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6 Some Advanced Topics 

6.1 Advanced Models 

6.1.1 Regression When the 
Dependent Variable is Implicit 

In all cases considered in previous sections, 
the assumption has been made that the deter- 
ministic part of the model equation can be 
solved explicitly for the dependent variable. 
However, this may not be true in some cases. 
An example of such a model written in terms 
of the true value for the dependent variable 
f=A4,Pl,,P2) is 

-tan--l g I ill -[=O 

2f-k 0 k&- 

(6.1-1) 

where k =3& +& and f=fl[,&,&) is the exact 
solution of equation 6.1-1. As can be seen, f is 
implicit in the model equation and cannot be 
directly solved for. A general deterministic form 
for an exact model (that is, a model that does 
not contain E) where the dependent variable is 
implicit is 

dfkMMl=o (6.1-2) 

where 4 and @ are defined as usual. 
Based on equation 6.1-2, a true regression 

model can be written in terms of observation 
vector _Y and disturbances 2 in the usual form 

_Y=fc@)+r (6.1-3) 

where f(Q) is the vector of order n that is com- 
puted from 

In equation 6.1-4 vector g of order n represents 
n equations, each of which has the form of equa- 
tion 6.1-2 written for an observation point. As 
an example, equation 6.1-1 would be written in 
the form 

gi’ 

Plk 

a@, +&) 

-5‘i=O, i=1,2 ,..., n . (6.1-5) 

Note that in equation 6.1-5 only f evaluated at 
point i (that is, fi) appears in the equation to 
compute gi. However, in general this equation 
could contain values of f evaluated at any 
number of the possible pointsj=1,2, . . . . n. An 
example of this type of model is the numerical 
model discussed in the next section. 

The estimated regression model derived from 
equations 6.1-3 and 6.1-4 is 

_Y=f(f&)+e (6.1-6) 

and 

g[f(~,!!hQl=!? (6.1-7) 

where 4 and e are, as usual, general estimates 
of fi and 5, respectively. 

The general approach to solving the implicit- 
variable problem is very similar to that followed 
in section 3.3.1. First, the dependent variable 
values are written using a Taylor series expan- 
sion about an initial set of parameters. Then, 
from this, the linearized regression problem is 
set up and solved recursively to give the final 
solution to the nonlinear problem. 

Taylor series expansion of f about an ar- 
bitrary initial set of parameters & can be writ- 
ten in the form of equation 3.3-5, 

f(&b)%)+&@-h)) (6.1-8) 

where 

,&)=f(&b(J (6.1-9) 

(6.1-10) 

By using equation 6.1-6, equation 6.1-8 can be 
modified to give the estimated linearized regres- 
sion model c 
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Y-fo=&&-&J+e (6.1-11) 

which is exactly the same as the model used for 
the standard nonlinear case discussed in section 
3.3.1. 

To solve the linearized regression model based 
on equation 6.1-11, fe can be computed from 
equation 6.1-7 with b=&e,, and X0 can be com- 
puted by implicitly differentizing equation 
6.1-7 with respect to bj(j=l,2,...g), setting 
b=&-,, then solving for &e. To accomplish this 
computation of .X0, note that for any differen- 
tial change dfi in parameter vector b to produce 
a new solution f of g=$ the total differential 
dg must equal zero because g is always zero. 
Hence, by employing the chain rule of caIcuIus, 
there results 

dg= 
I 
dbj=Q,j=1,2,...,p (6.1-12) 

where g=(hQ}={ ZJgilafi}. Note that if gi con- 
tains only fit then g is diagonal. Equation 
6.1-12 can be evaluated using b=b and 
fo=f(&,~oo) to give 

, j=1,2 ,..., p (6.1-13) 

where 

(6.1-14) 

and subscript (or superscript) 0 means that the 
quantity is evaluated using b=bo and f=fo. 
Solution of equation 6.1-7 for fo (using, for ex- 
ample, Newton iteration) followed by solution 
of equation 6.1-13 for z. provides a convenient 
method of obtaining initial values fo and go 
from initial parameter estimates &,. However, 
for subsequent iterations this method can be 
time consuming because it involves solving g=g 
each time a new vector f and a new set of 
sensitivity vectors ~j are to be computed from 
an updated parameter set. 

