	14.6	19.6	26.0	18.8	21.1	27.1	16.9	20.8	17.9	11.7	13.8
19	25.9	14.4	19.6	24.1	17.1	20.0	25.6	15.4	19.4	18.0	9.2	13.3
20	26.7	16.0	20.7	25.6	17.5	21.1	24.6	14.9	18.6	18.0	8.0	13.4
21	23.2	16.1	19.2	26.0	---	20.9	24.2	17.0	19.9	19.6	10.2	14.4
22	20.7	16.5	18.5	26.6	17.8	21.3	20.3	17.4	18.8	19.3	11.4	15.2
23	24.9	14.5	19.2	26.3	---	19.9	26.0	17.5	19.5	18.6	12.8	15.0
24	27.4	17.4	21.0	25.1	---	19.4	23.5	16.0	19.1	18.9	12.1	14.8
25	26.3	15.8	20.2	21.5	14.6	18.4	24.3	16.2	19.8	17.8	12.1	14.5
26	27.3	16.0	20.9	24.6	16.7	19.8	24.8	16.8	20.1	13.2	9.2	11.0
27	24.7	17.2	20.1	24.1	15.5	19.6	24.7	16.6	19.4	15.4	6.5	10.5
28	25.0	16.8	20.4	23.6	17.0	20.0	22.9	15.1	18.4	17.5	9.0	12.8
29	25.6	16.5	20.7	21.2	17.9	19.3	24.0	15.7	18.6	18.3	10.4	13.9
30	21.2	17.6	19.3	26.6	17.6	21.5	21.3	13.8	17.1	19.6	11.3	14.9
31	---		---	26.3	19.1	21.6	23.4	15.3	18.7	---	---	
MONTH	27.4	12.7	18.8	28.3	---	20.6	---	---	---	25.1	6.5	15.8

07105800 FOUNTAIN CREEK AT SECURITY, CO--Continued

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	6.5	5.2	5.7	7.5	6.4	7.0	8.5	6.5	7.6	9.4	8.5	9.0
2	6.9	5.0	6.0	9.0	7.4	8.1	8.6	6.6	7.6	10.7	8.2	9.3
3	7.0	5.2	6.0	9.2	7.0	8.1	8.6	7.1	7.8	9.3	7.5	8.5
4	6.6	5.6	6.0	8.9	6.7	7.8	8.8	6.9	7.8	9.6	8.1	8.8
5	7.0	5.5	6.3	8.9	6.1	7.5	9.1	7.4	8.2	10.1	8.7	9.4
6	7.3	5.4	6.1	8.2	---	---	8.7	7.0	8.1	10.8	8.3	9.6
7	6.9	4.5	5.8	8.2	---	---	9.3	7.7	8.5	9.8	7.9	8.9
8	6.6	4.7	5.5	8.2	---	---	10.2	8.2	8.9	9.7	7.6	8.7
9	6.0	-	---	7.0	---	---	---	7.9	---	9.5	7.5	8.6
10	---	--	---	7.4	---	---	9.7	7.4	8.7	9.2	7.5	8.6
11	--	---	---	7.5	---	---	8.8	7.0	8.1	9.6	7.8	8.8
12	---	---	---	6.6	---	---	8.4	6.7	7.6	10.3	7.7	9.1
13	---	---	--	6.4	---	--	8.0	6.8	7.3	10.1	7.6	8.9
14	-	---	--	6.3	--	--	8.8	7.3	8.1	10.0	7.6	8.9
15	---	-	---	6.1	---	---	9.9	7.5	8.8	10.3	7.6	9.0
16	-	-	---	6.5	-	---	9.7	7.9	8.8	9.9	7.5	8.6
17	---	---	---	6.6	--	-	10.1	8.7	9.4	10.8	8.3	9.3
18	---	---	---	6.8	-	---	9.8	8.1	9.2	11.5	8.3	9.9
19	---	---	---	--	---	-	10.2	8.1	9.4	10.4	7.0	9.1
20	---	--	--	---	--	---	9.7	7.4	8.8	10.6	7.9	9.5
21	---	---	-	---	6.6	---	9.3	7.8	8.6	10.3	7.2	8.9
22	---	---	---	8.1	6.8	7.6	9.3	8.3	8.7	9.8	7.3	8.7
23	---	---	---	8.6	6.7	7.7	9.8	7.7	8.9	10.6	7.2	9.1
24	--	-	---	8.8	6.9	7.9	9.7	7.6	8.8	10.6	7.7	9.1
25	---	--	---	8.3	6.8	7.7	9.7	7.8	8.8	9.8	7.7	8.8
26	--	---	---	8.3	6.7	7.6	9.8	7.6	8.8	10.4	8.1	9.4
27	--	---	---	8.9	7.9	8.3	9.9	7.7	8.9	10.2	8.2	9.3
28	8.5	6.4	7.4	9.3	8.0	8.7	9.8	7.5	8.8	9.5	7.8	8.8
29	8.4	6.2	7.1	9.3	7.3	8.4	9.5	7.6	8.7	10.0	7.9	9.0
30	7.9	6.1	6.9	8.9	7.4	8.2	9.5	7.6	8.7	11.2	8.5	10.0
31	8.1	5.3	6.7	---	--	---	9.3	8.1	8.6	12.0	---	-
MONTH	-	---	--	--	-	-	---	6.5	---	12.0	---	-
	FEBRUARY			MARCH			APRIL			MAY		
1	11.2	---	---	9.7	---	---	8.7	5.5	7.1	8.5	5.6	6.8
2	12.1	---	---	9.6	---	---	9.3	5.7	7.1	8.3	5.0	6.6
3	11.8	-	---	9.2	--	---	8.9	6.3	7.5	7.5	4.8	6.0
4	12.0	---	---	7.9	---	---	9.4	7.2	8.0	7.1	---	6.1
5	9.9	---	---	7.7	---	---	9.2	6.8	8.0	--	---	6
6	9.8	---	-	9.7	7.0	8.5	9.4	6.0	7.7	---	---	-
7	9.5	-	---	10.3	7.7	9.0	9.2	6.5	7.7	---	---	---
8	9.5	---	-	10.1	7.5	8.8	9.6	5.9	7.5	--	---	---
9	9.7	---	---	10.1	6.9	8.3	9.6	6.3	7.6	---	---	---
10	9.7	---	--	9.0	6.5	7.7	9.6	5.6	7.4	---	---	---
11	10.4	--	-	8.7	6.5	7.5	9.0	6.0	7.1	---	--	-
12	10.6	---	---	8.4	6.5	7.2	9.1	5.5	6.9	---	---	---
13	10.3	---	---	8.5	6.4	7.3	8.8	5.6	7.4	---	---	---
14	9.4	---	---	9.2	7.4	8.2	11.4	6.9	9.1	---	---	---
15	9.5	---	---	8.6	6.5	7.5	10.0	4.7	7.8	-	-	--
16	10.1	---	---	8.6	7.0	7.6	8.9	6.2	7.3	---	---	-
17	9.3	---	---	8.3	7.5	7.8	8.8	6.2	7.5	---	---	---
18	8.7	---	---	8.9	7.7	8.2	9.0	6.2	7.5	---	---	---
19	8.9	---	---	9.2	7.0	8.1	9.4	6.6	8.0	--	---	---
20	8.2	---	---	9.2	6.8	7.9	9.5	6.8	8.2	---	---	---
21	---	---	---	8.7	6.9	7.7	9.1	6.8	7.8	---	--	-
22	8.1	---	---	9.0	6.8	7.8	9.4	6.8	7.8	---	5.8	---
23	---	---	---	8.6	6.4	7.4	9.4	5.8	7.7	7.3	6.1	6.8
24	--	---	---	9.7	7.3	8.6	8.7	5.3	7.0	8.1	5.5	7.1
25	---	---	---	9.8	8.0	8.9	8.6	5.5	6.9	8.5	5.6	7.2
26	---	---	---	9.4	7.0	8.3	8.5	4.9	6.8	8.5	7.5	7.9
27	---	---	---	9.2	6.6	7.9	8.1	5.1	6.2	8.2	6.9	7.6
28	10.8	--	---	8.8	6.5	7.5	8.7	5.7	7.0	8.3	7.4	7.8
29	10.7	---	---	8.6	6.0	7.2	7.8	4.7	6.3	8.0	6.4	7.3
30	---	---	---	8.8	6.1	7.2	7.5	5.3	6.3	7.5	6.1	6.9
31	---	---	---	8.7	6.1	7.3	-	--	---	7.7	6.7	7.2
MONTH	---	---	---	10.3	---	---	11.4	4.7	7.4	---	---	---

07105800 FOUNTAIN CREEK AT SECURITY, CO--Continued

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST			SEPTEMBER	
1	7.7	6.5	7.1	6.6	4.8	5.5	6.3	5.2	5.7	---	-	---
2	8.0	6.4	7.2	6.3	4.8	5.6	7.3	4.7	6.2	---	---	---
3	7.7	6.3	7.0	6.2	4.7	5.4	6.2	5.5	5.8	---	---	---
4	7.4	6.4	6.9	7.0	4.9	5.8	6.3	5.3	5.9	---	---	---
5	7.3	6.3	6.8	,		---	6.6	---	---	---	---	---
6	7.6	6.3	6.9	---	---	---	---	---	---	---	---	---
7	7.9	6.3	7.0	---	---	---	---	6.2	---	---	---	---
8	7.6	6.2	6.8	---	---	-	7.9	6.1	6.9	---	---	---
9	7.4	6.2	6.7	---	-	--	7.5	6.4	7.0	---	--	---
10	7.4	5.9	6.7	-	-	---	7.3	5.9	6.6	---	---	---
11	6.9	5.5	6.4	---	5.3	---	7.1	5.5	6.3	---	---	---
12	7.3	6.2	6.7	6.3	5.5	5.9	6.5	4.9	5.8	---	--	---
13	7.8	6.0	6.8	6.4	5.3	5.8	6.1	5.0	5.6	---	6.1	--
14	7.8	6.6	7.2	6.5	5.4	6.0	6.5	5.2	5.8	7.2	6.2	6.6
15	7.3	6.7	7.0	6.7	5.7	6.2	8.1	4.7	6.4	7.6	6.2	6.8
16	7.6	6.3	7.0	6.6	5.8	6.2	6.4	5.2	5.8	7.6	6.2	6.8
17	7.7	6.1	6.8	6.9	5.7	6.3	6.6	5.2	5.9	9.7	6.3	7.3
18	7.2	5.8	6.5	7.1	5.4	6.4	6.3	5.1	5.8	9.0	6.6	7.7
19	7.3	6.1	6.5	7.0	5.2	6.3	7.8	5.5	6.4	8.8	7.0	7.7
20	7.0	6.0	6.4	6.9	5.4	6.1	7.7	5.8	6.7	8.6	6.6	7.3
21	7.4	5.6	6.4	---	4.6	--	6.7	5.6	6.3	7.5	6.1	6.7
22	6.2	5.5	5.8	---	---	---	6.8	6.1	6.4	7.6	6.2	6.8
23	6.7	5.7	6.1	---	---	---	7.7	5.8	6.7	7.6	6.1	6.8
24	6.9	5.5	6.1	---	---	---	7.8	6.2	7.0	7.3	5.6	6.4
25	6.9	5.7	6.2	-	--	---	7.3	5.8	6.5	6.8	5.8	6.4
26	6.9	5.4	6.0	6.7	5.3	---	7.2	6.0	6.5	7.8	6.6	7.2
27	6.5	5.3	5.9	---	--	---	7.1	6.2	6.6	9.1	6.9	7.8
28	6.6	4.9	5.8	---	---	---	7.6	6.2	6.9	8.7	6.8	7.7
29	6.5	5.0	5.7	--	--	--	7.9	6.4	7.1	8.2	5.7	6.9
30	6.4	4.8	5.7	---	---	---	8.8	6.3	7.3	7.7	5.3	6.5
31	---	---	---	6.8	5.3	---	6.9	5.7	6.4	---	---	---
MONTH	8.0	4.8	6.5	---	---	---	---	---	---	---	---	-

07105900 JIMMY CAMP CREEK AT FOUNTAIN, CO

LOCATION.--Lat $38^{\circ} 41^{\prime} 04^{\prime \prime}$, long $104^{\circ} 41^{\prime} 17^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec.5, T. 16 S., R. 65 W., El Paso County, Hydrologic Unit 11020003, on right bank at downstream side of bridge on county road, $1,000 \mathrm{ft}$ east of Fountain, and 1.5 mi upstream from mouth

DRAINAGE AREA.--65.6 mi ${ }^{2}$.
PERIOD OF RECORD.--January 1976 to current year.
GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is $5,530 \mathrm{ft}$ above sea level, from topographic map. January 1976 to Sept. 3, 1986 at datum 4.0 ft , higher. Aug. 14, 1991 to July 14, 1994, at site 110 ft downstream, at same datum.

REMARKS.--Records fair except for estimated daily discharges, and those above $80 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.8	1.5	e1. 8	1.0	e. 86	e1.5	1.1	2.2	3.8	1.1	4.0	3.2
2	1.7	1.5	1.8	e. 96	e. 92	1.5	1.1	2.3	3.3	1.1	3.8	2.9
3	1.8	e1.4	e1.7	e. 96	e1.0	1.5	1.2	2.3	2.7	1.3	3.5	2.8
4	1.9	e1.4	e1.7	e. 95	e1.1	1.5	1.2	2.4	2.3	1.5	3.5	2.6
5	1.9	e1.4	e1.7	e. 94	e1.2	1.5	1.2	2.6	2.2	1.6	3.6	2.4
6	1.9	e1. 5	e1.7	e. 96	e1.2	1.5	1.2	2.7	1.9	1.7	3.7	2.3
7	2.0	1.6	e1.7	1.1	e1.2	e1.4	1.2	2.7	1.7	1.8	3.9	2.2
8	1.9	1.6	e1. 6	e. 97	e1.3	1.5	1.2	3.2	1.6	1.8	4.1	2.2
9	1.9	e1.7	e1. 5	1.0	e1.3	1.5	1.3	3.8	1.8	3.8	4.2	2.2
10	1.7	e1.8	e1.3	. 98	1.5	1.5	1.2	4.1	1.9	9.5	4.1	2.2
11	1.6	e1.7	e1.4	. 97	e1.2	1.5	1.2	3.9	1.6	2.6	4.0	2.3
12	2.0	e1.6	e1.4	. 95	e1.3	1.5	1.3	3.2	1.2	2.8	4.3	2.2
13	1.6	e1. 6	1.5	. 93	e1.3	1.5	1.4	3.1	1.1	3.1	4.4	2.2
14	1.5	e1.7	1.5	1.0	e1.3	1.5	1.3	3.1	13	3.2	5.0	2.3
15	1.5	e1.7	1.4	e1.0	e1.3	1.5	1.3	3.1	20	3.1	44	2.6
16	1.4	e1.6	1.4	e1.1	e1.4	1.5	2.9	3.2	4.5	3.1	7.6	2.4
17	1.5	e1. 6	1.4	e1.2	e1.3	1.5	5.3	3.2	2.9	3.1	4.9	2.4
18	1.5	e1.7	e1.3	e1.2	e1.4	1.5	2.2	3.2	2.2	3.2	4.0	2.4
19	1.6	e1.6	1.3	e1.2	e1.4	1.5	2.3	3.4	2.4	3.6	4.5	2.4
20	1.6	e1.7	1.2	e1.1	e1.4	1.5	2.2	3.5	2.3	12	9.3	2.4
21	1.6	e1. 6	1.2	e1.0	e1.4	1.5	2.2	3.7	2.1	9.7	3.6	2.4
22	1.8	e1.6	1.2	. 99	e1.4	1.5	2.2	3.9	1.9	7.6	4.1	2.4
23	2.0	e1.7	e1.1	e1.0	e1.4	1.3	2.2	4.2	1.8	6.0	7.4	2.4
24	1.6	e1.6	e1.1	e1.1	1.5	1.2	2.2	4.9	1.6	4.5	10	2.4
25	1.6	e1.6	e1.2	e1.4	1.5	e1.1	2.1	5.1	1.5	4.4	5.1	2.4
26	1.7	e1. 6	e1.1	e1.3	1.5	1.2	2.1	4.6	1.4	6.6	4.6	2.3
27	1.7	e1.7	e1.2	e1.3	e1.4	1.2	2.1	5.1	1.3	4.2	4.6	2.3
28	1.7	e1.7	e1.1	e1.0	e1.4	1.1	2.1	5.2	1.2	3.8	4.8	2.2
29	1.6	e1.7	e1.1	e1.1	e1.4	1.2	2.1	5.0	1.2	3.7	4.3	2.2
30	1.6	e1.8	1.1	e1.0	---	1.2	2.1	4.2	1.1	3.7	4.2	2.2
31	1.6	--	1.1	e1.0	---	1.2	---	3.6	---	3.7	3.5	---
TOTAL	52.8	48.5	42.8	32.66	37.78	43.6	54.7	110.7	89.5	122.9	186.6	71.8
MEAN	1.70	1.62	1.38	1.05	1.30	1.41	1.82	3.57	2.98	3.96	6.02	2.39
MAX	2.0	1.8	1.8	1.4	1.5	1.5	5.3	5.2	20	12	44	3.2
MIN	1.4	1.4	1.1	. 93	. 86	1.1	1.1	2.2	1.1	1.1	3.5	2.2
AC-FT	105	96	85	65	75	86	108	220	178	244	370	142

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1976 - 1996, BY WATER YEAR (WY)

MEAN	2.11	2.32	1.76	1.68	1.61	1.76	1.69	2.52	3.81	3.23	4.55	1.83
MAX	3.55	6.49	3.17	2.74	2.39	3.54	2.72	10.1	27.7	27.9	13.4	5.12
(WY)	1985	1982	1995	1986	1977	1980	1993	1995	1995	1985	1984	1994
MIN	1.20	1.58	.87	1.01	.79	1.05	.56	.91	.98	.96		
(WY)	1979	1984	1988	1988	1990	1990	1990	1986	1989	1989	1998	1990

SUMMARY STATISTICS

HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
EST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1976 - 1996

STANTANEOUS PEAK
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
$\begin{array}{cccr}4.72 & & \\ 457 & \text { Jun } & 3 \\ .99 & \text { Mar } & 15 \\ 1.0 & \text { Mar } & 13\end{array}$
$\begin{array}{rrrr}894.34 & & \\ 2.44 & & \\ & & \\ 44 & \text { Aug } & 15 \\ e_{86} & \text { Feb } & 1 \\ .97 & \text { Jan } & 8 \\ 374 & \text { Aug } & 15 \\ 6.83 & \text { Aug } & 15 \\ 1770 & & \\ 4.2 & & \\ 1.7 & & \\ 1.1 & & \end{array}$

2.40			
5.12			1995
1.20		1990	
700	Jul 28	1985	
a .00	Apr	12	1990
.07	Apr	10	1990
$\mathrm{~b}_{4810}$	Jun	3	1994
$\mathrm{C}_{9} .51$	Jun	3	1994
1740			
3.0			
1.7			
903			

e-Estimated.

a-Also occurred Apr 13 and 15, 1990
b-From rating curve extended above $100 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurement of peak flow.
c-From floodmark.

07105905 FOUNTAIN CREEK ABOVE LITTLE FOUNTAIN CREEK, BELOW FOUNTAIN, CO

WATER-QUALITY RECORDS

LOCATION.--Lat $38^{\circ} 37^{\prime} 50$ ", long $104^{\circ} 40^{\prime} 50$ ", in $\mathrm{SW}^{1} / 4 \mathrm{NW}^{1} / 4 \mathrm{sec} .28$, T. 16 S., R. 65 W., El Paso County, Hydrologic Unit 11020003, approximately 1 mi upstream from mouth of Little Fountain Creek below Fountain.

PERIOD OF RECORD.--April 1975 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

		DIS-					OXYGEN	COLI-	STREP		
DATE	TIME	CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	$\begin{gathered} \text { PH } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPERATURE WATER (DEG C)	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	$\begin{aligned} & \text { DEMAND, } \\ & \text { BIO- } \\ & \text { CHEM- } \\ & \text { ICAL, } \\ & 5 \text { DAY } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { FORM, } \\ & \text { FECAL, } \\ & 0.7 \\ & \text { UM-MF } \\ & \text { (COLS. / } \\ & 100 \mathrm{ML} \text {) } \end{aligned}$	TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	$\begin{aligned} & \text { CALCIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS CA) } \end{aligned}$	$\begin{gathered} \text { MAGNE- } \\ \text { SIUM, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS MG) } \end{gathered}$
OCT											
27.	1200	95	1040	8.1	11.0	8.4	5.8	K100	K87	85	27
DEC											
01.	1145	93	1030	7.8	9.5	7.7	7.4	170	83	81	28
JAN											
19.	0930	109	996	--	0.0	9.6	23	140	170	76	24
FEB											
23.	1200	107	924	7.9	9.0	8.1	7.0	K110	K80	72	24
MAR											
22	1015	128	910	8.1	10.0	8.3	5.7	K28	K18	70	22
APR											
19.	1000	44	1040	8.0	9.5	8.3	4.0	K9	K42	82	26
MAY											
17.	1230	44	1120	8.1	23.5	6.2	1.5	97	K45	84	29
JUN											
21.	0900	104	928	8.2	17.0	8.3	6.0	620	440	71	23
JUL											
19	1100	209	656	8.0	23.0	6.4	5.0	K1400	1600	51	15
AUG											
16	0830	180	848	7.9	17.0	7.0	6.4	K1500	K2200	61	20
SEP											
13...	0745	153	844	8.1	15.0	7.4	4.5	K2200	K2100	65	20
DATE	ALKA-		CHLO-	FLUO-		$\begin{aligned} & \text { RESIDUE } \\ & \text { TOTAL } \end{aligned}$	NITRO- GEN,	NITROGEN,	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \end{gathered}$	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, AM- } \end{aligned}$	PHOSPHORUS
	LINITY	SULFATE	RIDE,	RIDE,		AT 105	NITRITE	$\mathrm{NO} 2+\mathrm{NO} 3$	AMMONIA	MONIA +	ORTHO,
	LAB	DIS-	DIS-	DIS-	SULFIDE	DEG. C,	DIS-	DIS-	DIS-	ORGANIC	DIS-
	(MG/L	SOLVED	SOLVED	SOLVED	TOTAL	SUS-	SOLVED	SOLVED	SOLVED	TOTAL	SOLVED
	AS	(MG/L	(MG/L	(MG/L	(MG/L	PENDED	(MG / L	(MG/L	(MG/L	(MG/L	(MG/L
	CACO3)	AS SO4)	AS CL)	AS F)	AS S)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS P)
OCT											
27.	161	270	48	1.7	--	38	0.13	6.6	0.16	1.0	0.42
DEC											
01.	157	260	49	1.7	<0.5	46	0.18	7.5	0.50	1.3	0.49
JAN											
19.	143	250	54	1.9	--	76	0.05	5.8	2.8	4.1	0.19
FEB											
23.	142	220	48	1.6	--	84	0.13	6.3	0.63	1.2	0.26
MAR											
22.	140	220	44	1.8	--	77	0.07	5.6	0.13	0.7	0.71
APR											
19.	158	280	49	1.7	--	30	0.09	5.4	0.23	0.9	0.32
MAY											
17.	175	320	52	1.8	<0.5	22	0.08	3.7	0.07	0.8	0.45
JUN											
21.	141	230	46	1.8	--	182	0.07	5.2	0.06	1.1	1.1
JUL											
19..	112	150	28	1.8	--	588	0.05	2.7	0.08	0.9	0.45
AUG											
16...	136	210	38	1.2	--	536	0.12	4.2	0.09	1.2	0.48
SEP											
13...	134	210	36	1.7	--	221	0.01	3.6	<0.015	0.6	0.29

K-Based on non-ideal colony count.

07105905 FOUNTAIN CREEK ABOVE LITTLE FOUNTAIN CREEK, BELOW FOUNTAIN, CO--Continued

DATE	$\begin{aligned} & \text { IRON, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS FE) } \end{aligned}$	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	$\begin{aligned} & \text { LEAD, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS PB) } \end{aligned}$	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGANESE, DISSOLVED (UG/L AS MN)	NICKEL, TOTAL RECOVERABLE (UG/L AS NI)	$\begin{aligned} & \text { NICKEL, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS NI) } \end{aligned}$	$\begin{aligned} & \text { SELE- } \\ & \text { NIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS SE) } \end{aligned}$	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	$\begin{aligned} & \text { ZINC, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS ZN) } \end{aligned}$	$\begin{gathered} \text { CYANIDE } \\ \text { TOTAL } \\ \text { (MG/L } \\ \text { AS CN) } \end{gathered}$
OCT $27 .$	<10	2	<1	120	60	4	3	6	20	<10	--
$\begin{gathered} \text { DEC } \\ 01 . \end{gathered}$	10	2	<1	140	100	4	4	6	20	10	<0.01
$\begin{aligned} & \text { JAN } \\ & 19 . \end{aligned}$	30	3	<1	170	110	4	3	4	60	20	--
FEB 23. .	20	4	<1	150	90	4	3	5	40	20	--
$\begin{aligned} & \text { MAR } \\ & 22 \ldots \end{aligned}$	<10	3	1	110	50	4	3	4	40	20	--
$\begin{aligned} & \text { APR } \\ & \quad 19 \ldots \end{aligned}$	10	2	<1	90	60	5	4	5	20	10	--
$\begin{gathered} \text { MAY } \\ 17 \ldots \end{gathered}$	5	1	<1	90	65	4	4	5	20	9	<0.01
$\begin{aligned} & \text { JUN } \\ & 21 . . . \end{aligned}$	14	6	<1	160	16	6	3	5	40	17	--
$\begin{aligned} & \text { JUL } \\ & 19 . \ldots \end{aligned}$	8	26	<1	350	11	9	3	3	80	6	--
$\begin{aligned} & \text { AUG } \\ & 16 . . . \end{aligned}$	<10	23	<1	360	30	13	5	4	90	10	--
$\begin{aligned} & \text { SEP } \\ & \quad 13 \ldots . \end{aligned}$	9	12	<1	160	8	7	2	4	30	11	--

07105920 LITTLE FOUNTAIN CREEK ABOVE KEATON RESERVOIR NEAR FORT CARSON, CO

LOCATION.--Lat $38^{\circ} 40^{\prime} 54^{\prime \prime}$, long $104^{\circ} 51^{\prime} 29^{\prime \prime}$, in $\mathrm{NE}^{1} / 4 \mathrm{SW}^{1 / 4} \sec .2$, T. 16 S, R. 67 W., El Paso County, Hydrologic Unit 11020003, on right bank 100 ft upstream from Keaton Reservoir, 0.7 mi upstream from State Highway 115, and 4.8 mi southwest of Fort Carson.
DRAINAGE AREA.-- $11.0 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--May 1978 to September 1987. October 1987 to September 1988, seasonal record only. February 1995 to current year. Water-quality data available, May 1978 to September 1982.
REVISED RECORDS.--WDR CO-80-1: 1979.
GAGE.--Water-stage recorder and Parshall flume. Elevation of gage is $6,430 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for June 2, 8-9, 11, 14-20, 22, 24, 28-29, which are fair, and estimated daily discharges, which are poor. No known diversions upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.2	. 82	e. 92	e. 68	e. 81	e. 84	1.2	1.2	2.9	. 77	. 92	2.8
2	1.2	. 81	e. 91	e. 68	e. 74	e. 84	1.2	1.1	2.2	. 62	. 81	2.3
3	1.1	. 88	e. 90	e. 66	e. 63	e. 84	1.4	1.0	1.8	. 55	. 76	1.9
4	1.0	. 90	e. 85	e. 68	e. 52	e. 83	1.4	1.0	1.6	. 48	. 67	1.6
5	1.0	. 89	e. 84	e. 70	e. 60	e. 82	1.3	1.0	1.4	. 48	. 59	1.4
6	1.0	. 89	e. 83	e. 72	e. 83	. 83	1.4	1.0	1.3	. 46	. 55	1.4
7	1.1	. 89	e. 82	e. 72	e. 90	. 82	1.8	1.0	1.1	. 39	. 49	1.6
8	1.0	. 89	. 81	e. 72	e. 94	. 82	1.9	. 91	1.1	. 39	. 99	1.3
9	1.1	. 89	. 48	. 76	. 96	. 86	2.0	. 89	1.0	1.9	4.6	1.2
10	1.0	. 89	. 78	. 76	. 97	. 99	2.0	1.2	. 99	8.7	2.2	1.0
11	1.0	. 89	. 99	. 76	1.0	. 96	2.0	1.1	1.2	3.3	1.5	. 97
12	. 91	e. 84	. 89	. 76	1.0	. 90	2.0	1.0	1.0	2.4	1.3	. 89
13	. 82	e. 84	. 89	. 76	1.0	. 82	1.9	. 89	1.0	2.8	1.1	1.1
14	. 87	. 90	. 83	. 76	1.1	. 88	1.7	. 88	1.0	2.9	1.0	1.2
15	. 84	. 89	. 67	. 76	1.0	. 83	1.6	. 73	1.8	2.7	. 96	1.3
16	. 82	. 89	e. 62	. 81	1.0	. 82	1.7	. 65	2.0	2.4	. 96	1.2
17	. 94	. 89	e. 60	. 92	. 97	. 82	1.6	. 59	1.4	2.1	. 92	1.1
18	1.1	. 89	. 62	. 89	. 99	. 71	1.5	. 59	1.2	2.1	. 82	1.2
19	. 90	. 89	e. 60	. 89	. 97	. 90	1.5	. 56	1.0	2.0	. 96	1.3
20	. 88	. 89	e. 60	. 89	1.1	1.0	1.4	. 55	. 89	1.7	. 87	1.2
21	. 85	. 94	e. 60	. 89	1.1	1.0	1.3	. 59	. 87	1.3	. 79	1.0
22	. 85	. 92	e. 57	. 89	1.1	1.0	1.4	. 54	1.0	1.1	. 77	1.0
23	. 82	. 89	e. 58	. 89	1.0	1.2	1.3	. 48	e. 88	1.2	1.9	1.0
24	. 79	. 89	e. 60	. 89	1.0	1.1	1.3	. 59	. 76	. 96	2.4	1.5
25	. 79	. 89	e. 60	. 89	1.0	. 64	1.4	1.7	e. 70	1.0	1.3	1.3
26	. 74	. 89	e. 62	. 93	. 86	. 64	1.3	5.8	e. 67	1.0	1.4	1.3
27	. 72	. 89	e. 62	e. 95	e. 89	. 79	1.2	4.7	e. 62	1.2	3.3	1.5
28	. 73	e. 88	e. 64	e. 92	e. 88	1.1	1.3	3.8	. 59	. 97	5.7	1.7
29	. 62	e. 82	e. 64	e. 92	e. 85	1.1	1.3	3.3	. 56	. 96	4.3	1.9
30	. 59	e. 89	e. 64	e. 90	--	1.2	1.2	2.8	. 60	. 96	4.3	2.1
31	. 74	---	e. 65	e. 90	---	1.2	---	2.8	---	1.1	3.3	---
TOTAL	28.02	26.46	22.21	25.25	26.71	28.10	45.5	44.94	35.13	50.89	52.43	42.26
MEAN	. 90	. 88	. 72	. 81	. 92	. 91	1.52	1.45	1.17	1.64	1.69	1.41
MAX	1.2	. 94	. 99	. 95	1.1	1.2	2.0	5.8	2.9	8.7	5.7	2.8
MIN	. 59	. 81	. 48	. 66	. 52	. 64	1.2	. 48	. 56	. 39	. 49	. 89
AC-FT	56	52	44	50	53	56	90	89	70	101	104	84

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1978 - 1996, BY WATER YEAR (WY)

[^60]b-Also occurred Jul 8.
c-From rating curve extended above $70 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurement of peak flow.
d-From floodmark.

07105928 LITTLE FOUNTAIN CREEK NEAR FORT CARSON, CO

LOCATION.--Lat $38^{\circ} 40^{\prime} 49^{\prime \prime}$, long $104^{\circ} 51^{\prime} 08^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{SE}^{1 / 4} \mathrm{sec} .2$, T. 16 S., R. 67 W., El Paso County, Hydrologic Unit 11020003, on right bank 0.3 mi downstream from Keaton Reservoir, 0.4 mi upstream from State Highway 115, 1.2 mi upstream from Deadman Canyon, and 4.8 mi southwest of Fort Carson.

DRAINAGE AREA.-- $11.8 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--Streamflow records, May 1978 to September 1989. January 1995 to current year. Water-quality data available, May to September 1978.
REVISED RECORDS--WDR CO-80-1: 1979.
GAGE.--Water-stage recorder. Elevation of gage is $6,360 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, and those above $160 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. At times during the year, natural flow of stream may be affected by Womack ditch. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 05	. 46	. 06	e. 21	e. 05	. 39	. 56	. 62	1.8	. 04	1.0	1.9
2	. 05	. 15	. 06	e. 21	e. 05	. 38	. 67	. 64	2.0	. 02	. 88	1.6
3	. 05	. 09	. 05	e. 21	e. 05	. 36	. 88	. 56	2.5	. 01	. 73	1.3
4	. 04	. 13	. 05	e. 21	. 06	. 37	. 99	. 49	. 98	. 00	. 70	1.0
5	. 06	. 12	. 05	e. 21	. 07	. 38	. 86	. 43	. 96	. 00	. 63	. 83
6	. 06	. 15	e. 05	e. 21	. 07	. 39	. 76	. 35	1.4	. 00	. 53	. 80
7	. 05	. 18	e. 05	e. 19	. 06	. 38	1.1	. 31	. 59	. 00	. 93	1.1
8	. 04	. 18	e. 04	. 18	. 05	. 36	1.3	1.7	. 31	. 00	. 39	. 73
9	. 26	. 19	. 03	. 15	. 04	. 36	1.6	. 08	. 40	. 18	3.6	. 60
10	2.0	. 17	. 02	. 14	. 03	. 37	1.5	. 28	1.4	6.8	2.2	. 51
11	. 41	. 22	. 01	. 13	. 02	. 32	1.7	. 25	. 66	3.1	1.5	. 44
12	. 73	. 29	. 02	. 10	. 02	. 09	1.5	. 35	. 54	2.2	1.3	. 44
13	. 86	. 31	. 02	. 08	. 02	. 05	1.5	. 21	. 68	2.9	1.9	. 70
14	. 96	. 24	. 02	. 09	. 02	. 03	1.3	. 43	. 64	3.0	. 57	. 84
15	. 93	. 40	. 02	. 09	. 02	. 02	1.1	. 20	1.5	2.8	. 76	. 78
16	. 96	. 19	. 02	e. 09	. 02	. 02	2.7	. 01	1.7	2.6	. 44	. 71
17	. 96	. 10	. 01	e. 09	. 02	. 01	. 80	. 00	1.2	2.4	. 45	. 69
18	1.5	. 07	. 02	e. 09	. 01	. 03	. 90	. 00	. 99	2.4	. 40	1.0
19	1.1	. 13	. 02	e. 09	. 01	. 05	1.0	. 00	. 79	2.3	. 53	. 96
20	1.0	. 20	. 02	e. 09	. 01	. 14	. 77	. 00	. 66	2.0	. 48	. 74
21	1.0	. 21	. 02	e. 08	. 01	. 28	. 92	. 01	. 68	1.6	. 37	. 69
22	. 99	. 12	. 02	e. 08	. 01	. 25	1.0	. 05	. 88	1.4	. 62	. 61
23	1.8	. 07	. 02	e. 08	. 01	. 24	. 97	. 00	. 72	1.6	1.3	. 63
24	. 51	. 06	. 01	e. 08	. 00	. 33	. 96	. 00	1.5	1.1	2.0	1.1
25	. 33	. 06	. 01	e. 07	. 00	. 26	. 99	. 27	. 37	1.2	. 95	. 94
26	1.1	. 06	. 45	e. 07	. 01	. 30	. 89	4.6	. 19	1.2	. 91	1.1
27	. 23	. 08	. 36	e. 07	. 12	. 45	. 80	4.7	. 14	1.3	2.2	1.3
28	. 31	. 09	. 31	e. 06	. 41	. 38	. 91	3.6	. 11	1.1	4.3	1.4
29	. 23	. 08	. 25	. 05	. 41	. 44	1.7	3.3	. 07	1.1	3.0	1.8
30	. 42	. 08	. 23	. 05	---	. 51	. 26	2.9	. 06	1.7	3.2	1.8
31	. 13	---	. 23	. 05	---	. 44	.	2.8	---	. 88	2.4	---
TOTAL	19.12	4.88	2.55	3.60	1.68	8.38	32.89	29.14	26.42	46.93	41.17	29.04
MEAN	. 62	. 16	. 082	. 12	. 058	. 27	1.10	. 94	. 88	1.51	1.33	. 97
MAX	2.0	. 46	. 45	. 21	. 41	. 51	2.7	4.7	2.5	6.8	4.3	1.9
MIN	. 04	. 06	. 01	. 05	. 00	. 01	. 26	. 00	. 06	. 00	. 37	. 44
AC-FT	38	9.7	5.1	7.1	3.3	17	65	58	52	93	82	58

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1978 - 1996, BY WATER YEAR (WY)

| MEAN | 3.12 | 1.39 | .32 | .18 | .28 | .84 | 5.09 | 19.7 | 9.41 | 2.63 | 4.84 | 1.92 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MAX | 31.2 | 14.2 | 2.88 | .98 | 1.27 | 3.71 | 18.2 | 71.5 | 35.8 | 9.98 | 27.1 | 12.6 |
| (WY) | 1985 | 1985 | 1985 | 1985 | 1983 | 1987 | 1985 | 1995 | 1995 | 1985 | 1982 | |
| MIN | .000 | .000 | .000 | .000 | .000 | .085 | .064 | .071 | .31 | .000 | .000 | |
| (WY) | 1979 | 1979 | 1979 | 1979 | 1979 | 1989 | 1989 | 1981 | 1988 | 1978 | 1978 | |

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1996 WATER YEAR
WATER YEARS 1978 - 1996

| 245.80 | | |
| ---: | ---: | ---: | ---: |
| .67 | | |
| | | |
| 6.8 | Jul | 10 |
| a .00 | Feb | 24 |
| .00 | Jul | 2 |
| 22 | May | 8 |
| 2.85 | May | 8 |
| 488 | | |
| 1.7 | | |
| .37 | | |
| .02 | | |

3.78			
11.7		1985	
.22		1989	
351		May 30	1995
a .00	May 30	1978	
.00	Jun 15	1978	
$\mathrm{~b}_{524} .00$	May 30	1995	
6.11	May 30	1995	
2740			
11			
.43			
.00			

[^61]
07105945 ROCK CREEK ABOVE FORT CARSON RESERVATION, CO

LOCATION.--Lat $38^{\circ} 42^{\prime} 27^{\prime \prime}$, long $104^{\circ} 50^{\prime} 46^{\prime \prime}$, in NW $1_{1}^{4} \mathrm{NW}^{1 / 1} / 4 \mathrm{sec} .36$, T. 15 S., R. 67 W., El Paso County, Hydrologic Unit 11020003, on right bank 20 ft upstream from county road bridge, 0.6 mi northwest of Rock Creek Park, 1.2 mi upstream from State Highway 115, and 3.2 mi southwest of Ft. Carson.
DRAINAGE AREA.--6.79 mi^{2}.
PERIOD OF RECORD.--May 1978 to current year. Water-quality data available, May to September 1978.
REVISED RECORDS.--WDR CO-85-1: 1982.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $6,390 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, and those above $150 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 62	e. 69	e. 39	e. 30	e. 24	e. 30	. 52	. 35	. 73	. 13	. 99	5.7
2	. 56	e. 66	e. 45	e. 31	e. 23	e. 31	. 51	. 31	. 64	. 09	. 70	4.4
3	. 51	e. 63	e. 47	e. 32	e. 23	e. 32	. 66	. 24	. 57	. 05	. 66	3.5
4	. 53	e. 61	e. 47	e. 33	e. 23	e. 34	. 84	. 21	. 49	. 04	. 54	2.7
5	. 60	e. 60	e. 46	e. 33	e. 23	. 35	. 86	. 18	. 40	. 03	. 44	2.2
6	. 66	e. 59	e. 45	e. 32	e. 24	. 36	. 87	. 16	. 34	. 02	. 35	2.0
7	. 68	e. 59	e. 43	e. 32	e. 23	. 38	. 95	. 14	. 32	. 02	. 38	1.9
8	. 65	e. 58	e. 41	e. 33	. 24	. 35	. 97	. 11	. 28	. 03	. 46	1.6
9	. 66	e. 57	e. 30	e. 33	. 24	. 39	1.0	. 12	. 25	4.3	1.3	1.2
10	. 64	e. 55	e. 27	e. 34	. 27	. 38	1.0	. 36	. 25	20	. 93	1.0
11	. 62	e. 50	e. 29	e. 33	. 32	. 39	. 99	. 32	. 30	4.3	. 65	. 85
12	. 74	e. 47	e. 31	e. 32	. 39	. 38	. 91	. 23	. 27	2.9	. 53	. 87
13	. 71	e. 53	e. 32	e. 33	. 38	. 37	. 98	. 18	. 28	2.8	. 36	. 90
14	. 77	e. 56	e. 33	e. 34	. 38	. 40	. 94	. 15	. 30	3.1	. 27	. 89
15	. 76	e. 53	e. 35	e. 35	. 36	. 42	. 85	. 11	. 54	2.5	. 26	. 94
16	. 68	e. 52	e. 31	e. 33	. 40	. 46	. 78	. 08	. 74	2.1	. 23	. 86
17	. 70	e. 52	e. 31	e. 31	. 35	. 42	. 66	. 06	. 44	1.9	. 19	1.1
18	. 78	e. 56	e. 30	e. 32	. 35	. 41	. 54	. 04	. 34	1.8	. 16	1.7
19	. 92	e. 53	e. 29	e. 26	. 35	. 38	. 48	. 03	. 25	2.0	. 21	1.6
20	. 95	e. 51	e. 28	e. 27	. 44	. 38	. 42	. 03	. 21	1.8	. 19	1.2
21	. 97	e. 56	e. 27	e. 28	. 48	. 41	. 43	. 03	. 21	1.5	. 15	1.0
22	. 96	e. 58	e. 27	e. 27	. 53	. 47	. 43	. 02	. 25	1.3	. 17	. 83
23	e. 96	e. 57	e. 28	e. 27	. 49	. 54	. 40	. 02	. 19	1.2	2.9	. 86
24	e. 94	e. 54	e. 28	e. 28	. 38	. 55	. 33	. 02	. 14	1.0	4.4	1.2
25	e. 92	e. 52	e. 29	e. 28	. 37	. 46	. 29	. 53	. 11	. 94	2.1	1.0
26	e. 90	e. 52	e. 29	e. 27	. 37	. 60	. 24	2.7	. 08	. 88	1.7	1.1
27	e. 85	e. 51	e. 29	e. 27	. 35	. 54	. 28	1.9	. 07	. 83	7.4	1.4
28	e. 80	e. 47	e. 29	e. 27	e. 33	. 52	. 43	1.3	. 06	. 76	15	1.7
29	e. 77	e. 42	e. 29	e. 26	e. 32	. 53	. 49	1.1	. 06	. 71	11	1.8
30	e. 74	e. 37	e. 29	e. 26	---	. 59	. 41	. 94	. 08	. 69	10	1.8
31	e. 71	-	e. 29	e. 25	-	. 55	---	. 83	---	. 98	7.5	--
TOTAL	23.26	16.36	10.32	9.35	9.72	13.25	19.46	12.80	9.19	60.70	72.12	49.80
MEAN	. 75	. 55	. 33	. 30	. 34	. 43	. 65	. 41	. 31	1.96	2.33	1.66
MAX	. 97	. 69	. 47	. 35	. 53	. 60	1.0	2.7	. 74	20	15	5.7
MIN	. 51	. 37	. 27	. 25	. 23	. 30	. 24	. 02	. 06	. 02	. 15	. 83
AC-FT	46	32	20	19	19	26	39	25	18	120	143	99

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1978 - 1996, BY WATER YEAR (WY)

[^62]b-Also occurred May 23-24, and Jul 6-7.
c-No flow many days in most years.
d-From rating curve extended above $175 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurement of peak flow.
f-From rating curve extended above $130 \mathrm{ft}^{3} / \mathrm{s}$.
g-From floodmark.

LOCATION.--Lat $38^{\circ} 41^{\prime} 49^{\prime \prime}$, long $104^{\circ} 49^{\prime} 39^{\prime \prime}$, in $\mathrm{SW}^{1 / 1} / 4 \mathrm{SW}^{1 / 4} / 4 \mathrm{sec} .31$, T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 11020003, on left bank at Fort Carson Scout Camp, 0.2 mi downstream from bridge on State Highway 115 and 2.9 mi southwest of Fort Carson.
DRAINAGE AREA.--7.79 mi.
PERIOD OF RECORD.--May 1978 to current year. Water-quality data available, May 1978 to September 1981.
GAGE.--Water-stage recorder. Elevation of gage is $6,150 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for July 10 to Aug. 6 and estimated daily discharges, which are fair. Some diversions upstream from station for irrigation and other uses, amounts unknown. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	. 00	e. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 23	1.1
2	. 00	. 00	e. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 21	. 64
3	. 00	. 00	e. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 20	. 34
4	. 00	. 00	e. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 19	. 26
5	. 00	. 00	e. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 17	. 24
6	. 00	. 00	e. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 16	. 22
7	. 00	. 00	e. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 14	. 25
8	. 00	. 00	e. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 14	. 27
9	. 00	. 00	e. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 15	. 14	. 29
10	. 00	. 00	e. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	16	. 14	. 30
11	. 00	e. 00	. 00	. 00	. 00	. 54	. 18	. 30				
12	. 00	e. 00	. 00	. 00	. 00	. 21	. 19	. 33				
13	. 00	e. 00	. 00	. 00	. 00	. 23	. 18	. 33				
14	. 00	e. 00	. 00	. 00	. 00	. 30	. 17	. 33				
15	. 00	e. 00	. 00	. 00	. 00	. 31	. 18	. 33				
16	. 00	e. 00	. 00	. 00	. 00	. 31	. 13	. 33				
17	. 00	e. 00	. 00	. 00	. 00	. 28	. 08	. 32				
18	. 00	e. 00	. 00	. 00	. 00	. 28	. 05	. 32				
19	. 00	e. 00	. 00	. 00	. 00	. 31	. 03	. 31				
20	. 00	e. 00	. 00	. 00	. 00	. 30	. 00	. 30				
21	. 00	e. 00	. 00	. 00	. 00	. 30	. 00	. 27				
22	. 00	e. 00	. 00	. 00	. 00	. 29	. 00	. 27				
23	. 00	e. 00	. 00	. 00	. 00	. 29	. 04	. 27				
24	. 00	e. 00	. 00	. 00	. 00	. 28	. 12	. 27				
25	. 00	e. 00	. 00	. 00	. 00	. 28	. 10	. 24				
26	. 00	e. 00	. 00	. 00	. 00	. 27	. 09	. 24				
27	. 00	e. 00	. 00	. 00	. 00	. 27	7.1	. 27				
28	. 00	e. 00	. 00	. 00	. 00	. 26	5.4	. 26				
29	. 00	e. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 26	2.9	. 24
30	. 00	e. 00	e. 00	e. 00	---	. 00	. 00	. 00	. 00	. 24	2.7	. 23
31	. 00	---	e. 00	e. 00	---	. 00	---	. 00	---	. 23	1.7	---
TOTAL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	22.19	23.06	9.67
MEAN	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 72	. 74	. 32
MAX	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	16	7.1	1.1
MIN	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 22
AC-FT	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	44	46	19

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1978 - 1996, BY WATER YEAR (WY)

[^63]
07106000 FOUNTAIN CREEK NEAR FOUNTAIN, CO

LOCATION.--Lat $38^{\circ} 36^{\prime} 06^{\prime \prime}$, long $104^{\circ} 40^{\prime} 11^{\prime \prime}$, in $\mathrm{SW}^{1 / 1} \mathrm{NSE}^{1 / 4}$ sec.4, T. 17 S., R. 65 W., El Paso County, Hydrologic Unit 11020003, on right bank 50 ft upstream from Old Pueblo Road bridge, 100 ft downstream from Denver \& Rio Grande Railroad bridge, 0.90 mi downstream from Little Fountain Creek, and 5.6 mi south of Fountain.
DRAINAGE AREA.--681 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1938 to March 1, 1940 (monthly records only), March 2, 1940 to September 1954; July 2, 1985 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $5,355 \mathrm{ft}$ above sea level, from topographic map. Sept. 18, 1938 to Mar. 1, 1940, nonrecording gage, and Mar. 2, 1940 to Sept. 30, 1954, recording gage, both at different datum and at site 200 ft downstream. July 2, 1985 to Sept. 2, 1987, recording gage at site 500 ft downstream, at different datum. Sept. 3, 1987 to Mar. 13, 1990, recording gage at site $1,100 \mathrm{ft}$ upstream at different datums.
REMARKS.--Records good except those above about $1,000 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Natural flow of stream affected by storage reservoirs, power developments, diversions for irrigation, municipal use, and return flows from irrigation and sewage effluent discharges.
EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, 14.4 ft , at different datum, May 30, 1935, but was probably exceeded by the flood of June 1965.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	187	168	127	e148	141	143	143	59	105	120	235	216
2	183	173	129	e150	142	141	148	67	137	82	716	213
3	175	166	126	163	136	142	158	80	128	58	157	197
4	163	178	130	177	151	141	172	85	98	53	124	181
5	180	187	128	159	183	129	245	90	73	43	116	178
6	145	194	131	145	179	146	177	85	82	63	113	211
7	143	171	123	156	173	148	164	64	84	76	111	265
8	146	163	127	185	164	161	160	56	64	73	135	148
9	148	170	97	188	162	144	133	64	54	521	308	138
10	150	181	122	186	174	149	106	214	56	1130	214	131
11	157	174	139	183	155	140	84	57	104	168	133	119
12	153	175	129	186	157	129	59	55	84	156	126	456
13	167	177	123	191	154	124	66	55	117	163	109	161
14	162	173	126	187	158	176	128	61	233	156	93	186
15	168	161	123	186	156	181	108	48	258	146	435	259
16	169	166	125	189	147	159	e85	48	182	149	170	161
17	152	167	128	176	156	151	e66	54	131	128	121	378
18	137	169	118	127	157	161	55	62	116	221	107	300
19	126	135	117	152	156	147	43	51	117	333	209	161
20	115	173	159	178	156	151	49	63	98	236	251	119
21	127	149	163	175	149	156	44	55	104	545	126	113
22	137	115	167	180	151	152	47	65	148	266	150	112
23	148	121	e160	164	151	148	44	73	119	218	424	191
24	144	119	e145	158	143	146	e45	78	110	160	601	243
25	129	125	e147	173	138	132	e46	799	95	389	155	175
26	124	141	e148	143	134	142	e43	716	93	378	167	210
27	116	145	e148	142	128	155	e40	202	100	383	160	318
28	115	132	e141	166	132	149	32	145	94	162	250	230
29	123	143	e145	166	137	138	43	113	87	181	308	222
30	124	139	e140	150	---	133	45	109	85	204	484	218
31	137	---	e150	139	---	140	---	112	---	224	251	--
TOTAL	4550	4750	4181	5168	4420	4554	2778	3885	3356	7185	7059	6210
MEAN	147	158	135	167	152	147	92.6	125	112	232	228	207
MAX	187	194	167	191	183	181	245	799	258	1130	716	456
MIN	115	115	97	127	128	124	32	48	54	43	93	112
AC-FT	9020	9420	8290	10250	8770	9030	5510	7710	6660	14250	14000	12320

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 - 1996, BY WATER YEAR (WY)

e-Estimated.

a-Also occurred Sep 5.
b-Also occurred Sep 30, 1939.
c-From rating curve extended above $3000 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurement of peak flow.
d-At different datum.
f-Maximum gage height, 10.34 ft , Sep 3, 1994, present datum.

PERIOD OF RECORD.--November 1987 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: November 1987 to current year.
pH : November 1987 to current year.
WATER TEMPERATURE: November 1987 to current year.
DISSOLVED OXYGEN: November 1987 to current year.
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for daily specific conductance are fair except Oct. 1 to Nov. 13, Dec. 14 to Jan. 10, which are poor. Records for daily pH are fair except Oct. 20 to Nov. 13, which are poor, Records for daily water temperature are good except Feb. 29 to Mar. 7, July 15-29, which are fair. Records for daily dissolved oxygen are poor. Daily data that are not published are either missing or of unacceptable quality.

EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 1,660 microsiemens, Aug. 27-28, 1996; minimum, 141 microsiemens, Aug. 8, 1991. pH: Maximum, 8.5 units, July 15, Sept. 4, 1991; minimum 6.5 units, Oct. 26, 28-29, 31, 1996.
WATER TEMPERATURE: Maximum, $31.8^{\circ} \mathrm{C}$, July 9,$1990 ;$ minimum, $0.0^{\circ} \mathrm{C}$, on many days during winter months. DISSOLVED OXYGEN: Maximum, $12.6 \mathrm{mg} / \mathrm{L}$, Dec. 20, 1987; minimum, $3.7 \mathrm{mg} / \mathrm{L}$, July 9, 1993.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 1,660 microsiemens, Aug. 27-28; minimum, 344 microsiemens, July 10. pH : Maximum, 8.3 units, Oct. 18; minimum, 6.5 units, Oct. 26, 28-29, 31.
WATER TEMPERATURE: Maximum, $30.4^{\circ} \mathrm{C}$, July 20 ; minimum, $0.0^{\circ} \mathrm{C}$, on several days during winter months. DISSOLVED OXYGEN: Maximum, $11.4 \mathrm{mg} / \mathrm{L}$, Feb. 28; minimum, $4.6 \mathrm{mg} / \mathrm{L}$, Sept. 11.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	1000	805	974	-	---	---	1060	1020	1040	---	---	---
2	973	930	954	---	---	---	1070	965	1040	---	--	---
3	1010	928	959	981	891	939	1070	940	1020	---	---	---
4	949	907	929	972	883	930	1060	957	1020	---	---	---
5	944	852	896	947	854	896	1040	927	997	---	--	--
6	997	919	956	905	858	880	1010	921	969	---	---	---
7	1010	928	975	926	863	897	--	---	---	---	---	---
8	958	907	931	-	-	---	---	---	---	---	---	---
9	923	894	910	---	---	---	1080	952	1020	---	---	---
10	942	876	906	884	857	868	1060	952	991	---	---	---
11	915	862	886	911	877	895	1010	941	974	965	912	937
12	933	849	884	941	905	920	1050	1000	1020	948	893	923
13	950	865	890	973	---	---	1050	1010	1030	932	876	905
14	959	899	924	996	914	972	--	---	---	925	877	899
15	964	911	936	999	962	976	-	---	---	924	882	900
16	1040	955	990	1010	888	952	---	---	-	931	874	903
17	1010	972	984	993	902	952	---	---	---	941	890	936
18	989	942	964	993	913	959	---	---	---	1010	885	964
19	958	902	933	997	924	975	---	---	-	997	931	961
20	---	---	---	969	923	940	---	--	---	949	875	922
21	1040	962	1010	966	927	947	---	---	---	964	884	920
22	982	945	968	1050	1020	1030	--	--	---	932	880	899
23	967	927	946	1050	1000	1020	--	--	---	952	893	919
24	977	931	949	1040	1000	1020	---	---	-	991	887	941
25	964	927	948	1040	962	1010	-	-	-	--	---	---
26	964	914	939	1030	914	980	---	---	---	---	---	-
27	964	891	936	1000	918	968	---	---	---	---	---	---
28		---	-	1020	924	995	---	---	---	---	---	-
29	962	912	936	1030	957	995	---	---	---	--	---	---
30	995	946	974	1060	983	1010	---	--	---	986	937	962
31	1000	931	977	---	---	---	---	--	---	999	944	965
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

07106000 FOUNTAIN CREEK NEAR FOUNTAIN, CO--Continued

SPECIFIC CONDUCTANCE, (MICORSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	1010	937	976	1020	964	984	959	887	910	1100	1000	1040
2	1000	971	988	1000	936	966	943	874	913	1060	939	1030
3	1010	882	934	986	926	954	949	864	902	1040	935	---
4	991	914	956	969	926	942	929	853	897	,	--	---
5	1020	932	970	994	937	959	868	816	844	---	---	---
6	1000	901	943	1080	923	967	911	849	879	---	---	---
7	988	909	947	1140	902	1070	921	882	900	989	906	938
8	983	920	947	1060	980	1010	929	870	897	1070	926	988
9	980	930	949	1020	958	991	987	886	928	1070	998	1020
10	964	898	927	999	937	971	982	918	941	1010	946	
11	980	914	938	999	943	967	1010	931	971	997	922	---
12	969	908	934	1040	970	997	1040	949	1000	---	---	---
13	979	913	943	1030	964	997	973	877	939	1140	1020	1080
14	977	907	941	997	908	968	915	805	885	1110	1010	1050
15	979	908	941	975	846	922	946	805	893	1140	986	1050
16	964	896	935	968	860	920	1010	915	954	1110	1000	1060
17	945	890	909	955	799	901	1030	936	981	1120	1000	1060
18	1010	912	967	924	793	873	1060	982	1020	1110	1000	1050
19	1010	855	949	981	831	911	1080	1010	1040	1090	1000	1040
20	953	858	914	882	763	825	1040	967	1010	1070	924	994
21	1000	869	953	885	825	855	--	---	---	---	-	---
22	1000	932	962	888	827	853	1010	932	976	1060	920	989
23	969	921	939	901	836	866	953	921	935	1090	997	1030
24	988	919	952	913	863	884	1140	1020	1070	1060	855	990
25	1010	927	969	939	869	901	1090	1010	1050	872	389	651
26	1020	954	982	946	834	892	1110	884	964	498	384	444
27	1060	974	1010	931	840	883	1170	878	1060	634	484	561
28	1040	959	994	951	887	910	1180	1060	1110	872	631	756
29	1100	976	1040	957	899	923	1120	1010	1070	857	813	830
30	---	---	---	970	899	929	1110	992	1050	852	798	828
31	---	---	---	951	884	921	_-	---	---	911	805	841
MONTH	1100	855	955	1140	763	933	---	---	---	---	---	--
	JUNE			JULY			AUGUST			SEPTEMBER		
1	909	850	874	971	786	895	936	675	859	861	808	839
2	869	819	839	838	777	802	742	406	560	872	827	845
3	888	830	859	1070	833	932	849	742	807	928	863	891
4	960	877	916	1010	956	979	932	846	882	912	860	899
5	1000	935	964	1020	911	984	971	879	914	926	883	904
6	1020	954	978	958	839	901	996	922	948	---	---	---
7	970	894	931	839	741	808	1010	935	959	---	---	---
8	997	910	949	857	775	830	996	865	940	---	---	---
9	1000	933	961	977	419	789	865	553	714	---	---	---
10	1000	856	965	824	344	628	827	618	755	960	889	920
11	986	803	923	909	743	840	902	785	847	972	916	949
12	1020	960	980	965	813	913	1040	851	922	935	---	---
13	1060	823	994	930	831	871	1020	965	992	891	798	860
14	950	608	753	953	890	917	1050	964	1030	925	877	902
15	946	773	830	961	891	921	975	443	657	927	787	860
16	864	752	810	966	907	934	909	797	849	986	885	944
17	879	827	846	988	916	948	997	909	961	1020	953	979
18	962	842	893	955	594	836	1050	959	1000	---	---	---
19	923	868	892	747	542	652	1050	506	941	948	819	875
20	1010	891	937	879	647	800	924	477	731	1030	947	994
21	948	899	927	879	494	656	994	924	957	1030	---	---
22	905	815	864	888	728	849	1010	767	928	---	--	-
23	947	844	899	873	615	800	973	388	824	---	---	---
24	1170	880	950	915	842	878	878	477	667	---	--	--
25	1040	873	931	874	488	667	979	876	938	830	---	-
26	1020	909	969	843	490	783	962	919	944	---	---	---
27	989	929	953	8	-		1660	956	1040	832	778	806
28	1030	935	969	---	---	---	1660	893	995	849	801	827
29	989	850	932	881	848	863	941	572	873	856	833	847
30	850	792	818	881	802	838	808	572	690	859	823	849
31	---	---	---	936	625	846	841	797	815	---	---	
MONTH	1170	608	910	---	---	---	1660	388	869	--	---	---

07106000 FOUNTAIN CREEK NEAR FOUNTAIN, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	7.6	7.1	7.3	7.7	6.6	7.1	7.8	7.5	7.7	7.7	7.5	7.7
2	7.7	7.1	7.4	---	---	---	7.8	7.6	7.7	7.8	7.5	7.7
3	7.6	7.1	7.3	---	---	---	7.8	7.6	7.7	7.7	7.5	7.6
4	7.3	6.9	7.1	---	---	---	7.7	7.5	7.6	7.6	7.4	7.5
5	7.3	6.9	7.1	---	---	---	7.7	7.5	7.6	7.5	7.3	7.4
6	7.5	6.9	7.1	---	---	---	7.7	7.5	7.6	7.4	7.2	7.3
7	7.6	6.9	7.2	---	---	---	7.7	7.4	7.5	7.5	7.2	7.4
8	7.7	7.0	7.3	---	---	---	7.6	7.5	7.5	7.4	7.2	7.3
9	7.6	7.0	7.2	---	---	---	7.6	7.5	7.5	7.4	7.3	7.4
10	7.6	7.1	7.3	---	---	---	7.6	7.4	7.5	7.4	7.2	7.3
11	7.6	7.1	7.3	---	-	---	7.6	7.4	7.5	7.4	7.1	7.3
12	7.9	7.2	7.5	---	---	---	7.5	7.3	7.4	7.4	7.2	7.3
13	7.8	7.1	7.3	---	---	---	7.5	7.0	7.4	7.4	7.3	7.3
14	7.8	7.1	7.4	7.6	7.5	7.5	7.5	7.0	7.4	7.4	7.2	7.3
15	8.0	7.2	7.5	7.7	7.5	7.6	7.4	7.1	7.4	7.4	7.3	7.3
16	8.1	7.3	7.6	7.7	7.5	7.6	7.5	7.2	7.5	7.5	7.3	7.4
17	8.2	7.5	7.8	7.7	7.6	7.6	7.5	7.1	7.5	7.4	7.3	7.3
18	8.3	7.5	7.8	7.6	7.4	7.5	7.5	7.1	7.5	7.4	7.1	7.3
19	8.0	6.9	7.5	7.6	7.1	7.5	7.5	7.4	7.5	7.4	7.2	7.3
20	7.1	6.8	6.9	7.5	7.0	7.4	7.5	7.4	7.5	7.4	7.3	7.3
21	7.1	6.6	6.8	7.6	7.4	7.5	7.6	7.4	7.6	7.4	7.2	7.3
22	6.9	6.6	6.8	7.7	7.4	7.6	7.6	7.6	7.6	7.5	7.3	7.4
23	7.0	6.7	6.8	7.7	7.6	7.7	7.6	7.4	7.6	7.4	7.2	7.4
24	6.9	6.6	6.7	7.7	7.6	7.7	7.6	7.5	7.6	7.4	7.1	7.3
25	7.0	6.6	6.7	7.8	7.6	7.6	7.7	7.4	7.6	7.4	7.4	7.4
26	7.1	6.5	6.8	7.8	7.6	7.7	7.7	7.3	7.6	7.4	7.3	7.3
27	7.7	6.7	7.0	7.8	7.6	7.7	7.7	7.3	7.6	7.4	7.2	7.3
28	7.3	6.5	6.8	7.7	7.7	7.7	7.6	7.5	7.6	7.4	7.4	7.4
29	7.4	6.5	6.9	7.7	7.7	7.7	7.7	7.3	7.5	7.4	7.1	7.3
30	7.5	6.6	6.9	7.8	7.6	7.7	7.6	7.3	7.6	7.6	7.1	7.4
31	7.5	6.5	6.8	---	---	---	7.7	7.4	7.6	7.6	7.5	7.6
MONTH	8.3	6.5	7.2	---	---	---	7.8	7.0	7.5	7.8	7.1	7.4
	FEBRUARY			MARCH			APRIL			MAY		
1	7.6	7.4	7.6	7.6	7.5	7.6	8.1	7.8	8.0	7.8	7.2	7.7
2	7.6	7.4	7.5	7.7	7.5	7.6	8.1	7.9	8.0	7.8	7.1	7.5
3	7.6	7.4	7.5	7.8	7.5	7.6	8.0	7.9	7.9	7.6	7.0	7.2
4	7.6	7.5	7.6	7.8	7.5	7.6	7.9	7.8	7.9	7.5	7.0	7.1
5	7.6	7.5	7.5	7.9	7.6	7.7	7.9	7.7	7.8	7.1	6.9	7.0
6	7.6	7.5	7.5	7.7	7.5	7.6	8.0	7.8	7.9	7.4	6.9	7.1
7	7.7	7.5	7.6	7.5	7.2	7.4	8.0	7.8	7.9	7.7	7.1	7.3
8	7.7	7.5	7.6	7.3	7.2	7.3	8.0	7.7	7.8	7.8	7.2	7.5
9	7.7	7.4	7.5	7.4	7.2	7.3	7.9	7.7	7.8	7.9	7.4	7.7
10	7.5	7.3	7.4	7.5	7.2	7.4	7.9	7.7	7.8	7.5	7.1	7.3
11	7.5	7.3	7.4	7.4	7.2	7.3	7.9	7.7	7.9	7.5	7.2	7.3
12	7.5	7.3	7.4	7.4	7.2	7.3	8.1	7.9	8.0	7.4	7.2	7.3
13	7.4	7.2	7.3	7.5	7.2	7.3	8.2	7.8	8.0	7.9	7.3	7.6
14	7.4	7.3	7.3	7.4	7.0	7.2	7.8	7.7	7.8	8.0	7.8	7.9
15	7.4	7.1	7.2	7.3	7.0	7.2	8.1	7.7	7.8	8.0	7.9	7.9
16	7.2	7.1	7.1	7.4	7.1	7.2	8.1	7.8	8.0	8.1	8.0	8.0
17	7.3	7.1	7.2	7.3	7.1	7.2	8.1	7.9	8.0	8.1	7.9	8.0
18	7.3	7.1	7.2	7.2	7.1	7.2	8.1	7.3	8.0	8.1	7.9	8.0
19	7.3	7.1	7.2	7.4	7.0	7.2	8.1	7.5	8.0	8.0	7.5	7.9
20	7.2	7.1	7.2	7.4	7.2	7.3	8.0	7.4	7.9	7.8	7.3	7.5
21	7.3	7.1	7.2	7.3	7.2	7.3	---	---	---	7.9	7.4	7.8
22	7.3	7.1	7.2	---	---	---	7.8	7.6	7.7	8.1	7.6	7.7
23	7.3	7.1	7.2	---	---	---	7.8	7.6	7.7	7.9	7.6	7.7
24	7.4	7.1	7.2	---	---	-	8.1	7.6	7.8	7.8	7.3	7.6
25	7.4	7.1	7.2	---	---	---	8.2	7.9	8.0	7.5	7.3	7.4
26	7.3	7.1	7.2	---	---	---	8.0	7.7	7.9	7.5	7.2	7.4
27	7.3	7.1	7.2	8.0	7.8	8.0	8.1	7.8	7.9	7.3	7.2	7.3
28	7.3	7.1	7.2	8.1	7.9	8.0	8.0	7.5	7.9	7.7	7.2	7.4
29	7.6	7.0	7.4	8.1	7.9	8.0	7.8	7.6	7.7	7.7	7.6	7.6
30	---	---	---	8.1	7.9	8.0	7.9	7.2	7.7	7.7	7.6	7.6
31	---	---	---	8.1	7.9	8.0	---	---	---	7.7	7.5	7.6
MONTH	7.7	7.0	7.3	---	---	---	---	---	---	8.1	6.9	7.5

07106000 FOUNTAIN CREEK NEAR FOUNTAIN, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			UGUST			SEPTEMBER	
1	7.6	7.5	7.5	7.3	6.9	7.1	7.7	7.4	7.6	7.7	7.6	7.6
2	7.6	7.5	7.5	7.3	7.0	7.1	7.7	7.3	7.5	7.6	7.5	7.5
3	7.5	7.4	7.5	7.4	7.0	7.2	7.6	7.5	7.6	7.6	7.5	7.5
4	7.5	7.4	7.5	7.4	6.9	7.1	7.7	7.5	7.6	7.6	7.5	7.6
5	7.5	7.3	7.4	7.6	6.9	7.2	7.9	7.4	7.6	7.6	7.6	7.6
6	7.5	7.3	7.4	7.5	7.1	7.3	7.8	7.6	7.7	7.6	7.5	7.6
7	7.5	7.3	7.4	7.5	7.1	7.3	7.8	7.6	7.7	7.6	7.4	7.5
8	7.4	7.2	7.3	7.4	7.2	7.3	7.7	7.6	7.6	7.7	7.6	7.6
9	7.4	7.2	7.3	7.5	6.7	7.2	7.6	7.3	7.4	7.7	7.6	7.7
10	7.5	7.2	7.3	7.7	7.0	7.3	7.5	7.4	7.4	7.7	7.6	7.7
11	7.4	7.1	7.2	7.6	7.3	7.5	7.5	7.1	7.3	7.9	7.7	7.8
12	7.4	7.2	7.3	7.6	7.5	7.5	7.8	7.3	7.5	7.9	7.7	7.8
13	7.4	7.1	7.2	7.7	7.6	7.6	7.8	7.7	7.7	7.9	7.8	7.9
14	7.2	7.0	7.1	7.8	7.6	7.7	7.8	7.7	7.7	7.9	7.7	7.8
15	7.2	7.1	7.2	7.9	7.7	7.8	7.7	7.5	7.6	7.8	7.7	7.8
16	7.3	7.1	7.2	7.9	7.7	7.8	7.7	7.7	7.7	7.8	7.7	7.7
17	7.3	7.2	7.3	7.8	7.7	7.8	7.8	7.7	7.7	7.7	7.5	7.7
18	7.3	7.2	7.2	7.8	7.5	7.7	7.7	7.7	7.7	7.7	7.5	7.6
19	7.4	7.2	7.3	7.6	7.4	7.5	7.8	7.5	7.7	7.9	7.7	7.8
20	7.4	7.2	7.3	7.7	7.5	7.6	7.8	7.6	7.7	7.9	7.8	7.9
21	7.5	7.2	7.4	7.6	7.4	7.5	7.8	7.7	7.7	7.9	7.8	7.9
22	7.4	7.2	7.3	7.6	7.4	7.5	7.8	7.7	7.7	7.9	7.8	7.9
23	7.4	7.2	7.3	7.6	7.4	7.5	7.8	7.6	7.7	8.0	7.7	7.9
24	7.4	7.2	7.3	7.6	7.5	7.6	7.7	7.6	7.7	8.0	7.7	7.9
25	7.3	7.1	7.2	7.7	7.4	7.6	7.8	7.7	7.7	7.9	7.7	7.8
26	7.3	7.0	7.2	7.7	7.5	7.5	7.8	7.7	7.7	7.8	7.4	7.7
27	7.4	6.9	7.1	7.7	7.4	7.5	7.8	7.6	7.7	8.0	7.5	7.7
28	7.2	6.9	7.0	7.5	7.4	7.5	7.7	7.5	7.7	8.0	7.9	7.9
29	7.3	6.9	7.0	7.5	7.3	7.4	7.7	7.4	7.6	8.0	7.8	7.9
30	7.2	6.9	7.0	7.6	7.4	7.5	7.7	7.4	7.5	7.9	7.7	7.8
31	---	,	--	7.6	7.4	7.5	7.7	7.6	7.7	---	---	---
MONTH	7.6	6.9	7.3	7.9	6.7	7.5	7.9	7.1	7.6	8.0	7.4	7.7

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOB			VEMBE			CEMBE			NUA	
1	17.8	10.8	13.7	9.4	7.9	8.4	11.1	4.6	7.3	4.3	1.4	2.6
2	17.1	9.4	12.8	---	-	---	10.4	4.0	6.9	4.1	. 4	1.7
3	17.7	9.1	12.9	---	---	---	9.6	4.4	6.6	7.4	. 6	3.6
4	12.7	9.0	10.8	---	---	---	9.4	3.8	6.2	6.1	1.9	3.6
5	14.1	6.9	9.8	---	---	---	6.5	3.1	5.2	3.5	. 7	1.8
6	14.9	6.1	9.9	---	---	---	9.7	2.7	5.5	4.2	. 5	1.5
7	16.1	6.8	11.0	---	---	---	6.2	2.1	4.0	6.4	. 6	2.9
8	16.6	8.2	11.8	---	---	---	5.7	. 6	3.1	8.3	2.2	4.6
9	14.2	7.7	10.8	---	---	---	4.2	. 6	1.5	8.3	2.7	5.0
10	17.2	8.1	12.1	---	---	---	7.7	. 5	3.6	8.9	2.7	4.9
11	17.5	8.7	12.6	---	---	---	8.4	3.2	5.3	7.8	1.5	4.3
12	16.2	10.2	12.9	---	---	---	8.2	4.0	5.9	8.9	1.9	5.0
13	15.7	9.0	11.9	9.0	7.5	8.4	10.4	5.3	7.2	9.3	2.5	5.5
14	16.0	7.0	11.0	12.8	5.7	8.8	8.9	3.8	5.6	9.0	2.7	5.4
15	16.8	8.0	11.9	12.3	6.2	8.8	7.7	1.5	4.2	8.6	2.1	5.0
16	16.3	8.9	12.1	12.7	5.7	8.8	6.3	2.1	4.1	9.8	2.9	5.7
17	16.4	9.1	12.2	12.1	6.6	8.9	4.6	1.0	2.6	5.8	. 3	3.1
18	17.3	8.2	12.2	12.0	5.5	8.3	6.2	1.4	3.0	2.8	. 3	. 8
19	14.9	8.3	11.2	12.0	5.5	---	4.3	. 6	1.9	5.4	. 3	2.1
20	14.3	6.1	9.8	10.9	5.4	7.7	6.3	. 5	2.7	6.0	. 3	2.4
21	14.7	6.8	10.3	11.4	4.3	7.6	5.4	1.2	3.0	6.4	. 3	2.7
22	11.8	5.9	8.9	10.3	5.8	8.3	3.9	1.3	2.5	6.4	. 9	2.9
23	11.9	4.0	7.2	11.1	5.0	7.2	5.1	. 6	2.0	5.1	. 3	1.8
24	11.2	4.3	7.5	9.0	4.2	6.3	6.0	. 5	2.6	4.8	. 3	1.7
25	13.0	5.7	8.7	10.9	5.4	7.2	6.6	. 7	3.1	6.3	. 0	1.8
26	12.8	6.4	9.0	11.1	5.5	7.6	6.8	1.2	3.4	3.2	. 0	. 7
27	13.4	6.4	9.4	7.0	3.8	5.3	5.9	. 6	2.7	3.8	. 0	1.1
28	12.5	5.2	8.5	7.3	2.3	4.3	5.2	. 5	2.6	6.3	. 1	2.7
29	12.8	6.0	9.4	9.4	2.4	5.4	6.5	1.6	3.4	5.3	. 0	2.1
30	12.9	6.4	9.2	8.9	4.3	6.3	6.2	. 3	2.9	3.4	. 0	. 9
31	12.9	5.5	8.9	.	--	---	6.6	2.2	4.1	3.1	. 0	. 8
MONTH	17.8	4.0	10.7	--	--	---	11.1	. 3	4.0	9.8	. 0	2.9

07106000 FOUNTAIN CREEK NEAR FOUNTAIN, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	2.5	. 0	. 5	12.2	2.4	6.3	17.0	5.7	10.9	---	9.0	13.7
2	. 7	. 0	. 1	12.2	2.7	6.8	17.0	6.8	11.5	---	9.6	---
3	1.9	. 0	. 3	12.0	2.8	7.0	10.7	8.0	9.2	---	9.4	---
4	4.8	. 0	1.8	12.6	4.7	8.1	10.7	5.2	7.9	---	9.5	---
5	8.2	1.4	4.2	12.5	4.5	7.9	13.6	5.0	8.4	---	---	---
6	7.6	2.1	4.5	7.0	1.2	4.0	16.9	5.2	10.7	23.1	---	---
7	9.5	2.7	5.5	9.6	. 2	4.1	15.2	7.6	11.0	21.0	13.7	15.9
8	8.1	3.0	5.1	9.6	1.0	4.8	18.1	8.9	13.1	21.6	11.7	15.9
9	11.5	2.2	6.4	12.0	2.1	6.6	19.1	9.0	13.8	24.5	12.7	17.1
10	9.3	3.8	6.1	13.1	4.2	8.4	17.5	8.7	12.5	19.3	11.8	14.6
11	9.0	1.4	4.8	14.2	6.3	9.8	16.3	8.0	11.3	19.8	11.8	15.1
12	10.0	1.1	4.9	14.4	6.3	9.6	19.0	7.7	12.2	---	---	---
13	10.0	1.4	5.2	13.1	5.1	8.5	14.7	5.5	9.7	24.5	15.2	18.8
14	10.1	2.9	6.1	6.4	3.4	4.6	13.8	4.1	7.8	23.4	14.0	17.9
15	10.4	3.0	6.1	12.6	3.8	7.7	17.6	4.9	10.4	25.0	12.2	18.3
16	11.1	1.5	5.9	12.5	4.1	7.8	18.6	6.8	11.9	24.9	13.2	18.7
17	11.6	3.1	6.9	9.5	4.6	6.2	18.2	7.5	11.8	25.2	14.2	19.2
18	9.6	4.7	6.7	7.9	3.0	4.8	17.4	6.7	11.2	25.0	14.0	18.8
19	9.8	3.5	6.4	12.3	1.1	5.8	16.5	5.4	10.2	24.2	13.7	18.5
20	12.8	4.7	8.2	12.7	2.0	6.9	---	5.0	---	23.1	15.6	19.1
21	14.1	5.9	9.5	15.0	3.9	8.9	---	---	---	23.7	13.8	18.1
22	12.3	6.0	8.6	14.5	4.8	9.2	---	---	---	22.7	12.9	17.7
23	11.2	3.6	6.9	13.9	5.3	8.9	---	5.2	9.4	24.9	14.9	18.7
24	11.4	3.5	6.9	6.8	1.6	3.9	20.8	9.2	13.2	17.8	12.3	15.0
25	12.2	4.4	7.6	8.0	. 6	3.4	21.8	10.5	14.7	15.0	11.7	13.7
26	6.2	2.3	4.0	12.6	. 6	6.1	22.2	8.4	14.6	13.3	10.6	12.0
27	8.5	. 6	3.8	14.8	2.7	8.3	21.5	9.0	14.0	---	---	---
28	6.6	1.4	3.2	15.0	4.6	9.2	13.0	6.6	8.9	---	---	---
29	10.5	. 6	4.8	15.1	5.5	9.5	19.3	5.4	11.2	22.3	11.3	16.0
30	---	---	---	15.8	6.5	10.1	---	---	---	24.0	13.6	17.7
31	---	---	---	16.1	5.0	10.0	---	---	---	23.5	13.2	17.5
MONTH	14.1	. 0	5.2	16.1	. 2	7.2	---	---	---	---	---	---
	JUNE			JULY			AUGUST			SEPTEMBER		
1	20.7	13.5	17.2	27.7	16.6	21.2	27.9	16.7	22.2	24.9	15.0	19.4
2	23.7	12.7	17.8	28.1	16.0	21.7	25.3	14.3	20.1	20.9	15.1	17.7
3	24.2	13.0	18.3	27.8	16.4	21.7	25.1	18.3	21.4	25.9	14.0	19.3
4	22.5	13.9	18.2	28.6	16.8	21.5	26.5	17.3	21.4	25.3	15.0	19.6
5	21.9	13.9	17.9	26.6	17.8	21.3	26.1	16.1	20.8	25.5	14.9	19.6
6	25.4	12.9	18.3	29.1	17.4	22.1	26.9	16.4	21.2	22.0	15.4	17.5
7	25.4	13.6	19.5	28.1	17.3	21.6	26.3	16.5	20.7	23.5	13.4	17.8
8	25.7	13.4	19.3	22.4	17.2	19.4	26.3	18.1	21.3	24.8	13.6	18.7
9	25.1	15.1	18.8	26.7	17.7	20.0	26.1	17.4	21.0	25.3	14.0	19.0
10	23.8	14.5	18.1	21.8	16.8	18.9	27.6	17.9	22.1	24.0	14.4	18.9
11	24.5	14.4	18.4	27.1	17.7	21.7	27.5	16.9	21.0	23.2	14.4	18.4
12	25.7	14.4	19.0	26.5	18.6	21.4	28.3	16.8	21.9	17.2	14.9	15.7
13	25.2	14.6	18.6	24.9	18.2	21.1	27.4	16.2	21.2	19.8	14.4	16.3
14	22.0	13.7	17.0	26.7	17.1	21.3	26.7	17.1	21.0	19.0	14.4	16.3
15	20.4	15.4	17.1	25.0	17.5	21.0	22.9	14.6	18.5	21.2	14.2	17.0
16	25.9	14.3	18.8	28.2	18.5	22.8	26.4	16.0	20.3	21.1	15.0	17.2
17	26.3	14.3	19.7	29.5	18.6	23.4	26.9	15.7	20.8	21.8	14.1	17.6
18	27.7	15.2	20.9	27.9	20.7	23.5	26.7	16.7	21.1	18.5	11.7	14.0
19	27.8	14.9	21.0	29.0	19.6	23.2	26.4	16.7	20.1	18.4	9.5	13.7
20	28.0	16.7	21.8	30.4	19.9	24.5	26.3	14.5	19.7	19.2	10.9	14.6
21	24.4	17.2	19.9	29.1	16.0	23.6	27.2	16.7	20.7	20.7	10.1	14.9
22	21.6	16.4	18.6	28.1	20.6	23.8	22.0	17.2	18.7	21.2	11.4	15.7
23	25.5	14.2	19.4	27.4	17.5	21.7	26.0	17.0	19.8	20.8	-	---
24	27.5	17.4	21.3	25.6	16.7	20.9	24.2	16.7	19.8	---	12.5	--
25	25.7	15.9	20.5	20.3	13.9	17.7	25.5	16.4	20.6	19.8	,	---
26	27.2	16.0	21.0	22.5	15.8	18.6	27.0	16.6	20.7	13.4	9.4	11.0
27	25.5	17.1	20.3	22.	,	18.6	25.0	16.4	19.9	14.8	7.1	10.7
28	26.4	16.4	20.7	---	---	---	22.7	15.3	18.6	18.1	8.3	12.6
29	26.9	16.4	21.0	21.2	17.2	19.1	25.0	15.9	19.5	19.4	9.9	14.1
30	23.5	17.6	19.7	26.2	17.4	21.2	22.1	15.4	18.3	20.5	10.7	15.1
31	---	---	---	28.0	19.2	22.3	24.8	16.0	19.5	---	---	---
MONTH	28.0	12.7	19.3	---	---	---	28.3	14.3	20.4	---	---	--

07106000 FOUNTAIN CREEK NEAR FOUNTAIN, CO--Continued

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

	FEBRUARY			MARCH			APRIL			MAY		
1	10.9	8.1	9.1	10.3	7.7	9.2	8.7	7.1	7.9	8.6	7.1	7.9
2	10.5	7.0	8.7	10.2	7.9	9.0	8.6	6.7	7.8	8.5	---	---
3	10.0	8.2	9.1	9.8	8.0	8.9	8.4	7.4	8.0	7.9	5.8	6.7
4	9.2	6.8	7.9	9.0	7.8	8.3	8.9	7.5	8.0	7.9	6.0	6.5
5	8.0	5.8	7.0	9.2	7.6	8.4	8.7	7.1	7.8	6.7	5.8	6.2
6	8.1	6.2	7.1	9.9	8.6	9.2	8.7	6.8	7.7	6.6	5.6	6.2
7	9.0	6.9	7.8	10.3	7.4	9.0	7.8	6.7	7.2	---	---	---
8	9.5	8.2	8.8	10.0	6.3	8.2	7.1	5.3	6.5	6.8	---	-
9	9.6	7.0	8.4	9.1	6.7	7.9	7.0	5.0	6.0	6.8	5.3	6.1
10	10.1	8.7	9.2	8.6	7.3	8.0	7.0	5.4	6.3	6.3	4.9	5.8
11	10.6	8.8	9.8	8.1	5.2	6.5	7.7	5.7	6.7	---	---	---
12	10.9	8.5	9.8	7.3	5.0	6.1	8.4	6.2	7.4	--	---	---
13	10.5	7.2	9.0	8.4	6.9	7.4	9.2	6.8	7.8	---	---	---
14	9.1	6.6	7.9	9.3	7.7	8.5	9.3	7.1	8.3	6.6	5.6	6.0
15	9.2	7.1	8.1	8.4	6.8	7.6	9.2	6.6	7.9	6.7	5.7	6.1
16	10.0	6.7	8.2	8.6	7.5	8.1	9.3	6.8	8.0	6.6	5.5	6.1
17	9.3	7.2	8.1	8.6	7.0	8.0	8.8	6.0	7.8	6.8	5.8	6.2
18	8.4	7.5	7.9	9.5	7.4	8.4	9.4	7.0	8.0	7.1	6.1	6.5
19	9.3	7.5	8.2	9.9	7.4	8.8	9.8	7.4	8.5	7.4	5.6	6.2
20	8.7	6.6	7.7	10.0	7.5	8.8	---	---	---	---	---	---
21	8.4	6.7	7.4	9.5	7.6	8.6	---	---	---	-	6.6	---
22	8.5	7.0	7.6	9.9	7.5	8.7	---	---	---	8.1	5.5	6.0
23	9.7	8.3	8.9	9.7	7.6	8.5	---	---	---	8.1	6.8	7.3
24	9.6	8.1	8.8	10.1	7.7	9.1	---	6.5	--	8.0	7.0	7.5
25	9.0	8.0	8.4	10.9	8.2	9.7	7.6	6.6	7.0	7.8	6.6	7.2
26	9.8	8.6	9.1	10.9	7.3	9.2	8.0	6.6	7.2	7.9	7.4	7.6
27	10.8	7.8	9.4	9.6	7.2	8.4	7.6	6.8	7.2	---	---	---
28	11.4	9.1	10.1	9.0	7.3	8.2	8.7	7.0	8.2	---	7.2	---
29	11.1	7.8	9.4	8.6	7.1	8.0	9.0	7.0	8.0	7.8	6.3	7.0
30	---	---	---	8.6	7.3	8.0	8.8	7.0	8.0	8.0	6.7	7.1
31	---	---	---	8.9	7.3	8.1	---	---	---	7.6	6.5	7.2
MONTH	11.4	5.8	8.5	10.9	5.0	8.3	---	---	--	--	--	---

07106000 FOUNTAIN CREEK NEAR FOUNTAIN, CO--Continued

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			GUST		SEPTEMBER		
1	7.5	6.6	7.0	7.1	6.0	6.4	7.0	6.1	6.5	7.4	5.8	6.6
2	7.6	6.3	7.0	7.0	5.6	6.2	7.3	6.1	6.6	7.4	6.5	6.9
3	7.6	6.3	6.9	7.0	5.4	6.1	6.7	6.1	6.4	7.6	5.7	6.7
4	7.2	6.1	6.6	6.8	5.2	5.9	6.7	6.0	6.3	7.7	6.0	6.8
5	6.9	6.1	6.5	6.6	5.0	5.5	6.8	5.8	6.3	7.8	6.0	7.0
6	7.2	5.6	6.4	6.1	4.9	5.4	6.6	5.8	6.2	7.9	6.5	7.3
7	---	---	---	6.6	4.8	5.5	6.6	5.9	6.3	8.4	6.2	7.4
8	8.7	7.3	7.9	6.8	5.2	5.7	6.6	6.0	6.3	8.3	6.3	7.2
9	8.2	7.2	7.7	7.0	5.0	5.7	6.4	5.7	6.1	8.1	6.2	7.2
10	8.2	7.1	7.7	6.5	5.3	5.8	6.4	5.6	6.1	8.5	5.1	6.8
11	7.9	6.9	7.4	6.2	4.9	5.5	6.6	5.2	5.9	7.2	4.6	6.1
12	7.9	6.8	7.4	5.9	5.2	5.6	6.6	5.5	6.1	---	---	---
13	7.7	6.7	7.2	6.1	5.6	5.9	7.3	5.4	6.4	7.8	6.3	7.1
14	7.7	6.8	7.3	6.6	5.8	6.2	6.8	5.4	6.2	6.8	6.1	6.5
15	7.2	6.6	6.9	6.8	6.1	6.5	7.4	6.0	6.7	6.9	5.9	6.4
16	7.2	6.1	6.7	7.1	6.3	6.7	7.0	5.6	6.4	6.7	6.0	6.4
17	7.1	6.1	6.6	7.1	6.3	6.7	7.1	5.1	6.2	6.9	6.0	6.4
18	7.0	6.0	6.5	7.1	6.4	6.7	6.8	5.0	6.1	7.9	6.1	7.0
19	7.0	5.9	6.4	7.2	6.3	6.8	6.9	5.4	6.4	8.4	---	---
20	6.8	6.0	6.4	7.2	6.3	6.8	7.8	5.5	6.8	---	---	---
21	6.8	6.3	6.6	8.1	6.4	7.1	7.1	5.0	6.3	---	---	---
22	6.8	6.4	6.6	7.2	5.7	6.4	7.1	6.2	6.7	---	---	---
23	7.0	6.2	6.6	6.7	5.7	6.2	7.4	5.6	6.7	---	---	---
24	6.9	6.1	6.5	6.5	5.8	6.1	7.7	6.1	7.0	7.9	---	---
25	7.0	6.3	6.6	6.7	6.0	6.2	7.4	5.5	6.5	---	7.0	---
26	7.1	6.3	6.6	6.2	4.8	5.6	7.3	5.7	6.5	---	---	---
27	7.1	6.4	6.7	6.5	5.7	6.1	7.3	5.9	6.7	---	7.6	---
28	7.4	6.3	6.8	--	--	---	7.8	6.1	7.0	9.3	6.9	8.1
29	7.4	6.3	6.8	---	6.7	---	6.9	5.6	6.3	8.6	6.5	7.6
30	7.3	6.3	6.6	7.0	6.2	6.6	7.2	6.1	6.6	8.1	6.3	7.2
31	---	---	---	6.7	6.2	6.5	7.1	5.7	6.5	---	---	---
MONTH	---	---	---	---	--	---	7.8	5.0	6.4	---	---	--

07106300 FOUNTAIN CREEK NEAR PINON, CO

LOCATION (REVISED).--Lat $38^{\circ} 26^{\prime} 23^{\prime \prime}$, long $104^{\circ} 35^{\prime} 35^{\prime \prime}$, in $\mathrm{NW}^{1 / 1 / 4}$ SE $^{1 / 4}$ sec. 31 , T. 18 S., R. 64 W., Pueblo County, Hydrologic Unit 11020003, on right bank, 0.5 mi below Pinon Road bridge, 0.9 mi northeast of Pinon, and 2.7 mi upstream from Steele Hollow Creek.
DRAINAGE AREA.--849 mi^{2}.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1973 to current year. Low-flow records may not be equivalent prior to October 1995, as a result of varying underflow (diversion system) entering between the sites.

REVISED RECORDS.--WDR CO-80-1: Drainage area.

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $4,990 \mathrm{ft}$ above sea level, from topographic map. Apr. 1973 to Apr. 22, 1976, non-recording gage, and Apr. 23, 1976 to Sept. 30, 1995, water-stage recorder, at site 0.5 mi upstream at different datum.
REMARKS.--Records fair except those above $3,000 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Natural flow of stream affected by storage reservoirs, power developments, transbasin and transmountain diversions for municipal use, diversions upstream from station for municipal use and for irrigation of about 10,000 acres, and return flow from irrigated areas.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	184	187	125	148	152	123	135	52	110	77	172	231
2	184	197	116	146	e160	123	135	51	118	56	683	199
3	155	199	128	149	e155	133	142	66	118	41	239	183
4	150	201	132	165	e170	136	162	71	94	43	184	168
5	156	212	140	168	191	131	217	79	63	41	132	154
6	126	235	139	162	172	137	200	81	55	45	115	145
7	139	211	127	169	159	147	188	64	70	49	102	204
8	150	190	144	189	173	160	170	52	63	64	99	165
9	148	194	120	183	166	152	153	52	49	426	240	148
10	139	188	123	178	174	149	119	129	54	1790	205	129
11	132	177	151	179	163	145	113	75	81	310	140	113
12	137	180	140	179	161	128	86	37	62	215	122	367
13	133	174	129	188	157	126	86	31	57	247	106	162
14	143	171	126	187	157	151	117	34	159	217	71	174
15	144	160	128	180	155	191	136	34	257	191	314	226
16	146	161	123	185	148	147	99	31	195	185	216	179
17	133	166	115	180	143	138	94	25	130	129	136	127
18	120	159	110	154	141	138	70	27	103	153	107	453
19	108	140	104	158	142	137	74	25	92	340	98	220
20	95	153	133	171	142	135	83	25	78	405	266	173
21	98	153	142	183	140	131	81	28	74	713	131	148
22	116	109	157	192	136	133	72	38	103	224	117	137
23	140	108	153	173	138	138	72	39	108	260	214	135
24	130	110	144	178	130	140	71	46	89	157	1070	267
25	137	111	142	183	125	138	56	389	80	326	243	180
26	139	118	146	186	123	139	49	912	71	168	230	166
27	135	130	149	163	117	143	45	284	69	655	197	244
28	133	121	139	181	120	140	45	176	66	239	248	218
29	138	120	145	188	123	129	51	147	63	179	217	195
30	146	124	137	167	---	128	47	127	68	177	428	189
31	143	--	140	168	---	126	---	126	---	186	261	---
TOTAL	4277	4859	4147	5380	4333	4312	3168	3353	2799	8308	7103	5799
MEAN	138	162	134	174	149	139	106	108	93.3	268	229	193
MAX	184	235	157	192	191	191	217	912	257	1790	1070	453
MIN	95	108	104	146	117	123	45	25	49	41	71	113
AC-FT	8480	9640	8230	10670	8590	8550	6280	6650	5550	16480	14090	11500

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1973 - 1996, BY WATER YEAR (WY)

e-Estimated.

a-Also occurred May 19-20.
b-No flow at times most years.
c-From rating curve extended above $2580 \mathrm{ft}^{3} / \mathrm{s}$.
d-From rating curve extended above $7300 \mathrm{ft}^{3} / \mathrm{s}$.