A good method for computing good approx- 
imate values of f and g corresponding to some 
arbitrary parameter set b that is close to b 

involves approximating g with another Taylor 
series expansion. If & is close enough to b to 
allow dropping ah terms except linear terms, 
then Taylor series expansion of equation 6.1-7 
about initial set of dependent variable values f. 
can be written as 

Qo(b)+&gb)(f-&)) (6.1-15) 

where g~(~~=g(fo,~,& &&(&H agJafil~+J 
and [g&b). By knowing b, equation 6.1-15 
may be solved for 6 Corresponding values of X 
are obtained as follows. If equation 6.1-15 E 
implicitly differentiated with respect to 
bj (j=1,2 ,..., p), there results 

ail,@) af - =-&f&b) z - 
ago(b) 

a bj i 
7 (f-fo, W-16) 

i 

or, 

af 

-  ‘~j=-~~l(b) 

abj 

j=1,2 ,..., p . (6.1-17) 

By using the above results, solution of the 
nonlinear regression problem is obtained by a 
procedure analogous to the procedure followed 
for the standard nonlinear problem. As in- 
dicated previously, to begin the first iteration 
assume an initial set of parameters i. and solve 
equation 6.1-7 for fo=f(&bo). Then solve equa- 
tion 6.1-13 for &. Next, form and solve normal 
equation 3.3-10 by minimizing S(b) (given by 
equation 3.3-4) with respect to b, then scaling 
the resulting equations with C& That is, form 
and solve for Sl 

where 

S&SOosl =gJ&yo, (6.1-M) Pm- 

Eo=So!20 (6.1-19) 

gl=&y(bl-&& (6.1-20) 
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For the second iteration, solve equation 
6.1-15, written using b=br, for f-fo=fr-& The 
result can be stated as 

U~=-&ti1k3 (6.1-21) 

where subscript 1 on g and g indicates evalua- 
tion using the most recent values available for 
f and fi (that is, &, and &), and 

Ul =frfo (6.1-22) 

Next, solve equation 6.1-17 for zl: 

j=1,2,...,p (6.1-23) 

where (.)r indicates evaluation using &;br. 
Finally, form and solve the normal equations, 
written in terms of S, and fr, for &. 

For general iterati& r, the equations to solve 
are 

l&=-A-&& (6.1-24) 

j=1,2,...,p (6.1-25) 

ti=!!r+L1 (6.1-26) 

&TcAs-&+ 1 =&T$@-/$’ (6.1-27) 

!!r+,=s4r+1+!3 (6.1-28) 

where 

&=&G 9 (6.1-29) 

fo=fC&,bo) so that go=!& ad f-l=fo . 

At convergence of the solution &,,z+ and 
g,, ah tend to zero so that ,$=A&&) w)ere 
b=!!r+1-3. “b At this point S(@=(~-f(&&)T~ 
-(x-f($)) is at a minimum, and the nonlinear 
regression problem has been solved. 

The solution procedure given by equations 
6.1-24 through 6.1-29 can actually be con- 
sidered to be a generalization of the Gauss- 
Newton procedure discussed in section 3.3.1, 
because if the standard nonlinear model is 
stated in the form 

g=f($&f=0 (6.1-30) 

then 

&=f(f,&‘-&.-1 (6.1-31) 

( a:;;q=( g=zI (6.1-33) 

and equations 6.1-24 through 6.1-29 become 
the standard Gauss-Newton algorithm. 

Iteration parameters p and p should be ap 
plied to the present method in the same man- 
ner as they are for the Gauss-Newton method. 
Use of p to modify step size &+1 leads to equa- 
tion 3.3-19 (&+1 =pCJ&+,+&) to compute 
&+1. To employ ~1, equation 6.1-27 is trans- 
formed to 

c~~+P&+1=s5w-fr’ * (6.1-34) 

The method for solution of the impkit- 
variable model given here requires the same 
three conditions to guarantee convergence to a 
global minimum as discussed for the modified 
Gauss-Newton method in section 3.3.3. How- 
ever, in addition, the method requires that g 
and ag/abj @1,2, . . . . p) be continuous and 
unique for ah b belonging to region R (see equa- 
tion 3.3-25). 

Solution Algorithm. 
1. Before the first iteration, solve equation 

6.1-7 for fo using an initial estimate &, for 
b, and set fsl=fo. 

2. Solve equation 6.1-24 and equation 
6.1-25 for 3 and z(j=1,2 ,..., p). 

3. Solve equation 6.1-26 for &. 
4. Solve equation 6.1-34 for &+1. 
5. Solve equation 3.3-17 for c&+~. 
6. Solve equation 3.3-19 for &+1. 
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7. Test to determine if Id[+‘/cl>~ (i=1,2 ,..., p). 
(See step 5, Gauss-Newton algorithm.) 

8. If Id;+ /c[>E, increment T by one and 
return to 2. If not, then the process has 
converged. 

6.1.2 Regression When the Implicit- 
Variable Model is Numerical 

If the numerical model assumes the general 
form of equation 3.3-21, which for convenience 
is restated here as 

then the method derived in the previous section 
can be applied. The solution can be conceptual- 
ly developed in two stages, first making the 
assumption that numerical solution points coin- 
cide exactly with observation points, which 
implies m=n, then, second, relaxing the as- 
sumption by foiIowi.ug either of the two pro- 
cedures described to obtain f from h for the 
Gauss-Newton method in section 3.3.2. 

To develop the first stage of the solution, first 
note that because m=n, equation 6.1-35 may 
be written in the form g=Q analogous to equa- 
tion 6.1-7: 

g=g-D>=Q (6.1-36) 

where h=f. Next, expand equation 6.1-36 in a 
Taylor series to give equations exactly anaIo- 
gous to equations 6.1-24 and 6.1-25. Pertinent 
quantities in these equations are given by 

.-I I gi 
abj r 

(6.1-39) 

where subscript i on a matrix denotes column 
i of the matrix. By using equations 6.1-38 and 
6.1-39, an equation analogous to 6.1-25 can be 
written 

*uf 
I 

, j=1,2 ,..., p . (6.1-40) 

The second stage results from using one of the 
two procedures for obtaining f from & described 
in section 3.3.2 to obtain f from h and sj from 
a@ bj in the present case. With f and z de 
fined, the solution aIgorithm of section 6.1.1 can 
be applied directly. 

6.2 Modified Beale’s Measure 
of Nonlinearity 

Most of the methodology discussed here to 
analyze regression models is based on the as- 
sumption that the model is linear in the param- 
eters. In the case that the model is nonlinear, 
BeaIe (1960, p. 54-55) developed au empirical 
measure of degree of nonlinearity with respect 
to the confidence regions on parameters. How- 
ever, Guttman and Meeter (1965, p. 635) showed 
that if the degree of nonlinearity is high, Beale’s 
measure seriously underestimates it. To correct 
for this underestimation problem, Linssen 
(1975) modified Beale’s measure. More recent- 
ly, Bates and Watts (1980) developed measures 
of nonlinearity based on the concepts of dif- 
ferential geometry. Although these measures 
are based on a much more extensive theory than 
Beale’s (1960) measure or Linssen’s (1975) 
modification, they also require extensive com- 
putation. Thus, here Beale’s empirical measure 
as modified by Linssen is extended to give an 
approximate indication of the degree of average 
model nonlinearity. 

To develop the measure, consider a linearized 
model of the form of equation 5.1-1, where, for 
convenience, gener$ estimate &replaces @, and 
b is set equal to & to result in 
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g=f+gbJ-i, (6.2-l) 

where /=fl$). To emphasize that fe” is a 
linearized estimate of f(&&)=fe, a superscript 0 
is appended to fp. If ,$’ is calculated from equa- 
tion 6.2-l for m sets of parameter vectors 
~((4=1,2,...,m), then a measure c2 of model non- 
linearity in the region covered by the varied 
parameter sets is 

(6.2-2) 

Equation 6.2-2 is the sum of squared distances 
(that is, squared len 

P 
hs of vectors) between 

points $$ and w’“b in observation space. 
(Recall that the distance between two points is 
the length of the vector joining the points, and 
that the squared length of a vector is given by 
the sum of squared lengths of its components.) 

As explained further on, the most useful 
measure of nonlinearity is obtained by multiply- 
ing equation 6.2-2 by the quantity 

to obtain 

which is an extension for q<p of Linssen’s (1975) 
modification of Beale’s measure of nonlinearity 
(Beale, 1960, p. 54-55). 

Equation 6.2-3 can be justified as follows (see 
also Guttman and Meek, 1965, and Linssen, 
1975). The weighted distance between g and fe 
is designated Ed so that the geometric relation- 
ships among weighted vectors [, ,$ and $’ can 
be diagrammed in observation space as shown 
in figure 6.2-l. Now, 

(6.2-4) 

c!p f d 
* 

OP f” = -I 

ZEd 
CiP f = -, 

Figure 6.2-l 

where, by definition, 

“T T A 
=(b+) x wx(~-~~ * (6.2-5) -m 

To obtain a more convenient form for d2, note 
that 

=(~-g,TxTux(~-6, -- - (6.2-6) 

where equation 5.1-9 was used. The combina- 
tion of equations 6.2-5 and 6.2-6 shows that 

d2=(~-$)Tt&-j+$-(~-f)To&). (6.2-7) 

If $ is assumed to he on the edge of the con- 
fidence re ‘on given by equation 5.6-12 so that 
@=@Tti & , 4 then from equations 5.6-12 and 
6.2-7 it can be seen that 

d2=qs2F&,n-p) . (6.2-8) 