07106300 FOUNTAIN CREEK NEAR PINON, CO--Continued
 WATER-QUALITY RECORDS

PERIOD OF RECORD.--July 1976 to December 1983, December 1990 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

		DIS-					OXYGEN	COLI-	STREP -		
DATE	TIME	$\begin{gathered} \text { CHARGE, } \\ \text { INST. } \\ \text { CUBIC } \\ \text { FEET } \\ \text { PER } \\ \text { SECOND } \end{gathered}$	SPE- CIFIC CON- DUCT- ANCE (US/CM)	$\begin{gathered} \text { PH } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPER- ATURE WATER (DEG C)	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	$\begin{aligned} & \text { DEMAND, } \\ & \text { BIO- } \\ & \text { CHEM- } \\ & \text { ICAL, } \\ & 5 \text { DAY } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { FORM, } \\ & \text { FECAL, } \\ & 0.7 \\ & \text { UM-MF } \\ & \text { (COLS. / } \\ & 100 \text { ML) } \end{aligned}$	$\begin{gathered} \text { TOCOCCI } \\ \text { FECAL, } \\ \text { KF AGAR } \\ \text { (COLS. } \\ \text { PER } \\ 100 \mathrm{ML} \text {) } \end{gathered}$	$\begin{aligned} & \text { CALCIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS CA) } \end{aligned}$	$\begin{gathered} \text { MAGNE- } \\ \text { SIUM, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS MG) } \end{gathered}$
JAN											
19.	1145	120	1120	8.2	0.0	12.0	9.2	K85	140	86	26
MAR											
22.	1215	147	1000	8.3	12.0	9.0	4.8	53	K28	80	25
JUN											
21	1145	59	1090	8.3	24.0	7.0	1.0	580	K73	92	27
SEP											
13..	0930	174	886	8.3	15.5	7.6	3.5	>1200	1900	71	21

DATE	$\begin{gathered} \text { ALKA- } \\ \text { LINITY } \\ \text { LAB } \\ \text { (MG/L } \\ \text { AS } \\ \text { CACO3) } \end{gathered}$	$\begin{aligned} & \text { SULFATE } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS SO4) } \end{aligned}$	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	$\begin{aligned} & \text { FLUO- } \\ & \text { RIDE, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS F) } \end{aligned}$	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { AMMONIA } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	NITROGEN, AMMONIA + ORGANIC TOTAL (MG/L AS N)	```PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)```
JAN 19...	167	280	55	2.1	216	0.05	6.5	0.65	1.8	0.22
MAR 22.	158	250	50	1.9	185	<0.01	5.5	<0.015	1.1	0.38
JUN $21 \text {. . }$	182	300	48	2.0	108	<0.01	3.4	0.02	0.6	0.53
$\begin{aligned} & \text { SEP } \\ & 13 \ldots . \end{aligned}$	147	230	37	1.7	208	0.01	3.5	<0.015	0.9	0.32

DATE	CADMIUM TOTAL RECOVERABLE (UG/L AS CD)	$\begin{aligned} & \text { CADMIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS CD) } \end{aligned}$	CHROMIUM, TOTAL RECOVERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	$\begin{gathered} \text { CHRO- } \\ \text { MIUM, } \\ \text { HEXA- } \\ \text { VALENT, } \\ \text { DIS. } \\ \text { (UG/L } \\ \text { AS CR) } \end{gathered}$	COPPER, TOTAL RECOVERABLE (UG/L AS CU)	$\begin{aligned} & \text { COPPER, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS CU) } \end{aligned}$	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	$\begin{aligned} & \text { IRON, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS FE) } \end{aligned}$
$\begin{aligned} & \text { JAN } \\ & \quad 19 \ldots \end{aligned}$	<1	<1	3	<1	<1	8	3	4600	10
MAR $22 .$	<1	<1	3	<1	<1	7	2	4200	<10
JUN 21	<1	<1	1	<1	<1	5	2	2700	<3
$\begin{gathered} \text { SEP } \\ 13 \ldots \end{gathered}$	<1	<1	6	<1	<1	12	2	4800	3
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	$\begin{aligned} & \text { LEAD, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS PB) } \end{aligned}$	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGANESE, DISSOLVED (UG/L AS MN)	$\begin{aligned} & \text { NICKEL, } \\ & \text { TOTAL } \\ & \text { RECOV- } \\ & \text { ERABLE } \\ & \text { (UG/L } \\ & \text { AS NI) } \end{aligned}$	$\begin{aligned} & \text { NICKEL, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS NI) } \end{aligned}$	SELENIUM, DISSOLVED (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	$\begin{aligned} & \text { ZINC, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS ZN) } \end{aligned}$

JAN									
19.	7	<1	200	20	7	3	4	70	10
MAR									
22.	7	<1	170	<10	7	3	5	50	20
JUN									
21	4	<1	120	3	5	3	6	30	6
SEP									
13.	19	<1	300	2	10	2	4	60	<3

[^64]
07106300 FOUNTAIN CREEK NEAR PINON, CO--Continued

DATE	TIME	MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996							
		DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C)
OCT 1995					MAY 1996				
04...	1200	162	1100	15.0	10...	1345	238	1070	17.5
19...	1555	110	1080	15.0	17...	1205	24	1200	15.5
26...	0915	138	1110	9.5	24...	1130	43	1180	15.5
Nov					29...	1600	141	1130	16.5
13...	1235	182	1080	10.0	JUN				
30...	1315	134	1130	11.5	12...	1335	66	1170	20.5
DEC					27...	1600	65	1140	27.0
14...	1220	134	1140	11.0	JUL				
JAN 1996					08...	1100	64	1170	16.5
03...	1510	154	1120	8.0	12...	1030	230	1040	21.0
10...	1500	179	1130	9.5	22...	1330	206	930	28.0
31...	1220	143	1120	4.0	31...	1050	213	850	22.5
FEB					AUG				
23...	1320	149	1110	11.0	02...	1105	1260	582	19.5
MAR					08...	1405	116	1120	23.0
11...	1405	145	1050	13.5	21...	1410	127	1120	22.5
22...	1045	149	1060	10.0	27...	1030	195	1120	18.0
29...	1350	133	1060	15.0	SEP				
MAY					03...	1255	183	975	23.0
01...	1400	57	1170	16.0	23...	1250	151	1020	20.5

07106500 FOUNTAIN CREEK AT PUEBLO, CO

LOCATION.--Lat $38^{\circ} 17^{\prime} 16^{\prime \prime}$, long $104^{\circ} 36^{\prime} 02^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec.19, T. 20 S., R. 64 W., Pueblo County, Hydrologic Unit 11020003, on left bank at upstream side of bridge on U.S. Highway 50 at Pueblo and 2.6 mi upstream from mouth.
DRAINAGE AREA.--926 mi'.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1922 to September 1925, October 1940 to September 1965, February 1971 to current year. Monthly discharge only for some periods, published in WSP 1311.
REVISED RECORDS.--WDR CO-79-1: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $4,705 \mathrm{ft}$ above sea level, from topographic map. See WSP 1711 or 1731 for history of changes prior to Oct. 1, 1940, and WSP 1921 for changes prior to Sept. 30, 1965. Feb. 1, 1971 to Sept. 30, 1976, water-stage recorder at site 1.4 mi upstream at datum $4,725.30 \mathrm{ft}$ above sea level (unadjusted).
REMARKS.--No estimated daily discharges. Records fair except those above $2,000 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Natural flow of stream affected by storage reservoirs, power developments, transbasin and transmountain diversions for municipal use, diversions upstream from station for municipal use and for irrigation of about 14,000 acres upstream from station, and return flow from irrigated areas.
EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1903, that of June 17, 1965. Flood of June 4, 1921, reached a discharge of $34,000 \mathrm{ft}^{3} / \mathrm{s}$, by slope-area measurement. Flood of May 30, 1935, reached a discharge of $35,000 \mathrm{ft}^{3} / \mathrm{s}$, by slope-area measurement.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

a-No flow at times many years.
b-Site and datum then in use, from rating curve extended above $400 \mathrm{ft}^{3} / \mathrm{s}$, on basis of contracted-opening measurement of peak flow.
c-From floodmarks.

07106500 FOUNTAIN CREEK AT PUEBLO, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--February 1981 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: December 1985 to current year.
WATER TEMPERATURE: December 1985 to current year.
INSTRUMENTATION.--Water-quality monitor since December 1985, with satellite telemetry.
REMARKS.--Records for daily water temperature and specific conductance are fair. Daily data that are not published are either missing or of unacceptable quality.

EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 3,460 microsiemens, July 7, 1989; minimum, 203 microsiemens, June 6, 1991. WATER TEMPERATURE: Maximum, $33.1^{\circ} \mathrm{C}$, July 17,1991 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during the winter months.

EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum, 2,160 microsiemens, Aug. 19; minimum, 381 microsiemens, July 9.
WATER TEMPERATURE: Maximum, $32.4^{\circ} \mathrm{C}$, July $4 ;$ minimum, $0.0^{\circ} \mathrm{C}$, many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

		DIS-					OXYGEN	COL
DATE	TIME	$\begin{gathered} \text { CHARGE, } \\ \text { INST. } \\ \text { CUBIC } \\ \text { FEET } \\ \text { PER } \\ \text { SECOND } \end{gathered}$	SPE- CIFIC CON- DUCT- ANCE (US/CM)		$\begin{gathered} \text { TEMPER- } \\ \text { ATURE } \\ \text { WATER } \\ \text { (DEG C) } \end{gathered}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	DEMAND, BIO-CHEMICAL, 5 DAY (MG/L)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)
OCT								
27.	1400	129	1240	8.4	13.0	8.8	2.2	K75
DEC								
01...	1500	113	1200	8.4	11.5	10.4	2.7	K10
JAN								
19..	1400	174	1220	--	0.5	11.6	4.9	97
FEB								
23.	1345	158	1140	8.4	10.5	8.8	2.8	K85
MAR								
22...	1415	138	1110	8.4	14.5	8.6	2.4	K24
APR								
19.	1130	76	1340	8.4	11.0	9.6	0.9	K29
MAY								
17...	1445	27	1560	8.4	27.0	6.9	0.4	K50
JUN								
21.	1330	65	1310	8.4	27.0	6.7	0.6	940
JUL								
19...	1330	556	850	8.2	26.5	6.3	6.3	>1200
AUG								
16...	1000	238	991	8.3	20.0	7.3	3.9	K1400
SEP								
13...	1130	148	984	8.3	19.5	7.4	1.8	>1200
	STREP-	RESIDUE	NITRO-	NITRO-	NITRO-	NITRO-	PHOS-	
	TOCOCCI	TOTAL	GEN,	GEN,	GEN,	GEN, AM-	PHORUS	SELE-
	FECAL,	At 105	NITRITE	NO2+NO3	AMMONIA	MONIA +	ORTHO,	NIUM,
	KF AGAR	DEG. C,	DIS-	DIS-	DIS-	ORGANIC	DIS-	DIS-
	(COLS.	SUS-	SOLVED	SOLVED	SOLVED	TOTAL	SOLVED	SOLVED
DATE	PER	PENDED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L
	100 ML)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS P)	AS SE)
OCT								
27..	K55	86	0.01	5.3	<0.015	0.4	0.35	11
DEC								
01..	K37	77	<0.01	6.2	<0.015	0.6	0.38	15
JAN								
19...	150	264	0.04	6.5	0.24	1.4	0.21	12
FEB								
MAR							0.27	
22.	93	196	<0.01	5.3	<0.015	0.6	0.31	13
APR								
19..	K49	82	<0.01	5.2	0.02	0.6	0.27	26
MAY								
17...	K27	6	0.01	4.9	0.02	0.4	0.27	38
JUN								
21...	170	--	0.01	4.2	0.03	1.6	0.36	--
JUL								
19...	K3000	2410	0.01	2.6	0.05	4.3	0.35	11
AUG								
16...	K2400	1180	<0.01	2.8	<0.015	2.3	0.29	14
SEP								
13...	2300	374	0.04	4.8	0.04	0.8	0.39	14

[^65]
07106500 FOUNTAIN CREEK AT PUEBLO, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	950	893	925	1310	1230	1270	1300	1260	1280	1220	1160	1180
2	1080	900	965	1300	1270	1280	1290	1270	1280	1210	1150	1180
3	1150	933	1060	1300	1260	1280	1300	1260	1280	1210	1180	1200
4	1160	1120	1140	1270	1240	1250	1300	1270	1290	1210	1180	1190
5	1150	1070	1110	1250	1190	1220	1300	1270	1280	1230	1170	1190
6	1150	1050	1110	1220	1130	1180	1300	1220	1270	1270	1180	1220
7	1180	1130	1150	1210	1160	1180	1270	1260	1270	1270	1180	1220
8	1210	1080	1150	1240	1210	1220	1280	1250	1270	1260	1150	1210
9	1190	1100	1150	1240	1200	1220	1320	1230	1280	1220	1180	1200
10	1200	1150	1170	1260	1200	1220	1330	1220	1280	1210	1150	1200
11	1190	1150	1170	1230	1190	1210	1280	1210	1250	1230	1120	1180
12	1190	1150	1170	1240	1200	1220	1250	1210	1240	1230	1120	1180
13	1210	1150	1180	1230	1190	1210	1270	1230	1250	1240	1090	1180
14	1220	1180	1210	1250	1180	1220	1270	1240	1260	1230	1140	1170
15	1220	1180	1210	1210	1170	1190	1280	1260	1270	1190	1140	1170
16	1230	1180	1210	1210	1190	1200	1280	1260	1270	1190	1150	1170
17	1210	1170	1200	1220	1180	1200	1280	1260	1270	1200	1150	1180
18	1270	1200	1230	1210	1170	1190	1290	1250	1270	1290	1160	1230
19	1270	1240	1260	1230	1170	1200	1330	1250	1270	1320	1180	1250
20	1300	1250	1280	1240	1170	1200	1320	1220	1260	1260	1200	1220
21	1310	1270	1290	1210	1170	1190	1300	1250	1260	1220	1160	1190
22	1310	1260	1280	1300	1200	1260	1320	1240	1280	1210	1160	1190
23	1300	1220	1260	1310	1280	1290	1290	1210	1230	1210	1160	1190
24	1320	1260	1290	1310	1280	1290	1260	1210	1230	1240	1170	1190
25	1290	1260	1280	1310	1280	1290	1250	1200	1210	1220	1160	1180
26	1290	1250	1270	1310	1270	1290	1240	1170	1200	1250	1170	1200
27	1310	1270	1290	1310	1260	1280	1220	1180	1200	1290	1180	1220
28	1310	1270	1290	1290	1260	1280	1260	1180	1210	1250	1150	1210
29	1320	1270	1290	1300	1280	1290	1240	1180	1200	1230	1140	1180
30	1310	1250	1290	1300	1240	1280	1230	1180	1190	1230	1140	1170
31	1300	1270	1290				1210	1160	1190	1220	1140	1180
MONTH	1320	893	1200	1310	1130	1240	1330	1160	1250	1320	1090	1190
DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	1230	1140	1190	1130	1040	1090	1210	1150	1180	1470	1400	1440
2	1290	1150	1230			---	1210	1160	1180	1470	1390	1410
3	1340	1240	1290	---	---	---	1210	1150	1170	1450	1350	1400
4	1320	1150	1200	---	---	---	1340	1140	1170	1390	1300	1340
5	1170	1100	1140	---	---	---	1350	1110	1170	1350	1280	1320
6	1190	1140	1170	---	---	---	1140	1090	1110	1330	1280	1310
7	1190	1130	1170	---	---	---	1160	1120	1140	1350	1310	1330
8	1200	1160	1180	---	---	---	1190	1140	1160	1420	1340	1380
9	1200	1160	1180	---	---	---	1200	1150	1180	1430	1190	1410
10	1200	1150	1170	---	---	---	1250	1200	1240	1420	1190	1370
11	1180	1140	1160	1170	1140	1160	1290	1240	1260	1230	1120	1160
12	1200	1130	1170	1190	1140	1170	1360	1280	1320	1390	1230	1300
13	1200	1140	1170	1190	1150	1170	1370	1320	1350	1510	1350	1450
14	1200	1140	1170	1180	1120	1160	1380	1220	1300	1510	1470	1490
15	1190	1150	1170	---	---	---	1280	1160	1210	1500	1460	1490
16	1190	1130	1150	-	--	--	1330	1230	1270	1520	1480	1500
17	1170	1100	1140	---	---	---	1350	1300	1320	1600	1490	1550
18	1200	1130	1170	---	---	---	1390	1310	1350	1600	1520	1560
19	1190	1140	1170	---	---	---	1430	1370	1410		---	---
20	1200	1110	1160	---	---	---	1450	1400	1430	1630	1520	1550
21	1180	1130	1150	---	---	--	1420	1360	1390	1550	1470	1510
22	1170	1130	1160	---	--	---	1420	1340	1380	1500	1400	1450
23	1170	1120	1150	---	---	---	1430	1370	1400	1490	1410	1450
24	1150	1110	1130	---	---	---	1440	1370	1400	1550	1370	1480
25	1160	1100	1130	---	---	---	1470	1380	1440	1550	-	---
26	1170	1120	1140	-	---	-	1470	1400	1440	---	---	---
27	1170	1060	1130	1200	1120	1160	1500	1420	1450	---	---	---
28	1180	1090	1130	1170	1120	1150	1520	1490	1500	---	---	---
29	1150	1040	1100	1180	1140	1160	1540	1430	1460	---	--	---
30	---	---	---	1190	1140	1170	1470	1420	1450	1210	1170	1190
31	-	-	---	1210	1150	1180	-	---	-	1210	1140	1170
MONTH	1340	1040	1160	---	---	---	1540	1090	1310	---	---	-

07106500 FOUNTAIN CREEK AT PUEBLO, CO--Continued
SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

	JUNE			JULY			AUGUST			SEPTEMBER		
1	1220	1180	1200	1410	1280	1340	1150	1080	1110	1040	977	1010
2	1240	1180	1210	1400	1300	1340	---	---	---	1060	1040	1050
3	1220	1160	1190	1460	1380	1420	---	---	---	1160	1050	1080
4	1260	1210	1230	1510	1430	1470	---	---	---	1200	1140	1170
5	1350	1260	1300	1550	1500	1520	---	---	---	1220	1140	1190
6	1390	1350	1370	1560	1470	1540	--	---	---	1240	1190	1220
7	1400	1310	1350	1570	1530	1550	---	---	---	1250	907	1100
8	1390	1310	1340	1540	1310	1390	1350	1180	1230	1080	945	1010
9	1430	1360	1400	1430	381	1220	1370	891	1150	1160	1080	1110
10	1740	1320	1410	---	---	---	1110	982	1060	1240	1160	1190
11	1400	1210	1330	---	---	---	1190	1080	1130	1290	1240	1260
12	1370	1310	1330	1290	918	1110	1240	1180	1210	1310	643	966
13	1460	1270	1360	1080	998	1020	1280	1220	1250	1120	772	899
14	1340	1020	1190	1020	994	1010	1370	1280	1320	884	854	866
15	1120	900	1010	1050	1010	1030	1390	581	1090	1380	884	1030
16	1070	947	998	1050	1020	1040	1050	793	966	1050	948	999
17	1170	1070	1110	1090	1050	1070	1210	1050	1120	1080	1030	1060
18	1240	1170	1200	1110	1070	1090	1390	1210	1250	1110	591	796
19	1280	1230	1250	---	---	---	2160	1250	1370	1010	881	956
20	1350	1270	1300	---	---	---	1770	784	1050	1070	1010	1030
21	1750	1190	1420	---	-	--	1220	1060	1140	1120	1060	1080
22	1390	1180	1290	---	--	--	1350	1220	1280	1150	1090	1120
23	1250	1120	1170	1370	880	995	1370	1050	1250	1180	1100	1140
24	1160	1080	1120	1100	978	1020	1080	402	597	1200	831	975
25	1190	1120	1150	1120	681	922	---	--	---	1090	926	995
26	1360	1190	1290	1070	779	929	---	--	--	1100	1060	1080
27	1390	1330	1360	1070	399	625	---	--	---	1320	878	1050
28	1420	1330	1380	762	614	677	1380	1120	1180	1040	953	993
29	1420	1330	1380	846	762	797	1150	913	1070	1070	1010	1040
30	1440	1340	1390	892	846	864	1140	776	955	1080	1030	1060
31	-	-	--	1120	892	1000	1000	956	976	-	---	-
MONTH	1750	900	1270	--	--	--	---	--	--	1380	591	1050

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBE			VEMBE			CEMBE			NUA	
1	18.1	11.0	14.5	8.6	4.8	6.9	10.8	3.7	6.9	2.7	. 0	1.3
2	18.5	9.9	13.8	4.8	2.2	3.3	10.6	3.7	6.6	1.4	. 0	. 6
3	19.2	9.4	13.8	8.3	1.8	4.3	9.1	3.1	5.7	4.2	. 0	1.8
4	14.7	9.7	12.0	8.2	1.2	4.4	9.5	1.9	5.5	4.1	. 5	2.1
5	16.3	6.8	10.7	9.6	1.3	5.4	6.9	2.4	4.9	2.2	. 0	1.1
6	16.3	6.3	10.7	8.0	4.4	6.1	8.2	1.0	4.1	. 9	. 0	. 2
7	17.2	7.0	11.8	9.3	2.4	5.6	3.9	. 4	2.2	2.0	. 0	. 7
8	16.3	10.3	12.7	11.0	2.5	6.5	3.8	. 0	1.5	5.9	. 0	2.0
9	15.7	8.3	12.0	12.3	4.6	8.1	1.0	. 0	. 1	5.2	. 0	2.5
10	18.5	8.2	12.9	7.5	3.2	5.2	4.9	. 0	1.8	4.1	. 1	2.5
11	19.4	9.0	13.5	9.2	. 9	5.0	6.2	. 1	3.1	5.1	. 0	2.5
12	19.1	10.3	14.0	10.5	4.4	7.4	7.6	2.6	5.0	6.8	. 0	3.5
13	17.5	10.2	13.3	8.6	4.7	6.6	10.2	4.0	6.5	7.2	. 6	3.7
14	16.9	8.1	12.0	11.6	3.5	7.3	7.8	2.3	4.7	7.4	. 7	3.7
15	18.4	8.1	12.8	11.6	4.7	7.8	6.3	. 0	2.9	6.2	. 0	3.1
16	18.3	9.2	13.1	12.0	1.6	7.8	5.0	. 3	2.7	8.2	2.2	4.9
17	17.9	9.9	13.4	11.8	5.3	8.2	3.1	. 5	1.8	5.0	. 0	2.4
18	16.8	8.8	12.4	11.2	3.7	7.2	4.9	. 1	2.0	. 2	. 0	. 0
19	15.6	7.7	11.1	10.9	3.8	7.0	2.9	. 0	1.0	. 8	. 0	. 1
20	14.8	4.9	9.3	9.5	3.5	6.2	2.4	. 0	. 8	3.1	. 0	. 8
21	15.0	5.3	9.7	8.7	2.5	5.6	2.3	. 0	. 9	4.6	. 0	1.6
22	12.1	5.4	8.2	12.1	4.5	7.0	2.3	. 0	. 7	5.0	. 0	1.4
23	11.8	3.2	6.8	10.8	4.2	6.7	1.9	. 0	. 4	2.6	. 0	. 5
24	11.5	2.7	6.5	8.9	3.2	5.7	2.4	. 0	. 6	3.3	. 0	. 9
25	12.8	3.2	7.6	12.2	3.6	7.2	3.3	. 0	1.0	5.3	. 0	1.2
26	13.1	4.9	8.4	11.3	4.4	7.2	4.2	. 0	1.5	. 2	. 0	. 0
27	13.5	5.5	8.9	6.5	3.0	5.0	3.0	. 0	1.1	. 4	. 0	. 0
28	11.6	4.0	7.7	5.8	. 2	2.9	1.8	. 0	. 6	3.9	. 0	1.2
29	10.4	4.3	7.5	9.1	1.5	4.9	3.6	. 0	1.2	3.4	. 0	. 9
30	12.1	4.4	8.0	9.1	3.6	6.2	1.9	. 0	. 6	. 2	. 0	. 0
31	11.9	4.8	7.7	---	---	-	3.7	. 0	1.7	. 0	. 0	. 0
MONTH	19.4	2.7	10.9	12.3	. 2	6.2	10.8	. 0	2.6	8.2	. 0	1.5

07106500 FOUNTAIN CREEK AT PUEBLO, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	. 0	. 0	. 0	8.7	. 0	3.4	18.2	4.8	11.0	22.9	9.0	14.5
2	. 0	. 0	. 0	10.4	. 0	4.4	17.2	6.1	11.5	22.0	8.5	14.7
3	. 0	. 0	. 0	10.6	. 0	4.5	12.3	7.8	10.0	22.4	8.6	14.4
4	. 1	. 0	. 0	10.3	2.5	6.0	10.2	5.0	7.9	23.5	8.5	15.5
5	2.1	. 0	. 7	13.0	3.0	7.3	13.3	3.2	7.4	21.7	11.7	15.8
6	6.5	. 4	3.1	6.3	. 0	2.8	17.3	4.5	10.5	25.4	11.5	16.9
7	9.7	3.0	5.7	7.6	. 0	2.5	16.0	7.2	11.3	24.5	13.8	17.9
8	8.4	2.6	5.1	9.9	. 6	4.8	20.8	8.7	14.1	25.9	11.8	17.8
9	11.1	1.1	5.7	12.9	. 7	6.2	21.4	9.3	14.9	26.3	13.4	18.1
10	8.9	2.7	5.5	14.3	3.6	8.7	18.6	9.3	13.7	24.4	12.1	17.1
11	7.7	. 1	3.9	15.9	6.7	10.8	18.6	8.4	12.6	24.3	12.9	17.2
12	8.1	. 0	3.9	15.3	6.5	10.4	19.7	6.8	12.6	22.5	13.2	16.7
13	9.2	. 0	4.2	14.0	5.0	9.4	18.2	6.0	11.2	25.1	13.8	17.4
14	10.5	1.0	5.4	8.1	3.6	5.2	14.7	4.1	8.1	27.3	14.1	19.0
15	9.7	1.4	5.2	13.4	2.7	7.3	17.9	3.6	10.0	28.0	11.9	19.3
16	8.8	. 0	4.2	13.7	3.8	8.2	20.2	6.1	11.9	29.3	12.9	20.0
17	10.6	. 8	5.2	9.7	4.6	6.6	19.3	6.8	12.4	26.5	14.3	19.5
18	8.8	2.6	5.5	8.0	2.8	4.9	21.0	6.6	12.7	27.3	13.3	18.8
19	8.7	1.9	5.4	12.3	. 4	5.7	16.3	4.4	9.8	27.1	13.3	19.2
20	10.8	3.0	6.8	13.2	1.0	6.7	13.0	4.5	8.3	26.1	12.8	17.9
21	13.5	4.9	9.0	16.0	2.6	8.8	17.1	3.6	9.4	27.2	12.8	18.5
22	11.3	5.9	8.2	15.3	4.2	9.6	18.1	7.8	11.6	28.4	12.5	19.5
23	10.9	3.4	7.0	14.2	5.0	9.1	22.3	5.3	13.1	27.3	14.9	19.3
24	10.0	1.4	6.2	8.0	. 4	3.7	22.6	9.8	15.2	23.1	13.1	16.6
25	12.5	3.2	7.1	6.3	. 0	2.1	21.9	9.6	14.9	15.2	12.2	13.4
26	7.4	1.4	3.4	11.3	. 0	4.7	23.3	7.1	14.7	15.1	11.8	13.3
27	6.7	. 0	2.2	14.3	1.3	7.4	22.8	10.5	15.2	19.1	10.6	14.6
28	3.9	. 0	1.4	15.6	3.9	9.3	13.6	6.5	9.0	18.2	11.5	14.4
29	7.5	. 0	2.6	16.5	5.4	10.2	20.5	3.8	11.4	23.9	12.1	17.2
30	---	---	---	16.6	6.6	10.6	21.6	5.9	12.9	25.4	13.6	18.9
31	---	---	---	16.0	4.3	9.7			,	25.7	13.7	18.9
MONTH	13.5	. 0	4.2	16.6	. 0	6.8	23.3	3.2	11.6	29.3	8.5	17.2
	JUNE			JULY			AUGUST			SEPTEMBER		
1	25.6	14.7	19.5	30.8	17.4	23.0	28.6	18.0	22.8	25.0	16.5	20.4
2	25.2	13.8	19.1	31.0	16.4	22.8	22.9	18.7	21.0	21.7	16.4	18.9
3	26.2	13.7	19.6	28.3	18.6	22.6	25.3	18.6	21.6	25.6	14.9	19.9
4	26.1	14.7	20.1	32.4	17.6	23.6	28.2	18.3	22.3	25.6	16.2	20.4
5	25.0	14.7	19.5	31.3	18.2	23.2	27.3	16.5	21.3	26.1	15.8	20.3
6	26.3	13.6	19.3	28.4	18.3	22.6	28.7	16.0	21.7	22.1	16.4	18.3
7	27.3	13.7	19.8	31.5	17.5	23.1	27.4	16.8	21.4	23.2	14.5	18.4
8	27.7	13.8	20.2	22.6	18.3	20.4	27.4	17.9	22.0	25.4	14.4	19.4
9	27.7	15.4	20.1	28.7	9.7	19.5	27.0	17.3	21.5	25.2	14.7	19.5
10	27.1	14.7	19.1	21.5	12.3	18.4	27.5	17.4	22.0	25.7	15.2	19.8
11	26.7	14.1	18.9	26.5	18.2	21.8	28.5	16.5	21.9	25.3	14.9	19.5
12	26.5	14.7	19.5	26.6	19.0	21.6	28.9	16.6	22.1	17.6	15.7	16.4
13	25.8	14.5	18.7	25.8	18.1	21.5	28.7	16.3	21.8	23.6	14.6	17.9
14	23.6	15.3	18.9	26.8	17.5	21.8	29.4	17.7	22.0	20.1	15.3	17.3
15	22.0	16.8	18.7	27.3	18.1	22.0	24.6	17.5	20.8	21.7	14.9	17.9
16	27.1	15.4	20.1	28.7	18.6	23.1	26.5	17.2	21.0	22.6	15.7	18.2
17	28.4	15.5	21.2	29.5	19.2	23.7	27.8	16.5	21.4	23.7	14.5	17.9
18	28.6	15.7	21.7	29.4	20.1	23.6	27.5	17.0	21.3	17.4	13.0	15.2
19	28.9	15.0	21.4	28.0	19.0	23.1	27.8	16.9	21.1	18.3	10.3	14.0
20	30.7	17.1	22.8	28.0	20.1	23.7	25.9	16.3	20.5	20.0	11.3	15.2
21	27.0	17.1	20.7	25.6	19.3	22.3	28.3	18.1	21.9	21.5	10.7	15.7
22	23.4	16.9	19.5	28.9	19.5	23.3	21.1	18.6	19.8	23.1	11.9	16.8
23	27.8	14.0	20.2	27.0	18.9	22.5	26.4	17.7	20.8	22.0	13.2	16.8
24	30.1	18.1	22.3	26.7	17.6	21.8	23.3	17.5	20.1	20.0	13.3	16.1
25	29.1	16.3	21.5	23.6	18.8	20.7	25.8	18.4	21.6	21.1	12.5	15.9
26	30.5	16.5	22.4	26.0	16.8	20.8	27.0	18.3	21.7	16.1	10.4	12.0
27	27.8	17.9	21.8	24.4	17.0	20.3	25.0	17.7	20.4	15.2	7.2	10.9
28	30.1	16.9	22.1	26.6	17.8	21.5	24.5	16.4	19.7	18.0	8.7	13.0
29	29.5	17.1	22.3	24.4	18.0	20.5	25.7	16.3	20.2	19.7	10.3	14.6
30	26.6	18.6	21.8	28.4	17.4	22.1	22.5	17.6	19.7	20.9	11.1	15.4
31	---	---	---	28.4	19.2	22.8	24.6	16.6	20.3	---	---	-_-
MONTH	30.7	13.6	20.4	32.4	9.7	22.1	29.4	16.0	21.2	26.1	7.2	17.1

$\begin{array}{llll}\text { YEAR } 32.4 & \text {. } 0 & 11.8\end{array}$

07108900 ST. CHARLES RIVER AT VINELAND, CO

LOCATION.--Lat $38^{\circ} 14^{\prime} 44^{\prime \prime}$, long $104^{\circ} 29^{\prime} 09^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 1 / 4}$ sec.6, T. 21 S., R. 63 W., Pueblo County, Hydrologic Unit 11020002, on right bank at right downstream end of downstream bridge on U.S. Highway 50C, 1.6 mi west of Vineland, and 3.0 mi upstream from mouth.
DRAINAGE AREA.--474 mi^{2}.
PERIOD OF RECORD.--October 1978 to current year.
GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Datum of gage is $4,581.58 \mathrm{ft}$ above sea level, (Colorado Division of Highways benchmark).
REMARKS.--Records good except for estimated daily discharges, and those above $1,500 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Natural flow of stream affected by diversions upstream from station for irrigation of about 8,500 acres, and for industrial uses, and return flow from land irrigated by Bessemer Ditch. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.
EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least $1901,56,000 \mathrm{ft}^{3} / \mathrm{s}$, at site 5.0 mi downstream. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12	e34	e12	e12	e13	16	18	29	15	8.7	21	47
2	11	e40	e12	e12	e13	16	18	27	13	8.4	17	40
3	9.7	e42	e11	e12	e14	16	17	22	13	8.3	16	34
4	11	e41	e11	e12	e15	16	18	21	12	8.7	15	29
5	19	e39	e10	e12	15	16	22	19	13	8.9	16	23
6	21	e33	e10	13	16	16	21	19	e13	8.7	14	22
7	19	e31	e10	14	18	16	20	21	13	8.4	14	22
8	16	e31	e10	13	18	16	21	20	13	11	15	22
9	14	e30	e10	13	16	16	20	18	12	95	14	22
10	17	e29	e10	14	17	16	20	17	13	128	12	20
11	e17	e28	e10	13	15	15	20	18	13	16	12	20
12	e15	e27	e10	13	15	15	24	16	12	300	11	20
13	e16	e27	e11	13	15	15	22	16	103	80	11	20
14	e15	e26	e11	13	15	15	23	17	71	28	11	21
15	e15	e25	e11	11	15	21	23	14	31	21	11	23
16	e16	e24	e11	11	14	19	23	13	27	17	10	20
17	e19	e23	e11	12	14	18	27	12	20	17	11	20
18	e26	e21	e11	12	14	18	26	12	19	16	12	19
19	e 32	e21	e11	e12	14	18	30	11	17	15	11	18
20	e36	e21	e11	11	13	21	31	13	16	13	12	18
21	e37	e20	e11	12	14	17	33	13	15	13	100	16
22	e38	e19	e11	11	13	16	34	13	15	13	27	15
23	e45	e18	e11	11	14	17	35	13	14	581	34	15
24	e46	e17	e11	12	15	18	36	14	13	50	101	15
25	e43	e16	e12	12	14	18	33	41	12	39	65	15
26	e 40	e15	e12	12	15	18	28	101	12	31	85	15
27	e35	e14	e12	e12	16	19	27	77	11	26	121	17
28	e29	e13	e12	e12	16	18	27	50	10	35	267	16
29	e28	e12	e12	e12	16	17	29	47	8.9	84	69	16
30	e29	e12	e12	e12	--	17	30	30	9.2	32	195	15
31	e32	---	e12	e12	---	19	---	16	---	25	61	-
TOTAL	758.7	749	342	378	432	529	756	770	579.1	1746.1	1391	635
MEAN	24.5	25.0	11.0	12.2	14.9	17.1	25.2	24.8	19.3	56.3	44.9	21.2
MAX	46	42	12	14	18	21	36	101	103	581	267	47
MIN	9.7	12	10	11	13	15	17	11	8.9	8.3	10	15
AC-FT	1500	1490	678	750	857	1050	1500	1530	1150	3460	2760	1260

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1996, BY WATER YEAR (WY)

MEAN	13.9	14.4	12.2	12.2	12.9	17.7	61.9	153	89.1	38.9	49.3	20.9
MAX	39.5	31.8	22.4	16.6	22.5	45.3	306	484	358	108	207	120
(WY)	1983	1983	1983	1984	1987	1987	1987	1980	1983	1995	1982	1982
MIN	3.50	5.59	6.81	6.75	7.68	6.71	5.02	6.06	8.79	7.60	10.2	6.36
(WY)	1979	1979	1981	1981	1995	1995	1981	1991	1990	1981	1989	1980

SUMMARY STATISTICS
FOR 1995 CALENDAR YEAR
FOR 1996 WATER YEAR
WATER YEARS 1979-1996
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
10 PERCENT EXCEEDS
50
PERCENT EXCEEDS
90 PERCENT EXCEEDS

25409.4		
69.6		
800	May	17
5.1	Mar	13
5.8	Mar	16
50400		
205		
15		
7.6		

9065.9		
24.8		
581	Jul	23
8.3	Jul	3
8.6	Jul	1
a_{3440}	Jul 23	
9.93	Jul 23	
17980		
36		
16		
11		

41.5			
88.4			1987
9.52			1979
1550	May 16	1980	
.25	Apr 25	1979	
2.7	Apr 25	1981	
b	Aug 11 1982		
7560	Aug 11	1982	
12.70			
30080			
92			
13			
6.4			

[^66]
07109500 ARKANSAS RIVER NEAR AVONDALE, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April to October 1976, April 1979 to September 1980, December 1985 to current year.

PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: July 1979 to September 1980, December 1985 to current year.
WATER TEMPERATURE: July 1979 to September 1980, December 1985 to current year.
pH: July 1979 to September 1980, August 1988 to current year.
DISSOLVED OXYGEN: July 1979 to September 1980, August 1988 to current year.
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for daily specific conductance are good except Feb. 2, 28, May 9-10, June 8, 12-13, which are fair, and July 12 to Sept. 30, which are poor. Records for daily pH are fair. Records for daily water temperature are good except Oct. 1-6, Jan. 12-22, Mar. 15-26, which are fair, and Aug. 15 to Sept. 13, which are poor. Records for daily dissolved oxygen are poor. Daily data that are not published are either missing or of unacceptable quality. Water-quality data prior to December 1985 are published in other reports.
EXTREMES FOR PERIOD OF RECORD..--
SPECIFIC CONDUCTANCE: Maximum, 1,380 microsiemens, Jan.24, 25, 1980; minimum, 246 microsiemens, June 16, 1980. $\mathrm{pH}:$ Maximum, 9.1 units, Dec. 3, 1989; minimum, 7.2 units, several days in 1992, 1995-96.
WATER TEMPERATURE: Maximum, $31.5^{\circ} \mathrm{C}$, Aug. 6,1980 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during winters.
DISSOLVED OXYGEN: Maximum, $14.0 \mathrm{mg} / \mathrm{L}$, Feb. 16, 1996; minimum, $2.6 \mathrm{mg} / \mathrm{L}$, July 14, 1992.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 1,130 microsiemens, Sept. 5; minimum, 340 microsiemens, July 8. pH : Maximum, 9.0 units, May 1; minimum, 7.2 units, several days in January.
WATER TEMPERATURE: Maximum, $27.1^{\circ} \mathrm{C}$, Sept. 5 ; minimum, $0.0^{\circ} \mathrm{C}$, several days during winter.
DISSOLVED OXYGEN: Maximum, $14.0 \mathrm{mg} / \mathrm{L}$, Feb. 16 ; minimum, $2.7 \mathrm{mg} / \mathrm{L}$, July 29.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07109500 ARKANSAS RIVER NEAR AVONDALE, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	847	785	809	835	770	800	710	687	699	746	716	733
2	821	777	800	842	796	821	695	670	684	788	733	755
3	840	812	822	824	790	809	694	671	684	813	768	786
4	841	814	828	837	793	814	683	663	675	832	792	815
5	840	814	829	877	799	835	714	662	691	867	798	827
6	870	831	847	806	773	790	711	694	700	901	840	866
7	842	792	820	804	764	784	695	678	688	901	847	868
8	802	778	791	816	783	801	687	671	681	853	802	826
9	795	768	784	806	773	788	687	669	680	802	735	752
10	809	779	793	797	769	785	687	664	676	706	676	689
11	796	761	777	805	774	791	674	659	667	766	668	696
12	787	752	771	796	757	775	675	649	664	669	647	655
13	791	758	776	780	688	721	665	647	656	652	632	643
14	807	764	783	688	662	674	693	661	678	643	611	627
15	832	782	807	723	645	681	710	670	692	612	595	605
16	857	812	832	783	689	715	706	683	697	599	590	595
17	915	857	893	807	767	781	727	687	703	596	584	591
18	910	886	898	812	790	802	755	709	726	587	577	583
19	913	886	902	809	770	791	761	743	754	582	574	577
20	911	887	902	776	728	760	785	754	767	582	573	578
21	940	894	913	735	707	724	786	761	774	585	577	581
22	934	907	924	744	719	730	769	743	756	587	577	581
23	909	808	864	730	714	723	762	743	755	594	583	587
24	810	721	783	723	703	715	771	749	761	591	561	580
25	746	716	727	715	695	707	755	725	739	668	568	612
26	746	720	736	746	696	719	763	734	750	753	587	644
27	766	743	753	752	723	739	762	731	749	648	607	625
28	768	740	754	746	715	730	755	718	737	656	629	646
29	782	756	769	735	717	729	745	718	730	663	635	647
30	---	---	---	732	680	704	751	724	739	635	622	629
31	---	---	---	706	669	686	---	---	---	650	628	636
MONTH	940	716	817	877	645	756	786	647	712	901	561	672
	JUNE			JULY			AUGUST			SEPTEMBER		
1	707	639	674	415	373	390	492	467	476	1030	955	980
2	724	702	710	425	396	409	618	461	497	1100	1020	1040
3	731	703	716	416	396	404	524	461	486	1110	1060	1080
4	737	718	727	407	381	397	531	520	525	1120	1080	1100
5	730	619	708	386	366	378	531	520	527	1130	1060	1100
6	621	512	586	366	352	359	531	493	513	1090	1050	1070
7	525	458	508	354	342	348	503	475	494	1110	1020	1060
8	519	479	502	377	340	354	504	485	496	1040	975	1010
9	483	451	469	---	---	---	516	445	479	999	965	983
10	477	441	458	---	---	-	542	498	521	972	934	955
11	464	430	446	---	--	---	534	507	516	936	893	917
12	462	433	445	712	513	598	521	493	510	893	858	879
13	494	427	441	623	523	548	496	464	488	891	827	859
14	849	473	534	582	486	511	-	---	--	936	858	886
15	593	469	499	535	445	492	---	---	---	885	721	833
16	503	459	483	521	460	483	609	496	586	882	839	852
17	459	442	451	502	454	469	582	557	567	847	793	821
18	466	449	457	502	455	476	583	541	558	793	679	735
19	457	442	449	533	447	477	583	554	567	737	679	704
20	447	418	431	492	408	460	676	572	624	792	735	765
21	466	422	436	463	401	419	937	591	641	824	792	799
22	469	406	434	530	418	442	614	592	605	868	824	840
23	412	386	400	788	482	630	701	584	617	913	868	887
24	407	371	386	535	478	495	916	637	714	924	888	911
25	398	374	385	526	463	479	839	656	729	904	881	887
26	391	371	381	495	460	477	873	779	838	930	900	912
27	383	364	374	485	425	456	853	740	767	946	876	923
28	387	364	373	510	473	493	1000	845	890	940	904	923
29	388	361	374	498	477	487	888	763	844	929	863	887
30	399	369	380	501	488	492	1020	628	852	889	858	874
31	---	---	---	508	491	502	1000	945	975	---	---	-
MONTH	849	361	487	---	---	---	---	---	---	1130	679	916

07109500 ARKANSAS RIVER NEAR AVONDALE, CO--Continued

07109500 ARKANSAS RIVER NEAR AVONDALE, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE		JULY			AUGUST			SEPTEMBER		
1	8.3	7.6	8.0	8.7	8.2	8.5	8.2	7.8	7.9	8.6	8.5	8.6
2	8.2	7.6	8.0	8.7	8.1	8.5	8.2	7.9	8.0	8.6	8.4	8.5
3	8.2	7.6	8.0	8.7	7.8	8.4	8.0	7.8	7.9	8.7	8.5	8.6
4	8.4	7.8	8.1	8.8	8.2	8.5	8.2	7.8	8.0	8.7	8.5	8.6
5	8.5	7.8	8.2	8.9	8.3	8.6	8.2	7.9	8.0	8.7	8.5	8.6
6	8.5	7.7	8.3	---	---	---	8.4	7.9	8.1	8.8	8.5	8.6
7	8.5	7.7	8.2	---	---	---	8.3	7.9	8.1	8.6	8.2	8.4
8	8.5	7.9	8.3	---	---	---	8.3	7.8	8.1	8.3	8.0	8.2
9	8.5	7.6	8.2	---	---	---	8.3	8.0	8.2	8.2	7.8	8.0
10	8.4	7.8	8.2	---	---	---	8.4	7.8	8.1	8.0	7.5	7.8
11	8.4	7.7	8.2	---	---	---	8.3	8.0	8.1	8.0	7.7	7.9
12	8.4	7.8	8.2	-	-	---	8.4	8.0	8.2	8.3	7.9	8.1
13	8.4	7.5	8.1	7.9	7.7	7.8	8.4	7.9	8.2	8.4	7.9	8.2
14	8.4	7.6	8.2	7.9	7.8	7.8	8.4	7.9	8.2	8.3	8.0	8.2
15	8.4	7.8	8.3	7.9	7.6	7.8	8.6	8.0	8.3	8.4	8.0	8.2
16	8.5	7.9	8.3	7.9	7.7	7.8	8.7	8.2	8.4	8.5	8.1	8.3
17	8.5	7.5	8.3	7.9	7.6	7.8	8.7	8.2	8.5	8.6	8.1	8.4
18	8.4	7.4	8.2	7.8	7.5	7.7	8.7	8.3	8.5	8.6	8.0	8.4
19	8.5	7.6	8.2	7.9	7.4	7.7	8.7	7.9	8.5	8.5	8.0	8.4
20	8.4	7.5	8.0	7.9	7.6	7.8	8.6	8.3	8.5	8.5	8.1	8.4
21	8.1	7.6	7.8	7.9	7.7	7.8	8.6	8.2	8.5	8.5	8.2	8.4
22	8.3	7.6	8.0	7.9	7.6	7.8	8.6	8.4	8.5	8.5	8.2	8.4
23	8.4	7.8	8.1	7.9	7.4	7.7	8.6	8.3	8.5	8.5	8.2	8.4
24	8.5	7.7	8.2	7.9	7.7	7.8	8.5	8.2	8.4	8.5	7.9	8.3
25	8.6	7.9	8.4	7.9	7.7	7.8	8.5	8.4	8.5	8.4	8.1	8.3
26	8.6	8.0	8.3	7.9	7.6	7.8	8.5	8.3	8.5	8.3	7.9	8.2
27	8.6	7.7	8.3	7.9	7.7	7.8	8.6	8.4	8.5	8.4	8.0	8.2
28	8.6	8.1	8.5	7.9	7.6	7.8	8.5	8.2	8.4	8.4	7.9	8.0
29	8.7	8.1	8.5	7.9	7.6	7.8	8.6	8.4	8.5	8.5	7.9	8.2
30	8.7	8.0	8.4	7.9	7.6	7.8	8.6	8.3	8.5	8.4	7.7	8.2
31	---	---	--	8.0	7.8	7.9	8.6	8.4	8.5	-	---	--
MONTH	8.7	7.4	8.2	---	---	---	8.7	7.8	8.3	8.8	7.5	8.3

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07109500 ARKANSAS RIVER NEAR AVONDALE, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	. 3	. 0	. 0	7.4	2.2	4.9	12.6	5.8	9.3	16.9	9.6	13.2
2	. 2	. 0	. 0	8.3	3.0	5.8	11.7	6.3	9.4	17.1	10.4	13.9
3	. 0	. 0	. 0	8.4	3.0	6.0	10.0	6.8	8.0	16.4	10.7	13.8
4	1.1	. 0	. 1	9.4	4.7	7.3	7.9	6.2	7.0	18.5	10.8	14.6
5	5.4	1.1	3.1	9.6	5.1	7.6	9.2	4.3	6.6	17.3	12.8	15.1
6	5.5	2.1	3.7	8.1	3.2	4.9	11.8	5.1	8.5	19.8	12.9	16.1
7	7.4	3.6	5.4	6.2	1.0	3.8	10.9	6.6	8.8	20.0	14.2	16.8
8	6.3	3.8	5.1	7.9	2.6	5.3	13.3	7.0	10.0	19.7	13.0	16.3
9	7.8	2.9	5.4	9.3	3.4	6.4	13.6	7.6	10.7	18.5	12.7	15.9
10	6.8	3.9	5.5	10.2	4.9	7.8	12.1	7.6	10.2	16.5	11.2	14.0
11	5.9	2.2	4.3	12.0	6.6	9.3	11.8	7.4	9.8	16.3	11.2	13.8
12	6.0	1.9	4.1	11.8	7.2	9.7	12.9	7.1	9.9	15.6	10.8	13.2
13	6.8	1.9	4.5	10.2	6.0	8.4	11.4	7.4	9.4	16.4	10.9	13.5
14	7.7	2.9	5.4	8.5	5.5	6.1	11.2	6.1	8.4	16.2	11.3	13.6
15	7.4	3.6	5.6	9.8	4.6	7.1	12.7	6.2	9.4	15.6	10.0	12.6
16	6.7	2.3	4.8	9.3	5.2	7.5	12.8	7.1	9.9	15.7	10.1	12.6
17	8.3	3.4	6.0	8.5	6.0	7.1	13.6	7.3	10.6	15.4	10.3	12.6
18	7.3	4.6	6.2	7.4	5.1	6.2	14.4	8.4	11.4	14.9	10.3	12.2
19	7.6	4.0	5.9	9.8	3.8	6.8	12.7	7.3	10.4	14.7	10.4	12.2
20	9.6	4.9	7.2	10.3	4.4	7.5	11.8	7.9	9.7	15.0	10.5	12.2
21	10.8	6.2	8.6	11.2	5.0	8.3	13.5	7.3	10.2	15.0	10.5	12.3
22	9.6	7.3	8.4	11.1	5.7	8.6	14.8	8.5	11.3	15.3	10.6	12.7
23	8.5	5.0	6.9	10.8	6.0	8.5	16.2	8.3	12.1	15.5	11.0	13.0
24	7.7	3.4	5.6	9.0	4.7	6.0	16.2	10.1	13.3	14.5	11.4	12.7
25	9.1	4.1	6.6	5.9	2.1	4.2	15.9	10.1	13.1	13.0	11.8	12.3
26	7.6	3.5	4.6	9.3	2.7	6.0	16.3	9.2	12.7	13.9	12.1	12.9
27	5.3	1.6	3.6	10.9	4.4	7.8	15.7	10.5	13.2	16.3	11.6	13.7
28	4.2	1.6	3.0	11.1	5.6	8.6	13.2	8.4	9.9	15.1	11.8	13.2
29	6.3	1.4	3.9	11.8	6.3	9.1	14.8	7.3	10.8	17.5	11.9	14.3
30	---	---	---	11.2	7.0	9.0	15.5	8.6	12.1	18.2	12.7	15.3
31	---	-	---	10.8	5.5	8.4	,	-	,	18.7	12.5	15.5
MONTH	10.8	. 0	4.6	12.0	1.0	7.1	16.3	4.3	10.2	20.0	9.6	13.7
	JUNE			JULY			AUGUST			SEPTEMBER		
1	19.9	13.3	16.5	22.0	16.5	19.1	24.3	18.4	21.3	26.1	20.7	23.5
2	19.9	13.9	17.1	22.9	16.4	19.5	22.6	18.9	21.0	23.8	20.5	22.4
3	20.8	13.9	17.5	23.0	16.7	19.8	22.6	18.7	20.6	26.7	19.2	22.8
4	20.3	14.6	17.7	23.2	16.9	20.0	23.8	18.7	21.2	26.9	20.5	23.7
5	19.0	14.2	16.8	21.8	17.1	19.5	23.8	17.9	20.9	27.1	20.1	23.6
6	18.4	13.1	15.6	22.8	17.0	19.7	24.7	17.8	21.2	24.1	20.7	22.4
7	18.5	13.0	15.6	22.3	16.9	19.5	23.9	18.0	21.0	25.8	19.0	22.3
8	18.4	13.1	15.6	19.5	17.2	18.3	23.4	18.7	21.1	26.5	19.9	23.0
9	17.6	13.8	15.4	21.4	17.3	18.9	23.7	18.4	21.1	24.3	20.3	22.1
10	17.3	13.8	15.3	,		,	24.3	18.5	21.3	24.0	16.9	20.4
11	17.9	14.0	15.5	---	---	---	24.3	18.3	21.3	24.0	17.4	20.7
12	17.9	14.2	15.8	20.9	---	---	24.8	18.3	21.6	21.3	17.8	18.5
13	17.8	14.6	15.8	21.7	17.6	19.5	23.9	18.4	21.3	22.1	17.0	19.2
14	17.8	14.5	16.0	22.9	17.3	19.9	---	19.0	1.	20.4	17.5	18.9
15	18.4	15.4	16.6	22.7	17.5	20.2	23.7	-	---	21.2	17.0	19.0
16	19.8	15.2	17.2	24.3	18.0	21.2	23.6	19.1	21.3	21.9	17.4	19.4
17	20.1	15.3	17.3	25.0	18.5	21.6	24.2	18.8	21.4	22.0	17.1	19.4
18	20.8	15.4	17.7	24.2	19.1	21.8	24.3	19.3	21.7	18.7	16.4	17.4
19	20.8	15.2	17.8	24.8	18.6	21.8	24.3	19.3	21.2	18.0	13.7	16.0
20	21.4	16.0	18.4	25.0	19.3	22.1	24.5	19.4	21.8	19.6	14.4	16.9
21	19.3	16.0	17.7	24.3	18.4	21.4	24.6	19.9	22.2	20.9	14.1	17.5
22	18.3	16.3	17.2	24.4	18.8	21.7	22.2	20.5	21.2	21.5	15.4	18.4
23	20.2	15.4	17.5	24.4	17.2	21.1	24.7	20.3	22.2	21.0	16.1	18.5
24	20.9	16.4	18.2	22.7	17.8	20.3	23.9	19.6	21.8	19.9	15.7	17.7
25	21.0	15.9	18.0	21.6	18.1	19.8	25.3	20.6	23.0	20.4	15.5	17.9
26	21.3	16.0	18.4	22.4	17.7	19.9	26.3	21.4	23.6	16.8	13.3	14.5
27	19.9	16.5	18.1	22.6	17.6	20.0	24.6	20.6	22.6	16.0	10.8	13.4
28	21.1	16.3	18.4	22.8	18.1	20.4	24.4	19.5	22.0	18.0	11.8	14.8
29	21.2	16.5	18.7	21.5	18.5	19.9	25.6	20.2	22.7	19.2	13.4	16.4
30	20.6	17.0	18.6	24.1	18.3	21.0	24.4	18.9	22.0	20.3	14.1	17.2
31	---	---	-	24.2	19.1	21.7	25.1	20.3	22.5	-	-	---
MONTH	21.4	13.0	17.1	---	---	---	---	---	---	27.1	10.8	19.3

07109500 ARKANSAS RIVER NEAR AVONDALE, CO--Continued

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

	FEBRUARY			MARCH			APRIL			MAY		
1	11.5	10.5	11.1	11.9	9.8	10.8	10.3	7.4	9.0	11.1	6.3	8.8
2	11.5	10.3	11.2	11.0	9.2	10.2	9.9	7.6	8.7	11.0	6.1	8.3
3	11.2	8.8	10.2	11.3	9.1	10.3	10.1	7.9	9.1	10.7	6.4	8.3
4	11.5	7.7	9.7	10.6	8.5	9.6	10.3	8.7	9.4	10.5	6.2	8.3
5	10.9	9.3	10.2	10.7	8.4	9.4	10.8	8.3	9.7	10.7	6.0	8.1
6	11.1	9.2	9.8	11.8	8.4	10.5	10.3	7.6	9.0	10.3	5.8	7.9
7	10.4	8.8	9.6	12.5	9.5	11.1	9.8	8.0	9.0	10.1	5.1	7.4
8	10.8	9.0	9.9	11.7	8.8	10.3	9.8	7.4	8.7	10.1	5.2	7.6
9	11.4	9.2	10.3	11.3	8.2	9.8	9.6	7.4	8.4	9.7	5.5	7.1
10	11.3	9.4	10.5	10.8	7.9	9.3	9.6	7.5	8.5	9.4	6.5	8.1
11	12.6	10.6	11.6	10.1	7.2	8.7	9.4	7.4	8.3	8.8	7.1	7.9
12	13.2	11.0	12.0	9.7	7.3	8.3	9.8	7.4	8.6	9.3	7.7	8.6
13	13.4	10.7	11.9	9.5	7.0	8.3	9.3	7.5	8.4	9.7	8.0	8.7
14	13.0	10.5	11.7	9.9	7.1	9.5	10.0	7.8	9.0	9.2	7.8	8.5
15	13.0	10.8	11.7	10.2	8.4	9.2	10.0	7.5	8.8	9.5	8.1	8.8
16	14.0	10.8	12.4	10.0	8.0	9.1	9.8	7.3	8.5	9.6	8.0	8.9
17	13.0	9.2	11.5	9.4	8.0	9.0	9.7	7.2	8.5	9.4	8.2	8.8
18	---	---	---	10.0	8.9	9.5	9.4	6.9	8.1	9.4	8.4	9.0
19	---	---	---	10.4	8.2	9.4	10.0	6.9	8.4	9.4	8.5	9.0
20	---	---	---	10.6	8.0	9.3	9.8	7.1	8.4	9.4	8.4	8.9
21	11.8	6.9	9.4	9.9	7.5	8.6	9.8	7.4	8.6	9.4	8.2	8.8
22	9.8	6.6	8.0	9.8	7.6	8.7	10.0	7.1	8.6	9.1	8.0	8.6
23	10.5	7.6	8.6	9.6	7.7	8.6	10.0	6.7	8.4	8.7	7.8	8.3
24	11.3	8.9	10.0	10.8	8.0	9.8	9.9	6.4	8.2	8.6	7.2	8.0
25	10.8	8.7	9.7	11.9	9.8	10.9	10.1	6.4	8.2	8.2	7.2	7.8
26	11.6	8.8	10.5	11.2	8.5	10.1	10.5	6.5	8.6	8.4	7.7	8.0
27	12.3	10.4	11.1	10.8	8.0	9.5	10.4	6.5	8.2	8.3	7.1	7.8
28	12.7	10.6	11.7	10.4	8.0	9.1	11.6	7.0	9.4	8.2	6.7	7.6
29	12.4	9.7	11.2	10.1	7.7	8.8	11.7	7.4	9.7	8.1	6.6	7.3
30	---	---	---	10.0	7.9	8.9	11.1	7.1	8.9	7.6	6.2	6.9
31	---	---	---	10.6	8.0	9.3	-	---	---	7.7	5.9	6.9
MONTH	---	---	---	12.5	7.0	9.5	11.7	6.4	8.7	11.1	5.1	8.2

07109500 ARKANSAS RIVER NEAR AVONDALE, CO--Continued

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE		JULY			AUGUST			SEPTEMBER		
1	7.4	4.3	6.2	7.7	5.9	6.8	7.1	5.2	6.1	5.6	4.3	4.9
2	7.4	4.2	5.8	7.5	5.7	6.6	7.3	5.5	6.5	5.5	4.5	5.1
3	7.8	5.6	6.8	7.3	5.8	6.6	6.8	5.6	6.2	6.2	4.7	5.5
4	8.2	5.6	6.9	7.1	5.8	6.4	6.4	5.3	5.9	5.7	4.6	5.2
5	8.3	6.7	7.5	7.3	6.1	6.6	6.9	5.5	6.1	6.0	4.6	5.3
6	9.9	7.7	9.0	7.3	6.2	6.8	7.1	5.2	6.1	6.2	4.9	5.6
7	9.9	8.3	9.3	7.8	6.4	7.0	7.0	5.2	6.1	---	---	.
8	9.5	8.6	9.1	7.3	6.2	6.8	7.0	5.4	6.1	---	---	---
9	9.5	8.8	9.2	6.9	5.6	6.2	7.4	6.0	6.7	---	---	-
10	9.5	8.8	9.2		5.	.	7.1	4.9	6.1	---	---	---
11	9.7	8.7	9.1	-	---	---	7.3	5.1	6.2	-	---	---
12	9.5	8.5	9.1	---	---	--	7.4	5.2	6.2	-	--	---
13	9.5	8.5	9.0	6.1	5.3	5.7	6.9	5.3	6.2	---	5.2	-
14	9.0	7.8	8.4	6.5	5.5	6.0	7.2	5.3	6.2	6.6	4.8	6.0
15	8.9	8.1	8.5	6.5	4.9	5.8	7.3	6.0	6.6	6.1	4.9	5.5
16	9.1	7.8	8.4	6.1	4.8	5.4	6.7	6.0	6.4	6.4	4.9	5.8
17	9.0	7.9	8.5	6.1	5.0	5.5	6.7	5.7	6.3	6.5	5.0	5.9
18	8.6	7.5	8.1	6.1	5.0	5.5	6.6	5.7	6.2	6.7	5.3	6.0
19	8.4	7.3	7.9	6.4	4.7	5.7	7.8	5.8	6.5	7.2	5.5	6.4
20	8.1	6.3	7.7	6.8	5.4	6.2	7.1	5.6	6.3	6.7	5.1	5.8
21	8.0	6.1	7.4	---	---	---	6.7	4.5	6.1	6.6	4.8	5.8
22	8.0	7.2	7.6	-	-	---	6.5	5.5	6.1	6.5	4.8	5.6
23	8.2	7.5	7.9	--	-	---	6.2	4.7	5.7	6.4	5.0	5.7
24	8.2	7.2	7.8	7.5	5.2	6.7	6.6	4.8	5.7	6.6	4.9	5.8
25	8.1	6.6	7.6	7.4	5.2	6.4	5.9	4.7	5.5	---	---	---
26	8.0	6.8	7.4	6.7	4.8	5.5	5.6	4.3	5.0	---	---	---
27	7.8	6.9	7.3	7.1	4.0	5.4	5.9	4.7	5.3	7.8	6.5	7.2
28	7.7	6.4	7.2	5.4	3.9	4.8	6.3	4.6	5.4	7.8	6.1	7.3
29	7.8	6.5	7.1	6.0	2.7	4.1	5.6	3.8	5.2	7.5	5.8	6.7
30	7.4	6.6	7.0	6.3	4.8	5.5	6.3	4.7	5.7	7.3	5.5	6.5
31	---	---	---	6.2	5.0	5.7	5.6	4.2	5.1	---	---	---
MONTH	9.9	4.2	7.9	---	---	---	7.8	3.8	6.0	---	---	---

07116500 HUERFANO RIVER NEAR BOONE, CO

LOCATION.--Lat $38^{\circ} 13^{\prime} 30$ ", long $104^{\circ} 15^{\prime} 37$ ", in $\mathrm{NE}^{1 / 4} \mathrm{NE}^{1 / 4} \mathrm{sec} .18$, T. 21 S., R. 61 W., Pueblo County, Hydrologic Unit 11020006, at right upstream end of bridge on U.S. Highway $50,0.8 \mathrm{mi}$ upstream from mouth, and 1.6 mi south of Boone.
DRAINAGE AREA.-- $1,875 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--January 1922 to September 1925 (monthly and annual discharge only, published in WSP 1311 as near Nepesta), October 1979 to current year.

GAGE.--Water-stage recorder with satellite telemetry and crest-stage gages. Datum of gage is $4,443.75 \mathrm{ft}$ above sea level.
REMARKS.--Records poor. Natural flow of stream affected by diversions for irrigation of about 48,000 acres, and return flow from irrigated areas. Several measurements of water temperature and specific conductance were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18	29	17	e20	e15	e20	9.0	4.5	15	. 60	. 00	6.5
2	21	28	18	e20	e14	e19	7.2	4.7	21	. 34	. 00	5.1
3	21	41	18	e20	e14	e18	6.0	4.5	20	. 34	. 00	5.4
4	16	40	17	24	e14	e17	5.8	4.5	17	. 20	. 00	5.3
5	16	39	15	17	e15	16	7.2	4.5	14	. 20	. 00	4.9
6	17	38	13	16	e15	15	6.9	4.5	9.3	. 23	. 00	3.7
7	18	39	13	14	e15	e15	6.1	4.6	10	. 00	. 00	4.1
8	18	40	13	22	e16	e17	6.2	4.7	8.6	. 01	. 00	3.9
9	15	40	14	22	e16	18	5.9	5.0	8.0	. 30	. 00	3.2
10	13	38	e14	16	e18	18	5.4	4.8	10	49	. 00	3.1
11	12	41	14	16	e18	19	5.9	4.7	12	1.4	. 00	2.7
12	11	44	15	14	e20	16	5.9	4.7	9.6	6.0	. 00	3.2
13	12	41	13	16	25	15	6.1	4.8	9.6	6.8	. 00	4.0
14	11	40	12	14	24	18	9.2	4.4	31	3.3	. 00	5.1
15	9.9	35	12	14	22	23	9.6	4.1	26	1.2	. 00	4.1
16	11	18	12	14	19	26	6.6	4.3	18	. 58	. 00	3.0
17	13	15	12	e17	17	47	5.6	4.0	16	. 45	. 00	3.8
18	15	15	13	e16	19	44	5.1	3.9	9.1	. 40	. 00	3.0
19	15	18	13	e16	19	41	5.1	3.8	4.4	. 53	. 00	3.5
20	12	19	14	e16	19	42	5.9	3.9	4.2	. 26	. 00	6.4
21	13	15	14	e15	21	52	5.2	3.9	3.5	. 15	. 00	7.2
22	12	11	14	e15	31	48	5.7	4.0	3.6	. 12	. 00	7.9
23	39	11	e14	e15	35	44	5.7	3.9	3.3	. 15	3.7	8.0
24	41	11	e15	e15	43	41	5.1	3.9	3.5	. 00	28	7.8
25	28	12	e15	e15	46	43	4.8	7.9	2.1	. 00	2.4	6.6
26	28	12	18	e15	42	41	4.5	19	1.7	. 00	1.4	5.9
27	23	12	e18	e14	32	33	4.4	15	1.7	. 00	4.4	5.3
28	28	17	e18	e17	24	26	4.6	11	1.1	. 00	165	4.5
29	25	17	e18	e15	e22	13	4.8	14	1.2	. 00	2.0	4.6
30	27	17	e20	e15	---	11	4.8	14	1.2	. 00	23	4.0
31	27	---	e20	e15	---	9.4	---	15	---	. 00	7.2	---
TOTAL	585.9	793	466	510	650	825.4	180.3	200.5	295.7	72.56	237.10	145.8
MEAN	18.9	26.4	15.0	16.5	22.4	26.6	6.01	6.47	9.86	2.34	7.65	4.86
MAX	41	44	20	24	46	52	9.6	19	31	49	165	8.0
MIN	9.9	11	12	14	14	9.4	4.4	3.8	1.1	. 00	. 00	2.7
AC-FT	1160	1570	924	1010	1290	1640	358	398	587	144	470	289

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 1996, BY WATER YEAR (WY)

[^67]
07119500 APISHAPA RIVER NEAR FOWLER, CO

LOCATION.--Lat $38^{\circ} 05^{\prime} 28^{\prime \prime}$, long $103^{\circ} 58^{\prime} 52^{\prime \prime}$, in SE ${ }^{1 / 4} \mathrm{NW}^{1 / 4}$ sec.35, T. 22 S., R. 59 W, Otero Country, Hydrologic Unit 11020007, near right bank on downstream side of county highway bridge, 3.5 mi southeast of Fowler, and 5.4 mi upstream from mouth.
DRAINAGE AREA.-- $1,125 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--Streamflow records, April 1922 to September 1925, May 1939 to current year. Monthly discharge only for some periods, published in WSP 1311. Water-quality data available, November 1963 to September 1967, January to April 1969.
REVISED RECORDS.--WSP 957: 1939, 1941. WSP 1117: Drainage area. WSP 1241: 1923(M). WRD Colo. 1974: 1973(M).
GAGE.--Water-stage recorder with satellite telemetry and crest-stage gages. Datum of gage is $4,317.05 \mathrm{ft}$ above sea level. Prior to Aug. 29, 1923, at site 3 mi downstream at different datum. Aug. 29, 1923, to Sept. 30, 1925, at present site at different datum. May 27, 1939 to July 30, 1940, at present site at different datum. July 30, 1940 to Sept. 30, 1985, at datum 2.0 ft , higher.
REMARKS.--Records good except for Oct. 11 to Dec. 13 and Mar. 5-20, which are fair, and estimated daily discharges, which are poor. Waste water from Oxford Farmers Co., and Rocky Ford Highline canals enters river upstream from station. Diversions upstream from station for irrigation of about 4,700 acres. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^68]
07119700 ARKANSAS RIVER AT CATLIN DAM, NEAR FOWLER, CO

LOCATION.--Lat $38^{\circ} 07^{\prime} 33^{\prime \prime}$, long $103^{\circ} 54^{\prime} 41^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{NW}^{1 / 4} / 4 \mathrm{sec} .21$, T. 22 S., R. 58 W., Otero County, Hydrologic Unit 11020005, 600 ft downstream from gage on Catlin Canal, on right bank 2.2 mi downstream from diversion dam for Catlin Canal, 2.3 mi downstream from Apishapa River, and 6.0 mi east of Fowler.
DRAINAGE AREA.-- $10,901 \mathrm{mi}^{2}$, of which $54 \mathrm{mi}^{2}$ is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1964 to current year. Statistical summary computed for 1975 to current year.
GAGE.--Water-stage recorders with satellite telemetry on river and on Catlin Canal. Datum of river gage is $4,245.92 \mathrm{ft}$ above sea level. Datum of canal gage is $4,257.87 \mathrm{ft}$ above sea level. Prior to May 13, 1971, river gage at site 2.2 mi upstream at datum 24.08 ft , higher, and canal gage at site 1.7 mi upstream at datum 3.26 ft , higher.
REMARKS.--Records fair except for estimated daily discharges, which are poor. Discharge computed by combining discharge of river below canal with that of Catlin Canal. Natural flow of stream affected by transmountain diversions, storage reservoirs, groundwater withdrawals, diversions for irrigation, and return flow from irrigated areas. Flow partly regulated by Pueblo Reservoir (station 07099350) since Jan. 9, 1974.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^69] b-Maximum daily discharge for period of record, $43200 \mathrm{ft}^{3} / \mathrm{s}$, Jun 18,1965
c-Also occurred Sep 12, 1974
d-Maximum combined instantaneous discharge.
f -Maximum discharge and stage for period of record, $43200 \mathrm{ft} / \mathrm{s}$, Jun 18, 1965, gage height, 7.95 ft , site and datum then in use, from rating curve extended above $13000 \mathrm{ft}^{3} / \mathrm{s}$, on basis of flow-over-dam computation of peak flow.

07119700 ARKANSAS RIVER AT CATLIN DAM NEAR FOWLER, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--May 1990 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: May 1990 to current year.
WATER TEMPERATURE: May 1990 to current year.
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for daily specific conductance are good except Feb. 8, 22, Mar. 19-20, Apr. 18, 23, June 25-26, Aug. 13, 15, 17, Aug. 20 to Sept. 9, and Sept. 13, 19-30, which are poor. Records for water temperature are good except for Oct. 2, 9, Apr. 18, 23, June 5, Aug. 20, and Sept. 13-17, which are poor. Daily data that are not published are either missing or of unacceptable quailty.
EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 1,800 microsiemens, Apr. 27, 1991; minimum, 244 microsiemens, May 25, 1993. WATER TEMPERATURE: Maximum, $30.9^{\circ} \mathrm{C}$, Aug. 9,1992 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during the winter months.

EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum, 1,580 microsiemens, Jan. 30; minimum, 436 microsiemens, June 25. WATER TEMPERATURE: Maximum, $29.5^{\circ} \mathrm{C}$, July 20 ; minimum, $0.1^{\circ} \mathrm{C}$, many days during winter.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG.C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER		NOVEMBER			DECEMBER			JANUARY		
1	979	965	973	984	966	975	1160	1100	1140	1290	1230	1260
2	975	957	966	980	958	971	1160	1140	1150	1310	1270	1290
3	977	951	964	992	968	980	1180	1140	1150	1330	1260	1300
4	955	921	941	992	978	987	1310	1170	1240	1380	1260	1330
5	941	908	930	986	958	976	1320	1300	1310	1350	1270	1320
6	926	895	909	986	968	976	1300	1270	1290	1370	1310	1330
7	908	890	898	984	968	977	1280	1260	1280	1350	1310	1320
8	900	887	894	986	962	977	1330	1280	1310	1320	1280	1310
9	904	880	892	970	956	965	1370	1320	1340	1350	1300	1320
10	981	904	949	962	922	945	1360	1300	1340	1310	1280	1300
11	1000	970	982	922	896	906	1420	1320	1360	1320	1280	1300
12	984	962	972	904	878	893	1430	1390	1410	1320	1290	1300
13	980	946	965	888	874	881	1450	1430	1440	1310	1290	1300
14	962	924	947	888	862	877	1450	1440	1450	1310	1290	1300
15	954	932	943	884	858	877	1450	1440	1450	1310	1290	1300
16	962	930	947	908	878	891	1450	1440	1440	1300	1280	1290
17	966	940	953	936	904	921	1450	1430	1440	1290	1210	1260
18	966	908	929	974	936	958	1450	1440	1450	1330	1240	1290
19	932	914	922	1010	970	993	1480	1440	1450	1330	1270	1290
20	944	922	932	1030	1010	1020	1460	1400	1440	1280	1230	1260
21	952	926	942	1040	1020	1030	1450	1090	1280	1280	1250	1270
22	934	904	922	1040	1030	1040	1280	1050	1210	1310	1240	1280
23	946	904	925	1040	1030	1040	1310	1210	1280	1380	1300	1340
24	986	912	938	1040	1040	1040	1330	1260	1280	1380	1320	1350
25	944	932	938	1050	1040	1040	1290	1220	1270	1370	1310	1340
26	948	932	943	1060	1040	1050	1290	1240	1260	1410	1340	1370
27	962	930	942	1060	1020	1040	1280	1230	1260	1370	1270	1320
28	968	946	959	1060	1030	1050	1290	1150	1270	1290	1210	1250
29	980	956	968	1070	1050	1060	1290	1250	1260	1320	1240	1290
30	974	958	967	1100	1050	1070	1310	1250	1280	1580	1280	1370
31	978	954	968	-	---	---	1280	1210	1260	1440	1180	1220
MONTH	1000	880	943	1100	858	980	1480	1050	1320	1580	1180	1300

07119700 ARKANSAS RIVER AT CATLIN DAM NEAR FOWLER, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG.C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	1210	1140	1170	1140	1080	1110	856	834	846	1050	1020	1040
2	1230	1170	1200	1150	1110	1120	868	844	857	1060	1020	1040
3	1240	1190	1220	1150	1100	1130	864	846	855	1060	1020	1050
4	1250	1210	1230	1150	1110	1130	870	838	859	1090	1020	1060
5	1240	1100	1180	1160	1050	1110	842	816	828	1110	1080	1100
6	1100	993	1030	1080	1010	1050	913	823	883	1130	1090	1110
7	1030	991	1010	1010	944	975	896	868	879	1220	1110	1170
8	1180	1020	1070	1060	938	998	876	850	866	1210	1130	1160
9				970	943	956	863	824	844	1130	1070	1110
10	1080	1060	1070	987	949	969	826	798	812	1070	920	987
11	1080	1050	1070	988	948	967	835	809	823	920	812	848
12	1100	1060	1070	991	963	977	831	811	820	864	688	799
13	1080	1050	1060	993	939	965	831	803	820	736	680	696
14	1080	1070	1070	970	834	917	821	768	791	720	704	711
15	1090	1070	1080	868	814	837	837	777	810	708	670	692
16	1110	1080	1100	1010	852	879	888	832	851	686	632	647
17	1150	1110	1130	1010	876	906	836	814	824	654	624	637
18	1210	1140	1160	1000	924	977	844	826	832	648	630	641
19	1230	1210	1230	1060	1010	1030	---	---	--	634	602	614
20	1250	1230	1240	1080	1020	1040	---	---	---	610	598	604
21	1360	1240	1300	1020	970	998	---	---	---	610	598	603
22	1470	1340	1390	988	920	937	---	---	---	614	602	608
23	1450	1400	1430	948	924	936	1030	1010	1020	630	602	614
24	1420	1240	1330	926	900	912	1030	1010	1020	634	614	625
25	1240	1120	1170	914	890	902	1060	1020	1040	770	608	642
26	---	---	---	898	886	893	1020	999	1010	778	680	715
27	---	---	-	904	888	893	1030	1000	1020	752	664	717
28	1100	1080	1090	936	904	924	1060	1010	1040	808	724	750
29	1120	1080	1100	944	902	916	1050	1020	1040	776	748	764
30	-	---	---	940	902	921	1040	1020	1030	---	---	---
31	---	---	---	920	844	888		---	---	---	---	---
MONTH	---	---	---	1160	814	973	---	---	---	---	---	---
	JUNE			JULY			AUGUST			SEPTEMBER		
1	---	---	---	610	546	573	746	732	738	1050	929	982
2	---	---	---	652	580	603	734	698	708	1080	1050	1060
3	---	---	---	698	652	673	708	626	672	1130	1070	1100
4	---	---	---	700	652	671	678	648	662	1200	1120	1170
5	1050	---	---	756	624	655	694	668	680	1290	1200	1240
6	1040	868	987	636	602	623	712	682	696	1340	1260	1310
7	874	698	778	610	570	586	710	682	695	1340	1300	1320
8	698	652	665	586	548	565	716	698	705	1330	1270	1310
9	668	598	634	594	546	567	736	714	725	1350	1250	1280
10	600	510	567	1060	500	674	738	668	697	---	---	---
11	560	482	516	1010	852	930	714	678	696	---	---	---
12	568	536	546	852	578	692	730	704	713	---	---	---
13	556	528	541	626	560	590	726	702	711	1360	1100	1290
14	754	528	580	630	550	598	---	---	---	1090	946	983
15	726	590	629	620	568	592	912	692	780	1090	953	1010
16	780	576	646	666	614	635	862	680	745	1140	1090	1110
17	652	576	609	686	656	669	878	682	758	1170	1070	1140
18	598	564	577	666	642	652				1160	1110	1140
19	616	582	597	698	652	680	---	---	---	1110	882	1010
20	614	592	603	710	670	690	--	---	---	948	883	911
21	604	568	587	760	664	701	732	683	709	1010	942	972
22	638	586	604	836	760	794	737	624	676	1030	997	1010
23	654	560	597	971	824	880	795	689	740	1060	1010	1040
24	568	514	535	910	736	851	850	783	805	1110	1050	1080
25	532	436	502	736	636	671	842	798	820	1130	1100	1110
26	560	513	540	658	610	631	851	801	821	1110	1090	1100
27	564	544	552	1020	600	641	928	848	896	1130	1090	1110
28	642	534	558	644	578	618	983	906	941	1160	1110	1140
29	554	524	540	726	614	647	980	928	947	1180	1140	1160
30	572	544	555	724	626	667	949	825	892	1200	1160	1180
31	---	---	---	738	710	722	937	867	897	---	-	--
MONTH	---	---	---	1060	500	669	---	---	---	---	--	-

07119700 ARKANSAS RIVER AT CATLIN DAM NEAR FOWLER, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBE		NOVEMBER			DECEMBER			JANUARY		
1	17.8	13.7	15.8	9.2	5.7	8.0	9.7	5.4	7.5	4.0	. 6	2.1
2		12.4		5.7	3.7	4.5	9.5	5.7	7.5	1.4	. 1	. 3
3	18.1	12.7	15.3	7.5	3.3	5.0	8.9	5.4	7.1	1.0	. 1	. 4
4	15.6	12.1	14.2	7.3	3.5	5.3	8.7	3.9	6.4	3.1	. 2	1.4
5	14.0	9.3	11.5	8.5	3.4	6.0	7.7	3.8	5.9	. 7	. 1	. 2
6	14.2	8.8	11.4	9.4	6.5	7.8	7.7	2.0	4.5	. 4	. 1	. 1
7	14.7	10.2	12.3	8.8	5.0	6.8	3.6	1.4	2.6	. 7	. 1	. 2
8	15.6	10.8	13.1	9.6	4.8	7.1	4.1	. 1	1.7	2.2	. 1	1.0
9	14.9	11.0	13.0	11.1	6.5	8.8	1.0	. 1	. 2	5.2	. 5	2.7
10	17.0	10.7	13.7	9.3	5.2	7.5	3.3	. 1	1.3	5.5	1.6	3.2
11	17.9	11.3	14.4	7.3	3.0	5.3	5.9	. 3	3.1	4.8	. 4	2.6
12	17.9	12.7	15.3	9.4	6.0	7.7	6.6	2.2	4.3	5.7	. 7	3.1
13	17.0	12.8	14.6	9.1	6.9	8.0	9.3	5.1	6.6	6.7	1.5	3.9
14	15.9	10.0	12.9	9.9	6.0	8.0	8.1	3.2	5.6	6.5	2.1	4.1
15	16.5	10.1	13.2	10.3	7.2	8.8	7.7	2.0	4.8	5.4	1.3	3.3
16	16.6	11.4	13.8	11.0	7.0	9.0	7.1	1.8	4.4	7.0	2.4	4.4
17	17.0	11.7	14.1	11.4	7.5	9.3	5.4	2.9	3.9	5.6	. 1	3.6
18	16.6	11.6	14.0	10.5	6.4	8.4	4.5	1.1	3.1	. 2	. 1	. 1
19	14.7	11.6	13.1	10.4	6.2	8.1	3.9	. 1	1.3	. 2	. 1	. 2
20	13.5	8.5	11.0	9.4	5.8	7.5	3.3	. 1	1.0	. 5	. 1	. 2
21	13.9	8.6	11.0	8.8	4.8	6.8	1.0	. 1	. 4	1.4	. 1	. 5
22	12.8	8.6	10.8	9.5	6.0	7.3	3.0	. 2	1.2	3.8	. 1	1.3
23	10.2	5.5	7.8	9.5	5.9	7.4	1.0	. 1	. 3	2.3	. 1	. 6
24	9.5	6.0	7.5	9.2	4.6	7.0	. 8	. 1	. 2	2.3	. 1	. 8
25	11.1	5.6	8.3	10.6	5.8	8.0	1.6	. 1	. 5	5.0	. 1	1.6
26	12.1	7.2	9.3	10.3	6.6	8.3	3.7	. 1	1.4	. 5	. 1	. 1
27	12.9	8.3	10.3	9.4	5.1	7.2	2.3	. 1	. 8	. 2	. 1	. 1
28	11.3	7.4	9.4	5.3	2.6	4.2	1.1	. 1	. 4	2.1	. 1	. 7
29	9.6	7.1	8.4	6.2	2.7	4.5	1.8	. 1	. 6	2.6	. 1	. 9
30	10.9	6.2	8.4	8.6	4.4	6.3	. 7	. 1	. 2	1.5	. 1	. 4
31	11.1	7.5	8.9		-	---	3.1	. 1	1.3	. 6	. 1	. 2
MONTH	---	5.5	---	11.4	2.6	7.1	9.7	. 1	2.9	7.0	. 1	1.4

	FEBRUARY			MARCH			APRIL			MAY		
1	. 1	. 1	. 1	7.6	1.6	4.6	16.1	9.1	12.5	21.0	11.2	15.6
2	. 2	. 1	. 1	9.1	2.6	5.7	17.0	11.0	13.8	21.9	13.0	17.2
3	. 1	. 1	. 1	9.5	3.2	6.3	13.3	10.5	11.6	22.5	13.7	17.7
4	. 1	. 1	. 1	11.4	5.4	8.2	10.5	7.0	8.8	22.8	13.3	17.7
5	. 2	. 1	. 1	10.7	5.2	8.0	9.6	5.5	7.4	18.9	14.5	16.6
6	. 1	. 1	. 1	8.0	1.7	4.3	14.1	6.7	10.3	23.7	13.0	17.6
7	. 2	. 1	. 1	4.4	. 1	2.0	13.4	10.4	12.0	21.7	15.5	18.1
8	1.5	. 1	. 4	7.3	2.2	4.5	17.1	10.9	13.9	25.2	15.1	19.5
9	5.7	. 2	1.9	9.7	3.4	6.5	19.3	13.0	16.1	25.0	17.2	20.3
10	7.2	4.5	5.7	12.1	6.1	9.0	17.4	13.9	15.8	21.8	15.2	18.2
11	6.0	2.6	4.4	14.3	9.0	11.5	17.7	11.7	14.6	21.1	15.3	17.9
12	5.9	2.0	4.0	14.5	9.6	11.9	17.4	11.0	14.1	22.7	16.9	19.6
13	6.6	1.8	4.3	13.8	8.4	10.9	16.2	9.5	13.5	20.6	16.2	18.6
14	8.2	3.3	5.7	10.0	3.6	6.8	10.7	6.8	8.8	21.8	16.7	19.2
15	8.2	4.5	6.2	10.2	3.5	6.8	14.8	7.2	10.9	21.1	16.9	19.2
16	7.3	2.6	5.0	11.0	7.3	9.2	16.3	10.3	13.1	20.6	16.3	18.6
17	9.1	3.9	6.2	10.0	7.0	8.6	17.6	11.7	14.2	21.1	16.0	18.5
18	8.4	5.0	6.7	7.3	5.2	6.2	17.9	10.9	14.1	21.3	16.4	18.9
19	9.5	4.4	6.4	10.8	3.3	6.8	---	---	---	18.9	15.7	17.3
20	9.5	6.2	7.6	12.1	4.4	8.1	-	---	---	18.3	14.6	16.4
21	13.1	6.4	9.4	13.5	6.1	9.7	---	--	--	18.1	13.8	16.0
22	12.8	7.3	9.7	13.5	7.5	10.5	---	--	--	19.1	14.5	16.8
23	10.2	6.0	8.3	13.8	9.1	11.3	19.9	---	--	20.0	15.4	17.7
24	9.4	4.6	7.2	10.7	4.2	7.1	20.1	13.2	16.6	18.8	15.5	17.1
25	10.3	5.1	7.6	6.3	1.1	3.9	20.9	13.1	16.8	16.8	13.0	14.2
26	7.7	3.6	5.3	9.4	1.9	5.6	19.9	11.9	15.9	13.2	12.3	12.8
27	4.5	. 9	2.7	12.7	5.1	8.7	20.1	13.4	16.3	16.4	12.2	14.3
28	2.0	. 1	1.1	14.2	7.3	10.6	14.4	9.1	10.9	16.7	13.8	15.2
29	5.9	. 1	2.5	15.4	8.7	11.9	17.3	6.1	11.2	19.8	14.2	16.7
30	---	---	---	15.4	9.6	12.0	19.0	9.7	14.0	---	---	---
31	---	---	---	14.5	7.8	11.2	--	---	-	---	---	---
MONTH	13.1	. 1	4.1	15.4	. 1	8.0	---	---	-	--	---	---

07119700 ARKANSAS RIVER AT CATLIN DAM NEAR FOWLER, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07121500 TIMPAS CREEK AT MOUTH, NEAR SWINK, CO

LOCATION.--Lat $38^{\circ} 00^{\prime} 11^{\prime \prime}$, long $103^{\circ} 39^{\prime} 20^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec. 35 , T. 23 S., R. 56 W., Otero County, Hydrologic Unit 11020005, on left bank 40 ft shoreward, 125 ft upstream from left end of 23 rd Rd. Bridge, 1.7 mi southwest of Swink, and 2.9 mi upstream from mouth.
DRAINAGE AREA.--496 mi^{2}.
PERIOD OF RECORD.--January 1922 to September 1925, March 1968 to current year.
REVISED RECORDS.--WDR CO 76-1: 1975.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $4,120 \mathrm{ft}$ above sea level, from topographic map. Prior to May 29, 1975, at site 140 ft downstream at datum 0.13 ft , lower.
REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by minor diversions upstream from station for irrigation, water imported from Arkansas River and Crooked Arroyo for irrigation upstream from station, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1922, 21,400 ft³/s, June 17, 1965.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	55	137	47	19	16	124	51	60	84	110	80	84
2	83	166	46	18	17	104	49	63	90	96	70	62
3	67	174	43	19	16	43	52	66	85	84	70	71
4	62	159	43	18	16	37	54	64	87	72	74	96
5	71	133	43	18	16	36	55	66	74	73	68	109
6	98	135	45	18	17	50	49	55	64	60	61	87
7	95	139	44	18	17	102	52	46	65	60	58	89
8	98	139	44	18	17	109	52	47	72	64	58	120
9	90	144	35	18	16	100	52	48	90	76	58	106
10	86	149	34	18	16	70	48	46	90	152	60	80
11	73	158	24	18	15	43	49	52	83	109	70	67
12	59	152	23	18	15	35	52	60	76	230	64	61
13	57	146	23	18	15	32	56	51	76	357	54	66
14	57	139	22	18	14	49	146	57	87	305	58	91
15	67	144	22	17	14	127	83	58	97	241	64	102
16	66	81	21	17	19	128	79	52	120	116	74	88
17	57	71	21	17	38	61	56	53	121	116	81	119
18	56	e57	21	16	38	65	57	47	e121	87	71	110
19	60	e55	20	17	37	54	59	48	e115	88	74	107
20	62	e54	20	17	35	40	71	58	e110	99	73	109
21	66	e53	20	17	31	40	78	65	e100	88	69	107
22	103	52	20	17	29	38	71	63	e100	74	69	106
23	140	51	20	17	24	38	56	64	e100	70	74	97
24	138	50	20	17	23	65	63	70	e120	68	77	110
25	132	49	20	16	28	118	66	227	e125	75	99	121
26	130	52	20	16	52	107	63	266	129	76	119	114
27	136	53	19	16	105	72	65	121	101	77	113	134
28	152	52	19	17	111	50	70	131	90	85	546	146
29	147	50	20	16	129	46	67	156	84	115	161	147
30	130	46	19	16	--	40	67	86	101	409	489	135
31	138	---	20	16	---	45	---	88	---	107	175	---
TOTAL	2831	3040	858	536	936	2068	1888	2434	2857	3839	3331	3041
MEAN	91.3	101	27.7	17.3	32.3	66.7	62.9	78.5	95.2	124	107	101
MAX	152	174	47	19	129	128	146	266	129	409	546	147
MIN	55	46	19	16	14	32	48	46	64	60	54	61
AC-FT	5620	6030	1700	1060	1860	4100	3740	4830	5670	7610	6610	6030

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 1996, BY WATER YEAR (WY)

[^70]b-From rating curve extended above $250 \mathrm{ft}^{3} / \mathrm{s}$, on basis of contracted-opening measurement of peak flow. c-From floodmark.

07123000 ARKANSAS RIVER AT LA JUNTA, CO

LOCATION.--Lat $37^{\circ} 59^{\prime} 26^{\prime \prime}$, long $103^{\circ} 31^{\prime} 55^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec.2, T. 24 S., R. 55 W., Otero County, Hydrologic Unit 11020005, on right bank at upstream side of bridge on State Highway 109 in La Junta, 450 ft upstream from King Arroyo.
DRAINAGE AREA.-- $12,210 \mathrm{mi}^{2}$, of which $115 \mathrm{mi}^{2}$ is probably noncontributing.
PERIOD OF RECORD.--May to August 1889, September 1893 to December 1895 (gage heights, discharge measurements, and flood data only), April to October 1903, June to November 1908 (gage heights and discharge measurements only), April 1912 to current year. Monthly discharge only for some periods, published in WSP 1311. Published as "near La Junta" in 1903. Statistical summary computed for 1975 to current year.
REVISED RECORDS.--WSP 1341: Drainage area. WSP 1731: 1922.
GAGE.--Water-stage recorder with satellite telemetry, and nonrecording gage read twice daily. Datum of gage is $4,039.60 \mathrm{ft}$ above sea level. See WSP 1711 or 1731 for history of changes prior to June 13, 1940. June 13, 1940, to June 6, 1967, water-stage recorder at site 300 ft upstream at present datum.
REMARKS.-- Records poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 400,000 acres, and return flow from irrigated areas. Flow partly regulated by Pueblo Reservoir (station 07099350) since Jan. 9, 1974.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^71]
07124000 ARKANSAS RIVER AT LAS ANIMAS, CO

LOCATION.--Lat $38^{\circ} 04^{\prime} 51^{\prime \prime}$, long $103^{\circ} 13^{\prime} 09^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec.3, T. 23 S., R. 52 W., Bent County, Hydrologic Unit 11020009, on right bank at upstream side of bridge on U.S. Highway $50,1.1 \mathrm{mi}$ north of courthouse in Las Animas, and 4.2 mi upstream from Purgatoire River.
DRAINAGE AREA.--14,417 mi^{2}, of which $441 \mathrm{mi}^{2}$ are probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May to November 1898 (gage heights only), August to November 1909 (gage heights and discharge measurements only), May 1939 to current year. Statistical summary computed for 1975 to current year.
REVISED RECORDS.--WSP 1341: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $3,883.97 \mathrm{ft}$ above sea level. May 13 to Nov. 12, 1898, and Aug. 1 to Nov. 10, 1909, nonrecording gages near present site at different datums. May 23, 1939, to Apr. 27, 1967, water-stage recorder at site 0.4 mi downstream at datum 9.00 ft lower.
REMARKS.--Records good except for estimated daily discharges and those above $1,500 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 412,000 acres, and return flow from irrigated areas. Flow partly regulated by Pueblo Reservoir (station 07099350) since Jan. 9, 1974.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	162	82	93	176	e280	415	53	53	495	326	189	411
2	92	82	92	173	e260	396	45	53	1080	197	104	312
3	93	76	90	134	e250	349	48	45	905	168	88	272
4	90	77	89	131	e270	310	84	44	552	144	99	226
5	95	75	89	141	e300	273	104	50	471	130	90	171
6	94	78	87	141	e350	237	93	55	323	112	77	125
7	94	80	87	147	e390	310	77	50	145	104	76	95
8	89	80	86	148	e430	445	71	46	113	155	78	89
9	87	82	e84	147	e500	484	73	44	114	231	78	79
10	87	84	e84	163	e480	489	78	44	100	260	82	74
11	84	87	80	159	469	411	73	47	278	566	77	73
12	79	90	76	128	484	210	55	51	584	1010	72	74
13	80	101	73	119	493	155	46	47	717	1930	72	79
14	78	111	70	114	515	111	52	47	616	2020	74	96
15	80	152	67	107	513	106	57	42	724	1240	74	98
16	84	156	67	105	528	132	63	45	886	860	75	89
17	81	126	67	100	644	116	59	60	844	447	79	90
18	83	107	67	63	833	120	56	72	598	217	83	85
19	84	102	67	61	696	115	57	37	469	174	79	86
20	80	99	93	95	585	108	50	41	288	155	163	92
21	86	98	111	173	470	93	47	144	206	142	114	116
22	92	99	104	239	435	77	45	115	167	124	84	95
23	91	98	98	293	346	71	46	115	146	107	76	91
24	101	97	100	287	303	64	46	129	154	102	221	85
25	87	96	130	314	283	63	44	121	711	189	125	86
26	81	96	166	305	268	67	44	996	823	138	222	94
27	81	94	150	321	305	68	43	1220	557	112	142	110
28	75	94	137	316	363	66	40	790	378	97	118	147
29	75	94	137	322	407	62	40	336	328	96	300	160
30	75	93	135	e315	---	61	45	253	351	108	293	158
31	78	---	146	e300	-	58	---	210	-	303	1020	---
TOTAL	2718	2886	3022	5737	12450	6042	1734	5402	14123	11964	4524	3858
MEAN	87.7	96.2	97.5	185	429	195	57.8	174	471	386	146	129
MAX	162	156	166	322	833	489	104	1220	1080	2020	1020	411
MIN	75	75	67	61	250	58	40	37	100	96	72	73
AC-FT	5390	5720	5990	11380	24690	11980	3440	10710	28010	23730	8970	7650

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 1996, BY WATER YEAR (WY)

[^72]
WATER-QUALITY RECORDS

PERIOD OF RECORD.--December 1985 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: December 1985 to current year.
WATER TEMPERATURE: December 1985 to current year.
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for daily specific conductance are fair and daily water temperature are good. Daily data that are not published are either missing or of unacceptable quality.
EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 7,950 microsiemens, Jan. 22, 1986; minimum, 310 microsiemens, July 21, 1990. WATER TEMPERATURE: Maximum, $34.5^{\circ} \mathrm{C}$, Aug. 18,1986 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during most winters.

EXTREMES FOR 1996 WATER YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 5,550 microsiemens, Apr. 22-23; minimum, 965 microsiemens, July 13. WATER TEMPERATURE: Maximum, $31.2^{\circ} \mathrm{C}$, July $4-5$; minimum, $0.0^{\circ} \mathrm{C}$, many days during winter.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBE		NOVEMBER			DECEMBER			JANUARY		
1	2990	1750	2190	2670	2560	2600	2770	2740	2760	2330	2180	2210
2	2770	2360	2630	2720	2580	2610	2800	2740	2770	2380	2240	2310
3	2780	2520	2680	2810	2580	2670	2810	2750	2780	2490	2380	2440
4	2670	2580	2620	2900	2710	2780	2800	2770	2790	2520	2460	2490
5	2670	2480	2550	3010	2750	2880	2810	2780	2790	2460	2330	2400
6	2550	2360	2460	2940	2720	2770	2830	2800	2820	2410	2260	2330
7	2660	2310	2480	2870	2690	2750	2850	2800	2830	2360	2270	2320
8	2740	2330	2540	2870	2760	2820	2870	2830	2840	---	---	---
9	2840	2690	2760	2910	2740	2820	2960	2830	2910	---	---	---
10	2850	2810	2830	2830	2730	2780	3000	2850	2920	2330	2250	2290
11	2810	2690	2750	2810	2690	2750	2880	2770	2830	2360	2280	2310
12	2920	2700	2810	2770	2670	2720	2860	2820	2850	2540	2350	2450
13	2910	2770	2840	2740	2400	2570	2860	2820	2840	2590	2510	2540
14	2820	2630	2720	2450	2300	2380	2870	2820	2850	2590	2530	2560
15	2860	2750	2800	2360	2300	2350	2870	2840	2850	2600	2560	2580
16	2890	2750	2820	2350	2230	2290	2880	2850	2860	2600	2540	2570
17	2820	2760	2790	2620	2340	2480	2890	2860	2870	2650	2570	2610
18	2810	2730	2760	2770	2610	2710	2880	2850	2860	3000	2550	2780
19	2800	2730	2750	2800	2750	2770	2870	2840	2860	2950	2700	2840
20	2880	2740	2780	2800	2770	2780	2870	2610	2710	2800	2110	2670
21	2820	2620	2740	2800	2770	2780	2660	2600	2630	2160	1990	2080
22	2690	2410	2610	2810	2710	2780	2620	2590	2600	2000	1840	1920
23	2700	2550	2630	2820	2760	2790	2640	2590	2620	1810	1730	1770
24	2570	2420	2480	2800	2750	2770	2650	2580	2620	1890	1770	1830
25	2770	2570	2660	2790	2750	2760	2630	2410	2520	1900	1880	1890
26	2790	2650	2730	2800	2760	2780	2410	2200	2300	1920	1800	1860
27	2780	2670	2720	2800	2760	2780	2470	2250	2360	---	---	---
28	2780	2730	2760	2790	2700	2770	2550	2450	2500	1930	1860	1900
29	2760	2690	2730	2770	2730	2750	2590	2490	2540	1960	1850	1900
30	2760	2670	2700	2780	2740	2760	2620	2510	2560	---	---	---
31	2710	2610	2650	---	---	---	2560	2330	2500	---	---	---
MONTH	2990	1750	2680	3010	2230	2700	3000	2200	2720	-	---	---

07124000 ARKANSAS RIVER AT LAS ANIMAS, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	1760	1690	1730	---	---	---	5120	4420	4750
2	---	---	---	1820	1700	1760	3670	3590	3630	4480	4120	4290
3	2130	1710	1950	1910	1790	1820	4330	3620	3840	4690	4220	4460
4	2150	2000	2110	1980	1900	1930	3880	2870	3230	4650	4450	4570
5	2000	1710	1860	2190	1920	2050	2870	2560	2750	4480	3980	4170
6	1580	1460	1510	2280	2130	2230	3020	2500	2760	4130	3780	3910
7	1470	1380	1440	2240	1870	2080	3080	2970	3000	4280	3830	4050
8	1400	1310	1370	1940	1610	1760	3150	3000	3060	4410	4190	4290
9	1370	1310	1340	1750	1580	1670	3160	2990	3090	4370	4280	4330
10	1610	1330	1500	1760	1630	1680	3230	2990	3050	4350	4140	4280
11	1610	1500	1560	1980	1680	1810	3640	3170	3390	4160	3730	4010
12	1630	1510	1580	2440	1950	2240	3870	3520	3650	4280	3480	3740
13	1680	1560	1630	2610	2470	2540	4570	3850	4200	4330	4060	4170
14	1690	1620	1660	2980	2560	2770	5190	4420	4870	4240	3900	4010
15	1690	1520	1650	3020	2820	2900	5400	5040	5220	4060	3860	3950
16	1690	1590	1640	3020	2590	2760	5490	4650	4880	4150	3850	3990
17	1660	1480	1590	3160	3000	3090	5240	4700	4980	3950	2160	3570
18	1510	1410	1440	3100	2810	2960	5240	5130	5190	3620	1850	2690
19	1600	1420	1500	2880	2640	2740	5290	4990	5120	3890	3620	3770
20	1780	1570	1700	2750	2460	2650	5450	4900	5110	4270	2080	3840
21	1860	1760	1810	2930	2490	2690	5410	5280	5350	2340	1560	1890
22	1990	1830	1880	3030	2840	2940	5550	5320	5430	2340	1850	2180
23	2180	1980	2050	3180	2900	3040	5550	5300	5420	2350	1760	2060
24	2180	2000	2100	3350	3100	3230	5380	5180	5310	2240	1630	1790
25	2050	1930	1990	3500	3140	3320	5520	5040	5300	2690	2020	2380
26	1970	---	---	3370	3150	3240	5420	5000	5120	2060	1330	1550
27	2270	1880	2080	3370	3240	3300	5480	5060	5270	1570	1310	1430
28	2270	1750	1860	3590	3260	3380	5400	5220	5330	1760	1320	1530
29	1820	1710	1750	3650	3530	3590	5390	5180	5290	2440	1690	2100
30	---	---	---	3580	3500	3540	5430	4920	5180	2780	2440	2630
31	---	---	---		---				---	3140	2780	2940
MONTH	---	---	---	---	---	---	---	---	---	5120	1310	3330
	JUNE			JULY			AUGUST			SEPTEMBER		
1	3030	1610	1970	2280	1540	1850	2860	1750	2190	2190	1520	1930
2	1620	1440	1500	2340	1900	2130	3900	2860	3400	2300	2150	2230
3	1790	1440	1630	2660	1900	2300	4160	3860	4000	2450	2150	2320
4	1960	1780	1880	3120	2650	2920	4170	2920	3830	2730	2190	2430
5	2070	1840	1970	3310	3070	3180	4210	2920	3780	2970	2680	2740
6	2790	1850	2330	3520	3290	3400	4720	4040	4370	3360	2790	3020
7	3610	2780	3220	4580	3480	3750	4730	3960	4300	3750	3270	3540
8	4070	3600	3730	4300	2380	3320	4070	3910	3990	4080	3620	3820
9	3920	3380	3680	2820	2370	2580	4220	3870	4060	4390	3940	4130
10	4170	3170	3980	2610	2290	2400	3990	3600	3780	4360	4220	4280
11	3170	1440	2060	2700	1180	2070	3740	3550	3660	4220	4000	4110
12	1440	1240	1310	1430	1180	1310	4360	3600	3910	4000	3810	3930
13	1460	1200	1320	1430	965	1140	4390	4020	4250	3940	3590	3840
14	1660	1230	1470	1120	1050	1080	4180	3550	3820	3630	3440	3530
15	1560	1110	1390	1160	1050	1110	3980	3270	3700	3830	3580	3710
16	1410	1190	1330	1230	1120	1190	4020	3350	3730	4010	3740	3900
17	1410	1300	1370	1480	1220	1360	4050	3690	3900	3990	3710	3850
18	1760	1310	1540	1820	1480	1610	3850	3370	3690	4040	3730	3900
19	1800	1580	1640	3010	1800	2480	3770	3400	3670	4000	3800	3900
20	2010	1770	1910	3280	3010	3160	3700	1450	2540	4120	2940	3530
21	2750	1910	2220	---	---	---	3270	2140	2990	3330	2740	2930
22	2870	2240	2550	---	---	---	3720	3060	3290	3810	3420	3620
23	3070	2420	2730	---	---	---	4490	3700	4180	---	---	---
24	3340	1770	2910	5080	---	---	4290	1310	2600	---	---	---
25	1770	1000	1260	5520	2210	3130	---	2250	---	---	---	---
26	1110	1000	1060	3960	2870	3390	---	---	---	---	---	---
27	1420	1110	1270	4240	3570	3880	---	---	---	---	---	---
28	1620	1410	1490	4640	3730	4190	3730	2870	3240	---	---	---
29	1680	1450	1620	4670	3190	4110	3950	1720	2370	---	---	---
30	1680	1450	1560	4580	3080	3930	2360	1780	2010	2850	---	---
31	-	-	-	4650	1400	2470	2100	1200	1650	---	-	---
MONTH	4170	1000	2000	---	---	---	---	---	---	--	---	---

07124000 ARKANSAS RIVER AT LAS ANIMAS, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	18.4	12.8	15.3	9.5	5.9	8.3	10.3	5.1	7.7	3.4	. 8	2.0
2	19.2	11.4	15.0	5.9	4.3	5.1	10.3	5.3	7.7	1.5	. 0	. 4
3	19.8	11.3	15.0	9.8	3.6	6.2	9.5	4.9	7.1	. 4	. 0	. 1
4	17.3	11.4	13.8	8.1	3.7	5.6	8.8	5.4	7.1	1.9	. 0	. 8
5	14.7	8.8	11.1	10.7	3.1	6.8	7.7	4.8	6.4	. 4	. 0	. 1
6	16.2	7.4	11.2	10.9	5.7	8.1	7.5	3.1	5.1	. 4	. 0	. 0
7	16.9	8.9	12.4	10.3	4.8	7.2	4.5	2.4	3.5	. 8	. 0	. 2
8	18.1	10.1	13.6	11.6	4.0	7.5	4.7	. 5	2.8	3.0	. 0	1.2
9	17.9	10.1	13.7	12.6	5.6	8.8	2.8	. 0	. 9	5.0	. 7	2.8
10	18.8	10.5	14.2	8.7	4.4	6.9	4.3	. 0	1.9	5.2	2.2	3.6
11	19.7	11.2	15.0	9.6	2.1	5.7	5.9	. 9	3.5	5.1	1.4	3.3
12	19.9	12.1	15.5	11.6	5.3	8.2	6.5	2.6	4.5	6.1	1.3	3.6
13	16.7	11.2	13.9	9.2	6.1	7.8	8.2	4.3	6.1	6.9	1.8	4.3
14	16.9	8.1	12.1	11.7	5.4	8.4	7.3	3.6	5.6	7.1	2.5	4.8
15	18.0	9.0	13.0	11.3	6.2	8.7	7.8	3.1	5.5	5.7	2.1	3.9
16	18.3	10.7	14.0	10.6	6.4	8.5	7.7	3.6	5.7	6.4	2.2	4.3
17	18.2	11.4	14.3	11.2	6.3	8.5	5.6	3.3	4.4	6.3	. 0	4.0
18	18.4	10.3	14.0	10.7	5.3	7.8	5.0	3.2	3.9	1.8	. 0	. 6
19	15.4	9.8	12.5	10.3	4.9	7.5	6.1	2.7	4.0	3.3	1.0	2.1
20	14.7	6.7	10.3	9.6	4.7	7.0	3.6	. 5	2.0	3.8	. 0	1.2
21	14.5	6.9	10.4	10.0	4.1	6.9	3.2	. 0	1.5	2.5	. 0	. 8
22	13.0	7.5	10.1	10.4	5.7	7.7	4.2	1.1	2.5	2.5	. 0	. 8
23	11.2	5.0	7.7	10.1	5.6	7.5	2.9	. 0	1.2	. 1	. 0	. 0
24	8.9	4.8	6.6	9.7	4.2	6.9	1.8	. 0	. 5	. 6	. 0	. 1
25	12.3	4.3	7.9	11.6	5.5	8.2	3.0	. 0	. 9	2.3	. 0	. 7
26	13.4	5.9	9.2	11.0	6.5	8.6	3.0	. 0	1.1	. 2	. 0	. 0
27	14.2	7.8	10.6	8.9	4.5	7.3	2.6	. 0	1.0	. 1	. 0	. 0
28	12.3	6.3	9.3	6.8	2.2	4.5	1.8	. 0	. 6	2.5	. 0	. 9
29	11.1	6.4	8.6	7.5	2.5	4.9	3.6	. 4	1.7	3.2	. 0	1.4
30	11.6	6.8	8.5	10.1	4.0	6.9	1.7	. 0	. 6	. 0	. 0	. 0
31	11.6	7.2	9.0	---	---	-	3.4	. 0	1.5	. 0	. 0	. 0
MONTH	19.9	4.3	11.9	12.6	2.1	7.3	10.3	. 0	3.5	7.1	. 0	1.5
	FEBRUARY			MARCH			APRIL			MAY		
1	. 0	. 0	. 0	6.1	1.5	3.8	---	---	---	22.5	9.6	15.2
2	. 1	. 0	. 0	7.8	2.5	5.0	19.5	---	---	23.2	10.3	15.9
3	. 0	. 0	. 0	8.8	3.4	6.0	14.5	9.0	11.3	25.3	10.2	16.3
4	. 0	. 0	. 0	9.8	5.4	7.4	11.4	7.4	9.1	24.8	11.4	17.3
5	. 1	. 0	. 0	10.8	5.1	7.8	11.3	5.3	8.3	19.1	13.1	15.1
6	. 1	. 0	. 0	6.8	1.3	3.8	17.7	5.2	10.9	24.2	11.1	16.4
7	. 1	. 0	. 0	3.6	. 0	1.5	16.4	8.2	12.0	22.5	13.3	17.2
8	. 1	. 0	. 0	6.0	1.0	3.3	20.6	9.5	14.5	27.1	14.0	19.0
9	. 1	. 0	. 1	8.4	2.8	5.4	22.7	10.0	15.7	27.2	15.2	19.4
10	5.9	. 0	2.9	11.2	5.5	8.2	21.1	11.5	15.6	24.5	12.3	17.1
11	5.3	2.1	3.7	13.9	8.7	11.1	21.3	10.6	14.7	24.3	12.2	17.1
12	5.0	1.1	3.1	14.8	9.0	11.6	21.6	8.8	14.2	26.5	13.0	18.4
13	6.2	1.9	4.0	14.1	7.8	10.8	17.8	6.6	12.0	24.0	13.5	17.4
14	7.7	3.3	5.4	10.2	4.2	6.7	13.6	5.6	8.5	27.3	13.5	19.3
15	7.4	4.6	5.9	12.8	3.7	7.8	19.8	5.4	11.9	27.3	13.5	20.0
16	6.9	2.8	4.9	13.8	6.1	9.5	20.2	8.4	13.3	28.6	14.0	20.8
17	8.1	3.8	5.9	11.7	6.4	8.5	20.1	9.3	13.8	27.7	14.9	21.1
18	8.3	5.4	6.8	9.4	4.6	6.6	21.2	8.6	13.9	28.1	17.3	21.5
19	7.5	5.2	6.4	11.3	2.6	6.3	18.5	7.6	12.4	25.0	13.7	18.8
20	9.2	5.3	7.1	13.0	2.8	7.3	15.1	6.7	10.5	26.1	12.6	18.4
21	10.9	6.7	8.8	15.7	4.7	9.4	16.9	6.9	11.2	24.6	16.4	19.6
22	11.9	7.9	9.7	15.5	5.6	10.0	20.3	6.8	12.6	26.3	15.2	20.2
23	10.9	7.0	8.8	16.9	7.0	11.3	22.7	7.7	14.5	27.1	17.9	21.6
24	9.9	5.6	7.7	8.8	2.0	5.5	21.7	10.1	15.4	22.0	16.8	19.2
25	11.6	6.4	8.8	9.6	. 0	4.0	21.0	10.4	14.9	16.8	13.4	14.3
26	7.8	3.9	5.7	14.0	1.3	7.0	22.9	8.3	15.1	15.0	13.3	13.9
27	4.9	1.3	3.0	16.4	3.8	9.3	21.1	10.5	14.8	17.6	12.7	15.0
28	3.6	. 6	2.0	17.1	5.6	10.5	14.4	8.0	10.4	18.0	14.6	16.1
29	4.9	. 2	2.5	18.4	7.0	12.0	20.3	5.0	12.1	21.7	14.5	17.6
30	---	---	---	16.6	8.3	11.6	21.4	7.3	13.6	24.2	15.3	19.4
31	---	---	---	---	---	---	---	---	---	24.7	16.7	20.2
MONTH	11.9	. 0	3.9	--	---	---	-	---	---	28.6	9.6	18.0

07124000 ARKANSAS RIVER AT LAS ANIMAS, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07124200 PURGATOIRE RIVER AT MADRID, CO

LOCATION.--Lat $37^{\circ} 07^{\prime} 46^{\prime \prime}$, long $104^{\circ} 38^{\prime} 20$ ", in $\mathrm{SW}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{sec} .35$, T. 33 S., R. 65 W., Las Animas County, Hydrologic Unit 11020010, on left bank 70 ft downstream from county bridge, 0.3 mi northeast of Madrid, and 1.0 mi downstream from Burro Canyon.
DRAINAGE AREA.--505 mi^{2}.
PERIOD OF RECORD.--March 1972 to current year. Water-quality data available October 1978 to September 1981.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $6,261.61 \mathrm{ft}$ above sea level, (U.S. Army, Corps of Engineers bench mark).

REMARKS.--Records good except those above $800 \mathrm{ft}^{3} / \mathrm{s}$, and estimated daily discharges, which are poor. Diversions for irrigation of about 6,000 acres upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	67	35	27	e19	e17	25	22	39	56	50	e32	42
2	65	34	24	e18	e17	20	23	39	55	47	e22	38
3	67	32	24	e19	e18	18	25	38	55	44	52	35
4	63	30	23	e19	e19	19	29	40	59	41	24	30
5	61	32	22	e18	e20	17	28	43	63	41	20	26
6	62	32	22	e20	e22	16	23	52	58	39	15	27
7	61	31	21	e21	e24	14	27	64	60	36	42	29
8	60	31	22	e22	e25	20	26	70	57	45	24	27
9	60	31	e23	e22	e27	19	28	71	56	59	31	24
10	57	34	e25	e23	e26	18	29	73	50	56	28	24
11	54	29	e26	e23	e25	18	32	82	52	57	23	25
12	51	39	25	e23	e25	18	32	84	51	40	18	24
13	50	37	21	e24	e24	18	32	93	62	39	17	65
14	49	33	20	e23	e24	19	30	92	70	36	15	41
15	49	31	19	e23	e22	22	29	82	86	36	61	39
16	49	30	17	e23	e21	20	28	80	56	46	27	35
17	47	28	e15	e21	20	19	27	83	41	49	32	29
18	47	28	e16	e20	19	17	27	82	34	70	e19	30
19	46	28	e16	e19	18	17	29	78	29	50	16	30
20	43	27	e15	e19	18	20	29	77	27	39	19	27
21	42	27	e16	e21	19	22	28	76	24	36	19	27
22	40	27	e16	e22	20	20	27	75	33	29	151	25
23	38	26	e16	e20	19	21	27	75	36	32	85	28
24	37	26	e17	e21	16	21	26	74	30	81	51	30
25	39	25	e18	e23	18	19	29	99	26	298	37	25
26	38	24	e19	e21	17	19	34	98	27	159	34	25
27	37	23	e18	e20	14	26	37	67	42	94	38	33
28	37	20	e19	e20	14	23	41	56	47	21	58	29
29	37	26	e17	e20	14	21	41	50	44	86	68	28
30	36	26	e19	e17	---	22	43	58	45	e50	97	26
31	35	---	e20	e18	---	22	---	60	---	e44	50	---
TOTAL	1524	882	618	642	582	610	888	2150	1431	1850	1225	923
MEAN	49.2	29.4	19.9	20.7	20.1	19.7	29.6	69.4	47.7	59.7	39.5	30.8
MAX	67	39	27	24	27	26	43	99	86	298	151	65
MIN	35	20	15	17	14	14	22	38	24	21	15	24
AC-FT	3020	1750	1230	1270	1150	1210	1760	4260	2840	3670	2430	1830

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 1996, BY WATER YEAR (WY)

[^73]
07124400 TRINIDAD LAKE NEAR TRINIDAD, CO

LOCATION.--Lat $37^{\circ} 08^{\prime} 27^{\prime \prime}$, long $104^{\circ} 33^{\prime} 03^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec. 27 , T. 33 S., R. 64 W., Las Animas County, Hydrologic Unit 11020010, in valve house near center of dam on Purgatoire River and 3.2 mi southwest of courthouse in Trinidad.
DRAINAGE AREA.--672 mi^{2}.
PERIOD OF RECORD.--August 1977 to current year.
REVISED RECORDS.--WDR CO-78-1: 1977(M). WDR CO-83-1: 1981-82 (contents). WDR CO-89-1: 1988 (contents).
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $6,073.64 \mathrm{ft}$ above sea level, (levels by U.S. Army, Corps of Engineers).

REMARKS.--Records good. Reservoir is formed by a rock and earthfill dam completed in 1977. Storage began Aug. 19, 1977. Reservoir area-capacity tables were revised beginning Nov. 1, 1994 after a resurvey by the Corp of Engineers. Total capacity, 184,000 acre-ft, at elevation $6,285.00 \mathrm{ft}$. Elevation of high crest of spillway, $6,258 \mathrm{ft}$, with capacity of 120,400 acre-ft. Elevation of notch crest in spillway is $6,243.0 \mathrm{ft}$, capacity, 92,580 acre- ft . Permanent pool is 4,112 acre-ft at elevation $6,143.1 \mathrm{ft}$. Elevation of outlet invert is $6,095.0 \mathrm{ft}$. Reservoir is used for flood control, storage for irrigation, and to help control sedimentation. Figures given are total contents.

COOPERATION.--Capacity tables provided by U.S. Army, Corps of Engineers.
EXTREMES (AT 2400) FOR PERIOD OF RECORD.--Maximum contents, 61,800 acre-ft, Apr. 26, 1983, elevation, 6222.66 ft ; no contents prior to Aug. 19, 1977.

EXTREMES (AT 2400) FOR CURRENT YEAR.--Maximum contents, 30,900 acre-ft, Apr. 15-16, maximum elevation, 6,193.02 ft; minimum contents, 8,150 acre- ft , Sept. 26, minimum elevation, $6,155.48 \mathrm{ft}$.

Capacity table (elevation, in feet, and contents, in acre-feet, effective Nov. 1, 1994)				
	$6,160.0$	10,080		
	$6,165.0$	12,360	$6,185.0$	24,530
$6,170.0$	14,940	$6,195.0$	38,370	
	$6,175.0$	17,800	$6,200.0$	37,010
$6,180.0$	21,000	$6,205.0$	41,820	

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY OBSERVATION AT 24:00 VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22600	23900	25800	26900	28100	29300	30700	27100	13100	10600	9130	8370
2	22500	23900	25900	26900	28200	29400	30700	26600	12700	10500	8890	8240
3	22600	24000	26000	27000	28200	29400	30700	26200	12300	10400	8800	8300
4	22500	24100	26000	27000	28300	29400	30700	e25700	11900	10400	8810	8320
5	22500	24200	26000	27000	28300	29500	30700	e25300	11600	10300	8800	8300
6	22500	24200	26100	27100	28400	29500	30800	e24800	11300	10100	8750	8280
7	22500	24300	26100	27100	28400	29500	30800	24400	10900	9880	8790	8270
8	22400	24400	26200	27200	28500	29600	30800	24000	10600	9690	8750	8240
9	22500	24500	26200	27200	28600	29600	30800	23600	10600	9630	8720	8220
10	22500	24500	26200	27300	28600	29600	30800	23200	10600	9430	8650	8220
11	22400	24600	26300	27300	28700	29700	30800	22800	10600	9250	8600	8250
12	22400	24700	26300	27400	28700	29700	30800	22400	10500	e9110	8550	8260
13	22400	24800	26200	27400	28700	29700	30800	22000	10500	e8980	8510	8310
14	22500	24800	26200	27500	28800	29800	30800	21600	10600	8840	8460	8240
15	22600	24900	26300	27500	28800	29900	30900	21300	10800	8740	8520	8180
16	22700	25000	26300	27600	28900	30000	30900	20900	10900	8750	8530	8190
17	22800	25000	26400	27600	28900	30000	30800	20400	10900	8780	8510	8200
18	22900	25100	26400	27600	29000	30000	30800	19900	11000	8820	8450	8200
19	22900	25200	26400	27700	29000	30100	30800	19400	11000	8860	8320	8210
20	23000	25200	26400	27700	29000	30100	30800	18900	11100	8900	8470	8190
21	23100	25300	26500	27800	29100	30200	30800	18400	11100	8870	8410	8180
22	23200	25300	26500	27800	29100	30200	30600	17800	11100	8770	8410	8170
23	23300	25400	26500	27800	29200	30300	30300	17300	11100	8760	8270	8160
24	23300	25400	26600	27900	29200	30300	29900	16800	11000	8780	8290	8170
25	23400	25500	26600	27900	29200	30300	29600	16400	10900	9360	8410	8170
26	23500	25500	26600	27900	29200	30400	29200	16000	10700	9620	8490	8150
27	23600	25600	26700	28000	29300	30400	28800	15500	10600	9870	8620	8170
28	23600	25600	26700	28000	29300	30500	28400	15000	10600	9910	8760	8180
29	23700	25700	26700	28100	29300	30500	28000	14500	10600	9840	8940	8190
30	23800	25800	26800	28100	---	30600	27500	14000	10600	9530	8940	8160
31	23900	---	26800	28100	--	30600	---	13500	---	9270	8680	---
MAX	23900	25800	26800	28100	29300	30600	30900	27100	13100	10600	9130	8370
MIN	22400	23900	25800	26900	28100	29300	27500	13500	10500	8740	8270	8150

CAL YR 1995 MAX 38700 MIN 13400 WTR YR 1996 MAX 30900 MIN 8150
e-Estimated.

07124410 PURGATOIRE RIVER BELOW TRINIDAD LAKE, CO

LOCATION.--Lat $37^{\circ} 08^{\prime} 377^{\prime \prime}$, long $104^{\circ} 32^{\prime} 49^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec.27, T. 33 S., R. 64 W., Las Animas County, Hydrologic Unit 11020010, on left bank of flip bucket outlet, 500 ft downstream from base of dam, 0.8 mi upstream from Santa Fe Railroad bridge, and 3.0 mi southwest of courthouse in Trinidad.

DRAINAGE AREA.--672 mi^{2}.
PERIOD OF RECORD.--December 1976 to current year. Water-quality data available, March 1977 to September 1984.
GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Datum of gage is $6,073.64 \mathrm{ft}$ above sea level, (levels by U.S. Army, Corps of Engineers). Auxillary gage is water-stage recorder in shelter about $1,000 \mathrm{ft}$ downstream.

REMARKS.--No estimated daily discharges. Records good except those below $0.5 \mathrm{ft}^{3} / \mathrm{s}$, which are fair. Natural flow of stream affected by diversions upstream from station for irrigation of about 6,000 acres. Flow since Aug. 19, 1977, completely regulated by Trinidad Lake (station 07124400) immediately upstream. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	70	. 33	. 22	. 14	. 28	. 07	. 04	262	248	55	88	168
2	71	. 33	. 22	. 14	. 28	. 06	. 04	261	246	81	129	88
3	71	. 32	. 22	. 14	. 22	. 06	16	261	244	50	81	18
4	71	. 32	. 22	. 14	. 22	. 06	26	260	228	29	21	30
5	70	. 29	. 22	. 14	. 22	. 05	26	259	218	87	26	42
6	70	. 26	. 22	. 14	. 22	. 06	26	257	206	117	34	46
7	70	. 23	. 22	. 14	. 22	. 06	26	267	195	116	30	46
8	60	. 40	. 20	. 15	. 22	. 06	26	276	187	111	56	46
9	55	. 36	. 19	. 18	. 22	. 06	26	275	48	87	67	37
10	55	. 24	. 19	. 18	. 22	. 05	26	274	48	137	64	24
11	69	. 23	18	. 18	. 22	. 04	26	274	63	116	50	20
12	77	. 27	35	. 18	. 22	. 04	26	273	74	88	38	26
13	28	. 19	35	. 18	. 21	. 04	26	272	57	77	35	31
14	. 44	. 21	13	. 18	. 21	. 05	26	272	47	72	35	69
15	. 44	. 22	. 18	. 18	. 22	. 04	26	271	22	64	25	57
16	. 42	. 22	. 18	. 18	. 18	. 04	26	270	8.3	33	39	31
17	. 39	. 22	. 20	. 18	. 18	. 04	26	294	7.5	32	50	24
18	. 38	. 24	. 18	. 18	. 18	. 04	26	305	3.0	30	50	23
19	. 38	. 27	. 18	. 18	. 18	. 04	26	304	. 16	28	71	28
20	. 34	. 27	. 18	. 22	. 14	. 04	26	315	. 13	42	34	33
21	. 30	. 27	. 18	. 23	. 13	. 04	25	319	12	46	59	29
22	. 26	. 29	. 18	. 22	. 11	. 04	124	317	18	56	109	29
23	. 27	. 33	. 18	. 22	. 11	. 04	194	315	18	62	144	31
24	. 27	. 32	. 17	. 33	. 11	. 04	193	321	64	62	52	29
25	. 31	. 29	. 17	. 33	. 11	. 04	193	305	92	63	1.1	29
26	. 33	. 26	. 15	. 31	. 09	. 04	209	293	92	24	1.1	28
27	. 33	. 28	. 14	. 28	. 08	. 04	233	290	90	. 84	1.1	28
28	. 33	. 27	. 16	. 28	. 08	. 04	231	289	52	. 90	1.1	28
29	. 33	. 22	. 18	. 28	. 08	. 04	250	287	31	89	1.1	28
30	. 33	. 22	. 15	. 28	---	. 05	262	286	31	176	98	37
31	. 33	---	. 14	. 28	---	. 04	---	262	--	147	163	---
TOTAL	843.18	8.17	106.02	6.37	5.16	1.45	2372.08	8786	2650.09	2178.74	1653.5	1183
MEAN	27.2	. 27	3.42	. 21	. 18	. 047	79.1	283	88.3	70.3	53.3	39.4
MAX	77	. 40	35	. 33	. 28	. 07	262	321	248	176	163	168
MIN	. 26	. 19	. 14	. 14	. 08	. 04	. 04	257	. 13	. 84	1.1	18
AC-FT	1670	16	210	13	10	2.9	4710	17430	5260	4320	3280	2350

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1977 - 1996 , BY WATER YEAR (WY)

-No flow many days during winter
b-Also occurred Mar 12-13, 15-29, and Mar 31 to Apr 2. c-No flow at times most years.

07126140 VAN BREMER ARROYO NEAR TYRONE, CO

LOCATION.--Lat $37^{\circ} 23^{\prime} 58^{\prime \prime}$, long $104^{\circ} 06^{\prime} 55^{\prime \prime}$, in $\mathrm{SW}^{1 / 4} \mathrm{SW}^{1 / 4}$, sec. 27 , T. 30 S., R. 60 W., Las Animas County, Hydrologic Unit 11020010, on left bank, on Pinon Canyon Army Maneuver Site, 200 ft downstream from military road at gas line crossing near Brown Sheep Camp, 6 mi southeast of Tyrone, and 11 mi upstream from mouth.

DRAINAGE AREA.--132 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1985 to current year.
GAGE.--Water-stage recorder with satellite telemetry, crest-stage gage, and artificial control. Elevation of gage is $5,310 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges and those greater than $50 \mathrm{ft}^{3 / \mathrm{s}}$, which are poor. Natural flow affected by return flow from irrigation and storage in a small channel reservoir upstream.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11	. 02	e. 00	e. 00	e. 00	. 00	. 00	4.5	e. 00	1.3	. 00	. 00
2	14	. 01	e. 00	e. 00	e. 00	. 00	. 00	5.3	e. 00	. 01	. 00	. 00
3	12	. 01	e. 00	e. 00	e. 00	. 00	. 00	5.7	e. 00	. 00	. 00	. 00
4	9.5	. 02	e. 00	e. 00	e. 00	. 00	. 00	4.8	e. 00	. 00	. 00	. 00
5	9.8	. 01	e. 00	e. 00	e. 00	. 00	. 00	6.8	e. 51	. 00	. 00	. 00
6	9.8	. 02	e. 00	e. 00	e. 00	. 00	. 00	6.8	e. 60	. 00	. 00	. 00
7	9.3	. 01	e. 00	e. 00	e. 00	. 00	. 00	6.3	e. 69	. 00	. 00	. 00
8	10	. 01	e. 00	e. 00	e. 00	. 00	. 00	4.9	e. 62	. 00	. 00	. 00
9	11	e. 00	e. 00	e. 00	e. 00	. 00	. 00	2.6	e. 62	. 00	. 00	. 00
10	9.1	e. 00	e. 00	e. 00	e. 00	. 00	. 00	5.1	e. 66	. 03	. 00	. 00
11	9.1	e. 00	e. 00	e. 00	e. 00	. 00	. 00	3.6	e. 70	. 00	. 00	. 00
12	7.7	e. 00	e. 00	e. 00	e. 00	. 00	. 00	2.4	e. 95	. 00	. 00	. 00
13	4.2	e. 00	e. 00	e. 00	e. 00	. 00	. 00	3.1	. 41	. 00	. 00	. 00
14	3.0	. 00	e. 00	e. 00	e. 00	. 00	. 00	3.5	. 19	. 00	. 00	. 00
15	3.6	. 00	e. 00	e. 00	e. 00	. 00	. 00	1.2	. 95	. 00	. 00	. 00
16	3.7	. 00	e. 00	e. 00	e. 00	. 00	. 00	. 37	. 15	. 00	. 00	. 00
17	3.2	. 00	e. 00	e. 00	e. 00	. 00	. 00	. 09	. 01	. 00	. 00	. 00
18	2.0	. 00	e. 00	e. 00	e. 00	. 00	. 00	. 15	. 00	. 04	. 00	. 00
19	1.4	. 00	e. 00	e. 00	e. 00	. 00	. 00	. 05	. 00	. 00	. 00	. 00
20	. 71	. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
21	. 47	. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00
22	. 29	. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
23	. 11	. 00	e. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
24	. 06	. 00	e. 00	e. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
25	. 04	. 00	e. 00	e. 00	. 00	. 00	. 00	. 19	. 00	. 00	. 00	. 00
26	. 04	. 00	e. 00	e. 00	. 00	. 00	. 00	1.1	. 00	. 00	. 00	. 00
27	. 03	. 00	e. 00	e. 00	. 00	. 00	2.5	. 33	. 00	. 00	. 00	. 00
28	. 02	. 00	e. 00	e. 00	. 00	. 00	2.6	. 02	. 00	. 00	. 00	. 00
29	. 02	. 00	e. 00	e. 00	. 00	. 00	3.7	. 00	. 01	. 00	. 00	. 00
30	. 02	. 00	e. 00	e. 00	---	. 00	3.7	e. 00	1.7	. 00	. 00	. 00
31	. 02	-	e. 00	e. 00	---	. 00	---	e. 00	---	. 00	. 00	---
TOTAL	145.23	0.11	0.00	0.00	0.00	0.00	12.50	68.90	8.78	1.38	0.00	0.00
MEAN	4.68	. 004	. 000	. 000	. 000	. 000	. 42	2.22	. 29	. 045	. 000	. 000
MAX	14	. 02	. 00	. 00	. 00	. 00	3.7	6.8	1.7	1.3	. 00	. 00
MIN	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
AC-FT	288	. 2	. 00	. 00	. 00	. 00	25	137	17	2.7	. 00	. 00

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 1996, BY WATER YEAR (WY)

e-Estimated.

a-No flow many days most years.
b-From rating curve extended above $14 \mathrm{ft}^{3} / \mathrm{s}$, on basis of flow through culvert computation. c-From rating curve extended above $45 \mathrm{ft}^{3} / \mathrm{s}$, on basis of flow through culvert computation. d-Maximum gage height, 11.58 ft , Sep 9, 1995.

07126140 VAN BREMER ARROYO NEAR TYRONE, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--May 1985 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: May 1985 to current year.
WATER TEMPERATURE: May 1985 to current year.
INSTRUMENTATION.--Water-quality monitor and satellite telemetry since May 1985.
REMARKS.--Records for daily specific conductance are good. Records for daily water temperature are good, except Oct. 20 to Nov. 8 , which are fair. Only maximum and minimum specific conductance and water temperature data are published for days of partial flow, including Apr. 27, May 25, 28-29, June 12, 17, 21, 29, July 2, 10, 18. Daily data that are not published are either missing, during periods of no flow, or are of unacceptable quality.

EXTREMES FOR PERIOD OF RECORD.--

SPECIFIC CONDUCTANCE: Maximum, 25,700 microsiemens, May 20, 1988; minimum, 164 microsiemens, Sept. 9, 1995. WATER TEMPERATURE: Maximum, $36.5^{\circ} \mathrm{C}$, July 4,1986 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during the winter months.

EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum, 16,900 microsiemens, April 27; minimum, 369 microsiemens, July 18.
WATER TEMPERATURE: Maximum, $30.5^{\circ} \mathrm{C}$, June 16 ; minimum $0.6^{\circ} \mathrm{C}$, Nov. 2-5, 8 .

07126140 VAN BREMER ARROYO NEAR TYRONE, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	--	---	---	---	---	---	---	--	---	2340	1670	2000
2	--	--	---	-	--	---	--	-	---	1960	1510	1710
3	---	---	---	---	---	---	---	---	--	1810	1390	1570
4	---	-	---	---	---	---	---	---	---	1650	1380	1520
5	---	---	---	---	---	---	---	---	---	2240	1450	1730
6	---	---	---	-	---	-	--	-	---	2240	2000	2080
7	---	---	---	---	---	---	---	---	--	2240	2040	2160
8	---	---	---	---	---	---	---	---	--	2440	1960	2080
9	---	---	---	---	---	---	---	---	--	3660	2440	3190
10	--	---	---	---	--	---	--	--	---	3600	2910	3260
11	---	--	---	---	--	--	--	--	---	4100	3580	3820
12	---	---	---	---	---	---	---	---	--	4100	3930	4050
13	---	-	---	---	---	--	---	--	---	3930	3580	3740
14	---	---	---	---	---	---	---	---	---	3710	3210	3360
15	---	---	---	---	---	---	---	---	--	3640	3250	3400
16	---	---	---	---	---	---	---	---	--	4380	3640	4020
17	-	-	---	---	-	-	---	---	---	5530	4380	4920
18	---	---	---	---	---	---	---	---	---	5760	5220	5550
19	---	--	---	---	--	--	---	---	---	6190	5720	5910
20	---	-	---	---	---	---	---	---	---	---	--	---
21	--	---	---	---	---	---	---	---	---	---	---	---
22	---	---	---	---	---	---	---	---	---	---	---	---
23	---	---	---	---	---	---	---	---	---	---	---	-
24	---	---	---	---	---	---	---	--	--	--	--	--
25	---	---	---	---	---	---	---	---	---	7830	2640	--
26	---	---	---	---	---	---	---	---	---	12800	5060	6410
27	---	--	--	---	--	---	16900	4830	---	5250	4980	5140
28	---	---	---	---	---	--	5530	2890	4390	5370	3070	---
29	---	---	---	---	---	---	2940	2310	2680	3980	3580	-
30	---	-	---	---	---	---	3010	2120	2490	---	--	-
31	---	---	---	---	---	---	---	---	,	---	---	--
MONTH	--	---	---	---	---	---	---	---	---	---	---	---
	JUNE			JULY			AUGUST			SEPTEMBER		
1	---	---	---	6470	3470	4080	---	---	---	---	---	---
2	---	---	---	4400	4280	--	---	---	-	---	---	--
3	---	---	---	---	---	---	---	---	---	---	---	-
4	---	---	---	---	---	---	---	---	---	---	---	---
5	-	---	---	---	---	---	---	---	---	---	---	--
6	---	---	---	---	---	---	---	---	---	---	---	-
7	---	---	---	---	---	---	---	---	---	---	---	--
8	---	---	---	---	---	---	---	---	---	---	---	---
9	---	---	---	---	---	---	---	---	---	---	---	-
10	--	---	-	3860	1250	-	---	---	---	---	--	--
11	---	---	---	---	---	---	---	---	---	---	---	-
12	---	---	---	---	---	---	---	---	---	---	---	---
13	3760	3050	3400	---	---	---	---	---	---	---	---	---
14	4380	3650	3990	---	--	---	---	---	---	---	-	---
15	4600	3150	3700	---	---	---	---	---	---	---	---	---
16	4240	3280	3830	---	-	---	---	---	---	---	--	--
17	4280	4130	---	---	---	---	---	---	---	---	---	---
18	---	---	---	1680	369	--	---	---	---	---	---	--
19	---	---	---	---	---	---	---	---	---	---	---	-
20	-	---	--	---	---	---	---	---	---	---	--	---
21	3080	2500	---	---	---	---	---	---	---	---	---	--
22	---	---	---	--	---	---	---	---	---	---	--	--
23	---	---	---	---	---	---	---	---	---	---	---	---
24	---	--	---	---	-	--	---	---	-	---	---	--
25	---	---	---	---	---	---	---	---	---	---	---	---
26	---	---	---	---	---	-	---	-	---	---	--	---
27	---	---	---	---	---	---	---	---	---	---	---	-
28	---	---	---	---	---	--	--	--	-	---	---	---
29	9050	9050	---	---	---	--	---	---	---	---	-	-
30	12600	4520	6580	---	---	---	---	---	---	---	---	-
31	---	-	--	---	---	---	---	---	---	---	---	---
MONTH	---	---	---	---	---	---	---	--	---	---	---	--

07126140 VAN BREMER ARROYO NEAR TYRONE, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	17.8	9.8	13.6	6.9	3.5	5.3	-	-	---	---	-	
2	17.9	9.8	13.4	3.5	. 6	1.5	---	---	---	---	---	---
3	18.5	8.9	13.3	4.7	. 6	1.7	---	---	---	---	---	---
4	16.5	9.9	12.7	4.8	. 6	2.2	---	---	---	---	---	---
5	14.1	6.2	9.8	5.4	. 6	2.8	---	---	---	---	---	---
6	14.1	4.9	9.2	6.9	1.8	4.5	---	---	---	---	---	---
7	14.1	6.2	9.9	6.7	1.2	3.6	---	---	---	---	---	---
8	15.3	6.7	10.8	7.0	. 6	2.9	---	---	---	---	---	---
9	14.7	6.7	10.6	---	---	-	---	---	---	---	---	---
10	16.2	6.7	11.1	---	---	---	---	---	---	---	---	---
11	17.2	7.5	12.1	-	---	---	---	---	---	---	---	---
12	16.6	9.0	12.8	---	---	---	---	---	---	---	---	---
13	13.9	9.9	12.0	---	---	---	---	---	---	---	---	---
14	13.3	6.5	10.2	---	---	---	---	---	---	---	---	---
15	14.1	6.5	10.5	---	---	---	---	---	---	---	---	-
16	14.3	8.3	11.5	---	---	---	---	---	---	---	---	---
17	14.2	8.5	11.6	--	---	--	---	---	---	---	---	---
18	14.1	8.1	11.5	---	---	---	---	---	---	---	---	---
19	12.5	8.8	10.8	---	---	-	-	---	---	---	---	---
20	10.7	5.0	8.0	---	---	---	-	---	-	---	--	--
21	11.9	5.0	8.4	---	---	---	---	---	---	---	---	-
22	13.0	6.1	8.7	---	---	---	---	---	---	---	---	---
23	10.1	3.0	5.9	---	---	---	---	---	---	---	---	---
24	8.1	2.0	4.7	---	---	---	---	---	---	---	---	---
25	10.4	1.6	5.7	---	---	---	---	---	---	---	---	---
26	9.2	2.6	5.8	---	---	---	---	---	---	---	---	---
27	10.0	2.9	6.4	--	---	---	---	-	-	--	--	---
28	9.6	2.3	5.9	---	---	---	---	---	---	---	---	---
29	10.7	3.6	7.2	---	---	---	---	---	---	---	---	---
30	9.4	3.6	6.5	---	---	---	---	---	---	---	---	---
31	10.0	2.9	6.6	---	---	---	---	---	---	---	---	---
MONTH	18.5	1.6	9.6	---	---	---	---	---	---	---	---	---
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	---	---	-	21.0	6.8	13.6
2	-	---	-	---	---	---	---	---	---	22.0	9.5	15.7
3	---	---	-	---	---	---	---	---	--	21.4	9.7	15.7
4	---	---	---	---	---	---	---	---	-	23.3	9.6	16.1
5	---	---	---	---	---	---	---	---	--	18.7	11.9	15.0
6	--	---	---	---	---	---	---	---	--	23.9	10.1	16.7
7	-	---	---	---	---	---	---	---	---	24.4	14.6	18.9
8	---	---	---	---	---	---	---	---	---	23.0	11.4	17.0
9	---	---	---	---	---	---	---	---	---	24.9	14.1	19.1
10	---	---	---	---	-	---	---	---	--	22.8	13.4	17.6
11	---	---	---	---	---	---	---	---	-	23.9	12.6	18.3
12	-	---	---	---	---	-	-	---	--	23.9	14.3	19.2
13	---	---	---	---	---	---	---	---	---	23.6	14.7	18.7
14	---	---	-	---	--	--	--	---	--	22.6	15.0	18.8
15	---	-	---	---	---	--	---	---	---	24.6	14.2	19.3
16	---	---	-	-	--	---	--	-	--	28.1	14.6	20.5
17	--	---	---	---	---	---	---	---	---	27.7	14.1	20.1
18	---	-	---	--	---	---	-	---	--	26.0	13.8	19.0
19	---	---	---	-	---	---	---	---	-	27.0	13.7	19.9
20	--	---	---	---	--	---	---	---	---	---	--	-
21	-	---	---	-	---	---	---	---	---	---	-	---
22	---	---	---	---	---	--	---	--	--	--	--	---
23	---	---	--	---	---	---	---	---	---	---	---	---
24	---	--	---	---	--	--	--	-	-	--	-	---
25	---	---	---	---	---	---	---	---	---	14.7	12.3	-
26	---	--	---	---	--	---	---	---	--	14.3	11.7	12.9
27	---	---	--	--	---	-	19.7	14.5	--	23.3	9.3	15.3
28	---	---	---	---	---	---	14.5	5.9	9.2	21.0	11.3	---
29	---	---	---	---	---	---	17.1	1.6	8.9	15.2	13.6	---
30	---	---	-	---	---	-	19.4	7.4	13.0	--	-	---
31	---	---	---	---	---	---	---	---	---	---	---	---
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

07126140 VAN BREMER ARROYO NEAR TYRONE, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST			SEPTEMBER	
1	---	---	---	27.3	17.0	21.6	---	---	---	---	---	--
2	---	---	---	20.3	16.9	---	---	---	---	---	---	--
3	---	---	---	---	---	---	---	---	---	---	---	---
4	---	---	---	---	---	---	---	---	---	---	---	---
5	---	---	---	---	---	---	---	---	---	---	---	---
6	---	---	---	---	---	---	---	---	---	---	---	---
7	---	---	---	---	---	---	---	---	---	---	---	---
8	---	---	---	---	---	---	---	---	---	---	---	---
9	---	---	-	--	---	---	---	---	---	---	---	--
10	---	---	---	21.3	16.4	---	---	---	---	---	---	---
11	---	---	---	---	--	---	---	---	---	---	---	---
12	24.6	--	---	---	--	---	---	---	---	---	---	-
13	25.0	15.8	19.7	---	---	---	---	---	---	---	---	--
14	24.2	17.2	20.1	---	---	---	---	---	---	---	---	---
15	25.2	17.5	20.4	---	---	---	---	---	---	---	---	---
16	30.5	17.1	22.8	---	---	-	---	---	---	---	---	--
17	25.7	17.6	.	--	--	---	---	---	---	-	---	-
18	---	---	---	20.7	19.4	---	---	---	---	---	---	--
19	---	---	--	--	---	-	---	---	-	---	---	-
20	---	---	---	---	---	---	---	---	---	---	---	---
21	20.9	18.8	---	---	---	---	---	---	---	---	---	---
22	---	---	---	---	---	---	---	---	---	---	---	---
23	---	---	---	---	---	---	---	---	---	---	---	--
24	---	---	---	---	---	---	---	---	---	---	---	--
25	---	---	---	---	---	---	---	---	---	---	---	--
26	--	---	-	--	---	-	---	---	---	---	---	--
27	---	---	---	---	---	---	---	---	---	---	---	--
28	---	---	---	---	---	---	---	---	---	---	---	--
29	19.4	19.4	0	---	侕	---	-	---	-	---	---	-
30	22.5	18.5	20.2	---	---	---	---	---	---	---	---	---
31	---	---	---	---	---	---	---	---	--	--	---	--
MONTH	---	---	---	---	---	---	---	---	---	---	---	--

07126140 VAN BREMER ARROYO NEAR TYRONE, CO--Continued

 PRECIPITATION RECORDSPERIOD OF RECORD.--June 1993 to current year (seasonal records only).
GAGE.--Tipping-bucket rain gage with satellite telemetry. Elevation of gage is $5,310 \mathrm{ft}$ above sea level, from topographic map. REMARKS.--Records good.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 3.00 inches, Sept. 9, 1995.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.13 inches, May 25.
RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 05	. 00	---	---	---	---	---	. 00	---	. 00	. 00	. 00
2	. 00	. 00	---	---	---	---	---	. 00	---	. 00	. 00	. 00
3	. 00	. 03	---	---	---	---	---	. 00	---	. 00	. 00	. 00
4	. 00	. 00	---	---	---	---	---	. 00	---	. 00	. 35	. 00
5	. 00	. 00	--	---	---	---	---	. 01	---	. 11	. 00	. 00
6	. 00	. 00	--	---	---	--	---	. 00	---	. 00	. 00	. 22
7	. 00	. 00	---	---	---	---	---	. 00	---	. 00	. 00	. 01
8	. 00	. 00	--	---	---	---	---	. 00	---	. 09	. 00	. 00
9	. 00	. 00	---	---	---	---	---	. 00	---	. 53	. 00	. 00
10	. 00	---	--	---	---	--	---	. 17	---	. 25	. 00	. 00
11	. 00	---	-	---	---	---	---	. 00	---	. 00	. 00	. 00
12	. 00	---	---	---	---	---	---	. 00	---	. 00	. 00	. 29
13	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 00	. 22
14	. 00	---	---	---	---	---	---	. 00	. 40	. 12	. 01	. 02
15	. 00	---	---	---	---	---	---	. 00	. 07	. 00	. 15	. 00
16	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 33	. 00
17	. 00	---	--	---	---	---	---	. 00	. 00	. 00	. 00	. 11
18	. 00	---	---	---	---	---	---	. 00	. 00	. 55	. 00	. 31
19	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
20	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
21	. 00	---	---	---	---	---	. 00	. 00	. 40	. 00	. 24	. 00
22	. 00	---	---	---	---	---	. 00	. 00	. 17	. 03	. 29	. 00
23	. 00	---	---	---	---	---	. 00	. 00	. 00	. 03	. 10	. 00
24	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 02
25	. 00	---	---	---	---	---	. 00	1.13	. 00	. 03	. 00	. 02
26	. 00	---	---	---	---	---	. 00	. 12	. 00	. 21	. 22	. 04
27	. 00	---	---	---	---	---	. 00	. 00	. 00	. 01	. 24	. 39
28	. 00	---	---	---	---	---	. 04	. 27	. 00	. 00	. 00	. 00
29	. 00	---	---	---	---	---	. 00	. 00	. 00	. 21	. 00	. 00
30	.00	---	---	---	---	---	. 00	. 00	. 08	. 00	. 00	. 00
31	. 00	---	---	---	---	---	---	---	---	. 00	. 00	---
TOTAL	0.05	---	--	---	--	--	---	---	---	2.17	1.93	1.65

07126200 VAN BREMER ARROYO NEAR MODEL, CO
LOCATION.--Lat $37^{\circ} 20^{\prime} 45^{\prime \prime}$, long $103^{\circ} 57^{\prime} 27^{\prime \prime}$, in sec. 13 , T. 31 S., R. 59 W., Las Animas County, Hydrologic Unit 11020010, on right bank 3 mi upstream from mouth, 16 mi east of Model, and 33 mi northeast of Trinidad.
DRAINAGE AREA.-- $175 \mathrm{mi}^{2}$, of which $11.8 \mathrm{mi}^{2}$ is noncontributing.
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--July 1966 to current year.
REVISIONS.--WDR CO-84-1: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry and crest-stage gages. Elevation of gage is $4,960 \mathrm{ft}$ above sea level, from topographic map.

REMARKS.--No estimated daily discharges. Records fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.4	. 20	. 21	. 23	. 19	. 19	. 18	. 17	. 17	. 17	. 08	. 16
2	8.1	. 20	. 18	. 23	. 19	. 19	. 16	. 17	. 17	. 17	. 08	. 13
3	11	. 21	. 18	. 22	. 19	. 18	. 17	. 17	. 17	. 15	. 08	. 12
4	8.2	. 21	. 19	. 22	. 19	. 18	. 17	. 98	. 15	. 06	. 08	. 12
5	6.3	. 21	. 18	. 20	. 22	. 17	. 18	1.8	. 14	. 06	. 08	. 12
6	7.2	. 22	. 18	. 20	. 23	. 17	. 19	3.2	. 12	. 06	. 07	. 14
7	7.7	. 22	. 18	. 19	. 22	. 17	. 19	3.4	. 14	. 06	. 07	. 23
8	7.4	. 22	. 20	. 21	. 22	. 19	. 20	2.9	. 16	. 06	. 08	. 23
9	8.6	. 22	. 20	. 21	. 23	. 20	. 18	2.4	. 14	. 07	. 08	. 14
10	8.5	. 20	. 20	. 21	. 22	. 18	. 18	1.1	. 14	. 10	. 08	. 13
11	6.9	. 21	. 21	. 21	. 21	. 17	. 17	1.3	. 15	. 07	. 08	. 14
12	7.2	. 28	. 22	. 21	. 21	. 17	. 17	1.6	. 16	. 06	. 07	. 48
13	5.6	. 22	. 21	. 21	. 21	. 17	. 17	. 73	. 22	. 06	. 06	. 29
14	3.1	. 19	. 21	. 21	. 22	. 19	. 21	. 44	. 21	. 07	. 07	. 34
15	1.7	. 21	. 22	. 21	. 21	. 26	. 20	. 78	. 22	. 07	20	. 25
16	2.5	. 23	. 21	. 22	. 20	. 21	. 18	. 85	. 22	. 06	18	. 16
17	2.1	. 20	. 21	. 23	. 20	. 20	. 17	. 42	. 18	. 06	. 99	. 13
18	2.3	. 20	. 23	. 23	. 20	. 21	. 17	. 26	. 17	. 06	. 32	. 12
19	1.4	. 20	. 23	. 21	. 21	. 20	. 16	. 19	. 17	. 06	. 16	. 12
20	. 77	. 20	. 23	. 23	. 20	. 21	. 16	. 17	. 17	. 06	. 13	. 12
21	. 53	. 21	. 22	. 22	. 21	. 20	. 16	. 17	. 18	. 06	. 12	. 12
22	. 38	. 20	. 21	. 22	. 20	. 19	. 16	. 17	. 20	72	. 14	. 12
23	. 28	. 19	. 22	. 21	. 20	. 19	. 17	. 18	. 20	21	25	. 12
24	. 24	. 20	. 21	. 21	. 20	. 20	. 17	. 20	. 17	. 18	2.4	. 12
25	. 21	. 21	. 20	. 22	. 20	. 20	. 17	4.2	. 17	. 10	. 39	. 13
26	. 20	. 21	. 21	. 22	. 20	. 21	. 17	. 44	. 15	. 09	. 19	. 16
27	. 20	. 20	. 21	. 21	. 20	. 22	. 17	. 24	. 15	. 14	19	. 19
28	. 19	. 20	. 20	. 22	. 18	. 20	. 17	. 21	. 17	. 08	29	. 16
29	. 21	. 21	. 21	. 22	. 19	. 20	. 17	. 21	. 17	. 08	1.2	. 14
30	. 18	. 21	. 21	. 21	---	. 20	. 17	. 18	. 17	. 10	. 42	. 14
31	. 19	---	. 22	. 20	-	. 20	-	. 17	--	. 08	. 22	---
TOTAL	114.78	6.29	6.40	6.65	5.95	6.02	5.24	29.40	5.10	95.50	118.74	5.07
MEAN	3.70	. 21	. 21	. 21	. 21	. 19	. 17	. 95	. 17	3.08	3.83	. 17
MAX	11	. 28	. 23	. 23	. 23	. 26	. 21	4.2	. 22	72	29	. 48
MIN	. 18	. 19	. 18	. 19	. 18	. 17	. 16	. 17	. 12	. 06	. 06	. 12
AC-FT	228	12	13	13	12	12	10	58	10	189	236	10

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1966 - 1996, BY WATER YEAR (WY)

[^74]
07126200 VAN BREMER ARROYO NEAR MODEL, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--January 1983 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: January 1983 to current year.
WATER TEMPERATURE: January 1983 to current year.
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for water temperature are fair. Records for specific conductance are good. Daily data that are not published are either missing or of unacceptable quality.

EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 8,860 microsiemens, May 13, 1987; minimum, 114 microsiemens, June 28, 1995.
WATER TEMPERATURE: Maximum, $34.0^{\circ} \mathrm{C}$, June $15,28,1986$; minimum, $0.0^{\circ} \mathrm{C}$, many days during the winter in most years.

EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum, 3,590 microsiemens, Oct. 2; minimum, 171 microsiemens, Aug. 28. WATER TEMPERATURE: Maximum, $30.7^{\circ} \mathrm{C}$, July 4 ; minimum, $1.2^{\circ} \mathrm{C}$, Dec. 9 .

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	2140	1540	1760	1800	1580	1740	2080	1820	1960	2290	2170	2220
2	3590	2120	2750	1820	1600	1720	1980	1930	1950	2260	2160	2220
3	2310	1780	2000	1840	1630	1740	1990	1920	1960	2310	2140	2230
4	1810	1660	1740	1850	1700	1800	1990	1930	1960	2240	2150	2200
5	1750	1580	1650	1860	1610	1780	2010	1940	1970	2230	2170	2200
6	1760	1660	1710	1880	1640	1800	2010	1950	1980	2280	2160	2210
7	1770	1610	1700	1880	1670	1820	2010	1970	1990	2260	2120	2180
8	---	---	---	1900	1760	1850	2030	1980	2000	2220	2090	2160
9	1620	1380	1500	1920	1750	1870	2130	2000	2060	2210	2140	2180
10	1580	1380	1430	1920	1720	1840	2150	2010	2060	2210	2140	2180
11	1410	1290	1340	1910	1810	1860	2120	2030	2080	2260	2110	2170
12	1330	1190	1270	1970	1780	1910	2130	2060	2100	2160	2090	2120
13	1370	1280	1330	1970	1850	1930	2140	2080	2120	2130	2070	2100
14	1450	1330	1400	1960	1810	1910	2130	2070	2100	2130	2050	2090
15	1450	1370	1430	1940	1800	1900	2110	2050	2080	2110	2040	2080
16	1450	1370	1420	1970	1760	1900	2090	2040	2060	2110	2040	2080
17	1520	1410	1460	1990	1800	1940	2070	2030	2050	2110	2000	2050
18	1610	1490	1560	1990	1900	1950	2100	2030	2060	2110	2020	2060
19	1610	1550	1590	1990	1690	1890	2170	2030	2090	2170	2020	2090
20	1600	1510	1570	2020	1860	1940	2190	2070	2130	2110	2030	2070
21	1620	1530	1590	1990	1800	1940	2180	2080	2120	2140	2030	2090
22	1660	1510	1610	2010	1870	1960	2140	2090	2110	2140	2040	2090
23	1680	1600	1640	2010	1780	1960	2190	2090	2130	2200	2070	2130
24	1690	1620	1650	2020	1880	1980	2250	2120	2170	2210	2050	2140
25	1710	1620	1670	2020	1860	1970	2240	2110	2180	2170	2090	2130
26	1720	1620	1680	2030	1860	1990	2230	2130	2180	2250	2100	2170
27	1730	1620	1690	2040	1790	1970	2280	2140	2200	2320	2090	2180
28	1740	1620	1690	2050	1860	1970	2260	2150	2210	2220	2090	2160
29	1760	1500	1680	2050	1860	1990	2240	2160	2200	2220	2050	2150
30	1770	1680	1730	2070	1850	2000	2310	2190	2250	2330	2130	2190
31	1780	1660	1730	-	---	-	2280	2180	2230	2340	2130	2200
MONTH	---	--	--	2070	1580	1890	2310	1820	2090	2340	2000	2150

07126200 VAN BREMER ARROYO NEAR MODEL, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

	FEBRUARY			MARCH			APRIL			MAY		
1	2250	2140	2190	2070	1940	2000	2200	2100	2150	2160	2090	2120
2	2260	2160	2200	2070	1970	2010	2200	2140	2160	2160	2090	2130
3	2270	2170	2210	2080	1980	2030	2200	2120	2160	2160	2080	2110
4	2240	2140	2190	2080	2010	2040	2180	2120	2150	2430	2080	2210
5	2220	2120	2160	2100	2030	2070	2170	2110	2140	2950	2260	2430
6	2230	2150	2200	2100	2050	2060	2200	2110	2140	3510	2950	3270
7	2240	2120	2180	2200	1960	2100	2230	2130	2170	3140	2240	2590
8	2160	2040	2100	2100	2010	2070	2240	2130	2170	2270	2040	2150
9	2070	1960	2030	2130	2020	2070	2240	2130	2180	2070	1970	2010
10	2050	1960	2010	2150	2050	2080	2220	2140	2170	2040	1970	2000
11	1990	1890	1940	2140	2040	2080	2220	2140	2170	2170	1990	2050
12	1940	1850	1900	2110	2050	2080	2220	2130	2170	2330	2150	2250
13	1950	1850	1900	2120	2060	2090	2200	2130	2170	2340	2280	2310
14	1970	1900	1930	2120	2060	2090	2250	2120	2170	2390	2290	2330
15	1970	1920	1950	2190	2060	2120	2270	2180	2220	2450	2270	2370
16	1990	1870	1930	2180	2120	2140	2250	2170	2210	2510	2410	2450
17	1970	1920	1950	2170	2070	2110	2240	2170	2200	2500	2390	2450
18	1960	1910	1930	2140	2070	2110	2230	2140	2190	2470	2350	2410
19	1950	1890	1920	2160	2080	2120	2230	2150	2180	2400	2320	2360
20	1950	1890	1920	2170	2050	2110	2220	2130	2170	2400	2290	2340
21	1950	1890	1910	2170	2080	2120	2190	2120	2150	2330	2250	2290
22	1980	1900	1930	2160	2090	2130	2190	2110	2150	2330	2240	2280
23	1980	1920	1950	2160	2090	2120	2200	2100	2150	2330	2190	2240
24	1970	1920	1950	2160	2100	2130	2190	2120	2150	2260	2150	2200
25	1960	1910	1930	2190	2110	2160	2210	2130	2170	2210	960	1670
26	1960	1900	1930	2230	2060	2150	2180	2110	2140	1440	1100	1270
27	1970	1880	1930	2210	2110	2150	2180	2120	2150	1660	1440	1570
28	1980	1930	1950	2210	2100	2150	2160	2090	2120	1720	1630	1680
29	2010	1860	1960	2190	2120	2150	2150	2090	2110	1790	1680	1730
30	---	---	---	2210	2130	2160	2160	2090	2120	1870	1740	1800
31	---	---	---	2210	2110	2160	---	---	---	1900	1800	1850
MONTH	2270	1850	2010	2230	1940	2100	2270	2090	2160	3510	960	2160
	JUNE			JULY			AUGUST			SEPTEMBER		
1	1930	1820	1870	2010	1940	1970	1480	1370	1430	1000	835	908
2	1960	1860	1900	2030	1980	2000	1500	1400	1440	1180	978	1070
3	2000	1870	1930	2030	1970	2000	1540	1440	1490	1260	1160	1200
4	2000	1900	1940	2050	1980	2010	1560	1480	1520	1340	1160	1230
5	2000	1910	1950	2050	1980	2000	1600	1510	1560	1420	1240	1290
6	1990	1920	1960	2030	1790	1950	1590	1540	1570	1430	1290	1340
7	1950	1880	1920	2090	1970	2020	1650	1550	1590	1360	1030	1150
8	2000	1890	1940	2100	1960	2020	1650	1590	1620	1310	1130	1210
9	2030	1940	1980	2030	1910	1990	1650	1600	1620	1460	1280	1350
10	2040	1950	2000	2170	1880	2040	1660	1590	1620	1450	1370	1410
11	2030	1950	1990	2180	1900	2080	1690	1610	1650	1460	1380	1400
12	2030	1940	1980	2140	1990	2080	1710	1640	1670	1470	948	1340
13	2050	1910	2000	2090	2010	2040	1720	1660	1680	1330	1090	1260
14	2050	1930	1990	2090	1950	2020	1720	1620	1680	1330	1180	1270
15	2150	1990	2060	2140	1890	2040	1690	307	1580	1440	1300	1360
16	2130	2060	2090	2130	1990	2050	552	272	463	1480	1400	1440
17	2160	2020	2080	2100	1890	2040	664	501	578	1530	1440	1490
18	2140	1990	2070	2090	1980	2030	808	636	703	1530	1440	1480
19	2110	1980	2060	2060	1920	2000	1080	785	911	1530	1470	1500
20	2090	1990	2040	2080	1890	2020	1140	998	1060	1560	1490	1520
21	2050	1950	2020	2040	1870	2000	1240	1090	1170	1580	1520	1540
22	2030	1960	1990	2040	215	1850	1280	1170	1220	1600	1540	1560
23	2020	1940	1980	582	194	404	1250	378	966	1620	1570	1590
24	2050	1980	2010	728	546	627	607	398	504	1640	1590	1610
25	2040	1940	1980	1040	702	840	766	581	659	1650	1590	1630
26	1990	1940	1960	1170	939	1010	1130	738	885	1650	1570	1610
27	2000	1950	1980	1070	839	957	1120	294	975	1650	1540	1600
28	2000	1940	1970	1290	992	1120	471	171	278	1690	1620	1660
29	2000	1940	1970	1360	1240	1300	553	350	441	1770	1650	1680
30	2000	1950	1970	1380	1200	1290	704	508	588	1790	1720	1750
31	---	---	---	1410	1240	1320	865	678	735	---	.	---
MONTH	2160	1820	1990	2180	194	1710	1720	171	1160	1790	835	1410

07126200 VAN BREMER ARROYO NEAR MODEL, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	16.9	13.3	15.3	9.5	7.3	8.8	9.9	4.9	7.2	5.6	2.8	4.3
2	16.8	14.1	15.4	7.3	4.4	5.9	9.0	5.3	6.9	3.6	2.0	2.8
3	16.9	13.5	15.2	9.4	3.8	6.2	9.5	4.0	6.4	4.8	2.1	3.4
4	16.2	13.8	15.0	9.8	4.6	6.8	9.0	5.0	6.8	6.3	2.7	4.3
5	14.8	12.2	13.5	9.3	4.6	7.0	8.2	5.0	6.4	3.4	2.4	2.9
6	--	10.8	---	11.1	5.8	8.3	9.4	4.6	6.4	4.9	2.5	3.5
7	12.9	10.1	11.6	11.2	5.7	8.2	6.5	4.1	5.2	5.2	2.3	3.6
8	---	---	---	11.4	5.4	8.1	6.1	1.9	4.2	6.6	3.2	4.7
9	13.7	10.8	12.3	11.8	6.2	8.6	5.5	1.2	3.7	8.2	3.5	5.4
10	14.0	11.0	12.5	8.1	4.9	7.0	5.6	2.8	4.2	7.1	3.4	5.1
11	14.9	11.2	13.0	9.3	3.1	6.3	7.4	3.4	5.1	7.8	3.1	5.0
12	15.2	11.9	13.6	10.6	5.7	8.0	7.7	3.6	5.6	9.0	3.1	5.5
13	14.9	12.6	13.7	10.7	5.8	8.1	7.6	5.3	6.3	9.4	3.1	5.9
14	13.6	10.6	12.3	11.9	5.5	8.5	9.3	4.3	6.4	9.4	3.2	6.0
15	14.4	10.2	12.3	11.7	6.2	8.7	8.9	4.8	6.6	8.3	3.7	5.6
16	14.4	10.8	12.7	11.7	6.3	8.9	7.6	4.5	5.9	8.6	3.9	5.7
17	14.3	10.9	12.7	11.7	6.6	8.7	5.6	3.9	4.8	6.6	1.3	4.5
18	14.5	10.8	12.7	11.3	5.4	8.2	5.1	3.4	4.1	4.0	1.6	2.7
19	13.3	10.3	12.0	10.9	5.4	7.9	6.1	2.8	4.1	4.7	1.5	3.2
20	13.2	8.2	10.6	9.8	5.0	7.3	5.8	2.9	4.3	5.9	3.2	4.4
21	13.2	8.1	10.5	10.2	4.5	7.3	5.3	2.8	4.3	6.7	2.6	4.4
22	14.0	8.7	10.7	10.6	5.9	7.9	5.4	3.9	4.5	7.4	3.4	4.9
23	12.0	6.7	8.9	10.2	6.0	7.7	5.6	3.5	4.4	5.7	2.3	3.9
24	10.8	6.4	8.3	9.4	4.3	6.9	5.2	2.6	3.9	5.8	2.7	4.1
25	13.0	6.2	9.1	10.3	5.2	7.4	5.6	2.6	4.3	7.6	2.0	4.1
26	11.9	7.0	9.2	10.1	5.5	7.5	6.6	3.2	4.7	5.5	2.4	3.6
27	13.2	6.8	9.7	7.6	5.2	6.5	5.8	2.7	4.4	5.7	1.7	3.6
28	13.2	6.9	9.7	7.4	3.4	5.3	5.3	3.0	4.1	7.6	3.2	4.8
29	12.7	7.5	10.0	8.7	3.6	5.8	5.1	3.5	4.3	7.2	2.9	4.8
30	13.2	7.3	10.0	9.4	4.0	6.4	4.8	2.7	3.7	6.0	2.1	3.5
31	12.6	7.4	9.9	---	---	---	5.4	3.4	4.3	6.0	2.0	3.5
MONTH	--	--	--	11.9	3.1	7.5	9.9	1.2	5.1	9.4	1.3	4.3

	FEBRUARY			MARCH			APRIL			MAY		
1	4.9	2.7	3.4	10.2	2.9	6.0	19.3	8.4	13.0	21.5	10.3	15.6
2	3.6	1.4	2.6	11.5	2.4	6.5	19.1	9.1	13.6	22.6	11.8	17.0
3	3.3	2.1	2.7	13.0	3.3	7.7	17.6	10.4	13.4	22.7	12.3	17.2
4	4.1	2.2	3.1	12.0	6.1	8.6	12.3	8.1	10.6	23.1	12.6	17.0
5	6.5	3.3	4.8	13.1	5.7	8.9	11.4	7.1	8.9	18.3	15.4	16.6
6	8.5	3.8	5.9	8.0	3.7	4.8	16.7	5.4	10.8	20.6	14.3	17.5
7	8.5	4.0	5.8	8.4	2.5	5.2	15.8	8.1	11.8	22.3	17.5	19.6
8	9.2	3.7	6.1	11.3	2.8	6.5	20.1	9.9	14.6	22.2	16.4	19.3
9	11.4	3.5	6.9	13.8	3.6	8.1	21.5	11.2	16.0	23.2	18.0	20.3
10	10.8	4.3	7.0	15.6	5.3	9.9	18.5	12.2	15.2	23.0	17.3	19.4
11	9.7	3.5	6.1	16.4	7.8	11.6	19.7	10.6	14.8	24.1	15.6	19.3
12	8.9	2.9	5.7	15.0	7.9	11.1	21.2	11.7	15.5	23.8	17.2	20.4
13	11.1	4.0	6.7	15.3	6.9	10.7	17.2	7.7	12.9	24.1	17.7	20.1
14	11.1	3.9	7.1	9.8	5.9	7.9	14.8	5.6	9.4	23.1	17.1	19.9
15	10.8	4.4	7.0	14.3	5.9	9.3	18.2	7.3	12.0	24.1	16.1	20.0
16	10.9	3.3	6.7	14.3	7.1	10.2	18.4	9.4	13.1	25.9	17.2	21.4
17	12.2	4.1	7.8	10.1	6.7	8.4	18.3	10.1	13.9	26.0	17.7	21.6
18	9.6	5.7	7.6	9.9	4.9	6.9	20.1	10.0	14.5	26.0	17.5	21.2
19	10.1	4.2	6.9	12.9	4.0	8.0	17.2	9.6	13.2	24.2	17.0	20.5
20	12.3	5.5	8.3	15.1	4.4	9.2	15.6	9.0	12.0	24.6	16.1	19.9
21	13.7	6.6	9.9	16.0	6.2	10.6	17.3	8.0	12.5	23.7	15.8	19.2
22	13.9	7.5	10.2	15.9	7.1	10.8	19.2	9.0	13.5	25.7	15.5	20.1
23	12.7	5.8	9.0	16.5	8.1	11.7	21.1	9.4	15.1	26.4	15.9	20.8
24	12.1	5.6	8.6	10.6	4.5	7.5	20.6	11.5	16.0	21.7	17.2	19.5
25	13.3	6.0	9.2	8.8	2.7	5.3	19.4	12.1	15.4	18.5	13.1	15.1
26	10.8	4.9	7.3	13.7	2.6	7.5	21.3	10.6	15.7	15.2	12.9	13.9
27	9.9	3.0	5.7	16.3	4.8	9.7	21.0	12.1	16.1	22.9	11.5	16.5
28	5.4	1.5	3.5	15.9	7.1	11.1	15.0	9.4	11.2	20.7	13.4	16.9
29	9.6	2.7	5.3	16.7	8.2	12.0	18.5	6.9	12.2	25.5	14.2	18.6
30	---	---	---	14.5	8.8	11.0	20.4	9.0	14.3	23.8	15.4	19.2
31	---	---	---	17.4	6.9	11.6	---	---	---	25.2	15.8	19.9
MONTH	13.9	1.4	6.4	17.4	2.4	8.8	21.5	5.4	13.4	26.4	10.3	18.8

07126200 VAN BREMER ARROYO NEAR MODEL, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	JUNE			JULY			AUGUST			SEPTEMBER		
1	26.6	16.0	20.5	28.0	18.0	22.7	30.5	19.6	24.3	25.5	18.3	21.6
2	27.3	16.8	21.3	29.3	18.6	23.5	29.9	20.6	24.6	24.6	18.4	21.2
3	27.5	17.2	21.8	30.1	19.0	24.1	29.4	19.8	23.9	27.1	16.8	21.2
4	25.8	17.3	21.5	30.7	20.1	24.9	27.9	20.8	24.2	27.2	17.6	21.8
5	26.2	16.7	21.0	29.5	20.8	24.5	28.5	18.5	23.1	27.1	18.2	21.9
6	24.5	16.4	20.2	30.1	20.3	24.7	28.7	18.4	23.1	24.4	18.4	20.8
7	26.7	15.8	21.1	29.5	21.0	24.8	27.6	18.8	22.9	25.4	17.0	20.4
8	28.2	15.8	21.8	24.0	20.6	22.0	23.7	18.9	21.4	27.0	17.7	21.7
9	27.7	17.7	22.1	25.6	19.4	22.0	27.5	18.8	22.2	26.7	18.5	21.8
10	28.0	17.0	21.9	28.2	19.1	23.1	27.4	19.0	22.7	27.4	17.7	21.6
11	25.5	17.3	20.9	30.2	19.5	24.5	28.0	18.3	22.8	26.2	17.8	21.3
12	26.8	16.3	20.9	27.2	20.5	23.3	28.6	18.2	22.9	21.3	18.5	19.6
13	25.0	17.5	20.8	24.9	19.0	21.6	28.4	18.5	23.0	24.8	17.0	19.9
14	24.1	18.7	20.9	28.8	17.7	22.8	28.2	19.1	22.6	20.0	17.2	18.7
15	27.8	18.6	22.0	28.3	19.2	23.3	28.4	10.1	22.1	21.4	16.7	18.6
16	28.7	18.5	23.0	30.5	18.9	24.3	18.6	10.1	14.9	24.8	15.2	19.1
17	28.5	18.5	23.4	30.0	20.5	25.1	24.1	16.3	19.5	24.1	15.6	19.3
18	29.6	18.5	23.9	28.9	21.4	24.2	26.6	18.3	21.1	21.9	16.1	18.2
19	29.5	17.8	23.6	30.2	19.7	24.5	26.6	18.3	21.8	20.7	12.6	16.5
20	29.8	19.2	23.9	29.7	20.8	24.3	26.2	18.7	22.4	21.5	13.4	17.1
21	26.8	19.3	22.7	29.3	19.3	23.8	27.1	19.2	22.7	23.1	13.1	17.5
22	23.8	19.4	21.2	29.5	3.2	22.3	25.6	19.9	22.1	24.2	14.5	18.8
23	28.7	16.9	22.1	19.8	5.4	13.8	27.3	19.6	21.4	23.4	15.2	18.7
24	29.4	19.6	23.1	26.1	16.6	20.5	23.8	19.1	21.0	22.8	14.6	18.4
25	26.1	17.8	21.7	25.6	18.0	21.1	25.0	19.3	21.2	21.7	15.0	18.1
26	27.6	17.7	22.3	28.7	17.4	21.4	27.2	19.6	22.2	15.8	10.7	13.0
27	23.1	19.8	21.5	29.1	18.8	22.7	27.6	18.9	22.0	17.5	9.2	12.7
28	26.7	18.4	21.8	27.2	19.2	22.6	23.0	17.3	20.1	19.9	10.5	14.7
29	23.9	19.9	21.7	27.0	19.2	22.3	24.6	19.5	21.8	21.2	12.1	16.1
30	24.7	19.3	21.5	28.8	19.6	23.4	24.9	20.0	21.8	22.2	13.1	17.2
31	-	--	---	30.3	20.2	24.2	25.3	18.8	21.4	---	--	---
MONTH	29.8	15.8	21.9	30.7	3.2	23.0	30.5	10.1	22.0	27.4	9.2	18.9

07126200 VAN BREMER ARROYO NEAR MODEL, CO--Continued PRECIPITATION RECORDS

PERIOD OF RECORD.--June 1993 to current year (seasonal records only).
GAGE.--Tipping-bucket rain gage with satellite telemetry. Elevation of gage is $4,960 \mathrm{ft}$ above sea level, from topographic map. REMARKS.--Records good.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.67 inches, May 25, 1996.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.67 inches, May 25.
RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 02	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 07	. 00
2	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
3	. 00	. 02	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
4	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
5	. 00	. 00	---	---	---	---	---	. 02	. 00	. 13	. 00	. 00
6	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 46
7	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 01
8	. 00	. 00	---	---	---	---	---	. 00	. 00	. 06	. 00	. 00
9	. 00	. 00	---	---	---	---	---	. 00	. 00	. 23	. 00	. 00
10	. 00	. 04	---	--	--	---	---	. 01	. 00	. 19	. 00	. 06
11	. 00	. 05	--	-	--	---	---	. 00	. 01	. 00	. 00	. 03
12	. 00	. 00	---	--	--	---	---	. 00	. 16	. 00	. 00	. 50
13	. 00	. 00	---	---	---	---	---	. 00	. 56	. 00	. 00	. 21
14	. 00	. 00	---	---	---	---	---	. 00	. 19	. 11	. 28	. 01
15	. 00	. 00	---	---	--	---	---	. 00	. 25	. 00	. 21	. 03
16	. 00	. 00	---	--	--	---	---	. 00	. 00	. 01	. 12	. 00
17	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 05
18	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 15	. 00	. 04
19	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 03	. 00
20	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
21	. 00	. 00	---	---	---	---	. 00	. 00	. 16	. 04	. 20	. 00
22	. 00	. 00	---	---	---	---	. 00	. 00	. 17	. 20	. 11	. 00
23	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 02	1.02	. 00
24	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
25	. 00	. 00	---	---	---	---	. 00	2.67	. 00	. 01	. 00	. 22
26	.00	. 00	---	---	---	---	. 00	. 10	. 00	. 51	. 00	. 11
27	. 00	. 05	---	---	---	---	. 00	. 00	. 00	. 00	. 75	. 30
28	. 00	. 00	---	---	---	---	. 02	. 18	. 03	. 00	. 00	. 00
29	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 27	. 06	. 00
30	. 00	. 00	---	---	---	---	. 00	. 00	. 05	. 00	. 00	. 00
31	. 00	---	---	---	---	---	---	. 00	---	. 05	. 00	---
TOTAL	0.02	0.16	---	---	--	---	---	2.98	1.58	1.98	2.85	2.03

07126300 PURGATOIRE RIVER NEAR THATCHER, CO

LOCATION.--Lat $37^{\circ} 21^{\prime} 30^{\prime \prime}$, long $103^{\circ} 53^{\prime} 44^{\prime \prime}$, in sec.10, T. 31 S., R. 58 W., Las Animas County, Hydrologic Unit 11020010, on right bank 250 ft downstream from county road bridge at gas line crossing, 1.2 mi downstream from Van Bremer Arroyo, and 18 mi southeast of Thatcher.
DRAINAGE AREA.--1,791 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1966 to current year. Statistical summary computed for 1976 to current year, subsequent to completion of Trinidad Reservoir.
REVISED RECORDS.--WDR CO-84-1: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry, and crest-stage gages. Elevation of gage is $4,790 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges and flows greater than $1,600 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Diversions upstream from station for irrigation of about 30,000 acres. Peak flows regulated to some extent by Trinidad Dam, 52 mi upstream, since January 1975.
EXTREMES OUTSIDE PERIOD OF RECORD.--Floods of July 22, 1954, and May 19, 1955, reached stages of 26.7 and 25.2 ft , respectively, from floodmarks. Flood of June 18,1965 , reached a stage of 23.5 ft , from floodmarks, discharge, $47,700 \mathrm{ft}^{3} / \mathrm{s}$.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^75]
07126300 PURGATOIRE RIVER NEAR THATCHER, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1982 to current year.

PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: December 1982 to current year.
WATER TEMPERATURE: December 1982 to current year.
SUSPENDED SEDIMENT DISCHARGE: May 1983 to September 1992 (discontinued).
INSTRUMENTATION.--Water-quality monitor since December 1983 with satellite telemetry.
REMARKS.--Records good. Daily data that are not published are either missing or of unacceptable quality.
EXTREMES FOR PERIOD OF RECORD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 7,030 microsiemens, July 30, 1994; minimum, 245 microsiemens, Aug. 20, 1994.
WATER TEMPERATURE: Maximum, $32.1^{\circ} \mathrm{C}$, June 25,1990 ; minimum $0.0^{\circ} \mathrm{C}$, on many days during the winter months.
SEDIMENT CONCENTRATION: Maximum daily, $49,600 \mathrm{mg} / \mathrm{L}$, June 9, 1986; minimum daily, $3 \mathrm{mg} / \mathrm{L}$, Apr. 29, 1989.
SEDIMENT LOAD: Maximum daily, 250,000 tons, June 6, 1983; minimum daily, 0.00 tons, June 26 to July 4, 1990.
EXTREMES FOR CURRENT WATER YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 6,790 microsiemens, July 23; minimum, 301 microsiemens, Sept. 7. WATER TEMPERATURE: Maximum, $29.4^{\circ} \mathrm{C}$, July 17 ; minimum, $0.0^{\circ} \mathrm{C}$, on many days during the winter months.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBE		NOVEMBER			DECEMBER			JANUARY		
1	3000	2750	2890	3290	3260	3280	3540	3470	3500	3610	3310	3470
2	2930	2820	2850	3270	3250	3260	3560	3520	3550	3620	3420	3500
3	3230	2930	3060	3260	3240	3250	3560	3510	3530	3800	3500	3630
4	3060	2990	3020	3280	3240	3250	3530	3490	3510	3800	3370	3490
5	3040	2990	3010	3300	3270	3280	3490	3430	3460	3530	3380	3440
6	3040	2890	2970	3300	3280	3290	3440	3420	3430	3810	3520	3610
7	3050	2930	2990	3360	3290	3320	3450	3410	3430	3810	3570	3720
8	3100	2990	3040	3380	3340	3360	3420	3370	3390	3720	3330	3460
9	3160	3050	3110	3350	3330	3340	3450	3380	3420	3530	3390	3470
10	3130	3090	3110	3340	3280	3320	3560	3410	3480	3620	3400	3510
11	3160	2210	2840	3320	3280	3300	3660	3380	3480	3520	3280	3410
12	2210	2160	2180	3310	3270	3280	3660	3340	3470	3520	3200	3290
13	2370	2180	2240	3300	3280	3290	3540	3440	3490	3480	3230	3300
14	2980	2370	2660	3530	3290	3440	3470	3340	3410	3500	3280	3350
15	3260	2980	3180	3720	3480	3620	3380	3300	3350	3530	3250	3360
16	3160	3110	3140	3720	3690	3710	3440	3380	3410	3540	3270	3380
17	3350	3130	3260	3690	3660	3670	3400	3360	3380	3500	3240	3310
18	3360	3290	3330	3680	3640	3670	3400	3350	3370	3510	3260	3360
19	3300	3140	3190	3670	3640	3650	3450	3390	3420	3560	3380	3470
20	3220	3150	3190	3650	3640	3650	3470	3290	3430	3680	3400	3490
21	3330	3220	3280	3670	3550	3640	3590	3450	3510	3540	3400	3450
22	3290	3250	3270	3560	3450	3500	3680	3440	3500	3600	3460	3540
23	3260	3250	3250	3480	3460	3470	3630	3500	3560	3680	3500	3570
24	3290	3230	3260	3490	3450	3470	4030	3580	3810	3690	3420	3510
25	3340	3290	3310	3490	3470	3480	4170	3660	3850	3570	3360	3420
26	3350	3320	3340	3490	3460	3480	3750	3570	3670	3550	3250	3420
27	3390	3330	3350	3480	3460	3470	3830	3590	3710	4010	3520	3620
28	3350	3340	3350	3500	3450	3480	3940	3760	3860	4030	3510	3620
29	3370	3330	3350	3500	3440	3460	3900	3590	3760	3600	3390	3480
30	3390	3300	3360	3470	3440	3460	3770	3600	3690	3710	3520	3610
31	3300	3280	3280	---	---	---	3870	3610	3740	4080	3570	3780
MONTH	3390	2160	3090	3720	3240	3440	4170	3290	3530	4080	3200	3490

07126300 PURGATOIRE RIVER NEAR THATCHER, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		FEBRUA			MARCH			APRIL			MAY	
1	4090	3430	3620	3790	3680	3730	3740	3660	3690	3610	3580	3590
2	3850	3410	3580	3710	3530	3590	3800	3740	3760	3760	3570	3640
3	3950	3660	3800	3620	3520	3560	3840	3790	3820	4340	3760	4100
4	4150	3790	3960	3620	3540	3560	3920	3840	3880	4220	3860	3930
5	4060	3820	3940	3580	3530	3550	3900	3820	3870	3920	3630	3800
6	3820	3620	3690	3580	3520	3550	3870	3790	3830	3630	3460	3530
7	3690	3430	3620	3600	3530	3560	3800	3680	3710	3620	3330	3490
8	3430	3140	3250	3770	3570	3630	3750	3620	3710	3780	3520	3620
9	3330	3090	3160	3770	3500	3560	3620	3570	3590	3800	3730	3770
10	3470	3080	3240	3630	3550	3590	3700	3550	3600	3730	3350	3570
11	3440	3070	3200	3640	3570	3600	3800	3700	3770	3580	3280	3360
12	3520	3100	3240	3600	3550	3570	3770	3660	3700	3800	3580	3680
13	3430	3130	3230	3650	3570	3630	3670	3530	3640	3920	3790	3840
14	3370	3190	3270	3580	3550	3570	3530	3470	3500	3910	3820	3850
15	3360	3310	3330	3580	3550	3570	3610	3520	3560	3990	3750	3870
16	3360	3310	3340	3580	3430	3500	3630	3580	3620	4390	3980	4090
17	3380	3340	3360	3440	3370	3410	3600	3570	3580	4540	4390	4480
18	3410	3350	3370	3660	3430	3560	3660	3580	3640	4400	4250	4320
19	3440	3410	3430	3750	3640	3700	3740	3640	3700	4420	4370	4390
20	3490	3440	3470	3750	3670	3710	3780	3720	3750	4420	4270	4360
21	3520	3480	3500	3860	3740	3810	3800	3750	3770	4510	4380	4450
22	3540	3470	3520	3850	3770	3790	3760	3720	3740	4750	4450	4620
23	3600	3510	3550	3790	3680	3740	3730	3690	3710	4670	4430	4570
24	3730	3600	3650	3720	3690	3710	3730	3640	3690	4430	4090	4250
25	3810	3730	3770	3720	3680	3700	3640	3550	3590	4320	1740	3540
26	3810	3750	3780	3730	3670	3700	3550	3450	3490	3960	1010	2270
27	3760	3750	3760	3730	3630	3680	3710	3520	3610	2870	2690	2760
28	3810	3760	3780	3670	3630	3650	3800	3710	3760	2860	2700	2780
29	3820	3760	3790	3690	3630	3670	3790	3650	3720	3360	2700	3090
30	---	---	---	3710	3670	3700	3790	3610	3720	3360	2730	3160
31	--	--	--	3720	3670	3690	--	-	--	2870	2660	2740
MONTH	4150	3070	3520	3860	3370	3630	3920	3450	3690	4750	1010	3730

	JUNE			JULY			AUGUST			SEPTEMBER		
1	2990	2870	2950	2760	2610	2710	2850	1410	1700	2220	1940	2120
2	2940	2720	2820	2790	2690	2750	1410	1080	1180	1940	1500	1720
3	2820	2710	2770	2830	2660	2780	2060	1080	1480	1500	1220	1320
4	2860	2770	2810	2870	2740	2810	2700	2060	2450	1280	1190	1230
5	2820	2510	2710	3110	2790	2940	2710	2340	2580	1380	1280	1330
6	2810	2580	2700	3430	3080	3240	2340	2150	2280	1470	416	1390
7	2820	2560	2700	3490	3390	3440	2150	1340	1690	1950	301	955
8	2800	2620	2730	3410	2980	3170	1340	1180	1220	1930	1330	1480
9	2640	2470	2550	3120	2980	3020	1210	1180	1190	2060	1570	1870
10	2880	2510	2720	3940	2950	3500	1260	1190	1220	2430	2060	2130
11	2940	2860	2910	3920	3000	3380	1680	1260	1370	3100	1010	1400
12	2960	2910	2930	3190	1720	2630	2490	1680	2110	1920	1370	1520
13	2940	2890	2920	2640	1660	2040	2760	2480	2630	1950	940	1250
14	2950	2890	2940	2800	2100	2520	3040	2760	2900	1840	1020	1390
15	2920	2860	2890	2220	2000	2080	3130	2760	2980	1940	1720	1800
16	3110	2670	2900	2600	2220	2450	3780	461	1020	2120	1940	2040
17	2780	2080	2470	2670	2560	2630	535	465	498	2830	2000	2440
18	2400	2100	2240	2730	2630	2680	608	535	572	2930	2610	2790
19	2280	2200	2260	2690	2620	2660	673	607	644	3290	2780	3040
20	2320	2250	2290	2670	2590	2650	720	668	694	3360	3260	3310
21	2380	2260	2340	2720	2660	2680	879	714	789	3590	3360	3510
22	2430	2340	2400	3160	397	2660	2630	793	1310	3690	3570	3630
23	2490	2370	2450	6790	339	1410	1770	720	1250	3650	3510	3580
24	2560	2470	2520	1210	976	1040	1560	838	1090	3550	3480	3510
25	2590	2490	2560	1220	927	994	970	871	892	3650	3520	3570
26	2630	2550	2590	1130	972	1070	1100	872	944	3670	3590	3640
27	2640	2550	2630	1960	1130	1520	1420	1100	1260	3680	3630	3650
28	2670	2570	2650	1410	1060	1290	1420	312	900	3950	3670	3790
29	2690	2590	2660	1330	1250	1290	1780	1010	1370	3970	3710	3850
30	2700	2610	2680	1570	1220	1340	1990	1770	1910	3750	3680	3700
31	---	---	-	1620	1500	1580	2210	1990	2100	---	---	-
MONTH	3110	2080	2660	6790	339	2350	3780	312	1490	3970	301	2430

07126300 PURGATOIRE RIVER NEAR THATCHER, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	. 4	. 1	. 2	5.3	1.2	3.1	15.3	10.0	12.4	18.9	12.6	15.5
2	. 4	. 1	. 2	6.3	1.9	3.9	15.5	10.5	12.9	20.2	14.4	17.1
3	. 3	. 1	. 2	7.5	2.7	4.9	15.1	11.6	13.1	20.3	15.3	17.8
4	. 2	. 1	. 2	8.4	4.7	6.4	12.6	10.2	11.5	21.3	15.7	18.2
5	. 3	. 1	. 2	9.7	5.6	7.5	10.3	8.4	9.3	18.8	16.3	17.3
6	. 4	. 1	. 2	7.8	2.3	4.8	12.7	7.1	9.8	21.6	15.0	18.0
7	. 4	. 1	. 2	5.2	. 8	2.8	13.2	9.2	11.2	22.6	17.6	19.8
8	. 5	. 1	. 2	6.5	2.4	4.2	16.5	11.0	13.5	23.0	17.2	19.9
9	1.0	. 1	. 4	7.7	3.0	5.3	18.1	13.0	15.4	24.0	18.3	20.8
10	1.8	. 1	. 6	9.6	4.8	7.2	16.5	14.0	15.3	22.2	17.5	19.5
11	2.1	. 1	. 8	11.5	7.2	9.2	17.3	12.8	14.9	23.0	16.9	19.7
12	2.4	. 1	1.0	11.9	8.1	9.9	18.5	13.4	15.7	23.7	17.9	20.6
13	3.5	. 1	1.5	12.0	8.1	9.9	15.8	11.2	13.9	23.5	18.7	20.6
14	4.2	. 8	2.3	10.0	6.4	8.1	11.6	7.8	9.7	21.4	18.5	20.1
15	4.8	1.7	3.0	10.4	5.8	7.9	14.5	8.4	11.2	23.0	17.8	20.3
16	4.8	1.4	3.1	10.4	7.2	8.7	15.3	10.7	12.6	25.1	18.6	21.6
17	6.2	2.4	4.2	8.8	6.6	7.7	16.2	11.6	13.8	25.3	19.5	22.2
18	6.0	3.9	4.9	7.4	5.5	6.3	17.8	12.6	14.9	24.5	19.9	22.0
19	5.9	3.3	4.5	8.8	4.9	6.7	16.7	12.6	14.3	24.1	19.6	21.7
20	7.1	4.0	5.4	9.8	5.1	7.4	14.1	10.7	12.5	23.4	18.5	21.0
21	9.1	5.4	7.1	11.4	6.6	8.9	15.3	10.1	12.5	22.7	18.8	20.7
22	10.2	6.7	8.3	12.3	8.0	10.0	16.3	10.4	13.0	23.4	18.1	20.6
23	9.4	6.2	7.7	13.0	8.6	10.6	18.2	11.7	14.7	24.7	18.6	21.6
24	8.4	5.6	6.9	10.8	5.0	7.8	18.4	13.8	16.0	22.4	19.0	20.4
25	9.2	5.6	7.2	6.0	3.1	4.5	18.4	14.4	16.2	20.2	14.6	17.0
26	7.8	5.0	6.3	8.3	2.6	5.3	19.6	13.7	16.3	15.5	13.4	14.1
27	6.5	3.5	4.9	10.7	4.9	7.6	19.8	14.8	17.0	17.8	12.6	14.9
28	4.2	2.1	3.2	12.4	7.1	9.7	16.9	10.1	12.7	17.7	14.3	16.0
29	4.7	. 8	2.6	13.1	9.0	11.0	14.7	8.5	11.3	21.1	15.5	18.0
30	---	---	---	12.4	9.3	10.6	17.1	10.9	13.8	21.1	17.3	19.1
31	---	---	---	13.6	8.4	10.9	---	---	---	22.1	17.5	19.6
MONTH	10.2	. 1	3.0	13.6	. 8	7.4	19.8	7.1	13.4	25.3	12.6	19.2

07126300 PURGATOIRE RIVER NEAR THATCHER, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

	JUNE			JULY			AUGUST			SEPTEMBER		
1	23.4	18.3	20.6	26.1	21.2	23.6	25.0	22.5	23.7	26.4	21.4	23.6
2	23.2	19.2	21.2	27.5	22.3	24.9	25.9	21.0	23.3	24.5	21.7	23.0
3	24.4	19.7	21.9	29.2	22.8	25.8	26.2	21.5	23.8	25.8	20.5	22.9
4	23.7	19.9	21.9	28.7	23.4	26.2	26.7	22.8	24.8	26.2	21.0	23.3
5	24.3	19.6	22.0	28.4	24.7	26.3	27.8	22.0	24.6	25.1	20.9	23.0
6	22.4	19.1	20.8	28.5	23.5	25.8	27.9	21.8	24.6	22.9	8.3	21.1
7	23.7	18.7	21.1	28.2	24.5	26.1	27.1	21.8	24.1	14.9	3.7	9.8
8	24.9	19.1	21.9	25.3	22.6	23.6	24.1	21.9	23.1	19.7	14.7	17.0
9	25.1	20.6	22.8	24.2	21.5	22.8	27.3	21.1	23.9	21.7	17.7	19.6
10	25.6	20.2	22.7	25.8	21.8	23.6	25.6	21.6	23.6	22.6	18.0	20.2
11	24.7	20.7	22.5	26.8	22.0	24.2	27.2	22.1	24.1	20.9	17.5	19.3
12	25.3	20.1	22.4	25.9	21.9	23.7	27.8	21.6	24.2	19.9	18.8	19.3
13	24.4	20.8	22.5	23.8	21.4	22.5	28.2	21.8	24.6	20.9	17.7	19.2
14	23.3	21.4	22.3	26.0	20.2	22.9	27.3	21.8	24.3	19.6	17.9	18.7
15	24.9	20.7	22.6	26.1	21.7	23.8	27.5	21.7	24.0	19.4	17.3	18.2
16	24.4	21.1	22.7	28.6	21.7	24.8	23.9	15.6	18.5	20.9	16.5	18.5
17	24.7	21.0	22.8	29.4	23.2	25.9	23.1	17.2	19.9	20.6	16.9	18.7
18	26.1	20.9	23.4	27.7	24.0	25.6	24.4	19.6	21.9	19.9	17.2	18.4
19	26.8	21.4	24.0	28.9	23.3	25.8	25.4	20.7	22.7	19.3	15.6	17.3
20	27.9	22.2	24.9	29.3	24.4	26.3	27.3	20.7	23.5	19.0	15.5	17.0
21	26.6	22.6	24.3	28.3	23.2	25.6	26.0	21.4	23.7	19.5	15.2	17.2
22	23.6	21.3	22.6	26.8	7.3	24.3	23.7	19.4	21.2	20.6	16.1	18.2
23	26.3	19.8	22.8	23.1	7.3	18.3	21.7	19.6	20.5	20.9	17.1	18.7
24	27.6	22.1	24.3	23.6	19.5	21.5	21.5	19.5	20.3	20.5	16.9	18.6
25	25.7	20.8	23.2	23.9	20.2	21.9	23.0	19.0	20.9	20.4	17.2	18.6
26	26.1	20.6	23.3	25.6	19.9	22.5	24.4	20.7	22.3	17.4	12.5	14.6
27	24.2	22.1	23.0	24.6	21.4	23.0	25.2	20.8	22.8	14.7	10.9	12.7
28	24.3	20.4	22.1	24.0	20.3	22.2	22.6	16.1	19.5	16.0	11.6	13.6
29	23.5	21.9	22.6	25.3	21.0	22.7	24.8	20.2	22.3	17.2	13.2	15.0
30	23.8	21.9	22.6	27.6	21.6	24.2	24.0	20.8	22.3	18.2	14.0	16.0
31	---	---	---	28.8	22.4	25.2	25.9	20.9	23.1	---	---	---
MONTH	27.9	18.3	22.6	29.4	7.3	24.1	28.2	15.6	22.8	26.4	3.7	18.4
YEAR	29.4	. 0	12.6									

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	$\begin{gathered} \text { SEDI- } \\ \text { MENT, } \\ \text { DIS- } \\ \text { CHARGE, } \\ \text { SUS- } \\ \text { PENDED } \\ \text { (T/DAY) } \end{gathered}$
OCT				
27.	1055	47	37	4.7
DEC				
01	1525	21	26	1.5
JAN				
13.	1325	32	21	1.8
MAR				
14.	1345	19	37	1.9
APR				
11.	1620	32	62	5.4
MAY				
16.	1125	14	44	1.7
31.	1455	509	1990	2730
JUN				
06.	1725	91	3860	948
22.	1325	60	249	40
AUG				
03..	1615	11	65	1.9
SEP				
14...	1125	74	306	61

07126325 TAYLOR ARROYO BELOW ROCK CROSSING, NEAR THATCHER, CO

LOCATION.--Lat $37^{\circ} 25^{\prime} 26^{\prime \prime}$, long $103^{\circ} 55^{\prime} 09$ ", in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec. 17 , T. 30 S., R. 58 W., Las Animas County, Hydrologic Unit 11020010, on left bank 5 mi upstream from mouth, 1.6 mi southeast of Rock Crossing, and 13.5 mi southeast of Thatcher. DRAINAGE AREA.--48.4 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1983 to current year.
GAGE.--Water-stage recorder with satellite telemetry, artifical control, and crest-stage gage. Elevation of gage is $4,982 \mathrm{ft}$ above sea level, from topographic map.