Hence, if both numerator and denominator of 
equation 6.2-4 are averaged over m sets of 
parameters, there results 

Ep)&&Jq,n-p) . (6.2-9) 

c 
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Based on equation 6.2-9, Beale (1960, p. 60) 
ranked the degrees of nonlinearity as follows: 
The model is highly nonlinear if 

~~>llF,(q,n-p) (6.2-10) 

because in this case E(e2)>1, and the discrepan- 
cy is actually greater than d. If 

&<O.Ol/F&,n-p), (6.2-11) 

then the model is classed as being effectively 
linear because E(~~)<0.01. For points in be 
tween, Beale (1960, p. 60) stated that the linear 
theory is adequate to give a rough idea of sig- 
nificance but may not bring out full implications 
of the analysis. However, Guttman and Meeter 
(1965, p. 636) noted that equation 6.2-11 may 
be overlyAconservative to define a maximum 
value of Nb for an approximately linear model. 
Experiments conducted by the authors indicate 
that, if 

&<O.OS/FJq,n-p), (6.2-12) 

3 
then confidence intervals given by linear theory 
are fairly good approximations of the exact ones 
as given by Vecchia and Cooley (1987). Thus, 
equation 6.8-12 is used to define the maximum 
value of Nb to consider the model to be 
roughly linear. 

Because equation 6.2-9 is justified by assum- 
ing that the points ,$’ lie on the edge of the con- 
fidence region, a reasonable way to obtain the 
points is to choose them from equation 5.6-14, 
although, as noted by Beale (1960, p. 55), the 
points do not have to lie on the edge of the con- 
fidence region. Thus1 on_e could use m<2q sets 
of parameters Z$=& ,&I. Note that whether 
or not the model is linear, hlP and & correspond- 
ing to the partition of b given in equation 5.6-3 
are properly chosen without the necessity of 
performing additional least squares solutions to 
obtain each set &. This fact is true because 
subset hlP is required to lie on the edge of the 
linearized confidence region. 

Rigorous use of equations 6.2-10 through 
6.2-12 theoretically requires that disturbances 
be distributed normally. However, it would be 
convenient to be able to gauge the degree of 

D 
nonlinearity of the model irrespective of the 

properties of g. If the confidence region in equa- 
tion 5.6-12 were large enough to encompass 
virtually all physically plausible sets of param- 
eters, then model nonlinearity as assessed using 
equations 6.2-10 through 6.2-12 would be 
meaningful. Based upon past experience, F 
values generated using (r=O.O5 have been found 
to yield such a confidence region and thus to be 
adequate to gauge nonlinearity. 

Problem 6.2- 1 

Four sets of parameters that correspond to 
four points on the edge of the linearized con- 
fidence region in equation 5.6-13 result from 
problem 5.6-2. These four sets of parameters 
can be subdivided into two groups of two. Pick 
two different parameter sets from the two 
groups and compute two corresponding sets of 
drawdowns at the observation points using the 
nonlinear (Theis) model. Then, using the modi- 
fied Beale’s measure program (appendix 6.4.1), 
find the modified Beale’s measure. Is the model 
nearly linear? 

Problem 6.2-2 

Use the four parameter sets resulting from 
problem 5.6-3 in the nonlinear regression flow 
program of appendix 4.3.4, as augmented by the 
inserts of appendix 6.4.1, to compute the modi- 
fied Beale’s measure. Are the various statistical 
measures obtained from the linearized model ap- 
proximately valid (at least as determined from 
the four parameter sets employed)? 

6.3 Compatibility of Prior 
and Regression Estimates 
of Parameters 

If the regression model contains prior infor- 
mation on the parameters, an important part of 
the analysis to determine whether or not the 
model is correct is to test the null hypothesis 
that the prior and sample information are in 
agreement; in other words, 



190 TECHNIQUES OF WATER-RI 

As indicated in section 5.5, graphical analysis 
of residuals can usually detect an incompatibil- 
ity between sample and prior information. 
However, in some cases an additional test might 
be desired. Theil (1963) showed that the test 
statistic 

.(~~-6(6,~~)-~(~-~~0,, (6.3-l) 

where vector b IS the ordinary least squares A* * 
estimate of vector & is Chi square distributed 
with n degrees of freedom (x2(n )) provided 
that dof the assumptions given <y equations 
5.2-1 through 5.2-3, 5.2-6, and 5.2-10 hold 
true, 2 is known, and g is of the form 

itsi! CO= I I (6.3-2) 
- h!p 

where s and s are known and symmetric 
positive definite of order n, and np, respective 
ly. If 2 is of the form 

x1 2 W= 
I I (6.3-3) 

- 2 g-v 

and 2 is unknown, then the test statistic 

P=(~-~(~,4)-x,(~-~~))T 

is asymptotically s2(Q distributed. If the com- 
puted value of P, y, is greater than $Jn ), 
where a! indicates significance level, then tie 
null hypothesis is rejected. 