REMARKS.--Records good except those above $6 \mathrm{ft}^{3} / \mathrm{s}$, which are fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
2	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
3	. 00	. 00	. 00	. 00	. 00	. 00	. 00	e. 00	. 00	. 00	. 00	. 00
4	. 00	. 00	. 00	. 00	. 00	. 00	. 00	e. 00	. 00	. 00	. 00	. 00
5	. 00	. 00	. 00	. 00	. 00	. 00	. 00	e. 00	. 00	. 00	. 00	. 00
6	. 00	. 00	. 00	. 00	. 00	. 00	. 00	e. 00	. 00	. 00	. 00	. 00
7	. 00	. 00	. 00	. 00	. 00	. 00	. 00	e. 00	. 00	. 00	. 00	. 00
8	. 00	. 00	. 00	. 00	. 00	. 00	. 00	e. 00	. 00	. 00	. 00	. 00
9	. 00	. 00	. 00	. 00	. 00	. 00	. 00	e. 00	. 00	. 00	. 00	. 00
10	. 00	. 00	. 00	. 00	. 00	. 00	. 00	e. 00	. 00	. 00	. 00	. 00
11	. 00	. 00	. 00	. 00	. 00	. 00	. 00	e. 00	. 00	. 00	. 00	. 00
12	. 00	. 00	. 00	. 00	. 00	. 00	. 00	e. 00	. 00	. 00	. 00	. 00
13	. 00	. 00	. 00	. 00	. 00	. 00	. 00	e. 00	. 00	. 00	. 00	. 00
14	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01
15	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 10	. 00
16	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 21	. 00
17	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00
18	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
19	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
20	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
21	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
22	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00
23	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
24	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
25	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.2	. 00	. 00	. 00	. 00
26	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 51	. 00	. 00	. 00	. 00
27	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	1.6	. 00
28	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	10	. 00
29	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 15	. 00
30	. 00	. 00	. 00	. 00	---	. 00	. 00	. 00	. 00	. 00	. 02	. 00
31	. 00	---	. 00	. 00	---	. 00	---	. 00	---	. 00	. 00	-
TOTAL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.73	0.00	0.00	12.10	0.01
MEAN	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 056	. 000	. 000	. 39	. 000
MAX	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.2	. 00	. 00	10	. 01
MIN	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
AC-FT	. 00	. 00	. 00	. 00	. 00	. 00	. 00	3.4	. 00	. 00	24	. 02

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1996, BY WATER YEAR (WY)

[^76]
07126325 TAYLOR ARROYO BELOW ROCK CROSSING NEAR THATCHER, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--March 1983 to current year.
PERIOD OF DAILY RECORD.--March 1983 to current year.
INSTRUMENTATION.--Water-quality monitor since March 1983, with satellite telemetry. Pumping sediment sampler since Aug. 5, 1983.

REMARKS.--Records for daily specific conductance are fair. Records for daily water temperature are good, except for discharges below $1 \mathrm{ft}^{3} / \mathrm{s}$, which are fair. Records for 1995 water year of daily sediment are poor. Records for 1996 water year of daily sediment are good except for May 25, Aug. 15-18, 22, and Sept. 13-14, which are fair. Only maximum and minimum specific conductance and water temperature data are published for days of partial flow, including May 25, 28, Aug. 15, 31, and Sept. 13-14. Daily data that are not published are either missing, during periods of no flow, or are of unacceptable quality. Daily mean suspended-sediment concentrations are published for days of partial flow and may not reflect concentrations during the flow event, including May 5, 1995, and May 25, and Aug. 27, 1996

EXTREMES FOR PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: Maximum, 2,520 microsiemens, Aug. 20, 1984; minimum, 40 microsiemens, Aug. 2, 1994. WATER TEMPERATURE: Maximum, $32.0^{\circ} \mathrm{C}$, Aug. 11, 1987 ; minimum, $0.0^{\circ} \mathrm{C}$, Apr. 2, 1988.
SEDIMENT CONCENTRATIONS: Maximum daily mean, $15,300 \mathrm{mg} / \mathrm{L}$, Aug. 22, 1984; no flow most of the time. SEDIMENT LOAD: Maximum daily mean, 4,910 tons, Aug. 9,1987 ; no flow most of the time.

EXTREMES FOR 1995 WATER YEAR .--
SEDIMENT CONCENTRATIONS: Maximum daily mean, $1,770 \mathrm{mg} / \mathrm{L}$, May 6 ; minimum daily mean, $16 \mathrm{mg} / \mathrm{L}$, June 4, no flow most of the time.
SEDIMENT LOAD: Maximum daily mean, 559 tons (estimated), June 28 ; minimum daily mean, 0.0 tons, May 12, June 11, July 20, 22, and Sept. 12, no flow most of the time.

EXTREMES FOR CURRENT YEAR .--
SPECIFIC CONDUCTANCE: Maximum, 258 microsiemens, May 28; minimum, 46 microsiemens, Aug. 15.
WATER TEMPERATURE: Maximum, $25.1^{\circ} \mathrm{C}$, Aug. 29 ; minimum, $11.6^{\circ} \mathrm{C}$, May 27.
SEDIMENT CONCENTRATIONS: Maximum daily mean, $470 \mathrm{mg} / \mathrm{L}$, May 26 ; minimum daily mean, $2 \mathrm{mg} / \mathrm{L}$, Aug. 22, no flow most of the time.
SEDIMENT LOAD: Maximum daily mean, 28 tons, Aug. 28; minimum daily mean, 0.0 tons, Aug. 17, 22 and Sept. 14, no flow most of the time.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07126325 TAYLOR ARROYO BELOW ROCK CROSSING NEAR THATCHER, CO--Continued
SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	min	MEAN									
	FEbRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	---	---	---	---	---	---
2	---	---	---	-	---	---	---	---	---	-	---	
3	----	----	---	---	-	---	---	---	--	--	---	---
4 5	----	----	----	----	---	---	----	----	---	---	----	---
6	---	---	---	---	---	---	---	---	---	---	---	---
7	---	---	---	---	---	---	--	---	-	--	--	---
8	---	---	---	---	---	---	---	---	---	--	---	---
10	-	----	----	----	----	----	---	--	--	---	---	---
11	---	---	---	---	---	---	---	---	---	---	---	---
12	---	---	---	---	---	---	---	---	---	---	-	---
13	---	----	----	---	---	---	---	---	--	---	--	---
15	----	----	----	----	----	---	---	---	----	---	---	---
16	-	---	---	---	---	---	---	---	---	---	--	---
17	---	---	---	---	--	---	---	---	---	---	--	---
18	---	----	----	----	---	---	---	---	---	---	---	---
20	----	----	----	---	-	---	---	---	--	---	--	--
21	---	---	---	---	---	---	-	---	--	--	--	---
22	----	----	----	----	----	---	---	---	---	---	----	---
24	---	---	---	---	---	---	---	--	---	--	--	---
25	---	---	---	---	---	---	---	---	---	166	71	---
26	-	---	---	---	---	---	---	---	---	191	143	169
27 28	----	----	----	----	----	---	----	---	----	227 258	191 223	205
29	---	---	-	---	-	---	---	---	---	--	--	--
30		---	-	-	-	---	---	---	--	--	---	
31	-	---	---	---	---	---	---	---	--	--	--	---
MONTH	---	---	---	---	---	---	---	---	---	--	---	---
	June			July			AUGUST			September		
1	---	---	---	---	---	---	---	---	---	---	---	---
${ }_{3}$	----	----	----	----	---	---	-	---	--	--	--	----
4	---	---	---	---	---	-	-	--	--	--	--	---
5	---	---	---	---	---	---	---	---	-	--	--	---
6	---	---	---	---	-	-	---	---	--	---	---	---
7	----	----	----	----	----	----	----	----	----	--	----	----
9	---	---	---	---	---	-	---	--	--	--	--	---
10	---	--	---	---	---	---	---	---	---	---	---	---
11	---	---	-	-	-	-	--	-	-	---	---	-
13	----	----	----	----	----	---	---	----	--	188	176	----
14	---	---	---	---	---	---	---	---	-	180	172	---
15	---	---	---	---	---	---	64	46	---		--	---
16	---	---	-	---	-	-	---	---	---	---	---	---
17	---	---	----	----	-	----	---	---	---	---	---	---
19	---	---	---	---	---	---	-	---	---	---	--	---
20	---	-	---	---	---	---	---	---	---	---	---	---
21	---	---	-	---	---	---	---	---	---	---	---	---
22 23	---	---	----	---	-	---	----	---	---	---	---	
24	---	---	---	---	---	---	---	---	---			
25	-	-	---	---	---	---	---	---	---	---	---	---
26	---	---	-	---	-	---	---	---	---	--	--	---
27 28	---	---	---	---	---	---	---	---	---		--	
29	---	---	---	---	---	---	---	---	---	---	--	
30	---	---	-	---	-	-	233	206	217	---	---	---
31	---	---	---	---	--	---	237	217		---	---	--
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

07126325 TAYLOR ARROYO BELOW ROCK CROSSING NEAR THATCHER, CO--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

07126325 TAYLOR ARROYO BELOW ROCK CROSSING NEAR THATCHER, CO--Continued

DAY	max	min	mean									
		JUNE			July			AUGUST			SEPTEMBER	
1	---	---	---	---	---	-	-	---	---	---	---	--
3	---	---	---		---	----	---	--	--	----	----	----
4 5	----	----	----	-	----	----	----	----	----	----	----	----
6	--	--	---	---	---	---	---	---	---	---	---	---
8	----	-	-	----	----	-	--	---	----	----	----	----
+9	---	---	---		-	---	-	--	--	---	---	---
	---	---	---	--	---	---	---	---	---	---	---	---
11	---	---	---	---	---	---	---	---	---	---	---	---
12 13 14	-	----	----	----	----	----	----	---	----	20.2	19.-5	---
${ }_{15}^{14}$	----	----	-	----	----	----	18.8	17.8	-	$\stackrel{19.5}{---1}$	$\stackrel{17.3}{---1}$	----
16	---	-	-	---	-	--	---	---	---	---	---	---
18	---	-	[----	-	-	--	--	----	----	----	----
${ }_{20}^{19}$	---	----	----	----	----	-	----	----	----	----	----	----
	---	----	----	-	---	---	---	---	---	---	---	---
${ }_{23}^{22}$	-	-	-	-	----	----	----	----	----	----	----	----
$\begin{aligned} & 24 \\ & 25 \end{aligned}$	----	----	----	-	----	----	----	---	---	----	----	----
	---	---	---	-	---	---						
27 28 8	----	----	----	-	----	----	----	----	----	----	----	----
28 29 29	-	-	----	----	-	----	${ }^{25 .-}$	---	---7	----	----	----
${ }_{31}^{30}$	----	---	---	-	---	----	24.3 21.7	20.0 19.5	$\stackrel{21.7}{-}$	----	---	----
Month	---	---	---	---	---	---	---	---	---	---	---	---

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

07126325 TAYLOR ARROYO BELOW ROCK CROSSING NEAR THATCHER, CO--Continued

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG/L) } \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \quad \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)
	OCTOBER			NOVEMBER			DECEMBER		
1	. 00	---	---	. 00	---	---	. 00	---	---
2	. 00	---	---	. 00	---	---	. 00	---	---
3	. 00	---	---	. 00	---	---	. 00	---	---
4	. 00	---	---	. 00	---	---	. 00	---	---
5	. 00	---	---	. 00	---	---	. 00	---	---
6	. 00	---	---	. 00	---	---	. 00	---	---
7	. 00	---	---	. 00	---	---	. 00	---	---
8	. 00	---	---	. 00	---	---	. 00	---	---
9	. 00	---	---	. 00	---	---	. 00	---	---
10	. 00	---	---	. 00	---	---	. 00	---	---
11	. 00	---	---	. 00	---	---	. 00	---	---
12	. 00	---	-	. 00	---	---	. 00	---	---
13	. 00	---	---	. 00	---	---	. 00	---	---
14	. 00	---	---	. 00	---	---	. 00	---	---
15	. 00	---	---	. 00	---	---	. 00	---	---
16	. 00	---	---	. 00	---	---	. 00	---	---
17	. 00	---	---	. 00	---	---	. 00	---	---
18	. 00	---	--	. 00	---	-	. 00	---	---
19	. 00	---	---	. 00	---	--	. 00	---	---
20	. 00	---	---	. 00	---	---	. 00	---	---
21	. 00	---	---	. 00	---	---	. 00	---	---
22	. 00	---	---	. 00	---	---	. 00	---	---
23	. 00	---	---	. 00	---	---	. 00	---	---
24	. 00	---	---	. 00	---	---	. 00	---	---
25	. 00	---	---	. 00	---	---	. 00	---	---
26	. 00	---	---	. 00	---	---	. 00	---	---
27	. 00	-	---	. 00	--	--	. 00	---	---
28	. 00	---	--	. 00	--	--	. 00	---	---
29	. 00	--	--	. 00	---	---	. 00	---	---
30	. 00	---	---	. 00	---	---	. 00	---	---
31	. 00	---	---	---	---	---	. 00	---	---
TOTAL	0.00	---	---	0.00	---	---	0.00	---	---
	JANUARY			FEBRUARY			MARCH		
1	. 00	---	---	. 00	---	---	. 00	---	---
2	. 00	---	---	. 00	---	---	. 00	---	---
3	. 00	---	---	. 00	---	---	. 00	---	---
4	. 00	---	---	. 00	---	---	. 00	---	---
5	. 00	---	---	. 00	---	---	. 00	---	---
6	. 00	---	---	. 00	---	---	. 00	---	---
7	. 00	---	---	. 00	---	---	. 00	---	---
8	. 00	---	---	. 00	---	---	. 00	---	---
9	. 00	---	---	. 00	---	---	. 00	---	---
10	. 00	---	---	. 00	---	---	. 00	---	---
11	. 00	---	---	. 00	---	---	. 00	---	---
12	. 00	---	---	. 00	---	---	. 00	---	---
13	. 00	---	---	. 00	---	---	. 00	---	---
14	. 00	---	--	. 00	---	---	. 00	---	---
15	. 00	---	---	. 00	---	---	. 00	---	---
16	. 00	---	---	. 00	---	---	. 00	---	---
17	. 00	---	---	. 00	---	---	. 00	---	---
18	. 00	---	---	. 00	---	---	. 00	---	---
19	. 00	---	---	. 00	---	---	. 00	---	---
20	. 00	---	---	. 00	---	---	. 00	---	---
21	. 00	-	--	. 00	---	---	. 00	---	---
22	. 00	---	--	. 00	---	---	. 00	---	---
23	. 00	---	--	. 00	---	---	. 00	--	---
24	. 00	---	---	. 00	---	---	. 00	---	---
25	. 00	---	---	. 00	---	---	. 00	---	---
26	. 00	---	---	. 00	---	---	. 00	---	---
27	. 00	--	-	. 00	---	--	. 00	-	---
28	. 00	-	-	. 00	---	--	. 00	-	---
29	. 00	---	---	. 00	---	---	. 00	--	---
30	. 00	---	---	---	---	---	. 00	--	---
31	. 00	---	---	---	---	---	. 00	---	--
TOTAL	0.00	---	---	0.00	---	-	0.00	-	---

07126325 TAYLOR ARROYO BELOW ROCK CROSSING NEAR THATCHER, CO--Continued

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{aligned} & \text { MEAN } \\ & \text { DISCHARGE } \\ & \text { (CFS) } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$
		APRIL		MAY			JUNE		
1	. 00	---	---	. 00	---	---	. 00	---	---
2	. 00	---	---	. 00	---	---	. 00		
3	. 00		---	e. 00	---	---	. 00	---	---
4	. 00	---	---	e. 00	---	---	. 00	---	---
5	. 00	---	---	e. 00	---	---	. 00	---	---
6	. 00	---	---	e. 00	---	---	. 00	---	---
7	. 00	---	---	e. 00	---	---	. 00	---	---
8	. 00	---	---	e. 00	---	---	. 00	---	---
9	. 00	---	---	e. 00	---	---	. 00	---	---
10	. 00	---	---	e. 00	---	---	. 00	---	---
11	. 00	---	---	e. 00	-	---	. 00	---	---
12	. 00	---	---	e. 00	---	---	. 00	---	---
13	. 00	-	---	e. 00	---	---	. 00	---	---
14	. 00	-	--	. 00	---	---	. 00	---	---
15	. 00	---	---	. 00	---	---	. 00	---	---
16	. 00	---	---	. 00	---	---	. 00	---	---
17	. 00	---	---	. 00	---	---	. 00	---	---
18	. 00	---	---	. 00	---	---	. 00	---	---
19	. 00	---	---	. 00	---	---	. 00	---	---
20	. 00	---	---	. 00	---	---	. 00	---	---
21	. 00	---	---	. 00	---	---	. 00	---	---
22	. 00	-	---	. 00	---	--	. 00	---	---
23	. 00	---	---	. 00	---	---	. 00	---	---
24	. 00	---	---	. 00	---	---	. 00	---	---
25	. 00	---	---	1.2	120	1.3	. 00	---	---
26	. 00	---	---	. 51	470	. 67	. 00	---	---
27	. 00	---	---	. 02	265	. 02	. 00	---	---
28	. 00	---	---	. 00	---	---	. 00	---	---
29	. 00	-	---	. 00	---	---	. 00	---	---
30	. 00	-	---	. 00	---	---	. 00	---	---
31	---	---	---	. 00	---	---	---	---	---
TOTAL	0.00	---	---	1.73	---	---	0.00	---	--
	JULY			AUGUST			SEPTEMBER		
1	. 00	---	---	. 00	---	---	. 00	---	---
2	. 00	---	---	. 00	---	---	. 00	---	---
3	. 00	---	---	. 00	---	---	. 00	---	---
4	. 00	---	---	. 00	---	--	. 00	---	---
5	. 00	---	---	. 00	---	---	. 00	---	---
6	. 00	---	---	. 00	---	---	. 00	---	---
7	. 00	---	---	. 00	---	---	. 00	---	---
8	. 00	---	---	. 00	---	---	. 00	---	---
9	. 00	---	-	. 00	---	---	. 00	---	---
10	. 00	---	---	. 00	---	---	. 00	---	---
11	. 00	---	---	. 00	---	---	. 00	---	---
12	. 00	---	---	. 00	---	---	. 00	---	---
13	. 00	---	---	. 00	---	---	. 00	-	---
14	. 00	---	---	. 00	---	---	. 01	36	. 00
15	. 00	---	---	. 10	316	. 21	. 00	---	---
16	. 00	---	---	. 21	141	. 14	. 00	---	---
17	. 00	-	--	. 01	31	. 00	. 00	--	---
18	. 00	---	---	. 00	---	---	. 00	---	---
19	. 00	---	---	. 00	---	---	. 00	---	---
20	. 00	---	---	. 00	---	---	. 00	---	---
21	. 00	---	---	. 00	---	---	. 00	---	---
22	. 00	---	---	. 01	2	. 00	. 00	--	---
23	. 00	---	---	. 00	---	---	. 00	--	-
24	. 00	---	---	. 00	---	---	. 00	--	--
25	. 00	---	---	. 00	--	---	. 00	--	---
26	. 00	---	---	. 00	---	---	. 00	---	---
27	. 00	---	---	1.6	41	11	. 00	---	---
28	. 00	---	---	10	446	28	. 00	---	---
29	. 00	---	---	. 15	138	. 06	. 00	---	---
30	. 00	---	-	. 02	83	. 01	. 00	---	---
31	. 00	---	---	. 00	---	---	-	---	---
TOTAL	0.00	--	---	12.10	---	---	0.01	---	--

07126325 TAYLOR ARROYO BELOW ROCK CROSSING NEAR THATCHER, CO--Continued

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
	OCTOBER			NOVEMBER			DECEMBER		
1	. 00	---	---	. 00	---	---	. 00	---	---
2	. 00	---	---	. 00	---	---	. 00	---	---
3	. 00	---	---	. 00	---	---	. 00	---	---
4	. 00	---	---	. 00	---	--	. 00	---	---
5	. 00	---	---	. 00	---	---	. 00	---	---
6	. 00	---	---	. 00	-	---	. 00	---	---
7	. 00	-	---	. 00	---	---	. 00	---	---
8	. 00	---	-	. 00	---	---	. 00	---	---
9	. 00	---	-	. 00	---	---	. 00	---	---
10	. 00	---	---	. 00	---	---	. 00	---	---
11	. 00	---	---	. 00	---	---	. 00	---	---
12	. 00	---	---	. 00	---	---	. 00	---	---
13	. 00	---	-	. 00	--	---	. 00	---	---
14	. 00	---	---	. 00	---	---	. 00	---	---
15	. 00	---	--	. 00	---	---	. 00	---	--
16	. 00	---	---	. 00	---	---	. 00	---	---
17	. 00	---	---	. 00	---	---	. 00	---	---
18	. 00	---	---	. 00	---	---	. 00	---	---
19	. 00	---	---	. 00	---	---	. 00	---	---
20	. 00	---	---	. 00	---	---	. 00	---	---
21	. 00	---	--	. 00	--	-	. 00	---	--
22	. 00	---	---	. 00	-	-	. 00	---	---
23	. 00	---	---	. 00	-	---	. 00	---	--
24	. 00	-	-	. 00	---	---	. 00	---	---
25	. 00	---	---	. 00	---	---	. 00	---	---
26	. 00	---	---	. 00	---	---	. 00	---	---
27	. 00	---	---	. 00	---	---	. 00	---	---
28	. 00	---	---	. 00	---	---	. 00	---	---
29	. 00	---	---	. 00	---	---	. 00	---	-
30	. 00	--	-	. 00	-	--	. 00	-	-
31	. 00	---	---	---	---	---	. 00	--	--
TOTAL	0.00	---	-	0.00	---	---	0.00	-	---
	JANUARY			FEBRUARY			MARCH		
1	. 00	---	---	. 00	---	---	. 00	---	---
2	. 00	--	---	. 00	---	---	. 00	-	-
3	. 00	--	-	. 00	---	---	. 00	-	---
4	. 00	--	---	. 00	---	---	. 00	---	---
5	. 00	---	---	. 00	---	---	. 00	---	---
6	. 00	---	---	. 00	---	---	. 00	---	---
7	. 00	---	---	. 00	---	---	. 00	---	---
8	. 00	---	---	. 00	---	---	. 00	---	---
9	. 00	---	---	. 00	---	--	. 00	---	--
10	. 00	---	-	. 00	---	---	. 00	---	-
11	. 00	---	-	. 00	---	---	. 00	---	---
12	. 00	--	---	. 00	---	---	. 00	---	---
13	. 00	---	---	. 00	-	---	. 00	---	---
14	. 00	---	---	. 00	---	---	. 00	---	---
15	. 00	---	---	. 00	---	---	. 00	---	---
16	. 00	---	--	. 00	-	---	. 00	-	---
17	. 00	---	---	. 00	--	--	. 00	---	---
18	. 00	---	---	. 00	--	--	. 00	---	---
19	. 00	---	---	. 00	---	---	. 00	---	---
20	. 00	---	---	. 00	---	---	. 00	---	---
21	. 00	---	--	. 00	---	---	. 00	---	---
22	. 00	---	---	. 00	---	---	. 00	--	---
23	. 00	---	---	. 00	---	---	. 00	---	---
24	. 00	---	---	. 00	---	---	. 00	---	--
25	. 00	---	---	. 00	---	---	. 00	---	---
26	. 00	---	--	. 00	--	---	. 00	-	---
27	. 00	---	---	. 00	---	---	. 00	---	---
28	. 00	---	---	. 00	---	---	. 00	-	---
29	. 00	--	-	---	---	---	. 00	---	---
30	. 00	---	---	---	---	---	. 00	---	---
31	. 00	---	---	---	---	---	. 00	---	---
total	0.00	---	---	0.00	---	---	0.00	---	---

07126325 TAYLOR ARROYO BELOW ROCK CROSSING NEAR THATCHER, CO--Continued

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DAY	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG/L) } \end{aligned}$	$\begin{aligned} & \text { SEDIMENT } \\ & \text { DISCHARGE } \\ & \text { (TONS/DAY) } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{aligned} & \quad \text { MEAN } \\ & \text { CONCEN- } \\ & \text { TRATION } \\ & (\text { MG/L) } \end{aligned}$	SEDIMENT DISCHARGE (TONS/DAY)	$\begin{gathered} \text { MEAN } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	MEAN CONCENTRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
	APRIL			MAY			June		
1	. 00	---	---	. 00	---	---	. 06	41	. 01
2	. 00	---	---	. 00	---	---	. 00	---	---
3	. 00	---	---	. 00	---	---	. 00	---	---
4	. 00	---	---	. 00	--	---	. 02	16	. 01
5	. 00	---	---	. 48	108	1.3	. 00		---
6	. 00	---	---	58	1770	416	. 00	---	---
7	. 00	---	---	. 44	602	. 78	. 00	---	---
8	. 00	---	---	. 12	--	e. 05	. 68	---	e. 64
9	. 00	---	---	. 06	---	e. 02	. 19	---	e. 10
10	. 00	---	---	. 00	---	.	. 11	-	e. 05
11	. 00	---	---	. 04	---	e. 01	. 02	---	e. 00
12	. 00	---	---	. 01	---	e. 00	. 00	---	---
13	. 00	---	---	. 00	---	---	. 00	---	---
14	. 00	---	---	. 00	--	--	. 00	---	---
15	. 00	---	---	. 00	---	-	. 00	---	---
16	. 00	---	---	. 00	---	----	. 00	---	---
17	. 00	---	---	33	847	174	. 00	---	---
18	. 00	---	---	6.7	283	8.8	. 00	---	---
19	. 00	---	---	. 06	23	. 01	. 00	---	---
20	. 00	---	---	. 00	---	.	. 00	---	---
21	. 00	---	---	. 00	---	---	. 00	---	---
22	. 01	---	--	. 00	---	--	. 00	---	--
23	. 00	-	---	. 00	---	--	. 00	-	---
24	. 00	---	---	. 00	---	---	. 00	---	---
25	. 00	---	---	. 00	---	---	. 00	---	---
26	. 00	---	---	. 00	---	---	. 00	---	---
27	. 00	---	---	. 00	---	---	. 00	---	---
28	. 00	---	---	. 00	---	---	78	---	e559
29	. 00	---	---	56	-	e348	33	--	e164
30	. 00	---	---	64	--	e421	1.2	---	e1.4
31	---	---	---	. 78	146	. 39	---	-	---
TOTAL	0.01	---	-	219.69	---	---	113.28	---	---
	JULY			AUGUST			SEPTEMBER		
1	. 35	---	e. 25	. 00	---	---	. 00	---	---
2	4.1	---	e8.3	. 00	---	---	. 00	---	---
3	. 63	---	e. 57	. 00	---	---	. 00	--	-
4	. 06	---	e. 02	. 00	---	---	. 00	---	---
5	. 00	---	---	. 00	--	---	. 00	---	---
6	. 00	---	---	. 00	---	---	. 00	---	---
7	. 00	---	---	. 00	---	---	. 00	---	---
8	. 00	---	---	. 00	---	---	. 00	-	---
9	. 00	---	---	. 00	---	---	. 19	49	. 15
10	. 00	---	---	. 00	---	---	1.5	210	2.1
11	. 00	---	---	. 07	49	. 05	. 62	143	. 34
12	. 00	---	---	. 00	---	---	. 02	---	. 00
13	. 00	---	--	. 00	---	---	. 00	-	---
14	. 12	---	e. 05	. 00	---	---	. 00	-	---
15	. 07	---	e. 02	. 00	---	---	. 00	---	---
16	. 00	-	---	. 00	---	--	. 00	-	---
17	1.1	---	e1.3	. 00	---	--	. 00	--	-
18	. 30	---	e. 20	. 00	--	-	. 00	---	--
19	. 04	---	e. 01	. 00	---	---	. 00	---	---
20	. 01	55	. 00	. 00	---	---	. 00	---	---
21	. 05	30	. 02	. 00	---	---	. 00	---	---
22	. 02	43	. 00	. 00	---	---	. 00	---	---
23	. 00	---	---	. 00	---	---	. 00	---	---
24	. 00	---	---	. 00	---	---	. 00	---	---
25	. 00	---	---	. 00	---	---	. 00	--	---
26	. 00	---	-	. 00	--	--	. 00	-	---
27	. 00	---	---	. 00	---	---	. 00	---	---
28	. 00	---	---	. 00	---	---	. 00	---	---
29	. 00	-	-	. 00	---	---	. 00	---	---
30	. 00	---	---	. 00	---	---	. 00	---	---
31	. 00	---	---	. 00	---	---	---	---	---
TOTAL	6.85	---	---	0.07	---	---	2.33	---	--

e-Estimated.

07126485 PURGATOIRE RIVER AT ROCK CROSSING NEAR TIMPAS, CO

LOCATION.--Lat $37^{\circ} 37^{\prime} 10^{\prime}$, long $103^{\circ} 35^{\prime} 32^{\prime \prime}$ in $\mathrm{NE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec.10, T. 28 S., R. 55 W., Las Animas County, Hydrologic Unit 11020010, on right bank (revised) at Rock Crossing, 2.1 mi upstream from Minnie Canyon, 2.4 mi downstream from Beaty Canyon, and 17 mi southeast of Timpas.

DRAINAGE AREA.--2,635 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1983 to current year.
REVISED RECORD.--WDR CO-87-1: 1984-86 (M).
GAGE.--Water-stage recorder with satellite telemetry, and crest-stage gages. Elevation of gage is $4,350 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for discharges above $1,000 \mathrm{ft} 3 / \mathrm{s}$, which are fair, and Sept. 21-27 and estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 30,000 acres. Peak flows are regulated to some extent by Trinidad Dam, 92 mi upstream.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	41	35	37	e33	e29	27	20	e14	35	14	22	50
2	38	35	37	e31	e25	26	20	15	31	6.2	108	39
3	42	37	36	e31	e20	27	19	12	33	e5.0	48	35
4	40	39	35	e32	e22	27	18	11	34	e4.1	49	32
5	38	40	36	e31	e28	27	17	16	29	e3.6	26	28
6	34	42	36	e31	36	27	18	14	29	e3.0	18	26
7	34	40	37	e31	e39	27	19	14	32	e2. 6	13	1380
8	35	38	43	e33	43	27	19	15	27	e2. 5	11	238
9	35	38	43	e34	45	24	21	17	27	e2. 3	10	86
10	51	38	34	e35	43	29	21	14	24	5.5	8.3	47
11	58	39	40	36	42	29	20	13	26	23	6.5	69
12	44	42	35	37	37	28	19	11	22	35	5.2	70
13	41	38	37	36	37	28	18	12	169	25	e4.0	39
14	38	35	36	36	35	28	26	13	22	15	e3.9	44
15	33	34	36	34	35	28	24	13	60	13	9.2	41
16	35	33	36	34	33	28	18	14	81	13	136	30
17	33	33	37	34	32	40	18	12	91	11	104	24
18	32	34	38	e33	31	46	18	11	52	9.3	34	39
19	31	35	36	e30	31	40	16	11	37	8.4	20	59
20	31	35	35	e32	30	35	14	8.9	31	120	27	22
21	34	35	32	e35	28	33	13	7.6	26	260	10	17
22	34	35	30	e37	28	31	12	6.5	29	44	66	16
23	32	35	e30	e37	28	29	12	6.0	18	158	562	17
24	32	34	e30	e35	27	25	12	5.9	15	165	574	17
25	32	33	e30	e33	27	24	12	494	13	77	285	16
26	33	34	e31	e31	25	23	13	751	11	35	63	19
27	34	35	e32	e30	27	24	12	148	9.1	372	45	24
28	34	36	e33	e33	27	23	11	80	8.1	143	496	18
29	35	39	e34	e32	27	23	11	76	7.3	59	109	16
30	35	37	e33	e32	---	22	e13	42	131	242	2210	22
31	35	--	e35	e32	---	21	---	42	---	30	97	---
TOTAL	1134	1093	1090	1031	917	876	504	1919.9	1159.5	1906.5	5180.1	2580
MEAN	36.6	36.4	35.2	33.3	31.6	28.3	16.8	61.9	38.6	61.5	167	86.0
MAX	58	42	43	37	45	46	26	751	169	372	2210	1380
MIN	31	33	30	30	20	21	11	5.9	7.3	2.3	3.9	16
AC-FT	2250	2170	2160	2040	1820	1740	1000	3810	2300	3780	10270	5120

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1996, BY WATER YEAR (WY)

[^77]b-From rating curve extended above $5450 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurement of peak flow.
c-From floodmarks.

07126485 PURGATOIRE RIVER AT ROCK CROSSING NEAR TIMPAS, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1982 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: July 1983 to September 1992 (discontinued).
WATER TEMPERATURE: July 1983 to September 1992 (discontinued).
SUSPENDED SEDIMENT: August 1983 to September 1992 (discontinued).
IREMARKS.--Daily maximum and minimum specific conductance and daily mean water temperature data for July 1983 to September 1992 are available in district office. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

EXTREMES FOR PERIOD OF RECORD.--

SPECIFIC CONDUCTANCE: Maximum, 5,590 microsiemens, July 13, 1991; minimum, 202 microsiemens, Aug. 11, 1991.
WATER TEMPERATURE: Maximum, $36.8^{\circ} \mathrm{C}$, June 27,1990 ; minimum $0.0^{\circ} \mathrm{C}$, on many days during the winter in most years. SEDIMENT CONCENTRATIONS: Maximum daily, $54,900 \mathrm{mg} / \mathrm{L}$, Aug. 16, 1986; minimum daily, $5 \mathrm{mg} / \mathrm{L}$, Mar. 22, 1988, and Feb. 10, 1989.
SEDIMENT LOADS: Maximum daily, 160,000 tons, July 9, 1992; minimum daily, 0.0 tons (estimated), on several days during 1989 and 1990.

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

07128500 PURGATOIRE RIVER NEAR LAS ANIMAS, CO

LOCATION.--Lat $38^{\circ} 02^{\prime} 02$ ", long $103^{\circ} 12^{\prime} 00$ ", in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 4} / 4$ sec. 23 , T. 23 S., R. 52 W., Bent County, Hydrologic Unit 11020010, on right bank at downstream side of bridge on State Highway 101, 2.3 mi southeast of courthouse in Las Animas, and 4.5 mi upstream from mouth.
DRAINAGE AREA.--3,318 mi ${ }^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May to September 1889, July to October 1909 (gage heights and discharge measurements only), January 1922 to September 1931, July 1948 to current year. Monthly discharge only for some periods, published in WSP 1311. Published as Purgatoire Creek at Las Animas in 1889 and as Purgatory River near Las Animas in 1909. Statistical summary computed for 1978 to current year, subsequent to completion of Trinidad Reservoir.
REVISED RECORDS.--WSP 1241: 1927(M); WDR CO-84-1: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $3,878.04 \mathrm{ft}$ above sea level. See WSP 1731 for history of changes prior to Oct. 1, 1955. Oct. 1, 1955 to July 11, 1966, at datum 3.00 ft higher. Supplementary water-stage recorder at site 1.6 mi downstream at different datum July 12 to Nov. 17, 1966. Nov. 18, 1966, to May 4, 1982, at datum 3.1 ft lower.
REMARKS.--Records good except for estimated daily discharges, which are poor. Flow regulated to some extent since January 1975 by Trinidad Lake near Trinidad, upstream. Diversions for irrigation of about 36,000 acres upstream from station.
EXTREMES OUTSIDE PERIOD OF RECORD.--Greatest flood since at least 1860 occurred Oct. 1, 1904, discharge not determined DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^78]
07128500 PURGATOIRE RIVER NEAR LAS ANIMAS, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--December 1985 to September 1996 (discontinued).
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: December 1985 to September 1996 (discontinued).
WATER TEMPERATURE: December 1985 to September 1996 (discontinued).
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for daily specific conductance are fair. Records for daily water temperature are good. Daily data that are not published are either missing or of unacceptable quality.

EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 6,320 microsiemens, July 31, 1989; minimum, 365 microsiemens, July 21, 1990. WATER TEMPERATURE: maximum, $34.7^{\circ} \mathrm{C}$, Aug. 18,1994 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during winter months.

EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum, 5,690 microsiemens, May 20; minimum, 423 microsiemens, Aug. 30.
WATER TEMPERATURE: Maximum, $34.5^{\circ} \mathrm{C}$, July 5 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during winter.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOB		NOVEMBER			DECEMBER			JANUARY		
1	2470	2170	2360	3170	3100	3150	4080	3960	4010	3950	3830	3890
2	2360	2160	2240	3180	3130	3160	4220	3940	4080	4110	3820	3930
3	2510	2350	2430	3200	3120	3160	4080	3880	3980	4250	4110	4210
4	2550	2450	2510	3120	3080	3100	4010	3900	3940	4320	4060	4200
5	2550	2490	2520	3180	3090	3140	3900	3780	3880	4270	4080	4180
6	2610	2510	2550	3250	3110	3210	3960	3760	3920	4460	4270	4390
7	2620	2530	2580	3280	3120	3200	3910	3870	3890	4440	4150	4340
8	2640	2550	2610	3200	3110	3140	3910	3880	3900	4220	4070	4160
9	2650	2560	2600	3340	3130	3180	4160	3940	4050	4290	4110	4220
10	2660	2570	2620	3370	3180	3280	4210	4040	4140	4110	3880	4020
11	2790	2620	2670	3220	3140	3160	4050	3890	3980	3950	3740	3860
12	3190	2790	2980	3160	3100	3140	3910	3790	3850	3890	3560	3720
13	3190	3060	3100	3120	3010	3090	3920	3840	3900	3770	3490	3630
14	3070	2900	3000	3110	2990	3050	3910	3800	3870	3810	3620	3720
15	3090	2930	3010	3710	3070	3480	3910	3840	3870	3780	3720	3760
16	3150	3030	3060	3800	3680	3750	3880	3830	3870	3840	3720	3790
17	3160	3060	3100	3820	3750	3790	3880	3840	3860	3980	3800	3890
18	3170	3020	3110	3880	3730	3840	3850	3790	3820	4470	3500	3980
19	3160	3080	3120	3970	3880	3930	3790	3750	3770	4550	4210	4380
20	3180	3120	3160	4070	3820	3990	3810	3750	3780	4220	3970	4100
21	3270	3150	3210	4190	4030	4100	3900	3760	3850	4140	3720	3930
22	3180	2920	3030	4180	3870	3940	3840	3730	3800	4000	3440	3720
23	3160	2890	3010	4050	3900	3970	4030	3780	3900	4000	3550	3790
24	3120	2880	3030	3990	3840	3900	4130	3980	4030	4120	3820	3970
25	3020	2810	2880	3940	3870	3900	4150	3900	4060	3940	3780	3860
26	2910	2880	2900	4040	3920	3980	3980	3830	3930	4150	3880	3990
27	3090	2910	2990	4030	3980	4010	4020	3870	3970	4160	3960	4050
28	3260	3140	3200	4080	4010	4050	4060	3960	4000	4110	3770	3970
29	3300	3180	3220	4090	4040	4070	4070	3980	4020	3920	3790	3870
30	3230	3110	3200	4060	3990	4030	4090	3980	4050	4000	3750	3880
31	3220	3120	3160	---	---	---	4090	3890	3980	4400	3800	4100
MONTH	3300	2160	2880	4190	2990	3560	4220	3730	3930	4550	3440	3980

07128500 PURGATOIRE RIVER NEAR LAS ANIMAS, CO--Continued

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	4330	4200	4260	4220	4120	4160	3850	3430	3670	5340	4920	5160
2	4450	3720	4100	4270	4180	4240	4700	3850	4320	5200	4770	5010
3	4430	3830	4200	4290	4200	4250	4930	4540	4730	5200	4980	5130
4	4570	4430	4490	4320	4200	4220	4910	4010	4570	4990	4670	4870
5	4500	4300	4400	4300	4190	4250	4340	3960	4140	4960	4560	4760
6	4390	4140	4240	4270	4190	4220	4200	3770	4000	5250	4770	5010
7	4150	3910	4040	4510	4200	4330	4380	3950	4200	5240	5010	5140
8	3930	3690	3830	4530	4110	4250	3990	3620	3840	5300	5130	5220
9	3690	3320	3580	4500	4210	4300	4620	3770	4310	5510	5230	5350
10	3560	3330	3440	4540	4330	4450	4920	4580	4740	5460	4970	5220
11	3790	3440	3650	4370	4300	4330	5350	3480	4250	5090	4510	4800
12	3820	3740	3780	4490	4300	4410	4050	3370	3580	5190	4640	4920
13	3880	3720	3800	4510	4320	4420	4990	3720	4580	5270	5110	5180
14	4040	3870	3940	4480	2990	4210	5210	3070	3980	5390	5090	5250
15	4160	4030	4070	3160	2680	2940	3470	2750	3010	5430	5230	5320
16	4170	4070	4130	3190	3040	3130	4700	3470	4320	5450	4980	5210
17	4120	4030	4070	3190	3040	3140	4720	4580	4650	5260	4880	5070
18	4140	4010	4110	3240	3040	3140	4690	4540	4630	5530	4850	5110
19	4010	3810	3870	3420	3100	3260	4950	4690	4840	5360	4920	5100
20	3950	3850	3890	3530	3410	3450	4980	4820	4910	5690	4630	5370
21	3980	3940	3960	3660	3340	3470	4990	4770	4880	4630	2730	3480
22	4040	3930	3980	3390	3230	3310	4890	4570	4760	3360	2730	3100
23	4140	4030	4080	3500	3280	3360	5310	4890	5060	4640	3290	3960
24	4110	4020	4080	3530	3300	3470	5310	4780	5020	5160	3750	4450
25	4230	4080	4150	3500	3180	3420	4900	4150	4440	4110	3330	3750
26	4240	4020	4130	3440	3330	3390	4840	4110	4440	4180	470	1160
27	4160	4010	4070	3480	3380	3430	5200	4840	5080	980	575	778
28	4230	4140	4190	3580	3400	3490	5220	4860	5060	1890	766	1560
29	4270	4160	4220	3400	2930	3130	5120	4820	5010	2230	1860	2040
30	---	---	---	3250	3080	3160	5330	4900	5110	3080	2230	2620
31	---	---	--	3450	3250	3360		---	---	3190	3030	3100
MONTH	4570	3320	4030	4540	2680	3740	5350	2750	4470	5690	470	4260
	JUNE			JULY			AUGUST			SEPTEMBER		
1	3150	3040	3090	3480	1690	2460	2090	1260	1630	1570	880	1240
2	3040	2540	2730	3130	2320	2530	2620	2090	2440	2010	1570	1800
3	2960	2450	2630	2860	2490	2650	3200	2160	2680	2270	2000	2140
4	3520	2960	3230	3400	2840	3100	2700	2160	2480	2390	2200	2300
5	3630	3270	3470	4090	3400	3760	2820	2600	2680	2580	2350	2470
6	3270	2980	3110	4260	4020	4140	3090	2650	2800	2550	2450	2500
7	3170	2870	3050	4370	3600	4020	3290	2890	3070	2680	2490	2610
8	3090	2740	2930	3650	3470	3550	3560	3290	3430	3430	---	---
9	2830	2600	2730	3600	2810	3270	3570	3060	3320	1400	---	---
10	3140	2590	2810	2810	2400	2530	3180	2950	3090	1820	1390	1590
11	3120	2590	2890	3150	2610	2880	3070	2910	2990	2190	1820	2020
12	2610	2310	2460	2920	2070	2510	3580	2880	3070	2340	2180	2240
13	3480	2210	2860	3850	510	1220	4700	3580	4310	2470	2120	2250
14	3390	2190	2470	1330	555	942	4900	4450	4670	2390	2290	2320
15	2340	2200	2250	1710	1320	1550	4650	835	1750	2510	2290	2390
16	3100	597	1340	2370	1640	2000	2320	1570	1900	2610	2500	2550
17	1280	729	978	2730	2180	2470	2970	2320	2740	2610	2460	2540
18	1470	1280	1360	2820	1980	2190	3610	2000	3090	2500	2440	2470
19	1930	1450	1700	2370	2170	2270	3310	2480	2930	2600	2490	2550
20	2480	1910	2200	3110	2370	2540	2630	514	1030	2960	2580	2820
21	2850	2320	2490	3670	1970	2550	1740	921	1290	2890	2140	2510
22	2910	2350	2530	3350	1360	2270	---	1860	---	2270	2220	2250
23	2840	2540	2660	2070	1380	1740	3070	---	---	2310	2220	2270
24	3210	2840	3040	2460	1540	2100	2800	769	1420	2430	2280	2360
25	3370	2190	2820	1770	951	1320	1520	1110	1320	2540	2430	2480
26	2640	2330	2430	---	---	---	1430	1030	1170	2560	2450	2520
27	3100	2520	2840	---	---	---	1860	1230	1680	2640	2380	2540
28	3230	2570	2910	---	---	--	2070	1810	1910	2660	2480	2590
29	3390	3070	3230	---	---	---	2170	1370	1740	2650	2420	2580
30	3350	841	2270	1820	615	1170	1470	423	1170	2460	2420	2440
31	---	---	---	1270	721	1060	884	482	651	---	---	-
MONTH	3630	597	2580	--	--	-	--	---	--	3430	---	-

07128500 PURGATOIRE RIVER NEAR LAS ANIMAS, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

	FEBRUARY			MARCH			APRIL			MAY		
1	. 0	. 0	. 0	7.3	. 2	3.9	19.7	7.3	12.6	23.1	10.2	15.6
2	. 0	. 0	. 0	9.5	1.0	5.1	19.9	8.6	13.5	24.4	11.2	16.8
3	. 0	. 0	. 0	10.1	1.7	5.9	16.1	9.7	12.0	26.0	11.2	17.2
4	. 0	. 0	. 0	10.5	4.3	7.2	12.4	7.7	9.7	26.4	12.5	18.6
5	. 6	. 0	. 1	11.5	4.3	7.6	11.2	5.6	8.2	20.6	14.0	16.3
6	1.1	. 0	. 3	6.1	. 0	2.5	18.1	4.5	10.6	25.8	11.8	17.4
7	2.5	. 0	. 5	7.1	. 0	2.3	17.6	8.2	12.1	25.8	14.4	19.0
8	2.7	. 0	. 7	7.4	. 0	3.5	20.7	9.4	14.2	28.8	15.7	20.8
9	5.3	. 0	1.5	10.5	1.6	5.9	24.5	9.1	15.9	29.0	16.8	21.1
10	4.5	. 0	1.8	13.4	4.2	8.7	22.8	10.9	16.0	26.2	13.8	18.7
11	5.4	. 0	2.5	16.1	7.7	11.4	21.7	10.6	15.0	25.9	13.8	18.7
12	5.7	. 0	2.8	16.1	8.0	11.6	20.7	9.9	14.4	28.0	13.8	19.6
13	6.9	. 1	3.6	15.9	7.2	10.9	17.7	6.9	12.6	26.5	15.0	19.2
14	8.3	1.7	5.0	9.9	2.4	6.2	11.4	6.0	8.0	28.6	15.2	20.7
15	7.5	2.9	5.1	8.5	2.2	5.1	15.9	6.6	10.4	28.4	14.8	21.4
16	7.4	. 5	4.0	11.6	5.2	8.2	20.1	8.8	13.2	30.7	15.5	22.4
17	9.1	2.1	5.6	10.6	6.9	8.4	20.1	9.8	14.0	29.3	16.3	22.0
18	8.8	4.1	6.5	8.2	4.8	6.4	22.2	8.8	14.3	28.1	16.1	21.2
19	7.5	3.4	5.8	7.9	2.8	5.3	19.8	7.9	12.7	26.9	14.5	20.3
20	10.7	4.3	7.3	10.2	2.6	6.4	16.2	6.7	10.9	27.2	13.2	19.4
21	12.4	5.6	9.0	12.7	4.8	8.7	17.6	6.8	11.4	24.3	14.6	18.7
22	12.8	6.9	9.4	13.0	6.5	9.7	21.8	6.7	13.2	26.2	15.1	19.8
23	11.7	5.4	8.3	14.5	7.7	11.0	23.3	8.1	15.1	27.5	15.0	19.5
24	9.6	4.3	6.9	10.3	1.8	5.7	21.6	10.9	15.8	21.2	14.3	16.7
25	12.2	5.2	8.3	4.9	. 0	2.4	21.7	11.3	15.5	14.3	11.2	12.2
26	6.8	3.0	4.9	8.7	. 3	4.6	22.7	8.9	15.5	11.4	8.8	9.9
27	6.4	. 0	2.8	12.2	3.4	7.7	23.2	11.0	16.1	13.6	10.0	11.8
28	5.4	. 0	2.1	14.6	6.4	10.0	13.0	8.0	10.4	15.5	11.0	13.2
29	7.5	. 0	3.2	15.7	7.8	11.5	18.3	3.5	10.5	21.5	12.7	17.1
30	---	---	---	15.7	8.9	11.5	21.8	6.9	13.5	22.0	15.7	18.4
31	-	-	---	16.2	7.0	11.3	---	---	---	21.3	---	-
MONTH	12.8	. 0	3.7	16.2	. 0	7.3	24.5	3.5	12.9	30.7	-	---

07128500 PURGATOIRE RIVER NEAR LAS ANIMAS, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST			SEPTEMBER	
1	25.0	-	---	28.3	19.0	23.3	29.2	21.4	25.0	24.6	19.7	21.9
2	24.8	15.5	18.9	30.3	21.7	25.6	30.3	21.9	25.8	25.9	20.2	23.1
3	26.3	17.2	21.2	31.6	21.2	26.0	30.0	22.1	25.7	25.9	20.2	23.1
4	27.4	---	---	34.0	20.9	26.7	28.5	22.9	25.4	25.9	19.9	22.6
5	27.7	17.7	22.4	34.5	21.6	26.8	29.4	20.7	24.5	25.3	20.0	22.1
6	26.2	17.7	21.5	33.9	21.0	26.8	30.0	20.9	24.9	23.2	18.9	20.8
7	26.9	16.9	21.4	32.3	21.4	25.7	28.6	19.7	23.8	23.4	18.0	20.2
8	26.5	16.8	21.4	24.1	20.7	22.4	25.7	20.8	23.2	20.5	12.9	16.6
9	27.5	19.1	22.7	23.1	19.6	21.4	29.2	20.6	23.9	20.8	14.0	17.4
10	28.4	19.6	23.3	23.1	18.7	20.4	29.1	19.7	23.7	23.2	17.6	20.4
11	27.9	19.0	22.5	30.6	18.3	23.3	30.2	20.0	24.3	23.3	19.0	20.9
12	27.7	18.7	22.7	29.4	21.2	23.7	30.6	20.5	24.7	21.1	18.0	19.3
13	26.5	19.5	23.0	21.5	16.5	20.0	31.7	18.7	24.6	20.9	17.5	18.8
14	24.5	---	---	25.1	12.8	20.3	31.6	21.0	25.3	20.2	17.5	18.7
15	27.9	20.3	23.4	29.7	20.3	24.4	22.9	14.2	19.2	20.2	17.8	18.5
16	23.4	19.5	21.8	31.2	21.3	26.1	27.8	19.1	22.9	21.4	16.6	18.5
17	27.5	20.1	23.4	33.3	22.7	27.8	27.7	18.5	22.7	22.7	16.0	18.9
18	28.4	20.9	24.4	31.0	23.8	26.5	28.8	19.0	24.0	21.1	17.3	18.8
19	29.1	20.8	24.7	29.6	22.7	25.9	28.3	20.3	24.3	19.4	15.1	17.0
20	29.9	21.4	25.1	31.4	24.3	27.1	24.2	---	---	19.8	15.6	17.2
21	29.1	20.4	24.0	31.0	23.4	27.2	27.5	20.8	23.7	20.1	14.6	17.1
22	25.7	20.2	22.2	29.5	25.0	26.8	26.8	22.2	23.9	21.2	16.1	18.2
23	26.2	18.3	21.6	29.8	22.5	25.6	27.1	21.7	23.9	20.9	16.1	18.3
24	28.0	20.3	22.5	29.5	21.3	25.1	24.5	21.2	23.0	20.7	14.9	17.6
25	27.7	18.6	22.5	27.2	22.5	24.4	25.4	21.4	23.3	20.9	15.7	18.1
26	26.5	19.4	23.0	---	---	---	25.4	21.4	23.2	15.7	11.1	13.4
27	---	---	---	---	---	---	25.6	21.0	22.9	14.2	9.9	11.5
28	28.9	19.3	23.3	---	---	---	26.6	20.9	23.3	16.7	10.8	13.3
29	29.0	20.5	24.0	---	---	---	25.3	21.1	23.3	19.0	13.1	15.5
30	23.2	18.5	21.0	26.7	---	---	22.7	19.7	20.8	20.1	13.5	16.3
31	---	---	---	27.9	21.6	24.3	21.6	16.5	19.5	---	--	---
MONTH	---	---	---	---	---	---	31.7	---	---	25.9	9.9	18.5

07130000 JOHN MARTIN RESERVOIR AT CADDOA, CO

LOCATION.--Lat $38^{\circ} 04^{\prime} 05^{\prime \prime}$, long $102^{\circ} 56^{\prime} 13$ ", in $\mathrm{NE}^{1 / 4} \mathrm{NW}^{1 / 4}$ sec.8, T. 23 S., R. 49 W., Bent County, Hydrologic Unit 11020009, at dam on Arkansas River at Caddoa, 3.2 mi southeast of Hasty, and 58 mi upstream from Colorado-Kansas State line.
DRAINAGE AREA.--18,915 mi^{2}, of which $785 \mathrm{mi}^{2}$ is probably noncontributing.
PERIOD OF RECORD.--January 1943 to current year. Month-end contents only prior to November 1943, published in WSP 1311.
GAGE.--Water-stage recorder with satellite telemetry for elevations above $3,784 \mathrm{ft}$ (48 acre-feet), and nonrecording gage read once daily for those below. Datum of gage is $3,760.00 \mathrm{ft}$ above sea level, (levels by U.S. Corps of Engineers); gage readings have been reduced to elevations above sea level.

REMARKS.--No estimated contents. Records good. Reservoir is formed by concrete and earthfill dam. Storage began while dam was under construction prior to 1943, and record of contents began Jan. 1, 1943. Capacity (based on 1994 resurvey used from Nov. 1, 1994) 605,100 acre-ft, at elevation $3,870.00 \mathrm{ft}$, top of spillway gates, of which 345,700 acre-ft between elevations 3779.26 ft , elevation of no contents, and 3851.87 ft , is reserved for flood control. Contents table shown is from the latest survey of 1994. No dead storage. Figures given represent total contents.
COOPERATION.--Capacity tables provided by U.S. Army, Corps of Engineers.
EXTREMES (AT 2400) FOR PERIOD OF RECORD.--Maximum contents, 429,600 acre-ft, Aug. 25, 1965, elevation, 3,856.16 ft; no contents at times many years.

EXTREMES (AT 2400) FOR CURRENT YEAR.--Maximum contents, $321,000 \mathrm{acre-ft}$, Mar. 18, elevation, 3,849.67 ft; minimum contents, 215,000 acre-ft, Aug. 19, elevation, 3,838.93 ft.

Capacity table (elevation, in feet, and contents, in acre-feet)

$3,785.0$	193	$3,820.0$	87,700
$3,790.0$	2,400	$3,830.0$	146,000
$3,795.0$	8,480	$3,840.0$	224,000
$3,800.0$	18,400	$3,850.0$	324,000
$3,810.0$	47,000	$3,860.0$	450,000

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY OBSERVATION AT 24:00 VALUES

DAY	OCT		NOV		DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	268000		258000		64000	274000	289000	312000	306000	260000	236000	242000	225000	229000
2	268000		258000		64000	274000	290000	313000	304000	259000	237000	241000	225000	230000
3	267000		257000		64000	274000	290000	313000	302000	258000	238000	241000	225000	230000
4	267000		257000		65000	275000	290000	314000	300000	257000	239000	240000	225000	230000
5	266000		257000		65000	275000	291000	314000	299000	256000	240000	239000	225000	230000
6	265000		257000		65000	276000	292000	315000	297000	255000	241000	236000	224000	231000
7	265000		257000		65000	276000	293000	315000	296000	254000	241000	234000	223000	231000
8	265000		258000		65000	276000	294000	316000	294000	253000	241000	232000	223000	232000
9	265000		258000		66000	277000	296000	316000	292000	251000	241000	230000	221000	232000
10	264000		258000		66000	278000	297000	317000	291000	249000	241000	229000	221000	232000
11	264000		258000		66000	278000	298000	317000	289000	247000	241000	228000	220000	232000
12	264000		258000		66000	279000	299000	318000	287000	245000	241000	228000	219000	231000
13	263000		259000		67000	279000	300000	318000	285000	243000	242000	229000	218000	232000
14	263000		259000		67000	280000	301000	319000	283000	241000	242000	232000	217000	232000
15	263000		259000		67000	280000	302000	320000	281000	240000	242000	234000	216000	232000
16	262000		260000		67000	280000	303000	320000	280000	238000	243000	234000	216000	232000
17	262000		260000		68000	281000	304000	320000	279000	236000	244000	233000	215000	233000
18	262000		260000		68000	281000	305000	321000	277000	233000	245000	232000	215000	233000
19	261000		261000		68000	281000	306000	320000	276000	231000	244000	231000	215000	233000
20	261000		261000		69000	281000	307000	319000	275000	229000	243000	229000	217000	233000
21	260000		261000		69000	282000	308000	319000	273000	227000	241000	228000	217000	233000
22	261000		261000		69000	283000	308000	318000	272000	225000	240000	227000	217000	233000
23	260000		262000		70000	283000	309000	317000	271000	223000	240000	226000	217000	233000
24	259000		262000		70000	284000	309000	316000	269000	221000	239000	224000	218000	233000
25	259000		262000		70000	285000	310000	316000	268000	221000	239000	223000	219000	234000
26	259000		262000		71000	285000	310000	315000	266000	226000	240000	224000	221000	234000
27	259000		263000		71000	286000	311000	314000	265000	231000	241000	224000	221000	234000
28	258000		263000		72000	287000	311000	314000	264000	233000	241000	224000	222000	234000
29	258000		263000		72000	287000	312000	312000	263000	234000	241000	224000	222000	234000
30	258000		263000		73000	288000	---	310000	261000	234000	241000	224000	224000	234000
31	258000		--		73000	288000	---	308000	---	235000	---	225000	227000	---
MEAN	262000		260000		68000	280000	301000	316000	282000	240000	241000	231000	220000	232000
MAX	268000		263000		73000	288000	312000	321000	306000	260000	245000	242000	227000	234000
MIN	258000		257000		64000	274000	289000	308000	261000	221000	236000	223000	215000	229000
CAL YR	1995	MEAN	N 21		MAX	368000	MIN	300						
WTR YR	1996	MEAN	N 261		MAX	321000	MIN 21	000						

07130500 ARKANSAS RIVER BELOW JOHN MARTIN RESERVOIR, CO

LOCATION.--Lat $38^{\circ} 03^{\prime} 59^{\prime \prime}$, long $102^{\circ} 55^{\prime} 55^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{sec} .8$, T. 23 S., R. 49 W., Bent County, Hydrologic Unit 11020009, on right bank 0.2 mi downstream from John Martin Dam, 2.6 mi upstream from Caddoa Creek, and 3.5 mi southeast of Hasty.
DRAINAGE AREA.--18,915 mi ${ }^{2}$, of which $785 \mathrm{mi}^{2}$ is probably noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1938 to current year. Published as "at Caddoa" prior to October 1947.
REVISED RECORDS.--WSP 1241: 1942(M). WSP 1341: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Datum of gage is $3,737.40 \mathrm{ft}$ above sea level. Prior to Feb. 22, 1940, at site 3 mi upstream at datum 22.83 ft higher. Feb. 22, 1940 to Feb. 4, 1943, at site 700 ft upstream, at datum 3.64 ft higher, Feb. 5, 1943 to Apr. 8, 1975, at site 1.5 mi downstream at datum approximately 27.5 ft lower.
REMARKS.--Records good except those for Dec. 1 to Mar. 1, which are poor. Storage diversions upstream from station for irrigation of about 438,000 acres and for flood control. Flow completely regulated by John Martin Dam (station 07130000) 0.2 mi upstream since Oct. 1948.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^79]
07130500 ARKANSAS RIVER BELOW JOHN MARTIN RESERVOIR, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--December 1985 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: December 1985 to current year.
WATER TEMPERATURE: December 1985 to current year.
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for daily specific conductance are fair. Records for daily water temperature are good. Daily data that are not published are either missing or of unacceptable quality.
EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 3,540 microsiemens, Feb. 26, 1986; minimum, 1,060 microsiemens, Aug. 26 to Sept. 4, 1995.
WATER TEMPERATURE: Maximum, $27.9^{\circ} \mathrm{C}$, June 10,1989 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during winter months.

EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum, 2,220 microsiemens, Feb. 16; minimum, 1,130 microsiemens, Oct. 1.
WATER TEMPERATURE: Maximum, $24.6^{\circ} \mathrm{C}$, Jun. 2; minimum, $1.3^{\circ} \mathrm{C}$, Feb. 27.
SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	1140	1130	1140	1260	1250	1250	1490	1460	1470	2020	1940	1980
2	1180	1140	1160	1260	1250	1250	1470	1450	1460	2070	1940	1980
3	1200	1160	1180	1260	1240	1250	1470	1450	1460	2080	1980	2040
4	1180	1150	1170	1260	1250	1260	1480	1450	1470	2110	2010	2050
5	1170	1160	1170	1270	1250	1260	1490	1460	1470	2100	1990	2040
6	1170	1160	1170	1280	1260	1270	1520	1490	1500	2080	2040	2060
7	1180	1150	1170	1290	1270	1280	1540	1510	1530	2070	2030	2050
8	1180	1170	1170	1310	1290	1300	1650	1530	1560	2070	1970	2040
9	1190	1170	1180	1310	1300	1300	1670	1620	1640	2030	1960	1990
10	1190	1170	1180	1310	1290	1300	1720	1630	1680	2060	1970	2000
11	1200	1170	1180	1310	1290	1300	1740	1700	1720	2110	2040	2080
12	1200	1180	1190	1310	1300	1310	1760	1660	1690	2060	2000	2040
13	1210	1190	1200	1360	1300	1320	1740	1680	1710	2040	1980	2010
14	1200	1180	1190	1560	1350	1430	1730	1650	1690	2010	1970	1990
15	1230	1200	1220	1490	1390	1400	1860	1660	1760	2000	1960	1990
16	1250	1200	1220	1430	1390	1400	1890	1790	1840	2090	1980	2030
17	1230	1180	1190	1440	1420	1430	1880	1800	1840	2100	2030	2060
18	1220	1180	1200	1490	1430	1460	1890	1800	1850		---	---
19	1220	1210	1210	1470	1450	1460	1900	1870	1890	2130	2080	2100
20	1220	1210	1210	1680	1540	1610	1950	1930	1940	2090	2040	2060
21	1220	1210	1210	1640	1580	1610	1940	1870	1900	2060	2000	2020
22	1220	1210	1210	1670	1600	1640	1890	1840	1860	2020	1980	2000
23	1230	1210	1220	1700	1670	1680	1990	1940	1970	2030	1990	2020
24	1230	1220	1220	1710	1670	1700	1960	1880	1920	2050	2020	2040
25	1230	1220	1230	1720	1700	1710	1920	1880	1900	2060	2030	2040
26	1230	1220	1230	1720	1670	1700	1930	1860	1900	2090	2030	2060
27	1230	1220	1230	1680	1520	1590	1880	1840	1860	--	--	---
28	1230	1220	1230	1520	1490	1510	1880	1820	1860	---	---	---
29	1230	1220	1230	1500	1480	1490	1960	1840	1900	---	--	---
30	1240	1220	1230	1480	1470	1470	1960	1850	1910	2150	2080	2110
31	1260	1230	1240				2020	1960	1990	2180	2140	2160
MONTH	1260	1130	1200	1720	1240	1430	2020	1450	1750	---	-	---

07130500 ARKANSAS RIVER BELOW JOHN MARTIN RESERVOIR, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	2200	2100	2160	2010	1980	1990	1610	1600	1600	1650	1640	1650
2	2180	2110	2140	1980	1960	1970	1600	1590	1600	1650	1640	1650
3	2140	2060	2100	1960	1920	1940	1600	1590	1590	1670	1650	1660
4	2120	2050	2080	1930	1890	1910	1600	1590	1600	1670	1660	1660
5	2140	2030	2090	1900	1870	1890	1600	1590	1590	1670	1640	1670
6	2130	2010	2070	1880	1830	1860	1610	1590	1600	1670	1660	1670
7	2050	1950	2000	1830	1700	1750	1600	1590	1600	1670	1660	1670
8	2040	1940	1990	1760	1710	1750	1600	1590	1590	1670	1650	1660
9	2130	2030	2080	1740	1670	1690	1600	1590	1600	1660	1650	1660
10	2040	1930	1990	1670	1650	1670	1600	1590	1590	1650	1630	1640
11	2080	1950	2010	1660	1650	1660	1610	1590	1600	1640	1630	1640
12	2090	2000	2040	1670	1650	1660	1620	1590	1610	1640	1630	1640
13	2120	2020	2070	1670	1650	1660	1620	1610	1620	1630	1620	1630
14	2170	2020	2090	1670	1650	1660	1630	1610	1620	1670	1610	1640
15	2200	2140	2170	---	---	---	1640	1620	1630	1670	1650	1660
16	2220	2150	2190	---	---	---	1640	1620	1630	1670	1650	1660
17	2160	2110	2130	---	---	---	1650	1630	1630	1660	1640	1650
18	2130	2110	2120	1850	1680	1720	1640	1630	1630	1640	1630	1640
19	2130	2110	2120	1680	1640	1660	1640	1630	1630	1640	1630	1640
20	2130	2100	2110	1650	1640	1640	1640	1630	1630	1640	1630	1640
21	2110	2090	2100	1650	1640	1640	1640	1630	1630	1640	1630	1630
22	2110	2080	2100	1640	1630	1640	1640	1630	1640	1640	1630	1640
23	2080	2030	2050	1640	1630	1640	1640	1630	1640	1650	1640	1640
24	2040	2010	2020	1640	1620	1630	1640	1630	1630	1650	1640	1650
25	2010	1930	1980	1640	1630	1640	1640	1610	1630	1660	1640	1650
26	1980	1950	1960	1650	1630	1640	1650	1620	1640	1720	1650	1690
27	2010	1950	1980	1640	1630	1640	1650	1640	1640	1710	1670	1690
28	2030	1970	2000	1640	1630	1640	1670	1630	1640	1720	1680	1700
29	2020	1990	2010	1640	1610	1630	1650	1640	1640	1730	1680	1710
30	-	,	,	1610	1600	1600	1660	1640	1650	1750	1690	1720
31	---	---	---	1610	1590	1600		---	---	1760	1700	1730
MONTH	2220	1930	2070	---	---	---	1670	1590	1620	1760	1610	1660
	JUNE			JULY			AUGUST			SEPTEMBER		
1	1750	1700	1730	1850	1780	1840	1870	1830	1850	1960	1950	1960
2	1740	1700	1720	1860	1820	1850	1890	1830	1860	1960	1930	1940
3	1760	1730	1740	1860	1840	1850	1850	1830	1840	1950	1910	1930
4	1780	1750	1770	1860	1830	1850	1850	1840	1840	1920	1910	1920
5	1770	1750	1760	1850	1820	1840	1890	1850	1870	1920	1870	1900
6	1770	1760	1770	1850	1830	1840	1880	1860	1870	1910	1880	1900
7	1790	1760	1780	1830	1800	1820	1880	1860	1870	1900	1880	1890
8	1800	1780	1790	1850	1810	1840	1880	1860	1870	1900	1870	1890
9	1810	1790	1800	1850	1830	1850	1890	1860	1870	1890	1870	1880
10	1810	1790	1800	1850	1840	1850	1890	1880	1880	1880	1870	1880
11	1810	1780	1800	1860	1840	1840	1890	1880	1880	1880	1860	1870
12	1800	1770	1780	1850	1810	1840	1900	1880	1890	1880	1860	1870
13	1780	1760	1770	1860	1800	1850	1900	1890	1890	1880	1860	1870
14	1780	1760	1770	1850	1840	1850	1900	1890	1900	1880	1860	1870
15	1780	1760	1770	1860	1820	1850	1900	1880	1900	1880	1860	1870
16	1800	1770	1790	1850	1760	1810	1900	1880	1890	1880	1870	1870
17	1810	1800	1810	1860	1760	1820	1890	1870	1870	1920	1870	1890
18	1820	1800	1810	1870	1860	1860	1880	1860	1870	1920	1900	1910
19	1820	1790	1810	1860	1850	1860	1890	1860	1880	1930	1910	1920
20	1810	1790	1800	1870	1850	1860	1930	1870	1910	1920	1900	1910
21	1790	1760	1770	1870	1850	1860	1920	1900	1910	1920	1910	1920
22	1810	1780	1800	1870	1850	1860	1940	1920	1930	1930	1910	1920
23	1810	1790	1800	1870	1850	1860	1950	1920	1940	1930	1910	1920
24	1810	1780	1800	1870	1850	1860	1940	1930	1940	1930	1920	1920
25	1850	1790	1820	1870	1850	1860	1950	1930	1940	1930	1920	1920
26	1860	1830	1850	1860	1840	1860	1950	1930	1940	1950	1930	1940
27	1860	1850	1850	1860	1840	1850	1950	1940	1940	1970	1950	1960
28	1860	1820	1860	1860	1840	1850	1960	1940	1950	1990	1960	1970
29	1860	1830	1850	1880	1850	1860	1960	1940	1950	2000	1970	1990
30	1860	1820	1850	1890	1850	1870	1960	1930	1960	2000	1980	1990
31	,	.	-	1890	1860	1870	1960	1950	1960	---	---	-
MONTH	1860	1700	1790	1890	1760	1850	1960	1830	1900	2000	1860	1910

07130500 ARKANSAS RIVER BELOW JOHN MARTIN RESERVOIR, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	18.2	17.5	17.8	11.4	10.8	11.2	9.3	7.3	8.0	6.0	4.2	5.0
2	17.9	17.2	17.5	10.8	10.5	10.7	8.9	7.3	7.9	4.6	3.3	4.1
3	17.9	17.2	17.5	10.9	9.9	10.4	8.8	7.1	7.7	4.6	2.7	3.7
4	17.6	16.8	17.2	10.4	9.7	10.0	8.4	6.9	7.6	4.5	3.3	3.9
5	16.8	15.7	16.3	10.5	9.7	10.0	7.9	6.7	7.3	4.4	3.4	3.8
6	16.3	15.3	15.8	10.6	9.7	10.0	7.8	6.4	6.9	4.7	3.3	3.9
7	16.0	15.2	15.5	10.2	9.3	9.6	6.9	6.2	6.5	5.0	3.7	4.3
8	15.8	15.1	15.4	10.1	9.0	9.4	7.0	5.0	6.1	5.6	3.7	4.6
9	15.8	15.0	15.3	10.2	9.0	9.5	5.6	4.1	4.8	6.2	3.6	4.8
10	15.7	14.9	15.2	9.6	8.5	9.1	6.0	3.9	4.9	5.9	4.2	5.1
11	15.7	14.9	15.2	9.5	8.4	8.8	6.9	4.4	5.5	6.1	3.8	4.7
12	15.6	14.9	15.1	9.9	8.7	9.2	7.2	5.1	6.0	6.1	3.7	4.7
13	15.1	14.7	14.9	9.5	8.6	9.1	7.4	5.9	6.5	6.3	3.4	4.7
14	15.4	14.6	14.9	10.2	8.2	9.0	7.3	5.1	6.2	6.7	3.6	5.0
15	15.4	14.5	14.9	9.9	8.3	9.0	7.0	4.9	5.9	6.5	4.3	5.2
16	15.2	14.6	14.8	10.0	8.5	9.1	8.1	5.5	6.5	7.1	4.5	5.6
17	15.2	14.5	14.8	10.0	8.4	9.0	6.8	5.3	6.0	7.1	3.3	5.8
18	15.1	14.4	14.7	10.1	8.3	8.9	6.1	4.5	5.3	3.8	1.9	2.7
19	14.7	14.1	14.4	9.7	7.9	8.7	5.8	4.2	4.9	4.2	1.9	2.9
20	14.5	13.7	14.1	9.5	8.1	8.7	5.1	3.1	4.0	4.5	2.8	3.6
21	14.3	13.5	13.8	9.6	8.0	8.5	4.7	2.5	3.6	4.5	2.9	3.8
22	14.3	13.2	13.8	10.0	7.9	8.6	4.8	3.0	3.9	4.6	3.2	3.9
23	13.2	12.3	12.5	9.7	8.1	8.6	4.4	3.0	3.7	4.7	3.4	4.0
24	12.6	12.1	12.3	9.7	7.8	8.5	4.5	2.5	3.5	5.1	3.3	4.2
25	12.5	11.9	12.1	10.1	8.0	8.8	4.6	2.8	3.7	5.6	3.7	4.5
26	12.4	11.7	11.9	10.0	8.5	9.1	5.1	3.4	4.2	5.0	3.2	4.1
27	12.4	11.7	11.9	8.9	7.2	8.3	5.5	3.2	4.2	5.2	2.8	3.8
28	12.2	11.5	11.8	8.2	6.7	7.3	5.0	3.4	4.2	6.3	3.4	4.6
29	11.9	11.4	11.6	8.5	6.8	7.4	5.6	4.0	4.6	6.0	3.6	4.7
30	11.7	11.2	11.4	8.9	7.1	7.8	5.3	3.3	4.2	5.2	2.9	4.0
31	11.8	11.2	11.4	---	---	---	6.2	3.8	5.0	5.3	3.3	4.3
MONTH	18.2	11.2	14.4	11.4	6.7	9.1	9.3	2.5	5.5	7.1	1.9	4.3
	FEBRUARY			MARCH			APRIL			MAY		
	5.4	3.8	4.5	4.3	2.7	3.4	6.0	5.4	5.7	11.1	10.2	10.6
2	4.4	2.5	3.5	4.5	2.9	3.5	6.8	5.9	6.3	11.3	10.5	10.9
3	4.7	3.1	3.8	4.6	2.9	3.6	6.8	6.5	6.6	11.7	10.6	11.1
4	4.6	3.4	3.9	4.2	3.3	3.7	6.5	6.3	6.4	12.1	11.1	11.5
5	5.5	3.9	4.7	4.5	3.2	3.7	6.7	6.3	6.5	11.9	11.3	11.5
6	7.1	4.1	5.3	3.5	2.8	3.1	7.1	6.6	6.8	12.4	11.4	11.8
7	7.9	4.1	5.9	3.7	2.6	3.0	7.4	6.8	7.1	12.4	11.6	12.0
8	7.5	4.4	5.8	4.2	2.8	3.4	7.3	6.9	7.0	12.8	11.9	12.4
9	7.1	3.9	5.4	4.4	3.0	3.6	7.3	6.8	7.0	12.8	12.1	12.5
10	7.5	4.8	6.0	4.9	3.2	4.0	7.6	6.8	7.3	13.2	12.3	12.7
11	7.7	3.9	5.4	5.4	4.0	4.4	8.9	7.4	8.2	12.9	12.5	12.7
12	7.4	4.4	5.6	5.0	4.0	4.4	9.0	8.5	8.8	13.9	12.7	13.3
13	9.3	4.6	6.4	5.1	4.0	4.5	9.1	8.4	8.7	13.6	12.9	13.2
14	9.2	5.8	7.4	4.4	3.6	4.0	8.6	8.4	8.5	14.3	12.9	13.7
15	8.5	5.6	7.4	---	---		8.7	8.3	8.4	14.1	13.6	13.8
16	6.9	2.9	5.2	-	---	-	9.2	8.3	8.7	14.0	13.6	13.8
17	5.3	3.1	4.0	---	---	---	9.6	8.6	9.1	14.2	13.6	13.8
18	4.8	3.3	3.8	6.3	4.4	5.4	9.8	9.4	9.6	14.3	13.7	14.0
19	4.4	2.9	3.5	4.8	4.1	4.4	10.3	9.5	9.9	14.6	13.9	14.3
20	4.8	3.1	3.7	5.1	4.3	4.6	10.3	9.8	10.0	15.5	14.1	14.7
21	4.4	3.1	3.6	5.3	4.4	4.7	10.2	9.6	9.9	14.7	14.3	14.4
22	4.4	3.1	3.7	5.3	4.5	4.8	10.0	9.5	9.7	15.4	14.3	14.9
23	4.2	3.0	3.4	5.7	4.7	5.2	10.3	9.5	9.9	15.1	14.7	14.9
24	4.0	2.7	3.3	5.3	4.7	5.0	10.5	9.8	10.2	15.5	14.8	15.2
25	4.5	3.0	3.6	5.1	4.5	4.7	10.9	10.1	10.4	15.3	15.0	15.1
26	4.8	1.9	3.4	5.2	4.3	4.7	10.6	10.1	10.4	16.9	13.7	15.1
27	5.1	1.3	3.3	5.3	4.6	4.9	10.7	10.1	10.3	17.9	13.1	15.3
28	4.0	2.3	3.2	5.5	4.7	5.0	10.8	10.1	10.5	17.3	13.6	15.1
29	4.2	2.6	3.3	5.4	5.0	5.2	10.7	10.1	10.4	19.6	14.3	16.4
30	---	_--	---	5.6	5.1	5.4	10.8	10.1	10.4	22.8	15.2	18.1
31	--	--	--	5.7	5.4	5.5	---	---	,	23.8	16.2	19.0
MONTH	9.3	1.3	4.6	---	---	---	10.9	5.4	8.6	23.8	10.2	13.8

07130500 ARKANSAS RIVER BELOW JOHN MARTIN RESERVOIR, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST			SEPTEMBER	
1	23.2	16.5	19.5	21.4	20.5	20.9	24.2	22.9	23.4	23.7	22.3	22.8
2	24.6	17.0	20.0	21.5	20.5	21.0	24.3	23.0	23.5	23.7	22.4	22.9
3	19.6	17.1	18.1	21.7	20.8	21.2	24.2	22.9	23.4	23.5	22.0	22.7
4	18.5	16.9	17.5	21.5	20.6	21.0	24.0	23.1	23.4	23.5	22.4	22.8
5	18.4	16.8	17.5	21.4	20.6	21.0	24.0	22.8	23.3	23.2	22.1	22.5
6	18.4	16.7	17.4	21.9	21.2	21.4	23.9	22.8	23.3	23.0	22.1	22.4
7	18.5	16.6	17.4	22.0	21.3	21.6	23.9	23.1	23.4	22.8	21.8	22.2
8	18.7	16.5	17.5	21.8	21.5	21.6	23.6	23.2	23.3	23.1	21.8	22.3
9	18.9	16.9	17.7	21.6	21.3	21.5	23.7	23.0	23.3	23.0	21.7	22.3
10	18.7	17.4	18.0	21.7	21.4	21.5	23.7	23.0	23.3	22.9	21.9	22.3
11	18.8	17.8	18.2	22.1	21.4	21.7	23.6	23.0	23.2	22.8	21.8	22.2
12	18.6	17.8	18.1	22.1	21.6	21.8	23.7	23.0	23.3	22.3	21.6	21.9
13	19.0	17.9	18.3	22.1	21.7	21.8	23.7	23.1	23.3	22.0	21.5	21.7
14	18.7	18.2	18.4	22.8	21.6	22.1	23.7	23.2	23.4	22.0	21.2	21.6
15	19.0	18.3	18.6	22.8	21.8	22.2	23.7	23.1	23.4	21.7	21.1	21.3
16	19.5	18.5	18.9	22.7	22.2	22.4	23.9	23.1	23.4	21.6	20.9	21.2
17	19.7	18.6	19.0	22.6	22.2	22.4	23.8	23.0	23.3	21.7	20.5	21.0
18	19.5	18.6	19.0	22.9	22.2	22.4	23.7	23.0	23.2	21.4	20.4	20.8
19	19.1	18.5	18.8	22.8	22.3	22.6	23.9	23.0	23.4	20.8	19.7	20.2
20	19.4	18.7	19.0	22.9	22.4	22.6	24.1	23.1	23.5	20.8	19.8	20.2
21	20.0	18.8	19.3	22.8	22.3	22.6	24.2	23.0	23.5	20.6	19.5	19.9
22	19.7	19.2	19.4	22.7	22.2	22.4	23.9	23.2	23.5	20.6	19.4	19.9
23	20.0	19.2	19.5	23.0	22.5	22.7	23.9	23.3	23.5	20.2	19.3	19.7
24	20.4	19.4	19.9	23.1	22.1	22.7	23.9	23.2	23.4	20.1	19.2	19.6
25	20.8	19.7	20.1	23.0	22.5	22.8	24.2	23.0	23.5	20.0	18.8	19.4
26	20.7	19.7	20.1	23.2	22.6	22.8	24.1	23.0	23.4	18.8	17.9	18.3
27	20.7	19.8	20.1	23.6	22.7	23.1	24.0	23.0	23.3	18.4	17.5	17.9
28	20.6	19.8	20.2	23.8	22.8	23.3	23.9	22.7	23.2	18.7	17.4	17.8
29	21.5	20.3	20.9	23.7	22.9	23.2	23.7	22.7	23.1	18.6	17.3	17.8
30	21.0	20.6	20.8	23.5	22.9	23.2	23.3	22.4	22.7	18.6	17.3	17.8
31	---	--	---	24.2	23.0	23.5	23.6	22.3	22.8	-	--	---
MONTH	24.6	16.5	18.9	24.2	20.5	22.2	24.3	22.3	23.3	23.7	17.3	20.8

07133000 ARKANSAS RIVER AT LAMAR, CO

LOCATION.--Lat $38^{\circ} 06^{\prime} 21^{\prime \prime}$, long $102^{\circ} 37^{\prime} 05^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec.30, T. 22 S., R. 46 W., Prowers County, Hydrologic Unit 11020009, on left bank at left upstream end of upstream bridge on U.S. Highways 50 and 287, and 1.3 mi north of courthouse in Lamar.
DRAINAGE AREA.--19,780 mi ${ }^{2}$, of which $950 \mathrm{mi}^{2}$ is probably noncontributing.
PERIOD OF RECORD.--Streamflow records, May 1913 to September 1955, April 1959 to current year. Monthly discharge only for some periods, published in WSP 1311. Statistical summary computed for 1949 to current year. Water-quality data available, November 1963 to September 1965, September 1969 to August 1972.
REVISED RECORDS.--WSP 1341: 1921(M), 1945-46(M), drainage area; WDR CO-86-1: 1985.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $3,597.39 \mathrm{ft}$ above sea level. See WSP 1731 for history of changes prior to Apr. 4, 1959. Apr. 4, 1959, to Mar. 26, 1968, at site 450 ft upstream at datum 2.42 ft higher. Mar. 27, 1968, to Nov. 17, 1982, at datum 4.00 ft lower. Prior to Mar. 18, 1987, at site 75 ft downstream at same datum.
REMARKS.--Records good except for estimated daily discharges, which are poor. Flow regulated by John Martin Reservoir (station 07130000) 21 mi upstream since Oct. 1948. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 487,000 acres, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental WaterQuality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^80]
07134100 BIG SANDY CREEK NEAR LAMAR, CO

LOCATION.--Lat $38^{\circ} 06^{\prime} 51^{\prime \prime}$, long $102^{\circ} 29^{\prime} 00^{\prime \prime}$, in $\mathrm{SW}^{1} 1 / 4 \mathrm{SW}^{1} / 4 \mathrm{sec}$. 21, T. 22 S., R. 45 W., Prowers County, Hydrologic Unit 11020011, on right bank 35 ft upstream from State Highway 196, 950 ft upstream from mouth, and 7.5 mi east of Lamar.
DRAINAGE AREA.--3,248 mi^{2}.
PERIOD OF RECORD.-- February 1968 to September 1982, July 1995 to current year.
REVISED RECORDS.--WDR CO-71-1: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $3,545 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except for estimated daily discharges and those above $100 \mathrm{ft}^{3} / \mathrm{s}$, which are poor. Natural flow of stream affected by diversions above station for irrigation and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 21, 1965, reached a stage of 9.93 ft from floodmarks, discharge not determined.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11	7.2	8.4	51	33	33	9.2	8.4	15	15	33	21
2	3.4	7.2	8.6	45	38	37	11	10	12	16	29	18
3	4.2	7.2	8.6	41	31	37	8.1	8.7	11	12	26	16
4	3.1	7.3	8.7	43	43	37	8.1	9.1	10	18	28	15
5	2.6	7.6	8.6	50	41	39	8.7	8.2	11	12	20	14
6	3.3	8.8	8.8	43	51	37	13	13	14	11	18	13
7	7.8	8.0	8.8	32	55	33	17	9.0	13	17	17	13
8	13	8.0	8.8	44	53	49	14	8.6	12	11	17	12
9	11	8.4	8.4	55	56	44	12	12	11	12	25	11
10	8.3	8.5	8.4	54	57	42	20	16	11	13	27	11
11	3.0	8.5	8.4	45	49	40	29	20	11	9.9	25	10
12	2.9	9.2	8.6	42	47	39	22	18	10	10	26	10
13	1.9	9.1	8.6	42	44	38	23	17	50	22	24	14
14	3.5	9.2	8.7	42	45	47	20	17	28	51	40	13
15	4.3	11	9.0	42	45	80	20	19	27	106	271	23
16	3.8	11	9.1	42	42	67	20	21	107	65	320	24
17	11	9.2	9.4	42	41	53	19	12	41	26	291	18
18	14	8.6	9.8	27	43	44	16	13	18	27	234	15
19	15	8.5	9.4	29	42	39	18	11	14	42	154	15
20	16	8.5	18	41	43	61	12	16	13	35	333	14
21	15	8.5	34	50	42	26	13	12	12	28	243	13
22	15	8.6	44	45	41	16	13	11	12	29	82	12
23	13	9.0	45	42	35	11	15	14	22	26	31	11
24	13	9.3	43	40	33	13	21	18	19	17	26	11
25	7.6	8.7	48	41	29	14	20	25	13	17	22	11
26	6.8	8.8	49	34	29	13	17	e112	14	20	21	11
27	7.5	8.3	47	31	27	12	13	e110	13	27	21	11
28	7.1	8.1	47	43	29	9.2	12	e75	12	23	19	11
29	6.9	8.3	49	45	31	10	11	e50	13	21	17	10
30	7.0	8.4	46	37	---	10	9.5	24	18	57	25	56
31	7.2	---	51	28	---	8.9	---	19	---	44	27	---
TOTAL	249.2	257.0	688.1	1288	1195	1039.1	464.6	737.0	587	839.9	2492	457
MEAN	8.04	8.57	22.2	41.5	41.2	33.5	15.5	23.8	19.6	27.1	80.4	15.2
MAX	16	11	51	55	57	80	29	112	107	106	333	56
MIN	1.9	7.2	8.4	27	27	8.9	8.1	8.2	10	9.9	17	10
AC-FT	494	510	1360	2550	2370	2060	922	1460	1160	1670	4940	906
STATISTICS OF		NTHLY	DATA	WATER YEARS 1968 - 1996, BY WATER YEAR (WY)								
MEAN	4.86	12.8	15.0	15.3	17.9	17.1	16.3	14.8	8.31	6.86	9.44	8.71
MAX	10.7	43.8	45.1	41.5	48.0	48.8	65.3	41.1	19.6	27.1	80.4	41.8
(WY)	1971	1971	1970	1996	1971	1974	1970	1973	1996	1996	1996	1976
MIN	. 087	. 41	. 34	. 50	2.23	2.10	. 81	2.14	1.77	. 21	. 027	. 084
(WY)	1979	1978	1978	1978	1978	1977	1978	1975	1976	1978	1976	1978

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAIIY MEAN
FOR 1996 WATER YEAR
WATER YEARS 1968 - 1996

10293.9	
28.1	
333	Aug 20
1.9	Oct 13
4.0	Oct 10
419	Aug 20
C 5.74	Aug 20
20420	
49	
17	
8.4	

12.4			
28.1			1996
2.23			1979
619		Sep 16	1976
a .00	Aug	13	1976
.00	Sep	1	1976
$\mathrm{~b}_{2520}$		Sep	16
	1976		
8.48	Sep	16	1976
8990			
33			
6.5			
.62			

LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
8.4
.62

[^81]
07134180 ARKANSAS RIVER NEAR GRANADA, CO

LOCATION.--Lat $38^{\circ} 05^{\prime} 44^{\prime \prime}$, long $102^{\circ} 18^{\prime} 37$ ", in $\mathrm{SE}^{1} / 4 \mathrm{NE}^{1 / 4}$ sec. 36 , T. 22 S., R. 44 W., Prowers County, Hydrologic Unit 11020009, on left bank at upstream side at end of bridge on U.S. Highway 385, 1.2 mi downstream from headgate of Buffalo Canal, and 2.3 mi north of Granada.

DRAINAGE AREA.--23,707 mi².
PERIOD OF RECORD.--January 1899 to December 1901, gage heights only at different site and datum, August to October 1903 at different datum, December 1980 to current year.

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $3,480 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated daily discharges. Records good. Flow regulated by John Martin Reservoir (station 07130000) 38 mi upstream since October 1948. Natural flow of stream affected by transmountain diversion, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 500,000 acres, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	54	45	123	119	159	52	588	100	384	142	474	149
2	55	45	126	113	151	53	564	90	336	126	299	141
3	53	44	132	108	144	54	517	87	303	102	191	135
4	59	45	132	108	125	53	525	87	264	106	158	125
5	50	52	128	113	173	53	534	87	208	103	134	112
6	40	50	126	112	149	56	449	90	183	308	113	113
7	47	55	122	126	158	77	410	86	166	586	102	116
8	45	62	118	140	152	78	388	79	156	680	106	118
9	41	87	116	145	153	64	345	122	149	703	106	115
10	40	97	125	128	152	56	313	423	124	687	173	114
11	47	98	130	120	144	49	289	477	108	643	186	117
12	49	112	126	117	143	52	370	464	106	548	172	127
13	48	116	116	115	138	56	486	465	412	683	161	167
14	49	118	105	115	120	63	554	443	332	829	116	155
15	67	132	99	113	112	110	590	389	465	636	292	229
16	99	140	96	132	107	99	520	353	1070	434	449	252
17	102	138	95	141	106	80	345	350	793	538	359	217
18	71	140	95	102	107	71	224	462	404	697	287	214
19	46	139	92	128	107	62	184	548	475	662	177	214
20	44	137	90	137	109	59	151	592	640	590	507	505
21	42	134	99	148	108	63	159	547	710	535	481	311
22	42	130	108	150	109	53	179	498	708	513	331	262
23	43	130	111	143	107	54	178	503	650	521	209	235
24	43	131	112	141	102	56	175	512	363	522	172	202
25	43	130	114	143	99	64	182	612	231	523	161	176
26	43	129	118	132	96	78	170	1560	189	479	171	168
27	43	124	117	124	97	68	168	2900	155	368	172	158
28	43	123	115	136	96	60	112	1630	155	260	174	154
29	43	125	118	146	73	59	102	738	138	224	156	147
30	43	124	114	135	---	208	104	532	140	279	165	145
31	44	---	116	138	---	489	-	439	---	613	163	---
TOTAL	1578	3132	3534	3968	3596	2549	9875	16265	10517	14640	6917	5393
MEAN	50.9	104	114	128	124	82.2	329	525	351	472	223	180
MAX	102	140	132	150	173	489	590	2900	1070	829	507	505
MIN	40	44	90	102	73	49	102	79	106	102	102	112
AC-FT	3130	6210	7010	7870	7130	5060	19590	32260	20860	29040	13720	10700

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1981 - 1996 , BY WATER YEAR (WY)

a-Also occurred May 16.
b-Also occurred Oct 10.
c-Also occurred Aug 18-19, 1990
d-From rating curve extended above $2700 \mathrm{ft}^{3} / \mathrm{s}$.
f-Maximum gage height, $12.38 \mathrm{ft}, \mathrm{May} 27,1996$.

07134990 WILD HORSE CREEK ABOVE HOLLY, CO

LOCATION.--Lat $38^{\circ} 03^{\prime} 29^{\prime \prime}$, long $102^{\circ} 08^{\prime} 10^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{SW}^{1 / 4} 4$ sec. 10, T. 23 S., R. 42 W., Prowers County, Hydrologic Unit 11020009 (revised), on left bank, 50 ft upstream from County Road No. $34,0.60 \mathrm{mi}$ northwest of Holly, and 0.80 mi upstream from mouth.
DRAINAGE AREA.--270 mi^{2}, approximately.
PERIOD OF RECORD.--June 1995 to current year (seasonal record only).
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $3,405 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records poor. Natural flow of stream affected by diversions above station for irrigation and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period of seasonal operation, $1,270 \mathrm{ft}^{3} / \mathrm{s}$, May 26, 1996, gage height, 6.90 ft from flood mark, on basis of indirect determination of peak flow; minimum daily, $3.1 \mathrm{ft}^{3} / \mathrm{s}$, Sept. 19, 1995.
EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, $1,270 \mathrm{ft}^{3} / \mathrm{s}$, May 26, gage height,

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	35	35	---	--	---	---	---	e8. 5	14	36	33	20
2	29	31	---	---	---	-	---	e8.5	13	12	23	14
3	19	23	-	---	---	---	---	e15	13	8.0	14	15
4	16	19	---	---	---	-	---	e9.0	10	5.6	6.7	14
5	15	18	---	---	---	-	-	e8.5	8.4	5.8	8.6	11
6	19	20	---	---	---	--	--	e9.0	9.4	15	39	16
7	20	22	---	---	---	---	---	35	12	10	16	103
8	17	17	---	---	---	---	---	43	20	12	6.0	63
9	17	15	---	---	---	---	---	e12	16	11	8.6	18
10	16	10	---	---	---	---	-	25	7.0	15	215	15
11	12	10	---	---	---	--	---	85	5.2	46	34	13
12	7.6	10	---	---	---	---	---	76	4.7	21	11	12
13	18	9.4	---	---	---	---	---	84	5.0	8.9	15	11
14	20	12	---	---	---	---	---	e40	101	131	29	11
15	18	24	---	---	---	---	---	e8.5	95	34	72	12
16	19	29	---	---	---	-	e8. 6	e8.4	96	24	131	15
17	29	24	---	---	---	---	e12	e9.0	87	92	37	13
18	25	23	---	---	---	---	e14	e8.2	42	65	14	36
19	23	23	--	---	-	--	e10	e8.6	29	113	29	49
20	22	21	---	--	-	--	e17	e20	20	42	162	13
21	24	21	---	---	---	---	134	e12	10	42	47	15
22	24	22	---	---	---	---	146	e6.0	18	55	8.8	17
23	25	---	---	---	---	---	e70	5.5	24	86	48	46
24	25	---	---	---	---	---	e10	29	19	172	37	22
25	28	---	---	---	---	---	e8.5	184	287	61	17	18
26	37	---	---	---	---	---	e9.0	499	115	169	27	25
27	46	---	---	---	---	---	e9.0	406	10	133	38	23
28	46	---	---	-	---	---	e10	189	18	143	12	20
29	47	---	---	---	---	---	e11	94	104	143	15	18
30	47	---	---	---	---	---	e9.0	20	55	194	69	17
31	40	---	---	---	---	---	---	15	-	89	67	---
TOTAL	785.6	---	---	---	---	---	---	1980.7	1267.7	1994.3	1289.7	695
MEAN	25.3	---	---	---	---	---	---	63.9	42.3	64.3	41.6	23.2
MAX	47	--	---	-	-	--	-	499	287	194	215	103
MIN	7.6	---	---	---	---	---	-	5.5	4.7	5.6	6.0	11
AC-FT	1560	---	---	---	---	---	---	3930	2510	3960	2560	1380

[^82]
07135000 TWO BUTTE CREEK NEAR HOLLY, CO

LOCATION.--Lat $38^{\circ} 01^{\prime} 40^{\prime \prime}$, long $102^{\circ} 08^{\prime} 19$ ", in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{sec}$. 21, T. 23 S., R. 42 W., Prowers County, Hydrologic Unit 11020013 (revised), on right bank 15 ft upstream from county road DD, about 1 mi upstream from mouth, and 2.9 mi southwest of Holly.

DRAINAGE AREA.--817 mi ${ }^{2}$.
PERIOD OF RECORD.--April 1942 to September 1946. June 1995 to current year (seasonal record only).
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $3,415 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated daily discharges. Records fair. Natural flow of stream affected by Two Butte Reservoir, (capacity, 40,000 acre-feet), from which most of creek is diverted for irrigation.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period of seasonal operation, $756 \mathrm{ft}^{3} / \mathrm{s}$, May 26, 1996, gage height, 8.68 ft , result of slope-area determination of peak flow; no flow, most of the time.
EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, $756 \mathrm{ft}^{3} / \mathrm{s}$, May 26 , gage height, 8.68 ft , result of slope-area determination of peak flow; no flow, most of the time.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
2	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
3	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
4	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
5	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 05	. 00	. 00
6	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
7	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
8	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
9	. 00	. 00	--	---	-	---	. 00	. 00	. 00	. 00	. 00	. 00
10	. 00	. 00	--	---	--	---	. 00	. 00	. 00	. 00	. 04	. 00
11	. 00	. 00	--	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
12	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
13	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
14	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
15	. 00	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 08	. 00
16	. 00	. 00	--	---	--	---	. 00	. 00	. 00	. 00	. 03	. 00
17	. 00	. 00	---	---	--	---	. 00	. 00	. 00	. 00	. 00	. 00
18	. 00	. 00	--	--	---	---	. 00	. 00	. 00	. 00	. 00	. 00
19	. 00	. 00	--	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
20	. 00	. 00	---	---	---	. 00	. 00	. 00	. 00	. 00	. 35	. 00
21	. 00	. 00	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00
22	. 00	. 00	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00
23	. 00	---	--	---	--	. 00	. 00	. 00	. 00	. 31	. 00	. 00
24	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 06	. 00	. 00
25	. 00	---	---	---	---	. 00	. 00	. 82	. 39	. 00	. 30	. 00
26	. 00	---	--	---	---	. 00	. 00	302	. 00	. 00	. 01	. 00
27	. 00	---	---	---	---	. 00	. 00	38	. 00	. 00	. 00	. 00
28	. 00	---	---	---	---	. 00	. 00	2.1	. 00	. 00	. 00	. 00
29	. 00	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00
30	. 00	---	--	---	---	. 00	. 00	. 00	. 00	. 00	. 01	. 00
31	. 00	---	---	---	---	. 00	---	. 00	---	. 00	. 00	--
TOTAL	0.00	---	--	---	---	---	0.00	342.92	0.39	0.42	0.82	0.00
MEAN	. 000	---	---	---	---	---	. 000	11.1	. 013	. 014	. 026	. 000
MAX	. 00	---	---	---	---	---	. 00	302	. 39	. 31	. 35	. 00
MIN	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
AC-FT	. 00	---	-	---	-	---	. 00	680	. 8	. 8	1.6	. 00

07137000 FRONTIER DITCH NEAR COOLIDGE, KS

LOCATION.--Lat $38^{\circ} 02^{\prime} 18^{\prime \prime}$, long $102^{\circ} 02^{\prime} 19^{\prime \prime}$, in $\mathrm{SW}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec. 21 , T. 23 S., R. 43 W., Hamilton County, Hydrologic Unit 11030001 , on left bank 0.3 mi east of Colorado-Kansas State line, 0.5 mi downstream from Holly drain diversion, 1.5 mi west of Coolidge, and 2.3 mi downstream from diversion of the Arkansas River.
PERIOD OF RECORD.--October 1950 to current year.
REVISED RECORDS.--WSP 1731: 1951.
GAGE.--Water-stage recorders and Parshall flume. Datum of gage is $3,343.14 \mathrm{ft}$ above sea level.
REMARKS.--Records good. This ditch diverts water from the Arkansas River in Colorado for use in Kansas. These records and records for the Arkansas River near Coolidge represent total flow of the Arkansas River at the Colorado-Kansas State line. Satellite telemeter at station.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, $84 \mathrm{ft}^{3} / \mathrm{s}$, Aug. 1, 1975; no flow many days each year.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 16	34	20	. 00	. 00	. 00	. 00	36	. 00	30	. 00	. 00
2	. 00	33	1.0	. 00	. 00	. 00	. 00	35	. 00	28	. 00	. 00
3	. 00	34	3.3	. 00	. 00	. 00	30	34	. 00	21	. 00	. 00
4	. 00	35	25	. 00	. 00	. 00	36	13	. 00	27	. 00	. 00
5	. 00	35	26	. 00	. 00	. 00	36	2.9	. 00	26	. 00	. 00
6	. 00	37	23	. 00	. 00	. 00	36	37	. 00	45	. 00	. 00
7	12	37	21	. 00	. 00	. 00	37	38	. 00	48	. 00	. 00
8	30	37	19	. 00	. 00	. 00	36	37	. 00	29	. 00	. 00
9	32	33	e19	. 00	. 00	. 00	36	35	. 00	28	. 00	. 00
10	38	33	e21	. 00	. 00	. 00	39	39	. 00	29	. 00	. 00
11	38	32	24	. 00	. 00	. 00	39	36	1.9	27	. 00	. 00
12	38	36	25	. 00	. 00	. 00	38	29	24	21	. 00	. 00
13	40	38	24	. 00	. 00	. 00	38	20	33	22	7.8	. 00
14	40	29	23	. 00	. 00	. 00	37	12	37	5.3	35	. 00
15	40	8.2	22	. 00	. 00	. 00	39	16	33	. 17	40	. 00
16	41	37	21	. 00	. 00	. 00	39	21	35	. 00	35	. 00
17	37	33	20	. 00	. 00	. 00	41	23	29	3.1	32	. 00
18	40	32	18	e. 00	. 00	. 00	39	25	20	24	33	. 00
19	40	32	19	e. 00	. 00	. 00	39	31	32	12	33	. 00
20	35	34	18	e. 00	. 00	. 00	39	18	34	12	19	. 00
21	37	34	18	e. 00	. 00	. 00	39	11	34	14	. 24	. 00
22	29	36	13	e. 00	. 00	. 00	39	. 01	22	23	. 00	. 00
23	. 06	35	1.1	e. 00	. 00	. 00	39	. 00	. 14	23	. 00	. 00
24	. 00	37	. 78	e. 00	. 00	. 00	40	. 00	. 00	24	. 00	. 00
25	. 00	38	. 53	e. 00	. 00	. 00	40	. 79	. 00	12	. 00	. 00
26	. 00	35	. 33	. 00	. 00	. 00	39	1.0	. 00	25	. 00	. 00
27	. 00	34	. 05	. 00	. 00	. 00	39	2.0	. 00	24	. 00	. 00
28	. 00	32	. 00	e. 00	. 00	. 00	38	3.7	. 00	. 57	. 00	. 00
29	. 00	22	. 00	e. 00	. 00	. 00	38	. 03	. 00	. 03	. 00	. 00
30	6.4	9.2	. 00	. 00	---	. 00	38	. 00	2.5	. 00	. 00	. 00
31	34	---	. 00	. 00	---	. 00	---	. 00	---	. 00	. 00	--
MEAN	19.6	32.4	13.7	. 000	. 000	. 000	35.4	17.9	11.3	18.8	7.58	. 000
MAX	41	38	26	. 00	. 00	. 00	41	39	37	48	40	. 00
MIN	. 00	8.2	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
AC-FT	1210	1930	845	. 00	. 00	. 00	2110	1100	670	1160	466	. 00

[^83]
07137500 ARKANSAS RIVER NEAR COOLIDGE, KS

LOCATION.--Lat $38^{\circ} 01^{\prime} 34$ ", long $102^{\circ} 00^{\prime} 41^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{NE}^{1 / 4} \mathrm{NW}^{1 / 4}$ sec. 26 , T. 23 S., R. 43 W., Hamilton County, Hydrologic Unit 11030001, on right bank at downstream side of county highway bridge, 1.0 mi south of Coolidge, 1.9 mi downstream from ColoradoKansas State line, and at mile $1,099.3$.

DRAINAGE AREA.-- $25,410 \mathrm{mi}^{2}$, of which $1,708 \mathrm{mi}^{2}$ is probably noncontributing.
PERIOD OF RECORD.--May to October 1903, March to May 1921, October 1950 to current year. Monthly discharge only for some periods, published in WSP 1311. Water-quality data available, 1964 to 1968, 1970 to 1973, and 1975 to 1995.

REVISED RECORDS.--WSP 1341: 1903, drainage area.
GAGE.--Water-stage recorder. Datum of gage is $3,330.84 \mathrm{ft}$ above sea level. May 5 to Oct. 31, 1903, nonrecording gage, and Mar. 1 to May 31, 1921, water-stage recorder at present site at different datum. Oct. 1, 1950 to Mar. 31, 1966, water-stage recorder at site 0.3 mi upstream at datum 3.00 ft higher.

REMARKS.--Records good except for estimated daily discharges, which are poor. Combined flow of river and Frontier Ditch (station 07137000) represents entire flow that enters Kansas. Flow regulated since 1943 by John Martin Reservoir (station 07130000). Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 500,000 acres, and return flow from irrigated areas. Satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	243	170	e210	210	e165	169	603	240	571	328	796	430
2	255	159	e220	206	e160	166	661	226	506	315	599	401
3	248	158	e220	204	e150	162	574	224	456	288	476	403
4	242	180	213	207	e165	155	592	226	409	250	379	387
5	244	204	214	201	e185	153	614	225	365	230	350	366
6	224	219	196	203	198	152	592	193	377	271	309	372
7	216	228	185	201	201	e160	544	205	363	449	282	729
8	223	219	179	199	203	e170	507	200	339	632	270	467
9	207	208	172	206	202	e180	494	176	314	718	271	393
10	205	197	182	218	205	182	448	300	296	758	588	352
11	215	191	193	216	199	166	407	469	270	781	428	318
12	224	195	206	206	195	157	413	476	211	728	371	303
13	229	205	197	202	197	154	532	510	297	750	340	289
14	216	222	189	196	187	165	605	519	474	1130	276	290
15	205	216	185	193	181	215	661	434	444	1030	339	303
16	207	197	175	196	170	237	657	395	761	744	682	349
17	215	184	171	207	169	205	566	396	1020	651	714	367
18	206	184	168	e160	166	193	414	425	547	802	493	464
19	185	184	171	e150	168	179	344	523	425	848	426	418
20	177	183	176	e180	166	171	320	594	590	762	951	484
21	183	186	168	195	168	192	315	599	666	674	976	500
22	228	193	e160	203	170	241	325	532	775	678	691	456
23	276	186	e170	202	169	232	330	534	810	656	613	438
24	281	193	e180	197	166	e220	301	582	638	961	525	383
25	285	205	e190	197	165	e210	288	723	818	727	470	366
26	258	206	e200	193	162	e200	291	2060	625	767	679	348
27	249	190	207	187	165	e220	320	2880	439	695	551	321
28	223	e180	208	189	164	e230	283	3640	392	569	483	312
29	207	e190	207	196	157	225	270	1420	383	514	434	306
30	191	e200	206	e180	---	221	267	878	347	683	516	309
31	176	---	208	e170	---	442	---	679	---	718	516	--
MEAN	224	194	191	196	176	198	451	693	498	649	509	387
MAX	285	228	220	218	205	442	661	3640	1020	1130	976	729
MIN	176	158	160	150	150	152	267	176	211	230	270	289
AC-FT	13770	11570	11750	12040	10150	12150	26850	42610	29610	39880	31330	23060

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951 - 1996, BY WATER YEAR (WY)

MEAN	120	105	111	111	123	113	199	285	460	332	301	179
MAX	331	256	270	274	602	331	1221	2106	8221	2255	1979	1079
(WY)	1985	1988	1966	1966	1966	1960	1987	1987	1965	1995	1965	1965
MIN	1.97	1.53	3.94	3.14	5.52	5.63	9.43	6.61	4.20	3.59	1.94	. 90
(WY)	1979	1979	1979	1979	1978	1978	1979	1963	1954	1974	1964	1960

SUMMARY STATISTICS
ANNUAL MEAN

```
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (AC-FT
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
```

e-Estimated.
a-Also occurred Feb 3.

RIO GRANDE BASIN

08213500 RIO GRANDE AT THIRTYMILE BRIDGE, NEAR CREEDE, CO

LOCATION.--Lat $37^{\circ} 43^{\prime} 29^{\prime \prime}$, long $107^{\circ} 15^{\prime} 18^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{NE}^{1 / 4}($ revised) sec. 13, T. 40 N., R. 4 W., Hinsdale County, Hydrologic Unit 13010001, on right bank 70 ft downstream from bridge, 500 ft upstream from Squaw Creek, 0.8 mi downstream from Rio Grande Reservoir, and 20 mi southwest of Creede.
DRAINAGE AREA.-- $163 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--June 1909 to September 1923, May 1925 to current year. No winter records 1910, 1926. Monthly discharge only for some periods, published in WSP 1312.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $9,300 \mathrm{ft}$ above sea level, from topographic map. See WSP 1712 or 1732 for history of changes prior to Oct. 1, 1934.
REMARKS.--Records good except for estimated daily discharges, which are fair. Flow regulated by Rio Grande Reservoir, capacity, 51,110 acre-ft, since 1912. Natural flow of stream affected by transmountain diversions from Colorado River basin to drainage area upstream from station through Weminuche Pass and Pine River-Weminuche Pass ditches. No known diversions upstream from station.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	182	28	e19	e18	e17	e17	35	231	822	209	46	46
2	182	19	e19	e18	e17	e17	51	293	776	209	46	46
3	125	19	e19	e18	e17	e17	54	392	843	208	47	46
4	82	19	e19	e18	e17	e17	54	499	915	206	53	46
5	76	19	e19	e18	e17	e17	54	644	940	197	56	37
6	69	19	e19	e18	e17	e17	54	711	959	193	56	35
7	63	19	e19	e18	e17	e17	54	844	923	182	56	35
8	63	e19	e19	e18	e17	e17	53	926	893	177	55	35
9	63	e19	e19	e18	e17	e17	83	838	853	159	54	35
10	57	e19	e19	e18	e17	e17	141	714	789	150	50	35
11	53	e19	e19	e18	e17	e17	170	743	761	150	46	35
12	53	e19	e19	e18	e17	e17	166	963	758	134	40	46
13	52	e19	e19	e18	e17	17	118	1110	743	113	36	63
14	52	e19	e19	e18	e17	17	72	1130	747	98	36	69
15	55	e19	e19	e18	e17	18	58	1180	796	86	34	90
16	57	e19	e19	e18	e17	18	53	1290	789	82	33	100
17	57	e19	e19	e18	e17	18	58	1300	768	82	31	100
18	57	e19	e19	e18	e17	18	80	1260	760	82	30	81
19	57	e19	e19	e18	e17	18	90	1200	760	82	30	61
20	57	e19	e19	e18	e17	18	85	1180	674	82	29	53
21	52	e19	e19	e18	e17	18	69	1110	625	82	29	54
22	48	e19	e19	e18	e17	18	59	e1140	622	81	29	54
23	43	e19	e19	e18	e17	18	55	e994	768	69	29	54
24	38	e19	e18	e18	e17	18	53	846	920	67	47	54
25	38	e19	e18	e18	e17	18	144	638	882	64	71	57
26	38	e19	e18	e18	e17	18	208	611	731	63	91	71
27	38	e19	e18	e18	e17	18	282	743	677	56	97	76
28	38	e19	e18	e18	e17	18	291	723	600	49	82	75
29	44	e19	e18	e18	e17	18	323	606	432	46	67	71
30	47	e19	e18	e18	---	18	258	673	255	46	53	69
31	47	---	e18	e18	---	18	---	832	---	46	46	---
TOTAL	1983	579	581	558	493	544	3325	26364	22781	3550	1505	1729
MEAN	64.0	19.3	18.7	18.0	17.0	17.5	111	850	759	115	48.5	57.6
MAX	182	28	19	18	17	18	323	1300	959	209	97	100
MIN	38	19	18	18	17	17	35	231	255	46	29	35
AC-FT	3930	1150	1150	1110	978	1080	6600	52290	45190	7040	2990	3430

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1909 - 1996, BY WATER YEAR (WY)

[^84]
08214500 NORTH CLEAR CREEK BELOW CONTINENTAL RESERVOIR, CO

LOCATION.--Lat $37^{\circ} 53^{\prime} 18^{\prime \prime}$, long $107^{\circ} 12^{\prime} 10^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 4} / 4 \mathrm{sec} .21$, T. 42 N., R. 3 W., Hinsdale County, Hydrologic Unit 13010001, on left bank 100 ft downstream from bridge, $1,000 \mathrm{ft}$ downstream from Continental Reservoir, and 15 mi west of Creede.
DRAINAGE AREA.--51.7 mi ${ }^{2}$.
PERIOD OF RECORD.--May 1929 to current year. Monthly discharge only for some periods, published in WSP 1312. Prior to October 1960, published as Clear Creek below Continental Reservoir.
REVISED RECORDS.--WSP 1008: Drainage area.
GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Elevation of gage is $10,200 \mathrm{ft}$ above sea level, from topographic map. Prior to Oct. 2, 1951, at site 150 ft upstream, at different datum.
REMARKS.--Records good except for estimated daily discharges, which are fair. Flow regulated by Continental Reservoir, capacity, 26,720 acre-ft. No diversion upstream from station.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
1	109	3.4	e. 35	e. 40	e. 45	e. 50	e. 55	47	253
2	121	. 41	e. 35	e. 40	e. 45	e. 50	e. 55	41	249
3	127	. 35	e. 35	e. 40	e. 45	e. 50	e. 55	50	249
4	126	. 35	e. 35	e. 40	e. 45	e. 50	e10	59	247
5	120	. 35	e. 35	e. 40	e. 45	e. 50	e15	72	225
6	117	. 41	e. 35	e. 40	e. 45	e. 50	e17	74	220
7	116	. 35	e. 35	e. 40	e. 45	e. 50	e18	79	218
8	116	e. 35	e. 35	e. 40	e. 45	e. 50	e21	81	214
9	63	e. 35	e. 40	e. 40	e. 50	e. 50	e43	81	210
10	41	e. 35	e. 40	e. 45	e. 50	e. 55	e71	82	166
11	22	e. 35	e. 40	e. 45	e. 50	e. 55	69	82	147
12	11	e. 35	e. 40	e. 45	e. 50	e. 55	68	83	155
13	7.6	e. 35	e. 40	e. 45	e. 50	e. 55	56	97	158
14	6.8	e. 35	e. 40	e. 45	e. 50	e. 55	19	112	165
15	6.8	e. 35	e. 40	e. 45	e. 50	e. 55	15	113	163
16	6.8	e. 35	e. 40	e. 45	e. 50	e. 55	29	113	157
17	6.8	e. 35	e. 40	e. 45	e. 50	e. 55	39	98	56
18	8.3	e. 35	e. 40	e. 45	e. 50	e. 55	39	79	28
19	9.1	e. 35	e. 40	e. 45	e. 50	e. 55	35	73	30
20	9.1	e. 35	e. 40	e. 45	e. 50	e. 55	28	98	30
21	11	e. 35	e. 40	e. 45	e. 50	e. 55	22	94	30
22	13	e. 35	e. 40	e. 45	e. 50	e. 55	19	87	31
23	14	e. 35	e. 40	e. 45	e. 50	e. 55	19	85	35
24	14	e. 35	e. 40	e. 45	e. 50	e. 55	27	83	36
25	14	e. 35	e. 40	e. 45	e. 50	e. 55	43	107	35
26	14	e. 35	e. 40	e. 45	e. 50	e. 55	61	130	34
27	14	e. 35	e. 40	e. 45	e. 50	e. 55	72	184	34
28	14	e. 35	e. 40	e. 45	e. 50	e. 55	76	235	34
29	14	e. 35	e. 40	e. 45	e. 50	e. 55	78	245	38
30	14	e. 35	e. 40	e. 45	---	e. 55	69	243	37
31	14	---	e. 40	e. 45	---	e. 55	---	257	-
TOTAL	1300.3	13.67	12.00	13.50	14.10	16.60	1079.65	3364	3684
MEAN	41.9	. 46	. 39	. 44	. 49	. 54	36.0	109	123
MAX	127	3.4	. 40	. 45	. 50	. 55	78	257	253
MIN	6.8	. 35	. 35	. 40	. 45	. 50	. 55	41	28
AC-FT	2580	27	24	27	28	33	2140	6670	7310

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1929 - 1996, BY WATER YEAR (WY)

[^85]
08217500 RIO GRANDE AT WAGON WHEEL GAP, CO

LOCATION.--Lat $37^{\circ} 46^{\prime} 01$ ", long $106^{\circ} 49^{\prime} 51^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec.35, T. 41 N., R. 1 E., Mineral County, Hydrologic Unit 13010001, on right bank 250 ft upstream from private bridge, 0.4 mi upstream from Goose Creek, and 0.4 mi west of town of Wagon Wheel Gap.
DRAINAGE AREA.--780 mi^{2}.
PERIOD OF RECORD.--May 1951 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $8,430 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good except discharges below $200 \mathrm{ft}^{3} / \mathrm{s}$, which are fair, and estimated daily discharges, which are poor. Flow regulated by Santa Maria, Rio Grande, and Continental Reservoirs, combined capacity, 121,400 acre-ft. Diversions upstream from station for irrigation. Transmountain diversions to drainage area upstream from station from Colorado River basin (see elsewhere in this report). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	585	234	162	e115	e94	158	148	662	1400	631	173	153
2	575	219	161	e115	e98	159	166	742	1300	584	174	151
3	561	187	156	e115	e98	159	212	911	1310	556	187	152
4	498	174	156	e115	e105	152	233	1110	1420	535	194	151
5	440	170	161	e115	e101	148	227	1380	1470	520	194	151
6	421	170	162	e115	e98	148	224	1560	1420	516	189	147
7	412	170	162	e115	e96	148	236	1620	1370	483	189	149
8	403	170	156	e115	e96	148	256	1730	1310	454	191	147
9	388	170	156	e115	e96	148	353	1680	1280	444	195	143
10	352	170	156	e115	e94	148	499	1430	1230	436	188	137
11	322	170	e154	e115	e95	149	505	1470	1150	395	176	138
12	297	171	e148	e115	e96	156	462	1780	1140	382	164	175
13	277	186	e146	e110	e96	156	446	2040	1140	363	154	207
14	265	178	e144	e110	e98	156	336	2010	1150	336	149	233
15	260	168	e135	e110	e100	156	276	2000	1200	312	148	299
16	256	162	e128	e110	e108	156	262	2140	1240	273	148	301
17	256	162	e135	e110	e109	156	256	2200	1150	324	148	284
18	256	161	e128	e107	e110	156	288	2060	1040	322	148	293
19	256	156	e128	e107	e122	156	294	1940	997	304	148	277
20	250	156	e128	e102	e132	156	286	1850	975	283	148	254
21	243	156	e130	e96	e145	156	273	1760	890	270	145	235
22	243	156	e128	e94	e154	156	251	1640	1040	257	136	234
23	228	156	e122	e90	155	156	234	1590	1040	256	140	227
24	217	156	e118	e88	155	156	282	1300	1150	256	202	225
25	221	156	e118	e92	162	153	425	1150	1210	254	213	225
26	228	156	e120	e96	150	148	688	1050	1110	246	225	226
27	234	e150	e120	e98	146	148	856	1100	1130	235	249	232
28	234	e142	e116	e98	148	148	879	1270	1160	202	254	234
29	234	e144	e120	e96	151	148	715	1170	992	196	227	234
30	234	e154	e115	e96	---	148	695	1150	761	202	197	220
31	234	-	e115	e94	---	148	-	1290	-	180	169	---
TOTAL	9880	5030	4284	3284	3408	4734	11263	46785	35175	11007	5562	6234
MEAN	319	168	138	106	118	153	375	1509	1172	355	179	208
MAX	585	234	162	115	162	159	879	2200	1470	631	254	301
MIN	217	142	115	88	94	148	148	662	761	180	136	137
AC-FT	19600	9980	8500	6510	6760	9390	22340	92800	69770	21830	11030	12370

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951 - 1996, BY WATER YEAR (WY)

[^86]
08220000 RIO GRANDE NEAR DEL NORTE, CO

LOCATION.--Lat $37^{\circ} 41^{\prime} 22^{\prime \prime}$, long $106^{\circ} 27^{\prime} 38^{\prime \prime}$, in $\mathrm{NW}^{1 / 1} / 4 \mathrm{sec} .29$, T. 40 N., R. 5 E., Rio Grande County, Hydrologic Unit 13010001, on right bank 20 ft downstream from county highway bridge, 5.0 mi upstream from Pinos Creek, and 6.0 mi west of Del Norte.
DRAINAGE AREA.-- $1,320 \mathrm{mi}^{2}$, approximately.
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--June 1889 to current year. Monthly discharge only for some periods, published in WSP 1312.
REVISED RECORDS.--WSP 763: Drainage area. WSP 1312: 1889, 1901, 1913-14.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $7,980.25 \mathrm{ft}$ above sea level. Prior to May 16, 1908, nonrecording gage at site 4 mi downstream at different datum. May 16, 1908 to Nov. 8, 1910, nonrecording gages on bridge at present site and datum.
REMARKS.--Records good except for estimated daily discharges, which are poor. Small diversions upstream from station for irrigation. Flow regulated by Beaver Creek Reservoir since 1910, Santa Maria Reservoir since 1912, Rio Grande Reservoir since 1912, and Continental Reservoir since 1925, combined capacity, 126,100 acre-ft, and by several smaller reservoirs. Transmountain diversions to drainage area upstream from station from Colorado River basin (see elsewhere in this report).
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1873, that of Oct. 5, 1911, from information by local residents.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

[^87]
08220000 RIO GRANDE NEAR DEL NORTE, CO--Continued (Rio Grande National Water-Quality Assessment Program station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 1993 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	$\begin{aligned} & \text { PH } \\ & \text { WATER } \\ & \text { WHOLE } \\ & \text { FIELD } \\ & \text { (STAND- } \\ & \text { ARD } \\ & \text { UNITS) } \end{aligned}$	$\begin{aligned} & \text { TEMPER- } \\ & \text { ATURE } \\ & \text { AIR } \\ & \left(\begin{array}{l} \text { DEG } \end{array}\right) \end{aligned}$	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (PER- } \\ \text { CENT } \\ \text { SATUR- } \\ \text { ATION) } \end{gathered}$	HARD- NESS TOTAL (MG/L AS CACO3)	$\begin{aligned} & \text { CALCIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS CA) } \end{aligned}$	$\begin{aligned} & \text { MAGNE- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS MG) } \end{aligned}$
$\begin{aligned} & \text { JUL } \\ & 15 \text {. . . } \end{aligned}$	1330	351	82	7.7	23.5	19.0	571	7.5	109	31	9.9	1.5
DATE	$\begin{aligned} & \text { SODIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS NA) } \end{aligned}$	SODIUM PERCENT	$\begin{gathered} \text { SODIUM } \\ \text { AD- } \\ \text { SORP- } \\ \text { TION } \\ \text { RATIO } \end{gathered}$	$\begin{aligned} & \text { POTAS- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS K) } \end{aligned}$	$\begin{gathered} \text { BICAR- }{ }^{\text {B }} \\ \text { BONATE } \\ \text { WATER } \\ \text { DIS IT } \\ \text { FIELD } \\ \text { MG/L AS } \\ \text { HCO3 } \end{gathered}$	$\begin{aligned} & \text { CAR-b } \\ & \text { BONATE } \\ & \text { WATER } \\ & \text { DIS IT } \\ & \text { FIELD } \\ & \text { MG/L AS } \\ & \text { CO3 } \end{aligned}$	```ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3```	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	$\begin{aligned} & \text { FLUO- } \\ & \text { RIDE, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & (M G / L \\ & \text { AS F) } \end{aligned}$	$\begin{aligned} & \text { SILICA, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { SIO2) } \end{aligned}$	
$\begin{aligned} & \text { JUL } \\ & 15 . . \text {. } \end{aligned}$	3.5	19	0.3	1.7	37	0	30	5.3	0.60	0.10	21	
DATE	$\begin{aligned} & \text { SOLIDS, } \\ & \text { RESIDUE } \\ & \text { AT } 180 \\ & \text { DEG. C } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & (\mathrm{MG} / \mathrm{L}) \end{aligned}$	SOLIDS, SUM OF CONSTITUENTS, DISSOLVED (MG/L)	$\begin{gathered} \text { SOLIDS, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (TONS } \\ \text { PER } \\ \text { AC-FT) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { TOTAL } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITROGEN, AMMONIA + ORGANIC TOTAL (MG/L AS N)	NITROGEN, AMMONIA + ORGANIC DIS. (MG/L AS N)	$\begin{gathered} \text { PHOS- } \\ \text { PHORUS } \\ \text { TOTAL } \\ \text { (MG/L } \\ \text { AS P) } \end{gathered}$	PHOSPHORUS DISSOLVED (MG/L AS P)	
JUL $15 \text {. . . }$	72	62	0.10	0.010	0.080	0.080	0.030	<0.20	<0.20	0.040	0.030	
DATE	```PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)```	$\begin{aligned} & \text { IRON, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS FE) } \end{aligned}$	MANGANESE, DISSOLVED (UG/L AS MN)	$\begin{aligned} & \text { CARBON, } \\ & \text { ORGANIC } \\ & \text { TOTAL } \\ & \text { (MG/L } \\ & \text { AS C) } \end{aligned}$	$\begin{aligned} & \text { CARBON, } \\ & \text { ORGANIC } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS C) } \end{aligned}$	PROPCHLOR, WATER, DISS, REC (UG/L)	$\begin{aligned} & \text { BUTYL- } \\ & \text { ATE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { SI- } \\ & \text { MAZINE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	PRO- METON, WATER, DISS, REC (UG/L)	```DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L)```	$\begin{aligned} & \text { CYANA- } \\ & \text { ZINE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	
JUL 15...	0.040	75	11	2.6	1.8	<0.007	<0.002	<0.005	<0.018	<0.002	<0.004	
DATE	$\begin{aligned} & \text { FONOFOS } \\ & \text { WATER } \\ & \text { DISS } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{gathered} \text { ALPHA } \\ \text { BHC } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L) } \end{gathered}$	$\begin{gathered} \text { P, P' } \\ \text { DDE } \\ \text { DISSOLV } \\ (U G / L) \end{gathered}$	CHLORPYRIFOS DISSOLVED (UG/L)	```LINDANE DIS- SOLVED (UG/L)```	DI- ELDRIN DIS- SOLVED (UG/L)	$\begin{aligned} & \text { METO- } \\ & \text { LACHLOR } \\ & \text { WATER } \\ & \text { DISSOLV } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { MALA- } \\ & \text { THION, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L) } \end{aligned}$	PARA- THION, DIS- SOLVED (UG/L)	$\begin{gathered} \text { DI- } \\ \text { AZINON, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L) } \end{gathered}$	$\begin{aligned} & \text { ATRA- } \\ & \text { ZINE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	
JUL $15 . .$	<0.003	<0.002	<0.006	<0.004	<0.004	<0.001	<0.002	<0.005	<0.004	<0.002	<0.001	

08220000 RIO GRANDE NEAR DEL NORTE, CO--Continued
(Rio Grande National Water-Quality Assessment Program station)
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	EPTC	PEB- ULATE	TEBU- THIURON	$\begin{aligned} & \text { MOL- } \\ & \text { INATE } \end{aligned}$	ETHO-	$\begin{aligned} & \text { BEN- } \\ & \text { FLUR- } \end{aligned}$	CARBO- FURAN	$\begin{array}{r} \text { TER- } \\ \text { BUFOS } \end{array}$	PRONAMIDE	DISUL- FOTON
	WATER	WATER	WATER	WATER	WATER	ALIN	WATER	WATER	WATER	WATER
	FLTRD	FILTRD	FLTRD	FLTRD	FLTRD	WAT FLD	FLTRD	FLTRD	FLTRD	FLTRD
	0.7 U									
	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	GF, REC (UG/L)
JUL$15 \ldots<0.002<0.004<0.010<0.004<0.003<0.002<0.003<0.013 ~<0.003 ~<0.017 ~$										
	TRIAL-	PRO-	CAR-	THIO-		PENDI-	NAPROP-	$\begin{gathered} \text { PRO- } \\ \text { PARGTTE } \end{gathered}$	METHYL	PER-
	LATE	PANIL	BARYL	BENCARB	DCPA	METH-	AMIDE	PARGITE	AZIN-	METHRIN
	WATER	WATER	WATER	WATER	WATER	ALIN	WATER	WATER	PHOS	CIS
	FLTRD	FLTRD	FLTRD	FLTRD	FLTRD	WAT FLT	FLTRD	FLTRD	WAT FLT	WAT FLT
	0.7 U									
DATE	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	GF, REC (UG/L)
JUL										
15.	<0.001	<0.004	<0.003	<0.002	<0.002	<0.004	<0.003	<0.013	<0.001	<0.005

CLOSED BASIN IN SAN LUIS VALLEY, CO

08227000 SAGUACHE CREEK NEAR SAGUACHE, CO

LOCATION.--Lat $38^{\circ} 09^{\prime} 48^{\prime \prime}$, long $106^{\circ} 17^{\prime} 24^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{sec} .10$, T. 45 N., R. 6 E., Saguache County, Hydrologic Unit 13010004, on left bank 0.2 mi downstream from Middle Creek and 10 mi northwest of Saguache.
DRAINAGE AREA.--595 mi ${ }^{2}$.
PERIOD OF RECORD.--August 1910 to September 1912, June 1914 to current year. Monthly discharge only for some periods, published in WSP 1312. Water-quality data available, April 1993 to September 1995.

REVISED RECORDS.--WSP 1242: 1948-49. WSP 1312: 1912, 1934(M), 1942(M). WSP 1923: 1951.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is about $8,030 \mathrm{ft}$ above sea level, from topographic map. Prior to Apr. 9, 1934, at sites 0.8 mi downstream at different datums. Apr. 10, 1934 to Nov. 20, 1966, at present site at datum 1.00 ft , higher.

REMARKS.--Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions from Colorado River basin to drainage area above station through Tarbell ditch (see elsewhere in this report), and diversions above station for irrigation.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	58	45	34	e25	e29	e32	50	59	64	50	31	23
2	54	45	33	e21	e26	e30	65	66	59	48	30	13
3	51	32	31	e25	e25	e29	73	73	58	47	35	16
4	50	26	27	e24	e24	e32	60	81	57	44	39	17
5	50	34	43	e23	e28	32	50	90	55	46	33	19
6	48	34	43	e24	e27	27	48	99	55	51	29	20
7	48	44	29	e27	e26	28	52	98	55	46	25	24
8	49	42	e30	e24	e29	28	66	103	55	45	27	19
9	47	39	e29	e25	e27	30	100	110	54	59	27	17
10	46	49	e28	e27	e29	34	92	105	54	64	27	22
11	45	33	e28	e29	e28	38	84	104	54	53	24	24
12	44	39	e29	e27	e27	41	64	113	62	44	22	25
13	45	51	e30	e27	e26	42	58	124	65	42	20	29
14	43	47	e28	e29	e28	39	46	116	80	40	20	34
15	43	41	e20	e27	e30	38	41	113	97	38	15	39
16	43	39	e23	e29	e28	37	45	119	88	50	15	39
17	42	42	e27	e30	e30	35	48	124	65	54	14	35
18	42	38	e25	e27	e30	26	51	117	59	66	21	34
19	42	34	e26	e28	e28	25	49	108	51	50	24	35
20	41	35	e25	e26	30	29	45	113	50	43	26	34
21	40	35	e24	e26	37	36	40	108	54	37	26	33
22	44	32	e21	e26	40	43	38	102	73	34	29	29
23	40	34	e23	e25	e31	45	36	97	86	31	32	30
24	41	25	e22	e27	30	40	46	90	59	29	31	32
25	47	31	e23	e29	26	33	72	86	50	29	27	30
26	48	38	e24	e28	29	28	82	86	49	29	25	27
27	46	33	e23	e25	e28	34	84	84	56	29	26	27
28	46	12	e22	e27	e28	40	87	80	72	32	29	29
29	45	e30	e25	e29	e29	40	64	74	66	36	34	30
30	46	e32	e24	e31	---	42	58	67	55	39	29	29
31	45	--	e27	e31	---	43	---	64	---	36	26	-
TOTAL	1419	1091	846	828	833	1076	1794	2973	1857	1341	818	814
MEAN	45.8	36.4	27.3	26.7	28.7	34.7	59.8	95.9	61.9	43.3	26.4	27.1
MAX	58	51	43	31	40	45	100	124	97	66	39	39
MIN	40	12	20	21	24	25	36	59	49	29	14	13
AC-FT	2810	2160	1680	1640	1650	2130	3560	5900	3680	2660	1620	1610

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1910 - 1996, BY WATER YEAR (WY)

[^88]
08235250 ALAMOSA RIVER ABOVE WIGHTMAN FORK NEAR JASPER, CO

LOCATION.--Lat $37^{\circ} 24^{\prime} 09^{\prime \prime}$, long $106^{\circ} 31^{\prime} 177^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec. 35 , T. 37 N., R. 4 E., Rio Grande County, Hydrologic Unit 13010001, Rio Grande National Forest, on left bank 150 ft upstream from Wightman Fork, 1.9 mi downstream from Bitter Creek, 4.1 mi west of Jasper, and 4.2 mi southeast of Summitville.

DRAINAGE AREA.-- $37.8 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1995 to current year (seasonal record).
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $9,380 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period of seasonal operation, $529 \mathrm{ft}^{3} / \mathrm{s}$, May 16, 1996, gage height, 4.74 ft ; minimum daily, $6.7 \mathrm{ft}^{3} / \mathrm{s}$, Aug. 19-20, 1996.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, $529 \mathrm{ft} 3 / \mathrm{s}$, May 16, gage height, 4.74 ft ; minimum daily, $6.7 \mathrm{ft}^{3} / \mathrm{s}$, Aug. 19-20.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	48	---	---	---	---	---	---	121	88	42	15	9.9
2	42	---	---	---	---	---	---	156	89	30	14	9.3
3	39	---	---	---	---	---	---	190	88	27	15	8.9
4	36	---	---	---	---	---	---	216	87	30	15	8.1
5	32	---	---	---	---	---	---	243	92	30	14	7.9
6	31	---	---	---	---	---	---	265	92	27	12	8.3
7	30	---	---	---	---	---	---	269	89	25	10	8.1
8	28	---	---	---	---	---	---	271	83	45	11	7.9
9	27	---	---	---	---	---	---	303	72	81	11	7.3
10	26	---	---	---	---	---	36	309	65	64	11	7.1
11	25	---	---	---	---	---	35	345	67	48	9.0	7.0
12	e24	---	---	---	---	---	35	352	63	54	8.3	8.4
13	---	---	---	---	---	---	36	340	61	50	8.0	8.1
14	---	---	---	---	---	---	30	353	63	39	7.7	11
15	---	--	---	--	--	---	27	348	65	34	7.7	13
16	---	---	---	---	---	---	27	369	56	32	7.8	10
17	---	---	---	---	--	---	26	349	52	50	7.4	11
18	---	---	---	---	---	---	24	317	48	50	7.0	13
19	---	---	---	---	---	---	22	298	44	40	6.7	13
20	---	---	---	---	---	---	22	274	42	33	6.7	14
21	---	---	---	---	---	---	22	235	43	29	10	14
22	---	---	---	---	---	---	27	205	54	25	13	14
23	---	---	---	---	---	---	39	174	41	22	14	13
24	---	---	---	---	---	---	63	135	36	20	12	12
25	---	--	---	--	---	---	93	110	33	21	11	12
26	---	---	---	---	---	---	131	96	39	19	9.8	11
27	---	---	---	---	---	---	173	81	48	18	16	9.3
28	---	---	---	---	---	---	149	78	49	24	15	9.7
29	---	---	---	---	---	---	97	73	41	24	14	9.4
30	---	---	---	---	---	---	94	81	42	19	15	9.1
31	---	---	---	---	---	---	---	85	---	16	11	-
TOTAL	---	---	---	---	---	---	---	7041	1832	1068	345.1	304.8
MEAN	---	---	---	--	--	--	---	227	61.1	34.5	11.1	10.2
MAX	---	--	--	--	--	---	---	369	92	81	16	14
MIN	---	---	---	---	---	---	---	73	33	16	6.7	7.0
AC-FT	---	---	---	---	---	---	---	13970	3630	2120	685	605

[^89]
08235250 ALAMOSA RIVER ABOVE WIGHTMAN FORK NEAR JASPER, CO--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--July 1995 to current year (seasonal record only).
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: July 1995 to current year (seasonal only).
pH : July 1995 to current year (seasonal only).
WATER TEMPERATURE: July 1995 to current year (seasonal only).
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Daily records for specific conductance, pH , and water temperature are fair. Daily data that are not published during period of seasonal operation are either missing or of unacceptable quality.

EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum during period of seasonal operation, 757 microsiemens, July 8, 1996; minimum during period of seasonal operation, 45 microsiemens, May 16, 1996.
pH : Maximum during period of seasonal operation, 7.3 units, May 18-20, 1996; minimum during period of seasonal operation, 3.0 units, Aug. 23-24, 1996.

WATER TEMPERATURE: Maximum during period of seasonal operation, $19.5^{\circ} \mathrm{C}$, Aug. 11,1996 ; minimum during period of seasonal operation, $0.0^{\circ} \mathrm{C}$, many days.

EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum during period of seasonal operation, 757 microsiemens, July 8 ; minimum during period of seasonal operation, 45 microsiemens, May 16.
pH : Maximum during period of seasonal operation, 7.3 units, May 18-20; minimum during period of seasonal operation, 3.0 units, Aug. 23-24.
WATER TEMPERATURE: Maximum during period of seasonal operation, $19.5^{\circ} \mathrm{C}$, Aug. 11 ; minimum during period of seasonal operation, $0.0^{\circ} \mathrm{C}$, many days.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

08235250 ALAMOSA RIVER ABOVE WIGHTMAN FORK NEAR JASPER, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	-	---	---	---	---	--	---	---	104	86	97
2	-	-	---	---	---	---	---	---	---	93	75	86
3	---	---	---	---	---	---	---	---	---	83	65	76
4	---	---	---	---	---	---	---	---	---	76	62	71
5	---	---	---	---	---	---	---	---	---	73	57	67
6	---	---	---	---	-	---	--	--	---	69	53	63
7	---	---	---	---	---	---	---	---	---	67	57	62
8	---	---	---	---	---	---	---	---	---	66	54	62
9	---	---	---	---	---	---	---	---	--	61	52	58
10	---	---	---	---	---	---	223	189	203	62	51	58
11	---	---	---	---	---	-	198	191	194	62	47	56
12	---	---	---	---	---	---	202	183	192	60	47	53
13	---	---	---	---	---	---	189	176	183	57	47	52
14	---	---	---	---	---	---	199	184	191	57	47	51
15	---	---	---	---	---	---	220	191	206	63	47	56
16	---	---	---	---	---	---	223	208	215	62	45	55
17	---	---	---	---	---	---	217	210	213	60	47	53
18	--	-	-	-	-	-	225	216	221	60	50	54
19	---	---	---	---	---	---	244	222	234	59	47	54
20	---	---	---	---	---	---	253	215	233	--	---	--
21	---	---	---	---	---	---	242	226	236	---	---	---
22	---	---	---	---	-	--	237	202	224	-	---	---
23	---	---	---	---	---	---	205	159	189	---	---	---
24	---	---	---	---	---	-	159	130	146	---	--	-
25	---	---	---	---	---	---	130	111	124	---	---	---
26	---	---	---	---	---	---	111	93	105	---	---	---
27	---	---	---	---	---	---	96	82	90	---	---	---
28	---	---	---	---	---	--	97	83	90	--	---	--
29	---	---	---	---	---	---	112	96	105	-	---	---
30	---	---	---	---	---	---	117	95	108	93	--	---
31	---	---	---	---	---	---	---	---	---	92	72	85
MONTH	---	---	---	---	---	---	---	---	---	---	---	---
	JUNE			JULY			AUGUST			SEPTEMBER		
1	89	71	82	125	113	119	195	186	189	---	---	---
2	87	68	80	130	123	127	204	190	193	---	---	---
3	86	70	79	137	124	132	206	172	189	-	---	---
4	89	69	81	143	96	131	195	176	186	---	---	---
5	87	68	78	131	107	123	205	187	193	279	265	271
6	85	67	77	139	123	132	220	205	211	290	253	266
7	87	68	78	143	130	138	244	220	228	277	262	271
8	88	69	81	757	139	256	368	228	249	279	262	273
9	93	78	88	265	122	154	243	209	235	288	274	282
10	98	89	94	122	106	115	233	189	213	298	280	290
11	100	78	92	105	100	103	246	232	237	299	282	292
12	101	80	93	165	96	108	256	243	249	322	258	283
13	103	83	96	112	104	109	263	253	258	284	267	274
14	108	85	98	116	111	114	271	262	267	377	247	292
15	103	94	99	120	115	117	276	268	271	247	224	230
16	107	93	101	126	118	121	277	268	272	245	231	236
17	109	93	102	140	82	113	282	272	278	253	228	239
18	113	94	105	129	96	119	284	274	279	242	226	232
19	117	97	109	128	118	123	288	275	281	248	199	226
20	120	101	111	141	126	132	285	271	279	216	198	208
21	119	99	110	154	140	146	399	224	281	213	202	206
22	110	96	104	159	149	154	335	218	255	204	194	198
23	121	103	113	150	138	143	451	221	256	208	202	204
24	129	115	122	156	144	148	410	262	309	212	205	209
25	135	122	128	331	142	182	332	307	317	216	209	213
26	139	119	130	179	161	166	---	---	---	222	214	217
27	123	116	119	172	164	167	---	--	--	261	220	233
28	118	112	115	693	143	205	---	---	--	237	221	227
29	126	112	118	322	143	168	---	---	---	233	227	230
30	133	113	126	182	170	173	---	---	---	237	233	234
31	---	---	---	190	178	182	---	---	---	---	---	-
MONTH	139	67	100	757	82	143	-	--	---	---	---	---

08235250 ALAMOSA RIVER ABOVE WIGHTMAN FORK NEAR JASPER, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	6.2	5.8	5.9	---	---	---	---	---	---	---	---	---
2	6.2	5.7	5.9	---	---	---	---	-	---	---	---	---
3	5.9	5.6	5.7	---	---	---	---	--	---	--	---	---
4	5.7	5.4	5.5	---	---	---	-	--	-	---	-	-
5	6.0	5.0	5.4	---	-	---	-	-	---	---	--	-
6	5.8	5.0	5.4	-	---	---	---	---	---	---	---	---
7	5.5	5.1	5.3	---	---	---	-	--	---	---	-	---
8	5.3	5.0	5.2	---	---	---	-	-	---	---	-	---
9	5.3	4.9	5.1	--	---	---	---	---	---	---	---	---
10	5.1	4.9	5.0	---	---	---	---	--	---	--	--	---
11	5.0	4.9	5.0	---	---	---	---	---	---	---	---	---
12	5.0	4.9	4.9	---	---	---	---	---	---	---	---	---
13	---	4.8	---	---	---	-	---	---	---	--	---	---
14	---	---	---	---	---	-	---	---	---	--	---	---
15	---	---	---	---	---	---	-	---	-	---	---	---
16	---	---	---	---	-	---	---	---	---	---	---	---
17	---	---	---	---	-	-	---	--	---	-	---	---
18	---	--	---	---	-	---	---	--	---	--	---	---
19	---	---	---	---	---	-	---	---	---	--	---	---
20	---	---	---	---	---	-	--	---	---	---	---	---
21	---	---	---	---	---	---	---	--	---	--	---	---
22	---	---	---	---	---	---	--	---	-	---	---	---
23	---	---	---	---	---	---	---	---	---	---	---	---
24	---	---	--	-	--	---	---	--	---	---	---	---
25	--	-	---	---	---	---	---	---	---	---	---	---
26	---	---	---	---	---	---	--	--	---	--	---	---
27	---	---	---	---	---	-	--	---	---	-	---	---
28	---	-	---	---	---	---	-	--	---	---	---	---
29	---	---	---	---	---	---	---	---	---	---	---	---
30	---	-	---	---	---	---	---	---	---	---	---	---
31	--	-	---	---	-	---	---	---	---	---	---	---
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

08235250 ALAMOSA RIVER ABOVE WIGHTMAN FORK NEAR JASPER, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	7.5	1.1	4.0	---	---	---	---	---	---	---	---	-
2	8.3	1.1	4.3	---	--	--	--	--	---	-	---	-
3	8.5	1.0	4.2	---	--	-	---	--	---	--	--	---
4	6.4	. 7	3.3	---	--	---	-	--	-	---	---	-
5	5.7	. 0	1.7	---	---	-	---	---	---	---	---	---
6	6.2	. 0	2.0	---	-	-	---	---	---	-	---	--
7	7.1	. 0	2.6	---	---	-	---	---	---	---	---	-
8	8.2	. 3	3.4	---	---	---	---	---	---	---	---	--
9	7.5	. 0	2.8	---	-	---	---	-	---	---	---	-
10	8.5	. 0	3.3	---	---	---	---	---	---	---	---	---
11	9.0	. 3	3.8	---	---	---	---	---	---	---	---	-
12	8.4	. 8	4.1	--	---	--	-	---	--	---	---	---
13	---	---	---	---	---	---	---	---	---	---	---	---
14	---	--	---	---	--	---	---	---	---	---	---	---
15	---	---	---	---	---	---	---	---	---	--	---	---
16	---	---	---	-	---	---	-	---	---	---	---	---
17	---	---	---	---	---	---	---	---	---	---	---	---
18	---	---	-	--	---	---	-	---	---	-	---	---
19	---	---	---	---	---	---	-	---	---	--	---	---
20	---	---	---	---	---	---	---	---	---	---	---	---
21	---	---	---	---	---	---	--	---	---	---	---	---
22	---	---	---	---	---	---	---	---	---	---	---	---
23	---	---	---	---	---	---	-	---	---	--	---	--
24	---	---	---	---	---	---	--	---	---	---	---	---
25	---	---	---	---	---	---	---	---	---	---	---	---
26	---	---	---	---	---	---	---	---	---	---	---	---
27	---	---	---	---	---	---	---	---	---	--	---	--
28	---	---	---	---	---	---	--	---	---	---	---	---
29	---	---	---	---	---	---	--	---	---	--	---	---
30	---	--	---	---	---	---	---	---	---	---	---	-
31	---	---	---	---	---	---	---	---	---	---	---	---
MONTH	---	---	---	---	---	---	---	---	---	--	---	-

08235250 ALAMOSA RIVER ABOVE WIGHTMAN FORK NEAR JASPER, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	--	---	---	---	---	---	---	---	6.8	. 0	---
2	---	-	-	---	---	---	---	---	---	7.4	. 1	---
3	---	---	---	---	---	---	---	---	---	6.6	. 2	---
4	---	---	---	---	---	---	---	---	---	6.9	. 4	2.1
5	---	---	---	---	---	---	---	-	--	7.1	. 1	2.0
6	---	---	---	---	---	---	--	---	--	7.2	. 2	2.5
7	---	---	---	---	---	---	---	---	---	7.2	. 3	2.4
8	---	---	---	---	---	---	---	---	---	7.6	. 7	2.8
9	---	---	---	---	---	---	---	. 0	---	7.7	. 8	2.9
10	---	---	---	---	---	---	3.2	---	---	7.9	. 5	3.0
11	-	---	---	---	---	---	4.9	. 0	1.5	8.4	. 5	3.1
12	---	---	---	---	---	---	6.1	. 0	---	7.7	. 9	3.2
13	---	---	---	---	---	---	2.4	. 0	. 6	7.9	. 8	3.3
14	---	---	---	---	---	---	3.4	. 0	1.1	8.6	1.4	3.6
15	---	---	---	---	---	---	6.8	. 0	---	8.7	1.4	3.8
16	---	---	---	---	---	-	6.8	. 0	---	9.5	1.5	4.2
17	---	---	---	---	---	---	3.7	-	---	9.3	2.1	4.5
18	---	---	---	---	---	---	2.7	. 0	. 8	9.6	1.7	4.5
19	---	---	---	---	---	---	6.5	. 0	---	10.0	2.4	5.0
20	---	---	---	---	---	---	1.8	. 0	. 2	9.8	2.2	4.9
21	---	---	---	---	---	---	7.1	. 0	---	10.4	1.3	4.8
22	---	---	---	---	---	---	7.5	. 0	---	10.5	1.8	5.1
23	---	---	---	---	---	---	8.4	. 0	1.8	9.9	2.1	5.1
24	---	---	---	---	---	---	7.4	. 0	--	6.0	1.1	3.7
25	---	---	---	---	---	---	6.7	. 1	1.8	7.9	2.2	4.5
26	---	---	---	---	---	---	5.7	. 0	1.1	6.2	1.1	3.5
27	---	---	---	---	---	---	5.3	. 0	1.0	9.9	. 8	4.7
28	---	---	---	---	---	---	1.2	. 0	. 2	7.6	2.0	4.3
29	---	---	---	---	---	---	5.2	. 0	1.0	12.0	1.0	6.0
30	---	---	---	---	---	---	7.7	. 0	---	10.6	2.6	6.3
31	---	---	---	---	---	---	-	-	---	11.8	1.5	6.0
MONTH	---	---	---	---	---	---	---	---	---	12.0	. 0	-
	JUNE			JULY			AUGUST			SEPTEMBER		
1	11.5	1.6	6.1	15.1	6.8	10.6	17.0	7.5	11.6	---	---	---
2	11.9	1.4	6.4	14.3	6.8	10.5	17.4	8.7	12.9	---	---	---
3	11.1	2.0	6.5	17.3	7.1	11.5	18.5	9.8	13.2	---	---	---
4	11.2	2.5	6.8	16.5	7.9	11.8	16.8	9.5	12.5	16.0	---	---
5	12.0	2.9	7.4	18.5	7.8	12.5	18.8	6.4	12.1	14.8	5.9	10.0
6	14.4	3.6	8.3	17.5	9.8	13.4	19.4	6.9	12.4	15.4	7.8	11.1
7	11.7	2.9	7.5	13.4	8.8	11.4	18.0	6.6	12.2	14.1	5.9	9.5
8	12.0	3.2	7.8	14.2	8.5	10.8	16.3	9.6	12.2	12.5	4.6	8.7
9	---	---	---	12.9	7.1	9.6	12.3	7.4	10.1	14.4	5.1	9.8
10	---	---	---	13.9	7.3	10.5	15.7	6.1	11.0	12.2	5.8	8.9
11	12.9	3.9	8.5	14.2	7.7	11.4	19.5	6.4	12.3	11.8	6.3	9.1
12	11.1	4.8	8.3	12.2	8.1	10.0	16.3	7.5	11.8	10.7	7.5	9.1
13	13.0	5.6	8.9	12.3	7.3	9.6	16.6	7.4	11.7	13.9	7.6	10.1
14	10.8	6.1	8.1	16.0	6.1	10.9	13.8	8.4	11.3	9.3	6.4	7.7
15	12.7	6.4	9.0	18.6	9.0	13.3	13.0	7.4	10.5	14.1	5.3	8.7
16	13.1	4.8	9.1	17.4	9.2	13.0	16.6	6.8	11.3	11.9	4.8	7.7
17	15.3	5.3	9.9	15.6	9.4	12.3	17.6	6.6	11.4	9.3	5.9	7.3
18	15.5	5.0	10.1	17.2	9.3	12.7	19.4	8.1	13.0	7.7	2.9	5.3
19	16.1	4.4	10.1	18.5	7.8	12.9	16.4	7.5	11.9	10.3	. 6	4.8
20	16.7	5.3	11.0	16.9	8.6	12.9	16.3	8.1	12.1	11.5	2.6	6.3
21	14.3	7.8	11.0	---	---	--	14.6	9.7	11.6	12.4	2.8	6.9
22	13.6	7.5	10.1	---	---	---	12.5	8.9	10.3	12.9	3.7	7.6
23	15.2	4.7	9.8	18.9	7.9	12.3	14.7	9.3	11.5	12.3	4.3	7.8
24	16.1	5.2	10.4	17.6	7.8	12.4	13.5	9.3	11.2	12.7	4.5	7.9
25	15.5	6.4	10.7	14.0	8.3	11.0	12.8	8.0	10.6	10.2	4.4	7.2
26	14.6	7.7	10.6	14.9	7.7	11.3	15.2	8.8	11.2	8.7	3.4	5.7
27	12.5	8.2	10.3	16.1	7.4	11.6	13.5	8.4	10.2	9.1	. 5	4.2
28	15.0	8.1	11.1	13.2	9.1	10.5	---	---	---	11.0	. 7	5.2
29	13.2	6.1	10.0	15.4	8.5	11.5	---	---	---	11.3	1.9	6.1
30	13.0	7.3	10.1	18.4	8.0	12.7	---	---	---	11.1	2.0	6.1
31	---	---	---	16.7	8.4	12.5	---	---	---	---	---	---
MONTH	---	---	---	--	--	---	--	---	---	-	---	-

08235270 WIGHTMAN FORK BELOW CROPSEY CREEK AT SUMMITVILLE，CO

LOCATION．－－Lat $37^{\circ} 25^{\prime} 45^{\prime \prime}$ ，long $106^{\circ} 35^{\prime} 03^{\prime \prime}$ ，in $\mathrm{NW}^{1 / 1} 4 \mathrm{Nw}^{1 / 4}$ sec． 29 ，T． 37 N．，R． 04 E．，Rio Grande County，Hydrologic Unit 13010002，on left bank about 200 feet downstream from the confluence of Cropsey Creek and 0.25 miles east of Summitville．

DRAINAGE AREA．－－4．44 mi^{2} ．

WATER－DISCHARGE RECORDS

PERIOD OF RECORD．－－July 1995 to current year（seasonal only）．
GAGE．－－Water－stage recorder with satellite telemetry．Elevation of gage is $11,120 \mathrm{ft}$ above sea level，from topographic map．
REMARKS．－－Records fair except for estimated daily discharges，which are poor．Flow partially regulated by Summitville Mine．
EXTREMES FOR PERIOD OF RECORD．－－Maximum discharge during period of seasonal operation， $69 \mathrm{ft}^{3} / \mathrm{s}$ ，May 11，1996，gage height， 5.49 ft ；minimum daily discharge， $0.90 \mathrm{ft}^{3} / \mathrm{s}$ ，Aug．19， 1996.
EXTREMES FOR CURRENT YEAR．－－Maximum discharge during period of seasonal operation， $69 \mathrm{ft}^{3} / \mathrm{s}$ ，May 11，gage height， 5.49 ft ；minimum daily discharge， $0.90 \mathrm{ft}^{3} / \mathrm{s}$ ，Aug． 19.

	$\begin{gathered} \stackrel{0}{⿶ 凵} \\ \stackrel{y}{c} \end{gathered}$		$\stackrel{m}{\mu} \stackrel{0}{\sim} \stackrel{N}{\sim} \underset{\sim}{\sim} \stackrel{\infty}{\sim} \stackrel{\infty}{r}$	$\begin{gathered} 0 \\ \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \stackrel{n}{\sim} \stackrel{\infty}{\sim} \dot{\sim} \end{gathered}$	$\stackrel{n}{\sim} \stackrel{\sim}{\sim} \stackrel{n}{\sim} \stackrel{0}{\sim} \stackrel{+}{\sim}$			
	兄							
	－	かトスサが $\dot{m} \dot{m} \dot{m} \dot{m}$		に $\infty \quad 6$～ $\dot{m} \dot{m} \dot{m} \dot{m} \dot{m}$	o．mor． mmmN	$\because \pi \sim H \infty$ $\dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{r}$		
	$\begin{aligned} & 2 \\ & \vdots \end{aligned}$		トゥ m の○ $\dot{\bullet} \dot{\omega} \dot{\omega}$ in			$\stackrel{\infty}{\dot{m} \dot{r} \dot{r} \dot{m} \dot{m} \dot{m} \dot{m} .}$		
	茫	તNNNNNN			ำN NN N N N	$\underset{\sim}{\sim} \underset{\neg}{-\infty} \underset{\neg}{\infty} \underset{\neg}{m}$		
	$\underset{\substack{\text { en } \\ \hline \\ \hline}}{ }$	11 1 1	1 1 m 1 1 n 1	N		ののトの $\dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{0} \dot{\sim} \dot{\sim}_{-}$		＋
		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1	1 1 1 1 1 1
	$\begin{aligned} & \text { m } \\ & \text { 䍃 } \end{aligned}$	1 1 1 1 1 1 1 1 1 1		11	1	111	1 1 1｜	1
	$\begin{aligned} & \text { 台 } \\ & \stackrel{y}{5} \end{aligned}$	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1	$1 \mathrm{C}\|1\|$
	$\begin{aligned} & \text { U } \\ & \text { Ha } \end{aligned}$	1 1 1 1		1 1 1 1		1 1 1 1	1 1 1 1 1	
	号	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	11 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1	1111
	H			$\begin{array}{c:c} \underset{\sim}{\tilde{N}} \underset{\sim}{\tilde{N}} & 1 \\ \hline \end{array}$	111	1111	$11+11$	$111 \mid$
	$\begin{aligned} & \text { 広 } \\ & \hline \end{aligned}$	H～のサー	\bullet－ 0 O			ㄱN N N N N N		

[^90]
08235270 WIGHTMAN FORK BELOW CROPSEY CREEK AT SUMMITVILLE, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--July 1995 to current year (seasonal record only).
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: July 1995 to current year (seasonal record only).
WATER TEMPERATURE: July 1995 to current year (seasonal record only).
pH : July 1995 to current year (seasonal record only).
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Daily records for specific conductance are poor. Daily records for pH are fair except Aug. 30 to Sept. 3, which are poor. Daily records for water temperature are fair. Daily data that are not published are either missing or of unacceptable quality.

EXTREMES FOR PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: Maximum during period of seasonal operation, 2,930 microsiemens, Aug. 24, 1995; minimum, 108 microsiemens May 6, 1996.
WATER TEMPERATURE: Maximum during period of seasonal operation, $21.8^{\circ} \mathrm{C}$, July 20,1996 ; minimum, $0.0^{\circ} \mathrm{C}$, on many days. pH : Maximum during period of seasonal operation, 6.8 units Apr. 29-30, 1996; minimum, 2.8 units Sept. 12, 1996.

EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum during period of seasonal operation, 2,430 microsiemens, Sept.12; minimum, 108 microsiemens May 6.
WATER TEMPERATURE: Maximum during period of seasonal operation, $21.8^{\circ} \mathrm{C}$, July 20 ; minimum, $0.0^{\circ} \mathrm{C}$, on many days. pH : Maximum during period of seasonal operation, 6.8 units Apr. 29-30; minimum, 2.8 units Sept. 12.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

08235270 WIGHTMAN FORK BELOW CROPSEY CREEK AT SUMMITVILLE, CO--Continued

08235270 WIGHTMAN FORK BELOW CROPSEY CREEK AT SUMMITVILLE, CO--Continued
pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	4.4	3.7	4.0	--	---	-	-	--	---	---	---	-
2	4.0	3.6	3.8	---	---	---	---	-	---	---	---	-
3	4.3	3.7	3.9	---	---	---	---	---	---	---	---	-
4	4.3	3.9	4.0	---	-	---	---	---	---	---	---	---
5	4.3	4.0	4.1	---	---	---	---	---	---	---	---	-
6	4.3	4.0	4.2	--	---	---	---	--	-	---	---	---
7	4.4	4.1	4.3	---	---	---	---	---	---	---	---	---
8	4.5	3.8	4.2	---	---	---	---	---	---	---	---	---
9	4.4	3.8	4.2	---	---	---	---	---	---	---	---	---
10	4.5	4.1	4.3	--	---	-	--	---	---	---	---	---
11	4.8	3.7	4.3	--	---	---	---	---	---	---	---	---
12	4.7	3.9	4.2	--	--	---	---	---	---	--	---	---
13	---	---	---	--	---	---	--	--	-	--	-	---
14	---	---	---	---	---	---	---	---	---	---	---	---
15	--	---	---	---	---	---	---	---	---	---	---	--
16	---	---	---	---	---	-	---	--	--	---	---	---
17	---	---	---	---	---	--	---	--	--	---	---	---
18	---	--	---	---	--	--	--	--	--	---	---	---
19	---	--	--	---	--	-	--	--	---	---	-	---
20	---	--	---	---	--	---	---	---	---	---	---	---
21	---	---	---	---	-	---	---	---	---	---	-	---
22	---	---	---	---	-	-	-	-	---	---	-	---
23	---	--	--	---	--	---	-	---	---	-	---	---
24	---	---	---	-	-	---	-	---	---	--	-	--
25	---	---	---	---	-	---	---	---	---	---	---	---
26	---	---	---	---	---	---	---	---	---	-	-	-
27	---	---	---	---	---	---	---	---	---	---	---	---
28	---	---	---	---	---	---	---	---	---	-	---	---
29	---	---	---	---	--	---	--	-	---	-	-	---
30	---	---	---	-	-	---	---	---	---	-	---	---
31	---	---	---	-	---	--	---	--	---	---	---	--
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	---	--	--	6.5	5.4	6.1
2	---	---	---	---	---	---	---	---	---	5.8	5.4	5.6
3	--	---	---	---	---	---	---	---	--	5.8	5.2	5.5
4	---	---	---	---	---	---	---	---	--	5.6	5.3	5.5
5	---	---	---	---	---	---	---	---	-	5.6	5.1	5.4
6	---	---	---	---	---	---	---	---	---	5.5	4.9	5.2
7	-	---	---	---	---	---	---	---	---	5.8	4.7	5.1
8	---	---	---	---	---	---	---	---	---	5.0	4.2	4.7
9	-	---	---	---	---	---	---	--	--	4.7	4.2	4.4
10	---	---	---	---	---	---	6.0	5.7	5.8	4.4	4.1	4.3
11	---	---	---	---	---	-	6.2	5.8	6.0	4.6	3.8	4.1
12	---	---	---	---	---	---	6.3	5.9	6.1	4.8	3.9	4.2
13	---	-	---	---	---	-	6.3	5.9	6.2	4.0	3.6	3.9
14	---	---	---	---	---	---	6.2	5.3	5.7	3.9	3.7	3.9
15	---	---	---	---	---	---	6.0	4.9	5.6	4.2	3.9	4.0
16	---	---	---	---	---	---	5.9	4.9	5.5	4.4	3.9	4.1
17	---	---	---	---	---	---	5.9	5.7	5.8	4.2	3.9	4.1
18	---	---	---	---	---	---	6.0	5.7	5.9	4.2	4.0	4.1
19	---	---	---	---	---	---	6.1	5.8	6.0	4.2	4.2	4.2
20	---	--	-	---	---	-	6.2	5.4	6.1	4.3	4.1	4.2
21	---	---	---	---	---	---	6.2	5.9	6.0	4.3	4.2	4.2
22	---	---	-	---	---	---	6.3	5.7	6.0	4.3	4.2	4.2
23	---	---	---	---	---	---	6.4	6.0	6.2	4.3	4.2	4.3
24	---	---	---	---	---	---	6.3	5.3	6.1	4.4	4.2	4.3
25	---	---	---	---	-	-	5.9	5.6	5.7	4.4	4.3	4.4
26	---	---	---	---	---	---	6.0	5.6	5.7	4.4	4.3	4.4
27	---	---	---	---	---	---	5.9	5.4	5.6	4.4	4.3	4.4
28	---	---	---	---	---	---	6.6	5.8	6.2	4.4	4.3	4.3
29	---	---	---	---	---	---	6.8	6.5	6.6	4.5	4.3	4.4
30	---	---	---	---	---	---	6.8	6.3	6.6	5.0	4.3	4.6
31	---	--	-	---	---	---	---	---	---	5.1	4.8	5.0
MONTH	--	---	---	---	---	---	---	---	--	6.5	3.6	4.6

08235270 WIGHTMAN FORK BELOW CROPSEY CREEK AT SUMMITVILLE, CO--Continued

DAY	MAX	MIN	MEAN									
		JUNE			JULY		AUGUST			SEPTEMBER		
1	5.3	4.8	5.0	4.7	4.5	4.6	4.6	4.4	4.5	4.2	3.9	4.0
2	5.2	4.8	5.0	4.8	4.4	4.7	4.5	4.4	4.5	4.3	4.1	4.2
3	5.2	4.9	5.0	5.0	4.6	4.8	4.6	4.4	4.5	4.3	4.1	4.2
4	5.1	4.8	5.0	4.8	4.5	4.7	4.7	4.4	4.5	4.7	4.3	4.5
5	5.2	4.9	5.0	4.9	4.5	4.7	4.7	4.6	4.7	5.1	4.4	4.9
6	5.1	4.9	5.0	4.8	4.1	4.6	5.0	4.7	4.8	5.2	4.3	4.7
7	5.2	4.9	5.0	4.7	4.5	4.6	5.0	4.1	4.8	5.6	4.5	5.3
8	5.4	5.0	5.1	4.7	3.5	4.3	4.7	3.7	4.3	6.0	5.3	5.7
9	5.2	5.0	5.1	4.0	3.9	4.0	4.8	4.6	4.7	6.7	5.8	6.1
10	5.1	4.6	4.9	4.3	3.9	4.1	4.9	4.3	4.5	6.7	4.6	6.1
11	5.2	4.8	5.0	4.7	4.0	4.3	5.0	4.6	4.7	6.1	4.5	5.4
12	5.5	4.9	5.1	4.9	3.9	4.6	5.0	4.6	4.8	6.1	2.8	4.1
13	5.3	4.9	5.1	4.9	4.6	4.7	4.8	4.3	4.5	5.1	4.1	4.8
14	5.3	4.5	4.9	5.0	4.6	4.8	4.8	4.5	4.6	5.1	3.1	3.8
15	5.1	4.6	4.8	5.0	4.6	4.9	4.5	4.3	4.4	4.4	3.0	3.7
16	5.1	4.7	4.9	4.9	4.7	4.8	4.4	4.2	4.3	5.0	4.0	4.4
17	5.4	4.6	4.9	4.9	3.6	4.7	4.3	4.1	4.2	5.0	3.7	4.6
18	5.3	4.6	4.9	4.7	4.4	4.6	4.3	4.1	4.2	4.9	3.2	4.1
19	5.2	4.9	5.0	4.8	4.7	4.8	4.2	4.1	4.2	4.5	3.4	4.0
20	4.9	4.7	4.8	4.9	4.5	4.7	4.2	2.9	4.0	4.8	4.3	4.6
21	4.8	4.7	4.8	4.9	4.7	4.9	4.0	2.9	3.4	5.0	4.0	4.4
22	4.8	4.6	4.7	5.0	4.8	4.9	3.7	3.0	3.4	5.2	4.1	4.5
23	4.9	4.7	4.8	5.2	4.7	4.9	3.4	---	---	5.2	4.9	5.1
24	4.9	4.7	4.8	5.2	4.7	5.0		---	--	5.2	4.7	5.0
25	4.9	4.7	4.8	5.2	3.9	4.8	---	---	---	5.2	4.7	5.0
26	4.8	4.4	4.7	5.2	4.9	5.0	---	---	---	5.5	5.1	5.3
27	4.7	4.5	4.6	5.1	3.3	4.4	---	---	---	5.6	5.0	5.3
28	4.6	4.5	4.5	4.7	3.5	4.2	--	---	---	5.4	4.4	4.9
29	4.7	4.6	4.7	4.1	3.9	4.0	--	3.3	-	5.3	4.5	4.8
30	4.8	4.5	4.7	4.3	4.1	4.2	3.8	3.5	3.6	5.1	4.5	4.9
31	---	---	---	4.4	4.3	4.3	3.9	3.7	3.8	---	---	---
MONTH	5.5	4.4	4.9	5.2	3.3	4.6	---	---	---	6.7	2.8	4.7

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

08235270 WIGHTMAN FORK BELOW CROPSEY CREEK AT SUMMITVILLE, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	---	---	---	2.1	. 0	. 5
2	---	---	---	---	---	---	---	---	---	1.9	. 0	. 5
3	---	---	---	---	-	---	---	---	---	1.5	. 0	. 4
4	---	---	---	---	---	---	---	---	---	1.7	. 0	. 4
5	---	---	---	---	---	---	---	---	---	1.8	. 0	. 5
6	---	---	---	---	---	---	-	---	---	2.1	. 0	. 5
7	---	---	---	---	---	---	---	---	---	2.4	. 0	. 7
8	---	---	---	---	---	---	---	---	---	2.7	. 0	. 7
9	---	---	---	---	---	---	---	---	---	3.1	. 0	. 9
10	---	---	---	---	---	---	2.6	. 0	---	3.8	. 0	1.2
11	---	---	---	---	---	---	2.4	. 0	. 7	4.2	. 0	1.5
12	---	---	---	---	---	---	3.4	. 0	1.0	5.0	. 0	2.0
13	---	---	---	---	---	---	2.0	. 0	. 3	5.3	. 2	2.1
14	---	---	---	---	---	---	2.9	. 0	. 5	5.2	. 7	2.3
15	---	---	---	---	---	---	5.0	. 0	1.5	6.9	. 6	2.8
16	---	---	---	---	---	---	4.6	. 0	1.4	7.0	. 2	3.5
17	---	---	---	---	---	---	2.7	. 0	1.0	6.9	1.2	3.4
18	---	---	---	---	---	---	2.2	. 0	. 4	7.1	1.2	3.4
19	---	---	---	---	---	---	3.6	. 0	. 9	7.8	1.2	3.8
20	---	---	---	---	---	---	2.8	. 0	. 9	8.0	1.3	4.0
21	---	---	---	---	---	---	4.7	. 0	1.6	8.8	1.2	4.4
22	---	---	---	---	---	---	5.1	. 0	1.7	8.7	1.3	4.5
23	---	---	---	---	---	---	4.8	. 1	1.5	8.9	1.3	4.3
24	---	---	---	---	---	---	2.7	. 1	. 9	5.8	. 4	3.1
25	---	---	---	---	---	---	1.9	. 0	. 4	6.9	2.0	3.7
26	---	---	---	---	---	---	. 4	. 0	. 0	5.9	1.0	2.9
27	---	---	---	---	---	---	. 7	. 0	. 2	9.4	. 6	4.2
28	---	---	---	---	---	---	. 2	. 0	. 0	7.4	1.9	4.0
29	---	---	---	---	---	---	1.6	. 0	. 3	11.0	1.3	5.3
30	---	---	---	---	---	---	3.5	. 0	1.1	11.3	1.7	5.1
31	---	---	---	---	---	---	---	---	---	11.7	1.3	5.5
MONTH	---	---	---	---	---	---	---	---	---	11.7	. 0	2.6
	JUNE			JULY			AUGUST			SEPTEMBER		
1	12.4	1.8	6.1	17.9	5.8	10.4	---	---	---	---	---	---
2	13.5	1.7	6.4	17.7	5.7	10.3	---	---	---	---	---	---
3	12.9	2.4	6.4	18.8	6.0	10.9	---	---	---	---	---	---
4	12.4	2.7	6.5	17.3	6.5	10.7	---	---	---	17.2	5.9	10.1
5	12.9	2.8	6.7	18.4	5.2	11.1	---	---	---	18.5	5.0	10.6
6	14.1	3.6	7.9	19.1	7.7	12.1	18.7	---	---	16.1	5.8	10.4
7	14.5	3.1	7.3	13.8	7.3	10.4	18.3	6.3	11.4	15.9	5.4	10.1
8	14.0	2.9	7.3	---	---	---	15.9	6.3	10.7	16.6	6.6	10.2
9	10.3	3.8	6.6	---	---	---	17.3	7.1	10.6	15.9	6.9	10.1
10	10.9	3.8	7.1	13.9	---	---	18.3	3.8	9.9	14.3	7.2	9.9
11	15.1	3.6	8.1	16.9	4.9	10.4	19.3	6.0	11.4	12.9	4.7	9.1
12	13.2	4.4	7.7	17.8	8.0	10.7	16.8	7.0	11.2	12.0	6.6	9.1
13	13.3	5.4	8.0	15.6	7.1	9.8	17.7	4.9	10.4	15.1	6.6	9.8
14	10.3	5.5	7.3	19.2	3.7	10.6	17.2	7.3	10.5	9.8	3.7	7.0
15	12.9	5.7	7.9	19.3	7.8	12.2	14.3	4.6	8.8	14.7	2.0	7.0
16	14.9	2.6	8.2	18.8	6.2	11.7	18.5	4.1	10.0	12.9	5.1	8.4
17	15.7	4.7	9.1	17.6	8.7	11.7	19.3	3.9	10.0	12.5	2.7	6.6
18	16.8	4.2	9.1	19.0	9.0	12.1	19.7	5.3	10.8	9.4	2.9	5.3
19	16.4	3.5	8.9	19.4	6.9	12.3	15.4	4.4	9.7	9.9	2.7	5.3
20	17.7	3.5	9.7	21.8	6.8	13.0	17.5	4.9	10.5	11.7	3.3	6.4
21	15.9	5.9	9.6	19.5	7.4	12.2	15.4	7.1	9.3	14.8	2.9	7.2
22	13.8	5.3	8.8	19.9	7.1	12.2	12.4	6.8	8.6	13.5	. 5	6.0
23	16.2	3.2	8.8	20.4	6.7	11.8	16.2	7.0	9.8	13.1	4.7	7.6
24	16.7	2.4	9.1	19.5	6.1	11.1	---	---	---	12.5	4.4	7.6
25	16.3	4.6	9.5	15.9	6.9	10.2	---	---	-	11.4	2.6	6.1
26	13.6	5.5	8.7	16.4	7.1	10.7	---	---	---	9.0	3.4	5.2
27	13.3	7.1	9.5	17.2	6.1	10.5	--	-	--	9.0	1.5	4.7
28	15.4	6.0	9.6	---	---	---	---	---	---	13.7	2.4	6.1
29	14.6	4.5	9.0	---	---	---	---	---	---	14.7	1.9	6.8
30	14.1	5.8	9.3	---	-	--	-	-	--	12.2	. 5	5.6
31	---	---	---	---	---	---	---	---	---	---	---	---
MONTH	17.7	1.7	8.1	---	--	--	--	-	--	--	--	--

08235290 WIGHTMAN FORK AT MOUTH NEAR JASPER, CO

LOCATION.--Lat $37^{\circ} 24^{\prime} 14^{\prime \prime}$, long $106^{\circ} 31^{\prime} 16^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{SW}^{1 / 4}$ sec. 35 , T. 37 N., R. 4 E., Rio Grande County, Hydrologic Unit 13010002, on right bank 25 ft downstream from bridge on Forest Development Road No. 250, about 300 ft upstream from mouth of Alamosa River, and 4.3 mi southwest of Jasper.

DRAINAGE AREA.-- $16.1 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1995 to current year (seasonal records only).
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $9,420 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated daily discharges. Records fair. Flow regulated by releases from Summitville Mine upstream.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period of season operation, $258 \mathrm{ft} 3 / \mathrm{s}$, May 5 , 1996, gage height, 5.09 ft ; minimum daily, $1.2 \mathrm{ft}^{3} / \mathrm{s}$, Aug. 19, 1996.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, $258 \mathrm{ft} 3 / \mathrm{s}$, May 5 , gage height, 5.09 ft ; minimum daily, $1.2 \mathrm{ft}^{3} / \mathrm{s}$, Aug. 19.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14	---	---	---	---	---	---	54	13	6.5	2.7	2.3
2	9.9	---	---	---	---	---	---	93	13	5.7	2.1	2.9
3	8.9	---	---	---	---	---	---	114	12	5.5	2.9	2.2
4	8.0	---	---	---	---	---	---	119	11	5.1	2.5	2.9
5	6.9	---	---	---	---	--	---	139	11	4.4	2.6	2.6
6	6.9	---	---	---	---	---	---	127	11	4.8	2.4	2.9
7	6.7	---	---	---	---	---	---	118	11	5.0	2.3	2.8
8	6.1	---	---	---	---	---	---	106	10	12	2.2	3.4
9	5.7	---	---	---	---	---	19	102	9.8	13	2.6	3.3
10	6.2	---	--	---	---	---	20	94	8.8	10	1.9	3.3
11	6.0	---	---	---	---	---	20	101	8.9	6.8	2.3	2.6
12	---	---	---	---	---	---	18	89	8.7	7.4	2.2	3.7
13	---	---	---	---	---	---	17	80	9.1	6.9	1.5	3.5
14	---	---	---	---	---	---	14	73	12	5.5	1.8	4.5
15	---	---	---	--	---	--	12	66	15	5.1	1.5	3.5
16	---	---	--	---	---	---	11	65	10	4.3	1.4	3.5
17	---	---	---	---	---	---	12	55	8.5	5.8	1.5	3.4
18	---	---	---	---	---	---	10	46	7.3	5.5	1.3	4.6
19	---	---	---	---	---	---	9.8	42	7.2	4.6	1.2	4.5
20	---	---	---	---	---	---	11	37	5.9	3.6	1.3	4.6
21	---	---	---	--	---	---	9.5	31	5.8	3.7	3.0	3.6
22	---	---	---	---	---	---	10	28	7.9	3.6	3.8	2.6
23	---	---	---	---	---	---	16	25	6.6	3.5	4.5	4.0
24	---	---	---	---	---	---	30	21	5.5	3.3	3.5	4.1
25	---	---	---	---	---	---	52	18	5.5	3.2	2.5	3.3
26	---	---	---	---	---	---	98	17	6.6	3.5	2.2	4.4
27	---	---	---	---	---	---	132	17	8.3	3.0	2.7	4.0
28	---	---	---	-	---	---	96	17	7.1	4.6	2.6	3.1
29	---	---	---	---	---	---	42	15	6.7	4.6	2.6	3.1
30	---	---	---	---	---	---	31	14	6.0	3.7	3.2	2.7
31	---	---	---	---	---	---	---	14	---	3.2	2.2	--
TOTAL	-	---	---	---	---	---	---	1937	269.2	167.4	73.0	101.9
MEAN	-	---	---	---	---	---	---	62.5	8.97	5.40	2.35	3.40
MAX	---	---	---	---	---	---	---	139	15	13	4.5	4.6
MIN	--	---	---	--	---	---	---	14	5.5	3.0	1.2	2.2
AC-FT	---	---	---	--	---	---	---	3840	534	332	145	202

WATER-QUALITY RECORDS

PERIOD OF RECORD.--July 1995 to current year (seasonal only).
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: July 1995 to current year (seasonal only).
WATER TEMPERATURE: July 1995 to current year (seasonal only).
pH: July 1995 to current year (seasonal only).
INSTRUMENTATION.--Water-quailty monitor with satellite telemetry since July 1995.
REMARKS.--Records for water temperature, and pH are fair. Records for specific conductance are fair except for Aug. 15 17, which are poor. Daily data that are not published during seasonal operation are either missing or of unacceptable quality.

EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 1,820 microsiemens, Sept. 27, 1996; minimum, 98 microsiemens May 6, 1996. WATER TEMPERATURE: Maximum, $18.0^{\circ} \mathrm{C}$, July 15,1996 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during 1995-96. pH: Maximum, 7.5 units, Apr. 24-25, Apr. 29 to May 1, 1996; minimum, 3.1 units, Aug. 18-19, 1995.

EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum, 1,820 microsiemens, Sept. 27; minimum, 98 microsiemens May 6. WATER TEMPERATURE: Maximum, $18.0^{\circ} \mathrm{C}$, July 15 ; minimum, $0.0^{\circ} \mathrm{C}$, many days. pH: Maximum, 7.5 units, Apr. 24-25, Apr. 29 to May 1; minimum, 3.4 units, July 8, 28.