Problem 6.3- 1 

Using equation 6.3-4, test the compatibility 

OURCES INVESTIGATIONS 

of the prior estimate of the boundary head, f,,s 
and the pure regression estimate, s2*, of prob: 
lem 3.2-l. To conduct this test you will have 
to do an ordinary least-squares regression. The 
model of appendix 4.3.4 may be employed for 
this in the same manner as for problem 4.2-l. 
Use the model output to obtain the necessary 
quantities in equation 6.3-4. 

6.4 Appendix 

6.4.1 Documentation of Program to 
Compute the Modified Beale’s 
Measure 

This program performs a straightforward 
computation of the modified Beale’s measure, 
equation 6.2-3. Vectors fp, $, and f are as- 
sumed to be composed of sample information 
and direct prior information on some or all 
parameters. The weight matrix for sampie and 
prior information is assumed to be given in the 
form of equation 3.4-12, and the sensitivity 
matrix for the prior information is assumed to 
be given by equation 4.1-6. 

There are two versions of the program. One 
is for general use, and all variables needed for 
the calculation must be read in. The other 
version is designed to be an integral part of 
the regression ground-water model documented 
in appendix 4.3.4 and requires only q and the 
extra sets of parameters needed for the Beale’s 
measure calculation as input in addition to 
input already required for the regression 
solution. 

The programs were developed using the 
Microsoft Fortran Compiler, Version 3.3, with 
the DOS 2.0 operating system on an IBM 
PC/XT computer with the IBM 8088 Math 
Coprocessor and 256 KB memory. Except for 
the OPEN statements near the beginniug of 
the general code, Fortran 66 was used through- 
out to make the codes as machine independent 
as possible. The general source code is con- 
tained in file BEALE.FOR, and the version 
designed to be inserted into the regression 
code is contained in file BLEINS.FOR, both of 
which are in the diskette accompanying this 
report. 
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Input data for General Version.-Data Set A. 
Problem size information; one card (format 415, F1O.O). 

Line Columns Variable Definition 

l-5 NVAR . 
6-10 NRES 
11-15 NOBS 
16-20 NPRIR 

21-25 NPTS 

26-35 VAR 

Number of parameters, p. 
Number of restrictions, q. 
Number of sample observations, II . 
Number of regression parameters having direct prior 

information, n . 
Number of dataPsets to compute the modified Beak’s 

measure, m. 
Error variance, s2. 

Data Set B. 
Estimated regression parameters, 6 (format 8FlO.O). 

BOPT(1) 
BOFT(2) 

BO+VAR) 

Estimated regression parameters, entered sequentially 
from 1 through NVAR. 

Data Set C. 
Dependent variable vector for sample information, %, computed using 4 
(format 8FlO.O). 

Line columns Variable Definition 

FOPT(1) 
FOPT(2) 

Computed dependent variable values, entered sequen- 
tialIy from 1 through NOBS. 

FOPT(NOBS) 

Data Set D. 
Weight matrix for sample information, E’ (format 8FlO.O). 

Line columns Variable DdillitiOll 

l-10 
11-20 

W(1) 
W(2) 

W(iOBS) 

Diagonal weight matrix for sample information, 
entered sequentially from 1 through NOBS. 

Data Set E. 
Sensitivity matrix for sample information, X, (format 8FlO.O) 

Variable 

WJ) 
W2A 

X(NVAR.1) 
X(1,2) 

Definition . 

Sensitivity matrix for sample information, entered 88 
quentiaRy 1 through NVAR for each observation. 
Each new observation begins a new line. for a total 
of NOBS observations. 

X&AR,P) 

X(NirAR,NOBS) 
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Data Set F. 
Parameter numbers having prior information (format 1615). 

Line cdumns Variable Defblition 

l-5 
6-10 

IPR(1) 
IPR(2) 

IPR(NPRIR) 

Array subscript numbers for regression parameters in 
BOPT(1.) having prior information, entered in any 
order from 1 through NPRIR. 

Omit data set of NPRIR=O. 

Data Set G. 
Standard deviation matrix for prior information, g’ (format 8FlO.O). 

l-10 ww Diagonal standard deviation matrix for prior informa- 
tion, entered in the same order as IPR(1) from 1 

WP(NPRIR) 
through NPRIR. 

Omit data set if NPRIR=O. 