08235290 WIGHTMAN FORK AT MOUTH NEAR JASPER, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	---	---	---	356	238	313
2	---	---	---	---	---	---	---	---	---	284	189	240
3	---	---	---	---	---	---	---	---	---	247	113	177
4	---	---	---	---	---	---	---	---	---	208	135	174
5	---	---	---	---	---	---	---	---	---	211	129	169
6	---	---	---	---	---	---	--	---	--	206	98	160
7	---	---	---	---	---	---	---	---	---	235	141	181
8	---	---	---	---	---	---	---	---	--	280	100	196
9	---	---	---	---	---	---	---	---	---	280	115	180
10	---	---	---	---	---	---	620	345	536	286	175	234
11	---	---	---	---	---	---	610	568	594	302	172	237
12	---	---	---	---	---	---	646	562	614	326	179	250
13	---	---	---	---	---	---	659	553	607	353	223	290
14	---	---	---	---	---	---	657	337	521	375	157	304
15	---	---	---	---	---	---	891	365	699	364	163	276
16	---	---	---	---	---	---	851	378	583	413	257	334
17	---	---	---	---	---	---	833	715	795	435	173	335
18	---	---	---	---	---	---	889	822	868	254	175	219
19	---	---	---	---	---	---	1010	784	894	233	164	204
20	---	---	---	---	---	---	996	810	891	274	164	236
21	---	---	---	---	---	---	1040	756	934	290	177	253
22	---	---	---	---	---	---	1070	894	984	340	255	296
23	---	---	---	---	---	---	944	551	827	329	197	296
24	---	---	---	---	---	---	612	414	544	350	228	291
25	---	---	---	---	---	---	424	180	363	349	323	337
26	---	---	---	---	---	---	303	175	248	377	331	356
27	---	---	---	---	---	---	241	111	179	423	362	389
28	---	---	---	---	---	---	296	111	185	403	361	389
29	---	---	---	---	---	---	407	139	255	433	256	397
30	---	---	---	---	---	---	525	168	435	432	250	348
31	---	---	---	---	---	---	---	---	---	441	375	411
MONTH	---	---	---	---	---	---	---	---	---	441	98	273
	JUNE			JULY			AUGUST			SEPTEMBER		
1	449	386	422	686	620	655	1110	991	1080	853	656	696
2	475	388	440	769	589	733	997	593	777	1450	853	1370
3	492	415	453	818	642	793	1120	669	1030	1250	770	927
4	480	270	408	851	720	826	1090	690	915	1630	858	1470
5	528	273	479	855	490	707	1160	1090	1130	1620	934	1210
6	529	456	491	881	840	862	1230	1150	1200	1660	1290	1540
7	539	451	506	906	854	874	1280	1210	1250	1550	935	1280
8	557	468	520	1130	317	802	1240	841	1110	1630	1390	1580
9	575	507	547	667	315	387	1220	1180	1200	1650	1600	1630
10	602	349	549	625	358	492	1210	722	1120	1650	1620	1630
11	621	322	503	600	399	462	1260	772	1080	1660	1170	1470
12	674	516	582	759	517	709	1310	1240	1270	1670	1350	1570
13	668	617	648	691	635	666	1280	372	762	1600	1160	1460
14	618	446	563	747	484	671	1290	336	934	1620	1480	1570
15	540	409	471	820	730	794	991	391	654	1480	883	1070
16	572	308	492	824	477	667	805	290	625	1540	1120	1470
17	624	341	541	875	735	801	750	286	616	1630	898	1290
18	716	312	518	934	783	815	---	---	---	1630	1310	1550
19	728	344	595	864	819	839	---	---	---	1610	1450	1530
20	728	539	594	921	758	879	---	---	--	1580	1340	1460
21	643	374	509	975	573	859	1260	602	821	1550	1300	1490
22	565	498	522	1010	957	988	1010	554	720	1300	783	900
23	623	505	566	1070	971	1040	953	575	670	1700	812	1540
24	656	478	608	1090	959	1050	1020	603	730	1730	1660	1690
25	688	652	667	1070	829	997	616	590	602	1690	1090	1490
26	708	576	673	1020	622	836	660	610	618	1700	1590	1640
27	576	486	535	1060	889	1020	704	488	608	1820	1680	1730
28	587	369	451	1330	682	980	596	520	567	1720	1470	1640
29	640	549	595	1210	820	897	606	559	595	1660	923	1460
30	674	639	659	979	890	946	970	531	690	1670	888	1210
31	-	---	---	1050	977	1030	719	584	636	---	-	-
MONTH	728	270	537	1330	315	809	---	---	---	1820	656	1420

08235290 WIGHTMAN FORK AT MOUTH NEAR JASPER, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	OCTOBER			NOVEMBER			DECEMBER			JANUARY		
1	4.9	4.6	4.8	--	--	---	---	---	---	---	---	---
2	4.8	4.6	4.7	---	---	---	---	---	---	---	---	---
3	4.7	4.5	4.6	---	---	---	---	---	---	---	---	---
4	4.6	4.5	4.6	---	---	---	---	---	---	---	---	---
5	4.7	4.5	4.6	---	---	---	---	---	---	---	---	---
6	4.7	4.6	4.6	---	---	-	--	---	---	--	-	---
7	4.6	4.5	4.5	---	---	---	---	-	---	---	---	-
8	4.6	4.5	4.5	-	---	---	---	---	---	---	---	---
9	4.6	4.5	4.5	-	---	---	---	---	---	---	---	---
10	4.6	4.5	4.6	-	-	---	---	---	---	---	---	---
11	4.5	4.4	4.4	---	---	---	---	---	---	---	---	---
12	4.5	4.4	4.4	---	---	---	---	---	---	---	---	---
13	--	---	--	---	---	---	---	---	---	---	---	---
14	---	---	---	---	---	--	--	-	---	--	---	--
15	---	--	--	---	---	---	---	---	---	---	---	--
16	-	---	---	---	---	---	---	---	---	---	---	---
17	---	---	---	---	---	---	---	---	---	---	---	---
18	---	---	---	---	---	---	---	---	---	---	---	---
19	---	---	---	---	---	---	---	---	---	---	---	---
20	-	---	---	---	---	---	---	---	---	---	---	---
21	---	---	---	-	---	---	-	---	---	-	-	---
22	---	---	---	---	---	-	---	--	-	--	---	---
23	---	---	---	---	---	--	---	---	---	--	---	---
24	---	--	--	---	---	---	---	---	---	---	---	---
25	---	---	---	---	---	---	---	---	---	---	---	---
26	---	---	---	---	---	---	---	---	---	---	---	---
27	---	---	---	---	---	---	---	---	---	---	---	---
28	---	---	---	---	---	---	---	---	---	---	---	---
29	---	---	---	---	---	---	---	---	---	---	---	---
30	---	---	---	---	---	-	--	--	-	-	---	---
31	---	--	---	---	---	---	---	---	---	---	--	---
MONTH	---	---	---	---	---	---	---	---	---	---	---	---
	FEBRUARY			MARCH			APRIL			MAY		
1	--	---	---	---	---	---	---	---	---	7.5	7.3	7.4
2	---	--	--	--	---	-	--	-	---	7.4	7.2	7.3
3	---	--	--	---	---	-	--	--	-	7.4	7.1	7.3
4	---	--	--	---	---	-	--	--	-	7.3	7.0	7.2
5	---	---	-	--	--	-	---	--	--	7.2	6.9	7.1
6	---	---	---	---	---	---	-	-	-	7.2	6.9	7.0
7	---	---	---	---	---	---	---	---	--	7.2	6.9	7.0
8	---	---	---	---	---	---	---	---	-	7.0	6.8	6.9
9	---	---	---	---	---	---	--	--	--	6.8	6.5	6.7
10	---	---	---	---	---	---	7.3	7.2	7.3	6.6	5.9	6.4
11	---	---	---	---	---	---	7.4	7.3	7.4	6.4	5.5	6.0
12	---	-	---	---	---	---	7.4	7.4	7.4	6.5	5.5	6.0
13	---	-	---	---	---	---	7.4	7.4	7.4	5.8	5.0	5.5
14	---	---	---	---	-	-	7.4	7.4	7.4	5.3	4.8	5.2
15	---	---	---	---	---	---	7.4	7.3	7.3	5.3	4.9	5.1
16	---	---	---	---	--	-	7.4	7.3	7.3	5.3	4.8	5.1
17	---	---	--	--	---	-	7.4	7.3	7.4	5.4	5.0	5.2
18	---	---	---	---	---	---	7.4	7.3	7.3	5.3	4.9	5.2
19	-	---	---	---	---	---	7.4	7.3	7.4	5.2	4.9	5.1
20	-	---	---	---	---	---	7.4	7.3	7.3	5.3	5.0	5.2
21	---	-	---	---	---	---	7.4	7.3	7.3	5.3	5.0	5.2
22	---	---	---	---	---	---	7.4	7.3	7.3	5.4	5.2	5.3
23	---	--	---	---	---	---	7.4	7.3	7.3	5.5	5.2	5.4
24	---	---	---	---	---	--	7.5	7.4	7.4	6.0	5.3	5.6
25	---	---	---	---	---	---	7.5	7.3	7.4	6.5	6.0	6.4
26	---	---	--	---	---	--	7.4	7.1	7.3	6.7	6.2	6.5
27	--	---	---	---	---	---	7.3	7.2	7.3	6.3	5.9	6.2
28	-	---	---	---	---	---	7.4	7.2	7.3	6.3	6.0	6.2
29	-	---	---	---	---	---	7.5	7.3	7.4	6.5	5.9	6.3
30	---	-	---	---	---	---	7.5	7.3	7.4	6.4	5.9	6.1
31	-	-	---	---	---	---	---	---	---	6.9	6.4	6.6
MONTH	---	---	---	---	---	---	---	---	---	7.5	4.8	6.1

08235290 WIGHTMAN FORK AT MOUTH NEAR JASPER，CO－－Continued

pH，WATER，WHOLE，FIELD，STANDARD UNITS，WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE		JULY			AUGUST			SEPTEMBER		
1	6.9	6.5	6.7	5.9	5.3	5.4	5.7	5.5	5.6	5.2	5.0	5.1
2	6.9	6.5	6.7	6.0	5.5	5.7	6.0	5.4	5.7	5.5	4.9	5.3
3	6.9	6.5	6.7	6.0	5.7	5.9	5.4	5.0	5.2	5.8	5.3	5.6
4	6.9	6.4	6.7	6.0	5.8	5.9	5.7	4.7	5.2	5.7	5.0	5.4
5	6.8	6.4	6.6	6.4	5.4	5.9	5.4	5.1	5.3	6.0	4.8	5.4
6	6.7	6.4	6.6	6.0	5.8	5.9	5.7	5.4	5.5	5.5	5.0	5.3
7	6.6	6.4	6.6	5.8	5.0	5.4	5.9	5.5	5.7	5.7	4.9	5.4
8	6.8	6.5	6.6	5.6	3.4	5.0	5.7	4.7	5.4	6.0	5.5	5.9
9	6.6	6.5	6.6	5.2	4.0	4.8	5.2	4.9	5.1	6.3	6.0	6.2
10	6.6	6.4	6.6	5.4	4.0	4.9	5.4	5.2	5.3	6.6	6.2	6.4
11	6.8	6.3	6.5	6.1	5.2	5.7	5.4	4.9	5.2	6.5	5.7	6.3
12	6.7	6.4	6.6	6.6	5.2	6.2	5.4	5.2	5.3	6.3	4.5	5.6
13	6.7	6.6	6.7	6.6	5.0	6.0	5.5	5.3	5.4	5.4	4.5	5.0
14	6.7	5.5	6.5	6.4	5.5	6.2	5.5	5.0	5.3	5.7	4.5	5.3
15	6.7	6.1	6.6	6.3	5.7	6.1	5.5	5.3	5.4	4.8	4.5	4.7
16	6.8	6.4	6.7	6.6	5.4	6.1	5.4	5.1	5.2	5.5	4.5	5.2
17	6.9	6.4	6.7	6.0	5.3	5.7	5.2	5.1	5.1	5.9	4.8	5.3
18	6.8	6.4	6.6	6.0	4.4	5.2	5.2	5.1	5.2	5.6	4.7	5.3
19	6.7	6.4	6.6	5.6	5.1	5.4	5.4	5.2	5.3	5.7	4.8	5.3
20	6.7	6.4	6.6	5.7	5.4	5.6	5.4	5.3	5.3	5.7	4.9	5.4
21	6.4	6.3	6.4	5.8	5.2	5.6	5.4	4.0	4.7	5.7	5.5	5.6
22	6.3	6.0	6.2	5.8	5.5	5.6	4.8	3.6	4.3	5.9	5.1	5.6
23	6.3	6.0	6.2	5.9	5.6	5.7	4.6	3.6	4.3	5.9	5.0	5.6
24	6.3	6.1	6.2	5.9	5.6	5.7	4.6	3.6	4.1	6.1	5.8	6.0
25	6.3	6.1	6.2	6.3	5.5	5.8	4.7	4.6	4.7	6.3	5.4	5.9
26	6.2	6.0	6.2	6.4	4.8	5.7	4.9	4.7	4.8	6.4	6.0	6.2
27	6.0	5.5	5.7	6.0	5.6	5.7	5.5	4.9	5.0	6.6	6.4	6.5
28	5.9	5.6	5.8	6.0	3.4	5.0	5.6	5.4	5.5	6.5	6.3	6.4
29	5.9	5.6	5.8	5.4	3.6	5.0	5.5	5.1	5.4	6.5	5.8	6.2
30	6.0	5.8	5.9	5.7	4.8	5.4	5.1	4.0	4.5	6.4	5.7	6.2
31	－－－	－－－	－－－	5.8	5.5	5.7	5.0	4.8	5.0	－－	－－－	－－－
MONTH	6.9	5.5	6.4	6.6	3.4	5.6	6.0	3.6	5.1	6.6	4.5	5.7

TEMPERATURE，WATER（DEG．C），WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

岕 岁		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
$\stackrel{\text { 品 }}{\stackrel{y}{2}}$		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
$\begin{aligned} & x \\ & \Sigma \end{aligned}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
z 画		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & & 1 & 1\end{array}$	1
$\stackrel{\text { 栄 }}{\mid}$		$\begin{array}{l\|l\|l\|l\|l} 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
$\stackrel{x}{\Sigma}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\stackrel{\text { 品 }}{2}$		$\begin{array}{l\|} \hline & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
$\underset{\Sigma}{x}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & & 1 & 1\end{array}$	1
			$\begin{gathered} N \infty \\ \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \end{gathered}$	$\begin{array}{c\|c\|c} 0 & \ddot{r} & \mid \\ \dot{m} \dot{m} & & 1 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1
$\stackrel{\text { 品 }}{\stackrel{y}{\mid c}}$	M ra 0 0 H 0	$\underset{i-i}{0} 0 .$	$\bigcirc 0000$		$\begin{array}{l\|l\|l\|l\|l} & 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1
$\begin{aligned} & x \\ & \sum \end{aligned}$				$\begin{array}{l\|l\|l} \sigma \sigma \sigma & \mid \\ \dot{\sigma} & & \end{array}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \text { 学 } \end{aligned}$		「Nのが	மrmor			$\underset{\sim}{\sim} N \underset{N}{N} \underset{\sim}{r}$	$\stackrel{6}{\sim} \stackrel{\infty}{N} \stackrel{\infty}{N} \stackrel{-1}{\mathrm{~N}}$	䘮 Z ¢ ¢

08235290 WIGHTMAN FORK AT MOUTH NEAR JASPER, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	--	---	---	---	---	-	---	---	---	6.9	. 0	2.0
2	---	---	---	--	-	---	---	---	---	6.5	. 0	2.0
3	---	---	---	---	---	---	---	---	---	6.4	. 2	2.0
4	---	---	---	---	---	---	---	---	---	6.5	. 2	2.1
5	---	---	---	---	---	---	---	-	---	6.6	. 0	2.0
6	---	-	---	-	---	-	---	--	--	6.6	. 1	2.1
7	---	---	---	---	---	---	---	---	---	6.8	. 1	2.3
8	---	---	---	---	---	---	---	---	---	7.2	. 3	2.5
9	---	---	---	---	---	---	---	. 0	---	7.4	. 4	2.7
10	--	---	---	---	---	-	3.0	. 0	1.0	7.8	. 2	2.9
11	-	---	---	---	---	---	3.8	. 0	1.2	8.6	. 3	3.2
12	---	---	---	---	---	---	5.3	. 0	1.4	9.1	. 8	3.8
13	---	---	---	---	---	---	1.8	. 0	. 4	9.0	. 8	3.8
14	---	---	---	---	---	---	1.2	. 0	. 2	9.1	1.6	4.3
15	---	---	---	---	---	-	4.3	. 0	1.1	10.2	1.4	4.6
16	---	---	---	-	---	---	5.6	. 0	1.7	10.9	1.8	5.2
17	---	---	-	--	---	---	3.6	. 0	1.4	10.8	2.4	5.6
18	---	---	---	---	---	-	1.7	. 0	. 5	11.3	2.0	5.6
19	---	---	---	---	-	---	3.6	. 0	. 8	11.9	2.9	6.3
20	---	---	---	---	-	---	. 0	. 0	. 0	11.5	2.7	6.1
21	---	---	---	-	---	---	3.8	. 0	1.0	11.8	1.6	5.8
22	---	---	---	---	--	---	4.8	. 0	1.3	11.9	1.9	6.0
23	--	---	---	-	---	---	7.4	. 0	1.9	11.5	2.3	6.1
24	-	---	---	-	---	---	7.1	. 0	2.0	6.8	1.2	4.1
25	-	---	---	---	---	---	6.0	. 2	1.8	7.6	2.6	4.7
26	---	---	---	---	---	---	4.4	. 0	1.2	6.7	1.0	3.5
27	-	---	---	---	---	---	5.0	. 2	1.5	10.9	. 5	4.7
28	--	-	---	---	---	---	. 8	. 0	. 1	8.7	1.9	4.8
29	---	---	---	---	---	---	4.0	. 0	1.0	12.7	. 8	6.1
30	---	---	---	---	---	--	7.5	. 0	2.1	12.0	2.3	6.7
31	---	---	---	---	---	---	---	---	---	12.2	1.5	6.4
MONTH	---	--	---	---	---	---	---	---	---	12.7	. 0	4.2

	JUNE			JULY			AUGUST			SEPTEMBER		
1	13.1	1.9	6.9	15.1	7.3	11.0	13.9	8.0	11.1	11.4	6.6	9.1
2	13.2	1.8	7.1	14.8	7.0	10.7	13.7	9.3	11.8	9.9	6.9	8.6
3	13.8	2.4	7.8	15.8	7.3	11.1	15.2	9.9	12.5	12.2	5.9	9.0
4	13.2	3.5	8.2	14.7	8.2	11.5	14.1	9.7	12.0	11.2	6.5	9.0
5	13.2	3.8	8.3	16.7	8.3	12.2	14.0	6.5	10.4	11.9	6.6	9.5
6	15.3	4.6	9.3	16.6	9.6	13.0	14.2	7.0	10.7	12.2	8.2	10.1
7	13.0	3.8	8.6	13.1	9.1	11.3	13.9	7.1	10.7	10.5	5.9	8.3
8	13.7	3.9	8.7	13.0	8.7	10.3	13.2	9.7	11.5	10.7	4.5	7.8
9	10.2	5.0	7.7	13.7	7.4	9.9	11.2	7.7	9.5	12.1	5.0	8.4
10	12.0	4.5	8.2	13.8	7.3	10.5	11.5	6.4	9.2	10.9	5.8	8.2
11	14.2	4.8	9.3	15.2	7.7	11.5	13.7	6.9	10.5	10.8	6.8	8.8
12	12.5	5.8	9.0	11.9	9.3	10.7	12.9	8.0	10.5	9.9	7.5	8.8
13	13.8	6.5	9.5	12.9	8.4	10.4	12.2	8.0	10.3	10.8	7.4	9.0
14	10.6	6.7	8.6	16.6	6.0	11.0	11.6	8.8	10.4	8.4	5.8	7.0
15	11.9	6.8	8.9	18.0	8.9	12.8	11.1	8.4	9.9	10.1	4.8	7.2
16	13.9	4.7	8.9	15.9	9.3	12.6	11.8	7.7	10.0	9.9	4.0	7.0
17	12.6	5.7	9.0	14.7	9.9	12.4	12.4	7.9	10.4	8.7	5.2	7.0
18	15.3	4.7	9.7	17.1	10.3	13.1	13.2	8.4	10.9	5.8	2.1	4.1
19	15.8	4.2	9.7	17.1	8.4	12.6	12.0	8.7	10.6	7.0	. 0	3.0
20	16.1	5.3	10.6	16.9	9.1	13.1	12.3	9.0	11.0	8.2	1.3	4.4
21	14.4	8.1	11.2	16.8	8.9	13.0	11.5	9.3	10.4	8.4	1.4	4.9
22	13.1	8.0	10.4	16.4	8.7	12.6	11.2	8.6	9.7	8.9	3.0	5.9
23	14.6	4.5	9.3	16.7	8.3	12.4	13.4	9.0	10.8	10.0	3.5	6.6
24	15.3	4.9	9.8	15.2	7.7	11.5	11.7	8.9	10.5	9.9	4.0	6.6
25	14.7	6.1	10.2	12.5	8.0	10.4	11.6	8.1	10.0	8.3	3.8	6.0
26	14.2	7.4	10.4	13.5	7.8	10.7	12.8	9.1	10.8	5.4	2.0	3.9
27	12.9	8.5	10.6	13.6	7.6	10.8	11.9	8.6	10.1	4.7	. 0	1.8
28	14.4	8.4	11.0	12.0	9.1	10.6	13.7	6.3	9.8	6.3	. 0	2.9
29	13.5	6.1	9.9	13.4	9.1	11.2	12.8	7.5	10.2	7.2	1.3	4.4
30	12.6	7.5	10.1	15.9	8.0	11.9	13.4	6.5	9.8	8.3	2.0	4.9
31	--	---	---	14.9	8.5	11.8	13.0	6.6	9.9	-	-	-
MONTH	16.1	1.8	9.2	18.0	6.0	11.6	15.2	6.3	10.5	12.2	. 0	6.7

08235350 ALAMOSA RIVER ABOVE JASPER, CO

LOCATION.--Lat $37^{\circ} 25^{\prime} 03^{\prime \prime}$, long $106^{\circ} 29^{\prime} 30^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{sec} .25$, T. 37 N., R. 4 E., Rio Grande County, Hydrologic Unit 13010002, on left bank 2.0 mi downstream from Wightman Fork and 2.0 mi west of Jasper.
DRAINAGE AREA.--58.1 mi ${ }^{2}$.
PERIOD OF RECORD.--July 1995 to current year (seasonal records only).
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $9,200 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated daily discharges. Records fair except for discharges above $600 \mathrm{ft}^{3} / \mathrm{s}$, which are poor.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period of seasonal operation, $769 \mathrm{ft}^{3} / \mathrm{s}$, July 16, 1995; gage height, 5.34 ft ; minimum daily, $11 \mathrm{ft} 3 / \mathrm{s}$, Aug. 19-20, 1996.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, $759 \mathrm{ft}^{3} / \mathrm{s}$, May 11 ; gage height, 5.33 ft ; minimum daily, $11 \mathrm{ft} 3 / \mathrm{s}$, Aug. 19-20.

REVISIONS.--The maximum discharge during period of seasonal operation for water year 1995 has been revised to $769 \mathrm{ft}^{3} / \mathrm{s}$, July 16, 1995; gage height, 5.34 ft .

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	56	---	---	---	---	---	---	177	101	54	21	14
2	49	---	---	---	---	---	---	254	101	46	19	14
3	46	---	---	---	---	---	---	305	99	43	21	12
4	43	---	---	---	---	---	---	343	95	45	21	13
5	38	---	--	---	---	---	---	393	99	46	19	12
6	37	---	---	---	---	---	---	411	99	42	16	13
7	36	---	---	---	---	---	---	407	95	41	15	13
8	35	---	---	---	---	---	---	395	88	59	16	13
9	33	---	---	---	---	---	---	396	79	97	16	12
10	33	---	---	---	---	---	55	398	73	77	17	12
11	32	---	---	---	---	---	54	443	73	63	14	12
12	31	---	---	---	---	---	53	445	70	66	14	14
13	30	---	---	---	---	---	53	429	68	62	13	13
14	---	---	--	---	---	--	45	432	72	53	13	17
15	---	---	---	---	---	---	40	399	76	47	13	17
16	---	--	--	---	--	--	39	415	66	43	13	15
17	---	---	---	---	---	---	40	394	62	56	12	15
18	---	---	--	---	---	---	37	350	58	57	12	17
19	---	---	---	---	---	---	34	333	55	49	11	18
20	---	---	---	---	---	---	34	307	52	42	11	18
21	---	---	--	---	---	---	33	262	52	38	15	18
22	---	---	---	---	---	---	37	231	61	35	20	16
23	---	---	---	---	---	---	50	198	52	31	21	16
24	---	---	---	---	---	---	79	156	46	29	18	16
25	---	---	---	---	---	---	120	127	43	29	16	15
26	---	---	---	---	---	---	176	112	47	28	15	15
27	---	---	---	---	---	---	230	96	57	25	22	14
28	---	---	---	---	---	---	213	95	57	31	23	14
29	---	---	---	---	---	---	136	91	51	32	18	14
30	---	---	--	---	---	--	120	98	50	26	21	13
31	---	---	---	---	---	---	---	98	---	23	15	--
TOTAL	---	---	---	---	---	---	---	8990	2097	1415	511	435
MEAN	---	--	--	---	---	---	---	290	69.9	45.6	16.5	14.5
MAX	---	--	---	---	---	---	---	445	101	97	23	18
MIN	---	---	---	---	---	---	---	91	43	23	11	12
AC-FT	---	---	-	---	---	---	---	17830	4160	2810	1010	863

08235700 ALAMOSA RIVER BELOW CASTLEMAN GULCH NEAR JASPER, CO

LOCATION.--Lat $37^{\circ} 24^{\prime} 10^{\prime \prime}$, long $106^{\circ} 27^{\prime} 00^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec. 32 , T. 37 N., R. 5 E., Rio Grande County, Hydrologic Unit 13010002, on left bank at private bridge, 15 ft downstream from Castleman Gulch, and 1.2 mi southeast of town of Jasper.
DRAINAGE AREA.--76.3 mi^{2}.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1995 to current year (seasonal records only).
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $9,040 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--No estimated daily discharges. Records fair except those for discharges above $700 \mathrm{ft}^{3} / \mathrm{s}$, which are poor.
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period of seasonal operation, $702 \mathrm{ft}^{3} / \mathrm{s}$, July 16, 1995; gage height, 5.12 ft ; minimum daily, $12 \mathrm{ft} 3 / \mathrm{s}$, Aug. 19-20, 1996.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, $689 \mathrm{ft} 3 / \mathrm{s}$, May 11; gage height, 5.10 ft ; minimum daily, $12 \mathrm{ft}^{3} / \mathrm{s}$, Aug. 19-20.

REVISIONS.--The maximum discharge during period of seasonal operation for water year 1995 has been revised to $702 \mathrm{ft}^{3} / \mathrm{s}$, July 16, 1995; gage height, 5.12 ft .

08235700 ALAMOSA RIVER BELOW CASTLEMAN GULCH NEAR JASPER, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--July 1995 to current year (seasonal only).
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: July 1995 to current year (seasonal only).
WATER TEMPERATURE: July 1995 to current year (seasonal only).
pH: July 1995 to current year (seasonal only).
INSTRUMENTATION.--Water-quality monitor with satellite telemetry.
REMARKS.--Records for daily specific conductance are fair. Records for daily water temperature and pH are good. Daily data that are not published during period of seasonal operation are either missing or of unacceptable quality.

EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum during period of seasonal operation, 681 microsiemens, Mar. 30, 1996; minimum, 76 microsiemens, May 17, 1996.
WATER TEMPERATURE: Maximum during period of seasonal operation, $21.3^{\circ} \mathrm{C}$, July 20,1996 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during 1996.
pH : Maximum during period of seasonal operation, 7.0 units, several days during 1996; minimum, 3.4 units, Aug. 25, 1996.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum during period of seasonal operation, 681 microsiemens, Mar. 30; minimum, 76 microsiemens, May 17.
WATER TEMPERATURE: Maximum during period of seasonal operation, $21.3^{\circ} \mathrm{C}$, July 20 ; minimum, $0.0^{\circ} \mathrm{C}$, many days. pH : Maximum during period of seasonal operation, 7.0 units, several days; minimum, 3.4 units, Aug. 25.

08235700 ALAMOSA RIVER BELOW CASTLEMAN GULCH NEAR JASPER, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	627	487	569	204	157	189
2	---	---	---	---	---	---	560	477	516	175	131	159
3	---	---	---	---	---	---	532	493	508	154	98	130
4	---	---	---	---	-	---	529	483	514	134	103	121
5	---	---	---	---	---	---	536	503	526	130	97	115
6	---	---	---	---	---	---	563	477	534	124	85	108
7	---	---	---	---	---	---	528	439	504	124	96	109
8	---	---	---	---	---	---	535	463	495	136	82	113
9	---	---	---	---	---	---	463	333	414	134	85	105
10	---	---	---	---	---	---	386	311	359	134	98	117
11	---	---	---	---	---	---	374	359	366	134	91	112
12	---	---	---	---	---	---	376	358	366	133	91	109
13	---	---	---	---	---	---	364	335	345	138	98	117
14	---	---	---	---	---	---	376	310	358	136	92	116
15	---	---	---	---	---	---	425	306	358	132	82	107
16	---	---	---	---	---	---	419	322	366	131	89	113
17	---	---	---	---	---	---	415	391	404	130	76	109
18	---	---	---	---	---	---	424	412	419	105	78	93
19	---	---	---	---	---	---	460	395	432	106	77	92
20	---	---	---	---	---	---	455	405	438	109	79	96
21	---	---	---	---	---	---	484	421	449	118	87	103
22	---	---	---	---	---	---	489	406	438	127	97	113
23	---	---	---	---	---	---	435	352	401	131	101	118
24	---	---	---	---	---	---	352	256	311	143	116	129
25	---	---	---	---	---	---	259	167	244	156	140	150
26	---	---	---	---	---	---	213	162	186	168	148	158
27	---	---	---	---	---	---	173	114	150	193	168	178
28	---	---	---	---	---	---	181	114	140	182	166	176
29	---	---	---	---	---	---	210	156	186	203	149	190
30	---	---	---	681	592	643	257	156	222	187	140	158
31	---	---	---	664	540	618	---	---	---	186	149	167
MONTH	---	---	---	---	---	---	627	114	384	204	76	128
	JUNE			JULY			AUGUST			SEPTEMBER		
1	181	149	164	251	220	236	370	354	362	371	360	367
2	183	149	165	273	248	260	358	309	328	540	361	475
3	182	149	166	288	251	273	366	309	339	496	384	426
4	187	132	168	297	221	284	363	309	331	597	378	497
5	187	132	166	247	210	236	382	318	358	515	419	463
6	190	152	170	293	244	279	413	377	392	600	501	561
7	193	152	173	302	282	291	424	395	411	558	426	478
8	198	156	180	601	267	320	425	370	402	600	509	569
9	235	177	197	267	195	214	472	373	411	610	584	597
10	227	197	212	202	189	194	414	368	385	616	576	604
11	215	176	192	195	186	191	430	354	381	609	497	561
12	216	179	197	246	184	221	444	422	432	669	487	581
13	231	192	216	228	198	218	445	394	423	590	495	550
14	248	203	221	243	221	231	426	378	399	622	576	594
15	236	206	221	255	212	244	440	383	411	595	394	467
16	233	196	219	253	219	232	395	368	378	558	394	500
17	244	180	222	252	146	236	499	361	385	514	398	461
18	258	182	217	249	143	217	410	206	341	578	466	544
19	258	188	227	265	233	250	374	169	230	583	498	534
20	250	222	240	275	259	267	382	153	206	538	448	501
21	240	206	223	281	252	267	479	371	408	535	446	498
22	222	199	212	295	278	286	486	381	418	446	338	368
23	254	210	233	304	287	296	454	364	407	523	338	444
24	265	238	251	314	296	306	534	379	442	550	523	538
25	280	247	264	487	286	324	512	382	399	538	417	475
26	280	260	272	437	284	309	390	381	385	565	440	542
27	260	229	239	343	316	332	407	323	367	635	530	563
28	245	204	218	496	296	332	360	272	319	649	498	560
29	256	222	237	357	297	325	440	330	357	541	418	480
30	269	240	260	355	334	342	401	297	367	508	392	436
31	---	--	---	357	320	348	365	335	354	---	-	-
MONTH	280	132	211	601	143	270	534	153	372	669	338	508

08235700 ALAMOSA RIVER BELOW CASTLEMAN GULCH NEAR JASPER, CO--Continued
pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	october			november			December			JANUARY		
1	5.4	5.0	5.2	-	---	---	---	---	---	---	---	---
2	5.3	5.0	5.2		---							
3	5.3	5.1	5.2	---	--	---	---	---	---	---	---	---
4	5.2	5.1	5.1	---	----	---	--	--	---	----	--	----
5	5.4	5.0	5.2	-	---	--	--	--	---	--	--	---
6	5.4	5.0	5.2	---	---	---	---	---	---	---	---	---
7	5.3	5.1	5.2	-	---	---	---	---	---	---	---	
8	5.2	5.1	5.1	---	---	---	---	---	---		---	---
9	5.2	5.0	5.1	---	---	---	---	--	----	----	----	----
10	5.2	5.0	5.1	-	---	---	---	---	---	---	---	---
11	5.1	4.9	5.0	---	--	---	---	---	---	---	---	---
12	5.1	4.9	5.0	---	---	---	---	---	---	---	---	---
13					---	---						
14	---	---	---	---	--	--	----	-	----	----	----	----
15	---	---	---	---	---	---	---	---	---		---	
16	---	---	---	---	---	---	---	---	---	---	---	---
17	----	----	----	---	----	----	---	----	----	---	----	
19	--	---	---	-	---	---	-	---	---			
20	--	---	--	---	---	---	---	---	---	---	---	---
21	---	---	---	---	---	---	---	---	---	---	---	---
22	---	---	-	---	---	---	---	---	---	---	---	---
23	---	-	-	-	---	---						
24 25	----	----	----	-	----	----	---	----	---	--		
26	---	-	---	-	--	---	---	---			---	---
	----	----	-	-	-	----	----	----	----	----		
29	---	---	---	-	---	---	---	---	---	---	---	---
30	--	-	---	-	---	---	---	---	---	---	---	---
31	---	---	---	---	---	---	---	---	---	---	---	---
MONTH	--	-	---	-	---	---	---	---	---	---	---	--

	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	4.8	4.5	4.6	6.9	6.7	6.9
2	---	---	---	---	---	---	4.8	4.4	4.6	7.0	6.9	6.9
3	-	---	---	---	---	--	4.9	4.8	4.9	7.0	6.8	6.9
4	---	---	---	---	---	---	5.0	4.9	4.9	7.0	6.7	6.9
5	---	---	---	---	---	---	5.0	4.9	4.9	7.0	6.6	6.8
6	---	---	---	---	---	--	5.0	4.8	4.9	7.0	6.7	6.8
7	---	---	---	---	---	---	5.0	4.8	4.9	6.9	6.5	6.8
8	---	---	---	---	---	---	5.0	4.8	4.9	6.9	6.8	6.9
9	---	---	--	---	---	---	5.2	4.8	5.0	7.0	6.8	6.9
10	---	---	---	---	---	---	5.6	5.1	5.4	6.9	6.7	6.8
11	---	---	---	---	---	-	5.9	5.5	5.8	6.9	6.2	6.7
12	---	---	---	---	---	---	6.0	5.7	5.9	6.8	6.5	6.7
13	---	---	-	---	---	---	6.0	5.7	5.9	6.8	6.5	6.7
14	---	---	---	---	---	---	6.1	5.9	6.0	6.8	6.6	6.7
15	---	---	---	---	---	---	5.9	5.6	5.9	6.9	6.6	6.8
16	---	---	---	---	---	---	5.7	5.5	5.6	6.9	6.7	6.8
17	---	---	---	---	---	---	5.7	5.5	5.6	7.0	6.8	6.9
18	---	---	---	---	---	---	5.7	5.7	5.7	7.0	6.9	6.9
19	---	---	---	---	---	---	5.7	5.5	5.6	7.0	6.9	7.0
20	---	--	---	---	-	---	5.6	5.4	5.5	7.0	6.9	7.0
21	---	---	---	---	---	---	5.6	5.4	5.5	7.0	6.9	6.9
22	---	---	---	---	---	---	5.4	5.3	5.4	7.0	6.8	6.9
23	---	---	---	---	---	---	5.6	5.3	5.4	7.0	6.8	6.9
24	---	---	---	---	---	---	6.1	5.4	5.9	6.9	6.8	6.8
25	---	---	---	---	---	---	6.4	5.9	6.2	6.8	6.7	6.8
26	---	---	---	---	---	---	6.7	6.2	6.5	6.8	6.4	6.7
27	---	---	---	---	-	--	6.8	6.2	6.6	6.7	6.5	6.6
28	---	---	---	---	---	---	7.0	6.7	6.9	6.6	6.5	6.6
29	---	---	---	---	---	---	6.9	6.8	6.9	6.6	6.4	6.5
30	---	---	---	4.8	4.6	4.7	6.9	6.5	6.8	6.9	6.5	6.7
31	---	---	---	4.8	4.5	4.6	---	---	-	6.9	6.7	6.8
MONTH	--	-	---	---	---	---	7.0	4.4	5.6	7.0	6.2	6.8

08235700 ALAMOSA RIVER BELOW CASTLEMAN GULCH NEAR JASPER, CO--Continued

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST		SEPTEMBER		
1	6.9	6.7	6.8	6.2	6.0	6.1	5.9	5.7	5.8	4.8	4.6	4.7
2	6.9	6.7	6.8	6.2	6.0	6.1	5.8	5.6	5.7	4.8	4.7	4.7
3	6.9	6.7	6.8	6.3	6.0	6.2	5.7	5.4	5.6	4.9	4.7	4.8
4	6.9	6.7	6.8	6.2	5.9	6.1	5.7	5.5	5.6	4.9	4.8	4.8
5	6.9	6.7	6.8	6.6	5.9	6.3	5.8	5.4	5.5	5.2	4.9	5.0
6	6.9	6.7	6.8	6.3	6.0	6.1	5.6	5.3	5.5	5.2	5.0	5.1
7	6.9	6.7	6.8	6.1	5.9	6.0	6.5	5.4	5.6	5.2	5.0	5.1
8	6.9	6.7	6.8	6.0	3.6	5.6	6.0	5.2	5.3	5.2	5.1	5.1
9	6.8	6.5	6.7	6.8	4.3	5.2	5.4	3.9	5.0	5.2	5.0	5.1
10	6.7	6.5	6.6	6.6	5.3	6.1	5.6	5.2	5.3	5.2	5.1	5.1
11	6.9	6.5	6.6	6.8	6.6	6.6	5.4	4.9	5.2	5.2	5.0	5.1
12	6.9	6.6	6.7	6.8	5.7	6.6	5.2	4.9	5.1	5.1	4.8	5.0
13	6.8	6.5	6.7	6.8	6.7	6.7	5.1	4.9	5.0	5.0	4.8	4.9
14	6.8	5.8	6.6	6.8	6.6	6.7	5.1	4.9	5.0	5.1	4.9	5.0
15	6.7	5.6	6.5	6.7	6.5	6.6	5.0	4.9	4.9	4.9	4.8	4.9
16	6.7	6.5	6.6	6.6	6.3	6.5	5.0	4.8	4.9	5.3	4.9	5.0
17	6.7	6.5	6.6	6.7	5.9	6.5	4.9	4.7	4.8	5.4	5.1	5.2
18	6.7	6.4	6.5	6.9	6.1	6.8	4.9	4.7	4.7	5.4	5.2	5.3
19	6.6	6.3	6.4	7.0	6.9	6.9	4.8	4.7	4.7	5.4	5.0	5.2
20	6.5	6.2	6.3	6.9	6.8	6.9	4.8	4.6	4.7	5.5	5.2	5.3
21	6.4	6.2	6.3	6.8	6.7	6.8	4.7	4.4	4.6	5.7	5.5	5.6
22	6.4	6.2	6.3	6.7	6.6	6.7	4.5	3.8	4.3	5.8	5.6	5.7
23	6.4	6.2	6.3	6.6	6.5	6.6	4.9	4.2	4.4	5.6	5.4	5.5
24	6.3	6.0	6.2	6.5	6.4	6.5	4.5	3.5	4.1	5.6	5.4	5.5
25	6.2	6.0	6.1	6.4	3.7	6.1	4.5	3.4	4.3	5.6	5.4	5.5
26	6.1	5.9	6.0	6.0	3.8	5.5	4.5	4.4	4.5	5.7	5.5	5.6
27	6.0	5.9	6.0	6.2	6.0	6.1	5.1	4.3	4.5	5.8	5.6	5.7
28	6.2	6.0	6.1	6.2	3.7	5.6	4.8	4.1	4.6	5.7	5.5	5.6
29	6.2	6.1	6.2	5.5	4.7	5.1	4.8	4.6	4.7	5.6	5.4	5.5
30	6.1	6.0	6.1	5.7	5.1	5.5	4.7	4.0	4.4	5.5	5.4	5.5
31	---	---	---	5.9	5.6	5.8	4.6	4.5	4.6	---	---	---
MONTH	6.9	5.6	6.5	7.0	3.6	6.2	6.5	3.4	4.9	5.8	4.6	5.2

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	8.8	1.7	4.8	-	---	---	---	---	---	---	---	---
2	9.8	1.9	5.5	---	---	---	---	---	---	---	---	---
3	9.8	1.6	5.4	---	--	---	---	-	---	---	---	---
4	7.4	2.2	4.3	---	---	---	---	---	---	---	---	-
5	7.4	. 0	3.2	---	---	---	---	---	--	---	-	---
6	7.6	. 0	3.3	---	---	---	---	---	---	---	---	-
7	8.1	. 0	3.8	---	---	---	---	---	---	---	---	---
8	9.1	. 8	4.7	---	---	--	---	--	---	---	---	--
9	8.3	. 3	4.2	---	---	---	---	---	---	---	---	---
10	8.9	. 4	4.6	---	---	---	---	---	---	---	---	---
11	9.4	1.1	5.2	---	---	---	---	---	-	---	--	-
12	9.1	1.4	5.2	-	--	---	---	---	---	---	-	--
13	---	---	---	---	---	---	---	---	---	---	---	---
14	---	---	---	-	---	---	---	---	---	--	---	---
15	---	---	--	--	---	---	-	---	---	--	---	---
16	---	---	--	---	-	---	---	--	---	---	---	--
17	--	---	--	---	---	-	---	---	---	---	---	--
18	---	--	--	-	--	-	---	--	--	---	---	---
19	---	---	---	---	---	---	---	---	--	---	---	--
20	---	--	--	---	--	---	---	--	---	---	---	---
21	--	--	-	---	--	---	---	-	---	---	-	--
22	--	--	--	---	--	-	---	---	---	---	---	--
23	--	---	-	--	---	---	---	--	---	---	---	--
24	---	---	---	---	---	--	---	-	--	---	--	--
25	---	--	--	---	--	-	---	-	--	---	--	--
26	--	--	-	---	--	--	---	--	---	---	-	---
27	---	-	---	---	--	---	---	--	-	---	--	--
28	---	---	---	--	---	-	---	--	--	---	--	--
29	--	---	---	---	--	---	---	---	---	---	---	---
30	---	---	---	---	---	---	---	---	---	---	---	--
31	---	---	--	---	---	-	---	---	--	---	---	-
MONTH	---	---	---	---	---	---	---	---	---	-	---	---

08235700 ALAMOSA RIVER BELOW CASTLEMAN GULCH NEAR JASPER, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	--	--	--	6.4	. 0	2.0	9.4	. 0	3.5
2	---	-	--	---	---	--	5.8	. 0	2.2	9.8	. 3	3.6
3	---	---	---	---	---	---	7.6	. 0	2.8	9.4	. 3	3.6
4	---	---	---	---	---	---	5.4	. 1	2.2	9.4	. 5	3.6
5	---	---	---	--	---	---	8.1	. 1	3.2	9.4	. 2	3.5
6	---	---	-	---	---	---	7.4	. 0	3.0	9.3	. 3	3.6
7	---	---	---	---	---	---	8.7	. 0	3.5	9.2	. 4	3.6
8	---	---	---	---	---	---	9.9	. 2	3.8	9.5	. 7	3.9
9	-	-	-	---	---	---	7.2	. 0	3.1	9.6	1.0	4.1
10	---	---	---	---	---	--	6.0	. 0	2.7	9.9	. 7	4.2
11	--	---	---	-	---	---	7.5	. 0	3.2	10.7	. 7	4.3
12	---	---	---	---	---	---	9.1	. 0	3.6	10.2	1.2	4.6
13	--	---	---	---	---	---	4.2	. 0	1.8	10.0	1.1	4.5
14	---	---	---	---	---	---	4.8	. 0	1.8	10.2	1.8	5.0
15	---	---	---	---	---	---	9.0	. 0	3.4	10.9	1.7	5.3
16	-	---	---	---	---	---	9.3	. 0	4.2	11.6	2.0	5.7
17	---	-	---	---	---	-	7.1	. 1	3.4	11.3	2.7	5.9
18	---	---	---	---	---	---	4.0	. 9	2.3	11.3	2.1	5.9
19	---	---	---	---	---	---	8.5	. 0	3.3	11.9	3.1	6.5
20	-	---	---	---	---	---	3.5	. 0	1.5	11.4	2.9	6.3
21	-	---	---	---	---	--	8.5	. 0	3.6	11.9	1.7	6.1
22	-	-	---	---	---	-	9.4	. 0	4.0	11.7	2.0	6.3
23	---	---	---	---	---	---	11.0	. 0	4.6	11.2	2.7	6.5
24	---	---	---	---	---	---	10.9	. 1	4.2	7.0	1.7	4.6
25	--	-	---	---	---	---	10.0	1.0	4.1	9.2	2.9	5.6
26	---	---	---	---	---	---	9.3	. 0	3.1	7.8	1.8	4.8
27	---	---	---	---	---	---	8.3	. 4	3.0	11.1	1.6	6.1
28	---	---	---	---	---	---	1.4	. 0	. 5	9.8	2.7	5.9
29	---	---	---	---	--	-	7.3	. 0	2.3	13.3	1.6	7.2
30	---	---	---	8.4	. 0	2.9	10.1	. 0	3.8	12.3	3.1	7.6
31	---	---	---	7.2	. 0	2.4	---	--	---	13.2	2.2	7.5
MONTH	---	---	---	---	---	---	11.0	. 0	3.0	13.3	. 0	5.1
	JUNE			JULY			AUGUST			SEPTEMBER		
1	12.9	2.4	7.8	16.0	7.7	11.6	15.5	7.9	12.0	14.3	6.6	10.8
2	12.1	2.2	7.7	18.4	7.3	12.4	17.7	8.8	13.1	12.5	7.8	9.9
3	12.4	2.8	8.1	19.2	7.5	12.8	20.0	10.1	14.1	17.9	6.0	11.0
4	13.1	3.8	8.3	16.3	8.3	12.7	18.0	9.7	13.7	17.5	7.0	11.4
5	12.3	3.8	8.7	19.4	8.3	13.4	19.7	6.6	12.9	15.7	6.9	11.3
6	15.4	4.4	9.7	18.5	9.9	14.0	20.0	7.1	13.1	17.1	8.4	12.0
7	13.1	3.9	8.8	14.4	9.1	12.2	16.9	7.2	12.3	14.2	6.6	10.1
8	13.2	4.2	9.1	16.2	9.1	11.7	18.3	9.6	13.1	14.8	5.3	10.0
9	10.3	5.2	8.1	14.9	7.7	10.5	13.4	7.7	10.8	13.9	5.8	9.7
10	12.3	4.8	8.7	14.7	7.8	11.4	15.5	6.4	11.2	14.1	6.6	10.2
11	14.2	5.0	9.8	16.7	8.4	12.5	19.5	6.9	12.9	15.0	6.9	10.7
12	12.0	6.2	9.4	13.8	8.9	11.2	16.7	8.5	12.5	12.2	8.4	10.2
13	12.6	6.8	9.6	13.3	8.1	10.3	16.5	8.0	12.0	15.4	8.1	11.0
14	11.4	7.2	9.3	17.5	6.6	12.0	13.7	8.8	11.4	9.8	7.0	8.3
15	14.1	7.4	9.9	20.6	9.7	14.1	15.0	8.0	11.3	16.4	5.5	10.2
16	13.9	5.6	10.2	19.0	10.0	14.0	16.9	7.3	11.9	14.6	5.2	9.5
17	14.9	6.5	10.8	16.5	10.2	13.3	15.9	7.3	11.4	12.9	6.3	8.6
18	17.3	5.8	11.4	19.6	10.2	14.0	19.8	8.3	13.2	8.7	3.5	6.2
19	18.0	5.2	11.5	19.6	8.5	14.0	16.4	8.1	12.6	11.3	. 6	5.6
20	18.1	6.1	12.1	21.3	9.4	15.1	15.8	8.7	12.2	12.2	2.4	7.2
21	16.6	8.7	12.2	18.9	9.1	14.3	15.0	9.6	11.7	13.2	2.4	7.6
22	14.4	8.4	11.3	20.6	9.0	14.5	12.8	9.2	10.5	13.8	3.6	8.5
23	17.1	5.3	10.9	20.4	8.4	14.1	14.9	9.5	11.8	14.4	4.4	8.9
24	18.2	5.6	11.6	19.9	7.9	13.2	14.2	9.8	11.7	14.1	4.9	9.0
25	16.4	7.0	11.2	15.7	8.3	11.8	13.5	8.3	11.1	11.9	4.5	7.9
26	14.7	7.8	11.3	15.3	8.0	11.9	17.9	6.4	12.0	9.5	3.9	6.3
27	15.0	9.0	11.5	15.9	7.7	12.1	13.2	8.9	10.8	9.9	. 5	4.9
28	16.8	8.8	12.3	13.8	9.4	11.5	17.3	6.5	11.5	11.6	1.2	6.2
29	14.6	6.9	10.9	14.4	9.1	11.7	17.6	7.4	12.0	12.4	2.7	7.4
30	14.6	8.0	11.1	18.1	8.2	13.2	16.3	6.7	11.2	12.5	3.0	7.2
31	---	---	---	17.6	8.5	13.2	18.6	6.6	12.2	---	---	---
MONTH	18.2	2.2	10.1	21.3	6.6	12.7	20.0	6.4	12.1	17.9	. 5	8.9

08236000 ALAMOSA RIVER ABOVE TERRACE RESERVOIR，CO

WATER－QUALITY RECORDS

LOCATION．－－Lat $37^{\circ} 22^{\prime} 29^{\prime \prime}$ ，long $106^{\circ} 20^{\prime} 03^{\prime \prime}$ ，in $\mathrm{NW}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec． 17 ，T． 36 N．，R． 6 E．，Conejos County，Hydrologic Unit 13010002， on left bank 0.8 mi upstream from high－water line of Terrace Reservoir at elevation 8，568 ft， 3.0 mi downstream from French Creek，and 15 mi northwest of Capulin．

PERIOD OF RECORD．－－June 1994 to current year（seasonal only）．Published as＂Alamosa Creek＂prior to October 1994.
REVISED RECORDS．－－Water－temperature data for this station，originally published in WDR CO 95－1，was in error．Correct data for water year October 1994 to September 1995 are published in this volume in addition to water－temperature data for current year．

PERIOD OF DAILY RECORD．－－
SPECIFIC CONDUCTANCE：June 1994 to current year（seasonal record only）．
pH ：June 1994 to current year（seasonal record only）．
WATER TEMPERATURE：June 1994 to current year（seasonal record only）．
INSTRUMENTATION．－－Water－quality monitor with satellite telemetry since June 1994.
REMARKS．－－Records for water temperature，specific conductance，and pH are fair．Daily data that are not published are either missing or of unacceptable quality．

EXTREMES FOR PERIOD OF DAILY RECORD．－－
SPECIFIC CONDUCTANCE：Maximum during period of seasonal operation， 676 microsiemens，Sept．14，1994；minimum， 82 microsiemens，June 20， 1995.
pH：Maximum during period of seasonal operation， 7.6 units，Aug．1，1994；minimum， 3.5 units，Aug．11， 1994.
WATER TEMPERATURE：Maximum during period of seasonal operation， $21.3^{\circ} \mathrm{C}$ ，July $6,21,1996$ ；minimum， $0.0^{\circ} \mathrm{C}$ ，many days．

EXTREMES FOR CURRENT YEAR．－－

SPECIFIC CONDUCTANCE：Maximum during period of seasonal operation， 540 microsiemens，Sept．15；minimum， 102 microsiemens，May 15.
pH ：Maximum during period of seasonal operation， 7.4 units，Apr．30；minimum， 4.1 units，July 9.
WATER TEMPERATURE：Maximum during period of seasonal operation， $21.3^{\circ} \mathrm{C}$ ，July 6,21 ；minimum， $0.0^{\circ} \mathrm{C}$, Apr． $14-15,19$ ， 21 ，and 29 ．

		$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
学		$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
$\stackrel{x}{\sum}$		$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & \end{array}$	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \text { z } \\ & \text { 汶 } \end{aligned}$		$\begin{array}{lllll} 1 & 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1	1
$\underset{\text { 峾 }}{\text { 品 }}$		$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
$\underset{\Sigma}{x}$		$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \text { z } \\ & \text { 洼 } \end{aligned}$		$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \mathrm{Z} \\ & \stackrel{y}{2} \end{aligned}$		$\begin{array}{lllll} 1 & 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
$\underset{\Sigma}{\times}$		$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \text { z } \\ & \text { 棌 } \end{aligned}$				$\begin{array}{c\|c\|c} \hat{6} & - & \mid \\ m \mathrm{~m} & 1 & 1 \end{array}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \mathrm{Z} \\ & \stackrel{y}{\mid} \end{aligned}$	0 1 1 0 0 H 0	மがのに $\stackrel{1}{\mathrm{~N}} \mathrm{~N}$ ㄴN	$\begin{aligned} & \bullet \stackrel{L}{n} \text { OM } \\ & \text { MN M M M } \end{aligned}$	$\begin{array}{l\|l\|l} \boldsymbol{- r} & \boldsymbol{r} & \mid \\ \text { m } & 1 & 1 \end{array}$	$\begin{array}{l\|} \hline & 1 & 1 & 1 \\ 1 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
$\underset{\Sigma}{\times}$			サ 6∞ のみ $m m m m m$		$\begin{array}{l\|llll} 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1
$\begin{aligned} & \text { N } \\ & \text { 品 } \end{aligned}$		「Nのサー	¢	$\begin{aligned} & \text { HNM N } \\ & \text { Hウr } \end{aligned}$		$\underset{N}{N} N \underset{N}{N} \underset{N}{N}$	மゥ $\mathrm{N} N \mathrm{~N}$ NMM	出 号 ¢ ¢

08236000 ALAMOSA RIVER ABOVE TERRACE RESERVOIR, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

08236000 ALAMOSA RIVER ABOVE TERRACE RESERVOIR, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCtOBER			NOVEMBER			DECEMBER			JANUARY	
1	6.1	5.4	5.8	---	-	---	---	-	---	---	-	---
2	6.1	5.7	5.9	---	--	---	---	---	---	---	---	---
3	6.1	6.0	6.0	-	---	---	---	-	---	---	-	---
4	6.0	5.8	5.9	---	---	---	---	---	---	-	--	---
5	6.0	5.8	5.9	--	---	-	---	--	--	---	-	---
6	6.1	5.9	6.0	---	---	---	---	---	---	---	---	---
7	6.2	5.9	6.0	---	---	---	---	---	---	---	---	---
8	6.1	6.0	6.0	---	---	---	---	---	---	---	---	--
9	6.1	6.0	6.1	---	---	---	---	---	---	---	---	---
10	6.1	6.0	6.1	---	---	---	--	---	---	--	---	--
11	6.1	5.9	6.0	---	---	---	---	---	---	---	---	---
12	5.9	5.8	5.9	-	---	---	---	-	---	---	-	---
13	5.9	5.9	5.9	---	-	-	---	--	--	---	--	---
14	---	---	---	---	--	---	---	--	--	---	--	---
15	---	---	---	---	---	---	---	--	---	--	---	---
16	---	---	---	--	---	---	--	---	---	---	---	---
17	---	---	---	---	---	---	---	---	---	---	---	---
18	---	---	---	---	---	---	---	---	---	---	---	---
19	--	---	-	---	--	---	---	--	---	-	--	---
20	---	---	-	---	---	---	---	--	---	---	-	---
21	---	---	---	-	---	---	-	---	---	---	---	-
22	---	---	---	---	---	---	--	---	---	---	---	---
23	---	---	-	---	---	--	---	---	---	---	---	---
24	---	---	---	---	---	---	---	-	-	---	-	---
25	---	---	---	---	---	---	---	---	---	---	---	---
26	--	---	---	---	---	---	---	---	---	---	---	---
27	---	---	---	---	---	---	---	-	---	---	---	---
28	---	---	---	---	--	---	---	--	---	---	-	---
29	----	----	----	---	---	-	-	---	---	-	---	---
30	----	----	----	----	----	----	----	----	----	----	----	----
MONTH	---	---	---	---	---	-	---	---	---	---	---	---

08236000 ALAMOSA RIVER ABOVE TERRACE RESERVOIR, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY		AUGUST			SEPTEMBER		
1	7.0	6.9	7.0	7.0	6.9	6.9	6.9	6.8	6.9	6.6	6.2	6.4
2	7.0	6.9	7.0	7.1	6.8	7.0	6.9	6.9	6.9	6.6	6.5	6.6
3	7.0	6.9	7.0	7.1	7.0	7.1	7.0	6.9	6.9	6.7	6.5	6.6
4	7.0	6.9	7.0	7.1	7.0	7.0	6.9	6.9	6.9	6.9	6.7	6.8
5	7.0	6.9	7.0	7.1	6.9	7.0	7.0	6.8	6.9	7.0	6.8	6.9
6	7.0	6.9	6.9	7.0	7.0	7.0	7.0	6.9	6.9	7.0	6.8	6.9
7	7.0	6.9	6.9	7.0	6.9	7.0	7.0	6.8	7.0	6.8	6.8	6.8
8	7.0	6.9	6.9	7.0	6.9	7.0	7.1	6.9	7.0	6.8	6.7	6.8
9	6.9	6.8	6.9	6.9	4.1	5.2	7.0	5.8	6.7	6.8	6.7	6.7
10	6.9	6.8	6.9	7.0	6.2	6.6	6.7	6.3	6.6	6.9	6.8	6.8
11	7.0	6.8	6.9	7.2	6.9	7.1	6.9	6.7	6.9	6.9	6.8	6.9
12	7.0	6.9	7.0	7.3	7.2	7.2	6.9	6.9	6.9	6.9	6.8	6.9
13	7.0	6.9	6.9	7.3	6.7	7.2	6.9	6.9	6.9	6.8	6.6	6.7
14	6.9	6.8	6.9	7.3	7.2	7.2	6.9	6.9	6.9	6.6	6.6	6.6
15	6.9	6.6	6.8	7.3	7.2	7.2	6.9	6.8	6.8	6.6	6.0	6.4
16	6.9	6.8	6.9	7.2	7.2	7.2	6.8	6.7	6.7	6.5	6.0	6.1
17	7.0	6.9	6.9	7.3	7.1	7.2	6.7	6.5	6.6	6.8	6.1	6.7
18	7.0	6.9	6.9	7.2	6.9	7.1	6.6	6.3	6.4	6.8	6.6	6.7
19	6.9	6.9	6.9	7.2	7.2	7.2	6.4	6.3	6.4	6.6	6.2	6.5
20	6.9	6.9	6.9	7.2	7.1	7.2	6.4	6.3	6.3	6.4	6.3	6.3
21	6.9	6.9	6.9	7.2	7.1	7.2	6.3	6.1	6.2	6.5	6.3	6.5
22	6.9	6.8	6.9	7.2	7.1	7.1	6.1	4.7	5.3	6.6	6.5	6.6
23	6.9	6.8	6.9	7.3	7.1	7.2	5.3	4.8	5.0	6.7	6.6	6.7
24	6.9	6.8	6.9	7.3	7.2	7.3	5.6	4.7	5.1	6.7	6.7	6.7
25	6.9	6.8	6.9	7.3	7.2	7.2	5.1	4.6	4.9	6.8	6.7	6.7
26	6.9	6.8	6.9	7.2	5.7	6.6	5.8	5.1	5.5	6.8	6.7	6.7
27	6.9	6.8	6.9	6.9	6.5	6.8	6.2	5.8	5.9	6.7	6.7	6.7
28	6.9	6.9	6.9	7.0	6.9	7.0	6.2	5.2	5.7	6.8	6.7	6.7
29	7.0	6.9	6.9	7.0	5.4	5.9	6.3	6.0	6.2	6.8	6.7	6.8
30	7.0	6.9	7.0	6.4	5.9	6.2	6.4	5.4	5.9	6.8	6.7	6.8
31	---	-	---	6.8	6.4	6.6	6.2	5.5	5.7	---	---	--
MONTH	7.0	6.6	6.9	7.3	4.1	6.9	7.1	4.6	6.4	7.0	6.0	6.7

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	12.1	7.3	9.6	4.1	. 8	2.1	---	---	---	---	---	-
2	12.3	6.2	8.9	4.5	. 7	2.4	---	---	---	--	---	---
3	11.5	6.7	9.0	2.3	. 0	. 9	---	---	---	---	---	---
4	10.9	6.8	8.9	1.2	. 0	. 2	---	---	---	---	---	--
5	10.5	6.6	8.4	1.7	. 0	. 4	---	---	---	--	---	---
6	9.2	4.4	6.7	3.6	. 0	1.6	---	---	-	---	--	-
7	7.0	4.6	5.9	3.9	. 0	1.9	-	--	-	-	---	-
8	9.7	4.7	7.1	3.4	. 7	1.9	---	--	---	---	---	---
9	9.6	4.5	7.2	2.3	. 0	. 7	-	-	---	---	---	---
10	10.2	5.1	7.8	2.0	. 0	. 6	---	---	---	---	---	--
11	10.3	5.5	8.0	2.4	. 0	1.0	---	---	--	---	---	---
12	9.6	5.2	7.6	2.2	. 0	1.3	---	---	---	---	---	---
13	9.5	5.0	7.4	. 4	. 0	. 0	--	--	---	-	---	---
14	7.7	5.4	6.2	. 0	. 0	. 0	---	---	---	--	---	--
15	7.1	5.0	5.7	. 0	. 0	. 0	---	---	---	-	---	---
16	8.0	4.3	6.2	. 0	. 0	. 0	---	-	---	---	-	---
17	7.2	4.1	5.6	. 0	. 0	. 0	-	--	--	---	---	-
18	7.4	3.9	5.7	---	-	-	---	---	---	---	---	--
19	7.6	4.2	5.9	--	---	---	-	---	--	---	---	---
20	7.5	4.2	6.0	---	---	---	-	---	---	--	---	---
21	7.2	4.1	5.8	-	-	-	---	--	--	---	---	-
22	7.2	4.3	5.9	---	---	--	---	---	--	---	---	-
23	7.0	4.4	5.8	--	-	-	---	---	--	---	---	---
24	6.3	4.6	5.5	---	-	---	-	---	-	---	-	-
25	6.0	4.3	5.3	---	---	---	---	---	---	--	---	--
26	5.8	4.0	4.9	---	---	---	---	---	---	---	---	---
27	4.9	3.7	4.3	---	---	---	---	---	--	---	--	---
28	5.6	3.3	4.3	---	---	-	--	--	--	---	---	---
29	5.0	2.8	3.7	---	--	---	---	-	---	---	--	--
30	4.8	2.1	3.2	---	---	---	---	---	---	-	---	-
31	3.4	1.5	2.1	---	--	---	-	--	---	---	---	--
MONTH	12.3	1.5	6.3	---	---	---	---	---	---	---	---	---

08236000 ALAMOSA RIVER ABOVE TERRACE RESERVOIR, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995

DAY	MAX	MIN	MEAN									
		FEBRUARY			MARCH			APRIL			MAY	
1	---	---	---	---	---	---	---	---	--	-	---	-
2	---	---	---	---	---	---	---	---	---	--	---	---
3	---	---	-	---	---	---	--	---	--	-	---	---
4	---	---	---	-	---	---	---	---	---	---	---	---
5	---	---	---	---	---	---	---	---	---	---	---	-
6	-	-	---	---	---	-	--	---	---	-	-	---
7	---	---	---	---	---	---	---	---	---	---	---	---
8	---	---	---	-	-	---	---	---	---	---	---	---
9	---	---	---	---	---	---	---	---	---	---	---	---
10	-	---	---	---	---	---	---	---	---	---	---	-
11	-	---	---	-	---	---	-	---	---	---	-	---
12	---	---	---	-	---	---	---	---	---	---	---	---
13	---	---	---	---	---	---	---	---	---	---	--	---
14	---	---	---	---	---	---	---	---	---	---	---	---
15	---	--	---	-	---	-	--	-	---	---	--	---
16	-	---	---	---	---	---	---	---	---	---	-	---
17	---	-	-	--	---	--	---	---	-	---	---	---
18	---	---	-	---	---	---	---	---	---	---	-	---
19	--	-	-	-	-	---	-	---	---	---	---	--
20	---	-	-	-	-	---	---	---	---	---	--	---
21	---	---	---	---	---	---	---	---	---	---	-	-
22	---	---	---	---	---	---	---	---	---	---	--	---
23	---	---	---	---	---	---	---	---	---	---	---	---
24	---	-	-	-	---	---	---	---	---	---	--	---
25	---	---	---	---	---	---	---	---	---	---	--	---
26	---	---	---	---	---	---	---	---	---	---	-	---
27	---	---	---	---	---	---	---	---	---	---	---	---
28	---	---	---	---	---	---	---	---	---	---	--	-
29	---	---	---	---	---	---	---	---	---	---	--	-
30	---	---	---	---	---	---	---	---	---	---	---	---
31	---	---	-	---	---	---	---	---	---	---	--	---
MONTH	---	---	---	---	---	---	---	---	---	---	---	-
		JUNE			JULY			AUGUST			P TEMB	
1	---	---	---	9.6	3.7	6.6	16.6	8.2	12.3	15.3	10.0	13.2
2	8.6	2.1	5.0	10.4	3.7	6.9	---	,	---	15.6	10.0	12.6
3	10.7	1.4	5.1	8.6	3.3	6.0	14.2	---	--	17.0	9.6	13.2
4	8.0	2.2	4.6	10.0	2.8	6.0	15.4	10.0	12.7	17.2	10.7	13.9
5	11.3	2.2	5.9	12.5	3.3	7.8	14.6	9.5	12.2	17.8	10.1	13.8
6	9.8	2.2	5.2	13.8	4.5	8.9	15.0	9.1	12.3	15.4	10.4	12.9
7	9.4	1.9	4.9	11.3	4.4	8.2	15.0	9.8	12.6	13.1	10.6	11.8
8	10.1	2.0	5.3	12.7	4.7	8.7	17.3	11.4	14.3	13.3	9.2	11.2
9	9.9	1.7	5.2	13.1	5.0	8.9	15.2	12.0	13.5	11.7	9.0	10.6
10	9.1	1.5	4.7	12.2	5.1	8.8	15.4	10.1	13.0	11.2	7.6	9.5
11	11.6	1.5	5.7	13.2	5.3	9.3	18.7	12.3	14.8	14.0	7.2	10.5
12	11.7	2.3	6.1	14.0	5.3	9.6	15.8	12.3	14.1	14.1	6.8	10.6
13	11.3	2.6	6.0	11.0	5.5	8.1	16.5	10.6	13.8	14.4	7.4	11.0
14	10.3	2.6	5.9	11.0	5.8	8.4	16.0	11.9	14.0	11.0	7.6	9.1
15	8.3	3.4	5.6	12.8	6.1	9.5	18.7	10.7	14.5	12.3	5.7	9.2
16	7.7	3.2	5.2	11.9	6.8	9.3	15.3	10.7	13.3	14.6	7.8	11.2
17	8.0	4.3	5.8	10.3	6.3	8.0	17.7	10.8	14.4	14.7	7.7	11.2
18	10.9	2.5	6.1	12.2	6.6	9.4	18.0	11.1	14.6	13.3	9.1	11.1
19	12.1	3.6	7.2	11.8	7.2	9.5	15.4	11.5	13.7	12.6	6.9	9.9
20	12.2	3.8	7.6	11.2	6.2	9.1	14.2	9.9	12.0	12.3	6.5	9.5
21	11.2	4.1	7.2	14.1	6.1	10.1	15.4	10.1	12.2	11.5	7.6	9.1
22	11.0	2.6	6.3	13.1	6.2	9.9	13.4	9.9	11.9	11.2	5.2	8.1
23	11.0	2.6	6.4	12.8	5.3	9.5	14.6	9.6	12.1	11.2	4.0	7.7
24	10.0	3.0	6.0	14.9	6.3	10.7	14.5	11.6	13.1	10.0	6.1	7.9
25	9.2	3.1	6.3	14.9	6.5	11.1	14.5	10.1	12.5	11.0	4.4	7.9
26	8.8	3.4	6.0	15.7	7.1	11.7	16.7	10.5	13.2	10.1	6.1	8.1
27	8.2	3.6	6.1	15.7	6.8	11.5	14.1	10.9	12.6	12.8	5.5	9.0
28	9.9	3.6	6.5	15.4	7.9	12.0	14.1	10.4	12.5	9.5	6.9	8.1
29	9.1	4.3	6.5	13.3	8.5	11.4	15.0	10.1	12.9	10.6	6.9	8.3
30	9.0	5.0	6.8	14.5	9.5	12.1	16.8	10.7	13.9	8.7	3.5	6.5
31	---	---	---	12.8	9.4	11.4	17.9	10.7	14.9	8,	---	---
MONTH	---	---	---	15.7	2.8	9.3	---	---	---	17.8	3.5	10.2

08236000 ALAMOSA RIVER ABOVE TERRACE RESERVOIR, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	9.0	3.5	6.4	--	---	---	---	---	---	---	---	---
2	10.0	4.1	7.2	---	---	---	---	---	---	---	---	-
3	10.1	4.0	7.2	--	-	---	---	---	---	---	---	-
4	9.3	4.5	6.5	--	--	-	---	---	--	---	---	---
5	8.0	1.5	4.6	---	--	---	---	-	-	---	---	---
6	8.0	1.5	4.7	---	---	---	---	---	---	---	---	-
7	8.5	2.3	5.3	--	---	---	---	---	---	---	---	-
8	9.2	2.9	6.0	---	--	---	---	--	---	--	---	---
9	8.9	3.2	6.1	---	---	---	---	---	---	---	---	-
10	9.4	3.1	6.1	---	---	---	---	---	---	---	---	---
11	10.4	4.0	7.0	---	---	---	---	---	---	---	---	--
12	10.2	4.0	7.1	---	---	---	---	---	---	---	---	---
13	---	---	---	-	-	-	-	-	---	--	-	---
14	---	---	---	---	--	---	--	---	---	--	---	---
15	---	---	--	--	---	--	-	-	---	--	--	---
16	--	---	---	--	---	---	---	---	---	--	---	---
17	---	--	---	---	---	---	---	---	---	---	---	---
18	---	-	--	---	-	---	---	---	---	---	---	--
19	---	--	---	-	---	---	--	---	---	---	---	---
20	--	-	--	---	--	-	---	--	---	---	---	---
21	---	---	--	---	--	---	--	-	--	---	--	--
22	---	---	---	---	--	---	--	--	--	---	---	---
23	---	---	---	---	---	-	---	--	---	---	--	---
24	---	---	---	---	---	---	---	---	---	---	---	---
25	---	--	--	---	---	-	---	---	-	-	-	--
26	---	---	---	---	---	---	---	---	---	--	--	--
27	---	---	-	-	---	-	-	-	---	---	-	--
28	---	---	---	---	---	---	---	---	---	---	---	---
29	---	---	---	---	---	---	---	---	---	---	-	--
30	---	-	---	---	-	-	---	-	---	---	-	--
31	---	---	---	---	---	---	---	---	---	---	--	---
MONTH	---	---	---	---	---	---	---	---	--	--	---	---

	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	---	---	--	9.6	. 4	5.1
2	---	---	---	---	---	---	---	---	--	10.5	. 6	5.2
3	--	-	---	---	---	---	---	---	--	10.4	. 4	4.9
4	--	---	---	---	---	---	---	-	---	10.5	. 8	5.0
5	-	---	---	---	---	---	---	---	---	10.5	. 6	4.8
6	--	---	---	---	---	---	---	-	--	10.4	. 6	4.8
7	---	---	---	---	---	---	---	---	--	10.2	. 7	4.9
8	--	---	---	---	---	---	---	---	--	10.6	. 9	5.2
9	--	---	---	---	---	---	8.4	--	--	10.4	1.4	5.3
10	--	---	---	---	---	---	7.4	1.0	4.2	10.8	1.4	5.6
11	---	---	---	---	---	---	8.3	1.1	4.6	11.6	1.1	5.6
12	--	---	---	---	---	---	9.0	. 7	4.8	11.1	1.9	5.9
13	---	-	---	---	-	---	5.9	1.3	3.5	11.1	1.7	5.9
14	---	---	---	---	---	---	6.4	. 0	2.7	11.1	2.5	6.3
15	---	-	---	---	-	---	9.5	. 0	4.2	11.7	2.2	6.4
16	---	---	---	---	---	---	9.7	1.3	5.7	12.5	2.6	7.1
17	---	---	---	---	---	---	9.0	2.1	5.5	12.1	3.5	7.3
18	---	---	---	---	---	---	6.2	2.2	4.2	12.1	2.7	7.4
19	---	---	---	---	---	---	9.3	. 0	4.3	12.6	4.1	8.1
20	---	---	---	---	---	---	4.6	. 2	2.8	12.1	3.9	7.8
21	---	---	---	---	---	---	9.4	. 0	4.1	12.4	2.7	7.5
22	---	---	---	---	---	---	9.9	. 5	5.2	12.4	2.9	7.8
23	---	--	---	---	---	---	11.3	1.3	6.3	12.1	3.9	8.0
24	---	---	---	---	---	---	10.3	1.5	6.2	---	---	---
25	--	---	---	---	---	---	10.5	2.2	6.1	---	--	-
26	---	---	---	---	---	---	10.4	. 3	5.0	---	---	---
27	---	---	--	---	---	---	8.9	1.3	4.4	---	---	---
28	--	---	---	---	---	---	2.8	. 3	1.2	---	---	-
29	---	---	---	---	---	---	6.6	. 0	2.7	---	---	---
30	---	---	---	---	---	---	10.3	. 5	4.8	---	---	---
31	---	---	-	---	---	---	---	---	---	13.5	4.5	9.1
MONTH	---	---	---	---	---	--	---	---	--	---	---	---

RIO GRANDE BASIN
08236000 ALAMOSA RIVER ABOVE TERRACE RESERVOIR, CO--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			AUGUST		SEPTEMBER		
1	13.7	4.9	9.3	17.9	9.9	13.6	18.6	10.7	14.2	16.9	9.5	13.1
2	13.2	4.8	9.3	20.4	9.4	14.7	18.0	11.1	14.5	14.9	10.1	12.2
3	12.8	5.5	9.6	21.1	10.3	15.7	21.0	12.3	15.7	18.2	8.2	12.9
4	12.6	6.1	9.7	18.1	11.5	15.1	20.1	12.3	15.6	18.5	9.2	13.4
5	13.2	6.5	10.2	19.5	11.0	15.2	20.5	9.6	14.8	17.6	9.4	13.1
6	15.4	6.8	11.0	21.3	12.6	16.6	21.0	9.9	15.1	17.5	11.3	13.8
7	14.6	6.8	11.1	16.1	11.6	14.2	19.0	10.3	14.7	15.2	8.7	11.8
8	14.5	6.9	10.8	16.9	11.3	13.6	21.1	11.5	15.4	16.3	7.2	11.5
9	11.5	7.7	9.9	14.2	9.2	12.0	15.4	10.9	13.1	17.2	7.9	12.2
10	13.5	6.4	9.9	16.0	9.5	12.5	17.0	8.6	12.8	16.6	8.7	12.6
11	15.5	7.2	11.5	17.2	10.2	13.8	20.6	9.1	14.6	16.4	9.4	12.7
12	12.5	8.6	10.9	14.4	11.4	12.6	20.2	11.0	15.3	13.2	10.5	11.8
13	13.2	8.6	10.8	13.4	9.3	11.4	18.9	11.0	14.8	15.4	9.4	11.9
14	13.3	9.1	10.8	19.0	8.7	13.6	15.3	11.2	13.4	10.8	8.6	9.6
15	13.2	8.6	10.9	18.3	11.4	14.8	16.8	9.9	13.1	14.1	7.1	10.6
16	14.8	7.7	11.6	18.6	12.4	15.6	18.6	9.7	13.9	15.8	7.5	11.3
17	17.9	8.5	12.8	17.8	12.1	15.0	17.2	9.4	13.0	14.2	8.4	10.8
18	18.1	8.2	13.0	15.8	12.2	14.1	19.6	9.9	14.4	9.0	5.7	7.8
19	18.7	7.8	13.3	19.5	10.9	15.4	19.6	10.6	14.8	11.1	2.7	6.8
20	19.3	8.8	14.1	20.7	12.0	16.5	20.4	11.5	15.1	12.4	4.7	8.4
21	17.4	10.7	14.1	21.3	12.4	16.9	16.2	11.6	13.3	13.4	4.8	8.9
22	14.9	10.2	12.8	20.9	11.9	16.5	12.8	10.8	11.7	14.2	5.8	9.8
23	17.6	7.5	12.6	19.4	11.9	16.2	15.2	10.8	12.6	14.5	6.5	10.3
24	18.6	8.1	13.4	20.0	11.1	15.3	15.3	11.4	13.1	14.2	6.8	10.3
25	16.6	9.6	12.9	16.5	10.7	13.9	17.4	10.1	13.5	12.4	6.4	9.2
26	16.0	10.0	13.0	16.4	10.6	13.5	16.0	11.2	13.5	10.5	5.3	7.6
27	16.1	10.6	13.0	16.5	10.1	13.4	16.0	10.9	13.1	10.0	2.8	6.1
28	17.4	10.6	13.9	15.7	11.3	13.3	16.9	8.3	12.4	11.5	2.9	6.8
29	15.7	9.6	13.2	15.2	11.0	13.2	19.0	9.9	13.9	12.3	4.3	8.1
30	14.2	10.3	12.4	19.3	10.1	14.6	17.1	10.0	13.8	11.6	5.0	8.4
31	-	--	---	20.7	11.3	15.5	18.1	9.2	13.7	---	---	---
MONTH	19.3	4.8	11.7	21.3	8.7	14.5	21.1	8.3	14.0	18.5	2.7	10.5

08236500 ALAMOSA RIVER BELOW TERRACE RESERVOIR, CO

WATER-QUALITY RECORDS

PERIOD OF RECORD.--June 1995 to current year (seasonal only).
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: June 1995 to current year (seasonal only).
WATER TEMPERATURE: June 1995 to current year (seasonal only).
pH : June 1995 to current year (seasonal only).
INSTRUMENTATION.--Water-quality monitor with satellite telemetry since June 1995.
REMARKS.--Records for specific conductance and water temperature are good. Records for pH are good except for Oct. 1-12, and Sept. 16-30, which are poor. Daily data that are not published during period of seasonal operation are either missing or of unacceptable quality.

EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 442 microsiemens, Apr. 3-6, 1996; minimum, 125 microsiemens June 22, 1995. WATER TEMPERATURE: Maximum, $16.7^{\circ} \mathrm{C}$, Aug. 10, 1996; minimum, $2.4^{\circ} \mathrm{C}$, Apr. $4,1996$. pH: Maximum, 7.4 units, June 8-10, 1996; minimum, 4.3 units, Sept. 17-18, 1996.

EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum, 442 microsiemens, Apr. 3-6; minimum, 134 microsiemens, May 21-22. WATER TEMPERATURE: Maximum, $16.7^{\circ} \mathrm{C}$, Aug. 10, 1996; minimum, $2.4^{\circ} \mathrm{C}$, Apr. 4, 1996.
pH: Maximum, 7.4 units, June 8-10; minimum, 4.3 units, Sept. 17-18.

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	264	257	259	---	---	---	---	---	---	---	---	---
2	264	256	261	---	---	---	---	---	---	---	---	---
3	259	255	256	---	---	---	---	---	---	---	---	---
4	260	257	259	---	-	---	---	--	-	---	---	-
5	264	256	260	---	---	---	---	---	---	---	---	---
6	265	261	262	---	---	---	---	---	---	---	---	---
7	266	263	265	---	---	---	---	---	---	---	---	---
8	269	265	267	---	---	---	---	---	---	---	---	---
9	268	264	266	---	---	---	---	---	---	---	---	---
10	268	259	265	---	---	---	---	---	---	---	---	---
11	268	257	262	---	---	---	---	---	---	---	---	---
12	273	267	271	---	---	---	---	---	---	---	---	---
13	269	265	268	---	---	---	---	---	---	---	---	---
14	---	---	---	---	---	---	---	---	---	---	---	---
15	---	---	---	---	---	---	---	---	---	---	---	---
16	---	---	---	---	---	---	---	---	---	--	---	---
17	---	---	---	---	---	---	---	---	---	---	---	---
18	---	---	---	---	---	---	---	---	---	---	---	---
19	---	---	---	---	---	---	---	---	---	---	---	---
20	---	---	---	---	---	---	---	---	---	---	---	---
21	---	---	---	---	---	---	---	---	---	---	---	---
22	---	---	---	---	---	---	---	---	---	---	---	---
23	---	---	---	---	---	---	---	---	---	---	---	---
24	---	---	---	---	---	---	---	---	---	---	---	---
25	---	---	---	---	---	---	---	---	---	---	---	---
26	---	---	-	---	---	-	---	---	---	---	---	---
27	---	---	---	---	---	---	---	---	---	---	---	---
28	---	---	---	---	---	---	---	---	---	---	---	---
29	---	---	---	---	---	---	---	---	---	---	---	---
30	---	---	---	---	---	---	---	---	---	---	---	---
31	---	---	---	---	---	---	---	---	---	---	---	---
MONTH	---	---	---	---	---	---	---	---	---	---	---	---

08236500 ALAMOSA RIVER BELOW TERRACE RESERVOIR, CO--Continued

SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM @ 25 DEG. C), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	438	422	433	356	337	346
2	---	---	---	---	-	---	439	436	438	337	325	332
3	---	---	---	---	---	---	442	438	441	325	311	318
4	---	---	---	---	---	---	442	438	441	311	295	302
5	---	---	---	---	---	---	442	438	440	302	287	292
6	---	---	---	---	---	-	442	437	440	288	257	276
7	---	---	---	---	---	---	440	437	439	259	236	250
8	---	---	---	---	---	---	440	437	439	254	203	212
9	---	---	---	---	---	---	440	426	437	211	190	201
10	---	---	---	---	---	---	432	402	411	207	192	199
11	---	---	---	---	---	---	406	396	400	192	177	185
12	---	---	---	---	---	---	399	396	398	186	169	179
13	---	---	---	---	---	---	398	396	397	176	161	169
14	---	---	---	---	---	---	397	395	396	172	158	167
15	---	---	---	---	---	---	397	393	395	169	160	165
16	---	---	---	---	---	---	396	393	394	161	152	157
17	---	---	---	---	---	---	394	392	393	161	147	156
18	---	---	---	---	---	---	393	391	392	156	146	152
19	---	---	---	---	---	---	393	391	392	153	145	149
20	---	---	---	---	---	---	393	389	391	147	140	146
21	---	---	---	---	---	---	391	388	390	142	134	139
22	---	---	---	---	---	---	391	388	390	139	134	136
23	---	---	---	---	---	---	390	388	389	141	137	139
24	---	---	---	---	---	---	391	388	390	143	140	142
25	---	---	---	---	---	---	390	389	389	147	143	145
26	---	---	---	---	---	---	389	384	388	151	146	149
27	---	---	---	---	---	---	389	374	386	164	150	157
28	---	---	---	---	---	---	374	363	368	165	160	163
29	---	---	---	433	374	396	369	346	363	162	160	162
30	---	---	---	434	425	431	357	345	351	173	162	170
31	---	---	---	430	422	427	---	---	---	169	166	167
MONTH	---	---	---	---	---	---	442	345	404	356	134	194
	JUNE			JULY			AUGUST			SEPTEMBER		
1	169	166	167	197	194	196	240	237	239	286	280	283
2	170	167	168	200	196	198	242	238	240	287	281	283
3	170	168	169	202	199	200	240	237	239	293	284	287
4	170	169	169	203	201	202	241	237	240	292	287	290
5	169	168	169	204	202	204	249	238	241	293	286	290
6	169	168	168	206	204	204	250	246	248	293	287	290
7	169	167	168	206	204	205	249	245	247	308	287	293
8	169	167	168	206	203	205	247	237	245	310	297	304
9	170	168	169	206	204	205	244	242	243	312	301	308
10	170	169	170	211	205	207	254	242	245	322	307	312
11	173	170	171	213	209	212	255	251	253	333	315	321
12	173	172	173	211	209	210	254	252	253	339	327	332
13	174	172	173	212	210	211	254	251	252	345	330	338
14	242	166	175	213	211	212	253	252	253	349	331	342
15	178	176	177	213	211	212	259	251	254	354	349	351
16	182	176	178	213	210	212	261	256	259	359	353	355
17	185	181	183	212	211	212	261	254	257	366	359	363
18	186	184	185	212	210	212	261	249	254	368	356	365
19	187	185	186	212	211	212	263	256	260	362	355	358
20	188	186	187	214	212	213	266	261	264	371	354	360
21	189	186	188	215	213	214	262	258	259	374	368	371
22	190	188	189	216	214	215	273	256	261	375	364	370
23	190	188	189	216	214	215	278	272	275	371	365	368
24	190	188	189	217	215	216	282	275	278	371	367	369
25	191	189	190	218	216	217	281	277	280	374	363	366
26	191	190	191	220	217	218	281	273	279	385	374	380
27	193	191	192	224	219	221	278	223	275	385	371	378
28	194	192	193	230	224	227	283	277	279	387	379	383
29	195	192	194	245	226	232	283	279	281	390	378	384
30	196	191	194	246	240	244	280	278	279	390	370	380
31	-	---	---	245	238	242	285	279	281	---	-	---
MONTH	242	166	179	246	194	213	285	223	258	390	280	339

08236500 ALAMOSA RIVER BELOW TERRACE RESERVOIR, CO--Continued

pH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

	FEBRUARY			MARCH			APRIL			MAY		
1	---	---	---	---	-	--	6.8	6.6	6.7	6.9	6.8	6.9
2	--	---	---	---	---	---	6.7	6.6	6.6	6.9	6.8	6.9
3	--	---	---	---	---	---	6.7	6.6	6.7	6.9	6.8	6.9
4	---	---	---	---	---	---	6.7	6.6	6.7	6.9	6.9	6.9
5	---	---	---	---	---	---	6.7	6.7	6.7	6.9	6.9	6.9
6	---	---	---	---	---	---	6.8	6.7	6.7	7.0	6.9	6.9
7	--	---	---	---	---	---	6.8	6.7	6.8	7.0	6.9	6.9
8	---	---	---	---	---	---	6.8	6.8	6.8	6.9	6.9	6.9
9	---	---	---	---	---	---	6.8	6.7	6.8	6.9	6.9	6.9
10	--	---	---	-	---	---	6.8	6.7	6.7	7.0	6.9	6.9
11	---	---	---	---	---	---	6.7	6.7	6.7	7.0	6.9	7.0
12	---	---	---	-	---	---	6.7	6.7	6.7	7.0	6.9	7.0
13	---	---	---	---	---	---	6.8	6.7	6.7	7.0	6.9	7.0
14	---	---	---	---	---	---	6.8	6.7	6.7	7.0	6.9	7.0
15	---	---	---	--	---	---	6.8	6.7	6.8	7.0	6.9	7.0
16	---	---	---	---	---	---	6.8	6.8	6.8	7.0	6.9	7.0
17	---	---	---	---	---	---	6.8	6.8	6.8	7.0	7.0	7.0
18	-	---	---	---	---	---	6.8	6.8	6.8	7.0	7.0	7.0
19	---	---	---	---	---	---	6.8	6.8	6.8	7.0	7.0	7.0
20	---	-	---	-	---	-	6.9	6.8	6.8	7.0	7.0	7.0
21	--	---	---	---	---	---	6.8	6.8	6.8	7.0	7.0	7.0
22	---	---	---	---	---	---	6.8	6.8	6.8	7.1	7.0	7.1
23	---	---	---	---	---	---	6.8	6.8	6.8	7.2	7.1	7.1
24	---	---	---	---	---	---	6.8	6.7	6.8	7.2	7.1	7.1
25	--	---	---	---	-	---	6.8	6.7	6.8	7.2	7.1	7.2
26	--	---	---	--	---	---	6.8	6.7	6.8	7.2	7.1	7.2
27	---	---	---	---	---	---	6.8	6.8	6.8	7.2	7.2	7.2
28	---	---	---	---	--	---	6.8	6.7	6.8	7.2	7.2	7.2
29	-	---	---	7.3	6.8	7.0	6.8	6.7	6.8	7.2	7.2	7.2
30	---	---	---	6.8	6.7	6.8	6.9	6.8	6.8	7.2	7.0	7.2
31	---	---	---	6.8	6.7	6.8	---	---	---	7.3	7.2	7.2
MONTH	---	---	---	---	---	---	6.9	6.6	6.8	7.3	6.8	7.0

08236500 ALAMOSA RIVER BELOW TERRACE RESERVOIR，CO－－Continued

pH，WATER，WHOLE，FIELD，STANDARD UNITS，WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	MIN	MEAN									
		JUNE			JULY			GUST			SEP TEMBER	
1	7.3	7.2	7.2	7.0	6.9	7.0	6.8	6.6	6.7	－－－	－－－	－－－
2	7.3	7.2	7.2	7.0	6.9	7.0	6.8	6.7	6.8	－－－	－－－	－－－
3	7.3	7.2	7.2	7.0	6.9	7.0	6.9	6.8	6.8	－－－	－－－	－－－
4	7.3	7.2	7.2	7.1	6.9	7.0	6.9	6.8	6.8	－－－	－－－	－－－
5	7.3	7.2	7.2	7.1	6.9	7.0	6.9	6.7	6.8	6.2	5.6	5.7
6	7.3	7.2	7.2	7.1	6.9	7.0	6.8	6.7	6.7	5.6	5.2	5.4
7	7.3	7.2	7.2	7.1	7.0	7.0	6.8	6.7	6.7	5.6	5.2	5.3
8	7.4	7.2	7.3	7.1	6.9	7.0	6.8	6.5	6.7	5.6	5.3	5.4
9	7.4	7.2	7.3	7.0	6.9	7.0	6.8	6.7	6.7	5.4	5.3	5.3
10	7.4	7.2	7.3	7.0	6.9	6.9	6.9	6.6	6.8	5.3	5.1	5.2
11	7.3	6.9	7.1	6.9	6.8	6.8	6.7	6.6	6.6	5.1	5.0	5.1
12	7.0	6.9	6.9	6.9	6.8	6.8	6.8	6.6	6.6	5.1	4.9	4.9
13	7.1	6.9	6.9	7.0	6.8	6.9	6.7	6.6	6.6	4.9	4.8	4.9
14	7.1	6.7	6.9	6.9	6.8	6.9	6.7	6.6	6.6	5.0	4.8	4.9
15	7.0	6.8	6.9	7.0	6.9	6.9	6.7	6.5	6.6	5.0	4.8	4.9
16	7.0	6.8	6.9	7.0	6.9	6.9	6.6	6.4	6.5	4.8	4.6	4.7
17	7.0	6.8	6.9	7.0	6.9	6.9	6.7	6.4	6.6	4.7	4.3	4.5
18	7.0	6.9	6.9	7.0	6.9	7.0	6.9	6.5	6.7	4.8	4.3	4.5
19	7.1	6.9	7.0	7.0	6.9	7.0	6.7	6.4	6.6	5.1	4.7	4.8
20	7.1	6.9	7.0	7.1	6.9	7.0	6.6	6.5	6.6	5.1	4.9	4.9
21	7.1	6.9	6.9	7.1	6.9	7.0	6.8	6.6	6.7	5.0	4.8	4.9
22	7.0	6.9	6.9	7.1	7.0	7.0	6.8	6.2	6.6	5.0	4.8	4.9
23	7.1	6.9	7.0	7.1	7.0	7.0	6.2	5.9	6.1	5.1	4.8	4.8
24	7.1	6.9	7.0	7.1	7.0	7.0	－－－	－－－	－－－	5.2	5.1	5.1
25	7.1	6.9	7.0	7.1	7.0	7.0	－－－	－－－	－－－	5.1	5.0	5.0
26	7.1	6.9	7.0	7.1	7.0	7.0	－－－	－－－	－－－	5.5	5.1	5.4
27	7.1	6.9	7.0	7.1	7.0	7.0	－－－	－－－	－－－	5.6	5.4	5.5
28	7.0	6.9	7.0	7.0	6.9	7.0	－－－	－－－	－－	5.8	5.6	5.7
29	7.0	6.9	7.0	7.0	6.6	6.9	－－－	－－－	－－－	5.8	5.7	5.8
30	7.0	6.9	7.0	6.7	6.5	6.6	－－－	－－－	－	6.0	5.8	5.8
31	－－－	－－－	－－－	6.6	6.5	6.6	－－－	－－－	－－－	－－－	－－－	－－－
MONTH	7.4	6.7	7.0	7.1	6.5	6.9	－－	－－	－	－－－	－－	－

TEMPERATURE，WATER（DEG．C）WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

$\begin{aligned} & \text { z } \\ & \text { 茳 } \\ & \text { 置 } \end{aligned}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\underset{\Sigma}{\text { Z }} \stackrel{\text { L }}{2}$	M 岕 号 岁	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\sum_{Σ}^{x}		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$
$\begin{aligned} & \text { z } \\ & \text { 息 } \end{aligned}$			1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$
$\underset{\Sigma}{\text { Z }}$			1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{aligned} & x \\ & \Sigma \\ & \Sigma \end{aligned}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{aligned} & \text { z } \\ & \text { 茳 } \end{aligned}$		$\begin{array}{lllll} 1 & 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$
$\underset{\Sigma}{\text { Z }}$	$\begin{aligned} & \text { 荘 } \\ & \sum_{1 / 2}^{n} \\ & 0 \\ & 0 \\ & z \end{aligned}$	$\begin{array}{l\|l\|l\|l\|} \hline & \mid & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}$	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1		$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\sum_{\Sigma}^{\star x}$		$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1
$\begin{aligned} & \text { Z } \\ & \text { 茳 } \end{aligned}$		のトトにの の்の்の்்	$\begin{aligned} & 0 \Omega \\ & 0 \\ & \dot{\sigma} \infty \\ & \infty \end{aligned}$	$\begin{array}{l\|l\|l} \sigma\ulcorner & 1 & \\ \infty \infty & & 1 \end{array}$	$\begin{array}{l\|l\|l\|l\|l} 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}$		$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$
$\underset{\Sigma}{\text { Z }}$	$\begin{aligned} & \text { 足 } \\ & \text { 11 } \\ & \text { o } \\ & \text { H } \\ & 0 \\ & 0 \end{aligned}$		H． $\infty \times \infty$ ∞ ∞	$\begin{array}{c\|c\|c} m & N & \mid \\ \infty & \infty & 1 \end{array}$	$\left.\begin{array}{l\|} \hline & 1 & 1 \\ 1 & 1 \end{array} \right\rvert\,$	$\left.\begin{array}{l\|} 1 & 1 & 1 \\ 1 & 1 \end{array} \right\rvert\,$	1 1 1 1 1 1 1 1 1 1 1
$\stackrel{x}{\underset{\Sigma}{\alpha}}$				$\begin{array}{c\|c\|} \sigma \boldsymbol{\sigma} & : \\ \sigma \dot{\sigma} & \\ & \end{array}$	$\begin{array}{l\|l\|l\|l\|} \hline & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{l\|l\|l\|l\|l} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$
$\begin{aligned} & \text { y } \\ & \text { 夏 } \end{aligned}$		「NMかっ	மャゅのo			$\underset{\sim}{\sim} N \underset{N}{N} \underset{\sim}{\sim}$	6તかoror

08236500 ALAMOSA RIVER BELOW TERRACE RESERVOIR, CO--Continued

TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	MAX	min	MEAN									
	February			MARCH			APRIL			MAY		
1	---	---	---	---	---	---	5.8	2.9	3.8	7.0	5.9	6.3
2		---	---	---	---	---	5.6	3.1	3.8	6.8	6.0	6.4
3	---		---		---	---	4.7	3.0	3.5	7.0	6.4	6.7
4					---	---	4.1	2.4	3.3	7.2	6.4	6.7
5	---	---	---	---	---	---	4.9	2.6	3.3	7.3	6.4	6.9
6	---	---	---	---	---	---	5.1	2.5	3.4	7.3	6.5	6.9
7			---	---	---	---	5.0	2.7	3.5	7.3	6.1	6.7
8	---	---	---	---	---	---	5.1	2.7	3.5	6.9	5.6	6.1
9	---		---	---	---	---	4.6	2.8	3.3	6.4	5.8	6.1
10	---	---	---	---	---	---	5.4	2.9	4.1	6.6	6.0	6.2
11	---	---	---	---	---	---	5.7	3.8	4.5	6.6	5.8	6.2
12			--		---	---	5.9	4.2	4.7	6.6	6.0	6.3
13	---	---	---	---	---	---	5.8	4.2	4.7	6.6	6.0	6.3
14	---	---	---	---	---	---	5.8	4.2	4.6	6.9	6.1	6.5
15	---	---	---	---	---	---	6.4	4.2	4.9	7.0	6.4	6.7
16	---	---	---	---	---	---	6.5	4.4	5.1	7.2	6.5	6.8
17	---	---	---	---	---	---	6.7	4.7	5.3	7.5	6.7	7.2
18	---	---	---	---	---	---	6.4	4.8	5.3	7.8	7.1	7.4
19			---		---	---	6.6	4.6	5.2	8.3	7.4	7.8
20	---	---	---	---	---	---	6.3	4.5	5.1	8.5	7.8	8.1
21	---	---	---	---	---	---	6.7	4.7	5.3	8.7	8.0	8.3
22	---	---	---	---	---	---	6.7	4.7	5.4	8.7	8.1	8.3
23	---	---	---	---	---	-	7.4	4.8	5.7	8.9	8.1	8.4
24			---		---	---	6.9	5.1	5.8	8.9	8.2	8.5
25	---	---	---	---	---	---	6.9	5.6	6.2	9.4	8.4	8.7
26	---	---	---	---	---	---	6.9	5.9	6.4	9.4	8.4	8.7
27	---	---	---	---	---	---	7.0	6.2	6.6	9.6	8.4	8.9
28	---	---	---	-	---	---	6.8	6.3	6.5	9.5	8.3	8.7
29				8.0	2.8	4.6	6.9	5.7	6.4	9.9	8.4	9.0
30				6.5	2.6	3.8	7.0	5.6	6.2	9.9	8.4	9.0
31		---	---	6.8	2.7	4.0	--	---	---	10.0	8.5	9.1
MONTH	--	---	---	---	---	---	7.4	2.4	4.8	10.0	5.6	7.4

	JUNE			JULY			AUGUST			SEPTEMBER		
1	9.8	8.7	9.1	14.0	12.2	12.7	16.1	14.3	14.9	15.2	13.3	13.9
2	10.2	8.8	9.3	14.1	12.2	12.9	16.1	14.4	14.9	14.6	13.4	13.8
3	10.3	9.0	9.5	14.4	12.4	13.0	16.4	14.6	15.1	15.4	13.2	13.9
4	10.3	9.2	9.7	14.5	12.4	13.1	16.1	14.4	15.0	15.3	13.1	13.8
5	10.7	9.5	10.0	14.2	12.5	13.1	16.3	14.2	15.0	15.3	13.1	13.8
6	11.0	9.7	10.2	14.7	12.7	13.4	16.1	14.1	14.8	15.2	13.3	13.8
7	11.2	9.7	10.3	14.1	12.8	13.2	16.4	14.2	14.9	15.4	13.1	13.7
8	11.3	9.8	10.4	14.8	12.8	13.3	16.5	14.5	15.1	15.1	12.8	13.5
9	11.2	10.1	10.4	14.2	13.0	13.4	15.9	14.4	14.9	14.7	12.5	13.3
10	11.3	10.1	10.5	14.5	13.3	13.7	16.7	14.3	15.0	14.9	12.7	13.4
11	11.7	10.0	10.6	14.6	13.4	13.8	16.4	14.1	14.9	14.7	12.8	13.5
12	11.4	10.2	10.6	14.5	13.5	13.7	16.4	14.3	15.0	13.9	13.2	13.4
13	11.6	10.3	10.7	15.0	13.5	13.8	16.5	14.4	15.0	14.5	12.8	13.5
14	11.5	10.4	10.7	15.2	13.3	13.9	16.1	14.5	14.9	13.8	12.2	12.9
15	11.6	10.5	10.8	14.8	13.4	13.9	16.4	14.4	14.9	14.3	11.7	12.4
16	11.9	10.4	10.9	15.3	13.5	14.0	16.5	14.2	14.9	13.9	11.4	12.2
17	12.1	10.6	11.0	15.1	13.6	14.1	16.4	14.2	14.8	12.9	11.4	11.9
18	12.2	10.4	11.1	15.1	13.8	14.2	16.5	14.2	15.0	12.6	10.6	11.5
19	12.4	10.3	11.1	15.3	13.7	14.3	16.0	13.9	14.6	12.2	9.7	10.7
20	12.4	10.5	11.3	15.5	13.8	14.3	16.0	14.0	14.7	12.0	9.4	10.3
21	12.6	10.9	11.4	15.6	13.7	14.4	15.7	14.3	14.7	12.2	9.5	10.4
22	12.4	10.9	11.5	15.8	13.7	14.5	15.1	14.3	14.6	12.4	9.8	10.6
23	12.8	10.8	11.6	16.0	13.8	14.5	15.5	14.2	14.5	12.4	10.0	10.8
24	12.9	11.0	11.7	15.8	13.8	14.4	15.8	13.9	14.5	12.4	10.1	10.8
25	13.2	11.2	11.8	15.9	13.9	14.4	16.0	14.0	14.5	12.4	10.2	10.9
26	13.1	11.3	12.0	15.5	14.0	14.6	15.8	13.6	14.3	11.1	9.5	10.2
27	13.1	11.8	12.2	16.0	14.2	14.7	15.4	13.9	14.3	11.2	8.4	9.6
28	13.6	11.9	12.4	15.5	14.3	14.7	16.0	13.5	14.3	11.0	8.3	9.2
29	13.4	11.9	12.4	15.8	14.5	14.9	15.5	13.3	14.0	11.3	8.6	9.5
30	13.3	12.1	12.5	16.2	14.3	15.0	15.6	13.5	14.1	11.3	8.8	9.7
31				16.3	14.3	14.9	15.4	13.3	14.0	---	---	
MONTH	13.6	8.7	10.9	16.3	12.2	14.0	16.7	13.3	14.7	15.4	8.3	12.0

08240000 RIO GRANDE ABOVE MOUTH OF TRINCHERA CREEK, NEAR LASAUSES, CO

LOCATION.--Lat $37^{\circ} 18^{\prime} 58^{\prime \prime}$, long $105^{\circ} 44^{\prime} 32$ ", in sec. 35 , T. 36 N., R. 11 E., Conejos County, Hydrologic Unit 13010002, on right bank 0.2 mi upstream from Trinchera Creek, 3.2 mi north of Lasauses, and 13 mi southeast of Alamosa.

DRAINAGE AREA.--5,740 mi^{2}, approximately, includes $2,940 \mathrm{mi}^{2}$ in closed basin in northern part of San Luis Valley, CO.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1936 to current year.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $7,500 \mathrm{ft}$ above sea level, estimated from nearby level lines.
REMARKS.--Records good except for estimated daily discharges Dec. 18 to Jan. 23, Sept. 2-23, 28-29, which are fair, and estimated daily discharges Jan. 24 to Feb. 15, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, ground-water withdrawals and diversions for irrigation, and return flow from irrigated areas. Due to changes over the years, most of the flow from Trinchera Creek enters the Rio Grande above the station.

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	105	175	169	e255	e315	340	112	84	63	25	10	37
2	143	179	179	e255	e300	365	111	75	61	24	10	e35
3	151	175	197	e265	e315	369	108	67	62	25	15	e38
4	142	175	215	e270	e325	367	111	61	58	23	32	e39
5	121	179	214	e275	e340	373	129	63	48	19	35	e36
6	111	174	216	e275	e335	374	130	68	43	18	33	e30
7	105	180	225	e285	e355	372	122	69	39	18	27	e28
8	96	173	238	e290	e360	369	120	70	38	26	32	e33
9	92	175	226	e290	e385	372	118	66	36	28	32	e32
10	96	181	217	e290	e395	377	112	69	34	19	32	e34
11	96	170	212	e295	e385	379	118	113	28	20	35	e31
12	95	166	207	e290	e380	363	118	94	28	21	35	e42
13	95	173	223	e295	e400	345	115	95	30	20	35	e44
14	97	176	244	e300	e400	326	107	107	32	18	27	e38
15	98	186	263	e315	e390	308	103	104	39	17	29	e38
16	104	193	229	e295	381	286	90	94	32	17	31	e39
17	116	192	227	e250	401	273	87	98	34	15	29	e36
18	122	188	e200	e265	430	250	84	126	30	14	29	e31
19	124	185	e190	e280	425	235	81	140	26	25	32	e27
20	124	181	e180	e280	439	227	83	125	25	24	43	e30
21	126	183	e180	e300	430	218	86	145	23	22	48	e29
22	125	186	e170	e275	440	211	88	141	24	18	50	e28
23	123	184	e185	e270	443	201	83	117	21	18	49	e28
24	126	185	e210	e260	417	193	75	95	19	16	49	31
25	133	186	e245	e245	386	185	76	98	25	20	27	33
26	135	182	e230	e265	381	176	74	92	27	16	30	35
27	135	182	e250	e295	363	160	86	93	26	12	34	35
28	139	175	e265	e285	340	149	91	91	28	13	35	e38
29	150	168	e270	e300	351	131	96	85	33	13	41	e30
30	154	167	e295	e330	---	126	87	75	31	12	39	35
31	164	---	e295	e315	---	119	---	69	-	13	39	---
TOTAL	3743	5374	6866	8755	11007	8539	3001	2889	1043	589	1024	1020
MEAN	121	179	221	282	380	275	100	93.2	34.8	19.0	33.0	34.0
MAX	164	193	295	330	443	379	130	145	63	28	50	44
MIN	92	166	169	245	300	119	74	61	19	12	10	27
AC-FT	7420	10660	13620	17370	21830	16940	5950	5730	2070	1170	2030	2020

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1936 - 1996, BY WATER YEAR (WY)

[^91]a-Also occurred Aug 2.
b-From rating curve extended above $3600 \mathrm{ft}^{3} / \mathrm{s}$.

08240000 RIO GRANDE ABOVE MOUTH OF TRINCHERA CREEK, NEAR LASAUSES--Continued (Rio Grande National Water-Quality Assessment Program station)

WATER-QUALITY RECORDS

PERIOD OF RECORDS.--May 1993 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	$\begin{gathered} \text { DIS- } \\ \text { CHARGE, } \\ \text { INST. } \\ \text { CUBIC } \\ \text { FEET } \\ \text { PER } \\ \text { SECOND } \end{gathered}$	SPE- CIFIC CON- DUCT- ANCE (US / CM)	PH WATER WHOLE FIELD (STANDARD UNITS)	```TEMPER-```	$\begin{aligned} & \text { TEMPER- } \\ & \text { ATURE } \\ & \text { WATER } \\ & \text { (DEG C) } \end{aligned}$	BAROMETRIC PRESSURE (MM OF HG)	$\begin{aligned} & \text { OXYGEN, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L) } \end{aligned}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (PER- } \\ \text { CENT } \\ \text { SATUR- } \\ \text { ATION) } \end{gathered}$	HARD- NESS TOTAL (MG/L AS CACO3)	$\begin{aligned} & \text { CALCIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS CA) } \end{aligned}$	$\begin{aligned} & \text { MAGNE- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS MG) } \end{aligned}$
$\begin{aligned} & \text { JUL } \\ & 16 . . \text {. } \end{aligned}$	0745	20	606	8.3	14.5	15.0	582	6.6	86	140	42	9.2
DATE	$\begin{aligned} & \text { SODIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS NA) } \end{aligned}$	SODIUM PERCENT	$\begin{aligned} & \text { SODIUM } \\ & \text { AD- } \\ & \text { SORP- } \\ & \text { TION } \\ & \text { RATIO } \end{aligned}$	$\begin{aligned} & \text { POTAS- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS K) } \end{aligned}$	$\begin{gathered} \text { BICAR-a } \\ \text { BONATE } \\ \text { WATER } \\ \text { DIS IT } \\ \text { FIELD } \\ \text { MG / L AS } \\ \text { HCO3 } \end{gathered}$	$\begin{gathered} \text { CAR-b } \\ \text { BONATE } \\ \text { WATER } \\ \text { DIS IT } \\ \text { FIELD } \\ \text { MG/L AS } \\ \text { CO3 } \end{gathered}$	$\begin{aligned} & \text { ALKA-C } \\ & \text { LINITY } \\ & \text { WAT DIS } \\ & \text { TOT IT } \\ & \text { FIELD } \\ & \text { MG/L AS } \\ & \text { CACO3 } \end{aligned}$	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	$\begin{aligned} & \text { FLUO- } \\ & \text { RIDE, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS F) } \end{aligned}$	$\begin{aligned} & \text { SILICA, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { SIO2) } \end{aligned}$	
JUL $16 \ldots$	67	49	2	7.1	221	0	181	87	19	1.2	23	
DATE	$\begin{aligned} & \text { SOLIDS, } \\ & \text { RESIDUE } \\ & \text { AT } 180 \\ & \text { DEG. C } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & (M G / L) \end{aligned}$	SOLIDS, SUM OF CONSTITUENTS, DISSOLVED (MG/L)	$\begin{gathered} \text { SOLIDS, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (TONS } \\ \text { PER } \\ \text { AC-FT) } \end{gathered}$	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, } \\ & \text { NITRITE } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS N) } \end{aligned}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2 + NO3 } \\ \text { TOTAL } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	NITROGEN, AMMONIA DISSOLVED (MG/L AS N)	NITROGEN, AMMONIA + ORGANIC TOTAL (MG/L AS N)	NITROGEN, AMMONIA + ORGANIC DIS. (MG/L AS N)	$\begin{gathered} \text { PHOS- } \\ \text { PHORUS } \\ \text { TOTAL } \\ \text { (MG/L } \\ \text { AS P) } \end{gathered}$	$\begin{aligned} & \text { PHOS- } \\ & \text { PHORUS } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & (\text { MG/L } \\ & \text { AS P) } \end{aligned}$	
$\begin{aligned} & \text { JUL } \\ & 16 . . . \end{aligned}$	399	365	0.54	<0.010	0.070	0.070	0.030	0.90	0.50	0.160	0.060	
DATE	PHOSPHORUS ORTHO, DISSOLVED (MG/L AS P)	$\begin{aligned} & \text { IRON, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS FE) } \end{aligned}$	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC TOTAL (MG/L AS C)	$\begin{aligned} & \text { CARBON, } \\ & \text { ORGANIC } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS C) } \end{aligned}$	PROP- CHLOR, WATER, DISS, REC (UG/L)	$\begin{aligned} & \text { BUTYL- } \\ & \text { ATE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { SI- } \\ & \text { MAZINE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	PRO- METON, WATER, DISS, REC (UG/L)	```DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L)```	$\begin{aligned} & \text { CYANA- } \\ & \text { ZINE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	
$\begin{aligned} & \text { JUL } \\ & 16 . . . \end{aligned}$	0.060	67	210	10	6.0	<0.007	<0.002	<0.005	e0.007	<0.002	<0.004	
DATE	$\begin{aligned} & \text { FONOFOS } \\ & \text { WATER } \\ & \text { DISS } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{gathered} \text { ALPHA } \\ \text { BHC } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L) } \end{gathered}$	$\begin{gathered} \text { P, P' } \\ \text { DDE } \\ \text { DISSOLV } \\ (U G / L) \end{gathered}$	$\begin{gathered} \text { CHLOR- } \\ \text { PYRIFOS } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L) } \end{gathered}$	$\begin{aligned} & \text { LINDANE } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L) } \end{aligned}$	$\begin{gathered} \text { DI- } \\ \text { ELDRIN } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L) } \end{gathered}$	METO- LACHLOR WATER DISSOLV (UG/L)	MALA- THION, DIS- SOLVED (UG/L)	PARA- THION, DIS- SOLVED (UG/L)	$\begin{gathered} \text { DI- } \\ \text { AZINON, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L) } \end{gathered}$	$\begin{aligned} & \text { ATRA- } \\ & \text { ZINE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	
JUL $16 \ldots$	<0.003	<0.002	<0.006	<0.004	<0.004	<0.001	<0.002	<0.005	<0.004	<0.002	0.004	

	ALA-	ACETO-	METRI-	$\begin{gathered} 2,6-D I- \\ \text { ETHYL } \end{gathered}$	$\begin{gathered} \text { TRI- } \\ \text { FTUR } \end{gathered}$	ETHAL- FLUR-	PHORATE	$\begin{gathered} \text { TER- } \\ \text { BACTI } \end{gathered}$	$\begin{aligned} & \text { LIN- } \\ & \text { URON } \end{aligned}$	METHYL PARA-
	CHLOR,	CHLOR,	BUZIN	ANILINE	ALIN	ALIN	WATER	WATER	WATER	THION
	WATER,	WATER	SENCOR	WAT FLT	WAT FLT	WAT FLT	FLTRD	FLTRD	FLTRD	WAT FLT
	DISS,	FLTRD	WATER	0.7 U						
DATE	$\begin{aligned} & \text { REC, } \\ & (U G / L) \end{aligned}$	$\begin{aligned} & \text { REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { DISSOLV } \\ & \text { (UG/L) } \end{aligned}$	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)	GF, REC (UG/L)
JUL										
16.	<0.002	<0.002	<0.004	<0.003	<0.002	<0.004	<0.002	<0.007	<0.002	<0.006

08240000 RIO GRANDE ABOVE MOUTH OF TRINCHERA CREEK, NEAR LASAUSES--Continued (Rio Grande National Water-Quality Assessment Program station)

DATE	EPTC	$\begin{gathered} \text { PEB- } \\ \text { ULATE } \end{gathered}$	TEBUTHIURON	$\begin{aligned} & \text { MOL- } \\ & \text { INATE } \end{aligned}$	$\begin{aligned} & \text { ETHO- } \\ & \text { PROP } \end{aligned}$	$\begin{aligned} & \text { BEN- } \\ & \text { FLUR- } \end{aligned}$	CARBOFURAN	$\begin{gathered} \text { TER- } \\ \text { BUFOS } \end{gathered}$	PRONAMIDE	$\begin{aligned} & \text { DISUL- } \\ & \text { FOTON } \end{aligned}$
	WATER	WATER	WATER	WATER	WATER	ALIN	WATER	WATER	WATER	WATER
	FLTRD	FILTRD	FLTRD	FLTRD	FLTRD	WAT FLD	FLTRD	FLTRD	FLTRD	FLTRD
	0.7 U									
	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$
JUL16..										
	TRIAL-	PRO-	CAR-	THIO-		PENDI-	NAPROP-	PRO-	METHYL	PER-
	LATE	PANIL	BARYL	BENCARB	DCPA	METH-	AMIDE	PARGITE	AZIN-	METHRIN
	WATER	WATER	WATER	WATER	WATER	ALIN	WATER	WATER	PHOS	CIS
	FLTRD	FLTRD	FLTRD	FLTRD	FLTRD	WAT FLT	FLTRD	FLTRD	WAT FLT	WAT FLT
	0.7 U									
DATE	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$
JUL										
16..	<0.001	<0.004	<0.003	<0.002	<0.002	<0.004	<0.003	<0.013	<0.001	<0.005

08244500 PLATORO RESERVOIR AT PLATORO, CO

LOCATION.--Lat $37^{\circ} 21^{\prime} 07^{\prime \prime}$, long $106^{\circ} 32^{\prime} 38^{\prime \prime}$, Conejos County, Hydrologic Unit 13010005 , on right bank in valvehouse, 400 ft downstream from Platoro Dam on Conejos River and 0.7 mi west of Platoro.
DRAINAGE AREA.-- $40 \mathrm{mi}^{2}$, approximately.
PERIOD OF RECORD.--November 1951 to current year.
REVISED RECORDS.--WDR CO-85-1: 1984.
GAGE.--Nonrecording gage. Datum of gage is $9,911.5 \mathrm{ft}$ above sea level, (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level. Prior to June 9, 1955, nonrecording gage at present site and datum. June 9, 1955 to Sept. 30, 1959, water-stage recorder in gate chamber at dam for elevations above $9,921.0 \mathrm{ft}$, at same datum.

REMARKS.--Reservoir is formed by an earth and rockfill dam and dikes. Dam completed Dec. 9, 1951; storage began Nov. 7. 1951. Capacity of reservoir (based on revised capacity table put in use Jan. 1, 1975), 59,570 acre-ft, between elevations 9,911.5 ft, sill of trashrack at outlet, and $10,034.0 \mathrm{ft}$, crest of spillway. No dead storage. Reservoir is used for irrigation and flood control. Figures given are usable contents.

COOPERATION.--Records provided by State of Colorado, Division of Water Resources.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 61,420 acre-ft, June 9, 11, 1958, elevation, 10,035.5 ft; no contents for long periods in 1952-56.
EXTREMES FOR CURRENT YEAR.--Maximum contents, about 53,570 acre-ft, May 21, elevation, $10,027.57 \mathrm{ft}$; minimum contents, about 24,401 acre-ft, Sept. 30, elevation, 9,990.23 ft.

MONTHEND ELEVATION AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996
$\left.\begin{array}{lllllll}\text { Change in } \\ \text { contents }\end{array}\right)$

08245000 CONEJOS RIVER BELOW PLATORO RESERVOIR, CO

LOCATION.--Lat $37^{\circ} 21^{\prime} 18^{\prime \prime}$, long $106^{\circ} 32^{\prime} 37^{\prime \prime}$, Conejos County, Hydrologic Unit 13010005, on left bank 1,100 ft downstream from valvehouse for Platoro Reservoir and 0.7 mi northwest of Platoro.
DRAINAGE AREA.-- $40 \mathrm{mi}^{2}$, approximately.
PERIOD OF RECORD.--May 1952 to current year.
GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Datum of gage is $9,866.60 \mathrm{ft}$ above sea level, (levels by U.S. Bureau of Reclamation).

REMARKS.--Records good except for estimated daily discharges, which are fair. No diversion upstream from station. Flow completely regulated by Platoro Reservoir (station 08244500).

COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 5, 1911, is the greatest since at least 1854, from information by local residents.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19	e12	e12	e12	e7.2	e7.6	e8.1	175	251	110	99	62
2	19	e12	e12	e12	e7.2	e7.6	e8.1	175	252	114	108	67
3	19	e12	e12	e12	e7.2	e7.7	e8.1	205	281	133	107	84
4	19	e12	e12	e12	e7.3	e7.7	12	228	333	116	104	91
5	19	e12	e12	e12	e7.3	e7.7	11	256	352	142	103	120
6	19	e12	e12	e11	e7.3	e7.7	13	281	380	149	128	122
7	19	e12	e12	e11	e7.3	e7.7	18	343	423	165	186	83
8	19	e12	e12	e11	e7.3	e7.7	31	372	399	204	242	68
9	19	e12	e12	e11	e7.3	e7.7	37	372	381	247	259	79
10	33	e12	e12	e11	e7.3	e7.8	33	372	340	265	239	85
11	44	e12	e12	e11	e7.4	e7.8	54	278	e307	243	241	83
12	44	e12	e12	e11	e7.4	e7.8	58	241	338	195	282	91
13	59	e12	e12	e11	e7.4	e7.8	48	307	369	172	292	92
14	77	e12	e12	e11	e7.4	e7.8	48	361	342	172	280	87
15	81	e12	e12	e10	e7.4	e7.8	48	301	318	170	279	74
16	70	e12	e12	e10	e7.4	e7.8	48	246	264	157	279	63
17	73	e12	e12	e10	e7.4	e7.9	42	179	197	172	255	50
18	81	e12	e12	e10	e7. 5	e7.9	36	274	183	200	263	43
19	82	e12	e12	e9.0	e7. 5	e7.9	36	327	197	206	275	33
20	81	e12	e12	e7.1	e7.5	e7.9	37	327	178	168	279	34
21	82	e12	e12	e7.1	e7. 5	e7.9	36	468	158	165	258	41
22	51	e12	e12	e7.1	e7. 5	e7.9	30	526	153	190	233	41
23	48	e12	e12	e7.1	e7. 5	e7.9	28	452	153	220	181	43
24	54	e12	e12	e7.1	e7.5	e8.0	46	386	153	215	121	48
25	60	e12	e12	e7.1	e7.6	e8.0	84	297	148	176	110	49
26	98	e12	e12	e7.1	e7.6	e8.0	103	220	142	164	124	49
27	109	e12	e12	e7.1	e7.6	e8.0	159	176	115	172	133	49
28	108	e12	e12	e7. 2	e7.6	e8.0	176	166	88	131	107	49
29	78	e12	e12	e7.2	e7.6	e8.0	176	166	97	155	90	61
30	69	e12	e12	e7.2	---	e8.0	176	166	104	149	90	66
31	31	---	e12	e7.2	--	e8.1	---	217	---	115	69	---
TOTAL	1684	360	372	293.6	215.0	243.1	1648.3	8860	7396	5352	5816	2007
MEAN	54.3	12.0	12.0	9.47	7.41	7.84	54.9	286	247	173	188	66.9
MAX	109	12	12	12	7.6	8.1	176	526	423	265	292	122
MIN	19	12	12	7.1	7.2	7.6	8.1	166	88	110	69	33
AC-FT	3340	714	738	582	426	482	3270	17570	14670	10620	11540	3980

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1952 - 1996, BY WATER YEAR (WY)

[^92]d-Maximum gage height, 4.29 ft , Jun 15, 1958

08246500 CONEJOS RIVER NEAR MOGOTE, CO

LOCATION.--Lat $37^{\circ} 03^{\prime} 14^{\prime \prime}$, long $106^{\circ} 11^{\prime} 13$ ", in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{sec} .34$, T. 33 N., R. 7 E., Conejos County, Hydrologic Unit 13010005, on left bank 75 ft downstream from bridge on State Highway 174, 0.4 mi downstream from Fox Creek, 5.3 mi west of Mogote, and 10 mi west of Antonito.
DRAINAGE AREA.--282 mi^{2}.
PERIOD OF RECORD.--April 1903 to October 1905, October 1911 to current year. Monthly discharge only for some periods, published in WSP 1312. Records for March 1900 at site 5.5 mi upstream and May 1905 to September 1911 (some missing periods most years) at site 3.2 mi upstream not equivalent to present site due to inflow.
REVISED RECORDS.--WSP 898: 1911(M). WSP 1312: 1903-5, 1913. See also PERIOD OF RECORD.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $8,273.69 \mathrm{ft}$ above sea level, Colorado State Highway datum. Apr. 17, 1903 to Oct. 31, 1905, nonrecording gage 400 ft downstream, at different datum. Oct. 5, 1911 to early 1915, nonrecording gage, and from early 1915 to Oct. 1, 1988, water-stage recorder at site 100 ft upstream, at datum 2.15 ft , lower. Since Oct. 1, 1988, at present site and datum.
REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 500 acres of hay meadows upstream from station. Some regulation by Platoro Reservoir (station 08244500).
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	147	107	e70	e 56	e50	e 56	149	559	559	257	171	129
2	135	84	e68	e54	e49	e58	185	627	562	229	164	118
3	125	72	e64	e54	e47	e59	183	730	568	212	169	118
4	116	71	e66	e56	e49	63	174	875	608	224	158	129
5	107	74	e66	e54	e50	62	147	941	656	202	153	128
6	106	76	e66	e52	e52	55	132	1060	664	240	146	163
7	106	74	e60	e52	e52	52	144	1140	706	230	173	147
8	102	73	e56	e54	e50	62	161	1220	711	294	233	121
9	98	74	e49	e56	e50	65	237	1270	648	435	297	112
10	96	84	e49	e54	e54	72	280	1270	619	419	294	118
11	106	57	e50	e 52	e 54	84	252	1270	526	452	265	122
12	115	89	e54	e54	e52	89	293	1280	537	374	275	127
13	115	87	e58	e54	e54	87	293	1350	574	339	323	140
14	129	85	e54	e54	e58	74	226	1470	584	317	308	137
15	146	81	e50	e54	61	74	200	1500	589	276	312	146
16	148	80	e46	e54	66	67	199	1380	524	261	312	120
17	137	79	e52	e52	67	68	205	1430	443	248	306	112
18	145	72	e47	e48	72	63	189	1310	348	281	283	115
19	150	73	e49	e50	e67	64	174	1380	357	284	293	116
20	148	72	e48	e48	76	70	168	1380	339	266	301	107
21	148	71	e52	e46	106	83	156	1270	304	221	312	102
22	150	70	e52	e48	87	100	165	1320	307	225	315	106
23	104	71	e50	e46	68	113	186	1180	294	254	312	103
24	114	61	e50	e46	66	101	262	992	268	267	245	103
25	122	65	e52	e48	72	86	406	813	258	254	193	102
26	127	72	e54	e44	61	83	556	684	250	213	182	100
27	164	e55	e54	e46	47	81	667	554	275	223	191	100
28	167	e44	e56	e52	e52	94	728	509	238	223	205	98
29	169	e60	e58	e50	e54	111	544	466	211	191	162	98
30	136	e68	e56	e52	---	105	500	473	212	233	161	106
31	133	---	e58	e52	---	122	---	481	---	189	150	---
TOTAL	4011	2201	1714	1592	1743	2423	8161	32184	13739	8333	7364	3543
MEAN	129	73.4	55.3	51.4	60.1	78.2	272	1038	458	269	238	118
MAX	169	107	70	56	106	122	728	1500	711	452	323	163
MIN	96	44	46	44	47	52	132	466	211	189	146	98
AC-FT	7960	4370	3400	3160	3460	4810	16190	63840	27250	16530	14610	7030

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 1996, BY WATER YEAR (WY)

[^93]
08247500 SAN ANTONIO RIVER AT ORTIZ, CO

LOCATION.--Lat $36^{\circ} 59^{\prime} 355^{\prime \prime}$, long $106^{\circ} 02^{\prime} 17^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec. 24 , T. 32 N., R. 8 E., Rio Arriba County, New Mexico, Hydrologic Unit 13010005, on left bank 800 ft south of Colorado-New Mexico State line, 0.4 mi southeast of Ortiz, and 0.4 mi upstream from Los Pinos River.
DRAINAGE AREA.--110 mi^{2}, approximately.
PERIOD OF RECORD.--April 1919 to October 1920, October 1924 to current year (no winter records prior to 1941). Monthly discharge only for some periods, published in WSP 1312.
REVISED RECORDS.--WSP 1732: 1951. WSP 1923: 1927 (monthly runoff).
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $7,970 \mathrm{ft}$ above sea level, from topographic map. Prior to Apr. 7, 1926, nonrecording gage at various locations near present site, at different datums. Apr. 7, 1926 to June 24, 1954, waterstage recorder at site 200 ft downstream, at present datum.
REMARKS.--Records good except for estimated daily discharges, which are poor. A few small diversions upstream from station for irrigation.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 5, 1911, is the greatest since at least 1854, from information by local residents.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

e-Estimated.
a-Also occurred Aug 3-13.
b-Also occurred Jun 25 to Jul 2, and Jul 29 to Aug 25.
c-Also occurred Jun 25 to Aug 7, and Aug 19-23, 1940, and some days during each year $1993-1996$.
d-Also occurred for periods during each year, 1993-1996.
f-From rating curve extended above $1100 \mathrm{ft}^{3} / \mathrm{s}$. Also is peak flow for period of record.

08248000 LOS PINOS RIVER NEAR ORTIZ, CO

LOCATION.--Lat $36^{\circ} 58^{\prime} 56^{\prime \prime}$, long $106^{\circ} 04^{\prime} 23^{\prime \prime}$, on line between secs. 26 , and 27 , T. 32 N., R. 8 E., Rio Arriba County, New Mexico, Hydrologic Unit 13010005, on left bank 0.9 mi south of Colorado-New Mexico State line, 2.1 mi southwest of Ortiz, and 2.9 mi upstream from mouth.
DRAINAGE AREA.-- $167 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--January 1915 to December 1920, October 1924 to current year. Monthly discharge only for some periods, published in WSP 1312.
GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is $8,040 \mathrm{ft}$ above sea level, from topographic map. Prior to Apr. 15, 1955, at site 350 ft upstream at datum 2.52 ft , higher.
REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 5, 1911, is the greatest since at least 1854, from information by local residents.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	38	19	21	e16	e16	e23	56	407	74	38	20	18
2	32	21	22	e14	e14	e24	75	451	70	34	19	17
3	28	16	25	e15	e12	e25	81	489	65	27	19	16
4	26	16	22	e16	e14	e27	92	503	61	24	18	15
5	23	19	27	e15	e16	e27	84	496	57	24	16	14
6	23	19	26	e14	e17	e23	74	492	54	22	15	14
7	22	19	23	e14	e17	e22	81	477	53	21	14	14
8	22	19	21	e15	e16	e24	120	451	53	29	13	13
9	21	18	e20	e16	e17	e24	179	440	50	71	14	13
10	21	22	e21	e15	e18	e26	224	408	49	40	16	12
11	21	12	e22	e14	e18	e26	206	400	43	68	13	12
12	20	e20	23	e15	e17	e26	230	412	40	49	12	15
13	20	e22	20	e15	e16	e26	237	404	39	49	12	15
14	20	20	17	e15	e17	e23	157	402	39	71	12	15
15	20	20	e17	e15	e18	e26	129	403	48	43	12	19
16	19	21	e16	e15	e18	24	122	378	42	37	13	16
17	19	23	e17	e14	e20	24	122	378	38	77	17	14
18	19	19	e16	e12	e21	e22	111	339	32	37	14	18
19	19	19	e17	e14	e20	e22	102	305	28	36	13	25
20	19	19	e16	e13	e24	e27	101	292	24	30	12	25
21	19	19	e16	e12	e24	29	91	252	23	27	12	23
22	19	22	e15	e14	e23	35	108	215	27	24	18	20
23	16	20	e15	e12	e21	37	151	188	30	21	35	19
24	19	20	e15	e12	e21	34	273	164	22	19	28	18
25	21	24	e16	e14	e26	e27	410	144	22	19	27	16
26	18	23	e16	e12	e23	28	511	131	23	20	20	16
27	18	25	e16	e12	e21	29	589	115	27	24	19	17
28	18	16	e16	e15	e21	33	523	106	32	21	22	16
29	18	17	e18	e14	e21	41	318	97	36	24	20	16
30	18	23	e17	e16	---	38	315	88	30	24	18	16
31	18	---	e18	e17	---	43	---	81	---	20	17	---
TOTAL	654	592	587	442	547	865	5872	9908	1231	1070	530	497
MEAN	21.1	19.7	18.9	14.3	18.9	27.9	196	320	41.0	34.5	17.1	16.6
MAX	38	25	27	17	26	43	589	503	74	77	35	25
MIN	16	12	15	12	12	22	56	81	22	19	12	12
AC-FT	1300	1170	1160	877	1080	1720	11650	19650	2440	2120	1050	986
STATISTICS OF MONTHLY MEAN			DATA	WATER YEARS 1915 - 1996, BY WATER YEAR (WY)								
MEAN	27.6	21.8	16.1	14.5	17.0	33.7	228	616	336	74.8	35.3	24.9
MAX	109	70.1	34.4	26.0	30.0	84.7	610	1341	1022	258	112	101
(WY)	1987	1987	1987	1987	1962	1971	1936	1952	1957	1957	1929	1927
MIN	10.1	11.1	5.00	5.00	7.50	13.9	65.9	96.8	25.2	13.2	11.9	7.53
(WY)	1957	1957	1918	1918	1964	1977	1968	1977	1977	1934	1977	1956

SUMMARY STATISTICS
ANNUAL TOTAL
FOR 1995 CALENDAR YEAR

$\begin{array}{r} 64893 \\ 178 \end{array}$		$\begin{array}{r} 22795 \\ 62.3 \end{array}$	
1250	May 22	589	Apr 27
12	Nov 11	a_{12}	Nov 11
16	Dec 20	13	Jan 21
		840	Apr 27
		4.81	Apr 27
128700		45210	
647		159	
38		21	
18		14	

WATER YEARS 1915 - 1996

ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

e-Estimated.

a-Also occurred Jan 18, 21, 23-24, 26-27, Feb 3, Aug 12-15, 20-21, and Sep $10-11$.
b-Minimum observed, $4.0 \mathrm{ft}^{3} / \mathrm{s}$, Dec 17, 1945 (discharge measurement); minimum daily discharge for period of record, also occurred Dec 12-14, 17, 22, 30-31, 1989, and Jan 4-6, 1990, but may have been less during periods of no gage-height record.
c-Site and datum then in use, from rating curve extended above $1600 \mathrm{ft}^{3} / \mathrm{s}$.
d-Maximum gage height, $6.19 \mathrm{ft}, \mathrm{May} 22,1993$, present site and datum.

08249000 CONEJOS RIVER NEAR LASAUSES, CO

LOCATION.--Lat $37^{\circ} 18^{\prime} 01^{\prime \prime}$, long $105^{\circ} 44^{\prime} 47^{\prime \prime}$, in $\mathrm{SW}^{1 / 4} \mathrm{SW}^{1 / 4} \mathrm{sec} .2$, and $\mathrm{SE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec. 10 (two channels), T. 35 N ., R. 11 E., Conejos County, Hydrologic Unit 13010005, on left bank of main channel 125 ft downstream from bridge on State Highway 158 and on left bank of secondary channel 230 ft upstream from bridge on State Highway 158, 1.0 mi upstream from mouth, 2.1 mi north of Lasauses, and 13 mi southeast of Alamosa.
DRAINAGE AREA.--887 mi^{2}.
PERIOD OF RECORD.--March 1921 to current year. Monthly discharge only for some periods, published in WSP 1312. Prior to October 1, 1966, published as "near La Sauses." Water-quality data available, April 1993 to September 1995.
REVISED RECORDS.--WSP 1312: 1934(M).
GAGE.--Two water-stage recorders with satellite telemetry. Datum of gage on main (north) channel is $7,495.02 \mathrm{ft}$ above sea level, and on secondary (south) channel is $7,496.89 \mathrm{ft}$ above sea level (levels by U.S. Bureau of Reclamation). Main channel: See WSP 1732 for history of changes prior to Oct. 1, 1937. South channel: Prior to Oct. 23, 1934, at bridge 230 ft downstream at datum 0.56 ft , lower; Oct. 23, 1934 to May 3, 1936, at site 250 ft downstream, and May 4, 1936 to Oct. 13, 1965, at site 280 ft downstream, at datum 1.00 ft , lower.

REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 75,000 acres upstream from station.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 5, 1911, is the greatest since at least 1854, from information by local residents.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^94]b-Also occurred Jun 28 to Jul 1, Jul 3, and Jul 21 to Sep 8, 1934, and some days during Aug 1994, Aug and Sep 1996.
c-Also occurred starting Aug 11, 1996.
d-Gage height not determined.

08251500 RIO GRANDE NEAR LOBATOS, CO

LOCATION.--Lat $37^{\circ} 04^{\prime} 43^{\prime \prime}$, long $105^{\circ} 45^{\prime} 23^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{NW}^{1 / 4}$ sec. 27 , T. 33 N., R. 11 E., Conejos County, Hydrologic Unit 13010002, on right bank at highway bridge, 5.7 mi north of Colorado-New Mexico State line, 8 mi downstream from Culebra Creek, 11 mi east of Lobatos, and 14 mi east of Antonito.
DRAINAGE AREA.--7,700 mi' approximately, includes $2,940 \mathrm{mi}^{2}$ in closed basin in northern part of San Luis Valley, CO.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1899 to current year. Monthly discharge only for some periods, published in WSP 1312. Published as "at Cenicero" 1899-1901, and as "near Cenicero" 1902-4. Statistical summary computed for 1931 to current year.
REVISED RECORDS.--WSP 1312: 1919 (monthly runoff). WSP 210: Drainage area. WDR CO-78-1: 1976.
GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is $7,427.63 \mathrm{ft}$ above sea level. Prior to 1910, nonrecording gages at same site and datum.
REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, ground-water withdrawals and diversion for irrigation, and return flow from irrigated areas.
COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1828, that of June 8, 1905.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

[^95]
08251500 RIO GRANDE NEAR LOBATOS, CO--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 1993 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	$\begin{gathered} \text { DIS- } \\ \text { CHARGE, } \\ \text { INST. } \\ \text { CUBIC } \\ \text { FEET } \\ \text { PER } \\ \text { SECOND } \end{gathered}$	SPE- CIFIC CON- DUCT- ANCE (US/CM)	$\begin{gathered} \text { PH } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	$\begin{aligned} & \text { TEMPER- } \\ & \text { ATURE } \\ & \text { WATER } \\ & \text { (DEG C) } \end{aligned}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	```CALCIUM DIS- SOLVED (MG/L AS CA)```	$\begin{aligned} & \text { MAGNE- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS MG) } \end{aligned}$	```SODIUM, DIS- SOLVED (MG/L AS NA)```	$\begin{aligned} & \text { POTAS- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS K) } \end{aligned}$	$\begin{aligned} & \text { ALKA-a }^{a} \\ & \text { LINITY } \\ & \text { LAB } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { CACO3) } \end{aligned}$	SULFATE DIS- SOLVED (MG/L AS SO4)
FEB												
27...	1000	556	269	8.0	0.0	10.8	28	5.3	20	3.8	96	29
APR												
22.	1145	148	518	8.4	9.0	9.6	43	8.8	52	5.8	167	76
JUN												
26..	0930	53	461	8.2	16.0	7.8	39	8.6	45	6.6	166	59
AUG												
$20 .$				SOLIDS, RESIDUE	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, } \end{aligned}$	NITROGEN,	NITROGEN,	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, AM- } \end{aligned}$	NITROGEN, AM-			PHOSPHORUS
	RIDE,	RIDE,	DIS-	AT 180	NITRITE	NO2+NO3	AMMONIA	MONIA +	MONIA +	PHOS-	PHORUS	ORTHO,
	DIS-	DIS-	SOLVED	DEG. C	DIS-	DIS-	DIS-	ORGANIC	ORGANIC	PHORUS	DIS-	DIS-
	SOLVED	SOLVED	(MG/L	DIS-	SOLVED	SOLVED	SOLVED	TOTAL		total	SOLVED	SOLVED
DATE	(MG/L	(MG/L	AS	SOLVED	(MG/L							
	AS CL)	AS F)	SIO2)	(MG/L)	AS N)	AS P)	AS P)	AS P)				
FEB												
APR												
22.	14	0.9	29	342	<0.01	<0.05	<0.015	0.5	0.4	0.10	0.02	0.03
JUN												
26...	9.7	0.7	24	303	<0.01	<0.05	<0.015	0.6	0.5	0.06	0.03	0.03
AUG												
20	17	0.8	22	296	<0.01	<0.05	<0.015	0.6	0.3	0.07	<0.01	0.02

	ALUM-	ANTI-			BERYL-		CHRO-		
	INUM,	MONY,	ARSENIC	BARIUM,	LIUM,	CADMIUM	MIUM,	COBALT,	COPPER,
	DIS-								
	SOLVED								
DATE	(UG/L								
	AS AL)	AS SB)	AS AS)	AS BA)	AS BE)	AS CD)	AS CR)	AS CO)	AS CU)

DATE	$\begin{aligned} & \text { IRON, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS FE) } \end{aligned}$	LEAD, DIS- SOLVED (UG/L AS PB)	MANGANESE, DISSOLVED (UG/L AS MN)	MOLYBDENUM, DISSOLVED (UG/L AS MO)	NICKEL, DISSOLVED (UG/L AS NI)	SELENIUM, DISSOLVED (UG/L AS SE)	$\begin{gathered} \text { SILVER, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L } \\ \text { AS AG) } \end{gathered}$	ZINC, DISSOLVED (UG/L AS ZN)	URANIUM NATURAL DISSOLVED (UG/L AS U)
$\begin{aligned} & \text { FEB } \\ & 27 \ldots \end{aligned}$	39	<1	15	2	<1	<1	<1	2	1.0
$\begin{gathered} \text { APR } \\ 22 \ldots . \end{gathered}$	27	<1	69	5	1	<1	<1	<1	3.0
JUN 26.	47	--	39	--	--	--	--	--	-_
AUG 20...	7	<1	12	7	2	<1	<1	<1	4.0

[^96](Rio Grande National Water-Quality Assessment Program station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	$\begin{aligned} & \text { PH } \\ & \text { WATER } \\ & \text { WHOLE } \\ & \text { FIELD } \\ & \text { (STAND- } \\ & \text { ARD } \\ & \text { UNITS) } \end{aligned}$	$\begin{aligned} & \text { TEMPER- } \\ & \text { ATURE } \\ & \text { AIR } \\ & (D E G \quad C) \end{aligned}$	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$	$\begin{gathered} \text { OXYGEN, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (PER- } \\ \text { CENT } \\ \text { SATUR- } \\ \text { ATION) } \end{gathered}$	HARD- NESS TOTAL (MG/L AS CACO3)	$\begin{aligned} & \text { CALCIUM } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS CA) } \end{aligned}$	$\begin{aligned} & \text { MAGNE- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS MG) } \end{aligned}$
$\begin{aligned} & \text { OCT } \\ & 17 \ldots . \end{aligned}$	1200	125	495	8.7	13.0	13.0	583	9.1	114	140	41	8.4
JUL $16 .$	1000	31	457	8.5	19.5	19.0	584	7.1	101	130	38	8.5
DATE	$\begin{aligned} & \text { SODIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS NA) } \end{aligned}$	SODIUM PERCENT	$\begin{gathered} \text { SODIUM } \\ \text { AD- } \\ \text { SORP- } \\ \text { TION } \\ \text { RATIO } \end{gathered}$	$\begin{aligned} & \text { POTAS- } \\ & \text { SIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS K) } \end{aligned}$	$\begin{aligned} & \text { BICAR-b } \\ & \text { BONATE } \\ & \text { WATER } \\ & \text { DIS IT } \\ & \text { FIELD } \\ & \text { MG/L AS } \\ & \mathrm{HCO} 3 \end{aligned}$	$\begin{gathered} \text { CAR-C } \\ \text { BONATE } \\ \text { WATER } \\ \text { DIS IT } \\ \text { FIELD } \\ \text { MG/L AS } \\ \text { CO3 } \end{gathered}$	$\begin{aligned} & \text { ALKA-d } \\ & \text { LINITY } \\ & \text { WAT DIS } \\ & \text { TOT IT } \\ & \text { FIELD } \\ & \text { MG/L AS } \\ & \text { CACO3 } \end{aligned}$	$\begin{aligned} & \text { SULFATE } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS SO4) } \end{aligned}$	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	$\begin{aligned} & \text { FLUO- } \\ & \text { RIDE, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS F) } \end{aligned}$	$\begin{aligned} & \text { SILICA, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { SIO2) } \end{aligned}$	
$\begin{aligned} & \text { OCT } \\ & 17 \ldots \\ & \text { JUL } \\ & 16 \ldots \end{aligned}$	45 48	40 43	2 2	6.0 6.7	179 184	5 6	156 162	73 46	13 11	$\begin{aligned} & 0.70 \\ & 0.90 \end{aligned}$	23 23	
DATE	$\begin{aligned} & \text { SOLIDS, } \\ & \text { RESIDUE } \\ & \text { AT } 180 \\ & \text { DEG. C } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L) } \end{aligned}$	SOLIDS, SUM OF CONSTITUENTS, DISSOLVED (MG/L)	$\begin{gathered} \text { SOLIDS, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (TONS } \\ \text { PER } \\ \text { AC-FT) } \end{gathered}$	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, } \\ & \text { NITRITE } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS N) } \end{aligned}$	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, } \\ & \text { NO2+NO3 } \\ & \text { TOTAL } \\ & \text { (MG/L } \\ & \text { AS N) } \end{aligned}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, AM- } \\ & \text { MONIA + } \\ & \text { ORGANIC } \\ & \text { TOTAL } \\ & (M G / L \\ & \text { AS N) } \end{aligned}$	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, AM- } \\ & \text { MONIA + } \\ & \text { ORGANIC } \\ & \text { DIS. } \\ & \text { (MG/L } \\ & \text { AS N) } \end{aligned}$	PHOSPHORUS TOTAL (MG/L AS P)	$\begin{gathered} \text { PHOS- } \\ \text { PHORUS } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS P) } \end{gathered}$	
$\begin{aligned} & \text { OCT } \\ & 17 \ldots \\ & \text { JUL } \\ & 16 \ldots . \end{aligned}$	$\begin{aligned} & 314 \\ & 298 \end{aligned}$	$\begin{aligned} & 303 \\ & 279 \end{aligned}$	0.43 0.41	<0.010 <0.010	0.070	<0.050 0.070	<0.015 0.030	0.40 0.90	0.30 0.50	0.030 0.090	$\begin{aligned} & 0.030 \\ & 0.030 \end{aligned}$	
DATE	```PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)```	$\begin{aligned} & \text { IRON, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L } \\ & \text { AS FE) } \end{aligned}$	MANGA- NESE, DISSOLVED (UG/L AS MN)	CARBON, ORGANIC TOTAL (MG/L AS C)	$\begin{aligned} & \text { CARBON, } \\ & \text { ORGANIC } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS C) } \end{aligned}$	PROP- CHLOR, WATER, DISS, REC (UG/L)	$\begin{aligned} & \text { BUTYL- } \\ & \text { ATE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { SI- } \\ & \text { MAZINE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	PROMETON, WATER, DISS, REC (UG/L)	$\begin{aligned} & \text { DEETHYL } \\ & \text { ATRA- } \\ & \text { ZINE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { CYANA- } \\ & \text { ZINE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	
$\begin{aligned} & \text { OCT } \\ & 17 \ldots \\ & \text { JUL } \\ & 16 \ldots \end{aligned}$	$\begin{aligned} & 0.040 \\ & 0.030 \end{aligned}$	68 39	19 42	12	7.0	<0.007	<0.002	<0.005	<0.018	<0.002	<0.004	
DATE	$\begin{aligned} & \text { FONOFOS } \\ & \text { WATER } \\ & \text { DISS } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{gathered} \text { ALPHA } \\ \text { BHC } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L) } \end{gathered}$	$\begin{gathered} \text { P, } \mathrm{P}^{\prime} \\ \text { DDE } \\ \text { DISSOLV } \\ (\mathrm{UG} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { CHLOR- } \\ \text { PYRIFOS } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L) } \end{gathered}$	```LINDANE DIS- SOLVED (UG/L)```	$\begin{aligned} & \text { DI- } \\ & \text { ELDRIN } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (UG/L) } \end{aligned}$	METO- LACHLOR WATER DISSOLV (UG/L)	MALA- THION, DIS- SOLVED (UG/L)	PARA- THION, DIS- SOLVED (UG/L)	DIAZINON, DISSOLVED (UG/L)	$\begin{aligned} & \text { ATRA- } \\ & \text { ZINE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	
$\begin{aligned} & \text { OCT } \\ & 17 \ldots \\ & \text { JUL } \\ & 16 \ldots . \end{aligned}$	<0.003	<0.002	<0.006	<0.004	<0.004	<0.001	<0.002	<0.005	<0.004	<0.002	0.005	
$\begin{aligned} & \text { b-Field } \\ & \text { c-Field } \\ & \text { d-Field } \end{aligned}$	ssolved b ssolved c al disso	carbonate rbonate, ved alkal	determi etermine nity, de	d by inc by incre ermined b	emental mental tit incremen	ration ation me al titra	thod. hod. ion metho					

(Rio Grande National Water-Quality Assessment Program station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	ALA- CHLOR, WATER, DISS, REC, (UG/L)	ACETOCHLOR, WATER FLTRD REC (UG/L)	$\begin{aligned} & \text { METRI- } \\ & \text { BUZIN } \\ & \text { SENCOR } \\ & \text { WATER } \\ & \text { DISSOLV } \\ & \text { (UG/L) } \end{aligned}$	$\begin{gathered} \text { 2,6-DI- } \\ \text { ETHYL } \\ \text { ANILINE } \\ \text { WAT FLT } \\ 0.7 \mathrm{U} \\ \text { GF, REC } \\ (\mathrm{UG} / \mathrm{L}) \end{gathered}$	$\begin{aligned} & \text { TRI- } \\ & \text { FLURR- } \\ & \text { ALIN } \\ & \text { WAT FLT } \\ & 0.7 \mathrm{U} \\ & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { ETHAL- } \\ & \text { FLUR- } \\ & \text { ALIN } \\ & \text { WAT FLT } \\ & 0.7 \text { U } \\ & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { PHORATE } \\ & \text { WATER } \\ & \text { FLTRD } \\ & 0.7 \text { U } \\ & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	TERBACIL WATER FLTRD 0.7 U GF, REC (UG/L)	$\begin{aligned} & \text { LIN- } \\ & \text { URON } \\ & \text { WATER } \\ & \text { FLTRD } \\ & 0.7 \text { U } \\ & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L)
$\begin{aligned} & \text { ОСт } \\ & 17 \ldots . \end{aligned}$	--	--	--	--	--	--	--	--	--	--
$\begin{aligned} & \text { JUL } \\ & 16 . . \end{aligned}$	<0.002	<0.002	<0.004	<0.003	<0.002	<0.004	<0.002	<0.007	<0.002	<0.006
	$\begin{aligned} & \text { EPTC } \\ & \text { WATER } \\ & \text { FLTRD } \\ & 0.7 \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { PEB- } \\ & \text { ULATE } \\ & \text { WATER } \\ & \text { FILTRD } \\ & 0.7 \mathrm{U} \end{aligned}$	$\begin{gathered} \text { TEBU- } \\ \text { THIURON } \\ \text { WATER } \\ \text { FLTRD } \\ 0.7 \text { U } \end{gathered}$	$\begin{aligned} & \text { MOL- } \\ & \text { INATE } \\ & \text { WATER } \\ & \text { FLTRD } \\ & 0.7 \text { U } \end{aligned}$	$\begin{aligned} & \text { ETHO- } \\ & \text { PROP } \\ & \text { WATER } \\ & \text { FLTRD } \\ & 0.7 \text { U } \end{aligned}$	$\begin{aligned} & \text { BEN- } \\ & \text { FLUR- } \\ & \text { ALIN } \\ & \text { WAT FLD } \\ & 0.7 \mathrm{U} \end{aligned}$	CARBO- FURAN WATER FLTRD 0.7 U	$\begin{aligned} & \text { TER- } \\ & \text { BUFOS } \\ & \text { WATER } \\ & \text { FLTRD } \\ & 0.7 \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { PRON- } \\ & \text { AMIDE } \\ & \text { WATER } \\ & \text { FLTRD } \\ & 0.7 \mathrm{U} \end{aligned}$	DISUL- FOTON WATER FLTRD 0.7 U
DATE	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	GF, REC (UG/L)	GF, REC (UG/L)	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	GF, REC (UG/L)	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$
$\begin{aligned} & \text { ост } \\ & 17 \ldots \end{aligned}$	--	--	--	--	--	--	--	--	--	
$\begin{aligned} & \text { JUL } \\ & \quad 16 \ldots \end{aligned}$	<0.002	<0.004	<0.010	<0.004	<0.003	<0.002	<0.003	<0.013	<0.003	<0.017
DATE	$\begin{aligned} & \text { TRIAL- } \\ & \text { LATE } \\ & \text { WATER } \\ & \text { FLTRD } \\ & 0.7 \mathrm{U} \\ & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { PRO- } \\ & \text { PANIL } \\ & \text { WATERR } \\ & \text { FLTRD } \\ & 0.7 \mathrm{U} \\ & \text { GF, }, \text { REC } \\ & (U G / L) \end{aligned}$	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	THIOBENCARB WATER FLTRD 0.7 U GF, REC (UG/L)	$\begin{aligned} & \text { DCPA } \\ & \text { WATER } \\ & \text { FLTRD } \\ & 0.7 \mathrm{U} \\ & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { PENDI- } \\ & \text { METH- } \\ & \text { ALIN } \\ & \text { WAT FLT } \\ & 0.7 \mathrm{U} \\ & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	NAPROPAMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	$\begin{gathered} \text { PRO- } \\ \text { PARGITE } \\ \text { WATER } \\ \text { FLTRD } \\ 0.7 \mathrm{U} \\ \text { GF, REC } \\ (\mathrm{UG} / \mathrm{L}) \end{gathered}$	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L)	$\begin{gathered} \text { PER- } \\ \text { METHRIN } \\ \text { CIS } \\ \text { WAT FLT } \\ 0.7 \mathrm{U} \\ \text { GF, REC } \\ \text { (UG/L) } \end{gathered}$
$\begin{aligned} & \text { OCT } \\ & 17 \ldots . \end{aligned}$	--	--	--	--	--	--	--	--	--	--
JUL 16...	<0.001	<0.004	<0.003	<0.002	e0.002	<0.004	<0.003	<0.013	<0.001	<0.005

TRANSMOUNTAIN DIVERSIONS FROM COLORADO RIVER BASIN IN COLORADO

There are 24 tunnels or ditches, all of which are equipped with water-stage recorders and Parshall flumes or sharpcrested weirs. Records provided by Colorado Division of Water Resources. The locations and diversions of 6 selected diversions are given in the following list.

TO PLATTE RIVER BASIN

09013000 Alva B. Adams Tunnel diverts water from Grand Lake and Shadow Mountain Lake in NW ${ }^{1} / 4$ sec. 9 , T. 3 N., R. 75 W., in Colorado River basin, to Lake Estes (Big Thompson River) in sec.30, T. 5 N., R. 72 W., in Platte River basin. For daily discharge, see elsewhere in this report.

DIVERSIONS, IN ACRE-FEET, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

TO ARKANSAS RIVER BASIN

09042000 Hoosier Pass Tunnel diverts water from tributaries of Blue River in Colorado River basin to Montgomery Reservoir (Middle Fork South Platte River) in sec.14, T. 8 S., R. 78 W., in Platte River basin; this water is again diverted to South Catamount Creek (tributary to Catamount Creek) in $\mathrm{SE}^{1 / 4}$ sec.14, T. 13 S., R. 69 W., in the Arkansas River basin. Collection conduits extending from the right bank of Crystal Creek (tributary to Spruce Creek) in sec.14, T. 7 S., R. 78 W., right bank of Spruce Creek in sec.23, T. 7 S., R. 78 W., right bank of McCullough Gulch in sec.26, T. 7 S., R. 78 W., right bank of Monte Cristo Creek in SW ${ }^{1} / 4 \mathrm{NE}^{1} / 4$ sec.2, T. 8 S., R. 78 W., left bank of Bemrose Creek in SW ${ }^{1} / 4 \mathrm{SW}^{1} / 4 \mathrm{sec} .6$, T. 8 S., R. 77 W ., and intercepting intermediate tributaries, transport diversions to north portal of the tunnel.

REVISIONS (WATER YEARS).--WDR CO-86-1, WDR CO-86-2: 1984, 1985.

DIVERSIONS, IN ACRE-FEET, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

Diversion	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
09042000	1,290	486	0	0	0	0	0	0	5,740	1,460	1,070	1,440

09063700 Homestake Tunnel diverts water from Homestake Lake (Middle Fork Homestake Creek), in sec.17, T. 8 S., R. 81 W., in Eagle River basin, to Lake Fork in sec.9, T. 9 S., R. 81 W., in Arkansas River basin. Water is imported to Homestake Lake from tributaries of Homestake Creek by collection conduits that extend from right bank of French Creek in sec.28, T. 7 S., R. 81 W., and left bank of East Fork Homestake Creek in sec.9, T. 8 S., R. 81 W., and intercept intermediate tributaries.

DIVERSIONS, IN ACRE-FEET, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

Diversion	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
09063700	0	0	0	0	0	7,270	14,710	1,770	7,490	6,470	964	3.6

[^97]09073000 Twin Lakes Tunnel diverts water from tributaries of Roaring Fork River between headgates (in sec.21, T. 11 S., R. 83 W., and sec.2, T. 11 S., R. 83 W.), and west portal of Twin Lakes Tunnel (in sec.24, T. 11 S., R. 83 W.), in Colorado River basin, to North Fork Lake Creek in sec.22, T. 11 S., R. 82 W., in Arkansas River basin.

DIVERSIONS, IN ACRE-FEET, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

Diversion	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
09073000	1,270	722	199	155	83	77	318	14,930	14,280	2,610	194	11

[^98]
TRANSMOUNTAIN DIVERSIONS FROM COLORADO RIVER BASIN IN COLORADO

TO ARKANSAS RIVER BASIN--Continued

09077160 Charles H. Bousted Tunnel diverts water from the main stem and tributaries of Fryingpan River (tributary to Roaring Fork River), in Colorado River basin, to Lake Fork in sec.10, T. 9 S., R. 81 W., in Arkansas River basin. Water is transported to west portal of tunnel (at lat $39^{\circ} 14^{\prime} 44^{\prime \prime}$, long $106^{\circ} 31^{\prime} 477^{\prime \prime}$), by a series of collection conduits extending between headgates on right bank of Sawyer Creek at lat $39^{\circ} 15^{\prime} 58^{\prime \prime}$, long $106^{\circ} 38^{\prime} 19^{\prime \prime}$ and right bank of Fryingpan River at lat $39^{\circ} 14^{\prime} 40^{\prime \prime}$, long $106^{\circ} 31^{\prime} 49^{\prime \prime}$, and intercepting intermediate tributaries.

DIVERSIONS, IN ACRE-FEET, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

Diversion	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
09077160	145	149	146	135	136	181	193	1,290	26,470	8,710	790	194

Water year 1996, 38,540

09077500 Busk-Ivanhoe Tunnel diverts water from Ivanhoe Lake (Ivanhoe Creek), tributary to Fryingpan River in sec.13, T. 9 S., R. 82 W., in Roaring Fork River basin, to Busk Creek (tributary to Lake Fork) in sec. 20, T. 9 S., R. 81 W., in Arkansas River basin.

DIVERSIONS, IN ACRE-FEET, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

Diversion	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
09077500	113	73	64	58	52	55	48	87	1,640	77	84	102

$$
\text { Water year } 1996,2,450
$$

TRANSMOUNTAIN DIVERSIONS NO LONGER PUBLISHED

Following is a list of Transmountain Diversions no longer being published in this report. Diversions, in acre-feet, for these sites are available from the State of Colorado, Division of Water Resources.

to Platte	RIVER BASIN	TO ARKANSAS RIVER BASIN		TO RIO GRANDE BASIN	
09010000	Grand River Ditch	09061500	Columbine Ditch	09118200	Tarbell Ditch
09012000	Eureka Ditch	09062000	Ewing Ditch	09121000	Tabor Ditch
09021500	Berthoud Pass Ditch	09062500	Wurtz Ditch	09247000	Don LaFont Ditches
09022500	Moffat Water Tunnel	09115000	Larkspur Ditch		1 \& 2
09046000	Boreas Pass Ditch			09341000	Treasure Pass Ditch
09047300	Vidler Tunnel			09348000	Williams Creek Squaw
09050590	Harold D. Roberts				Pass Ditch
	Tunnel			09351000	Pine River-Weminuche Pass Ditch
				09351500	Weminuche Pass Ditch

MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

As the number of streams on which streamflow information is likely to be desired far exceeds the number of streamgaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partialrecord stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at crest-stage partial-record stations are presented in the following table. Discharge measurements made at low-flow partial-record sites and at miscellaneous sites and for special studies are given in separate tables.

CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device that will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

			Water vear 1996 maximum			Period of record maximum		
Station name and number	```Location and drainage area```	$\begin{aligned} & \text { Period } \\ & \text { of } \\ & \text { record } \end{aligned}$	Date	Gage height (ft)	$\begin{gathered} \text { Dis- } \\ \text { charge } \\ \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{gathered}$	Date	Gage height (ft)	$\begin{gathered} \text { Dis- } \\ \text { charge } \\ \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{gathered}$
PLATTE RIVER BASIN								
Lee Gulch at Littleton, CO (06709740)	Lat 39ㅇ́' 47", long $105^{\circ} 00^{\prime \prime} 57^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{SW}^{1} / 4 \mathrm{sec} .21, \mathrm{~T} .5 \mathrm{S}$. , R.68W., Arapahoe County, on right bank 30 ft upstream from culvert under Prince St. and 0.6 mi upstream from mouth in Littleton. Drainage area not determined.	1980-96	5-26-96	11.16	110	a_{1983}	16.00	444
Dutch Creek at Platte Canyon Drive, near Littleton, CO (06709910)	Lat 39ㅇ́'01", long $105^{\circ} 02^{\prime \prime} 28^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{sec} .19, \mathrm{~T} .5 \mathrm{S}$. , R. 69 W., Arapahoe County, on left bank 150 ft down-stream from bridge on Platte Canyon Road. Drainage area not determined.	1985-96	5-26-96	10.21	481	6-01-91	11.51	1,090
```Littles Creek at Littleton, CO (06709995)```	Lat 39우'44", long $105^{\circ} 01^{\prime \prime} 09^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{sec} .17, \mathrm{~T} .5 . \mathrm{S} .$, R. 68 W., Arapahoe County, 50 ft upstream from Rapp St., and 150 ft south of W . Alamo St. in Littleton. REVISED RECORDS.--WD CO-89-1: 1988. Drainage area not determined.	1985-96	9-18-96	10.76	74	$7-29-90$	13.01	503
Weaver Creek near Lakewood, CO (06711305)	Lat $39^{\circ} 38^{\prime} 13^{\prime \prime}$, long $105^{\circ} 07^{\prime} 47^{\prime \prime}$, in $\mathrm{NE}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{sec} .8, \mathrm{~T} .5 \mathrm{~S} .$, R. 69 W., Jefferson County, 500 ft upstream from Simms St., and 700 ft south of West Quincy Ave. Drainage area not determined.	1982-96	5-26-96	10.75	45	$a_{1985}$	13.93	1,010
```Little Dry Creek near Arapahoe Road, CO (06711515)```	Lat $39^{\circ} 35^{\prime} 38^{\prime \prime}$, long $104^{\circ} 54^{\prime} 23^{\prime \prime}$, in $\mathrm{NE}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{sec} .29, \mathrm{~T} .5 \mathrm{~S} .$, R. 67 W., Arapahoe County, on right bank, 800 ft downstream from Quebec St. (formerly published as Inflow to Holly Reservoir, 1985-86). Drainage area not determined.	1985-96	7-12-96	9.28	362	$a_{1985}$	10.52	800

MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

			Water year 1996 maximum			Period of record maximum		
Station name and number	```Location and drainage area```	$\begin{aligned} & \text { Period } \\ & \text { of } \\ & \text { record } \end{aligned}$	Date	Gage height (ft)	$\begin{gathered} \text { Dis- } \\ \text { charge } \\ \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{gathered}$	Date	Gage height (ft)	$\begin{gathered} \text { Dis- } \\ \text { charge } \\ \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{gathered}$

PLATTE RIVER BASIN- Continued

Willow Creek at Dry Creek Road, near Englewood, CO (06711535)	Lat $39^{\circ} 34^{\prime} 4^{\prime \prime \prime}$, long $104^{\circ} 54^{\prime} 42^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{sec} .32, \mathrm{~T} .5 \mathrm{S}$. , R. 67 W., Arapahoe County, on left bank, upstream wingwall of bridge on Dry Creek Road over Willow Creek. Drainage area not determined.	1985-96	5-26-96	9.62	905	a_{1985}	14.28	3,470
```Little Dry Creek above Englewood, CO (06711555)```	Lat $39^{\circ} 38^{\prime} 57^{\prime \prime}$, long $104^{\circ} 58^{\prime} 42^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{sec} .3, \mathrm{~T} .5 \mathrm{S.}$, R. 68 W., Arapahoe County, on right bank 250 ft downstream from bridge on Clarkson St., and 800 ft south of Hampton Ave., in Cherry Hills Village. Drainage area not determined. Prior to April 2, 1992, gage was located at a site 300 ft upstream from the present location.	1982-96	5-26-96	7.35	445	$\mathrm{a}_{1983}$	15.64	1,060
```Harvard Gulch at Colorado Blvd. at Denver, CO (06711570)```	Lat $39^{\circ} 40^{\prime} 08^{\prime \prime}$, long $104^{\circ} 56^{\prime} 32^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{sec} .25, \mathrm{~T} .4 \mathrm{~S} .$, R. 67 W., Denver County, on left bank, 100 ft upstream from S. Jackson St., and 400 ft north of E . Yale Ave. Drainage area not determined.	1979-96	7-12-96	13.34	673	7-20-92	13.50	750
```Harvard Gulch below University Blvd. at Denver, CO (06711572)```	Lat $39^{\circ} 40^{\prime} 10^{\prime \prime}$, long $104^{\circ} 57^{\prime} 33^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{sec} .26$, T. $4 \mathrm{~S} .$, R. 68 W., Denver County, 200 ft, downstream from University Blvd., and 600 ft north of East Yale Ave., in Denver. REVISED RECORDS.--WDR-CO-92-1: 1989-91. Drainage area not determined.	1979-96	7-12-96	14.55	981	7-12-96	14.55	981
Harvard Gulch at Harvard Park at Denver, CO (06711575)	Lat $39^{\circ} 40^{\prime} 21^{\prime \prime}$, long $104^{\circ} 58^{\prime} 35^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{SW}^{1} / 4 \mathrm{sec} .26$, T. $4 \mathrm{~S} .$, R. 68 W., Denver County, on left bank, 200 ft north of $E$. Harvard Ave. and 300 ft west of $S$. Ogden St., directly north of Porter Hospital. Drainage area not determined.	1979-96	7-12-96	16.25	1100	7-12-96	16.25	1,100
Sanderson Gulch tributary at Lakewood, CO (06711600)	Lat $39^{\circ} 41^{\prime} 19{ }^{\prime \prime}$, long $105^{\circ} 04^{\prime} 54^{\prime \prime}$, in $\mathrm{NE}^{1} / 4 \mathrm{NW}^{1} / 4 \mathrm{sec} .23$, T. $4 \mathrm{~S} .$, R. 68 W., Jefferson County, 300 ft upstream from S. Wadsworth Blvd., 300 ft south of W. Florida Ave. in Lakewood. Drainage area is $0.38 \mathrm{mi}^{2}$.	1969-96	8-22-96	12.74	61	6-06-77	4.91	422
Sanderson Gulch at Mouth at Navajo St. at Denver, CO (06711609)	Lat $39^{\circ} 41^{\prime} 33^{\prime \prime}$, long $105^{\circ} 00^{\prime} 12^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{sec} .21, \mathrm{~T} .4 \mathrm{~S}$. R. 68 W., Denver County, 200 ft south of Louisiana Ave., at Navajo St. Drainage area not determined.	1985-96	8-22-96	12.10	669	8-22-96	12.10	669
Weir Gulch upstream from 1st Avenue, at Denver, CO (06711618)	Lat $39^{\circ} 43^{\prime} 03^{\prime \prime}$, long $105^{\circ} 02^{\prime} 30^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{sec} .7, \mathrm{~T} .4 \mathrm{S.}$, R. 68 W., Denver County, 250 ft upstream from 1st Ave., in Denver.Drainage area not determined.	1985-96	8-22-96	10.83	236	8-01-91	11.91	523

MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

			Water year 1996 maximum			Period of record maximum		
Station name and number	```Location and drainage area```	$\begin{aligned} & \text { Period } \\ & \text { of } \\ & \text { record } \end{aligned}$	Date	Gage height (ft)	Dis-   charge   (ft $t^{3} / s$ )	Date	Gage height (ft)	Dis-   charge   (ft $t^{3} / s$ )

Lakewood Gulch at
Denver, CO
$(06711700)$
Dry Gulch at
Denver, Co
$(06711770)$
loans Lake, south Tributary at Denver, co (06711820)

Westerly Creek at (06714260)

Lena Gulch at Upper
Site, at Golden, Site, at Golden, CO (06719535)
Lat $39^{\circ} 44^{\prime} 06^{\prime \prime}$, long $105^{\circ} 01^{\prime} 54^{\prime \prime}$,
in $\mathrm{SW}^{1} / 4 \mathrm{NW}^{1} / 4$ sec.5, T.4 S.,
R. $68 \mathrm{~W} .$, Denver County,
2,000 ft downstream from con-
fluence with Dry Gulch, near
intersection of Knox Ct., and
West 12 th Ave., in Denver.
Drainage area not determined.

Lat 39 ${ }^{\circ} 44^{\prime} 03^{\prime \prime}$, long $105^{\circ} 02^{\prime} 20 \prime \prime$,	1980-96	8-22-96	11.86	146	$\mathrm{a}_{1981}$	16.00	445
in $\mathrm{SW}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{sec} .6, \mathrm{~T} .4 \mathrm{S.}$,		9-18-96					
R. 68 W., Denver County,		Same					
800 ft upstream from		max peak					

Ave., at Perry St., in Denver. Drainage area not determined.
$\begin{array}{lllllllll}\text { Lat } 39^{\circ} 44^{\prime} 44^{\prime \prime} \text {, long } 105^{\circ} 03^{\prime} 28^{\prime \prime}, & 1985-96 & 8-22-96 & 4.92 & 38 & 6-01-91 & 4.00\end{array}$
in $\mathrm{NW}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{sec} .36$, T. 3 S. , R. 69 W., Jefferson County,

50 ft south of 18 th Ave., at
Depew St. REVISED RECORDS.-WDR CO-90-1: 1985-89. Drainage area not determined.

Lat $39^{\circ} 44^{\prime} 43^{\prime \prime}$, long $104^{\circ} 52^{\prime} 48^{\prime \prime}$, $1982-96 \quad 9-19-96 \quad 13.12 \quad 768 \quad$ a $1983 \quad 14.45 \quad 1,530$
in $\mathrm{NW}^{1} / 4 \mathrm{SW}^{1} / 4 \mathrm{sec} .34, \mathrm{~T} .3 \mathrm{S}$. ,
R. 67 W., Adams County, 50 ft
upstream from footbridge.
800 ft upstream from Montview
Blvd., and 100 ft east of
Boston St., in Aurora.
REVISED RECORDS.--WDR CO-90-
1: 1983-85, 1987-88. Drain-
age area not determined.
Lat $39^{\circ} 43^{\prime} 21^{\prime \prime}$, long $105^{\circ} 11^{\prime} 46^{\prime \prime}$, $1985-96 \quad 9-18-96 \quad 10.44 \quad 213 \quad a_{198} \quad 10.92 \quad 373$
in $\mathrm{NE}^{1} / 4 \mathrm{NW}^{1} / 4 \mathrm{sec} .11$, T. $4 \mathrm{S}$. , R. 70 W., Jefferson County, 60 ft north of US 40, and $2,200 \mathrm{ft}$ southwest of US 6 , in Golden. Drainage area not determined.

Lat $39^{\circ} 44^{\prime} 27^{\prime \prime}$, long $105^{\circ} 08^{\prime} 49^{\prime \prime}$ in $\mathrm{SE}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{sec} .31$, T. 3 S. , R. 69 W., Jefferson County on right bank 200 ft north of West 15th Drive at Arbutus Prior to July 6, 1988, at site approx. 500 ft
downstream (formerly
published as Lena Gulch at
Alkire at Golden, CO,
1986-87). Drainage area is
approximately $9.0 \mathrm{mi}^{2}$.
Hidden Lake Outflow at 65th Ave near Arvada, CO (06719775) R. 68 W., Adams County, 30 ft downstream from 65 th Ave. at Lowell Blvd. May 1985 to
Aug. 1987 at site 200 ft
downstream. Drainage area
not determined.
Little Dry Creek at Westminster, CO (06719840)

Lat $39^{\circ} 49^{\prime} 34^{\prime \prime}$, long $105^{\circ} 02^{\prime} 25^{\prime \prime}$, $1982-96 \quad 9-18-96 \quad 12.07 \quad 632 \quad 6-01-91 \quad 13.09 \quad 1,280$
in $\mathrm{NW}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{sec} .6$, T. $3 \mathrm{S}$. ,
R. 68 W., Adams County, 400 ft
downstream from 72nd Ave. in Westminster. REVISED
RECORDS.--WDR CO-89-1: 1986.
Drainage area not determined.

## MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS--Continued

			Water year 1996 maximum			Period of record maximum		
```Station name and number```	```Location and drainage area```	$\begin{aligned} & \text { Period } \\ & \text { of } \\ & \text { record } \end{aligned}$	Date	Gage height (ft)	$\begin{gathered} \text { Dis- } \\ \text { charge } \\ \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{gathered}$	Date	Gage height (ft)	$\begin{gathered} \text { Dis- } \\ \text { charge } \\ \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{gathered}$


ARKANSAS RIVER BASIN								
B-Ditch Tributary blw Hwy 115 at Fort Carson, CO (07105770)	Lat 38․45'53", long 104ㄴ́́39", in $\mathrm{NW}^{1} / 4 \mathrm{NW}^{1} / 4 \mathrm{sec} .8, \mathrm{~T} .15 \mathrm{S.}$, R. 66 W., El Paso County, 200 ft south of Academy Ave, 0.2 mi downstream from Hwy 115, and 3.7 mi upstream from the mouth. Drainage area is 0.49 mi^{2}.	1993-96	5-25-96	5.43	88	5-25-96	5.43	88
```Clover Ditch Tribu- tary at Hwy 115 at Fort Carson, CO (07105810)```	Lat $38^{\circ} 45^{\prime} 07^{\prime \prime}$, long $104^{\circ} 48^{\prime} 41^{\prime \prime}$, in $N W W^{1} / 4 N^{1} / 4 \mathrm{sec} .17, \mathrm{~T} .15 \mathrm{S}$. , R. $66 \mathrm{~W} .$, ElPaso County, 1.1 mi south of intersection of Highway 115 and Academy Boulevard near Colorado Springs. Drainage area is $1.46 \mathrm{mi}^{2}$.	1993-96	no	ks during year		5-17-95	6.65	189
Big Arroyo near Thatcher, CO (07120620)	Lat 37³3'17", long $104^{\circ} 01^{\prime \prime} 1^{\prime \prime}$, in $N^{1} / 4 N^{1} / 4 \mathrm{sec} .4, \mathrm{~T} .29 \mathrm{S}$. , R. 59 W., Las Animas County, 2.4 mi from U.S. Route 350 , 4.8 mi east of Thatcher, and 3.2 mi upstream from mouth. Drainage area is $15.5 \mathrm{mi}^{2}$.	$\begin{aligned} & 1983-90^{b} \\ & 1991-96 \end{aligned}$	5-25-96	3.56	87	7-28-85	4.86	1,500
Lockwood Canyon   Creek near   Thatcher, CO   (07126390)	Lat $37^{\circ} 29^{\prime} 37^{\prime \prime}$, long $103^{\circ} 29^{\prime \prime} 37^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{nw}^{1} / 4 \mathrm{sec} .30$, T. $29 \mathrm{S}$. , R. 57 W., Las Animas County, on right bank 0.6 mi downstream from Sharp Ranch, 5.3 mi upstream from mouth, and 16 mi southeast of Thatcher. Drainage area is $41.4 \mathrm{mi}^{2}$.	$\begin{aligned} & 1983-93^{b} \\ & 1993-96 \end{aligned}$	8-15-96	5.45	86	7-19-95	8.40	690
```Red Rock Canyon Creek at mouth, near Thatcher,co (07126415)```	in $\mathrm{NW}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{sec} .18, \mathrm{~T} .29 \mathrm{S}$. , R. 56 W., Las Animas County, 200 ft downstream from Welsh Canyon, 0.3 mi upstream from mouth, and 21 mi east of Thatcher. Drainage area is $48.8 \mathrm{mi}^{2}$.	$\begin{aligned} & 1983-90^{b} \\ & 1991-96 \end{aligned}$	8-30-96	8.77	955	5-22-87	10.09	1,530
```Chacuaco Creek near mouth, near Timpas, CO (07126470)```	Lat $37^{\circ} 32^{\prime} 38^{\prime \prime}$, long $103^{\circ} 37^{\prime \prime} 54^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{sec} .1, \mathrm{~T} .28 \mathrm{~S}$, R.56W, Las Animas County, at Red Rocks Ranch, 1.5 mi upstream from mouth, 3.3 mi upstream from Bent Canyon Creek, and 21 mi southeast of Timpas. Drainage area is 424 $\mathrm{mi}^{2}$.	$\begin{aligned} & 1983-92^{b} \\ & 1993-96 \end{aligned}$	8-30-96	16.18	11,700	7-8-92	16.22	11,800
```Bent Canyon Creek at mouth near Timpas, CO (07126480)```	Lat 37³5'19", long $103^{\circ} 38^{\prime \prime} 51^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{sec} .23$, T. $28 \mathrm{S}$. , R. 65 W., Las Animas County 0.5 mi upstream from mouth, 0.6 mi southwest of Rourk Ranch house, 0.9 mi upstream from Iron Canyon, and 17 mi southeast of Timpas. Drainage area is $56.2 \mathrm{mi}^{2}$.	$\begin{aligned} & 1983-90^{b} \\ & 1991-96 \end{aligned}$	$8-30-96$	5.47	95	8-21-84	12.56	2,640
Big Sandy Creek above Amity Diversion, near Kornman, CO (07134000)	Lat $38^{\circ} 12^{\prime} 52^{\prime \prime}$, long $102^{\circ} 28^{\prime} 45^{\prime \prime}$, in $\mathrm{NE}^{1} / 4 \mathrm{NW}^{1} / 4 \mathrm{sec} .21$, T. $21 \mathrm{S}$. , R. 45 W., Prowers County, 7.0 mi upstream from mouth, and 9.0 mi northeast of Kornman. Drainage area is $3,426 \mathrm{mi}^{2}$.	$\begin{aligned} & 1941-46^{b} \\ & 1996- \end{aligned}$	$5-26-96$	10.48	est 50	9-3-42	$\mathrm{C}_{5} .63$	2,900

[^99]
Special study and miscellaneous sites

Discharge measurements in the following table were made at a miscellaneous site. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report.

Discharge measurements made at special study and miscellaneous sites during water year 1996.

Station no.	Station name
07079195	East Fork Arkansas River
at Highway 91, near	
	Leadville, CO

Location and drainage area	Date	Discharge $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$
Lat $39^{\circ} 17^{\prime} 09 "$, long $106^{\circ} 1^{\prime} 6^{\prime} 45^{\prime \prime}$,	29	
Lake County, Hydrologic Unit	$10-06-95$	14
11020001, at culvert on State	$11-08-95$	13
Highway 91, near Leadville.	$12-06-95$	8.5
Drainage area is 35.0 mi^{2}.	$1-11-96$	9.1
	$2-07-96$	9.5
	$3-12-96$	14
	$4-17-96$	232
	$5-21-96$	163
	$6-25-96$	51
	$7-23-96$	24
	$8-19-96$	19

384533104495101 B-DITCH RAIN GAGE BELOW HWY 115, AT FORT CARSON, CO

LOCATION.--Lat $38^{\circ} 45^{\prime} 33$, long $104^{\circ} 49^{\prime} 51^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec.7, T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 11020003, approximately 1.0 mile west of intersection of Hwy 115 and Academy Blvd., near Colorado Springs.
DRAINAGE AREA.--0.49 mi ${ }^{2}$ at B-Ditch Tributary below Hwy 115, at Fort Carson, CO (07105770).

PRECIPITATION RECORDS

PERIOD OF RECORD.--June 1993 to current year (seasonal records only).
GAGE.--Tipping-bucket rain gage and electronic data logger. Elevation of gage is $6,410 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records fair. Station is operated in conjunction with partial-record station 07105770, B-Ditch Tributary below Hwy 115, at Fort Carson, CO (published in 'CREST-STAGE PARTIAL-RECORD STATIONS' section of this report).

EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 3.33 inches, May 9, 1994.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.30 inches, July 9.
RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP
1	. 00	. 00	---	---	-	---	---	---	. 00	. 00	. 04	. 00
2	. 00	. 00	---	---	---	---	---	---	. 00	. 00	. 02	. 00
3	. 00	. 20	---	---	---	---	---	---	. 00	. 00	. 00	. 01
4	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
5	. 00	. 00	---	---	---	---	---	. 00	. 00	. 32	. 00	. 00
6	. 00	. 00	---	---	---	---	--	. 00	. 00	. 00	. 00	. 22
7	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 01
8	. 00	. 00	-	---	---	--	--	. 01	. 03	. 00	. 41	. 00
9	. 00	. 00	--	--	---	--	--	. 39	. 01	2.30	. 01	. 01
10	. 00	. 00	---	---	---	---	---	. 17	. 43	. 32	. 00	. 00
11	. 00	. 05	---	-	---	-	--	. 00	. 00	. 00	. 00	. 21
12	. 00	. 16	---	---	---	---	---	. 00	. 12	. 23	. 00	. 01
13	. 00	. 00	---	---	---	---	---	. 00	. 18	. 09	. 00	. 13
14	. 00	. 00	--	---	---	---	-	. 00	. 13	. 00	. 07	. 00
15	. 00	. 00	---	---	---	---	---	. 00	. 27	. 17	. 01	. 19
16	. 00	. 00	---	---	---	---	---	. 00	. 00	. 02	. 00	. 00
17	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 52
18	. 00	. 00	---	---	---	---	---	. 02	. 00	. 02	. 13	. 19
19	. 00	. 00	---	---	---	---	---	. 00	. 00	. 28	. 01	. 00
20	. 00	. 00	---	---	---	---	---	. 00	. 00	1.04	. 01	. 00
21	. 00	---	---	---	---	---	---	. 00	. 25	. 00	. 01	. 00
22	. 00	---	---	---	---	---	---	. 00	. 06	. 00	. 07	. 00
23	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 76	. 31
24	. 00	---	---	---	---	---	---	. 15	. 00	. 05	. 00	. 00
25	. 00	---	---	---	---	---	---	1.42	. 00	. 05	. 01	. 00
26	. 00	---	---	---	---	---	---	. 38	. 00	. 49	. 00	. 11
27	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 36	. 20
28	. 00	-	---	-	---	-	--	. 02	. 00	. 07	. 00	. 00
29	. 00	---	---	---	---	---	---	. 00	. 00	. 03	. 58	. 00
30	. 00	---	---	---	---	---	---	. 00	. 37	. 01	. 06	. 00
31	. 00	--	--	--	--	-	--	. 00	---	. 39	. 00	--
TOTAL	0.00	---	---	---	---	---	---	---	1.85	5.88	2.56	2.12

384519104483601 CLOVER DITCH TRIBUTARY RAIN GAGE AT HWY 115, AT FORT CARSON, CO

LOCATION.--Lat $38^{\circ} 45^{\prime} 19$, long $104^{\circ} 48^{\prime} 36$ ", in $\mathrm{NW}^{1} / 4 \mathrm{SW}^{1} / 4 \mathrm{sec} .8$, T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 11020003, 3.2 miles south of intersection of Hwy 115 and Lake Avenue, near Colorado Springs.

DRAINAGE AREA.--1.46 mi ${ }^{2}$ at Clover Ditch Tributary at Hwy 115, at Fort Carson, CO (07105810).

PRECIPITATION RECORDS

PERIOD OF RECORD.--June 1993 to current year (seasonal records only).
GAGE.--Tipping-bucket rain gage and electronic data logger. Elevation of gage is $5,950 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good. Station is operated in conjunction with partial-record station 07105810, Clover Ditch Tributary at
Hwy 115 at Fort Carson, CO (published in 'CREST-STAGE PARTIAL-RECORD STATIONS' section of this report).
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 3.07 inches, May 17, 1995.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.91 inches, July 9.
RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	. 00	-	---	---	---	---	-	. 00	. 00	. 07	. 00
2	. 00	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 00
3	. 00	. 08	---	---	---	---	---	---	. 00	. 00	. 02	. 00
4	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
5	. 00	. 00	---	---	---	---	---	. 00	. 00	. 31	. 00	. 00
6	. 00	. 00	---	---	-	--	-	. 00	. 00	. 00	. 00	. 19
7	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
8	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 75	. 00
9	. 00	. 00	---	---	---	---	---	. 38	. 00	1.91	. 01	. 00
10	. 00	. 00	---	---	---	---	---	. 09	. 26	. 32	. 00	. 00
11	. 00	. 01	---	---	---	---	-	. 00	. 00	. 02	. 00	. 23
12	. 06	. 00	---	---	---	---	---	. 00	. 07	. 17	. 00	. 01
13	. 00	. 00	---	---	---	---	--	. 00	. 17	. 10	. 00	. 11
14	. 13	. 00	---	---	---	---	--	. 00	. 15	. 00	. 14	. 00
15	. 00	. 00	---	---	---	---	---	. 00	. 23	. 16	. 03	. 28
16	. 00	. 00	---	---	---	---	--	. 00	. 00	. 01	. 00	. 00
17	. 00	. 00	---	---	---	---	---	. 00	. 00	. 04	. 00	. 33
18	. 00	. 00	---	---	---	---	---	. 00	. 00	. 03	. 44	. 19
19	. 00	. 00	---	---	---	---	--	. 00	. 00	. 45	. 07	. 00
20	. 00	. 00	---	---	---	---	---	. 00	. 00	1.05	. 00	. 00
21	. 00	---	---	---	---	---	---	. 00	. 15	. 00	. 00	. 00
22	. 00	---	---	---	---	---	---	. 00	. 01	. 00	. 16	. 00
23	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 74	. 35
24	. 00	---	---	---	---	---	---	. 25	. 00	. 02	. 01	. 00
25	. 00	---	---	---	---	---	---	1.27	. 00	. 03	. 02	. 00
26	. 00	---	---	---	---	---	---	. 32	. 00	. 74	. 00	. 19
27	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 21	. 06
28	. 00	-	-	---	---	---	---	. 01	. 00	. 05	. 00	. 00
29	. 00	---	---	---	---	---	---	. 00	. 00	. 02	. 55	. 00
30	. 00	---	---	---	---	---	---	. 00	. 13	. 00	. 03	. 00
31	. 00	-	-	---	-	--	--	. 00	---	. 36	. 00	--
TOTAL	0.19	---	---	---	---	---	---	---	1.17	5.79	3.25	1.94

373125104001601 BIG ARROYO HILLS RAIN GAGE AT PIPELINE ROAD, NEAR HOUGHTON, CO

LOCATION.--Lat $37^{\circ} 31^{\prime} 25$, long $104^{\circ} 00^{\prime} 16^{\prime \prime}$, in SE ${ }^{1 / 4} \mathrm{NE}^{1 / 4}$ sec. 16 , T. 29 S., R. 59 W., Las Animas County, Hydrologic Unit 11020010, on Pinon Canyon Manuever Site, approximately 100 ft west of Pipeline Road, 200 ft north of Military Service Road 1, 5.9 mi southeast of Thatcher, and 35 mi northeast of Trinidad.

PRECIPITATION RECORDS

PERIOD OF RECORD.--June 1993 to current year (seasonal records only).
GAGE.--Tipping-bucket rain gage and electronic data logger. Elevation of gage is $5,560 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 1.87 inches, May 5, 1995.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.71 inches, May 25.
RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP
1	. 00	. 01	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
2	. 00	. 00	---	---	---	--	---	. 00	. 00	. 00	. 00	. 00
3	. 00	. 07	--	--	---	--	---	. 00	. 00	. 00	. 04	. 00
4	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 02	. 00
5	. 00	. 00	---	---	---	---	---	. 01	. 00	. 11	. 00	. 00
6	. 00	e. 00	---	-	---	-	--	. 00	. 00	. 00	. 00	. 15
7	. 00	,	---	---	---	-	---	. 00	. 00	. 00	. 00	. 00
8	. 00	---	---	---	---	--	---	. 00	. 00	. 03	. 00	. 00
9	. 00	---	---	---	---	---	---	. 00	. 00	. 81	. 02	. 00
10	. 00	---	---	---	---	---	---	. 10	. 00	. 05	. 00	. 00
11	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
12	. 00	---	---	---	---	---	---	. 00	. 40	1.11	. 00	. 16
13	. 00	---	---	---	--	--	---	. 00	. 00	. 01	. 00	. 47
14	. 00	---	---	---	---	---	---	. 00	. 27	. 04	. 41	. 01
15	. 00	---	---	---	---	---	---	. 00	. 13	. 00	. 11	. 02
16	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 20	. 00
17	. 00	---	---	---	---	---	e. 00	. 00	. 00	. 00	. 00	. 10
18	. 00	---	-	---	---	---	. 00	. 00	. 00	. 66	. 00	. 13
19	. 00	-	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
20	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
21	. 00	---	---	---	---	---	. 00	. 00	. 07	. 00	. 27	. 00
22	. 00	---	---	---	---	---	. 00	. 00	. 22	. 01	. 12	. 00
23	. 00	---	---	---	---	---	. 00	. 00	. 00	. 06	. 08	. 01
24	. 00	---	-	---	---	---	. 00	. 00	. 34	. 06	. 00	. 01
25	. 00	---	---	---	---	---	. 00	1.71	. 00	. 05	. 00	. 02
26	. 00	---	---	---	---	---	. 00	. 13	. 00	. 08	. 01	. 07
27	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	1.45	. 25
28	. 00	---	---	---	---	---	. 13	. 00	. 00	. 00	. 00	. 00
29	. 00	---	---	---	---	---	. 00	. 00	. 00	. 93	. 06	. 00
30	. 00	-	--	-	-	--	. 00	. 00	. 04	. 00	. 01	. 00
31	. 00	---	---	---	--	---	---	. 00	---	. 07	. 00	-
TOTAL	0.00	---	---	---	---	---	---	1.95	1.47	4.08	2.80	1.40

e-Estimated.

372721103595601 TAYLOR ARROYO RAIN GAGE AT PIPELINE, NEAR SIMPSON, CO

LOCATION.--Lat $37^{\circ} 27^{\prime} 21^{\prime \prime}$, long $103^{\circ} 59^{\prime} 566^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec.3, T. 30 S., R. 59 W., Las Animas County, Hydrologic Unit 11020010, on Pinon Canyon Manuever Site, approximately 100 ft south of gas pipeline, 0.8 mi southwest of Taylor Arroyo, 3.4 mi northwest of Rock Crossing, 10 mi southeast of Simpson, and 36 mi northeast of Trinidad.

PRECIPITATION RECORDS

PERIOD OF RECORD.--October 1992 to current year.
GAGE.--Weighing-bucket rain gage and tipping-bucket rain gage with electronic data logger. Elevation of gage is 5,220 ft above sea level, from topographic map.

REMARKS.--Records good. Daily data that are not published are either missing or of unacceptable quality.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.63 inches, May 5, 1995.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.66 inches, May 25.

RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	. 00	. 01	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00
2	---	---	. 00	. 00	. 03	. 00	. 00	. 00	. 00	. 00	. 00	. 00
3	---	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
4	---	---	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 39	. 00
5	---	---	. 00	. 00	. 00	. 02	. 06	. 00	. 00	. 00	. 00	. 00
6	---	---	. 00	. 00	. 00	. 01	. 02	. 00	. 00	. 00	. 00	. 16
7	---	---	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 00
8	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 09	. 00	. 00
9	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 43	. 00	. 00
10	---	. 12	. 00	. 00	. 00	. 00	. 00	. 04	. 00	. 06	. 00	. 00
11	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00
12	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 59	. 72	. 00	. 21
13	---	. 00	. 00	. 00	. 00	. 02	. 15	. 00	. 00	. 00	. 00	. 27
14	---	. 00	. 00	. 00	. 00	. 17	. 11	. 00	. 17	. 07	. 05	. 02
15	---	. 00	. 00	. 00	. 00	. 12	. 00	. 00	. 15	. 00	. 99	. 01
16	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 09	. 00
17	---	. 00	. 02	. 09	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 08
18	---	. 00	. 03	. 00	. 00	. 00	. 00	. 00	. 00	. 03	. 02	. 09
19	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
20	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
21	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 45	. 00	. 28	. 00
22	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 26	. 03	. 18	. 00
23	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 18	. 00
24	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 38
25	---	. 00	. 00	. 00	. 00	. 00	. 00	1.66	. 03	. 00	. 00	. 09
26	---	. 00	. 00	. 00	. 00	. 00	. 00	. 14	. 00	. 22	. 02	. 02
27	---	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 16	. 31
28	---	. 00	. 00	. 00	. 00	. 00	. 07	. 02	. 00	. 00	. 01	. 00
29	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 86	. 03	. 00
30	---	. 00	. 00	. 00	---	. 00	. 00	. 00	. 00	. 00	. 00	. 00
31	---	---	. 00	. 00	---	. 00	---	. 00	---	. 03	. 01	---
TOTAL	---	---	0.05	0.10	0.03	0.36	0.42	1.86	1.67	2.57	2.41	1.64

372756103513001 LOCKWOOD CANYON RAIN GAGE, NEAR ROCK CROSSING, CO

LOCATION.--Lat $37^{\circ} 27^{\prime} 56^{\prime \prime}$, long $103^{\circ} 51^{\prime} 30^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{NW}^{1 / 4}$ sec. 19 , T. 30 S., R. 58 W., Las Animas County, Hydrologic Unit 11020010, on Pinon Canyon Manuever Site, approximately 100 ft north of Military Service Road $4,5.8$ mi east of Rock Crossing, 13.0 mi southeast of Houghton, and 40 mi southwest of La Junta.

PRECIPITATION RECORDS

PERIOD OF RECORD.--May 1993 to current year (seasonal records only).
GAGE.--Tipping-bucket rain gage and electronic data logger. Elevation of gage is $5,030 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.36 inches, May 25, 1996.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.36 inches, May 25.

RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP
1	. 00	. 01	---	---	---	-	---	. 00	. 00	. 00	. 00	. 00
2	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
3	. 00	. 04	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
4	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
5	. 00	. 00	---	---	---	---	---	. 01	. 01	. 00	. 00	. 00
6	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 27
7	. 00	. 00	---	---	---	---	---	. 00	. 00	. 08	. 00	. 00
8	. 00	e. 14	---	---	---	---	---	. 00	. 00	. 02	. 00	. 00
9	. 00	---	---	---	---	---	---	. 00	. 00	. 34	. 00	. 00
10	. 00	---	---	---	---	---	---	. 05	. 00	. 05	. 00	. 00
11	. 00	---	---	---	---	---	---	. 00	. 01	. 00	. 00	. 00
12	. 00	---	---	---	---	---	---	. 00	. 58	1.31	. 00	. 20
13	. 00	---	---	---	-	--	-	. 00	. 10	. 00	. 00	. 69
14	. 00	---	---	---	---	---	---	. 00	. 15	. 08	. 00	. 00
15	. 00	---	---	---	---	---	---	. 00	. 25	. 00	1.29	. 00
16	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 07	. 01
17	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 00	. 12
18	. 00	---	-	---	---	---	---	. 00	. 00	. 46	. 00	. 08
19	. 00	---	---	---	---	---	e. 00	. 00	. 00	. 01	. 20	. 00
20	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
21	. 00	---	---	---	---	---	. 00	. 00	. 17	. 00	. 26	. 00
22	. 00	---	---	---	---	---	. 00	. 00	. 21	. 00	. 26	. 00
23	. 00	---	---	---	---	---	. 00	. 00	. 00	. 03	. 01	. 00
24	. 00	---	-	---	---	---	. 00	. 00	. 00	. 03	. 00	. 02
25	. 00	---	---	---	---	---	. 00	2.36	. 00	. 00	. 00	. 01
26	. 00	---	-	---	---	---	. 00	. 11	. 00	. 01	. 00	. 00
27	. 00	---	---	---	---	---	. 00	e. 00	. 00	. 11	. 25	. 00
28	. 00	---	---	---	---	---	. 04	e. 06	. 00	. 00	. 10	. 01
29	. 00	---	---	-	---	--	. 00	. 00	. 00	. 00	. 05	. 00
30	. 00	---	---	-	---	--	. 00	. 00	. 06	. 00	. 04	. 00
31	. 00	---	---	---	---	---	---	. 00	---	. 00	. 00	---
TOTAL	0.00	---	---	---	---	---	---	2.59	1.54	2.53	2.53	1.41

e-Estimated.