Data Set H. 
Alternate parameters sets, & (format 8FlO.O). This data set and the next one 
are read in sequence (H, I, H, I, . ..) a total of NITS times. 

Line columns Variable D&n&ion 

l-10 
11-20 

B(1) 
B(2) 

B&AR) 

Alternate parameter sets, entered sequentially 1 
through NVAR. Order must be the same as for 
BOPT(L). 

Data Set I. 
Alternate dependent variable vectors for sample information, fsp, computed 
using & (format 8FlO.O). 

Line columns Variable DdhitiOlI 

l-10 
11-20 

FCW 
FCC3 

FC(;OBS) . 

Alternate sample dependent variable values computed 
using the nonlinear model, entered sequentially 1 
throueh NOBS. Order must be the same as for 
FOP+(I). 
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Output for General Version.-Output is all 
clearly labeled, it is ordered as follows: 

1. Data sets A through G. 
2. Data sets H and I. Data for numbers 2 

through 4 below are printed sequentially 
for each data set &’ (P= 1.2 ,..., m). 

3. Dependent variable vector, g!, for sample 
information, computed using the linear- 
ized model. 

4. Total fums of squared djfferences (b-b’ 
*zl&-fl ad (,$‘-#‘c&‘-f), where 

5. Beale’s measure, kb=BN. 

Use of Version Integral with the Regression 
Grvun&WaterPrvgmm.-This version consists 
of sets of statements to be inserted into the 
program of appendix 4.3.4, as indicated on the 
appended listing. Input is the same as if a 
regression solution were to be obtained, except 
that the initi+ set of parameters must be the 
optimum set &, and extra data relating to the 
modified Beale’s measure is required. After 
entering data set T, use data sets U and V to 
enter the data for P=1,2,...,m alternate solutions. 
Follow these data with a final line to input q and 
s2 with format 15,FlO.O. A complete regression 
solution is not obtained; only computations 
through the calculation of sensitivities on the 
first iteration are completed before proceeding 
to calculate the modified Beale’s measure. Thus, 
output consists of regression output through 
number 19 (see “Gutput” in appendix 4.3.4) plus 
output analogous to numbers 2 through 4 of the 
general version of the modified Beale’s measure 
program. 
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Program Listing for Geneml Version. 

C MODIFIED BEALE'S MEASURE PROGRAM BY R. L. COOLEY, USGS, DENVER, 
C COLO. 

DIMENSION BOPT(20),FOPT(70),B(20),FC(7C),FL(7C),X(2C,7U) 
l,W(7O),IPR(2O),WP(20) 
COMMON/ITP/IIN,IOUT 
COMMON/FLT/X 
OPEN (5,FILE-'BEALE.DAT',STATUS-'OLD',ACCESS='SEQUENTIAL' 

l,FORM='FORMATTED') 
OPEN (6,FILE-'BEALE.OUT',STATUS-'NEW',ACCESS='SEQUENTIAL' 

l,FORM-'FORMATTED') 
C**FORMAT LIST 

1 FORMAT (515,FlO.O) 
2 FORMAT (8FlO.O) 
3 FORMAT (9HlNVAR = ,14/9H NRES = ,14/9H NOBS - ,I4 

1/9H NPRIR = ,14/9H NPTS -,,14/9H VAR = ,G11.5) 
4 FORMAT (lH0,26X,lBHOPTIMUM PARAMETERS 

l/lH ,3X,3(3HN0.,9X,4HBOPT,BX)) 
5 FORMAT (lH0,9X,52HDEPENDENT VARIABLES COMPUTED WITH OPTIMUM PARAME 

lTERS/lH ,3X,3(3HN0.,9X,4HFOPT,BX)) 
$i FORMAT (lH0,21X,26HPARAMETERS FOR SAMPLE NO. ,I3 
'l/lH ,3X,3(3HNO.,llX,lHB,SX)) 

7 FORMAT (lH0,12X,44HDEPENDENT VARIABLES COMPUTED FOR SAMPLE NO. ,I3 
l/lH ,3X,3(3HNO.,lOX,2HFC,9X)) 

8 FORMAT (38H0 SENSITIVITIES FOR OPTIMUM PARAMETERS) 
9 FORMAT (lH0,6X,55HLINEARIZED DEPENDENT VARIABLES COMPUTED FOR SAMP 