373315103493101 RED ROCK CANYON RAIN GAGE, AT RED ROCK ROAD, CO

LOCATION.--Lat $37^{\circ} 33^{\prime} 15^{\prime \prime}$, long $103^{\circ} 49^{\prime} 31$ ", in $\mathrm{NE}^{1} / 4 \mathrm{NE}^{1 / 4} \mathrm{sec} .6$, T. 29 S., R. 57 W., Las Animas County, Hydrologic Unit 11020010, on Pinon Canyon Manuever Site, approximately 150 ft west of Red Rock Road, 0.4 mi south of military service road, 12.2 mi southeast of Houghton, and 33 mi southwest of La Junta.

PRECIPITATION RECORDS

PERIOD OF RECORD.--October 1993 to current year. Site was part of a hydrologic study 1985-92, data published elsewhere.
GAGE.--Weighing- or tipping-bucket rain gage. Elevation of gage is $4,860 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.75 inches, July 19, 1993.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.46 inches, May 25.

RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	---	---	---	. 00
2	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	---	--	---	. 00
3	. 00	. 02	. 00	. 01	. 00	. 00	. 00	. 00	---	---	---	. 00
4	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	---	---	---	. 00
5	. 00	. 00	. 00	. 00	. 00	. 00	. 05	. 03	---	---	---	. 00
6	. 00	. 00	. 00	. 00	. 00	. 06	. 01	. 00	---	---	---	. 11
7	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	---	---	---	. 00
8	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	---	---	---	. 00
9	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	---	---	---	. 00
10	. 00	. 11	. 00	. 00	. 00	. 00	. 00	. 04	---	---	---	. 00
11	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	---	---	---	. 00
12	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	---	---	---	. 14
13	. 00	. 00	. 00	. 00	. 00	. 00	. 10	. 01	---	---	--	. 32
14	. 00	. 00	. 00	. 00	. 00	. 23	. 34	. 00	---	---	---	. 01
15	. 00	. 00	. 00	. 00	. 00	. 07	. 00	. 00	---	---	---	. 01
16	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00	---	---	---	. 01
17	. 00	. 00	. 00	. 18	. 00	. 00	. 00	. 00	---	---	---	. 13
18	. 00	. 00	. 06	. 01	. 00	. 04	. 00	. 00	---	---	---	. 08
19	. 00	. 00	. 02	. 00	. 00	. 10	. 00	. 00	--	---	e. 03	. 00
20	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	---	---	. 00	. 00
21	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	---	---	. 24	. 00
22	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	---	---	. 24	. 00
23	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	---	---	. 06	. 02
24	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	---	---	. 00	. 00
25	. 00	. 00	. 00	. 00	. 00	. 00	. 00	2.46	---	---	. 00	. 18
26	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 15	---	---	. 00	. 24
27	. 00	. 03	. 00	. 00	. 00	. 00	. 00	. 00	---	---	. 09	. 14
28	. 00	. 03	. 00	. 00	. 00	. 00	. 13	e. 00	---	---	. 00	. 00
29	. 00	. 00	. 00	. 00	. 00	. 00	. 00	---	---	---	. 03	. 00
30	. 00	. 00	. 00	. 00	---	. 00	. 00	---	---	---	1.60	. 00
31	. 00	---	. 00	. 00	---	. 00	-	-	--	-	. 00	--
TOTAL	0.00	0.24	0.08	0.22	0.02	0.54	0.63	--	---	---	--	1.39

e-Estimated.

373622103490001 STAGE CANYON RAIN GAGE AT RED ROCK ROAD, CO

LOCATION.--Lat $37^{\circ} 36^{\prime} 22$, long $103^{\circ} 49^{\prime} 00$ ", in $\mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 1} 4$ sec. 17 , T. 28 S., R. 57 W., Las Animas County, Hydrologic Unit 11020010, approximately 80 ft east of Red Rock Road, 3.2 mi north of military service road $1,12.5 \mathrm{mi}$ east of Houghton, and 30 mi southwest of La Junta.

PRECIPITATION RECORDS

PERIOD OF RECORD.--June 1993 to current year (seasonal records only).
GAGE.--Tipping-bucket rain gage and electronic data logger. Elevation of gage is $4,940 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.42 inches, May 25, 1996.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.42 inches, May 25.

RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	. 01	---	---	---	---	---	. 00	e. 00	. 00	. 06	. 00
2	. 00	. 00	---	---	---	---	---	. 00	e. 00	. 00	. 00	. 00
3	. 00	. 05	---	---	---	--	---	. 00	e. 00	. 00	. 16	. 00
4	. 00	. 00	---	---	---	--	---	. 00	e. 00	. 00	. 00	. 00
5	. 00	. 00	---	---	--	---	---	. 01	e. 00	. 00	. 00	. 00
6	. 00	. 00	---	---	---	---	---	. 00	e. 00	. 00	. 00	. 09
7	. 00	. 00	---	---	---	---	---	. 00	e. 00	. 00	. 00	. 01
8	. 00	e. 00	---	---	---	---	---	. 00	e. 00	. 39	. 00	. 00
9	. 00	-	-	---	---	---	---	. 00	. 00	. 27	. 00	. 00
10	. 00	---	---	---	---	---	---	. 02	. 00	. 01	. 00	. 00
11	. 00	---	---	--	--	--	---	. 00	. 00	. 16	. 00	. 00
12	. 00	---	---	---	---	---	---	. 00	. 36	. 25	. 00	. 56
13	. 00	---	--	--	---	--	---	. 01	. 21	. 03	. 00	. 15
14	. 00	---	---	---	--	--	---	. 00	. 33	. 00	. 02	. 01
15	. 00	---	---	-	---	--	---	. 00	. 08	. 00	---	. 02
16	. 00	--	---	---	---	---	e. 00	. 00	. 06	. 00	. 00	. 00
17	. 00	---	---	---	--	---	. 00	. 00	. 00	. 54	. 00	. 12
18	. 00	---	---	---	---	---	. 00	. 00	. 02	. 07	. 00	. 06
19	. 00	---	---	--	--	---	. 00	. 00	. 00	. 00	---	. 00
20	. 00	---	---	--	--	---	. 00	. 00	. 00	. 00	. 00	. 00
21	. 00	-	--	---	---	---	. 00	. 00	. 00	. 00	. 17	. 00
22	. 00	---	---	---	---	---	. 00	. 00	. 05	. 07	. 19	. 00
23	. 00	---	---	---	---	---	. 00	. 00	. 38	. 00	. 01	. 03
24	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00	. 00
25	. 00	---	---	---	--	---	. 00	2.42	e. 00	. 00	. 00	. 25
26	. 00	---	---	---	--	---	. 00	. 18	e. 00	. 18	. 00	. 26
27	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 11	. 16
28	. 00	---	---	---	---	---	. 12	. 00	. 00	. 00	. 01	. 00
29	. 00	---	---	---	---	---	. 00	e. 00	. 00	. 97	. 02	. 00
30	. 00	---	---	-	---	---	. 00	e. 00	. 00	. 00	. 87	. 00
31	. 00	---	---	---	---	---	---	e. 00	---	. 00	. 00	-
TOTAL	0.00	---	---	---	---	---	---	2.64	1.49	2.94	---	1.72

e-Estimated.

373232103555201 BEAR SPRINGS HILLS RAIN GAGE NEAR HOUGHTON, CO

LOCATION.--Lat $37^{\circ} 32^{\prime} 32$ ", long $103^{\circ} 55^{\prime} 52^{\prime \prime}$, in $\mathrm{SW}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec. 5 , T. 29 S., R. 58 W., Las Animas County, Hydrologic Unit 11020010, on Pinon Canyon Manuever Site, approximately 100 ft north of military service road 3, 5.8 mi east of Pipeline Road, 6.7 mi southeast of Houghton, and 37 mi southwest of La Junta.

PRECIPITATION RECORDS

PERIOD OF RECORD.--October 1993 to current year. Site was part of a hydrologic study 1985-92, data published elsewhere.
GAGE.--Weighing- or tipping-bucket rain gage with electronic data logger. Elevation of gage is 5,200 ft above sea level, from topographic map.
REMARKS.--Records good. Data not published for periods of missing record.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.25 inches, May 5, 1995.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.41 inches, May 25.

RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	. 01	. 00	. 01	. 00	. 00	. 00	. 00	---	. 00	. 00	. 00
2	. 00	. 00	. 00	. 03	. 05	. 00	. 00	. 00	e. 00	. 00	. 00	. 00
3	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 04	. 00
4	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 12	. 00
5	. 00	. 00	. 00	. 01	. 00	. 00	. 07	. 02	. 00	. 00	. 00	. 00
6	. 00	. 00	. 00	. 03	. 00	. 10	. 00	. 00	. 00	. 00	. 00	. 10
7	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 01
8	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 03	. 00	. 00
9	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 57	. 00	. 00
10	. 00	. 19	. 00	. 00	. 00	. 00	. 03	. 07	. 00	. 02	. 00	. 00
11	. 00	. 06	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00
12	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 11	. 68	. 00	. 33
13	. 00	. 00	. 00	. 00	. 00	. 00	. 12	. 02	. 06	. 00	. 00	. 36
14	. 00	. 00	. 00	. 00	. 00	. 26	. 43	. 00	. 10	. 13	. 51	. 02
15	. 00	. 00	. 00	. 00	. 00	. 09	. 00	. 00	. 08	. 00	. 21	. 01
16	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 01	. 01
17	. 00	. 00	. 03	. 22	. 00	. 14	. 00	. 00	. 00	. 00	. 00	. 16
18	. 00	. 00	. 07	. 00	. 00	. 00	. 00	. 00	. 00	1.02	. 00	. 05
19	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 55	. 00
20	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
21	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 13	. 00	. 24	. 00
22	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 29	. 01	. 10	. 00
23	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 14	. 11	. 01
24	. 00	. 00	. 00	. 00	. 00	. 03	. 00	. 00	. 06	. 04	. 00	. 01
25	. 00	. 00	. 00	. 00	. 00	. 00	. 00	1.41	. 01	. 02	. 00	. 08
26	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 22	. 00	. 07	. 00	. 08
27	. 00	. 09	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 82	. 30
28	. 00	. 01	. 00	. 00	. 00	. 00	. 13	e. 00	. 00	. 01	. 00	. 00
29	. 00	. 00	. 00	. 00	. 00	. 01	. 00	---	. 00	. 63	. 03	. 00
30	. 00	. 00	. 00	. 00	---	. 00	. 00	---	. 01	. 01	. 38	. 00
31	. 00	---	. 00	. 00	---	. 00	---	---	---	. 03	. 01	--
TOTAL	0.00	0.41	0.10	0.32	0.05	0.63	0.79	---	---	3.42	3.13	1.53

373823103465601 BENT CANYON RAIN GAGE ABOVE STAGE CANYON NEAR DELHI, CO

LOCATION.--Lat $37^{\circ} 38^{\prime} 23^{\prime \prime}$, long $103^{\circ} 46^{\prime} 56^{\prime \prime}$, in SW ${ }^{1} / 4 \mathrm{NW}^{1} / 4 \mathrm{sec} .3$, T. 28 S., R. 57 W., Las Animas County, Hydrologic Unit 11020010, on Pinon Canyon Manuever Site, approximately 80 ft north of military service road 1A, 6.7 mi west of Rourke Road, 12.9 mi east of Delhi, and 27 mi south of La Junta.

PRECIPITATION RECORDS

PERIOD OF RECORD.--October 1993 to current year. Site was part of a hydrologic study 1985-92, data published elsewhere.
GAGE.--Weighing or tipping bucket rain gage with electronic data logger. Elevation of gage is $4,860 \mathrm{ft}$ above sea level, from topographic map.

REMARKS.--Records good. Data not published for periods of missing record.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.36 inches, May 25, 1996.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.36 inches, May 25.
RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	---	. 00	. 00	. 00
2	. 00	. 00	. 00	. 00	. 08	. 00	. 00	. 00	---	. 00	. 00	. 00
3	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 03	. 00
4	. 02	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 03	. 00
5	. 00	. 00	. 00	. 01	. 00	. 01	. 09	. 02	. 00	. 00	. 00	. 00
6	. 00	. 00	. 00	. 03	. 00	. 09	. 00	. 00	. 00	. 00	. 00	. 06
7	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01
8	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
9	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 30	. 00	. 00
10	. 00	. 13	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 05	. 00	. 00
11	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 22	. 01	. 00	. 00
12	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 13	. 49	. 00	. 23
13	. 00	. 00	. 00	. 00	. 00	. 00	. 36	. 01	. 20	. 03	. 00	. 09
14	. 00	. 00	. 00	. 00	. 00	. 23	. 51	. 00	. 07	. 03	. 25	. 01
15	. 00	. 00	. 00	. 00	. 00	. 11	. 00	. 00	. 08	. 00	. 00	. 01
16	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 06	. 02
17	. 00	. 00	. 02	. 22	. 00	. 03	. 00	. 00	. 07	. 00	. 00	. 13
18	. 00	. 00	. 06	. 00	. 00	. 06	. 00	. 00	. 00	. 37	. 00	. 44
19	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07	. 00
20	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 04	. 00
21	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 11	. 00	. 14	. 00
22	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 35	. 01	. 17	. 00
23	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 07	. 02	. 01
24	. 00	. 00	. 00	. 00	. 00	. 04	. 00	. 00	. 03	. 00	. 00	. 00
25	. 00	. 00	. 00	. 00	. 00	. 00	. 00	2.36	. 18	. 00	. 00	. 29
26	. 00	. 01	. 00	. 00	. 00	. 00	. 00	. 17	. 00	. 38	. 00	. 16
27	. 00	. 08	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 13	. 24
28	. 00	. 00	. 00	. 00	. 00	. 00	. 18	. 00	. 02	. 00	. 00	. 00
29	. 00	. 00	. 00	. 00	. 00	. 00	. 00	---	. 00	. 15	. 01	. 00
30	. 00	. 00	. 00	. 00	---	. 03	. 00	---	. 00	. 00	1.24	. 00
31	. 00	---	. 00	. 00	---	. 00	---	---	---	. 00	. 01	---
TOTAL	0.02	0.27	0.08	0.26	0.08	0.60	1.14	---	---	1.90	2.20	1.70

3737061033901 IRON CANYON RAIN GAGE, NEAR ROURKE RANCH, CO

LOCATION.--Lat $37^{\circ} 37^{\prime} 06$ ", long $103^{\circ} 39^{\prime} 01$ ", in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec. 11 , T. 28 S., R. 56 W., Las Animas County, Hydrologic Unit 11020010, approximately 0.2 mi west of Rourke Road, 1.8 mi north of Rourke Ranch, 15.2 mi southeast of Ayer, and 27 mi southwest of La Junta.

PRECIPITATION RECORDS

PERIOD OF RECORD.--June 1993 to current year (seasonal records only).
GAGE.--Tipping-bucket rain gage and electronic data logger. Elevation of gage is $4,680 \mathrm{ft}$ above sea level, from topographic map.
REMARKS.--Records good.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.68 inches, May 17, 1995.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.22 inches, May 25.
RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	. 01	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
2	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
3	. 00	. 03	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
4	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 29	. 00
5	. 00	. 00	---	---	---	---	---	. 01	. 00	. 00	. 00	. 00
6	. 00	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 09
7	. 00	. 00	---	---	---	---	-	. 00	. 00	. 00	. 00	. 00
8	. 00	e. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 00
9	. 00	---	---	---	---	---	---	. 00	. 00	. 15	. 00	. 00
10	. 00	---	---	---	---	---	---	. 00	. 00	. 07	. 00	. 00
11	. 00	---	--	---	---	---	---	. 00	. 63	. 00	. 00	. 00
12	. 00	--	---	--	---	---	---	. 00	. 16	. 56	. 00	. 43
13	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 00	. 19
14	. 00	---	---	---	---	---	---	. 00	. 08	. 01	. 48	. 00
15	. 00	---	---	---	---	---	---	. 00	. 06	. 00	. 00	. 00
16	. 00	---	--	---	--	--	---	. 00	. 00	. 00	. 07	. 00
17	. 00	---	---	---	---	---	---	. 00	. 00	. 00	. 00	. 09
18	. 00	---	---	---	---	---	---	. 00	. 00	. 61	. 00	. 29
19	. 00	---	---	--	---	---	e. 00	. 00	. 00	. 00	. 00	. 00
20	. 00	---	---	---	---	---	. 00	. 00	. 00	. 11	. 00	. 00
21	. 00	---	--	---	---	---	. 00	. 00	. 08	. 00	. 10	. 00
22	. 00	---	---	---	---	---	. 00	. 00	. 14	. 01	. 15	. 00
23	. 00	--	--	---	-	---	. 00	. 00	. 00	. 01	. 01	. 02
24	. 00	---	---	-	---	---	.00	. 10	. 00	. 00	. 00	. 00
25	. 00	---	---	---	---	---	. 00	2.22	. 00	. 00	. 00	. 26
26	. 00	---	---	---	---	---	. 00	. 14	. 00	. 35	. 00	. 15
27	. 00	---	---	---	---	---	. 00	. 00	. 00	. 00	. 06	. 24
28	. 00	---	---	---	---	---	. 09	. 00	. 00	. 00	. 01	. 00
29	. 00	---	---	---	---	---	. 00	. 00	. 00	. 16	. 02	. 00
30	. 00	---	---	---	---	---	. 00	. 00	. 05	. 01	. 40	. 00
31	. 00	---	---	---	---	---	---	. 00	---	. 17	. 00	--
TOTAL	0.00	---	---	---	---	---	---	2.47	1.20	2.22	1.59	1.76

e-Estimated.

372959104092201 CANTONMENT RAIN GAGE NEAR CEMETERY, AT SIMPSON, CO

LOCATION.--Lat $37^{\circ} 29^{\prime} 59$ ", long $104^{\circ} 09^{\prime} 22^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{sec} .19$, T. 29 S., R. 60 W., Las Animas County, Hydrologic Unit 11020010, on Pinon Canyon Manuever Site, approximately 200 ft north of military road, 0.1 mi east of Simpson Cemetary, 0.4 mi east of Highway 350, and 32 mi northeast of Trinidad.

PRECIPITATION RECORDS

PERIOD OF RECORD.--July 1993 to current year.
GAGE.--Weighing- or tipping-bucket rain gage and electronic-data logger. Elevation of gage is $5,630 \mathrm{ft}$ above sea level, from topographic map.

REMARKS.--Records good.
EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 1.41 inches, Sept. 9, 1995.
EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.24 inches, Aug. 23.
RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 DAILY SUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	. 01	. 00	. 05	. 00	. 00	. 00	. 00	e. 00	. 00	. 00	. 00
2	. 00	. 00	. 00	. 02	. 05	. 00	. 00	. 00	e. 00	. 00	. 00	. 00
3	. 00	. 05	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 00
4	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
5	. 00	. 00	. 00	. 00	. 00	. 00	. 03	. 06	. 00	. 00	. 00	. 00
6	. 00	. 00	.00	. 03	. 00	. 03	. 00	. 00	. 00	. 00	. 00	. 11
7	. 00	. 00	. 00	. 00	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 00
8	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 00
9	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 00	. 93	. 03	. 01
10	. 00	. 21	. 00	. 00	. 00	. 00	. 00	. 07	. 00	. 06	. 00	. 00
11	. 00	. 10	. 00	. 00	. 00	. 00	. 09	. 00	. 05	. 00	. 00	. 00
12	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 07	. 00	. 26
13	. 00	. 00	. 00	. 00	. 00	. 00	. 19	. 03	. 00	. 00	. 00	. 19
14	. 00	. 00	. 00	. 00	. 00	. 39	. 15	. 00	. 29	. 01	. 00	. 00
15	. 00	. 00	. 00	. 00	. 00	. 05	. 00	. 00	. 22	. 00	. 00	. 00
16	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 13	. 00
17	. 00	. 00	. 05	. 33	. 00	. 12	. 00	. 00	. 00	. 00	. 00	. 09
18	. 00	. 00	. 04	. 01	. 00	. 00	. 00	. 00	. 00	. 01	. 00	. 04
19	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 09	. 00
20	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
21	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 19	. 00	. 25	. 00
22	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 26	. 01	. 26	. 00
23	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	1.24	. 02
24	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 15	. 00	. 00	. 09
25	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 95	. 00	. 00	. 00	. 01
26	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 27	. 00	. 37	. 00	. 09
27	. 00	. 13	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 10	. 29
28	. 00	. 03	. 00	. 00	. 00	. 00	. 11	. 00	. 00	. 00	. 00	. 00
29	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 21	. 06	. 00
30	. 00	. 00	. 00	. 00	---	. 00	. 00	e. 00	. 15	. 01	. 00	. 00
31	. 00	---	. 00	. 00	---	. 00	-	e. 00	--	. 02	. 00	-
TOTAL	0.00	0.53	0.09	0.44	0.05	0.63	0.57	1.41	1.33	1.73	2.17	1.20
CAL YR 1995 TOTAL 13.96												
WTR YR	996	L 10.										

MISCELLANEOUS STATION ANALYSES

06614800 MICHIGAN RIVER NEAR CAMERON PASS, CO (LAT 4029 46N LONG 10551 52W)

OCT 1995					JUN 1996				
18.	1545	1.2	47	2.0	04..	1430	9.0	41	1.0
NOV					19.	1140	21	33	3.5
28..	1540	1.1	51	0.5	JUL				
JAN 1996					18.	1000	6.4	36	5.0
18.	1140	0.55	51	1.0	AUG				
APR					15...	1200	1.7	41	11.5
02...	1405	0.42	52	1.5					
MAY									
09...	1150	2.1	52	0.5					

06699005 TARRYALL CREEK BELOW ROCK CREEK NEAR JEFFERSON, CO (LAT 3917 13N LONG $1054143 W$)

OCT 1995					MAY 1996				
16.	1100	36	138	3.5	16..	0915	101	144	9.5
NOV					JUL				
22.	1155	14	153	0.0	01.	1235	137	180	16.0
MAR 1996					31	1012	54	133	13.5
21.	1010	17	204	0.0	AUG				
APR					30.	1020	33	152	12.0
18...	0945	42	183	2.5					

OCT 1995					MAY 1996				
12..	1020	9.7	412	12.0	15.	1120	15	349	18.5
NOV					JUN				
21. .	1045	13	420	8.0	05.	1318	18	126	25.0
JAN 1996					JUL				
12.	1027	14	430	0.5	12.	1125	2.0	--	--
MAR					AUG				
26.	1145	19	410	10.0	02.	1100	0.08	433	24.5
APR					SEP				24.0
18...	1310	29	337	16.5	10.	1215	0.17	494	
	06709530	PLUM CREEK AT TITAN RD NR LOUVIERS, CO (LAT 3930 27N LONG 10501 23W)							
OCT 1995					APR 1996				17.5
12..	1140	3.1	420	14.0	18.	1200	23	372	
NOV					MAY				
21..	1200	11	425	7.5	15.	1200	11	370	19.5
JAN 1996					JUN				
12...	1200	8.2	435	1.0	05...	1200	17	340	22.5
MAR									
26...	1120	15	420	6.5					

06710245 SOUTH PLATTE RIVER AT UNION AVE AT ENGLEWOOD, CO (LAT 3937 52N LONG 10500 50W)

OCT 1995					NOV 1995			
16.	1235	22	--	--	21.	1325	147	1240

06710247 SOUTH PLATTE RIVER BELOW UNION AVE, AT ENGLEWOOD, CO (LAT 3937 58N LONG 10500 54W)

JAN 1996					JUN 1996				
10.	1536	23	830	6.5	05.	1005	304	470	16.5
FEB					JUL				
07.	1620	5.1	--	--	12.	0916	314	--	--
MAR					AUG				
29.	1055	9.9	--	--	08.	1118	83	454	21.5
APR					SEP				
18.	1700	106	436	14.5	06...	1400	36	592	18.0
MAY									
15...	1002	60	507	15.0					

MISCELLANEOUS STATION ANALYSES--Continued

DIS-		
CHARGE,	SPE-	
INST.	CIFIC	
CUBIC	CON-	TEMPER-
FEET	DUCT-	ATURE
PER	ANCE	WATER
SECOND	(US/CM)	(DEG)

06710385 BEAR CREEK ABOVE EVERGREEN, CO (LAT 3937 58N LONG 10519 59W)

OCT 1995					MAY 1996				
17	0940	28	61	4.5	08.	1055	56	60	8.5
NOV					JUN				
08.	1310	27	66	0.5	05.	1445	74	57	13.0
JAN 1996					JUL				
10.	1515	18	77	0.0	18.	0830	34	54	14.0
MAR					AUG				
14..	1510	17	88	1.0	29.	1115	30	57	13.5
APR					SEP				
05.	1130	20	136	2.5	04.	0900	15	57	11.5
09...	1025	24	86	3.5	30...	1510	33	61	10.0

06710605 BEAR CREEK ABOVE BEAR CREEK LAKE NEAR MORRISON, CO (LAT 3939 08N LONG $1051023 W$)

OCT 1995					MAY 1996				
17.	1145	20	215	8.0	08...	1215	53	158	13.0
NOV					JUN				
21.	1550	24	235	4.0	05.	1255	106	135	15.0
JAN 1996					JUL				
10.	1250	28	287	1.5	18.	0915	8.2	218	17.5
MAR					AUG				
14.	1200	26	270	1.0	29...	1245	15	165	17.5
APR									
18.	1215	27	227	8.0					

06711545 LITTLE DRY CREEK AT GREENWOOD VILLAGE, CO (LAT 3937 02N LONG 10457 08W)

OCT 1995					JUN 1996				
12.	1030	3.5	1950	11.0	18.	1145	7.2	1370	19.0
NOV					JUL				
21..	1210	3.0	2000	4.5	16.	1200	4.7	1580	21.5
JAN 1996					24	1320	3.6	1540	22.0
08.	1405	3.8	2330	1.5	AUG				
MAR					23.	1140	7.9	905	18.0
13.	0920	2.4	1550	6.0	SEP				
APR					10.	1045	3.3	1650	16.0
11.	1035	3.4	1850	12.0					
MAY									
07...	1110	2.8	1720	13.0					
	06712000	CHERRY CREEK NEAR FRANKTOWN, CO (LAT 3921 21N LONG 10445 46W)							
OCT 1995					MAY 1996				
12...	1320	4.2	217	12.5	01..	1150	5.1	233	12.0
JAN 1996					17.	1100	2.3	221	16.0
12...	1245	6.4	221	1.5	JUL				
FEB					16.	1105	3.5	204	19.5
29...	1130	8.4	221	0.0	AUG				
MAR					23.	0945	2.2	176	16.0
15...	1100	11	209	3.0	SEP				
					10...	1358	1.7	192	19.5

393109104464500 CHERRY CREEK NEAR PARKER, CO (LAT 3931 09N LONG 10446 45W)

NOV 1995					APR 1996				
13.	1240	7.3	523	7.0	05.	1250	12	447	13.5
DEC					16.	1250	13	1290	13.0
15..	1015	6.5	537	3.0	MAY				
JAN 1996					17.	1225	2.0	660	18.0
08.	1205	9.6	575	5.0	JUN				
FEB					17...	1310	9.3	574	18.0
14.	1245	15	479	5.5	28.	1300	3.1	658	20.5
29.	1330	4.2	561	6.0	JUL				
MAR					15.	1250	3.1	673	21.5
15...	1205	13	263	2.5	SEP				
					06...	1103	2.2	685	19.0

06713000 CHERRY CREEK BELOW CHERRY CREEK LAKE, CO (LAT 3939 12N LONG 10451 41W)

| DEC 1995 | | | | MAY 1996 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $08 \ldots$ | | | | | | |

MISCELLANEOUS STATION ANALYSES--Continued

394839104570300 SAND CREEK AT MOUTH NR COMMERCE CITY, CO (LAT 3948 39N LONG 10457 03W)

OCT 1995					JUN 1996				
11	1015	22	1580	11.5	07	1340	21	1280	21.0
NOV					JUL				
29..	1100	50	1280	12.5	18.	1210	151	1250	16.0
JAN 1996					AUG				
09.	1220	31	1010	2.5	23.	1350	156	685	21.5
MAR					SEP				
22..	1030	21	1640	8.5	23...	1505	21	1290	18.0
APR									
30...	1040	20	1730	11.0					

394115105525600 CLEAR CREEK NEAR LOVELAND PASS, CO (LAT 3941 15N LONG 10552 56W)

APR 1996							
$16 \ldots$	1153	2.1	525	1.5	JUL 1996	$30 \ldots$	0931

06715000 CLEAR CREEK ABV WEST FORK CLEAR CREEK NR EMPIRE, CO (LAT 3945 07N LONG 10539 41W)

OCT 1995					MAY 1996				
04	0832	59	125	5.0	15	0920	257	108	7.5
NOV					JUN				
07.	0815	35	146	0.5	18.	1037	633	63	6.5
JAN 1996					JUL				
10.	0745	19	174	0.5	11	0705	291	69	10.0
MAR					AUG				
21...	0910	18	213	2.0	09..	0730	100	510	10.5
APR					SEP				
24...	0820	33	213	4.5	11...	0745	41	127	9.5

MISCELLANEOUS STATION ANALYSES--Continued

06716100 WEST FORK CLEAR CREEK ABV MOUTH NR EMPIRE, CO (LAT 3945 32N LONG 105 39 34W)

06717400 CHICAGO CREEK BLW DEVILS CANYON NR IDAHO SPRGS, CO (LAT 3942 58N LONG $1053415 W$)

OCT 1995					JUN 1996				
06.	0725	8.3	62	0.0	14.	0800	42	49	--
NOV					JUL				
07.	1225	7.5	64	1.0	11.	1102	22	55	11.0
JAN 1996					24	0950	14	59	10.5
10.	1045	5.6	70	0.5	AUG				
MAR					06.	1324	10	61	13.5
21.	1345	5.0	78	2.5	SEP				
APR					11...	1110	7.9	67	9.0
24	1230	8.2	80	7.0					
MAY									
16...	0900	35	49	4.5					

06718300 CLEAR CREEK ABV JOHNSON GULCH NR IDAHO SPRINGS, CO (LAT 3944 47N LONG 1052608 W)

OCT 1995					MAY 1996				
06.	0855	118	195	1.0	16.	1035	640	120	7.5
NOV					JUN				
07...	1400	79	235	2.5	18.	1301	1170	72	9.0
JAN 1996					JUL				
11.	1120	57	290	0.5	12.	0727	640	84	11.0
MAR					AUG				
22.	0855	53	309	1.5	09.	1107	226	125	11.5
APR					SEP				
26.	0717	98	292	4.0	10.	1210	132	165	12.5

06718550 NORTH CLEAR CREEK ABOVE MOUTH NR BLACKHAWK, CO (LAT 3944 56N LONG 10523 57W)

OCT 1995					MAY 1996				
06.	1030	5.4	426	4.0	16.	1245	89	87	11.0
NOV					JUL				
09..	0815	4.1	508	2.5	12.	0955	14	193	16.0
JAN 1996					AUG				
10.	1240	3.5	529	4.0	06...	1419	4.6	404	20.5
MAR					SEP				
22...	1130	5.0	463	3.5	10..	1318	2.4	478	19.0
APR									
26...	0828	21	227	3.0					

MISCELLANEOUS STATION ANALYSES--Continued

		DIS-					DIS-		
		CHARGE,	SPE-				CHARGE,	SPE-	
		INST.	CIFIC				INST.	CIFIC	
		CUBIC	CON-	TEMPER-			CUBIC	CON-	TEMPER-
		FEET	DUCT-	ATURE			FEET	DUCT-	ATURE
DATE	TIME	PER		WATER	DATE	TIME	PER	ANCE	WATER
		SECOND	(US/CM)	(DEG C)			SECOND	(US/CM)	(DEG C)
		06719505	CLEAR CR	EK AT GO	(LAT 3945	LONG	1405W)		
ОСт 1995					JUN 1996				
18..	1115	79	211	7.0	12...	0540	1180	--	--
FEB 1996					19...	1350	1060	90	11.0
16.	1350	42	340	1.5	JUL				
APR					10...	1225	590	105	13.5
12...	1030	132	272	6.5	AUG				
MAY					08.	1420	165	141	16.5
29...	1555	567	128	11.5	SEP				
					05..	1230	109	184	15.5

06720820 BIG DRY CREEK AT WESTMINSTER, CO (LAT 3954 20N LONG 10502 04W)
OCT 1995
$\begin{array}{llll}1118 & 13 & 680 & 4.5\end{array}$

06720990 BIG DRY CREEK AT MOUTH NEAR FORT LUPTON, CO (LAT 4004 09N LONG 10449 52W)

OCT 1995					JUN 1996				
17.	1230	27	1340	13.5	19..	1020	35	624	17.5
NOV					JUL				
20.	1455	27	1300	8.5	11.	0919	97	--	--
APR 1996					AUG				
03.	1230	72	1150	12.5	12..	1035	42	993	20.0
MAY					SEP				
15.	1310	17	860	20.5	11.	1128	40	1030	18.5

06721500 NORTH ST. VRAIN CREEK NEAR ALLENS PARK, CO (LAT 4013 08N LONG 10531 40W)

OCT 1995					MAY 1996				
30.	1444	14	21	6.5	09.	1023	91	21	4.0
30.	1500	14	21	6.5	JUN				
NOV					09.	--	349	--	--
27.	1145	9.9	23	0.0	JUL				
JAN 1996					02.	1158	215	14	9.5
25.	1457	5.5	--	0.0	AUG				
MAR					01.	1252	81	14	12.0
20.	1258	8.8	26	3.5	SEP				
APR					16...	1304	33	18	11.5
08...	1348	14	27	5.0					

06725450 ST. VRAIN CREEK BELOW LONGMONT, CO (LAT 4009 29N LONG 10500 53W)

OCT 1995					JUN 1996				
16.	1153	58	1320	13.5	18.	1545	548	205	18.0
NOV					JUL				
20.	1316	52	1360	10.0	11.	1300	287	--	--
JAN 1996					AUG				
26.	1145	40	1450	0.0	12.	1435	159	1240	24.0
APR					SEP				
01.	1550	41	1260	14.5	11...	1400	89	1220	20.5
MAY									
30...	1110	387	508	13.5					

06730200 BOULDER CR AT NORTH 75TH ST NR BOULDER, CO (LAT 4003 06N LONG 10510 42W)

OCT 1995					JUN 1996				
23.	1600	76	260	8.5	07	1115	150	618	16.5
FEB 1996					JUL				
22.	1115	53	730	12.5	22.	1130	157	695	21.0
APR					SEP				
26..	1040	122	678	14.0	17.	1052	64	934	21.0

06730500 BOULDER CREEK AT MOUTH, NEAR LONGMONT, CO (LAT 4009 08N LONG 10500 52W)

OCT 1995 $10 \ldots$	1336	81	680	14.5	JUN 1996	$18 \ldots$	1200	455

MISCELLANEOUS STATION ANALYSES--Continued

06746095 JOE WRIGHT CREEK ABOVE JOE WRIGHT RESERVOIR, CO (LAT 4032 24N LONG 105 52 56W)

OCT 1995					JUN 1996				
19.	1000	3.6	58	0.5	04.	1910	66	41	2.0
NOV					20.	0930	46	32	5.0
29.	1220	2.1	56	0.0	JUL				
JAN 1996					17.	1500	26	46	8.5
17.	1440	1.6	72	0.0	AUG				
APR					14...	1415	8.2	45	12.0
03.	1235	1.1	75	0.0					

06746110 JOE WRIGHT CREEK BELOW JOE WRIGHT RESERVOIR, CO (LAT 4033 43N LONG 105 52 09W)

OCT 1995					JUN 1996				
18	1340	0.94	41	3.0	04	1610	12	34	3.5
NOV					19...	1435	107	40	5.5
29...	0945	0.47	45	0.0	JUL				
JAN 1996					17.	1330	42	42	5.0
17.	1625	0.47	61	0.0	AUG				
APR					14.	1700	93	45	11.0
03..	0930	0.46	54	1.0					
MAY									
10...	1025	1.8	55	0.5					

07080980 ST. KEVIN GULCH ABV TEMPLE GULCH NR LEADVILLE, CO (LAT 3917 29N LONG 10622 07W)

OCT 1995					JUL 1996				
13.	0915	0.52	225	0.5	23.	1115	0.76	172	9.0
NOV					AUG				
07.	1430	0.82	293	0.0	19.	1115	0.48	282	8.5
MAY 1996					SEP				
09.	1015	6.6	108	2.5	18.	0825	0.39	318	2.5
JUN									
05..	1220	13	84	8.0					

07091200 ARKANSAS RIVER NEAR NATHROP, CO (LAT 3839 08N LONG 10603 02W)

OCT 1995					JUN 1996				
17..	1430	452	177	--	25.	0700	2610	78	--
APR 1996					JUL				
18.	1050	577	132	--	24..	1000	854	71	--
MAY					AUG				
20...	1247	3860	82	-	21...	1130	410	163	--

07093740 BADGER CREEK, UPPER STATION, NEAR HOWARD, CO (LAT 3839 25N LONG 10548 45W)

OCT 1995					JUN 1996				
11...	1230	1.2	433	9.5	04.	1100	0.60	427	15.5
31...	1000	1.1	436	5.0	26.	0930	0.70	449	11.0
APR 1996					JUL				
02..	1000	0.60	398	3.5	22.	1030	0.30	418	18.0
02.	1045	0.60	-	-	AUG				
22	1130	1.1	--	--	01.	1105	0.50	424	18.5
22.	1330	1.1	411	9.0	20.	1500	0.70	408	21.5
22.	1345	0.90	-	--	SEP				
MAY					05...	0930	0.50	434	9.0
03.	1035	0.80	--	--	20...	1030	1.1	490	6.5
03.	1130	0.80	431	13.5					

07093775 BADGER CREEK, LOWER STATION, NEAR HOWARD, CO (LAT 3828 02N LONG 10541 34W)

OCT 1995					JUN 1996				
11	0930	8.2	971	4.5	06	1045	5.4	--	15.0
31.	1340	8.1	944	10.5	18.	1455	5.4	--	25.0
FEB 1996					JUL				
06.	1000	7.2	1060	0.0	09.	1500	8.8	1070	25.0
MAR					17.	1030	4.9	--	18.0
11	1300	7.9	986	12.5	AUG				
APR					20.	1200	5.0	1080	21.5
18.	1235	9.3	926	11.0	SEP				
MAY					25..	1000	5.8	870	10.5
22...	1100	6.5	997	11.0					

MISCELLANEOUS STATION ANALYSES--Continued

07099060 BEAVER CREEK ABOVE HIGHWAY 115 NEAR PENROSE, CO (LAT 3829 21N LONG 104 59 49W)

NOV 1995 $01 \ldots$	1225	0.83	127	7.5	APR 1996			
DEC		$19 \ldots$	1225	0.10	--	15.0		
$14 \ldots$	1405	0.25	192	5.5	AUG	$12 \ldots$	1030	0.15

$$
07099215 \text { TURKEY CREEK NEAR FOUNTAIN, CO (LAT } 3836 \text { 42N LONG } 10453 \text { 39W) }
$$

ОСт 1995					JUL 1996				
04.	1355	0.24	265	12.0	10.	1310	5.0	225	17.0
MAY 1996					SEP				
29...	1305	0.20	215	12.5	04...	0905	0.97	230	13.0

07099230 TURKEY CREEK AB TELLER RES NEAR STONE CITY, CO (LAT 3827 37N LONG 10449 19W)

$\begin{gathered} \text { NOV } 1995 \\ 21 . . \end{gathered}$	1010	1.5	796	6.5	$\begin{gathered} \text { MAY } 1996 \\ 23 \ldots \end{gathered}$	1130	0.61	840	16.0
DEC					JUN				
12...	1110	1.5	776	9.0	25.	1335	0.19	830	20.0
JAN 1996					SEP				
22...	1055	2.0	800	4.5	03...	1110	0.16	900	15.0
APR $10 \ldots$									
10...	1055	1.3	820	11.0					

MISCELLANEOUS STATION ANALYSES--Continued

	DIS-		
	CHARGE,	SPE-	
	INST.	CIFIC	
	CUBIC	CON-	TEMPER-
	FEET	DUCT-	ATURE
TIME	PER	ANCE	WATER
	SECOND	(US/CM)	(DEG C)

07099235 TURKEY CREEK NR STONE CITY, CO (LAT 3826 27N LONG 10449 31W)

OCT 1995					MAY 1996				
13.	1245	0.11	844	13.5	24.	1310	0.20	1280	16.0
DEC					JUN				
15.	1025	0.22	950	9.5	25.	1420	0.28	--	23.0
JAN 1996					AUG				
22.	1245	0.23	1040	9.5	06.	1320	0.27	1320	19.5
APR					SEP				
03..	1340	0.26	1150	11.0	10...	1110	0.14	1160	20.0

07103797 WEST MONUMENT CREEK BELOW RAMPART RESERVOIR, CO (LAT 3858 30N LONG 10457 18W)

OCT 1995					APR 1996				
06	1300	4.5	73	6.0	23.	1145	8.3	66	5.0
NOV					JUN				
24	1115	5.7	68	5.0	05	1115	21	62	6.5
JAN 1996					JUL				
04	1330	7.9	65	3.0	19.	1520	13	67	7.5
FEB					SEP				
16.	1010	9.4	65	3.5	03...	1430	11	80	9.5
MAR									
12..	1045	8.6	65	4.0					

07103800 WEST MONUMENT CREEK AT AIR FORCE ACADEMY, CO (LAT 3858 14N LONG 10454 08W)

OCT 1995					APR 1996				
11.	0910	1.1	99	6.0	16.	1245	0.96	97	5.5
NOV					MAY				
08.	0955	1.0	99	3.5	21	1225	0.74	101	9.5
DEC					JUL				
12.	1335	1.1	98	4.0	12.	1237	0.62	108	13.5
JAN 1996					AUG				
12.	1040	0.77	--	1.0	09..	1320	0.71	109	13.0
FEB					SEP				
13...	1210	0.57	99	1.0	10...	1150	0.66	111	11.5
MAR									
13...	1310	0.71	98	3.5					

07103980 COTTONWOOD CREEK AT WOODMEN RD NR COLO SPRINGS, CO (LAT 3856 22N LONG 10444 26W)

OCT 1995					MAY 1996				
04.	0840	1.4	600	7.0	21	1105	0.61	569	17.0
NOV					28	1335	1.3	510	13.0
07.	1020	1.4	565	6.5	JUN				
DEC					13..	1330	0.46	576	26.0
13.	1050	1.0	594	6.0	14	1100	1.6	568	19.5
JAN 1996					AUG				
11.	1200	1.3	630	2.0	12.	1250	0.66	600	26.5
FEB					20.	1320	1.2	490	28.0
12..	1210	2.4	580	2.5	SEP				
MAR					20...	1020	0.99	580	20.5
13...	0950	0.83	614	6.5					
APR									
16...	0935	1.1	577	8.5					

07103990 COTTONWOOD CREEK AT MOUTH, AT PIKEVIEW, CO (LAT 38 55 41N LONG 10438 35W)

OCT 1995								
$04 \ldots$								
NOV	1040	6.6	620	10.0	APR 1996	$16 \ldots$	1125	4.2

MISCELLANEOUS STATION ANALYSES--Continued

07105000 BEAR CREEK NEAR COLORADO SPRINGS, CO (LAT 3849 21N LONG 10453 17W)

OCT 1995					APR 1996				
06.	1500	2.8	92	12.0	23.	1510	1.8	100	7.5
NOV					MAY				
24.	1315	2.3	88	3.0	24	1310	1.2	104	9.5
JAN 1996					JUN				
04.	1600	1.8	84	1.5	25.	1200	1.2	101	12.0
FEB					JUL				
16..	1200	1.9	88	1.0	26...	0930	1.5	110	12.0
MAR					AUG				
12.	1320	1.9	82	3.5	19.	1400	1.2	107	14.0

07105490 CHEYENNE CREEK AT EVANS AVE AT COLORADO SPRINGS, CO (LAT 3847 26N LONG 10451 49W)

OCT 1995					MAY 1996				
13.	1320	4.8	110	10.0	24	1425	2.3	100	15.0
NOV					JUN				
24.	1420	5.4	108	6.0	25.	1315	3.2	104	19.5
JAN 1996					JUL				
12.	1035	4.3	111	2.0	26.	1105	4.0	125	14.0
FEB					AUG				
16.	1310	3.8	110	1.5	19.	1510	2.7	119	16.0
MAR					30.	1400	20	80	15.0
15.	1115	3.1	112	4.5	SEP				
APR					05...	1120	8.3	121	13.0
24..	1000	3.2	107	8.0	19.	1120	10	84	7.5

07105900 JIMMY CAMP CREEK AT FOUNTAIN, CO (LAT 3841 04N LONG 10441 17W)

OCT 1995					JUN 1996				
04	0915	1.7	2090	10.0	19.	1340	2.4	2400	27.5
DEC					JUL				
13.	1115	1.7	2640	9.0	02.	1305	1.0	2420	29.0
FEB 1996					AUG				
09.	1005	1.8	2690	6.0	02.	0955	3.5	2180	19.5
MAR					16.	0925	7.9	1160	15.0
21.	1350	1.5	2650	17.5	SEP				
APR					05...	1010	2.4	2690	17.5
30.	1220	2.1	2830	17.5					
MAY									
28.	1305	5.0	2080	16.0					

07105920 LITTLE FOUNTAIN CREEK AB KEATON RE, NR FORT CARSON, CO (LAT 3840 55N LONG 10451 30W)

| OCT 1995
 $05 \ldots$ | 0950 | 1.0 | 125 | 5.5 | MAY 1996 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JAN 1996 | | | | | |
| $09 \ldots$ | | | | | |

07105928 LITTLE FOUNTAIN CREEK NEAR FORT CARSON, CO (LAT 3840 49N LONG 10451 06W)

OCT 1995 $05 \ldots$	1200	0.07	290	8.5	MAY 1996	1040	3.2	115
JAN 1996 $09 \ldots$	1150	0.16	196	1.0	JUL	$01 \ldots$	12.5	
MAR $12 \ldots$	1115	0.10	195	6.5	AUG	$07 \ldots$	1425	0.03

07105945 ROCK CREEK ABOVE FORT CARSON RESERVATION, CO (LAT 3842 26N LONG 104 50 47W)

OCT 1995					JUL 1				
04.	1150	0.52	190	9.0	02.	0905	0.10	175	14.0
MAR 1996					10.	1055	13	145	13.5
13.	1005	0.37	175	2.0	AUG				
APR					06.	1110	0.34	143	14.5
30...	0850	0.46	133	4.5	28.	1040	15	132	12.0
MAY									

MISCELLANEOUS STATION ANALYSES--Continued

MISCELLANEOUS STATION ANALYSES--Continued

07124410 PURGATOIRE RIVER BELOW TRINIDAD LAKE, CO (LAT 3708 37N LONG 104 32 49W)

OCT 1995					APR 1996				
05.	1840	69	281	13.5	17.	1730	26	337	9.0
NOV					MAY				
30.	1600	0.20	296	6.0	31.	1045	247	340	16.0
JAN 1996					AUG				
25.	1400	0.32	395	3.5	07.	0910	37	348	19.0
FEB					SEP				
28...	1015	0.09	321	3.0	18...	1525	26	347	16.5

07126485 PURGATOIRE RIVER AT ROCK CROSSING NR TIMPAS, CO (LAT 3737 03N LONG 103 35 47W)

NOV 1995					MAY 1996				
06...	1645	40	3080	8.0	29...	1040	73	1440	16.5
DEC					AUG				
12. .	1035	46	3340	1.5	01...	1320	19	956	28.0
JAN 1996					20.	1050	25	1070	24.0
22.	1520	39	3220	1.0	28.	1700	664	840	21.0
FEB					29.	1710	72	653	24.5
21.	1620	28	3230	10.5	SEP				
APR					19...	1145	40	1120	17.0
19...	1640	15	3360	16.5					

OCT 1995					JUN 1996				
03.	1600	36	2440	18.0	04.	1225	21	3240	21.0
19...	1155	38	3120	12.5	14...	1140	116	2530	23.5
NOV					JUL				
07.	1515	52	3180	8.5	09.	1420	16	3400	22.5
DEC					19.	1500	52	2280	29.5
05.	1355	41	3900	6.5	30.	1430	60	1740	25.5
JAN 1996					30.	1900	1180	623	22.5
10.	1040	46	4030	0.0	AUG				
FEB					14.	0830	8.0	4570	21.0
13.	1455	40	3690	6.5	23.	1045	38	2530	23.0
MAR					SEP				
12..	1355	23	4400	15.5	10...	1615	117	1680	23.0
APR					20.	1450	121	2890	19.5
02...	1340	9.2	4380	20.0					
MAY									
13...	1400	7.2	5050	22.5					

07133000 ARKANSAS RIVER AT LAMAR, CO (LAT 3806 24N LONG 10237 04W)

OCT 1995 $18 \ldots$	0830	30	2590	11.5	MAY 1996	$14 \ldots$	1735	337

07134100 BIG SANDY CREEK NEAR LAMAR, CO (LAT 3806 51N LONG 10229 00W)

OCT 1995 $17 \ldots$	1805	14	4190	16.5	APR 1996	$16 \ldots$	1610	18

SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS
MISCELLANEOUS STATION ANALYSES--Continued

EL PASO COUNTY

384056104415601 - SC01606505CCB - FOUNTAIN NO. 3

LOCATION.--Lat $38^{\circ} 40^{\prime} 56^{\prime \prime}$, long $104^{\circ} 41^{\prime} 56^{\prime \prime}$ in NW ${ }^{1} / 4$ SW $^{1} / 4 \mathrm{SW}^{1 / 4}$ sec.5, T. 16 S., R. 65 W., El Paso County, Hydrologic Unit 11020003. AQUIFER.--Fountain Creek Alluvial Aquifer.

WELL CHARACTERISTICS.--Municipal well, diameter 16 in., depth 53 ft , screened 38 to 53 ft .
DATUM.--Elevation of land-surface datum is $5,540 \mathrm{ft}$ above sea level, from topographic map.
PERIOD OF RECORD.--March 1985 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US /CM) } \end{aligned}$	$\begin{aligned} & \text { PH } \\ & \text { WATER } \\ & \text { WHOLE } \\ & \text { FIELD } \\ & \text { (STAND- } \\ & \text { ARD } \\ & \text { UNITS) } \end{aligned}$	TEMPER- ATURE WATER (DEG C)	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, } \\ & \text { NITRITE } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS N) } \end{aligned}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { AMMONIA } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	```PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)```
FEB								
29.	0830	1230	7.2	12.0	<0.01	3.0	<0.015	0.02
SEP								
25	0925	1200	7.2	12.5	<0.01	2.9	<0.015	0.02

384108104420701 - SC01606506DAA - FOUNTAIN NO. 2

LOCATION.--Lat $38^{\circ} 41^{\prime} 08^{\prime \prime}$, long $104^{\circ} 42^{\prime} 07^{\prime \prime}$, $\mathrm{NE}^{1 / 4} \mathrm{NE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec.6, T. 16 S ., R. 65 W., in El Paso County, Hydrologic Unit 11020003. AQUIFER.--Fountain Creek Alluvial Aquifer.

WELL CHARACTERISTICS.--Municipal well, diameter 16 in., depth 57 ft , screened 42 to 57 ft .
DATUM.--Elevation of land-surface datum is $5,550 \mathrm{ft}$ above sea level, from topographic map.
PERIOD OF RECORD.--March 1985 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	$\begin{gathered} \text { PH } \\ \text { WATER } \\ \text { WHOLE } \\ \text { FIELD } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPER- ATURE WATER (DEG C)	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { AMMONIA } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	```PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)```
FEB								
29.	0915	1410	7.2	12.0	<0.01	4.2	<0.015	0.02
SEP								
25..	0955	1300	7.2	13.0	<0.01	3.2	<0.015	0.02

384407104434801 - SC01506624BAD1 WIDEFIELD NO. 4

LOCATION.--Lat $38^{\circ} 44^{\prime} 07^{\prime \prime}$, long $104^{\circ} 43^{\prime} 48^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NE}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec. 24 , T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 11020003. AQUIFER.--Widefield Aquifer of Fountain Creek Alluvium.

WELL CHARACTERISTICS.--Municipal well, diameter 16 in., depth 71 ft , screened 41 to 71 ft .
DATUM.--Elevation of land-surface datum is $5,680.7 \mathrm{ft}$ above sea level.
PERIOD OF RECORD.--February 1981 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { AMMONIA } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	```PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)```
FEB								
29.	1025	619	7.1	13.0	<0.01	9.8	<0.015	0.03
SEP								
25..	1055	650	7.0	13.5	<0.01	5.9	<0.015	0.01

EL PASO COUNTY--Continued

384433104440702 - SC01506613CBD2-U-14

LOCATION.--Lat $38^{\circ} 44^{\prime} 33^{\prime \prime}$, long $104^{\circ} 44^{\prime} 07^{\prime \prime}$, in $\mathrm{SW}^{1 / 4} \mathrm{NW}^{1} / 4 \mathrm{SE}^{1} / 4$ sec. 13 , T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 11020003.

AQUIFER.--Widefield Aquifer of Fountain Creek Alluvium.
WELL CHARACTERISTICS.--Monitor well, diameter 2 in ., depth 47 ft , screened 43 to 46 ft .
DATUM.--Elevation of land-surface datum is $5,701 \mathrm{ft}$ above sea level.
PERIOD OF RECORD.--October 1992 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996									
DATE	TIME	$\begin{gathered} \text { DEPTH } \\ \text { BELOW } \\ \text { LAND } \\ \text { SURFACE } \\ \text { (WATER } \\ \text { LEVEL) } \\ \text { (FEET) } \end{gathered}$	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	PH WATER WHOLE FIELD (STANDARD UNITS)	$\begin{gathered} \text { TEMPER- } \\ \text { ATURE } \\ \text { WATER } \\ \text { (DEG C) } \end{gathered}$	```NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)```	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	NITROGEN, AMMONIA DISSOLVED (MG/L AS N)	```PHOS- PHORUS ORTHO, DIS- SOLVED (MG / L AS P)```
$\begin{aligned} & \text { MAR } \\ & 01 \ldots . \end{aligned}$	1600	33.71	638	7.1	12.5	<0.01	5.2	<0.015	0.02
$\begin{aligned} & \text { SEP } \\ & 27 \ldots \end{aligned}$	1420	34.15	618	7.0	13.5	<0.01	5.6	<0.015	0.02

384458104442601 - SC01506614AAD - SECURITY NO. 2
LOCATION.--Lat $38^{\circ} 44^{\prime} 58^{\prime \prime}$, long $104^{\circ} 44^{\prime} 26^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{NE}^{1 / 4}$ sec.14, T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 11020003.

AQUIFER.--Widefield Aquifer of Fountain Creek Alluvium.
WELL CHARACTERISTICS.--Municipal well, diameter 24 in ., depth 78 ft , screened 43 to 78 ft .
DATUM.--Elevation of land-surface datum is $5,717 \mathrm{ft}$ above sea level.
PERIOD OF RECORD.--February 1981 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

384535104450801 - SC01506611BCD2 VENETUCCI NO. 3
LOCATION.--Lat $38^{\circ} 45^{\prime} 35^{\prime \prime}$, long $104^{\circ} 45^{\prime} 08^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{SW}^{1} / 4 \mathrm{NW}^{1} / 4$ sec. 11 , T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 11020003.

AQUIFER.--Widefield Aquifer of Fountain Creek Alluvium.
WELL CHARACTERISTICS.--Irrigation well, diameter 24 in ., depth 80 ft , screening unknown.
DATUM.--Elevation of land-surface datum is $5,750.0 \mathrm{ft}$ above sea level.
PERIOD OF RECORD.--February 1981 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

EL PASO COUNTY--Continued

384604104451502 - SC01506602CCC2 U-9

LOCATION.--Lat $38^{\circ} 46^{\prime} 04^{\prime \prime}$, long $104^{\circ} 45^{\prime} 15^{\prime \prime}$, in SW ${ }^{1} / 4 \mathrm{SW}^{1} / 4 \mathrm{SW}^{1 / 4}$ sec.2, T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 11020003.

AQUIFER.--Widefield Aquifer of Fountain Creek Alluvium.
WELL CHARACTERISTICS.--Monitor well, diameter 2 in ., depth 55 ft , screened 51 to 53 ft .
DATUM.--Elevation of land-surface datum is $5,774 \mathrm{ft}$ above sea level.
PERIOD OF RECORD.--October 1992 to current year.

384610104453501 - SC01506603DDB SECURITY NO. 14

LOCATION.--Lat $38^{\circ} 46^{\prime} 10^{\prime \prime}$, long $104^{\circ} 45^{\prime} 35^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{SE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec. 14 , T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 11020003.

AQUIFER.--Widefield Aquifer of Fountain Creek Alluvium.
WELL CHARACTERISTICS.--Municipal well, diameter 24 in ., depth 80 ft , screened 39 to 80 ft .
DATUM.--Elevation of land-surface datum is $5,779.2 \mathrm{ft}$ above sea level.
PERIOD OF RECORD.--February 1981 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US /CM) } \end{aligned}$	$\begin{gathered} \text { PH } \\ \text { WATER } \\ \text { WHOLE } \\ \text { FIELD } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPER- ATURE WATER (DEG C)	$\begin{aligned} & \text { NITRO- } \\ & \text { GEN, } \\ & \text { NITRITE } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS N) } \end{aligned}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { AMMONIA } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { PHOS- } \\ \text { PHORUS } \\ \text { ORTHO } \\ \text { DIS- } \\ \text { SOLVED } \\ (M G / L \\ \text { AS P) } \end{gathered}$
FEB								
29.	1145	660	7.5	13.0	<0.01	7.3	<0.015	0.05
SEP								
25..	1205	638	7.4	14.0	<0.01	7.7	<0.015	0.04

384617104455901 - SC01506603CAD STRATMOOR HILLS NO. 4

LOCATION.--Lat $38^{\circ} 46^{\prime} 17^{\prime \prime}$, long $104^{\circ} 45^{\prime} 599^{\prime \prime}$, in $\mathrm{SE}^{1 / 4} \mathrm{NE}^{1 / 4} \mathrm{SW}^{1 / 4}$ sec.3, T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 11020003. AQUIFER.--Widefield Aquifer of Fountain Creek Alluvium.

WELL CHARACTERISTICS.--Municipal well, diameter 16 in., depth 49 ft , screened 29 to 49 ft .
DATUM.--Elevation of land-surface datum is $5,775.4 \mathrm{ft}$ above sea level.
PERIOD OF RECORD.--February 1981 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US /CM)	$\begin{gathered} \text { PH } \\ \text { WATER } \\ \text { WHOLE } \\ \text { FIELD } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPER- ATURE WATER (DEG C)	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { AMMONIA } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{aligned} & \text { PHOS- } \\ & \text { PHORUS } \\ & \text { ORTHO, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS P) } \end{aligned}$
FEB $29 .$.	1315	1050	7.4	13.0	<0.01	7.2	<0.015	0.02
$\begin{aligned} & \text { SEP } \\ & 25 \ldots \end{aligned}$	1340	735	7.5	15.0	<0.01	11	0.020	0.02

EL PASO COUNTY--Continued

384628104450801 - SC01506602BDC - TH-23

LOCATION.--Lat $38^{\circ} 46^{\prime} 28^{\prime \prime}$, long $104^{\circ} 45^{\prime} 08^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{SE}^{1} / 4 \mathrm{SW}^{1} / 4$ sec.2, T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 1102003. AQUIFER.--Widefield aquifer of Fountain Creek Alluvium.

WELL CHARACTERISTICS.--Monitor well, diameter 2 in., depth 89 ft , screened 73 to 88 ft .
DATUM.--Elevation of land-surface datum is $5,849 \mathrm{ft}$ above sea level.
PERIOD OF RECORD.--October 1992 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

384639104461401-SC01506603BAC1 - MARS GAS
LOCATION.--Lat $38^{\circ} 46^{\prime} 39^{\prime \prime}$, long $104^{\circ} 46^{\prime} 14^{\prime \prime}$, in $\mathrm{SW}^{1} / 4 \mathrm{NE}^{1 / 4} \mathrm{NW}^{1 / 4} / 4 \mathrm{sec} .3$, T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 1102003. AQUIFER.--Fountain Creek Alluvial Aquifer.
WELL CHARACTERISTICS.--Commercial well, diameter 6 in., depth 85 ft , screened 50 to 85 ft .
DATUM.--Elevation of land-surface datum is $5,820 \mathrm{ft}$ above sea level, from topographic map.
PERIOD OF RECORD.--March 1985 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

384653104451901-SC01406602BBB - TH-18

LOCATION.--Lat $38^{\circ} 46^{\prime} 53^{\prime \prime}$, long $104^{\circ} 45^{\prime} 199^{\prime \prime}$, in $\mathrm{NW}^{1 / 4} \mathrm{NW}^{1 / 4} \mathrm{NW}^{1} / 4$ sec.2. T. 15 S., R. 66 W., El Paso County, Hydrologic Unit 11020003.

AQUIFER.--Widefield aquifer of Fountain Creek Alluvium.
WELL CHARACTERISTICS.--Monitor well, diameter 2 in ., depth 122 ft , screened 96 to 122 ft .
DATUM.--Elevation of land-surface datum is $5,890 \mathrm{ft}$ above sea level.
PERIOD OF RECORD.--October 1992 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET)	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	$\begin{aligned} & \text { PH } \\ & \text { WATER } \\ & \text { WHOLE } \\ & \text { FIELD } \\ & \text { (STAND- } \\ & \text { ARD } \\ & \text { UNITS) } \end{aligned}$	TEMPER- ATURE WATER (DEG)	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { AMMONIA } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	```PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)```
MAR									
01	1420	90.72	549	7.1	14.0	<0.01	10	<0.015	0.07
SEP									
27	1240	89.83	498	6.9	14.5	<0.01	11	<0.015	0.07

EL PASO COUNTY--Continued

384718104463701 - SC01406633DAA - BARNES WELL

LOCATION.--Lat $38^{\circ} 47^{\prime} 18^{\prime \prime}$, long $104^{\circ} 46^{\prime} 37$ ", in $\mathrm{NE}^{1 / 4} \mathrm{NE}^{1 / 4} \mathrm{SE}^{1 / 4}$ sec.33. T. 14 S., R. 66 W., El Paso County, Hydrologic Unit 11020003.

AQUIFER.--Fountain Creek Alluvial Aquifer.
WELL CHARACTERISTICS.--Domestic well, diameter 6 in., depth 72 ft , screening unknown.
DATUM.--Elevation of land-surface datum is $5,830 \mathrm{ft}$ above sea level, from topographic map.
PERIOD OF RECORD.--March 1985 to current year.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	$\begin{gathered} \text { PH } \\ \text { WATER } \\ \text { WHOLE } \\ \text { FIELD } \\ \text { (STAND- } \\ \text { ARD } \\ \text { UNITS) } \end{gathered}$	TEMPER- ATURE WATER (DEG C)	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/LL } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { AMMONIA } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{aligned} & \text { PHOS- } \\ & \text { PHORUS } \\ & \text { ORTHO, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS P) } \end{aligned}$
FEB								
29.	1410	1240	7.3	12.0	<0.01	12	0.02	0.02
SEP								
25...	1440	1570	7.1	14.0	<0.01	12	0.02	0.02

385323104224001 - SC01306230ACC1 - I WELL
LOCATION.--Lat $38^{\circ} 53^{\prime} 23^{\prime \prime}$, long $104^{\circ} 22^{\prime} 40^{\prime \prime}$, in $\mathrm{SW}^{1 / 4} \mathrm{SW}^{1 / 4} \mathrm{NE}^{1 / 4}$ sec.30, T. 13 S., R. 62 W., El Paso County, Hydrologic Unit 11020004.

AQUIFER.--Black Squirrel Alluvial Aquifer.
WELL CHARACTERISTICS.--Public-supply well, diameter 16 in., depth 176 ft , screened 116 to 176 ft .
DATUM.--Elevation of land-surface datum is $6,160 \mathrm{ft}$ above sea level, from topographic map
PERIOD OF RECORD.--February 1985 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	TIME	$\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { DUCT- } \\ & \text { ANCE } \\ & \text { (US/CM) } \end{aligned}$	$\begin{aligned} & \text { PH } \\ & \text { WATER } \\ & \text { WHOLE } \\ & \text { FIELD } \\ & \text { (STAND- } \\ & \text { ARD } \\ & \text { UNITS) } \end{aligned}$	TEMPER- ATURE WATER (DEG C)	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NITRITE } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	$\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$	NITROGEN, AMMONIA DISSOLVED (MG/L AS N)	PHOSPHORUS ORTHO DISSOLVED (MG/L AS P)
FEB								
29.	1615	407	7.2	12.0	<0.01	8.1	<0.015	0.04
SEP								
25...	1625	401	7.1	13.0	<0.01	8.3	0.02	0.04

MISCELLANEOUS WATER-QUALITY IN THE RIO GRANDE BASIN

374752105300801 MEDANO CREEK NEAR MOSCA, CO--continued (Rio Grande National Water-Quality Assessment Program station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996

DATE	DIELDRIN DISSOLVED (UG/L)	METOLACHLOR WATER DISSOLV (UG/L)	MALA- THION, DISSOLVED (UG/L)	PARATHION, DISSOLVED (UG/L)	$\begin{gathered} \text { DI- } \\ \text { AZINON, } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (UG/L) } \end{gathered}$	$\begin{aligned} & \text { ATRA- } \\ & \text { ZINE, } \\ & \text { WATER, } \\ & \text { DISS, } \\ & \text { REC } \\ & \text { (UG/L) } \end{aligned}$	ALACHLOR, WATER, DISS, REC, (UG/L)	ACETOCHLOR, WATER FLTRD REC (UG/L)	$\begin{aligned} & \text { METRI- } \\ & \text { BUZINN } \\ & \text { SENCOR } \\ & \text { WATER } \\ & \text { DISSOLV } \\ & \text { (UG/L) } \end{aligned}$	$\begin{gathered} \text { 2,6-DI- } \\ \text { ETHYL } \\ \text { ANILINE } \\ \text { WAT FLLT } \\ 0.7 \mathrm{U} \\ \text { GF, REC } \\ (\mathrm{UG} / \mathrm{L}) \end{gathered}$	$\begin{aligned} & \text { TRI- } \\ & \text { FLUR- } \\ & \text { ALIN } \\ & \text { WAT FLT } \\ & 0.7 \mathrm{U} \\ & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { ETHAL- } \\ & \text { FLUR- } \\ & \text { ALIN } \\ & \text { WAT FLT } \\ & 0.7 \mathrm{U} \\ & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$
OCT 18..	--	--	--	--	--	--	--	--	--	--	--	--
NOV												
30...	--	--	--	--	--	--	--	--	--	--	--	--
JAN $30 .$.	--	--	--	--	--	--	--	--	--	--	--	
SEP												
04...	<0.001	<0.002	<0.005	<0.004	<0.002	<0.001	<0.002	<0.002	<0.004	<0.003	<0.002	<0.004
		TER-	LIN-	METHYL		PEB-	TEBU-	MOL-	ETHO-	BEN-	CARBO-	TER-
	PHORATE	BACIL	URON	PARA-	EPTC	ULATE	THIURON	INATE	PROP	FLUR-	FURAN	BUFOS
	WATER	WATER	WATER	THION	WATER	WATER	WATER	WATER	WATER	ALIN	WATER	WATER
	FLTRD	FLTRD	FLTRD	WAT FLT	FLTRD	FILTRD	FLTRD	FLTRD	FLTRD	WAT FLD	FLTRD	FLTRD
	0.7 U											
DATE	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$
OCT 18..	--	--	--	--	--	--	--	--	--	--	--	--
NOV												
30...	--	--	--	--	--	--	--	--	--	--	--	--
JAN $30 \text {. . . }$	--	--	--	--	--	--	--	--	--	--	--	--
SEP												
04..	<0.002	<0.007	<0.002	<0.006	<0.002	<0.004	<0.010	<0.004	<0.003	<0.002	<0.003	<0.013
	PRONAMIDE	$\begin{aligned} & \text { DISUL- } \\ & \text { FOTON } \end{aligned}$	TRIALLATE	$\begin{aligned} & \text { PRO- } \\ & \text { PANIL } \end{aligned}$	$\begin{aligned} & \text { CAR- } \\ & \text { BARYL } \end{aligned}$	THIOBENCARB	DCPA	PENDI-METH-	NAPROPAMIDE	PROPARGITE	METHYL AZIN-	PERMETHRIN
	WATER	ALIN	WATER	WATER	PHOS	CIS						
	FLTRD	WAT FLT	FLTRD	FLTRD	WAT FLT	WAT FLT						
	0.7 U											
DATE	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & (\mathrm{UG} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \text { GF, REC } \\ & \text { (UG/L) } \end{aligned}$
OCT 18...	--	--	--	--	--	--	--	--	--	--	--	--
NOV												
30...	--	--	--	--	--	--	--	--	--	--	--	--
JAN												
30...	--	--	--	--	--	--	--	--	--	--	--	--
SEP												
04...	<0.003	<0.017	<0.001	<0.004	<0.003	<0.002	<0.002	<0.004	<0.003	<0.013	<0.001	<0.005

INDEX

Clear Creek,	
above Johnson Gulch near Idaho Springs	123,492
above West Fork Clear Creek near Empire	119,492
at Golden	125,493
near Lawson	121,492
near Loveland Pass	95,491
Color unit, definition of.	24
Conejos River,	
below Platoro Reservoir	462
near Lasauses	466
near Mogote	463
Contents, definition of	24
Control, definition of	24
Control structure, definition of.	24
Cooperation. .	4
Cottonwood Creek,	
at mouth at Pikeview	280,496
at Woodmen Road near Colorado Springs	279,496
Cubic foot per second, definition of.	24
Cubic feet per second per square mile, definition of	24
Data collection and computation,	
Data presentation, explanation of	15,21,22
Data table of daily mean values, explanation of	17
Deer Creek near Bailey,	
surface-water record	62
water-quality record	63-66
precipitation record	67
Definition of terms.	23-29
Diatoms, definition of.	26
Discharge at partial-record stations and	
Discharge, definition of.	24
Discontinued surface-water discharge or stage-only stations \qquad	32-37
Discontinued surface-water-quality stations	38
Dissolved-solids concentration,	
Downstream order system.	13
Drainage area, definition of	24
Drainage basin, definition of	24
Dry mass, definition of.	23
Duck Creek near Grant,	
surface-water record	49
water-quality record	50-53
precipitation record	54
East Fork Arkansas River at U.S. Highway 24 near Leadville,	
water-quality record	180-184
Elevenmile Canyon Reservoir near Lake George,	
Explanation of the Records.	13
Fecal Coliform bacteria, definition of.	23
Fecal Streptococcal bacteria, definition of....	23
Fountain Creek,	
above Little Fountain Creek below Fountain, water-quality record \qquad	319-320
at Circle Drive below Colorado Springs water-quality record	308-309
at Colorado Springs,	
surface-water record	291
water-quality record	292-298
at Pueblo,	
surface-water record	336
water-quality record................	337-340
at Security,	
surface-water record	310
water-quality record	311-317
below Janitell Road below Colorado Springs,	
surface-water record	299
water-quality record	300-307
near Colorado Springs,	
surface-water record	263
water-quality record	264-270

Fountain Creek, near Fountain,	
surface-water record	325
water-quality record	326-332
near Pinon,	
surface-water record	333
water-quality record	334-335
Fourmile Creek,	
below Cripple Creek near Victor	228,495
near Canon City	229,495
Frontier ditch near Coolidge, KS	412
Gage height, definition of	24
Gaging station, definition of	24
Geneva Creek at Grant,	
surface-water record	55
water-quality record	56-59
precipitation record	60
Green algae, definition of	26
Halfmoon Creek, near Malta, 193	
surface-water record	193
water-quality record	194-195
Hardness, definition of Homestake tunnel near Leadville,	
Hoosier Pass tunnel at Hoosier Pass,	
Horsetooth Reservoir near Fort Collins,	
water-quality record	139-142
Huerfano River near Boone	350,498
Hydrologic bench-mark network,	
Hydrologic unit, definition of	25
Identifying Estimated Daily Discharge, explanation of	
Instantaneous discharge, definition of	24
Introduction	1
Jimmy Camp Creek at Fountain	318,497
Joe Wright Creek,	
above Joe Wright Reservoir	150,494
below Joe Wright Reservoir	151,494
John Martin Reservoir at Caddoa,	
Kansas River basin, surface-water records in	178
Laboratory Measurements, explanation of	20
Lake Creek above Twin Lakes Reservoir	196
Lakes and reservoirs:	
Carter Lake	147-149
Chatfield Lake	70
Cheeseman Lake	47
Cherry Creek Lake	88
Elevenmile Canyon Reservoi	47
Horsetooth Reservoir	138-142
John Martin Reservoi	401
Platoro Reservoi	461
Pueblo Reservoir	241-251
Teller Reservoir	239
Trinidad Lake	365
Turquoise Lake	192
Land-surface datum, definition of	25
Latitude-Longitude System, explanation of	14
Leavenworth Creek, at mouth near Georgetown,	
surface-water record.	113
water-quality record	114-117
precipitation record	118
Little Dry Creek at Greenwood Village	77,490
Little Fountain Creek,	
near Fort Carson .	$322,497$
Los Pinos River (Rio Grande basin) near Ortiz	465
Map of Colorado, showing locations of crest-stage partial-record stations.	3

CONVERSION FACTORS ANDVERIICAL DATUM

Multiply

By
To obtain

Length

inch (in.)
foot (ft)
mile (mi)
2.54×10^{1}
2.54×10^{-2}
3.048×10^{-1}
1.609×10^{0}

Area

acre
square mile $\left(\mathrm{mi}^{2}\right)$
gallon (gal)
million gallons (Mgal)
cubic foot (ft^{3})
cubic-foot-per-second day $\left[\left(\mathrm{ft}^{3} / \mathrm{s}\right) \mathrm{d}\right]$
acre-foot (acre- ft$)$
cubic foot per second $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$
gallon per minute (gal/min)
million gallons per day ($\mathrm{Mgal} / \mathrm{d}$)
\square
ton (short)

Mass
4.047×10^{3}
4.047×10^{-1}
4.047×10^{-3}
2.590×10^{0}

Volume

3.785×10^{0}	liter
3.785×10^{0}	cubic decimeter
3.785×10^{-3}	cubic meter
3.785×10^{3}	cubic meter
3.785×10^{-3}	cubic hectometer
2.832×10^{1}	cubic decimeter
2.832×10^{-2}	cubic meter
2.447×10^{3}	cubic meter
2.447×10^{-3}	cubic hectometer
1.233×10^{3}	cubic meter
1.233×10^{-3}	cubic hectometer
1.233×10^{-6}	cubic kilometer

Flow

2.832×10^{1}
2.832×10^{1}
2.832×10^{-2}
6.309×10^{-2}
6.309×10^{-2}
6.309×10^{-5}
4.381×10^{1}
4.381×10^{-2}
9.072×10^{-1}
square meter
square hectometer square kilometer square kilometer
liter
cubic decimeter
cubic meter
cubic meter cubic hectometer cubic decimeter cubic meter cubic meter cubic hectometer cubic meter cubic kilometer
liter per second cubic decimeter per second cubic meter per second liter per second cubic decimeter per second cubic meter per second cubic decimeter per second cubic meter per second
megagram or metric ton

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment for the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

[^0]: ${ }^{1}$ Period since imported water began flowing past this gaging station.

[^1]: e-Estimated.
 a-From rating curve extended above $82 \mathrm{ft}^{3} / \mathrm{s}$.
 b-Also occurred Jul 13, 1995.

[^2]: a-Also occurred Jan 4-29, 1988

[^3]: a-Also occurred Mar 6-16

[^4]: e-Estimated.
 a-Also occurred Feb 13, 1995.

[^5]: a-Adjusted for inflow from Harold D. Roberts tunnel since 1964
 b-Also occurred Dec 5, 13, and 18.
 c-Maximum gage height, 4.72 ft , Feb 11, 1952 , site and datum then in use.

[^6]: e-Estimated.

[^7]: e-Estimated.
 a-Also occurred Sep 6, 17.

[^8]: e-Estimated.

[^9]: a-Also occurred Sep 4.

[^10]: e-Estimated.

[^11]: e-Estimated.
 a-Also occurred Feb 24.

[^12]: e-Estimated

[^13]: e-Estimated.
 a-Also occurred Feb 13, 1995.

[^14]: b-From rating curve extended above $3800 \mathrm{ft}^{3} / \mathrm{s}$.

[^15]: e-Estimated.
 a-Also occurred Feb 13.
 b-Maximum gage height, $7.54 \mathrm{ft}, \mathrm{Jun}$ 8, 1987.

[^16]: a-Average discharge for 79 years (water years 1896-1974), $344 \mathrm{ft}^{3} / \mathrm{s} ; 249200$ acre-ft/yr, prior to completion of Chatfield Dam. b-Maximum daily discharge for period of record, $12000 \mathrm{ft}^{3} / \mathrm{s}$, Jun 17, 1965.
 c-Also occurred Feb 2.
 d-Minimum daily discharge for period of record, $8.8 \mathrm{ft}^{3} / \mathrm{s}, \operatorname{Mar} 25,1951$.
 f-Maximum discharge and stage for period of record, $40300 \mathrm{ft}^{3} / \mathrm{s}$, Jun 17, 1965, gage height, 18.66 ft , from floodmarks, present datum, from rating curve extended above $2700 \mathrm{ft} / \mathrm{s}$, on basis of contracted-opening measurement of peak flow. g-Maximum gage height for statistical period, 9.42 ft , Jun 4, 1995.

[^17]: e-Estimated.

[^18]: ANNUAL MEAN
 HIGHEST ANNUAL MEAN
 LOWEST ANNUAL MEAN
 HIGHEST DAILY MEAN
 LOWEST DAILY MEAN
 ANNUAL SEVEN-DAY MINIMUM
 INSTANTANEOUS PEAK FLOW
 INSTANTANEOUS PEAK STAGE
 ANNUAL RUNOFF (AC-FT)
 10 PERCENT EXCEEDS
 50 PERCENT EXCEEDS
 90 PERCENT EXCEEDS

[^19]: e-Estimated.
 a-Also occurred Mar 6-9, 16.
 b -Site and datum then in use.

[^20]: e-Estimated.
 a-Also occurred Feb 17-19.

[^21]: a-Also occurred Sep 4, 11.

[^22]: e-Estimated.
 a-Also occurred Jun 23.
 b-Maximum gage height, 8.10 ft , Jun 21, 1995.

[^23]: e-Estimated.
 a-Average discharge for 48 years (water years 1927-74), $366 \mathrm{ft}^{3} / \mathrm{s}$; 265200 acre-ft/yr, prior to completion of Chatfield Dam.

[^24]: e-Estimated.
 a-Also occurred Feb 9-13, and 26.

[^25]: e-Estimated.
 a-Also occurred Aug 14.

[^26]: e-Estimated.

[^27]: e-Estimated.
 a-Also occurred Jan 14-16, 1977.
 b-Caused by failure of Lawn Lake Dam, gage height, indeterminate; maximum natural discharge, $1870 \mathrm{ft}{ }^{3} / \mathrm{s}$, Jun 18 , 1995 , gage height, 6.80 ft .

[^28]: e-Estimated.
 a-Also occurred Mar 11-12, 29-30.
 a-Also occurred Mar $11-$

[^29]: e-Estimated.
 a-Also occurred Dec 30.

[^30]: e-Estimated.
 a-Average discharge for 71 years (water years 1902-03, 1906-74), $777 \mathrm{ft} / \mathrm{s}$; 562900 acre-ft/yr, prior to completion of Chatfield Dam.
 b-Maximum daily discharge for period of record, $31000 \mathrm{ft}^{3} / \mathrm{s}$, Jun 7, 1921.
 c-Minimum daily discharge for period of record, $28 \mathrm{ft}^{3} / \mathrm{s}, \mathrm{Apr} 30,1955$.
 d-Maximum discharge and stage for period of record, $31500 \mathrm{ft}^{3} / \mathrm{s}, \mathrm{May} 8,1973$, gage height, 11.73 ft .

[^31]: e-Estimated.
 a-Average discharge for 22 years (water years 1953-74), $572 \mathrm{ft}^{3} / \mathrm{s} ; 414400$ acre-ft/yr, prior to completion of Chatfield Dam. b-Maximum daily discharge for period of record, $20800 \mathrm{ft} 3 / \mathrm{s}, \mathrm{May} 9,1973$.

[^32]: e-Estimated.
 a-Also occurred Dec 31, 1994.

[^33]: e-Estimated.
 a-Also occurred Aug 19-20, 1902, and Jul 25 to Aug 7, 1903.
 b-For stage recorded on channel no. 2.
 c-From floodmarks in gage well.

[^34]: a-Also occurred Feb 17, 1995

[^35]: e-Estimated.

[^36]: e-Estimated.
 a-Also occurred Feb 12-14, 17-19.

[^37]: a-Field dissolved bicarbonate, determined by incremental titration method.
 b-Field total dissolved alkalinity, determined by incremental titration method.
 K-Based on non-ideal colony count.

[^38]: e-Estimated.

[^39]: e-Estimated.
 a-Highest annual mean, also occurred 1995 water year.
 b-Maximum gage height, 8.40 ft , Jun 23, 1995.

[^40]: e-Estimated.

[^41]: e-Estimated.

[^42]: e-Estimated.
 a-From rating curve extended above $127 \mathrm{ft}^{3} / \mathrm{s}$

[^43]: e-Estimated.
 a-From rating curve extended above $5300 \mathrm{ft}^{3} / \mathrm{s}$.

[^44]: e-Estimated.

[^45]: e-Estimated.
 a-Also occurred Feb 14-17, Mar 4-9, 18-21, 27, and Mar 31 to Apr 18.

[^46]: e-Estimated.
 a-Average discharge for 8 years (water years 1966-73), $643 \mathrm{ft}^{3} / \mathrm{s} ; 465900 \mathrm{acre-ft/yr}$, prior to completion of Pueblo Dam.
 b-Also the maximum daily discharge for period of record
 c-Also occurred Jan $11-12$ and Jan $15-16$.
 d-Minimum daily discharge for period of record, $28 \mathrm{ft}^{3} / \mathrm{s}$, May 11,1967
 f-Present site and datum, from rating curve extended above $1600 \mathrm{ft} / \mathrm{s}$, on basis of slope-area measurement of peak flow.
 g-From floodmarks.

[^47]: a-From rating curve extended above $190 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurements of peak flow at gage heights, 3.87 ft , 4.52 ft ,

[^48]: a-No flow most of time most years

[^49]: e-Estimated.
 a-Also occurred Feb 7-12, and Mar 5, 7, 1995
 -Also occurred Aug 14

[^50]: e-Estimated.
 a-Also occurred Feb 15, 17
 b-No flow many days during 1976, 1991-92.
 c-From rating curve extended above $34 \mathrm{ft}^{3} / \mathrm{s}$.
 d-Maximum gage height, 3.88 ft , Dec 22, 1983, backwater from ice.

[^51]: e-Estimated.
 a-From rating curve extended above $1100 \mathrm{ft}^{3} / \mathrm{s}$.
 b-From rating curve extended above $60 \mathrm{ft}^{3} / \mathrm{s}$, on basis of culvert measurement of peak flow, gage height not determined. c-From flood mark, maximum gage height for flood of Jun 17, 1993 not determined.

[^52]: e-Estimated.
 a-From rating curve extended above $100 \mathrm{ft}^{3} / \mathrm{s}$, on basis of a slope-area measurement of peak flow.
 b-Datum then in use, maximum gage height, 9.89 ft , Aug 19, 1996.

[^53]: K-Based on non-ideal colony count

[^54]: e-Estimated.

[^55]: e-Estimated.
 a-Also occurred Apr 19.

[^56]: e-Estimated.
 a-Also occurred Aug 30.

[^57]: e-Estimated.
 a-Also occurred Jul 4, 8.
 b-From slope-area measurement of peak flow. c-From floodmark.

[^58]: e-Estimated.

[^59]: e-Estimated.

[^60]: -Estimated.
 a-Does not include 1988 to 1994 water years.

[^61]: e-Estimated.
 a-No flow at times most years.
 b-From rating curve extended above $160 \mathrm{ft}^{3} / \mathrm{s}$.

[^62]: e-Estimated.
 a-Also occurred Dec 21-22.

[^63]: e-Estimated.
 a-No flow most of time.
 $b-$ From rating curve extended above $100 \mathrm{ft}^{3} / \mathrm{s}$.

[^64]: K-Based on non-ideal colony count.

[^65]: K-Based on non-ideal colony count.

[^66]: e-Estimated.
 a-From rating curve extended above $811 \mathrm{ft}^{3} / \mathrm{s}$.
 b-From rating curve extended above $1800 \mathrm{ft}^{3} / \mathrm{s}$.

[^67]: e-Estimated.
 a-No flow many days most years.
 b-Maximum discharge for period of record, $19400 \mathrm{ft} / \mathrm{s}$, Aug 1, 1923, gage height, 9.4 ft , datum then in use, from rating curve extended above $1200 \mathrm{ft}^{3} / \mathrm{s}$, on the basis of slope-area measurement of peak flow.
 c-Maximum gage height for statistical period, 11.75 ft , Jul 19, 1995.

[^68]: e-Estimated.
 a-Also occurred Feb 28.
 b-From slope-area measurement of peak flow, at site 2 mi upstream from present site, caused by failure of Apishapa Dam 31 mi upstream.
 c-Peak stage for flood of Aug 22, 1923, unknown.

[^69]: e-Estimated.
 a-Average discharge for 9 years (water years $1965-73$), $636 \mathrm{ft}^{3} / \mathrm{s}, 460800$ acre-ft/yr, prior to completion of Pueblo Dam.

[^70]: e-Estimated.
 a-Also occurred Feb 15.

[^71]: e-Estimated.
 a-Average discharge for 61 years (water years 1913-73), $244 \mathrm{ft}^{3} / \mathrm{s} ; 176800$ acre-ft/yr, prior to completion of Pueblo Dam. b-Maximum daily discharge for period of record, $61100 \mathrm{ft}^{3} / \mathrm{s}$, Jun 4, 1921.
 c-Minimum daily discharge for period of record, no flow, Jan 20-22 and Mar 20-22, 1915.
 d-Maximum discharge and stage for period of record, $200000 \mathrm{ft}^{3} / \mathrm{s}$, Jun 4, 1921, gage height, 18.40 ft , site and datum then in use, from rating curve extended above $15000 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurement of peak flow.
 f-Maximum gage height, 9.30 ft , Jul 13 .
 g-Maximum gage height for statistical period, 12.12 ft , Jun 4, 1995.

[^72]: e-Estimated.
 a-Average discharge for 34 years (water years 1940-73), $203 \mathrm{ft}^{3} / \mathrm{s} ; 147100$ acre-ft/yr, prior to completion of Pueblo Dam. b-Maximum daily discharge for period of record, $25800 \mathrm{ft}^{3} / \mathrm{s}$, May $20,1955$.
 c-Also occurred Apr 4.
 d-Minimum daily discharge for period of record, $0.9 \mathrm{ft}^{3} / \mathrm{s}$, Jul 31, Aug 1 and 3, 1964.
 f -Maximum discharge and stage for period of record, $44000 \mathrm{ft}^{3} / \mathrm{s}$, May 20 , 1955 , gage height, 15.03 ft , site and datum then in use, from rating curve extended above $24000 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurement of peak flow. g-Maximum gage height for statistical period, $8.52 \mathrm{ft}, \mathrm{Jul} 21,1995$.

[^73]: e-Estimated.
 a-Also occurred Feb 28-29, and Mar 7.
 b-Also occurred Feb 24 to Mar 2, 1977.
 c-From rating curve extended above $300 \mathrm{ft}^{3} / \mathrm{s}$, on basis of drift-timed measurement, and slope-area measurements of peak flow. d-From floodmarks.

[^74]: a-Also occurred Aug 4, 6-7, and 19
 b-Also occurred Jul 5-8, 12-13, 16-21, and Aug 13
 c-Also occurred Jun 8-13, 1968.
 d-From rating curve extended above $65 \mathrm{ft}^{3} / \mathrm{s}$, on basis of slope-area measurement of peak flow
 f-From floodmarks. Maximum gage height, 9.98 ft , Aug 9, 1979, from floodmark

[^75]: e-Estimated.
 a-Average discharge for 10 years (water years 1967-76), $37.9 \mathrm{ft}^{3} / \mathrm{s} ; 27460$ acre-ft/yr, prior to completion of Trinidad Dam.
 b-No flow at times in most years.
 $\mathrm{c}-$ From rating curve extended above $2100 \mathrm{ft}^{3} / \mathrm{s}$, on basis of two slope-area measurements of peak flow .

[^76]: e-Estimated.
 a-No flow most of the time.
 b-From rating curve extended above $3.1 \mathrm{ft}^{3} / \mathrm{s}$ on basis of area-velocity study.
 c-From rating extended to peak flow on the basis of slope-conveyance.

[^77]: e-Estimated.
 a-Also occurred Jul 1-9, 1990.

[^78]: e-Estimated.
 a-Average discharge for 37 years (water years 1923-31, 1949-76), $116 \mathrm{ft}^{3} / \mathrm{s}$; 84040 acre-ft/yr, prior to completion of Trinidad Reservoir.
 b-Maximum daily discharge for period of record, $46300 \mathrm{ft}^{3} / \mathrm{s}$, May 20,1955
 c-No flow at times in 1924-25, 1927, 1949, and 1974.
 d-Maximum discharge and stage for period of record, $70000 \mathrm{ft}^{3} / \mathrm{s}$, May 20, 1955, gage height, 20.00 ft , from rating curve extended above $38000 \mathrm{ft}^{3} / \mathrm{s}$, at different datum.
 f-Maximum gage height for statistical period, 10.21 ft, Aug 31, 1996.

[^79]: e-Estimated.
 a-Average discharge for 5 years (water years 1939-43), $628 \mathrm{ft}^{3} / \mathrm{s}$, unadjusted; $455000 \mathrm{acre-ft/yr}$, Martin Dam.
 b-Also occurred Feb 1.
 c-Also occurred Feb 13-15.
 d-No flow at times in 1945-47. Minimum daily prior to construction of John Martin Dam, $5 \mathrm{ft}{ }^{3} / \mathrm{s}$, Jul 16 , 1939 .
 f-Maximum discharge for period of record, $40000 \mathrm{ft}^{3} / \mathrm{s}$, $\mathrm{Apr} 24,1942$, gage height, 10.46 ft, site and datum then in use, from
 rating curve extended above $12000 \mathrm{ft}^{3} / \mathrm{s}$, on basis of flow-over-dam and critical-depth measurement of peak flow.
 g-Maximum gage height for period of record, 10.62 ft , Jun 18, 1965 , backwater from Caddoa Creek, site and datum then in use.

[^80]: e-Estimated.
 a-Average discharge for 30 years (water years 1914-43), $298 \mathrm{ft}^{3} / \mathrm{s}$; 215900 acre-ft/yr, prior to and during construction of John Martin Dam.
 b-Also occurred Jul 5, 1995.
 c-Maximum daily discharge for period of record, $87300 \mathrm{ft}^{3} / \mathrm{s}$, Jun 6, 1921.
 d-Also occurred Apr 16.
 f-Also occurred Jan 12, 14.
 g-Minimum daily discharge for period of record, no flow at times in 1913-15.
 $h-$ From rating curve extended above $3500 \mathrm{ft}^{3} / \mathrm{s}$.
 i-Maximum discharge and stage for period of record, $130000 \mathrm{ft} / \mathrm{s}$, Jun 5, 1921, gage height, 14.55 ft , datum then in use, from rating curve extended above $10000 \mathrm{ft}^{3} / \mathrm{s}$.
 j-Datum then in use, from floodmarks.

[^81]: e-Estimated.
 a-Also occurred Aug 14-18, 1976, and days during 1977, 1978, and 1979.
 b-On basis of measurement of peak flow through culvert and over road.
 c-Maximum stage, 8.18 ft , May 27, caused by backwater from Arkansas River.

[^82]: e-Estimated.

[^83]: CAL YR 1995 TOTAL 5305.91 MEAN 14.5 MAX 51 MIN . 00 AC-FT 10520
 WTR YR 1996 TOTAL 4780.29 MEAN 13.1 MAX 48 MIN . 00 AC-FT 9480

[^84]: e-Estimated.
 a-Also occurred Jan 2-4.
 b-Also occurred Feb 2 to Mar 14
 c-Also occurred Nov 3-4, 1960.
 d-Present site and datum, from rating curve extended above $1200 \mathrm{ft}^{3} / \mathrm{s}$.

[^85]: a-Estimated. Also occurred May 19, 1987.
 b-Also occurred Jan 2-19.
 c-Also occurred Nov 4-5, Nov 7 to Dec 8.
 d-Also occurred Jan 23, 1935, and Sep 25-27, 1990.
 f-Maximum gage height for period of record, 3.66 ft , occurred May 8, 1952.

[^86]: e-Estimated.
 a-Also occurred Feb 1-2.

[^87]: e-Estimated.
 a-Also occurred Dec 24-25.
 b-From rating curve extended above $12900 \mathrm{ft}^{3} / \mathrm{s}$.

[^88]: e-Estimated.
 a-Water years 1983-1990 were published by Colorado Division of Water Resources.
 b-Also occurred May 17.
 c-Present datum, from rating curve extended above $83 \mathrm{ft}^{3} / \mathrm{s}$.
 d-Maximum gage height, 3.94 ft, May 20 , 1970.

[^89]: e-Estimated.

[^90]: e－Estimated．

[^91]: e-Estimated.

[^92]: e-Estimated.
 a-Also occurred Jan 2 to Apr 6.
 b-Also occurred Jan 21-27.
 c-Also occurred Oct 17-20, 1955.

[^93]: e-Estimated.
 a-Also occurred Nov 28.
 b-Also occurred Jan 26.
 c-Present site and datum, from rating curve extended above $3100 \mathrm{ft}^{3} / \mathrm{s}$.
 d-From floodmarks.

[^94]: e-Estimated.
 a-Also occurred Aug 12 to Sep 21, and Sep 24-27.

[^95]: e-Estimated.
 a-Average discharge for 31 years (water years $1900-30$), $846 \mathrm{ft}^{3} / \mathrm{s} ; 612900$ acre-ft/yr, includes period of extensive development for irrigation.
 b-Maximum daily discharge for period of record, $13100 \mathrm{ft}^{3} / \mathrm{s}$, Jun 8, 1905.
 c-Also occurred Aug 1-4.
 d-No flow at times in 1950-51, 1956.
 f-Maximum discharge and stage for period of record, $13200 \mathrm{ft}^{3} / \mathrm{s}$, Jun 8,1905 , gage height, 9.1 ft , from rating curve extended above $8000 \mathrm{ft}^{3} / \mathrm{s}$.
 g-Maximum gage height, 3.63 ft , Feb 14, backwater from ice.

[^96]: a-Lab total dissolved alkalinity, determined by fixed-endpoint titration method.

[^97]: Water year 1996, 38,690

[^98]: Water year 1996, 34,850

[^99]: a-Month or day of occurrence is unknown or not exact.
 b-Previously operated as a continuous-record gaging station.
 c-At different datum.