1LE NO. ,13/1H ,3X,3(3HNO.,lOX,2HFL,9X)) 
10 FORMAT (lHO,SHBN - ,G11.5) 
11 FORMAT (23HOSS((FC-FOPT)*W**.5) = ,G11.5 

1/23H SS((FL-FOPT)*W**.5) - ,G11.5) 
12 FORMAT (lH0,14X,42HRELIABILITY WEIGHTS FOR SAMPLE INFORMATION 

l/lH ,3X,3(3HNO.,lOX,lHW,lOX)) 
13 FORMAT (1615) 
14 FORMAT (lH0,12X,43HNO.S OF PARAMETERS HAVING PRIOR INFORMATION 

l/lH ,3X,3(3HNO.,BX,3HIPR,lOX)) 
15 FORMAT (lH0,14X,40HSTANDARD DEVIATIONS OF PRIOR INFORMATION 

l/lH ,3X,3(3HNO.,lOX,2HWP,9X)) 
16 FORMAT (6HOEV = ,G11.5) 

C**DEFINE INPUT FILE, OUTPUT FILE, AND ARRAY DIMENSION 
IIN- 
IOUT- 
NVD-20 

C**READ BASE DATA 
READ(IIN,l) NVAR,NRES,NOBS,NPRIR,NPTS,VAR 
WRITE(IOUT,3) NVAR,NRES,NOBS,NPRIR,NPTS,VAR 
READ(IIN,2) (BOPT(J),J-1,NVAR) 
WRITE(IOUT,4) 
CALL PRTOTB(BOPT,NVAR) 
READ(IIN,2) (FOPT(I),I-l,NOBS) 
WRITE(IOUT,5) 
CALL PRTOTB(FOPT,NOBS) 
READ(IIN,2) (W(I),I=l,NOBS) 
WRITE(IOUT,12) 
CALL PRTOTB(W,NOBS) 

SET A 

SET B 

SET C 

SET D 
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DO 20 J-l,NOBS 
READ(IIN,2) (X(I,J),I-l,NVAR) SET E 

20 CONTINUE 
WRITE(IOUT,8) 
CALL PRTOT(X,NVAR,NOBS,NVD) 
IF(NPRIR.LT.l) GO TO 45 
READ(IIN,2) EV SET F 
WRITE(IOUT,16) EV 
READ(IIN,13) (IPR(I),I-1,NPRIR) SET G 
WRITE(IOUT,14) 
CALL PRTOTC(IPR,NPRIR) 
READ(IIN,2) (WP(I),I=l,NPRIR) SET H 
WRITE(IOUT,15) 
CALL PRTOTB(WP,NPRIR) 
DO.40 I-1,NPRIR 

40 WP(I)-EV/(WP(I)*WP(I)) 
C**READ DATA FOR EACH SAMPLE AND COMPUTE MODIFIED BEALE'S MEASURE, BN 

45 SUMA-0. 
SUMB-0. 
DO 80 M-l,NPTS 
READ(IIN,2) (B(J),J-l,NVAR) SET I 
WRITE(IOUT,6) M 
CALL PRTOTB(B,NVAR) 
READ(IIN,2) (FC(I),I-1,NOBS) SET J 
WRITE(IOUT,7) M 
CALL PRTOTB(FC,NOBS) 
SUMC-0. 
SUMD-0. 
DO 60 J-l,NOBS 
SUM-FOPT(J) 
DO 50 I=l,NVAR 

50 SUM-SUM+X(I,J)*(B(I)-BOPT(1)) 
FL(J)=SUM 
TMP-FC(J)-SUM 
SUMA-SUMA+TMP*W(J)*TMP 
TMP-FC(J)-FOPT(J) 
SUMC=SUMC+TMP*W(J)*TMP 
TMP-SUM-FOPT(J) 
SUMD-SUMD+TMP*W(J)*TMP 

60 CONTINUE 
IF(NPRIR.LT.l) GO TO 75 
DO 70 J-l,NPRIR 
I-IPR(J) 
TMP-B(I)-BOPT(1) 
TMP-TMP*WP(J)*TMP 
SUMC-SUMC+TMP 

70 SUMD-SUMD+TMP 
75 WRITE(IOUT,9) M 

CALL PRTOTB(FL,NOBS) 
WRITE(IOUT,ll) SUMC,SUMD 

80 SUMB-SUMB+SUMD*SUMD 
TMP-NRES 
BN-TMP*VAR*SUMA/SUMB 
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WRITE(IOUT,lO) BN 
STOP 
END 
SUBROUTINE PRTOTB(VAL,NO) 

C**PRINT VALUES IN THREE GROUPS OF TWO COLUMNS 
DIMENSION VAL(N0) 
COMMON/ITP/IIN,IOUT 
NR-NO/3 
IF(3*NR.NE.N0) NR-NR+l 
DO 10 K=l,NR 
WRITE(IOUT,20) (L,VAL(L),bK,NO,NR) 

10 CONTINUE 
RETURN 

20 FORMAT (1H ,2X,3(13,7X,G11.5,3X)) 
END 
SUBROUTINE PRTOTC(IVAL,NO) 

C**PRINT INTEGERS IN THREE GROUPS OF TWO COLUMNS 
DIMENSION IVAL(N0) 
COMMON/ITP/IIN,IOUT 
NR==N0/3 
IF(3*NR.NE.N0) NR=NR+l 
DO 10 K=l,NR 
WRITE(IOUT,20) (L,IVAL(L),L-K,NO,NR) 

10 CONTINUE 
RETURN 

20 FORMAT (1H ,2X,3(13,8X,14,9X)) 
END 
SUBROUTINE PRTOT(C,NR,NC,NRD) 

C**PRINT MATRICES DIVIDED VERTICALLY INTO TEN-COLUMN BLCCKS 
DIMENSION C(NRD,NC) 
COMMON/ITP/IIN,IOUT 
DO 60 K=l,NC,lO 
JlO-K+9 
IF(JlO.GT.NC) JlO=NC 
WRITE(IOUT,70) (J,J=K,JlO) 
WRITE(IOUT,90) 
DO 30 I-l,NR 

30 WRITE(IOUT,80) I,(C(I,J),J=K,JlO) 
60 CONTINUE 
70 FORMAT(lHO,lO(SX,I3)) 
80 FORMAT (1H ,13,1X,lO(lX,G11.5)) 
90 FORMAT (1H ) 

RETURN 
END 

c 

c 
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C 
C**INSERT JUST BEFORE EQUIVALENCE STATEMENT FOR MODIFIED BEALE'S MEASURE 

DIMENSION BOPT(2C),HOPT(70) 
EQUIVALENCE (P(l),BOPT(l)),(HO(l),HOPT(l)) 

C 
C 
C**INSERT AFTER STATEMENT LABEL 260 FOR MODIFIED BEALE'S MEASURE 

DO 1000 J-l,NVAR 
1000 BOPT(J)=B(J) 

DO 1100 I-l,NOBS 
K=KOBS(I) 

1100 HOPT(I)=BK(I)*HC(K)+BL(I)*HC(K+1)+BM(I)*HC(K+ID)+BN(I)*HC(K+ID+l) 
suMA=o . 
suMB=o . 
GO TO 640 

C 
C 
C**INSERT JUST BEFORE STATEMENT LABEL 690 FOR MODIFIED BEALE'S MEASURE 

SUMC-0. 
SUMD=O. 
WRITE(IOUT,2000) 

2000 FORMAT (lH0,3X,28HCOMPUTED AND LINEARIZED HEADS/lH ,3X,3HN0.,7X 
1,2HHC,13X,2HHL) 

B 
2100 

2200 

2300 
2400 
2500 

DO 2200 J=l,NOBS 
K-KOBS(J) 
HCJ=BK(J)*HC(K)+BL(J)*HC(K+l)+BM(J)*HC(K+ID)+BN(J)*HC(K+ID+l) 
HL=HOPT(J) 
DO 2100 I-1,NVAR 
HL=HL+X(I,J)*(B(I)-BOPT(1)) 
TMP-HCJ-HL 
SUMA=SUMA+TMP*W(J)*TMP 
TMP-HCJ-HOPT(J) 
SUMC=SUMC+TMP*W(J)*TMP 
TMP=HL-HOPT(J) 
SUMD=SUMD+TMP*W(J)*TMP 
WRITE(IOUT,856) J,HCJ,HL 
CONTINUE 
IF(NPRIR.LT.l) GO TO 2400 
DO 2300 J=l,NVAR 
IF(WP(J).LT.l.E-10) GO TO 2300 
TMP=B(J)-BOPT(J) 
TMP-TMP*WP(J)*TMP 
SUMC=SUMC+TMP 
SUMD-SUMD+TMP 
CONTINUE 
WRITE(IOUT,2500) SUMC,SUMD 
FORMAT (23HOSS((HC-HOPT)*W**.5) = ,G11.5 

1/23H SS((HL-HOPT)*W**.5) = ,G11.5) 
SUMB=SUMB+SUMD*SUMD 

C**INSERT AFTER STATEMENT LABEL 690 FOR MODIFIED BEALE'S MEASURE 
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READ(IIN,812) HEES,VAE 
WRITE(IOUT,2600) NRES,VAR 

2600 FORMAT (8HONRES - ,14/7H VAR - ,Gll. 5) 
TM+NRES 
BLN-=TMP*VAR*SIJHA/SUHEi 
WRITE(IOUT,2700) BIN 

2700 FORMAT (lHO,SHBN = ,G11.5) 
C 
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